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The ability to reduce everything to simple fundamental

laws does not imply the ability to start from those laws

and reconstruct the universe.

P.W. Anderson, More is different, 1972

1
Introduction to heat transport

Thermodynamics gives a macroscopic description of matter in equilibrium and is an important

ingredient for understanding diverse aspects in physics and has contributed enormously to the de-

velopment of science and engineering in the last two century. The field of equilibrium statistical

mechanics establishes a connection between the phenomenological macroscopic laws of thermo-

dynamics and the microscopic description of matter. However, in many physical situations we en-

counter systems which are out of equilibrium and there is flow of mass, energy, charge etc across the

system. Understanding the mechanisms of macroscopic transport in physical systems has been one

of the interesting endeavors in physics. Transport is typically understood in terms of phenomeno-

logical equations, common examples of which include Ohm’s law for electrical conduction and

Fourier’s law for heat conduction. However, it is not completely understood how the microscopic
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dynamics, described for example by Newton’s equations of motion for a classical system, would lead

to macroscopic equations like Fourier’s law, and this has been a puzzling and important question

[1]. Enquiry into a microscopic derivation of these laws has given new results and insights over the

past decades. In this thesis we will focus on the specific problem of the microscopic understanding

of heat transport in one-dimensional systems.

1.1 Fourier law and its breakdown in one-dimensional systems

The phenomenological Fourier law has been highly successful in understanding diffusive heat

transport behavior as seen in the vast majority of real materials. The law states that the local heat

current j̄(r̄) at a point r̄ is proportional to the local temperature gradient ∇̄T (r̄), hence (j̄ =

−κ∇̄T ), where the proportionality constant κ defines the thermal conductivity of the material.

For a system in one dimension, Fourier’s law along with the energy conservation equation, implies

that temperature in a system evolves diffusively, and is governed by the heat diffusion equation

∂tT (x, t) = D∆T (x, t), (1.1.1)

whereD = κ/cv, with cv the specific heat capacity, κ is here assumed (for simplicity) to be temper-

ature independent, and∆ = ∂2x is the Laplacian operator in one dimension.

However, a large number of numerical work as well as analytic studies over the last several decades

indicate the breakdown of Fourier’s law in classical one-dimensional systems [2, 3, 4]. These studies

suggest that energy transport in these systems is not diffusive but instead is super-diffusive. This is

referred to as anomalous transport and some of the important signatures are the following:

• Diverging system-size dependent thermal conductivity, κ(N) ∼ Nα, whereN is the number

of particles.

• Non-linear temperature profile in the non-equilibrium steady state which is present even for

small temperature difference between the boundaries.

• Slow power-law decay (in time) of the equilibrium current auto-correlation function.

• Super-diffusive spreading of perturbations in equilibrium.
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Besides numerical observations in many one-dimensional systems, the diverging thermal conductiv-

ity has now been observed experimentally in a few experiments on carbon-nanotubes [5, 6]

1.2 Set-ups used to investigate anomalous transport

For the microscopic study one typically considers a system ofN particles, with positions {qx} and

momenta {px}, x = 1, 2, . . . , N , interacting with each other via a nearest neighbor potential

V (rx)where rx = qx+1 − qx is the local stretch. The system is described by a Hamiltonian

H =
N∑

x=1

[
p2x
2

+ V (qx+1 − qx)

]
, (1.2.1)

where we have set to unity the masses of all the particles. The boundary conditions depend on the

kind of transport set-up that we want to study and this will be discussed in the following sections.

The dynamics in the bulk of the system is then given by the Hamiltonian equations of motion.

In some cases (to be discussed later) one considers additional stochastic components in the bulk

dynamics that respect the important conservation laws. We note that, associated with the above

Hamiltonian, the total momentum
∑

x px and the total energyH are conserved quantities. The

total stretch (or volume),
∑

x rx, is another trivial but important conserved quantity. Generically,

one expects no other conserved quantities. However, for very special forms of the potential, a sys-

tem can haveN independent conserved quantities and such systems are called Integrable. One of

the aims of this thesis will be to examine the role of integrability on energy transport. We briefly

mention examples of some well-known integrable and non-integrable Hamiltonians, with momen-

tum conservation, that have been studied in the context of heat transport.

Integrable systems:

• Harmonic chain: V (r) = kr2/2

• Equal mass Hard particle gas (HPG): V (r) = 0, r > 0, V (r) = ∞, r ≤ 0.

• Toda chain: V (r) = (a/b)e−br.

5



Non-integrable systems:

• Fermi-Pasta-Ulam (FPU) chain: V (r) = kr2/2 + αr3/3 + βr4/4.

• Alternate mass hard particle gas: In this model, the interaction potential is the same as for the

equal mass HPG defined above. However, instead of all particles with the same mass, one

considers a chain of particles with alternate particles having different masses, saym1 andm2.

One of the approaches used to understand dynamics of non-integrable chains is to study the

closely related exactly solvable integrable systems [7]. Understanding differences in heat transport

properties in different kinds of integrable systems have been an important direction [8]. Integrable

models are not only useful as starting points for the study of non-integrable systems that are in

close proximity — they also provide some exact results which can be used to check the accuracy

of numerical codes. Studies of non-integrable systems have mainly been restricted to numerical ap-

proaches, though recently much progress have been made using the phenomenological approach

of nonlinear fluctuating hydrodynamics [9, 10, 11]. It is now well understood that momentum con-

servation causes singular advection of high wavelength modes and this leads to anomalous trans-

port. However, there are exceptions where one finds anomalous transport despite momentum non-

conservation [12].

There are two common set-ups to study thermal transport in a microscopic system, that are used

to identify anomalous features in the transport properties.

1.2.1 Isolated system set-up

This is used to study the spatio-temporal decay of equilibrium correlations. In this set-up one usu-

ally considers a ring geometry [shown in Fig. 1.1(a)] with theN particles evolving with the Hamilto-

nian equations of motion

q̇x = px, ṗx = V ′(qx+1 − qx)− V ′(qx − qx−1) , x = 1, . . . , N , (1.2.2)

with the periodic boundary conditions qN+x = qx + L, where L is the total length of the lattice.

We define the local stretch variable, rx = qx+1 − qx, and the local energy, ex = p2x/2 + V (rx).
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(a) (b)

Figure 1.1: (a) Schematic showing the isolated periodic setup. (b) Schematic showing open setup connected to heat baths with

different temperature at the ends.

The Hamiltonian dynamics exactly conserves the total energy,
∑N

x=1 ex, the total momentum,∑N
x=1 px, and the total stretch,

∑N
x=1 rx. For non-integrable systems, these are typically the only

conserved quantities and they constitute the slowly evolving hydrodynamic variables. In this set-up

one then prepares the system in an appropriate equilibrium ensemble (at specified temperature T ,

pressure P and zero average momentum) and computes the equilibrium spatio-temporal correla-

tions of the conserved variables. These equilibrium correlations provide information on transport

properties of the system. The local energy satisfies a local continuity equation

∂tex + ∂xjx = 0 , with jx =
1

2
(px+1 + px)V

′(rx−1), (1.2.3)

which gives us the definition of the microscopic local current density. The total current operator is

defined as J =
∑

x jx.

Common signature indicating anomalous transport in the isolated set-up are:

• Super-diffusive spreading of spatio-temporal correlations of conserved quantities in equilib-

rium, for example

Cee(x, t) = ⟨ex(t)e0(0)⟩ − ⟨ex(0)⟩⟨e0(0)⟩ ∼
1

tγ
f
( x
tγ

)
,

with 1/2 < γ < 1 and the width of the energy spread growing as σ2(t) ∼ tβ, 2 > β > 1.

When γ = 1/2, the transport is diffusive while when γ = 1, the transport is ballistic.

Another indicator which is commonly used in simulations are spatio-temporal spreading of
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1/3 respectively. Their
agreement indicates that local thermal equilibrium has been achieved and the local
velocity distribution is close to Gaussian. Also we notice that the boundary jumps
are almost absent for this system size. The inset shows smaller system sizes where
the boundary jumps, arising from the contact resistance, can be clearly seen. As
noted and discussed earlier by Lepri et al.[2] the temperature profile is nonlinear
and this feature seems to be present even for small temperature differences and is
another indication of anomalous transport. As for the hard particle case this also
indicates that one cannot find the temperature profile using a temperature (and
system size) dependent conductivity in Fourier’s law.

In Fig. (10) (upper figure), the conductivity defined as κ(N) = JN/∆T is plotted
against system size. This data gives

α = 0.333 ± 0.004 . (117)

The results of various simulation runs with Langevin baths with different damping
constants γ = 0.4, 2, and 10 as well as the deterministic Nose-Hoover thermostat
is shown (lower figure) in Fig.(10). This compares the RG prediction (α = 1/3)
and the old MCT prediction (α = 2/5) for systems with these different baths
and bath parameters. As can be seen in the figure, an asymptotic exponent of
1/3 is attained for all these systems, whereas the apparent exponents for smaller
N depend on system parameters. It is possible to understand the deviation of
the apparent exponent from 1/3 for small system sizes. As shown in refn. [2], if
the damping constant for the Langevin baths is very large or small, there is a
large ‘contact resistance’ at the boundaries of the chain. The current only depends
weakly on N , resulting in an apparent α > 1/3 (similar considerations apply to

November 19, 2008 19:56 Advances in Physics reva

48

100

101 102 103 104 105

JN
1-
α

N

γ=2 α=1/3
γ=2 α=2/5

γ=0.4 α=1/3
γ=0.4 α=2/5
γ=10 α=1/3
γ=10 α=2/5

NH α=1/3
NH α=2/5

101

102

κ(
N

)

Figure 10. (Top) Conductivity versus N . The last five points fit to a slope of α = 0.333 ± 0.004.
(Bottom) JN1−α versus N for α = 1/3 and α = 2/5. In the large N regime, α is definitely less than 2/5
and appears to agree quite well with the 1/3 prediction for all data sets. Langevin baths with γ = 0.4, 2

and 10, and one data set with Nose-Hoover baths, are shown (from [118]).

as Tl = ⟨v2
l ⟩, Tl = (⟨v4

l ⟩/3)
1/2 and Tl = (⟨v4

l ⟩/2 − ⟨v6
l ⟩/30)

1/3 respectively. Their
agreement indicates that local thermal equilibrium has been achieved and the local
velocity distribution is close to Gaussian. Also we notice that the boundary jumps
are almost absent for this system size. The inset shows smaller system sizes where
the boundary jumps, arising from the contact resistance, can be clearly seen. As
noted and discussed earlier by Lepri et al.[2] the temperature profile is nonlinear
and this feature seems to be present even for small temperature differences and is
another indication of anomalous transport. As for the hard particle case this also
indicates that one cannot find the temperature profile using a temperature (and
system size) dependent conductivity in Fourier’s law.

In Fig. (10) (upper figure), the conductivity defined as κ(N) = JN/∆T is plotted
against system size. This data gives

α = 0.333 ± 0.004 . (117)

The results of various simulation runs with Langevin baths with different damping
constants γ = 0.4, 2, and 10 as well as the deterministic Nose-Hoover thermostat
is shown (lower figure) in Fig.(10). This compares the RG prediction (α = 1/3)
and the old MCT prediction (α = 2/5) for systems with these different baths
and bath parameters. As can be seen in the figure, an asymptotic exponent of
1/3 is attained for all these systems, whereas the apparent exponents for smaller
N depend on system parameters. It is possible to understand the deviation of
the apparent exponent from 1/3 for small system sizes. As shown in refn. [2], if
the damping constant for the Langevin baths is very large or small, there is a
large ‘contact resistance’ at the boundaries of the chain. The current only depends
weakly on N , resulting in an apparent α > 1/3 (similar considerations apply to

November 19, 2008 19:56 Advances in Physics reva

48

100

101 102 103 104 105

JN
1-
α

N

γ=2 α=1/3
γ=2 α=2/5

γ=0.4 α=1/3
γ=0.4 α=2/5
γ=10 α=1/3
γ=10 α=2/5

NH α=1/3
NH α=2/5

101

102

κ(
N

)

Figure 10. (Top) Conductivity versus N . The last five points fit to a slope of α = 0.333 ± 0.004.
(Bottom) JN1−α versus N for α = 1/3 and α = 2/5. In the large N regime, α is definitely less than 2/5
and appears to agree quite well with the 1/3 prediction for all data sets. Langevin baths with γ = 0.4, 2

and 10, and one data set with Nose-Hoover baths, are shown (from [118]).

as Tl = ⟨v2
l ⟩, Tl = (⟨v4

l ⟩/3)
1/2 and Tl = (⟨v4

l ⟩/2 − ⟨v6
l ⟩/30)

1/3 respectively. Their
agreement indicates that local thermal equilibrium has been achieved and the local
velocity distribution is close to Gaussian. Also we notice that the boundary jumps
are almost absent for this system size. The inset shows smaller system sizes where
the boundary jumps, arising from the contact resistance, can be clearly seen. As
noted and discussed earlier by Lepri et al.[2] the temperature profile is nonlinear
and this feature seems to be present even for small temperature differences and is
another indication of anomalous transport. As for the hard particle case this also
indicates that one cannot find the temperature profile using a temperature (and
system size) dependent conductivity in Fourier’s law.

In Fig. (10) (upper figure), the conductivity defined as κ(N) = JN/∆T is plotted
against system size. This data gives

α = 0.333 ± 0.004 . (117)

The results of various simulation runs with Langevin baths with different damping
constants γ = 0.4, 2, and 10 as well as the deterministic Nose-Hoover thermostat
is shown (lower figure) in Fig.(10). This compares the RG prediction (α = 1/3)
and the old MCT prediction (α = 2/5) for systems with these different baths
and bath parameters. As can be seen in the figure, an asymptotic exponent of
1/3 is attained for all these systems, whereas the apparent exponents for smaller
N depend on system parameters. It is possible to understand the deviation of
the apparent exponent from 1/3 for small system sizes. As shown in refn. [2], if
the damping constant for the Langevin baths is very large or small, there is a
large ‘contact resistance’ at the boundaries of the chain. The current only depends
weakly on N , resulting in an apparent α > 1/3 (similar considerations apply to

x/t3/5

t3
/
5
C

<
J
e
(t
)J

e
(0
)
>

(b)

t2/3

t

t�2/3

Figure 1.2: Equilibrium correlations in the Fermi-Pasta-Ulam chain: (a) Spread of energy correlations in equilibrium.The inset

shows the anomalous scaling of the central peak at different times with γ = 3/5. (b) Slow decay of energy current correlations

as ⟨Je(t)Je(0)⟩ ∼ t−2/3.

an initial pulse. This spreading is related to the correlations of the conserved quantity when

the strength of the initial pulse is small. A typical example of the energy spread is shown in

Fig. 1.2(a).

• Secondly one finds a slow decay of total equilibrium energy current, ⟨J(t)J(0)⟩ ∼ t(δ−1), 0 ≤

δ ≤ 1 [see Fig. 1.2(b)]. This slow decay of equilibrium current correlations leads to a diverg-

ing thermal conductivity, via the Green-Kubo formula [1, 3]

κ =
1

kBT 2
lim
τ→∞

lim
N→∞

1

N

∫ τ

0

dt⟨J(t)J(0)⟩. (1.2.4)

One can heuristically argue that the upper limit in the time-integral above can be set to the

system sizeN to give a size-dependent conductivity and this leads to the relation α = δ (we

recall that κ(N) ∼ Nα).

1.2.2 Open system set-up

In this case, the system of interacting particles is connected to heat baths which keep the two ends

at fixed temperatures, as shown in Fig. 1.1(b) — this makes the system boundary driven. A standard

way of modeling the baths is through adding Langevin-type terms to the equations of motion of
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and this feature seems to be present even for small temperature differences and is
another indication of anomalous transport. As for the hard particle case this also
indicates that one cannot find the temperature profile using a temperature (and
system size) dependent conductivity in Fourier’s law.

In Fig. (10) (upper figure), the conductivity defined as κ(N) = JN/∆T is plotted
against system size. This data gives

α = 0.333 ± 0.004 . (117)

The results of various simulation runs with Langevin baths with different damping
constants γ = 0.4, 2, and 10 as well as the deterministic Nose-Hoover thermostat
is shown (lower figure) in Fig.(10). This compares the RG prediction (α = 1/3)
and the old MCT prediction (α = 2/5) for systems with these different baths
and bath parameters. As can be seen in the figure, an asymptotic exponent of
1/3 is attained for all these systems, whereas the apparent exponents for smaller
N depend on system parameters. It is possible to understand the deviation of
the apparent exponent from 1/3 for small system sizes. As shown in refn. [2], if
the damping constant for the Langevin baths is very large or small, there is a
large ‘contact resistance’ at the boundaries of the chain. The current only depends
weakly on N , resulting in an apparent α > 1/3 (similar considerations apply to


(N

)

(a) (b)

(a) (b)

Figure 1.3: NESS properties of the Fermi-Pasta-Ulam chain: (a) Diverging thermal conductivity with system size. (b) Non-linear

temperature profile for FPU-β chain. The black curve shows temperature profile for diffusive system. Image taken from [Dhar,

2008]

the boundary particles, so that the dynamical equations of motion are

q̇x = px, 1 ≤ x ≤ N

ṗ1 = V ′(q2 − q1)− V ′(q1 − q0)− λp1 +
√

2λTLηL,

ṗx = V ′(qx+1 − qx)− V ′(qx − qx−1), 2 ≤ x ≤ N − 1, (1.2.5)

ṗN = V ′(qN+1 − qN)− V ′(qN − qN−1)− λpN +
√
2λTRηR,

where ηx, x = L,R, are Gaussian white noise with ⟨ηx(t)⟩ = 0, ⟨ηx(t)ηy(t′)⟩ = δx,yδ(t − t′).

Two widely used boundary conditions (BC) are: fixed BC with q0 = qN+1 = 0, and free BC

with q0 = q1 and qN+1 = qN . The system then evolves to a non-equilibrium steady state (NESS)

characterized by a stationary temperature profile and a non-zero current flowing in the system. The

microscopic local current operator is again given by Eq. (1.2.3) and the average NESS heat current

⟨j⟩ can be computed. The thermal conductivity would be obtained as κ = N⟨j⟩/δT , where we

consider a small temperature bias δT = (TL − TR) > 0, and take the limit of largeN .

For systems with anomalous transport, one then finds that

• the conductivity diverges with system size as κ ∼ Nα, 0 < α ≤ 1. A typical example for

FPU chain is shown in Fig. 1.3(a).

• the temperature profile is nonlinear even for arbitrarily small δT with singularities at the

boundaries. A typical example is shown in Fig. 1.3(b). In contrast, for a diffusive system the

steady state temperature profile is linear.
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In the open system set-up, one finds that transport depends not only on the bulk properties but

also on the choice of baths and boundaries and a general framework to understand transport in

open systems is lacking.

1.3 Summary of previous work

Here we briefly discuss some of the previous work for understanding heat transport. More detailed

references in the appropriate context are provided in the respective chapters.

Integrable systems: The problem of heat conduction in a classical integrable ordered 1D harmonic

crystal was studied by Rieder, Lebowitz and Leib [13] and by Nakazawa [14] by finding the exact

non-equilibrium covariance matrix in the Gaussian NESS, and later by Roy and Dhar [15] using

the approach of non-equilibrium Green’s functions. They were able to show that the bulk tem-

perature profile was flat and given as the average of the two bath temperatures. The current in the

steady state was shown to be independent of system size in the thermodynamic limit, which is ex-

pected since there is no mechanism for scattering of phonons, and transport is ballistic. In case of

equilibrium correlations of conserved quantities, exact results for the correlations of velocity spatio-

temporal correlations were obtained in the papers by Montroll and Mazur [16] for the harmonic

chain and by Jepsen [17] for the hard particle gas. The energy current decay in the ordered Toda

chain was studied by [18, 19].

Integrable systems typically have no scattering mechanism. Introducing new scattering processes

in an integrable system manifests in many interesting phenomena. Some ways of introducing scat-

tering mechanism and breaking integrability are by — (i) introducing disorder in the system, (ii)

introducing an-harmonic interactions and (iii) introducing stochastic components in the dynamics,

in addition to the Hamiltonian evolution. Next, we review some of the previous research in these

directions for heat transport in one dimensional systems.

Disordered Harmonic chain: Heat conduction in harmonic chains with mass disorder are ex-

pected to be affected by the similar physics as of Anderson localization. Matsuda and Ishii [20]

showed that all high frequency modes in a disordered harmonic chain were exponentially localized.

The NESS of the disordered harmonic chain with different baths and boundary conditions were
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studied by Connors and Lebowitz [21], who found κ ≳ N−1/2, and by Rubin and Greer [22], who

obtained κ ≳ N1/2. The study by Casher and Lebowitz[23] shows that the system approaches a

unique stationary state for a variety of baths. It was later proven rigorously that κ ∼ N−1/2 [24]

for the Connors-Lebowitz model and κ ∼ N1/2 [25] for the Rubin-Greer model. It was shown by

Dhar [26] that the conductivity in general depends strongly on boundary conditions and spectral

properties of baths, and the previous results are special cases. One of the conclusions is thus that

scattering by including disorder does not lead to normal heat transport.

Anharmonic chains: The case of equilibrium and non-equilibrium transport in non-integrable

chains was studied by many authors before, here we give a very brief summary of the previous stud-

ies: The first study of heat conduction in anharmonic chain was explored in by Lepri [27, 28] where

they studied the Fermi-Pasta-Ulam (FPU) model in both the open non-equilibrium setup and the

isolated equilibrium set-up. In the non-equilibrium case they found that κ ∼ N0.37 and a highly

nonlinear temperature profile for relatively small temperature differences, while the equilibrium

current correlation showed a slow decay∼ t−0.63. This clearly indicated anomalous transport with

the conductivity divergence exponent α ∼ 0.37. A more recent study found α ∼ 0.33 [29]. Some-

what surprisingly, a study of the asymmetric α − β FPU chain and other asymmetric nonlinear

potentials [30] found that in special parameter regimes, the system could exhibit normal transport.

Subsequently it was pointed out by Das, Dhar, Narayan [31] and Wang, Li, Hanggi[32] that this

could be attributed to finite size effects, and that in the large system, long time limit, one would

always find anomalous behavior. The other extensively studied model of 1D heat transport is the

alternate mass hard particle gas which was first studied by Casati [33] and then later by several other

authors [34, 35, 36, 37, 38]. Here again one finds anomalous transport, with α ≈ 0.33, but the issue

of slow convergence to the asymptotic behavior and possible finite size effects is there as has been

pointed out in [38]. The conclusion from the numerical studies is therefore that one-dimensional

anharmonic systems with momentum conservation exhibit anomalous transport with a divergent

thermal conductivity κ ∼ Nα. It is also found that anharmonic chains with momentum conser-

vation typically show non-linear temperature profiles which are characteristics of anomalous trans-

port. The precise value of α, the question of universality classes and of finite-size effects, are some

issues that are not clearly obtained from the numerical studies.
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Analytical approaches for anharmonic chains:

Theoretical understanding of super-diffusive transport has been obtained using several approaches.

Some of these include:

(a) Kinetic theory which describes thermal transport by considering the dynamics of a gas of phonons

and treats the scattering between phonons by assuming that the non-linear effects are small and

can be treated perturbatively [39, 40, 41, 42, 43].

(b) Non-linear fluctuating hydrodynamics (NLFH) [9, 10, 11, 44] which considers the evolution

of the slow conserved fields at a coarse-grained level and, along with mode coupling theory,

makes detailed predictions on the form of equilibrium spatio-temporal correlation functions of

the conserved fields. In particular, it predicts the super-diffusive spreading of energy perturba-

tions and the slow decay of energy current auto-correlation functions. For generic anharmonic

systems with three conserved quantities (volume, momentum, energy), this theory predicts

that there are two moving sound modes with a constant velocity and one stationary heat mode.

Though this is not exhaustive, one expects two broad univerality classes :

• For symmetric potentials at zero pressure, NLFH predicts that the sound modes spread

diffusively (t1/2) and the heat mode spreads with Levy−3/2 characteristics. The current-

correlation decay exponent is found to be δ = 1/2.

• For asymmetric potentials the prediction is that the sound modes exhibit correlations as

those in the Kardar-Parisi-Zhang (KPZ) (t2/3) and the heat mode with that of Levy−5/3.

The current-correlation decay exponent is obtained to δ = 1/3.

There have been several extensive numerical studies of equilibrium correlations of the con-

served quantities in the FPU system [45] and the hard-particle gas [46] to verify the predictions

of NLFH. These studies find the expected heat mode and two sound modes in the equilib-

rium correlations. It was found that the scaling exponents for the spreading of these modes had

a very good agreement with the predictions from NLFH theory. The scaling parameters and

the scaling functions were in close agreement with the theoretical expectation in some param-

eter regimes but this was not the case in all parameter regimes studied. We note that Alder and
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Wainwright [47, 48] numerically studied the slow decay of velocity autocorrelations in hard

spheres which was understood in the framework of fluctuating hydrodynamics in [49].

(c) The study of specific exactly solvable stochastic models [50, 51, 52] gives a more rigorous hold

on anomalous transport. Stochastic models were studied by [53] for uncoupled stochastic os-

cillators, where they showed that the model satisfied Fourier’s law. Similar stochastic models

[54, 55] has been used as a simple model version for understanding complex systems. In the

models for anomalous transport, one considers harmonic chains whose Hamiltonian dynamics

is perturbed by stochastic noise that breaks integrability of the system, but while maintaining

the three important conservation laws. These models thus attempt to mimic nonlinear chains

for which it is usually difficult to obtain any exact result. For these stochastic models, exact re-

sults have been obtained in the isolated system set-up, showing the slow decay of current cor-

relations as well as the super-diffusive spreading of perturbations. It was also shown that these

models lead to super-diffusive spreading of energy that is reminiscent of a Lev́y walk and a frac-

tional equation evolution. Some analytic results have also been obtained for the open system

[56, 57, 58, 59]. The harmonic chain with stochastic flips of velocity, which does not conserve

momentum, was studied by [60] and was shown to have diffusive transport. Another simpli-

fied model showing super-diffusive transport characterized by two conserved quantities was

introduced by Bernardin and Stoltz [52]. In this thesis we study some questions related to these

models.

1.4 Problems addressed in this thesis

In this thesis, we explore several analytically tractable models of anomalous transport — one involv-

ing transport properties of an integrable Hamiltonian system and the other on stochastic systems

which are solvable in the sense that the dynamical equations for correlations form closed sets of

equations at every order.

In the first part of the thesis (Chapter 2 and Chapter 3), we study transport in Hamiltonian inte-

grable one-dimensional systems. We first study the equilibrium spatio-temporal correlations of con-

served quantities in an interacting integrable system (Toda chain) in the isolated set-up. In special
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limiting cases, the Toda chain reduces to either the Harmonic chain or the hard particle gas. In these

cases, we find exact expressions for the spatio-temporal correlations of the three standard conserved

quantities. We find that in general the correlations have the scaling form as (1/t)f(x/t), which is a

signature of ballistic transport. We then explore the differences in equilibrium spatio-temporal cor-

relations between integrable Toda chain and the non-integrable truncated Toda chain. In contrast

to the integrable system, the equilibrium correlations in the non-integrable systems have a slower

spreading with a scaling form (1/tγ)f(x/tγ), with 1/2 < γ < 1. Despite these differences, we find

that some of the tools from hydrodynamic theory used for non-integrable transport can be useful

to study integrable transport. Next, we study the Toda system in an open set-up. It is believed that

ballistic transport in this setup would manifest through a system-size independent current and a flat

temperature profile across the system. This is consistent with our studies in the open Toda chain at

various limits, which thus confirms ballistic transport.

In the second part of the thesis (Chapter 4 and Chapter 5), we study two exactly solvable stochas-

tic models which show super-diffusive transport. These stochastic models, introduced to mimic the

anomalous behavior of the non-integrable FPU-like models, have a linear Hamiltonian part with

added stochastic noise which conserves energy, momentum and volume but otherwise destroys

integrability [4, 52, 61]. For the case where transport in the system is diffusive, the heat equation

provides an understanding of macroscopic description for the time-evolution of the temperature

profile both in the open and closed system framework. We ask as to whether a similar equation ex-

ists for anomalous systems described by these stochastic models. The analytical tractability of these

models arises from the fact that two-point correlations form closed set of equations.

Here we consider two such models in the open set-up — the Harmonic Chain with Momen-

tum Exchange (HCME) and the Harmonic Chain with Volume Exchange (HCVE), and show that

a non-local fractional diffusion equation emerges as a suitable replacement to the heat diffusion

equation for describing super-diffusive energy transport in these models. The fractional equation

in both the systems, is then solved to recover closed expressions for the temperature profile and cur-

rent in NESS and is also used to describe the energy relaxation starting from arbitrary initial condi-

tions. In the HCVE model, the evolution of correlation functions is also studied. All results are ex-

tensively verified with microscopic simulation of the system. In the case of HCME, we also consider
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the question of writing a fractional equation with Langevin-type noise, to describe fluctuations in

the system.
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Part II

Transport and correlations in Integrable

Systems
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2
Equilibrium correlations in classically

Integrable Toda chain

2.1 Introduction

There has been a lot of recent interest in equilibrium correlations of conserved quantities in one-

dimensional Hamiltonian systems, in particular in the form of their spatio-temporal evolution. Re-

markable predictions have been obtained for the form of spatio-temporal correlations in systems of

one-dimensional fluids and anharmonic chains, using the framework of fluctuating hydrodynam-

ics [9, 10, 11, 44]. For generic nonlinear systems with three conserved quantities (mass, momentum,

energy), it has been predicted that there are two sound modes which exhibit correlations as those in

the Kardar-Parisi-Zhang (KPZ) equation, and a single heat mode showing characteristics of a Levy

walk. These predictions have been verified in many systems [45, 46, 62]. These studies of equilib-

rium fluctuations of conserved quantities have led to some progress in resolving the long standing

puzzle of anomalous heat transport in one dimensional systems [2, 3, 4]. The general consensus

now is that in one dimensional momentum conserving non-integrable systems, heat transport is

anomalous, and the heat conductivity κ diverges with system size as κ ∼ Nα, with 0 ≤ α ≤ 1. The

decay of equilibrium fluctuations shows similar anomalous features which lead to a understanding

of the non-equilibrium state via linear response.

An important aspect, which affects transport and fluctuations in a many-body system, is the in-

tegrability of the Hamiltonian. In this chapter we are going to study transport in one-dimensional

interacting integrable system and make comparisons with the non-integrable systems. In particu-
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lar we study the well known Toda chain [63], first introduced in 1967 as example of an integrable

one-dimensional (1D) system. The chain is characterized by non-linear interactions of exponential

type between nearest neighbors. The exact solvability of the model was studied in [64, 65] where it

was reported how to construct a full set of conserved quantities using the Lax pair formalism. The

periodic lattice was studied in [66, 67] using the inverse scattering method. In the limit of large an-

harmonicity the chain is characterized by soliton solutions, which are stable wave packets localized

in real space. For infinite chains the isolated soliton solution was found by Toda [63]. For periodic

finite chains one can find exact solutions, the so-called cnoidal waves, which are periodic trains of

solitons [63, 18]. The equilibrium thermodynamic properties such as specific heat, etc [68] can be

studied by performing exact integrals with respect to Gibbs distribution. Although special exact

classes of solutions are known for the Toda chain, finite temperature dynamical properties such as

correlation functions are hard to access analytically. There have been some attempts to study fi-

nite temperature dynamical properties of Toda chain through non-interacting soliton gas analogy

[69, 70, 71] and through taking classical limit of a quantum Toda chain [72]. The quantum Toda

chain was solved using Bethe ansatz in [73, 74]. A review of various static and dynamic properties of

the Toda chain can be found in [75].

Energy transport in the Toda chain was studied in [19], where the decay of current correlations

and overlap of currents with other conserved quantities were studied in the context of Mazur in-

equalities. A careful numerical study was carried out in [18] looking at the decay of current corre-

lations in finite systems prepared in canonical equilibrium. It was pointed out that the Mazur rela-

tions needed to be modified and that one needed to take projections of the current to not just the

conserved quantities but also to their bilinear combinations. Among the other results in [18], the

existence of special “cnoidal” solutions in the periodic Toda chain was noted and the effect of cubic

and quartic perturbations on the decay of conserved quantities was studied.

To test the role of integrability in heat transport, it is interesting to study transport in perturbed

integrable systems. The effect of solitons on the heat transport in Toda chain and its perturba-

tions was studied in [76]. The diatomic alternate mass Toda chain which is non-integrable was

studied in [77] where it was found that the thermal conductivity κ diverges with system sizeN as

as κ ∼ N0.34. Heat transport in Toda chain perturbed with conservative noise was studied in
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[78, 79] where again it was seen that the current decays with system size (anomalously). In [80] it

was pointed out that the Fermi-Pasta-Ulam (FPU) chain can be studied as a perturbation of Toda

chain and that they exhibit similar behavior at short times.

Another motivation for our study is from the context of recent studies on thermalization in in-

tegrable quantum systems. It has been shown that integrable quantum systems prepared in special

initial conditions, relax to a state that can be described by a Generalized Gibbs Ensemble (GGE),

i.e. thermal equilibrium state is described by a distribution P = e−
∑

n λnIn/Z({λn}), where In

are the conserved quantities of the system, λn are corresponding Lagrange multipliers andZ is the

appropriate partition function [81]. On the other hand, typical states and also typical energy eigen-

states are described by the usual Gibbs ensemble (with only temperature specified) [82, 83]. An

interesting question then is to see how integrability shows up in the dynamics of the system when it

is prepared in an initial thermal Gibbs state.

In this chapter we investigate the spatio-temporal equilibrium correlations of fluctuations of the

three conserved quantities: stretch, momentum and energy in the Toda chain. The equilibrium

state is chosen to correspond to the one with specified temperature (T ) and pressure (P ) with zero

average momentum. Our main results are as follows:

• In all parameter regimes we find from numerical simulations that the correlations exhibit bal-

listic scaling, which means that all correlation functions have the formC(x, t) = (1/t)f(x/t),

where f is some scaling function (non-universal). In contrast, we show that with non-integrable

perturbations of the Toda chain, correlation functions scale asC(x, t) = (1/tα)f(x/tα),

with 1/2 < α < 1, where f is universal scaling function.

