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Abstract

This thesis describes a test of General Relativity (GR) in the highly

relativistic, strong field regime of gravity using observations of grav-

itational waves from the inspiral, merger and ringdown of binary

black holes (BBHs). The thesis further presents the results of this test

on the first gravitational wave observations by Advanced LIGO and

Virgo and shows that the observed signals are indeed consistent with

the predictions of GR.

In chapters 1 and 2, we provide an overview of the topic of gravi-

tational wave astronomy. Chapter 1 discusses aspects about the gen-

eration and detection of gravitational waves, promising sources for

interferometric detectors, and information that can be extracted from

the observed signals. We end the chapter by discussing all the gravi-

tational wave observations that have been made by the advanced de-

tectors till date, and a look at future detectors. Chapter 2 discusses

how we infer the properties of a source from the observed signal and

use these observations to test GR. We present an overview of the var-

ious tests of GR performed in the last 100 years, including the unique

tests facilitated by gravitational wave observations.

In Chapter 3 we discuss the inspiral-merger-ringdown (IMR) con-

sistency test, which involves inferring the mass and spin of the rem-

nant black hole from the inspiral (low-frequency) and the post-inspiral

(high-frequency) part of the observed signal independently, and check-

ing for their consistency. Anticipating the large number of detections

of BBHs expected in the near future, we show how constraints from

a large number of events with modest signal to noise ratios can be

combined to produce strong constraints on deviations from GR. Us-

ing kludge modified GR waveforms, we demonstrate how this test

could identify certain types of deviations from GR if such deviations

are present in the signal waveforms. We also study the robustness

of this test against reasonable variations of different analysis param-
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eters. Finally, Chapter 4 discusses results of the IMR consistency test

on the gravitational wave observations, GW150914, GW170104 and

GW170814, and how combining information from GW150914 and

GW170104, has allowed us to put the tightest constraints yet from

this test, on the possible deviations from the predictions of GR.
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1 | Introduction: Gravitational Waves

1.1 Gravitational Waves

In 1905, Albert Einstein published his theory of special relativity (SR)

which postulated that the laws of physics are invariant in all inertial

frames, and that information cannot travel at a speed faster than the

speed of light in vacuum. In 1908, he took a step forward in gen-

eralising the principles of SR to all frames of reference (inertial and

non-inertial), when he introduced the principle of equivalence which

states: "At every spacetime point in an arbitrary gravitational field it

is possible to choose a locally inertial coordinate system, such that,

within a sufficiently small region of the point in question, the laws

of nature take the same form as in unaccelerated Cartesian coordi-

nate systems in the absence of gravitation" 1. Finally in November 1 S Weinberg. Gravitation and cosmol-
ogy. ed. John Wiley and Sons, New York,
19721915, Einstein published the full theory, called the theory of general

relativity (GR), which predicts that gravity arises as a consequence

of the interaction between the geometry of spacetime and its matter-

energy content. This dynamical relationship is expressed through

the Einstein’s field equations 2: 2 Throughout this thesis, we would be
working in natural units: G = c = 1,
unless we explicitly specify. Here G is
Newton’s gravitational constant, and c
is the speed of light in vacuum. In these
units 1M� ' 5 ⇥ 10�6s' 1.5km

Gab = 8pTab (1.1)

where the left-hand-side represents the geometry or the curvature of

spacetime through the Einstein tensor, Gab := Rab �
1
2 gabR (Rab, R

and gab are the Ricci tensor, the Ricci scalar and the metric tensor

respectively) and the right-hand-side through the stress-energy ten-

sor Tab, represents the matter-energy content of the universe. The

indices a,b run over all four spacetime indices taking values 0, 1, 2, 3.

This dynamical relationship is perhaps best expressed through John

Wheeler’s famous quote: "Spacetime tells matter how to move; mat-

ter tells spacetime how to curve".
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One of the most remarkable predictions of GR is the existence

of gravitational waves 3. For a weak gravitational field, spacetime is 3 Albert Einstein. Approximative inte-
gration of the field equations of grav-
itation. Sitzungsber. Preuss. Akad. Wiss.
Berlin (Math. Phys.), 1916:688–696, 1916;
and Albert Einstein. Über gravitation-
swellen. Sitzungsberichte der Königlich
Preußischen Akademie der Wissenschaften
(Berlin), Seite 154-167., 1918

assumed to be ’nearly’ flat and the metric gab, a correction over the

metric for flat Minkowskian spacetime hab:

gab = hab + hab (1.2)

where,

|hab| ⌧ 1 (1.3)

This assumption leads one to the weak-field Einstein equations 4: 4 Bernard Schutz. A first course in general
relativity. Cambridge university press,
2009

⇤h̄ab = �16pTab (1.4)

where h̄ab is the trace-reversed form of hab, defined as:

h̄ab := hab �
1
2

habh (1.5)

where h is the trace of the tensor hab, h := ha
a. In vacuum, where

Tab = 0, the weak-field equations become:

✓
�

∂2

∂t2 + r
2
◆

h̄ab = 0 (1.6)

This is the wave equation in three-dimensions, with a plane-wave

solution:

h̄ab = Aabexp(ikaxa) (1.7)

where ka represents the direction of travel of the gravitational wave,

and Aab is a tensor which, while working in a specific gauge called

the transverse-traceless (TT) gauge, can be shown to have only two

independent physically important components ATT
xx and ATT

xy (for a

wave propagating in z-direction) 5: 5 In the TT gauge, Aab can be shown
to be traceless (i.e, Aa

,a = 0) as well as
transverse to the direction of propaga-
tion of gravitational waves (i.e, Aa0 =
Aaz = 0 for all a).

(ATT
ab ) =

2

6666664

0 0 0 0

0 ATT
xx ATT

xy 0

0 ATT
xy �ATT

xx 0

0 0 0 0

3

7777775
(1.8)

It follows that a gravitational wave travelling in the z-direction has

two independent components, hTT
xx and hTT

xy . In a Lorentz frame

where two particles are initially at rest and separated in the x-direction

by a distance e just before a gravitational wave passes, choosing the



inspiral-merger-ringdown consistency test 11

TT gauge leads to a coordinate system attached to the particles, and

in such a frame the coordinate distance between the two particles

does not change by the passage of gravitational waves. However the

proper distance between the two particles:

Dl ⇡ [1 +
1
2

hTT
xx (x = 0)]e (1.9)

does change by the passage of gravitational waves and is measurable.

This is sometimes referred to as the ’stretching’ of space. It follows

from Eq. 1.9 that such a change between two freely falling particles

is directly proportional to the initial separation e, i.e, the larger the

initial separation, the easier it is to detect the change. Eq. 1.9 also

shows that Dl is proportional to hTT
ij which is typically of the order

of 10�21 or smaller for expected astrophysical sources, which is why

detecting such signals has been such a challenge until the first decade

of the 21st century.

Figure 1.1: The two independent polar-
isations of a gravitational wave passing
perpendicular to a ring of freely falling
particles lying in the x-y plane. The
top panel shows the case where hTT

xx 6=
0; hTT

xy = 0, ie, ’+’ (plus) polarisation,
while the bottom panel is when hTT

xy 6=

0; hTT
xx = hTT

yy = 0, i.e., ’x’ (cross) polari-
sation.

The effect of the passage of a gravitational wave can also be viewed

as tidal forces on particles. Consider two particles separated by a vec-

tor ~x, initially at rest before the passage of the gravitational wave

in a local inertial frame. Then it can be shown that the passage of

the wave is equivalent to the acceleration of one of the particles as

measured in the local inertial frame whose motion initially coincided

with the motion of the second particle. Thus the action of the gravi-

tational wave on the first particle will appear to the second particle,

like a force pushing it. This is called the tidal force associated with

gravitational waves.

We can further show that if the initial separation ~x ! (0, e, 0, 0) is
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in the x-direction, then:

∂2

∂t2 xx =
1
2

e
∂2

∂t2 hTT
xx (1.10)

∂2

∂t2 xy =
1
2

e
∂2

∂t2 hTT
xy (1.11)

and if the initial separation is in the y-direction, then:

∂2

∂t2 xy =
1
2

e
∂2

∂t2 hTT
yy = �

1
2

e
∂2

∂t2 hTT
xx (1.12)

∂2

∂t2 xx =
1
2

e
∂2

∂t2 hTT
xy (1.13)

since hTT
xx = �hTT

yy . Now, consider a gravitational wave passing per-

pendicular to a ring of freely falling particles lying in the x-y plane.

If hTT
xx 6= 0; hTT

xy = 0 then the proper distance of the ring from the cen-

tre of the ring changes as shown in the top panel of Fig. 1.1, and if

hTT
xy 6= 0; hTT

xx = hTT
yy = 0, the the ring moves as shown in the bottom

panel of Fig. 1.1. These two independent states define the two inde-

pendent polarisations of a gravitational wave. They are respectively

called the ’+’ (plus) and ’x’ (cross) polarisations, and are rotated 45�

with respect to each other. We will return to the definition of these

polarisation in Sec.1.3, when we discuss the detection of gravitational

waves.

1.2 Sources

The typical magnitudes for the amplitudes of gravitational waves

that can be expected on Earth from the most luminous sources in the

universe, is what has primarily driven the effort of detection. The

knowledge of these typical magnitudes come from our understand-

ing of the sources of gravitational waves themselves. The Einstein’s

equations (Eq.1.1) are a set of second-order non-linear partial dif-

ferential equations, and it is quite difficult to find exact analytical

solutions for most sources of gravitational waves. In some cases, nu-

merical methods can be employed, but are usually computationally

expensive. An alternate approach for a gravitationally bound sys-

tem, is to adopt an iterative analytical approximation scheme called

the post-Newtonian approximation 6. In systems where the typical

6 Luc Blanchet. Gravitational radia-
tion from post-newtonian sources and
inspiralling compact binaries. Liv-
ing Reviews in Relativity, 17(1):2, 2014;
Luc Blanchet, Thibault Damour, and
Bala R Iyer. Gravitational waves from
inspiralling compact binaries: Energy
loss and waveform to second-post-
newtonian order. Physical Review D,
51(10):5360, 1995; Eric Poisson. Grav-
itational waves from inspiraling com-
pact binaries: The quadrupole-moment
term. Physical Review D, 57(8):5287,
1998; Luc Blanchet, Thibault Damour,
and Gilles Esposito-Farese. Dimen-
sional regularization of the third post-
newtonian dynamics of point particles
in harmonic coordinates. Physical Re-
view D, 69(12):124007, 2004; Thibault
Damour and Alessandro Nagar. Im-
proved analytical description of in-
spiralling and coalescing black-hole
binaries. Physical Review D, 79(8):
081503, 2009; KG Arun, Alessandra
Buonanno, Guillaume Faye, and Evan
Ochsner. Higher-order spin effects in
the amplitude and phase of gravita-
tional waveforms emitted by inspiraling
compact binaries: Ready-to-use grav-
itational waveforms. Physical Review
D, 79(10):104023, 2009; Alessandra Buo-
nanno, Guillaume Faye, and Tanja Hin-
derer. Spin effects on gravitational
waves from inspiraling compact bina-
ries at second post-newtonian order.
Physical Review D, 87(4):044009, 2013;
and Alejandro Bohé, Guillaume Faye,
Sylvain Marsat, and Edward K Porter.
Quadratic-in-spin effects in the orbital
dynamics and gravitational-wave en-
ergy flux of compact binaries at the 3pn
order. Classical and Quantum Gravity, 32
(19):195010, 2015velocities inside a source are small compared to the speed of light,

one can do a low-velocity expansion of the right-hand-side of Eq. 1.4
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and show that gravitational waves are produced (to leading order)

by a time-varying quadrupole moment of a source, Qij
7: 7 Michele Maggiore. Gravitational

Waves: Volume 1: Theory and Experiments,
volume 1. Oxford university press, 2008

hTT
ij (t, x) =

2
r

Q̈TT
ij (t � r) (1.14)

where quantities are computed in the TT gauge, at a position x, a

distance r away from the source, the spatial gravitational wave tensor

hTT
ij at a time t is due to the state of the source at the retarded time

t � r and a dot indicates a time derivative. The quadrupole moment

Qij, at the lowest post-Newtonian order, is the second moment of the

mass distribution and depends only on the density r of the system,

as:

Qij =
Z

rxixjd3x (1.15)

1.2.1 Simple order-of-magnitude estimates

Amplitude
8
: Gravitational waves are produced (to leading order) 8 This section presents a few order of

magnitude calculations of the gravita-
tional wave amplitude, frequency and
luminosity. The treatment is heavily
borrowed from [109]

by the time-varying quadrupole moment of the source. A spherically

symmetric system does not produce gravitational waves. Hence the

typical magnitudes of the gravitational wave amplitude can be re-

lated to the non-spherical component of the system, as:

h ⇠
2
r

Q̈ij ⇠
2
r
(Mv2)nonsph (1.16)

where (Mv2)nonsph is twice the kinetic energy of the non-spherical

component of the source. In an extreme limit, the non-spherical mo-

tions is due to the entire mass of the system. Then (Mv2)nonsph =

M(v2)nonsph. We also know that the Newtonian potential fext =

M/r. Thus we are able to put a bound on the ratio:

h/fext < 2v2
nonsph  2fint (1.17)

where the last inequality is from the Virial theorem for self-gravitating

bodies. Thus, we obtain the following bound on the amplitude of

gravitational waves:

h  2fintfext (1.18)

For a neutron star source (fint ⇠ 0.2), in the Virgo cluster (r ⇠ 18

Mpc) and mass ⇠ 1.4M�, the upper limit on h ⇠ 10�21. These

are typically the amplitudes of gravitational waves that the current
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generation of ground-based interferometric detectors are hunting for.

Frequency: The Newtonian formula for the natural frequency f0, of

a self-gravitating body with a mean density r̄, is:

f0 =
p

r̄/4p (1.19)

This can be rewritten for a compact object with mass M and radius

R, like a neutron star or a black hole:

f0 ' 1kHz(
10M�

M
) (1.20)

Thus for neutron star systems, this natural frequency is usually of

the order of a few kHz, while for stellar-mass black holes, they are

from a few tens to a few hundred Hz. For super-massive black holes,

the natural frequency is in the range of a few mHz. As we shall see in

Sec.1.3.3, the ground-based interferometric detectors like Advanced

LIGO and Virgo are most sensitive in the frequency band between

about 10Hz to 1kHz, which make binaries of systems composed of

neutron stars and/or black holes promising candidates for detection.

Luminosity: A gravitational wave carries energy and angular mo-

mentum away from a source. In the quadrupolar approximation, the

luminosity L of a gravitational wave source is expressed through the

Einstein quadrupole formula 9: 9 Bernard Schutz. A first course in general
relativity. Cambridge university press,
2009; Michele Maggiore. Gravitational
Waves: Volume 1: Theory and Experiments,
volume 1. Oxford university press,
2008; and B.S. Sathyaprakash and B.F.
Schutz. Physics, Astrophysics and Cos-
mology with Gravitational Waves. Liv-
ing Rev. Relat., 12:2, 2009

L =
1
5
h
...
Qij

...
Q

ij
i (1.21)

The above expression is written in natural units, but in SI units, it

must be multiplied by a factor L0 = c5/G = 3.6 ⇥ 1052 W. Even if

the gravitational wave source emits radiation with a fraction of this

luminosity, it will still be huge. The solar luminosity is 3.8 ⇥ 1026 W,

a typical galaxy has luminosity close to 1037 W. All the stars in all

the galaxies in the visible universe put together have a luminosity

⇠ 1048 W. As comparison, the peak luminosity of the first detection,

GW150914 was ⇠ 3.6 ⇥ 1049 W, more than ten times greater than the

combined luminosity of every star and galaxy in the observable Uni-

verse. From Eq.1.14 and Eq.1.21 one finds that the apparent luminos-
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ity far from the source is related to the gravitational wave amplitude

as10: 10 Bernard Schutz. A first course in gen-
eral relativity. Cambridge university
press, 2009

F ⇠
|ḣ|

2

16p
(1.22)

This can be used to write the gravitational wave amplitude h in terms

of the rate of energy loss by the source, predominantly at some fre-

quency f , as:

h ⇠
1

p f r

r
E
T

(1.23)

where the source at distance distance r emits energy E in time T.

Since the energy can be assumed to be emitted at frequency f , we

can write ḣ = 2p f h, and the apparent flux F can be approximately

written as E/(4pr2T).

In summary, ground-based interferometric detectors are most likely

to observe gravitational waves sources with amplitudes of 10�21 or

smaller, emitted at frequencies between 10Hz - 1kHz at a fraction of

the luminosity L0. Unfortunately this rules out man-made sources of

gravitational waves, where even the most optimistic amplitudes are

⇠ 10�43. Thus most of the sources of gravitational waves that are of

relevance to such detectors are of astrophysical nature 11, and can be 11 Curt Cutler and Kip S Thorne. An
overview of gravitational-wave sources.
In General Relativity and Gravitation,
pages 72–111. World Scientific, 2002;
and B.S. Sathyaprakash and B.F. Schutz.
Physics, Astrophysics and Cosmology
with Gravitational Waves. Living Rev.
Relat., 12:2, 2009

broadly classified in four categories, described below.

1.2.2 Burst sources

The end stages of stellar evolution involve the formation of neu-

tron stars or black holes when a massive star exhausts all its fuel

and collapses under the force of gravity. If such gravitational col-

lapses are spherically asymmetric, then the source has a time-varying

quadrupole moment and gravitational waves are produced. Alterna-

tively the core-collapse of accreting compact objects could also pro-

duce gravitational waves. Such sources are called burst sources. Grav-

itational waves from a burst source are usually unmodelled because

a lot of the physics behind the mechanism of a gravitational collapse

is unknown. If we know the rate of emission of energy from such

a source, a rough estimate of the amplitude of gravitational waves
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emitted can be done using Eq.1.23:

h ⇠ 6 ⇥ 10�21
✓

E
10�7M�

◆1/2✓1ms
T

◆1/2✓1kHz
f

◆✓
10kpc

r

◆
(1.24)

where we have scaled the right-hand-side with respect to a burst

source at a distance of 10 kpc, emitting 10�7M� equivalent of en-

ergy in 1 ms, at a frequency of 1 kHz. Attempts to observe such

signals involve looking for excess power over the background dur-

ing an extremely short period of time, because most of such sources

are expected to be transient sources with a low event rate inside a

supercluster like Virgo 12.

12 Matt Taylor, David Cinabro, Ben Dil-
day, Lluis Galbany, Ravi R Gupta,
R Kessler, John Marriner, Robert C
Nichol, Michael Richmond, Donald P
Schneider, et al. The core collapse su-
pernova rate from the sdss-ii supernova
survey. The Astrophysical Journal, 792(2):
135, 2014

Figure 1.2: Chandra X-ray photo-
graph of Cassiopeia A, the youngest
supernova remnant in the Milky Way.
Credit: NASA/CXC/MIT/UMass
Amherst/M.D.Stage et al.

1.2.3 Spinning neutron stars

Another source of a time-varying quadrupole moment might be a

"bump" or an asymmetry on the surface of a spinning neutron star.

A neutron star of mass M, and radius R, spinning at a frequency

f and with a bump of mass m on its surface is expected to spin

down due to emission of gravitational waves. The bump is usually

characterised through a fractional asymmetry defined as the ratio of

the moment of inertia of the bump to the spherical moment of inertia

of the entire neutron star: e = mR2/( 2
5 MR2) = 5m

2M . The "bump"

can be treated as the non-spherical component of the neutron star,

rotating at a frequency f about the axis. Hence it emits gravitational

waves with a frequency 2 f , and Eq.1.17 gives us an estimate of the

amplitude of radiation at a distance r:

h ⇠ (4/5)v2
nonspheM/r = (4/5)(2pR f )2eM/r (1.25)
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and the luminosity (from Eq.1.21), as:

L ⇠ (16/125)(2p f )6e2M2R4 (1.26)

where, to make an order of magnitude estimate, we have assumed

that the four independent components of Qij in Eq.1.21 all have

comparable magnitudes. Since the energy emitted into gravitational

waves is mostly extracted from the rotational kinetic energy of the

star 1
5 Mv2, the typical timescale for the spindown of the neutron star

is:

tspindown ⇠
1
5

Mv2/L ⇠
25

32p
e�2 f �1

✓
M
R

◆�1
v�3 (1.27)

where v is the rotational velocity of the neutron star. The typical

spindown rates of neutron stars allow us to put upper bounds on

the fractional asymmetries e. For the Crab pulsar 13, latest results 13 Benjamin P Abbott, R Abbott, TD Ab-
bott, MR Abernathy, F Acernese, K Ack-
ley, C Adams, T Adams, P Addesso,
RX Adhikari, et al. First search for
gravitational waves from known pul-
sars with advanced ligo. The Astrophys-
ical Journal, 839(1):12, 2017

from Advanced LIGO place upper bounds on e at ⇠ 10�5, which,

given the distance to the Crab pulsar is 2 kPc, should produce an

amplitude for gravitational waves on Earth ⇠ 10�25. Although this

is much smaller than the typical amplitudes of ⇠ 1021 that are ex-

pected for the burst or the transient sources, gravitational waves from

spinning neutron stars can still be expected to be observed, because

unlike transient sources which last for a fraction of a second, such

sources produce gravitational waves for a long period of time, and

consequently can have a long observation period. Such sources are

thus called continuous wave sources.

Figure 1.3: Artist’s depiction of a super
dense and compact neutron star (Casey
Reed/Penn State University)

1.2.4 Binary systems

A binary system composed of two compact objects like white dwarves,

neutron stars and/or black holes move around each other in circu-
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lar/elliptical orbits. For initial rough estimates of the amplitude and

luminosity of such sources, let us assume two objects of mass m in

a circular orbit of radius R. Since their entire motion contributes to

the non-spherical component of motion of the source14: 14 B.S. Sathyaprakash and B.F. Schutz.
Physics, Astrophysics and Cosmology
with Gravitational Waves. Living Rev.
Relat., 12:2, 2009(Mv2)nonsph = Mv2

nonsph = M(WR)2 =
M2

R
(1.28)

where W is the orbital angular velocity and M is the total mass of the

system. Following the simple-estimates prescription given above,

we can obtain expressions for the gravitational wave amplitude and

luminosity as:

h ⇠ 2
M
r

M
R

=
2
r

M5/3W2/3 (1.29)

L ⇠
4
5

✓
M
R

◆4/5
(1.30)

where in the first equation we substitute for R in terms of the orbital

angular velocity W to obtain the term on the right-hand-side. The

second equation shows that if the gravitational wave source is highly

relativistic and compact, then M/R ⇠ 1, and it radiates a signifi-

cant amount of radiation as gravitational waves. Because of emission

of radiation into gravitational waves, conservation of energy causes

the orbit to shrink. Consequently, due to conservation of angular

momentum, the objects start to move faster, i.e., the orbital angular

frequency W increases, causing it to emit more radiation into grav-

itational waves. Hence, the backreaction due to gravitational waves

leads to a run-away process in which the two objects spiral in with an

increase in the frequency and the amplitude of gravitational waves

emitted, with time. This is called the gravitational wave chirp, and

has an associated timescale:

tchirp =
Mv2

2
/L ⇠

5M
8

M
R

�4
(1.31)

For astrophysical binary systems with unequal masses, the above

equations can be refined and rewritten in terms of a quantity called

the chirp mass of the binary, defined as Mc := (m1m2)
3/5

(m1+m2)1/5
15: 15 Benjamin P Abbott, R Abbott, TD Ab-

bott, MR Abernathy, F Acernese, K Ack-
ley, C Adams, T Adams, P Addesso,
RX Adhikari, et al. Properties of the
binary black hole merger gw150914.
Physical review letters, 116(24):241102,
2016

h ⇠
1
r
M

5/3
c W2/3 (1.32)
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The shrinking of the orbit, measured in terms of the rate of decay of

the orbital period Pb, is:

Ṗb = �
192p

5

✓
2pMc

Pb

◆5/3
(1.33)

leading to a chirp time:

tchirp =
5M
96µ

✓
M
R

◆�4
(1.34)

where µ := (m1m2)/M2 is called the symmetric mass ratio of the

system. As mentioned above, during the gravitational wave chirp,

the orbit shrinks with a monotonic increase in the amplitude and

frequency of the radiation emitted into gravitational waves. The in-

spiral proceeds till the two object come close enough to interact with

each other and start to merge. A convenient scale to denote the end

of the inspiral is when the distance between the compact objects is

equal to the last stable orbit (LSO) R = 6M, which has a frequency:

fLSO ⇠ 220
✓

20M�

M

◆
Hz (1.35)

which is called the LSO frequency. A binary white dwarf system is

expected to merge a lot before it can reach the LSO, because although

white dwarves have masses similar to a neutron star, they are a lot

less compact, with radii which are a few thousand kilometres. Gravi-

tational waves from the inspiral of white dwarf binaries are expected

to be in the mHz to a few Hz range, making them suitable candidates

for space-based detectors rather than the current ground-based ones.

