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Chapter 1

Introduction

1.1 Background

Transport properties of materials are regularly measured in experiments. But, a mi-

croscopic theory for calculating transport properties is far from complete. For isolated

systems in the thermodynamic limit, the standard linear response theory can be used to

extract transport coefficients from various equilibrium correlation functions of the iso-

lated system. An important virtue of this approach is to connect transport coefficients to

spread of equilibrium correlations following a small perturbation. Such spread of correla-

tions is routinely used to characterize transport behavior. However, in many experimental

situations where the system is of finite size such an approach cannot be applied (for ex-

ample, [1, 2, 3, 4, 5, 6, 7]). Such far-from-equilibrium set-ups beyond the validity of

standard linear response approach are becoming increasingly of interest in both theory

and experiments. Their investigation is important fundamentally [8, 9, 10] as well as for

device applications such as optomechanical cooling [3], masing (microwave lasing) [11],

amplification of light [4], rectification of bosonic and fermionic currents [12, 13, 14] etc.

For describing transport properties in such set-ups we need the open (quantum) system

approach. This involves connecting the system to baths which have different temperatures

and chemical potentials and looking at the non-equilibrium steady state (NESS) currents.

This approach of describing transport is more akin to the standard experimental set-up

for measuring electrical conductance. In this approach there is no restriction on system

size. It can be applied to finite-size and extended systems alike. However, for extended

systems, where the standard linear response theory is also applicable, a rigorous relation

between the two approaches has been missing.
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Figure 1.1: The general set-up for obtaining open system transport. N̂S, N̂B1 , N̂B2 are

operators corresponding to total number of particles in system, left bath and right bath.

The initial state of the set-up is the direct product state of an arbitrary state of the system

with thermal states of the two baths. β1, µ1 (β2, µ2) are the temperatures and chemical

potentials of the initial thermal state of the left (right) bath.

1.2 The general idea

Let us now present the general idea for obtaining quantum transport via open quantum

set-ups. Consider the set-up described by the Hamiltonian,

Ĥ ≡ ĤB1 + ĤSB1 + ĤS + ĤSB2 +HB2 . (1.1)

Here ĤS is the system of interest, ĤB1 and ĤB2 are two baths which are attached to

the system of interest via the system-bath coupling Hamiltonians ĤSB1 , ĤSB2 . In our

microscopic theories of transport, we model each bath via a quadratic Hamiltonian with

infinite degrees of freedom (fermionic or bosonic). Moreover, the system-bath coupling will

always be considered bilinear. The full system+bath set-up described by Ĥ is considered

isolated. All Hamiltonians considered in this thesis will be particle number conserving

and having time-reversal symmetry. The initial state of the whole system+bath set-up is

chosen as a direct product state of the system and the baths, each bath being in its own

thermal state with its own temperature and chemical potential.

ρtot(0) =
e−β1(ĤB1

−µ1N̂B1
)

Tr(e−β1(ĤB1
−µ1N̂B1 )

⊗ ρ(0)⊗ e−β2(ĤB2
−µ2N̂B2

)

Tr(e−β2(ĤB2
−µ2N̂B2 )

, (1.2)

where ρ(0) is the initial density matrix of the system and ρtot(0) is the initial density

matrix of the whole system+bath set-up. The schematic of the set-up is given in Fig. 1.1.

This set-up is now evolved with the full system+bath Hamiltonian Ĥ and evolution of
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the system state is obtained by tracing out the bath degrees of freedom,

ρtot(t) = e−iĤtρtot(0)eiĤt, ρ(t) = TrB(ρtot(t)), (1.3)

where TrB(...) refers to tracing over bath degrees of freedom. The expectation value

of some system observable of interest, Ô, is calculated in the evolved state, 〈Ô(t)〉 =

Tr(Ôρ(t)). The entire protocol can be straightforwardly extended to cases where there

are multiple (i.e, more than two) baths attached to the system.

If the temperatures and chemical potentials of the initial states of the baths are dif-

ferent, in all the cases of our interest, in the long time limit, a unique non-equilibrium

steady state (NESS) will be reached which is independent of the initial state of the sys-

tem. This is generically expected [15, 16]. There may be cases where this does not happen

[15, 17, 18], but those cases are outside the scope of this thesis. We will look at energy

and particle transport properties.

Several formalisms exist in the literature for studying open quantum set-ups, such

as, non-equilibrium Greens functions (NEGF) [19], quantum Langevin equations (QLE)

[20, 15, 16], quantum master equations (QME) [21, 22, 23] etc. This thesis is based on

QME and QLE approaches. Though the set-up described above is for two baths, some

of the formalisms we will develop in the thesis will be for an arbitrary number of baths

attached to the system. In this thesis, we will

• investigate and improve the QME approach to quantum transport and give the con-

nection between the QME and QLE formalisms for obtaining transport properties

of various set-ups [Publications related to the thesis (i), (ii)],

• apply our improved formalisms to some small quantum systems thereby discovering

rich and interesting physics, much of which would be missed or would be harder to

obtain by other formalisms [Publications related to the thesis (i), (iii), (ii)],

• explore transport behavior in 1D quasiperiodic systems, obtaining their high tem-

perature non-equilibrium phase diagrams, and explicitly showing a case where open

system approach and standard linear response theory give very different results

[Publications related to the thesis (iv), (v)],

• explore the connection between transport properties obtained via the standard linear

response theory for isolated systems and via the open system approach [Publications

related to the thesis (vi)].
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1.3 Outline

This thesis is organized as follows.

Chapter 2: Formalism In this chapter, first we provide the necessary background

for Markovian QMEs. We discuss the Lindblad form of the Markovian QME as well as

the Redfield QME (RQME) which is obtained via Born-Markov approximation. Then

we review the QLE formalism for a very general non-interacting system in arbitrary

dimensions and geometry with arbitrary number of sites attached to baths. The QLE

formalism can be used to easily obtian exact (i.e. without Born-Markov approximation)

steady state results. After that, we explore the same general non-interacting set-up under

the Born-Markov approximation. We show the equivalence between QLE and RQME in

such set-ups. Finally, we extend the RQME to the AC case, where the temperatures and

chemical potentials of the baths are periodic functions of time.

Chapter 3: Transport through small systems In this chapter, first we apply the

Born-Markov approximated formalism developed in the previous chapter to the simple

case of a two site non-interacting system connected to two baths. We use this simple case

to test the Born-Markov approximated results against exact results. We also compare

the results with two other phenomenologically written Lindblad QMEs which are often

used. The RQME has a much wider range of validity than the Lindblad QMEs. For the

AC case, we obtain several experimentally relevant results, such as hysteresis-like loops

of instantaneous current vs voltage plots. Then, we employ the RQME approach to a

simple interacting system of a single site with Bose-Hubbard interaction connected to two

baths at different temperatures. We obtain extremely interesting rectification effects and

high temperature scaling. We also find that the time to reach steady state has non-trivial

dependences on interaction strength and temperatures of the baths.

Chapter 4: Transport in extended systems In this chapter, first we review the

ways of characterizing transport via standard linear response theory and via the open

system approach. We then look at transport through two 1D quasiperiodic systems, the

Aubry-André-Harper model and a generalization of it. We show that at the critical point

of the Aubry-André-Harper model, the standard linear response theory characterization

of transport and the open system characterization of transport give drastically different
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results. The open system result can be understood as a property of system single particle

eigenfucntions in terms of the simple expression for current derived in Chapter 2. For the

generalized model, we obtain the high temperature non-equilibrium phase diagram, which

can be explained by its connections with the Aubry-André-Harper model and the fractal

properties of the spectrum. Finally, we derive open system current fluctuation-dissipation

relations for general open quantum set-ups and give the relation between standard linear

response theory and open system approaches of characterizing transport.

Chapter 5: Conclusions This gives the summary and the concluding remarks of the

thesis.
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Chapter 2

Formalism

In this chapter, we first review and discuss the standard QME and the QLE approaches

in sections 2.1,2.2. Then, in section 2.3, we formulate a microscopically derived QME

approach for a very general non-interacting set-up for both DC and AC transport cases

under weak system-bath coupling and Markovian assumptions (Born-Markov approxima-

tion). We show the equivalence of QME and QLE approaches for such set-ups. We obtain

various general results that are valid in arbitrary geometry and dimensions. This chapter

is dedicated to development of the formalisms only, along with some physics that can be

directly read-off from the resulting equations. The explicit application of the formalisms

as well as the numerical checks validating the formalisms will be taken up in subsequent

chapters.

2.1 Review: Markovian Quantum Master Equations

(QMEs)

Quamtum Master Equaiton (QME) is an equation of motion for the density matrix of an

open system. In this thesis, we will only consider Markovian QMEs (see Appendix. 6.1 for

a definition of quantum Markov process). There exists exact non-Markovian QMEs also,

which give formally exact results (for example, [24]). However, non-Markovian QMEs are

much more difficult to solve numerically. When the Markovian approximation holds, the

Markovian QMEs provide huge simplification (as we will see).
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2.1.1 Lindblad QME

Gorini, Kossakowski, Sudarshan [25] and Lindblad [26] (GKSL) mathematically proved

a theorem which says that when a non-unitary term is added to the unitary equation of

motion for the density matrix such that the resulting equation is Markovian and preserves

all properties of the density matrix at all time for all initial conditions, the resulting

equation has to be of the form

∂ρ

∂t
=i[ρ, Ĥ] +

∑

α,ν

gαν
(
D̂αρD̂

†
ν −

1

2
{D̂†νD̂α, ρ}

)
. (2.1)

Here gαν are elements of matrix g which is Hermitian and positive semi-definite, Ĥ is a

Hermitian system operator encoding the unitary part of the time evolution, and D̂α is

some system operator. Here and henceforth, we set ~ = 1. g being positive semi-definite

is the necessary and sufficient condition for the complete positivity of the density matrix

ρ at all time. This point will be important later. We will call the Eq. 2.1 as a QME of

the GKSL form.

Eq. 2.1 can be further simplified by diagonalizing g and defining new operators D̂m,

∑

α,ν

UmαgανU
∗
pν = γmδmp, D̂m ≡

∑

ν

UmνDν . (2.2)

The resulting equation is commonly called the Lindblad QME and has the form

∂ρ

∂t
=i[ρ, Ĥ] +

∑

m

γm
(
D̂mρD̂

†
m −

1

2
{D̂†mD̂m, ρ}

)
(2.3)

with γm ≥ 0 for all m now being the requirement to preserve complete positivity. The

operators {D̂m} are often called Lindblad operators. Note that the Lindblad opera-

tors are not specified. The Lindblad QME is widely used across many fields in physics.

In most applications of the Lindblad QME, the Lindblad operators are written down

phenomenologically. In this thesis, we do not use this approach, except for compari-

son with the other approaches described below. Instead, we will use the Redfield QME

which can be rigorously derived from a microscopic system+bath Hamiltonian approach

via Nakajima-Zwanzig projection operators method under Born-Markov approximation

(Appendix. 6.2,[21]).

2.1.2 Redfield QME (RQME): Born-Markov approximation

Born-approximation corresponds to deriving QMEs up to leading order in system-bath

coupling. We take the rigorously derived time-convolution-less QME up to second order
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(which is the leading order) in system-bath coupling (Appendix. 6.2),

∂ρ

∂t
= i[ρ, ĤS]− ε2

∫ t−t0

0

dt′TrB[ĤSB, [ĤI
SB(−t′), ρ(t)⊗ ρB]], (2.4)

where ĤI
SB(t′) = ei(ĤS+ĤB)tĤSBe

−i(ĤS+ĤB)t. Now, we do the Markov approximation, i.e,

we only look at long time dynamics such that t0 → −∞. Reducing to this actually makes

the assumption that observation time t is much larger than the decay time scale of some

bath-correlations. To see this, we note that any system-bath coupling Hamiltonian can

be written in the following form,

ĤSB =
∑

`

Ŝ`B̂` (2.5)

where Ŝ` is some system operator, and B̂` is some bath operator. Using this in Eq. 2.4

and after some simplification we obtain [21, 23]

∂ρ

∂t
=i[ρ, ĤS]

− ε2

∫ t−t0

0

dt′
∑

`,m

(
[Ŝ`, Ŝm(−t′)ρ(t)]〈B̂`B̂m(−t′)〉B + [ρ(t)Ŝm(−t′), Ŝ`]〈B̂m(−t′)B̂`〉B

)
,

(2.6)

where Ŝm(t) = eiĤStŜme−iĤSt, B̂m(t) = eiĤBtB̂me
−iĤBt and 〈...〉B = Tr(ρB...). Let τB be

the bath relaxation time scale, defined as the time in which all the 〈B̂`B̂m(−t′)〉B and

〈B̂m(−t′)B̂`〉B decay to O(ε). Since, within Born approximation we are anyway neglecting

higher orders of ε, contributions smaller than O(ε) from 〈B̂`B̂m(−t′)〉B and 〈B̂m(−t′)B̂`〉B
are irrelevant. If t − t0 � τB, it is justified to take t0 → −∞, thereby making the

Markovian approximation. Note that τB depends only on properties of the bath, and not

on any system properties. Thus, finally, we have the Born-Markov approximated QME,

which is the RQME,

∂ρ

∂t
=i[ρ, ĤS]

− ε2

∫ ∞

0

dt′
∑

`,m

(
[Ŝ`, Ŝm(−t′)ρ(t)]〈B̂`B̂m(−t′)〉B + [ρ(t)Ŝm(−t′), Ŝ`]〈B̂m(−t′)B̂`〉B

)
.

(2.7)

Eq. 2.7 is the one of the important equations used in the first part of the thesis. Various

results will be obtained simply by using Eq. 2.7 for specific models.
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2.1.3 Accuracy of the RQME

The RQME is an equation of the form

∂ρ

∂t
=
(
L[0] + L[2]

)
ρ(t), (2.8)

where L[p] is the Liovillian of order εp. L[0]• = i[•, ĤS]. This has the solution

ρ(t) = e(L[0]+L[2])tρ(0). (2.9)

Even though the equation was derived correct to O(ε2), the solution has answers to all

orders of ε. Clearly, the solution is not accurate to all orders. The question we now

ask is up to how many orders in ε can the solution of the RQME be trusted. The naive

expectation for this is up to O(ε2). However, this is not true. It has been succinctly shown

in Ref. [27] that an equation of this form will give diagonal elements in the eigenbasis of

system Hamiltonian correct to O(ε0) and off-diagonal elements correct to O(ε2).

2.1.4 Difference between RQME and Lindblad QMEs

Since, the RQME is a Markovian equation of motion for the density matrix of the system,

one can expect that RQME for any given set-up will be reducible to the Lindblad form

(Eq. 2.1 or Eq. 2.3). But this is not true in general and holds only under very special

conditions. For example, if the system is a single harmonic oscillator, then the RQME

is exactly of the Lindblad form (Eq. 2.3). However, for even slightly more complicated

systems, for example, a system consisting of two coupled harmonic oscillators, the RQME

has a form similar to Eq. 2.1, but some γm’s may be < 0. As a result the RQME may not

preserve complete positivity of system density matrix at all time under specific conditions

[21, 22, 23]. The positivity problem of the RQME remains a major issue, and one has

to be careful in applying the RQME. This drawback often does not show up in physical

quantities and the RQME is widely used. In many cases, however, the phenomenological

Lindblad QMEs are preferred over RQME because RQME is numerically more difficult.

In this thesis, we will provide a simple way to handle RQME for non-interacting

set-ups, and also use RQME to extract analytical non-equilibrium results in a simple

interacting problem.
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Figure 2.1: The schematic diagram for our general non-interacting set-up. Sp represents the pth site

of the system attached. Bp represents the bath with inverse temperature and chemical potential βp, µp

that is attached to the pth site of the system. The sites and the baths can be all fermionic or bosonic.

The on-site energies of the sites are arbitrary. The arrows represent the hopping between the sites. The

hopping strengths are also arbitrary. An arbitrary number of sites are attached to the baths.

2.2 Review: Quantum Langevin Equation

Having reviewed Markovian QMEs, we now review the Quantum Langevin Equation

(QLE) formalism. This formalism that will be extensively used in the thesis to obtain

exact non-equilibrium steady states (NESS), is based on Heisenberg equations of motion.

It gives exact results for NESS if the system Hamiltonian is quadratic, i.e, for non-

interacting systems [20, 15, 16]. In this approach, the Heisenberg equations of motion

for the bath degrees of freedom are first formally solved. This solution is then used

in writing the Heisenberg equations of motion for the system degrees of freedom. The

resulting system equations of motion has the form a generalised Langevin equation with

colored noise and non-Markovian dissipation. The NESS properties are easily obtained

exactly by solving the equations of motion by Fourier transform. For non-interacting

systems, this approach is exactly equivalent to the NEGF approach [15].

A general non-interacting set-up is written as

ĤS =
∑

`m

HS
`mâ

†
`âm, ĤB =

′∑

`

∞∑

r=1

Ω`rB̂
†
`rB̂`r, ĤSB =

′∑

`

∑

r

κ`r(B̂
†
`râ` + â†`B̂`r),

(2.10)
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where
∑′

` denotes sum over the sites ` of the system where the baths are attached. B̂`r

is the annihilation operator of the rthe mode of the bath attached to site ` with coupling

strength κ`r and â` is the annihilation operator of the system at site `. Either all operators

are bosonic or all operators are fermionic. HS is a symmetric matrix. In general, if ĤS did

not have time-reversal symmetry, HS would have been a Hermitian matrix. But, in this

thesis, we will restrict ourselves to systems with time reversal symmetry. However, the

formalisms discussed can be straightforwardly carried over to cases without time-reversal

symmetry. A schematic diagram of the set-up is given in Fig. 2.1.

The set-up is initially taken to be at a direct product state with each bath being at

its own thermal state with corresponding temperature and chemical potential. This, of

course, assumes that such thermal state is well-defined for the bath Hamiltonians, and

pathological cases where the bath Hamiltonians do not have a minimum of energy are

to be excluded. In the QLE approach, we will work in Heisenberg picture where the

operators evolve but density matrix does not evolve. Thus the initial state has thermal

properties

〈B̂`r(0)〉 = 0, 〈B̂†`r(0)B̂`s(0)〉 = n`(Ω`r)δrs, n`(ω) = [eβ`(ω−µ`) ± 1]−1, (2.11)

where n`(ω) is the fermionic or bosonic distribution function. We also introduce the bath

spectral functions

J`(ω) = 2π
∑

r

| κ`r |2 δ(ω − Ω`r). (2.12)

We will assume that the baths are such that the bath spectral functions can be well-

approximated as a continuous function of ω. The set-up described by Eqs. 2.10, 2.11,

is an extremely general non-interacting set-up, and can be in arbitrary lattice in arbi-

trary dimensions and geometry with arbitrary number of sites attached to baths. In this

chapter, henceforth, we will only look at this set-up in great detail.

The system Hamiltonian can be diagonalized in single particle basis by diagonalizing

HS. Let Φ be the orthogonal matrix diagonalizing HS,

D = ΦTHSΦ, (2.13)

where D is a diagonal matrix with the elements ων , which are the single-particle energy

eigenvalues. The eigenbasis annihilation operators are defined via Âν =
∑

` Φ`ν â` ⇒ â` =
∑

ν Φ`νÂν . In terms of eigenbasis operators we have,

ĤS =
∑

ν

ωνÂ
†
νÂν , ĤSB =

′∑

`

∑

r,ν

κ`rΦ`ν(B̂
†
`rÂν + Â†νB̂`r) (2.14)
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. The QLE can be derived either in the eigenbasis (i.e, in terms of the operators Âν) or

in the real basis (i.e, in terms of the operators â`). For future reference, we will here give

the derivation in the eigenbasis. The corresponding derivation in the real basis can be

found in [15].

The Heisenberg equation of motions for the bath operators and the system operators

in our set-up are given by

dB̂`r

dt
= −iΩ`rB̂`r(t)− iκ`r

∑

ν

Φ`νÂν(t),

dÂν
dt

= −iωνÂν(t)− i
′∑

`

∑

r

κr`Φ`νB̂`r(t). (2.15)

We can formally solve the equation of motion for the bath operators to obtain

B̂`r(t) = e−iΩ`rtB̂`r(0)− iκ`r
N∑

ν=1

Φ`ν

∫ t

0

dt′e−iΩ`r(t−t
′)Âν(t

′). (2.16)

Using this formal solution in the equation of motion for system operators, and using

Eq. 2.12 we get the exact quantum Langevin equation

dÂν
dt

= −iωνÂν(t)− iξ̂ν(t)−
′∑

`

∑

σ

Φ`νΦ`σ

∫ t

0

f`(t− t′)Âσ(t′)dt′ (2.17)

where

f`(t) =

∫
dω

2π
J`(ω)e−iωt, ξ̂ν(t) =

′∑

`

∑

r

Φ`νκ`rB̂`r(0)e−iΩ`rt. (2.18)

From the initial bath correlation functions, we have,

〈ξ̂ν(t)〉 = 0, 〈ξ̂†ν(t)ξ̂σ(t′)〉 =
′∑

`

Φ`νΦ`σF`(t− t′), F`(t) =

∫
dω

2π
J`(ω)n`(ω)eiωt. (2.19)

Thus ξ̂ν(t) is the colored noise operator of the quantum Langevin equation, and the noise

comes from the thermal fluctuations in the initial condition. In this thesis, Eq. 2.17 will

be used as a the starting point in analytical comparison between RQME and QLE.

Eq. 2.17 can be easily solved for steady state by taking long time limit and Fourier

transforming to frequency space. Let

Âν(t) =

∫ ∞

−∞

dω

2π
ˆ̃Aν(ω)e−iωt, ξ̂ν(t) =

∫ ∞

−∞

dω

2π
ˆ̃ξν(ω)e−iωt. (2.20)

It can be checked that ˆ̃ξν(ω) satisfies

〈 ˆ̃ξ†ν(ω) ˆ̃ξσ(ω′)〉 = 4πFνσ(ω)δ(ω − ω′), Fνσ(ω) =
′∑

`

Φ`νΦ`σ
J`(ω)n`(ω)

2
. (2.21)
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Eq. 2.17 written after taking t→∞ and Fourier transforming gives

(ω − ων) ˆ̃Aν(ω) +
∑

σ

vνσ(ω) ˆ̃Aσ(ω) = ˆ̃ξν(ω), (2.22)

where

fνσ(ω) =
′∑

`

Φ`νΦ`σ
J`(ω)

2
, f∆

νσ(ω) = P
∫
dω′

π

fνσ(ω′)

ω′ − ω , (2.23)

where P denotes principal value. Eq. 2.22 can be written in matrix notation as

(ωI−D + f(ω) + if∆(ω))Ãvec(ω) = ξ̃vec(ω), (2.24)

where I is N dimensional identity matrix, D is as defined in Eq. 2.13, Ãvec(ω) and ξ̃vec(ω)

are N dimensional column vectors with elements { ˆ̃Aν(ω)} and { ˆ̃ξν(ω)} respectively, and

f(ω) and f∆(ω) are matrices NxN with elements {fνσ(ω)} and {f∆
νσ(ω)} respectively. At

this stage, one can go back from the eigenbasis to the real space basis,

Φ(ωI−D + f(ω) + if∆(ω))ΦTΦÃvec(ω) = Φξ̃vec

⇒ (ωI−HS −Σ(ω))ãvec(ω) = η̃vec(ω), (2.25)

with ãvec(ω) = ΦÃvec(ω), η̃vec(ω) = Φξ̃vec, Σ(ω) = Φf(ω) + if∆(ω)ΦT .

ãvec(ω) = G(ω)η̃vec(ω),

M(ω) = ωI−HS −Σ(ω), G(ω) = M(ω)−1. (2.26)

Σ(ω) is called the bath self-energy matrix. It is a diagonal matrix with the only non-zero

elements

Σpp(ω) = −P
∫

dω′Jp(ω′)

2π(ω′ − ω)
− i

2
Jp(ω), (2.27)

where p labels a site attached to a bath. G(ω) is exactly the same Green’s function as

obtained from the NEGF formalism [19], [15]. η̃vec(ω) is the ‘noise’ vector with non-zero

elements ˆ̃ηp(ω), where, again p labels a site attached to a bath. ˆ̃ηp(ω) has the property

〈ˆ̃η†p(ω)ˆ̃ηq(ω
′)〉 = 2πJp(ω)np(ω)δ(ω − ω′)δpq. (2.28)

ãvec(ω) is a vector containing the Fourier transformed operators ˆ̃a`(ω) =
∫
dtâ`(t)e

iωt.

Though the steady state can be easily calculated exactly via QLE, transient dynamics

of approach to steady state is much more difficult to obtain via QLE than by QME meth-

ods. This is because one would require a Laplace transform instead of a Fourier transform,
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and inverting a Laplace transform is quite challenging numerically. It is here that the

Born-Markov approximaiton becomes useful, simplifying the problem of obtaining time-

dynamics significantly. In the following, we will look into the general non-interacting

system in Eq. 2.10 under Born-Markov approximation.

2.3 Non-interacting systems under Born-Markov ap-

proximation

We now look at treatment of the same general non-interacting set-up as in Eq. 2.10 under

the Born-Markov approximation. To do this, we will need weak system-bath coupling,

i.e,

ĤSB → εĤSB, (2.29)

where ε� 1 is the small parameter. Apart from this, all other Hamiltonians are exactly

same as in Eq. 2.10.

We will first look at the ‘DC case’, which is the case discussed above. By ‘DC case’, we

mean that the temperatures and chemical potentials of the baths are not functions of time.

This is in contrast with the ‘AC case’ which will be discussed next, where temperatures

and chemical potentials of the baths will be periodic functions of time.

2.3.1 DC case

We do the Born-Markov approximation on the general non-interacting set-up defined by

Eqs. 2.10, 2.11, 2.12 in two different methods. The first is by using the RQME Eq. 2.7,

and the second is via directly doing the approximations on top of the QLE equation

Eq. 2.17. Both give exactly same result, but the QLE approach makes the meaning of

the Markov approximation more explicit.

RQME

Using Eq. 2.7 to treat the set-up gives,

∂ρ

∂t
=i[ρ, Ĥeff

S ] + ε2

N∑

α,ν=1

[Q∗αν ∓ (vαν + v∗να)] (ÂνρÂ
†
α −

1

2
{Â†αÂν , ρ})

+ ε2

N∑

α,ν=1

Qαν(Â
†
νρÂα −

1

2
{ÂαÂ†ν , ρ}), (2.30)
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where

Ĥeff
S = ĤS + ε2

N∑

α,ν=1

[
f∆
να(ωα) + f∆

αν(ων)
]
Â†αÂν ,

Qαν = Fαν(ων) + iF∆
αν(ων) + (α↔ ν)∗, F∆

αν(ω) = P
∫
dω′

π

Fαν(ω
′)

ω′ − ω ,

vαν = fαν(ων) + if∆
αν(ων) (2.31)

and Fαν(ω), fαν(ω) and f∆
αν(ω) are as defined in Eqs. 2.21, 2.23. We note that Eq. 2.30

is exactly of the GKSL form Eq. 2.1. Let Q and v be matrices with the elements {Qαν}
and {vαν} respectively. Then, by GKSL’s theorem discussed in Sec. 2.1.1, for ρ to pre-

serve complete positivity at all time, we need Q + v + v† → positive semi-definite,

Q→ positive semi-definite. However, as is known [21], these conditions are not always

satisfied in a microscopic derivation. So it is important to ensure that this equation gives

correct answers. We will check this for a simple model in the next chapter.

For non-interacting systems, a more useful equation than the QMEs is the evolution

equation for the two-point equal time correlation functions

Cαν(t) = Tr(ρ(t)Â†αÂν). (2.32)

This is directly obtained from the RQME Eq. 2.30 by multiplying by Â†αÂν and tak-

ing trace. These correlation functions form a Hermitian matrix which we will call the

correlation matrix. This is also sometimes called single-particle density matrix. The evo-

lution equation for these correlation functions form a complete set of N2 linear differential

equations,

dCαν
dt

= i(ωα − ων)Cαν(t) + ε2Qαν − ε2

N∑

σ=1

[
vασCσν(t) + Cασ(t)v∗νσ

]
, (2.33)

where Qαν and vαν are as defined in Eq. 2.31. We will have a lot to discuss on Eq. 2.33.

But first, we will show that the exact same equation can also be derived via the QLE by

doing Born-Markov approximation.

QLE

The derivation of the RQME is long and involved as given in Appendix. 6.2 and Sec. 2.1.2.

However, Eq. 2.33 can be more directly derived starting from the QLE equation Eq. 2.17,

written for weak system-bath coupling (Eq. 2.29),

dÂν
dt

= −iωνÂν(t)− iεξ̂ν(t)− ε2

′∑

`

∑

σ

Φ`νΦ`σ

∫ t

0

dt′
∫
dω

2π
J`(ω)e−iω(t−t′)Âσ(t′), (2.34)
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where J`(ω) and ξ̂ν(t) are as defined in Eq. 2.12, 2.19. First, for Born approximation,

we will neglect all terms higher than O(ε2). The last term in above equation is already

O(ε2). Also, we note that Âσ(t′) = Âσ(t)eiωσ(t−t′) + O(ε). Since, the last term is already

O(ε2), we can neglect all higher order corrections to obtain

ε2

′∑

`

∑

σ

Φ`νΦ`σ

∫ t

0

∫
dω

2π
J`(ω)e−iω(t−t′)Âσ(t′)dt′

' ε2

′∑

`

∑

σ

Φ`νΦ`σÂσ(t)

∫ t

0

dt′
∫
dω

2π
J`(ω)e−i(ω−ωσ)t′ . (2.35)

Now, we do the Markov approximation. Let τB1 be the time in which
∫

dω
2π
J`(ω)e−iωt

′
for

all sites attached to baths decay to O(ε). Note that τB1 depends on the bath spectral

functions but not on the temperatures and the chemical potentials of the baths. Specif-

ically, it depends on the ‘width’ of J`(ω), and hence the bandwidth of the bath. The

larger the bandwidth, the smaller is τB1 . For Markov approximation, observation time

t � τB1 , so that we can extend the time integration to infinity. So, after Born-Markov

approximation we have

dÂν
dt
' −iωνÂν(t)− iεξ̂ν(t)− ε2

N∑

σ=1

v∗νσÂσ(t), (2.36)

with vνσ defined as in Eq. 2.31. Using this equation, for equal time two point correlation

functions Cαν(t) = 〈Â†α(t)Âν(t)〉 we have,

dCαν
dt

= 〈dÂ
†
α

dt
Âν(t)〉+ (α↔ ν)†

= i(ωα − ων)Cαν(t) + iε
[
〈ξ̂†α(t)Âν(t)〉 − 〈Â†α(t)ξ̂ν(t)〉

]
− ε2

N∑

σ=1

[
vασCσν(t) + Cασ(t)v∗νσ

]
.

