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“What a useful thing a pocket-map is!” I remarked. “That’s
another thing we’ve learned from your Nation,” said Mein
Herr, “map-making. But we’ve carried it much further than
you. What do you consider the largest map that would be re-
ally useful?” “ About six inches to the mile.” “Only six inches!”
exclaimed Mein Herr. “We very soon got to six yards to the
mile. Then we tried a hundred yards to the mile. And then
came the grandest idea of all ! We actually made a map of the
country, on the scale of a mile to the mile!” “Have you used it
much?” I enquired. “It has never been spread out, yet,” said
Mein Herr: “the farmers objected: they said it would cover the
whole country, and shut out the sunlight ! So we now use the

country itself, as its own map, and I assure you it does nearly as OverView

well.”

—Lewis Carroll, Sylvie and Bruno Concluded

WE LoOK at the mechanics of slender elastic structures, and rigid spherical particles in fluid
flows in this thesis. In this chapter we introduce the motivation behind our endeavour by

briefly alluding to literature first and detailing the scheme of things that are happening in the
field later.

1.1 LARGE DEFORMATION OF ELASTIC FILAMENTS

Elastic structures with one dimension longer than other two similar dimensions are called
filaments. These filaments are all around us, starting from ciliary hairs [75] inside our ears to
canopy of trees [37] in farms. External forces and moments applied on the filaments intro-
duce deformations that change the filament’s shape. A major understanding of the mechan-
ics of filaments in the previous century came about assuming these deformations to be small.
Many text books [130, 53] on mechanics of elastic structures such as beams present the under-
standing in this limit of small deformation. In the small deformation limit, the forces due to
deformation are linear in the displacement field whereas large deformation makes the system
of equations non-linear (primarily arising out of geometry rather than large strains). Though

the linear theory has provided preliminary insights into the mechanics of filaments, it how-



ever does not capture a wide range of phenomena. It is this non-linearity that has posed a
difficulty in several scenarios as handling the non-linearity both numerically and analytically
has proven to be difficul.

Another aspect of large deformation is that geometrical constraints such as conservation
of length of filament play a very important role. In fact these geometrical constraints are
strongly related to the non-linearity itself. Large deformations can be physically introduced
in the filaments in two prototypical manners: (a) across entire filament length by exter-
nally/internally applied forces and moments, (b) large locally applied external forces and
moments. Recent studies [140, 55, 45, 28, 4] in the large-deformation regime have looked
at different instabilities in filaments however the specific role of non-linearity has not been
clearly addressed. Further, a typical way by which this large deformation is introduced in the
filament system is through natural curvature [97, 11] or externally applied body force. It is
not clear if these large deformations can be introduced in other manners.

Large deformation localised at a given location on the filament surface has been studied in
literature [111, 19] by using the capillary force of a liquid droplet interface. Since surface ten-
sion exists only at the droplet interface, placing the elastic structure such that this interface
comes in contact with the elastic structure ensures a localised force. In the important experi-
ments of Py etal. [111] (followed by several theoretical studies), a droplet of water is placed on
top of a sheet such that the surface tension force at the droplet-sheet contact line can deform
the sheet. As the droplet evaporates they saw that the capillary force applied at the contact
line deformed the sheet, eventually folding it. This folding mechanism they proposed can
be used to fold sheets by design using capillary forces, similar to the paper folding technique
of Origami. The sheet equations used by Py et al. [111] are the same as the equations for fil-
aments as they assume invariance in the transverse direction (perpendicular to the length of
the sheet) and thus the implications derived by them for sheets are useful for filaments as
well. In their experimental regime, though the deformations at the contact line are large, it
is however not clear what would happen to the deformations near the contact line when the
sheets/filaments were extremely thin. In the thin limit, we expect to have very large localised
deformation but the shape of this deformation is not really understood. The general ques-
tion of how large localised forces on these elastic structures affect global measurable features
is very much an open question.

In this thesis we look at three examples where large deformation plays an important role

in determining the morphology of filaments: () in the first set of experiments we address



the question of role of non-linearity in the dynamics of elastic filaments by performing ex-
periments and deriving implications from the non-linear model developed by Goldstein and
Langer [ss] for stiff polymers, (i) as a way to introduce large deformation across the length
of the filament, we bring in the aspect of geometry of the substrate over which filament lives.
By changing the shape of the substrate, we can introduce different kinds of body force as a
consequence to the normal reaction from the substrate. In our second set of experiments, we
introduce substrate geometry using soap bubbles which hold the elastic filament to it surface.
We then ask how does large deformation introduced now through the bubble modify the fil-
ament shape, (ii¢) our last set of experiments to understand the effects of very large localised
force at a given location on the filament surface uses capillary forces, similar to Py et al. [111],
but now in the limit of very thin filaments. We look at the shape the very thin filament takes
when large amplitude of capillary force is applied.

Though the focus of the experiments and the supplementing theory are to understand
the effects of non-linearity, we also look at other aspects in the experiment which are hitherto
unknown. In each of the experiments, we look at different morphologies of the filament
through the lens of confinement vs bendability (as detailed later in this chapter). We find the
phase space of filament shapes in these settings through theoretical calculations, even though

we are limited by experimental capabilities to explore all of them in experiments.

1.2 PARTICLES IN FLUIDS

Dynamics of particles in flow is studied by different communities with varied interests such
as to understand physics of emulsions [25], dynamics of microorganisms in flows [83], dy-
namics of dust in atmosphere [13] and so on. Study of particles in fluid flows date back to
the time of Stokes [78] in 19th century. The solution to the steady state problem where the
force on sedimenting particle is balanced by drag force was solved by Stokes. The time depen-
dent problem was found to be more difficult than the stationary problem and it was solved
by Basset [12], in his treatise on hydrodynamics in 1888. The solution was shown to involve a
history integral, now named after Basset himself, where the force on a particle depends on the
entire velocity along trajectory it has traveled till that time instant. These solutions however
do notaccount for the finite Reynolds number effects, which become important atlate times
at any value of Reynolds number. This problem of accounting for finite Reynolds number

effects was solved in the landmark work of Lovalenti and Brady [90, 91]. The work was ex-



haustive, however the solution obtained was complex and was not extended to many particle
systems. Complex systems such as particles in turbulence, which are relevant to understand
dynamics of rain formation [57, 46], aggregation of phytoplankton [61, 13] in ocean are lim-
ited by the extension of the single particle system to many particle dynamics. Thus there
exists a bottleneck to firstly resolve the issue of effects of history integral, if it is important
and if so in the kind of scenarios where they are relevant.

Another aspect of the history force, which was only recently understood is its singular na-
ture [47] at the initial time instant. The original solution of Basset resulted in an unphysical
integral traversing from —oo to t, along the entire trajectory of particle. Farazmand etal. [47]
showed that the Basset force has a singular contribution if it started at t = 0. The numeri-
cal methods that exist so far [135, 32] do not include the singular contribution, however they
evaluate the integral using a quadrature scheme. These schemes, though provided initial un-
derstanding of the dynamics of particles with history effects accounted in turbulence [102],
it has failed to create an impact in several scenarios due to the large memory requirements (to
store the trajectory of particles). Thus we observe that a numerical technique with low mem-
ory cost is an immediate need and also be an effective way to account for the finite Reynolds
number effects. In this thesis we address the issues related to storing the history force by
a novel technique that maps the non-local history term as a local term by the technique of
domain extension. We find exact solution for all time dependent space independent flow
velocities. Using this technique, we come up with a spectrally accurate numerical technique
that captures the history with only a constant memory cost, independent of time for generic

non-linear low fields.

1.3 BIRD’S EYE VIEW OF LITERATURE

Modern science can be seen as a continuation of natural philosophy, shed of all the sociolog-
ical shackles that it was bound by during its time. Understanding phenomena occurring in
nature is a theme not new but ancient [129], however the monocle with which we observe
and describe the natural phenomena has undergone several changes. These natural processes
that occur at observable length scales ~ O(um) — O(km) and time scales ~ O(sec) — O(hr)
are generally perceivable by human beings. It is usually portrayed by both the popular me-
dia/books and graduate level courses that this human perceivable regime is all understood.

However, this is far from the truth as phenomena such as loop formation in leaf vein [71],



locomotion of small aquatic wildlife [ 82, 81], aggregation of phytoplankton [61,13], morphol-
ogy of hair [16, 97], snapping of venus flytrap [s1], petal formation in plants [87], insect and
bird flight [117], wrinkling of skin [26], sulci/gyri generation in brain [62], villi creation in
the gut [125], climbing of creepers around a pole [123], drinking mechanism in birds and ani-
mals [2, 120, 116 ], swimming of large scale organisms such as sharks and whales [52], swarming
of birds and insects [99, 126, 132 ], formation of cloud and rainfall [134, 124, 57, 46] etc. are all
topics of recent/current research and a major initiation into their understanding has taken
place only in the last two decades. These questions which one would imagine to have prosaic
answers, have been shown to have complicated answers mathematically more often than not.
An important aspect of all these examples is the role of mechanics, where a specific function
or feature in these systems arises out of the interplay between forces.