Binaries composed of more compact objects like neutron stars

and/or black holes are able to reach the LSO without merging. Such

coalescences occur at frequencies beyond the frequency at the LSO.

Hence they are among the most luminous sources of gravitational

waves in the universe. Such binaries of neutron stars and stellar-

mass black holes are expected to have a frequency range from a few

Hz to a few kHz, which fall in the sensitivity band of ground-based

interferometric detectors. Also at design sensitivity the advanced

LIGO and Virgo detectors will be searching for such binaries upto

distances as far as 15 Gpc (for high stellar-mass black hole binaries),

and are expected to observe systems at a rate of a few tens to a few

hundreds per Gpc3 per year. 16. 16 Benjamin P Abbott et al. Gw170104:
Observation of a 50-solar-mass binary
black hole coalescence at redshift 0.2.
Physical Review Letters, 118:221101, 2017
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There is another class of binary black hole mergers where the in-

dividual black holes have masses between 106
� 109M�. Such black

holes are called super-massive black holes and are expected to be

present at the centre of most galaxies, including our own. Eq.1.35

shows that the frequency at the LSO scales inversely with the to-

tal mass of the system, and hence for the coalescence of two super-

massive black holes, fLSO is of the order of a few mHz to tens of mHz.

This is supposed to be the frequency of operation of the space-based

detectors, like LISA, for which the super-massive black hole binary

coalescences are one of the most promising sources17. 17 Danzmann et al. 61

Figure 1.4: Stages of binary black hole
coalescence: (from left to right) inspiral,
plunge, merger, and ringdown. Cour-
tesy: A. Taracchini/AEI

Quasi-normal modes of a black hole: After the two black holes

merge, the remnant object sheds away its asymmetries through a

spectrum of gravitational radiation in the form of exponentially damped

sinusoids, called the quasi-normal-modes (QNMs), before settling down

to a stable Kerr black hole. The spectrum of QNMs can be solved for

using black hole perturbation theory 18. For the ground-based detec- 18 CV Vishveshwara. Scattering of grav-
itational radiation by a schwarzschild
black-hole. Nature, 227(5261):936, 1970tors, the dominant QNM occurs at a frequency near the upper end

of its sensitivity band (depending on the mass and spin of the rem-

nant object), and it is possible to observe them for an especially loud

signal. However, a space-based detector like LISA is a much better

prospect to observe clear QNMs from the merger of super-massive

black hole binaries. This phase of evolution of a compact binary

coalescence (CBC) is called the ringdown (Fig.1.4).

1.2.5 Stochastic sources

A stochastic signal arises from the indistinguishable overlap of grav-

itational waves from multiple sources mentioned above, arriving at

the detector from all directions without any phase coherence. It is
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also possible that a part of the stochastic signal is from the grav-

itational waves which originated at various energetic processes at

the early universe. They are the quietest signals, but as we will see

in Sec.1.4, bounds placed on the amplitude of this stochastic back-

ground from gravitational wave observations by Advanced LIGO-

Virgo, make their detection a real possibility, in the upcoming years.

1.3 Detectors and Detection

The direct detection of gravitational waves involves measuring the

tidal distortions mentioned at the end of Sec.1.1. The first attempts

to measure gravitational waves were using resonant bar detectors by

Josep Weber in 1960 19. However limitations on the size of the bars 19 Joseph Weber. Detection and genera-
tion of gravitational waves. Physical Re-
view, 117(1):306, 1960and materials used, challenges in reducing thermal noise, and their

narrow band nature provided severe constraints on the gravitational

waves detectable by these bars. It soon became obvious that the way

forward was an interferometric set-up and more time and money

was invested into beam detectors from the late 1980s onward. Pulsar

timing 20 and Cosmic Microwave Background (CMB) polarisation 20 G Hobbs, A Archibald, Z Arzouma-
nian, D Backer, M Bailes, NDR Bhat,
M Burgay, S Burke-Spolaor, D Cham-
pion, I Cognard, et al. The interna-
tional pulsar timing array project: using
pulsars as a gravitational wave detec-
tor. Classical and Quantum Gravity, 27
(8):084013, 2010

measurements are two other methods used in the search for grav-

itational waves. While pulsar timing looks for gravitational waves

in the frequency range around nHz, CMB temperature perturbations

are expected to be affected by gravitational waves in the frequency

range ⇠ 10�16 Hz. However, for the rest of this section we will focus

on interferometric detectors.

1.3.1 Principle of operation of interferometric detectors

The basic principle of operation of beam detectors, including inter-

ferometers, involve time-of-flight measurements using light. Since

the speed of light c is a constant in vacuum, one can measure proper

distances by having light (or electromagnatic radiation) reflect off the

distant object, and measure the total time of flight Dt. The distance

to the object is then just cDt/2. We now consider the simple experi-

ment where we have laser light being bounced off two freely falling

objects and a gravitational wave passes through this system, such

that the angle between the direction of propagation of light and the

plane gravitational wave is q. Since the two objects are freely falling,

we can use the TT coordinate system, and let us assume that in this
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coordinate system the wave just has a ’+’ polarisation h+(t). We

need two clocks in this experiment: the first one records the depar-

ture times of each photon t and the second clock records their return

times t f . If the proper distance between the freely falling objects in

the absence of a gravitational wave is L, then the effect of the grav-

itational wave would be to change the proper distance between the

two objects, and hence rate at which the photons return as a function

of the rate at which they leave the source. In linearised theory, this is

given by:

dt f

dt
= 1 +

1
2
(1 + cosq)[h+(t + (1 � cosq)L) � h+(t)] (1.36)

Since h+(t) is the amplitude of the gravitational wave when it

leaves the emitter, h+(t + (1 � cosq)L) would be the amplitude of

the wave when the photon reaches the receiver. Thus, the time-of-

flight is only dependent on the amplitudes of the gravitational wave

at the emitter and receiver. Measurements in this arrangement, of-

course depends on the stability of the clocks. The most stable atomic

clocks can measure time to within an accuracy of 1 part in 1016 sec-

onds21, which would not be sufficient to measure gravitational waves 21 John W Armstrong. Low-frequency
gravitational wave searches using
spacecraft doppler tracking. Living
Reviews in Relativity, 9(1):1, 2006

with amplitudes smaller than h ⇠ 10�15. This problem is overcome

by using an interferometric set up. A Michelson interferometer is a

set up where a beam of light is split into two (at a beam-splitter S)

and sent down two perpendicular arms. At the end of each arm, the

beam reflects back off mirrors (M1 and M2), and made to recombine

at the splitter. The two beams have a fixed phase difference when

they leave the beam-splitter, and hence on recombination, they form

an interference pattern, which can be observed at the detector. If the

two beams were p/2 out of phase at the beam-splitter, then when

they recombine they undergo destructive interference, and produce

a dark spot at the detector. Hence in the case of the Michelson inter-

ferometer, one of the arms behaves like a clock, and variations in the

length of the other arm are measured with respect to it. This makes

interferometers one of the most natural instruments to observe grav-

itational waves.

If we have an interferometer lying in the x-y plane with its two

perpendicular arms along the positive x- and y-axes respectively, and



inspiral-merger-ringdown consistency test 23

Figure 1.5: A basic Michelson interfer-
ometer set up. Picture courtesy [92]

the corner station at the origin, and the gravitational waves with just

a ’+’ polarisation h+(t) travelling in the z-direction, as shown in the

top panel of Fig. 1.1, during one cycle of the gravitational wave, the

x-arm will get shortened while the y-arm will be stretched, and get

reversed during the next cycle. These differential changes in the arm-

lengths will be measured using the time-of-flight method explained

above. However, a gravitational wave with just a ’x’ polarisation

h⇥(t) travelling in the z-direction, will affect the two arms identically,

and hence the interferometer will not see the wave.

1.3.2 The response of a ground-based interferometer

Interferometers measure the differential changes between the arm-

lengths caused by the passage of a gravitational wave. We have seen

in Eq. 1.9 that such changes are exaggerated farther away the end-

mirrors are. Thus, modern ground-based interferometric detectors

are made several kilometres long (for eg, the advanced LIGO detec-

tors 22 are 4 km long, the advanced Virgo detector 23 is 3 km long) 22 Junaid Aasi, BP Abbott, Richard Ab-
bott, Thomas Abbott, MR Abernathy,
Kendall Ackley, Carl Adams, Thomas
Adams, Paolo Addesso, RX Adhikari,
et al. Advanced ligo. Classical and quan-
tum gravity, 32(7):074001, 2015
23 F Acernese, M Agathos, K Agatsuma,
D Aisa, N Allemandou, A Allocca,
J Amarni, P Astone, G Balestri, G Bal-
lardin, et al. Advanced virgo: a second-
generation interferometric gravitational
wave detector. Classical and Quantum
Gravity, 32(2):024001, 2014

and the space-based detectors (for eg, LISA 24) are meant to be mil-

24 Karsten Danzmann, LISA Study
Team, et al. Lisa: Laser interferometer
space antenna for gravitational wave
measurements. Classical and Quantum
Gravity, 13(11A):A247, 1996

lions of kilometres apart. These lengths are still much smaller than

the wavelength of a gravitational waves, and hence for L ⌧ lGW ,

one can rewrite Eq. 1.36 as:

dt f

dt
= 1 + sin2qLḣ+(t) (1.37)

At this point, let us move to a more general tensorial representa-

tion and introduce basis vectors to define the radiation and detector

frames respectively, and the transformation between them. Consider



24 abhirup ghosh

êx and êy to be the unit vectors along the x- and y-arms of the de-

tector. If N̂ be the unit vector in the direction of propagation of the

wave, then let us define the basis vectors in the radiation frame as

êR
x and êR

y , where êR
x lies in the plane formed by N̂ and êx, and êR

y is

orthogonal to êR
x and N̂ [c.f Fig.1.6]. In this generalised picture, the

Figure 1.6: The relative orientation of
the sky and detector frames (left panel)
and the effect of a rotation by the angle
y in the sky frame (right panel). (Figure
and caption courtesy figure 3 in [109])

full waveform has the tensor representation:

h(t) = h+(t)e+ + h⇥(t)e⇥ (1.38)

where {e+, e⇥} are the polarisation tensors associated with the basis

vectors êR
x and êR

y , defined as:

e+ = (êR
x ⌦ êR

x � êR
y ⌦ êR

y ) (1.39)

e⇥ = (êR
x ⌦ êR

y + êR
y ⌦ êR

x ) (1.40)

We can then rewrite Eq.1.37 to express the rate of the return times of

the photons along the x- and y-arms as:

⇣dt f

dt

⌘

x-arm
= 1 + Lêx.ḣ.êx (1.41)

⇣dt f

dt

⌘

y-arm
= 1 + Lêy.ḣ.êy (1.42)

where a dot represents a derivative with respect to time. Thus the

difference in the times taken for a photon to travel down the two
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arms can be expressed as:

⇣ddt f

dt

⌘
=

⇣dt f

dt

⌘

x-arm
�

⇣dt f

dt

⌘

y-arm
= L(êx.ḣ.êx � êy.ḣ.êy) (1.43)

If we define the detector tensor d = L(êx ⌦ êx � êy ⌦ êy), then the

different return time rate can be expressed as an invariant:

⇣ddt f

dt

⌘
= d : ḣ (1.44)

where d : ḣ denotes the Euclidean scalar product of the tensor d

and ḣ. Integrating the above equation gives us the difference in the

return times between a photon travelling along the x- and y-arms

of the interferometer, and this is exactly equal to the differences in

the path-lengths covered by the photon from time-of-flight measure-

ments. Hence, the differential change in the armlengths dL(t) is:

dL(t) =
1
2

d : h (1.45)

Finally making our observations independent of the detector frame

(because different detectors can have different orientations), and us-

ing the more universal astronomical reference frame, we rotate the

plane of the sky by an angle y, called the polarisation angle, and

choose a new set of basis vectors to define the plane of the sky â

and b̂. This transformation is explained in the right-hand panel of

Fig.1.6. In this new basis, the polarisation tensors are redefined as:

e+ = (â ⌦ â � b̂ ⌦ b̂) (1.46)

e⇥ = (â ⌦ b̂ + b̂ ⌦ â) (1.47)

with the transformation equations being:

e+ = e+cos2y + e⇥sin2y (1.48)

e⇥ = �e+sin2y + e⇥cos2y (1.49)

So, finally, we can write:

dL(t)
L

= F+(q, f, y)h+ + F⇥(q, f, y)h⇥ (1.50)
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Figure 1.7: The antenna pattern of
an interferometric detector (left panel)
with the arms in the x-y plane and ori-
ented along the two axes. The response
F for waves coming from a certain di-
rection is proportional to the distance to
the point on the antenna pattern in that
direction. Caption and figure courtesy:
Fig.4 in [109]

where {F+(q, f, y), F⇥(q, f, y)} are called the antenna pattern func-

tions of the detector, expressed in terms of the sky position of the

source as (in the detector-centred coordinate system):

F+(q, f, y) =
1
2
(1 + cos2q)cos2fcos2y � cosqsin2fsin2y,

F⇥(q, f, y) =
1
2
(1 + cos2q)cos2fsin2y + cosqsin2fcos2y

We carry over these definitions to the next chapter, where we redefine

the left-hand-side of Eq.1.50 as the detector strain h(t) = dL(t)
L .

1.3.3 Noise budget of the detector

Another thing we learn from Eq. 1.9 is that even with kilometre scale

interferometers, for realistic source of gravitational waves (discussed

in detail in Sec. 1.2), gravitational wave detection demands the mea-

surement of differential displacements ⇠ 10�18 m. There are several

noise sources that produce differential displacements in the detector

that are of this scale. Hence one would need to isolate the effect

of such noise sources before a gravitational waves can be detected.

The major contribution to the noise budget of ground-based interfer-

ometric detectors comes from seismic noise and thermal noise (due

to vibration of the mirrors and the suspending system, as well as

the substrate and coating of the mirrors) towards the low-frequency
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Figure 1.8: The average measured
strain-equivalent noise, or sensitivity,
of the Advanced LIGO detectors dur-
ing the time analysed to determine the
significance of GW150914 (Sept 12 -
Oct 20, 2015). Hanford (H1) is shown
in red, Livingston (L1) in blue. The
solid traces represent the median sen-
sitivity and the shaded regions indi-
cate the 5th and 95th percentile over
the analysis period. The narrowband
features in the spectra are due to
known mechanical resonances, mains
power harmonics, and injected signals
used for calibration. [Caption and
figure, courtesy: https://losc.ligo.org
/events/GW150914/]

end. Hence advanced LIGO at design sensitivity is expected to have

a lower frequency cut-off of around 10Hz. At high frequencies, the

noise budget is limited due to shot noise arising because of the quan-

tum nature of the photons in the laser beam. Thus, the sensitivity of

the detectors span a broadband bucket from around 10Hz to a few

kHz, with maximum sensitivity of around 10�23 around 200 Hz.

1.3.4 Global network of detectors

The LIGO and Virgo detectors went through two major stages of

development. There was an initial version of the LIGO and Virgo

detectors, appropriately called initial LIGO and initial Virgo, which

searched for gravitational waves between 2001 and 2010. They were

accompanied by a 600 m detector near Hanover, Germany called

GEO600 25, and a smaller 300 m detector in Japan called TAMA300 25 Benno Willke, P Ajith, B Allen,
P Aufmuth, C Aulbert, S Babak,
Ramachandran Balasubramanian,
BW Barr, S Berukoff, A Bunkowski,
et al. The geo-hf project. Classical and
Quantum Gravity, 23(8):S207, 2006

26 in this search. In 2007, the initial detectors stopped operation

26 KIMIO Tsubono. 300-m laser inter-
ferometer gravitational wave detector
(tama300) in japan. In First Edoardo
Amaldi conference on gravitational wave
experiments, pages 112–114. World Sci-
entific, 1995

and underwent a period of upgrade to their current advanced con-

figurations. The two LIGO detectors went through installation and

commissioning between 2010 and 2014, and started taking science

quality data from September, 2015. The first observing run lasted

till January, 2016, after which there was another break for further

upgrades to the detectors. The advanced LIGO detectors conducted

their second observing run from December, 2016 to August 23, 2017,

running for a period of around 6 months. During the last month

of their operation, they were joined by the advanced Virgo detector,
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that started taking science quality data from August 1, 2017. The de-

tections of GW170814 and GW170817 were made by a three-detector

network. After August 23, 2017, both the detectors have been shut

down for about a year, during which they will undergo upgrades

in their configurations before the start of the third observing run27. 27 https://www.ligo.caltech.edu/news/
ligo20170825

In the meantime, a fourth gravitational waves detector called KA-

GRA 28, is under construction in Japan, and expected to start taking 28 Yoichi Aso, Yuta Michimura, Ken-
taro Somiya, Masaki Ando, Osamu
Miyakawa, Takanori Sekiguchi,
Daisuke Tatsumi, Hiroaki Yamamoto,
KAGRA Collaboration, et al. In-
terferometer design of the kagra
gravitational wave detector. Physical
Review D, 88(4):043007, 2013

science-quality data from 2019. A fifth detector, LIGO India 29 will

29 Bala Iyer, T Souradeep, CS Unnikrish-
nan, S Dhurandhar, S Raja, A Sengupta,
IndIGO Consortium, et al. Ligo-india.
Report No. LIGO-M1100296 (Indian Ini-
tiative in Gravitational-wave Observations,
2011), 2011; and CS Unnikrishnan. In-
digo and ligo-india: Scope and plans
for gravitational wave research and pre-
cision metrology in india. Interna-
tional Journal of Modern Physics D, 22
(01):1341010, 2013

come up in India with the same configuration as the LIGO detectors

in the US, in the early 2020s, and become part of a global network of

gravitational waves detectors.

A global network is vital for improved sky localisation and pa-

rameter estimation. Gravitational wave detectors locate a source in

the sky through the method of triangulation. As we have seen in

Sec.1.3, the sensitivity of each detectors is dependent on its antenna

pattern functions, which means that detectors are more sensitive to-

wards gravitational waves coming from certain directions than oth-

ers. Analogous to how GPS triangulation works, we need atleast

three detectors to localise the position of a gravitational wave source

in the sky. Further, since the basic principle for triangulation is mea-

suring the relative time-delays between the arrival times of the signal

at the various detectors, farther apart the detectors are, better is the

angular sky resolution. The left plot of Fig.1.9 shows the light travel

times between the different detector sites. It highlights the advan-

tage of having a detector in India, which would lead to the longest

possible baseline with a light travel time of over 30 ms from the two

LIGO sites in the US. The effect of these long baselines on the sky

localisation is highlighted in the right plot Fig.1.9, which shows the

sky localisation of the first gravitational wave detection, GW150914

with the two advanced LIGO detectors that were operational at that

point of time, versus what it could have been if there was a third

detector in India at the same time.

Furthermore, the addition of gravitational wave detectors adds to

the strength with which a signal is detected, something that will be-

come clearer in Chap.2. This would allow us to better infer the prop-

erties of the source producing the signal, i.e., better parameter esti-

mation. Finally, a global network of multiple detectors would allow

us to extract the polarisations of gravitational waves. An overview
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Figure 1.9: Left Plot: Baselines of
a future global detector network
projected onto the globe. H,L,V, and I
indicate the sites for the LIGO detec-
tors in Hanford and Livingston,Virgo
detector in Italy and the proposed
LIGO-India detector in India. The
light-travel time (in milliseconds) of
each baseline is also shown (Picture
courtesy: B. S. Sathyaprakash). Right
Plot: Improvement in the localisation
of GW150914 by adding LIGO India.
The small oval represents the size
of the search area if LIGO India
had been operating at the time of
the detection. (Caption courtesy:
https://www.ligo.caltech.edu/news/
ligo20160404)

on future detectors is given in Sec.1.5.

1.3.5 Detection

The observation of gravitational waves relies heavily on the accu-

racy of waveforms describing the source. Such waveform templates

are constructed using a combination of modelling using GR and

input from astrophysics. The process of detection involves cross-

correlating these templates with the data in a process called matched-

filtering 30 to obtain candidates for actual gravitational wave detec- 30 Sathyaprakash and Schutz 109

tions. Among the various sources of gravitational waves, CBCs com-

posed of black holes are the best-modelled sources in GR, because

black holes can be approximated as point-particles in GR. For binary

neutron star systems or neutron star-black hole binaries, the finite

size of a neutron star needs to be taken into account, which leads to

tidal disruptions when the compact objects come close. Matter ef-

fects need to be included in the modelling of gravitational radiation

from such binaries through the equation of state p(r) of the neutron

star (where p is the pressure and r is the density) which is an active

area of research. For other sources, like the gravitational collapse of

a star, a lot of the physics governing the underlying process is still

unknown, and their descriptions require us to make various assump-

tions about the source with input from astrophysics, particle physics

and hydrodynamics.

Once an confident observation is made, one then uses well-established
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techniques of parameter estimation (described in more detail in Chapt.2)

to infer properties of the source 31. This information is then used to 31 Benjamin P Abbott, R Abbott, TD Ab-
bott, MR Abernathy, F Acernese, K Ack-
ley, C Adams, T Adams, P Addesso,
RX Adhikari, et al. Properties of the
binary black hole merger gw150914.
Physical review letters, 116(24):241102,
2016

extract scientific information from these observations, among them

being to make statements about the validity of GR in the strong field

regime of gravity, a topic we will discuss in detail in Sec. 2.2.

The information carried by gravitational waves is completely inde-

pendent from the electromagnetic or the neutrino windows. In some

cases information from multiple windows of observation comple-

ment each other to give us the most complete picture of the source.

This is called multi-messenger astronomy. However, in some cases,

gravitational waves have advantages over other messengers. Gravi-

tational waves interact weakly with matter, as mentioned above, and

hence they undergo lesser scattering with intervening matter than

other messengers. This allows them to travel unchanged over long

distances, and carry information from rare events which can then be

extracted and used to reconstruct the science summary of the obser-

vation, including statements on theoretical physics, nuclear physics,

astrophysics, cosmology etc, as we shall see in Sec.1.4.

1.4 Overview of LIGO/Virgo events

On September 14, 2015, gravitational waves from the coalescence of

two stellar-mass black holes were observed by the twin detectors

of the Advanced LIGO network at Hanford and Livingston, in the

United States 32. This event, called GW150914, was followed by the 32 Benjamin P Abbott et al. Observa-
tion of gravitational waves from a bi-
nary black hole merger. Physical review
letters, 116(6):061102, 2016

observation of four other binary black hole mergers 33, a binary black

33 Abbott et al. 12, 11, 16, 17, 18hole candidate 34 and a binary neutron star merger 35. Among them,
34 Abbott et al. 11
35 Abbott et al. 19the latest binary black hole merger (GW170814) 36 and the binary
36 Abbott et al. 18

neutron star event were observed in association with the Advanced

Virgo detector in Cascina, Italy. These observations have established

the beginning of an exciting new era of astronomy using gravita-

tional waves.