• In two limiting cases, the Toda system reduces to the harmonic chain and the hard particle

gas respectively. In these cases we are able to compute all correlation functions exactly. We

show that there is excellent agreement between direct simulations of the Toda chain with

these exact results.

• We follow the prescription used in the theory of fluctuating hydrodynamics of non-integrable

anharmonic chains and carry out a transformation to the three “normal” modes correspond-

ing to the three conserved quantities. We find that one can then again see a separation of the
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heat and sound modes, but unlike the non-integrable case, here the cross correlations be-

tween different modes are non-vanishing even at long times.

• Finally we study the differences of non-equilibrium transport in open system connect to

heat baths in integrable and non-integrable system. We find that integrable Toda chain can-

not support a temperature gradient and the temperature profile is flat. However, the bulk

temperature in different limits of Toda chain are different. We also find that the thermal con-

ductivity diverges linearly with system size. When a non-integrable perturbation is added to

the Toda chain, a non-linear temperature profile develops suggesting anomalous transport.

The plan of the chapter is as follows. In Sec. (2.2) we precisely define the Toda chain model and

give a summary of some known exact results. In Sec. (2.3) we present analytical and numerical re-

sults for spatio-temporal correlations in two special limiting cases of the Toda system, namely the

harmonic chain and the hard particle gas. The numerical results for spatio-temporal correlations of

the three conserved quantities in the Toda chain are presented in Sec. (2.4). We also discuss the form

of correlation functions of integrable Toda chain in the normal-mode basis and compare differences

of spatio-temporal correlations in integrable and non-integrable systems. In Sec. (2.5) we discuss

the non-equilibrium transport in open Toda system connected to heat baths and study the effect

of non-integrable perturbation of Toda potential on the NESS profiles. We summarize the main

findings of this chapter in Sec. (2.6).

2.2 Toda chain: Model, definitions and summary of some exact results

We first define the Toda model on a ring geometry. We considerN particles with position qx, mo-

mentum px with x = 1, . . . , N . We define a “stretch” variable rx = qx+1 − qx. The Toda Hamil-

tonian is given by

H =
N∑

x=1

p2x
2

+ V (rx) , (2.2.1)

where V (rx) =
a

b
e−brx ,
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and we take periodic boundary conditions qN+1 =
∑N

x=1 rx = q1 + L, q0 = qN − L, where L is

the length of the lattice. The equations of motion are

mq̈x = −a[ e−b(qx−qx−1) − e−b(qx+1−qx) ] , x = 1, . . . , N . (2.2.2)

2.2.1 Lax pairs and conservation laws in Toda chain

Toda chain is defined as

V (rx) =
a

b
e−brx = Ce−brx . (2.2.3)

Equations of motion are:

ṙx = px+1 − px, ṗx = Cb(e−brx−1 − e−brx),

With a change of variables ax = px/2 and dx =
√
V (rx)/2 = e−brx/2/2 and using the notation

ãx = bax and d̃x =
√
Cb2dx the equations of motion (EOM) can be written as

˙̃dx = d̃x(ãx − ãx+1), ˙̃ax = 2(d̃2x−1 − d̃2x). (2.2.4)

These EOM can be cast in the form of dL
dt

= [L,A], where L andA are Lax pair matrices with

elements

Lij = ãxδxy + d̃xδx,y+1 + d̃x−1δx,y−1, Aij = d̃xδx,y+1 − d̃x−1δx,y−1, (2.2.5)

The Lax solution is written as dL
dt

= [L,A]. It can be shown [64] that the which says eigenvalues

of L are constant in time and so are any of their symmetric combinations. The conserved quantities

are given as

Im =
2m

m
TrLm. (2.2.6)
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The first few conserved quantities are,

I1 =
n∑

x=1

p̃x = b
n∑

x=1

px,

I2 =
n∑

x=1

p̃2x
2

+ Ṽ (rx) =
b2

2

[
n∑

x=1

p2x
2

+
a

b
V (rx)

]
,

I3 =
n∑

x=1

p̃3x
3

+ (p̃x + p̃x+1)Ṽ (rx+1) =
b3

3

[
n∑

x=1

p3x
3

+ (px + px+1)
a

b
V (rx+1)

]
, (2.2.7)

I4 =
b4

4

[
n∑

x=1

p4x
4

+ (p2x + pxpx+1 + p2x+1)
a

b
V (rx+1) +

a2

2b2
V (rx)

2 +
a2

b2
V (rx)V (rx+1)

]
.

In addition we have a trivial but important conserved quantity I0 ≡
∑N

x=1 rx, in the case of peri-

odic boundaries. As we can see, the higher order conservation laws become more non-local in space.

Limiting cases: If one takes the limit b → 0, a → ∞with ab = ω2 constant, then one gets a

harmonic chain with spring constant ω2. In addition there is a large linear term which can be can-

celed with an appropriate “pressure” term [adding a term Pr to the potential V (r)with P = a].

On the other hand in the limit b → ∞ the potential vanishes for r > 0 and is infinite at r < 0,

thus mimicking a hard-particle gas. As we will see later, in these limiting cases, all dynamical cor-

relations can be exactly computed. In both these cases, some equilibrium dynamical results were

already known [17, 16, 84, 85] and even many exact properties of the non-equilibrium steady state

are known [13, 15, 3].

Solitons and phonons: As noted in [18] the Toda chain on the ring has a family of the so-called

“Cnoidal” wave solutions that are periodic in time and space, very similar to the normal modes of a

harmonic chain. For harmonic lattice the overall amplitude of the normal modes is a free parame-

ter and apart from this freedom, there are exactlyN independent periodic solutions each specified

by a wave-vector k and a corresponding frequency ωk (independent of amplitudes). For the non-

linear Toda lattice, one can again constructN solutions specified by wave-vectors k but there is a

free “non-linearity” parameter depending on the amplitudeA of the solution and in this case, the

frequencies depend onA. The explicit solutions are stated in [18]. Here we note the observation

made there, that for small amplitudes, the Cnoidal waves look like sinusoidal waves or phonons

(the normal modes of a harmonic lattice) while for large amplitudes, they look like trains of solitons
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(localized excitations).

In the hard particle gas limit, the dynamics consist of particles moving ballistically and exchang-

ing velocities on collision. A velocity pulse would simply pass un-scattered through this system.

Thus this limit is characterized by “non-interacting” solitons. So we see that the two limiting cases

discussed above correspond to excitations being either phonon-like or soliton-like and for general

parameters, we expect a mixture of these two.

2.2.2 Definitions for equilibrium spatio-temporal correlations

Specification of the equilibrium state and definition of correlation functions: The Toda chain has

a large number of conserved quantities, and accordingly one can construct generalized ensembles

which are invariant distributions. Such general ensembles are specified by a set ofN Lagrange mul-

tipliers corresponding to theN conserved quantities. Here we restrict our discussion to the special

case where the initial state is prepared such that only the conserved quantities energy, stretch and

momentum are specified while all other Lagrange multipliers are set to zero. More specifically we

prepare the system initially in a state described by the following canonical ensemble (with zero aver-

age momentum) and at specified temperature T and pressure P :

Prob({rx, px}) =
e−β

∑N
x=1[p2x/2+V (rx)+Prx]

Z
, (2.2.8)

where the partition function is simply given byZ = [
∫∞
−∞ dp

∫∞
−∞ dre−β(p2/2+V (r)+Pr)]N .

Corresponding to the three global conserved quantities (I0, I1, I2), we can define the local con-

served fields rx(t), px(t), ex(t) = p2x/2 + V (rx). It is easy to see that they satisfy the continuity

equations

∂trx = px+1 − px

∂tpx = V ′(rx)− V ′(rx−1) (2.2.9)

∂tex = px+1V
′(rx)− pxV

′(rx−1) .

Defining a local pressure variable P = −V ′(r), and the discrete derivative ∂xf(x) = f(x + 1) −
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f(x)we see that the above equations can be written in the following form

∂trx(t) + ∂xjr(x, t) = 0 , (2.2.10)

∂tpx(t) + ∂xjp(x, t) = 0 ,

∂tex(t) + ∂xje(x, t) = 0 , where

[jr(x, t), jp(x, t), je(x, t)] = [−px(t), Px−1(t), px(t)Px−1(t)]

Next, we define the fluctuations of the fields from their equilibrium values as

u1(x, t) = rx(t)− ⟨r⟩, u2(x, t) = px(t), u3(x, t) = ex(t)− ⟨e⟩ , (2.2.11)

where ⟨. . .⟩ denote average over the initial equilibrium state. We will look at the following dynamic

correlation functions:

Cαν(x, t) = ⟨uα(x, t)uν(0, 0)⟩ , (2.2.12)

with α, ν = 1, 2, 3. The average is over initial conditions chosen from Eq. (2.2.8) and the dynamics

in Eq. (2.2.2) [or equivalently the first two equations in Eq. (2.2.9)].

Sum rules: We note here [11, 4] that the correlation functions of conserved quantities satisfy the

following exact sum rules (see appendix for derivation), in the limitN → ∞

∑
x

Cαβ(x, t) =
∑
x

Cαβ(x, 0) , (2.2.13)

d

dt

∑
x

xCαβ(x, t) = ⟨Jα(0)uβ(0, 0)⟩ ,

d2

dt2

∑
x

x2Cαβ(x, t) = 2⟨Jα(t)jβ(0, 0)⟩ (2.2.14)

where J(t) =
∑
x

j(x, t) .

These sum rules serve as useful check of numeric simulations. Further they provide useful infor-

mation on transport properties. For example, the last of the above equation enables one to relate

total current correlations to spreading of correlation functions of corresponding conserved quanti-

ties. One can then try to say something about non-equilibrium transport via linear response theory
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[86, 87]. For the case of the integrable models studied here, we see ballistic scaling of correlations

of all conserved currents, and this immediately implies that the corresponding total currents do not

decay to zero in the infinite time limit.

2.3 Correlation functions in the special limiting cases of Toda lattice

Exact results for the correlations of velocity ⟨px(t)p0(0)⟩were obtained in the papers by Mon-

troll and Mazur [16] for the harmonic chain and by Jepsen [17] for the hard particle gas. The dy-

namics of harmonic crystal being linear and the initial conditions taken from Gaussian distribution

makes it simple to obtain exactly the full set of correlationsCαβ(x, t). It turns out that for the hard-

particle gas, one can use a recently developed formalism [84], to again compute the full set of corre-

lation functions. Here we outline the computation for the harmonic case and summarize the results

for the HPG (see next chapter for details).

2.3.1 Equilibrium correlations in Harmonic chain

The Hamiltonian for the harmonic chain is given by

H =
N∑

x=1

p2x
2

+
ω2r2x
2

, (2.3.1)

where rx = qx+1 − qx and we assume periodic boundary conditions r0 = rN and pN+1 = p1. The

variables {rx, px} satisfy the equations of motion

∂trx = px+1 − px , (2.3.2)

∂tpx = ω2(rx − rx−1) .

Defining Fourier transform variables r̃k =
∑N

x=1 e
−ikxrx, p̃k =

∑N
x=1 e

−ikxpx, these satisfy the

equations

∂t

r̃k
p̃k

 = T̂

r̃k
p̃k

 , where T̂ = 2i sin(k/2)

 0 eik/2

ω2e−ik/2 0

 .
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Let Ŝ be the matrix which diagonalizes T̂ , i.e, Ŝ−1T̂ Ŝ = iΛ, whereΛ = diag(−λ, λ)with λ =

2ω sin(k/2). Then the solution of the above equation is given by

r̃k(t)
p̃k(t)

 = ŜeiΛtŜ−1

r̃k(0),
p̃k(0)

 (2.3.3)

=

 cos(λt) ieik/2

ω
sin(λt)

iωe−ik/2 sin(λt) cos(λt)


r̃k(0)
p̃k(0)

 .

The translational invariance of the problem means that the correlation matrix

C(x, t) =

⟨rx(t)r0(0)⟩ ⟨rx(t)p0(0)⟩

⟨px(t)r0(0)⟩ ⟨px(t)p0(0)⟩

 , (2.3.4)

is given by

C(x, t) =
1

N

∑
k

C̃(k, t)eikx, (2.3.5)

where C̃(k, t) =

⟨r̃k(t)r̃−k(0)⟩ ⟨r̃k(t)p̃−k(0)⟩

⟨p̃k(t)r̃−k(0)⟩ ⟨p̃k(t)p̃−k(0)⟩

 . (2.3.6)

Using the solution in Eq. (2.3.3) and the fact that (since the initial distribution is taken from a Gibbs

ensemble with temperature T )

C̃(k, 0) =

⟨r̃k(0)r̃−k(0)⟩ ⟨r̃k(0)p̃−k(0)⟩

⟨p̃k(0)r̃−k(0)⟩ ⟨p̃k(0)p̃−k(0)⟩

 =

T/ω2 0

0 T

 ,

we get

C̃(k, t) = T

 cos(λt)/ω2 ieik/2

ω
sin(λt)

ie−ik/2

ω
sin(λt) cos(λt)

 .
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Doing inverse Fourier transform givesC(x, t) [Eq. (2.3.5)]. After straightforward manipulations

and going to largeN limit we get the following explicit correlation matrix:

Crr(x, t) = TJ2|x|(2ωt)/ω
2, (2.3.7)

Crp(x, t) = T (−
J2|x|−1(2ωt)

ω
Θ(−x) +

J2|x|+1(2ωt)

ω
Θ(x)),

Cpr(x, t) = T (−
J2|x|+1(2ωt)

ω
Θ(−x) +

J2|x|−1(2ωt)

ω
Θ(x)),

Cpp(x, t) = TJ2|x|(2ωt),

whereJn(z) is the Bessel function of first kind andΘ(x) is the Heaviside theta function. Since

the process is Gaussian, the energy correlation is derived using expressing higher order moments in

terms of two-point correlation functions, thusCee(x, t) = [C2
rr(x, t) + C2

rp(x, t) + C2
pr(x, t) +

C2
pp(x, t)]/2.

2.3.2 Equilibrium Correlations in Hard particle gas

The explicit correlations for the hard particle gas is derived in the next chapter (Chapter 3). Here

we summarize the results. For the HPG, the equilibrium Gibbs distribution means that initial ve-

locities of all particles are chosen from the Maxwell distribution with variance v̄2 = T , while the

positions of theN particles are chosen from a uniform distribution within a finite region of length

L. In the thermodynamic limit withN,L → ∞with finite density ρ = N/L, the correlations in

the bulk of the system are given by:

Crr(x, t) =
1

ρ3σt

e
− 1

2
( x
ρσt

)2

√
2π

, (2.3.8)

Cpp(x, t) =
v̄2

ρσt

(
x

ρσt

)2
e
− 1

2
( x
ρσt

)2

√
2π

,

Cee(x, t) =
v̄4

4ρσt

[(
x

ρσt

)4

− 2

(
x

ρσt

)2

+ 1

]
e
− 1

2
( x
ρσt

)2

√
2π

,

where σt = v̄t.
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Figure 2.1: (a,b) Toda chain with parametersa = 20.0, b = 0.05, P = 20.0, T = 1.0, N = 256 at time t = 80. This
corresponds to the harmonic limit. The simulations of the Toda are comparedwith the exact harmonic chain correlation functions

(red dashed lines) as given in text. Hereω2 = 1, henceCrr = Cpp. (c) Toda chain with parametersa = 0.1, b = 10.0, P =
0.1, T = 1.0, N = 1024 corresponding to hard-particle limit, at time t = 400. The solid black lines are the values of exact
correlation function , as given in text (withσt = ρv̄t).

2.4 Equilibrium correlations of Toda chain

We now first present results from direct simulations on the form of these different correlation func-

tions. In our simulations we explore different parameter regimes and in the two limiting cases, com-

pare our results with the exact results of the previous section.

2.4.1 Numerical results for correlations of conserved quantities

Numerical details: The Toda-chain is simulated by numerically evaluating Eq. (2.2.2) using the

velocity-Verlet algorithm. We choose a small time-step (dt ≤ 0.01) in the simulations which

keeps the total energy and momentum constant to a high accuracy ( relative error less than 10−6

for energy and 10−4 in I3 ). To capture the equilibrium correlations, we prepare the system in

an initial state in a canonical (T, P ) ensemble by drawing random numbers p, r for each particle

from the distribution e−β(p2/2+V (r)+Pr)/Z through inverse transform sampling. For the parti-

tion function to be bounded, we require that pressure is non-zero for Toda Lattice. The full set of

spatio-temporal correlation functions, defined in Eq. (2.2.12) are computed by taking averages over

106 − 107 initial conditions.

We present numerical results and discuss their scaling in three different parameter regimes. These

correspond to the harmonic and hard particle limits and an intermediate regime. In the former
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Figure 2.2: Diagonal correlation functions Eq. (2.2.12) for Toda lattice for two different times (dashed line indicates later time).

The black dashed line show position of sound velocity as predicted from Eq. (2.4.3) at the two times (a) Harmonic Limit at time

t = 80, 120 [parameters of Fig. 2.1(a)]. (b) Toda chain with parametera = 1, b = 1, P = 1, T = 1, N = 1024 at time
t = 200, 300. (c) Hard-Particle limit [parameters of Fig. 2.1(c)] at time t = 200, 400.

cases, comparisons are made with the exact results stated in the previous section. For the three con-

served quantities we will use the notation r ↔ 1, p↔ 2, e↔ 3.

Case I: a = 20, b = 0.05, P = 20.0, T = 1.0— In this limit, the Toda lattice is expected to

show similar characteristics of the harmonic lattice. In Fig. 2.1(a) and 2.1(b) we show results for the

diagonal correlationsCrr, Cee in the Toda lattice respectively and compare them with exact har-

monic chain results as given in Eqs. (2.3.8). We find an excellent agreement. For our parameters,

the effective spring constant ω2 = 1 and henceCrr = Cpp. The correlations are extended and

oscillatory. In Fig. 2.2(a), the momentum and energy spatio-temporal correlations are shown for

two different times illustrating how they spread with time. The speed of sound here is c ≈ 1. In

Fig. 2.3(a) and 2.3(b), we plot the same data after scaling the x and y axes by factors of 1/t and t re-

spectively (ballistic scaling). We see a good collapse in the bulk with some deviations near the sound

peaks, which occur near the edge.

Case II: a = 1.0, b = 1.0, P = 1.0, T = 1.0— This corresponds to the intermediate regime

and we no longer see the oscillations in the correlations. In Fig. 2.2(b), the momentum and energy

correlations are shown for two different times. The speed of sound here is c = 0.8833.... The

stretch and momentum correlations only have peaks at the edges, while the energy correlation has

an additional small peak in the middle. In Fig. 2.3(b) we see that there is a very good ballistic scaling

of the correlation functions.

Case III: a = 0.1, b = 10.0, P = 0.1, T = 1.0— This corresponds to the hard particle gas limit

and again we see no oscillations. In Fig. 2.1(c) the results for correlation functions from direct simu-

lations of the Toda chain are compared with the exact results for the hard particle gas in Eq. (3.3.5).
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Figure 2.3: The diagonal correlation functions Eq. (2.2.12) for Toda lattice in various limits for two different times are plotted

with ballistic scaling. (a) and (b) shows collapsemomentum and energy correlations respectively in harmonic limit with param-

eters that of Fig. 2.2(a). Although the scaling is good in the bulk, the edges show significant deviations. (c) shows ballistic scaling

for Todawith parameters as that of Fig. 2.2(b). In (d) we show ballistic scaling in the hard particle limit with parameters as in

Fig. 2.2(c).

We again see excellent agreement with the numerical data. We now see that the nature of correla-

tions are very different. The stretch correlation has a single peak at the center and energy correlation

has a relatively large central peak. In Fig. 2.2(c) the correlations are shown at two different times.

The speed of sound is c = 0.1709...while Fig. 2.3(c) shows the expected ballistic scaling.

2.4.2 Normal mode description of correlations

In the usual hydrodynamic theory of anharmonic chains [11], it is convenient to go to a descrip-

tion in terms of “normal” hydrodynamic modes of the system. The normal modes, which we will

denote by (ϕ+, ϕ0, ϕ−) consist of linear combinations of the original field (u1, u2, u3) chosen in

such a way that the correlation matrix becomes approximately diagonal at long times, i.e, the cross

correlations between different modes become negligible at long times. At the level of linearized

hydrodynamics, for the diagonal elements of the correlation matrix, well-separated peaks for each

mode is seen. Specifically one finds (at the linear level) a single diffusively spreading heat mode and

two propagating sound modes moving with speeds±c. While it is not obvious what such a normal

mode transformation will achieve for our integrable system, we nevertheless proceed to construct

such a transformation (using the three variable description) and analyze the correlations in this ba-

sis.

We briefly review the construction of the normal mode transformation, starting with the mi-

croscopic continuity equations given by Eq. (2.2.10). The conserved currents jα are then expanded
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about their equilibrium value up to linear order in the fields leading to the linear equations

∂tuα(x, t) + ∂x(A
αβuβ(x, t)) = 0, (2.4.1)

where

A =


0 −1 0

∂lP 0 ∂eP

0 P 0

 .

The partial derivatives above are computed using the equilibrium equation of state P = P (l, e)

where l = ⟨r⟩, e = ⟨e⟩. The diagonalization of the matrixA leads to the formRAR−1 =

diag(−c, 0, c), where the matrixR is completely fixed by the normalization conditionRC(t =

0)RT = 1, withC the correlation matrix. We refer the reader to [11] for explicit expressions. The

constant c corresponds to the sound velocity and can be computed explicitly from equilibrium cor-

relation functions through the formula [11]

c2 =
1

Γ

(
1

2β2
+ ⟨V + Py;V + Py⟩

)
, (2.4.2)

with Γ = β(⟨y; y⟩⟨V ;V ⟩ − ⟨y;V ⟩2) + ⟨y;y⟩
2β

, and where ⟨A;B⟩ = ⟨AB⟩ − ⟨A⟩⟨B⟩. For the Toda

potential one can simplify Eq.(2.4.2) to get the form

c2 =
b2

β

(
2z2ψ(1)(z)− 2z + 1

)
[(2z + 1)ψ(1)(z)− 2]

, (2.4.3)

where z = βP
b

and ψ(1)(z) is Polygamma function which is defined as ψ(1)(z) = d2

dz2
log(Γ(z))

and Γ(z) is the standard Gamma-function. It is interesting to note that for the special case with

P = b, the above formula is very close to one derived in [70].

For small b and P = a, Eq. (2.4.3) can be expanded to give the expected speed of sound in a

harmonic chain c =
√
ab. In the other limit, when b → ∞ and the external pressure is P the

above formula gives the hard particle limit c =
√
3βP . These two limits can also be obtained in

the high temperature (corresponding to large b) and low temperature limits (small b) by expanding

with respect to z, leading to the same expressions for speed of sound to the leading order.
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Figure 2.4: Normal mode representation- Case I with parametersa = 1, b = 1, P = 1, T = 1 andN = 1024. (a) Heat
and soundmodes plotted together at times t = 200 (red), t = 300 (blue) and t = 350 (green). The two soundmodesmove to
left and to the right with velocities∓c (vertical dashed lines indicate the distance ct). (b) The soundmodes at the three times are
scaled ballistically andwe see a good collapse even at small times. (c) The heat modes are scaled ballistically.

The normal mode transformation is then defined by ϕs =
∑

αRs,αuα, for s = +, 0,−. We can

then compute correlations for these normal modes

Crs = ⟨ϕr(x, t)ϕs(0, 0)⟩ , (2.4.4)

for r, s = +, 0,−. As we will see this normal mode transformation separates the two sound modes

s = +,−moving with velocity±c respectively and the heat mode s = 0. All the modes continue

to show ballistic scaling. We now show numerical data of the correlations in normal modes for the

Toda chain in various parameter regimes.

Case I: a = 1.0, b = 1.0, P = 1.0, T = 1.0— In Fig. 2.4(a) we show the sound and heat modes

plotted together at three different times t = 200, 300, 350. The speed of sound is c = 0.883....

The scaled right moving sound modes and the scaled heat modes are plotted in Fig. 2.4(b) and

Fig. 2.4(c) respectively. The scaling collapse is very good even for short times. The sound mode is

broad and asymmetric. The heat mode on the other hand has a broad central peak and also signifi-

cant side peaks. The amplitude of heat mode is much less than that of sound mode, which implies

less scattering. In Figs. 2.4(b) and 2.4(c) we show the ballistic scaling of the right moving sound

mode and the heat mode. Note that the shift by ct for the sound mode is not really necessary to see

scaling collapse for the ballistic case. Typically we find that the off-diagonal correlations are of same

magnitude as that of the diagonal correlations.

Case II: a = 1.0, b = 1.0, T = 5.0, P = 1.0— In Fig. 2.5(a) we show the three normal modes

correlations plotted together. The speed of sound in this case is 0.6232.... At high temperatures the

dynamics is controlled by solitons, which are moving slower than their phonon counterparts. At
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Figure 2.5: Normal mode representation - Case II with parameters parametersa = 1.0, b = 1.0, P = 1.0, T = 5.0 and
N = 1024. (a) Heat and soundmodes plotted together , at times t = 200 (red), t = 300 (blue) and t = 450 (green). The
two soundmodesmove to the left and to the right with speed c (vertical dashed lines indicate the position ct). (b) This shows the
ballistic scaling of the soundmodes at the three different times. These are now almost Gaussian (shown by black solid line with

standard deviationσ = 0.1982...). (c) This shows the ballistically scaled heat mode. The amplitude of the heat and soundmodes
are now comparable.
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Figure 2.6: Normal mode representation - Case III with parametersa = 0.1, b = 10.0, P = 0.1, T = 1.0 andN =
1024, corresponding to the large anharmonicity limit. (a) This shows the heat and the two soundmodes at times t = 300 (red),
t = 400 (blue) and t = 500 (green). The distancesx = ±ct aremarkedwith vertical dashed lines. (b) This shows the ballistic
scaling of the soundmodes. (c) This shows ballistic scaling of the heat mode.

this temperature the phonon-soliton interaction is negligible and the sound mode is symmetric and

fits well to a Gaussian with σ = 0.1982, while the heat mode has faster decay. Another feature is

that at high temperatures the diagonal correlations are at least an order of magnitude larger than the

cross-correlations. In Figs. 2.5(b) and 2.5(c) we show the ballistic scaling of the left moving sound

mode and the heat mode.

Case III: a = 0.1, b = 10.0, T = 1.0, P = 1.0— In Fig. 2.6(a) we show the three normal modes

correlations plotted together, in a parameter regime corresponding to the hard particle limit. The

speed of sound is 0.17093. The heat and sound modes now have single peaks but these are broad

and with significant overlap at all times. Also note that the heat mode is larger in amplitude than

the two sound modes unlike the other cases. In Figs. 2.6(b) and 2.6(c) we show the ballistic scaling
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Figure 2.7: Figure shows all correlation functions between the three locally conserved quantities (r, p, e) for (a) truncated Toda
chain [potential given by Eq. (2.4.5)] and parametersP = 0,T = 0.5,N = 8192 at time t = 2000. (b) Toda chain with
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Figure 2.8: (a) Sound andHeat modes for truncated Toda chain (Eq. (2.4.5)) with parametersP = 0.0,T = 0.5,N = 8192
at times t = 2000 (red) t = 3000 (blue) and t = 3500 (green). The black dashed line show the positions±ct and coincide
with the peaks of the soundmodes. (b) This shows the expected KPZ-scaling of the soundmodes, with exponent 2/3 as per
hydrodynamics prediction. (c) This shows the heat mode scaling with the the expected Levy exponent 3/5.
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Figure 2.9: This shows the cross correlations between the normal modes at t = 2000which are smaller than their respective
diagonal correlations for (a) Truncated Toda chain with parameters as given in Fig. 2.7(a). (b) Toda chain with same parameters as

Fig. 2.7 (b).
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of the right moving sound mode and the heat mode.

2.4.3 Equilibrium correlations in truncated Toda chain

To see the huge effect of integrability on the form of correlations, we show results from a simulation

with a potential corresponding to a truncated Toda potential with parameters P, T chosen to be

close to the actual Toda simulations. Note that truncation leads to an FPU potential and is expected

to destroy integrability. For the parameters a = b = 1, the truncated Toda potential to quartic

order is given by

Vtr(r) =
r2

2
− r3

6
+
r4

24
, (2.4.5)

and we set P = 0.0, T = 0.5 to match the equilibrium properties of the corresponding integrable

Toda chain with parameters a = 1, b = 1, P = 1, T = 0.5. With this parameters, the speed of

sound in truncated Toda chain is c = 1.004... and for Toda chain is c = 0.938...which is about a

6% difference.

In Fig. 2.7 we show a comparison of the correlation functions of Toda chain with the corre-

sponding truncated Toda chain. We see that they show significant qualitative differences. In par-

ticular for the truncated Toda (FPU) chain, the correlation functions show localized and well-

separated peaks, while in the Toda chain, they are broad and overlapping. The cross correlations

are of similar order in both cases and we will now see how this changes when we transform to nor-

mal mode basis. The normal mode representation more clearly shows the difference between the

Toda results and the FPU.

Finally we show that the normal mode representation also brings out clearly the striking differ-

ences between integrable and non-integrable models. In Figs. 2.8(a) and 2.8(b) we plot the normal

mode correlations for the truncated Toda chain whose correlations (in usual variables) were pre-

sented in Fig. 2.7(a). We see the striking differences between these and the corresponding plots for

the Toda chain in Figs. (2.4,2.5,2.6). In particular we see that for the non-integrable case, the sound

modes show the KPZ scaling formC++(x, t) = f+((x + ct)/(λst
2/3))/(λst)

2/3, while the heat

modes show Levy-5/3 scalingC00 = f0(x/(λht
3/5))/(λht)

3/5, where f+,0 and λs,h are appro-

priate scaling functions and scaling factors. The cross correlation between the three normal modes

in the truncated Toda lattice is shown in Fig. 2.9(a) and for Toda chain in Fig. 2.9(b). In this case
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we see that for both the Toda chain and its truncated version, the off-diagonal correlations between

heat and sound modes are much smaller than the diagonal correlations. The main difference be-

tween the two cases is that in the truncated Toda chain, the modes are localized around sound peak,

while for integrable Toda chain they have a broad spreading.

2.5 Non-equilibrium transport in Toda chain connected to heat baths

In a non-equilibrium setup, we attach two heat-bath in different temperature (TL and TR ) at the

two ends of the lattice and let the system evolve sufficiently to equilibrium. The equations of mo-

tion are taken to be those in Eq. (2.2.1) with the Toda inter-particle potential V (r) = (a/b)e−br,

ṗ1 = −ae−b(q2−q1) + ae−b(q1−q0) − λp1 +
√

2λTLηL,

ṗx = −ae−b(qx+1−qx) + ae−b(qx−qx−1), 2 ≤ x ≤ N − 1, (2.5.1)

ṗN = −ae−b(qN+1−qN ) + ae−b(qN−qN−1) − λpN +
√

2λTRηR,

and we choose fixed boundary conditions q0 = 0 and qN+1 = L and with η is the Gaussian white

noise with zero mean and unit variance. The non-equilibrium driving at the boundaries gives rise

to a non-zero current in the system which leads to a temperature profile interpolating between the

boundary temperatures. The local temperature given as ⟨v2⟩ is measured, along with current in the

NESS of the system by averaging over time for around 106 data points (each data point is taken after

time intervals 10). From Eq. (1.2.3), we get the current on the bond x to x+ 1 as

jx =
1

2
(px + px+1)V

′(qx+1 − qx). (2.5.2)
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Figure 2.10: Non-equilibrium simulations of the Toda chain: (a) Temperature profile for Toda chain of sizeN = 128withTL =
3 andTR = 1 and parametersa = b = 1 (b) Ballistic scaling of conductivity,κ, with system sizeN . The parameters for Toda

chain area = 1, b = 1, ρ = 1with fixed boundary conditions. In all our simulations the bath dissipation constantλ = 1.

For small temperature differences, the thermal conductivity is given in terms of current in the sys-

tem as

κ =
N⟨j⟩

|TL − TR|
, (2.5.3)

where ⟨j⟩ =
∑N−1

x=1 ⟨jx⟩/(N − 1). As expected we find [see Fig. (2.10)] that in the NESS, the tem-

perature profile is flat and the thermal conductivity increases linearly with system size (κ ∼ N ).

These are consistent with ballistic transport in integrable system. Note that in contrast, in a dif-

fusive system, the temperature profile would be linear and thermal conductivity κwould be inde-

pendent of system size, while for an anomalous system the temperature profile is non-linear and

κ ∼ Nα with α < 1. An interesting question is to explore the dependence on the value of the bulk

temperature (say Tav) on the system parameters. We first note a simple scaling relation for the tem-

perature. The Langevin equations of motion, Eq. (2.5.2), have the following scaling symmetry: the

transformations x→ sx, b→ b/s, a→ sa, T → s2T and L→ sL leaves the equations invariant.

Using this we can write the following exact scaling relation for the temperature in the Toda lattice:

T (sa, b/s, s2TL, s
2TR, ρ/s)/s

2 = T (a, b, TL, TR, ρ), (2.5.4)

and a similar expression for current. This shows that the temperature, density and non-linearity

parameters play a role interchangeably in determining the effective anharmonicity in the system. In
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Figure 2.11: Test of scaling for different b andT as stated in Eq. (2.5.4) with fixed boundary conditions. We simulate the left hand

side of the equation for various values of s. In all simulations the system size isN = 16, TL = 4, TR = 1, dissipation
constantλ = 1 anda = 1/b. In the NESS, the average temperature in hard particle gas limit is almostTav = 2.4 ̸=

√
TLTR

while in the harmonic limit we findTav = 2.5 = (TL + TR)/2.

Fig. (2.11) we test this scaling relation in the hard-particle gas and harmonic chain limits. It is known

exactly that for the harmonic chain attached to Langevian baths Tav is given by (TR + TL)/2while

for the hard particle gas attached to Maxwell baths, it is given by
√
TLTR. The case of hard particle

gas with Langevian baths has not been studied before. In our simulation results in Fig. (2.11), we

find that for the Toda chain in the harmonic limit, we do get Tav = (TR + TL)/2, while in the

hard particle gas limit we do not obtain the expected value
√
TLTR. Emperically we find that Tav ≈

√
T1TN where T1, TN are the temperatures of the boundary particles.