The motivation behind these researches were often purely fundamental, but have heavily
been borrowed for useful work lately. Developments in polymer technology and 3D printers
have led to artificial designs in a laboratory to mimic naturally occurring phenomena. These
have provided a new methodology to deal with complicated questions for which nature al-
ready has an answer, optimal or otherwise. Various robotics technology such as swimmers
and amphibian robots of Pliant Energy Systems [48], FestoHQ, soft robots that mimic the
hand, fingers and leg [121], or Kirigami inspired snake bots [113] are an outcome of this scheme
of thinking. This theme of nature inspired robotics has launched the field of locomotion in
esoteric environments for which traditional solutions to migration do not work. Such a de-
sign principle is backed by the reasoning that nature has had time by its side to experiment
with trial and error to arrive at a solution.

All these human-made robots and evolution-modulated organisms employ instabilities to
execute a specific response. By instability we mean that the response executed involves a tran-
sition from one equilibrium state to another state by tuning a parameter. Some examples
from the aquatic world include various swimming mechanisms: motion by generating trav-
eling waves in jellyfish, flapping flagella in sperms, wagging fins and/or tail in sharks [58, 52].
These instabilities that result in locomotion are generated in these animals via an active pro-
cess that actuate the muscles or flagella. The active processes that determine the animal’s
ability to move usually have a feedback response where the amount of force or torque the
propelling mechanism generates is a function of its environment. Thus in order to under-
stand the mechanism of propulsion in these animals, it becomes mandatory to primarily

understand the instability and also map the feedback network that determines the animal’s



response. There still does not exist an example where humans have been able to reproduce
exactly the feedback network and the instability mechanics we observe in nature. A step in
this direction is the one taken by advance robotics labs such as Boston Dynamics.
Instabilities have also been proposed to harness useful work in manufacturing technolo-
gies by using the fact that the pattern formed as a consequence of the instability is precise [31,
100] and most often easily reproducible. Some examples from recent research include pat-
terning a substrate using wrinkles of specified wavelength [73, 64], fabricating thin elastic
shells [84], parceling tiny liquid droplets [107, 77], creating lenses using Rayleigh-Taylor in-

stability [93], and manufacturing long filaments made out of glass [21].

1.3.1 CLASSIFICATION OF SOLIDS AND LIQUIDS

Every phenomenon described so far involves either of the two class of materials: elastic solids
or viscous liquids. Elastic solids based on their geometric aspects can be classified either as
bulk solids, sheets, shells, ribbons or filaments [11, 79]. When [, w, t are the length, width
and thickness of an elastic structure, it can be boxed into one of the following categories

based on the criteria:

Bulk solids : I ~ w ~ ¢,
Sheets : | ~ w > t,
Ribbons : I > w > t,

Filaments : I > w ~ t.

Shells are sheets with intrinsic curvature, whose principal radius of curvature is comparable
to that of the largest dimension of the sheet. Each class of these elastic objects has distinct me-
chanics based on the forces they experience, making this codification worthwhile. Viscous
fluids on the other hand manifest themselves as shallow or deep based on the geometric set-
ting in which they are confined. Dynamics in viscous fluids are also classified based on the
viscosity of the fluid, where at very high values of viscosity they reduce to the time-reversible
Stokes regime and at moderate/low viscosity they are in the inertial regime.

Elastic solids are also fundamentally different from viscous fluids because fluids undergo
shear to arbitrary amplitudes when they are applied a constant strain, whereas elastic solids

resist strain. At a constant applied stress, fluids shear at a rate dependent on their viscosity
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Figure 1.1: (a) Schematic of a load hanging at the end of a beam, a problem considered by Galileo in 1638
in his publication Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze. (b) Problem of the shape
of a “spring' with a hanging weight considered by Bernoulli published in Curvatura Laminae Elasticae in 1694.
(c) Euler's solution in his work Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes in
1744, to the problem proposed by Bernoulli showing different shapes the filament takes, described by elliptic

functions.
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while elastic solids experience a strain that depends on its stiffness. This fundamental dif-
ference between an elastic solid and a fluid manifests itself in important manners. One of
the differences being that elastic systems are energy conserving, and are describable using the
Hamiltonian framework. Fluid systems on the other hand are intrinsically dissipative, and
are driven out of equilibrium in order to form patterns. An isotropic elastic solid, which is of
interest in this entire thesis, can be labelled by two constants: E - Young’s modulus, 1, - Pois-
son’s ratio. A viscous fluid on the other hand is described by its viscosity, p. Young’s modulus
of an elastic material is the constant of proportionality that relates the applied normal stress
and the resulting strain in the material; 1/, on the other hand is the amount of transversal ex-
pansion that a material of constant volume undergoes if it is compressed axially; ;2 of a fluid

is the coefhicient that relates applied stress and resulting shear in a fluid.

1.4 INEXTENSIBLE FILAMENTS - THE “ELASTICA” LIMIT

Slender elastic structures in whom one dimension is much larger than other two similar di-
mensions are called filaments. If the length of these filaments are preserved under deforma-
tion of the structure, they are termed “elastica”. Euler described the mathematical question
of shape of elastica under several prototypical configurations, as a solution to a problem pro-
posed by James Bernoulli in 1691, schematically shown in fig. r.1. Please refer to Levien et
al. [8s] for a detail review of the history of the problem. The elastica approximates well
the shape of filaments under moderate loading for the following reasons. The argument
presented here is a paraphrased version of the scaling discussed in the book of Audoly and
Pomeau [11].

Consider a typical force F' acting on a filament of length ! and thickness ¢, this generates a

stretching given by:
F

T Ee
where we have just used the relation that stress is proportional to strain with a constant E,
the Young’s modulus, 2 here is just the manner in which the area scales, and ¢ is nothing
but the stretching deformation. We can also use the fundamental law of bending that relates

bending moment to the force applied, given by:

Fl ~ EIx,
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where I ~ t* is the area moment for a filament of circular cross-section, & is the curvature

due to the applied force. From this we can write:

K F (1Y
1/l Et2\t) "

From the above two relations we get:
k()2
e~ — |-
AU

from which, given that? > ¢ for all filaments, we have ¢ < 1. This simply means that when
a filament experiences a force F, the axial strain it experiences is very small as a consequence
simply of the aspect ratio of the filament and its mechanics. Now that we see for moderate
amplitudes of forces, the filament remains inextensible to leading order. We now look at sev-
eral scenarios in which the inextensible model has been employed to understand a particular

phenomenon.

1.4.1 STATICS

Filaments have two modes of bending deformation and one mode of torsional deformation.
When the filament is confined to a planar surface, this reduces to only one bending mode.
Filaments can undergo instabilities in 2D by undergoing transformation only in this mode.
This simple 2D system has been explored in detail in several physical scenarios such as: Euler-
buckling where the filament/beam buckles when it experiences an external load [85]; under-
standing different morphologies of hair where gravity competes in changing an intrinsically
curved hair’s shape (due to the chemistry involved peptide bond forming process) [11]; snap-
ping of a buckled beam where the beam initially buckled goes unstable when a point-force
is applied at a given location in the beam [103]; wrinkle formation in a beam undergoing
compression when the filament is bound to a substrate such as a water bath [119].

The 3D problem on the other hand, due to the complexity involved in solving the force
and moment balance equations (Kirchhoff equations) is less explored analytically than the
2D counterpart. The numerical techniques required to solve these equations are also com-
plex due to the stiff geometric constraints the elastic system needs to satisfy. This led to spe-

cial techniques such as Discrete Elastic Rod model, a method initially created by animators to
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simulate filaments and later borrowed into physics. Other techniques such as analytical con-
tinuation, employing AUTOo7p [41] or MANLAB [7] have also been used to understand
bifurcation in these systems. Some of the problems such as: shape of elastic filament con-
strained to a surface i.e., the elastica problem in 3D when the filament is bound to a 2D sur-
face (we will discuss this in detail in chapter 4); Michell’s instability [56, 16] where a ring
buckles out of plane beyond a critical value of twisting; shapes of knots and Moebius strip as
described by the Kirchhoff equations [92 ]; shapes of DNA, from being straight to one where
it gets intertwined (called as plectonemes)[11, 28]; shape of a curly hair which is the equiva-
lent problem of a hair shape in 3D where gravity competes with bending and torsion [97];
packing of an elastic wire in a flexible shell where the filament takes different morphologies
as a function of filament to shell’s bending rigidity and friction between filament [139]; have
been studied using either of these numerical techniques.

Though the theory of elastica has been available since the 19th century, a major probing of
this theory has taken place only in the last decade and all recent developments have showed
us ways by which slender elastic structures undergo instabilities. These bifurcations that we
see in 2D and 3D systems have provided us with completely new ways by which elastic struc-
tures behave which was hitherto unknown. These instabilities are all parametric instabilities
where the equilibrium filament morphology undergoes a transition from one stable state to
another by tuning single parameter in the system. The physical relevance of the parameter
and the morphology will be described in detail in the later sections using the framework of

‘confinement vs bendability’.