(2.37)

Now, we need to evaluate 〈ξ̂†α(t)Âν(t)〉 up to O(ε). To do this, we write the formal solution

of Eq. 2.36 up to O(ε),

Âν(t) = Âν(0)e−iωνt − iε
∫ t

0

dt′ξ̂ν(t
′)e−iων(t−t′) +O(ε2). (2.38)

We then note, 〈ξ̂†α(t)Âν(0)〉 = 〈ξ̂†α(t)〉〈Âν(0)〉 = 0, because, initially the set-up was taken

to be in the direct product state of the system and the baths. So multiplying above

equation from the left with ξ̂†α(t) and taking expectation value, we have

〈ξ̂†α(t)Âν(t)〉 = −iε
∫ t

0

dt′〈ξ̂†α(t)ξ̂ν(t
′)〉e−iων(t−t′) +O(ε2)

= −iε
′∑

`

Φ`αΦ`ν

∫ t

0

dt′
∫
dω

2π
J`(ω)n`(ω)ei(ω−ων)t′ +O(ε2). (2.39)
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Now, again we do the Markov approximation. Let τB2 be the time in which
∫

dω
2π
J`(ω)n`(ω)eiωt

′

for all sites attached to baths decay to O(ε). Note that τB2 , unlike τB1 , depends on the

bandwidths as well as on the temperatures and the chemical potentials of the baths.

Then, for Markov approximation, observation time t � τB2 , so that we can extend the

time integration to infinity. So, with Born-Markov approximation we have

iε
[
〈ξ̂†α(t)Âν(t)〉 − 〈Â†α(t)ξ̂ν(t)〉

]
' ε2

[
Fαν(ων) + iF∆

αν(ων) + (α↔ ν)∗
]

= ε2Qαν , (2.40)

with Fαν(ω) and Qαν as defined in Eqs. 2.21 and 2.31 respectively. Putting this result

in Eq. 2.37, we recover Eq. 2.33. Thus, we have shown that the RQME and the QLE

methods are exactly equivalent under Born-Markov approximation. Further, we have

gained crucial insight into what controls the Markov approximation. Clearly, for Markov

approximation to be valid t� τB = max{τB1 , τB2}. τB1 is controlled by the bandwidths

of the baths, and τB2 is controlled by the bandwidths, as well as, the temperatures and

chemical potentials of the baths.

The Lyapunov equation and unique NESS

Having derived the evolution equation for the correlation matrix, Eq. 2.33 in two different

ways, we now look at the equation in more detail. The most crucial observation is that

Eq. 2.33 can be written in the form of a Lyapunov equation as follows

dC

dt
= −(GC + CG†) + ε2Q, (2.41)

G = −iD + ε2v, (2.42)

where C(t) is the NxN Hermitian matrix with elements {Cαν(t)}, Q and v are as defined

after Eq. 2.31, D is the diagonalized HS defined in Eq. 2.13. Note that Q is Hermitian

and v is non-Hermitian. Q depends on bath spectral functions and temperatures and

chemical potentials of the baths, whereas, v depends only on the bath spectral functions,

and is independent of temperatures and chemical potentials of the baths. This point will

be important later, while discussing the ‘AC case’, where it will be more helpful to write

Eq. 2.41 in a different but equivalent form

dCvec
dt

= −MCvec + ε2Qvec, M = IN ⊗ G + G∗ ⊗ IN , (2.43)

IN is the N dimensional identity matrix and ⊗ denotes Kronecker product, and Cvec

(Qvec) is a N2 column matrix having all the elements of C (Q). The Lyapunov equation
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is a well-studied equation in mathematics and occurs widely in control theory. It is

interesting that the equation for correlation matrix has the form of a Lyapunov equation.

Apart from this, having the Lyapunov equation will also allow us to find conditions for a

unique NESS. To see this we first note that solution to the Lyapunov equation Eq. 2.41

can be written as follows

C(t) = e−GtC(0)e−G
†t + ε2

∫ t

0

dt′e−Gt
′
Qe−G

†t′ . (2.44)

If real parts of eigenvalues of G are positive (this is called the stability condition for the

Lyapunov equation), it is clear from Eq. 2.44 that the system approaches a unique NESS

given by

C(∞) = ε2

∫ ∞

0

dt′e−Gt
′
Qe−G

†t′ , (2.45)

which is the solution of the so called continuous time algebraic Lyapunov equation,

GC(∞) + C(∞)G† = ε2Q. (2.46)

The sufficient condition for this is v + v† being positive definite. The algebraic Lyapunov

equation greatly simplifies the problem of finding C(∞) numerically. It is complete set of

N2 linear equations. Usually, time taken to solve such a system of equations scales as N6.

However, for the algebraic Lyapunov equation, standard efficient algorithms (standard

packages in Mathematica, python, Matlab etc.) are available for which the time taken to

solve scales as N3. In this thesis we will only consider the cases where a unique steady

state exists.

Although the Lyapunov equation can be exactly solved, it is insightful to have pertur-

bative solutions of the Lyapunov equation up to leading order in ε. From such solutions

it can be shown that the gives proper thermalization in equilibrium. Applying the per-

turbative solution to a 1D nearest neighbour chain a simple expression for current can be

obtained. These derivations are straightforward, but quite lengthy. So we will defer them

to Appendix. 6.3 and Appendix. 6.4. Instead, in the next chapter, we will explicitly work

out the case for the two-site system and compare with exact results.

Summary

Thus, we have developed the formalism for the most general non-interacting open quan-

tum set-up, under Born-Markov approximation. We have shown the equivalence of RQME
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and QLE in such set-ups. We have further shown that the evolution equation for corre-

lation matrix has the form of a Lyapunov equation, which greatly simplifies the problem

numerically.

2.3.2 AC case

[This subsection closely follows parts of discussions in the published paper (ii).]

We now extend the above formalism to the case where the temperatures and chemical

potentials of the baths are periodic functions of time. For this, we again go back to the

most general non-interacting open-quantum set-up defined by Eqs. 2.10, 2.11. We have

previously seen above that in the Lyapunov equation Eq. 2.41, the inhomogeneous part

Q depends on the temperatures and chemical potentials of the baths, while the matrix

G in the homogeneous part is independent of them. This immediately suggests that if

a periodic time-dependence of temperatures or chemical potentials can be built in such

that correlation matrix still has the form of the Lyapunov equation, it will provide a

tremendously simplified way to obtain results for such an AC driven case. Such a time

dependence can be indeed built via the following physically motivated protocol.

Protocol for AC drive

In the following, χ is the full density matrix of system+bath, ρB is the density matrix of

the bath, and ρ is density matrix of the system obtained by tracing χ over bath variables.

Let us, for the time being, assume one bath. The protocol can readily be generalized to

multiple baths.

The protocol for a single bath is as follows :

a) At time t = 0, χ = ρ⊗ρB(0), with ρ = ρ0(0), which is some arbitrary initial system

state, and ρB(0) = exp[−β(0)(ĤB − µ(0)N̂B)]/Z(0). That is, the inital state is a product

state of an arbitrary system state and a thermal bath state.

b) We evolve the system for a time τD. After time τD, the system reaches the state

ρ0(τD). Note that during this time, the temperatures and chemical potentials of the bath

has not changed.

c) At t = τD, we restart the entire system+bath setup with the initial state χ =

ρ⊗ ρB(τD), with ρ = ρ1(0) = ρ0(τD) and ρB(τD) = exp[−β(τD)(ĤB − µ(τD)N̂B)]/Z(τD).

That is, at time τD, the bath is changed into the thermal state with new inverse temper-

ature and chemical potential β(τD), µ(τD), and the full system+bath state is again taken
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as the product state. This step implicitly assumes weak-system bath coupling. This is

because, under weak system-bath coupling, we can assume that the bath is hardly affected

by the system, and to leading order in system-bath coupling, the full density matrix is in

product form.

d) We again let the system density matrix evolve under this new bath for time τD

starting from the new initial state. Again, after time τD, we restart the entire set-

up with initial state χ = ρ(0) ⊗ ρB(2τD), with ρ = ρ2(0) = ρ1(τD) and ρB(2τD) =

exp[−β(2τD)(ĤB − µ(2τD)N̂B)]/Z(2τD). This protocol continues for a very long time

and we will be mostly interested in the long time dynamics of this process.

In the limit of very small τD, the above protocol gives a nearly continuous evolution

of temperatures and chemical potentials of the baths. In particular, if the temperature

and chemical potential vary periodically with a period T , and τD � T , then the above

protocol describes dynamics of a system evolving under a continuous periodic drive from

the temperature and chemical potential of the bath.

Till now, this protocol only assumed weak system-bath coupling, i.e, the Born approx-

imation. To get to the Lyapunov equation form we also need the Markov assumption.

Let τB be the characteristic time-scale of relaxation of the effects of system-bath coupling

on the bath. Then, we assume that τB � τD. So, if τexpt be experimentally the smallest

time scale, most of our following discussion holds if the following condition on time-scales

is maintained

τB � τD � τexpt � T. (2.47)

This condition may be a bit restrictive, but when applicable allow for tremendous sim-

plification easily capturing very non-trivial and interesting physics (as we will explicitly

see in simple case in a later chapter). For multiple baths, the above protocol is followed

for each bath. τB is then taken as the largest of the relaxation times of the baths, so that

τD is much larger than relaxation time scales of all baths.

RQME for AC drive and periodic steady state

The above protocol, along with the condition (Eq. 2.47) on time scales, breaks down the ac

drive process into steps of time independent processes where Born-Markov approximation

and hence the Lyapunov equation Eq. 2.41 can be applied. For the ac case, it will be more

helpful to use the form given in Eq. 2.43. Between the (r− 1)th and the rth steps of the
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protocol, the evolution equation for correlation matrix is as given by time-independent

RQME

dCvec((r − 1)τD)

dt
= −MCvec((r − 1)τD) + ε2Qvec((r − 1)τD). (2.48)

The correlation matrix at time rτD is then given by the formal solution of this equation

which can be written as

eMτDCvec(rτD) =Cvec((r − 1)τD) + ε2

∫ τD

0

dt′eMt′Qvec((r − 1)τD + t′). (2.49)

If τD is small, t′ is also small. But rτD can still be large for r � 1. In such case, we can

expand each term to the linear order in τD to obtain

(1 + MτD)Cvec(rτD) = Cvec((r − 1)τD) + ε2Qvec((r − 1)τD)τD

⇒ Cvec(rτD)− Cvec((r − 1)τD)

τD
= −MCvec(rτD) + ε2Qvec((r − 1)τD). (2.50)

τexpt � τD means we can take τD → 0, so that we have

dCvec
dt

= −MCvec(t) + ε2Qvec(t). (2.51)

Thus, as we wanted, we have only time dependence in the inhomogeneous part. Writing

this equation absolutely explicitly, we have

dCαν
dt

= i(ωα − ων)Cαν(t) + ε2Qαν(t)− ε2

N∑

σ=1

[
vασCσν(t) + Cασ(t)v∗νσ

]
, (2.52)

Qαν(t) = [Fαν(ων , t) + iF∆
αν(ωα, t) + (α↔ ν)∗], Fαν(ω, t) =

N∑

`=1

c∗`αc`ν
J`(ω)n`(ω, t)

2
,

and vαν are as defined previously in Eq. 2.31. Eq. 2.51 has the formal solution

C(t) = e−MtC(0) + ε2

∫ t

0

dt′e−M(t−t′)Q(t′). (2.53)

We wish to look at the long time properties of Eq. 2.53. Let our ac drive be periodic with

a time period T . Then, for integer r,

Q(t+ rT ) = Q(t), r ∈ Z. (2.54)

We break up the observation time t into steps of T , so that, for integer m,

t = mT + τ m ∈ Z. (2.55)
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Then Eq. 2.53 can be written as

C(mT + τ) = ε2

m∑

r=1

(
e−MrT

)∫ T

0

dt′e−M(τ−t′)Q(t′)

+ ε2

∫ τ

0

dt′e−M(τ−t′)Q(t′) + e−M(mT+τ)C(0). (2.56)

Now, assuming the real part of all the eigenvalues of M are positive, we can perform the

sum in above equation. Also, we are interested in the long time limit, m� 1. Hence we

have

C(mT + τ) = ε2(eMT − IN2)−1

∫ T

0

dt′e−M(τ−t′)Q(t′) + ε2

∫ τ

0

dt′e−M(τ−t′)Q(t′). (2.57)

Note that, in the long time limit, the RHS is independent of m, and is also independent

of the initial condition. This means that in the long time limit, the correlation functions

settle down in a periodic state, with period same as the ac drive. This is consistent with

Floquet theory. However, note that, Floquet theory was not used explicitly to derive this

result.

Resonances and Currents

Now, let us go back to Eq. 2.52. Since in the long time limit the periods of C(t) and Q(t)

are same, we can perform a Fourier series expansion :

Cαν(t) =
∞∑

p=−∞
Cp
ανe

ipΩ0t, Qαν(t) =
∞∑

p=−∞
Qp
ανe

ipΩ0t (2.58)

where Ω0 = 2π
T

. Substituting in Eq. 2.52, we obtain the following equation for each Fourier

mode,

i(ωα − ων − pΩ0)Cp
αν + ε2Qp

αν − ε2
[ N∑

σ=1

Cp
ασvνσ + Cp

σνv
∗
ασ

]
= 0. (2.59)

This immediately gives us two important results. First, we note that for the time-average

correlation functions, Cαν(t) = 1
T

∫ t+T
t

dt′Cαν(t′) = C0
αν , and similarly for Qαν . With

this we find that the equation averaged over one time period gives exactly the steady

state equation for a dc bias given by the time-period averaged bose or fermi distribution

functions n`(ω, t). Even when the time-period averaged temperature or chemical potential

difference between the various baths may be zero, the difference between the time-period

averaged bose or fermi distribution functions may not be zero. In such cases, we will get

26



a time-period averaged current even though there is no time period averaged bias. This

is the phenomenon of charge or energy pumping.

Second, we see that when ωα − ων = pΩ0, Eq. 2.59 becomes independent of system-

bath coupling ε2. This is the phenomenon of resonance. At resonance, the leading

term of system correlation functions do not depend on system bath coupling. So all

system properties, like current between two sites inside the system, which were otherwise

proportional to ε2 in the leading term, become larger by orders of magnitude.

Even though system properties become large at resonance, the current from any of the

baths still remain small. To see this, we need the expression for current from the baths

in terms of the correlation functions. The expression for particle current is obtained from

the continuity equation for conservation of particles

d

dt

( N∑

α=1

Cαα

)
=
∑

`

IB(`)→`. (2.60)

IB(`)→` is the particle current from bath attached to the `th site. Under dc bias, in steady

state, the LHS of above equation is zero, and hence the currents from the baths are equal.

However, under ac drive, even at long time, the LHS is not zero, and thus, instantaneous

currents from the baths can be different. The summation on the right runs over all lattice

sites connected to bath. The expressions for the currents from the baths obtained from

above continuity equations and Eq. 2.52 are

IB(`)→` = ε2
[ N∑

α=1

Q(`)
α (t)−

N∑

σ,α=1

Cασ(t)
(
v(`)
ασ + v(`)∗

σα

)]
(2.61)

where

Q(`)
α (t) = |Φα`|2J`(ωα)n`(ωα, t)

v(`)
ασ = Φ∗α`Φσ`

(J`(ωσ)

2
− iP

∫
dω

2π

J`(ω)

ω − ωσ

)
. (2.62)

These expressions show that the currents from the baths are explicitly proportional to ε2.

So even when the system correlation functions are independent of ε2 in the leading order,

the currents from the baths are still O(ε2). However, this is not true for particle current

between two sites which reside within the system. The current between `th and ` + 1th

lattice sites of the system is given by

I`→`+1 = 2 Im
(
H

(s)
` `+1â

†
`â`+1

)
. (2.63)
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This current is not explicitly proportional to ε2. At resonance, it is independent of ε2 in

the leading order. Thus, at resonance, the current between two adjacent lattice points

in the system can be much larger than the current from the baths. On the other hand,

the time-period averaged current, which corresponds to steady state of a dc bias, is same

inside the system as from the baths.

The difference in frequency between adjacent resonances, which is given by

ωα − ων
p

− ωα − ων
p+ 1

=
ωα − ων
p(p+ 1)

∼ 1

p2
(2.64)

decreases as 1/p2. Hence small driving frequencies are always close to resonance with

one of the higher modes (large p) of the steady state oscillations. So, for small driving

frequencies, there is not much difference between the resonance and off-resonance condi-

tion. The values of the correlation functions, however, may not be so large as the first

resonance (p = 1). This is because, the weight of the driving signal at higher modes may

decrease.

It is also interesting to note that none of the expressions for currents can be reduced to

the form of difference between fermi (bose) distributions of the various baths. Therefore,

even when all the baths are driven by the exactly same time dependent temperature or

chemical potential (symmetric ac drive), so that there is no instantaneous temperature

or chemical potential difference, there can be an instantaneous current, both between

the system and the baths and inside the system. At resonance, the internal currents

may have a large amplitude (compared to the system-bath currents). The time-period

averaged current is, of course, zero in this case.

It is important to state that we have not made the adiabatic approximation T �
tsteady, where tsteady is the time to reach steady state, which corresponds to the smallest

real part of eigenvalues of the matrix M in Eq. 2.51. If adiabatic approximation were

made, then the expressions for the correlation functions at any time would be given by the

dc-bias steady state results with the fermi (bose) distributions given by the instantaneous

temperatures and chemical potentials. In that case, the expressions for currents would

have reduced to the form of difference between fermi (bose) distributions of the various

baths, and no instantaneous current would have been seen in the symmetric ac drive case.

Summary

Thus, we have looked at the same general non-interacting set-up as defined by Eqs. 2.10, 2.11,

but this time, the thermodynamic parameters (i.e, temperatures and chemical potentials)
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of the baths are periodically modulated. We have described the time-evolution of thermo-

dynamic parameters of the bath by breaking up it up into small discrete time-steps within

which the thermodynamic parameters of the baths do not change. Under Born-Markov

approximation, evolution of the system density matrix within each of those discrete time-

steps is given by the RQME. Taking the discrete time-step to zero gives a Born-Markov

QME for such AC drive, from which the equation of motion for correlation functions can

be derived. In the equation of motion for the correlation functions, tremendous simpli-

fication occurs because the explicit time-dependence occurs only in the inhomogeneous

part. From this equation, the following physical results have been directly shown: (a) the

long time state is periodic with the same period as the drive (Floquet steady state), (b)

a resonance will occur when the drive frequency is a multiple of an energy level spacing

of the system, (c) at resonance, the instantaneous current inside the system can become

orders of magnitude larger than the currents from the baths, (d) even if there is no in-

stantaneous voltage or temperature bias, there can still be large non-zero instantaneous

currents, (e) the time-period averaged quantities are given by the DC bias equation, with

the DC bias given by the time-period averaged Bose or Fermi distribution functions, (f)

there can be charge and energy pumping. Note that, these results are valid in arbitrary

dimensions and geometry, and hold for any non-zero number of sites attached to baths.

A point to note is that there exists exact (i.e without Born-Markov approximation)

methods of treating this AC drive set-up [28, 29, 30, 31, 32, 33, 34, 35, 36]. However, the

exact methods are generally quite difficult numerically. Often, a simplifying assumption

of adiabatic modulation of bath parameters is made [37, 38, 39]. But, such adiabatic

approximation would not capture many of the interesting physics which can be directly

read off from the RQME approach. Thus, under Born-Markov approximation, which

is often true in generic experimental set-ups, the RQME method leads to tremendous

simplification of the problem, yet captures very interesting physics beyond the adiabatic

approximation.

In the next chapter, we will apply the formalism developed in this chapter to small

systems. Taking simple cases, we will explicitly check that the results obtained from

RQME agree with exact results. Then we will also use the RQME to investigate a simple

interacting system.
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Chapter 3

Transport through small systems

In this chapter, we investigate small systems within the validity regime of Born-Markov

approximation. In section 3.1, we apply the formalism developed in the previous section

for non-interacting set-ups to systems consisting of two-sites, each connected to its own

bath. We look at both DC and AC transport cases. We validate our theory by compar-

ison with exact (i.e, without Born-Markov approximation) results and also discuss the

interesting physics of such systems. Then, in section 3.2, we use the RQME formalism to

investigate transport through a small interacting system, namely a non-linear oscillator.

3.1 Two-sites without interactions

[This section closely follows parts of discussions in the published papers (i), (ii).]

We consider the following specific two-site system coupled to baths which are one-

dimensional chains:

ĤS = ω0(â†1â1 + â†2â2) + g(â†1â2 + â†2â1), ĤB = Ĥ(1)
B + Ĥ(2)

B , Ĥ(`)
B = tB(

∞∑

s=1

b̂`†s b̂
`
s+1 + h.c.),

ĤSB = εγ1(â†1b̂
1
1 + â1b̂

1†
1 ) + εγ2(â†2b̂

2
1 + â2b̂

2†
1 ), (3.1)

where the operators are all fermionic or all bosonic and b̂`s is the annihilation operator of

the sth bath site of the `th bath, â1 (â2) is annihilation operator of the first (second) site.

The bosonic version of this set-up can be realized in optical cavities, circuit QED, cavity

optomechanics etc [1, 2, 3]. while the fermionic version can be realized using quantum

dots, molecular junctions etc [4, 5] (see Fig. 3.1).

The eigenmodes of the system are given by Â1 = (â1 − â2)/
√

2, Â2 = (â1 + â2)/
√

2

with eigenvalues ω1 = ω0 − g, ω2 = ω0 + g. We assume ω0 � ε, so that QME can be
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Figure 3.1: Schematic diagram for the two-site set-up. The left corresponds to the bosonic

case of two optical cavities connected to two baths at different temperatures. The right

corresponds to the fermionic case of two non-interacting quantum dots connected to two

baths at same temperature but with different chemical potentials. For AC case, the chem-

ical potentials can be periodically modulated, as shown in the diagram. For DC case, they

do not change with time.

applied, while the parameter g can be varied freely. The bath spectral functions, defined

in Eq. 2.12, can be obtained explicitly by going to eigenmodes of the baths. Note that

since in our derivation of RQME, the system couples to the eigenmodes of the baths,

κ`r are proportional to the eigenfunctions of the bath Hamiltonian. Because of infinite

degrees of freedom, the energy spectrum of the bath can be considered continuous. For

our case of the Hamiltonian in Eq. 3.1, bath eigen-energies are Ω(q`) = −2tB cos q` and

κ(q`) = γ`

√
2
π

sin q`, with 0 ≤ q` ≤ π. Thus,

J`(ω) =4γ`

∫ π

0

dq` sin2 q` δ(ω + 2tB cos q`) = Γ`

√
1− ω2

4t2B
, Γ` =

2γ2
`

tB
. (3.2)

We also need to the following result P
∫ dω′J`(ω

′)
2π(ω′−ω)

= −γ2
`ω

2t2B
to calculate f∆

αν(ω) [in Eq. 2.33].

F∆
αν(ω) cannot be written in a simple closed form and is calculated numerically. The

functions fαν(ω), Fαν(ω) can be written down in matrix form as :

f(ω) =
1

4


J1(ω) + J2(ω) J1(ω)− J2(ω)

J1(ω)− J2(ω) J1(ω) + J2(ω)


 (3.3)

F(ω) =
1

4


J1(ω)n1(ω) + J2(ω)n2(ω) J1(ω)n1(ω)− J2(ω)n2(ω)

J1(ω)n1(ω)− J2(ω)n2(ω) J1(ω)n1(ω) + J2(ω)n2(ω)


 . (3.4)

We look at both DC and AC transports in this set-up.

3.1.1 DC case

We first look at the DC case. The goal is to check the Born-Markov approximated re-

sults of the previous chapter against exact calculations, which is possible for such simple
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two-site systems. We will also compare the results with those obtained from two other

commonly used phenomenological Lindblad QMEs for the set-up. We will do the compar-

isons by directly computing some physical observables from all the different formalisms.

The observables we will be looking at are NESS current I, site occupations 〈â†`â`〉 and

the mode occupations Nα = 〈Â†αÂα〉.

Exact results : steady state via QLE

The NESS current and occupation obtained via exact QLE are given by

I =g2ε2

∫
dω

2π

J1(ω)J2(ω)
[
n1(ω)− n2(ω)

]

| M(ω) |2 , (3.5)

〈â†1â1〉 =ε

∫
dω

2π

[K(ω)J1(ω)n1(ω)

| M(ω) |2 +
g2J2(ω)n2(ω)

| M(ω) |2
]
, (3.6)

where

J∆
` (ω) = P

∫
dω′

2π

J`(ω
′)

ω′ − ω ,

M(ω) =
[(
ω0 − ω − iε2J1(ω)

2
− ε2J∆

1 (ω)
)(
ω0 − ω − iε2J2(ω)

2
− ε2J∆

2 (ω)
)
− g2

]
,

K(ω) =

∣∣∣∣ω0 − ω − iε2J2(ω)

2
− ε2J∆

2 (ω)

∣∣∣∣
2

. (3.7)

The occupation of the second site is just < a†2a2 >= 1↔ 2 in Eq. (3.6). All integrals over

ω go over all possible values of ω. Note that Eq. (3.5),(3.6) are exact results without any

approximation. However, they are not closed form results and involve some complicated

integrals. As mentioned in previous chapter, obtaining exact transient behaviour by this

method is difficult. But transient behaviour for such small non-interacting systems can

be easily obtained by exact numerics.

Exact results : time dynamics via system+bath numerics

To check the time dynamics we do numerical simulations. For this purpose, we choose a

bath of finite size and evolve the full system+bath Hamiltonian Ĥ using unitary Hamil-

tonian dynamics. Let us collectively denote by “d” a column vector with all annihi-

lation operators of both system and baths. The full Hamiltonian can be written as
ˆ̂H =

∑
i,j Hijd

†
idj where i now refers to either system or bath sites. If D = 〈dd†〉 de-

notes the full correlation matrix of system and baths, its time evolution is given by

D(t) = eiHtDe−iHt. In our simulations we considered the system described by Eq. (3.1)
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of two sites connected to baths each with 511 sites which are large enough to show negli-

gible finite size effects.

Sysmmetric coupling to baths : γ1 = γ2: Full solution :

In Eq. 2.33, this corresponds to the special case of all system bath couplings being equal,

i.e, when, J`(ω) = J(ω). Under this condition Eq. 2.33 can be solved exactly using

the fact that fνσ(ω) = [J(ω)/2]
∑N

r=1 c
∗
`νc`σ = [J(ω)/2]δνσ due to orthonormality of the

eigenfunctions. Thus, vνσ = 0 ∀ ν 6= σ. Then Eq. 2.33 admits the exact solution :

Cαν(t) = Cαν(0)e−wανt + ε2Qαν

wαν
(1− e−wανt) (3.8)

where wαν = −iωα + ε2(−if∆
αα(ωα) + fαα(ωα)) + (α → ν)∗. Note that the baths can

still be at different temperatures and chemical potentials. So in this case, we have full

time-dependent analytical closed form results for out of equilibrium correlation functions

that hold for all values of g.

Asymmetric couplings to baths : γ1 6= γ2, g � ε2

tB
:

For asymmetric couplings, we do not have the above simplification any more. But we can

obtain perturbative results up to leading order in ε assuming g � ε2

tB
,

Nα(t) ' Nα(0)e−2ε2fαα(ωα)t +
Fαα(ωα)

fαα(ωα)
(1− e−2ε2fαα(ωα)t) (3.9a)

C12(t) ' C12(0)e−w12t +
iε2

g

[
(F12(ω2)− iF∆

12(ω2))(1− e−w12t) + v21(N1(0)e−w12t −N1(t))

+ (1↔ 2)∗
]

(3.9b)

where Nα(t) = Cαα(t), and w12 = −iω1 + ε2(−if∆
11(ω1) + f11(ω1)) + (1→ 2)∗.

The steady state values of mode occupation N ss
α and current between 1st and 2nd site

I1→2 = −g i〈â†1â2 − â†2â1〉 = g i〈Â†1Â2 − Â†2Â1〉 = 2g Im(C12) :

N ss
α '

J1(ωα)n1(ωα) + J2(ωα)n2(ωα)

J1(ωα) + J2(ωα)
, (3.10a)

I1→2 '
ε2

2

2∑

α=1

J1(ωα)J2(ωα)
[
n1(ωα)− n2(ωα)

]

J1(ωα) + J2(ωα)
. (3.10b)

As mentioned in previous chapter, in equilibrium n1(ω) = n2(ω) = n(ω), Nα = n(ω)

and current is zero, which are the expected thermal values. Thus RQME shows proper

thermalization and approach to steady state. This is also true in the more general cases

than the two-site system, as shown in Appendix. 6.3.
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Reduction to Lindblad form

The RQME is not in the Lindblad form. But it can be reduced to the Lindblad form

by making certain further approximations. There are two popular forms of the Lindblad

equations using either the local operators a` or the eigenbasis operators Aν . We briefly

discuss how they are obtained from the RQME and their expected regimes of validity.

Local Lindblad QME (LLQME) ( g < ε) The local Lindblad equation for this

system has the form ∂ρ/∂t = i[ρ, ĤS] + ε2
(
LLL1 ρ+ LLL2 ρ

)
where

LLL` ρ =J(ω0)eβ`(ω0−µ`)n(ω0)(â`ρâ
†
` −

1

2
{â†`â`, ρ}) + J(ω0)n(ω0)(â†`ρâ` −

1

2
{â`â†`, ρ}).

(3.11)

For g < ε, RQME Eq. 2.30 can be reduced to LLQME by expanding the non-unitary

dissipative part about g = 0 and keeping the first term. This is because, the dissipative

part is already O(ε2), and since g < ε, higher order terms in g will give higher order

terms in ε, which we neglect in RQME treatment. This amounts to putting ων = ω0

in the dissipative part of Eq. 2.30. The same result is more conventionally obtained by

considering the inter-site hopping term in the system Hamiltonian to be small and treating

it as a part of the system-bath Hamiltonian while deriving the QME. This directly leads

to the LLQME. Thus LLQME is valid when g < ε. LLQME results for current and

occupation for this problem have been derived in various papers [40, 41]. The equilibrium

condition Nα = n(ω) is not obtained from LLQME, since for g < ε, each site interacts

with its bath more strongly than with the other site, thereby thermalizing with its own

bath. It clearly follows that if there was only one site, it would show thermalization. Thus

the regime of validity of LLQME is too restrictive to show thermalization for a system

with more than one non-interacting degrees of freedom.

Eigenbasis Lindblad QME (ELQME) ( g � ε2

tB
, Css

12 = 0 ) The eigenbasis Lindblad

equation for this system has the form ∂ρ
∂t

= i[ρ, ĤS] + ε2
(
LEL1 ρ+ LEL2 ρ

)
where

LELα ρ =(fαα(ωα)∓ Fαα(ωα))(2ÂαρÂ
†
α − {Â†αÂα, ρ}) + Fαα(ωα)(2Â†αρÂα − {ÂαÂ†α, ρ}).

(3.12)

Eq. 2.30 is reduced to ELQME under rotating wave / secular approximation [21, 42],

which amounts to neglecting α 6= ν terms in the sum in Eq. 2.30. The rotating wave

approximation assumes that the observation time t� 1
g
. On the other hand, to give the
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correct steady state, the QME must be valid for times shorter that time taken to reach

steady state. This means that we need the QME to be valid at times t . tB
ε2

, since we

have already seen that the time taken to reach steady state ∼ tB
ε2

. The two conditions are

valid together if g � ε2

tB
. This seems like a rather weak condition.