Energy transport in quartic perturbation of Toda chain: Next, we add a small quartic perturba-

tion to the Toda chain which again breaks the integrable structure (in a different way than the trun-

cated Toda). The quartic perturbation to Toda lattice is defined by taking the interaction potential

to be

V (r) =
a

b
e−br + δ

r4

4
. (2.5.5)

The perturbed Toda is non-integrable and has three conservation laws with momentum conserva-

tion, hence we expect it to have anomalous transport. Here we study the effects of perturbing Toda

chain on the non-equilibrium temperature profile and current. One must note that the Toda po-

tential is a highly non-linear system and breaking its integrability is very different from breaking of

integrability by adding perturbation in the linear harmonic chain. This makes it interesting to study
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Figure 2.12: Non-Equilibrium simulations of Toda Lattice in different limits and perturbations. The left bath is kept at tempera-

tureTL = 4 and right bath is at temperatureTR = 1. All simulations are for system sizeN = 512, ρ = 1. (a) perturbations in
the Harmonic Limita = 10, b = 0.1. Surprisingly, for small perturbation, the profile is almost linear. (b) perturbations on Toda
parametersa = 1.0, b = 1.0 and (c) perturbations onHard particle limita = 0.1, b = 10. We see as we go to hard-particle

limit, a greater temperature gradient is set up for same perturbation.

the crossover of transport from ballistic to anomalous.

The perturbations to exponential interaction is of interest as it can help understand the effects

of non-linearity in heat transport. It has been suggested before that FPU chain can be viewed as

a perturbation of Toda chain [80]. In the hard-particle limit, the lattice is governed by solitons,

which are space localized. Any small perturbation in space affects the stability of the solitons and

hence they break. In the harmonic limit the dynamics is governed by phonons localized in Fourier

space. On small perturbations in real space, the large wavelength modes will be less affected. Here

we study the non-equilibrium properties of the perturbed Toda chain. Further, to study the ro-

bustness of Toda lattice to quartic perturbations, we study the temperature profile in the harmonic

chain and hard particle gas limits, with perturbations of the same strength.

In all the simulations, the density of the chain is kept fixed at ρ = 1. In harmonic limit, the pa-

rameters are a = 10, b = 0.1 and in hard-particle limit the parameters are a = 0.1, b = 10.

Three different perturbations (δ = 0.01, 0.1, 0.5) are applied and the resulting temperature gradi-

ent and heat current is studied. Fig. (2.12) shows that with the same perturbation strength, a greater

temperature gradient is set up in case of high anharmonicity. The temperature profile also shows

unexpected behavior as the perturbation is increased. In harmonic limit, b = 0.1, a quadratic per-

turbation of δ = 0.01, 0.1, 0.5 shows increase in temperature gradient as expected. Interestingly,

for small perturbation, the profile is almost linear. In case of HPG limit surprisingly, a perturbation

of δ = 0.5 creates a lesser temperature gradient than a perturbation of δ = 0.1.
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2.6 Conclusion

We have studied the spatio-temporal equilibrium correlation functions of the fluctuations of three

conserved quantities (stretch, momentum and energy) in the Toda chain. We found analytical ex-

pressions of these correlations in two different limits of the Toda chain, namely harmonic chain and

hard particle gas and verified them in direct molecular dynamics simulations. The two limits can be

argued to correspond to either phonon dominated dynamics or soliton dominated dynamics.

For generic parameter regimes, our numerical data shows that the Toda correlations always ex-

hibit ballistic scaling. We pointed out that this form is completely different from the correlations

seen in a truncated Toda potential, which exhibits the universal scaling forms predicted by nonlin-

ear fluctuating hydrodynamics of generic anharmonic chains. We carried out the transformation to

normal modes following the approach of hydrodynamics (for the three variables) and found that

this is still useful in separating the multiple peaks seen in correlation functions of the conserved

variables in an integrable system. Also, an explicit formula for the speed of sound is obtained. Un-

like non-integrable systems, the normal modes have peaks with large width (i.e. the width of the

peaks scale linearly with time). Precise conditions and proofs are necessary for ballistic scaling of

space-time correlations in classical integrable systems and remains an open interesting problem. The

question is also of interest in the context of integrable quantum systems. We have further studied

the transport in Toda chain connected to heat baths. The ballistic transport in this system implies

that the thermal conductivity diverges linearly with the system size and the temperature profile is

flat in all parameter regimes. However the precise value of the constant bulk temperature profile is

the average of two boundary temperatures only in the harmonic limit, while it is different in other

cases, including the hard-particle limit. We systematically study and comment on the temperature

profile for various cases. Finally, we studied the effect of non-integrable perturbations on the tem-

perarature profile and find that they immediately lead to non-flat temperature profiles.
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2.7 Appendix

2.7.1 Sum Rules

Here we outline the proofs of the sum rules mentioned in Sec. (2.2). The zeroth sum rule says that

for a conserved quantity, the total correlations of the system remain constant in time, i.e,

∑
x

Cαβ(x, t) =
∑
x

Cαβ(x, 0) . (2.7.1)

Recall that we are interested in correlations of the fluctuations around equilibrium values uα(x, t) =

Iα(x, t) − ⟨Iα⟩. Let us also define the current fluctuations as∆jα(x, t) = jα(x, t) − ⟨jα⟩ and the

total current Jα(t) =
∑

x j
α(x, t). From the equations of motion we get

∂tu
α(x, t) = ∆jαx−1(t)−∆jαx (t) .

Multiplying both sides by uβ(0, 0) and averaging over the initial equilibrium distribution gives

∂tC
αβ(x, t) = ⟨∆jαx−1(t)u

β(0, 0)⟩ − ⟨∆jαx (t)uβ(0, 0)⟩

= ⟨∆jα0 (0)u
β
1−x(−t)⟩ − ⟨∆jα0 (0)u

β
−x(−t)⟩ , (2.7.2)

where we used space and time-translational invariance. Summing over all sites we then get

d

dt

∑
x

Cαβ(x, t) =
∑
x

[⟨∆jα0 (0)u
β
x−1(−t)⟩ − ⟨∆jα0 (0)uβx(−t)⟩],

which vanishes, since
∑
uβx is a conserved quantity. Hence the result in Eq. (2.7.1) follows.

The other sum rules are on the moments of spatial correlation functions of conserved quantities.
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The first and second sum rules respectively state

d

dt

∑
x

xCαβ(x, t) =

N/2−1∑
x=−N/2

⟨∆jα(x, 0)uβ(0, 0)⟩

−N⟨jα(−N/2, t)β(0, 0)⟩ ,

= ⟨Jαuβ⟩ (N → ∞) (2.7.3)

d2

dt2

∑
x

x2Cαβ(x, t) = 2

N/2−1∑
−N/2

Cαβ
j (x, t),

+N

[
Cαβ

j (−N
2
, t)− Cαβ

j (
N

2
− 1, t)

]
,

= 2
∑
x

Cαβ
j (x, t) (N → ∞), (2.7.4)

whereCαβ
j (x, t) = ⟨∆jα(x, t)∆jβ(0, 0)⟩ and we note that Eq. (2.7.3) only involves an equilib-

rium equal time correlation.

The proof starts by following steps as those for Eq. (2.7.2) to get

∂tC
αβ(x, t) = ⟨∆jαx−1(0)u

β
0 (−t)⟩ − ⟨∆jαx (0)u

β
0 (−t)⟩ .

Multiplying the above equation by x, summing over all x, and after simplifications using the fact

that
∑

x u
β(x, t) = const gives Eq. (2.7.3). Taking another time derivative, and on using the conti-

nuity equations we get

d2

dt2
Cαβ(x, t) = −[⟨∆jαx−1(0)[∆j

β
−1(−t)−∆jβ0 (−t)]⟩

− ⟨∆jαx (0)[∆j
β
−1(−t)−∆jβ0 (−t)]⟩]

=
[
Cαβ

j (x+ 1, t)− 2Cαβ
j (x, t) + Cαβ

j (x− 1, t)
]
.

Multiplying the above equation by x2, summing over all x, and after simplifications using the first

sum-rule
∑

xC
αβ(x, t) = const gives Eq. (2.7.4).
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3
Velocity correlation functions in the Hard

Particle Gas in thermal equilibrium

3.1 Introduction

The hard point particle gas (HPG) is a simple example of an interacting many particle system. As

discussed in 1, the alternate mass HPG has been studied both in equilibrium and non-equilibrium

setups, and exhibits anomalous transport. On the other hand the equal mass hard particle gas is in-

tegrable and shows ballistic transport, that is NESS current is independent of system size and equi-

librium correlation functions have the scaling form t−1f(x/t). In the previous chapter, we also saw

that the equal mass HPG is obtained as a special limiting case of the Toda model.

In the HPG model, particles undergo elastic two-particle collisions with nearest neighbor par-

ticles, while in between the collisions, they move freely with constant velocity. For the equal mass

case, elastic collisions conserve energy and momentum and this means that colliding particles simply

exchange their velocities. The initial order of the particles remains the same as the particles cannot

cross each other. Using these properties it was shown by Jepsen [17] that one can effectively map

this to a gas of non-interacting particles and many exact results, such as tagged particle equilibrium

velocity correlations, could be obtained. In recent work [84, 85, 88], much simplification of this

approach was used to obtain exact results on properties of tagged particle displacements.

In this chapter we show how one compute higher order velocity correlations , by following the

methods in [84]. Specifically we considered a set of 2N + 1 particles of unit masses moving inside

a 1D box of length 2L. The ordered particles have positions and velocities given by {xi, vi} for i =
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1, 2 . . . , 2N + 1. We are interested in computing general spatio-temporal correlation functions of

velocity defined as

⟨vmi (t); vnj (0)⟩ =
[
⟨vmi (t)vnj (0)⟩ − ⟨vmi (t)⟩⟨vnj (0)⟩

]
/v̄m+n, , (3.1.1)

wherem,n are positive integers and the average is over initial configurations chosen from the equi-

librium Gibb’s distribution at temperature T and density ρ, and we have defined v̄2 = T . The

notation ⟨; ⟩ denotes only the connected part with the average part subtracted. We are interested

in computing these correlations in the thermodynamic limit withN → ∞, L → ∞ keeping

ρ = (2N + 1)/(2L) constant and with i, j taken to be particles in the bulk. Hence in all our com-

putations, we will ignore collisions with the wall. In this limit, the correlation function depends

only on the relative position of the two particles, r = i− j.

The chapter is organized as follows: In section Sec. [3.2] we define the system of equal mass hard

particles and the transformation to the non-interacting system. We then outline the main idea of

computing the two particle joint probability distribution for the equal mass HPG. We relate the

joint positional distribution to study the velocity correlations of the system in the thermodynamic

limit. We also verify the results from simulations of the microscopic system. In Sec. [3.3] we give

a heuristic derivation of the first few velocity correlations and stretch correlations. Finally we con-

clude the chapter in Sec. [3.4].

3.2 Main steps of the calculation

We consider a gas of 2N +1 particles that are initially distributed uniformly in the interval [−L,L].

The positions of the ordered particles are given by {xi} and the initial velocities {vi} are chosen

from the Gibbs distribution at temperature T , P ({vi}) =
∏

i e
−v2i /2T/

√
2πT . As mentioned

in the introduction, since we are interested only in the thermodynamic limit and in bulk proper-

ties, we do not need to include a confining wall at the ends of the interval. The particles move freely

with constant velocity between elastic collisions with the neighbors. Under a collision the parti-

cles simply exchange their velocities. This allows us to make a mapping from interacting system of

particles [Fig. 3.1(a)], where the particles collide with each other, to a system of non-interacting par-
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Figure 3.1: An interacting hard-point particles system can be constructed from a non-interacting system by exchanging tags

(colors) when two trajectories cross.

ticles [Fig. 3.1 (b)] , where the particles evolve independently and pass through each other, and we

exchange labels whenever particles cross. In fact this non-interacting picture allows one to evolve

the system directly to any final time and the corresponding trajectory in the case where the particles

are undergoing collisions can be obtained by relabeling the tags of the particles. The probability of

obtaining the trajectories in the non-interacting picture is same as that of the interacting system.

This mapping to the non-interacting gas was used by Jepsen [17] to obtain an exact solution for

velocity-velocity autocorrelation functions in the hard-particle gas. A simpler approach was recently

proposed in [84, 85, 89, 88] to obtain two particle distribution, tagged particle statistics and also a

particular case of velocity correlations withm = n = 1 in Eq. (3.1.1).

In the non-interacting picture, a particle at xwith velocity v travels to y at time t such that y =

x + vt. It is useful to rewrite the non-interacting evolution as y = x + σtv/v̄, where v̄ =
√
T is

the root-mean-square velocity of the particle and σt = v̄t. For a particle with velocity chosen from

the Maxwell distribution, the single particle propagator giving the probability of finding the particle

at y at time t is then given by

G(y, t|x, 0) =
∫ ∞

−∞
dvδ(y − x− σtv/v̄)

e−v2/2v̄2

√
2πv̄2

=
1√

2πv̄2t
e−

(y−x)2

2v̄2t2 =
1

σt
f

(
y − x

σt

)
, (3.2.1)

where the function f(x) = e−x2/2/
√
2π, and we denote themth moment by δm =

∫∞
−∞ xmf(x)dx =

[1 + (−1)m](m− 1)! ! /2 (where ! ! denotes the double factorial).

Our strategy is to compute the correlations of velocity via the two-time joint distribution func-

tion P (x, j, 0, y, k, t) defined as the probability of the jth particle being at x at time t = 0 and the
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Figure 3.2: In the non-interacting picture, there are two possibilities: (a) the jth particle at time t = 0 becomes the kth particle at

time t, (b) a second particle becomes the kth particle at time t.

kth particle being at y at time t. Following [84], this joint PDF can be readily computed using the

single particle propagator and through the mapping to non-interacting particles. In the next section

we give the details.

3.2.1 Computation of the joint probability distribution of two

particles

In terms of the non-interacting gas picture, the joint probability density, P (x, j, 0, y, k, t), of the

jth particle being at x at time t = 0 and the kth particle being at y at time t, has two indepen-

dent contributions P1(x, j, 0, y, k, t) and P2(x, j, 0, y, k, t, x̃, ỹ). Both these quantities can be

expressed in terms of the single particle propagatorG(y, t|x, 0) and another quantity which marks

label of the particles at different times. These contributions are explained below

(i) In the non-interacting gas picture, P1(x, j, 0, y, k, t) is the probability that jth particle,

which is at x at time t = 0, becomes the kth particle at y at time t [shown in Fig. 3.2(a)].

This is obtained by picking one of the non-interacting particles at random at time t = 0,

with probability 2N+1
2L

, evolving with the propagator from (x, 0) to (y, t) and multiplying

by the probability that this is the jth particle at time t = 0 and the kth particle at time t. We

thus get

P1(x, j, 0, y, k, t) =
2N + 1

2L
G(y, t|x, 0)F1N(x, j, y, k, t) , (3.2.2)

where F1N(x, j, y, k, t) is the probability that there are j − 1 particles to the left of x at

t = 0 and k − 1 particles to the left of y at time t. The explicit form of F1N can be obtained

48



by combinatorial arguments [84] and is given in 3.5.1.

(ii) Similarly, for the non-interacting gas, P2(x, j, 0, y, k, t, x̃, ỹ) is the probability that the jth

particle at x at t = 0 becomes another particle at ỹ at time t and some other particle at x̃ at

time t = 0 becomes the kth particle at x at time t [shown in Fig. 3.2(b)]. In this case, two

particles are chosen randomly at t = 0, with probability (2N+1)(2N)
(2L)2

, and are evolved with the

propagator for the transition (x, x̃, t = 0) → (ỹ, y, t). Finally we need to multiply this with

the probability, F2N(x, j, y, k, x̃, ỹ, t), that there are j − 1 particles to the left of x at t = 0

and k − 1 particles to the left of y at time t, given that there is a particle at x̃ at t = 0 and a

particle at ỹ at time t. Combining these, we get

P2(x, j, 0, y, k, t, x̃, ỹ) =
(2N + 1)(2N)

(2L)2
G(y, t|x̃, 0)G(ỹ, t|x, 0)F2N(x, j, y, k, x̃, ỹ, t) .

(3.2.3)

The explicit form of F2N can be obtained by combinatorial arguments [84] and is given in

3.5.1.

3.2.2 Relating velocity correlations to the joint positional

distribution

The contribution to velocity correlations in the interacting system comes from two separate pro-

cesses corresponding to the two joint probability distributions from the previous section. Hence we

obtain

Fnm(k, j, t) = ⟨vmk (t)vnj (0)⟩v̄−(m+n) = ⟨vmk (t)vnj (0)⟩1/v̄m+n︸ ︷︷ ︸
I

+ ⟨vmk (t)vnj (0)⟩2/v̄m+n︸ ︷︷ ︸
II

,

where I and II can be computed as follows.

(i) The first contribution comes when the jth particle at x from time t = 0 becomes the kth

particle at y after time t. In the non-interacting picture, these two particles are correlated and have

the same velocity, i.e. vk(t)
v̄

=
vj(0)

v̄
= y−x

σt
. Multiplying this with the appropriate probability

P1(x, j, 0, y, k, t) and integrating over all possible initial and final positions, we get the first contri-
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bution to velocity correlations

I =
∞∫

−∞

dx

∞∫
−∞

dy

(
y − x

σt

)m+n

P1(x, j, 0, y, k, t),

= ρσt

∞∫
−∞

dx

σt

∞∫
−∞

dy

σt

(
y − x

σt

)m+n

f

(
y − x

σt

)
F1N(x, j, y, k). (3.2.4)

(ii) The second contribution is when the jth particle at xwith velocity vj(0)

v̄
= ỹ−x

σt
at t = 0 be-

comes another particle at ỹ time t and some other particle at x̃with velocity vk(t)
v̄

= y−x̃
σt

at time

t = 0 becomes the kth particle at y at time t. Multiplying this with the appropriate probability

P2(x, j, 0, y, k, t, x̃, ỹ) and integrating over all position variables, we get

II =
∞∫

−∞

dx

∞∫
−∞

dy

∞∫
−∞

dx̃

∞∫
−∞

dỹ

(
ỹ − x

σt

)m(
y − x̃

σt

)n

P2(x, j, 0, y, k, t, x̃, ỹ),

= (ρσt)
2

∞∫
−∞

dx

σt

∞∫
−∞

dy

σt

∞∫
−∞

dx̃

σt

∞∫
−∞

dỹ

σt

(
ỹ − x

σt

)m(
y − x̃

σt

)n

× f

(
ỹ − x

σt

)
f

(
y − x̃

σt

)
F2N(x, j, y, x̃, ỹ, k, t). (3.2.5)

In both cases we are already taking the thermodynamic limit,N → ∞, L → ∞while keeping the

average density ρ = N/L constant.

3.2.3 Asymptotic results in the thermodynamic limit

Next we use the explicit forms of F1N , F2N given in 3.5.1. One can perform the integrals over x̃, ỹ

in the second term II in Eq. (3.2.5). We also make a change of integration variables from x, y to the

variables z = (x − y)/σt and z̄ = (x + y)/σt, in Eq. (3.2.4) and Eq.(3.2.5). After some amount of
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algebra we finally obtain the following expression for the velocity correlations:

Fnm(r = k − j, 0, t) = I + II = (3.2.6)

ρσt

∞∫
−∞

dz

∞∫
−∞

dz̄

2

π/2∫
−π/2

dϕ

π

π∫
−π

dθ

2π
D(z, θ, ϕ)e−2N(1−cosϕ)eiρσt(−z̄ sinϕ+z sin θ)e(ϕr−θr)eρσt2Q(z)(1−cos θ),

where Q(z) = z

z∫
0

dw f(w) +

∞∫
z

dw wf(w), (3.2.7)

D(z, θ, ϕ) = (ρσt)
−1zm+nf(z) + ∆m

1 (z)∆
n
2 (z)e

−iϕ

+∆n
1 (z)∆

m
2 (z)e

iϕ +∆m
2 (z)∆

n
2 (z)e

iθ +∆m
1 (z)∆

n
1 (z)e

−iθ, (3.2.8)

and the∆s are related to moments of the propagator

∆p
1(z) =

∞∫
z

dω ωpf(ω), ∆p
2(z) =

z∫
−∞

dω ωpf(ω), (3.2.9)

∆p
1(z) + ∆p

2(z) = δp, ∂z∆
p
1(z) = −∂z∆p

2(z) = zpf(z). (3.2.10)

Since in Eq.3.2.6 the ϕ term comes with a factor ofN , a saddle point analysis reveals that the major

contribution comes from ϕ = 0. We do a Taylor expansion around ϕ = 0, up to second order,

perform the resulting Gaussian in ϕ and then perform the resulting Gaussian integral in the variable

z̄. This then leads us to following simpler form

Fnm(r, 0, t) = ρσt

∞∫
−∞

dz

π∫
−π

dθ

2π
D(z, θ, 0)e−ρσt[2Q(z)(1−cos θ)−iz sin θ]e−iθr. (3.2.11)

We define a new scaling variable l = r/(ρσt) and rewrite the above equation as

Fnm(r = ρσtl, 0, t) = ρσt

∞∫
−∞

dz

π∫
−π

dθ

2π
D(z, θ, 0)e−ρσtI(z,θ), (3.2.12)

where, I(z, θ) = [2Q(z)(1 − cos θ) − iz sin θ − iθl]. Now we are interested in the large time

(hence vσt >> 1) behaviour and so we again use saddle point methods. We find the minimum

point z∗, θ∗, of the function I(z, θ) and expand both the functions I andD in Eq. (3.2.11) around
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this minimum. We find that the minimum can be obtained by first minimizing with respect to θ

which gives

∂

∂θ
[2Q(z)(1− cos θ)− iz sin θ + iθl]

∣∣∣
θ=θ∗

= 0, (3.2.13)

whose solution is

e±iθ∗ =
±l +

√
l2 + 4Q2(z)− z2

2Q(z)± z
. . (3.2.14)

Choosing the positive root, this then gives

I(z, θ∗) = 2Q(z)(1− cos θ∗)− iz sin θ∗ + iθ∗l, (3.2.15)

and after substituting θ∗ from Eq. 3.2.14 we get

I(z, θ∗) = 2Q(z)−
√
l2 + 4Q2(z)− z2 + l ln

[
l +
√
l2 + 4Q2(z)− z2

2Q(z) + z

]
. (3.2.16)

We now note thatQ(z) is a positive function with a minimum at z = l, where I(z = l, θ∗) = 0.

Correspondingly from Eq.3.2.14 we then get θ∗ = 0. To study the contribution at large times, we

expand Eq. (3.2.12) around the minimum point z∗ = l, θ∗ = 0, using appropriate scaling variables.

We set z = l + w
√
ϵ and θ = u

√
ϵ, where ϵ = 1/ρσt. We then obtain the expansion:

I(l + w
√
ϵ, u

√
ϵ)

ϵ
= (u2Q(l)− iuw) + C1ϵ

1/2 + C2ϵ+O(ϵ3/2) , (3.2.17)

where C1 =

(
u2wQ′(l) +

1

6
ilu3

)
, C2 = − 1

12
u2
(
−6w2Q′′(l) + u2Q(l)− 2iuw

)
.

SimilarlyD(l + w
√
ϵ, u

√
ϵ) can be expanded to give

D(l + w
√
ϵ, u

√
ϵ) = δmδn +

√
ϵ (iu∆m

2 (l))∆
n
2 (l) + iu (δm −∆m

2 (l)) (δ
n −∆n

2 (l))) + ϵf(l)lm+n

−1

2
uϵ (uδm (δn −∆n

2 (l))− u∆m
2 (l) (δ

n − 2∆n
2 (l))− 2iwf(l) (lnδm + lmδn))

+O(ϵ3/2) (3.2.18)

52



We then expand the productDe−C1ϵ1/2−C2ϵ as a power series in ϵ1/2 — let use denote this expan-

sion as EXP (this contains polynomials in u andw). Plugging all these into Eq. (3.2.12), we then get

Fnm(r = ρσtl, 0, t) =

∞∫
−∞

du

∞∫
−∞

dw

2π
e−u2Q(l)−2iuw × EXP. (3.2.19)

Finally we perform Gaussian integrations over the variables u andw to get

Fnm(r/ρσt = l, 0, t) = δmδn + (lm − δm)(l
n − δn)f(l)/ρσt +O(ϵ3/2), (3.2.20)

where δn is defined in Eq. (3.2.1). The scaled correlation function after subtracting off the mean is

then finally given by

ρσt⟨vm(l = r/ρσt, t); v
n(0, 0)⟩ = (lm − δm)(l

n − δn)f(l). (3.2.21)

In the next section we will verify this result from simulations with the microscopic dynamics of the

hard particle gas.

3.2.4 Numerical verification with Hamiltonian evolution of the

hard-particle gas

We now present results from numerical simulations of the hard particle gas. In our simulations we

considered a gas ofN hard point particles moving on a ring of length L. The density of the gas is

ρ = N/L and we choose the initial condition from an equilibrium distribution at temperature

T (i.e we distribute the particles uniformly in space and the velocity of each particle is indepen-

dently chosen from the distribution e−v2/(2T )/
√
2πT . The mapping to the independent parti-

cle picture means that time-evolution of this system can be done very efficiently. Basically, starting

from any given initial condition, we evolve the non-interacting gas up to time t. In order to get the

actual positions, we can get the correct tag of the interacting particle by simply sorting their final

positions and taking into account the effect of periodic boundaries. We then compute the corre-

lations ⟨vm(x, t); vn(0, 0)⟩ by taking averages over initial conditions. In our simulations we took
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Figure 3.3: Scaled velocity correlation functions at different times, for various choices ofm,n as obtained from simulations of

the HPG. The black curves are from the analytical result as given by Eq. (3.2.20). The curves are for t << L. The parameters in
the simulation areN = 1001,L = 1000 and temperatureT = 1.

N = 1001 particles and took averages over 108 initial conditions. In Fig. (3.3) we plot the scaled

correlation functions t⟨vm(x/t, t); vn(0, 0)⟩ (corresponding to ballistic scaling), obtained from the

microscopic simulations and compare them with the corresponding theoretical predictions from

Eq. (3.2.21). For several choices ofm,nwe find very good agreement between simulations and the-

ory, even at relatively early times. At very short times there is a small deviation from the theory and

this is expected, since the theory makes predictions for long time behaviour, well after the transient

dynamics. On the other hand, finite size effects would show up at times t ≳ O(L). The peak of the

correlation functions at time t, for odd values ofm,n, is given by xp =
√
m+ nv̄t. In contrast to

this, the sound velocity for the HPG is given by
√
3v̄. Using this, we estimate that finite size effects

would show up in correlation functions of orderm+ n, at times approximately t∗ ∼ L
v̄
√
m+n

.
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3.3 A heuristic argument and derivation of stretch and energy corre-

lations

Here we present a heuristic approach which gives the asymptotic exact results of the previous sec-

tion. These are then used to obtain the stretch and energy correlations of the HPG.

Since the initial velocities are chosen independently for each particle, the contribution to the

correlation function ⟨vr(t)v0(0)⟩ is non-zero only when the velocity of the rth particle at time t

is the same as that of the zero-th particle at time 0. The initial velocity distribution of each particle

is chosen from a Maxwell distribution f(v) = e−v2/2v̄2

√
2πv̄

, with v̄2 = kBT = 1/β. The velocity

correlation function is thus approximately given by

⟨vx(t)v0(0)⟩ =

∫
dvv2δ(x− ρvt)

f(v/v̄)

v̄

=
v̄2

ρσt

(
x

ρσt

)2
e
− 1

2
( x
ρσt

)2

√
2π

, (3.3.1)

where σt = v̄t. To compute the stretch correlations, we note that

⟨rx(t)r0(0)⟩ = ⟨[qx+1(t)− qx(t))(q1(0)− q0(0)]⟩

= − [⟨qx+1(t)q0(0)⟩ − 2⟨qx(t)q0(0)⟩+ ⟨qx−1(t)q0(0)⟩]

= −∂2x⟨(qx(t)q0(0)⟩ , (3.3.2)

where we have used the translation symmetry of the chain. Now taking two time derivatives gives

∂t⟨rx(t)r0(0)⟩ = −∂2x⟨(vx(t)q0(0)⟩ = −∂2x⟨(vx(0)q0(−t)⟩ ,

∂2t ⟨rx(t)r0(0)⟩ = ∂2x⟨(vx(0)v0(−t)⟩ = −∂2x⟨(vx(t)v0(0)⟩,

where we used time-translation invariance. Using this, the stretch correlation can be written in

terms of velocity correlations as follows:

⟨rx(t)r0(0)⟩ =
∫ t

0

dt′
∫ t′

0

dt′′∂2x⟨vx(t)v0(0)⟩ .
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This finally gives (taking the continuous x limit):

⟨rx(t)r0(0)⟩ =
1

ρ3σt

e
− 1

2
( x
ρσt

)2

√
2π

. (3.3.3)

For energy correlation, we need to compute

⟨ex(t); e0(0)⟩ = ⟨ex(t)e0(0)⟩ − ⟨ex(t)⟩⟨e0(0)⟩

=
1

4
⟨[v2x(t)− ⟨v2x(0)⟩][v20(0)− ⟨v20(0)⟩]⟩ .

A similar computation as that leading to Eq. (3.3.1) now gives

⟨ex(t); e0(0)⟩ =
v̄4

ρσt

[(
x

ρσt

)4

− 2

(
x

ρσt

)2

+ 1

]
f

(
x

ρσt

)
. (3.3.4)

To summarize, for the hard particle gas we consider initial velocities chosen from Maxwell distribu-

tion with variance v̄2 = T . The correlation functions are then given by

Crr(x, t) =
1

ρ3σt

e
− 1

2
( x
ρσt

)2

√
2π

(3.3.5)

Cpp(x, t) =
v̄2

ρσt

(
x

ρσt

)2
e
− 1

2
( x
ρσt

)2

√
2π

Cee(x, t) =
v̄4

4ρσt

[(
x

ρσt

)4

− 2

(
x

ρσt

)2

+ 1

]
e
− 1

2
( x
ρσt

)2

√
2π

.

3.4 Conclusion

Using the mapping of the HPG to a non-interacting gas, we were able to compute exact long-time

spatio-temporal correlation functions of arbitrary powers of velocities. We also discussed a heuristic

derivation of these results and then used them to obtain correlations of stretch and energy in the

HPG. Finally, we verified our analytic results, by performing simulations of the HPG using a very

efficient numerical scheme, which again uses the mapping to non-interacting particles.
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3.5 Appendix

3.5.1 Computation of F1N and F2N

The expressions for F1N(x, y, j, k, t) and F2N(x, y, x̃, ỹ, j, k, t)were explicitly computed in [84],

using combinatorial arguments. Here we give the explicit expressions:

F1N(x, y, j, k, t) =

π/2∫
−π/2

dϕ

π

π∫
−π

dθ

2π
[H(x, y, θ, ϕ, t)]2Ne−iϕ(2N+2−k+j)e−iθ(k−j), (3.5.1)

F2N(x, y, x̃, ỹ, j, k, t) =

π/2∫
−π/2

dϕ

π

π∫
−π

dθ

2π
[H(x, y, θ, ϕ, t)]2N−1e−iϕ(2N+2−k+j)e−iθ(k−j)e−iϕχ1e−iθχ2 ,

(3.5.2)

where χ1, χ2 are defined as follows

1. x̃ < x and ỹ < y , then χ1 = 1 and χ2 = 0,

2. x̃ < x and ỹ > y , then χ1 = 0 and χ2 = 1,

3. x̃ > x and ỹ < y , then χ1 = 0 and χ2 = −1,

4. x̃ > x and ỹ > y , then χ1 = −1 and χ2 = 0.

The functionH(x, y, θ, ϕ, t) is defined as

H(x, y, θ, ϕ, t) = p++(x, y, t)e
iϕ + p−−(x, y, t)e

−iϕ + p+−(x, y, t)e
iθ + p−+(x, y, t)e

−iθ,

= 1− (1− cosϕ)(p++ + p−−) + i sinϕ(p++ − p−−),

− (1− cos θ)(p+− + p−+) + i sin θ(p+− − p−+), (3.5.3)

where p−+(x, y, t) is defined as the probability that a single non-interacting particle is to the left of

x at time t = 0 and to the right of y at time t, and p+−, p−− and p++ are defined similarly. Their
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explicit forms are

p−+(x, y, t) =
1

2L

x∫
−L

dx′
L∫

y

dy′ G(y′, t|x′, 0), (3.5.4)

p+−(x, y, t) =
1

2L

L∫
y

dx′
x∫

−L

dy′ G(y′, t|x′, 0), (3.5.5)

p++(x, y, t) =
1

2L

L∫
x

dx′
L∫

y

dy′ G(y′, t|x′, 0), (3.5.6)

p+−(x, y, t) =
1

2L

x∫
−L

dx′
x∫

−L

dy′ G(y′, t|x′, 0) . (3.5.7)

We note that p−+ + p+− + p−− + p++ = 1. We can explicitly find the expressions for p±± using

the exact propagator Eq. (3.2.1). In the largeN,L limit, expanding in 1/L, we get

p−+ =
σt
2L

(
−−z

2
+Q(z)

)
+O(1/L2),

p+− =
σt
2L

(
−z
2

+Q(z)

)
+O(1/L2),

p++ =
1

2
+
σt
2L

(
− z̄
2
−Q(z)

)
+O(1/L2), (3.5.8)

p−− =
1

2
+
σt
2L

( z̄
2
−Q(z)

)
+O(1/L2),

where z = (x− y)/σt and z̄ = (x+ y)/σt and

Q(z) = z

z∫
0

dw f(w) +

∞∫
z

dw wf(w). (3.5.9)

Now, substituting these asymptotic expressions of p±± in Eq. (3.5.3) for largeN , keeping only the

dominant terms, one finds

[H(x, y, θ, ϕ, t)]2N = e−2N(1−cosϕ)eiρσtz̄ sinϕe−2ρσtQ(z)(1−cos θ)eiρσtz sin θ. (3.5.10)
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Part III

Non-local fractional equation description for

open system transport in stochastic models
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4
Harmonic chain with momentum exchange

4.1 Introduction

Energy transport across an extended system is a fundamental non-equilibrium phenomena which

is often described by the phenomenological Fourier law. This law leads to the heat equation for the

evolution of the temperature field T (y, t), which in one dimension is given by

∂tT (y, t) = (κ/c)∂2yT (y, t), (4.1.1)

where c is the specific heat capacity and κ the heat conductivity (assumed, for simplicity to be tem-

perature independent). This equation plays a central role in understanding heat transport through

macroscopic materials in several contexts.