1.4.2 DyNAMICS

Filament also undergoes temporal instabilities based on the initial configuration and also
the parameters involved. Problems such as: motion of stereo cilia in hair-cell inside the ear,
asymmetric breaking of a spaghetti [10] when released from a bent state; relaxing rubber
band from a stretched state [138]; elastic sewing machine problem [67] where a falling fila-
ment forms different patterns on a moving substrate based on the velocity of the substrate;
mechanics of lasso [22] where the shape the filament takes as the lasso is rotated by Mexican
vaqueros; an elastica curling from a flat state to a rolled up state via a self-similar process [24];
lift off and snapping of a falling chain on a pulley [20]; the mechanism behind wagging hair

of a runner [72]; dynamics of a ruck in a rug [137] which tries to understand the mechanism
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behind the shape of ruck; have been studied using both experiments and theory. In the time-
dependent problem, the competition is usually between that of inertial force arising out of
the filament’s density which is accelerated from a state far from equilibrium and the dynam-
ics happen such that the final state of the filament marches is a minimum energy state. It is
worth mentioning here that the inertial forces enable the possibility of elastic waves which
travel at the speed of sound in the medium of filament. Temporal instabilities are all around
us and understanding them provide important insights into ephemeral processes which we

fail to observe in daily life.

1.4.3 CONTACT WITH FLUIDS

Instabilities described so far of filaments have body forces applied by means of external mo-
ments or twist, or through gravity. Another mechanism by which body forces are usually
exerted on filaments is through fluids. When filaments interact with liquid in their bulk,
they get affected by the viscosity of the fluid. On the other hand when they are at the in-
terface between liquid and vapour, or between liquid and liquid, they experience capillary
force as a consequence of the energy of the interface. Filaments undergo several kinds of
instabilities due to both viscosity and capillarity. Some of the phenomena studied from lit-
erature include: propulsion of micro-organisms using flapping of flagella [83]; buckling and
folding of a floating filament at a liquid interface due to capillary action of the interface [45];
bending papillae of a tongue which help animals drink water [2, 120]; buckling of a filament
beyond a critical value of shear [140]; shape of filament when they are at the boundary of
minimal surfaces where a soap film is bounded by a thin filament [54]; capillary origami [111]
where a drop of liquid placed on a flat sheet assembles into a designed shape as a consequence
of capillary force; making an elastic filament rise beyond elastocapillary length scale [63] by
soaking the filament made out of Viny Polysiloxane in silicone oil, such that filament swells
and raises due to differential growth; instant wrapping of a droplet using flat sheet by drop-
ping liquid droplets on a flat sheet [ 77, 5]; bundling of hair/brush when dipped in a liquid as
a consequence of capillary force exerted by the liquid [17, 18]; buckling of a sedimenting fila-
ment [86] due to drag force along the length; spooling of along filament inside a droplet [43],
inspired by spider capture thread; buckling of a helical filament as it is rotated inside a highly
viscous fluid [68], used by microorganisms to change directions. These problems show the

multitude of instabilities filaments manifest though being a mere 1D entity.
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Some of the problems described above involve sheets but are however describable by fil-
ament equations or behave as filaments because the third dimension of the sheet does not
affect the mechanism of instability, as detailed later in chapter 3. Elastic filaments can expe-
rience inhomogeneous forces on its surface due to shear, thus they buckle differently and
studying the dynamics of filaments in such a context is easier numerically as the non-linear
equations become hard to handle analytically. Tornberg and Shelley [133] came up with a
numerical scheme to simulate several filaments in a fluid where the filament is approximated
as a simply connected series of Stokeslets with bending and torsional modulus. This model
is valid for very low Reynolds number flows i.e., flows where the viscosity of the fluid is high.
It is worth mentioning here that these systems are over-damped and filament in this low
Reynolds number regime do not exhibit waves. These systems also have the feature of break-
ing the Scallop theorem (due to time-reversal symmetry of the Stokes equation). Scallop
theorem states that if a rigid object executes a periodic motion, it would move forward in
one half of the period and return back to the same position where it started after the second
half of the period. However addition of elasticity to the system introduces a relaxation time
scale inversely proportional to the elastic material’s Young’s modulus. This aspect will be dis-
cussed in detail in chapter 2. This departure from Scallop theorem as a consequence of the
elasticity is a common mechanism in several microorganisms that makes propulsion possible

atlow Reynolds number.

1.5 CONFINEMENT VS BENDABILITY

In the previous section we discussed several patterns that filaments form as a consequence
of competition between an external body force and bending/twisting force. Though all the
instabilities are of interest for the specific purpose and the mechanism by which they occur,
there exists a framework one can use to look at them to gain a broad physical understand-
ing. This paradigm is that of confinement vs bendability [36, 73, 122]. Confinement simply
quantifies various stressed configurations that coerce a filament to deviate from the stress-free
state, of being straight. Large confinement implies large deviation from a straight configura-
tion and small confinement indicates shapes close to a straight line. Let us take the example
of Euler buckling to introduce confinement. In the scenario of Euler buckling, an external
force is applied at the end of the beam along the axis of the beam. Beyond a critical thresh-

old of applied force the beam buckles and as we keep increasing the magnitude of this force,
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Figure 1.2: Statics: Problems of snapping by applying force on a initially buckled beam [103], plectoneme
formation by twisting [11], Michell's instability where [97] the ring goes out of plane with increase in twist.
Dynamics (anti-clockwise): Self-similar curling of an naturally coiled elastica [24] released from a flat state,
lifting of a falling chain from a pulley [20], asymmetric breaking of a spaghetti [10]. Contact with fluids (anti-
clockwise): Instant wrapping of a droplet by dropping it on top of a flat sheet [5], buckling of a helical filament
as it is rotated inside a bath of highly viscous fluid [68], bundling instability of a collection of filaments as it is
wet by a fluid [17, 18], shape of soap film with a filament at its boundary [54].
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larger is the amplitude of buckling. In such a scenario, we can define confinement as the non-
dimensional number that quantifies this buckled state. An intuitive choice would be the ratio
of end displacement to the length of the beam, whose magnitude increases with increase in
buckling amplitude. Thus we can use this ratio to quantify confinement, because larger the
magnitude of this ratio, larger is the deviation from the stress-free state of being straight. The
bendability on the other hand is a non-dimensional number which captures the competition
between applied forces with elastic forces. It is nothing but the ratio of the bending force in
filament to the body force that is applied on it. Bendability is dependent only on the mate-
rial properties such as Young’s modulus, filament thickness, and filament length, which are
relevant to describe a filament, and also on other properties/constants such as gravitational
constant, surface tension, and density of material based on applied body force. Capillary
bendability, for example, is the ratio of length scale due to bending force and capillary force.
When the surface tension is large or bending stiffness of the filament is small, capillary bend-
ability is large as bendability is proportional to surface tension and inversely proportional to
bending stiffness. This implies that the filament is susceptible to bending by the capillary
force. Thus bendability informs us whether the elastic structure is easily deformable by the
body force.

In order to illustrate the usefulness of this framework we consider an example from lit-
erature, which predates the notion of confinement vs bendability. By taking this example
we want to highlight the fact that this paradigm extends beyond the examples discussed in
this thesis, and we can place retrospectively several other morphological transitions in elas-
tic structures from literature in this framework. The shape of a hair in 3D, as mentioned
earlier from the work of Miller et al. [97], involves competition between bending force, tor-
sion and the intrinsic curvature of hair. Let us denote ;. as the constant natural curvature
of the hair which is the resultant of an underlying chemical process. We can define a non-
dimensional number ® = k;cl, where [ is length of the filament. This non-dimensional
number is nothing but a geometric quantity that signifies confinement where large ® implies
large deviation from a straight configuration, be it through large values of { or xi.. The other
non-dimensional number is the bendability, which here is due to weight of the filament/hair.
We call 71 = Br3, /mg as the bendability (which we will encounter several times in the the-
sis) with m being the mass per unit length of hair, B the bending stiffness of hair and g the
constant of gravity. Now we can define a phase space of ® vs e ! where all the shapes of the

hair can be represented. As we traverse this phase space we will encounter different instabil-
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ities such as ones shown in Miller et al. [97]. Figure 3 in this article is nothing but the phase
space we have defined here, however they do not realise the connection with the confinement
vs bendability paradigm, which as we already see provides an intuitive notion to the different
shapes one sees in their experiments. This framework was initially employed to understand
the mechanism of wrinkling in thin elastic sheets but then as we see extends to morphological
instabilities in elastic structures in general. We use this paradigm to understand the different
phases we observe in our experiments throughout the thesis. We will explore the details of
the different phases and the mechanism of transition between them in the ensuing chapters.

As we see, bendability is a quantity composed of material constants and dimensions of the
structures at play in the experiments. This provides a very important insight into theories
that depend on bendability. It is this fact that in the limit of vanishing material constants
(where bendability is either infinity or zero based on definition), the theory must become
purely geometric. The reason this must be the case is because elastic structures without these
material properties tend to become simple geometric objects i.e., filaments become lines in
3D, sheets and shells become 2D surfaces and so on. On the other hand when bendability
values are very small, we go back to the small deformation limit where the forces only deform
the elastic structure mildly (which has been the focus of study in the last century). Though
most of the mathematics of lines and surfaces have been understood in the 19th century, the
connection between these geometric objects and the way by which they couple with mate-
rial behaviour is very much a modern understanding. The notion of bendability acts as the
bridge to traverse between this geometric limit and the small deformation limit. The experi-
ments and theories in this thesis fall in the regime of large enough values of bendability where
geometric aspects of the elasticity theory manifest themselves and are far from the small de-
formation limit.