However we note that, while these are the necessary conditions for obtaining ELQME,

there is no guarantee that the resulting ELQME reproduces all physical observables ac-

curately. In particular, neglecting α 6= ν terms in the sum in Eq. 7 means ELQME has

no terms connecting Â1, Â2. Therefore it gives Css
12 = 0, where Css

12 is the steady state

value of C12. This condition is of course valid only in equilibrium, where there is no

current. Thus though rotating wave / secular approximation is a good approximation for

equilibrium properties, it is a bad approximation in non-equilibrium. This point has also

been succinctly discussed in Ref. [43].

However, ELQME still can be used to correctly obtain some non-eqilibrium results.

For example, for g � ε2

tB
ELQME gives the same equation for Nα as Eq. 3.9a, 3.10a. This

result then can be used to obtain the correct current between the left bath and the system

[44, 45]. Thus ELQME suffers from a drawback that one is only able to compute the net

current flowing between the two reservoirs in the NESS but not the current distributions

in the system (e.g current flowing along two arms in a ring geometry). This also indicates

a physical inconsistency of the ELQME formalism in non-equilibrium (see Appendix. 6.5).

Comparison of results from various methods and discussions

Finally we now present a detailed comparison of results obtained using the various ap-

proaches, for both steady state and time-dependent properties. For the two site problem

we consider the bosonic and fermionic versions and compute quantities such as the occu-

pation number and particle current from site 1 to site 2. We again summarize the various

approaches that we use:

(a) For steady state properties, these are exactly computed using Eqs. 3.5,3.6 following

from the QLE approach.

(b) Exact time dependent properties are obtained from the numerical approach dis-

cussed in Sec. (3.1.1).

(c) The Lyapunov equation, Eqs. 2.41, is solved to obtain the predictions of RQME.

We also evaluate the perturbative solution of these equations given in Eqs. 3.9a,3.9b.

(d) One can also write the equations for two-point correlations obtained from the
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Figure 3.2: Bosonic model-steady state properties: the figure shows (a) particle current,

(b) the occupation number in the left site, as a function of inter-site hopping g for the

2 site boson problem. RQME shows near perfect agreement with exact results from QLE

for all values of g, while LLQME and perturbation results [Eqs. 3.10a,3.10b] are valid in

their respective limits. The vertical line marks the position of g = ε, below which LLQME

is valid. The parameter Γ1,2 = 2γ2
1,2/tB is related to the system-bath couping [see Eq. 3.2].

Current is measured in units of ω0 and all energy variables are measured in units of ~ω0.

Lindblad approach, and these are solved to obtain the predictions from LLQME.

(e) The ELQME approach cannot directly give the current inside the system. The

predictions for the occupation number are the same as those from the perturbative solution

of Eq. 3.9a.

We emphasize that all the approaches that we discuss are based on the same starting

microscopic model of system and baths, given by Eqs. 3.1, which lead to the bath spectral

function Eq. 3.2.

For the bosonic case, the steady state results for current and occupation number

are shown in Fig. (3.2), and results from time-dynamics in Fig. (3.3,3.4). For the time

dynamics, for the results presented here, the initial condition corresponds to no particles

inside the system and baths in equilibrium at different µ and T . But we have tested with

other initial conditions like a finite number of particles in the system and random initial

values of the correlation functions. An estimate of bath relaxation time τB is important

to ensure time-dynamics is in the validity regime of Born-Markov approximation. For our
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Figure 3.3: Bosonic model - thermalization: we show the time evolution of occupation of

the lower energy mode Â1, corresponding to energy ω1 = ω0 − g, in equilibrium for the 2

site boson problem, starting from an empty system, for g = 0.45. The steady state (hor-

izontal line) corresponds to the value of bose distribution n(ω1) = [eβ(ω1−µ) − 1]−1 with

the equilibrium bath temperatures and chemical potentials. LLQME does not show ther-

malization because it is not valid for g > ε, while exact numerical results, RQME results

and the perturbation result [Eqs. 3.9a] match and show thermalization. All parameters

not explicitly specified are same as Fig. (3.2). Current is measured in units of ω0 and all

energy variables are measured in units of ~ω0. Time is measured in units of ω−1
0 .

parameters, τB ∼ 7 in units of ω−1
0 (see Appendix. 6.6). Our following observations are

true for such generic initial conditions for the system. For the fermionic case, the results

for the steady state current as a function of voltage difference and of the intra-system

coupling g, are shown in Fig. (3.5). In all cases, the system-bath coupling is chosen to be

asymmetric, i.e, γ1 6= γ2.

Our most important observation is that RQME results obtained from the solution of

Eq. 2.41 agree very well with exact results from QLE and numerics, for all values of g

for steady state, as well as for long time dynamics. The LLQME agrees well for g < ε

as expected. In Fig. (3.3), we show that the system indeed thermalizes in equilibrium,

and this is perfectly captured by RQME, and not by LLQME since it is invalid for g > ε.

For g � ε2

tB
, our analytical closed form perturbation results match quite well with the

exact results, showing correct approach to steady state and thermalization. Therefore,
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Figure 3.4: Bosonic model - non-equilibrium time dynamics: we show the time evolu-

tion of (a) particle current (b) occupation number of left site for the 2 site boson prob-

lem, starting from an empty system, for g = 0.45. RQME results show good agree-

ment with exact numerics. Since g > ε, LLQME does not match, while the perturbation

result [Eqs. (3.9a,3.9b)] matches with the RQME. The horizontal line shows the exact

steady state result obtained from QLE. All parameters not explicitly specified are same as

Fig. (3.2). Current is measured in units of ω0 and all energy variables are measured in

units of ~ω0. Time is measured in units of ω−1
0 .

we conclude that RQME gives the correct physics under Born-Markov approximation.

Apart from validating the RQME description, we also observe interesting physical

trends. The boson problem may be realised in bosonic cold atom experiments or in

optical cavity experiments with suitable choice of parameters and spectral functions. We

see in Fig. 3.2 that steady state properties have markedly different behaviour depending

on whether g < ε or g > ε. For g < ε, the current increases rapidly, but after that

there is a slow increase in current. Also, for g < ε the occupation of the left cavity

becomes minimum when g ' ε. However, beyond this point, the occupation of the left

cavity increases slowly with increase in tunnelling probability g. These trends may be

experimentally observed. However, these trends depend on the choice of the bath spectral

function J`(ω). For example, for optical cavity experiments, the commonly used Ohmic

dissipation J`(ω) ∝ ω will give slow decrease of current with g for g > ε, still showing

a markedly different behaviour from g < ε case. Here we microscopically derived J`(ω)
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Figure 3.5: Fermionic model - steady state properties: the plot shows (a) particle current

vs voltage (b) particle current vs inter-site hopping in the 2 site fermion problem. The

vertical lines correspond to positions where potential difference V = µ1 − µ2 = ωα, where

ωα are the system energy levels. RQME shows near perfect agreement with exact results

from QLE for all values of g, while LLQME and perturbation results [Eqs. 3.10a,3.10b]

are valid in their respective limits. The graphs demonstrate the effect of conductance

quantisation at low temperatures. The parameter Γ1,2 = 2γ2
1,2/tB. Current is measured in

units of ω0 and all energy variables are measured in units of ~ω0.

assuming a microscopic model of the bath.

The fermionic system of two-sites may be experimentally realized in non-interacting

quantum dots or in fermionic cold atom experiments. The current versus voltage plot

of the fermionic system shows effect of conductance quantization. The current versus

hopping g plot shows suppression of current after a value of g. These observations can

be explained as follows. The two site system has two eigen-energy levels of energy ω0− g
and ω0 +g respectively. In Fig. 3.5, the right bath is held at zero chemical potential while

the chemical potential of the left bath, µ1, is varied. When µ1 � ω0− g, no fermion from

the left bath has the energy to enter the system. So there is no flow of current. When

ω0 − g � µ1 � ω0 + g, the fermions can hop through the system via the lower energy

level. So a finite current flows through the system. When µ1 � ω0 + g, fermion transport

through system can occur through both energy levels. Since all system levels are now

participating in transport, increasing µ1 beyond this point does not affect current any
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more. For similar reason, suppression of current occurs when g � µ1 − ω0 in current

versus g plot. These observations can be easily obtained for larger systems also.

Summary

Thus, we have used the DC bias case of the set-up to investigate the validity of the

various QME approaches. To test the validity of the RQME, we have compared results

from RQME against (a) exact NESS results obtained by QLE, (b) exact time dynamics

obtained by direct simulation of the set-up of the full system+bath Hamiltonian consid-

ering finite but large baths. We also compare the results with those obtained from two

other commonly used phenomenological Lindblad QMEs for the set-up [40, 41, 44, 45].

We have found that, the RQME describes the set-up perfectly as long as system-bath

coupling is weak (Born approximation) and the bath energy scales are much larger than

system energy scales (Markov approximation). The phenomenologically written Lindblad

QMEs have more much limited regimes of validity. This is true for both steady state and

transient dynamics, and for both the fermionic and bosonic versions of the set-up [VI. (i)].

3.1.2 AC case

Now, to validate our theory of AC drive, as well as to better understand the physics

of such ac drive, we apply this theory to the fermionic version of the set-up described

in Eq. 3.1. This generic model can be used to describe physical systems such as driven

double quantum dots[4] or single-molecule junctions with two molecular moieties (e.g.

biphenyl-dithiol molecular junctions [5]). We will now take the two baths at the same

temperature. Inverse temperature β is taken to be constant and the ac drive is given by

periodic chemical potential :

n`(ω, t) = [eβ(ω−µ`(t)) + 1]−1, µ`(t+ rT ) = µ`(t)∀r ∈ Z. (3.13)

We choose the drive frequency as

Ω0 =
ω2 − ω1

p
=

2g

p
. (3.14)

If p is integer, the system is at one of the resonances. If p is not an integer, it is away

from resonance.

We look at the particle current in the ac driven steady state. The expressions for the

currents are given in Eq. 2.60, 2.63. For the N = 2 case, the expression for I1→2 simplifies

to I1→2 = 2g Im(C12). Two different ac drives are considered:
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Figure 3.6: Internal current I1→2 as a function of time, for the two cases (i) for sym-

metric ac drive: µ1(t) = µ2 = V0 cos(Ω0t) (top panel), (ii) for asymmetric ac drive

:µ1(t) = V1 cos(Ω0t), µ2 = V2 sin(Ω0t) (bottom panel). The figure compares numerically

exact simulation results for current inside the system (stars) with those obtained from our

theory Eq. 2.53 for all times (solid line), and Eq. 2.57 for long times (dashed line). The

near perfect agreement validates our theory. Other parameters Ω0 = 2g, g = 0.5, tB =

200, ω0 = 1, β1 = β2 = 0.1,Γ1 = 1,Γ2 = 9, ε = 0.1. For these parameters, τB ∼ 0.1 (see

Appendix. 6.6). For numerical simulation, τD = 0.2π. All times are measured in units of

ω−1
0 , all energies are measured in units of ω0.

(i) symmetric ac drive or zero voltage drive :

µ1(t) = µ2(t) = V0 sin(Ω0t). (3.15)

(ii) asymmetric ac drive :

µ1(t) = V1 cos(Ω0t), µ2(t) = V2 sin(Ω0t). (3.16)

Comparison between analytic formula and exact numerics

Before proceeding to elucidate the physics dominating the driven system, we wish to

validate the analytic derivation. For this we compare results obtained from Eq. 2.53 with

that obtained from full numerical simulation of our protocol. For small systems like the

two-site case considered here, the protocol for our ac drive set-up can be simulated exactly

with finite but large baths. For each time-independent step of our protocol, we choose a
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bath of finite size with bath correlations satisfying fermi distributions and evolve the full

system+bath Hamiltonian Ĥ using unitary Hamiltonian dynamics. Let us collectively

denote by “d” a column vector with all annihilation operators of both system and baths.

The full Hamiltonian can be written as Ĥ =
∑

i,j Hijd
†
idj where i now refers to either

system or bath sites. If D = 〈dd†〉 denotes the full correlation matrix of system and baths,

its time evolution is given by D(t) = eiHtDe−iHt. The bath correlations are then changed

according to the protocol, and the process is repeated. Various observables like current

inside the system calculated using this exact numerical simulation can be compared with

that obtained from Eq. 2.53, thus providing a way to validate our theory. Note that the

numerical simulation does not take into consideration the ‘Markov’ condition on time

scales given in Eq. 2.47. It holds even when Eq. 2.47 is not respected. Thus it allows us

to check the validity of the crucial assumption on time scales required for our analytical

treatment.

Fig. 3.6 shows the results for current inside the system Is1→2 and Ia1→2 for cases (i)

Eq. 3.15 and (ii) Eq. 3.16 respectively (superscripts in I stand for symmetric and asym-

metric currents), as obtained from exact numerics as well as from our theory. Eq. 2.57 has

been used to obtain the long time result, while Eq. 2.53 has been used to get the result at

all times, showing approach to the long time dynamics. Numerical simulation has been

done with baths of size 256 sites, which are large enough to have negligible finite-size

effects. The near perfect agreement with exact numerical simulations validate our theory.

For this plot, the drive frequency is chosen to be Ω0 = ω1−ω2 = 2g, so that the set-up is

at the first resonance. The near perfect match occurs for other frequencies also as long as

Eq. 2.47 is satisfied. For our choice of parameters, τB ∼ 0.1 (see Appendix. 6.6), and for

numerical simulation, τD = 0.1T = 0.2π in units of ω−1
0 . Thus Eq. 2.47 is satisfied. The

initial condition for plots shown in the figure corresponds to no particle in the system, but

the agreement with numerical simulations has been checked for other initial conditions

(like randomly chosen initial values of correlation functions etc.) also.

Note that numerical validation was only possible owing to the small size of the system,

which allowed for using reasonably sized finite baths. For larger system sizes, much larger

baths will be required and the set-up will not be amenable to numerical simulation.

However, the theory can be easily used for much larger systems connected to infinite

baths.

Having validated the theory, we now look at the physics of the long time dynamics
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for both the cases.

Symmetric - or zero voltage - ac drive

First, we look at long time dynamics of the symmetric drive (Eq. 3.15). In this case,

both chemical potentials are the exact same sinusoidal so that there is no instantaneous

voltage difference, i.e, µ1(t) − µ2(t) = 0. Even though there is no voltage difference, as

discussed before, because of being a driven system, there can still be an instantaneous

current. Moreover, because of presence of displacement current, the current from the left

bath, current in the system, current from the right bath can be different.

Panel (a) of Fig. 3.7 shows currents from the left (right) bath to site 1(2), Is
B(1)→2

(Is
B(2)→2

),

and current inside the system over one time period for the case of first resonance (p = 1

in Eq. 3.14). As expected from our discussion of resonance, the current inside the system

is much larger than the currents from the baths. A physical explanation for the non-zero

instantaneous current for zero voltage drive can be given as follows.

Let V0 > ω2 (see Eq. 3.15). As the chemical potential varies, the Fermi energy of the

particles in the bath varies. When it exceeds ω2, particles flow into the system from the

baths. When the Fermi energy of the particles in the bath is smaller than ω1, particles flow

out of the system into the baths. If the time to reach steady state is larger than the time

period of the drive, this transient behavior is observed, which leads to the instantaneous

current.

It is clear from this argument, that the instantaneous current increases with increase in

V0. Particularly, if V0 < ω1, there will be a small instantaneous current. This behaviour is

shown in panel (b) of Fig. 3.7 which shows the maximum instantaneous currents from the

baths and inside the system as a function of V0. The current increases continuously with

V0 and finally saturates. The saturation occurs because there are only two eigen-energy

levels of the system. Actually, because of the fermionic nature of the set-up, one would

expect steps or kinks at the positions V0 = ω1 and V0 = ω2. However, such behaviour is

not observed because temperature is not low enough. On the other hand, it is important

to note that the time-period averaged current is zero always because it is proportional to

the difference between time-period averaged fermi distributions of the two baths.

We note that the internal current, while strictly speaking cannot be measured directly,

nevertheless may have physical consequences. Specifically, such internal current may lead

to local heating of the junction (due to Joule heating). This can lead for instance, to
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Figure 3.7: Various currents under symmetric ac drive (µ1(t) = µ2(t) = V0 sin(Ω0t)).

Panel (a), (b), (c) describes the set-up at first resonance (Ω0 = ω2 − ω1 = 2g). Panel

(a) shows long time results of Is1→2 and currents from the baths (Is
B(1)→1

,Is
B(2)→2

) with

asymmetric system-bath coupling (Γ1 6= Γ2) as a function of time over one time period of

the ac drive. Is
B(1)→1

,Is
B(2)→2

are much smaller than Is1→2. Panel (b) shows the behavior

of the maximum currents with V0 for asymmetric system-bath coupling. The maximum

currents increase with V0 and finally saturates. Panel (c) shows behavior of the maximum

currents with the degree of asymmetry (Γ1/Γ2). The maximum current inside the system

(Imax1→2) decreases with increase in degree of asymmetry, and becomes zero for symmetric

coupling. In contrast, maximum current from baths (Imax
B(1)→1

,Imax
B(2)→2

) remain non-zero and

become same for symmetric coupling. This shows a stark difference between symmetric and

asymmetric system-bath coupling, and gives an experimental way to determine asymmetry

of system-bath coupling. Panel (d) shows the maximum current in the system as a function

of p = 2g/Ω0 (Eq. 3.14) at two different temperatures. p being integer corresponds to

resonances. The first resonance peak is very strong. Higher resonance peaks are much

weaker, and are washed out by increasing temperature. Other parameters g = 0.5, tB =

200, ω0 = 1, β1 = β2 = 0.1. All times are measured in units of ω−1
0 , all energies are

measured in units of ~ω0.
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a breakdown of the system (in molecular junctions) or to heating-induced observable

changes in current (for a double quantum dot).

Panel (c) of Fig. 3.7 shows a more interesting effect. The plot shows the maximum

instantaneous current from the baths and inside the system as a function of asymmetry

Γ1/Γ2 of the system-bath coupling (note that the chemical potentials are still symmetric).

The set-up is still at first resonance. The maximum current inside the system decreases

with decrease in asymmetry, and vanishes for the fully symmetric junction, Γ1/Γ2 = 1.

At the same time, in the symmetric point the maximum currents from left and right

baths are equal. This can be physically explained as follows. If the baths are identically

coupled as well as identically driven, the particles come into the system at exactly same

rate leading to same current from both baths. Since the particles are fermions, if one

particle occupy each site, there can be no current in between the two sites due to Pauli

exclusion principle. This leads to the fact that if rate of inflow of particles from both baths

is same, there is no current between the two sites. Thus, current between the two sites

of the system comes from a mismatch between rate of inflow of particles from the baths.

Therefore, current inside the system increases with increase in asymmetry of system-bath

coupling.

Panel (d) of Fig. 3.7 shows plots of the maximum current inside the system for asym-

metric system-bath coupling with p (as defined in Eq. 3.14) for two different temperatures.

When p is equal to an integer, the set-up is at resonance. Thus, from our previous dis-

cussion, the maximum current inside the system should show peaks at integer values of p.

The first resonance peak is strong. However, lower frequency resonance peaks are much

weaker. This is because the driving signal itself has a small contribution from such modes.

Moreover, we see that higher temperature washes out the lower frequency resonances.

We point out that asymmetry in molecular junctions may be a key ingredient in deci-

phering its electronic transport properties and in designing single-molecule devices (see,

e.g., [46, 47, 48]). Our results demonstrate that measuring the time-dependent current

(for zero voltage bias but time-dependent voltages) is a direct way to measure asymmetry

in molecular junctions, which can serve (in parallel to usual transport measurements) for

junction characterization.
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Figure 3.8: Panel (a) shows long time results of currents vs voltage V = µ1(t) − µ2(t)

over one time period of ac drive (V1 = 50, V2 = 5). The system is driven by µ1(t) =

V1 cos(Ω0t), µ2(t) = V2 sin(Ω0t), system-bath coupling is asymmetric (Γ1 = 0.01,Γ2 =

0.09) and system is at first resonance (Ω0 = ω2−ω1 = 2g). The currents show hysteretic

behavior, due to the dynamical nature of the charge transport in and out of the system.

Because of the resonance, the current inside the system is much greater than currents from

the baths. Panel (b) shows the time-period-averaged current as a function of difference

between amplitudes of drives V1 − V2. (V2 = 5, V1 is varied.) The current increases first

and then reaches a plateau. The averaged current is much smaller than the maximum

instantaneous current. The dotted lines between the two panels highlights the difference

in scale of the plots. Other parameters g = 0.5, tB = 200, ω0 = 1, β1 = β2 = 0.1. All times

are measured in units of ω−1
0 , all energies are measured in units of ~ω0.

Asymmetric ac drive

Having discussed the physics of long time dynamics of the symmetric ac drive, we move

to the case of the asymmetric ac drive. Consider the situation where the left chemical

potential and right chemical potentials vary sinusoidally out of phase with same frequency

but have different amplitude in general.

Unlike the symmetric ac drive case, here the voltage across the system V = µ1−µ2 is

non-zero. For V1 6= V2. The difference between time-period averaged Fermi distributions

of the two baths is not zero in this case. Hence, there is a net time-period averaged

current through the system. Fig. 3.8 shows plots of currents from the baths and current
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in the system at first resonance. Panel (a) shows current vs voltage (V = µ1(t) − µ2(t))

curve over one time period. We observe an interesting hysteresis behavior. Also, because

of resonance, the current inside the system is much greater than current from the baths.

This effect would not have been seen in the adiabatic limit. Panel (b) shows the time-

period averaged current as a function of V1 − V2. The current increases, and finally

saturates (similar to Imax vs V0 curve for the symmetric drive case). Note that the time-

averaged current is much smaller than the maximal instantaneous currents. This implies

that perhaps time-dependent signals can be measured even when the average currents are

small and below the noise level.

The hysteresis in I-V curve for asymmetric system bath coupling can potentially have

device applications. This behavior depends intricately on the phase difference between

the two drives, the amplitude difference of the two drives, as well as on the asymme-

try of system-bath coupling. These dependences are quite complicated and a detailed

investigation of the hysteresis behavior will be taken up in a future work.

The two site set-up described above is experimentally realizable using quantum dots.

However, the bottleneck experimental parameter for observation of most of the above

effects is frequency of the drive Ω0. Our most interesting results are close to resonance

Ω0 = 2g. The maximum frequency of ac drive currently experimentally realizable is

∼ 10GHz [49]. This means to observe the above effects g ∼ 0.01meV . The baths must

have much wider bandwidths than system energy scales, which can be easily arranged

experimentally. As evidenced by Eq. 3.2, having wide bandwidths will automatically

realize the weak system-bath coupling. Temperature ∼ 1mK (which is equivalent to β ∼
0.1) will be consistent with the Markov approximation. These experimental parameters

may be challenging but not impossible. Our study thus points to new rich physics in such

experimental domain.

Summary

Thus, we have tested our AC drive theory by applying it to the case of two fermionic

sites with hopping between them, weakly coupled to two different baths at same constant

temperature but with sinusoidally driven chemical potentials. In this we have considered

two cases. We have validated our theory by comparing with exact numerics done with

finite but large baths for both the cases. The first case is when the sinusoidal drive is

symmetric, i.e, both chemical potentials vary in an exactly same manner so that there
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is no instantaneous voltage difference. In this case, even though there is no net time-

period averaged current, there is an instantaneous current, which can become quite large

at resonance. Furthermore, inside the system, the instantaneous current depends on

asymmetry of the system-bath coupling and becomes zero when system-bath coupling is

symmetric. This gives an experimental way of detecting the asymmetry of system-bath

coupling. The maximum instantaneous current increases with amplitude of drive and

shows resonance peaks. Increase in temperature washes out the higher resonance peaks.

In the other case, the chemical potentials of the baths have an amplitude difference,

as well as a phase difference. Due to amplitude difference, the net time-period averaged

current is non-zero and increases with increase in amplitude difference. We find interesting

hysteresis in the I-V curves.

In the next section, we use RQME to look at a simple interacting model.

3.2 Transport through a non-linear oscillator

[This subsection closely follows parts of discussions in the published paper (iii).]

Having dealt with linear systems, we now use the RQME approach to treat (DC) trans-

port through a non-linear oscillator given by a single site with Bose-Hubbard interaction,

, hereafter, called the single-site Bose Hubbard (SSBH) model,

ĤS = Ω0â
†â+ χ(â†â)2. (3.17)

In optics, such interaction is often called the Kerr interaction strength. In the field of

hybrid quantum systems a Hamiltonian with such an interaction can be potentially exper-

imentally realized in more than one way. The Jaynes-Cummings model, an experimentally

realized light-matter system, can be tuned to the dispersive regime where it behaves like

a SSBH model. The photon-spin interaction in this limit can be integrated out “pertu-

batively” to generate a non-linear Bose-Hubbard like interaction between photons [6, 7].

Alternatively there are interesting potential realizations of Bose-Hubbard interactions be-

tween photons which involve 4-level atoms in an optical cavity [50, 51]. These realizations

offer large tunability of parameters. Specifically, while the former realization involving

Jaynes-Cummings model has a small interaction strength compared to the linear term,

the later realizations have very large interaction strength.

Another area of applicability for such interacting bosonic Hamiltonians, which is per-

haps more suited to non-equilibrium measurements, are the fields of molecular thermo-
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Figure 3.9: The schematic set-up for studying transport through a non-linear oscillator

described by a single-site Bose-Hubbard model (Eq. 3.17).

electrics and nanophononics. These fields typically deal with molecular junctions con-

necting two reservoirs, experimentally, which are often two large chemical compounds

[52, 53, 54, 55, 56, 57]. Role of interactions in phononic transport through such systems

is of interest both experimentally and theoretically[58].

There has been a large amount of work on such a SSBH model with a finite interac-

tion strength coupled to a single bath [59, 60, 61, 62, 63, 64]. On the other hand, non-

equilibrium spin boson (NESB) model, which corresponds to the limit of very large inter-

action strength, has been well studied in out-of-equilibrium set-ups [12, 13, 65, 66, 67, 68]

and is of growing experimental significance. The conductance of an anharmonic junc-

tion with quartic anharmonicity has been studied recently [69, 70]. However, there is

essentially no investigation of the SSBH model with finite interaction strength in a far-

from-equilibrium setup via connection with multiple reservoirs. Here, using RQME, we

investigate the SSBH model weakly coupled to two bosonic baths at different temperatures

beyond the linear response regime.

3.2.1 The RQME

The RQME provides a way to treat the set-up of the SSBH model connected to two

baths at different temperatures (see Fig. 3.9) without any restrictions on the interaction

strength χ. So, under Born-Markov approximation, we obtain results only to leading

order in system-bath coupling, but arbitrary strength of interaction. The microscopically

derived RQME for our system coupled to single bath was first written down in [60]. It

is straightforward to generalize to two baths. Let us define ρ ≡ TrB(ρfull) with ρfull

being the full density matrix of system+bath and TrB(..) implying trace taken over bath
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degrees of freedom. The RQME for the density matrix of the system ρ of our set-up is

given by:

∂ρ

∂t
= i[ρ, ĤS]− ε2

(
[ρF (ˆ̃ω)â, â†] + [â†, G(ˆ̃ω)âρ] + h.c.

)
, (3.18)

where

ˆ̃ω = Ω0 + χ(2N̂ + 1),

F (ˆ̃ω) = F1(ˆ̃ω) + F2(ˆ̃ω), G(ˆ̃ω) = G1(ˆ̃ω) +G2(ˆ̃ω) (3.19)

F`(ˆ̃ω) =
1

2
J`(ˆ̃ω)n`(ˆ̃ω)− iP

∫ ∞

−∞

dω

2π

J`(ω)n`(ω)

ω − ˆ̃ω

G`(ˆ̃ω) =
1

2
J`(ˆ̃ω)(n`(ˆ̃ω) + 1)− iP

∫ ∞

−∞

dω

2π

J`(ω)(n`(ω) + 1)

ω − ˆ̃ω

and h.c. stands for Hermitian conjugate. Note that the Redfield equation assumes ε� 1

and keeps terms only upto O(ε2), i.e, only upto quadratic in system-bath coupling (the

Born approximation). In deriving the above equation, we have also done the Markov

approximation which assumes that the observation time is much larger than the time

scale of relaxation of bath correlation functions. To ensure weak system-bath coupling,

we choose ε = 0.1 and κ`r to be of the same order as Ω0.

In equilibrium, i.e, when β1 = β2 = β, µ1 = µ2 = µ, it can be checked by direct

substitution that the thermal state

ρeq =
e−β(ĤS−µN̂)

Z
(3.20)

is the steady state of the Eq. (3.18), where Z = Tr
[
e−β(ĤS−µN̂

]
is the equilibrium

partition function.

The quantitative nature of some of our results will depend on our choice of spectral

function. We assume a general spectral function which is commonly used in bosonic

systems:

J`(ω) = Γ`ω
se−ω/ωcθ(ω) , (3.21)

where ωc gives the cut-off frequency and θ(ω) is Heaviside step function. The cut-off

frequency is considered very large so that the system energy levels near the edge of the

bath spectrum correspond to extremely high energies, which do not really contribute to

the system properties at the chosen set of temperatures and chemical potentials. This

50



is satisfied when ωc � Ω0, χ, β
−1
1 , β−1

2 , µ1, µ2. Also, we are concerned with a photonic or

phononic system, so we will set µ1 = µ2 = 0 finally. Most of our results will be for the

Ohmic bath, i.e, for s = 1. Other cases will be commented up on. The sub-ohmic bath,

s < 1 is not consistent with the Born-Markov approximation in this case.

3.2.2 The NESS

To calculate various physical observables in NESS beyond linear response, we need to

find the NESS density matrix. Also, in non-equilibrium, since we have no guess for direct

substitution, we need to find the ρ directly from Eq 3.18. Since both the number operator

N̂ and the system Hamiltonian HS are diagonal in occupation number basis, the NESS

transport properties as well as average occupation and energy of the system can be found

from the steady state diagonal elements of ρ in this basis. The occupation number basis

satisfies

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉 . (3.22)

The evolution equation for the diagonal elements ρn = 〈n|ρ|n〉 is given by

dρn
dt

= −ε2 [ρn(Cn +Dn)− ρn−1Cn−1 − ρn+1Dn+1] , (3.23)

where

Cn = C(1)
n + C(2)

n , Dn = D(1)
n +D(2)

n

C(`)
n = (n+ 1)J`(ωn)n`(ωn), D(`)

n = nJ`(ωn−1)(n`(ωn−1) + 1)

ωn = Ω0 + χ(2n+ 1) . (3.24)

In the steady state we set the LHS of Eq. 3.23) to zero. This leads to a difference equation.