1.4.1 Science summary of observations

The observation of GW150914 was not just the first direct detec-

tion of gravitational waves on Earth, it was also the first direct de-

tection of a binary black hole merger. The two black holes had

masses (36, 29)M� and the final remnant object had a mass of 62M�.
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These were the most massive stellar-mass black holes observed till

date. Prior to GW150914, measurements of stellar-mass black holes

in galactic x-ray binaries suggested masses in the range 10 � 15M�

37. However, since then, the observations of five other binary black 37 J Casares. J. casares and pg jonker,
space sci. rev. 183, 223 (2014). Space Sci.
Rev., 183:223, 2014hole mergers and a candidate for a binary black hole merger have

established that there exists a population of black holes in the mass

range ⇠ 20 � 70M�. While GW150914 is the heaviest merger that

we have seen so far, GW170608 is possibly the lightest, with the sec-

ondary black hole having a mass 7+2
�2M�, which is quite close to the

proposed mass-gap between neutron stars and black holes38. The 38 Will M Farr, Niharika Sravan,
Andrew Cantrell, Laura Kreidberg,
Charles D Bailyn, Ilya Mandel, and
Vicky Kalogera. The mass distribution
of stellar-mass black holes. The Astro-
physical Journal, 741(2):103, 2011; and
Feryal Özel, Dimitrios Psaltis, Ramesh
Narayan, and Jeffrey E McClintock.
The black hole mass distribution in the
galaxy. The Astrophysical Journal, 725(2):
1918, 2010

latest published LIGO-Virgo results suggest that, given the observa-

tions so far, we can expect an instrinsic rate of 9 � 240 binary black

hole mergers per Gpc3 per year 39. In the upcoming years, as the sen-

39 Benjamin P Abbott, R Abbott, TD Ab-
bott, MR Abernathy, F Acernese, K Ack-
ley, C Adams, T Adams, P Addesso,
RX Adhikari, et al. The rate of binary
black hole mergers inferred from ad-
vanced ligo observations surrounding
gw150914. The Astrophysical journal let-
ters, 833(1):L1, 2016

sitivity of the advanced detectors increase, their volume reach would

also increase making them sensitive to a greater number of binary

black hole mergers. Hence the expected rates of detection of binary

black hole merger events by Advanced LIGO and Virgo in its third

and subsequent observing runs, is also expected to increase. The

high intrinsic merger rates also suggest that this population of rela-

tively high-mass binary black hole systems would create a stochastic

gravitational wave background, with amplitude higher than previ-

ously expected. Analyses using just binary black hole mergers 40 40 BP Abbott, Richard Abbott, TD Ab-
bott, MR Abernathy, Fausto Acernese,
Kendall Ackley, Carl Adams, Thomas
Adams, Paolo Addesso, RX Adhikari,
et al. Gw150914: Implications for
the stochastic gravitational-wave back-
ground from binary black holes. Physi-
cal review letters, 116(13):131102, 2016

predicted an energy density spectrum in the most sensitive part of

the Advanced LIGO-Virgo band for stochastic gravitational waves,

around 25 Hz, to be WGW( f = 25Hz) ⇠ 1.1 ⇥ 10�9, which is poten-

tially detectable in the next few years of operation of the advanced

detectors.

The observations of gravitational wave events also allow us to in-

fer about the formation channels and astrophysical environments of

these binaries. There are two broad formation channels for stellar-

mass black holes observed by LIGO and Virgo: dynamical assem-

bly in dense stellar clusters or isolated evolution in galactic fields

through a common envelope formation. There is an alternative to

stellar-evolution models, which states that such binaries could have

formed from primordial black holes 41. Important information about 41 Simeon Bird, Ilias Cholis, Julian B
Munoz, Yacine Ali-Haïmoud, Marc
Kamionkowski, Ely D Kovetz, Alvise
Raccanelli, and Adam G Riess. Did ligo
detect dark matter? Physical review let-
ters, 116(20):201301, 2016

the evolution of the binary and hence, its formation channel, would

come from the measurements of the spins of the compact objects

in the binary. Binaries formed in dense stellar environments are
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more likely to have isotropic individual spins, while binaries formed

through isolated evolution are expected to have individual spins

aligned with the orbital angular momentum. Unfortunately, cur-

rent gravitational wave observations have not been able to put strong

constraints on the individual spins of the two black holes. This is be-

cause, the spins play a sub-dominant role in orbital evolution and

thus their estimation becomes more difficult. All the measurements

so far indicate that the initial black holes had spins consistent with

zero. However, observations do provide a hint that there is a pos-

sibility that the spins might be misaligned which might favour an

evolution channel through dynamical capture over isolated evolu-

tion. The wide range of masses for the initial black holes also tell us

that they were formed from progenitors with a wide range of metal-

licities, i.e., the fractional mass of the star in elements heavier than

hydrogen and helium. Stars lose mass through stellar winds. This

mass-loss is proportional to its metallicity. Thus, it follows that heav-

ier black holes are formed from stars with lower metallicity, which

resulted in lower mass-loss in stellar winds before collapsing to form

a black hole. The progenitors of GW170608 42 could have contained 42 Benjamin P Abbott et al. Gw170608:
Observation of a 19-solar-mass
binary black hole coalescence.
arXiv:1711.05578, 2017

relatively large amounts of heavier elements, compared to the pro-

genitors of the black holes that led to GW150914 43. Finally, these 43 BP Abbott, R Abbott, TD Abbott,
MR Abernathy, F Acernese, K Ackley,
C Adams, T Adams, P Addesso, RX Ad-
hikari, et al. Astrophysical implica-
tions of the binary black hole merger
gw150914. The Astrophysical Journal Let-
ters, 818(2):L22, 2016

observations also allowed us to perform the first strong-field tests

of GR in the highly relativistic regime, which is described in more

detail in Sec.2.2.3.

The observation of GW170817 was a singularly unique case. The

signal was observed by the advanced LIGO-Virgo detector network

with a combined SNR of 32, the loudest gravitational wave signal

observed till date, and was consistent with a binary neutron star

merger at a distance of 40 Mpc. However, 1.7 seconds after the grav-

itational wave trigger, a gamma-ray burst was observed by NASA’s

Fermi-GBM telescope, which was later established to have a com-

mon source with the gravitational wave signal, originating in the

galaxy NGC-4993. Information from both gravitational and electro-

magnetic windows, involving the 3 gravitational wave detectors and

over 70 electromagnetic observatories from around the world and

in space, were combined to give the most complete description of

the source and helped usher in the era of multi-messenger astronomy.

The observation of GW170817 allowed us, for the first time, to mea-
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sure the cosmic expansion rate using gravitational waves44. Schutz, 44 LIGO Scientific Collaboration, Virgo
Collaboration, 1M2H Collaboration,
Dark Energy Camera GW-EM Col-
laboration, DES Collaboration, DLT40
Collaboration, Las Cumbres Obser-
vatory Collaboration, VINROUGE
Collaboration, MASTER Collaboration,
et al. A gravitational-wave standard
siren measurement of the hubble
constant. Nature, 551(7678):85–88, 2017

in 198645, proposed a unique method of determining the Hubble

45 Bernard F Schutz. Determining
the hubble constant from gravitational
wave observations. Nature, 323(6086):
310, 1986

constant, which measures the expansion rate of the universe, given

information about the redshift and the distance to a source. Gravi-

tational wave observations allow us to determine the distance to the

source, while electromagnatic observations provide us with redshift

information. Thus, for the case of GW170817, we could combine in-

formation about the luminosity distance dL to the source from the

gravitational wave observation with the redshift measurements of

the galaxy NGC-4993, to get first estimates on the Hubble constant

H0 at 70.0+12.0
8.0 km s�1Mpc�1 from multi-messenger astronomy. The

observation of GW170817 also allowed us to make statements on the

neutron star radii and equation of state, as previously discussed in

Sec.1.3.5. Results seem to indicate that a more compact object with

smaller radii is preferred, thus favouring softer equations of state

over stiffer equations of state. A more detailed discussion is present

in 46. The detection of GW170817 also allowed us to revise our esti- 46 Benjamin P Abbott et al. Gw170817:
observation of gravitational waves from
a binary neutron star inspiral. Physical
Review Letters, 119(16):161101, 2017; and
BP Abbott, R Abbott, TD Abbott, F Ac-
ernese, K Ackley, C Adams, T Adams,
P Addesso, RX Adhikari, VB Adya,
et al. Gw170817: Measurements of neu-
tron star radii and equation of state.
arXiv preprint arXiv:1805.11581, 2018

mates on the amplitude of the stochastic background, which was ear-

lier estimated just for binary black hole mergers. Now including the

contribution to the stochatic background from binary neutron star

mergers as well, the amplitude of the total astrophysical stochastic

background is predicted at ⇠ 1.8 ⇥ 10�9 (with 90% confidence) 47.
47 Benjamin P Abbott, R Abbott, TD Ab-
bott, F Acernese, K Ackley, C Adams,
T Adams, P Addesso, RX Adhikari,
VB Adya, et al. Gw170817: implica-
tions for the stochastic gravitational-
wave background from compact binary
coalescences. Physical review letters, 120
(9):091101, 2018

1.5 Future Prospects: Future Detectors

The current generation of advanced ground-based interferometric

detectors are expected to be followed by a third-generation of ground-

based interferometric detectors, set to come up near the late 2020s-

early 2030s. These third-generation detectors, like the Einstein Tele-

scope 48 and the Cosmic Explorer 49, are expected to be 10 times 48 Punturo et al. 105
49 Dwyer et al. 66

more sensitive that the current detectors (at design sensitivity) and

thus will have ⇠ 1000-fold increase in their volume reach. These de-

tectors will be able to observe events more frequently at much higher

signal-to-noise ratios (SNRs) than the second generation detectors.

The increased observation rates will lead us to make more precise

estimates of merger-rates of events in the universe and constrain pos-

sible deviations from GR by combining information from multiple

observations. The increased SNRs will allow us to infer the proper-
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Figure 1.10: Gravitational wave spec-
trum. On the left of the illustration
are listed the various gravitational
waves sources in the increasing order
of the frequency of gravitational waves
wave emission. On the right, are
listed the various detection meth-
ods for gravitational waves in the
difference frequency bands. Fig-
ure courtesy: "How gravitational
waves could solve some of the Uni-
verse’s deepest mysteries" , B.Schutz
(https://www.nature.com/articles/
d41586-018-04157-6)
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ties of the gravitational wave sources better than we can do now, and

then use that information to constrain astrophysical formation sce-

narios. These detectors will also be able to see much further out into

the universe as compared to the second-generation detectors which

have a distance reach of about 15 Gpc for high-mass black holes, or

roughly redshifts of ⇠ 2. This will allow us to conduct more accu-

rate cosmological studies related to the measurement of the Hubble

constant and the expansion of the universe. The third-generation

detectors are also expected to have sensitivities that reach as low

as 1 Hz, allowing us the chance to perhaps observe intermediate

mass black holes (IMBHs) with masses between stellar-mass black

holes and super-massive black holes. There are also plans to have

a space-based gravitational waves detector, called the Laser Interfer-

ometer Space Antenna (LISA) 50, a joint European Space Agency and 50 Karsten Danzmann, LISA Study
Team, et al. Lisa: Laser interferometer
space antenna for gravitational wave
measurements. Classical and Quantum
Gravity, 13(11A):A247, 1996

NASA project, which will observe gravitational waves in the range

10�4
� 10�1Hz. LISA will consist of three spacecrafts in an equilat-

eral triangle (arm length ⇠ 106km) with freely falling test masses

and lasers bouncing off each other, orbiting the Earth. Referring

to Fig. 1.10, we see that the most promising source of gravitational

waves for LISA would be the merger of super-massive black hole bi-

naries. The future of gravitational wave astronomy, that was born

with the detection of GW150914 and established through the subse-

quent detections, is truly bright and exciting.

Summary

The existence of gravitational waves is one of the most exciting pre-

dictions of Einstein’s theory of general relativity. In the 100 years

since their prediction, the pursuit of the observation of gravitational

waves has led to remarkable developments in our knowledge about

the source of these gravitational waves, as well as ground-breaking

technical developments in building instruments that could detect

them. This culminated in the first direct observation of gravitational
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waves on Earth using the Advanced LIGO detectors in September,

2015. The five subsequent observations of compact binary coales-

cences by the Advanced LIGO-Virgo detector network have firmly

established the field of gravitational waves and multi-messenger as-

tronomy. Over the coming years, the detectors, which have just fin-

ished two full science runs, are expected to improve their sensitivity,

as well as grow in number. We have just opened a new window

onto the universe whose scientific potential takes us a step further in

better understanding our universe.



2 | Bayesian Inference: Inferring Physics

and Astrophysics from Gravitational Wave

Observations

2.1 Bayesian Inference

The first step to extracting scientific information from a gravitational

wave observation is understanding the nature of the source that pro-

duced it. The properties of the source are estimated within the

framework of Bayesian inference. This knowledge can then be used,

among other things, to test if GR is indeed the correct theory to

describe such gravitational wave sources. This chapter is broadly

divided into two parts. The first part describes, in detail, Bayesian

inference and its various components, while the second part deals

with the area of testing GR, in general, and testing GR using gravi-

tational wave observations, in particular.

2.1.1 Detector Data

The twin detectors of the Advanced LIGO network in the US at

Hanford, Washington and Livingston, Louisiana, and the Advanced

Virgo detector in Italy, record differential changes in length, dL(t) be-

tween their two arms. Given the length of each arm of the detector

L, the gravitational wave strain, as introduced at the end of Sec.1.3.2,

can be written as 1: 1 B.S. Sathyaprakash and B.F. Schutz.
Physics, Astrophysics and Cosmology
with Gravitational Waves. Living Rev.
Relat., 12:2, 2009h(t) =

dL(t)
L

= F+(q, f, y)h+(t) + F⇥(q, f, y)h⇥(t) (2.1)

where h+, h⇥ are the two independent polarisation amplitudes of

the gravitational wave, and {F+, F⇥} are the detector antenna pat-

tern response functions defined in Sec.1.3.2, and depends on the sky
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position and the polarisation of the gravitational wave source. The

interferometer noise n(t) described in Sec. 1.3.3, is assumed to be a

stationary, ergodic Gaussian random process with zero mean and a

PSD, Sn( f ), defined as:

hñ⇤( f )ñ( f 0)i =
1
2

Sn( f )d( f � f 0) (2.2)

and as shown in Fig. 1.8. Here, ñ( f ) is the Fourier transform of

n(t), the angular brackets in Eq. 2.2 define an ensemble average and

d( f � f 0) is the Dirac delta function.

The actual astrophysical gravitational wave strain h(t) however

differs from the measured strain hM(t). The interferometer records

its response d(t) to the passage of a gravitational wave, as changes

in the intensity of the interfering laser beams at the point where they

recombine – the photodiode of the gravitational wave readout port 2. 2 BP Abbott, R Abbott, TD Abbott,
MR Abernathy, K Ackley, C Adams,
P Addesso, RX Adhikari, VB Adya,
C Affeldt, et al. Calibration of the ad-
vanced ligo detectors for the discov-
ery of the binary black-hole merger
gw150914. Physical Review D, 95(6):
062003, 2017

This is related to the Fourier transform of the astrophysical strain

h̃( f ) through the response function R( f ) as:

h̃( f ) =
1
L

R( f )d̃( f ) (2.3)

where d̃( f ) is the Fourier transform of d(t). In order to get h̃( f ) from

d̃( f ), one requires an appropriate model for the response function

R( f ). The specific model of R( f ) that is used for interferometer

calibration has its associated uncertainties, introducing an error in

the calibrated h̃( f ) signal. We model these calibration errors using

a complex function in frequency domain with amplitude dA( f ;~qcal)

and phase df( f ;~qcal) as:

h̃M( f ) = h̃( f )[1 + dA( f ;~qcal)]exp[idf( f ;~qcal)] (2.4)

where h̃M( f ), h̃( f ) are the Fourier transforms of hM(t), h(t) respec-

tively, and ~qcal is the set of calibration parameters 3. From here on, 3 BP Abbott, R Abbott, TD Abbott,
MR Abernathy, K Ackley, C Adams,
P Addesso, RX Adhikari, VB Adya,
C Affeldt, et al. Calibration of the ad-
vanced ligo detectors for the discov-
ery of the binary black-hole merger
gw150914. Physical Review D, 95(6):
062003, 2017

whenever we will refer to strain, we will be referring to the measured

strain hM(t), and hence for convenience in writing notation, drop the

superscript M and refer to it as just h(t).

2.1.2 Waveform models for binary black hole coalescences

A gravitational wave signal from a binary black hole coalescence (in

a quasi-circular orbit) may be completely described in GR using the
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following parameters:

• Component masses m1 and m2, where m1 � m2 (by convention).

During the early inspiral phase, the evolution of the binary, at

the leading order, depends only on a specific combination of the

component masses called the chirp mass Mc (mentioned earlier in

Sec.1.2.4):

Mc := (m1m2)
(3/5)(m1 + m2)

(�1/5) (2.5)

Hence, information about the masses is sometimes re-parametrised

in terms of the chirp mass Mc, along with the symmetric mass ra-

tio h or the asymmetric mass ratio q defined as:

h :=
m1m2

(m1 + m2)2 (2.6)

q := m1/m2 (2.7)

Figure 2.1: Orbital parameters of a bi-
nary black hole system

• Component spins vectors S1 and S2. Information about the spins

of the individual black holes shed light on the astrophysical for-

mation scenarios of such binary black hole systems as mentioned

in Sec.1.4. However, they are difficult to determine because of the

sub-dominant nature of their role in orbital dynamics. We can in-

stead measure a mass-weighted combination of the components

of the spins in the direction of the orbital angular momentum of

the system, ~L, called the effective spin parameter 4:

4 Thibault Damour. Coalescence of two
spinning black holes: An effective one-
body approach. Physical Review D, 64
(12):124013, 2001

ceff :=
m1a1(L̂.Ŝ1) + m2a2(L̂.Ŝ2)

m1 + m2
(2.8)

where L̂ and Ŝi are the unit vectors in the direction of the~L and the
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individual spins Si, with i = 1 for the primary black hole and i = 2

for the secondary black hole; ai = |cSi/Gm2
i | is the dimensional

spin magnitude with a range [0, 1]. The in-plane components of

the spin lead to the precession of the orbit. The precession of the

system is characterised through an effective precession parameter cp

5, defined as: 5 Patricia Schmidt, Mark Hannam, and
Sascha Husa. Towards models of gravi-
tational waveforms from generic bina-
ries: A simple approximate mapping
between precessing and non-precessing
inspiral signals. Phys. Rev. D, 86:
104063, 2012. doi: 10.1103/Phys-
RevD.86.104063

cp := max(c1?,
3 + 4q
4 + 3q

qc2?) (2.9)

where ci? are the magnitudes of the components of the dimen-

sionless spins which are perpendicular to orbital angular momen-

tum ~L, and q is the asymmetric mass ratio defined earlier.

• The position of the source. This is defined through the luminosity

distance dL, right ascension a and the declination d.

• The orientation of the source. This is defined through the inclina-

tion of the source i, which is the angle between the orbital angular

momentum~L and the line of sight n̂, and the polarisation y (as de-

fined in 6), the orientation of the projection of the orbital angular 6 Warren G Anderson, Patrick R Brady,
Jolien DE Creighton, and Eanna E
Flanagan. Excess power statistic for
detection of burst sources of gravita-
tional radiation. Physical Review D, 63
(4):042003, 2001

momentum onto the plane of the sky. In the absence of precession,

the inclination i is equal to qJN (Fig. 2.1).

• The time of coalescence tc and the phase fc at tc, called the phase

at coalescence.

Hence a spinning binary black hole system in a quasi-circular orbit

is completely described in GR by this set of 15 parameters. We need

to add the parameters describing calibration uncertainties to this as

well. Let us denote the complete parameter set by x. Hence the strain

h due to the passage of a gravitational wave is a function of x, i.e.,

h(t; x) (time-domain waveform) or h̃( f ; x) (frequency-domain wave-

form). There are various models available that describe the evolution

of a binary black hole system to various levels of accuracy. Some of

these waveforms are implemented in the LIGO Algorithms Library

(LAL), in a submodule called LALSimulation, and are of two broad

classes: a phenomenological class of waveforms, and a second class

based on the effective one-body formalism calibrated to numerical

relativity simulations.
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2.1.3 Parameter Estimation

Given the detector data d, one can adopt a Bayesian framework to

estimate the parameter set x . Bayes’ theorem states that the poste-

rior probability distribution of a parameter set x := {xi} of a model

hypothesis H, given data d and any other information I, is:

P(x|d, H, I) =
P(x|H, I) L(d|x, H, I)

P(d|H, I)
, (2.10)

where P(x|H, I) is the prior probability of the parameter set x given

H and I, while L(d|x, H, I) is called the likelihood function, which

is the probability of observing the data d, given x, H and I. What

appears in the denominator is a normalization constant P(d|H, I) :=
R

P(x|H, I) L(d|x, H, I) dx, called the marginal likelihood, or the evi-

dence of the hypothesis H.

If our hypothesis H is that the data contains a gravitational wave

signal described by a GR waveform model h(x) and stationary Gaus-

sian noise described by the PSD Sn( f ), then, as described in ap-

pendix A of 7, the likelihood function can be defined as: 7 Curt Cutler and Eanna E. Flanagan.
Gravitational waves from merging com-
pact binaries: How accurately can one
extract the binary’s parameters from
the inspiral wave form? Phys. Rev. D,
49:2658–2697, 1994. doi: 10.1103/Phys-
RevD.49.2658

L(d|x, H, I) µ exp
⇥
�

1
2

< d � h(x) | d � h(x) >
⇤
, (2.11)

where < ·|· > is the following noise-weighted inner product

< B|C >:= 2
Z fcut

flow

B̃⇤( f )C̃( f ) + B̃( f )C̃⇤( f )
Sn( f )

d f . (2.12)

Above, B̃( f ) denotes the Fourier transform of B(t) and a ⇤ denotes

complex conjugation. The limits of integration flow and fcut are dic-

tated by the bandwidth of the detector sensitivity, the bandwidth

of the signal, as well as the cutoff frequencies in our calculations

(described in Chap.3). Owing to the large dimensionality of the

parameter set x, the posterior distribution P(x|d, H, I) in Eq. (2.10)

is computed by stochastically sampling the parameter space using

techniques such as Markov-Chain Monte Carlo (MCMC) 8 or nested 8 Phil Gregory. Bayesian Logical Data
Analysis for the Physical Sciences: A
Comparative Approach with Mathematica®
Support. Cambridge University Press,
2005

sampling 9. The submodule inside LAL which implements Bayesian

9 John Skilling et al. Nested sam-
pling for general bayesian computation.
Bayesian analysis, 1(4):833–859, 2006

inference is called LALInference 10. Two of the samplers currently

10 J. Veitch et al. Parameter estima-
tion for compact binaries with ground-
based gravitational-wave observations
using the LALInference software li-
brary. Phys. Rev. D, 91(4):042003,
February 2015. doi: 10.1103/Phys-
RevD.91.042003

implemented in LALInference are discussed below, an MCMC based

algorithm called LALInferenceMCMC and a Nested Sampling based al-

gorithm called LALInferenceNest.
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As we have seen above, a gravitational wave signal from a binary

black hole signal is completely described by the parameter set x.

Hence P(x|d, H, I) is a multi-dimensional probability distribution.

The posterior probability distribution over a subset of this multi-

dimensional parameter set can be obtained by marginalising over

the remaining nuisance parameters:

P(x1|d, H, I) =
Z

dx2dx3dx4....P(x|d, H) (2.13)

Eq. 2.13 gives us the marginalised one-dimensional posterior proba-

bility distribution over the parameter x1 by integrating over the con-

tributions of the remaining parameters.