With this literature overview we now turn towards the outline of the thesis and then de-

scribe briefly the contents of each of the chapters in the thesis.

1.6 'THESIS OUTLINE AND MOTIVATION

This thesis is divided into two parts. The first part deals with mechanics of elastic filaments
and the second part deals with dynamics of particles in flow. Three experiments form the first
part of the thesis and these experiments are: (7) releasing a highly deformed elastic filament at

the interface of a highly viscous fluid, (i7) placing an oil droplet in the vicinity of a thin elastic
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filament such that the droplet contact-line applies a localised force due to surface tension on
the filament and (74¢) placing a thin elastic filament on top of a spherical bubble such that
the filament remains confined on the bubble surface.

In chapter 2 we study the relaxation of a highly deformed filament using experiments and
numerical simulation to understand the role of tension in the elastic filament arising due to
large deformation. We describe the mechanism by which tension inside the filament affects
the relaxation dynamics. We also show how the tension plays a role in relaxing asymmetric
initial shapes to symmetric states during relaxation. We state implications of our results to
understanding and estimating dissipation, and energy consumption of propulsion in low
Reynolds numbers.

In chapter 3 we look at the problem of a droplet in contact a thin elastic filament on the
surface of water. The initial part of this chapter deals with the calculations of a cylindrical
droplet in contact with an infinitely wide sheet under applied boundary tension. We obtain
exact results in the limit of vanishing thickness where the costs to filament/sheet bending
are negligible. We find two bifurcations as we change the applied tension where the filament
droplet system undergoes shape transitions. These two bifurcations happen as we keep re-
ducing the value of applied tension from a large value, one from a state where the droplet sits
with part of its interface exposed to vapour to a state completely wrapped by the sheet. The
second bifurcation is when a wrapped state of drop-sheet system with part of sheet exposed
to vapour goes unstable and the droplet completely wets the sheet. We then look at shapes
the sheet takes in this fully wet state using direct numerical minimisation. This problem in
higher dimensions is known by the name “Willmore problem.” In the latter half of the chap-
ter we use thin filaments to understand the validity of predictions made by the theory. Our
experiments involve using the interface of air-water as the substrate to do mechanics. We
confine filament to this interface and place a droplet in the vicinity of the filament. One end
of the filament is attached to a soft beam (used as a sensor to measure tension in the filament)
and the other end is attached to a translational stage (to apply tension). Our experimental
observations of contact angles as a function of applied boundary tension, are captured ac-
curately by the theory which assumes vanishing thickness of filament. We also use our 2D
experimental setup to study wrapping of droplet using filament.

Following the droplet-on-filament problem we probe the question of morphology of fila-
ments confined to a 2D surface with finite positive gaussian curvature. To this end we took

the simplest possible such surface, i.e. a sphere and our experiment were performed on a
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spherical soap bubble. A thin filament is inserted on the surface of bubble from its north
pole, with gravity pointing towards south. We find that gravity starts affecting the filament
shape beyond a certain length of filament and size of bubble. The confinement vs bend-
ability approach again provides a window through the different shapes we observe in both
experiments and theory. Confinement, which we call specific to this problem as the coiling
parameter, is nothing but the ratio of length of filament to bubble radius. Bendability here
is nothing but the ratio of bending force to force due to gravity. Using a simple geometric
theory we describe the critical point at which gravity affects the shape of the filament. As we
further increase the length of the filament on the sphere or reduce the bubble size for a fixed
filament length, we see that the filament starts coiling on the surface of bubble.

The second part of the thesis deals with dynamics of particles in a low Reynolds number
flow. As we have seen in the previous section, the history integral in the MR equations has
long been neglected. In chapter 5 we discuss in detail the technique we have developed to
solve this equation and further show that exact solutions exist for several simple scenarios.
We firstly show that the MR equations can be reformulated as a boundary condition to 1D
heat equation. Using Unified Transform Method (UTM), which is a spectral technique to
solve partial differential equation in bounded domains, we solve the system of equations for
all time dependent space independent flows. Our results provide a new path to solve different
kinds of integro-differential equations. The numerical method we develop for complex flows
achieves spectral accuracy, by leveraging the properties of Discrete Chebyshev Transform. In
the last part of this chapter we solve the problem of particle dynamics in n-vortices where
both the particle and flow evolves in time.

In the closing section of the thesis, we provide future directions from insights obtained
out of this work. We also propose a few open questions that might be immediately solved

using the techniques developed in this thesis.
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“Jeeves,” I said. “A rummy communication has arrived. From Mp.
Glossop.” “Indeed, sir?” “I will read it to yon. Handed in ar Upper
Bleaching. Message runs as follows: When you come tomorrow, bring
my football boots. Also, if humanly possible, Irish water-spaniel. Ur-
gent. Regards. Tuppy.” “What do you make of that, Jeeves?” “As I
interpret the document, sir, Mr. Glossop wishes yon, when yon come
tomorrow, to bring his football boots. Also, if humanly possible, an
Irish water-spaniel. He hints that the matter is urgent, and sends his
regards.” “Yes, that is bow I read it. But why football boots?” “Perbaps
M. Glossop wishes to play football, sir.”

-P.G. Wodehouse, Very Good, Jeeves!

Relaxing elastic filament

This chapter is a verbatim reproduction of our article in Physical Review Fluids titled “Re-

laxation of a highly deformed elastic filament at a fluid interface”.

2.1 INTRODUCTION

Highly deformed slender elastic filaments are to be found across several decades of length
scales starting from crops and tree canopies in wind [37], aquatic plant stems in flowing
streams [96], propelling flagellae of organisms [110, 88, 66, 141], stereocilia inside ears [30, 75],
to suspensions of fibres (see ref. [89] for a recent review). The most heavily studied of these
examples is the driven dynamics of flagella [140, 142 ], where the balance is between forces due
to bending, which tend to straighten the filament, and viscous drag, which acts to damp the
motion.

Unless they are held in that state by external or internal forces, filaments will relax from a
highly bent state to their equilibrium, stress-free state. For a filament with bending modulus
B and length L,, the bending energy per unit length is Bx? /2, quadratic in the local curva-
ture k. Thisleads to bending moments and forces ~ BL, 3 thatare linear in the displacement
from the unstressed conformation of the filament [79]. Balanced against the drag 8wuL, /T

from a fluid of viscosity i, we obtain a characteristic time scale for dynamics over the length of
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the filament: 7 = 87uL}/B. However, when the deformations are large, another source of
stress becomes significant: in order to satisfy the constraint of constant length, a gradient of
tension appears along the filament. This tension is a nonlinear function of the geometry [55].
Previous work has concentrated on bending alone, and the role of this nonlinearity is largely
unexplored. The goal of this work is to understand the relaxation of a highly-deformed fila-
ment from its high elastic-energy state, with full consideration of the nonlinear effects of the
geometry.

We perform experiments to study the relaxation to a straight configuration of an initially
highly deformed elastic filament. The dynamics are restricted to a two-dimensional plane
by placing the filament at the interface of a viscous fluid. The filament is initially deformed
by holding its ends in place with two fine needles at the interface. When these are removed,
it relaxes towards a straight, unbent shape. Fig. 2.1(a) shows the initial deformed state and
several intermediate steps in this relaxation process. We vary the parameters of this system —
thelength, diameter and material of the filament — to understand the time-dependence of this
process. In order to probe internal variables such as the tension, we solve a numerical model
[55] to compute elastic forces in the filament. This model includesa fully nonlinear treatment
of the elasticity of the filament, but a simplified description of the hydrodynamic drag. We
also perform Particle Image Velocimetry to visualise the flow-field around the filament and

validate the results of the theoretical model.

2.2 EXPERIMENTAL METHODS

The filaments we use are made of a elastomer, vinyl polysiloxane (VPS), which was prepared
with two different Young’s moduli, E' (of 240kPa and 800kPa). The precursor material is
injected into a capillary tube which defines the diameter d of the filament. Once the polymer
cures, the filament is extracted from the tube and cut to the desired length L. All deforma-
tions of the elastomer are fully reversible.

This filament is placed on the surface of a cylindrical dish of glycerol. The ends of the
filament are held, then released by needles attached to a tweezer mechanism mounted on a
translational stage. The air-glycerol surface tension is 64mN /m, so that the filament stays on
the interface and the dynamics are fully 2-dimensional. No twist occurs in the experiments
and also there is no rolling. The high viscosity (1 ~ 1.412Pa.s at 100% concentration) keeps

the dynamics in the stokesian regime; the Reynolds number Re &~ 1072 — 102 immediately
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Figure 2.1: (a) Superimposed images of the filament taken atintervals of 1 sec. The two needles at the bottom
of the image are used to release the filament from its initial configuration. (b) The thick white line over the
filament (seen as the cyan outline) is the Bezier fit. We plot below this the corresponding curvature computed
with this fit. Here the position vector is 7 (s) and the unit vectors n(s) and t(s) in the normal and tangential
directions.

after release, when the filament is moving at its fastest. As shown in fig. 2.1(a), at no time in
the relaxation process does any part of the filament come close to self-contact (or to the walls
of the dish), so capillary forces can be neglected.