Noting that C
(`)
−1 = C−1 = 0, D

(`)
0 = D0 = 0, we obtain, by recursion, the solution

ρnDn = ρn−1Cn−1 (3.25)

⇒ ρn = ρ0

n∏

p=1

Cp−1

Dp

= ρ0

n∏

p=1

∑2
`=1 Γ`n`(ωp−1)∑2

`=1 Γ`(n`(ωp−1) + 1)

for n = 1, 2, 3, ... . (3.26)

The constant ρ0 is fixed from the normalization condition
∑

n ρn = 1, i.e, trace of density

matrix is unity. Thus,

ρ0 = Z̃−1 =
[
1 +

∞∑

n=1

n∏

p=1

∑2
`=1 Γ`n`(ωp−1)∑2

`=1 Γ`(n`(ωp−1) + 1)

]−1

, (3.27)
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Figure 3.10: The plot of population density (diagonal elements of density matrix in eigen-

basis of system Hamiltonian) of SSBH model in equilibrium and under thermal bias with

assymetric system-bath coupling (Γ1 = 0.4,Γ2 = 1.6) and Ω0 = 1. The top and bottom

panels are for interchanged hot and cold baths. The three dotted lines (in each plot) are

the corresponding equilibrium distributions (T1 = T2 = 3.5), i.e, Eq. 3.20 for the values

of χ mentioned in the legend. The deviation from equilibrium is more prominent in the

bottom panel. For large interaction strength (χ = 4), only two levels have non-negligible

probability, like a spin-boson model. All energy variables are measured in units of Ω0.

where Z̃ is a normalization constant and is analogous to the partition function in equi-

librium systems. It can be easily checked by putting n1(ω) = n2(ω) = n(ω) in Eq. (3.26)

that ρn indeed gives Eq. (3.20) in equilibrium. Also, in the equilibrium case, Eq. (3.25)

corresponds to the detailed balance condition. In the non-equilibrium case, while this

still looks like the detailed balance condition, we note that in general it is not possible to

define an effective temperature. Also note that ρn is independent of the choice of spectral

function of the bath.

The explicit expression for population ρn of bosons in NESS, given by Eq. 3.26, is

the central result that allows us to go beyond linear response in this interacting bosonic

problem. The population, in itself, is a physically measurable quantity and, as we show

below, can be used to compute various other physical observables.

In Fig. 3.10, we show the plots of population density ρn of the system under asymmetric

system-bath coupling. Since system-bath coupling is asymmetric, the out-of-equilibrium

distribution changes under interchange of hot and cold baths. For high interaction
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strength, i.e, for χ � Ω0, T1, T2, only the lowest two levels have non-negligible proba-

bility. In this regime, we can truncate the energy spectrum in just two levels. Then ρ0

and ρ1 become

ρ0 ≈
∑2

`=1 Γ`
(
n`(ω0) + 1

)
∑2

`=1 Γ`(1 + 2n`(ω0))
, ρ1 ≈

∑2
`=1 Γ`n`(ω0)∑2

`=1 Γ`(1 + 2n`(ω0))

∀ χ� Ω0, T1, T2 (3.28)

with ω0 = Ω0 + χ. The above results are exactly the same as obtained for a non-

equilibrium spin-boson model (NESB) by using the Redfield equation [12]. Thus for

χ� Ω0, T1, T2, the system becomes identical to the NESB. Since NESB is already a well

explored problem, in the following, we will be mainly interested in the physics beyond this

regime. We also note that for χ = 0 the system reduces to a harmonic oscillator and in

this case the population ρχ=0
n is given in terms of an effective temperature Teff = 1/βeff ,

i.e ρχ=0
n ∝ e−βeffΩ0n with

coth(βeffΩ0) =
Γ1 coth(β1Ω0) + Γ2 coth(β2Ω0)

Γ1 + Γ2

(3.29)

which is consistent with the finding in Ref. [71].

3.2.3 Average occupation and energy

First we will look at the average occupation and energy of the system. These quantities

are measurable in current state-of-the-art experiments in quantum light-matter hybrid

systems [7, 72]. The expressions for these are given by

〈N̂〉 =
∞∑

n=1

nρn =
1

Z̃

∞∑

n=1

n
n∏

p=1

∑2
`=1 Γ`n`(ωp−1)∑2

`=1 Γ`(n`(ωp−1) + 1)
,

〈ĤS〉 =
∞∑

n=1

Enρn =
1

Z̃

∞∑

n=1

En

n∏

p=1

∑2
`=1 Γ`n`(ωp−1)∑2

`=1 Γ`(n`(ωp−1) + 1)
, (3.30)

with En = Ω0n+ χn2.

In NESB limit, these average quantities can be trivially found from Eq. 3.28. They

become 〈N̂〉 ≈ ρ1, and 〈ĤS〉 ≈ ω0ρ1. We are interested in going beyond the NESB regime.

So let us look at the regime of high temperatures T1, T2 � χ,Ω0. First, we look at the

normalization constant defined in Eq. 3.27. which can be written as

Z̃ = 1 +
∞∑

n=1

exp

[
−

n∑

p=1

log (f(ωp−1))

]
, f(ωp) =

∑2
`=1 Γ`(n`(ωp) + 1)∑2

`=1 Γ`n`(ωp)
. (3.31)
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Note that f(ωp) > 1, and hence log
(
f(ωp)

)
> 0. It follows that there is a energy level

cut-off n∗ beyond which the energy levels have negligible contribution to Z̃. For high

enough temperatures, we can assume, β`ωp � 1 ∀p < n∗. Under this condition, we can

expand f(ωp) to obtain (after some amount of algebra),

f(ωp) ≈ 1 +
ωp

T̃
, log

(
f(ωp)

)
≈ log

(
1 +

ωp

T̃

)
≈ ωp

T̃
, (3.32)

with

T̃ =
Γ1T1 + Γ2T2

Γ1 + Γ2

. (3.33)

The contribution of terms n > n∗ is small and so their precise form is irrelevant. Hence

we get

Z̃ ≈ 1 +
∞∑

n=1

exp

[
− 1

T̃

n∑

p=1

(
Ω0 + (2p− 1)χ

)
]

=
∞∑

n=0

exp

[
− 1

T̃
(Ω0n+ χn2)

]
. (3.34)

Thus, for T1, T2 � Ω0, χ the normalization constant has the same form as the equilibrium

partition function with the effective temperature T̃ . This is consistent with the effective

temperature for harmonic oscillator (χ = 0) given in Eq. 3.29. For high temperatures,

βeff = 1/T̃ . It is also interesting to note that for symmetric system-bath coupling, i.e,

Γ1 = Γ2, the effective temperature is just the mean temperature, T̃ = Tm = (T1 + T2)/2.

However, the description in terms of an effective temperature is not possible for low

temperatures, except when χ = 0.

The high temperature scaling of the normalization constant can now be easily found

by noting that for high temperatures, the summation can be converted into an integral.

So we have

Z̃ ≈
∫ ∞

0

dx exp

[
− 1

T̃
(Ω0x+ χx2)

]
≈
√
π

2

√
T̃

χ
. (3.35)

The second step requires the condition T̃ χ � Ω2
0, under which we see that the normal-

ization constant scales as
√
T̃ /χ.

The above trick can be used to find high temperature scaling of average of any operator

which is diagonal in the eigenbasis of the system Hamiltonian. The average of any operator

Ĥ which is diagonal in the eigenbasis of the system has the form

〈Ĥ〉 =
∞∑

n=0

ρnh(n) =
[h(0) +

∑∞
n=1 e

−∑n
p=1 log(f(ωp−1))h(n)]

Z̃
, (3.36)
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Figure 3.11: The plot shows scaling behaviour of average occupation and average energy

of the single site Bose-Hubbard model for fixed r = T2/T1 = 1/3. Here ω0 = Ω0 + χ.

The dotted plots correspond to the NESB model. For χ � Ω0 (Ω0 = 1), there is data

collapse over the entire range of temperature. Even for small χ(= 0.1), there is substantial

deviation from linear (χ = 0) behaviour. For high temperatures, 〈N̂〉 scales as
√
T1/ω0,

while, 〈ĤS〉 scales as T1. Here the system-bath coupling is taken symmetric : Γ1 = Γ2 = 1.

All energy variables are measured in units of Ω0.
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which, for T1, T2 � Ω0, χ, exactly following above arguments, becomes

〈Ĥ〉 ≈
√

2

π

√
χ

T̃

∫ ∞

0

dx exp

[
−Ω0x+ χx2

T̃

]
h(x) . (3.37)

Using this, we readily obtain the high temperature behaviour of 〈N̂〉 and 〈ĤS〉

〈N̂〉 ≈
√

T̃

πχ
, 〈ĤS〉 ≈ T̃ + (Ω0 + 2χ)

√
T̃

πχ
. (3.38)

Thus 〈N̂〉 should show a data collapse for various χ and vary as a function of
√
T̃ /χ,

whereas, 〈ĤS〉/χ varies as T̃ /χ and should show a data collapse for χ� Ω0.

To check the above high temperature discussion and the connection with equilibrium

behaviour, we now first define

r =
T2

T1

, (3.39)

which quantifies the degree of deviation from equilibrium, r = 1 corresponding to

equilibrium. To ensure that the system is far from equilibrium, we keep r fixed at r < 1.

We note that, if r is kept fixed, all the NESS results become a function of only one

temperature, say, T1. We choose T1/ω0, where ω0 = Ω0 + χ, as the scaling variable since

it can be used both in the highly interacting regime (where χ ≈ ω0) and the linear regime

(where χ = 0). Also in the NESB regime, with r fixed, all NESS quantities vary as a

function of T1/ω0, as can be checked from Eq. 3.28.

In Fig. 3.11, we plot 〈N̂〉 and 〈ĤS〉/ω0 as a function of T1/ω0. Note that Eq. 3.30, and

not any simplified expression, was used to calculate 〈N̂〉 and 〈ĤS〉 in the plots. The plots

clearly show data collapse over the entire temperature regime for χ� Ω0. Also, important

to note, is the substantial effect of small interaction strengths at high temperatures. The

high temperature scaling behaviour for small interaction strengths is same as that for

large interaction strengths, but there is no data collapse. This is because, the condition

T̃ χ� Ω2
0 means that, for small χ, there are large subleading terms. The low temperature

behaviour matches with NESB. Since all these observations are valid for any choice of r,

it follows that they are all valid in equilibrium (i.e, r = 1) also. This is consistent with

previous results in [60].

The crucial point in above discussion was to find that high temperature non-equilibrium

results can be described via an effective temperature T̃ . In the following, we will see that

even transport properties at high temperatures can be described in terms of T̃ .
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3.2.4 Currents

Now we look at the average transport properties of the system, in particular we compute

particle and energy currents. To calculate current we look at the evolution equations of

the expectation values 〈N̂〉 and 〈ĤS〉 of N̂ and HS. Since N̂ and ĤS are diagonal in

the eigenbasis of the system Hamiltonoan we can directly obtain the evolution of their

expectation values from Eq. (3.23). This gives

d〈N̂〉
dt

=
∑

n

n
dρn
dt

= ε2
∑

n

(
ρnCn − ρnDn

)
, (3.40)

d〈ĤS〉
dt

=
∑

n

(Ω0n+ χn2)
dρn
dt

= ε2
∑

n

(
ωnρnCn − ωn−1ρnDn

)
. (3.41)

Collecting all terms depending on each bath separately, the above equations can be written

like continuity equations of the forms d〈N̂〉/dt = I1 − I2, d〈ĤS〉/dt = J1 − J2, where I`

(J`) is the particle (energy) current flowing into the system from `th bath. In steady

state, I1 = I2 = I and J1 = J2 = J . The steady state expressions for currents are :

I = ε2

∞∑

n=0

ρn(C(1)
n −D(1)

n ) =
∞∑

n=1

ρnnI(ωn−1) ,

J = ε2

∞∑

n=0

ρn(ωnC
(1)
n − ωn−1D

(1)
n ) =

∞∑

n=1

ρnωn−1nI(ωn−1) , (3.42)

with

I(ωn−1) = ε2
[Γ1Γ2J(ωn−1)(n1(ωn−1)− n2(ωn−1))

Γ1n1(ωn−1) + Γ2n2(ωn−1)

]
. (3.43)

The second steps of Eq. 3.42 have been arrived at from the first steps after some simplifi-

cation using the property of NESS density matrix given in Eq. 3.25. Note that energy and

particle currents are not independent. But, in general, there is no way of directly finding

one current given the other and they can have quite different behaviour. Fig. 3.12 shows

variation of energy and particle currents with interaction strength χ for Ohmic baths

((s = 1 in Eq. 3.21)), for both forward (∆T > 0) and backward (∆T < 0) biases. The

mean temperature Tm = (T1 + T2)/2 is kept fixed in the plots, and system-bath coupling

is asymmetric (Γ1 6= Γ2). The plots immediately show us a number of physical aspects of

the system.

Firstly, we note that the particle current decreases with increase in interaction strength

χ. This is expected because of increasing repulsive interaction in the system. On the other

hand, energy current shows non-monotonic behaviour with χ. This is plausible because,
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Figure 3.12: Plot of particle (top panel) and energy (bottom panel) currents as a function

of interaction strength χ for transport under both forward and backward bias for Ohmic

baths (s = 1 in Eq. 3.21) under asymmetric system bath coupling (Γ1 = 0.4,Γ2 = 1.6).

Here mean temperature Tm = (T1 + T2)/2 = 5 for both plots. The two black dotted lines

in each plot correspond to the NESB currents for ∆T = ±5. The currents from our

model match the NESB currents for large χ. Particle current decreases with χ, while

energy current behaves non-monotonically with χ. The forward and backward currents

do not match, thereby showing rectification effect. The direction of rectification of energy

current is reversed beyond a value of χ. It follows that at this value of χ, the energy current

does not show rectification. The insets show the corresponding currents as a function of

∆T = T1 − T2 for a chosen value of χ = 3 and Tm = 5. It can be seen that I and J

deviate from odd-function behaviour which is signature of rectification. Other parameters

are ε = 0.1, ωc = 1000. All energy variables are measured in units of Ω0, and time is

measured in units of Ω−1
0 .
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while, with increasing χ, system allows less number of particles to pass, higher energy

particles have a larger probability to pass through the system.

Secondly, we see that there is rectification of both energy and particle currents, since

the particle and energy currents for forward and backward biases do not match. This is to

be expected because the expressions for currents in Eq. 3.42 are not antisymmetric under

interchange of hot and cold baths (i.e, n1 ↔ n2) in general. It is only so under special

conditions. Two of such special conditions where there is no rectification are when χ = 0,

i.e, when the system is linear, and when Γ1 = Γ2 (for any χ). These can be easily checked

from the expressions for currents (Eq. 3.42). Hence, in general, there will be rectification

effects in both particle and energy currents for χ 6= 0 and Γ1 6= Γ2. This is the generic

behaviour in non-linear (interacting) systems.

Thirdly, as discussed before, for χ � Ω0, T1, T2, the system behaves as NESB, and

currents match with the NESB results. But, the rectification in the NESB limit is less

than that for smaller interaction strengths. Thus rectification behaviour is non-monotonic

as a function of χ. Our findings therefore suggest that a careful engineering of the system

Hamiltonian is required to get maximum rectification from a given system.

Finally, and most interestingly, for small interaction strength, the rectification of en-

ergy current occurs in the opposite direction to rectification of particle current. Also,

there is a non-zero value of χ where the forward and backward energy currents match,

and hence there is no rectification. At this point, the system rectifies particle current but

not the energy current. Beyond this value of χ, energy and particle rectification occur in

the same direction (see Fig. 3.12, bottom panel).

In what follows, we investigate the behaviour of particle and energy currents and

rectification in more detail along with their scaling behaviour.

Scaling behaviour of currents

As we have seen with average system properties, transport properties also behave differ-

ently for different relative values of temperatures and interaction strength. In the NESB

regime, χ� Ω0, T1, T2, the currents are given by

ISB ≈
ε2Γ1Γ2J(ω0)(n1(ω0)− n2(ω0))

Γ1(1 + 2n1(ω0)) + Γ2(1 + 2n2(ω0))
,

JSB ≈ ω0ISB , (3.44)
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with ω0 = Ω0 + χ. This is identical to the expression for current previously derived for

NESB [12]. Note that in NESB regime, energy current is proportional to particle current.

This is because, in this limit, transport is allowed through transfer of exactly one particle

through the system, and that particle has energy Ω0 + χ. This is not valid beyond the

NESB regime.

Now, let us look at the high temperature regime, T1, T2 � χ,Ω0, where NESB results

are not valid. We note that the expression for the currents in Eq. 3.42 has the same form

as Eq. 3.36. So, the high temperature trick in Eq. 3.37 can be readily applied to obtain

I T̃�Ω0,χ ≈
√

2χ

π2T̃

∫ ∞

0

dxe−
Ω0x+χx2

T̃ (x+ 1)I(ωx) ,

≈
√

2χ

π2T̃

∫ ∞

0

dxe−
Ω0x+χx2

T̃ (x+ 1)AJ(ωx)
∆T

T̃
,

J T̃�Ω0,χ ≈
√

2χ

π2T̃

∫ ∞

0

dxe−
Ω0x+χx2

T̃ (x+ 1)ωxAJ(ωx)
∆T

T̃
, (3.45)

with A = ε2Γ1Γ2/(Γ1 + Γ2) and ∆T = T1 − T2. In the second step above, we have

expanded the Bose distributions in I(ωn) (Eq. 3.43) for high temperatures to obtain

I(ωn) ≈ AJ(ωn)∆T/T̃ . Using the general form of spectral function given in Eq. 3.21,

and after some algebra, we obtain

I T̃�Ω0,χ ≈ K
(
s
)

=
A∆T√
πT̃

∫ ∞

0

dy

[
y−

1
2 e−y



√
T̃ y

χ
+ 1


(Ω0 + χ+ 2

√
T̃ χy

)s
]
,

J T̃�Ω0,χ ≈ K(s+ 1). (3.46)

For the choice of spectral function in Eq. 3.21, we can relate particle and energy currents

via the function K(s). We now look at the properties of the function K(s). First, we

look at the regime T̃ � χ� Ω0. In this regime, K(s) becomes

K
(
s
)

χs−1∆T
≈ A√

π

χ

T̃
F
( T̃
χ
, s
)
, (3.47)

F(z, s) =
A√
π

χ

T̃

∫ ∞

0

dy
[
y−

1
2 e−y

(√
zy + 1

)(
1 + 2

√
zy
)s]

.

This then gives

K
(
s
)

χs−1∆T
≈ 2sA√

π

( T̃
χ

) s−1
2

∫ ∞

0

dye−yy
s
2 , ∀ T̃ � χ� Ω0 . (3.48)

We immediately make the following observations. Firstly, for T1, T2 � χ� Ω0, K
(
s
)
/(χs−1∆T )

varies as a function of T̃ /χ. Thus, I/
(
χs−1∆T

)
and J/

(
χs∆T

)
for various values of χ

should show a data collapse when plotted with T̃ /χ.
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Secondly, we see K(1) ≈ A∆T . It follows that for Ohmic baths (s = 1 in Eq. 3.21)

at high temperatures, particle current is independent of the interaction strength χ and

one gets a linear-response-like relation I ≈ A∆T , even for large temperature bias. This

is consistent with high temperature result for a harmonic oscillator (χ = 0). However,

the energy current J ∼
√
T̃ /χ∆T and shows the effect of interaction. On the other hand

for constant bath (s = 0), the energy current J always satisfies the linear-response-like

relation, whereas the particle current is suppressed by a factor
√
χ/T̃ .

Thirdly, we note that the quantity J/(χI) varies as a function of T̃ /χ and scales as√
T̃ /χ for any s,

J

χI
≈ F

(
T̃ /χ, s+ 1

)

F
(
T̃ /χ, s

) ≈ 2

√
T̃

χ

(∫∞
0
y
s+1

2 e−ydy∫∞
0
y
s
2 e−ydy

)

∀ T1, T2 � χ� Ω0 (3.49)

In the other regime, T1, T2 � Ω0 � χ, the scaling behaviour is the same, but the data

collapse is difficult to see because of large sub-leading terms.

Note that, I/∆T and J/∆T actually give the beyond linear response analog of particle

and energy conductance. For linear response, T̃ = T in the RHS of Eq. 3.47, T being the

equilibrium temperature. Then, the above discussion gives the high temperature scaling

of conductance.

In Fig. 3.13, we show the scaling behaviour of I/∆T and J/∆T as a function of

T1/ω0. As in Sec. (3.2.3), we have chosen T1/ω0 as the relevant scaling variable and have

kept r fixed at r < 1 to ensure beyond linear response regime. r → 1 gives the linear

response conductance. The plots (a) and (b) of Fig. 3.13 are then the beyond-linear-

response equivalent of temperature scaling of conductance. Note that Eq. 3.42 (and not

any simplified expression) was used to calculate currents. The plots show the scaling

behaviour discussed above. The plots for χ � Ω0 show data collapse over the entire

range of temperatures. Also, the low temperature behaviour is given by NESB.

In Fig. 3.13(a), we plot I/∆T for fixed r for Ohmic baths (s = 1 in Eq. 3.21). We see

that, for NESB, this quantity behaves non-monotonically with temperature, while for our

non-equilibrium SSBH model, this quantity monotonically increases with temperature.

In fact, the deviation from NESB result starts precisely at the point where the NESB

result reaches a maximum. Similar behaviour is observed for J/(∆Tω0) in Fig. 3.13(b).

We conclude that, the non-monotonic behaviour of conductance of NESB, both at and

beyond linear response, comes as a result of truncation of the energy spectrum and is
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Figure 3.13: Panel (a) and (b) show the scaling behaviour of I/∆T and J/(∆Tω0) for

Ohmic baths (s = 1 in Eq. 3.21) and for fixed r = T2

T1
= 1

3
. The dotted lines show the

corresponding NESB result. The horizontal dashed lines in panel (a) and panel (b) cor-

respond to I/∆T = J/(∆Tω0) = A = ε2Γ1Γ2/(Γ1 + Γ2), which is the high temperature

result for the harmonic oscillator (χ = 0). For χ� Ω0 (Ω0 = 1), there is a data collapse

for all temperatures. The NESB result matches with the non-equilibrium SSBH model for

small temperatures. At higher temperatures, the NESB result shows non-monotonicity,

which is not seen in the non-equilibrium SSBH model which demonstrates a stark differ-

ence between the two models. In panel (a), I/∆T approaches a constant value at high

temperatures irrespective of the strength of interaction strength. In panel (b), even for

small interaction strength (χ = 0.1), substantial deviation from linear (χ = 0) behaviour

is noticeable. Panel (c) shows data collapse of J/(Iω0) for all temperatures for χ � Ω0.

Irrespective of choice of bath spectral function and for fixed r(= 1
3
), J/(Iω0) shows a data

collapse and goes as ∼
√
T1/ω0 for T1 � ω0. All observations are also valid in linear

response regime (i.e, r ≈ 1), and give the temperature scaling of conductance. Other

parameters are: ε = 0.1, ωc = 1000, Γ1 = Γ2 = 1. All energy variables are measured in

units of Ω0, and time is measured in units of Ω−1
0 .
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not observed when all energy levels are considered. This demonstrates a major difference

between the high temperature behaviour of non-equilibrium SSBH model and the NESB

model.

Also, it follows from Fig. 3.13(a), that, for Ohmic baths (s = 1 in Eq. 3.21), at high

temperatures the particle current (for fixed ∆T ) becomes independent of both interaction

strength and the effective temperature. Fig. 3.13(b) shows a considerable deviation from

linear behaviour even for small interaction strengths.

Fig. 3.13(c) shows that, consistent with our previous discussion, irrespective of the

choice of bath spectral function, the quantity J/(Iω0), for χ� Ω0, shows a data collapse

and goes as ∼
√
T1/ω0 for T1 � ω0 (with r kept fixed).

Having discussed the scaling behaviour of currents in detail, we now look into another

important property of interacting systems, the rectification of current.

Rectification

Rectification of current is a generic behaviour of non-linear (interacting) systems in non-

equilibrium. As we have seen, in a non-equilibrium set-up, two kinds of currents through

the system can be defined, the particle current and the energy current, and their rectifica-

tion behaviour can also be quite different. To our knowledge, there has been no previous

work where both particle and energy current rectification for a bosonic non-linear system

has been investigated. Also, note that rectification can only be observed beyond linear

response regime.

Since rectification occurs only for asymmetric system-bath coupling, we use the fol-

lowing definition to describe the degree of asymmetry

Γ1 = Γ(1− γ), Γ2 = Γ(1 + γ) , (3.50)

where 0 ≤ γ ≤ 1 is dimensionless. Given a value of asymmetry parameter γ, we define a

measure of rectification as

RI =
I(∆T, γ) + I(−∆T, γ)

I(∆T, γ = 0)
, RJ =

J(∆T, γ) + J(−∆T, γ)

J(∆T, γ = 0)
. (3.51)

RI and RJ are the particle and energy current rectifications. This measure of rectification

is as used in [12, 13]. Note that, by this definition, rectification is positive if higher current

flows when the cold bath is more strongly coupled to the system. Also, RI and RJ are

zero when γ = 0, 1. In our following discussion of rectification, we will primarily confine

ourselves to the Ohmic baths (s = 1 in Eq. 3.21).
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Figure 3.14: The plot shows particle rectification RI (top) and energy rectification RJ

(bottom) as a function of asymmetry parameter γ for various values of interaction strength

χ and Ohmic baths (s = 1 in Eq. 3.21). RI and RJ are as defined in Eq. 3.51. The black

dotted line corresponds to NESB. The rectfications become maximum when γ ≈ 0.6. Also,

rectification of both particle and energy currents show a non-monotonic change with χ.

Rectification for large χ matches with the NESB result. Energy rectification changes

direction with increase in χ. Other parameters are as folows: ε = 0.1, ωc = 1000. All

energy variables are measured in units of Ω0, and time is measured in units of Ω−1
0 .
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Figure 3.15: The plot shows rectification of particle current (top panel) and of energy

current (bottom panel) of SSBH model out-of-equilibrium for fixed r = T2

T1
= 1

3
, for Ohmic

baths (s = 1 in Eq. 3.21). ω0 = Ω0+χ. RI and RJ are as defined in Eq. 3.51. The veritcal

dashed line indicates the positions of T1/ω0 = 1. The dotted plots correspond to the NESB

model. For χ � Ω0, (Ω0 = 1), there is data collapse. Both RI and RJ has a maximum

for ω0 < T1. RJ = 0 for ω0 ≈ T1. RJ shows reversal in direction of rectification beyond

this point. Other parameters are as folows: ε = 0.1, ωc = 1000. All energy variables are

measured in units of Ω0 and time is measured in units of Ω−1
0 .

The variation of RI and RJ with γ is shown in Fig. 3.14. Irrespective of the strength of

interaction strength, we notice that the maximum rectification occurs when γ ≈ 0.6. The

figure also shows, both particle and energy rectifications behave non-monotonically with

χ. For small χ, RJ is negative while RI is positive, hence, direction of energy rectification

is opposite to particle rectification. For large χ, the rectification is same as that obtained

from NESB. In the NESB regime, particle and energy rectifications are same, because,

particle current is proportional to energy current. All these observations are consistent

with our discussion of Fig. 3.12.

To concisely investigate the rectification behaviour of the system as a function of the

interaction strength and the temperatures, we again resort to the scaling variable T1/ω0

with r fixed at r < 1. The plots of RI and RJ as a function of T1/ω0 for fixed r for Ohmic

baths are shown in Fig. 3.15. We readily make the following observations :

Firstly, for χ < Ω0, rectification is small. For χ � Ω0, there is data collapse as

expected from the scaling of currents.
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Secondly, where NESB matches the non-equilibrium SSBH model, there is small rec-

tification. This can be understood from expression for currents in NESB regime given in

Eq. 3.44. NESB result holds when χ� Ω0, T1, T2. Therefore, in this regime ω0 � T1, T2.

So the bose distributions in Eq. 3.44 are exponentially small. Hence, 1+n(ω0) ≈ 1. With

this approximation, the expressions of currents in Eq. 3.44 become antisymmetric under

interchange of hot and cold baths. Thus the NESB regime of the SSBH model gives very

small rectification. Maximum particle rectification RI is reached when ω0 < T1 which is

outside this regime.

Thirdly, after the maximum, RI gradually approaches zero with increase in T1/ω0.

This is expected because, as we have seen before, at high temperatures, for Ohmic baths,

the particle current eventually has the form, I ≈ A∆T , which is antisymmetric under

interchange of hot and cold baths. On the other hand, the corresponding NESB rectifi-

cation (the dotted line in Fig. 3.15) continues to increase with T1/ω0, until it saturates

to a high value. Thus, as an effect of having all energy levels, and not truncating at two

levels, the particle rectification is suppressed at high temperatures.

Fourthly, and most interestingly, energy rectification RJ also has a peak for ω0 < T1.

However, RJ = 0 at ω0 ≈ T1. At this point, the particle rectification is still positive. So

the system behaves as a particle rectifier and not as an energy or heat rectifier. Beyond

that point, RJ changes sign. Thus the direction of rectification is reversed. With fur-

ther increase in T1/ω0, energy rectification continues to grow in the reversed direction.

Therefore, at high temperatures, the heat rectification occurs in the opposite direction to

particle rectification, and continues to grow as temperatures of both hot and cold baths

are increased.

Note that all the above observations are for Ohmic baths (s = 1 in Eq. 3.21). Finally,

we discuss the case of non-Ohmic baths. For superohmic baths (i.e, for s > 1), both

particle and energy currents show a reversal of direction of rectification. The reversal

of energy rectification for superohmic bath occurs at a lower value of T1/ω0 than that

for the Ohmic bath. However, in all cases, both particle and energy rectifications vary

non-monotonically with the interaction strength.

3.2.5 Transient time dynamics

Until now, we have discussed the properties of the NESS of the out-of-equilibrium SSBH

model. In this section, we look at the transient time dynamics of the various physical
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quantities we have so far calculated in NESS.

To do this we revert to the equation for time evolution of ρn, Eq. 3.23. The equation

can be re-written and solved in the form

∂ρ̃(t)

∂t
= −ε2Mρ̃(0)⇒ ρ̃(t) = e−ε

2Mtρ̃(0) (3.52)

where ρ̃ is an infinite dimensional column vector containing diagonal elements of the

density matrix and M is a infinite dimensional non-Hermitian square matrix containing

the entries of Eq. 3.23. M has the form

M =




C0 +D0 −D1 0 . . . . . . . . .

−C0 C1 +D1 −D2 0 . . . . . .

0 −C1 C2 +D2 −D3 0 . . .
...

. . . . . . . . . . . . . . .




(3.53)

where Cn and Dn are as defined in Eq. 3.24. Note that the matrix M has the form of a

Markov matrix. The sum of each column is zero (D0 = 0 by definition). This corresponds

to the fact that the trace of the density matrix is preserved, i.e,
∑

n ρn = 1.

To calculate the time dynamics, we choose an initial state with no particles in the

system, i.e, initially, ρ0(0) = 1, and ρn(0) = 0 ∀n 6= 0. The Eq. 3.52 is used to

numerically obtain the time evolution. Even though the matrices involved are infinite

dimensional, for given interaction χ and temperatures T1 and T2, only a finite number

of levels, determined by the ratio of the temperatures and the interaction, effectively

contribute. Thus, starting from a finite matrix size, a convergence is reached as the matrix

size is increased. Smaller interaction and higher temperatures require larger matrix sizes.