2.1.4 Hypothesis testing

For the case of parameter estimation, we assumed that our binary

black hole system is completely described using our hypothesis or

model, which is GR. Given the data, Bayesian inference also allows

us to compare this hypothesis with the predictions of gravitational

waves in an alternate theory of gravity. Let us call GR as H0 and

the alternate theory or hypothesis as H1. One proceeds to do the

problem of model selection by comparing the evidences P(d|H, I) for

both hypotheses, defined as:

Z = P(d|H, I) =
Z

P(x|H, I)L(d|x, H, I)dx (2.14)

through the computation of the odds ratio O01:

O01 =
P(H0|d, I)
P(H1|d, I)

=
P(H0|I)
P(H1|I)

.
Z0
Z1

(2.15)

where P(Hi|I) is the prior, and Zi is the evidence on hypothesis Hi,

i = 0 is GR and i = 1 is some alternate theory of gravity.

Sometimes, one might just be interested in checking the implicit

truth of H0. In that case, we assume H1 to be the hypothesis where

H0 is false: H1 = H̄0, and proceed to do model selection. Such

a model selection problem is called a null-hypothesis testing. We

will see later that in the absence of reliable predictions of gravita-

tional waves in many alternate theories of gravity, most of the cur-

rent strong field tests are null tests, i.e., they are hypothesis testing

problems with the null hypothesis, GR.
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2.1.5 Algorithms

MCMC

Markov chain Monte Carlo algorithms generate the desired samples

by constructing a kind of random walk in the model parameter space

such that the probability for being in a region of this space is propor-

tional to the posterior density for that region 11. The random walk is 11 Phil Gregory. Bayesian Logical Data
Analysis for the Physical Sciences: A
Comparative Approach with Mathematica®
Support. Cambridge University Press,
2005

accomplished using a Markov chain, whereby the new sample, x i+1 ,

depends on the previous sample x i according to an entity called the

transition kernel, p(x i+1|x i). The remarkable property of p(x i+1|x i)

is that after an initial burn-in period (which is discarded) it generates

samples of x with a probability density equal to the desired poste-

rior P(x|d). The simplest MCMC algorithm is the Metropolis-Hastings

algorithm, where a proposed value for x i+1, say Y, is picked from a

proposal distribution q(Y|x i) (can have almost any form), and accepted

on the basis of the Metropolis ratio:

r =
p(Y|D, I)q(x i|Y)
p(x i|D, I)q(Y|x i)

(2.16)

where the acceptance probability a(x i, Y) is defined as:

a(x i, Y) = min(1, r) (2.17)

A slightly more advanced version of the above algorithm involving

parallel-tempering is implemented in LALInference, and is called

LALInferenceMCMC.

Nested Sampling
12,13 12 John Skilling et al. Nested sam-

pling for general bayesian computation.
Bayesian analysis, 1(4):833–859, 2006
13 This section on the Nested Sampling
algorithm is heavily influenced by Prof.
Chris Van Den Broek’s lecture notes,
from the Summer school on gravita-
tional wave astronomy at ICTS, in June
2016.

We have seen above that parameter estimation requires sampling of

the likelihood function over a parameter space which might be as

large as 15-dimensional. This is computationally expensive. Simi-

larly, for hypothesis-testing, we need to compute the evidence, which

involves an integral over a large-dimensional space. Nested sam-

pling is an algorithm that allows us to efficiently obtain both quanti-

ties. As mentioned earlier the evidence can be written as:
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P(d|H, I) :=
Z

P(x|H, I) L(d|x, H, I) dx (2.18)

=
Z

p(x) L(x) dx (2.19)

Nested sampling computes evidence by rewriting the above integra-

tion in terms of a single scalar mass X, defined as the fraction of

volume with likelihood greater than some values l:

X(l) :=
Z Z

...
Z

L(x)>l
p(x)dx (2.20)

Thus, an element of prior mass is defined as:

dX = p(x)dx (2.21)

Since the prior is normalised, X lies in the interval [0, 1], where the

lower bound X = 0 corresponds to the surface which does not en-

close any point with a higher likelihood, i.e., l = Lmax, while the

upper bound X = 1 corresponds to the surface enclosing all points

with a higher likelihood, i.e., l = Lmin. The evidence can now be

rewritten as:

Z :=
Z

p(x) L(x) dx =
Z

L̃(X)dX (2.22)

from which the posterior can be trivially obtained as:

P̃(X) =
L̃(X)

Z
(2.23)

Thus the idea behind the nested sampling algorithm is to construct

the function L̃(X) by progressively finding locations in parameter

space with higher likelihood and thus, progressively smaller prior

mass and then use the above formulae to compute the evidence and

then the posterior probability distribution.

2.2 Testing General Relativity

2.2.1 Classical Tests of General Relativity

When Einstein published his theory of GR, he also suggested three

possible experimental verifications of the predictions of the theory.

These three tests are collectively called the classical tests of GR 14,15. 14 S Weinberg. Gravitation and cosmol-
ogy. ed. John Wiley and Sons, New York,
1972
15 These tests are also called the solar
system tests of GR.
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• Perihelion precession of the orbit of Mercury: Following the Ke-

pler’s laws of planetary motion, Mercury orbits the Sun in an el-

liptical orbit, where the point of closest approach is called the

perihelion (Fig.2.2). In Newtonian classical mechanics, the per-

ihelion of a planet’s orbit is expected to precess because of the

gravitational interaction with other planets as well as due to solar

oblateness. However, the precession of the perihelion of Mercury

deviates from the predictions of Newtonian theory by an amount

measured at 43.1100
± 0.45 per century. This precession can only

be explained in GR on account of Mercury moving in the curved

spacetime of the Sun. When Einstein published his theory, he

computed this precession which came out to be 4200, in excellent

agreement with observation 16. The predicted value has since been 16 Albert Einstein. Die grundlage der
allgemeinen relativitätstheorie. Annalen
der Physik, 354(7):769–822, 1916recalculated to a remarkable degree of agreement in the last 100

years with observations using radar measurements.

Figure 2.2: The point of closest
approach to the Sun is called the
perihelion, and occurs in a certain
direction (green dashed lines). Over
time, an orbit pivots slowly - it
precesses - changing the direction to
perihelion. Caption and figure courtesy
https://writescience.wordpress.com/
2015/02/07/gravity-04-testing-the-
new-gravity

• Gravitational lensing by the sun: In GR, light travels along the

null geodesic from the source to the observer. In the presence of

a massive object or lens, spacetime gets curved and the light, in

travelling through this curved spacetime, gets bent around the in-

tervening object on its way from the source to the observer. This

phenomenon is called gravitational lensing. The greater the mass of

the lens, greater is the deflection of light. In 1915, the most mas-

sive object in the vicinity of the Earth that could have been used

to measure lensing was the Sun. So Einstein had calculated the

deflection of light from stars near the vicinity of the surface of the

Sun. This was experimentally verified during an expedition led by
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Arthur Eddington to the island of Principe, off the west coast of

Africa, during the total solar eclipse of May, 1919. The blocking of

the sunlight allowed him to compare the positions of certain stars

close to the rim of the sun, with their positions in the absence of

the sun, and find remarkable agreement with the predictions of

GR for their angular displacements due to gravitational lensing.

The publishing of Eddignton’s results 17 was the first definitive 17 Mr C Davidson. Ix. a determination of
the deflection of light by the sun’s grav-
itational field, from observations made
at the total eclipse of may 29, 1919. Phil.
Trans. R. Soc. Lond. A, 220(571-581):291–
333, 1920

experimental proof of GR and launched Einstein into worldwide

fame.

• Gravitational redshift of spectral lines: The prediction of the

gravitational redshift of spectral lines is a consequence of the Equiv-

alence Principle, predicted by Einstein in 1907, which states: "At

every spacetime point in an arbitrary gravitational field it is possi-

ble to choose a locally inertial coordinate system, such that, within

a sufficiently small region of the point in question, the laws of na-

ture take the same form as in unaccelerated Cartesian coordinate

systems in the absence of gravitation" 18. The Doppler shift in the 18 S Weinberg. Gravitation and cosmol-
ogy. ed. John Wiley and Sons, New York,
1972spectral lines of the source can be written as:

Dn

n
= f(x2) � f(x1) (2.24)

where f(x) is the Newtonian potential at a point x in the gravita-

tional field, and (x1, x2) are two points at the surface of the source,

and far from it, respectively. This Doppler shift in the spectral

lines was first observed for the case of white dwarf Sirius B and

Eridani B, by J.Adams, 1925 19, and has since been confirmed for 19 Norriss S Hetherington. Sirius b and
the gravitational redshift-an historical
review. Quarterly Journal of the Royal As-
tronomical Society, 21:246–252, 1980

many different sources in the universe.

Among the notable terrestrial tests performed to verify the grav-

itational redshift of spectral lines were a series of experiments

performed between 1959 and 1965 by Pound, Rebka and Snider,

which ushered in an era of precision tests of relativity. The Pound-

Rebka experiment of 1959 20 involved measurements of the Doppler 20 Robert V Pound and Glen A Rebka Jr.
Gravitational red-shift in nuclear reso-
nance. Physical Review Letters, 3(9):439,
1959

shift in the wavelength of 57Fe gamma-ray photons generated with

the Mossbauer effect, over a vertical height of 22.5 metres as the

photons travelled between two sources situated at the top and

bottom of Harvard University’s Jefferson tower. The accuracy of

this experiment was around 1%, which was made better by an

improved experiment by Pound and Snider in 1965 21. Subse- 21 Robert V Pound and JL Snider. Effect
of gravity on nuclear resonance. Physi-
cal Review Letters, 13(18):539, 1964
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quent redshift experiments using hydrogen maser clocks on rock-

ets which compared its rates with identical clocks on the ground

helped achieve precision of less than 0.007% 22. 22 Robert FC Vessot, Martin W Levine,
Edward M Mattison, EL Blomberg,
TE Hoffman, GU Nystrom, BF Far-
rel, Rudolph Decher, Peter B Eby,
CR Baugher, et al. Test of relativistic
gravitation with a space-borne hydro-
gen maser. Physical Review Letters, 45
(26):2081, 1980

2.2.2 Binary pulsar tests of General Relativity

The first indirect evidence of the existence of gravitational waves

was observed in the binary pulsar system PSR B1913+16, discovered

by Russell Hulse and Joseph Taylor in 1974 23. Binary pulsars are 23 R. A. Hulse and J. H. Taylor. Dis-
covery of a pulsar in a binary sys-
tem. The Astrophysical Journal, 195:
L51, jan 1975. ISSN 0004-637X. doi:
10.1086/181708. URL http://adsabs.
harvard.edu/doi/10.1086/181708

systems of neutrons stars/white dwarfs, where atleast one of them

emit a strong beam of electromagnetic radiation that passes through

our line of sight. The pulses are regular to a remarkable experimental

precision making pulsars one of the best clocks in the universe. The

pulses help us to measure the time period of revolution Pb, of the

binary pulsar system, and using the post-Newtonian approximation,

one can infer all the properties of the binary system, including the

masses of the two stars and the orbital parameters. Now, as we have

seen in Sec.1.2.4, such systems are expected to emit radiation in the

form of gravitational waves, which leads to the shrinking of the orbit,

leading to a decay in the orbital period given by Eq.1.33. Assuming

a representative value of 1.4M� for the mass of the neutron star, the

relativistic prediction of the rate of decay of the orbit Ṗb is �2.4 ⇥

10�12. This is in remarkable agreement with observation which has

measured the decay to be (2.4184 ± 0.0009) ⇥ 10�12 24. In fact, the 24 Joel M Weisberg, Joseph H Taylor,
and Lee A Fowler. Gravitational waves
from an orbiting pulsar. Scientific Amer-
ican, 245(4):74–83, 1981; Joseph H Taylor
and Joel M Weisberg. Further exper-
imental tests of relativistic gravity us-
ing the binary pulsar psr 1913+ 16. The
Astrophysical Journal, 345:434–450, 1989;
and Joel M Weisberg, David J Nice,
and Joseph H Taylor. Timing measure-
ments of the relativistic binary pulsar
psr b1913+ 16. The Astrophysical Journal,
722(2):1030, 2010

decay in the orbital period of the PSR B1913+16 system was studied

over a period of over 30 years 25. For the discovery of this system

25 Joel M Weisberg and Joseph H Tay-
lor. Relativistic binary pulsar b1913+ 16:
Thirty years of observations and analy-
sis. arXiv preprint astro-ph/0407149, 2004

and providing the first experimental evidence for the existence of

gravitational waves, Russell Hulse and Joseph Taylor were awarded

the Nobel Prize in Physics, in 1992 26.

26 RA Hulse and JH Taylor Jr. Nobel
prize press release, 1993

2.2.3 Strong field tests of General Relativity

One fact common to all the tests mentioned up till this point, is that

they all describe tests of GR in the weak field regime. The strength

of the gravitational field around a source can be characterised by

the compactness of the source e ⇠ M/R, where M, R are the mass

and radius of the compact source. Binaries of neutron stars and/or

black holes are the most compact sources of gravitational waves, with

compactness ranging from 0.2 to 0.5. Compared to compactness of

http://adsabs.harvard.edu/doi/10.1086/181708
http://adsabs.harvard.edu/doi/10.1086/181708
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e ⇠ 10�6 for the binary pulsar systems (e.g., the Hulse-Taylor Pulsar)

or ⇠ 10�8 for the Mercury-Sun system, e ⇠ 1 describes regions of

strong field gravity. Furthermore, during the final stages of coales-

cence, the compact objects move at highly relativistic speeds of upto

⇠ 0.5c (bottom panel of Fig. 4.1). Hence, the observations of CBCs can

be used to test GR, for the first time, in the highly relativistic and strong

field regimes of gravity.

2.2.4 Null tests of General Relativity in the strong field regime

Figure 2.3: Stages of black-hole binary
coalescence: (from left to right) inspiral,
plunge, merger, and ringdown. Cour-
tesy: A. Taracchini/AEI

A binary black hole coalescence evolves over three phases as shown

in the figure: an inspiral, where the two black holes move around

each other in a gravitationally bound orbit, and spiral in due to the

emission of gravitational waves, the merger when a common horizon

is formed, and ringdown when the recently merged object radiates

away its asymmetries through a spectrum of QNMs and settles down

to a stable Kerr black hole. Several strong-field tests of GR have

already been performed using the above observations of CBCs 27. 27 Abbott et al. 14, 11, 16, 18, 25

Since not many alternative theories of gravity have reliable predic-

tions of gravitational waves from binary black hole mergers, most of

the current strong-field tests are "null tests" of GR. A handful of tests

have been performed to check the consistency of the observed signals

with those predicted by GR. In particular, due to the large masses of

the black holes in GW150914, the observed signal consists of signa-

tures from the inspiral and merger of the two black holes and the

subsequent ringdown of the final black hole. This allowed us to per-

form several consistency tests making use of one or more phases of

the coalescence: The first involved testing the consistency between

the mass and spin of the final remnant, determined from the low-

frequency (inspiral) and high-frequency (post-inspiral) parts of the

observed signal 28. The second involved testing the consistency of

28 Abhirup Ghosh, Archisman Ghosh,
Nathan K Johnson-McDaniel, Chan-
dra Kant Mishra, Parameswaran Ajith,
Walter Del Pozzo, David A Nichols,
Yanbei Chen, Alex B Nielsen, Christo-
pher PL Berry, et al. Testing general
relativity using golden black-hole bina-
ries. Physical Review D, 94(2):021101,
2016
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the data after the peak of the observed signal (corresponding to the

merger) with a quasi-normal mode (QNM) spectrum predicted by

GR 29. The third involved bounding deviations from the GR predic- 29 Vishveshwara 126, Press 104, Chan-
drasekhar and Detweiler 51, Berti et al.
38tions of the post-Newtonian (PN) coefficients describing the inspiral

(and from phenomenological parameters describing the merger and

ringdown) using parametrized waveform models 30. The fourth in- 30 Yunes and Pretorius 137, Mishra et al.
94, Agathos et al. 29

volved constraining the amount of dispersion in the observed gravi-

tational wave signal and converting it to a bound on the mass of the

graviton 31. In addition, the residuals after subtracting the best fit 31 Clifford M. Will. Bounding the mass
of the graviton using gravitational wave
observations of inspiralling compact bi-
naries. Phys. Rev. D, 57:2061, 1998. doi:
10.1103/PhysRevD.57.2061

GR signal have been found to be consistent with detector noise.

Additional tests of GR were performed using the subsequent GW

observations. The large distance of GW170104 allowed us test whether

gravitational waves get dispersed (i.e. components with different fre-

quencies travel at different speeds) as it travels over billions of light

years from the source to us 32. It can be shown, by assuming a 32 Saeed Mirshekari, Nicolás Yunes, and
Clifford M Will. Constraining lorentz-
violating, modified dispersion relations
with gravitational waves. Physical Re-
view D, 85(2):024041, 2012; A Samaj-
dar et al. In Preparation, 2018; and
Anuradha Samajdar and KG Arun. Pro-
jected constraints on the dispersion
of gravitational waves using advanced
ground-and space-based interferome-
ters. Physical Review D, 96(10):104027,
2017

simple model for the dispersion, motivated by some alternate theo-

ries of GR which predict such dispersion, that the results are indeed

consistent with the gravitational wave signal GW170104 not being

dispersed. The three-detector observation of GW170814 allowed us

to study the polarisation of gravitational waves for the first time. 33

33 All previous detections had been two-
detector and did not yield much in-
formation about the polarisation of the
gravitational waves, since the two LIGO
detectors are almost identically orien-
tated.

The joint observation of the binary neutron star merger, GW170817

in both the gravitational wave and electromagnetic windows had im-

portant implications on fundamental physics 34: put a bound on the

34 BP Abbott, R Abbott, TD Abbott,
F Acernese, K Ackley, C Adams,
T Adams, P Addesso, RX Adhikari,
VB Adya, et al. Gravitational waves
and gamma-rays from a binary neu-
tron star merger: Gw170817 and grb
170817a. The Astrophysical Journal Let-
ters, 848(2):L13, 2017

speed of gravity, as well as further test Lorentz invariance and the

Equivalence Principle. Within the statistical uncertainties, these in-

vestigations provided no evidence for deviations from GR. Some of

the tests, described about the binary black hole coalescences have

been repeated for multiple LIGO-Virgo events, and combining the

results from multiple events allowed us to improve the constraints

on certain departures from GR predictions 35. 35 Abbott et al. 14, 11, 16

In this thesis, we will describe in detail, the first test mentioned

above that checks for the consistency of the properties of the rem-

nant estimated from the inspiral and merger–ringdown parts of the

observed signal, which we call the inspiral–merger–ringdown (IMR)

consistency test 36. This thesis will provide further details of the for- 36 Abhirup Ghosh, Archisman Ghosh,
Nathan K Johnson-McDaniel, Chan-
dra Kant Mishra, Parameswaran Ajith,
Walter Del Pozzo, David A Nichols,
Yanbei Chen, Alex B Nielsen, Christo-
pher PL Berry, et al. Testing general
relativity using golden black-hole bina-
ries. Physical Review D, 94(2):021101,
2016

mulation and implementation of this test that was used to constrain

certain departures from GR using the LIGO events GW150914 and

GW170104 37.

37 Benjamin P Abbott et al. Gw170104:
Observation of a 50-solar-mass binary
black hole coalescence at redshift 0.2.
Physical Review Letters, 118:221101, 2017
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Summary

Observation of gravitational waves from CBCs allow us to infer the

properties of the source. This has in turn, allowed us to test Ein-

stein’s theory of general relativity, for such compact objects, in the

highly dynamical strong-field regime of gravity. In the absence of re-

liable predictions of gravitational waves in alternate theories of grav-

ity, most strong field tests consider GR as a null hypothesis and con-

firm that observations are consistent with the predictions of GR for

a binary black hole merger in a quasi-circular orbit. These tests have

indeed been performed on actual observation of gravitational waves

by Advanced LIGO-Virgo and show no evidence for deviations from

GR.



3 | The Inspiral-Merger-Ringdown

Consistency Test

The IMR consistency test was developed based on the original idea

by Hughes and Menou 1 proposed in the context of the space-based 1 Scott A. Hughes and Kristen Menou.
Golden binaries for LISA: Robust
probes of strong-field gravity. As-
trophys. J., 623:689, 2005. doi:
10.1086/428826

LISA observatory.2 The key idea is to infer the mass and spin of the

2 See also, Nakano, Tanaka and Naka-
mura for a recent study in the context
of a ground-based detector.

Hiroyuki Nakano, Takahiro Tanaka,

and Takashi Nakamura. Possible

golden events for ringdown gravita-

tional waves. Phys. Rev. D, 92(6):

064003, 2015. doi: 10.1103/Phys-

RevD.92.064003

remnant black hole, using two different parts of the observed signal,

and then to compare these independent estimates. We first estimate

the initial masses and spins from the inspiral (low-frequency) part

of the signal, which allows us to infer the mass and spin of the final

black hole making use of fitting formulae calibrated to numerical rel-

ativity (NR) simulations of binary black holes. Next, we estimate the

same parameters independently from the merger–ringdown (high-

frequency) part of the signal and then compare the two estimates.

If the signal is correctly described by the merger of a (quasicircular)

binary of Kerr black holes in GR, which is implicit in the waveform

models that we use to estimate the parameters and the fitting formu-

lae that went in, one should expect the two estimates to be consistent

with each other. On the other hand, if there is a departure from

GR, depending on the exact nature of the departure, it can mani-

fest as a discrepancy between the two estimates. In particular, if the

energy and angular momentum radiated during the merger regime

(where the gravity is extremely strong and nonlinear) differ signifi-

cantly from the GR predictions for these quantities, one could expect

a discrepancy between the two estimates in the final mass and spin.

The original idea by Hughes and Menou was to estimate the pa-

rameters purely from the early inspiral (well described by the PN

approximation to GR) and the late ringdown (well described by a

spectrum of QNMs). According to this, we would estimate the pa-

rameters of the binary from the early inspiral signal (where any de-

parture from GR is presumably small) and use these estimates to
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predict the properties of the remnant black hole, which could be

estimated independently from the QNM ringdown. However, such

a test will be possible only using a small number of golden events,

where both the early inspiral and late ringdown are observed with

high SNRs. While such a test might be possible in the future using

LISA or third generation ground-based instruments, such tests are

unlikely to be possible using the current generation of gravitational

wave observatories. Meanwhile, Advanced LIGO is expecting to ob-

serve several hundred binary black hole events of moderate SNR in

the coming years. Hence, tests of GR in the near future are going to

progress through building evidence by combining multiple events.

Our formulation of the test is geared in this direction. Indeed, the

transition from inspiral regime to merger regime does not happen at

a precise time or frequency. We use some reasonable choice of a cut-

off frequency to separate the signal to the low-frequency (inspiral)

and high-frequency (merger–ringdown) parts. As part of our stud-

ies, we show that the test is robust against variations of this cutoff

frequency that still give large enough SNRs for parameter estimation

in both the low- and high-frequency portions independently.

3.1 Method

Using the Bayesian framework described in the previous chapter, we

start by computing the joint posterior probability distribution on the

initial masses and dimensionless spins P(m1, m2, a1, a2 | d)3 of the 3 Here onwards, we drop H, I from
the posteriors to simplifying the nota-
tion. Also, unless otherwise noted, the
masses we consider are the ones in the
detector frame, including the cosmolog-
ical redshift [89].

binary black hole system (with m1 � m2 by convention). This is

done by marginalizing the posterior over the remaining parameters

describing the signal. Assuming quasicircular inspirals, fitting for-

mulae calibrated to NR simulations then give us predictions of the

mass Mf and dimensionless spin magnitude a f of the final (remnant)

black hole as functions of the initial masses and spins,

Mf = Mf (m1, m2, a1, a2) , a f = a f (m1, m2, a1, a2), (3.1)

which allow us to obtain the posteriors P(Mf , a f | d) of the final mass

and spin.