We track the filament shape as a function of time using a Nikon Dsooo camera at a resolu-
tion of 4288px x 2848px and a frame rate of 1fps. As shown in fig. 2.1(b), from the images we
extract 7 (s, t), the position vector of the filament centerline along the arc length s, using the
following procedure. We first separate the filament from the background, and then reduce
these pixels to a set of equally spaced points.

In order to accurately take higher order derivatives with respect to material coordinates,
we make a Bezier fit to these points. This is a unique polynomial fit of O(1") to a given set of
n points in r(s) = B{z(l),y(1)}, | being the parameterisation of the Bezier curve. As [ goes
from o to 1, s goes from 0 to L,, but note that the two are not linearly related. The analytical
form of the fitallows us to calculate k() (fig. 2.1(c)) as a continuous function. The curvature
is given by
'y —y'a”

") =

where the primes denote differentiation with respect to I. We also compute the elastic energy
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Ea(t) [= (1/2) [,° Bx*(s)ds] from the curvature profiles extracted from the images. In
appendix. 7.1.1 the details of the image extraction algorithm is provided in detail. The code

for the tracking and extraction procedure is also available in GitHub.

2.3 EXPERIMENTAL RESULTS

Since the elasticity of the filament is determined by its bending modulus B = Erd?* /64, we
vary d and F to study the dependence of the relaxation time on these filament parameters.
We also vary L,; since the distance between the needles holding the filament in its initial con-
figuration is fixed the initial average curvature, and the relative initial separation between the
ends, both vary. From the sequence of images that characterize the shapes of the relaxing fil-
ament, we extract two relevant physical quantities. One observable is the non-dimensional
end-to-end distance, L(t)/L, (see fig. 2.1), as a function of time. We also report the elastic en-
ergy &ei(t), normalized by that of a filament of length L, rolled into a circle: 2B7?/L,. These
quantities are plotted in the insets of fig. 2.2(a, b), for two different values of Young’s mod-
ulus, and for several values of the length L,,. It is apparent that the relaxation time increases
monotonically and strongly with L, and decreases with increasing E.

As shown in the main fig. 2.2(a, b), all the data for length and elastic energy collapse on a
single scaled curve. The time has been scaled in each case by 7 = 87 B~!L}. Even though
we are in a very nonlinear regime, these curves collapse when plotted in terms of t/7. We
remark that the time scale 7 has been obtained merely by balancing viscous and bending
forces in the linear regime. In all the data in fig. 2.2 we have chosen the origin of time ¢ = 0
as the instant where non-dimensional elastic energy, E.; = 0.4 but the data collapse even at
negative times thus defined. Moreover, upon choosing just Eq(t = 0) as 0.4, the respective
end-to-end distances automatically collapse at the initial time. The value of 0.4 is arbitrary
and the scaling works well for any other origin of time. We note that most of the relaxation
is accomplished when the nondimensional time is very small, that s, t/7 ~ 2 x 1072 rather
thant/7 ~ O(1).

We also vary the bending modulus through its strong dependence on d, the diameter of
the filament. We choose two different diameters, d = 1.04mm and 0.57mm with Young’s
modulus fixed at E = 240k Pa, at several different lengths (L, varied from 4.1cm to 7.3cm
for 240k Pa and from 4.6cm to 7.8cm for 800kPa). The data in the insets of fig. 2.2(c, d) track

the measured relaxation dynamics and show that the smaller diameter relaxes slower. Once
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again, the relaxation dynamics collapses when data obtained by varying L, and d are plotted
against the scaled time, ¢/7 as shown in fig. 2.2(c, d). The slowest and the fastest dynamics
span a factor of 27 variation in time scale 7.

There are two major findings in our experiments. First, the time scale 7 used to collapse
the data is taken from the balance of forces in the linear regime, even though most of the
dynamics we probe are in the deeply nonlinear regime, where curvature ~ L. Second, the
time-scale of relaxation is about two orders of magnitude smaller than 7. A deeper under-
standing of this puzzle requires us to quantify the dynamics in the nonlinear regime. The
nonlinear regime is governed by the internal tension, which is not accessible in our experi-
ments. We thus turn to a numerical simulation of the fully nonlinear equations discussed

below.

2.4 NONLINEAR DYNAMICAL EQUATIONS

2.4.1 ELASTIC FORCE

The energy in an elastic filament arises from its bending modes (see [55, 133] for more details).
The mechanical energy of bending as well as a constraint term to enforce length conservation

yields an elastic energy of:

L, Lo

ea=5 [+ [T TR - as, (2)
2 Jo 0 2

T'(s) here is the lagrange multiplier enforcing length constraint. This lagrange multiplier is

the tension inside the filament, which is the tangential component of the force inside the

filament. The curvature |£(s)| = |rs(s)| and assuming perturbation in r(s), the position

of the filament, the variation in elastic energy takes the form:

Lo Lo T
0 = B/ (rss - 07rss)ds —I—/ (23) {rs - drs}ds (2.2)
0 0

The first term can then be expanded by the method of integration by parts as:

Lo
Brg, - 57’5‘50 — Brggs 5T|00 + B/ (’l"ssss : 5T)d8 (23)
0
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Figure 2.2: (a) Normalised elastic energy, £.; and (b) non-dimensional end-to-end distance, L(t) /L, for two
different values of Young's modulus, E (240kPa and 800kPa) and different lengths (L, varied from 4.1cm
to 7.3cm for 240kPa and from 4.6cm to 7.8cm for 800kPa). The insets show the data as functions of di-
mensional time, whereas the main figures are plotted in terms of scaled time t/7. (c¢), (d) Similar plots to
that of (a), (b) for two different diameters, d — 0.57mm, 1.04mm (E = 240kPa) and L,, varied between
4.6cm — 7.2cm for the former and 3.3cm — 6.3cm for the latter. The solid lines in all the subfigures indicate
results obtained by solving egs. 2.8, 2.9 numerically, and scaled by a factor of 4.2 in time, as discussed later in

the text.
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A similar manipulation for the second term leads us to:

Lo
T(s)rs - ors|y® — /0 [0s(T'(s)rs) - or]ds (2.4)

Now the force due to elastic energy can be written as:

g
f el — Sr
This results in:
fel = _Brssss + 85 [T(S)Ts] (2'5)

2.4.2  VISCOUS FORCE

The viscous force per unit length is simply approximated as a drag-coefficient times the veloc-
ity of the rod itself. The coefhicient turns out to be 87y and the expression for force is given
by:

Jvis = 8mpdir(s)

In an over-damped situation, the viscous force balances the elastic force and can thus be writ-
ten as:
8mudyr = —Brgsgss + Os[T(8)7s]. (2.6)

Though the drag due to anisotropy of filament is different along its axial and transverse di-

rection, we use here an isotropic form as the effects of anisotropy are small described in detail

in app. 7.1.6.

2.4.3 CONSTRAINTS FROM GEOMETRY

In the previous subsection we saw that the length constrain is induced as alagrange multiplier
and is the source for tension itself. Now the constraints from geometry helps us obtain an
expression for tension.

The tangent is a unit vector and we would like it to remain so throughout the curve. This
results in:

Ars-r) =0(t]*) =0

Tes - Ts =0

2.8



Again using the same trick, we get:

2
Tsss " Ts = _’rss|
Tssss " Ts = —37’55 *Tsss
o= —3 2_Yp.. .
Tsssss * Ts = ‘Tsss‘ Tss * Tssss

Now differentiating eq.2.6 with respect to s and taking scalar product with 7,, we have terms
Tsssss - T's» Tss - Ts. Using the above relations, the final equation for tension in dimensional

form is:
(Oss — |r35]2)T(s) = —B[3|rsss|2 + 4(7rss - Tosss)] (2.7)

After a brief non-dimensionalisation: 7 — Lr, t — 7t, the equation of motion for the rod

is:

aoir = — 5888 as T sl .8

i = — Tssss+ Os[T'(s)7] (2.8)
F1l F2

(855 - ‘rsslz)T(S) = _(3‘7’555‘2 + 4(Tss : Tssss))- (2'9)

The boundary conditions are: r4(0) = 7r4(L,) = 0 corresponding to zero moment and
Tsss(0) = Ts5(Lo) = 0, T(0) = T(L,) = 0, corresponding to zero force at the free ends.

The non-dimensional viscosity, /i is given by:

Stul?

H= EIT

Note that when we set 7y = 7, we get i = 1, and the above equation becomes parameter-
free. Equations 2.8 and 2.9 constitute the basic equations for the mechanics of the filament.
There are two approximations in these equations for the dynamics of the filament centreline.
First, the hydrodynamic interaction between points on the filament is neglected. Second, the
drag force due to the motion of the filament is assumed to be isotropic. Furthermore, in our
experiments, we do not have an independent measure of the drag at the interface (which will
depend on wetting properties among other things), and so in the theoretical computations of
drag, we use the value of the bulk viscosity of the liquid. An effective viscosity at the interface

contains an unknown factor to be determined experimentally.
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Figure 2.3: (a) Shape of the filament for various time instants in the simulation super-imposed on each other,
with an experimental image, seen in white, in the background. (b) Evolution of curvature, k() vs s for differ-
enttimes. k(s) is always positive and decays monotonically with time. (¢) The decay of the maximum value of
curvature compared with that of experiments (o) without any fitting parameter in the numerics. All quantities
are non-dimensionalised using L, and 7 as scales.