A subtle point to note is that, if the matrixM is truncated at any finite size, say p, then

the constraint that the sum of each column should be zero is not satisfied for the pth

column, unless Cp = 0. Consequently, the matrix M can be truncated at size p only if

Cp � Dp.

Since we are using Redfield equation under Born-Markov approximation to obtain

transient time dynamics, we need to be careful in choosing the observation times. This

is because, as we have seen before, Markov approximation is valid only when observation

times are much larger than the time τB for decay of bath correlation functions. For our

choice of parameters, τB ∼ 2, in units of Ω−1
0 (see Appendix. 6.6).

Time dynamics of physical quantities 〈N(t)〉, 〈Hs(t)〉, I(t), J(t) for Ohmic baths

(s = 1 in Eq. 3.21) are shown in Fig. 3.16, where I1(t) and J1(t) are respectively particle
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Figure 3.16: The figure shows time dynamics of (a) average occupation, 〈N(t)〉,(b) average

energy, 〈Hs(t)〉, (c) particle current from left bath, I1(t), and (d) energy current from left

bath, J(t), for various values of interaction strength and for a temperature bias T1 = 4

and T2 = 2 for Ohmic baths (s = 1 in Eq. 3.21). All physical quantities demonstrate a

non-unitary evolution towards a steady state. The approach to steady state is faster for

higher interactions. Since physical quatities plotted here are diagonal in the eigenbasis of

the system Hamiltonian, none of them shows oscillations with time. Other parameters are

Ω0 = 1, ε = 0.1,Γ1 = 0.4,Γ2 = 1.6, ωc = 1000. All energy variables are measured

in units of Ω0, and time is measured in units of Ω−1
0 .
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Figure 3.17: The figure shows a log-log plot of time to reach NESS, tss (as defined in

Eq. 3.54) as a function of interaction strength χ for Ohmic baths (s = 1 in Eq. 3.21).

The horizontal dash-dotted line corresponds to
[
ε2
∑2

`=1 J`(Ω0)
]−1

which is the tss for the

linear (χ = 0) system. For large χ, tss ≈
[
ε2χ (Γ1 + Γ2)

]−1

, and this is indicated by

the dashed line. For intermediate χ, tss depends on the temperatures of the hot and cold

baths. Other parameters are Ω0 = 1, ε = 0.1,Γ1 = 0.4,Γ2 = 1.6, ωc = 1000. All energy

variables are measured in units of Ω0, and time is measured in units of Ω−1
0 .

and energy currents from the left bath into the system. (Before reaching steady state,

the currents from left and right baths are not the same.) We observe that, unlike the

two site non-interacting case seen before, here, the currents show no oscillations. More

interestingly, we also observe that the time to reach steady state, called tss hereafter,

decreases with increase in the interaction. In the following, we investigate the dependence

of tss on set-up parameters more carefully.

We note from the solution of ρ̃(t) in Eq. 3.52 that time can be scaled as ε2t. It follows

that tss ∝ ε−2. Thus, time to reach steady state increases as system-bath coupling

becomes weaker.

It is also clear from Eq. 3.52 that the steady state is given by the eigenvector of

the matrix M corresponding to zero eigenvalue. The fact that a unique steady state is

reached in long time then implies that all other eigenvalues of the M have positive real

part. Interestingly, we have found in our numerical computation that the eigenvalues of

M are all real (and hence no oscillations in time). The smallest non-zero eigenvalue then
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gives a measure of tss. So, we define

tss ≡
1

ε2λ1

, (3.54)

λ1 being the smallest non-zero eigenvalue of M.

Even though tss cannot be calculated for all set-up parameters analytically, in two

limiting cases, analytical results can be obtained. The first case corresponds to the NESB

regime χ � Ω0, T1, T2. In this case, C1 � D1, only two levels effectively contribute and

matrix M has the form

M≈


 C0 −D1

−C0 D1


 (3.55)

The non-zero eigenvalue of M is

λ1 = [ε2tss]
−1 ≈ C0 +D1 =

2∑

`=1

J`(ω0) (2n`(ω0) + 1) (3.56)

The time to reach steady state therefore also depends on the temperatures of the baths.

However, for large ω0 = Ω0 + χ, the Bose distributions are expotentially small. Thus, for

χ� Ω0, T1, T2 and for general bath of the form given in Eq. 3.21,

tss ≈
1

ε2χs (Γ1 + Γ2)
, (3.57)

which is independent of the temperatures of the baths. We also see that, for constant

baths (s = 0 in Eq. 3.21), tss is independent of interaction strength. For other baths, tss

decreases with increase of interaction strength as a power law.

The second case where tss can be analytically, calculated corresponds to the linear

system, χ = 0. In this case, Cn does not decay with n (Eq. 3.24 for χ = 0) and hence

the matrix M cannot be truncated at any finite size. So, the above method of finding

tss fails. However, since, in this case, we have a non-interacting system, we can find tss

directly from the evolution equation for 〈N̂(t)〉. The evolution equation for 〈N̂(t)〉 can

be obtained from Eq. 3.40 by setting χ = 0. The resulting equation can be written and

solved in the form

d〈N̂(t)〉
dt

= −ε2〈N̂(t)〉
2∑

`=1

J`(Ω0) + ε2

2∑

`=1

J`(Ω0)n`(Ω0)

⇒ 〈N̂(t)〉 =
(
〈N̂(0)〉 −Nss

)
e−ε

2t
∑2
`=1 J`(Ω0) +Nss (3.58)
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with Nss =
[∑2

`=1 J`(Ω0)n`(Ω0)
]
/
[∑2

`=1 J`(Ω0)
]

being the NESS occupation. From

above equation, it is clear that for χ = 0, the tss is given by

tss =
1

ε2
∑2

`=1 J`(Ω0)
(3.59)

This is again independent of the temperatures of the baths.

Except for these two limiting cases, tss needs to be found numerically using the defi-

nition Eq. 3.54. Fig. 3.17 shows log-log plot of numerically obtained tss as a function of

interaction strength χ for Ohmic baths for two different choices of temperatures of hot and

cold baths. It is seen that except for the limiting cases, tss depends on the temperatures

of the baths. The limiting cases show the behaviour discussed above.

3.2.6 Summary

We have investigated a system consisting of a single bosonic site with Bose-Hubbard

interaction weakly coupled to two bosonic baths at different temperatures. We have used

the RQME method to obtain analytical results beyond linear response regime. Below, we

summarize our main findings and their potential applications.

We have found an analytical result for the population density (diagonal elements

of the density matrix in the eigenbasis of system Hamiltonian) of the system in NESS

(Eq. 3.26). This has further allowed us to find various physical observables like average

occupation and energy, as well as the particle and energy currents in NESS. We have

then analytically found interesting scaling behaviour of the physical observables. Our

main finding in this respect is that the high temperature behaviour of the system can

be described in terms of an effective temperature (Eq. 3.33). Then, it follows that, with

the ratio r of the temperatures of cold and hot baths fixed, there occurs a data collapse

for various strengths of interaction strength χ, when various physical observables of the

system are plotted in terms of the scaling variable T1/ω0 (Figs. 3.11,3.13,3.15). The

scaling behaviours hold for a general choice of bath spectral functions of the form given

in Eq. 3.21. We have also found very interesting rectification behaviour of the system.

The most interesting finding is that, for Ohmic and subohmic baths (0 < s ≤ 1 in

Eq. 3.21), the energy current shows a reversal in direction of rectification (Fig. 3.15). It

follows that there is a non-zero strength of interaction strength, (χ ≈ T1−Ω0, for Ohmic

baths), where energy or heat rectification is zero. At this point, the system behaves as

a particle rectifier but not as a heat rectifier. For superohmic baths (s > 1 in Eq. 3.21),
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both particle and energy currents show reversal in direction of rectification. Therefore

careful engineering of baths can lead to various interesting rectification behaviour of the

system. Such phenomena can be potentially used to create quantum devices, such as,

optical diodes. Reversal of direction of thermal rectification of a quantum system has

also been previously theoretically seen for a Heisenberg spin chain out of equilibrium

[73]. Further, we have computed non-unitary time-dynamics of all the above mentioned

physical quantities. We found that, except for constant baths, the time to reach steady

state is shorter for higher interactions and higher system-bath couplings. For constant

baths, with increase in interaction, the time to reach steady state approaches a constant

independent of the strength of interaction. For large χ, the time to reach steady state

goes as tss ∼
[
ε2χs

]−1
for a general choice of bath spectral functions of the form given in

Eq. 3.21. All our results also are consistent with the linear, χ = 0 (harmonic oscillator)

case, as well as the NESB, χ� Ω0, T1, T2, case.

Our results are experimentally relevant in quantum hybrid systems, where a single site

Bose-Hubbard model can be realized, as well as, in molecular junction systems, where

our set-up describes a model for anharmonic junctions.
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Chapter 4

Transport in extended systems

Having dealt with small systems, in this chapter, we now look at (DC) transport prop-

erties of extended systems. In section 4.1, we first review the various ways of classifying

transport behaviors. In section 4.2, we then look at transport behavior in 1D quasiperi-

odic systems. We obtain the high temperature phase diagrams and show a case where

different ways of classifying transport give drastically different results. Finally, in sec-

tion 4.3, we explore the connections between the various ways of classifying transport

behavior.

4.1 Review of different ways of classifying transport

behavior

We first review the various ways of classifying transport behavior of extended systems.

They broadly fall into two categories.

4.1.1 The isolated system in the thermodynamic limit

For an isolated system in thermodynamic limit, the standard linear-response theory can

be applied. The most direct way of characterizing transport behavior in this case is by

calculating the conductivity via the Green-Kubo formalism. This relates conductivity to

integrated total current autocorrelation of the isolated system in the thermodynamic limit

in equilibrium. In the following we will only consider particle conductivity. Equivalent

treatment is also possible for thermal conductivity. Let the system of interest be described

by the system Hamiltonian ĤS. We will also assume that total particle number N̂S is
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conserved. Let the total particle current operator of an isolated system of length L be

given by ÎS. Then the standard Green-Kubo formula for particle conductivity is given by

σGK = lim
τ→∞

lim
L→∞

DL(τ), (4.1)

DL(τ) =

∫ τ

0

dt

∫ β

0

dλ〈ÎS(−iλ)ÎS(t)〉/L (4.2)

where 〈...〉 = Tr( e
−β(ĤS−µN̂S)

Z
...), β being the inverse temperature and µ being the chemical

potential of the system. The order of limits in the Green-Kubo conductivity formula is

important and cannot be interchanged, and the formula is strictly valid only for infinite

system size. But in numerics, one will always have a finite size. To go about numerically

calculating Green-Kubo conductivity, one has to look at the behaviour of DN(τ) for given

system size, for times before the finite-size effects become substantial. If ĤS has time

translation and time-reversal symmetries, and is ‘local’, the Green-Kubo formula can be

related to the spread of correlations. The proof of this is quite involved. The proof in

detail, clearly mentioning the assumptions made is given in Appendix. 6.7.

A system described by a ‘local’ Hamiltonian can be broken up into surfaces transverse

to direction of current flow such that

N̂S =
∞∑

p=−∞
n̂p,

dn̂p
dt

= Îp − Îp−1, ÎS =
∞∑

p=−∞
Îp (4.3)

where n̂p is the local particle density and Îp is the local current, and we have already

assumed the thermodynamic limit. The Green-Kubo conductivity given in terms of spread

of correlations is then,

σGK = lim
τ→∞

β

2

d

dτ
mnn

2 (τ), mnn
2 (τ) =

∞∑

x=−∞
x2Re(C(x, t)), C(x, t) = 〈n̂x(τ)n̂0(0)〉 − 〈n̂x〉〈n̂0〉.

(4.4)

Transport behaviour can hence be classified via scaling of mnn
2 (t) with time t. For normal

diffusive transport,

mnn
2 (t) = 2Dt, σGK = lim

τ→∞
lim
L→∞

DL(τ) = βD . (4.5)

Hence, for normal diffusive transport, we expect that, for large enough L, DL(τ) will

converge to this value as τ increases, before finite-size effects become substantial.

In general,

mnn
2 (t) ∼ t2β̃. (4.6)
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As seen above β̃ = 0.5, for normal diffusive transport. For ballistic transport, β̃ = 1. If

0.5 < β̃ < 1, transport is super-diffusive. For both super-diffusive and ballistic transports,

as seen from Eqs. 4.4,4.5, the σGK diverges. If 0 < β̃ < 0.5, the transport is sub-diffusive,

while for a localized system, β̃ = 0. In both these cases, σGK is zero. All cases other than

the normal diffusive transport are broadly classified as anomalous transport.

If Re (C(x, t)) scales as

Re (C(x, t)) ∼ (1/tβ̃)f(x/tβ̃), (4.7)

then automatically mnn
2 (t) ∼ t2β̃. For normal diffusive transport, Re (C(x, t)) is also

expected to be a Gaussian, Re (C(x, t)) ∼ e−
x2

4Dt/
√

4πDt. But there may be cases where

mC
2 (τ) = 2Dτ and Re (C(x, t)) is non-Gaussian [74, 75, 76, 77, 78, 79, 80, 81]. However,

there may occur cases where C(x, t) does not follow a particular scaling form. As shown

in Eq. 4.4, even then, the conductivity of the system depends only the time scaling of

second moment, and classification of transport based on that is possible. Although all

the results here are for quantum systems, high temperature limit of all the results give

the answers for classical systems.

In numerics, one always has a finite system size. So the relevant time scaling of mnn
2 (t)

is before some cut-off time τL, after which the finite-size effects become important. The

cut-off time τL increases with system size L.

4.1.2 Open system

For the open system also, let us only consider particle conductivity. Let the system be

connected to two baths at two ends having a chemical potential difference but at same

temperature. The open system characterization of transport is done via scaling of NESS

particle conductance G with system length L. Here L is the length of the system in

between the two baths. The open system conductivity is defined as

σopen = lim
L→∞

LG. (4.8)

For a diffusive system, conductivity σopen is finite, so G ∼ L−1. For ballistic transport,

current is independent of system size, so G ∼ L0. If G ∼ L−α̃, with 0 < α̃ < 1, transport is

super-diffusive. In both super-diffusive and ballistic cases, the σopen diverges. If G ∼ L−α̃,

with α̃ > 1, transport is sub-diffusive while for a localized system, G ∼ e−L and in these

cases, the σopen vanishes.
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The open system classification and the isolated system classification discussed in the

previous subsection are generically expected to be consistent. But, there may also be

cases where the isolated system in the thermodynamic limit and the open system have

very different transport behaviors. The fundamental difference between σopen and σGK is

the following. In calculating σGK , as given in Eq. 4.1, the thermodynamic limit L → ∞
is taken before taking t → ∞ limit. As a consequence, the system can be considered

really isolated and there is no effect of any bath. On the other hand, in calculating

σopen, the t → ∞ limit is taken first so that the NESS is reached, and then the L → ∞
limit taken. Physically, in the open system approach, there is the effect of a boundary

between the system and the bath, while in the Green-Kubo approach, because of taking

the thermodynamic limit first, there is no boundary. It is this that may lead to drastically

different transport behaviors in the isolated and the open systems. In the following, we

will see one such case. We will also investigate in detail in a very general set-up, the

relation between σopen and σGK .

4.2 Transport in 1D quasi-periodic non-interacting

systems

[This section closely follows discussions in the published papers (iv), (v).]

In 1D non-interacting systems, presence of even a small amount of disorder leads to

spatial localization of eigenstates in the absence of interactions (non-linearities). This is

called Anderson localization. In contrast, 1D quasiperiodic non-interacting systems have

much richer transport behavior. Quasiperiodic non-interacting and interacting models

have been in limelight recently owing to experimental realization in various controllable

set-ups and the possibility of observing topological effects and many-body localizations in

them [82, 83, 84, 85, 86, 87, 88, 89, 90]. Such lower dimensional systems can also be con-

nected to higher dimensional systems in presence of a magnetic field (like a quantum-Hall

set-up) [91, 92, 86]. Such models are not only of interest in Physics, but are also studied in

Mathematics [93, 94]. A paradigmatic example of such a system in one-dimension is the

Aubry-André-Harper (AAH) model [95, 96]. In the AAH model, with increasing strength

of the quasiperiodic potential, there occurs a phase transition from all states being delo-

calized to all states being localized and hence no mobility edge. We will study the high

temperature transport properties of this model and a generalization of this model which
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has a mobility edge.

These systems are described by Hamiltonians of the form

ĤS =
N∑

r=1

Vrâ
†
râr +

N−1∑

r=1

(â†râr+1 + â†r+1âr) (4.9)

where âr correspond to fermionic annihilation operators defined respectively on r-th lattice

point of the system of N sites. The hopping parameter has been set to 1, and this is

taken as the energy scale. Also, we will consider lattice spacing to be unity and hence

system length L = N . Vr is the quasiperiodic potential. For such systems, the local

current operator is Îp = i(â†pâp+1− â†p+1âp). The Green-Kubo formula for such systems is

obtained by using ÎS =
∑N

p=1 Îp in Eq. 4.1.

σGK = lim
τ→∞

lim
N→∞

DN(τ), DN(τ) =

∫ τ

0

∫ β

0

dλ
N−1∑

p,q=1

〈Îp(−iλ)Îq(t)〉/N. (4.10)

C(x, t) can be written down in terms of the single particle eigenfunctions. We shift the

origin to the site N/2 and define x = r −N/2. We have â`(t) =
∑N

p=1G(`, t | p, 0)âp(0),

where G(`, t | p, 0) is the single particle Green’s function for the closed system. Let

Φ`α be the `th component of the single-particle eigenvector corresponding to the single-

particle energy eigenvalue ωα. Thus â` =
∑N

α=1 Φ`αÂα where Âα are the annihilation

operators in the eigenbasis. Here α is eigenstate index and ` is the site index. Then

G(`, t | p, 0) =
∑N

α=1 e
−iεαtΦ`αΦpα. In terms of these, we have,

C(x, t) = 〈n̂x(t)n̂0(0)〉 − 〈n̂x〉〈n̂0〉

=
N∑

`,p=1

[
G∗(x+N/2, t | `, 0)G(x+N/2, t | p, 0)〈â†`(0)âN/2(0)〉〈âp(0)â†N/2(0)〉

]

=
N∑

α,ν=1

[
Φx+N/2 αΦx+N/2 νΦN/2 αΦN/2 νe

i(ωω−εν)tnF (ωα)(1− nF (ων)
]
, (4.11)

where nF (ω) =
[
eβ(ω−µ) + 1

]−1
is the fermi distribution function.

Another related quantity often used to characterize transport [97, 98, 99, 100] in non-

interacting systems is the spread of a wavepacket. Let the wavepacket ψr(t) be initially

localized at the site N/2 of the lattice. It evolves according to the Schroedinger equation

i∂ψr/∂t = ψr+1(t) + ψr−1(t) + Vrψr(t). (4.12)

We look at the probability P (x, t) =| ψx(t) |2, and its moments

m2p(t) =

N/2−1∑

x=−N/2
(x− 〈x〉)2pP (x, t), (4.13)
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Figure 4.1: The schematic of the set-up considered for investigation of open system prop-

erties of the 1D quasiperiodic systems. The on-site quasiperiodic potential is given by Vr,

which is incommensurate with the lattice. The baths are at same inverse temperature β,

but the chemical potentials µ1 and µ2 are different. The hopping between system sites is

g (which is taken as g = 1). The explicit model of the baths are as in Eq. 3.1.

where 〈x〉 =
∑N/2−1

x=−N/2 xP (x, t) is the mean. In terms of single-particle wave functions

P (x, t) is given by,

P (x, t) =| G(x+N/2, t | N/2, 0) |2=
N∑

α,ν=1

Φx+N/2 αΦx+N/2 νΦN/2 αΦN/2 νe
i(ωα−ων)t.

(4.14)

This is different from C(x, t) (see Eq. 4.11) by only the factor nF (ωα)(1− nF (ων) inside

the summation. At high temperatures, nF (ω) ∼ 1/2. Thus, at high temperatures,

β → 0, C(x, t)→ P (x, t)

4
. (4.15)

So the scaling properties of C(x, t) and P (x, t), and hence of mnn
2 (t) and m2(t) are same at

high temperatures. Thus, if C(x, t) scales as in Eq. 4.7, then P (x, t) also scales the same

way and [m2n(t)]1/n ∼ t2β̃. The connection to different regimes of transport as discussed

before is immediate.

For the open system, the system is connected to two baths at different chemical

potentials at the two ends (see Fig. 4.1) and NESS properties can be calculated exactly

via QLE as described before. The full Hamiltonian of the system+bath reads as H =

HS +HB +HSB,

ĤB = Ĥ(1)
B + Ĥ(N)

B , Ĥ(p)
B =

∑

s

ΩpsB̂
†
psB̂ps, p = 1, N, ĤSB =

∑

s

(κ̃psB̂
†
psâp + h.c.).

(4.16)

Here B̂ps is the annihilation operator of the sth mode of the of the bath attached to pth

site of the system. The baths are connected at the 1st and the Nth sites of the system.
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Here we consider the case where all operators are fermionic. The baths are initially at

same temperature but different chemical potentials. So, we the bath Fermi distributions

are given by

n
(p)
F (ω) =

[
eβ(ω−µp) + 1

]−1
, p = 1, N. (4.17)

The explicit model of bath we will choose will be the one given in Eq. 3.1. Thus, the

baths are modelled via semi-infinite tight-binding chains with hopping parameter tB and

bilinearly connected to the system at the one end via system-bath coupling γ. For this

case, we have already calculated the bath spectral function

J(ω) =
2γ2

tB

√
1−

(
ω

2tB

)2

, (4.18)

in Eq. 3.2. We will also assume that the two baths have identical spectral functions J(ω).

The NESS quantities of our interest will be the particle current I, the particle conductance

G and the occupation of the rth site 〈n̂r〉. These are can be obtained exactly via QLE

(Sec. 2.2)

I =

∫
dω

2π
T (ω)[ n

(1)
F (ω)− n(N)

F (ω)], G = β

∫
dω

2π
T (ω)nF (ω)[1− nF (ω)]

T (ω) =
J2(ω)

| det(M(ω)) |2 ,

〈n̂r〉 =

∫
dω

2π

[
| Gr1(ω) |2 n(1)

F (ω)+ | GrN(ω) |2 n(N)
F (ω)

]
, (4.19)

where T (ω) is the transmission function, and M(ω) and G(ω) are as given in Eq. 2.25, 2.27.

At high temperatures, I ' (µ1−µ2)G. So system-size scaling of current can be used to

classify transport. Also, note that the system Hamiltonians under consideration, Eq. 4.9

is of the same form as in Eq. 6.37 of Appendix. 6.4. This means, the simple expression

for conductance given in Eq. 6.47 will be applicable in the limit of vanishing system-bath

coupling. The simple form in Eq. 6.47 will be important for understanding some of the

interesting physics in the following.

4.2.1 Transport in Aubry-André-Harper model

The model

The AAH model is given by the Hamiltonian

ĤS =
N−1∑

r=1

(â†râr+1 + h.c) +
N∑

r=1

2λ cos(2πbr + φ)â†râr (4.20)
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where b is an irrational number and φ is an arbitrary phase, âr correspond to fermionic

(bosonic) annihilation operators defined respectively on r-th lattice point of the system

of N sites. The hopping parameter has been set to 1, and this is taken as the energy

scale. When λ < 1, all the (single particle) energy eigenstates of this model are delo-

calized and when λ > 1, all energy eigenstates are localized. λ = 1 is the critical point.

The eigenstates at the critical point are neither totally delocalized nor localized, but are

‘critical’ [101]. Via a transformation (akin to a Fourier transform) a dual to the AAH

model can be obtained, where localized and delocalized regimes are interchanged. At the

critical point, the AAH model is self-dual under this transformation [95].

This holds true for any choice of irrational number b and phase φ. The most popular

choice for b is the golden mean (
√

5 − 1)/2. However, in experiments and numerics all

numbers are essentially rational in a strict mathematical sense. The way around is given

by the fact that for a system of finite size N , if b is taken as a rational number p/q with

q > N , b remains ‘effectively irrational’ and all the observed physics of AAH model is

retained. In recent experiments [82, 83, 84], physics of AAH model has been explored

by superimposing a 532nm optical lattice with a 738nm one, making b = 532/738. For

q < N , the system becomes delocalized. Even though the choice of b is irrelevant for

various interesting universal features of the AAH model, the exact nature of plots depend

on b. In this work, we have considered the following choices of b : golden mean (
√

5−1)/2,

silver mean
√

2−1 and the rational number 532/738 used in the experiments in [82, 83, 84].

Further, we perform an average over the phase φ by numerically exactly integrating the

final results between 0 and 2π and dividing by 2π.

The main question we will be investigating is the nature of transport at the critical

point λ = 1.

Isolated system in thermodynamic limit

We numerically investigate transport behavior of the AAH model in the isolated ther-

modynamic limit via exact diagonalization. All our results are given up to times before

finite-size effects become substantial. We are primarily interested in the transport prop-

erties of the AAH model at the critical point (λ = 1). Fig. 4.2 shows plot of DN(τ)

with τ for different system sizes, at the critical point for b =
√

2 − 1. We see that with

increasing N , DN(τ) converges to a curve which initially increases and then shows large

fluctuations about a constant mean value. Consistently, mnn
2 (t) ∼ 0.288t, and the mean
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Figure 4.2: Isolated thermodynamic limit: Top panel shows plot of DN(τ) as a

function of τ at the critical point λ = 1 for different system sizes. DN(τ) initially increases

with τ and then shows large fluctuations about a constant mean value. This mean value is

quite precisely given by the analytical high temperature approximation result DN(τ) ' βD.

D is obtained by time scaling of mnn
2 (Eq. 4.5) shown in bottom panel. D = 0.288/2. For

N = 8192, 16384, only the large time results have been calculated. The black continuous

line is guide-to-eye joining data points for N = 16384. The mean DN(τ) is calculated

from the data points for N = 16384. Parameters: β = 0.1, µ = 1, b =
√

2− 1.
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Figure 4.3: Isolated thermodynamic limit: (a) The full distributions P (x, t) = |
ψ(x, t) |2, scaled assuming normal diffusive behaviour. Here x = r−N/2. P (x, t) scales as

P (x, t) ' (1/
√
t)f1(x/

√
t) over a considerable region in the bulk but the scaling function

f1(z) is clearly not Gaussian and also the tails do not collapse. (b) P (x, t) = | ψ(x, t) |2

scaled to collapse the tails of the distribution. The tails show a super-diffusive scaling

P (x, t) ' (1/tβ̃)f2(x/tβ̃) with β̃ > 0.5. However, the value of β̃ depends on the choice

of b. (c) The scaling of second moment m2(t) of P (x, t) with t for various values of b.

m2(t) ∼ t. N = 8192 for b = (
√

5− 1)/2,
√

2− 1. N = 700 for b = 532/738.

value is precisely given by βD (see Eqs. 4.5). This seems to suggest that σGK is finite

in the thermodynamic limit, which is akin to a normal ‘diffusive’ system. However, the

fluctuations do not decrease on averaging over φ, and may indicate deviation from normal

diffusive transport.

To investigate the nature of transport at the critical point more closely, we now look

at the scaling of P (x, t). This is shown in Fig. 4.3 for various choices of b. It is clear that

although m2(t) ∼ t, P (x, t) is non-Gaussian, and does not obey a single scaling form.

The bulk of P (x, t) has the scaling form of Eq. 4.7, with β̃ = 0.5 for all choices of b.

However, the tails of P (x, t) do not collapse under the same scaling. This deviation from

bulk scaling is most clearly seen for b =
√

2−1. To collapse the tails of P (x, t), one needs
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a super-diffusive scaling. Thus we find

P (x, t) =





(
1/
√
t
)
f1(x/

√
t) ∀ | x |≤ z0

√
t

(
1/tβ̃2

)
f2(x/tβ̃2), β̃2 > 0.5 ∀ | x |> z0

√
t

(4.21)

where z0 and β̃2 depend on the choice of b. Note that z0 is independent of time. The

super-diffusive scaling exponent β̃2 is non-universal and depends on the choice of b. For

b = (
√

5− 1)/2 and for b = 532/738, β̃2 ∼ 0.55, for b =
√

2− 1, β̃2 ∼ 0.62.

Note that for b = (
√

5 − 1)/2 and b = 532/738, from Fig. 4.3(b) it may seem that

the super-diffusive scaling of P (x, t) holds everywhere. This is because the super-diffusive

exponent 0.55 is quite close to 0.5. However, a closer inspection reveals that this is not

the case, and the bulk indeed has a diffusive-like scaling. This is clear from the fact

that in all cases m2(t) in Fig. 4.3(c) shows the diffusive behavior, m2(t) ∼ t, and not

the super-diffusive behavior. Also note that, for b =
√

2 − 1, m2(t) ∼ 1.15t ' 4mnn
2 (t),

consistent with Eq. 4.15.

Now, let us see if the behavior of tails of P (x, t) can affect the scaling of the moments

at extremely long times. To check this, we write m2p(t) as

m2p(t) = 2

x≤z0
√
t∑

x=0

x2pP (x, t) + 2
∞∑

x>z0
√
t

x2pP (x, t)

' 2

∫ z0
√
t

0

x2pP (x, t)dx+ 2

∫ ∞

z0
√
t

x2pP (x, t)dx

≡ m
(1)
2p (t) +m

(2)
2p (t) (4.22)

where m
(1)
2p (t) is the contribution to moment from the diffusive part, while m

(2)
2p (t) is the

contribution to moment from the tails. Here we have used the fact that 〈x〉 = 0, and

P (x, t) is an even function of x. Now, changing variables to z1 = x/
√
t and z2 = x/tβ̃2 ,

and using Eq. 4.21, we have

m2p(t) ' 2tp
∫ z0

0

z2p
1 f1(z1)dz1 + 2t2pβ̃2

∫ ∞

z0
√
t/tβ̃2

z2p
2 f2(z2)dz2

= 2t2pβ̃2

(
tp(1−2β̃2)Ap + Fp(z0t

0.5(1−2β̃2))
)

(4.23)

where Ap =
∫ z0

0
z2p

1 f1(z1)dz1 and Fp(τ) =
∫∞
τ
z2p

2 f2(z2)dz2. Note that Ap is independent

of time while Fp is a function of time. So m
(1)
2p (t) ∼ tp, whereas m

(2)
2p (t) ∼ t2pβ̃2 only

asymptotically. Since β̃2 > 0.5, we have,

m2p(t) ∼ 2t2pβ̃2Fp(0), t→∞. (4.24)
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Figure 4.4: Isolated thermodynamic limit: Plots of m
(1)
2p (t), m

(2)
2p (t) and m2p(t) (see

Eq. 4.22) with time for b =
√

2 − 1. z0 = 5. The dashed lines are fits for m
(1)
2p (t) and

m
(2)
2p (t). m

(1)
2p (t) ∼ tp, whereas, m

(2)
2p (t) ∼ t0.61p for large t, as expected from tail scaling of

P (x, t). The crossover of m2p scaling from diffusive to super-diffusive is seen clearly for

m8(t) and m6(t). From the scaling fits, we see that for m2(t) this crossover will occur for

time t� 1010. N = 8192.