First, we estimate the posterior PIMR(Mf , a f | d) using the full ob-

served signal. We choose to demarcate the inspiral and post-inspiral

parts of the signal using the m = 2 mode gravitational wave fre-
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quency fISCO of the innermost stable circular orbit (ISCO) of the

remnant Kerr black hole 4, with mass and spin given by the me- 4 James M. Bardeen, William H. Press,
and Saul A Teukolsky. Rotating black
holes: Locally nonrotating frames, en-
ergy extraction, and scalar synchrotron
radiation. Astrophys. J., 178:347, 1972.
doi: 10.1086/151796

dian values of PIMR(Mf , a f | d). We estimate the same parameters

from the data containing only the inspiral (low-frequency) part of

the observed signal; that is, by setting fcut = fISCO in Eqs. (2.11)

and (2.12). This allows us to compute the posterior distribution

PI(Mf , a f | d) of the mass and spin of the remnant purely from the in-

spiral part of the signal. Similarly, using only the merger–ringdown

(high-frequency) part of the observed signal [by setting flow = fISCO

in Eqs. (2.11) and (2.12)], we can get yet another estimate of the pos-

terior PMR(Mf , a f | d) of the mass and spin of the remnant. If the

observed signal is well described by GR, the two independent esti-

mates PI(Mf , a f | d) and PMR(Mf , a f | d) have to be consistent with

each other as well as with the estimate PIMR(Mf , a f | d) using the full

data (see, e.g., the left plot in Fig. 3.1).

Figure 3.1: The left panel shows the 68%
and 95% credible regions of the posterior
distributions PI(Mf , a f ) and PMR(Mf , a f ) of
the (redshifted) mass and spin of the final
black hole estimated from the inspiral and
merger–ringdown parts of a simulated GR
signal, respectively. Also shown is the pos-
terior PIMR(Mf , a f ) estimated from the full
IMR signal. The simulated GR signal (using
SEOBNRv2_ROM_DoubleSpin [106, 117]) is
from a binary black hole with (m1, m2) =
(60.7, 86.7)M� , and aligned spins (a1, a2) =
(0.65, �0.77) at a distance of 860 Mpc, ob-
served by the 3-detector Advanced LIGO–
Virgo network. The corresponding value of
the final mass and spin is indicated by a
black cross. The right panel shows the poste-
rior P(e, s) on the parameters e := DMf /M̄f
and s := Da f /ā f that describe the deviation
from GR for the same case as the left panel.
Dashed lines show the 68% and 95% isoprob-
ability contours of the prior used to compute
the posterior, which corresponds to a uni-
form prior in component masses. The pos-
terior is consistent with the GR value, which
is marked by a ‘+’ sign.

To quantify the consistency of the observed signal with a binary

black hole system predicted by GR, we define two parameters that

describe the fractional difference between the two estimates of the

remnant’s mass and spin

e :=
DMf

M̄f
, s :=

Da f

ā f
, (3.2)

where

DMf := MI
f � MMR

f , Da f := aI
f � aMR

f , (3.3)
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and

M̄ f :=
MI

f + MMR
f

2
, ā f :=

aI
f + aMR

f

2
. (3.4)

In the absence of departures from GR, we expect the posterior P(e, s | d)

of {e, s} to be consistent with zero (within the expected statistical

fluctuations due to noise).5 Appendix A.1 describes the calculation

5 We used the full IMR posteriors for
Mf and a f to normalize the fractional
parameters in Paper I [72]. We have
switched to using the average of the in-
spiral and merger–ringdown posteriors
here so that we only are using poste-
riors from the two independent mea-
surements, and not mixing in ones from
the case where the parameters describ-
ing the inspiral and merger–ringdown
parts of the waveform are not allowed
to vary independently.

of P(e, s | d) from the posteriors PI(Mf , a f | d) and PMR(Mf , a f | d).

An example of the posterior distribution P(e, s | d) from a simulated

GR signal is shown in Fig. 3.1 (right plot).

Finally, if we assume that {e, s} take the same values in multiple

events, the posterior from one event could be treated as the prior

for computing the posterior for the second event (see Sec. 3.3.3 for

a discussion on the validity of this assumption). Such a combined

posterior can more sensitively identify certain deviations from GR.

In practice, the posteriors Pj(e, s | dj) from N such observations can

be combined to produce an overall posterior in the following way:

P(e, s | {dj}) = P(e, s)
N

’
j=1

Pj(e, s | dj)

Pj(e, s)
, (3.5)

where P(e, s) is the overall prior distribution on e and s and Pj(e, s)

is the prior distribution used to compute the posterior Pj(e, s | dj).

Appendix A.2 gives a more complete derivation (along with the nec-

essary caveats) of Eq.3.5.

3.1.1 Choice of priors

Given our poor understanding of the astrophysical distribution of

source parameters (such as the component masses and spins), we

use uninformative priors for the parameter estimation 6. Sources 6 J. Veitch et al. Parameter estima-
tion for compact binaries with ground-
based gravitational-wave observations
using the LALInference software li-
brary. Phys. Rev. D, 91(4):042003,
February 2015. doi: 10.1103/Phys-
RevD.91.042003; and Benjamin P Ab-
bott, R Abbott, TD Abbott, MR Aber-
nathy, F Acernese, K Ackley, C Adams,
T Adams, P Addesso, RX Adhikari,
et al. Properties of the binary black hole
merger gw150914. Physical review letters,
116(24):241102, 2016

are assumed to be uniformly distributed in volume and isotropi-

cally oriented. We use uniform priors in component masses m1,2 2

[1, 300]M�, where m1 � m2, and a uniform prior in the spin magni-

tudes |a1,2| 2 [0, 0.98]. We use isotropic priors on the spin orienta-

tion when precessing templates are used in the parameter estimation.

When nonprecessing templates are used, the priors are set in such a

way that the dimensionless spin projection a1,2 · L̂ onto the orbital an-

gular momentum L has a uniform distribution in [�0.98, 0.98]. These

choices induce a non-uniform prior in {e, s}, which is shown by the

dashed contours in Fig. 3.1 (right panel).
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3.2 Simulations of GR signals in Gaussian noise
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Figure 3.2: Distribution of SNR of
Gaussian noise simulations of grav-
itational wave signals from binary
black hole coalescences uniformly dis-
tributed in a comoving four-volume
between redshifts [0, 2], initial source-
frame component masses and com-
ponent spin magnitudes uniformly
distributed between [10, 80]M�, and
[0, 0.98].

First, we estimate the expected constraints that we can place on

parameters describing deviations from GR, when the actual signals

are well described by GR. We inject simulated gravitational wave sig-

nals modelling inspiral, merger and ringdown of binary black holes

(based on GR, modelled by the SEOBNRv2_ROM_DoubleSpin

approximant 7) into coloured Gaussian noise with the design power 7 Michael Pürrer. Frequency domain
reduced order model of aligned-spin
effective-one-body waveforms with
generic mass-ratios and spins. Phys.
Rev. D, 93(6):064041, 2016. doi:
10.1103/PhysRevD.93.064041; and
Andrea Taracchini et al. Effective-one-
body model for black-hole binaries
with generic mass ratios and spins.
Phys. Rev. D, 89(6):061502(R), 2014.
doi: 10.1103/PhysRevD.89.061502

spectrum of the Advanced LIGO detectors in the high-power, zero-

detuning configuration 8. Although we perform the analysis assum-

8 D. H. Shoemaker. Advanced LIGO an-
ticipated sensitivity curves. Technical
Report LIGO-T0900288, 2010. https://
dcc.ligo.org/LIGO-T0900288/public

ing the 3-detector Advanced LIGO–Virgo network, for simplicity,

we assume that Advanced Virgo has the same noise power spec-

trum as the Advanced LIGO detectors. All detectors are assumed to

have a low frequency cutoff flow = 10 Hz. We simulate a popula-

tion of binary black holes that is uniformly distributed in comov-

ing four-volume in the redshift interval z = [0, 2], with isotropic

orientations (see Section II C of 9 for more details). Binaries have 9 Archisman Ghosh, Walter Del Pozzo,
and Parameswaran Ajith. Estimat-
ing parameters of binary black holes
from gravitational-wave observations of
their inspiral, merger and ringdown.
Phys. Rev. D, 94(10):104070, 2016. doi:
10.1103/PhysRevD.94.104070

(source-frame) component masses uniformly distributed in the range

ms
1,2 = [10, 80]M� and component spin magnitudes uniformly dis-

tributed in the range [0, 0.98]. The gravitational wave signals are

redshifted so that the effective masses describing the signal in the

detector frame become m1,2 = ms
1,2(1 + z). Black hole spins are al-

ways assumed to be aligned/antialigned with the orbital angular

momentum, as is required by the waveform model used. This is not

https://dcc.ligo.org/LIGO-T0900288/public
https://dcc.ligo.org/LIGO-T0900288/public
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an overly restrictive assumption, because the spin components along

the orbital angular momentum have the dominant effect on the bi-

nary’s dynamics and gravitational wave emission 10. Fig. 3.2 shows 10 Patricia Schmidt, Mark Hannam, and
Sascha Husa. Towards models of gravi-
tational waveforms from generic bina-
ries: A simple approximate mapping
between precessing and non-precessing
inspiral signals. Phys. Rev. D, 86:
104063, 2012. doi: 10.1103/Phys-
RevD.86.104063

the distribution of the network SNR of the injected population of

binaries. For our analysis, we consider signals with network SNR

greater than 8 for both the inspiral and merger–ringdown parts, us-

ing the Kerr ISCO frequency to split the signal.11 In addition, we 11 Here, for simplicity, we use the Kerr
ISCO frequency computed from the in-
jected values of masses and spins to
split the signal. In an actual observa-
tion, we use the median estimate of the
Kerr ISCO frequency estimated from
the observed IMR signal.

only consider binaries with total redshifted mass less than 150M�,

so that the observed signals contain imprints of the inspiral, merger

and ringdown. Hence, starting from an initial population of 5000 in-

jections, the final analysis is performed on around 150 events which

survive the above thresholds on SNR and total redshifted mass.

On the injections that pass the SNR and mass thresholds, we per-

form the analysis described in Sec. 3.1, using SEOBNRv2_ROM

_DoubleSpin as our template for parameter estimation and the fi-

nal mass and spin fits from Healy et al. 12. Parameter estimation us- 12 James Healy, Carlos O. Lousto, and
Yosef Zlochower. Remnant mass, spin,
and recoil from spin aligned black-
hole binaries. Phys. Rev. D, 90(10):
104004, 2014. doi: 10.1103/Phys-
RevD.90.104004

ing LALInferenceNest is performed using priors that are uniform in

component masses in the interval m1,2 2 [1, 300]M� and component

(aligned/antialigned) spins in the interval [0, 0.98]. This corresponds

to a non-uniform prior in the deviation parameters {e, s} that is cen-

tred around the GR value of {0, 0}. See Fig. 3.1 for an example result.

The left panel shows the estimated posterior distributions of the final

mass and spin from the inspiral and post-inspiral parts of the data,

along with that estimated from the full data. The right panel shows

the posterior distribution on the parameters describing deviations

from GR, along with the prior used for computing this posterior.

Constraints on the deviations expected from single observations

of binary black holes by second-generation ground-based detectors

are expected to be modest, due to the large statistical errors from the

relatively small SNRs expected for most systems (see, e.g., Fig. 3.2).

However, the constraints can be improved by combining the likeli-

hoods of {e, s} from multiple events13. Fig. 3.3 shows the combined 13 We expect the combined errors to go
down roughly as N�1/2, where N is the
number of events while the individual
errors to go down as r�1, where r is
the SNR of the event. Thus, combined
constraints from N events with roughly
same SNR should be comparable to the
constraints from a single event with an
SNR of r N1/2.

posteriors P(e, s) as a function of the number of simulated events.

The constraints on the deviation parameters {e, s} become narrower

when multiple events are combined. These constraints are within the

reach of Advanced LIGO–Virgo observations in the next few years 14.
14 Abbott et al. 11, 7From the posterior distribution P(e, s), one can obtain the credi-

ble level corresponding to the GR value of the deviation parameters,
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i.e., {e, s} = {0, 0}. The credible level for a certain set of parame-

ters {e0, s0} is the total probability enclosed within an isoprobability

contour passing through {e0, s0}:

credible level =
Z

{e,s} where P(e,s)>P(e0,s0)
P(e, s) de ds. (3.6)

See, e.g., Eq. (42) in 15 for a general definition. The area enclosed 15 J. Veitch et al. Parameter estima-
tion for compact binaries with ground-
based gravitational-wave observations
using the LALInference software li-
brary. Phys. Rev. D, 91(4):042003,
February 2015. doi: 10.1103/Phys-
RevD.91.042003

within the isoprobability contour is the credible area (or credible in-

terval in 1 dimension). A lower credible level for the GR parameters

indicates a greater agreement with GR. However, this GR credible

level is not expected to be zero even when the data is correctly de-

scribed by GR, because the peak of posterior on the deviation param-

eters {e, s} is randomly shifted away from {0, 0} in the presence of

noise.

If the parameter values {e, s} were sampled from the prior dis-

tribution used to compute their posterior, we would expect the p

credible interval of the posterior to include the true value approxi-

mately p of the time, for the case of an appropriately chosen prior 16. 16 Gauri Sankar Datta and Trevor J
Sweeting. Probability matching pri-
ors. Handbook of statistics, 25:91–114,
2005; and Samantha R. Cook, Andrew
Gelman, and Donald B. Rubin. Vali-
dation of software for bayesian mod-
els using posterior quantiles. J. Comp.
Graph. Stat., 15(3):675–692, 2006. doi:
10.1198/106186006X136976

However, for the GR injections that we performed, we do not expect

the true value of {e = 0, s = 0} to be found at credible level p for

a fraction p of events. This is because of our prior distribution for

{e, s} does not match the intrinsic distribution (which would be a

delta function): we are allowing for the possibility of mismatches

between inspiral and merger–ringdown even though this is not the

case for the injected GR signals. To demonstrate this for our set of

GR injections, in Fig. 3.4 we show the fraction of events for which the

(true) GR point is found within the p credible region. From Fig. 3.4,

we see the true GR value is often near the peak of the distribution,

meaning that it is found within the p credible region for more than a

fraction p of events.17 In order to make a frequentist statement about 17 For the marginalised e distribution,
we see that the true GR value is ap-
proximately found within the p credi-
ble interval a fraction p of the time. In
this case, the scatter due to noise is suf-
ficient to balance the mismatch in the
prior used.

the significance of the measurement of non-zero e or s (how common

such a deviation is if GR were correct), a similar study would need

to be done for the region of mass and spin space of interest in order

to calibrate expectations.
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Figure 3.3: Left: In each plot shaded re-
gions show the 68% and 95% credible
intervals on the combined posteriors on
e := DMf /M̄ f , s := Da f /ā f from mul-
tiple observations of GR signals, plotted
against the number of binary black hole
observations. The GR value (e = s = 0)
is indicated by horizontal dashed lines.
The mean value of the posterior from
each event is shown as an orange dot
along with the corresponding 68% cred-
ible interval as an orange vertical line.
Posteriors on e are marginalized over s,
and vice versa. Right: The thin orange
contours show the 68% credible regions
of the individual posteriors on the e, s
computed from the same events. The
GR value (e = s = 0) is indicated by
the black + sign. Right inset: The red
contours show the 68% credible regions
on the combined posterior from 5, 10
and 25 events (with increasing shades
of darkness). The GR value (e = s = 0)
is indicated by the black + sign. Differ-
ent rows correspond to different cata-
logs of 50 randomly chosen events from
a total of ⇠ 100 simulated events.

3.3 Simulations of modified GR signals in Gaussian noise

3.3.1 Generation of modified GR waveforms

We also test the sensitivity of our pipeline towards certain kinds of

deviations from GR, using signals that differ slightly from the pre-

dictions of GR. Specifically, we generate kludge modified GR wave-

forms that are qualitatively similar to binary black hole waveforms in

GR, but differ in their energy and angular momentum loss as a func-

tion of frequency. These waveforms are similar enough to GR binary

black hole waveforms that they would likely be detected with a stan-

dard detection pipeline, as we discuss below. However, we demon-
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Figure 3.4: A p vs p plot for the devi-
ation parameters (e := DMf /Mf , s :=
Da f /a f ) computed from the set of GR
injections described in section 3.2. In
each plot, the horizontal axis indicates
a credible level, and the vertical axis in-
dicates the fraction of events with the
deviation parameters below the given
credible level. In each plot, the gray
lines are computed for 50 different sub-
sets of the full population of ⇠ 100
events, and the red line correspond to
the same computed using all the ⇠ 100
events. The left plot corresponds to
credible intervals computed from the 2-
dimensional posteriors P(e, s|d), while
the middle and right plots correspond
to marginalized posteriors on e and s,
respectively. The diagonal lines indi-
cate the case where the Bayesian cred-
ible levels match the frequentist confi-
dence levels.

strate that the consistency test described in this chapter is able to

identify such deviations from GR by combining the posteriors from

multiple observations.

We start from the nonspinning effective one-body (EOB) wave-

form model given in 1, which is available as Matlab code at IHES 2,

1 Thibault Damour, Alessandro Nagar,
and Sebastiano Bernuzzi. Improved
effective-one-body description of coa-
lescing nonspinning black-hole binaries
and its numerical-relativity completion.
Phys. Rev. D, 87(8):084035, 2013. doi:
10.1103/PhysRevD.87.084035

2 http://eob.ihes.fr; we used the
“1202” version of the code

and modify the gravitational wave flux to yield our kludge modi-

fied GR waveform. Specifically, we multiply all the modes of the

waveform that first enter the flux at second PN order [i.e. O(v4/c4),

where v is the binary’s orbital velocity], viz the (`, m) = (3, ±2),

(4, ±4), and (4, ±2) modes, by a constant factor
p

a2, so that their

contributions to the flux are multiplied by a2. This also modifies the

flux at 3PN and all higher PN orders. We start with the modes that

first enter at 2PN rather than the ones that first enter at 1PN since

the latter modes vanish for equal-mass nonspinning binaries, and we

still want a nonvanishing modification in this limit.

We retain the termination condition for the inspiral–plunge phase

of the waveform used the original code. This uses the maximum

of the orbital frequency (calculated from the EOB Hamiltonian) to

mark the termination of the calculation of the inspiral–plunge wave-

form (by evolving the EOB Hamilton equations) and the start of the

matching to the QNMs used to model the merger and ringdown.

This termination condition coincides with crossing the light ring in

the extreme mass-ratio limit. We also keep the next-to-quasicircular

parameters set to the values determined from NR simulations that

are already given in the code. Additionally, we keep all the other pa-

rameters set to their default values, except for a parameter that keeps

http://eob.ihes.fr
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one from probing unphysical regions of the EOB potential while the

EOB equations are solved numerically. This was necessary to change

in order to compute waveforms for higher mass ratios, even without

other modifications to the code.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time (s)

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

R
e

[h
22

(t)
]

�10�21

GR
modGR (�2 = 20)

Figure 3.5: The real part (darker
lines) and amplitude (lighter lines) of
the (2, 2) mode gravitational waveform
form an equal-mass nonspinning bi-
nary black hole computed using the
IHES EOB code with no modification
(GR) and with our modification to the
flux with a2 = 20 (modGR). For this il-
lustration, we have taken the total mass
to be 100M�, the distance to be 1 Gpc,
and have aligned the waveforms at t =
0, which we have taken to correspond
to a (2, 2) mode frequency of 20 Hz.

With these choices, we find that the waveforms look similar to a

GR waveform up to the values of a2 = 20 we consider here. This

is illustrated in Fig. 3.5 for an equal-mass binary; the unequal-mass

waveforms we consider in the next subsection also look similar to

GR waveforms. Additionally, we have checked that this modifica-

tion to the waveform does not induce any excess eccentricity: The

eccentricity of the modified waveforms is small, and the same size as

the eccentricities of the unmodified waveforms (. 10�5 for the initial

frequencies we are considering).3

3 We estimate the eccentricity of the
waveforms as in section IV C of [65]
[Eq. (4.13) and following], though with
two additional higher-order PN terms
added to the fitting function, since the
eccentricity is small. The results did not
change upon adding a third additional
PN term. Since this estimate only uses
the leading-order gravitational wave ef-
fects, it does not need to be modified to
account for the modification to the flux,
which only starts at 2PN.
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Figure 3.6: Left: The final mass and
spin allowed by GR (shaded region),
as calculated from the fits from [77],
as well as the values for the kludge
waveforms with a mass ratio of q = 1
and a2 2 {5, 10, 20, 100, 200, 300, 400}

(crosses, with a2 increasing from right
to left), as well as a2 = 20 and q from
1 to 6.8 in roughly steps of 0.5 (circles,
with q increasing from left to right).
The a2 = 20 points are taken from
the injection set. Right: The fractional
differences between the final mass and
spin for the kludge waveforms with
a2 = 20, as a function of the mass ra-
tio q.
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Since the final mass and spin in the original EOB waveform are

set by a fit to NR results, we replace this determination by demand-

ing self-consistency of the radiated energy and angular momentum.

That is, we choose the final mass and spin by minimizing the dif-

ference between the final mass and spin used to obtain the merger–

ringdown part of the model and the final mass and spin obtained

from energy and angular momentum balance using the initial en-

ergy and angular momentum and the radiated energy and angular

momentum (calculated from the waveform). Here we are able to ob-

tain fractional disagreements of less than ⇠ 10�4 between the final

mass and spin calculated from the radiated energy and angular mo-

mentum and those used to compute the merger-ringdown part of the

signal. These fractional disagreements are considerably better than

the agreement of these quantities for the original IHES EOB wave-

form for some mass ratios, and much smaller than the differences in

radiated energy and angular momentum between the different wave-

forms we consider. We compute the energy and angular momentum

loss using multipoles up to ` = 7, since we are only able to fit for the

ringdown up to ` = 7, the highest ` for which the tabulated QNM

results used in the code are available 4. We take the standard GR ex- 4 Emanuele Berti, Vitor Cardoso, and
Andrei O. Starinets. Quasinormal
modes of black holes and black
branes. Class. Quantum Grav., 26:
163001, 2009. doi: 10.1088/0264-
9381/26/16/163001; and http://www.
phy.olemiss.edu/~berti/qnms.html

pressions for the radiated energy and angular momentum to still be

valid for this modified gravity waveform; these expressions indeed

remain valid for a significant number of modified theories 5. We find
5 Leo C. Stein and Nicolas Yunes. Effec-
tive Gravitational Wave Stress-energy
Tensor in Alternative Theories of Grav-
ity. Phys. Rev. D, 83:064038, 2011. doi:
10.1103/PhysRevD.83.064038

that the final mass and spin falls outside the region allowed in GR

in many cases, though there is a region of overlap for a2 = 20 and

mass ratio q := m1/m2 & 4; see Fig. 3.6. We also plot the fractional

difference in the final mass and spin between GR and the kludge

waveforms with a2 = 20 in this figure, and see that the fractional

difference in the final spin is significantly larger than the fractional

difference in the final mass.

In addition to enhanced energy and angular momentum fluxes,

these kludge modified GR waveforms have an enhanced linear mo-

mentum flux. This leads to larger gravitational wave recoils than one

obtains for nonspinning systems in GR, where the maximum is only

⇠ 180 km s�1 (see, e.g., 6). For the a2 = 20 deviation we consider 6 Healy and Lousto 76

here, the maximum recoil is ⇠ 440 km s�1.7 We do not include any 7 The original IHES EOB waveform
model (without deviations) already has
a maximum recoil of ⇠ 350 km s�1.potential effects (e.g., the Doppler shifts discussed in 8) from these
8 Gerosa and Moore 71

enhanced recoils, which are still small (at most ⇠ 10�3 times the

http://www.phy.olemiss.edu/~berti/qnms.html
http://www.phy.olemiss.edu/~berti/qnms.html
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speed of light).9 9 Enhanced recoils were not an issue for
the larger deviation considered in Pa-
per I because the recoil vanishes, by
symmetry, for the equal-mass nonspin-
ning system considered there.