One picture that has emerged from many studies is that, for systems with anomalous trans-

port, the standard heat diffusion equation has to be replaced by a fractional diffusion equation

[4, 52, 57, 58, 59, 61, 90]. A particular model of anomalous transport where some rigorous results

have been obtained is that of the harmonic chain whose Hamiltonian dynamics is supplemented

by a stochastic part that keeps the conservation laws (volume, energy, momentum) intact — we

will refer this model as the harmonic chain momentum exchange (HCME) model. For the in-

finite HCME system, it was shown exactly that at equilibrium the energy current autocorrela-

tion has a∼ t−1/2 decay [50]. It was also shown that, in contrast to Eq. (4.1.1), the evolution of

a localized energy perturbation e(y, t), is described by a non-local fractional diffusion equation

∂te(y, t) = −κ̄(−∆)3/4e(y, t), where κ̄ is some constant which depends on microscopic param-

eters [61]. The fractional Laplacian operator (−∆)3/4 in the infinite space is defined by its Fourier
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spectrum: |q|3/2 which for the normal Laplacian operator−∆ ≡ −∂2y is q2.

While most of the studies in HCME model consider evolution in infinite systems, it is also of

interest to study transport across a finite system connected to two reservoirs of different tempera-

tures at its two ends. For diffusive systems in this set-up, the heat equation continues to describe

both non-equilibrium steady state (NESS) and time-dependent properties. However, for anoma-

lous transport, it is a priori not clear how to write a corresponding evolution equation in a finite

domain. Since we expect this evolution to be governed by a fractional Laplacian which is a non-

local operator, it is difficult to guess its representation in a finite system from its representation in

the infinite system. Note that in the finite system one has to include the effects of the boundary

conditions which are important as the operator itself is non-local. Hence, extending its definition

to a finite domain is a non-trivial problem. Several studies have addressed this problem of obtaining

and studying fractional diffusion description in finite domain [91, 92, 93].

In this chapter we study heat transfer across the HCME model connected to two reservoirs at

its two ends. It has been observed and proved that in this model, heat current scaling with system

size is anomalous and the steady state temperature profile is inherently non-linear [4, 57? , 94]. In

the present work we provide a fractional equation description of the anomalous heat transfer both

in the stationary as well as in the non-stationary state. Using this fractional description we derive

new results related to evolution of temperature profile, equilibrium current fluctuations and to two

point correlations in NESS. Below we summarize the main results of our work along with the plan

of the chapter:

• In Sec. (4.2) we first review previous studies on the HCME model and give the derivation

of the finite domain fractional equation that follows essentially from these studies. These

studies show that the macroscopic time evolution of two-point correlations is described by a

set of coupled local linear PDEs [57, 58]. Starting from these PDEs, it can be shown that they

naturally give rise to an evolution equation for the temperature profile T (y, τ)

∂τT (y, τ) = −κ̄LT (y, τ),

governed by a fractional LaplacianL defined in a finite domain, where τ is a scaled time (see
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later). The operator L is defined in the domain 0 ≤ y ≤ 1 through it’s action

Lϕn(y) = λ3/4n ϕn(y)

on the complete Neumann basis ⟨y|ϕn⟩ = ϕn(y) =
√
2 cos(nπy) for n ≥ 1 and

⟨y|ϕ0⟩ = ϕ0(y) = 1with λn = (nπ)2. Using this representation, we show in Sec. 4.3 that

one can recover the exact results [57] for the steady state temperature and current profiles in

the HCME.

• Next in Sec. (4.4) we discuss the time evolution of the temperature profile, starting from an

arbitrary initial profile, to the long-time NESS profile. In order to solve the fractional diffu-

sion equation with Dirichlet boundary conditions for arbitrary time we are required to find

the eigenvalues and eigenvectors of the fractional operatorLwith Dirichlet boundary con-

ditions. We describe an efficient procedure to compute this eigensystem. We also provide

a detailed discussion of some properties of the eigensystem that distinguish them from the

eigensystem of the normal Laplacian operator with the same boundary conditions.

• Inspired by the fluctuating equations for energy evolution in diffusive systems[60, 95], in

Sec. (4.5) we extend the definition of the fractional equation to include fluctuations and

noise in equilibrium such that fluctuation-dissipation relation holds locally. Using the fluctu-

ating fractional equation description, we verify the validity of the equilibrium Green-Kubo

relation in finite systems — in the process we encounter some interesting mathematical iden-

tities that we establish numerically.

• Finally we study the long-range correlations in NESS in Sec. (4.6), where we propose a con-

jecture on the relation between these correlations and the Inverse of the fractional operator

L.
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4.2 Definition of Model and definition of the finite domain fractional

operator

We consider the so-called harmonic chain momentum exchange model (HCME), which consid-

ers an added stochastic component in the usual Hamiltonian dynamics of a harmonic chain. The

stochastic part is such that it preserves volume, momentum and energy conservation but the other

conserved variables of the harmonic chain are no longer conserved. Thus the stochastic model re-

stores ergodicity while preserving the important conservation laws. Here we are interested in the

open system where the system is driven by two Langevin-type heat baths. Specifically we consider

a system consisting ofN particles and attached to two heat baths. The Hamiltonian plus heat bath

part of the dynamics is described by the following equations

q̇i = pi , ṗi = ω2(qi+1 − 2qi + qi−1), 1 < i < N,

ṗ1 = ω2(q2 − 2q1)− λp1 +
√

2λTLηL, (4.2.1)

ṗN = ω2(qN−1 − 2qN)− λpN +
√
2λTRηR ,

where {qi, pi}, i = 1, 2 . . . , N , are the positions and momenta of the particles, TL, TR are the

temperatures of the left and the right Langevin baths and ηL, ηR are Gaussian white noise terms.

Additionally there is a stochastic element, such that the momenta of nearest neighbour particles

are exchanged (i.e pi+1 ↔ pi) at a rate γ. For this model the two point correlation functions

satisfy a closed set of equations. Following [58] let us denote the possible correlation matrices by

Ui,j = ⟨qiqj⟩,Vi,j = ⟨pipj⟩, andZi,j = ⟨qipj⟩. One can show that the time evolution of these

correlation functions is given by linear equations involving only these set of correlations, and source

terms that arise from the boundary driving [58]. The correlation is defined as z+i,j = (Zi,j−Zi−1,j+

Zj,i − Zj−1,i)/2. The most interesting physical observables involve the correlations Ti = Vii,

which can be taken as the definition of local temperature and the energy current J = ω2z+i,i+1 +

(γ/2) (Vi+1,i+1 − Vi,i). In theN → ∞ limit, one observes that the fields Ti and z+i,j have the

scaling forms Ti(t) = T (i/N, t/N3/2) and z+i,j = 1√
N
C(|i − j|)/N1/2, (i + j)/(2N), t/N3/2).

In terms of the following scaling variables x = |i− j|/N1/2, y = (i+ j)/(2N), τ = t/N3/2, it has
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been shown in [58] that the fields T (y, τ) andC(x, y, τ) satisfy the following coupled set of PDEs:

γ2∂4xC(x, y, τ) = ω2∂2yC(x, y, τ),

∂yT (y, τ) = −2γ∂xC(x, y, τ)|x→0, (4.2.2)

∂τT (y, τ) = ω2∂yC(x, y, τ)|x→0,

with boundary conditionsC(x, 0, τ) = C(x, 1, τ) = 0, C(∞, y, τ) = 0, ∂3xC(0, y, τ) = 0 and

T (0, τ) = TL and T (1, τ) = TR where, the domain of variables are x ∈ [0,∞) and y ∈ [0, 1]

[note that in [58] y ∈ (−1, 1)]. To study the time-evolution of the fieldsC(x, y, τ) and T (y, τ),

one has to subtract the steady state solutionsCss(x, y) and Tss(y) of the above equations (whose

explicit forms are given in [57]). The boundary conditions suggest that one expand the difference

fields using the complete Dirichlet basis ⟨y|αn⟩ = αn(y) =
√
2 sin(nπy) for n ≥ 1

C(x, y, τ)− Css(x, y) =
∞∑
n=1

Ĉn(x, τ)αn(y), (4.2.3)

T (y, τ)− Tss(y) = f(y, τ) =
∞∑
n=1

f̂n(τ)αn(y) . (4.2.4)

Following [58] one then gets (see 4.8.2) the following matrix equation for the evolution of the com-

ponents fn:

˙̂
fn =− κ̄

∞∑
k=1

Lnkf̂k, n = 1, 2, . . . ,∞, (4.2.5)

where, Lnk =
[
T Λ3/4T †]

nk
, (4.2.6)

with Tnl = ⟨αn|ϕl⟩ =
∫ 1

0
dyαn(y)ϕl(y), where ϕm(y) =

√
2 cos(mπy) form > 0, ϕ0(y) = 1

andΛml = λmδml is a diagonal matrix with λn = (nπ)2. The constant κ̄ = ω3/2/(2
√
2γ).

Therefore, the function f(x, τ)with homogeneous boundaries f(0, τ) = f(1, τ) = 0 satisfies,

∂τf(y, τ) = −κ̄Lf(y, τ). (4.2.7)
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From Eq. (4.2.6), one notices thatLnk can be written as

Lnk = ⟨ αn |L| αk ⟩ = ⟨ αn |

[
∞∑

m=0

λ3/4m | ϕm ⟩⟨ ϕm |

]
| αk ⟩, ∀ n, k = 1, 2, . . . ,∞

which allows us to identify the action of the operatorL acting on the set of basis functions ϕm

(which satisfy Neumann boundary conditions):

L| ϕm ⟩ = λ3/4m | ϕm ⟩ . (4.2.8)

It is important to notice that the above representation of the operatorL is not the “spectral frac-

tional Laplacian with Dirichlet boundary conditions” which would consist to replace ϕn by αn in

(4.2.8). This definition has been mentioned in [4] and a more mathematically rigorous derivation

has been obtained [93]. The above results imply that the temperature field T (y, τ) evolves accord-

ing to the fractional equation

∂τT (y, τ) = −κ̄LT (y, τ) = −Lκ̄T (y, τ) , (4.2.9)

where we have definedLκ̄ = κ̄L and the steady state is required to satisfy the condition Lκ̄Tss(y) =

0. To describe the evolution of the temperature profile, one is specifically interested in finding the

eigenvectors of the operatorLwhich satisfy Dirichlet boundary conditions. This can be obtained

by diagonalizing the infinite-dimensional matrix in Eq. (4.2.6). Let the eigenvector components of

this matrix be denoted by ψ(m)
n , corresponding to eigenvalue µn, so that

∑
k Lmkψ

(k)
n = µnψ

(m)
n .

Then the eigenvector in the position basis is given by ψn(y) =
∑

m ψ
(m)
n αm(y). In Sec. 4.4 we

provide an alternate and more efficient method of computing eigenvalues and eigenvectors. This

method involves finding roots of a transcendental equation and avoids diagonalization of infinite

dimensional matrices. We also discuss various properties of the spectrum there. We now describe

several results that follow for the steady state and the time evolution towards it.
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4.3 Steady state results

Let us write the steady state temperature in the form

Tss(y) = T + δT Θ(y), (4.3.1)

where T = (TL + TR)/2, δT = TL − TR and the function θ(y) satisfies the boundary conditions,

Θ(0) = 1/2,Θ(1) = −1/2 . Then expandingΘ(y) =
∑

n Θ̂nϕn(y), the stationarity condition

Lκ̄Θ = 0 along with Eq. (4.2.8) gives

∑
n

λ3/4n Θ̂nϕn = 0. (4.3.2)

Now we note the identities (see 4.8.3), which have to be understood in a distributional sense:

∑
n odd

ϕn(y) = 0,
∑
n even

ϕn(y) = −1/
√
2. (4.3.3)

Using these and the boundary conditionsΘ(0) = −Θ(1) = 1
2
we finally get

Θ(y) =
∑
n odd

c

λ
3/4
m

ϕm(y),

with c =
π3/2

[
√
8− 1]ζ(3/2)

, (4.3.4)

where ζ(s) is the Riemann-Zeta function. The temperature profile matches with the one presented

in [4, 57, 94]:

Tss(y) =T + δT
π3/2

[
√
8− 1]ζ(3/2)

∑
n odd

ϕn(y)

λ
3/4
n

. (4.3.5)

A comparison of the above equation with the microscopic simulation of the system Eq. (4.2.1) in

Fig. (4.1) shows a very good agreement. The systematic differences are due to finite size effects, as

was already noted in [57]. We next consider the steady state current. First, we observe that the frac-

tional LaplacianLκ̄ can be expressed in the form of a divergence, namely in the formLκ̄ = κ̄∂yA
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Figure 4.1: Temperature profile from Eq. (4.3.5)(solid black line) comparedwith direct numerical simulations of microscopic

system for system sizesN = 128, 256, 512. In the inset the difference between Eq. (4.3.5) and numerical simulations is plotted
for various system size.

where the operatorA is defined through the following action on Neumann basis vectors

Aϕn(y) = λ1/4n αn(y) . (4.3.6)

We then see that (4.2.9) is in the form of a continuity equation ∂τT (y, τ) = −∂yj(y, τ)with the

non-local energy current defined as j(y, τ) = κ̄AT (y, τ). Using this definition of the current and

the steady state temperature profile in (4.3.5) we immediately get the steady state current as

j

δT
=
κ̄ATss(y)

δT
=

κ̄c

2
√
2
, (4.3.7)

where we used the identity
∑

n∈odd αn(y)/λ
1/2
n = 1/(2

√
2) (4.8.3). Note that this gives us the

scaled current while the actual current is given by J = j/
√
N , in agreement with results obtained

in [57].

4.4 Time evolution of temperature profile

The fractional Laplacian equation (4.2.9) allow us to study the time evolution of the tempera-

ture profile, starting from given initial and boundary conditions, and the eventual approach to the
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steady state at large times. Here we address the problem of describing the system’s time evolution.

As before, the temperature profile at any time τ in the form T (y, τ) = Tss(y) + f(y, τ), where

again f(y, τ) satisfies Eq. (4.2.9) but with vanishing Dirichlet boundary conditions, f(0, τ) =

f(1, τ) = 0. Let {ψn} be the eigenvectors with corresponding eigenvalues µ1 < µ2 < µ3 . . . ofL

, satisfying the equation

Lψn(y) = µnψn(y) (4.4.1)

and boundary conditions ψn(0) = ψn(1) = 0. It can be shown that the operator L has a non-

degenerate and positive spectrum (see below). We can then immediately write the solution for

f(y, τ) as

f(y, τ) =
∑
n=1

f̂n(0)e
−κ̄µnτψn(y), (4.4.2)

where f̂n(0) =

∫ 1

0

dy f(y, 0)ψn(y),

are “fractional-Fourier coefficients” for the initial field f(y, 0). In the first section we outlined the

procedure followed in [58] to find the Dirichlet eigenfunctions expanding the eigenfunctions ψn in

the orthogonal basis of {αl}l≥1 as ψn(y) =
∑

l≥1 ξnlαl(y). We show here that much simplification

and better accuracy is achieved if one expands ψn directly in the Neumann basis {ϕm}m≥0.

ψ(y) =
∑
m

ζ̂mϕm(y). (4.4.3)

From Eq. (4.4.1), and using the definition ofL in Eq. (4.2.8), we have

∑
m≥0

(µ− λ3/4m )ζ̂mϕm(y) = 0. (4.4.4)

There are two sets of solution for this equation. The first set is given by

ζ̂0 = − b√
2µ
, ζ̂2k =

b

λ
3/4
2k − µ

, k ≥ 1, ζ̂2k+1 = 0, k ≥ 0 , (4.4.5)
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where we have made use of the identity
∑∞

m=1 ϕ2m(x) = −1/
√
2. The second solution set is given

by

ζ̂2k+1 =
b

λ
3/4
2k+1 − µ

, k ≥ 0, ζ̂2k = 0, k ≥ 0, (4.4.6)

where we have used the identity
∑∞

m=0 ϕ2m+1(y) = 0 (4.8.3). So far, b and µ are un-determined.

We now use the Dirichlet boundary condition ψ(0) = ζ̂0 +
√
2
∑

k≥1 ζ̂2k +
∑

k≥0 ζ̂2k+1 = 0.

From our first solution set Eq. (4.4.5) we then get the following equation satisfied by µ

∑
k≥1

1

λ
3/4
2k − µ

=
1

2µ
. (4.4.7)

Similarly, from the second solution set Eq. (4.4.6), we get

∑
k≥0

1

λ
3/4
2k+1 − µ

= 0 . (4.4.8)

The solution of either of the above two equations gives us the required eigenvalue, while Eqs. (4.4.5)-

(4.4.6) provide us with the corresponding eigenfunction, with the constant b fixed by normaliza-

tion. We label the first set of solutions by µ2n+1, ψ2n+1, n ≥ 0 and the second set by µ2n, ψ2n+2,

n ≥ 0. From the structure of the eigenvalue equations it is clear that the roots are ordered set of

numbers such that λ3/42n < µ2n+1 < λ
3/4
2n+2 and λ3/42n−1 < µ2n < λ

3/4
2n+1. Finally, introducing the

notation, ⟨f |g⟩ =
∫ 1

0
dx′f(x′)g(x′), such that ⟨x|ψn⟩ =

∫ 1

0
dxδ(x − x′)ψn(x

′) = ψn(x), the

eigenvectors can now be written explicitly as

| ψ2n+1 ⟩ = D2n+1

(
− 1√

2µ2n+1

| ϕ0 ⟩+
∑
m≥1

1

λ
3/4
2m − µ2n+1

| ϕ2m ⟩

)
, (4.4.9)

| ψ2n+2 ⟩ = D2n+2

(∑
m≥0

1

λ
3/4
2m+1 − µ2n+2

| ϕ2m+1 ⟩

)
, (4.4.10)
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whereDn, found from the normalizing condition ⟨ψn|ψn⟩ = 1, is explicitly given as,

D2n+1 =

[
1

2µ2
2n+1

+
∑
m≥1

1

(λ
3/4
2m − µ2n+1)2

]−1/2

,

D2n+2 =

[∑
m≥0

1

(λ
3/4
2m+1 − µ2n+2)2

]−1/2

. (4.4.11)

Thus, as promised, we have managed to obtain a much efficient method for computing the Dirich-

let spectrum of the fractional operatorL. The roots of the eigenvalue equations (4.4.7)-(4.4.8) are

solved numerically using Newton-Raphson method scanning in between these intervals. This pro-

cedure gives a fast and efficient way to compute the eigenvector while avoiding diagonalizing infi-

nite dimensional matrices. For large k, we have, µk ≈ λ
3/4
k .

This procedure can be generalized to a fractional operator defined through the equation

L(β)ϕn(y) = λβnϕn(y), (4.4.12)

for arbitrary β. For diffusive case (β = 1) one can obtain exact results and recover the expected

result µ(β=1)
k = π2k2 and ψk(y) = αk(y).

4.4.1 Properties of Dirichlet eigensystem of the fractional

operator in bounded domain

The numerical values of the computed eigenvalues are plotted in Fig. (4.2) in log-log scale, where

we find that for large n µn ≈ (nπ)3/2, while for smaller values n, there is a systematic deviation

from the scaling due to the fact we are now working in a bounded domain. The first three eigen-

values (µn) are approximately µ1 ≈ 2.75, µ2 ≈ 12.02, µ3 ≈ 24.22. The first eigenvalue we

have |µ1 − π3/2|/π3/2 ≈ 0.5046 (see inset in Fig. (4.2)). This eigenvalue spectrum is expected

to be identical to that in [58], upto a constant factor (see discussion in previous section). The first

few numerically computed eigenvectors are shown in Fig. (4.3). The eigenvectors are similar to sin

functions but have divergent derivatives near the left and right boundaries. In order to compare it

with corresponding sin functions, we plot in Fig. (4.4) the overlap of integral between ψn(y) and
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Figure 4.2: Eigenvalues computed from Eq. (4.4.7) and (4.4.8) plotted (blue dots) in log-log scale. Number of basis state used to

approximate the function is 600. For largen,µn ∼ (nπ)3/2, i.e. the Dirichlet andNeumann eigenvalues are same. For small
n there is a systematic difference between the two. A straight line of exponentx3/2 (black dot) is plotted alongside. In the inset
we plot, log(1 − µn/λ

3/4
n ) vs log(n), which characterizes the difference between the Dirichlet andNeumann boundary

eigenvalues. For largen the value of this function goes to zero with slope 1, suggesting he difference between the two decreases
linearly withn. The red dashed line shows that it decays with an inverse power law of exponent 1.
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Figure 4.3: The first six eigenvectors of fractional operator,ψn(y), (black) as compared to corresponding eigenfunctions of
Laplacian i.e. sin functions (blue dotted). The eigenstates are different from corresponding sin functions near the boundaries
even for largen. These eigenfunctions are computed by summing over 600 basis states.
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Figure 4.4: (a)(Left) To quantify the similarity betweenψn(y) and
√
2 sin(nπy), we plot the overlap integral, In = 1 −∫ 1

0
ψn(y)

√
2 sin(nπy) dy . For largen this seems to be saturating to a finite value, suggesting that the eigenfunctionsψn are

quite different from sin functions. (b)(right) Scaling at boundaries of the eigenvectors in log-log scale shows that at the bound-

aries, the wave-function scales as
√
y.

√
2 sin(nπy) defined as In = 1 −

∫ 1

0
ψn(y)

√
2 sin(nπy) dy. This increases and saturates to a

particular value, suggesting that the wave functions are quite different from sin functions even for

large n. Also the eigenfunctions show a non-analytic behavior at the boundaries, for example near

the left boundary one finds limy→0+ ψn(y) ∼ √
y (see Fig. 4.4b), in contrast to sin-functions for

which limy→0+ sin(nπy) ∼ y.

The eigenspectrum of fractional operator in bounded domain has been discussed earlier in the

literature, using somewhat phenomenological approaches [92, 96, 97, 98]. It is not clear if those

approaches can be related to that presented in this chapter.

4.4.2 Comparison of time evolution formula with numerical

simulations of the HCME model

We now compare the prediction from Eq. (4.4.2), with κ̄ = 1/(2
√
2), with results from direct

microscopic simulations, described by Eq. (4.2.1) with the additional stochastic exchange dynamics.

Initially the system of sizeN is prepared in a step initial condition, given by

Ti = TL, 1 ≤ i < N/2,

= TR, N/2 ≤ i ≤ N + 1. (4.4.13)
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Figure 4.5: The time evolution of temperature starting from an initial step profile. The functionΘ(y, τ) = T (y, τ) − T =
Tss(y) + f(y, τ) − T is plotted and comparedwith numerical simulations. In the left figure, dashed lines indicate simulation

results for the time-evolution, for system sizesN = 128 (red),N = 256 (blue),N = 512 (magenta). The solid lines at
different scaled times (τ ) are generated from Eq. (4.4.2) by summing over 600 basis states. (right) The same, but nowwith the

theoretical curves computed using the sin-functions instead of theψ-functions, and eigenvaluesλ
3/4
n instead ofµn. We notice

that they do not match well with simulations, specially the deviations are prominent near the two boundary.

At large times it reaches a steady state described by Eq. (4.3.5). At various intermediate times, we

plot the functionΘ(y, τ) = T (y, τ) − T = Tss(y) + f(y, τ) − T , such thatΘ(0, τ) = 1/2 =

−Θ(1, τ). In Fig. (4.5) we show the temperature profile at intermediate times from microscopic

simulation with scaled space (y = i/N ) and times (τ = t/N3/2) for various system sizes. We

note that with increasing system size, the data converges to the prediction from Eq. (4.4.2). The

difference between the numerical profiles and the predicted theoretical profile is shown in the inset.

As we increase the system size, this difference systematically decreases. We also demonstrate that

using standard Dirichlet sin-functions, instead of the ψ-functions, leads to significant differences,

especially near the boundaries.

4.5 Adding noise satisfying fluctuation dissipation to describe equilib-

rium fluctuations in finite system

In [60], the harmonic chain with random momentum flips (HCMF model) was studied. In the

HCMF, the stochastic dynamics flips the momentum of the particle and is embedded in the Hamil-

tonian dynamics such that the macroscopic dynamics is diffusive. It was shown that the equilib-

rium energy fluctuations e(x, t) = E(x, t) − ⟨E(x, t)⟩, whereE(x, t) is the local energy of the

system at time t, satisfies the noisy diffusion equation ∂te(x, t) = ∂2xe(x, t) + ∂x[DT (x, t)η(x, t)],
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with η a space-time mean zero white noise. As a note of caution, from here onwards, we use a differ-

ent notation than that of the previous sections with {x, y} ∈ [0, 1], and t is, in general, referred to

a scaled time. The aim of this section is to establish a fractional fluctuating equation for the HCME

model, which has anomalous diffusion properties. Using this equation, we establish a Green-Kubo

formula relating the equilibrium current fluctuations to the non-equilibrium current. Next, we dis-

cuss the long-range correlations and conjecture a form for the long-range correlations of energy and

test it using simulations.

The generalized equation, which we hypothesize in equilibrium at temperature T is

∂t| et ⟩ = −Lκ̄| et ⟩+
√
2κ̄∇(BT | ηt ⟩), (4.5.1)

where η(x, t) is a white Gaussian noise with ⟨η(x)⟩ = 0, ⟨η(x, t)η(y, t′)⟩ = δ(x − y)δ(t −

t′) andLκ̄ is the fractional Laplacian as defined in Eq. (4.2.9). The explicit form for the operator

BB† is established through the requirement that energy fluctuations must respect the fluctuation

dissipation (FD) in equilibrium. We define the Green function satisfying

∂tGt = −Lκ̄Gt, ⟨x|G0|x′⟩ = Gxx′

0 = δ(x− x′), (4.5.2)

with Dirichlet boundary conditions in x ∈ [0, 1]. This can then be easily expressed in terms of the

basis states {ψn}n≥1 asGxx′
t =

∑
n=1 ψn(x)ψn(x

′)e−κ̄µnt. The long-time solution to Eq. (4.5.1) is

then given by

e(x, t) =
√
2κ̄

∫ t

−∞
ds⟨ x | Gt−s | ∇(BTηs) ⟩,

=−
√
2κ̄

∫ t

−∞
ds⟨ x | ∇Gt−s | (BTηs) ⟩. (4.5.3)

The equal time correlation function in equilibrium defined asCeq(x, y) = ⟨e(x, t)e(y, t)⟩ then is
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given as

Ceq(x, y) =2κ

∫ t

−∞
ds

∫ t

−∞
ds′⟨⟨ x | ∇Gt−s | BTηs ⟩⟨ ηs′TB† | ∇Gt−s′ | y ⟩⟩,

= 2κ̄T 2

∫ t

−∞
ds ⟨ x | ∇Gt−sBB

†∇Gt−s | y ⟩, (4.5.4)

=− 2κ̄T 2

∫ t

−∞
ds⟨ x | Gt−s∇BB†∇Gt−s | y ⟩,

where the statistical average is used and we integrate out the space time white noise to give,

⟨⟨x′|Bηs⟩⟨ηs′B†|y′⟩⟩ = ⟨Bη(s)Bη(s′)⟩ = δ(s − s′)BB†(x′, y′) followed by an integration by

parts. Here, the big angles, ⟨ . . . ⟩ denote average over space-time white noise profiles whereas ⟨..|

and |..⟩ denote the bra-ket notation, e.g. ⟨x|e⟩ = e(x, t). If we identify−κ̄∇BB†∇ = Lκ̄, and

using Eq. (4.5.2) we recover FD relation in equilibrium

Ceq(x, y) = T 2

∫ t

−∞
ds (⟨ x | Gt−sLκ̄Gt−s | y ⟩+ ⟨ y | Gt−sLκ̄Gt−s | x ⟩) ,

= T 2

∫ t

−∞
ds ∂s⟨ x | Gt−sGt−s | y ⟩ = T 2δ(x− y), (4.5.5)

where we used the fact that changing x ↔ y would not change the correlation function due to time

reversal symmetry of the microscopic dynamics. The operatorBB† can consistently be defined on a

function g(x), expanded in {αn}n≥1 basis, as g(x) =
∑

n ĝnαn(x). Again, using the definition of

Lκ̄ = −κ̄∇BB†∇ in Eq. (4.2.8), we define the symmetric operatorBB† as,

∫ 1

0

dx′BB†(x, x′)g(x′) =
∞∑
n=1

1

(λn)1/4
ĝnαn(x). (4.5.6)

Note that we do not assume anything about the form of the operatorB, which would be important

if we were to study non-equilibrium phenomena where temperature is not constant in space.

The connection between theL operator with theBB† allows one to identify the current (through

continuity equation) as

j(x, t) = −κ̄
∫ 1

0

dx′ BB†(x, x′)∂x′e(x′, t). (4.5.7)
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Note that the above equation is a linear response relation, but in contrast to the diffusive case, this

relation is non-local. Such non-local linear response relation have recently been reported in [94],

where an alternate series representation of the kernelBB†(x, x′) has been provided for HCME

model with general boundary conditions. In 4.8.4, we show that the spectral representation in

Eq. (4.5.6) is completely consistent with the series representation in [94] for fixed boundary con-

dition.

4.5.1 Spatio-temporal equilibrium energy correlations

We compute the two time spatio-temporal energy correlations in equilibrium defined asCeq(x, t, y, t
′) =

⟨e(x, t)e(y, t′)⟩ and show that at large times it is given in terms of the Green functions. The two

time correlations can be analogously written down as,

Ceq(x, t, y, t
′) =2κ̄

∫ t

−∞
ds

∫ t′

−∞
ds′⟨⟨ x | ∇Gt−s | BTηs ⟩⟨ ηs′TB† | ∇Gt′−s′ | y ⟩⟩, (4.5.8)

Taking t > t′, and performing the t integral we have,

Ceq(x, t, y, t
′) = − 2κ̄T 2

∫ t′

−∞
ds ⟨ x | Gt−s∇BB†∇Gt′−s | y ⟩θ(t− t′),

where θ(t) is the Heaviside theta function. Proceeding as before and identifying−κ̄∇BB†∇ =

Lκ̄ and interchanging x, y

Ceq(x, t, y, t
′) = T 2

∫ t′

−∞
ds (⟨ x | Gt−sLκ̄Gt′−s | y ⟩+ ⟨ y | Gt−sLκ̄Gt′−s | x ⟩) ,

= T 2

∫ t′

−∞
ds∂s⟨ x | Gt−sGt′−s | y ⟩ = T 2Gxy

t−t′θ(t− t′). (4.5.9)

Along with a similar term for t < t′, we can write the two time correlations as,

Ceq(x, t, y, t
′) = ⟨ x |T 2Gt−t′θ(t− t′) + T 2Gt′−tθ(t

′ − t)| y ⟩. (4.5.10)
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4.5.2 Current fluctuations in equilibrium

Here we define the fluctuating current in the system and then establish Green-Kubo relation for the

system connecting the equilibrium current fluctuations and non-equilibrium current in the system.

We expect that since the total energy in the isolated system is conserved, the energy flow across the

system must be in continuity form ∂te(x, t) + ∂xj(x, t) = 0. Along with the definition of current

in Eq. (4.3.6), the fluctuating current operator is defined as,

| jt ⟩ = κ̄A| et ⟩ −
√
2κ̄| BTηt ⟩. (4.5.11)

From previous section, it follows that the definition of current operator asA = −BB†∇. We also

note that since the current operator is odd in derivatives, the adjoint current operator has the prop-

erty,A† = −A. Now we expect that [99] the second moment of equilibrium total current fluc-

tuations is related to the current in NESS through the Green-Kubo formula. A precise statement

is:

lim
τ→∞

⟨q2⟩δT=0

2τT 2
= lim

δT→0

j

δT
, (4.5.12)

where q(τ) =
∫ τ

0
dt
∫ 1

0
dxj(x, t). In order to verify this relation, we first express ⟨q2⟩, in terms of

the integrals of the unequal time current correlations:

⟨q2⟩δT=0

τ
=
1

τ

∫ τ

0

dt

∫ τ

0

dt′
∫ 1

0

dx

∫ 1

0

dy⟨j(x, t)j(y, t′)⟩. (4.5.13)

Using Eq. (4.5.11) the current correlations can be split into four parts:

⟨j(x, t)j(y, t′)⟩ = κ̄2⟨⟨ x |A| et ⟩⟨ et′ |A†| y ⟩⟩︸ ︷︷ ︸
I

+2κ̄T 2⟨ x | BB† | y ⟩︸ ︷︷ ︸
II

δ(t− t′) (4.5.14)

−
√
2κ̄3/2⟨⟨ x | A | et ⟩⟨ηt′TB†|y⟩⟩︸ ︷︷ ︸

III

−
√
2κ̄3/2⟨⟨x|BTηt⟩⟨ et′ | A† | y ⟩⟩︸ ︷︷ ︸

IV

.
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Part III in the above equation can be simplified to

√
2κ̄3/2⟨⟨ x | A | et ⟩⟨ηt′TB†|y⟩⟩ = 2κ̄2

∫ t

−∞
ds⟨⟨ x | AGt−s | ∇(BTηs) ⟩⟨ηt′TB†|y⟩⟩,

=− T 22κ̄2⟨ x | (A∇Gt−t′)BB
† | y ⟩θ(t− t′),

=T 22κ̄2⟨ x |AGt−t′A†| y ⟩θ(t− t′). (4.5.15)

Similarly part IV is given by

√
2κ̄3/2⟨⟨x|BTηt⟩⟨ et′ | A† | y ⟩⟩ = 2κ̄2T 2

∫ t′

−∞
ds⟨⟨x|Bηt⟩⟨ ηs(∇B)† | Gt′−sA† | y ⟩⟩,

=− T 22κ̄2⟨ x | BB†∇Gt′−tA† | y ⟩θ(t′ − t),

=T 22κ̄2⟨ x | AGt′−tA† | y ⟩θ(t′ − t),

while part I, on using (4.5.10), gives

κ̄2⟨⟨ x |A| et ⟩⟨ et′ |A†| y ⟩⟩ = T 2κ̄2
[
⟨ x |AGt−t′A†θ(t− t′) + AGt′−tA†θ(t′ − t)| y ⟩

]
.