Thus, the extreme long time behavior of the moments should be super-diffusive. Hence,

there will be a crossover in time scaling of moments from diffusive to super-diffusive. The

approach to the super-diffusive scaling is faster for higher moments. Let us check this

quantitatively for b =
√

2− 1, which is the case where β̃2 ∼ 0.62 differs most significantly

from the value 0.5. The value of z0 can be read off from Fig. 4.3 as z0 ∼ 6. Fig. 4.4

shows the plots of m2p(t), m
(1)
2p (t), m

(2)
2p (t) for p = 1, 2, 3, 4. The first thing to note is

that the approach to the form m
(2)
2p (t) ∼ t2pβ̃2 is faster for higher moments. Secondly, as

expected, the crossover to super-diffusive scaling of m2p(t) also occurs faster for higher

moments. For m8(t) and m6(t), this crossover is clearly seen from our data. On the

other hand, for m4(t) and m2(t), the crossover occurs later than times accessible in our

numerics. From the scaling-fits, it is possible to quantitatively extract the time scales

at which the super-diffusive crossover will be seen in the m2(t) scaling. We find that

the super-diffusive scaling of m2(t) will start showing for t � t∗ ∼ 1010. To directly

investigate such long time behavior without having finite-size effects, one needs systems

of size N � (t∗)0.62 ∼ 107. Exact numerical analysis of such system sizes is definitely

beyond our current computational power. This explains the normal-diffusive-like behavior

of Green-Kubo conductivity up to times and system-sizes within our numerical reach, and

suggests that at even longer times, the super-diffusive behavior will show up.
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Figure 4.5: Isolated thermodynamic limit: Plot showing DN(τ) as a function of τ for

delocalized (top panel) and localized (bottom panel) cases for different system sizes. For

delocalized case, DN(τ) increases linearly with τ before finite size effects come into play.

For localized case, DN(τ) decays to zero and is independent of N for N �localization

length= 1/log(λ) ' 10. Parameters: β = 0.1, µ = 1., b =
√

2− 1.

Therefore, we find hints of super-diffusive behavior at the critical point of the AAH

model in the isolated thermodynamic limit from the tail scaling of P (x, t) and the time

scaling of higher moments of P (x, t). However direct numerical observation of this super-

diffusive behavior from m2(t) scaling or from Green-Kubo conductivity is beyond our

current numerical reach. Within our numerical reach, m2(t) scales diffusively, and Green-

Kubo conductivity also shows normal-diffusive-like behavior.

Away from the critical point, the behavior is exactly as expected. Plots of DN(τ) for

delocalized and localized regimes are shown in Fig. 4.5 for b =
√

2− 1. In the delocalized

regime (λ < 1), DN(τ) increases linearly with τ before finite-size effects become signifi-

cant. Finite size effects start showing after times of O(N). Thus, to numerically take the

correct limit (in Eq. 4.10) for a given system size N one needs to look at τ ∼ N . This

correctly gives the ballistic conductivity scaling with system size, σ ∼ N . It is also trivial

to check m2(t) ∼ t2. In the localized regime (λ < 1), for system sizes much greater than

the localization length (given by 1/ log(λ) [95]), the thermodynamic limit is reached and

DN(τ) becomes independent of N . We see DN(τ) decays to zero as a function of τ for

such cases, thus giving zero conductivity. Obviously, because all eigenstates are localized,

m2(t) ∼ t0 consistently. We will show below that, when the system is connected to baths,

the transport behavior at the critical point of AAH model completely changes.
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Figure 4.6: Open system: (a) Scaling of current I with system size N for various values

of b. I ∼ N−1.4±0.05. For b = 532/738, current scaling shows ballistic behavior, I ∼ N0

for N � 738, as expected. Here the system sizes taken are powers of 2. (b) Scaling of

current with system size for b = (
√

5− 1)/2 with much closely taken points. This reveals

that I ∼ N−1.27±0.01 for N =Fibonacci numbers (red circles), whereas I ∼ N−1.4±0.05 for

system sizes away from Fibonacci numbers. (c) Scaling of current with system size for

b =
√

2− 1 with much closely taken points. This reveals that I ∼ N−1.27±0.01 for N =Pell

numbers (red circles), whereas I ∼ N−1.4±0.05 for system sizes away from Pell numbers.

Parameters : β = 0.1, µ1 = 3, µ2 = −3, γ = 1, tB = 3.

Open system

Current scaling with system size We explore current with system-size using the set-

up shown in Fig. 4.1. Current is calculated by numerical evaluation of the exact result

in Eq. 4.19. The current scaling with system size in the open system at the critical point

for various choices of b is shown in Fig. 4.6(a). Here system sizes were taken as powers

of 2. It is immediately clear that the scaling is sub-diffusive with I ∼ N−1.4±0.05. It is

also interesting to note that for b = 532/738 the current becomes independent of N for

N & 738, which is the signature of the delocalized phase. This is consistent with our

previous discussion that 532/738 remains ‘effectively irrational’ only for N . 738.

In Fig. 4.6(b), (c), we investigate the current scaling with system size more closely

for golden mean and silver mean cases. We see that for golden (silver) mean, the current

scaling with system size is different for system sizes equal to Fibonacci (Pell) numbers,

where I ∼ N−1.27±0.01. Away from these special system sizes, the current scaling is ap-

proximately I ∼ N−1.4±0.05. An interesting observation follows from noting that any

irrational number has an infinite continued fraction representation which, on truncation,

gives a rational approximation of the irrational number. We conjecture that at special
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system sizes equal to the denominators of the rational approximations, the current devi-

ates from the generic behaviour and has a different scaling. These special system sizes

are the Fibonacci (Pell) numbers for the golden (silver) mean.

The current scaling with system size at the critical point for various choices of b is

shown in Fig. 4.6(a). Here system sizes were taken as powers of 2. It is immediately clear

that the scaling is sub-diffusive with I ∼ N−1.4±0.05. It is also interesting to note that for

b = 532/738 the current becomes independent of N for N & 738, which is the signature

of the delocalized phase. This is consistent with our previous discussion that 532/738

remains ‘effectively irrational’ only for N . 738.

In Fig. 4.6(b), (c), we investigate the current scaling with system size more closely

for golden mean and silver mean cases. We see that for golden (silver) mean, the current

scaling with system size is different for system sizes equal to Fibonacci (Pell) numbers,

where I ∼ N−1.27±0.01. Away from these special system sizes, the current scaling is ap-

proximately I ∼ N−1.4±0.05. An interesting observation follows from noting that any

irrational number has an infinite continued fraction representation which, on truncation,

gives a rational approximation of the irrational number. We conjecture that at special

system sizes equal to the denominators of the rational approximations, the current devi-

ates from the generic behaviour and has a different scaling. These special system sizes

are the Fibonacci (Pell) numbers for the golden (silver) mean.

Thus, we see that the transport in the open critical AAH model is sub-diffusive. This

is drastically different from what we found in the isolated thermodynamic limit, where

we found hints of super-diffusive behavior. We now investigate the origin of the sub-

diffusive behavior. To do this, we first take the tB → large limit, so that, the system-

bath coupling becomes weak and the bath spectral functions become almost constant (see

Eq. 4.18). (Note that in Fig. 4.6, the system-bath coupling was not weak.) In this regime,

a simplified expression for conductance can be obtained using the techniques discussed in

subsection. 2.3.1. The derivation is given in Appendix. 6.4. The result is

G ' Γβ

4
W (1, N), β → small, tB → large

W (p, q) =
N∑

α=1

Φ2
pαΦ2

qα

Φ2
pα + Φ2

qα

(4.25)

where Γ = (2γ2)/tB and we have also taken the small β limit so that nF (ω) ' 1/2.

Thus, the system-size scaling of G in this limit is given by the system size scaling of

W (1, N). Note that by Eq. 6.44, and under the same assumptions as in Eq. 4.25, W (p, q)

87



102 103

N

10−4

10−3

10−2

4G
/β

Γ

(a)

(
√

5− 1)/2, W (1, N)

(
√

5− 1)/2, exact
√

2− 1, W (1, N)√
2− 1, exact

2.25N−1.4

102 103

N

10−4

10−3

4G
/β

Γ

(b)

(
√

5− 1)/2, W (1, N)

(
√

5− 1)/2, exact

0.9N−1.27

102 103

N

10−4

10−3

10−2

4G
/β

Γ

(c)

√
2− 1, W (1, N)√
2− 1, exact

1.01N−1.27

Figure 4.7: Open system: (a) Scaling of conductance G with system size N for various

values of b for weak system-bath coupling (γ = 1, tB = 200) and very high temperature

(β = 0.01). Exact numerical results are obtained via Eq. 4.19, and that is compared with

approximate analytical result W (see Eq. 4.25). There is near perfect overlap of exact

results with W , and G ∼ N−1.4±0.05. Here the system sizes taken are powers of 2. (b),

(c) The different scaling of G with system size equal to Fibonacci and Pell numbers for

golden mean and silver mean cases, G ∼ N−1.27±0.01.

corresponds to conductance of the case when the baths are attached at the pth and qth

sites. If the system size scaling of G in this limit is similar to that in Fig. 4.6, which is not

guaranteed a priori, we will know that the sub-diffusive scaling is because of the system

size scaling of W (1, N).

The system size scaling of conductance calculated in this limit (γ = 1, tB = 200, β =

0.01) by exact numerical integration, Eq. 4.19, and by Eq. 4.25 is given in Fig. 4.7. There

is near perfect overlap of the two results. Note that exact numerical calculation using

Eq. 4.19 is more difficult in this regime, because of the nearly singular behavior of the

integrand at system eigenenergies. In Fig. 4.7(a), the scaling is shown for system-sizes in

powers of 2. The scaling is not as good as that seen in the strong system-bath coupling

case, but it is approximately the same, G ∼ N−1.4±0.05. Fig. 4.7(b) (Fig. 4.7(c)) shows

the scaling for golden (silver) mean case when system sizes are equal to Fibonacci (Pell)

numbers. Here there is an almost perfect scaling of G ∼ N−1.27±0.01 as before. Thus,

indeed, the sub-diffusive scaling of current and conductance with system-size is directly

related to the sub-diffusive scaling of W (1, N) with system-size.

Note that, for λ < 1, the single particle eigenfunctions are completely delocalized,

hence Φ2
α,` ∼ N−1. Thus W (1, N) ∼ N0, thereby giving the ballistic scaling of current

consistently. On the other hand, for λ > 1, the single particle eigenfunctions are expo-
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nentially localized at some system site, so, Φ2
α,1 ∼ Φ2

α,N ∼ e−N . Thus, W (1, N) ∼ e−N ,

thereby giving the exponential decay of current with system-size in this regime also con-

sistently. Thus, the system size scaling of W (1, N) correctly gives the system-size scaling

of currents at all regimes of the AAH model. This also shows that the current scaling

with system size is independent of the details of the baths, and also independent of the

type of particles (bosonic or fermionic).

Hence, the transport behavior of open AAH model is totally governed by the single

particle eigenfunctions at the boundaries where the baths are attached. In the isolated

thermodynamic limit, there are no boundaries, and the transport behavior is governed

by the bulk properties. Looking at Eq. 4.4, 4.11, 4.14, and Eq. 4.25, we see that there

is no reason a priori that the isolated thermodynamic limit transport characterized by

spread of a wavepacket, and the open system transport characterized by current scaling

with system size, need to be consistent with each other in general. It nonetheless turns

out that in the delocalized and the localized cases, they can indeed be shown to be consis-

tent. The underlying reason for this is that, for these cases, the eigenstates contributing

to transport have similar behavior in the bulk and at the boundaries. But, at the crit-

ical point, the eigenstates contributing to transport have different behavior at the bulk

and at the boundaries. To clearly see this, in Fig. 4.8 we check the system size scaling

of W (N/4, 3N/4) for all three phases and compare them with that of W (1, N). Unlike

W (1, N), W (N/4, 3N/4) depends on the bulk behavior of eigenstates. As discussed be-

fore, W (N/4, 3N/4) gives conductance for the case where the baths are attached at the

N/4th and 3N/4th sites. We see that at the critical point, W (N/4, 3N/4) scales very dif-

ferently from W (1, N), i.e., W (N/4, 3N/4) ∼ N−0.27±0.03 whereas W (1, N) ∼ N−1.4±0.05.

Away from the critical point, W (N/4, 3N/4) and W (1, N) have same scaling with system

size,i.e., they are independent of N for λ < 1 and decay exponentially with N for λ > 1.

Thus, indeed, the eigenstates contributing to transport have different behavior in the

bulk and at the boundaries only at the critical point. This leads to drastically different

transport behavior in the isolated and in the open critical AAH model. We note that

differences between bulk and boundary behaviour of eigenstates have been previously ob-

served in disordered systems and have been attributed to the multifractal nature of the

eigenfunctions [102]. But they have not been directly connected to transport properties.

NESS particle density profile Next, we look at the spatial particle density profile,

〈n̂r〉 vs r, in NESS in each of delocalized, critical and localized regimes when the two
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Figure 4.8: System size scaling of W (N/4, 3N/4) (left panel) compared with that of

W (1, N) (right panel) at all three phases. W (N/4, 3N/4) and W (1, N) scale similarly

with N away from the critical point: they are independent of N for λ < 1 and decay

exponentially with N for λ > 1. At critical point, λ = 1, W (N/4, 3N/4) and W (1, N)

show power-law decay with system size with very different exponents: W (N/4, 3N/4) ∼
N−0.27±0.03 whereas W (1, N) ∼ N−1.4±0.05. System sizes taken here are in powers of 2.
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Figure 4.9: Open system: NESS particle density profile for the three regimes : delocalised

(λ = 0.5 < 1), critical (λ = 1), localized (λ = 1.1 > 1) for various system sizes. The

particle density profile looks distinctly different in the three regimes. Parameters : β = 0.1,

µ1 = 6, µ2 = −6, γ = 1, tB = 3, b = (
√

5− 1)/2 .

baths are at widely different chemical potentials. We find that the NESS spatial particle

density profile (which is related to local chemical potential) behaves very differently in

the three regimes (Fig. 4.9). In the de-localized regime, we notice a flat profile, a hall-

mark of ballistic transport. In the critical regime, we see a continuous (almost linear)

curve connecting the boundary densities. Such behaviour is typical of diffusive systems.

The localized regime shows a step-like profile and this has recently been reported for

other models with localization [103, 104]. Hence, this NESS physical quantity, which is

potentially measurable with recent cutting-edge experiments [82, 83, 84, 85, 89], gives a

clear real-space signature of localized, critical and delocalized phases. The energy profile

(which is related to local temperature) has a similar behaviour.

Summary

We have investigated the high temperature transport properties of the AAH model both in

the isolated thermodynamic limit, and in the open system. We have found that the critical

point of the AAH model has drastically different transport behavior in the two cases. In

the isolated thermodynamic limit, spread of an initially localized wavepacket shows hints

of super-diffusive behavior. The super-diffusive scaling exponent is non-universal and

depends of the choice of the irrational number b. On the other hand, the open system

NESS current I scaling with system size N is clearly sub-diffusive. There are two sub-
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diffusive exponents. One is I ∼ N−1.27±0.01, which is seen when system sizes are exactly

the denominators of the rational approximants of b, while the other is I ∼ N−1.4±0.05,

which is the scaling for generic system sizes. We have shown that the current scaling

with system size is entirely controlled by the system size scaling of eigenfunctions at

the boundaries where the baths are attached. Thus, the drastic difference between the

isolated and the open system transport properties at the critical point is due to different

behaviors of the eigenfunctions at the bulk and at the boundaries.

We would like to point out that looking at the spread of correlations and measuring

the current or conductance variation with system size are two different experiments done

to characterize transport in many set-ups. Although not guaranteed, in many cases, the

results of one experiment can be inferred from that of the other. We showed that at the

critical point of the AAH model, this is not possible.

We have also looked that the NESS particle density profile of the open system con-

nected to two baths at different chemical potentials. We have shown the the NESS particle

density profile is distinctly different in the delocalized, critical and localized phases.

Thus, we have looked into transport properties of the AAH model in detail. The AAH

model does not have a mobility edge. Next we will look into transport properties of a

model with a mobility edge.

4.2.2 Transport in a model with a single-particle mobility edge

Even though the AAH model has no mobility edge, various generalizations of it, as well

as other quasiperiodic systems, have been shown to have mobility edges in one dimension.

Recently, physics of such systems have attracted a lot of attention [105, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117] and has also been experimentally realized [118]. We

now focus on one such model that has been recently proposed [105, 106, 107, 108, 109].

This model has a mobility edge, with the additional property that the mobility edge

is a self-dual point under a similar transformation as in the conventional AAH model.

Henceforth, we call this model the generalized Aubry-André-Harper (GAAH) model.

Although the phase diagram of AAH model is well-known, the phase diagram of

GAAH model has not been studied. In general, non-equilibrium phase transitions have

received a lot of limelight recently, appear in various contexts [119, 120, 121, 122]. Our

main objective in this section is to map out the high temperature non-equilibrium phase

diagram of the GAAH model evidenced by open system transport properties.
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The model

The generalized AAH model (GAAH) is given by the Hamiltonian

HS =
N−1∑

r=1

(â†râr+1 + h.c) +
N∑

r=1

2λ cos(2πbr + φ)

1− α cos(2πbr + φ)
â†râr, (4.26)

and {âr} are fermionic (bosonic) annihilation operators, λ is the strength of the onsite

potential, φ a phase factor, b is a an irrational number and the parameter α ∈ (−1, 1). For

our analysis, we will restrict ourselves to α, λ > 0. Other regions can be reconstructed via

symmetries in the Hamiltonian. The symmetries can be concisely written asHS(λ, α, φ) =

HS(−λ,−α, φ+π) = −H̃S(−λ, α, φ) = −H̃S(λ,−α, φ+π), where H̃S is the Hamiltonian

obtained after the transformation âr → (−1)râr. For α = 0, we get the AAH model, where

it is known that λ = 1 is a critical point exhibiting self-duality. Similarly it is known that

for any choice of b and φ, the GAAH model shows self-duality at an energy E satisfying

the condition αE = 2 sgn(λ)(1− | λ |), provided E is a single-particle energy eigenvalue.

All energy eigenstates with energy less than E are extended while those higher than E

are localized. If E falls within the spectrum, then it is a mobility edge. In this paper, we

investigate the phase diagram of this system in the α-λ plane. We choose b = (
√

5−1)/2,

which is the golden mean, and, unless otherwise mentioned, all our results are obtained

after averaging over φ.

Hints of rich phase diagram

The first hint of a rich phase diagram of this model comes from direct calculation of the

fraction of localized states in the system. It can be checked via calculation of inverse

participation ratio (IPR) that, for λ, α > 0, the states with energy greater than the self-

dual point are localized. Thus, the fraction of localized states is given by the fraction of

single particle eigenstates with energy greater than the self-dual point. This is shown in

Fig. 4.10(a). We immediately see several regions of different colors (indicating different

fraction of localized states) with clear boundaries. Two of the most clear boundaries are

shown by the dotted and dashed lines. Below the dotted line, there is no mobility edge

and all states are delocalized. This line corresponds to the case where the self-dual point

exactly coincides with the highest energy eigenstate of the system. Below the dashed

line, there is no mobility edge and all states are localized. This line corresponds to the

case where the self-dual point exactly coincides with the lowest energy eigenstate of the

system. As we will see below, this is actually a ‘critical’ line in the non-equilibrium phase

93



1 2

λ

0.00

0.25

0.50

0.75

α

(a)

0.0

0.5

1.0

0 1 2

λ

0.00

0.25

0.50

0.75

1.00

α

(b)

0.00

0.25

0.50

0 20 40 60 80 100

t

0.0

0.5

1.0

I(t
)

(c)

λ = 1.5, α = 0.388

λ = 1.5, α = 0.2

λ = 1.5, α = 0.8

λ = 0.5, α = 0.4

0 50 100 150 200 250

x

10−3

10−2

10−1

100

n(
x,
t) t = 500.0

(d)

λ = 1.5, α = 0.2

λ = 1.5, α = 0.388

λ = 1.5, α = 0.8

λ = 0.5, α = 0.4

Figure 4.10: (a) Fraction of localized eigenstates (color coded) as a function of α and λ.

A possible ‘phase diagram’ with phase transitions and crossovers is evident. The marked

points are considered for further analysis. (b) The long time value of imbalance I (color

coded) as a function of α and λ maps out a ‘phase diagram’ quite similar to that in (a).

(c) Behavior of I with time for some chosen points. (d) A long time snap-shot result of

an initially localized profile (shown with the dotted line) for various values of λ and α.

Parameters : N = 1024 for (a), N = 256 for (b), (c) and (d).
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diagram. Henceforth, we will call this line the ‘critical’ line of GAAH model. Note that

since the minimum energy eigenvalue depends on the choice of irrational number, the

‘critical’ line of GAAH model is not independent of choice of irrational number.

Next, we check if a physically measurable quantity can reproduce all the regions shown

by the fraction of localized states. To this end, we calculate the population imbalance.

This is defined by I(t) = 〈Ne(t)−No(t)〉0
〈Ne(t)+No(t)〉0 = 2

N

∑
r(−1)r〈n̂r(t)〉0, where Ne and No are the

number of particles at the even and odd sites respectively and 〈...〉0 denotes expectation

value over the initial state. The initial state is chosen so that only the even sites are

occupied. This quantity has been recently experimentally measured for the regular AAH

model [82, 83, 84]. I(t) tends to a steady value in the long time limit (Fig. 4.10(c)).

This value depends monotonically on the number of localized states. Hence variation of

long time value of I(t) with α and λ, should be similar to the fraction of localized states

plot. This is exactly what we find in Fig. 4.10(b) which shows the long time value of I(t)

(color coded) as a function of α and λ. However, the ‘critical’ line is not well captured via

I(t). This is because on this line there are still a large number of localized states. While

imbalance captures the presence of localized states, it cannot directly capture the effect

of having a mobility edge. This is nicely captured by evolution of an initially localized

step particle density profile [123] (Fig. 4.10(d)). Delocalized states cause the initially

localized profile to spread out with time, while localized states almost do not evolve the

initial profile. In presence of a mobility edge, there is a coexistence of both kinds of

behaviors due to presence of both localized and delocalized states. This has recently been

seen in experiment [118].

The GAAH-AAH model eigenfunction correspondence

When there is a state at the mobility edge, it is a self-dual point. However this does not

say anything about the nature of energy eigenstates at or very close to the self-dual point.

To check the nature of these states, we plot the eigenfunctions of the GAAH model near

the self-dual point. Let the eigenstates be ordered in ascending order of energy. Then,

quite surprisingly, we find that, if the νth state of GAAH model is near the self-dual

point, then its eigenfunction almost exactly overlap with the νth state of the critical

AAH model (α = 0, λ = 1). This remarkable result immediately establishes that states

near the self-dual point have a ‘critical’ nature. This phenomenon is observed not only

on the ‘critical’ line, but anywhere in the α, λ plane where there are eigenstates close
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Figure 4.11: Top two panels: The figure demonstrates a remarkable matching of single

particle wavefunctions Φrν of the GAAH model near the self-dual point with those of

critical AAH model (α = 0, λ = 1). Bottom panel: Overlap ‘integral’ of wavefunctions of

GAAH and AAH models as function of eigenstate index for several system sizes. Here ν

is the eigenstate index and r is the site index. Parametes: Top two panels: N = 1024,

φ = 0. Bottom panel is averaged over φ.

to the self-dual point (Fig. 4.11). To quantify this, we calculate the overlap ‘integral’

of the GAAH model and AAH model wavefunctions as a function of eigenstate index ν,

O(ν) = | ∑N
r=1 ΦGAAH

rν ΦAAH
rν |, where ΦGAAH

rν is the weight of the νth eigenfunction of

the GAAH model at site r and ΦGAAH
rν is the corresponding one for the critical AAH model.

This is shown in Fig. 4.11 bottom panel for parameters on the ‘critical’ line. Close to the

minimum eigenvalue there is near complete overlap (> 99%). The plot also shows that, for

a given system size, there is a finite fraction of such ‘critical’ states, and the fraction of such

states goes down with increase in system size. Note that although it has been previously

shown that eigenfunctions of GAAH model near self-dual point and those of critical AAH

model have same IPR scaling exponents [106], that does not say anything about the spatial

overlap of eigenfunctions. For example, two eigenstates of the critical AAH model have

the same IPR scaling exponents but have zero overlap due to orthogonality. On the other

hand, knowing that two states are overlapping automatically establishes them to have

same scaling exponents. In this sense, the overlap we observe here, is a more direct and

much stronger statement about the GAAH-AAH model eigenfunction correspondence.
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Figure 4.12: The scaling of current with system size for various parameters of the GAAH

model. On the ‘critical’ line of the GAAH model, current scales as I ∼ N−2±0.1 showing

sub-diffusive behaviour (red markers). In contrast, the critical AAH model (λ = 1.0, α =

0.0) data shows I ∼ N−1.4±0.05 (white circles). For parameters where some states are

delocalized, transport is ballistic, I ∼ N0 (green markers). When all states are localized,

current decays exponentially, I ∼ e−N (magenta markers). The points chosen in above

plot correspond to the points in Fig. 4.10(a) having the same symbol and color. The

dashed lines are power law fits, whereas, the dotted lines are guide-to-eye. Parameters :

µ1 = 50, µ2 = −50, β = 0.1, tB = 25, γ1 = γ2 = 3.

The high temperature non-equilibrium phase diagram

On the ‘critical’ line of GAAH model, there are no truly delocalized states, but critical

and localized states. Hence, contribution to transport properties should primarily come

from these critical states. Since the wavefunctions of these states almost exactly overlap

with critical AAH model, one can expect the transport properties on the ‘critical’ line

to be similar to that of the critical AAH model. We explore the transport behavior of

GAAH model via scaling of current with system-size using the set-up shown in Fig. 4.1.

The variation of current with system-size gives the nature of transport. The following

two results are obvious: for parameters in the all-states-delocalized regime, the transport

is ballistic and current is independent of system size (I ∼ N0) while for parameters in the

all-states-localized regime, current decreases exponentially with system size (I ∼ e−N).

97



Figure 4.13: Non-equilibrium phase diagram at high temperatures for the GAAH model

obtained from system size scaling of NESS current. Here I is NESS current and N is the

system size.

The interesting question is current scaling with system size in presence of mobility edge.

Fig. 4.12 shows current I as a function of system size for various values of α and λ. The

most interesting finding is that, for parameters on the ‘critical’ line, the I ∼ N−2±0.1,

thereby showing transport is sub-diffusive. However, this is different from the critical

AAH model (α = 0, λ = 1), where current scales as I ∼ N−1.4±0.05. For parameters

where there are at least a few delocalized states, I is independent of system size, which

is a signature of ballistic transport (Fig. 4.12, bottom panel). The above results are at

relatively high temperature (β = 0.1). At such temperatures, for any choice of chemical

potentials µ1 and µ2, the same result will be seen. Thus, the above results give us a clear

non-equilibrium phase diagram of the GAAH model at high temperatures (Fig. 4.13).

To explain the difference in scaling exponent of I vs N between critical AAH model

and ‘critical’ line of GAAH model, we look at the system size scaling of the coarse-grained

transmission near the minimum eigenvalue. For this, we first choose an energy range of

interest and divide it into uniform cells of width δE. On this coarse-grained energy axis,

the coarse grained transmission T (ω) is given by T (E) =
[∫ E+δE/2

E−δE/2 T (ω)dω
]
/δE. We find
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Figure 4.14: Coarse-grained transmission T (E) near the self-dual point (the minimum

energy eigenvalue) for a choice of parameters (λ = 1.5, α = 0.388) on the ‘critical’ line of

GAAH model, scaled assuming similar scaling as critical AAH model. For larger system

sizes, T (E) ∼ N−1.4±0.05 scaling holds over a smaller energy range. Inset: The plot of

∆E vs N . ∆E is the range of energy over which eigenstates of GAAH model that overlap

more than 90% with those of critical AAH model. ∆E ∼ N−1.2±0.03. Other parameters:

tB = 25, γ1 = γ2 = 3, δE = 2× 10−4.
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that close to the minimum eigenvalue T (E) ∼ N−1.4±0.05, but the energy range upto

which this scaling is seen decreases with increase in system size (Fig. 4.14 left panel).

This energy range corresponds to the energy range where GAAH and critical AAH model

wavefunctions overlap. Since current is obtained by integrating over the transmission

(with appropriate Fermi distributions), this directly gives a hint as to the reason for

different exponent. The transmission, and hence T (ω), has peaks near system energy

eigenvalues. Thus, we can approximate the integral over transmission as
∫
T (ω)dω =

∑ T (E)δE ∼ N−1.4±0.05(∆E
δE

)df , where ∆E is the energy range where states of GAAH

model overlap with critical AAH model, and df is the box-counting dimension of the

spectrum over this energy range. ∆E ∼ N−1.2±0.03 (Fig. 4.14 inset). It can be checked

that df ∼ 0.5, which is the same as that of critical AAH model [124]. Thus
∫
T (ω)dω,

and hence the current I, scales as ∼ N−2±0.1.

Summary and outlook

Thus, we have mapped out the high temperature non-equilibrium phase diagram of the

GAAH model, which is a model with single particle mobility edge. In doing so, we have

found a fascinating correspondence between the GAAH model and the conventional AAH

model which does not have a mobility edge. It follows from this correspondence that the

critical point of AAH model now generalizes to a ‘critical line’ of GAAH model separating

regions of ballistic and localized transport. However, the current scaling with system size

on this ‘critical line’ has a different exponent from that of the critical AAH model. We

have also explained this from the GAAH-AAH model correspondence.

The GAAH model is rather unexplored and several questions still remain. However,

we will not delve into them further in this thesis. We will only mention some of the

interesting directions for future research opened up by the above results. The exact

reason behind the GAAH-AAH eigenfunction correspondence is not clear, and requires

further work which will be of great interest in mathematical front. Moreover, we would

like to point out that, unlike the critical point of AAH model, the ‘critical’ line of GAAH

model depends on the choice of irrational number. The effect of other irrational numbers

is also an interesting question. Also, as we have seen before, the critical AAH model

has remarkably different transport behaviors in isolated and open system set-ups. Future

work thus also involves, detailed investigation of isolated system transport, as well as, low

temperature transport of GAAH model.
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Figure 4.15: The general set-up for obtaining open system current fluctuation-dissipation

relations. N̂S, N̂B1 , N̂B2 are operators corresponding to total number of particles in system,

left bath and right bath. We look at linear response regime, i.e, when ∆β,∆µ → 0, for

absolutely general Hamiltonians having time-reversal and time-translation symmetries and

showing open system thermalization.

4.3 Open system current fluctuation-dissipation re-

lations (OCFDR)

[This section closely follows discussions in the paper (vi), which is on arxiv.]