2.4.4 NUMERICAL METHOD AND VALIDATION

As in Tornberg and Shelley [133] we solve the tension equation as well as the equation of
motion by discretizing the filament into inter-connected rods of length ds while conserving
the total length using penalisation. We use a TDMA scheme to calculate 7'(s;) using the
value of 7(s;) at discrete arc-lengths, s;. A skew-finite difference is used for implementing
the boundary conditions in higher-order derivatives. Here we give the details of the tricky
4-th derivative arising in the bending term in eq. 2.8. We have:

(2745 + 11rj1g — 24743 + 26740 — 14741 + 31r;) /ds?,  j =0,
(—=Pjqa + 67j43 — 1470 + 16701 — 97; + 21;_1) /ds?, j=1,

Dar = (rjpo — 4rjy1 + 67 — 4drj_1 4+ 7j_2)/ds?, 2<j<N-2
(2rj41 —9rj +16rj_1 — 147rj_o + 673 — 7 1)/ds*, j=N—1,
(3r; — 14rj_1 + 2679 — 2475+ 11rj_y — 21rj_5)/ds?, j=N.

Here r; = 7(s;), D4 is the fourth-derivative matrix, N is the number of rods and we choose

N = 62,L, = 8 and discretisation in time dt = 10~* in our simulations. We use a semi-

implicit scheme for spatial derivatives and a second order central difference scheme in time.
Fig. 2.3(a) shows the evolution of the computed filament shape, compared to an image

from the experiment. More quantitatively, we go back to fig. 2.2(a, b), where we show &.(¢)
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vst/7 and L(t) vs t/7 computed by setting i = 1. The time-evolution of the shape agrees
well with the experimental data, a sample of which is shown in fig. 2.3(a). The evolution
of L(t) (see eq. 7.4 in the appendix) depends only on the gradient of 7'(s) at the boundary.
The fast evolution of L(t) at early times is a consequence of T'(s) having a gradient of large
magnitude at the boundary. However, the simulation result is offset from the experimental
databy a factor of 4.2. This discrepancy between experiment and simulation could be due to
(i) absence of hydrodynamic interaction and anisotropic drag in the simulation, (ii) neglect
of wetting properties of the filament, and potentially most importantly (iii) our use of the
bulk viscosity of the liquid in the model even though the drag occurs at an interface. In
the experiment the filament at the interface is partially exposed to air and is only partially
submerged in the viscous liquid. Thus the effective viscosity at the interface is expected to be
less than that of the bulk liquid, explaining at least in part the factor of 4.2. We emphasize
that the idealizations in the numerical model are in the treatment of drag, and not in the
elasticity of the filament.

Indeed, fig. 2.3(b) shows that the computed curvature is always positive along the filament.
The maximum of the curvature as a function of time is shown in fig. 2.3(c), where it is com-
pared to the experimental data. As discussed earlier, the time evolution of experiment and
numerical computation have the same functional form, but the time scale observed in the

numerics is faster.

2.4.5 TENSION

Having validated our model, we now move to computed quantities that are not accessible
in the experiments. As is clear in figure 2.3, the curvature is not uniform, and therefore the
filament should not be expected to open uniformly. In fig. 2.4(a) we show the tension, T'(s)
computed using eq. 2.9. The relationship between curvature and tension is not linear and
depends on higher derivatives of curvature. Consequently, unlike the curvature, which is
always positive, the tension changes sign from compressive in the central region to tensile
near the free ends. Force balance along the tangential direction thus requires that the viscous
drag force be a function of arc-length.

In order to test whether the tension distribution observed in the simulation results are
supported by experimental observations of the viscous drag on the filament, we use Particle

Image Velocimetry (PIV) to measure the velocity field at the interface. We make a suspension
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of hollow glass spheres of 10um average diameter in the fluid and illuminate the interface
with laser sheets (WiCKED LASERS < 500mW and wavelength ~ 532nm). The motion of
the particles from the recorded images is tracked using open-source package, PIVLAB [128].
The resultant velocity field for the relaxation is plotted in fig. 2.4(c). As the filament begins
to relax, two symmetric pairs of vortices are formed. Tension in the system has contributions

only from the tangential projection of the stress tensor. Now using eq. 2.8 we can write:

T - t 6ST(S) = ﬂat'l“ -t + PTosss - b

T(s) = / (Tssss * t + firg - f:)ds
0

This quantity goes to zero at the position where net bending force is balanced by viscous
dissipation. Comparing the PIV field and fig. 2.4(b) we observe that this location is close to
the point where vorticity changes sign. This location moves towards the ends of the filament
as it relaxes, consistent with the simulation results.

To separate the contributions of the linear bending force, 1, and the nonlinear tension
arising from length conservation 2, we plot in fig. 2.4 (b) these individual terms on the right
side of eq. 2.6. Surprisingly, the linear (1) and nonlinear (F2) terms are comparable in
magnitude, though opposed in sign, even for the highly deformed regime. The algebraic
sum of these forces is balanced by a viscous term that is much smaller in magnitude than
each of these terms.

Viewed in the light of these results, it is evident that ignoring the tension term in the large
deformation limit not only leads to non-conservation of length but leads to a significant over-
estimation of the dissipation due to viscosity. Second, as we see from the energy functional,
T ~ B/L?, the nonlinear tension term (F2) has the same scaling as the bending term (F1).
In other words, T emerges as a single time scale in the problem, even in the nonlinear regime.
We recall that the filament relaxes much faster experimentally than the time scale 7, i.e., the

balance between the two terms leads to a small numerical prefactor.

2.5 ASYMMETRIC INITIAL CONDITIONS

All the results we describe above are for initial shapes that are symmetric about the midpoint
of the filament (k(L,/2 — s) = k(s)). If the filament is released from an asymmetric, highly

deformed shape, we find experimentally that it first deforms into a symmetric shape, then
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Figure 2.4: (a) Tension, T'(s) vs s at various time instants. The profile of tension changes shape as it decays,
which is evident from the fact that the position where it crosses zero travels towards the ends in time. (b) -
component of force due to bending (F 1), tension (F2) and the resultant viscous force (their sum) fromeq. 2.6
for the filament configuration shown at the bottom right. The contribution from bending force and that of
tension are very similar in magnitude but opposite in sign, so a small viscous force (as seen) is sufficient to
balance them. The filament in the inset is colored based on T'(s) and the dots show the position where T'(s)
goes to zero. (¢) Velocity field obtained by PIV where a pair of vortices is formed on each side of the filament.
The tension in the filament vanishes near the location where the sign of vorticity changes. Scales in units of
cm.
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relaxes along the sequences of symmetric shapes we have previously shown. This is shown
in fig. 2.5(a, b) via the evolution of & (t) and L(t). The images of filaments shown label the
initial condition in each of three data sets displayed. We have chosen ¢ = 0 to be the point
where there is no experimentally discernible asymmetry. For ¢ > 0 the relaxation follows the
same path in all cases.

In the linear regime, the relaxation time of a Fourier component varies only with wave-
length, and any initial asymmetry would be preserved. Thus we emphasize here that the
collapse into a symmetric shape is a consequence of being in a deeply nonlinear regime. The
linear regime of our problem is similar to another curvature-driven problem - that of the
relaxation of a perturbed liquid-air interface [14, 15] — in that they flow to attracting set of
shapes at long times. We show this explicitly by simulating five different asymmetric initial-
conditions each with a straight portion attached to a semi-circular portion as in fig. 2.5(e).
The total length of the filament for all the initial conditions is held fixed while the diameter,
b of the semi-circular section is varied. We quantify the asymmetry in terms of the difference
in curvature on either side of the midpoint: ¢ = f0L°/2 |k(Lo/2 — s) — K(s)|ds. ¢ takes a
value of o for a completely symmetric shape and positive values for different levels of asym-
metry. We plot ¢(t) in fig. 2.5. In all cases, the filament first rapidly becomes symmetric and
then relaxes more slowly to a straight line. The straight section first curves in order to attain
overall symmetry, thus showing that tension must play a role, as there is no bending force
on the straight section. The time-scale to reach the symmetric shape increases monotonically
with b. (see fig. 7.4 of appendix to see the movement of T'(s) along the filament to regions of
zero bending force.)