(4.5.16)

We see that III + IV = 2I. The first term explicitly gives,

I =κ̄2
∫ 1

0

dx′
∫ 1

0

dy′A(x, x′)⟨et(x′)et′(y′)⟩A†(y′, y),

=κ̄2T 2

∫ 1

0

dx′
∫ 1

0

dy′A(x, x′)A(y, y′)G|t−t′|(x
′, y′),

=κ̄2T 2
∑
n,l,l′

ζ̂nlζ̂nl′(λlλl′)
1/4e−κ̄µn|t−t′|αl(x)αl′(y). (4.5.17)

Therefore, the contribution of the parts I− III− IV = −I in (4.5.13) gives, after doing the space and

time integrals:

∫ τ

0

dt′
∫ τ

0

dt

∫ 1

0

dx

∫ 1

0

dy (−I) = −16κ̄2T 2
∑
n

∑
ll′ odd

1

κ̄µn

[
τ +

(e−µnτ − 1)

µn

]
ζ̂nlζ̂nl′(λlλl′)

−1/4.

(4.5.18)
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On using (4.5.6), the contribution of part II in (4.5.13) gives

∫ τ

0

dt′
∫ τ

0

dt

∫ 1

0

dx

∫ 1

0

dy(II) =2κ̄T 2

∫ τ

0

dt′
∫ τ

0

dt

∫ 1

0

dx

∫ 1

0

dyBB†(x, y)δ(t− t′),

= 2κ̄T 2τ

∫ 1

0

dx

∫ 1

0

dy
∑
n

αn(x)αn(y)

λ
1/4
n

,

=16κ̄T 2τ
∑
n odd

1

λ
5/4
n

. (4.5.19)

Combining the above results we finally have

lim
τ→∞

⟨q2⟩δT=0

2τT 2
= κ̄

(
8
∑
n odd

1

λ
5/4
n

−
∑
n

∑
ll′ odd

8

µn

ζ̂nlζ̂nl′

(λlλl′)1/4

)
. (4.5.20)

The first summation yields 0.5050 . . . and the second yields≈ 0.0931, hence we get

lim
τ→∞

⟨q2⟩δT=0

2T 2τ
≈ 0.4119κ̄, (4.5.21)

which, up to numerical accuracy is consistent with the numerical value of steady state current (j/δT =

0.4124κ̄) we found in (4.3.7), thus validating the Green-Kubo formula in (4.5.12).

Note that in order to get the expected scaling in system sizeN , we need to put in the appropri-

ate length scaling of the eigenvalues and eigenfunctions, for example λn → λn/N
2 and µn →

µn/N
3/2). We also need to consider the integrated currentQ(τ) =

∫ τ

0
dt
∫ N

0
dxj(x, t) and then

one gets limτ→∞
⟨Q2⟩δT=0

2T 2τ
≈ 0.4119κ̄√

N
and J

δT
= j√

NδT
≈ 0.4124κ̄√

N
.

The above verification of the Green-Kubo identity was obtained using the fluctuating frac-

tional diffusion equation, which is valid in the limit of large system size. A natural question is as

to whether the identity is true even for a small chain with the microscopic dynamics (HCME), as

would be expected from the fluctuation theorem. In Fig. (4.6), we present a numerical comparison

of the equilibrium current fluctuations, with the non-equilibrium current, both computed from

the microscopic model for finite systems. We see clear evidence that for smallN , the Green-Kubo

relation is violated in the HCME model. We also find that the difference between the fluctuation

and response parts decreases with system size as∼ 1/N . Somewhat surprisingly, the numerically

obtained fluctuations (from HCME simulations) are very close to the response computed from the
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Figure 4.6: For themicroscopic HCMEmodel, we compute the two quantities,J/δT computed from non-equilibrium simulations

connected to heat baths and< Q2 > /(2τT 2) computed from equilibrium simulations, are plotted as a function ofN . The

black dashed curve is for the theoretical current with appropriate scaling as given in Eq. (4.3.7). We find that for smallN , these

two do not match, and the difference between the two decays as 1/N (inset), which is due to the contribution of current from

the stochastic part. This signifies that at largeN , Green-Kubo holds while for smallN , it fails.

fractional diffusion equation description. A possible reason for the failure of the fluctuation theo-

rem for small systems could be that in this model, the Hamiltonian part of the current (which goes

as 1/
√
N ), and the stochastic part of the current (∼ 1/N ) have different time-reversal symmetries.

General fractional power

In this section, we discuss a possible generalization of the results of the previous section for the

Green-Kubo identity to the case of arbitrary fractional power β of the Laplacian. There is currently

no known microscopic model in which heat transfer can be described by a fractional equation with

arbitrary β— nevertheless it is an interesting exercise as it leads to some general mathematical iden-

tities involving Riemann-zeta functions. Using the definition of fractional Laplacian in Eq. 4.4.12,

namely through the operationL(β)ϕn(x) = λβnϕn(x), we can proceed in a similar way as for the

β = 3/4 case and compute steady state properties in NESS as well as equilibrium current fluctua-

tions.
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Corresponding to Eq. (4.3.7) we then get

j

δT
=

1

8 (22β − 1) (2π)−2βζ(2β)
, (4.5.22)

and corresponding to Eq. (4.5.20) we get

lim
τ→∞

⟨q2⟩δT=0

2τT 2
= 8

(
1− 22β−4

)
π2β−4ζ(4− 2β)−

∑
n even

∑
ll′ odd

8

µ
(β)
n

ζ̂
(β)
nl ζ̂

(β)
nl′

(λlλl′)1−β
, (4.5.23)

where due to structure of ζ̂(β)n,l , only the terms with even n survives for odd l. This is computed as

before but now with power β and is explicitly given as

ζ̂
(β)
2k+2,2m+1 =

D
(β)
2k+2

λβ2m+1 − µ
(β)
2k+2

, k,m ≥ 0 , (4.5.24)

where D
(β)
2k+2 =

[∑
m≥0

1

(λβ2m+1 − µ
(β)
2k+2)

2

]−1/2

, (4.5.25)

and {µ(β)
2n }n≥1 are the ordered roots of the equation

∑
k≥0

1

λβ2k+1 − µ(β)
= 0 . (4.5.26)

All the coefficients in the above expressions are explicit and we have evaluated numerically the right

hand sides of Eqs. (4.5.22, 4.5.23) for values of β ∈ (0.5, 1.5). In Fig. (4.7), we plot these quantities

and find that they are very close to each other, hence verifying the Green-Kubo formula Eq. (4.5.12)

for general β. The differences arise from numerical error due to truncation of series and also use

of a finite number of basis functions. For β = 1, this leads to diffusive results for which the dou-

ble summation can be computed explicitly. Conversely, on the basis of the validity of the Green-

Kubo formula we are then led to conjecture a mathematical identity between the right hand sides

of Eqs. (4.5.22, 4.5.23). For β < 1/2, one has a non-convergent series summation in Eq. (4.5.23),

which leads to a breakdown of the identity in this form. This corresponds to defining zeta function

for power less than 1, and possibly analytic continuation could extend the definition to other values

of β. We believe that the relation holds true at least in the open interval β ∈ (1/2, 3/2). However,
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Figure 4.7: The numerically evaluated expressions in Eq. (4.5.22) and Eq. (4.5.23) are plotted as a function of general fractional

powerβ . The two quantities match numerically to a very good precision. The relative error between the two is plotted in the
inset.

proving it remains an open problem.

4.6 Long range correlations in NESS

For a noneqlibrium current carrying steady state, it is expected that fluctuations across the system

will develop non-zero long-range correlations. These long-range correlations is a distinguishing

feature of non-equilibrium systems with conservative dynamics [100]. In some diffusive lattice

gas as well as some Hamiltonian systems, these long-range correlations have been studied [101,

102, 103, 104, 60]. The energy correlation in the velocity flip model (HCMF) in NESS is defined

asCNESS(x, y) = ⟨e(x, t)e(y, t)⟩, where the average is taken in NESS (as t → ∞). It was shown

thatCNESS(x, y) = δT 2∆−1(x, y), where∆ is the Laplacian operator with Dirichlet boundary

conditions. From the definition of fluctuating fractional equation in equilibrium, it is tempting to

extend the definition of fluctuating fractional equation to non-equilibrium case, where the temper-

ature is space-dependent:

∂t| et ⟩ = −Lκ̄| et ⟩+
√
2κ̄∇(BTNESS| ηt ⟩), (4.6.1)
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We note that there is an ambiguity regarding the relative position of the operatorB and TNESS ,

and also with the definition for operatorB andB† separately. If we anyway proceed with a naive

replacement of T by TNESS(x) in Eq. (4.5.1), to get (4.6.1), we can perform the computation of

CNESS(x, y) and find that this does not agree with the results from direct simulations. However,

in analogy to the HCMF model, we conjecture that the NESS energy correlationsCNESS(x, y) are

given (upto a constant factor ν) by the inverse of the fractional Laplacian (in Dirichlet basis):

δT 2C(x, y) =
δT 2

ν
L−1 =

δT 2

ν

∑
n≥1

ψn(x)ψn(y)

µn

, (4.6.2)

where we have defined δT 2C(x, y) = CNESS(x, y)−TNESS(x)
2δ(x−y), with the local same-site

correlation TNESS(x)
2δ(x− y) subtracted from correlations.

Numerical verification of Eq. (4.8): We simulate the microscopic system in non-equilibrium with

two Langevian heat baths kept at different temperature. After the system is in the steady state, we

computeC(x, y) = N⟨e(i/N)e(j/N)⟩where e(i/N) = E(i/N) − ⟨E(i/N)⟩. In Fig. (4.8)

we compare our conjectured form from Eq. (4.6.2) with the results from microscopic simulations.

We see that with the constant ν ≈ 3.77, the two numerical curves (for y = 1/4 and y = 1/2)

match well with the inverse of fractional Laplacian. The constant ν is related to the total energy

fluctuations in the system at NESS as

∫ 1

0

dx

∫ 1

0

dy
δT 2

ν
L−1(x, y) +

∫ 1

0

dxT 2
NESS(x) =

∫ 1

0

dx

∫ 1

0

dy CNESS(x, y) = ⟨∆E2
tot⟩NESS.

By evaluating the integrals on the LHS and finding the RHS from numerical simulations in the

NESS, we can use the above equation to independently evaluate ν. We find that the fluctuations

⟨∆E2
tot⟩NESS , obtained from simulations in NESS, converges very slowly and with the final ac-

cessed simulation time (2 × 109 time with 108 samples) we estimate 3.51 ≤ ν ≤ 4.2. The value

ν ≈ 3.77, obtained by fitting the long range correlations data from simulation, is well within the

limits of the above estimate. We have tested (see 4.8.6) that the constant ν does not change substan-

tially with δT and T̄ , within the numerical accuracy and finite size effects. We note in 4.8.6, that if

we did the same computation with sin(nπx) basis, then the results would differ significantly. We

close this section by making a comment that proving our conjecture on the equality between the
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Figure 4.8: Non-equilibrium energy correlation functionC(x, y) in steady state of Harmonic chainmomentum exchangemodel

for y = 1/4 (left figure) and y = 1/2 (right figure). The system size considered here are forN = 128, 256withTL =
2, TR = 1 . The inverse of the fractional Laplacian (summed up to 600 basis states) andwith an arbitrary constant factor
(ν = 3.77), is plotted (black solid) along with the simulation results.

long-range correlations and the inverse fractional operator is an open question.

4.7 Conclusions

We have shown that in a particular analytically tractable model of heat conduction in one dimen-

sion, the macroscopic evolution of energy in an open system is governed by the fractional diffusion

equation. This gives us a definition of the fractional operator in a finite domain and also gives a

meaning to the fractional operator in terms of linear PDE’s (similar to the harmonic extension of

a fractional operator [105, 106]). We describe an efficient procedure to numerically construct the

eigenspectrum of this operator. In terms of this operator, we compute the steady state and time

evolution of temperature field, which we compare with microscopic simulations of the system. We

defined the fluctuating fractional equation and used it to verify the Green-Kubo relation in the sys-

tem. We also generalize the Green-Kubo for general fractional power which leads to some general

mathematical identity involving zeta functions. This identity is verified numerically. We also con-

jecture that the long-range correlations are given by the inverse of a fractional operator. Another

very interesting aspect is to study the usefulness of the eigensystem of the fractional operators in

studying other applications where the underlying dynamics can be modeled as Levy flights or Levy

walks.
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4.8 Appendix

4.8.1 Connection coefficients between sine and cosine

We can expand sin in the complete basis of cos as, αn(y) =
∑

l Tnlϕl(y), with explicit coefficients

Tnl =
∫ 1

0
dyαn(y)ϕl(y). The coefficients are given as,

Tnl =


0 if l=0, n is even,

2
√
2

πn
if l=0, n is odd,

2
π

[
δ(n+l),odd

n+l
+

δ(n−l),odd
n−l

]
, if l > 0.

(4.8.1)

4.8.2 Derivation of matrix equations of Fractional operator

Here we enumerate the steps involved in going from the set of PDE’s to the matrix representation

of L as stated in the main text. The correlation and temperature fields are expanded as,C(x, y, τ)−

Css(x, y) =
∑∞

n=1 Ĉn(x, τ)αn(y) and T (y, τ) − Tss(y) = f(y, τ) =
∑∞

n=1 f̂n(τ)αn(y).

Following [58], the first of the equations in (4.2.2) implies ∂4xĈn(x) = −4δ4nĈn(x), where δn =√
nπω/(2γ). Solving these equations with the appropriate boundary conditions one eventually

gets,

Ĉn(x, τ) = Ân(τ)e
−δnx [sin(δnx)− cos(δnx)] . (4.8.2)

86



using the PDE’s one gets

Ân(τ) = − 1

4γδn

∑
k=1

T †
kn

√
λkfk

˙̂
fm = ω2

∑
n=1

Tmn

√
λnÂn(τ)

=− ω2

4γ

∑
n,k=1

Tmn

√
λn

1

δn
T †
kn

√
λkfk

=− ω2

4γ

∑
n,k=1

Tmn
λn
δn

T †
nkfk

=− κ̄
[
T Λ3/4T †]

mk
fk (4.8.3)

where we used the property of transformation element, T †
kn

√
λk = Tkn

√
λn. with Tnl = ⟨αn|ϕl⟩ =∫ 1

0
dyαn(y)ϕl(y) and the constant κ̄.

4.8.3 Formal identities

Consider the two Fourier cosine series on [0, 1],

q =
1

2
+
∑
m odd

−2
√
2

π2m2

√
2 cos(πmq),

q2 − q =− 1

6
+
∑

m∈even

2
√
2

π2m2

√
2 cos(πmq), (4.8.4)

q2 − q =
∑

m∈odd

− 4
√
2

(nπ)3

√
2 sin(πmq).

Formally differentiating these two equations with respect to q on both sides we get two formal iden-

tities (which needs to be interpreted as distributional sense):
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∑
m odd

cos(πmq) = 0 (4.8.5)

∑
m even,
m>1

√
2cos(πmq) =− 1√

2
, (4.8.6)

∑
m odd

√
2 sin(mπq)√

λn
=

1

2
√
2
. (4.8.7)

4.8.4 Alternate series representation ofBB† and connection with

Eq. (4.5.6)

As mentioned in the main text the kernel operatorBB† has appeared earlier in the context of heat

conduction through HCME model [94]. Using non-linear hydrodynamics theory in [94], the non-

local linear response relation has been established for general boundary conditions characterized by

a reflection coefficientR =
(
λ−ω
λ+ω

)2 which vary from 0 to 1. For givenR, the expression for the

kernel is given as [94]

BB†(x, x′) =
1√
2π

∞∑
n=−∞

[
R|2n|√

|2n+ x− x′|
− R|2n+1|√

|2n+ x+ x′|

]
. (4.8.8)

The valueR = 0 corresponds to the resonance condition ω = λ for free boundary condition i.e.

q0 = q1 and qN = qN+1. On the other hand,R = 1 corresponds to fixed boundary condition. For

R = 1, one can explicitly check with the above representation that

∫ 1

0

dx′ BB†(x, x′)αm(x
′) =

1

λ
1/4
n

αm(x), (4.8.9)

which is same as Eq. (4.5.6). The proof is as follows. The LHS of Eq. (4.8.9) can be written as,

L.H.S =
1√
π

∫ 1

0

dy

[
1√

|x− y|
+

∞∑
n=1

1√
2n+ x− y

+
1√

2n− x+ y

− 1√
2n− 2 + x+ y

− 1√
2n− x− y

]
sin(mπy) (4.8.10)
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Using change of variables and separating the part in absolute value we have,

L.H.S =
1√
π

[∫ x

0

dz
sin(mπ(x− z))√

z
+

∫ 1−x

0

dz
sin(mπ(x+ z))√

z

+
∞∑
n=1

(∫ 2n+x

2n−1+x

dz
sin(mπ(2n+ x− z))√

z
+

∫ 2n+1−x

2n−x

dz
sin(mπ(z − 2n+ x))√

z

−
∫ 2n−1+x

2n−2+x

dz
sin(mπ(z − 2n+ 2− x))√

z
−
∫ 2n−x

2n−1−x

dz
sin(mπ(2n− x− z))√

z

)]

Upon using trigonometric identities this can be reduced to,

L.H.S. =
1√
π

[(∫ x

0

dz +
∞∑
n=1

(∫ 2n−1+x

2n−2+x

dz +

∫ 2n+x

2n−1+x

))sin(mπ(x− z))√
z

+

(∫ 1−x

0

dz +
∞∑
n=1

(∫ 2n−x

2n−1−x

dz +

∫ 2n+1−x

2n−x

))sin(mπ(x+ z))√
z

]
(4.8.11)

which, upon simplifying further provides the R.H.S. of Eq. (4.8.9),

1√
π

∫ ∞

0

dz

[
sin(mπ(x− z))√

z
+

sin(mπ(x+ z))√
z

]
=

1√
mπ

√
2 sin(mπx) (4.8.12)

4.8.5 Explicit expressions of some equations mentioned earlier

The total fractional equation (4.5.1) can be written explicitly as,

∂te(x, t) = ∇x

∫
dx′ [A(x′, t)e(x′, t)−B(x′, t)Tη(x′, t)] (4.8.13)

The equation for the two time equilibrium spatio-temporal correlation (Eq. (4.5.10))can be written

as,

Ceq(x, t, y, t
′) =2κ̄

∫ t

−∞
ds

∫ t′

−∞
ds′
∫
dx′
∫
dy′∇x′Gxx′

t−s⟨(BTη)(x′, s)(BTη)(y′, s′)⟩∇y′G
yy′

t′−s′

(4.8.14)
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The spatio-temporal current correlations in Eq. (4.5.14) can be explicitly written as,

⟨j(x, t)j(y, t′)⟩ =
∫
dx′
∫
dy′κ̄2A(x, x′)A(y, y′)⟨e(x′, t)e(y′, t′)⟩ (4.8.15)

+2κ̄T 2B(x, x′)B(y, y′)⟨η(x′, t)η(y′, t′)⟩ (4.8.16)

−
√
2κ̄3/2TA(x, x′)B(y, y′)⟨e(x′, t)η(y′, t′)⟩ (4.8.17)

−
√
2κ̄3/2TB(x, x′)A(y, y′)⟨η(x′, t)e(y′, t′)⟩ (4.8.18)

Since it might be a bit confusing using the symbolic vector notation for the operations in the main

text, here we show explicitly the expressions for individual terms and show the 2nd and 3rd terms

give a similar term to 1st. Eq. (4.8.15) gives,

κ̄2
∫
dx′
∫
dy′A(x, x′)A(y, y′)Gx′y′

|t−t′| = κ̄2
∫
dx′
∫
dy′BB†(x, x′)∂x′BB†(y, y′)∂y′G

x′y′

|t−t′|

=κ̄2
∫
dx′
∫
dy′A(x, x′)Gx′y′

|t−t′|A
†(y′, y) (4.8.19)

where we used the adjoint representation forA†(y, y′) = A(y′, y). Eq. (4.8.17) gives,

III =
∫
dx′
∫
dy′

√
2κ̄3/2TA(x, x′)B(y, y′)⟨e(x′, t)η(y′, t′)⟩

=− 2κ̄T 2

∫
dx′
∫
dy′
∫
dx′′

∫
dy′′

∫ t

−∞
dsBB†(x, x′)∂x′B(y, y′)Gx′x′′

t−s ∂x′′B(x′′, y′′)⟨η(y′′, s)η(y′, t′)⟩

=2κ̄T 2

∫
dx′
∫
dy′
∫
dx′′BB†(x, x′)∂x′B(y, y′)∂x′′(Gx′x′′

t−t′ )B(x′′, y′)θ(t− t′)

=2κ̄T 2

∫
dx′
∫
dy′
∫
dx′′A(x, x′)Gx′x′′

t−t′ A†(x′′, y)θ(t− t′). (4.8.20)

Eq. (4.8.18) gives,

IV =

∫
dx′
∫
dy′

√
2κ̄3/2TB(x, x′)A(y, y′)⟨η(x′, t)e(y′, t′)⟩

=− 2κ̄T 2

∫
dx′
∫
dy′
∫
dx′′

∫
dy′′

∫ t

−∞
dsB(x, x′)A(y, y′)Gy′x′′

t′−s∂x′′B(x′′, y′′)⟨η(x′, t)η(y′′, s)⟩

=2κ̄T 2

∫
dx′
∫
dy′
∫
dx′′B(x, x′)A(y, y′)∂x′′(Gy′x′′

t′−t )B(x′′, x′)θ(t′ − t)

=2κ̄T 2

∫
dx′
∫
dy′
∫
dx′′A(y, y′)Gy′x′′

t′−tA
†(x′′, x)θ(t′ − t). (4.8.21)
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Figure 4.9: Simulation results forN = 256, with 4 different temperature and exchange rate parameters mentioned in the
graph. The black curve is theoretically computed curve with ν = 3.77, we see the results from the simulation are very close to

predicted theoretical curve for the different parameters. This suggests that the parameter ν is independent of absolute value of
the applied boundary temperature, the temperature gradient of the system and the long range correlations do not depend on the

details like the stochastic exchange rate etc. The slight differences are again, hopefully a result of finite size effect.
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Figure 4.10: Herewe show that instead of usingψn andµn if we use sin andλ
3/4
n for construction of inverse of the fractional

operator, there are significant difference between the simulations with the formulaC(x, y) =
∑∞

n=1
αn(x)αn(y)

λ
3/4
n

The second term is explicit in the main-text.

4.8.6 Some tests on Long-range correlations

In Fig. (4.9) we do microscopic simulations for different temperature differences, and absolute tem-

peratures to show, to good accuracy, the constant ν does not depend on these factors. In Fig. (4.10)

we test the use of α(sin) basis instead of the ψ basis for theoretical prediction for the nature of long-

range correlations, and show it performs badly.
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5
Harmonic chain with volume exchange

5.1 Introduction

In the previous chapter we have seen that the anomalous transport in a stochastically perturbed

Harmonic chain is governed by a fractional diffusion equation. In this chapter, we look at a sim-

pler model of anomalous transport in one dimension where we derive the corresponding fractional

evolution equation for the temperature profile inside a finite domain and show explicitly how this

evolution approaches to the appropriate fractional diffusion operator in the infinite domain.

This chapter is organized as follows:

In Sec. 5.2 we define the model explicitely and then summarize our main results. Next, in Sec. 5.3

we show that the microscopic dynamics implies that in the scaling limit, the system can be described

by a coupled set of PDEs for the temperature and correlations. We solve these set of coupled PDEs

in Sec. 5.4 to obtain the steady state temperature profile as well as the correlations in the system.

In Sec. 5.5 we show that the relaxation dynamics of the temperature field is governed by a integro-

differential operator. We find the spectrum of this fractional operator and then describe the tem-

perature evolution using this fractional operator. In Sec. 5.6 we show that in the infinite domain

limit, this integro-differential operator reduces to a skew fractional operator. Finally we conclude in

Sec. 5.7.

5.2 Definition of the model and summary of results

This model consists of a finite one dimensional lattice of L sites where each site carries a ‘stretch’

variable ηi, i = 1, 2, ..., L under an onsite external potential V (ηi) = η2i /2. The lattice is attached
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to two thermal reservoirs at temperatures Tℓ and Tr on the left and right ends, respectively and sub-

jected to a volume conserving stochastic noise. The dynamics of this model has two parts: (a) the

usual deterministic part plus the Langevin terms coming from the baths and (b) a stochastic ex-

change part where ηs from any two neighboring sites, chosen at random, are exchanged at constant

rate γ. The dynamics is given by

dηi
dt

= V ′(ηi+1)− V ′(ηi−1) + δi,1

(
−λV ′(η1) +

√
2λTℓζℓ(t)

)
(5.2.1)

+ δi,L

(
−λV ′(ηL) +

√
2λTrζr(t)

)
+ stochastic exchange at rate γ,

with fixed boundary conditions (BCs) η0 = ηL+1 = 0. Here ζℓ,r(t) are mean zero and unit vari-

ance, independent Gaussian white noises. Note that, in contrast to the HCME case, this dynamics

has two conserved quantities: the ‘volume’ ηi and the energy V (ηi). This model was first intro-

duced by Bernardin and Stoltz in the closed system setup [52] where starting from the harmonic

chain with Hamiltonian given earlier, they have treated the positions qis and the momenta pis on

the same footing. Note that for harmonic chain, the dynamics of the ‘stretch’ variable ri = qi+1−qi

and the momentum variable are similar: ṙi = pi+1 − pi and ṗi = ri+1 − ri for i = 1, 2, ..., N .

Hence forN = L/2, defining η2j−1 = rj and η2j = pj , one finds that both the above equations

can be expressed in a single equation: η̇m = ηm+1 − ηm−1 form = 1, 2, ..., L. The system can also

be interpreted as a fluctuating interface where the algebraic volume of the interface at sitem is given

by ηm and the energy V (η) = η2/2 [52]. Hence, the stochastic exchange part in Eq. (5.2.1) can be

thought of as a volume-energy conserving noise. We call this model as ‘harmonic chain with volume

exchange’ (HCVE).

It has been shown that the HCVE model defined on an isolated infinite one dimensional lattice

(i.e. λ = 0 in Eq. (5.2.1) with i = −∞, ..,−1, 0, 1, ..,∞) exhibits super diffusion of energy [90]:

∂te(x, t) = −L∞[e(x, t)],

L∞ =
1√
2γ

[(−∆)3/4 −∇(−∆)1/4],
(5.2.2)

where the skew-fractional operatorL∞ has the Fourier representation |q|3/2(1 − i sgn(q))with

i =
√
−1 and sgn(q) is the Signum function. Note that the spectrum is different from that in the
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infinite HCME model. In this chapter, however, we consider the HCVE model on a finite lattice

of size L in open set up i.e. connected to heat baths at the two ends as described in Eq. (5.2.1). It is

known that in this case also, as in HCME, the stationary current scales as j ∼ L−1/2 [90].

Results - We explicitly find that in the large L limit the average energy current j = −2⟨ηiηi+1⟩ −

γ(⟨η2i+1⟩ − ⟨η2i ⟩) in the stationary state is given by

jss =
1

2

√
π

γ

(Tℓ − Tr)√
L

+O
(
1

L

)
. (5.2.3)

In the non-stationary regime, we numerically find that the temperature profile Ti(t) = ⟨η2i (t)⟩ and

the two-point correlationsCi,j(t) = ⟨ηi(t)ηj(t)⟩ for i ̸= j have the following scaling forms

Ti(t) = T
(
i

L
,
t

L3/2

)
Ci,j(t) =

1√
L
C
(
|i− j|√

L
,
i+ j

2L
,
t

L3/2

)
,

(5.2.4)

in the leading order for large L. The scaling functions T (y, τ) and C(x, y, τ) satisfy the following

equations inside the domainD = {0 ≤ x ≤ ∞ ; 0 ≤ y ≤ 1}:

∂yC(x, y, τ) = −γ∂2xC(x, y, τ) (5.2.5)

∂yT (y, τ) = −2γ [∂xC(x, y, τ)]x=0 (5.2.6)

∂τT (y, τ) = 2∂yC(0, y, τ), (5.2.7)

with C(x, y, 0)|x→∞= 0 and C(x, y, 0) = 0. We find that the exact solutions of these equations are

given by

T (y, τ) = Tss(y) + Tr(z = 1− y, τ) (5.2.8)

C(x, y, τ) = Css(x, y) + Cr(x, z = 1− y, τ). (5.2.9)

95



In the above equation, NESS part of the profiles are

Tss(y) = Tr + (Tℓ − Tr)
√

1− y,

Css(x, y) = −Tℓ − Tr
4

√
π

γ
erfc

(
x√

4γ(1− y)

)
.

(5.2.10)

The relaxation parts to the above steady states is given as

Cr(x, z, τ) = −
∫ z

0

exp
(
− x2

4γ(z−z′)

)
√

4πγ(z − z′)

∂Tr(z
′, τ)

∂z′
dz′, (5.2.11)

where Tr(z, τ) satisfies the following continuity equation:

∂τTr(z, τ) =
1

√
πγ
∂z

[∫ z

0

dz′
∂z′Tr(z

′, τ)√
z − z′

]
, (5.2.12)

inside the domain 0 ≤ z ≤ 1with BCs Tr(0, τ) = Tr(1, τ) = 0. The relaxation parts Tr(z, τ)

and Cr(x, z, τ) describe the approach towards the NESS solutions in the τ → ∞ limit. Note that

Eq. (5.2.12), can formally be written in terms of the Riemann-Liouville operator. The equations

Eq. (5.2.3), Eq. (5.2.10), Eq. (5.2.11) and Eq. (5.2.12), comprise our main results. The evolution of the

temperature in Eq. (5.2.12) is indeed given by a linear but non-local equation defined inside a finite

domain 0 ≤ z ≤ 1. However, following a similar calculation for infinite system we later show

that Eq. (5.2.12) reduces to Eq. (5.2.2) in Sec. 5.3. This establishes, without ambiguity, that the non-

local operator in Eq. (5.2.12) is the correct finite domain representation of the fractional operator

L∞ in Eq. (5.2.2). Another point to note that the temperature profile in SS, Tss(y), is asymmetric

under space reversal as the microscopic model itself does not have such symmetry. As a result, any

locally created perturbation splits into one traveling sound mode and one non-moving heat mode.

This is in contrast to the HCME model where one observes two sound modes moving in opposite

directions in addition to a non-moving heat mode [52, 107]. Consequently, in this case there is sin-

gularity in ∂yTss(y) only at one boundary and we find that the meniscus exponent [108] is again

1/2 as in the HCME model with fixed boundary conditions. Interestingly, it turns out that for this

boundary condition, both the temperature and the correlation become independent of the strength

of coupling λwith the heat baths in the large L limit.
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5.3 Derivation of the continuum equations for temperature and cor-

relations:

5.3.1 The Fokker-Planck operator and discrete equations for

correlation functions:

We start with the Fokker-Planck (FP) equation associated to the dynamics Eq. (5.2.1), which de-

scribes the evolution of the joint distribution P (η⃗, t) of η⃗ = (η1, η2, · · · , ηL) at time t :

∂tP (η⃗, t) = [Lℓ + Lb + Lex] P (η⃗, t), (5.3.1)

where,Lℓ is the Liouvillian part,Lb contains the effects of the Langevin baths at the boundaries

andLex represents the contribution from the exchange noise. The explicit expressions of the de-

terministic and Langevin parts of the Fokker Planck (FP) equation given by the operatorsLl,Lb

are

Ll =
L−1∑
i=2

(V ′(ηi−1)− V ′(ηi+1))∂ηi + V ′(ηL−1)∂ηL − V ′(η2)∂η1

Lb = λTℓ ∂
2
η1
+ λ∂η1V

′(η1) + λTr ∂
2
ηL

+ λ∂ηLV
′(ηL),

where Tℓ and Tr are the temperatures of the reservoirs on the left and right, respectively. The stochas-

tic partLex is given as

LexP = γ

L−1∑
i=1

[P (η⃗i,i+1)− P (η⃗)] , (5.3.2)

where η⃗i,i+1 denote the configuration after the exchange of variable iwith i + 1. Starting from

the FP equation in Eq. (5.3.1), we obtain the dynamical equations satisfied by Ti = ⟨η2i (t)⟩ and
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Ci,j = ⟨ηi(t)ηj(t)⟩ for i ̸= j in the bulk:

Ċij = Ci+1,j − Ci−1,j + Ci,j+1 − Ci,j−1 + γ[Ci−1,j + Ci+1,j + Ci,j−1 + Ci,j+1 − 4Ci,j],

Ċi,i+1 = Ti+1 − Ci−1,i+1 + Ci,i+2 − Ti + γ[Ci−1,i+1 + Ci,i+2 − 2Ci,i+1],

Ṫi = 2[Ci,i+1 − Ci−1,i] + γ[Ti+1 + Ti−1 − 2Ti].

(5.3.3)

Rest of the equations at the boundaries are given in Appendix. (5.8). Fortunately the equations

for two point correlations do not involve higher order correlations, which allows us to solve these

equations analytically, in the L→ ∞ limit.