We have not changed the QNM spectrum of the final black hole

in these kludge modified gravity waveforms for simplicity. However,

one expects the QNM spectrum to be modified in any alternative

theory that predicts a different gravitational wave energy loss for a

binary black hole, even those for which the unperturbed Kerr metric

is a solution of the field equations, since the behavior of perturba-

tions of Kerr will generically be different in an alternative theory

(see, e.g., 10). Extending this analysis to the case where one modifies 10 Barausse and Sotiriou 36

the QNM spectrum would be a useful additional check of the con-

sistency test presented here, though the requisite catalogs of QNMs

are not yet available, even for the case of a Kerr–Newman black hole,

which could be used as a stand-in for a modified gravity black hole:

See, however, Dias et al. 11 for some recent results that could be used 11 Oscar J. C. Dias, Mahdi Godazgar,
and Jorge E. Santos. Linear Mode Sta-
bility of the Kerr-Newman Black Hole
and Its Quasinormal Modes. Phys.
Rev. Lett., 114(15):151101, 2015. doi:
10.1103/PhysRevLett.114.151101

to obtain such a QNM catalogue.

m1 (M�) m2 (M�) DL (Mpc) Optimal SNR PyCBC SNR Reduced c2 Re-weighted SNR

139.1 69.5 5625.8 8.1 8.6 0.76 8.6
88.1 14.7 803.5 14.3 14.0 0.78 14.0
40.8 46.8 787.0 21.6 21.7 0.81 21.7

Table 3.1: The table shows the pa-
rameters of some of the injected mod-
ified GR signals (DL is the luminos-
ity distance) and how well the Py-
CBC pipeline is able to detect these in-
jected signals in a single detector search
(LIGO Livingston). Optimal SNR is
the optimal SNR available in the injec-
tion, PyCBC SNR is the matched filter
SNR extracted by the PyCBC pipeline,
and re-weighted SNR is the chi-squared
weighted SNR defined in equation (6)
of [122]. The optimal SNR is computed
using the detector’s noise power spec-
trum (it is defined by < h|h >1/2, for a
signal h), while the matched filter SNR
is a statistical variable computed us-
ing a specific noise realization, which is
why the PyCBC SNR can be larger than
the optimal SNR.

We only inject the (2, ±2) modes of the waveform here, since these

are the only modes included in the waveform model we use for the

test, as well as for the injections in Sec. 3.2. The modifications to

the higher modes appear in the (2, ±2) modes by their effect on the

waveform’s phasing, since the higher modes are used to compute the

modified energy flux. We have run the test on two GR injections with

higher modes in Sec. 3.4.4, and found that the inclusion of higher

modes does not bias the test in those cases.

Finally, almost all of our modified GR signals will be confidently

detected by the standard matched-filter based searches for binary

black holes, which include the chi-squared discriminatory test 12. To 12 Bruce Allen. A chi**2 time-frequency
discriminator for gravitational wave de-
tection. Phys. Rev. D, 71:062001, 2005.
doi: 10.1103/PhysRevD.71.062001
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demonstrate this, we have run the PyCBC 13 matched filter based 13 Samantha A. Usman et al. The
PyCBC search for gravitational waves
from compact binary coalescence. Class.
Quantum Grav., 33(21):215004, 2016.
doi: 10.1088/0264-9381/33/21/215004

detection pipeline on these injections (using a single GR template

from the SEOBNRv2_ROM_DoubleSpin family, corresponding to

the parameters of the simulated modGR signal). We see that the chi-

squared weighted SNR recovered by the detection pipeline is close to

the optimal SNR of the signal (see table 3.1 and Fig. 3.7 for some ex-

amples). The SNR maximized over the full template bank is expected

to be even larger than this, practically ensuring confident detections.

�0.20 �0.15 �0.10 �0.05 0.00 0.05 0.10 0.15 0.20

time (s)

0

2

4

6

8

10

12

�
2

�2

0

2

4

6

8

10

12

14

SN
R

SNR
Re-weighted SNR

Figure 3.7: Time series of the matched
filter SNR, the reduced c2 and re-
weighted SNR from an injected mod-
ified GR waveform, corresponding to
the second entry in table 3.1. The re-
weighted SNR is the PyCBC detection
statistic and is defined in equation (3)
of [122]. The injected signal is located in
the data at around time �0.05 s in the
plot. This is very similar to the anal-
ogous plot for GW150914 given in fig-
ure 8 of [6], indicating that this mod-
ified GR signal would be found by the
PyCBC search in a similar way to a gen-
uine GR signal.

3.3.2 Results from the simulations of modified GR signals

Here we demonstrate that the IMR consistency test is able to iden-

tify (at least certain types of) deviations from GR by performing our

analysis on a population of simulated signals using the modified GR

waveforms described above. In Paper I, we have demonstrated the

ability of this test to identify a relatively large modification to the bi-

nary’s energy flux (a2 = 400). Such a deviation from GR was easily

detectable with high confidence from a single observation of mod-

erate SNR. Here we consider the ability of the test to discern much

smaller deviations from GR by combining results from multiple ob-

servations. Specifically, we consider the same population of binary

parameters considered to simulate the GR case in Sec. 3.2 except that

the waveforms are generated with a modification of the GR energy

flux as described in Sec. 3.3.1. Also, for simplicity, we consider bi-

nary black holes with zero spins, since the EOB waveform family

that we employ to produce modified GR waveforms is a nonspin-
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Figure 3.8: Same as figure 3.3 except
that the test is performed on simulated
signals containing a modification from
GR described in section 3.3.2. The com-
bined posteriors from multiple observa-
tions show a clear departure from the
GR predictions (horizontal dashed lines
on the left plots and the plus sign on the
right plots).

ning model 14. However, we still perform parameter estimation us-

14 Thibault Damour, Alessandro Na-
gar, and Sebastiano Bernuzzi. Im-
proved effective-one-body description
of coalescing nonspinning black-hole
binaries and its numerical-relativity
completion. Phys. Rev. D, 87(8):
084035, 2013. doi: 10.1103/Phys-
RevD.87.084035; and http://eob.ihes.
fr; we used the “1202” version of the
code

ing the same SEOBNRv2_ROM_DoubleSpin aligned-spin model

employed in Sec. 3.2.

Modified GR waveforms for binaries with different mass ratios (as

well as distances, sky locations, and other extrinsic parameters) were

constructed using the prescription presented in Sec. 3.3.1, with devi-

ation parameter a2 = 20. An example of a modified GR waveform

(along with the corresponding GR waveform from the same binary)

is shown in Fig. 3.5. Although such a modified GR waveforms ap-

pears similar to a GR waveform, we show below that the IMR consis-

tency test is able to identify deviations from GR by combining multi-

http://eob.ihes.fr
http://eob.ihes.fr
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ple events. Fig. 3.8 shows the joint posteriors on the parameters that

describe deviations from GR. It can be seen that, although individual

posteriors are unable to identify deviations from GR, the combined

posteriors show a clear departure from the GR predictions, even for

the relatively small deviation that we consider.15 We also see that the

15 Taking a2 = 20 corresponds to mul-
tiplying the 2PN term in the frequency
domain phase expression by a factor of
⇠ 0.4 for equal masses, with the factor
decreasing monotonically to ⇠ �4.5 for
a mass ratio of 7 (the largest mass ratio
in the detected population).

combined posterior on s := Da f /ā f differs significantly more from

0 than does the combined posterior on e := DMf /M̄ f . This might

be expected, due to the larger fractional differences from GR in the

final spin seen in Fig. 3.6.

3.3.3 Caveats

The way that we combine the posteriors from multiple events im-

plicitly assumes that {e, s} take the same values in multiple events.

This is certainly true if the true theory is GR, when they are always

zero, but is not necessarily true for all modified theories of gravity. If

the {e, s} values induced by the true theory are strongly dependent

on the intrinsic parameters of the black holes (such as their masses

and spins), then the combined posteriors from multiple events may

not converge to a non-zero value. Hence, this test (like any other test

of GR) is not sensitive to all kinds of possible deviations from GR.

However, if the deviation is only weakly dependent on the intrinsic

parameters, it is a reasonable assumption that the values of {e, s}

observed by LIGO-Virgo will be clustered in a small range, due to

the rather narrow range of masses (⇠ 10–80M�) of black hole bina-

ries employed in this test (and hence the reasonably narrow range

of length scales probed by these black holes).16 This is the case for 16 One might also worry about the
spin-dependence of possible devia-
tions. However, if the size of the devia-
tion is controlled by the maximum cur-
vature outside the horizons of the black
holes, the spin only changes the length
scale given by the curvature at the hori-
zon of a Kerr black hole by a factor of
2
p

2 ' 2.8; see, e.g., Eq. (5.47) of [100]
for the expression for the Kretschmann
scalar in Kerr, whose inverse fourth root
gives the length scale we are consider-
ing. This neglects possible propagation
effects, though even in that case LIGO is
not expected to detect binaries with or-
ders of magnitude different distances.

simulations presented in Sec. 3.3. Here the modification from GR

has a dependence on the intrinsic parameters (see, e.g., Fig. 3.6); still,

{e, s} estimates from individual posteriors tend to cluster around a

reasonably small range of values, and the combined posteriors con-

verge to a non-zero value in Fig. 3.8. On the other hand, if the devia-

tion is a strong function of the intrinsic parameters, then combining

the posteriors of the entire population may not be the most sensi-

tive method of detecting the deviation. One possibility to address

this would be to combine the posteriors of subsets of detections with

similar inferred parameters. Such combined posteriors from differ-

ent regions of the parameter space (e.g., low-mass or high-mass) will
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provide us some indication of the nature of the deviation as a func-

tion of some scales (e.g., curvature). We leave such studies as future

work.

Note that, in Fig. 3.8, the fractional difference in the final spin has

the opposite sign to what might naïvely be expected, given that the

modGR waveforms correspond to smaller final spins than their GR

counterparts. Since most of the angular momentum loss comes dur-

ing the merger and ringdown, it seems reasonable that the inspiral

values for the final mass and spin would be close to their GR values

for the system’s mass ratio, while those inferred from the ringdown

would correspond to the true values used to construct the waveform.

However, such an interpretation is possible only when the parame-

ters are estimated from only the early inspiral and late ringdown parts

of the waveform. Such a test would require both the early inspiral

and late ringdown to be observed with high SNR. While such tests

might be possible in the future, currently we are limited by the mod-

erate SNRs of the observed signals, and hence are forced to include

the late inspiral and merger parts in our analysis. For the case of

the modGR waveforms that we use, the estimated parameters from

the inspiral part are biased (typically to more massive, asymmetric

binaries) which correspond to a smaller value of the final spin, as

compared to the same estimated from the post-inspiral part, produc-

ing the observed sign in the fractional difference in the final spin.

3.4 Robustness of the consistency test

We also test the robustness of the IMR consistency test to the choice

of various parameters used in the analysis, for example, the cutoff

frequency used to demarcate the division between the low-frequency

(inspiral) and high-frequency (merger–ringdown) parts of the wave-

form, the choice of the particular approximant waveform, and the

fitting formula for the mass and spin of the final black hole, etc.

For this we use a simulated GR signal with waveform approximant

SEOBNRv2_ROM_DoubleSpin (except in Sec. 3.4.3 where we use

approximant IMRPhenomPv2 17 and in Sec. 3.4.4 where we use NR 17 Hannam et al. 75, Khan et al. 88, Bohé
et al. 44

waveforms). We also study the effect of neglecting higher modes and

spin precession on the IMR consistency test. These are performed by

injecting NR waveforms from the publicly available Simulating eX-
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Figure 3.9: Robustness studies against the choice of cutoff frequency (top row), approximants (second row), fitting formulae (third row) and effects of
higher modes and precession (bottom row). Left panels show the 68% credible region of the posterior distributions P(e, s). The GR value is marked by
a + sign. Right panels show the 68% credible region of the posterior distributions PI(Mf , a f ), PMR(Mf , a f ) and PIMR(Mf , a f ) of the mass and spin of the
final black hole estimated from the inspiral, merger–ringdown parts and the full IMR signal for each simulated case, respectively. In the second panel,
the parentheses in the legend carry a combination of labels; the first label refers to the waveform family used to perform the injection and recovery of
the inspiral portion, while the second label refers to the same for the merger-ringdown portion. In the third panel, the contours for the five fits that
include the contributions from in-plane spins to the final spin (HLZ aug [77], Husa et al. aug [84], HBR [80], UIB aug [86] and HL aug [76]; “aug”
denotes augmentation following [87]) lie almost on top of each other, thus making the individual contours indistinguishable. The same is true for the
contours for the purely aligned-spin fits (HLZ [77] and Husa et al. [84]). The nonspinning Pan et al. [98] fit has a distinct contour.
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treme Spacetimes (SXS) catalog 18. All these studies are performed 18 URL http://www.black-holes.org/
waveforms/. SXS Gravitational Wave-
form Databaseassuming a binary black hole signal with parameters close to that of

the first LIGO event GW150914 — masses m1 = 36M�, m2 = 29M�

and aligned spins, a1,z = �0.32, a2,z = 0.58, with optimum sky

position and orientation, producing an optimal SNR of 25 in the

Advanced LIGO Hanford–Livingston and Advanced Virgo network.

These studies demonstrate the robustness of the IMR consistency

test only for the case of signals with parameters similar to that of

GW150914, that is, with moderate mass ratios. If we observe signals

with large mass ratios and large, misaligned spins in the future, the

robustness of the IMR consistency test will need to be reinvestigated.

Also, these robustness studies have been restricted to the case of sin-

gle events: when a large number of events are combined to produce

precise constraints on the deviations from GR, we will have to worry

about even small systematic errors affecting our analysis. Such stud-

ies have to be performed in the near future, in anticipation of the

large number of binary black hole signals that Advanced LIGO is

expected to observe.

3.4.1 Cutoff frequency between the inspiral and merger–ringdown

There is no well defined transition frequency (or time) between the

inspiral and post-inspiral (merger–ringdown) parts of the waveform 19. 19 Alessandra Buonanno, Gregory B.
Cook, and Frans Pretorius. Inspi-
ral, merger and ring-down of equal-
mass black-hole binaries. Phys. Rev.
D, 75:124018, 2007. doi: 10.1103/Phys-
RevD.75.124018

We have chosen the ISCO frequency of the final Kerr black hole with

mass and spin inferred from the full IMR waveform at this cutoff

frequency. Increasing this cutoff frequency will increase (decrease)

the SNR of the inspiral (post-inspiral) part and hence will improve

(worsen) the parameter estimation from the inspiral (post-inspiral)

analysis, thus affecting our statistical errors. There thus is likely an

optimal choice for the cutoff frequency as far as the test’s sensitivity

to a given deviation from GR is concerned. However, if our analysis

is free from major systematic errors, the two independent estimates

always have to be consistent with each other when it is applied to a

binary black hole coalescence in GR. Here we illustrate that our anal-

ysis produces consistent results for reasonable choices of the cutoff

frequency.

The ISCO frequency of a Kerr black hole with mass Mf = 62M�

and dimensionless spin a f = 0.68 (remnant of the merger of two

http://www.black-holes.org/waveforms/
http://www.black-holes.org/waveforms/
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black holes with masses m1 = 36M�, m2 = 29M� and aligned

spins, a1,z = �0.32, a2,z = 0.58) is 146.4 Hz. We repeat the anal-

ysis with 4 different choices of the cutoff frequency in the interval

50–150 Hz. The results are shown in Fig. 3.4 (top panels). It can be

seen that, while the spread of the posteriors (that is, the statistical

errors) depends on the choice of the cutoff frequency, the inspiral

and post-inspiral estimates are always consistent with each other.

Also, the posteriors on the parameters describing deviations from

GR are always consistent with zero, indicating the robustness of the

test against the specific choice of the cutoff frequency.

3.4.2 Waveform approximant

The Bayesian inference described in Sec. 3.1 is performed by employ-

ing semi-analytical gravitational waveforms (computed by a com-

bination of analytical and numerical relativity) as the GR model.

The inherent assumption is that these are faithful representations

of the actual signals produced by nature. However, depending on

the particular methods used to construct these waveforms, there

can be minor differences between different gravitational waveform

families (approximants). Here, we demonstrate the robustness of

the IMR consistency test employing two IMR waveform families,

namely, the non-precessing spin reduced-order EOB model SEOB-

NRv2_ROM_DoubleSpin 20 and the precessing single effective- 20 Pürrer 106, Taracchini et al. 117

spin phenomenological model IMRPhenomPv2 21. The systematic 21 Hannam et al. 75, Khan et al. 88, Bohé
et al. 44

errors of these models in the vicinity of GW150914 and their effects

on parameter estimation were studied in 22. 22 Abbott et al. 15

Fig. 3.4 (second row) shows the results from simulated GR signals

from a binary black hole with parameters described in the previ-

ous section. Apart from performing the analysis where the same

waveform family is employed in estimating the parameters from the

inspiral and post-inspiral parts, the figure also demonstrates the ro-

bustness of the consistency test when we employ one waveform fam-

ily for estimating the parameters from the inspiral part and another

to estimate the same from the post-inspiral part. In each case, the

waveform family used to create a portion of the waveform, inspi-

ral or merger-ringdown, is the same used to recover the parameters

from that portion.
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3.4.3 Fit formulae for the mass and spin of the final black hole

The consistency test we have developed relies on NR fitting formulae

to map the binary’s initial masses and spins into the mass and spin

of the remnant black hole. There are a number of such fits available

in the literature, of varying degrees of accuracy and generality. Here

we consider a variety of recent fits for the final mass and spin.23 We 23 While there are fits for the final mass
and spin used in the two waveform
models we employ, we do not just
use those here, since they are not the
most accurate and up-to-date ones: see
Jiménez-Forteza et al, which compares
the final mass fit used in SEOBNRv2
and the final mass and spin fits used
in IMRPhenomPv2 with more accurate
fits. Note, however, that the addi-
tional calibrated terms in the merger-
ringdown parts of these models may
compensate for some of the slight inac-
curacies of the final mass and spin fits
used.

consider one set that is only applicable to nonspinning binaries (so

we do not use the estimated spins in applying this) given in equa-

tions (29) of Pan et al. 24, and two sets applicable to binaries with

24 Pan et al. 98

aligned spins. The first set is from Healy, Lousto and Zlochower

(HLZ) 25 and involves reasonably complicated implicit expressions

25 James Healy, Carlos O. Lousto, and
Yosef Zlochower. Remnant mass, spin,
and recoil from spin aligned black-
hole binaries. Phys. Rev. D, 90(10):
104004, 2014. doi: 10.1103/Phys-
RevD.90.104004

given in Eq. (14) and Eq. (16) in that paper, with coefficients given in

Table XI (we use the fourth-order fits). The second, simpler, though

somewhat less accurate set is from Eq. (3.6) and Eq. (3.8) in Husa et

al. 26 and only uses a single effective spin. The latter two fits were

26 Husa et al. 84

used in 27 to infer the final mass and spin of GW150914 and the HLZ

27 Benjamin P Abbott et al. Observation
of gravitational waves from a binary
black hole merger. Physical review letters,
116(6):061102, 2016; and Benjamin P
Abbott, R Abbott, TD Abbott, MR Aber-
nathy, F Acernese, K Ackley, C Adams,
T Adams, P Addesso, RX Adhikari,
et al. Properties of the binary black hole
merger gw150914. Physical review letters,
116(24):241102, 2016

fits were used in the implementation of the current test in Paper I

and 28. For these fits, we use the projection of the spins along the or-

28 Abbott et al. 14

bital angular momentum when using a precessing waveform model,

e.g., IMRPhenomPv2. The final mass and spin used to determine the

ISCO frequency is not changed throughout the analysis, even when

we are changing the fitting formulae. The calculation of the ISCO

frequency uses the HLZ fits.

It is also possible to augment aligned-spin fits for the final spin to

include the contribution from the in-plane spins, as was done for the

HLZ fit in 29 and significantly increases its accuracy for precessing 29 N. K. Johnson-McDaniel, A. Gupta,
P. Ajith, D. Keitel, O. Birnholtz,
F. Ohme, and S. Husa. Determining the
final spin of a binary black hole sys-
tem including in-plane spins: Method
and checks of accuracy. Technical Re-
port LIGO-T1600168, 2016. https://
dcc.ligo.org/LIGO-T1600168/public

systems. As that reference shows for the HLZ fit, the basic aligned-

spin final mass fit is already accurate for precessing systems when

evaluated using the components of the spins along the orbital an-

gular momentum. This augmentation was applied to the HLZ fit to

infer the final spin of the binary black hole events from Advanced

LIGO’s first observing run in 30. We thus also consider this exten- 30 Benjamin P Abbott et al. Binary
black hole mergers in the first ad-
vanced ligo observing run. Physical Re-
view X, 6(4):041015, 2016; Benjamin P
Abbott et al. Gw151226: Observation
of gravitational waves from a 22-solar-
mass binary black hole coalescence.
Physical Review Letters, 116(24):241103,
2016; and B. P. Abbott et al. Im-
proved analysis of GW150914 using a
fully spin-precessing waveform Model.
Phys. Rev. X, 6(4):041014, 2016. doi:
10.1103/PhysRevX.6.041014

sion of the final spin expression for the HLZ and Husa et al. fits (HLZ

aug and Husa et al. aug), as well as a new final spin fit for precess-

ing systems from Hofmann, Barausse and Rezzolla (HBR) 31 (we use

31 Hofmann et al. 80

the one with the smallest number of coefficients, which the authors

recommend), which we pair with the HLZ final mass fit. We also

https://dcc.ligo.org/LIGO-T1600168/public
https://dcc.ligo.org/LIGO-T1600168/public
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consider the augmented versions of both new aligned-spin fits that

extend those in Husa et al. to include the spin difference (UIB aug) 32, 32 Jiménez-Forteza et al. 86

as well as a small update to the HLZ fits from Healy and Lousto (HL

aug) 33. An average of these fits (HBR, UIB aug, and HL aug for the 33 Healy and Lousto 76

final spin, and just the second two for the final mass) was used to

infer the final mass and spin of the binary coalescence that produced

GW170104, as well as in the application of the IMR consistency test

to that system 34. 34 Benjamin P Abbott et al. Gw170104:
Observation of a 50-solar-mass binary
black hole coalescence at redshift 0.2.
Physical Review Letters, 118:221101, 2017

In Fig. 3.4 (third row), we show that for the simple test case we

consider, the two aligned-spin fits give almost identical results, as

do the extensions using the in-plane spins, while the nonspinning

fits still give a posterior that is consistent with zero. Here we use the

precessing waveform model IMRPhenomPv2 35 for both the injection 35 Hannam et al. 75, Khan et al. 88, Bohé
et al. 44

and recovery. We use it for the recovery in order to have nonzero in-

plane spins, and use it (in its aligned-spin limit) for the injection

so we are only testing different fits, not different waveform models

here. Since we apply the same fitting formulae to infer the final mass

and spin from both the inspiral and post-inspiral portions of the

waveform, systematic errors in the fitting formulae do not translate

into systematic errors in the test. Nevertheless, having more accurate

fitting formulae might help the test to identify modified GR signals.

3.4.4 Effects of spin precession and higher modes

Although gravitational wave emission in the leading order is quadrupo-

lar, higher order (nonquadrupole) modes can contain nonnegligi-

ble power if the system has large asymmetries (e.g., highly unequal

masses or large, misaligned spins). Due the unavailability of wave-

form models that are accurate and computationally fast to gener-

ate, currently the parameter estimation is mostly performed making

use of waveform templates that only model the quadrupole (` =

2, m = ±2) modes. This can potentially introduce systematic er-

rors in the estimated parameters, which could be falsely taken for a

deviation from GR. However, the systematic errors due to neglecting

nonquadrupole modes are expected to be negligible for the case of bi-

nary black holes with moderate mass ratios and aligned/antialigned

spins 36. In this chapter’s population study we considered binaries 36 Abbott et al. 15, Varma and Ajith 123

with spins aligned/antialigned with the orbital angular momentum
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so that there is no precession. However, fast-to-evaluate waveform

templates that take into account the dominant precession effects are

available 37, which have been used for performing the IMR consis- 37 Hannam et al. 75, Khan et al. 88, Bohé
et al. 44

tency test on the LIGO events GW150914 38 and GW170104 39. 38 Abbott et al. 14
39 Benjamin P Abbott et al. Gw170104:
Observation of a 50-solar-mass binary
black hole coalescence at redshift 0.2.
Physical Review Letters, 118:221101, 2017

We investigate the robustness of the IMR consistency test against

the effects of precession and higher modes, making use of injected

NR waveforms from the SXS waveform catalog 40. We select two un- 40 Mroué et al. 95, SXS 3, Schmidt et al.
111

equal mass (m1/m2 = 1.228) waveforms used in 41: SXS:BBH:0307, 41 Abbott et al. 15

which has aligned spins (a1,z = 0.32, a2,z = �0.579842), and SXS: 42 The aligned spin components for the
NR injections used in section 3.4.4 have
signs opposite to the ones used in the
rest of the section; this is not a typo-
graphical error.