We make an energy argument to show that the energy of the symmetric state is a minimum
with respect to asymmetric perturbations. Let us assume a smooth symmetric profile for
curvature, i(s) = ~(—s). We perturb the curvature, %(s), while maintaining the boundary
conditions, with a function —e(s) in s € [—L,/2,0] and with e(—s) in s € [0, L,/2] . The
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Figure 2.5: (a) Evolution of elastic energy and (b) L(t)/ L, for the two asymmetric initial conditions shown in
the legend from experiments, compared with the symmetric case (L, = 6.5cm, F = 240kPa, d = 1.1mm).
We see that the curves merge quickly and the decay beyond that time becomes identical. (¢, d) Evolution of a
rod with symmetric x(s) about s = 0.5 which relaxes to a straight configuration along a symmetric path. (¢)
consists of superimposed images from experiment while (d) is from numerics for the same initial condition.
(e) Non-dimensional parameter ¢(¢) which quantifies the asymmetry in a given configuration. This is plotted
for different initial conditions with different values of b, where b is the diameter of the semi-circular section
shown above the plot. b here is varied between 0.0625 and 0.1875. We see that a configuration with smaller

b symmetrises faster.
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total elastic energy becomes:

fa=2 [ / " (R(s) - es))ds + /O P i) + e<—s>>2ds]

—Lo/2
Lo/2 Lo/2
_B [/ &2 (s)ds + / (€2(—s) + 62(5))(15]
21/ 1,02 0
Lo/2
> B &% (s)ds
2 ) 1,2

It is thus evident that for a given curvature, a symmetric shape has minimum energy. This
shows that asymmetric perturbations about an arbitrarily large-deformation state will be re-
laxed to a symmetric state. To emphasize the fact that it is a symmetric stress or curvature,
rather than a symmetric shape, that is attained, we show an example in fig. 2.5(c, d) where
7(s) is not symmetric but x(s) is. These initial conditions also relax along a stress-symmetric
sequence of shapes. The fast relaxation of the asymmetric stress state to a symmetric one is
to be expected because the effective length of the portion of the filament under tension is
shorter at early times, and changes with time as the tension gets distributed everywhere in
the filament.

2.6 CONCLUSION

We find that the entire relaxation process of a highly deformed elastic filament is described
by a single time scale arising out of balancing viscous drag and bending force. Force balance
is achieved by a near-cancellation of two large elastic contributions, one of them purely non-
linear, with the difference balancing the external viscous drag. The time-scale of relaxation
in both our experimental and numerical data is much faster than the characteristic time scale
from the linear dynamics. We do not have a simple qualitative explanation for this, but ob-
serve that the relaxation as measured by the end-to-end distance, for instance, is governed by
large tension gradients (see eq. 7.4). This experimental setting may possibly be used to mea-
sure interfacial viscosity by watching the relaxation of a filament with known elastic proper-
ties and geometry. Alternatively, once the drag at an interface is calibrated for a known elastic
rod, this setting can be used to infer the bending modulus of a filament. The preference for
symmetric shape of the filament over asymmetric shapes would make the experiment robust

to small variations in initial conditions.
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Story:...But what is the point of your listening to a
story? You can’t pass it on. Man: I'll listen to you! S:
You will? M: Yes. S: There is a condition, however.
You can’t just listen to the story and leave it at that.
You must tell it again to someone else. M: Thar I
certainly shall, if I live. But first I must be alive ro...
That reminds me. I have a condition too. S: Yes? M:
1 must not doze off during the tale. If I do, I die.
All your telling will be wasted. S: As a self-respecting
story, that is the least I can promise.

—Girish Karnad, Naga-mandala

2-D mechanics of sheet/filament in

contact with a droplet

In this chapter, we explore the effects of large deformation by considering the scenario of
a liquid droplet in contact with a thin elastic filament. The motivation for this problem
comes from the question of morphology of a thin elastic sheet with a liquid droplet sitting
on top of it (ref. Huang et al. [64], Schroll et al. [122]). The 2D version of this problem is
discussed in this chapter, where we perform calculations for a cylindrical droplet sitting on
top of an infinitely wide sheet. The calculation of the shape of an infinitely wide sheet and
that of a filament are the same due to the translational invariance of all the relevant variables in
the infinite transverse direction. In the second part of this chapter, we perform experiments
using thin elastic filaments and compare the results from experiments with the calculation
for infinitely wide sheets. We find that several aspects that were earlier explored in the 3D
problem by Schroll et al. [122] translate to the 2D scenario of a droplet in contact with a

filament.
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3.1 INTRODUCTION

The pressure inside a liquid droplet surrounded by vapour is given by Young-Laplace law:
p = v(1/R1 + 1/Ry), where R; and Rj are the principal radii of curvature of the liquid in-
terface, and v the liquid vapour surface tension. When this droplet is in contact with a solid
surface, the solid-vapour surface tension as well as liquid-solid surface tension modify the
shape of droplet and as a consequence p ~ yR; ! sin??(dy /2) [122] where Ry, is the droplet
radius, while ¥y is Youngs’ contact angle. When this solid substrate is made of a soft-elastic
material, v can create stretching at very small length scales ~ O(um) [69] and the pressure
depends on the magnitude of deformation at the contact-line. However, when the substrate
is a thin floating elastic sheet (shown schematically in fig. 3.1(a)), the sitting droplet applies a
Laplace-pressure on the sheet. This pressure creates bending deformations of O(le.), where
loc is the elastocapillary length. Different regimes of bending vs capillary force arise by com-
paring l.. with the size of the droplet, R4,. The bending of an elastic sheet due to the presence
of adroplet has been explored in detail in the “capillary-origami limit” [111, 101, 118, 19] where
lec ~ Rgy. In the other limit of loc < Rgy, mechanics of the droplet sheet system is very
different and has been explored in eatlier works [65, 73, 122, 108]. The sheet forms wrinkles
when the droplet is placed on top of it due to the droplet’s surface tension at the drop-sheet
contact line. This surface tension induces in-plane stress at the contact-line, which gets trans-
mitted as hoop stress buckles to result in wrinkles. Though the displacement of sheet in the
3D problem has been solved earlier [6s, 36, 73, 122, 108], the relation between pressure and
these deformations as a function of boundary tension is largely unexplored. Second, in the
3D problem, the theory predicts that the contact angle is a function of the applied tension at
the boundary of the sheet, which was difficult to measure in experiments due to complica-
tions arising out of wrinkles.

In this chapter we move to a 2-dimensional version of the problem of droplet on top an
elastic sheet but without the complications of wrinkles, folds and crumples. Our system
consists of a cylindrical droplet sitting on top of an infinitely wide sheet with applied tension
atits edges. We are able to eliminate the complications that arise in 3D since the 2D version
of a droplet on sheet cannot exhibit wrinkles, due to the absence of gaussian curvature in a
2D sheet. In a 2D scenario, all deformations of the sheet are isometric to a plane and thus

there is no stretching involved in the displacement of sheet.
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Figure 3.1: Phase diagrams for two classes of contact angles, Uy showing three different types of sheet
morphologies: open-state, closed-state, wrapped-state in the non-dimensional tension, Tvs bendability e !
space. (a) ¥y < 7/2,(b) m/2 < ¥y < m. Ontop is the schematic of the setup, where T}, is the applied
tension and w the droplet radius.

3.2 RELEVANT PARAMETERS AND LIMITS OF PRESENT WORK

The drop-on-sheet problem has several length-scales though, as we shall see, only a few length

scales play an important role in the sheet morphology:

* thickness of sheet, ¢,

* elasto-capillary length scale (arising out of balancing bending force and surface ten-
sion), lec = (Et3/7)'/? where E is the Youngs’ modulus of sheet, and droplet-vapour
surface tension 7,

* balancing surface tension and stretching, I,,, = v/ E which is relevant close to the con-
tact line

* length of the sheet, L,
* the radius of droplet, Ry;,.

In this intrinsically multi-scale problem, we are interested in a regime where the sheet is

inextensible, 1, < t, when there is a clear scale separation between the size of droplet and
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elasto-capillary length, R4 > loc and for sheets larger than the size of droplet L > Ry,. We
can use a non-dimensional number to indicate the scale separation between elasto-capillary
length and droplet size, which is called the bendability, e ™! = (Ry, /lec)* = vRZ,/Et?. An-
other non-dimensional number constructed out of geometry of sheet and droplet is the ratio
between length of sheet and droplet size, ® = L/Rg;. Scale separation now implies e ! > 1
and @ > 1. The reason we are interested in such a regime is because the dependence of
contact angle of droplet on the mechanics of the sheet is found to be a high-bendability phe-
nomenon in the 3D scenario and we would like to firstly see if that is true in the 2D version.
Our setting is shown schematically in fig. 3.1(a) where we have the droplet in gray on top of
a floating sheet in black.

Beyond bendability and sheet length to droplet size, we also have the externally applied
boundary tension T,, which can be non-dimensionalised using vy to give T =T, /7. The
dimension of the tension here is N/m as the applied force along the sheet is spread across its
entire width. Thus we need the following four non-dimensional quantities to describe the

droplet-sheet configuration:
T="T,)y, €'=~R%/Et®, ®=(L/Ry), Vy.