5.3.2 Derivation of continuum equations for the temperature and

correlation fields from the discrete equations

In this section, we outline the steps to obtain the continuum set of PDEs Eqs. (5.2.5)-(5.2.7). We

first solve the discrete equations numerically to observe that, for large L the solutions have the

scaling properties as given in Eq. (5.2.4) where we have two length scales ofO(L) along the diag-

onal (i + j =constant) and ofO(
√
L) along perpendicular to the diagonal (|i − j|=constant)

direction, and a time scale ofO(L3/2). This time scale can be anticipated from the propagator

e−|q|3/2[1−isgn(q)]t of the Eq. (5.2.2) in Fourier space. The two length scales are understood by look-

ing at the orders of theCi,j and Ti, and their derivatives numerically. Interestingly, the scaled corre-

lation function C relaxes very fast over much shorter time scale [O(L)] compared to the evolution

time scale [O(L3/2)] of the temperature field T . Due to this fact, Eq. (5.2.5) and Eq. (5.2.6) do not

involve the time derivative. As a result the correlation function C evolves adiabatically obeying the

(anti-)diffusion Eq. (5.2.5), with a drive at the boundary by the time dependent temperature field

through Eq. (5.2.6). The equation for the temperature profile given in Eq. (5.2.7) is in the expected

continuity equation.

These observations suggest that we look for solutions of Eq. (5.3.3) in the scaling form Eq. (5.2.4).

In the non-stationary regime, we numerically find that the temperature profile Ti(t) = ⟨ηi(t)2⟩ and
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<latexit sha1_base64="fy+rzqj2AKF7ad4shxwWzht175A=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LLaCp7DpRT0IBS8eKxhbaEPZbDft0s0m7G7EEvojvHhQ8er/8ea/cdvmoK0PBh7vzTAzL0wF1wbjb6e0tr6xuVXeruzs7u0fVA+PHnSSKcp8mohEdUKimeCS+YYbwTqpYiQOBWuH45uZ335kSvNE3ptJyoKYDCWPOCXGSu3603XDxfV+tYZdPAdaJV5BalCg1a9+9QYJzWImDRVE666HUxPkRBlOBZtWeplmKaFjMmRdSyWJmQ7y+blTdGaVAYoSZUsaNFd/T+Qk1noSh7YzJmakl72Z+J/XzUx0GeRcpplhki4WRZlAJkGz39GAK0aNmFhCqOL2VkRHRBFqbEIVG4K3/PIq8RvulYvvGrWmW6RRhhM4hXPw4AKacAst8IHCGJ7hFd6c1Hlx3p2PRWvJKWaO4Q+czx/TPI4K</latexit><latexit sha1_base64="fy+rzqj2AKF7ad4shxwWzht175A=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LLaCp7DpRT0IBS8eKxhbaEPZbDft0s0m7G7EEvojvHhQ8er/8ea/cdvmoK0PBh7vzTAzL0wF1wbjb6e0tr6xuVXeruzs7u0fVA+PHnSSKcp8mohEdUKimeCS+YYbwTqpYiQOBWuH45uZ335kSvNE3ptJyoKYDCWPOCXGSu3603XDxfV+tYZdPAdaJV5BalCg1a9+9QYJzWImDRVE666HUxPkRBlOBZtWeplmKaFjMmRdSyWJmQ7y+blTdGaVAYoSZUsaNFd/T+Qk1noSh7YzJmakl72Z+J/XzUx0GeRcpplhki4WRZlAJkGz39GAK0aNmFhCqOL2VkRHRBFqbEIVG4K3/PIq8RvulYvvGrWmW6RRhhM4hXPw4AKacAst8IHCGJ7hFd6c1Hlx3p2PRWvJKWaO4Q+czx/TPI4K</latexit><latexit sha1_base64="fy+rzqj2AKF7ad4shxwWzht175A=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LLaCp7DpRT0IBS8eKxhbaEPZbDft0s0m7G7EEvojvHhQ8er/8ea/cdvmoK0PBh7vzTAzL0wF1wbjb6e0tr6xuVXeruzs7u0fVA+PHnSSKcp8mohEdUKimeCS+YYbwTqpYiQOBWuH45uZ335kSvNE3ptJyoKYDCWPOCXGSu3603XDxfV+tYZdPAdaJV5BalCg1a9+9QYJzWImDRVE666HUxPkRBlOBZtWeplmKaFjMmRdSyWJmQ7y+blTdGaVAYoSZUsaNFd/T+Qk1noSh7YzJmakl72Z+J/XzUx0GeRcpplhki4WRZlAJkGz39GAK0aNmFhCqOL2VkRHRBFqbEIVG4K3/PIq8RvulYvvGrWmW6RRhhM4hXPw4AKacAst8IHCGJ7hFd6c1Hlx3p2PRWvJKWaO4Q+czx/TPI4K</latexit>

x = 4.0
<latexit sha1_base64="/RlMRXr9oehVKehHObofhYJRtsY=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJIiqAeh4MVjBWMLbSib7aZdursJuxuxhP4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dldW19Y7O0Vd7e2d3brxwcPugkU4QGJOGJakdYU84kDQwznLZTRbGIOG1Fo5up33qkSrNE3ptxSkOBB5LFjGBjpVbt6frc9Wq9StVzvRnQMvELUoUCzV7lq9tPSCaoNIRjrTu+l5owx8owwumk3M00TTEZ4QHtWCqxoDrMZ+dO0KlV+ihOlC1p0Ez9PZFjofVYRLZTYDPUi95U/M/rZCa+DHMm08xQSeaL4owjk6Dp76jPFCWGjy3BRDF7KyJDrDAxNqGyDcFffHmZBHX3yvXu6tWGW6RRgmM4gTPw4QIacAtNCIDACJ7hFd6c1Hlx3p2PeeuKU8wcwR84nz/WSI4M</latexit><latexit sha1_base64="/RlMRXr9oehVKehHObofhYJRtsY=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJIiqAeh4MVjBWMLbSib7aZdursJuxuxhP4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dldW19Y7O0Vd7e2d3brxwcPugkU4QGJOGJakdYU84kDQwznLZTRbGIOG1Fo5up33qkSrNE3ptxSkOBB5LFjGBjpVbt6frc9Wq9StVzvRnQMvELUoUCzV7lq9tPSCaoNIRjrTu+l5owx8owwumk3M00TTEZ4QHtWCqxoDrMZ+dO0KlV+ihOlC1p0Ez9PZFjofVYRLZTYDPUi95U/M/rZCa+DHMm08xQSeaL4owjk6Dp76jPFCWGjy3BRDF7KyJDrDAxNqGyDcFffHmZBHX3yvXu6tWGW6RRgmM4gTPw4QIacAtNCIDACJ7hFd6c1Hlx3p2PeeuKU8wcwR84nz/WSI4M</latexit><latexit sha1_base64="/RlMRXr9oehVKehHObofhYJRtsY=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJIiqAeh4MVjBWMLbSib7aZdursJuxuxhP4ILx5UvPp/vPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dldW19Y7O0Vd7e2d3brxwcPugkU4QGJOGJakdYU84kDQwznLZTRbGIOG1Fo5up33qkSrNE3ptxSkOBB5LFjGBjpVbt6frc9Wq9StVzvRnQMvELUoUCzV7lq9tPSCaoNIRjrTu+l5owx8owwumk3M00TTEZ4QHtWCqxoDrMZ+dO0KlV+ihOlC1p0Ez9PZFjofVYRLZTYDPUi95U/M/rZCa+DHMm08xQSeaL4owjk6Dp76jPFCWGjy3BRDF7KyJDrDAxNqGyDcFffHmZBHX3yvXu6tWGW6RRgmM4gTPw4QIacAtNCIDACJ7hFd6c1Hlx3p2PeeuKU8wcwR84nz/WSI4M</latexit>

y = k/L
<latexit sha1_base64="2tslVHSxEMO5UAgygFLhhjvu/CE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJNe1INQ8OLBQwVjC20om+2mXbLZhN2NEEJ/hBcPKl79P978N27bHLT1wcDjvRlm5gUpZ0o7zre1srq2vrFZ2apu7+zu7dcODh9VkklCPZLwRHYDrChngnqaaU67qaQ4DjjtBNHN1O88UalYIh50nlI/xiPBQkawNlKnkV9H53eNQa3u2M4MaJm4JalDifag9tUfJiSLqdCEY6V6rpNqv8BSM8LppNrPFE0xifCI9gwVOKbKL2bnTtCpUYYoTKQpodFM/T1R4FipPA5MZ4z1WC16U/E/r5fp8NIvmEgzTQWZLwozjnSCpr+jIZOUaJ4bgolk5lZExlhiok1CVROCu/jyMvGa9pXt3DfrLbtMowLHcAJn4MIFtOAW2uABgQie4RXerNR6sd6tj3nrilXOHMEfWJ8/V56OYQ==</latexit><latexit sha1_base64="2tslVHSxEMO5UAgygFLhhjvu/CE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJNe1INQ8OLBQwVjC20om+2mXbLZhN2NEEJ/hBcPKl79P978N27bHLT1wcDjvRlm5gUpZ0o7zre1srq2vrFZ2apu7+zu7dcODh9VkklCPZLwRHYDrChngnqaaU67qaQ4DjjtBNHN1O88UalYIh50nlI/xiPBQkawNlKnkV9H53eNQa3u2M4MaJm4JalDifag9tUfJiSLqdCEY6V6rpNqv8BSM8LppNrPFE0xifCI9gwVOKbKL2bnTtCpUYYoTKQpodFM/T1R4FipPA5MZ4z1WC16U/E/r5fp8NIvmEgzTQWZLwozjnSCpr+jIZOUaJ4bgolk5lZExlhiok1CVROCu/jyMvGa9pXt3DfrLbtMowLHcAJn4MIFtOAW2uABgQie4RXerNR6sd6tj3nrilXOHMEfWJ8/V56OYQ==</latexit><latexit sha1_base64="2tslVHSxEMO5UAgygFLhhjvu/CE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJNe1INQ8OLBQwVjC20om+2mXbLZhN2NEEJ/hBcPKl79P978N27bHLT1wcDjvRlm5gUpZ0o7zre1srq2vrFZ2apu7+zu7dcODh9VkklCPZLwRHYDrChngnqaaU67qaQ4DjjtBNHN1O88UalYIh50nlI/xiPBQkawNlKnkV9H53eNQa3u2M4MaJm4JalDifag9tUfJiSLqdCEY6V6rpNqv8BSM8LppNrPFE0xifCI9gwVOKbKL2bnTtCpUYYoTKQpodFM/T1R4FipPA5MZ4z1WC16U/E/r5fp8NIvmEgzTQWZLwozjnSCpr+jIZOUaJ4bgolk5lZExlhiok1CVROCu/jyMvGa9pXt3DfrLbtMowLHcAJn4MIFtOAW2uABgQie4RXerNR6sd6tj3nrilXOHMEfWJ8/V56OYQ==</latexit>

y = k/L
<latexit sha1_base64="2tslVHSxEMO5UAgygFLhhjvu/CE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJNe1INQ8OLBQwVjC20om+2mXbLZhN2NEEJ/hBcPKl79P978N27bHLT1wcDjvRlm5gUpZ0o7zre1srq2vrFZ2apu7+zu7dcODh9VkklCPZLwRHYDrChngnqaaU67qaQ4DjjtBNHN1O88UalYIh50nlI/xiPBQkawNlKnkV9H53eNQa3u2M4MaJm4JalDifag9tUfJiSLqdCEY6V6rpNqv8BSM8LppNrPFE0xifCI9gwVOKbKL2bnTtCpUYYoTKQpodFM/T1R4FipPA5MZ4z1WC16U/E/r5fp8NIvmEgzTQWZLwozjnSCpr+jIZOUaJ4bgolk5lZExlhiok1CVROCu/jyMvGa9pXt3DfrLbtMowLHcAJn4MIFtOAW2uABgQie4RXerNR6sd6tj3nrilXOHMEfWJ8/V56OYQ==</latexit><latexit sha1_base64="2tslVHSxEMO5UAgygFLhhjvu/CE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJNe1INQ8OLBQwVjC20om+2mXbLZhN2NEEJ/hBcPKl79P978N27bHLT1wcDjvRlm5gUpZ0o7zre1srq2vrFZ2apu7+zu7dcODh9VkklCPZLwRHYDrChngnqaaU67qaQ4DjjtBNHN1O88UalYIh50nlI/xiPBQkawNlKnkV9H53eNQa3u2M4MaJm4JalDifag9tUfJiSLqdCEY6V6rpNqv8BSM8LppNrPFE0xifCI9gwVOKbKL2bnTtCpUYYoTKQpodFM/T1R4FipPA5MZ4z1WC16U/E/r5fp8NIvmEgzTQWZLwozjnSCpr+jIZOUaJ4bgolk5lZExlhiok1CVROCu/jyMvGa9pXt3DfrLbtMowLHcAJn4MIFtOAW2uABgQie4RXerNR6sd6tj3nrilXOHMEfWJ8/V56OYQ==</latexit><latexit sha1_base64="2tslVHSxEMO5UAgygFLhhjvu/CE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwFJNe1INQ8OLBQwVjC20om+2mXbLZhN2NEEJ/hBcPKl79P978N27bHLT1wcDjvRlm5gUpZ0o7zre1srq2vrFZ2apu7+zu7dcODh9VkklCPZLwRHYDrChngnqaaU67qaQ4DjjtBNHN1O88UalYIh50nlI/xiPBQkawNlKnkV9H53eNQa3u2M4MaJm4JalDifag9tUfJiSLqdCEY6V6rpNqv8BSM8LppNrPFE0xifCI9gwVOKbKL2bnTtCpUYYoTKQpodFM/T1R4FipPA5MZ4z1WC16U/E/r5fp8NIvmEgzTQWZLwozjnSCpr+jIZOUaJ4bgolk5lZExlhiok1CVROCu/jyMvGa9pXt3DfrLbtMowLHcAJn4MIFtOAW2uABgQie4RXerNR6sd6tj3nrilXOHMEfWJ8/V56OYQ==</latexit>

(a)
<latexit sha1_base64="qMWOKnbOJ5tPEo/BnQ2LiEPtRd0=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzV6We2XK27dXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxNdB1Mu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nfqN+U3fvG5VmLU+jCGdwDjXw4AqacAct8IEBh2d4hTdHOi/Ou/OxbC04+cwp/IHz+QOl+41d</latexit><latexit sha1_base64="qMWOKnbOJ5tPEo/BnQ2LiEPtRd0=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzV6We2XK27dXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxNdB1Mu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nfqN+U3fvG5VmLU+jCGdwDjXw4AqacAct8IEBh2d4hTdHOi/Ou/OxbC04+cwp/IHz+QOl+41d</latexit><latexit sha1_base64="qMWOKnbOJ5tPEo/BnQ2LiEPtRd0=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzV6We2XK27dXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxNdB1Mu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nfqN+U3fvG5VmLU+jCGdwDjXw4AqacAct8IEBh2d4hTdHOi/Ou/OxbC04+cwp/IHz+QOl+41d</latexit>

(b)
<latexit sha1_base64="leubBksM7yi8x4nLT2/laKc/+lA=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWPdiwt3fZnTMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj55NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fj27nffuLaiEQ94CTlQUyHSkSCUbSSX62Fl9V+ueLW3QXIOvFyUoEcrX75qzdIWBZzhUxSY7qem2IwpRoFk3xW6mWGp5SN6ZB3LVU05iaYLo6dkQurDEiUaFsKyUL9PTGlsTGTOLSdMcWRWfXm4n9eN8PoOpgKlWbIFVsuijJJMCHzz8lAaM5QTiyhTAt7K2EjqilDm0/JhuCtvrxO/Eb9pu7eNyrNWp5GEc7gHGrgwRU04Q5a4AMDAc/wCm+Ocl6cd+dj2Vpw8plT+APn8wengI1e</latexit><latexit sha1_base64="leubBksM7yi8x4nLT2/laKc/+lA=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWPdiwt3fZnTMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj55NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fj27nffuLaiEQ94CTlQUyHSkSCUbSSX62Fl9V+ueLW3QXIOvFyUoEcrX75qzdIWBZzhUxSY7qem2IwpRoFk3xW6mWGp5SN6ZB3LVU05iaYLo6dkQurDEiUaFsKyUL9PTGlsTGTOLSdMcWRWfXm4n9eN8PoOpgKlWbIFVsuijJJMCHzz8lAaM5QTiyhTAt7K2EjqilDm0/JhuCtvrxO/Eb9pu7eNyrNWp5GEc7gHGrgwRU04Q5a4AMDAc/wCm+Ocl6cd+dj2Vpw8plT+APn8wengI1e</latexit><latexit sha1_base64="leubBksM7yi8x4nLT2/laKc/+lA=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWPdiwt3fZnTMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj55NEmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fj27nffuLaiEQ94CTlQUyHSkSCUbSSX62Fl9V+ueLW3QXIOvFyUoEcrX75qzdIWBZzhUxSY7qem2IwpRoFk3xW6mWGp5SN6ZB3LVU05iaYLo6dkQurDEiUaFsKyUL9PTGlsTGTOLSdMcWRWfXm4n9eN8PoOpgKlWbIFVsuijJJMCHzz8lAaM5QTiyhTAt7K2EjqilDm0/JhuCtvrxO/Eb9pu7eNyrNWp5GEc7gHGrgwRU04Q5a4AMDAc/wCm+Ocl6cd+dj2Vpw8plT+APn8wengI1e</latexit>
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k

<latexit sha1_base64="dP+iso5WDNbC6SyJJ94swMNLZUA=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy0LPPg5PdD8N85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33aZX8</latexit><latexit sha1_base64="dP+iso5WDNbC6SyJJ94swMNLZUA=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy0LPPg5PdD8N85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33aZX8</latexit><latexit sha1_base64="dP+iso5WDNbC6SyJJ94swMNLZUA=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy0LPPg5PdD8N85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33aZX8</latexit> p
L
C
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0
+
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k

<latexit sha1_base64="dP+iso5WDNbC6SyJJ94swMNLZUA=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy0LPPg5PdD8N85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33aZX8</latexit><latexit sha1_base64="dP+iso5WDNbC6SyJJ94swMNLZUA=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy0LPPg5PdD8N85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33aZX8</latexit><latexit sha1_base64="dP+iso5WDNbC6SyJJ94swMNLZUA=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy0LPPg5PdD8N85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33aZX8</latexit>

p
L
C

k
+
k
0
,k
�
k
0

<latexit sha1_base64="hQLyO5s8VjFYoLCOX/qRejgqTRk=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy8Lj0LNPwlPd85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33iZX8</latexit><latexit sha1_base64="hQLyO5s8VjFYoLCOX/qRejgqTRk=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy8Lj0LNPwlPd85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33iZX8</latexit><latexit sha1_base64="hQLyO5s8VjFYoLCOX/qRejgqTRk=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy8Lj0LNPwlPd85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33iZX8</latexit>p
L
C

k
+
k
0
,k
�
k
0

<latexit sha1_base64="hQLyO5s8VjFYoLCOX/qRejgqTRk=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy8Lj0LNPwlPd85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33iZX8</latexit><latexit sha1_base64="hQLyO5s8VjFYoLCOX/qRejgqTRk=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy8Lj0LNPwlPd85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33iZX8</latexit><latexit sha1_base64="hQLyO5s8VjFYoLCOX/qRejgqTRk=">AAACAXicbVC7TsMwFHXKq5RXgAmxWLRISECUdAG2Sl0YGIpEaaU2ihzXaa04TrAdpCqKWPgVFgZArPwFG3+D22YAypHu1dE598q+x08Ylcq2v4zSwuLS8kp5tbK2vrG5ZW7v3Mo4FZi0ccxi0fWRJIxy0lZUMdJNBEGRz0jHD5sTv3NPhKQxv1HjhLgRGnIaUIyUljxzr9aXd0JlV3nTy8Lj0LNPwlPd85pnVm3LngLOE6cgVVCg5Zmf/UGM04hwhRmSsufYiXIzJBTFjOSVfipJgnCIhqSnKUcRkW42PSGHh1oZwCAWuriCU/XnRoYiKceRrycjpEbyrzcR//N6qQrO3YzyJFWE49lDQcqgiuEkDziggmDFxpogLKj+K8QjJBBWOrWKDsH5e/I8adetC8u+rlcbVpFGGeyDA3AEHHAGGuAStEAbYPAAnsALeDUejWfjzXifjZaMYmcX/ILx8Q33iZX8</latexit>

x = 2k/
p
L

<latexit sha1_base64="QYbg0yUpwEp2WUMveNRhvRjzmTs=">AAAB93icbVBNT8JAEN36ifhB1aOXjWDiqRYu6sGExIsHD5hYIYGGbJctbNhu6+7UiA2/xIsHNV79K978Ny7Qg4IvmeTlvZnMzAsSwTW47re1tLyyurZe2Chubm3vlOzdvTsdp4oyj8YiVq2AaCa4ZB5wEKyVKEaiQLBmMLyc+M0HpjSP5S2MEuZHpC95yCkBI3XtUuXxojY86eh7Bdn1uNK1y67jToEXSTUnZZSj0bW/Or2YphGTQAXRul11E/AzooBTwcbFTqpZQuiQ9FnbUEkipv1sevgYHxmlh8NYmZKAp+rviYxEWo+iwHRGBAZ63puI/3ntFMIzP+MySYFJOlsUpgJDjCcp4B5XjIIYGUKo4uZWTAdEEQomq6IJoTr/8iLxas65497UynUnT6OADtAhOkZVdIrq6Ao1kIcoStEzekVv1pP1Yr1bH7PWJSuf2Ud/YH3+ABPIkjE=</latexit><latexit sha1_base64="QYbg0yUpwEp2WUMveNRhvRjzmTs=">AAAB93icbVBNT8JAEN36ifhB1aOXjWDiqRYu6sGExIsHD5hYIYGGbJctbNhu6+7UiA2/xIsHNV79K978Ny7Qg4IvmeTlvZnMzAsSwTW47re1tLyyurZe2Chubm3vlOzdvTsdp4oyj8YiVq2AaCa4ZB5wEKyVKEaiQLBmMLyc+M0HpjSP5S2MEuZHpC95yCkBI3XtUuXxojY86eh7Bdn1uNK1y67jToEXSTUnZZSj0bW/Or2YphGTQAXRul11E/AzooBTwcbFTqpZQuiQ9FnbUEkipv1sevgYHxmlh8NYmZKAp+rviYxEWo+iwHRGBAZ63puI/3ntFMIzP+MySYFJOlsUpgJDjCcp4B5XjIIYGUKo4uZWTAdEEQomq6IJoTr/8iLxas65497UynUnT6OADtAhOkZVdIrq6Ao1kIcoStEzekVv1pP1Yr1bH7PWJSuf2Ud/YH3+ABPIkjE=</latexit><latexit sha1_base64="QYbg0yUpwEp2WUMveNRhvRjzmTs=">AAAB93icbVBNT8JAEN36ifhB1aOXjWDiqRYu6sGExIsHD5hYIYGGbJctbNhu6+7UiA2/xIsHNV79K978Ny7Qg4IvmeTlvZnMzAsSwTW47re1tLyyurZe2Chubm3vlOzdvTsdp4oyj8YiVq2AaCa4ZB5wEKyVKEaiQLBmMLyc+M0HpjSP5S2MEuZHpC95yCkBI3XtUuXxojY86eh7Bdn1uNK1y67jToEXSTUnZZSj0bW/Or2YphGTQAXRul11E/AzooBTwcbFTqpZQuiQ9FnbUEkipv1sevgYHxmlh8NYmZKAp+rviYxEWo+iwHRGBAZ63puI/3ntFMIzP+MySYFJOlsUpgJDjCcp4B5XjIIYGUKo4uZWTAdEEQomq6IJoTr/8iLxas65497UynUnT6OADtAhOkZVdIrq6Ao1kIcoStEzekVv1pP1Yr1bH7PWJSuf2Ud/YH3+ABPIkjE=</latexit>

x = 2k/
p
L

<latexit sha1_base64="QYbg0yUpwEp2WUMveNRhvRjzmTs=">AAAB93icbVBNT8JAEN36ifhB1aOXjWDiqRYu6sGExIsHD5hYIYGGbJctbNhu6+7UiA2/xIsHNV79K978Ny7Qg4IvmeTlvZnMzAsSwTW47re1tLyyurZe2Chubm3vlOzdvTsdp4oyj8YiVq2AaCa4ZB5wEKyVKEaiQLBmMLyc+M0HpjSP5S2MEuZHpC95yCkBI3XtUuXxojY86eh7Bdn1uNK1y67jToEXSTUnZZSj0bW/Or2YphGTQAXRul11E/AzooBTwcbFTqpZQuiQ9FnbUEkipv1sevgYHxmlh8NYmZKAp+rviYxEWo+iwHRGBAZ63puI/3ntFMIzP+MySYFJOlsUpgJDjCcp4B5XjIIYGUKo4uZWTAdEEQomq6IJoTr/8iLxas65497UynUnT6OADtAhOkZVdIrq6Ao1kIcoStEzekVv1pP1Yr1bH7PWJSuf2Ud/YH3+ABPIkjE=</latexit><latexit sha1_base64="QYbg0yUpwEp2WUMveNRhvRjzmTs=">AAAB93icbVBNT8JAEN36ifhB1aOXjWDiqRYu6sGExIsHD5hYIYGGbJctbNhu6+7UiA2/xIsHNV79K978Ny7Qg4IvmeTlvZnMzAsSwTW47re1tLyyurZe2Chubm3vlOzdvTsdp4oyj8YiVq2AaCa4ZB5wEKyVKEaiQLBmMLyc+M0HpjSP5S2MEuZHpC95yCkBI3XtUuXxojY86eh7Bdn1uNK1y67jToEXSTUnZZSj0bW/Or2YphGTQAXRul11E/AzooBTwcbFTqpZQuiQ9FnbUEkipv1sevgYHxmlh8NYmZKAp+rviYxEWo+iwHRGBAZ63puI/3ntFMIzP+MySYFJOlsUpgJDjCcp4B5XjIIYGUKo4uZWTAdEEQomq6IJoTr/8iLxas65497UynUnT6OADtAhOkZVdIrq6Ao1kIcoStEzekVv1pP1Yr1bH7PWJSuf2Ud/YH3+ABPIkjE=</latexit><latexit sha1_base64="QYbg0yUpwEp2WUMveNRhvRjzmTs=">AAAB93icbVBNT8JAEN36ifhB1aOXjWDiqRYu6sGExIsHD5hYIYGGbJctbNhu6+7UiA2/xIsHNV79K978Ny7Qg4IvmeTlvZnMzAsSwTW47re1tLyyurZe2Chubm3vlOzdvTsdp4oyj8YiVq2AaCa4ZB5wEKyVKEaiQLBmMLyc+M0HpjSP5S2MEuZHpC95yCkBI3XtUuXxojY86eh7Bdn1uNK1y67jToEXSTUnZZSj0bW/Or2YphGTQAXRul11E/AzooBTwcbFTqpZQuiQ9FnbUEkipv1sevgYHxmlh8NYmZKAp+rviYxEWo+iwHRGBAZ63puI/3ntFMIzP+MySYFJOlsUpgJDjCcp4B5XjIIYGUKo4uZWTAdEEQomq6IJoTr/8iLxas65497UynUnT6OADtAhOkZVdIrq6Ao1kIcoStEzekVv1pP1Yr1bH7PWJSuf2Ud/YH3+ABPIkjE=</latexit>

y = 0.25
<latexit sha1_base64="EuR9x0FbELUYTZM5Qf6yiEzSx/4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLZCTyEpiHoQCl48VjC20Iay2W7apZtN3N0IIfRPePGg4tXf481/47bNQVsfDDzem2FmXpBwprTjfFultfWNza3ydmVnd2//oHp49KDiVBLqkZjHshtgRTkT1NNMc9pNJMVRwGknmNzM/M4TlYrF4l5nCfUjPBIsZARrI3Xr2bVjN8/rg2rNsZ050CpxC1KDAu1B9as/jEkaUaEJx0r1XCfRfo6lZoTTaaWfKppgMsEj2jNU4IgqP5/fO0VnRhmiMJamhEZz9fdEjiOlsigwnRHWY7XszcT/vF6qw0s/ZyJJNRVksShMOdIxmj2PhkxSonlmCCaSmVsRGWOJiTYRVUwI7vLLq8Rr2le2c9estRpFGmU4gVNogAsX0IJbaIMHBDg8wyu8WY/Wi/VufSxaS1Yxcwx/YH3+AEmujkQ=</latexit><latexit sha1_base64="EuR9x0FbELUYTZM5Qf6yiEzSx/4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLZCTyEpiHoQCl48VjC20Iay2W7apZtN3N0IIfRPePGg4tXf481/47bNQVsfDDzem2FmXpBwprTjfFultfWNza3ydmVnd2//oHp49KDiVBLqkZjHshtgRTkT1NNMc9pNJMVRwGknmNzM/M4TlYrF4l5nCfUjPBIsZARrI3Xr2bVjN8/rg2rNsZ050CpxC1KDAu1B9as/jEkaUaEJx0r1XCfRfo6lZoTTaaWfKppgMsEj2jNU4IgqP5/fO0VnRhmiMJamhEZz9fdEjiOlsigwnRHWY7XszcT/vF6qw0s/ZyJJNRVksShMOdIxmj2PhkxSonlmCCaSmVsRGWOJiTYRVUwI7vLLq8Rr2le2c9estRpFGmU4gVNogAsX0IJbaIMHBDg8wyu8WY/Wi/VufSxaS1Yxcwx/YH3+AEmujkQ=</latexit><latexit sha1_base64="EuR9x0FbELUYTZM5Qf6yiEzSx/4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLZCTyEpiHoQCl48VjC20Iay2W7apZtN3N0IIfRPePGg4tXf481/47bNQVsfDDzem2FmXpBwprTjfFultfWNza3ydmVnd2//oHp49KDiVBLqkZjHshtgRTkT1NNMc9pNJMVRwGknmNzM/M4TlYrF4l5nCfUjPBIsZARrI3Xr2bVjN8/rg2rNsZ050CpxC1KDAu1B9as/jEkaUaEJx0r1XCfRfo6lZoTTaaWfKppgMsEj2jNU4IgqP5/fO0VnRhmiMJamhEZz9fdEjiOlsigwnRHWY7XszcT/vF6qw0s/ZyJJNRVksShMOdIxmj2PhkxSonlmCCaSmVsRGWOJiTYRVUwI7vLLq8Rr2le2c9estRpFGmU4gVNogAsX0IJbaIMHBDg8wyu8WY/Wi/VufSxaS1Yxcwx/YH3+AEmujkQ=</latexit>

y = 0.50
<latexit sha1_base64="K23efpJujBhR7byarDQM7sX1bJk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLZCTyEpiHoQCl48VjC20Iay2W7apZtN3N0IIfRPePGg4tXf481/47bNQVsfDDzem2FmXpBwprTjfFultfWNza3ydmVnd2//oHp49KDiVBLqkZjHshtgRTkT1NNMc9pNJMVRwGknmNzM/M4TlYrF4l5nCfUjPBIsZARrI3Xr2bVjnzv1QbXm2M4caJW4BalBgfag+tUfxiSNqNCEY6V6rpNoP8dSM8LptNJPFU0wmeAR7RkqcESVn8/vnaIzowxRGEtTQqO5+nsix5FSWRSYzgjrsVr2ZuJ/Xi/V4aWfM5GkmgqyWBSmHOkYzZ5HQyYp0TwzBBPJzK2IjLHERJuIKiYEd/nlVeI17SvbuWvWWo0ijTKcwCk0wIULaMEttMEDAhye4RXerEfrxXq3PhatJauYOYY/sD5/AEapjkI=</latexit><latexit sha1_base64="K23efpJujBhR7byarDQM7sX1bJk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLZCTyEpiHoQCl48VjC20Iay2W7apZtN3N0IIfRPePGg4tXf481/47bNQVsfDDzem2FmXpBwprTjfFultfWNza3ydmVnd2//oHp49KDiVBLqkZjHshtgRTkT1NNMc9pNJMVRwGknmNzM/M4TlYrF4l5nCfUjPBIsZARrI3Xr2bVjnzv1QbXm2M4caJW4BalBgfag+tUfxiSNqNCEY6V6rpNoP8dSM8LptNJPFU0wmeAR7RkqcESVn8/vnaIzowxRGEtTQqO5+nsix5FSWRSYzgjrsVr2ZuJ/Xi/V4aWfM5GkmgqyWBSmHOkYzZ5HQyYp0TwzBBPJzK2IjLHERJuIKiYEd/nlVeI17SvbuWvWWo0ijTKcwCk0wIULaMEttMEDAhye4RXerEfrxXq3PhatJauYOYY/sD5/AEapjkI=</latexit><latexit sha1_base64="K23efpJujBhR7byarDQM7sX1bJk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLZCTyEpiHoQCl48VjC20Iay2W7apZtN3N0IIfRPePGg4tXf481/47bNQVsfDDzem2FmXpBwprTjfFultfWNza3ydmVnd2//oHp49KDiVBLqkZjHshtgRTkT1NNMc9pNJMVRwGknmNzM/M4TlYrF4l5nCfUjPBIsZARrI3Xr2bVjnzv1QbXm2M4caJW4BalBgfag+tUfxiSNqNCEY6V6rpNoP8dSM8LptNJPFU0wmeAR7RkqcESVn8/vnaIzowxRGEtTQqO5+nsix5FSWRSYzgjrsVr2ZuJ/Xi/V4aWfM5GkmgqyWBSmHOkYzZ5HQyYp0TwzBBPJzK2IjLHERJuIKiYEd/nlVeI17SvbuWvWWo0ijTKcwCk0wIULaMEttMEDAhye4RXerEfrxXq3PhatJauYOYY/sD5/AEapjkI=</latexit>

(c)
<latexit sha1_base64="vjqPzwovJ+Amys3tzeZHf7PU+Ls=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzV2We2XK27dXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxNdB1Mu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nfqN+U3fvG5VmLU+jCGdwDjXw4AqacAct8IEBh2d4hTdHOi/Ou/OxbC04+cwp/IHz+QOpBY1f</latexit><latexit sha1_base64="vjqPzwovJ+Amys3tzeZHf7PU+Ls=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzV2We2XK27dXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxNdB1Mu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nfqN+U3fvG5VmLU+jCGdwDjXw4AqacAct8IEBh2d4hTdHOi/Ou/OxbC04+cwp/IHz+QOpBY1f</latexit><latexit sha1_base64="vjqPzwovJ+Amys3tzeZHf7PU+Ls=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzV2We2XK27dXYCsEy8nFcjR6pe/eoOEZTFKwwTVuuu5qQmmVBnOBM5KvUxjStmYDrFrqaQx6mC6OHZGLqwyIFGibElDFurviSmNtZ7Eoe2MqRnpVW8u/ud1MxNdB1Mu08ygZMtFUSaIScj8czLgCpkRE0soU9zeStiIKsqMzadkQ/BWX14nfqN+U3fvG5VmLU+jCGdwDjXw4AqacAct8IEBh2d4hTdHOi/Ou/OxbC04+cwp/IHz+QOpBY1f</latexit>