BBH:0308, which is a precessing system with spin magnitudes a1 =

0.3406, a2 = 0.6696 and aligned components a1,z = 0.3224, a2,z =

�0.5761. We inject both systems with total masses of 65M� (so their

individual masses are 36 and 29M�, the same as for the previous

injections), and with inclination angles of 0. For parameter estima-

tion, we use SEOBNRv2_ROM_DoubleSpin as our template. The

results are summarized in Fig. 3.4 (bottom panel): the test is ro-

bust against the presence of higher modes and spin precession in the

comparable-mass regime.

3.4.5 Effect of splitting the signal in the frequency domain

In the IMR consistency test, we check the consistency of the pos-

teriors of the final mass and spin estimated from the early part of

the signal (inspiral) with the same estimated from the late part of

the signal (merger–ringdown). The split between the inspiral and

merger–ringdown parts is done in the Fourier domain. This choice

is purely made for convenience, since, in the Fourier domain, this

amounts to simply setting the lower and upper limits of the likeli-

hood integral in Eqs. (2.11) and (2.12).43 There is a possibility that 43 This is different from splitting the sig-
nals in time domain and then taking the
Fourier transform, which will introduce
additional artefacts in the Fourier trans-
form due to edge effects or windowing.

a fraction of the power from the inspiral can get deposited at high

Fourier frequencies, or the power from the merger–ringdown parts

to get deposited at low Fourier frequencies. This effect will be partic-

ularly pronounced for the ringdown signal, whose power is spread

over a large range of Fourier frequencies. One may worry that this

spectral leakage would cause the posteriors derived from the two re-

gions of Fourier frequency to be automatically consistent (although,

we have already demonstrated that when certain kinds of deviations

from GR are present in the signal, the IMR consistency test is able to



inspiral-merger-ringdown consistency test 73

identify them; see Sec. 3.3.2).

Below we show that the effect of spectral leakage is small for

the case of cutoff frequencies that we choose. In order to demon-

strate this, we do the following: We compute the Fourier transform

of the NR waveform SXS:BBH:0253 (an aligned-spin system with

m1/m2 = 2 and a1,z = a2,z = 0.5) 44 making use of the stationary 44 Abdul H. Mroué et al. A cat-
alog of 174 binary black-hole simu-
lations for gravitational-wave astron-
omy. Phys. Rev. Lett., 111:241104, 2013.
doi: 10.1103/PhysRevLett.111.241104;
and URL http://www.black-holes.
org/waveforms/. SXS Gravitational
Waveform Database

phase approximation (SPA) [e.g., Eq. (3.7) of 45]. The approximation

45 Thibault Damour, Bala R. Iyer, and
B. S. Sathyaprakash. Frequency domain
P approximant filters for time trun-
cated inspiral gravitational wave sig-
nals from compact binaries. Phys. Rev.
D, 62:084036, 2000. doi: 10.1103/Phys-
RevD.62.084036

here is that the power at a Fourier frequency f comes entirely from

the time t f (the saddle point) when the instantaneous frequency

F(t) := (dj(t)/dt)/2p is equal to f . Here j(t) is the phase of

the waveform. In this approximation, the magnitude of the Fourier

transform of the NR waveform can be computed as

|h̃( f )| =
A(t f )q

Ḟ(t f )
(3.7)

where A(t) is the time-domain amplitude of the NR waveform, and

a dot denotes a time derivative.

If the Fourier transform computed using the SPA agrees well with

numerically computed Fast Fourier Transform (FFT), this gives a

strong indication that the spectral leakage is negligible. Fig. 3.10

compares the Fourier transform computed using the SPA with the

FFT. The corresponding ISCO frequency fISCO is also shown, which

is used to demarcate the inspiral and merger–ringdown parts. The

plot suggests that the power at Fourier frequencies less than fISCO

can be fully explained to be coming from the early times of the wave-

form (i.e., with instantaneous frequency F(t) < fISCO). The excellent

agreement between the SPA and FFT at frequencies less than fISCO

suggests that there is no appreciable spectral leakage between the

two bands — almost all the power in the f < fISCO ( f > fISCO) band

should come from the early (late) times. However, if we choose a

transition frequency much higher than fISCO to demarcate the inspi-

ral and merger–ringdown (say, the dominant QNM frequency, which

is also shown in the figure) we expect significant spectral leakage be-

tween the two bands.

The definition of when the Fourier transform of a waveform com-

puted using the SPA can be considered a faithful representation of

the exact Fourier transform, can be made a bit more rigorous fol-

lowing the discussion in Sec. II.C of 46. We introduce the instan- 46 Thibault Damour, Bala R. Iyer, and
B. S. Sathyaprakash. Frequency domain
P approximant filters for time trun-
cated inspiral gravitational wave sig-
nals from compact binaries. Phys. Rev.
D, 62:084036, 2000. doi: 10.1103/Phys-
RevD.62.084036

http://www.black-holes.org/waveforms/
http://www.black-holes.org/waveforms/
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Figure 3.10: Comparison of the
Fourier transform of the NR waveform
SXS:BBH:0253 computed using the SPA
with the exact Fourier transform com-
puted using the FFT. The correspond-
ing ISCO frequency fISCO is also shown,
which is used to demarcate the inspi-
ral and merger–ringdown parts. The
plot suggests that the power at Fourier
frequencies less than fISCO can be fully
explained to be coming from the early
times of the waveform. Also shown is
the dominant QNM frequency, for ref-
erence. At high frequencies, the agree-
ment between SPA and FFT becomes
poor, indicating spectral leakage. The
noise in the SPA at lower frequencies is
due to the numerical noise in comput-
ing the frequency derivative.

taneous number of cycles spent near some instantaneous frequency

F(t), N(F), defined as:

N(F) :=
F2

dF/dt
(3.8)

It can then be shown that for the peak of the SNR logarithmic frequency-

distribution fp being comparable to the instantaneous frequency at

which the signal itself shuts off, Fmax, the simple frequency-windowed

SPA will be a bad overlap h̃( f ) if
p

NFmax is not large. In other

words, for the Fourier transform of a waveform computed using the

SPA to be a faithful representation of the exact Fourier transform,

h̃( f ), numerically computed by the Fast-Fourier-transform of the

time-domain signal, NFmax should be large, or conversely dF/dt
F2 ⌧ 1,

which is what we see in the third panel of Fig.3.11. Thus, if we need

to perform this same analysis purely on the ringdown part (without

including the merger), the analysis must be performed in the time

domain. There is ongoing work in this direction about which more

is described in Sec.3.5.

3.5 Future work

While we have investigated the reliability of our test to ensure its ro-

bustness, there remain further extensions of the test and more anal-

yses to pursue. In particular, we have assumed that black holes in

binaries have nonprecessing spins in the populations we simulate in
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Figure 3.11: Top Panel: The time-domain
gravitational signal h(t) for a (non-
spinning) binary black hole coalescence
with initial masses (36, 29)M� directly
overhead to the detector. Second Panel:
The evolution of the instantaneous fre-
quency of the gravitational wave chirp
F(t) = 1

2p
df(t)

dt . The red and green
dashed horizontal lines represent the
ISCO frequency of the remnant black
hole, 132Hz, and the frequency of the
dominant QNM of the remnant black
hole, 274.9Hz, respectively. The red
dashed vertical line represent the time
corresponding to the ISCO frequency of
132Hz, and has the same definition in
all four panels. Third Panel: The evo-
lution of dF/dt

F2 with time. Bottom Panel:
The evolution of the SNR accumulated
over time of the gravitational wave sig-
nal.
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this chapter. We have also neglected the effect of nonquadrupole

modes in the parameter estimation (although the fitting formulae

for the remnant mass and spin include their contributions to the

energy and angular momentum loss). While the effects of preces-

sion and nonquadrupole modes are expected to be negligible for

the parameter estimation of comparable-mass binaries (see, e.g., 47) 47 Abbott et al. 15, Varma and Ajith 123

their effects might be appreciable for binaries with large mass ratios

and high spins. Waveform templates describing the spin precession

through an effective spin parameter, notably the IMRPhenomPv2

template 48, are already available and have been used in parameter 48 Hannam et al. 75, Khan et al. 88, Bohé
et al. 44

estimation. IMRPhenomPv2 has been employed in the application

of this test to GW150914 in 49, to GW170104 in 50, and in some of 49 Abbott et al. 14
50 Abbott et al. 16

the robustness tests in Sec. 3.4. More recently, waveform templates

describing the full double-spin precession effects have also become

available 51. These templates can be employed in parameter estima- 51 Pan et al. 99, Babak et al. 35

tion when precession effects are expected to be apparent. Fitting for-

mulae for the remnant mass and spin valid for the case of precessing

initial spins are already available; some of them have been used in

this chapter itself. Waveform templates for binaries of spinning black

holes that include the effect of nonquadrupole modes have started to

become available 52, and they may help to avoid possible systematic 52 Lionel London, Sebastian Khan, Ed-
ward Fauchon-Jones, Xisco JimÃl’nez
Forteza, Mark Hannam, Sascha
Husa, Chinmay Kalaghatgi, Frank
Ohme, and Francesco Pannarale.
First higher-multipole model of spin-
ning binary-black-hole gravitational
waveforms. 2017

errors due to neglecting nonquadrupole modes.

The robustness studies performed in this chapter are restricted to

the case of single events with modest SNR. When a large number

(⇠ 100) of events are combined to produce precise constraints on

deviations from GR, even small systematic errors could become sig-

nificant. Apart from the aspects discussed above, possible sources of

errors include the finite accuracy of the GR waveform templates and

the calibration of the gravitational wave detectors. We already have

preliminary indications that combined posteriors from a large num-

ber of events could be dominated by such errors. Therefore, a careful

characterisation of various systematic errors is required before we ac-

cumulate a large number of detections to analyse. We leave this as

future work.
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3.5.1 Implementation of the consistency test in the time-domain

The current generation of detectors is expected to be followed by a

third generation of ground-based interferometric detectors, the Ein-

stein Telescope 53 and Cosmic Explorer 54 (with ⇠ 10 times the sensi- 53 Punturo et al. 105
54 Dwyer et al. 66

tivity), as well as space-based detectors like the Laser Interferometer

Space Antenna (LISA) (which is expected to observe super-massive

binary black hole mergers in the frequency range 10�4
� 10�1Hz).

With these detectors one expects to observe binary black hole merg-

ers with very high SNRs. Such an observation would allow us to

isolate the ringdown and estimate the mass and spin of the final

compact object directly from the QNM spectrum 55. This would al- 55 Swetha Bhagwat, Maria Okounkova,
Stefan W Ballmer, Duncan A Brown,
Matthew Giesler, Mark A Scheel, and
Saul A Teukolsky. On choosing the
start time of binary black hole ring-
downs. Physical Review D, 97(10):
104065, 2018; and Gregorio Carullo,
Laura van der Schaaf, Lionel London,
Peter TH Pang, Ka Wa Tsang, Otto A
Hannuksela, Jeroen Meidam, Michalis
Agathos, Anuradha Samajdar, Archis-
man Ghosh, et al. On the empirical ver-
ification of the black hole no-hair con-
jecture from gravitational-wave obser-
vations. arXiv preprint arXiv:1805.04760,
2018

low as to do the consistency test as originally proposed in Hughes

and Menou 56 in the context of the space-based LISA observatory, by

56 Scott A. Hughes and Kristen Menou.
Golden binaries for LISA: Robust
probes of strong-field gravity. As-
trophys. J., 623:689, 2005. doi:
10.1086/428826

isolating the early inspiral and late ringdown. In that case, consid-

ering a cutoff frequency in the ringdown signal increases the possi-

bility of a fraction of power in the ringdown signal to get deposited

to low frequencies. Hence, if one wants to perform the consistency

test using only the inspiral and ringdown parts of the observed sig-

nal, the preferred method would be to split the signal and waveform

in the time-domain, and estimate the parameters from each part in-

dependently. One can use a time t = tcut to separate h(t) into two

mutually-exclusive portions, like the inspiral and merger-ringdown

portions, or can use two different times t = tinsp, end and tring, start

to designate the times at which inspiral ends and ringdown starts

respectively, while ignoring the merger phase completely. Since the

data is, to a good approximation, coloured Gaussian, we could use

the likelihood defined earlier in Eq.2.11, by taking a Fourier trans-

form of the data truncated in the time-domain and applying appro-

priate window functions to take care of edge effects 57. Alternatively, 57 Miriam Cabero, Collin D Capano,
Ofek Fischer-Birnholtz, Badri Krish-
nan, Alex B Nielsen, and Alex H
Nitz. Observational tests of the black
hole area increase law. arXiv preprint
arXiv:1711.09073, 2017

one could whiten the data and template using the amplitude spectral

density
p

Sn( f ) of the noise, and write the likelihood function in the

time-domain as:

pn̂[d̂(t) � ĥ(t)] µ exp


�
1

Sn̂

Z thigh

tlow
(d̂(t) � ĥ(t))2dt

�
(3.9)

where {d̂(t), ĥ(t)} are the whitened data and template respectively,

{tlow, thigh} denote the interval during which the signal lasts and

Sn̂ is the frequency-independent PSD associated with the whitened
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noise n̂(t). A complete derivation of the process of whitening and

the above form of the likelihood function is given in Appendix A.3.

As mentioned above, if a signal is observed with a high enough

SNR, it might be possible to use two different times t = tinsp, end and

tring, start. In that case, one can isolate the ringdown and estimate

the mass and spin of the remnant by fitting a QNM spectrum to the

ringdown signal given by:

hring(t) = Â
n

Ane((t�tring)/tn)cos(2p fn,QNM(t � tring) � fn) (3.10)

where n runs over all the modes of the QNM spectrum and tring is

the same as tring, start mentioned above, denoting the start of the ring-

down. If we restrict ourselves to just the leading order contribution

to the QNM spectrum, then Eq. 3.10 becomes:

hring(t) = A0e((t�tring)/t0)cos(2p f0,QNM(t � tring) � f0) (3.11)

where A0, t0, f0,QNM and f0 are the amplitude, damping time, damp-

ing frequency and the phase of the dominant QNM mode. Since the

energy and angular momentum emitted into gravitational waves is

maximum during the merger phase, such an observation would al-

low us to do a consistency test by ignoring the merger altogether, and

thus placing the tightest constraints possible on the energy and an-

gular momentum loss during merger just from the early inspiral and

late ringdown phases. This would then allow us to make statements

on the Hawking’s area theorem 58, size of extra-dimensions 59, and 58 Miriam Cabero, Collin D Capano,
Ofek Fischer-Birnholtz, Badri Krish-
nan, Alex B Nielsen, and Alex H
Nitz. Observational tests of the black
hole area increase law. arXiv preprint
arXiv:1711.09073, 2017
59 Kent Yagi, Norihiro Tanahashi, and
Takahiro Tanaka. Probing the size of ex-
tra dimensions with gravitational wave
astronomy. Physical Review D, 83(8):
084036, 2011

several other theoretical predictions.

Summary

In this chapter we have provided a detailed description of a test of

GR based on the consistency between the inspiral, merger and ring-

down parts of observed gravitational wave signals from coalescing

binary black holes. We demonstrate how the likelihoods from mul-

tiple binary black hole events can be combined to produce tighter
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constraints on parameters describing a deviation from GR. In order

to illustrate how this test might be able to detect certain types of

deviations from GR, we generate internally consistent kludge wave-

forms which disagree with the GR prediction of the radiated energy

and angular momentum, by increasing the flux radiated into gravi-

tational waves. We then simulate a population of binaries modelled

by these modified GR waveforms. By combining the results from

multiple events, we demonstrate how this test might be able to de-

tect small deviations from GR. For the case of single events with

parameters similar to LIGO’s first binary black hole observation, we

also demonstrate the robustness of the consistency test against spe-

cific choices of various analysis parameters, such as the choice of

the transition frequency used to demarcate the inspiral and merger–

ringdown parts, the specific waveform approximant, fitting formulae

for the mass and spin of the remnant black hole, etc. We finally end

with a look at future work in this direction along with a possible im-

plementation of the test in the time-domain keeping in mind future

gravitational wave detectors which will come up in the upcoming

years to decades.





4 | Gravitational Wave Observations by

the Advanced Detectors and the Inspiral

Merger Ringdown Consistency Test

The twin detectors of the Advanced LIGO network in Hanford,

Washington and Livingston, Louisiana have concluded two observ-

ing runs, the first from September 2015-January 2016, and the second

from December 2016-August 2017. During the first observing run,

the Advanced LIGO detectors observed gravitational waves from two

binary black hole mergers, GW150914 and GW151226, and a can-

didate event called LVT151012. During the second observing run,

two more binary black hole events were detected, GW170104 and

GW170608, before advanced Virgo joined the network of detectors in

August, 2017. GW170814, a binary black hole merger and GW170817,

a binary neutron star merger, were both detected by a three-detector

network including Advanced Virgo. We summarise the basic prop-

erties of all the gravitational wave detections till date in Table 4.1.

GW event Primary
mass (M�)

Secondary
mass (M�)

Remnant
mass (M�)

Remnant
spin

Luminosity
distance
(Mpc)

SNR

GW150914 36+5
�4 29+4

�4 62+4
�4 0.67+0.05

�0.07 410+160
�180 23

LVT151026 23+18
�6 13+4

�5 35+14
�5 0.66+0.09

�0.10 1000+500
�500 10

GW151226 14+8
�4 7.5+2

�2 21+6
�2 0.74+0.06

�0.06 440+180
�190 13.0

GW170104 31+8
�6 19+5

�6 49+6
�5 0.64+0.09

�0.20 880+450
�390 13

GW170608 12+4
�2 7+2

�2 18+5
�1 0.69+0.04

�0.05 340+140
�140 13

GW170814 31+6
�3 25+3

�4 53+3
�3 0.70+0.07

�0.05 540+130
�210 18

GW170817 1.36 � 1.60 1.17 � 1.36 < 2.74+0.04
�0.01 40+8

�14 32

Table 4.1: All published gravitational
wave observations by the Advanced
LIGO-Virgo detector network, along
with a list of their relevant parameters.
We do not have information about the
spin of the remnant object of the binary
neutron star merger, GW170817.



82 abhirup ghosh

The signal-to-noise ratio (SNR) with which a gravitational wave

is observed, is an important factor in reliable parameter estimation.

The IMR consistency test involves estimating the final mass and spin

of the remnant black hole using two different parts of the waveform

through Bayesian inference. Hence for the purpose of the test, it is

additionally important how the total SNR is split between the indi-

vidual parts. We use the gravitational wave frequency of the inner-

most stable circular orbit (ISCO) of the remnant Kerr black hole 1, 1 James M. Bardeen, William H. Press,
and Saul A Teukolsky. Rotating black
holes: Locally nonrotating frames, en-
ergy extraction, and scalar synchrotron
radiation. Astrophys. J., 178:347, 1972.
doi: 10.1086/151796

fISCO, as the frequency to divide the signal into a low-frequency part

and a high-frequency part, and consequently this is what determines

how the SNR gets split. As we have seen in Sec.3.1, the mass Mf and

dimensionless spin magnitude a f of the final (remnant) black hole

are functions of the initial masses and spins,

Mf = Mf (m1, m2, a1, a2) , a f = a f (m1, m2, a1, a2), (4.1)

With the knowledge of the mass and spin of the final Kerr black hole,

one can then compute the frequency at the Kerr ISCO radius as:

fISCO =
1
p

r�3/2
ISCO (1 � a f r�3/2

ISCO + a2
f r�3

ISCO) (4.2)

where rISCO is the radius at ISCO, given by:

rISCO = Mf

✓
3 + Z2 ±

q
(3 � Z1)(3 + Z1 + 2Z2)

◆
(4.3)

Z1 = 1 + (1 � a2
f )

1/3
h
(1 + a f )

1/3 + (1 � a f )
1/3

i
(4.4)

Z2 =
q

3a2
f + Z2

1 (4.5)

We see that fISCO scales inversely as mass. This means that while

heavier systems will coalesce at lower frequencies, systems with low

mass will coalesce at higher frequencies. Hence, the IMR consistency

test targets systems that coalesce near the most sensitive part of the

sensitivity band of the detectors, such that there is appreciable SNR

in both segments of the waveform to do parameter estimation. In

that regard, we find GW151226, GW170608 and GW170817 to be ex-

tremely low mass systems, which coalesce near the higher frequency

band of the detectors. At that point the SNR left in the merger-

ringdown portion of the waveform is too low for reliable parameter

estimation. 2 Hence, we have performed the IMR consistency test on 2 Of course in the case of the binary
neutron star merger GW170817, there
are various theories about the post-
merger remnant object, a summary of
which can be found here [26].

GW150914 and GW170104 (from which we have published results),
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and work is currently ongoing for GW170814 (at the time of writing

this thesis). We haven’t performed the test on the LVT151012. For

the remainder of the chapter we will discuss the analysis done on

the events, GW150914, GW170104 and GW170814.

4.1 GW150914

On September 14, 2015, at around 3:20 PM Indian Standard Time, the

twin detectors of the Advanced LIGO recorded a candidate event.

The signal arrived at the Livingston detector first, and 7 milliseconds

later, was observed at the Hanford detector. The signal was first

picked up by a low-latency generic unmodelled search pipeline that

looks for gravitational wave transients in the form of excess power

over the background 3, and was reported within three minutes of 3 BP Abbott, R Abbott, TD Abbott,
MR Abernathy, F Acernese, K Ackley,
C Adams, T Adams, P Addesso, RX Ad-
hikari, et al. Observing gravitational-
wave transient gw150914 with minimal
assumptions. Physical Review D, 93(12):
122004, 2016

data acquisition. The signals in both detectors showed similar pat-

tern in which the power rose over the background as a function of

time in the manner similar to a characteristic chirp of a gravitational

wave signal from a compact binary coalescence. The initial burst

search was followed by a more targeted search where data was cross-

correlated with a family of theoretically predicted binary black hole

template waveforms. There were two independent matched-filtering

search pipelines 4, and both confirmed GW150914 to be a confident 4 BP Abbott, R Abbott, TD Abbott,
MR Abernathy, F Acernese, K Ackley,
C Adams, T Adams, P Addesso, RX Ad-
hikari, et al. Gw150914: First results
from the search for binary black hole
coalescence with advanced ligo. Phys-
ical Review D, 93(12):122003, 2016

detection, rising above the noise background at more than 5s confi-

dence level, with a combined SNR of 23. At the same time, exten-

sive investigations were done to rule out any environmental or non-

astrophysical origin of the signal. Analyses of detector noise around

the event suggested that the chances of a random noise fluctuation

mimicking GW150814 was less than 1 in about 200,000 years.

The source properties of GW150914 were estimated using a coher-

ent Bayesian analysis, using GR based waveform models. There were

two waveform models used: a phenomenological model with an

effective parameter describing precession (IMRPhenomPv2) and an

effective-one-body waveform with the spins on the individual black

holes parallel to the orbital angular momentum (SEOBNRv2). Pa-

rameter estimation established that GW150914 was consistent with

the coalescence of a binary black hole system in GR with initial

masses 35.4+5.0
�3.4M� and 29.8+3.3

�4.3M�, resulting in the formation of

a remnant black hole with mass 62.2+3.7
�3.4M� (Fig.4.1). Thus around
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Figure 4.1: Top: Estimated
gravitational-wave strain am-
plitude from GW150914. The inset
images show numerical relativity
models of the black hole hori-
zons as the black holes coalesce.
Bottom: The Keplerian effective
black hole separation in units of
Schwarzschild radii, Rs and the
effective relative velocity given
by the post-Newtonian parameter
v/c. The figure and caption
courtesy: GW150914 detection
paper [13].