As we have seen, there are both isolated system and open system ways for classifying

transport behaviors. It is can be expected that the open system and the isolated system

transport properties are related. However, in the critical AAH model, we already saw that

the open system and the isolated system characterizations may not give similar results.

Mismatch between open system and isolated system transport behaviors has also been

reported in [125, 126]. Both the open system (for example, [127, 128, 129, 130, 131,

132, 133, 134] and the isolated system (for example, [135, 136, 137, 138]) approaches

are equally popularly used in literature to classify transport behaviors, but the essential

rigorous connection between them is missing. Now we explore the connection between

the two ways of classifying transport in detail. The key to this is to obtain fluctuation-

dissipation relations for currents in the open system.

.

4.3.1 The set-up, definitions and assumptions

We take a system that is connected to two baths at its two ends (Fig. 4.15). The full

system+baths Hamiltonian is given by Ĥ = ĤS + ĤSB1 + ĤB1 + ĤSB2 + ĤB2 , where
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ĤS is system Hamiltonian, ĤB1 (ĤB2) is the left (right) bath Hamiltonian, ĤSB1 (ĤSB2)

is system-bath coupling Hamiltonian for left (right) bath. We assume system and bath

Hamiltonians to be number conserving. So [N̂S, ĤS] = [N̂B1 , ĤB1 ] = [N̂B2 , ĤB2 ] = 0,

where N̂S, N̂B1 , N̂B2 are the total number operators of system, left bath and right bath

respectively. We will also assume [N̂S + N̂Bp , ĤSBp ] = 0, [ĤS + ĤBp , ĤSBp ] = 0, p = 1, 2.

This physically means that the system-bath coupling Hamiltonians do not act as ‘sources’

of particle or energy. In this set-up, we define the following current operators:

ÎBp→S = −i[N̂Bp , ĤSBp ] = i[N̂S, ĤSBp ] = −ÎS→Bp
ĴBp→S = −i[ĤBp , ĤSBp ] = i[ĤS, ĤSBp ] = −ĴS→Bp , (4.27)

p = 1, 2. The first line gives particle currents between the baths and the system. The

second line gives energy currents between the baths and the system. We also define the

operators ÎS and ĴS as the total particle and energy current operators of the system. We

will look at the OCFDR for ÎS, ĴS. This corresponds to the transport coefficients. We

assume that each of the system, bath and system-bath coupling Hamiltonians has time

reversal and time translation symmetries. The full system+bath density matrix of the

set-up will be denoted by ρtot(t).

Now we state the most crucial assumption, the open-system thermalization. This says,

the set-up is such that, when a system is connected to two baths at same temperatures

and chemical potentials, eventually the whole set-up reaches a thermal equilibrium. This

is mathematically stated as follows

ρĤEIS ≡
e−β(ĤB1

−µN̂B1
)

Z1

⊗ ρ(0)⊗ e−β(ĤB2
−µN̂B2

)

Z2

lim
t→∞

e−iĤtρĤEISe
iĤt =

e−β(Ĥ−µN̂)

Z
≡ ρĤeq. (4.28)

N̂ = N̂S + N̂B1 + N̂B2 and Z1, Z2, Z are corresponding normalization constants (partition

functions). The superscripts denote that time evolution is with the Hamiltonian Ĥ. A

necessary not sufficient condition for this is that the baths have infinite degrees of freedom.

In absence of such thermalization, linear response can still be done, but a OCFDR relating

NESS currents to fluctuations in equilibrium cannot be derived. We will also make the

mixing assumption which is as follows. Given two arbitrary operators P̂ and Q̂, we

assume, limt→∞〈P̂ (±t)Q̂(0)〉 = limt→∞〈P̂ (±t)〉〈Q̂(0)〉, where 〈...〉 = Tr(...ρHeq). Note that

this condition does not require the Markovian assumption that the connected part of

correlations decay exponentially. This condition also holds even if correlations decay
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as a power law, which is typical for non-Markovian evolution. This assumption is not

absolutely necessary, but helps in some simplifications, and is generically expected to be

true. Finally, when P̂ and Q̂ are current operators, we define the following notation

M(Q̂, P̂ ) ≡ 1

β

∫ ∞

0

dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (t)〉 ==
1

2

∫ ∞

−∞
dt〈Q̂(t)P̂ (0)〉 (4.29)

where P̂ (t) = eiĤtP̂ e−iĤt. Comparing with Eq. 4.1, the resemblance between M(Q̂, P̂ )

and DL(τ) is obvious. The second equality in Eq. 4.29 can be derived using exactly similar

steps as given in Eqs. 6.56, 6.57, 6.58, 6.59, 6.60 in Appendix. 6.7. Using time translation

and time-reversal symmetries, one can show M(Q̂, P̂ ) = M(P̂ , Q̂). This can be shown as

follows. Let T be the time reversal operator. Then, we have

〈Q̂(t)P̂ (t′)〉 = 〈T Q̂(t)P̂ (t′)T −1〉 = 〈P̂ (−t′)Q̂(−t)〉 = 〈P̂ (−t′ + τ)Q̂(−t+ τ)〉 (4.30)

where the last line is the statement of time-translation invariance. The choice of τ =

t + t′ gives 〈Q̂(t)P̂ (t′)〉 = 〈P̂ (t)Q̂(t′)〉. With this property, it is obvious that M(Q̂, P̂ ) =

M(P̂ , Q̂).

4.3.2 The linear response NESS

We are interested in linear response, so let β± = β± ε∆β/2, µ± = µ± ε∆µ/2, ε→ 0. We

start the set-up in the following non-equilibrium initial state ρĤNIS,

ρtot(0) = ρĤNIS ≡
e−β+(ĤB1

−µ+N̂B1
)

Z1

⊗ ρ(0)⊗ e−β−(ĤB2
−µ−N̂B2

)

Z2

=
e−β(Ĥ′B1

−µN̂B1
)

Z1

⊗ ρS ⊗
e−β(Ĥ′B2

−µN̂B2
)

Z2

, (4.31)

with

Ĥ′B1
= ĤB1 +

ε

2β
(ĤB1∆β − N̂B1∆(µβ)),

Ĥ′B2
= ĤB2 −

ε

2β
(ĤB2∆β − N̂B2∆(µβ)) (4.32)

and ∆(µβ) = β∆µ + µ∆β. In obtaining the second line of Eq. 4.31, we have only

regrouped the terms in the exponentials and neglected the ε2 term. We define Ĥ′ ≡
ĤS + ĤSB1 + Ĥ′B1

+ ĤSB2 + Ĥ′B2
= Ĥ + εĤpert, where

Ĥpert =
1

β
[∆β(

ĤB1 − ĤB2

2
) + ∆(−βµ)(

N̂B1 − N̂B2

2
)], (4.33)
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Comparing the second line of Eq. 4.31 with Eq. 4.28, we see that ρĤNIS = ρĤ
′

EIS. Thus we

make the crucial observation that ρĤNIS is the non-equilibrium initial state when evolved

with the Hamiltonian Ĥ, but, when evolved with Ĥ′, it is an equilibrium initial state and

reaches ρĤ
′

eq in the long time limit,

lim
t→∞

e−iĤ
′tρĤNISe

iĤ′t = lim
t→∞

e−iĤ
′tρĤ

′

EISe
iĤ′t = ρĤ

′

eq (4.34)

We are interested in time evolution with Ĥ. This is given by, ∂ρtot
∂t

= i[ρtot, Ĥ] =

i[ρtot, Ĥ′] − iε[ρtot, Ĥpert]. Assuming Ĥ′ as the unperturbed Hamiltonian, ρtot(t) can be

solved for upto linear order in ε (linear response) using Dyson series. First, we go to

interaction picture with respect to Ĥ′.

ρItot(t) = eiĤ
′tρItot(t)e

−iĤ′t, ĤI
pert(t) = eiĤ

′tĤI
perte

−iĤ′t. (4.35)

Then, we have
∂ρItot
∂t

= −iε[ρItot(t), ĤI
pert(t)], which gives

ρItot(t) = ρItot(0)− iε
∫ t

0

dt′[ρItot(t
′), ĤI

pert(t
′)] ' ρItot(0)− iε

∫ t

0

dt′[ρI(0), ĤI
pert(t

′)]. (4.36)

To obtain the second line we have used the first line recursively in the RHS and have

kept only terms upto linear order in ε. Going back to Schroedinger picture, and recalling

ρItot(0) = ρĤ
′

EIS, we get

ρtot(t) ' e−iĤ
′tρĤ

′

EISe
iĤ′t − iε

∫ t

0

dt′[e−iĤ
′tρĤ

′

EISe
iĤ′t, e−iĤ

′t′Ĥperte
iĤ′t′ ]. (4.37)

Now, taking t→∞ and using the thermalization condition Eq. 4.28, we have

ρĤNESS = lim
t→∞

ρtot(t) = ρĤ
′

eq − iε
∫ ∞

0

dt′[ρĤeq, e
−iĤt′Ĥperte

iĤt′ ] (4.38)

In the second term, we have used Ĥ′ → Ĥ, because corrections above this will be of order

ε2.

4.3.3 The OCFDR

Let Ô be a particle or energy current operator, then, from Eq. 4.38, we obtain

〈Ô〉NESS = iε

∫ ∞

0

dt′〈[Ô(t), Ĥpert]〉 (4.39)

where 〈...〉NESS = Tr(...ρĤNESS), and we have used the fact that Tr(Ôρeq(Ĥ′)) = 0,

because energy and particle current operators are odd under time-reversal while Ĥ′ is
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even under time reversal. Deriving the second equality in above equation involves a

standard technique used in deriving Kubo formula, which we call the Kubo trick. We

have 〈[Ô(t), Ĥpert]〉 = Tr(Ô(t)[Ĥpert, ρ]). Let K̂ = (Ĥ − µN̂). Then,

[Ĥpert, ρ] = [Ĥpert,
e−βK̂

Z
] = ρΦ̃(β), Φ̃(λ) = eλK̂Ĥperte

−λK̂ − Ĥpert (4.40)

Thus,

dΦ̃(λ)

dλ
= eλK̂ [K̂, Ĥpert]e

−λK̂ = eλĤ[Ĥ, Ĥpert]e
−λĤ = −ieλĤdĤpert

dt
e−λĤ = −i ˙̂Hpert(−iλ)

(4.41)

where we have used [Ĥpert, N ] = 0 and
˙̂Hpert ≡ dĤpert

dt
= −i[Ĥpert, Ĥ]. Then, we have,

Φ̃(β) = −i
∫ β

0

dλ
˙̂Hpert(−iλ) (4.42)

Using Eq. 4.40, Eq. 4.42, we have

〈[Ô(t), Ĥpert]〉 = −i
∫ β

0

dλTr(Ô(t)ρ
˙̂Hpert(−iλ)) = −i

∫ β

0

dλ〈 ˙̂Hpert(−iλ)Ô(t)〉 (4.43)

Putting this result in Eq. 4.39 and using Eq. 4.29, we obtain,

〈Ô〉NESS = εβM(
˙̂Hpert, Ô) (4.44)

where
˙̂Hpert = −i[Ĥpert, Ĥ]. Writing Eq. 4.44 explicitly for ÎS and ĴS, using Eqs. 4.33,

4.27, and omitting ε for notational convenience, we obtain the transport coefficients

 〈ĴS〉NESS
〈ÎS〉NESS


 ≡


 L11 L12

L21 L22




 ∆β

∆(−µβ)




=


 M(ĴB, ĴS) M(ÎB, ĴS)

M(ĴB, ÎS) M(ÎB, ÎS)




 ∆β

∆(−µβ)


 . (4.45)

where ÎB(t) = [ÎB1→S(t) − ÎB2→S(t)]/2, ĴB(t) = [ĴB1→S(t) − ĴB2→S(t)]/2. The LHS

of above equation involves expectation value of total system currents in NESS under

infinitesimal bias, while, the RHS involves expectation value of current fluctuations in

the thermal state of the whole system+bath set-up. Thus we have the OCFDR. High

temperature limit of Eq. 4.45 reproduces the results for classical Hamiltonian systems

connected to Langevin baths [139, 140]. The result can be straightforwardly generalized

to multiple (more than two) baths. Eq. 4.45 has a form similar to definition of Onsager

transport coefficients, but the Onsager relation L12 = L21 clearly does not hold in general

(M(ÎB, ĴS) 6= M(ĴB, ÎS)). Note that, since M(Q̂, P̂ ) = M(P̂ , Q̂), this would not be the

case if 〈ĴB〉NESS , 〈ÎB〉NESS were calculated instead. Using this fact, the Onsager relation

is recovered under the assumption of a ‘local’ system Hamiltonian.
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4.3.4 Recovering Onsager relations

A system described by a ‘local’ system Hamiltonian can be broken up into L surfaces

transverse to direction of current flow such that ĤS =
∑L

`=1 Ĥ`, N̂S =
∑L

`=1 N̂`, and

ÎS =
∑L−1

`=1 Î`→`+1, ĴS =
∑L−1

`=1 Ĵ`→`+1. Here Ĥ` (N̂`) is the ‘local’ energy (particle number)

operator of `th surface, and Ĵ`→`+1 (Î`→`+1) is the ‘local’ current operator giving energy

(particle) flow between `th and ` + 1th surfaces. We can write down the continuity

equations

dN̂`
dt

= Î`−1→` − Î`→`+1,
dĤ`

dt
= Ĵ`−1→` − Ĵ`→`+1

dN̂1

dt
= ÎB1→S − Î1→2,

dN̂L

dt
= ÎL−1→L − ÎS→B2

dĤ1

dt
= ĴB1→S − Ĵ1→2,

dĤL

dt
= ĴL−1→L − ĴS→B2 (4.46)

By definition, in the (non-equilibrium) steady state, the LHS of the above equations will be

zero on average. This leads us to 〈ÎB〉NESS = 〈(ÎB1→S+ ÎS→B2)〉NESS/2 = 〈ÎB1→S〉NESS =

〈Î`→`+1〉NESS = 〈ÎS〉NESS/(L − 1), and similarly for energy currents. Using Eq. 4.44 for

〈ÎB〉NESS, 〈ĴB〉NESS, we have,

 〈ĴS〉NESS
〈ÎS〉NESS


 ≡


 L11 L12

L21 L22




 ∆β

∆(−µβ)


 == (L− 1)


 〈ĴB〉NESS
〈ÎB〉NESS




= (L− 1)


 M(ĴB, ĴB) M(ÎB, ĴB)

M(ĴB, ÎB) M(ÎB, ÎB)




 ∆β

∆(−µβ)


 . (4.47)

Alternatively, we can use the same trick as used in Refs. [139, 140] for classical systems.

In the following, we only consider particle currents. Exactly similar analysis is possible

for energy currents. We define the quantity, D̂Nm ≡
∑m

`=1 N̂` −
∑L

`=m N̂`. Taking time

derivative using Eq. 4.46, we have

dD̂Nm
dt

= 2(ÎB(t)− Îm→m+1(t))⇒ D̂Nm (∞)− D̂Nm (−∞) = 2

∫ ∞

−∞
dt
(
ÎB(t)− Îm→m+1(t)

)

(4.48)

Multiplying on the right by ÎS(0) and taking expectation value, we have,

〈D̂Nm (∞)ÎS(0)〉 − 〈D̂Nm (−∞)ÎS(0)〉 = 4
(
M(ÎB, ÎS)−

∫ ∞

−∞
dt
〈Îm→m+1(t)ÎS(0)〉

2

)
. (4.49)

Using the mixing assumption, 〈D̂Nm (±∞)ÎS(0)〉 = 〈D̂Nm (±∞)〉〈ÎS(0)〉 = 0. So, summing

over m, we have, (L − 1)M(ÎB, ÎS) = M(ÎS, ÎS). Using similar steps for other transport
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coefficients also, we obtain


 〈ĴS〉NESS
〈ÎS〉NESS


 ≡


 L11 L12

L21 L22




 ∆β

∆(−µβ)




=
1

L− 1


 M(ĴS, ĴS) M(ÎS, ĴS)

M(ĴS, ÎS) M(ÎS, ÎS)




 ∆β

∆(−µβ)


 . (4.50)

Since M(Q,P ) = M(P,Q), in Eqs. 4.47,4.50 the Onsager relation L12 = L21 is satisfied.

Thus Onsager relation is not satisfied if the ĤS is not ‘local’. The forms of OCFDR

given in Eq. Eqs. 4.47,4.50 may be expected based on experiments [141, 142, 143] and

previous investigations in non-interacting quantum systems [144, 145, 146]. However, our

derivation is a rigorous microscopic derivation of them for a very general case including

interacting quantum systems. In Eq. 4.50, the OCFDR look very similar to the SGKF.

But, there are two important differences. First, it involves equilibrium current fluctuations

in presence of the baths. Second, the baths must have infinite degrees of freedom, but

the system can be finite. These relations are thus well-defined for small and mesoscopic

systems also, unlike those obtained from the SGKF. Below, we will exploit the formal

similarity to establish a connection between the OCFDR and the SGKF.

4.3.5 Crossover between the open-system and the isolated ther-

modynamic limit

We will be looking at particle conductivity. Similar steps can be followed for OCFDR

corresponding to other transport coefficients also. To this end let us define:

DO
L (t) = − β

2(L− 1)

∫ t

−t
dt′〈ÎS(t′)ÎS(0)〉

DS
L(t) = − β

2(L− 1)

∫ t

−t
dt′〈〈ÎS(t′)ÎS(0)〉〉S (4.51)

where 〈〈...〉〉S denotes that the average is taken over the system thermal state ρS =

e−β(ĤS−µN̂S)/Tr(e−β(ĤS−µN̂S)) and the time translation operator involves only ĤS. Note

that DS
L(t) is a closed system quantity calculated with ‘free boundary conditions’ (as

opposed to periodic boundary conditions). On the other hand, in the first line, the average

is over ρĤeq, and the time translation operator involves the full system+bath Hamiltonian

Ĥ. We call DO
L (t) the integrated equilibrium current-current correlation of the open

system. Physically, this is related to open system total current noise in equilibrium
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[145, 143]. The particle conductivity given by SGKF is

σGK = lim
t→∞

(
lim
L→∞

DS
L(t)

)
, (4.52)

where the order of limits is important and cannot be interchanged, while our open system

result, when ĤS is ‘local’ (Eq. 4.50 with ∆β = 0), says

σopen(L) ≡ lim
∆µ→0

〈ÎS〉NESS
∆µ

= lim
t→∞

DO
L (t). (4.53)

Now, we ask what is the behavior of DO
L (t) at a fixed t with increase in L. Since HS is

‘local’ and the baths are attached only at the ends, it is intuitive that on increasing L, the

effects of the baths will be seen at later times. Hence, keeping t fixed, if L is increased,

the effect of the baths decrease, and DO
L (t) will tend to the closed system result DS

L(t).

This reasoning leads us to conjecture

lim
L→∞

DO
L (t) = lim

L→∞
DS
L(t), (4.54)

which implies,

σGK ≡ lim
t→∞

(
lim
L→∞

DS
L(t)

)
= lim

t→∞

(
lim
L→∞

DO
L (t)

)
. (4.55)

Here again, the order of limits cannot be interchanged. Thus, the OCFDR and the

SGKF are just two different limits of the same open system object DO
L (t). Hence, we have

obtained the relation between σopen and σGK that we were after. Combining Eqs. 4.53

and 4.54, we see that DO
L (t) shows a crossover from open system behavior to isolated

thermodynamic limit behavior with increase in L for fixed t, and a crossover from isolated

thermodynamic limit behavior to open system behaviour with increase in t for fixed

L. Note that there is no assumption of weak system-bath coupling. Studying such

crossovers will allow us to quantify under what experimental conditions is the isolated

thermodynamic limit effectively reached. Also, due to Eq. 4.54, our treatment can be

taken as an alternate ‘derivation’ of the SGKF. This suggests that the SGKF may not

give a transport coefficient if system Hamiltonian has long range terms. Also, the analog

of Eq. 4.54 for thermal currents gives a derivation of the standard thermal conductivity

formula without any assumption of local equilibrium or ‘gravitational field’.

However, Eq. 4.54 is a conjecture based on physical reasoning and is hard to prove in

a general setting. Let us go back to completely general the non-interacting set-up where

the system and the bath Hamiltonians are quadratic and the system-bath coupling Hamil-

tonians as described in Eq. 2.10. The QLE for the eigenbasis annhilation operators {Âν}
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(defined after Eq. 2.13) is given by Eq. 2.17, which we rewrite here again for discussion,

dÂν
dt

= −iενÂν(t)− iξ̂ν(t)−
′∑

`

∑

σ

Φ`νΦ`σ

∫ t

0

f`(t− t′)Âσ(t′)dt′, (4.56)

where ξ̂ν(t) is noise operator with properties ,〈ξ̂σ(t)〉 = 0, 〈ξ̂†ν(t)ξ̂σ(t′)〉 =
∑′

` Φ`νΦ`σF`(t− t′).
f`(t) andF`(t) are as defined in Eq. 2.18, 2.19. Φ`σ, as defined in Eq. 2.13, is the coeffi-

cient of the single-particle eigenfunction of with energy ων at site `. This shows that the

effective system-bath coupling between the νth system eigenmode and the bath attached

at site ` goes as ∼ ∑σ Φ`νΦ`σ. The number of terms in the summation is ∼ L. For

ballistic transport, the single particle eigenfunctions are completely delocalized and each

term in the summation scales as ∼ 1/L. Thus, the effective system-bath coupling of each

mode is independent of L. However, for other non-interacting cases where transport is

slower than ballistic (in presence of disorder, quasiperiodic potential etc.), the single par-

ticle eigenfunctions are not completely delocalized. So each term in the summation will

decay faster than 1/L. Consequently, the effective system-bath coupling of each system

eigenmode will typically decay with L. An exception will be an eigenmode localized at

site `, but such modes will not contribute to transport properties. By this argument, to

prove Eq. 4.54 for the non-interacting set-up, it is sufficient to show that it holds for the

ballistic case.

To show this, we consider the following simple set-up which shows ballistic transport,

ĤS =
L∑

`=1

g(â†`â`+1 + h.c), ĤB1 = tB(
0∑

s=−∞
b̂1†
s b̂

1
s+1 + h.c.), ĤB2 = tB(

∞∑

s=L+1

b̂2†
s b̂

2
s+1 + h.c.),

ĤSB1 = γ(â†1b̂
1
0 + h.c.), ĤSB2 = γ(â†Lb̂

2
L+1 + h.c.) (4.57)

Thus, we have a set-up where the full system+bath Hamiltonian is an infinite nearest

neighbour tight-binding chain. The left bath consists of sites from −∞ to 0 (with anni-

hilation operators b̂1
s), the sites from 1 to L is our system (with annihilation operators

â`), while the sites from L + 1 to ∞ is our right bath (with annihilation operators b̂2
s).

The two baths have same hopping parameter tB, while the system has a different hopping

parameter g. The system-bath coupling to each bath is the hopping from the system to

the bath, given by the parameter γ.

For this set-up,We can calculate σopen(L) = (L − 1)G directly using Eq. 4.19. To

calculate DS
L(t), we use exact diagonalization of HS. We obtain DO

L (t) by exact diago-

nalization of full system+bath Hamiltonian H by considering finite but large baths, and

looking at times before the finite size effects of the bath become significant.
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Figure 4.16: Open to closed system crossover behavior of DO
L (t) up to a fixed time as L

is increased. Parameters: g = 0.5, tB = 1, γ = 1, β = 0.1, µ = 0.4, number of bath

sites=NB = 2000. We have checked that for a bath of size NB, the finite-size effects start

when t ∼ NB.

Plots of DO
L (t) and DS

L(t) up to a finite time t = 100 for several system-sizes L are

shown in Fig. 4.16. We see that for small L (L = 20), DO
L (t) quickly saturates to the long

time value σNESS(L), while for large L (L = 2000), the curve for DO
L (t) approaches that

for DS
L(t). Hence Eq. 4.54 holds for non-interacting set-ups and DO

L (t) shows crossover

between open and closed system behaviors. Note that system-bath coupling is not weak

(γ = 1). The situation is not so clear in presence of interactions and requires further

work.

4.3.6 Summary

Thus, we have obtained several important and fundamental results in non-equilibrium

statistical physics. We have considered the absolutely general open quantum set-up of a

system connected to two baths with slightly different temperatures and chemical poten-

tials. Assuming only open system thermalization, we have first given a general expression

for NESS density matrix of the whole set-up in linear response regime. This expression

shows that in linear response regime a unique NESS will be reached. Using this, and

time-reversal and time-translation symmetries, we have obtained the open-system cur-

rent fluctuation-dissipation relations without any further approximations. These have

the structure of Onsager coefficients for thermoelectric transport, but the Onsager rela-

tion is not manifestly satisfied at this level. The assumption of local system Hamiltonian

is required for further simplifications to obtain expressions consistent with the Onsager
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relation.

Finally and most interestingly, we have argued that the integrated total current-

current correlations of the open-system in equilibrium can show a crossover between open

system behavior and isolated thermodynamic limit behavior. This gives the missing link

between transport coefficients obtained from the open-system approach and those ob-

tained via the Green-Kubo formalism. We have demonstrated this by direct calculation

in a simple set-up showing ballistic transport, and have given a concrete argument on why

the same is expected in any non-interacting set-up. This new kind of out-of-equilibrium

crossover provides a general way to quantify, via current fluctuations, the conditions under

which the isolated thermodynamic limit is reached in real set-ups. However, the further

work is required to explore the situation in presence of interactions which is beyond the

scope of the thesis.
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Chapter 5

Conclusion

In this thesis, we have investigated the transport in open quantum systems with and

without Born-Markov approximation. We have first developed the formalism to treat

absolutely general open quantum set-ups for non-interacting systems under Born-Markov

approximation. We have shown the equivalence of QME and QLE approaches in such

set-ups. The evolution equation for the correlation matrix has the form of a Lyapunov

equation and the condition for a unique steady state to exist is just the stability condition

for the Lyapunov equation. We have checked that the Redfield QME indeed gives proper

open system thermalization and have obtained a simplified expression for current for a

1D nearest neighbour chain. Then, we have extended the formalism to the case where the

temperatures and/or chemical potentials of the baths are periodic functions of time (AC

drive). Again, in terms of the correlation matrix, this offers a tremendous simplification

and a number of physical observations can be directly made from the evolution equation

for the correlation matrix.

Next, we have applied the formalisms so developed on the simple set-up of a two-site

non-interacting system with each site connected to its own bath. We have compared

the results from the Born-Markov approximation with exact results which is possible

to obtain for such small systems. We have found very good agreement. We have also

discussed results from some phenomenological Lindblad QMEs that are widely used and

have shown that the Redfield QME agrees over a much wider range of parameters. In the

AC driven case, we have looked at two fermionic sites connected to two baths at same

temperature but with periodically varying chemical potentials. We have made a number

of experimentally relevant observations. Two most important of them are as follows.

Instantaneous currents under AC voltage can be orders of magnitude higher than the

112



time period averaged current, especially at resonances. Instantaneous current inside the

system under a symmetric AC bias, i.e, where chemical potentials of both baths follow

exactly the same time-dependence, can be used as a measure of asymmetry of system-bath

coupling. Further, we have applied the Redfield QME to a simple interacting problem of a

non-linear oscillator connected to two baths at different temperatures. We have obtained

an analytical expression for the NESS density matrix. We have shown that the non-linear

oscillator can have extremely interesting rectification effects, high temperature scaling

and a non-trivial dependence of approach time to reach steady state on non-linearity and

temperatures.

Much of the physics we have discovered under Born-Markov approximation in the AC

driven and in the non-linear oscillator cases would be quite difficult to obtain without

the Born-Markov approximation. They would have also been missed by some of the most

widely used phenomenological Lindblad QMEs.

In the later part of the thesis, we have focussed on transport of 1D non-interacting

quasiperiodic systems. This time NESS currents are calculated exactly, i.e, without Born-

Markov approximation. We have looked at transport in two 1D quasiperiodic systems:

the Aubry-André-Harper (AAH) model, which does not have a mobility edge and a gen-

eralization of it which has a mobility edge. We have shown that, at the critical point

of the AAH model, transport behavior obtained from the open system approach and

from the standard linear-response theory (spread of correlations) are drastically different.

Spread of correlations in the isolated system in the thermodynamic limit shows hints

of super-diffusive transport. However, the NESS current scaling with system size shows

clear sub-diffusive behavior. We have explained the origin of the sub-diffusive behavior

by using the simplified expression for current obtained previously under Born-Markov

approximation. In the generalized AAH (GAAH) model, we have obtained the high

temperature non-equilibrium phase diagram based on the current scaling with system

size. We have also obtained a surprising correspondence between the eigenfuctions of the

GAAH model and the AAH model. The high temperature non-equilibrium phase diagram

can be explained via this correspondence and fractal properties of the spectrum.

Finally, we have given the connection between the transport coefficients obtained

via open system approach and those obtained via the standard linear-response theory

for isolated systems. We have shown that they are different limits of the total current

auto-correlation of the open system. In the standard linear-response theory, the thermo-
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dynamic limit is taken first and then the infinite time limit is taken, while in open system

approach, the infinite time limit is taken first, so that the NESS is reached.
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Chapter 6

Appendix

6.1 Quantum Markov process

Quantum definition of Markovianity is as follows. Let evolution equation for the density

matrix ρ(t) of the system be written as [21, 147]

ρ(t) = Λ(t, t0)ρ(t0). (6.1)

Λ(t, t0) is called the propagator. The quantum process is Markovian if the propagator

satisfies the following semi-group property,

Λ(t3, t1) = Λ(t3, t2)Λ(t2, t1), ∀ t3 > t2 > t1. (6.2)

What this physically means is that a process of evolving from time t0 to time t can be

broken up into arbitrary number of smaller time steps governed by the same evolution

equation. If this is possible, then the process is Markovian, otherwise it is not. An

explicitly non-Markovian process has the following form [21, 147]

∂ρ

∂t
=

∫ t

t0

dt′K(t− t′)ρ(t′). (6.3)

This involves a time-convolution with the density matrix. However, using the Nakajima-

Zwanzig projection operator methods, such equations can also be brought into time-

convolution less (TCL) form [21]. Now, let us look at two types of TCL QMEs [147]

which we consider in this thesis

Case A:

∂ρ

∂t
= Lρ(t), (6.4)
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where L is called the Lioville operator or the Liovillian. In this case, the Liovillian is

independent of time. Thus,

ρ(t) = e(t−t0)Lρ(t0), ⇒ Λ(t, t0) = e(t−t0)L. (6.5)

It is trivial to check this propagator satisfies the Markovian condition in Eq. 6.2. Thus,

a QME where the Lioville operator is independent of time is Markovian.

Case B:

∂ρ

∂t
= L(t− t0)ρ(t). (6.6)

In this case, the Liovillian not only depends on time, but also has time translation invari-

ance. The propagator for this case is

Λ(t, t0) = T←e
∫ t
t0
dt′L(t′−t0)

= T←e
∫ t−t0
0 dt′L(t′), (6.7)

where T← refers to time-ordering. Now, for t3 > t2 > t1, we have

Λ(t3, t2)Λ(t2, t1) = T←e
∫ t3−t2
0 dt′L(t′)T←e

∫ t2−t1
0 dt′L(t′)

6= T←e
∫ t3−t1
0 dt′L(t′) = Λ(t3, t1). (6.8)

Thus, this case is not Markovian according to Eq. 6.2.