(d)
<latexit sha1_base64="abCRRufDGV9SW2DEhcfBpek/e0o=">AAAB63icbVBNT8JAEJ3iF+IX6tHLRjDBC2m5qDcSLx4xsUICDdlut7Bhu9vsbk1Iw2/w4kGNV/+QN/+NC/Sg4EsmeXlvJjPzwpQzbVz32yltbG5t75R3K3v7B4dH1eOTRy0zRahPJJeqF2JNORPUN8xw2ksVxUnIaTec3M797hNVmknxYKYpDRI8EixmBBsr+fVGdFkfVmtu010ArROvIDUo0BlWvwaRJFlChSEca9333NQEOVaGEU5nlUGmaYrJBI9o31KBE6qDfHHsDF1YJUKxVLaEQQv190SOE62nSWg7E2zGetWbi/95/czE10HORJoZKshyUZxxZCSaf44ipigxfGoJJorZWxEZY4WJsflUbAje6svrxG81b5rufavWbhRplOEMzqEBHlxBG+6gAz4QYPAMr/DmCOfFeXc+lq0lp5g5hT9wPn8AqoqNYA==</latexit><latexit sha1_base64="abCRRufDGV9SW2DEhcfBpek/e0o=">AAAB63icbVBNT8JAEJ3iF+IX6tHLRjDBC2m5qDcSLx4xsUICDdlut7Bhu9vsbk1Iw2/w4kGNV/+QN/+NC/Sg4EsmeXlvJjPzwpQzbVz32yltbG5t75R3K3v7B4dH1eOTRy0zRahPJJeqF2JNORPUN8xw2ksVxUnIaTec3M797hNVmknxYKYpDRI8EixmBBsr+fVGdFkfVmtu010ArROvIDUo0BlWvwaRJFlChSEca9333NQEOVaGEU5nlUGmaYrJBI9o31KBE6qDfHHsDF1YJUKxVLaEQQv190SOE62nSWg7E2zGetWbi/95/czE10HORJoZKshyUZxxZCSaf44ipigxfGoJJorZWxEZY4WJsflUbAje6svrxG81b5rufavWbhRplOEMzqEBHlxBG+6gAz4QYPAMr/DmCOfFeXc+lq0lp5g5hT9wPn8AqoqNYA==</latexit><latexit sha1_base64="abCRRufDGV9SW2DEhcfBpek/e0o=">AAAB63icbVBNT8JAEJ3iF+IX6tHLRjDBC2m5qDcSLx4xsUICDdlut7Bhu9vsbk1Iw2/w4kGNV/+QN/+NC/Sg4EsmeXlvJjPzwpQzbVz32yltbG5t75R3K3v7B4dH1eOTRy0zRahPJJeqF2JNORPUN8xw2ksVxUnIaTec3M797hNVmknxYKYpDRI8EixmBBsr+fVGdFkfVmtu010ArROvIDUo0BlWvwaRJFlChSEca9333NQEOVaGEU5nlUGmaYrJBI9o31KBE6qDfHHsDF1YJUKxVLaEQQv190SOE62nSWg7E2zGetWbi/95/czE10HORJoZKshyUZxxZCSaf44ipigxfGoJJorZWxEZY4WJsflUbAje6svrxG81b5rufavWbhRplOEMzqEBHlxBG+6gAz4QYPAMr/DmCOfFeXc+lq0lp5g5hT9wPn8AqoqNYA==</latexit>
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<latexit sha1_base64="KcnwS56Wn1dlY25Ep7xNmMd8+fo=">AAACGXicbZDLSsNAFIYn9VbrLerSzWArtKAhKYi6K7hxWaGxhSaEyXTSDp1cmJkIJfQ53PgqblyouNSVb+OkzaK2Hhj4+P9zmHN+P2FUSNP80Upr6xubW+Xtys7u3v6Bfnj0IOKUY2LjmMW85yNBGI2ILalkpJdwgkKfka4/vs397iPhgsZRR04S4oZoGNGAYiSV5OlWzQmRHGHEss60bhpm8/LckShtXCzoXiZEYTZqnl5VNCu4ClYBVVBU29O/nEGM05BEEjMkRN8yE+lmiEuKGZlWnFSQBOExGpK+wgiFRLjZ7LQpPFPKAAYxVy+ScKYuTmQoFGIS+qoz31cse7n4n9dPZXDtZjRKUkkiPP8oSBmUMcxzggPKCZZsogBhTtWuEI8QR1iqNCsqBGv55FWwm8aNYd43qy2jSKMMTsApqAMLXIEWuANtYAMMnsALeAPv2rP2qn1on/PWklbMHIM/pX3/AuavnmY=</latexit><latexit sha1_base64="KcnwS56Wn1dlY25Ep7xNmMd8+fo=">AAACGXicbZDLSsNAFIYn9VbrLerSzWArtKAhKYi6K7hxWaGxhSaEyXTSDp1cmJkIJfQ53PgqblyouNSVb+OkzaK2Hhj4+P9zmHN+P2FUSNP80Upr6xubW+Xtys7u3v6Bfnj0IOKUY2LjmMW85yNBGI2ILalkpJdwgkKfka4/vs397iPhgsZRR04S4oZoGNGAYiSV5OlWzQmRHGHEss60bhpm8/LckShtXCzoXiZEYTZqnl5VNCu4ClYBVVBU29O/nEGM05BEEjMkRN8yE+lmiEuKGZlWnFSQBOExGpK+wgiFRLjZ7LQpPFPKAAYxVy+ScKYuTmQoFGIS+qoz31cse7n4n9dPZXDtZjRKUkkiPP8oSBmUMcxzggPKCZZsogBhTtWuEI8QR1iqNCsqBGv55FWwm8aNYd43qy2jSKMMTsApqAMLXIEWuANtYAMMnsALeAPv2rP2qn1on/PWklbMHIM/pX3/AuavnmY=</latexit><latexit sha1_base64="KcnwS56Wn1dlY25Ep7xNmMd8+fo=">AAACGXicbZDLSsNAFIYn9VbrLerSzWArtKAhKYi6K7hxWaGxhSaEyXTSDp1cmJkIJfQ53PgqblyouNSVb+OkzaK2Hhj4+P9zmHN+P2FUSNP80Upr6xubW+Xtys7u3v6Bfnj0IOKUY2LjmMW85yNBGI2ILalkpJdwgkKfka4/vs397iPhgsZRR04S4oZoGNGAYiSV5OlWzQmRHGHEss60bhpm8/LckShtXCzoXiZEYTZqnl5VNCu4ClYBVVBU29O/nEGM05BEEjMkRN8yE+lmiEuKGZlWnFSQBOExGpK+wgiFRLjZ7LQpPFPKAAYxVy+ScKYuTmQoFGIS+qoz31cse7n4n9dPZXDtZjRKUkkiPP8oSBmUMcxzggPKCZZsogBhTtWuEI8QR1iqNCsqBGv55FWwm8aNYd43qy2jSKMMTsApqAMLXIEWuANtYAMMnsALeAPv2rP2qn1on/PWklbMHIM/pX3/AuavnmY=</latexit>

⌧ = t/L3/2
<latexit sha1_base64="2do/fZuDtvZuPQeMQ6YiIPV6VQM=">AAAB+HicbVBNT8JAEN36ifhV9ehlI5h4KgUP6sGExIsHD5hYIYFKtssWNmy3ze6UhDT8Ey8e1Hj1p3jz37hADwq+ZJKX92YyMy9IBNfgut/Wyura+sZmYau4vbO7t28fHD7qOFWUeTQWsWoFRDPBJfOAg2CtRDESBYI1g+HN1G+OmNI8lg8wTpgfkb7kIacEjNS17XIHSHoNlbun7LxSm5S7dsl13BnwMqnmpIRyNLr2V6cX0zRiEqggWrerbgJ+RhRwKtik2Ek1Swgdkj5rGypJxLSfzS6f4FOj9HAYK1MS8Ez9PZGRSOtxFJjOiMBAL3pT8T+vnUJ46WdcJikwSeeLwlRgiPE0BtzjilEQY0MIVdzciumAKELBhFU0IVQXX14mXs25ctz7Wqnu5GkU0DE6QWeoii5QHd2iBvIQRSP0jF7Rm5VZL9a79TFvXbHymSP0B9bnD/cakgw=</latexit><latexit sha1_base64="2do/fZuDtvZuPQeMQ6YiIPV6VQM=">AAAB+HicbVBNT8JAEN36ifhV9ehlI5h4KgUP6sGExIsHD5hYIYFKtssWNmy3ze6UhDT8Ey8e1Hj1p3jz37hADwq+ZJKX92YyMy9IBNfgut/Wyura+sZmYau4vbO7t28fHD7qOFWUeTQWsWoFRDPBJfOAg2CtRDESBYI1g+HN1G+OmNI8lg8wTpgfkb7kIacEjNS17XIHSHoNlbun7LxSm5S7dsl13BnwMqnmpIRyNLr2V6cX0zRiEqggWrerbgJ+RhRwKtik2Ek1Swgdkj5rGypJxLSfzS6f4FOj9HAYK1MS8Ez9PZGRSOtxFJjOiMBAL3pT8T+vnUJ46WdcJikwSeeLwlRgiPE0BtzjilEQY0MIVdzciumAKELBhFU0IVQXX14mXs25ctz7Wqnu5GkU0DE6QWeoii5QHd2iBvIQRSP0jF7Rm5VZL9a79TFvXbHymSP0B9bnD/cakgw=</latexit><latexit sha1_base64="2do/fZuDtvZuPQeMQ6YiIPV6VQM=">AAAB+HicbVBNT8JAEN36ifhV9ehlI5h4KgUP6sGExIsHD5hYIYFKtssWNmy3ze6UhDT8Ey8e1Hj1p3jz37hADwq+ZJKX92YyMy9IBNfgut/Wyura+sZmYau4vbO7t28fHD7qOFWUeTQWsWoFRDPBJfOAg2CtRDESBYI1g+HN1G+OmNI8lg8wTpgfkb7kIacEjNS17XIHSHoNlbun7LxSm5S7dsl13BnwMqnmpIRyNLr2V6cX0zRiEqggWrerbgJ+RhRwKtik2Ek1Swgdkj5rGypJxLSfzS6f4FOj9HAYK1MS8Ez9PZGRSOtxFJjOiMBAL3pT8T+vnUJ46WdcJikwSeeLwlRgiPE0BtzjilEQY0MIVdzciumAKELBhFU0IVQXX14mXs25ctz7Wqnu5GkU0DE6QWeoii5QHd2iBvIQRSP0jF7Rm5VZL9a79TFvXbHymSP0B9bnD/cakgw=</latexit>

p
L

j(
y,
⌧
)

<latexit sha1_base64="OkvzJcpd2MhGCFYpj+sks2I0AMQ=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CbZCBQlJN+qu4MaFiwrGFppQJtNJO3bycOZGqKH6K25cqLj1Q9z5N07bLLT1wIXDOfdy7z1+wpkEy/rWCguLS8srxdXS2vrG5pa+vXMj41QQ6pCYx6LlY0k5i6gDDDhtJYLi0Oe06Q/Ox37zngrJ4ugahgn1QtyLWMAIBiV19L2KK+8EZJejx9vq8NgFnB5VOnrZMq0JjHli56SMcjQ6+pfbjUka0ggIx1K2bSsBL8MCGOF0VHJTSRNMBrhH24pGOKTSyybXj4xDpXSNIBaqIjAm6u+JDIdSDkNfdYYY+nLWG4v/ee0UglMvY1GSAo3IdFGQcgNiYxyF0WWCEuBDRTARTN1qkD4WmIAKrKRCsGdfnidOzTwzratauW7maRTRPjpAVWSjE1RHF6iBHETQA3pGr+hNe9JetHftY9pa0PKZXfQH2ucP/iCUZg==</latexit><latexit sha1_base64="OkvzJcpd2MhGCFYpj+sks2I0AMQ=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CbZCBQlJN+qu4MaFiwrGFppQJtNJO3bycOZGqKH6K25cqLj1Q9z5N07bLLT1wIXDOfdy7z1+wpkEy/rWCguLS8srxdXS2vrG5pa+vXMj41QQ6pCYx6LlY0k5i6gDDDhtJYLi0Oe06Q/Ox37zngrJ4ugahgn1QtyLWMAIBiV19L2KK+8EZJejx9vq8NgFnB5VOnrZMq0JjHli56SMcjQ6+pfbjUka0ggIx1K2bSsBL8MCGOF0VHJTSRNMBrhH24pGOKTSyybXj4xDpXSNIBaqIjAm6u+JDIdSDkNfdYYY+nLWG4v/ee0UglMvY1GSAo3IdFGQcgNiYxyF0WWCEuBDRTARTN1qkD4WmIAKrKRCsGdfnidOzTwzratauW7maRTRPjpAVWSjE1RHF6iBHETQA3pGr+hNe9JetHftY9pa0PKZXfQH2ucP/iCUZg==</latexit><latexit sha1_base64="OkvzJcpd2MhGCFYpj+sks2I0AMQ=">AAAB/HicbVDLSsNAFJ3UV62v+Ni5CbZCBQlJN+qu4MaFiwrGFppQJtNJO3bycOZGqKH6K25cqLj1Q9z5N07bLLT1wIXDOfdy7z1+wpkEy/rWCguLS8srxdXS2vrG5pa+vXMj41QQ6pCYx6LlY0k5i6gDDDhtJYLi0Oe06Q/Ox37zngrJ4ugahgn1QtyLWMAIBiV19L2KK+8EZJejx9vq8NgFnB5VOnrZMq0JjHli56SMcjQ6+pfbjUka0ggIx1K2bSsBL8MCGOF0VHJTSRNMBrhH24pGOKTSyybXj4xDpXSNIBaqIjAm6u+JDIdSDkNfdYYY+nLWG4v/ee0UglMvY1GSAo3IdFGQcgNiYxyF0WWCEuBDRTARTN1qkD4WmIAKrKRCsGdfnidOzTwzratauW7maRTRPjpAVWSjE1RHF6iBHETQA3pGr+hNe9JetHftY9pa0PKZXfQH2ucP/iCUZg==</latexit>

⌧ = t/L3/2
<latexit sha1_base64="2do/fZuDtvZuPQeMQ6YiIPV6VQM=">AAAB+HicbVBNT8JAEN36ifhV9ehlI5h4KgUP6sGExIsHD5hYIYFKtssWNmy3ze6UhDT8Ey8e1Hj1p3jz37hADwq+ZJKX92YyMy9IBNfgut/Wyura+sZmYau4vbO7t28fHD7qOFWUeTQWsWoFRDPBJfOAg2CtRDESBYI1g+HN1G+OmNI8lg8wTpgfkb7kIacEjNS17XIHSHoNlbun7LxSm5S7dsl13BnwMqnmpIRyNLr2V6cX0zRiEqggWrerbgJ+RhRwKtik2Ek1Swgdkj5rGypJxLSfzS6f4FOj9HAYK1MS8Ez9PZGRSOtxFJjOiMBAL3pT8T+vnUJ46WdcJikwSeeLwlRgiPE0BtzjilEQY0MIVdzciumAKELBhFU0IVQXX14mXs25ctz7Wqnu5GkU0DE6QWeoii5QHd2iBvIQRSP0jF7Rm5VZL9a79TFvXbHymSP0B9bnD/cakgw=</latexit><latexit sha1_base64="2do/fZuDtvZuPQeMQ6YiIPV6VQM=">AAAB+HicbVBNT8JAEN36ifhV9ehlI5h4KgUP6sGExIsHD5hYIYFKtssWNmy3ze6UhDT8Ey8e1Hj1p3jz37hADwq+ZJKX92YyMy9IBNfgut/Wyura+sZmYau4vbO7t28fHD7qOFWUeTQWsWoFRDPBJfOAg2CtRDESBYI1g+HN1G+OmNI8lg8wTpgfkb7kIacEjNS17XIHSHoNlbun7LxSm5S7dsl13BnwMqnmpIRyNLr2V6cX0zRiEqggWrerbgJ+RhRwKtik2Ek1Swgdkj5rGypJxLSfzS6f4FOj9HAYK1MS8Ez9PZGRSOtxFJjOiMBAL3pT8T+vnUJ46WdcJikwSeeLwlRgiPE0BtzjilEQY0MIVdzciumAKELBhFU0IVQXX14mXs25ctz7Wqnu5GkU0DE6QWeoii5QHd2iBvIQRSP0jF7Rm5VZL9a79TFvXbHymSP0B9bnD/cakgw=</latexit><latexit sha1_base64="2do/fZuDtvZuPQeMQ6YiIPV6VQM=">AAAB+HicbVBNT8JAEN36ifhV9ehlI5h4KgUP6sGExIsHD5hYIYFKtssWNmy3ze6UhDT8Ey8e1Hj1p3jz37hADwq+ZJKX92YyMy9IBNfgut/Wyura+sZmYau4vbO7t28fHD7qOFWUeTQWsWoFRDPBJfOAg2CtRDESBYI1g+HN1G+OmNI8lg8wTpgfkb7kIacEjNS17XIHSHoNlbun7LxSm5S7dsl13BnwMqnmpIRyNLr2V6cX0zRiEqggWrerbgJ+RhRwKtik2Ek1Swgdkj5rGypJxLSfzS6f4FOj9HAYK1MS8Ez9PZGRSOtxFJjOiMBAL3pT8T+vnUJ46WdcJikwSeeLwlRgiPE0BtzjilEQY0MIVdzciumAKELBhFU0IVQXX14mXs25ctz7Wqnu5GkU0DE6QWeoii5QHd2iBvIQRSP0jF7Rm5VZL9a79TFvXbHymSP0B9bnD/cakgw=</latexit>

(e)
<latexit sha1_base64="r92tpUpMG4nqMkg3V5QYuit/p9A=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzW8rPbLFbfuLkDWiZeTCuRo9ctfvUHCshilYYJq3fXc1ARTqgxnAmelXqYxpWxMh9i1VNIYdTBdHDsjF1YZkChRtqQhC/X3xJTGWk/i0HbG1Iz0qjcX//O6mYmugymXaWZQsuWiKBPEJGT+ORlwhcyIiSWUKW5vJWxEFWXG5lOyIXirL68Tv1G/qbv3jUqzlqdRhDM4hxp4cAVNuIMW+MCAwzO8wpsjnRfn3flYthacfOYU/sD5/AGsD41h</latexit><latexit sha1_base64="r92tpUpMG4nqMkg3V5QYuit/p9A=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzW8rPbLFbfuLkDWiZeTCuRo9ctfvUHCshilYYJq3fXc1ARTqgxnAmelXqYxpWxMh9i1VNIYdTBdHDsjF1YZkChRtqQhC/X3xJTGWk/i0HbG1Iz0qjcX//O6mYmugymXaWZQsuWiKBPEJGT+ORlwhcyIiSWUKW5vJWxEFWXG5lOyIXirL68Tv1G/qbv3jUqzlqdRhDM4hxp4cAVNuIMW+MCAwzO8wpsjnRfn3flYthacfOYU/sD5/AGsD41h</latexit><latexit sha1_base64="r92tpUpMG4nqMkg3V5QYuit/p9A=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hgQ+5o1I7ExhITT0jgQvaWOdiwt3fZ3TMhhN9gY6HG1j9k579xgSsUfMkkL+/NZGZemAqujet+O4WNza3tneJuaW//4PCofHzyqJNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/fbT6g0T+SDmaQYxHQoecQZNVbyqzW8rPbLFbfuLkDWiZeTCuRo9ctfvUHCshilYYJq3fXc1ARTqgxnAmelXqYxpWxMh9i1VNIYdTBdHDsjF1YZkChRtqQhC/X3xJTGWk/i0HbG1Iz0qjcX//O6mYmugymXaWZQsuWiKBPEJGT+ORlwhcyIiSWUKW5vJWxEFWXG5lOyIXirL68Tv1G/qbv3jUqzlqdRhDM4hxp4cAVNuIMW+MCAwzO8wpsjnRfn3flYthacfOYU/sD5/AGsD41h</latexit>
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Figure 5.1: Data collapse of the correlation functions and temperature profile confirming the scaling behaviors in Eqs. (5.3.4) and

(5.3.5). Figures (a) and (b) show the data collapse as a function of the scaling variable y = (i + j)/2Lwith four systems sizes

L = 1000 (Blue, dark gray),L = 2000 (Orange, deep gray),L = 3000 (Green, light gray) andL = 4000 (Red, bottom dark

gray), for two fixed values ofx = |j − i|/
√
L. Figures (c) and (d), show the data collapse as a function of the scaling variablex

with the above four system sizes for two fixed values of y. The collapse are so good that other colors/shades not visible. Figure (e)
describes the scaling behavior for the evolution of the temperatureT (y, τ) = T⌊yL⌋(τL

3/2) at a fixed position y = 0.025

for different system sizes as a function of the scaled time τ = t/L3/2. Note that, the temperatures are ofO(1)whereas the
correlations are ofO(1/

√
L). Also note from figures (c) and (b) thatCss(x → ∞, z) = 0. Last figure (f) establishes that the

current in the system is of order 1/
√
L and also evolves in scaled time τ = t/L3/2. The other parameters in the simulation are

γ = Λ = 1,Tℓ = 1.1, Tr = 0.9.

the two-point correlationsCi,j(t) = ⟨ηi(t)ηj(t)⟩ for i ̸= j have the following scaling forms

Ci,j(t) =
1√
L
C
(
|i− j|√

L
,
i+ j

2L
,
t

L3/2

)
, (5.3.4)

Ti(t) = T
(
i

L
,
t

L3/2

)
, (5.3.5)

in the leading order for large Lwhich are also supported by numerical evidence shown in Fig 5.1. In

Figs. (5.1a), (5.1b), (5.1c) and (5.1d), we verify the scaling behaviors of the correlations in Eq. (5.3.4).

Figs. (5.1c) and (5.1d), describes scaling behavior with respect to time. Using these, we define contin-
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uum ordinates as, |i−j|√
L

= x, |i+j|
2L

= y, t
L3/2 = τ and 1√

L
= ϵ, where x ∈ (0,∞) and y ∈ (0, 1).

In the following, we insert this scaling form and Taylor expand in ϵ = 1/
√
L. Keeping terms to

leading order in ϵwe obtain the continuum equations.

1. Bulk Equations, |i− j|≥ 2

The discrete equation in bulk:

Ċi,j = − (Ci−1,j − Ci+1,j + Ci,j−1 − Ci,j+1 − γ[Ci,j−1 + Ci,j+1 + Ci+1,j + Ci−1,j − 4Ci,j]) ,

(5.3.6)

using above scaling definitions, we can write the above mentioned discrete equation as,

ϵ4∂τC(x, y, τ) = −ϵ
[
C(x− ϵ, y − ϵ2

2
)− C(x+ ϵ, y +

ϵ2

2
) + C(x+ ϵ, y − ϵ2

2
)− C(x− ϵ, y +

ϵ2

2
)

−γ(C(x+ ϵ, y − ϵ2

2
) + C(x− ϵ, y +

ϵ2

2
) + C(x+ ϵ, y +

ϵ2

2
)

+C(x− ϵ, y − ϵ2

2
)− 4C(x, y))

]
, (5.3.7)

which by Taylor expansion of each terms in x, y and τ , we obtain the leading order terms for

continuum dynamical equation as

ϵ4∂τC(x, y, τ) = 2ϵ3∂yC(x, y, τ) + 2γϵ3∂2xC(x, y, τ). (5.3.8)

At the dominant order (O(ϵ3)), we find,

∂yC(x, y, τ) + γ∂2xC(x, y, τ) = 0. (5.3.9)

2. Nearest neighbor term, j = i+ 1

The off-diagonal term:

Ċi,i+1 = Ti+1 − Ci−1,i+1 + Ci,i+2 − Ti + γ [Ci−1,i+1 + Ci,i+2 − 2Ci,i+1] , (5.3.10)
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after proper scaling, we get,

ϵ4∂τC(ϵ, y +
ϵ2

2
, τ) = T (y + ϵ2)− T (y) +ϵC(2ϵ, y + ϵ2)− ϵC(2ϵ, y) + γϵ

[
C(2ϵ, y) + C(2ϵ, y + ϵ2)

−2C(ϵ, y + ϵ2/2)
]
.

Expanding above equation in x and y, and keeping the relevant order terms in ϵwe get the

continuum equation as

ϵ4∂τC(0, y, τ) = ϵ2 (∂yT (y, τ) + 2γ∂xC(0, y, τ)) +O(ϵ3), (5.3.11)

and hence to the dominating order, the governing continuum equation is

∂yT (y, τ) + 2γ∂xC(0, y, τ) = 0. (5.3.12)

3. Diagonal term i = j

Next is the diagonal term where i = j,

Ṫi = 2[Ci,i+1 − Ci−1,i] + γ[Ti+1 + Ti−1 − 2Ti]. (5.3.13)

which in continuum limit given as

ϵ3∂τT (y, τ) = 2ϵ

[
C(ϵ, y + ϵ2

2
)− C(ϵ, y − ϵ2

2
)

]
+ γ

[
T (y + ϵ2) + T (y − ϵ2)− 2T (y)

]
.

After expansion, we arrive at

ϵ3∂τT (y, τ) = 2ϵ
[
ϵ2∂yC(0, y, τ) + ϵ3

γ

2
∂2yT (y, τ)

]
+O(ϵ4). (5.3.14)

Hence, the leading order term is

∂τT (y, τ) = 2∂yC(0, y, τ). (5.3.15)
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4. Current

The microscopic energy current in the system is defined through

∂t⟨η2i ⟩ = −[ji→i+1 − ji−1→i], (5.3.16)

where ji→i+1 = −2Ci,i+1 − γ(Ti+1 − Ti). The stochastic part of the current decays as

O(1/L) and in the macroscopic limit goes to zero. In the continuum limit, the deterministic

part contributes in the leading order to provide, j = −2C(0, y, τ)/
√
L.

The above analysis gives us the bulk equations for the system as given in Eqs. (5.2.5),(5.2.6),(5.2.7).

Solutions of these equations for C(x, y, τ) and T (y, τ) have two parts Eq. (5.2.9). It is easier to deal

with these equation the transformation of z = 1− y, which satisfies,

∂zC(x, z, τ) = γ∂2xC(x, z, τ) , (5.3.17)

∂zT (z, τ) = 2γ∂xC(x, z, τ)x=0 , (5.3.18)

∂τT (y, τ) = −2∂zC(0, z, τ). (5.3.19)

These equations have to be solved with appropriate boundary conditions which will be discussed

in the next few sections, where we discuss the solution of these equations in steady state and the

approach to it.

5.4 Stationary state solution of T (z) and C(x, z)

In the NESS the equations Eqs. (5.3.17)-(5.3.19) become simpler since ∂τT → 0 as τ → ∞

implying Css(0, y) = d. Now making the variable transformation z = (1 − y), the problem of

finding Css reduces to solving a diffusion equation with its value at x = 0 held fixed for all y. We

need to solve these equations along with the boundary conditions

(i) Css(x, z → 0) = 0, (ii) Css(x→ ∞, z) = 0,

(iii) Css(x = 0, z) = d. (5.4.1)
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Figure 5.2: Numerical verification of the analytical NESS predictions for (a)Tss(y) and (b)Css(x, y) in Eq. (5.2.10). Symbols
denote corrosponding quantities that are obtained from simulations withω = γ = 1, Tℓ = 1.1, Tr = 0.9 andN = 1024,
whereas the dashed lines are from theory.

The boundary conditions (i) and (ii) follow from our numerical observations shown in Figs. 5.1(a,b)

and Figs. 5.1(c,d) respectively. The last boundary condition (iii) is obtained by observing that the

LHS of (5.3.19) is zero in the steady state; hence (∂zCss(0, z) = 0). The unknown constant dwill

be fixed by the temperatures at the boundary. The first equation is easy to solve by taking Laplace

transform in z along with boundary conditions. Finally, after inverting the Laplace transform, we

find the solution is given by

Css(x, z) = d erfc
[

x√
4γz

]
, (5.4.2)

where, erfc is the complimentary error function defined as erfc(x) = 1− 2√
π

∫ x

0
dte−t2 . Now, using

this solution in Eq. (5.3.18), we get ∂zTss(z) = −d
√
4γ/πz, whose solution is

Tss(z) = Tss(0)− 2d

√
4γz

π
. (5.4.3)

The constants Tss(0) and dwill now be determined from the boundary conditions of temperature

field, T (z = 0) = Tr and T (z = 1) = Tℓ. We finally have

Tℓ − Tr = − 2d

√
4γ

π
, d = − ∆T

4

√
π

γ
, (5.4.4)

where∆T = (Tℓ − Tr) is the temperature difference between the left and right heat baths. Revert-

ing now back to y variables using z = 1 − y, the exact expressions for the steady state temperature
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profile and correlations are

Tss(y) =Tr +∆T
√

1− y, (5.4.5)

Css(x, y) =− ∆T

4

√
π

γ
erfc

[
x√

4γ(1− y)

]
. (5.4.6)

Hence the current in the system is given by jss = Jss√
L
, where,

jss =− 2Css(0, y)√
L

=
∆T

2

√
π

γ

1√
L
. (5.4.7)

In Fig. 5.2 we verify the analytical results for Tss and Css numerically, where we observe nice agree-

ment. Next, we study the solution in the relaxation regime.

5.5 Relaxation to steady state

We now focus on the relaxation to the NESS. It is often convenient to separate the relaxation

part as done in Eq. (5.2.8) and Eq. (5.2.9) where Tr(z, τ) and Cr(x, z, τ) describes the approach

towards the NESS solutions in Eq. (5.2.10). It is easy to see that Cr(x, z, τ) and Tr(z, τ) satisfies the

following equations

∂zCr(x, z, τ) = γ∂2xCr(x, z, τ), (5.5.1)

∂zTr(z, τ) = 2γ [∂xCr(x, z, τ)]x=0 , (5.5.2)

∂τTr(z, τ) = −2∂zCr(0, z, τ), (5.5.3)

with initial condition Cr(x, z, 0) = 0 and BC Cr(x, z, τ)|x→∞= 0. The above equations are

obtained from Eq. (5.2.5)-(5.2.7) after subtracting the steady state part and then making the variable

transformation z = (1 − y). Note that the BC in Eq. (5.5.2) acts like a current source, at x = 0

boundary, to the diffusion Eq. (5.5.1). The Greens function g(x, z) of this equation with above BC’s

satisfies, ∂zg(x, z) = γ
2
∂2xg(x, z), where, g(x, z) is given by g(x, z) =

√
4γzh(x/

√
4γz)where,
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h(w) = e−w2

π
− werfc(w), hence, the general time dependent solution is written as

Cr(x, z, τ) =2

∫ z

0

dx′
e−(x−x′)2/(4γz)

√
4πγz

Cr(x′, 0, τ)

− 1

2γ

(∫ z

0

dz′(g(x, z − z′)∂2z′Tr(z
′, τ))

)
− 1

2γ
∂z′Tr(z

′, τ)g(x, z)|z′→0. (5.5.4)

With the initial condition Cr(x, 0, τ) = 0 the first term drops out. It is easy to check that the

remaining part satisfies (5.5.1) with boundary condition (5.5.2) as follows

∂xCr(x, z, τ)|x→0=
1

2γ

(∫ z

0

dz′∂2z′Tr(z
′, τ) + ∂z′Tr(z

′, τ)|z′→0

)
=

1

2γ
∂zTr(z, τ), (5.5.5)

where we have used ∂xg(x, z)|x→0= −1. Further using the fact that g(x, z−z′)∂z′Tr(z′)|z′→z→ 0

we can simplify (5.5.4) as

Cr(x, z, τ) =
1

2γ

(∫ z

0

dz′∂z′(g(x, z − z′))∂z′Tr(z
′, τ)

)
= − 1

√
γ

∫ z

0

dz′
e−x2/(4γ(z−z′))√

4π(z − z′)
∂z′Tr(z

′, τ),

which gives the relaxation of the correlation fields. The evolution of temperature field is obtained

from (5.5.3) by putting x→ 0 in the above expression for Cr(x, z, τ), we immediately have,

∂τTr(z, τ) = κ ∂z

∫ z

0

∂z′Tr(z
′, τ)√

z − z′
dz′, 0 ≤ z ≤ 1, (5.5.6)

where, κ = 1√
πγ

. The infinite system generalization of this equation will be discussed later (see

Sec. 5.6).