3M� was converted into gravitational waves, which led to a peak

luminosity of 3.6+0.5
�0.4 ⇥ 1056 erg/s which was more than ten times

greater than the total luminosity of all the stars in the observable

Universe put together. Although the measurements of the spins of

the initial black holes were consistent with them being non-spinning,

the final black hole was definitely spinning, with the dimensionless

spin parameter a f = 0.67. The distance to the binary was estimated

at 410+160
�180 Mpc, or around 1.3 billion light years away.

We performed the inspiral-merger-ringdown consistency test on

GW150914 to show that the entire GW150914 waveform does not de-

viate from the predictions of a binary black-hole coalescence in GR.

For the purpose of this test, we chose f end insp
GW = 132 Hz as the fre-

quency at which the late inspiral phase ends. In Fig. 4.2 we plot the

EOBNR maximum a posteriori probability (MAP) waveform 5 and 5 Abbott et al. 7

its 90% credible intervals, as well as the corresponding instantaneous

frequency; the vertical line marks f end insp.

To perform the test, we first truncated the frequency-domain rep-

resentation of the waveforms to lie between 20 Hz to f end insp
GW , and
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Figure 4.2: MAP estimate and 90%
credible regions for (upperpanel) the
waveform and (lower panel) the grav-
itational wave frequency of GW150914
as estimated by the LALINFERENCE
analysis [7]. The solid lines in each
panel indicate the most-probable wave-
form from GW150914 [7] and its gravi-
tational wave frequency. We mark with
a vertical line the instantaneous fre-
quency f end insp

GW = 132 Hz, which is used
in the IMR consistency test to delineate
the boundary between the frequency-
domain inspiral and postinspiral parts.
The figure and caption is from the
GW150914 testing GR paper [14]

we estimated the posterior distributions of the binary’s component

masses and spins using this “inspiral” (low-frequency) part of the

observed signal, using the nested-sampling algorithm in the LAL-

Inference software library 6. We then used the same fitting formu- 6 J. Veitch et al. Parameter estima-
tion for compact binaries with ground-
based gravitational-wave observations
using the LALInference software li-
brary. Phys. Rev. D, 91(4):042003,
February 2015. doi: 10.1103/Phys-
RevD.91.042003

lae as described in Chapter 3 to compute posterior distributions of

the remnant’s mass and spin. Next, we estimated the final mass and

spin from the complementary “post-inspiral” (high-frequency) sig-

nal, by restricting the waveform between f end insp
GW and 1024 Hz, the

Nyquist frequency for a sampling rate of 2048 Hz used for the anal-

ysis. Again, we derived the posterior distributions of the component

masses and spins, and (by way of NR-derived formulae) of the mass

and spin of the final compact object. We note that the MAP wave-

form has an expected SNRdet ⇠ 19.5 if we truncate its frequency-

domain representation to have support between 20 and 132 Hz, and

⇠ 16 if we truncate it to have support between 132 and 1,024 Hz.

Finally, we compare these two estimates of the final mass Mf and

dimensionless spin a f , and compare them also against the estimate

performed using full IMR waveforms. In all cases, we average the

posteriors obtained with the EOBNR and IMRPhenom waveform

models, following the procedure outlined in Ref. 7.

7 Benjamin P Abbott, R Abbott, TD Ab-
bott, MR Abernathy, F Acernese, K Ack-
ley, C Adams, T Adams, P Addesso,
RX Adhikari, et al. Properties of the
binary black hole merger gw150914.
Physical review letters, 116(24):241102,
2016

This test is similar in spirit to the c2 gravitational wave search

statistic 8, which divides the model waveform into frequency bands

8 Bruce Allen. A chi**2 time-frequency
discriminator for gravitational wave de-
tection. Phys. Rev. D, 71:062001, 2005.
doi: 10.1103/PhysRevD.71.062001; and
BP Abbott, Richard Abbott, TD Ab-
bott, MR Abernathy, Fausto Acernese,
Kendall Ackley, Carl Adams, Thomas
Adams, Paolo Addesso, RX Adhikari,
et al. Gw150914: Implications for
the stochastic gravitational-wave back-
ground from binary black holes. Physi-
cal review letters, 116(13):131102, 2016

and checks that the SNR accumulates as expected across those bands.

Large matched-filter SNR values which are accompanied by large c2

statistic are very likely due either to noise glitches, or to a mismatch
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between the signal and the model matched-filter waveform. Con-

versely, reduced-c2 values near unity indicate that the data are con-

sistent with waveform plus the expected detector noise. Thus, large

c2 values are a warning that some parts of the waveform are fit much

worse than others, and thus the candidates may be due to instrument

glitches that are very loud, but do not resemble binary-inspiral sig-

nals. However, c2 tests are performed by comparing the data with

a single theoretical waveform, while in this case we allow the inspi-

ral and post-inspiral partial waveforms to select different physical

parameters. Thus, this test should be sensitive to subtler deviations

from the predictions of GR.
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Figure 4.3: Top panel: 90% credible re-
gions in the joint posterior distribu-
tions for the mass Mf and dimension-
less spin a f of the final compact object
as determined from the inspiral (dark
violet, dashed) and post-inspiral (vi-
olet, dot-dashed) signals, and from a
full inspiral–merger–ringdown analysis
(black). Bottom panel: Posterior distri-
butions for the parameters DMf /Mf
and Da f /a f that describe the fractional
difference in the estimates of the final
mass and spin from inspiral and post-
inspiral signals. The contour shows
the 90% confidence region. The plus
symbol indicates the expected GR value
(0, 0). The figure and caption is from
the GW150914 testing GR paper [14]
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In Fig. 4.3 we summarise our findings. The top panel shows the

posterior distributions of Mf and a f estimated from the inspiral and

post-inspiral signals, and from the entire IMR waveform. The plot

confirms the expected behaviour: the inspiral and post-inspiral 90%

confidence regions (defined by the isoprobability contours that en-

close 90% of the posterior) have a significant region of overlap. As

a sanity check (which strictly speaking is not part of the test of GR

that is being performed) we also produced the 90% confidence region

computed with the full IMR waveform; it lies comfortably within

this overlap. We verified that these conclusions are not affected by

the specific formula 9 used to predict Mf and a f , nor by the choice 9 Healy et al. 77, Pan et al. 98, Husa et al.
84

of f end insp
GW within ±50 Hz. To assess the significance of our findings

more quantitatively, we define parameters DMf /Mf and Da f /a f that

describe the fractional difference between the two estimates of the fi-

nal mass and spin, and calculate their joint posterior distribution,

using for (Mf , a f ) the posterior distribution obtained from the full

IMR waveform. The result is shown in the bottom panel of Fig. 4.3;

the solid line marks the isoprobability contour that contains 90% of

the posterior. The plus symbol indicates the null (0, 0) result ex-

pected in GR, which lies on the isoprobability contour that encloses

28% of the posterior.

We checked that if we perform this analysis on NR signals added

to Advanced LIGO instrumental noise, the null (0, 0) result expected

in GR lies within the iso-probability contour that encloses 68% of the

posterior roughly 68% of the time, as expected from random noise

fluctuations. By contrast, our test can rule out the null hypothe-

sis (with high statistical significance) when analysing a simulated

signal that reflects a significant GR violation in the frequency de-

pendence of the energy and angular momentum loss 10, even when 10 Abhirup Ghosh, Archisman Ghosh,
Nathan K Johnson-McDaniel, Chan-
dra Kant Mishra, Parameswaran Ajith,
Walter Del Pozzo, David A Nichols,
Yanbei Chen, Alex B Nielsen, Christo-
pher PL Berry, et al. Testing general
relativity using golden black-hole bina-
ries. Physical Review D, 94(2):021101,
2016

we choose violations which would be too small to be noticeable in

double-pulsar observations 11; for an explicit example we refer to

11 Norbert Wex. Testing relativistic grav-
ity with radio pulsars. arXiv preprint
arXiv:1402.5594, 2014

Fig.3.1. This includes signals with c2 value close to unity, so that

they would not have been missed by the modelled-signal searches.

Thus, our inspiral–merger–ringdown test shows no evidence of dis-

crepancies with the predictions of GR.

The IMR consistency test was among a handful of tests that was

used to establish the consistency of GW150914, with a binary black

hole coalescence predicted by GR, and was also one of the first tests
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of GR in the highly relativistic and strong-field dynamical regime of

gravity.

4.2 GW170104

On January 4, 2017 at 10:11:58.6 UTC (⇠3:42 PM IST), the two Ad-

vanced LIGO detectors observed another gravitational wave signal

produced by a high-mass binary black hole coalescence. The signal

arrived at Hanford ⇠ 3 ms before Livingston and was detected with

a combined SNR of 13. The detection was made on the first day after

the resumption of the second observing run (after a winter-break) for

the Advanced LIGO detectors, but at the time of GW170104, both the

detectors were in an observation-ready state, with sensitivities typi-

cal of the observing run to date. Subsequent data quality checks con-

firmed that there was no evidence of instrumental or environmental

disturbances contributing to GW170104. GW170104 was identified

first by low-latency searches, and then by two offline matched-filter

analyses, using 5.5 days of coincident data between 4-22 January

2017. It was a highly confident detection with false alarm rate of

< 1 in 70000 years.

Parameter estimation confirmed that GW170104 was produced

by the coalescence of two stellar-mass black holes of initial masses

31.2+8,4
�6.0M� and 19.4+5.3

�5.9M� respectively forming a remnant black

hole of mass 48.7+5.7
�4.6M� and spin 0.64. Like in the case of GW150914,

the initial spin measurements were poor, but the measurement of the

effective spin parameter ce f f seemed to disfavour a large total spin

positively aligned with the orbital angular momentum, but did not

exclude zero spins. No meaningful constraints were obtained on the

precession of the system through the measurement of the effective

spin precession parameter cp. However, GW170104 might have orig-

inated much farther away than any of the other LIGO detections at a

luminosity distance of 880+450
�390 Mpc.

Like GW150914, GW170104 allowed us to test GR in the strong-

field regime and constrain possible deviations from the expected be-

haviour of GR which only manifest in the most extreme conditions,

where spacetime is highly dynamical. We performed the IMR con-

sistency test to check whether the low-frequency, inspiral-dominated

portion of the waveform was consistent with the high–frequency,
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Figure 4.4: Posterior probability distri-
butions for the fractional differences in
the remnant black hole mass Mf /M̄ f
and spin a f /ā f calculated using the
low–frequency (inspiral) and high–
frequency (merger–ringdown) parts of
the waveform. The GR solution is at
(0,0); shown in the two-dimensional
plot as a black + marker. The con-
tours show the 90% credible region, the
lines in the one-dimensional histograms
mark the 90% credible interval. We
show the posteriors for GW170104 and
GW150914, as well as the combined
posterior using both. The figure and
caption is from the GW170104 detection
paper [16]

merger–ringdown portion. The two parts were divided at 143 Hz,

a frequency close to the median inferred (detector-frame) innermost-

stable-circular-orbit frequency of the remnant Kerr black hole. The

two frequency ranges were analysed separately, and the inferred pa-

rameters were compared. The test used the estimated final black hole

mass and spin (calculated from the component masses and spins us-

ing numerical-relativity fits. We know that if the waveform is com-

patible with the predictions of GR, we expect that the parameters

inferred from the two pieces will be consistent with each other, al-

though the difference will not, in general, be zero because of detector

noise. In Fig. 4.4, we show the posteriors on the fractional differ-

ence in the two estimates of the final mass and spin for GW170104

and GW150914, as well as the combined posterior. The posterior for

GW170104 is broader, consistent with this event being quieter, and

having a lower total mass, which makes it harder to measure the

post-inspiral parameters. The width of the 90% credible intervals for

the combined posteriors of DMf /M̄ f are smaller than those com-

puted from GW170104 (GW150914) by a factor of 1:6 (1:3), and the

intervals for Da f /ā f are improved by a factor of 1:4 (1:2).
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4.3 GW170814

GW170814 was the fourth confirmed binary black hole coalescence

detected by the Advanced LIGO detectors. However, it was also ob-

served by the advanced Virgo detector in Italy, making it the first

three-detector observation of gravitational waves. The signal arrived

first at the LIGO Livingston detector and then at Hanford and Virgo,

8ms and 14ms later, respectively, and was observed with a three-

detector combined SNR of 18. GW170814 was produced by the coa-

lescence of two stellar–mass black holes of initial masses 30.5+5.7
�3.0M�

and 25.3+2.8
�4.2M� producing a final black hole of mass 53.2+3.2

�2.5M�.

The binary was at a distance of 540+130
�210 Mpc and was observed with

a false alarm rate of less than 1 in 27000 years.

We have performed the IMR consistency test on the event with

a cutoff frequency of 161 Hz. At the time of writing this thesis,

investigations are still ongoing with results expected to be published

in an upcoming collaboration paper. The initial results reported in

the GW170814 detection paper, show that the mass and spin of the

final remnant black hole as estimated from the inspiral and merger-

ringdown portions respectively, are consistent with each other.

Summary and Conclusions

The IMR consistency test was among a handful of tests that was used

to establish the consistency of LIGO’s first gravitational wave obser-

vation, GW150914, with a binary black hole system predicted by GR.

Since the test is based on estimating the final mass and spin of the bi-

nary black hole system independently from the inspiral and merger-

ringdown portions of the waveform, it relies on the two independent

portions having sufficient SNR to conduct reliable parameter estima-

tion. The IMR consistency test has hence been demonstrated on the

two high-mass binary black hole events, GW150914 and GW170104,

where this is indeed the case. The low-mass events are dominated by

a long inspiral, and not enough (if any at all) SNR in the post-inspiral
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regime to do parameter estimation. We further demonstrated that we

can obtain tighter bounds on possible deviations from GR by com-

bining posteriors from different events. Investigations on the other

high-mass event GW170814 detected by the LIGO-Virgo network is

ongoing at the time of writing this thesis.

The IMR consistency test will continue to be demonstrated on

gravitational wave observations by the Advanced LIGO-Virgo detec-

tor network as well as future gravitational wave detectors. The cur-

rent generation of detectors are expected to be followed by a third

generation of ground-based interferometric detectors, the Einstein

Telescope and Cosmic Explorer (with ⇠ 10 times the sensitivity),

as well as space-based detectors like the Laser Interferometer Space

Antenna (LISA) (which is expected to observe super-massive binary

black hole mergers in the frequency range 10�4
� 10�1Hz). With

the detection of seven gravitational wave events by the Advanced

LIGO-Virgo detector network in their last two observing runs, we

have firmly begun an exciting era of gravitational wave astronomy

as well as multi-messenger astronomy. The upcoming years will be

a period of active research which will help us address long-standing

questions in theoretical physics, astrophysics and cosmology using

information from gravitational waves. It will also perhaps lead us

into the unknown, revealing new mysteries about our universe. The

future is truly exciting!
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A | Appendix

A.1 Calculation of the posterior of the parameters describing de-

viations from GR

Here we describe the calculation of the posterior P(e, s | d) of the pa-

rameters (e, s) describing the fractional difference between the two

independent estimates of the mass and spin of the remnant. We

first make a change of variables in the joint posterior PI(MI
f , aI

f | d)

PMR(MMR
f , aMR

f | d) from {MI
f , aI

f , MMR
f , aMR

f } to {e, s, M̄ f , ā f } and then

marginalize over M̄ f and ā f . Starting from the definitions given in

Eqs. (3.2) and (3.4), we find that

MI
f =

�
1 + e

2
�
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2
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ā f , (A.1)

so that the Jacobian of the transformation from {e, s, M̄ f , ā f } to {MI
f , aI

f ,

MMR
f , aMR

f } is M̄ f ā f . Thus, the final expression is
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A.2 Calculation of joint posterior obtained from multiple obser-

vations

We want to prove the statement:

P(e, s | {dj}) = P(e, s)
N

’
j=1

Pj(e, s | dj)

Pj(e, s)
(A.3)

=
1

PN�1(e, s)

N

’
j=1

Pj(e, s | dj) (A.4)
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given that the overall prior P(e, s) is identical to the prior distribu-

tion Pj(e, s) used to compute the posterior Pj(e, s | dj), which in this

case is uniform in (e, s) within identical prior ranges of (�2, 2).

We will try to prove a simpler case:

P(e|d1, d2) =
1

P(e)
P(e|d1)P(e|d2) (A.5)

consisting of two data sets, {d1, d2} and a single parameter e.

Bayes’ Theorem:

P(e|d) =
P(e)P(d|e)

P(d)
(A.6)

Hence,

P(e|d1, d2) =
P(e)P(d1, d2|e)

P(d1, d2)
(A.7)

=
P(e)P(d1|e)P(d1|e)

P(d1)P(d2)
(A.8)

=
P(e)P(d1|e)

P(d1)
P(e)P(d1|e)

P(d2)
1

P(e)
(A.9)

=
1

P(e)
P(e|d1)P(e|d2) (A.10)

The right-hand-side of Eq.A.10 follows from the left-hand-side

only if Eq.A.8 follows from Eq.A.7, ie, the following two statements

are true:

P(d1, d2|e) = P(d1|e)P(d1|e) (A.11)

P(d1, d2) = P(d1)P(d2) (A.12)

So proving Eq.A.5 is equivalent to proving Eq.A.11-A.12.

Proving Eq.A.12: P(d1, d2) = P(d1)P(d2)

P(d1, d2) = P(d1)P(d2|d1) (A.13)

= P(d1)P(d2) (A.14)

The second statement is true if P(d2|d1) = P(d2), which is true if d1

and d2 are statistically independent events. Since {d1, d2} are data

sets corresponding to two gravitational wave observations, the above

statement will correspond to the fact that the two gravitational wave
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observations were independent, i.e., the observation of the first gravi-

tational wave event, in no way, affected the observation of the second

gravitational wave event. If we assume this, then Eq.A.12 is proved

correct.

Proving Eq.A.11: P(d1, d2|e) = P(d1|e)P(d1|e)

The starting point of proving Eq.A.11 is to prove the identity:

P(d1, d2|e) = P(d1|d2, e)P(d2|e) (A.15)

We know:

P(a, b, c) = P(a, b|c)P(c) (A.16)

as well as,

P(a, b, c) = P(a|b, c)P(b, c) (A.17)

= P(a|b, c)P(b|c)P(c) (A.18)

Dividing throughout by P(c) and then substituting back in Eq.A.16,

we get:

P(a, b|c) = P(a|b, c)P(b|c) (A.19)

which is identical to Eq.A.15. P(d1|d2, e) defines the probability that

the gravitational wave signal embedded in the data set d1, is de-

scribed by the gravitational wave template defined by deviation pa-

rameter e and another data set d2. However, if we make the assump-

tion that the two gravitational wave observations were observed at

different times and did not overlap at all, then the gravitational wave

signal embedded in the data set d1, is only dependent on the devi-

ation described through e, and not on a data set corresponding to

a different time. So, if we assume that the two gravitational wave

signals are embedded in two non-overlapping and statistically inde-

pendent stretches of interferometric data, then:

P(d1|d2, e) = P(d1|e) (A.20)

and hence we prove Eq.A.11.
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A.3 Definition of the Likelihood Function

The noise in a gravitational wave detector can be assumed to be a

stationary ergodic Gaussian random process represented by the time

series n(t)1. We further assume that it has zero mean (hni = 0, where 1 The discussion in this section is heav-
ily influenced by the treatment pre-
sented in [54]angular brackets represent ensemble average or expectation value)

and a PSD, Sn( f ), which is defined as twice the Fourier transform of

the autocorrelation function Rn(t) := hn(t)n(t + t)i, as:

Sn( f ) = 2
Z •

�•
Rn(t)e�2pi f tdt (A.21)

The PSD can also be expressed in terms of the expectation value of

the Fourier transform of the time series n(t) as:

hñ⇤( f )ñ( f 0)i =
1
2

Sn( f )d( f � f 0) (A.22)

where ñ( f ) is the Fourier transform of n(t) and d( f ) is the Dirac

delta function. The coloured noise n(t) can be expressed in terms of a

random process describing white noise, n̂(t) as:

n(t) =
Z •

�•
K(t � t0)n̂(t0)dt0 (A.23)

where K(t � t0) is a kernel which determines the spectrum of n(t).

Using the convolution theorem, one can show that, in the Fourier

domain, the above equation becomes:

ñ( f ) = K̃( f ) ˜̂n( f ) (A.24)

It can also be shown that:

Sn( f ) = |K̃( f )|2Sn̂ (A.25)

where Sn̂ is the frequency-independent PSD of the random process

n̂(t) (a more detailed derivation of the frequency-independent nature

of Sn̂ is given below). Thus, given coloured nose n(t), one can obtain

white noise n̂(t), by taking the Fourier transform of:

˜̂n( f ) =
ñ( f )
K̃( f )

=
ñ( f )

p
Sn̂p

Sn( f )
(A.26)

where the second equality is obtained by substituting the expression

for K̃( f ) from Eq.A.25. This process is called whitening. For the
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rest of the discussion, we work with the whitened random process,

n̂(t). Considering an observation time T, n̂(t) can be assumed to be

windowed signal within duration T, 0  t < T, and zero outside.

If the signal is sampled at intervals of Dt, then the time series has

N samples, n̂j = n̂(jDt), j = 0, ..., (N � 1), such that NDt = T, and

1/Dt is the sampling rate. Since n̂(t) is Gaussian with a standard

deviation say, s and zero mean (follows from the fact that n(t) had

zero mean), then the underlying distribution can be written as:

pn̂({n̂j}) =

✓
1

p
2ps

◆N
exp


�

1
2s2

N�1

Â
j=0

n̂2
j

�
(A.27)

In the continuum limit, where Dt ! 0, for a fixed T:

lim
Dt!0

N�1

Â
j=0

n̂2
j Dt =

Z T

0
n̂2(t)dt (A.28)

Since the samples n̂j are independent, the autocorrelation function

Rn̂(t) := hn̂(t)n̂(t + t)i = s2d(t), and the PSD is:

Sn̂( f ) = 2
Z •

�•
Rn̂(t)e�2pi f tdt = lim

Dt!0
2s2Dt (A.29)

where Sn̂( f ) is frequency independent and can simply be written as

Sn̂, a quantity that we have mentioned earlier. Thus, in Eq.A.27, one

can simplify the exponential term as:

lim
Dt!0

exp


�
1

2s2

N�1

Â
j=0

n̂2
j

�
= lim

Dt!0
exp


�

1
2s2Dt

N�1

Â
j=0

n̂2
j Dt

�
(A.30)

So, finally the likelihood for the white noise n̂(t) becomes:

pn̂[n̂(t)] µ exp


�
1

Sn̂

Z T

0
n̂(t)2dt

�
(A.31)

A gravitational wave detector records strain data as a time series

d(t), which consists of noise n(t) and a gravitational wave signal h(t),

i.e., d(t) = h(t) + n(t). Thus one can rewrite the above likelihood in

terms of the data and signal as:

pn̂[d̂(t) � ĥ(t)] µ exp


�
1

Sn̂

Z T

0
(d̂(t) � ĥ(t))2dt

�
(A.32)

where {d̂(t), ĥ(t)} are the whitened data and template respectively.

This equation can be generalised in terms of the duration {tlow, thigh}
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for which the signal lasts as:

pn̂[d̂(t) � ĥ(t)] µ exp


�
1

Sn̂

Z thigh

tlow
(d̂(t) � ĥ(t))2dt

�
(A.33)

Using this definition of the likelihood function, one proceeds to es-

timate the parameter set, x by stochastically sampling over the pa-

rameter space, using some appropriate sampler, like LALInference

or emcee.
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