6.2 Nakajima-Zwanzig projection operators method

Here we derive QMEs under weak system-bath coupling using Nakajima-Zwanzig projec-

tion operators method. To this end, we consider a system, connected to a bath defined

by the full system+bath Hamiltonian,

Ĥ = ĤS + ĤB + εĤSB. (6.9)

Here, ĤS is the system Hamiltonian, ĤB is the bath Hamiltonian, and ĤSB is the system-

bath coupling Hamiltonian. ε is the small parameter controlling system-bath coupling.

The whole system+bath set-up is assumed to be isolated. Let ρtot be the density matrix

of the whole system+bath set-up. We will assume product initial state for the set-up

ρtot(t0) = ρ(t0)⊗ ρB, (6.10)
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where ρ(t0) is the initial state of the system and ρB is the initial state of the bath, and t0

is the initial time. Our goal is to obtain the equation of motion for

ρ(t) = TrB(χ(t)), (6.11)

where TrB(...) refers to trace over the bath degrees of freedom. First, we go to interaction

picture with respect to ĤS + ĤB,

ĤI
SB(t) = ei(ĤS+ĤB)tĤSBe

−i(ĤS+ĤB)t

ρItot(t) = ei(ĤS+ĤB)tρtot(t)e
−i(ĤS+ĤB)t, (6.12)

and ρI(t) = TrB(ρItot(t)). The equation of motion for ρItot(t) is,

∂ρItot
∂t

= −iε[ĤI
SB(t), ρItot(t)] ≡ εL(t)ρItot(t), (6.13)

where the Liovillian is defined by the operation, L(t)• ≡ −i[ĤI
SB(t), •].

Now, we define the Nakajima-Zwanzig projection operators,

P• ≡ (TrB(•))⊗ ρB, Q = I− P, (6.14)

where I is the identity operator. PρItot(t) ≡
(
TrB(ρItot(t))

)
⊗ ρB = ρI(t) ⊗ ρB. It can be

checked that P and Q have the usual properties of projection operators

P2 = P, Q2 = Q, PQ = QP = 0. (6.15)

We make a simplifying assumption that holds true for most commonly used bath Hamil-

tonians ĤB and system-bath couplings ĤSB,

TrB

(
ĤI
SB(t)ρB

)
= 0. (6.16)

With this assumption,

PL(t)PρItot(t) = P (L(t)P) = −iP
(

[ĤI
SB(t),PρItot(t)]

)

= −iP
(

[ĤI
SB(t), ρI(t)⊗ ρB]

)

= −iT rB
(

[ĤI
SB(t), ρI(t)⊗ ρB]

)
⊗ ρB

= −i[TrB
(
ĤI
SB(t)ρB

)
, ρI(t)]⊗ ρB (6.17)

⇒ PL(t)PρItot(t) = 0, (6.18)
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where in the last line we have used Eq. 6.16. We operate P and Q on the equation of

motion for ρItot(t), Eq. 6.13,

P
∂ρItot
∂t

=
∂PρItot
∂t

=
∂ρI

∂t
⊗ ρB = εPL(t)ρItot(t) (6.19)

Q
∂ρItot
∂t

= εQL(t)ρItot(t) (6.20)

It is clear that we need to simplify Eq. 6.19 to obtain the equation of motion for ρ. The

idea is to formally solve Eq. 6.20 and use the solution in Eq. 6.19. To do this, first, using

the resolution of identity, I = P + Q, we rewrite Eqs. 6.19, 6.20,

∂PρItot
∂t

= εPL(t)(P + Q)ρItot(t) = εPL(t)QρItot(t) (6.21)

∂QρItot
∂t

= εQL(t)(P + Q)ρItot(t)

= εQL(t)QρItot(t) + εQL(t)PρItot(t), (6.22)

where in Eq. 6.21 we have used Eq. 6.18. The formal solution of Eq. 6.22 is given by

QρItot(t) = ε

∫ t

t0

dt′G←(t, t′)L(t′)PρItot(t′), where,

G←(t, t0) = T←e
ε
∫ t
t0
dt′QL(t′)

. (6.23)

Here we have used the fact that the initial state is factorized as in Eq. 6.10, so that

Qρtot(t0) = 0. Using this solution in Eq. 6.21, we have

∂PρItot
∂t

= ε2

∫ t

t0

dt′PL(t)G←(t, t′)L(t′)PρItot(t′). (6.24)

The above QME has a time-convolution and is hence explicitly non-Markovian. We now

reduce Eq. 6.24 to time-convolution-less form. To do that, we go back to Eq. 6.13, and

write down the formal solution for ρItot(t)

ρItot(t) = Gρtot
← (t, t0)ρItot(t0), Gρtot

← (t, t0) = T←e
ε
∫ t
t0
dt′L(t′)

. (6.25)

Since the full system+bath is isolated, the time-dynamics of ρItot(t) is not dissipative. So,

Gρtot
← (t, t0) can be inverted to obtain the time-reversed equation,

ρItot(t
′) = Gρtot

→ (t′, t)ρItot(t),

Gρtot
→ (t′, t) = T→e

ε
∫ t′
t dt1L(t1), where t′ < t, (6.26)

and T→ refers to time anti-ordering. Using Eq. 6.26 in Eq. 6.24, we have

∂PρItot
∂t

= ε2

∫ t

t0

dt′PL(t)G←(t, t′)L(t′)PGρtot
→ (t′, t)ρItot(t). (6.27)
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Now, we have the time-convolution-less form, the RHS depending only on ρItot(t), and not

on an integration over all previous times. But still the non-Markovian nature is preserved,

as seen from the fact that it was derived from Eq. 6.24 without any further assumptions.

G←(t, t′) and Gρtot
→ (t′, t) can both be expanded as a power series in ε, and hence, order by

order expansion in ε is possible. We see that the leading order term in Eq. 6.27 is O(ε2),

since G←(t, t′) = I + O(ε), Gρtot
→ (t′, t) = I + O(ε). The Born approximation pertains to

keeping only the leading order term. Thus, the QME up to leading order term is

∂PρItot
∂t

= ε2

∫ t

t0

dt′PL(t)L(t′)PρItot(t),

⇒ ∂ρI

∂t
= −ε2

∫ t

t0

dt′TrB[ĤI
SB(t), [ĤI

SB(t′), ρI(t)⊗ ρB]], (6.28)

where the second line is obtained by explicitly writing out the the first line using the

definitions of the notations. Eq. 6.28 is sometimes called the TCL2 (time-convolution-

less, up to second order) in literature. Going back to Schroedinger picture, we have,

∂ρ

∂t
= i[ρ, ĤS]− ε2

∫ t−t0

0

dt′TrB[ĤSB, [ĤI
SB(−t′), ρ(t)⊗ ρB]], (6.29)

where ĤI
SB(t′) is as defined in Eq. 6.12. This equation has the form of Eq. 6.6 and hence

is non-Markovian.

6.3 The perturbative solution of the Lyapunov equa-

tion and thermalization

Although Eq. 2.41 can be exactly solved, it gives correct answers only up to the leading

order term in ε (as discussed in Sec. 2.1.3 and [27]). So, it is useful to find analytical

expressions for C(t) up to the leading order term in ε. Using the form given in Eq. 2.33,

it is possible to find such perturbative solution under the condition

ωα − ων � ε2 (vαα + v∗νν) , ∀ α 6= ν. (6.30)

To this end, first we define

wαν = i(ωα − ων) + ε2 (vαα + v∗νν) . (6.31)
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The perturbative solutions of Eq. 2.33 up to leading order in ε are given by

Cαα(t) ' Cαα(0)e−2ε2fαα(ωα)t +
Fαα(ωα)

fαα(ωα)
(1− e−2ε2fαα(ωα)t)

Cαν(t) ' Cαν(0)e−wανt − iε2Qαν

ωα − ων
(1− e−wανt)

+
iε2

ωα − ων

[
v∗ναCαα(0)(e−2ε2fαα(ωα)t − e−wανt) + vανCνν(0)(e−2ε2fνν(ωα)t − e−wανt)

]

+
iε2

ωα − ων

[
v∗να

Fαα(ωα)

fαα(ωα)
(1− e−2ε2fαα(ωα)t) + vαν

Fνν(ων)

fνν(ων)
(1− e−2ε2fνν(ων)t)

]
. (6.32)

Real part of wαν is fαα(ωα) + fνν(ων) (see Eqs. 2.31, 6.31). fαα(ωα) > 0 by construction

(see Eq. 2.23). Thus, for time t � [ε2fαα(ωα)]−1, the steady state is reached. The

perturbative results for the steady state are given by

Cαα(∞) =
Fαα(ωα)

fαα(ωα)
=

∑′
` Φ2

`αJ`(ωα)n`(ωα)∑′
` Φ2

`αJ`(ωα)
(6.33)

Cαν(∞) =
iε2

ωα − ων

[
v∗ναFαα(ωα)

fαα(ωα)
+
vανFνν(ων)

fνν(ων)
−Qαν

]
. (6.34)

These equations reveal the very important physics of thermalization. In equilibrium all

baths have same temperatures and chemical potentials, i.e, the Bose or Fermi distributions

of all the baths are exactly the same, n`(ω) → n(ω). Thus, from Eq. 6.33, Cαα(∞) =

n(ωα). So we get the non-trivial and physically important result that

in equilibrium, lim
ε→0

(
lim
t→∞

ρ(t)
)

=
eβ(ĤS−µN̂S)

Tr
(
eβ(ĤS−µN̂S)

) , (6.35)

where the order of limits cannot be changed, and N̂S =
∑N

α=1 Â
†
αÂα. Note that the ε→ 0

limit is consistent with Eq. 6.30. Thus the set-up shows thermalization in this sense.

Away from equilibrium, when the temperatures and chemical potentials of the baths

are different, there will be non-zero current in NESS. For systems with time-reversal

symmetry, as we are considering here, the current in NESS depends directly on the

imaginary part of the off-diagonal elements Cαν . The imaginary part of Cαν can be

explicitly written as

Im (Cαν(∞)) =
ε2

ωα − ων

[∑′
`,m Φ2

mαΦ`αΦ`νJ`(ωα)Jm(ωα) (nm(ωα)− n`(ωα))
∑′

` Φ2
`αJ`(ωα)

+ (α↔ ν)

]
.

(6.36)

In equilibrium, n`(ωα) = nm(ωα) = n(ωα), so Im(Cαν(∞)) = 0, which is consistent with

the fact that there is no steady state current in equilibrium. Eq. 6.36 can be used for a

1D chain to obtain a simplified expression for current.
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The perturbative results in this section hold in the regime where the condition in

Eq. 6.30 is satisfied. Outside this regime, one has to use the full solution in Eq. 2.44.

6.4 Simple expression for current and conductance

for 1D chain

Here we derive a simple and insightful expression for current for 1D chain with nearest

neighbour hopping using Eq. 6.36. The system Hamiltonian we will be considering is

given by

ĤS =
N∑

`=1

V`â
†
`â` +

N−1∑

`=1

g`

(
â†`â`+1 + â†`+1â`

)
. (6.37)

In other words, HS in Eq. 2.10 is now the tridiagonal matrix

HS =




V1 g1 0 . . . . . .

g1 V2 g2 0 . . .

0 g2 V3 g3 0
...

. . . . . . . . . . . .

. . . . . . 0 gN−1 VN




(6.38)

In going to the single-particle eigenbasis we have to diagonalise H2 as in Eq. 2.13. Writing

out Eq. 2.13 explicitly for Eq. 6.38, we have the following set of equations

Φ`α(ωα − V`) = g`Φ`+1α + g`−1Φ`−1α ∀ ` 6= 1, N ;

Φ1α(ωα − V1) = g1Φ2α, ΦNα(ωα − VN) = gN−1ΦN−1α. (6.39)

The expression for particle current is obtained from the continuity equation of local density

〈â†pâp〉. The expression for particle current I is

I = gpIm(〈â†pâp+1〉) = gp

N∑

α,ν=1

ΦpαΦpνIm(Cαν). (6.40)

Using Eq. 6.34, and simplifying, the expression for NESS current becomes,

I = ε2gp

N∑

α,ν=1

ΦpαΦp+1ν − ΦpνΦp+1α

ωα − ων

[∑′
`,m Φ2

mαΦ`αΦ`νJ`(ωα)Jm(ωα) (nm(ωα)− n`(ωα))
∑′

` Φ2
`αJ`(ωα)

]
.

(6.41)
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Remember, since we have used Eq. 6.36, above expression for current is only valid when

Eq. 6.30 is satisfied. Current in NESS is same everywhere. However, in above expression

it seems to depend on the site p where it is evaluated. But that is actually not the case

as we will find via further simplification. For this, we now obtain an interesting result for

tridiagonal matrices using Eq. 6.39,

ΦpαΦp+1ν − ΦpνΦp+1α =
ων − ωα
gp

p∑

k=1

ΦkαΦkν . (6.42)

Also, the eigenvectors are orthogonal, so

N∑

ν=1

Φ`αΦmν = δ`m. (6.43)

Using Eqs. 6.42, 6.43 in Eq. 6.41, we obtain the final expression for current

I = ε2

N∑

α=1

[∑′
`,m Φ2

mαΦ2
`αJ`(ωα)Jm(ωα) (n`(ωα)− nm(ωα))

∑′
` Φ2

`αJ`(ωα)

]
. (6.44)

Now, I is independent of the site p where it is evaluated and hence is same everywhere, as

physically expected. Remember that
∑′ refers to sum over the points where the baths are

attached. So, we see that current in this limit (Eq. 6.30) is governed by the amplitudes

of the single-particle eigenfunctions at the sites where the baths are attached.

Now, let us consider the case where the baths are attached only at two sites, say p

and q, and the bath spectral functions are same, J`(ω) = J(ω), ` = r, s. Then,

I = ε2

N∑

α=1

[
Φ2
rαΦ2

sα

Φ2
rα + Φ2

sα

J(ωα) (nr(ωα)− ns(ωα))

]
. (6.45)

We can now obtain an insightful expression for particle conductance of a fermionic system.

Let set-up be fermionic with the two baths have same temperature, βr = βs = β, but

different chemical potentials, µr = µ + ∆µ, µs = µ. Then particle conductance is given

by,

G = lim
∆µ→0

dI

dµ

= ε2β
N∑

α=1

[
Φ2
rαΦ2

sα

Φ2
rα + Φ2

sα

J(ωα)n2(ωα)eβ(ωα−µ)

]
(6.46)

In the so called ‘wide-band limit’, the bath spectral function is constant, J(ωα) = Γ.

In the high temperature limit, n2(ωα)eβ(ωα−µ) ' 1/4. So particle conductance of the

fermionic system in wide-band and high temperature limit is given by

G = ε2 Γβ

4
W (r, s), W (r, s) =

N∑

α=1

[
Φ2
rαΦ2

sα

Φ2
rα + Φ2

sα

]
(6.47)
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Thus, in this limit, W (r, s) is proportional to conductance. It is interesting to note that

W (r, s) depends only on system eigenfunctions and is independent of the baths. It is

essentially an isolated system quantity, but to derive Eq. 6.47, we required to consider

an open system. This expression is used in subsection. 4.2.1 to explain the sub-diffusive

behavior of current in the open AAH model at the critical point.

6.5 Problem with ELQME

In the ELQME (Eq. 3.1.1), problems arise in the definitions of NESS current. For our

Hamiltonian Eq. 3.1, current can be derived from the following equations:

d〈â†1â1〉
dt

= IB(1)→1 − I1→2 (6.48)

d〈â†1â1 + â†2â2〉
dt

= IB(1)→1 − I2→B(2) (6.49)

where IB(1)→1 is the current between left bath and left system site, I1→2 is the current

between left and right system sites and I2→B(2) is the current between right site and

right bath. Note that the expression for I1→2 is same from all three approaches RQME,

LLQME, ELQME because it comes from the non-dissipative part of the QME. On the

other hand, depending on whether the approach is RQME or LLQME or ELQME, the

expressions for IB(1)→1 and I2→B(2) are different as they come from the dissipative part.

In NESS all three currents defined above are equal. This is true for RQME and LLQME.

But ELQME gives I1→2 = 0 even in NESS while giving an non-zero current for IB(1)→1.

In fact, Eq. 6.48, from ELQME, becomes of the form
d<â†1â1>

dt
= IB(1)→1− I1→B(2) , where a

fictitious I1→B(2) current from left site to right bath appears which is completely unphysical

as there is no direct connection between left site and right bath. However, if Eq. 6.49

is used, then ELQME gives the same result as obtained from the RQME in the limit

g � (ε2/tB). This is because IB(1)→1 obtained from Eq. 6.49 depends only on N1, N2

which are correctly given by ELQME when g � (ε2/tB). Thus, though ELQME is not

physically self consistent, this trick can be used to obtain the correct current in our setup,

as done in various places [44, 45]. However, this trick will not work in cases with different

geometries. For example, if two sites of a ring are connected to two different baths,

ELQME will not be able to give current flowing in the two arms.
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Figure 6.1: Plots of absolute values of I1(t) and I2(t) (Eq. 6.50) for the parameters of

the lower temperature bath in Fig. 3.4. The parameters are tB = 1, Γ = 4 (see Eq. 6.51),

β = 1.8, µ = −2.5, ε = 0.1. The horizontal dotted line corresponds to the value of ε,

which is ε = 0.1. From the plot it is clear that τB ∼ 7, which is the time by which both

I1(t) and I2(t) have decayed to O(ε). Time is measured in units of ω−1
0 and energies are

measured in units of ω0 (see Eq. 3.1).

6.6 Finding bath relaxation time

Estimation of the bath relaxation time τB is important to ensure validity of the Born-

Markov approximation. Let,

I1(t) =

∫
dω

2π
J(ω)e−iωt, I2(t) =

∫
dω

2π
J(ω)n(ω)eiωt (6.50)

where J(ω) is the bath spectral function and n(ω) is the Bose or Fermi distribution of the

bath (see Eqs. 2.12, 2.11). Let ε be the small parameter controlling strength of system-

bath coupling. Under Born-Markov approximation, the evolution equations are written

down up to leading order in ε. Then, as discussed in Sec. 2.3.1, the bath relaxation time

τB is governed by the time required for I1(t) and I2(t) to decay to O(ε). Let τB1 (τB2) be

the time in which I1(t) (I2(t)) decay to O(ε). Then τB is given by max{τB1 , τB2}. The

Markov approximation is valid for observation time t satisfying t� τB. It is clear from the

forms of I1(t) and I2(t) that τB will be smaller if the integrands are non-zero over a wider

range of ω. Thus, τB will decrease with increasing temperature and bandwidth of the

bath. We now find the values of τB for the various choices of baths spectral functions and

bath parameters used in Chap. 3. This is particularly important for the time dynamics
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Figure 6.2: Plots of absolute values of I1(t) and I2(t) (Eq. 6.50) for the parameters of

the bath that is stronger coupled to the system in Fig. 3.6. The parameters are tB = 200,

Γ = 9 (see Eq. 6.51), β = 0.1. | I2(t) | has been shown for three values of µ. The

horizontal dotted line corresponds to the value of ε, which is ε = 0.1. From the plot it

is clear that τB ∼ 0.1, which is the time by which both I1(t) and I2(t) have decayed to

O(ε). This value does not change on changing µ. Time is measured in units of ω−1
0 and

energies are measured in units of ω0 (see Eq. 3.1).

of approach to steady state, and for the AC driven case.

First, let us find τB for the parameters of Sec. 3.1.1. The time dynamics in the DC case

has been presented in Figs. 3.3, 3.4 for the bosonic system. The bath spectral function is

J(ω) = Γ

√
1− ω2

4t2B
, Γ =

2γ2

tB
. (6.51)

The plots of absolute values of I1(t) and I2(t) for the parameters of the lower temperature

bath in Fig. 3.4 are given in Fig. 6.1. From the plots it is clear that τB ∼ 7 (τB1 ∼ 7, τB2 ∼
3), in units of ω−1

0 (see Eq. 3.1).

Next, we look at Sec. 3.1.2, which is the considers two fermionic sites under AC voltage.

The bath spectral function is still of the form Eq. 6.51. However, this has a more stringent

requirement, because, Born-Markov approximation has to hold in every time step, and for

all values of chemical potentials. The bath spectral function here is the same as Eq. 6.51.

However, now, tB is taken very large, tB = 200 to make the Born-Markov approximation

very accurate. Fig. 6.2 shows plots of absolute values of I1(t) and I2(t) for the parameters

of the bath that is stronger coupled to the system in Fig. 3.6. From the plot it is clear
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Figure 6.3: Plots of absolute values of I1(t) and I2(t) (Eq. 6.50) for the parameters of

the lowest temperature bath in Fig. 3.17. The parameters are s = 1, Γ = 1.6, β = 2.0,

ωc = 1000. The horizontal dotted line corresponds to the value of ε, which is ε = 0.1.

From the plot it is clear that τB ∼ 2, which is the time by which both I1(t) and I2(t) have

decayed to O(ε). Time is measured in units of Ω−1
0 and energies are measured in units of

Ω0 (see Eq. 3.17).

that τB ∼ 0.1 (both τB1 ∼ 0.1, τB2 ∼ 0.1), in units of ω−1
0 , irrespective of the chemical

potential µ of the bath.

Finally, we look at the baths of Sec. 3.2. In this case, the bath spectral function is as

given in Eq. 3.21,

J(ω) = Γωse−ω/ωcθ(ω) , (6.52)

where ωc gives the cut-off frequency and θ(ω) is Heaviside step function. The cut-off

frequency is considered very large so that the system energy levels near the edge of the

bath spectrum correspond to extremely high energies, which do not really contribute to

the system properties at the chosen set of temperatures and chemical potentials. Also,

we have set µ1 = µ2 = 0. Our results are mainly for the Ohmic bath, i.e, for s = 1. The

plots of absolute values of I1(t) and I2(t) for the parameters of the lowest temperature

bath in Fig. 3.17 is shown in Fig. 6.3. From the figure, it is clear that τB ∼ 2, in units of

Ω−1
0 (see Eq. 3.17).

For s < 1, I2(t) has a divergence at small ω when chemical potential of Bose distribu-

tion is µ = 0. As a result Born-Markov approximation fails. Note that when considering
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the bath spectral function in Eq.. 6.51 for the bosonic case, µ = −2.5 was taken so that

µ < −2tB (tB = 1). This ensures there is no divergence. If this condition was not

satisfied, Born-Markov approximation would have failed in that case also.

6.7 From Green-Kubo formula to spread of correla-

tions

If ĤS has time translation and time-reversal symmetries, and is ‘local’, the Green-Kubo

formula Eq. 4.1 can be related to the spread of correlations. The proof of this is quite

involved, and below we will go through the proof in detail, clearly mentioning the as-

sumptions made.

Time-reversal symmetry of ĤS implies 〈ÎS〉 = 0. This can be shown as follows. Let T
time-reversal operator. ÎS is odd under time-reversal, while ĤS and N̂S are even under

time-reversal. So,

〈ÎS〉 = Tr(
e−β(ĤS−µN̂S)

Z
ÎS) = Tr(T e

−β(ĤS−µN̂S)

Z
T −1ÎS)

= Tr(
e−β(ĤS−µN̂S)

Z
T −1ÎST ) = −Tr(e

−β(ĤS−µN̂S)

Z
ÎS) = −〈ÎS〉

⇒ 〈ÎS〉 = 0 (6.53)

We start with the mixing assumption which is generically expected to be valid in the

thermodynamic limit. This says that, given two arbitrary operators Q̂1 and Q̂2,

lim
t→∞
〈Q̂1(t)Q̂2(0)〉 = lim

t→∞
〈Q̂1(t)〉〈Q̂2〉 (6.54)

Thus, using Eqs. 6.53, 6.54, we have,

lim
t→∞
〈ÎS(t)ÎS(0)〉 = 0. (6.55)

Since the total number of particles in the system is conserved, one can show [ÎS, N̂S] = 0

(even though [ÎS, ĤS] 6= 0). For two operators, Q̂1, Q̂2 which commute with N̂S,

〈Q̂1(t)Q̂2(t)〉 =
Tr(e−β(ĤS−µN̂)Q̂1(t)Q̂2(t))

Z
=
Tr(e−βĤSQ̂1(t)eβĤSe−β(ĤS−µN̂S)Q̂2(t))

Z

= 〈Q̂1(t)Q̂2(t+ iβ)〉, (6.56)
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where in the second line we have used the fact that [Q̂1, N̂S] = 0.

σGK = lim
τ→∞

lim
L→∞

∫ τ

0

dt

∫ β

0

dλ〈ÎS(−iλ)ÎS(t)〉/L

= lim
τ→∞

lim
L→∞

∫ τ

0

dt

∫ β

0

dλ〈ÎS(t)ÎS(i(β − λ))〉/L (Using Eq. 6.56)

= lim
τ→∞

lim
L→∞

∫ τ

0

dt

∫ β

0

dλ〈ÎS(t)ÎS(iλ)〉/L (λ→ β − λ)

= lim
τ→∞

lim
L→∞

∫ τ

0

dt

∫ β

0

dλ〈ÎS(−iλ)ÎS(−t)〉/L (Using time-reversal)

= lim
τ→∞

lim
L→∞

∫ 0

−τ
dt

∫ β

0

dλ〈ÎS(−iλ)ÎS(t)〉/L (t→ −t)

= lim
τ→∞

lim
L→∞

1

2

∫ τ

−τ
dt

∫ β

0

dλ〈ÎS(−iλ)ÎS(t)〉/L

= lim
τ→∞

lim
L→∞

1

2

∫ β

0

dλ
[ ∫ τ+iλ

−τ+iλ

dz〈ÎS(0)ÎS(z)〉/L
]
. (6.57)

The last step requires time-translation by t+ iλ and changing variable to z → t+ iλ. We

can now do the integration over z using contour integration. For this, we choose a contour

of the rectangle in complex-plane joining the points (−τ, iλ), (τ, iλ), (τ, 0), (−τ, 0). Since

this contour integral is zero (assuming no singularities), we have

∫ τ+iλ

−τ+iλ

dz〈ÎS(0)ÎS(z)〉 =

∫ τ

−τ
dt〈ÎS(0)ÎS(t)〉+ i

∫ λ

0

dy
[
〈ÎS(0)ÎS(τ + iy)〉 − 〈ÎS(0)ÎS(−τ + iy)〉

]

(6.58)

By Eq. 6.55 and time-translation symmetry, we have

lim
τ→∞
〈ÎS(0)ÎS(±τ + iy)〉 = 〈ÎS(0)〉〈ÎS(±∞)〉 = 0, (6.59)

Hence, substituting in Eq. 6.57, we get

σGK = lim
τ→∞

lim
L→∞

β

2

∫ τ

−τ
dt〈ÎS(0)ÎS(t)〉/L

= lim
τ→∞

lim
L→∞

β

2

[∫ τ

0

dt〈ÎS(0)ÎS(t)〉/L+

∫ 0

−τ
dt〈ÎS(0)ÎS(t)〉/L

]

= lim
τ→∞

lim
L→∞

β

2

[∫ τ

0

dt〈ÎS(0)ÎS(t)〉/L+

∫ 0

−τ
dt〈ÎS(−t)ÎS(0)〉/L

]
(time-translation by −t)

= lim
τ→∞

lim
L→∞

β

2

∫ τ

0

dt
[
〈ÎS(0)ÎS(t)〉+ 〈ÎS(t)ÎS(0)〉

]
/L (change variable t→ −t)

= lim
τ→∞

lim
L→∞

β

∫ τ

0

Re
(
〈ÎS(t)ÎS(0)〉

)
/L (6.60)

where Re(...) stands for real part, and in the last step we have used the fact that ÎS is

Hermitian so,
(
ÎS(t)ÎS(0)

)†
= ÎS(0)ÎS(t).
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Now, let us assume that the system Hamiltonian is ‘local’, i.e, it does not have long

range terms. Such a system can be broken up into surfaces transverse to direction of

current flow such that

N̂S =
∞∑

p=−∞
n̂p,

dn̂p
dt

= Îp − Îp−1, ÎS =
∞∑

p=−∞
Îp (6.61)

where n̂p is the local particle density and Îp is the local current, and we have already

assumed the thermodynamic limit. Then we observe that

d

dt1

d

dt2

[ ∞∑

p,q=−∞
(p− q)2〈n̂p(t1)n̂q(t2)〉

]
=

∞∑

p,q=−∞
(p− q)2〈

(
Îp(t1)− Îp−1(t1)

)(
Îq(t2)− Îq−1(t2)

)
〉

=
∞∑

p,q=−∞
〈Îp(t1)Îq(t2)〉

[
(p− q)2 − (p− q + 1)2 − (p− q − 1)2 + (p− q)2

]
(Shifting indices)

= −2
∞∑

p,q=−∞
〈Îp(t1)Îq(t2)〉. (6.62)

We define τ = t1 − t2, then d
dt1

= d
dτ

, d
dt2

= − d
dτ

. Using time translation symmetry, this

gives,

d2

dτ 2

[ ∞∑

p,q=−∞
(p− q)2〈n̂p(τ)n̂q(0)〉

]
= 2

∞∑

p,q=−∞
〈Îp(τ)Îq(0)〉

⇒ d2

dτ 2

[ ∞∑

x,q=−∞
x2〈n̂x+q(τ)n̂q(0)〉

]
= 2〈ÎS(τ)ÎS(0)〉

⇒ d

dτ

[ ∞∑

x,q=−∞
x2〈n̂x+q(τ)n̂q(0)〉

]
= 2

∫ τ

0

dt〈ÎS(t)ÎS(0)〉. (6.63)

Using Eq. 6.63 and Eq. 6.60, we have,

σGK = lim
τ→∞

lim
L→∞

β

2

d

dτ




L/2∑

x,q=−L/2
x2Re (〈n̂x+q(τ)n̂q(0)〉)


 /L (6.64)

Note that the above Eq. 6.63 holds strictly in the thermodynamic limit. For a finite

system of length L, there will be some corrections from the boundary terms. However,

the finite-size version of Eq. 6.63 in the RHS of can be used because those terms are

suppressed by the factor 1/L as L→∞.

Till now, we have not used any spatial translation symmetry. Now, if we further

assume that the system has spatial translation symmetry, we have

σGK = lim
τ→∞

β

2

d

dτ
mnn

2 (τ), mnn
2 (τ) =

∞∑

x=−∞
x2Re (C(x, t)) , C(x, t) = 〈n̂x(τ)n̂0(0)〉 − 〈n̂x〉〈n̂0〉

(6.65)
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Here we have used the fact that 〈n̂x〉〈n̂0〉 is time independent and hence its time-derivative

is zero. mnn
2 (τ) is the ‘second moment’ of correlation function Re (C(x, t)). Thus, σGK is

depends on spread of density correlations with time.
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