Series solution of the fractional PDE Eq. (5.5.6) in the finite domain

The evolution of the relaxation part of the temperature profile i.e. Tr(1−y, τ) = T (y, τ)−Tss(y)

is given by Eq. (5.5.6). Note that, Tr(z, τ) is zero at both the boundaries: z = 0 and z = 1. As a
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result it is natural to expand this function in αn(z) =
√
2 sin(nπz), n = 1, 2, 3... complete basis

defined in z ∈ (0, 1), as Tr(z, τ) =
∑

n T̂n(τ)αn(z). Substituting this form in Eq. (5.5.6), we have,

∑
n

˙̂Tnαn(z) = κ
∑
n

T̂n(τ)(nπ)∂z

∫ z

0

ϕn(z
′)√

z − z′
dz′. (5.5.7)

Now let us expand the function fn(z) = ∂z
∫ z

0
ϕn(z′)√
z−z′

dz′ also in orthogonal basis αn(y), n =

1, 2..... Let the expansion is given as fn(z) =
∑

l=1 ζnlαl(z)where ζnl =
∫ 1

0
dz fn(z) αl(z). As a

result we have,

∑
n=1

˙̂Tnαn(z) = κ
∑
n,l=1

T̂n(τ)(nπ)ζnlαl(z). (5.5.8)

Using orthogonality, this can be written in vector notation as (T̂n = ⟨n|T̂ ⟩),

| ˙̂T ⟩ = κB| T̂ ⟩, (5.5.9)

whereBnk = (nπ)ζnk and | . . . ⟩ denotes a column vector. IfR is the matrix which diagonalizesB

asR−1BR = Λ, then the time dependent solution is given as | T̂ (τ) ⟩ = ReκΛτR−1| T̂ (0) ⟩ and

temperature at time τ is given as T (y, τ) = Tss(y)+
∑

n αn(1−y)T̂n(τ). As the temperature field

evolves at much faster timescales compared to the correlation field, the time dependent solution for

correlations Cr(x, 1 − y, τ) is governed by the evolution of the temperature field. The solution for

evolution of correlations is written as, C(x, y, τ) = Cr(x, 1− y, τ) + Css(x, y), where

C(x, z, τ) =−
∫ z

0

dz′
e−x2/(4γ(z−z′))√
4πγ(z − z′)

∂z′Tr(z
′, τ), (5.5.10)

=
∑
n=1

T̂n(τ)(nπ)

∫ z

0

dz′
e−x2/(4γ(z−z′))√
4πγ(z − z′)

ϕn(z
′),

where, ϕn(y) =
√
2 cos(nπy), n ≥ 1 and ϕ0(y) = 1. The integral can be evaluated explicitly and

doing the summations gives the evolution of the correlation fields.

Eigensystem: The eigenvalues (µn) of the bounded skew-fractional laplacian,B have interesting

behavior, the first four of them are real and distinct. The higher eigenvalues all come in complex

conjugate pairs. For large n, µn ∼
√

π
2
|nπ|3/2(1 ± i sgn(n)), but for smaller n there is a system-
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Figure 5.3: The real and imaginary part of the alternate eigenvalues for thematrixB. The first 4 eigenvalues are completely real
and distinct. The higher eigenvalue comes in pairs ofµn(1 ± i). For largen, the eigenvalues are close to

√
π
2 (nπ)

3/2(1 ± i).
For smallern, there is a deviation from asymptomatic scaling due to finite definition of the operator.

atic deviation due to the effect of finite domain. In Fig. 5.3, the real and imaginary part of alternate

eigenvalues are plotted as a function of n, where the asymptotic scaling with
√

π
2
(nπ)3/2 is seen

clearly for large n. We note that this is not due to the the truncation of the matrix but an artefact

of the finiteness of the system. Note that the large n behavior of µn is similar to the Fourier spec-

trum of the non-local operatorL∞ in Eq. (5.2.2) describing the evolution in infinite system. Hence

it is interesting to see if one recovers the evolution Eq. (5.2.2) in the infinite system limit Sec. (5.6).

The eigenvectors of the operator is defined as ψn(y) =
∑

l=1R
−1
nl αl(y). Numerically computing

this gives, the first six eigenvectors to be completely real. The eigenvectors corresponding to higher

eigenvalues are complex and and comes in pairs. The real and imaginary parts of the first few eigen-

vectors are shown in Fig.5.5 un both real space and also in a polar representation. For plane wave

solutions these would have been circles of length 1, here the polar plot shows a spiral decay to origin

owing to the skewness of the operator.

Comparison with numerics: While it is difficult to solve this infinite order matrix equation ana-

lytically, we solve it numerically by truncating it at some finite order. In Fig. 5.4, we compare the

evolution from this numerical solution with the same obtained from direct numerical simulation

of Eq. (5.2.1) and observe nice agreement. Using this solution in Eq. (5.2.11) we obtainC(x, z, τ) in

Eq. (5.2.9) which we also compare with simulation results in the inset of Fig. 5.4 and again observe

good agreement.
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Figure 5.4: Numerical verification of the evolution of (a) the temperature profilesT (y, τ) = Tss(y) + Tr(1− y, τ) obtained
using the solution of Eq. (5.2.12).(b) the correlationC(x, y, τ) = Css(x, y) + Cr(x, 1 − y, τ) given in Eq. (5.2.9) whereCr
is computed using the solution in Eq. (5.2.11). Themagenta dashed line and the solid black line represent the initial and the NESS

temperature profiles, respectively. Symbols are obtained from simulations withλ = γ = 1, Tℓ = 1.1, Tr = 0.9 and
L = 2048, and the solid lines are from theory.

5.6 Fractional evolution of temperature in an infinite line

One can extend the calculation for temperature evolution Eq. (5.5.6) in an finite system of length L

and obtain the same set of bulk equations which now hold for y ∈ [0, L]. We are interested in the

behavior of the evolution of temperature profile in L → ∞ limit, where the effect of boundaries

are not important. The evolution equations for the relaxation parts in this case are same as that of

Eqs. (5.5.1)-(5.5.3) but now 0 ≤ x ≤ ∞ and 0 ≤ y ≤ L. To proceed, we introduce the orthonormal

and complete basis in y ∈ [0, L] , ϕ±
n (y) =

1√
L
e±inπy/L for n ≥ 1 and ϕ0(y) = 1/

√
L. Expanding

the correlations and temperature in this basis as Fourier series we get,

Cr(x, y, τ) = Â0(x, τ) +
∑
n=1

Â+
n (x, τ)ϕ

+
n (y) + Â−

n (x, τ)ϕ
−
n (y),

T (y, τ) = T̂0(τ) +
∑
n=1

T̂+
n (τ)ϕ+

n (y) + T̂−
n (τ)ϕ−

n (y), (5.6.1)

where Â±
n (x, τ) =

∫ L

0
Cr(x, y, τ)ϕ±

n (y)dy, Â0(x, τ) =
∫ L

0
Cr(x, y, τ)ϕ0dy, T̂±

n (τ) =
∫ L

0
Tr(y, τ)ϕ

±
n (y)dy,

T̂0(τ) =
∫ L

0
Tr(y, τ)ϕ0dy. Using these expressions in the PDEs [see Appendix. (5.8.2)], we get

˙̂
T0 = 0,

˙̂
T∓
n = − 1√

2γ
(1± i)λ3/4n T̂∓

n , n = 1, 2, 3... (5.6.2)
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where λn = (nπ/L)2. This can be interpreted in domain y ∈ [0, L] as,

∂τTr(y, τ) =− 1√
2γ

(|∆|3/4−∇|∆|1/4)Tr(y, τ),

=− 1√
2γ

L∞Tr(y, τ), (5.6.3)

whereL∞ is an positive operator defined by its action as,L∞ϕ
±
n (y) = λ

3/4
n (1 − i sgn(n))ϕ±

n (y).

With L → ∞ the spectrum becomes continuous as well as the eigenfunctions become plane wave.

Thus in infinite system at equilibrium, the evolution of temperature profile is given by a skew-

symmetric fractional Laplacian given in Eq. (5.2.2) .

One can alternatively see this equivalence from the integro-differential evolution in infinite space

through the action of the operator ∂τT (y, τ) = − 1√
2γ
L∞T (y, τ). Where a similar calculation as

in Sec. (5.5) givesL∞f(y) =
1√
πγ
∂y
∫ y

−∞
∂y′f(y

′)
√
y−y′

dy′,where in contrast to (5.5.6), the lower limit is

changed from−∞ to 0. Using the identity

∫ y

−∞
dz

1√
y − z

eiqz =

√
π√
iq
eiqy,

one can easily show that

L∞ eiqy = λq e
iqy, λq =

√
1

2γ
[1− i sgn(q)] |q|3/2,

which is same as the Fourier spectrum of the skew-symmetric fractional Laplacian. given in Eq. 5.2.2.

5.7 Conclusion

In this chapter, we have studied anomalous transport in a one-dimensional system with two con-

served quantities, in the open system setup. Starting from a microscopic description and acquiring

knowledge about scaling properties from numerical studies, we derive exact expressions of the tem-

perature profiles and the two point correlations in the steady state. We also study the evolution of

these quantities towards steady state. We explicitly show that the evolution of the temperature pro-
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Figure 5.5: The real (Blue, deep gray) and imaginary (Orange, light gray) part of the right eigenvectors for thematrixB for the

first few eigenvalues. The plots for even ordered eigenvectors (n = 8, 10...) are related to the eigenvectors of the previous
eigenvectors by a reflection around x axis and hence are not plotted. A polar representation is shown as the real and imaginary

parts of the eigenvectors forn ≥ 7. The polar plots are forn = 7, 9, 11....
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files in this model is governed by a non-local operator defined inside a finite domain which correctly

takes the previously obtained infinite system representation. We provide numerical verifications of

the analytical results.

5.8 Appendix

5.8.1 Boundary equations

The dynamical equations at the boundaries are given by

1. for i = j = 1

Ṫ1 = 2λTℓ + 2C1,2 − 2λT1 + γ[T2 − T1] (5.8.1)

2. for i = j = L

ṪL = 2λTr − 2CL−1,L − 2λTL + γ[TL−1 − TL] (5.8.2)

3. i = 1 and 2 < j < L

Ċ1,j =C2,j − λC1,j + C1,j+1 − C1,j−1

+γ[C1,j−1 + C1,j+1 + C2,j − 3C1,j] (5.8.3)

4. j = L and 1 < i < L− 1

Ċi,L =Ci+1,L − Ci−1,L − Ci,L−1 − λCi,L

+γ[Ci−1,L + Ci+1,L + Ci,L−1 − 3Ci,L] (5.8.4)

5. i = 1 and j = L

Ċ1,L =C2,L − C1,L−1 − 2λC1,L

+γ[C2,L + C1,L−1 − 2C1,L] (5.8.5)

6. i = 1 and j = 2

Ċ1,2 = T2 − λC1,2 + C1,3 − T1 + γ[C1,3 − C1,2] (5.8.6)
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7. j = L and i = L− 1

ĊL−1,L =TL − CL−2,L − TL−1 − λCL−1,L

+γ[CL−2,L − CL−1,L] (5.8.7)

5.8.2 Fractional equation in infinite domain

The expansions in Eq. (5.6.1) along with the set of PDEs Eq. (5.2.5)-(5.2.7) gives the following differ-

ential equation for the components,

∂2xÂ
±
n (x, τ) = ((1∓ i)αn)

2Â±
n (x, τ), ∂

2
xÂ0(x, τ) = 0

±inπ
L
T̂±
n (τ) = −2γ∂xÂ

±
n (x, τ)|x→0, (5.8.8)

where αn =
√

nπ
2Lγ

. The solution to these equations are in general given as, Â±
n (x, τ) = a±n (τ)e

±αn(1∓i)x,

Â0(x, τ) = d(τ)x + e(τ) Choosing solutions which do not blow up at infinity at large x and obey

the boundary conditions. We have, Cr(x, y, τ) = e(τ) +
∑∞

n=1 a
−
n e

−αn(1+i)xϕ−
n (y) + c.c.where

c.c. stands for complex conjugate. e(τ) is zero because there is no time-dependent source in the sys-

tem. Using above equations, we have

T̂±
n = 2γa∓n (τ)αn

(1∓ i)

(nπ/L)
,
˙̂
T∓
n = ∓2i

nπ

L
a±n (τ) (5.8.9)

Using these two, we have Eq. (5.6.2).
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Part IV

Conclusions
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To conclude, in this thesis we have studied some problems in understanding anomalous trans-

port in one-dimensional systems. In the first part of the thesis we studied numerically heat trans-

port in the Toda system, which is a classically integrable system. We found that, both in equilibrium

and non-equilibrium setup, the system shows properties of ballistic transport. We computed ana-

lytically the equilibrium correlations in the harmonic and the hard particle gas which can be viewed

as special limiting cases of the Toda chain. However, we note that there is no rigorous proof that an

integrable system should have ballistic transport, and the interesting question of understating non-

ballistic transport in integrable systems would be an interesting direction to be explored. We have

also done a comparative study of the differences in transport between integrable and non-integrable

systems in both the equilibrium and non-equilibrium setups. We found that certain hydrodynamic

tools used in transport of non-integrable are useful in understanding transport in integrable sys-

tems. An interesting question is the possibility of describe integrable systems using hydrodynamics,

and also the questions related to relaxation and thermalization in integrable systems.

In the second part of the thesis, we have explored super-diffusive transport in one-dimensional

systems with stochastic dynamics. We approached this problem by studying analytically tractable

models which show super-diffusion and studied them in the non-equilibrium setup with differ-

ent temperatures applied at the boundaries. Starting from the microscopic model, we established

a fractional equation description for transport in these systems which can describe equilibrium as

well as non-equilibrium properties in the super-diffusive system. These works give a possible hint

that a fractional diffusion equation plays a similar role in super-diffusive transport as heat equation

(Fourier law) for diffusive transport. However this possibility must be explored by studying other

models and needs to be extended to obtain a full characterization of the NESS in super-diffusive

systems.

115



116



References

[1] Federico Bonetto, Joel L Lebowitz, and Luc Rey-Bellet. Fourier’s law: a challenge to theo-
rists. InMathematical physics 2000, pages 128–150. World Scientific, 2000.

[2] Stefano Lepri, Roberto Livi, and Antonio Politi. Thermal conduction in classical low-
dimensional lattices. Physics Reports, 377(1):1–80, 2003.

[3] Abhishek Dhar. Heat transport in low-dimensional systems. Advances in Physics, 57(5):457–
537, 2008.

[4] Stefano Lepri. Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale
Heat Transfer, volume 921. Springer International Publishing Switzerland 2016, 1 edition,
2016.

[5] Chih-Wei Chang, David Okawa, Henry Garcia, Arunava Majumdar, and Alex Zettl. Break-
down of fourier’s law in nanotube thermal conductors. Physical review letters, 101(7):075903,
2008.

[6] Victor Lee, Chi Hsun Wu, Zong Xing Lou, Wei Li Lee, and Chih Wei Chang. Divergent and
Ultrahigh Thermal Conductivity in Millimeter-Long Nanotubes. Physical Review Letters,
118(13), 2017.

[7] G Benettin, S Pasquali, and A Ponno. The fermi–pasta–ulam problem and its underly-
ing integrable dynamics: an approach through lyapunov exponents. Journal of Statistical
Physics, pages 1–22, 2018.

[8] Herbert Spohn. Interacting and noninteracting integrable systems. Journal of Mathematical
Physics, 59(9), 2018.

[9] Onuttom Narayan and Sriram Ramaswamy. Anomalous Heat Conduction in One-
Dimensional Momentum-Conserving Systems. Physical Review Letters, 89(20), 2002.

[10] Henk Van Beijeren. Exact results for anomalous transport in one-dimensional hamiltonian
systems. Physical Review Letters, 108(18), 2012.

[11] Herbert Spohn. Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains. Journal of
Statistical Physics, 154(5):1191–1227, 2014.

[12] A Gerschenfeld, B Derrida, and JL Lebowitz. Anomalous fourier’s law and long range corre-
lations in a 1d non-momentum conserving mechanical model. Journal of Statistical Physics,
141(5):757–766, 2010.

[13] Z. Rieder, J. L. Lebowitz, and E. Lieb. Properties of a harmonic crystal in a stationary
nonequilibrium state. Journal of Mathematical Physics, 8(5):1073–1078, 1967.

[14] Hiroshi Nakazawa. On the lattice thermal conduction. Progress of Theoretical Physics Sup-
plement, 45:231–262, 1970.

117



[15] Dibyendu Roy and Abhishek Dhar. Heat transport in ordered Harmonic Lattices. Journal
of Statistical Physics, 131(3):535–541, 2008.

[16] Peter Mazur and Elliott Montroll. Poincaré cycles, ergodicity, and irreversibility in assemblies
of coupled harmonic oscillators. Journal of Mathematical Physics, 1(1):70–84, 1960.

[17] D. W. Jepsen. Dynamics of a simple many body system of hard rods. J. Math. Phys.,
6(3):405, 1965.

[18] B. Sriram Shastry and A. P. Young. Dynamics of energy transport in a Toda ring. Physical
Review B - Condensed Matter and Materials Physics, 82(10), 2010.

[19] X Zotos. Ballistic transport in classical and quantum integrable systems. Journal of Low
Temperature Physics, 126(3/4):1185–1194, 2002.

[20] Hirotsugu Matsuda and Kazushige Ishii. Localization of normal modes and energy transport
in the disordered harmonic chain. Progress of Theoretical Physics Supplement, 45:56–86,
1970.

[21] AJ O’Connor and JL Lebowitz. Heat conduction and sound transmission in isotopically
disordered harmonic crystals. Journal of Mathematical Physics, 15(6):692–703, 1974.

[22] Robert J Rubin and William L Greer. Abnormal lattice thermal conductivity of a one-
dimensional, harmonic, isotopically disordered crystal. Journal of Mathematical Physics,
12(8):1686–1701, 1971.

[23] A Casher and JL Lebowitz. Heat flow in regular and disordered harmonic chains. Journal of
Mathematical Physics, 12(8):1701–1711, 1971.

[24] Oskari Ajanki and François Huveneers. Rigorous scaling law for the heat current in disor-
dered harmonic chain. Communications in Mathematical Physics, 301(3):841–883, 2011.

[25] Theo Verheggen. Transmission coefficient and heat conduction of a harmonic chain with
random masses: Asymptotic estimates on products of random matrices. Communications in
Mathematical Physics, 68(1):69–82, 1979.

[26] Abhishek Dhar. Heat conduction in the disordered harmonic chain revisited. Physical
review letters, 86(26):5882, 2001.

[27] Stefano Lepri, Roberto Livi, and Antonio Politi. Heat conduction in chains of nonlinear
oscillators. Physical review letters, 78(10):1896, 1997.

[28] S. Lepri, R. Livi, and A. Politi. On the anomalous thermal conductivity of one-dimensional
lattices. Europhysics Letters, 43(3):271–276, 1998.

[29] Trieu Mai, Abhishek Dhar, and Onuttom Narayan. Equilibration and universal heat con-
duction in fermi-pasta-ulam chains. Physical review letters, 98(18):184301, 2007.

[30] Yi Zhong, Yong Zhang, Jiao Wang, and Hong Zhao. Normal heat conduction in one-
dimensional momentum conserving lattices with asymmetric interactions. Physical Review
E, 85(6):060102, 2012.

[31] Suman G. Das, Abhishek Dhar, and Onuttom Narayan. Heat Conduction in the α-β Fermi-
Pasta-Ulam Chain. Journal of Statistical Physics, 154(1-2):204–213, 2014.

118



[32] Lei Wang, Nianbei Li, and Peter Hänggi. Simulation of heat transport in low-dimensional
oscillator lattices. In Thermal Transport in Low Dimensions, pages 239–274. Springer, 2016.

[33] Giulio Casati. Energy transport and the fourier heat law in classical systems. Foundations of
physics, 16(1):51–61, 1986.

[34] Pedro L Garrido, Pablo I Hurtado, and Bjoern Nadrowski. Simple one-dimensional model
of heat conduction which obeys fourier’s law. Physical review letters, 86(24):5486, 2001.

[35] Peter Grassberger, Walter Nadler, and Lei Yang. Heat conduction and entropy production
in a one-dimensional hard-particle gas. Physical review letters, 89(18):180601, 2002.

[36] Abhishek Dhar. Heat conduction in a one-dimensional gas of elastically colliding particles of
unequal masses. Physical Review Letters, 86(16):3554–3557, 2001.

[37] Pablo I Hurtado and Pedro L Garrido. A violation of universality in anomalous fourier’s
law. Scientific reports, 6:38823, 2016.

[38] Shunda Chen, Jiao Wang, Giulio Casati, and Giuliano Benenti. Nonintegrability and the
fourier heat conduction law. Physical Review E, 90(3):032134, 2014.

[39] Andrey Pereverzev. Fermi-pasta-ulam β lattice: Peierls equation and anomalous heat con-
ductivity. Physical Review E, 68(5):056124, 2003.

[40] Jani Lukkarinen and Herbert Spohn. Anomalous energy transport in the fpu-β chain. Com-
munications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 61(12):1753–1786, 2008.

[41] Bernie Nickel. The solution to the 4-phonon boltzmann equation for a 1d chain in a thermal
gradient. Journal of Physics A: Mathematical and Theoretical, 40(6):1219, 2007.

[42] Santhosh G. and Deepak Kumar. Universality classes for phonon relaxation and thermal
conduction in one-dimensional vibrational systems. Phys. Rev. E, 84:041119, Oct 2011.

[43] Kenichiro Aoki, Jani Lukkarinen, and Herbert Spohn. Energy transport in weakly anhar-
monic chains. Journal of statistical physics, 124(5):1105–1129, 2006.

[44] Christian B. Mendl and Herbert Spohn. Dynamic correlators of fermi-pasta-ulam chains and
nonlinear fluctuating hydrodynamics. Physical Review Letters, 111(23), 2013.

[45] Suman G. Das, Abhishek Dhar, Keiji Saito, Christian B. Mendl, and Herbert Spohn. Nu-
merical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(1), 2014.

[46] Christian B. Mendl and Herbert Spohn. Equilibrium time-correlation functions for one-
dimensional hard-point systems. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics, 90(1), 2014.

[47] BJ Alder and TE Wainwright. Velocity autocorrelations for hard spheres. Physical review
letters, 18(23):988, 1967.

[48] BJ Alder and TE Wainwright. Decay of the velocity autocorrelation function. Physical
review A, 1(1):18, 1970.

119



[49] Dieter Forster, David R Nelson, and Michael J Stephen. Large-distance and long-time prop-
erties of a randomly stirred fluid. Physical Review A, 16(2):732, 1977.

[50] Giada Basile, Cédric Bernardin, and Stefano Olla. Momentum conserving model with
anomalous thermal conductivity in low dimensional systems. Physical Review Letters,
96(20):1–4, 2006.

[51] Giada Basile, Cédric Bernardin, and Stefano Olla. Thermal conductivity for a momentum
conservative model. Communications in Mathematical Physics, 287(1):67–98, 2009.

[52] Cédric Bernardin and Gabriel Stoltz. Anomalous diffusion for a class of systems with two
conserved quantities. Nonlinearity, 25(4):1099–1133, 2012.

[53] C Kipnis, C Marchioro, and E Presutti. Heat flow in an exactly solvable model. Journal of
Statistical Physics, 27(1):65–74, 1982.

[54] Shang-keng Ma. One-dimensional boltzmann equation with a three-body collision term.
Journal of Statistical Physics, 31(1):107–114, 1983.

[55] Anatoly Malevanets and Raymond Kapral. Mesoscopic model for solvent dynamics. The
Journal of chemical physics, 110(17):8605–8613, 1999.

[56] Luca Delfini, Stefano Lepri, Roberto Livi, and Antonio Politi. Nonequilibrium invariant
measure under heat flow. Physical Review Letters, 101(12), 2008.

[57] S. Lepri, C. Mejía-Monasterio, and A. Politi. A stochastic model of anomalous heat trans-
port: Analytical solution of the steady state. Journal of Physics A: Mathematical and Theo-
retical, 42(2), 2009.

[58] Stefano Lepri, Carlos Mejía-Monasterio, and Antonio Politi. Nonequilibrium dynamics of
a stochastic model of anomalous heat transport. Journal of Physics A: Mathematical and
Theoretical, 43(6), 2010.

[59] L. Delfini, S. Lepri, R. Livi, C. Mejía-Monasterio, and A. Politi. Nonequilibrium dynamics
of a stochastic model of anomalous heat transport: Numerical analysis. Journal of Physics A:
Mathematical and Theoretical, 43(14), 2010.

[60] C. Bernardin, V. Kannan, J. L. Lebowitz, and J. Lukkarinen. Harmonic Systems with Bulk
Noises. Journal of Statistical Physics, 146(4):800–831, 2012.

[61] Milton Jara, Tomasz Komorowski, and Stefano Olla. Superdiffusion of Energy in a Chain of
Harmonic Oscillators with Noise. Communications in Mathematical Physics, 339(2):407–
453, 2015.

[62] Herbert Spohn and Gabriel Stoltz. Nonlinear Fluctuating Hydrodynamics in One Dimen-
sion: The Case of Two Conserved Fields. Journal of Statistical Physics, 160(4):861–884, 2015.

[63] Morikazu Toda. Theory of Nonlinear Lattices; Volume 20 of Springer Series in Solid-State
Sciences. Springer Science & Business Media, 2012, 2, illustr edition, 2012.

[64] H. Flaschka. The Toda lattice. II. Existence of integrals. Physical Review B, 9(4):1924–1925,
1974.

120



[65] M. Henon. Integrals of the Toda lattice. Physical Review B, 9(4):1921–1923, 1974.

[66] M Kac and P Moerbeke. A complete solution of the periodic Toda problem. Proceedings of
the National Academy of Sciences of the United States of America, 72(8):2879–2880, 1975.

[67] Etsuro Date and Shunichi Tanaka. Periodic Multi-Soliton Solutions of Korteweg-de Vries
Equation and Toda Lattice. Progress of Theoretical Physics Supplement, 59(0):107–125, 1976.

[68] Morikazu Toda and Noriko Saitoh1. The Classical Specific Heat of the Exponential Lattice.
Journal of the Physical Society of Japan, 52(11):3703–3705, 1983.

[69] H. Büttner and F. G. Mertens. Toda lattice: Statistical mechanics and solitons. Solid State
Communications, 29(9):663–665, 1979.

[70] P Gruner-Bauer and FG Mertens. Excitation spectrum of the toda lattice for finite tempera-
tures. Zeitschrift für Physik B Condensed Matter, 70(4):435–447, 1988.

[71] N Theodorakopoulos and M Peyrard. Solitons and nondissipative diffusion. Physical Re-
view Letters, 83(12):2293–2296, 1999.

[72] A Cuccoli, M Spicci, V Tognetti, and R Vaia. Dynamic correlations of the classical and quan-
tum toda lattices. Physical Review B, 47(13):7859, 1993.

[73] Martin C. Gutzwiller. The quantum mechanical toda lattice. Annals of Physics, 124(2):347–
381, 1980.

[74] Bill Sutherland. A brief history of quantum soliton with new results on the quantisation of
the Toda lattice. Rocky Mountain Journal of Mathematics, 8:413, 1978.

[75] Alessandro Cuccoli, Roberto Livi, Mauro Spicci, Valerio Tognetti, and Ruggero Vaia. Ther-
modynamics of the Toda Chain. International Journal of Modern Physics B, 8(18):2391–
2446, 1994.

[76] M Toda. Solitons and heat conduction. Physica Scripta, 20:424–430, 1979.

[77] Takahiro Hatano. Heat conduction in the diatomic Toda lattice revisited. Physical Review
E, 59(1):1–4, 1999.

[78] Alessandra Iacobucci, Frederic Legoll, Stefano Olla, and Gabriel Stoltz. Thermal conductiv-
ity of the Toda Lattice with conservative noise. Journal of Statistical Physics, 140(2):336–348,
2010.

[79] Cédric Bernardin and Patrícia Gonçalves. Anomalous Fluctuations for a Perturbed Hamil-
tonian System with Exponential Interactions. Communications in Mathematical Physics,
325(1):291–332, 2014.

[80] G Benettin, H Christodoulidi, and A. Ponno. The Fermi – Pasta – Ulam problem and its
underlying integrable dynamics. Journal of Statistical Physics, 152(2):195–212, 2013.

[81] Lev Vidmar and Marcos Rigol. Generalized Gibbs ensemble in integrable lattice models.
Journal of Statistical Mechanics: Theory and Experiment, 2016(6), 2016.

[82] Sheldon Goldstein, Joel L. Lebowitz, Roderich Tumulka, and Nino Zanghì. Canonical
typicality. Physical Review Letters, 96(5), 2006.

121



[83] Sourav Nandy, Arnab Sen, Arnab Das, and Abhishek Dhar. Eigenstate Gibbs ensemble in
integrable quantum systems. Physical Review B, 94(24), 2016.

[84] Sanjib Sabhapandit and Abhishek Dhar. Exact probability distribution for the two-tag dis-
placement in single-file motion. Journal of Statistical Mechanics: Theory and Experiment,
2015(7):P07024, 2015.

[85] Chaitra Hegde, Sanjib Sabhapandit, and Abhishek Dhar. Universal large deviations for the
tagged particle in single-file motion. Physical Review Letters, 113(12), 2014.

[86] Sha Liu, Peter Hänggi, Nianbei Li, Jie Ren, and Baowen Li. Anomalous heat diffusion.
Physical Review Letters, 112(4), 2014.

[87] Yunyun Li, Sha Liu, Nianbei Li, Peter Hanggi, and Baowen Li. 1D momentum-conserving
systems: The conundrum of anomalous versus normal heat transport. New Journal of
Physics, 17, 2015.

[88] Anjan Roy, Abhishek Dhar, Onuttom Narayan, and Sanjib Sabhapandit. Tagged Particle
Diffusion in One-Dimensional Systems with Hamiltonian Dynamics-II. Journal of Statisti-
cal Physics, 160(1):73–88, 2015.

[89] Anjan Roy, Onuttom Narayan, Abhishek Dhar, and Sanjib Sabhapandit. Tagged Parti-
cle Diffusion in One-Dimensional Gas with Hamiltonian Dynamics. Journal of Statistical
Physics, 150(5):851–866, 2013.

[90] Cédric Bernardin, Patrícia Gonçalves, and Milton Jara. 3/4-Fractional Superdiffusion in a
System of Harmonic Oscillators Perturbed by a Conservative Noise. Archive for Rational
Mechanics and Analysis, 220(2):505–542, 2016.

[91] G. M. Viswanathan, V. Afanasyev, Sergey V. Buldyrev, Shlomo Havlin, M. G.E. Da Luz,
E. P. Raposo, and H. Eugene Stanley. Levy flights in random searches. Physica A: Statistical
Mechanics and its Applications, 282(1):1–12, 2000.

[92] A. Zoia, A. Rosso, and M. Kardar. Fractional Laplacian in bounded domains. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 76(2), 2007.

[93] Giada Basile, Tomasz Komorowski, and Stefano Olla. Private communication.

[94] Julien Cividini, Anupam Kundu, Asaf Miron, and David Mukamel. Temperature profile
and boundary conditions in an anomalous heat transport model. Journal of Statistical Me-
chanics: Theory and Experiment, 013203(1), 2017.

[95] Herbert Spohn. Large scale dynamics of interacting particles. Springer Science & Business
Media, 2012.

[96] S. V. Buldyrev, M. Gitterman, S. Havlin, A. Ya Kazakov, M. G.E. Da Luz, E. P. Raposo, H. E.
Stanley, and G. M. Viswanathan. Properties of Lévy flights on an interval with absorbing
boundaries. Physica A: Statistical Mechanics and its Applications, 302(1-4):148–161, 2001.

[97] S. V. Buldyrev, S. Havlin, A. Ya Kazakov, M. G.E. da Luz, E. P. Raposo, H. E. Stanley, and
G. M. Viswanathan. Average time spent by Lévy flights and walks on an interval with ab-
sorbing boundaries. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics, 64(4):11, 2001.

122



[98] W. Chen and S. Holm. Fractional Laplacian time-space models for linear and nonlinear lossy
media exhibiting arbitrary frequency power-law dependency. The Journal of the Acoustical
Society of America, 115(4):1424–1430, 2004.

[99] Anupam Kundu, Abhishek Dhar, and Onuttom Narayan. The green-kubo formula for
heat conduction in open systems. Journal of Statistical Mechanics: Theory and Experiment,
03(03):L03001, 2009.

[100] Pedro L Garrido, Joel L Lebowitz, Christian Maes, and Herbert Spohn. Long-range correla-
tions for conservative dynamics. Physical Review A, 42(4):1954, 1990.

[101] H. Spohn. Long range correlations for stochastic lattice gases in a non-equilibrium steady
state. Journal of Physics A: General Physics, 16(18):4275–4291, 1983.

[102] T. Bodineau, B. Derrida, V. Lecomte, and F. Van Wijland. Long range correlations and phase
transitions in non-equilibrium diffusive systems. Journal of Statistical Physics, 133(6):1013–
1031, 2008.

[103] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. On the long range
correlations of thermodynamic systems out of equilibrium. arXiv preprint arXiv:0705.2996.,
pages 1–4, 2007.

[104] Bernard Derrida. Non-equilibrium steady states: fluctuations and large deviations of the
density and of the current. Journal of Statistical Mechanics: Theory and Experiment,
2007(07):P07023, 2007.

[105] Mateusz Kwaśnicki. Ten equivalent definitions of the fractional laplace operator. Fractional
Calculus and Applied Analysis, 20(1):7–51, 2017.

[106] https://www.ma.utexas.edu/mediawiki/index.php/Fractional_Laplacian, 2018.

[107] Herbert Spohn. Fluctuating hydrodynamics approach to equilibrium time correlations for
anharmonic chains. Lecture Notes in Physics, 921:107–158, 2016.

[108] Stefano Lepri and Antonio Politi. Density profiles in open superdiffusive systems. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(3), 2011.

123


	I Introduction
	Introduction to heat transport
	Fourier law and its breakdown in one-dimensional systems
	Set-ups used to investigate anomalous transport
	Summary of previous work
	Problems addressed in this thesis


	II Transport and correlations in Integrable Systems
	Equilibrium correlations in classically Integrable Toda chain
	Introduction
	Toda chain: Model, definitions and summary of some exact results
	Correlation functions in the special limiting cases of Toda lattice
	Equilibrium correlations of Toda chain
	Non-equilibrium transport in Toda chain connected to heat baths 
	Conclusion
	Appendix

	Velocity correlation functions in the Hard Particle Gas in thermal equilibrium
	Introduction
	Main steps of the calculation
	A heuristic argument and derivation of stretch and energy correlations
	Conclusion
	Appendix


	III Non-local fractional equation description for open system transport in stochastic models
	Harmonic chain with momentum exchange
	Introduction
	Definition of Model and definition of the finite domain fractional operator 
	Steady state results
	Time evolution of temperature profile
	Adding noise satisfying fluctuation dissipation to describe equilibrium fluctuations in finite system
	Long range correlations in NESS
	Conclusions
	Appendix

	Harmonic chain with volume exchange
	Introduction
	Definition of the model and summary of results
	Derivation of the continuum equations for temperature and correlations:
	Stationary state solution of T(z) and C(x,z) 
	Relaxation to steady state
	Fractional evolution of temperature in an infinite line
	 Conclusion
	Appendix


	IV Conclusions
	References