3.3 MANIFESTO

In the regime of e ! — 0o, ® >> 2, the sheet remains straight for large enough tension and
the contact angle seen here is ¥y. This changes as we reduce tension, the sheet now bends
but remains in a “partial-wetting state”, where the length of exposed liquid-vapour interface
is O(Rgy) (schematically shown in fig. 3.1(a)), and we evaluate the pressure as a function of
T. In the partial wetting configuration, we also calculate the contact angle of the droplet on
top of this sheet and show that it depends on the applied boundary tension, T. Since the cal-
culation is assuming vanishing thickness of the sheet, the angles do not depend on any of the
material properties. This important prediction is measured using a quasi-2D experimental
setup in the second part of this chapter. The stresses in the sheet we find depend only on the
contact angles. For very large values of bendability, i.e., e 1 = +ooand T < cos? (¥y /2), the
partial wetting state goes unstable and makes a transition to “partial-wrapping state” charac-
terised by the sheet covering the drop completely, however with part of the sheet still exposed

to the vapour. The shapes are shown schematically in fig.3.2(a). We calculate the bifurcation
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Figure 3.2: Phase diagrams for two classes of contact angles, 1y showing three diffe[ent types of sheet

morphologies: open-state, closed-state, wrapped-state in the non-dimensional tension, 7" vs bendability e !

space. (a) ¥y < 7/2,(b) w/2 < ¥y < m. Ontop is the schematic of the setup, where T}, is the applied
tension and w the droplet radius.

' 400 and show that the transition from partial-wetting state to partial-

curve when €~
wrapping state is super-critical.

Apart from evaluating the pressure close to the bifurcation curve, we demonstrate that
near the partial-wrapping state the sheet exhibits a universal self-similar shape close to the
contact-line, independent of 1. As the non-dimensional tension is decreased even further,
we show that a lower limit exists, i.e., T = cosdy below which the sheet undergoes a sec-
ondary instability into a “complete wetting state”, where the drop wets the entire sheet. In
the complete wetting state, the ends of sheet come in contact and moment balance ensures
that the ends are indistinguishable from other points on the sheet surface. The shape of the
sheet is given by the solution to the Willmore problem [8] in two dimensions, which is the
shape that minimises bending energy for a fixed volume of droplet. We compute the wrapped
shape using direct numerical minimisation of total energy of the drop-sheet system where the
pressure appears as a lagrange-multiplier that preserves drop area. By using simple scaling ar-

guments we explain the mechanism of mode-selection in any wrapped configuration.
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3.4 MECHANICS AT LARGE (¢! >> 1) AND INFINITE BENDABILITY (¢! — 00)

3.4.1 PHYSICS IN THE CAPILLARY-ORIGAMI LIMIT

Let us consider the case of small bendability, e ™! ~ O(1) with ® > 2, where the surface
tension can bend the sheet only gently. In the absence of applied tangential tension, the in-
plane force balance would give: Ty &~ —~ cos ¥y, where T7 is the tension in the buckled zone.
Note that T7 is compressive for ¥y < m/2 and tensile for 7/2 < ¥y < m. The sheet buckling
due to the droplet’s Laplace pressure is very similar to the Euler buckling scenario where the
sheet buckles beyond a critical 7. The critical sheet tension is calculated by energy balance
between work done by 77 and the stored bending energy, which gives Tf ~ ey. We see that
when the bendability of the sheet is very small, i.e., e < 1, T will be larger than (— cos Jy ),
which means that the surface tension is not strong enough to buckle the sheet. However as we
reduce the value of € or increase €, we would reach a state where the 7§ < (— cos dy), which
is when the sheet would buckle. This example provides a naive mechanism for the sheet
buckling due to the presence of a droplet, we will however see in detail the contributions of
different energies to sheet buckling in the presence of an applied boundary tension in the

ensuing subsections.

3.4.2 DROP-SHEET MORPHOLOGIES AS DIFFERENT PHASES

Note: The infinite bendability calculation presented in the first part of this chapter was de-
rived by Benny Davidovitch and Fabian Brau. I have however rederived these expressions
since these results are important for the experiments detailed in the second half of the chap-
ter. In the first part, I had contributed to the work by solving the sheet shape in inner and
outer regions and also reproducing the results of Neukirch et al. [101], which is not shown
here.

The total energy of the drop-sheet system in the absence of applied tension at sheet ends
can be written as the sum of contributions from surface energies and bending: Us = Usyr +

—1 5 400, the contributions from

Unend. In the limit of vanishing thickness, ¢ — 0 or e
Unenda — 0, as the cost of bending is vanishingly small. Thus the state of the drop-sheet

system is dominated by contributions from different interfaces: liquid-vapour, liquid-sheet,
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Figure 3.3: Contact angles 1, ¢ of the d~roplet sitting top of the eIastiNC sheet which undergo bifurcation for
different values of boundary tension, T'when ¥y = /3. Here T. = cos?(1y/2) is the critical non-
dimensional ten§ion for Eran§ition from partially-wetting phase to partially wrapped phase. We see 9 = ¢
happens when T' = 2T,.. T = cosdy is the transition criteria on tension for transition from partially-

wrapped phase to complete wetting.

sheet-vapour. We can write the energy contributions from different interfaces as (see fig. 3.1):
Us = 2751)(1/ - Lb) + (’st + stl)Lb + ')/Ldv (31)

where Ly, is the length of the wet region, Ly = (L — Ly) the length of dry region, 7, is the sur-
face tension of solid-vapour interface, v, is the surface tension of solid-liquid interface. We
know from Young-Laplace-Dupré (YLD) relation that equilibrium contact angle is related
to the surface energies by the relation: cos ¥y = Avy/y = (vsv —7s1) /7. We can use the YLD

relation to write the energy as:
Z/{s = usurf = 2’781;L — 7Y COs ﬁYLb + ’YLd' (37‘)

Apart from the energy of the interface, we also know that the droplet volume is conserved.

In the 2D limit this translates to the area being conserved. We can write the expression for
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the area of the droplet in terms of 0, ¢, Ry, Rq shown in fig. 3.1(b) as:
2 2 L. 2 L.
A=mR5 =R3( 60— 5 sin 20 ) + R | ¢ — 5 sin 2¢ |, (3-3)

which is the sum of contributions from the top and bottom part in fig. 3.1(b). Here Ry, Ry,
are the radius of curvatures of the drop and the buckled region of sheet, Ry, is the radius
of droplet. This area expression is arrived by summing sections of a circle as the droplet is
not deformed by gravity or other such body forces. We can normalise area to get the non-

dimensional form:

) [Sin2¢<9—5sin20> +sin29<¢—%sin2¢>} B G2(6,6)

ng sin? ¢ sin2¢ (-4)

Using geometry we also have the relations: Ly, = 2Ry, Ly, = 20 Ry, Ry sin€ = Rgsin¢ =
W /2. These relations can be immediately derived from the schematic shown in fig. 3.1(a). As
described earlier, we have applied tension Tj, at the ends of the sheet and so the total energy of
the system is a contribution of the surface energies and the work done by the tension. Now
the tension displaces the sheet ends by a distance d/2 as shown in fig. 3.1(b), so the work
done Uy = —dT,, due to tension at both ends. The displacement can be written in terms of
Liw,Wasd=L—-2w—W = Ly(1 — sin¢/¢). Here we use the geometric relation that
2w = (L—Ly), ascan be seen in fig. 3.1(b) and also the relation between W and L;, from earlier.
Finally the expression for the total energy, which is the equivalent of enthalpy for this open
system, is the difference between surface energy and work done due to tension. This can be

written in non-dimensional terms after expressing all the variables in terms of just 8, ¢, T as:
U =Us — Uy = 270 L + 2y [0 sin ¢ — ¢sinf cos Iy + Tsinf(p —sing)|,  (3.5)

(3.6)

U — 2739L> _ [#sing — ¢sinf cos Iy + T 'sin6(¢ — sin @)]

Us(9,6) = ( 27/ Rar G(6,9)

The final expression for energy U is dependent only on two variables 6, ¢ for a given value

of T and equilibrium configuration of the droplet-sheet system is obtained by extremising

this energy expression. We obtain the solution by solving the equations: 94tf = dpf = 0.
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We get two expressions for 7', which must be the same:

2¢(cos Uy sin ¢ + sin b)) + cos(f + 2¢) — cos 6 (3:7)
2sin ¢(¢ — sin @) 37
_ 20(cosy sin ¢ + sin ) + cos Uy cos(20 + ¢) — cos Jy cos ¢

= .8
2sin ¢p(f — sin @ cos §) + 2(1 — cos ¢) sin? @ G8)

T:

We can obtain an expression for cos ¥y, T' in terms of 6, ¢ by solving the above two expres-
sions in MATHEMATICA as

sin(f + ¢) sinf

cos vy = sn g — sng (3.9)
- sin(0 + ¢)
T = W (3.10)

We see in eq. 3.9 that the first term on the right hand side is nothing but T, from eq. 3.10. Now
in order to interpret the second term in eq. 3.9, we use the fact that the Laplace pressure in
the droplet is given by p = v/Rq = T1/ Ry, (see fig. 3.1(a)). This implies that

TI:E—Rb—SmH

v Rq sing’

This immediately leads to interpreting the eq. 3.9 as
T —T1 = cosdy, (3.11)

which remarkably resembles the Young-Laplace-Dupré relation, except that the surface ener-
gies are now replaced by the stress in the sheet. We call this the elastic Young-Laplace-Dupré

relation. The second aspect of this finding is that we can immediately expand eq. 3.10 as:
T =Ty cos ¢ + cos ), (3.12)

which is nothing but the local force balance at the contact line. A important difference how-
ever is that this arises out of global energy minimisation. Equation 3.11, 3.12 thus provide
the stresses inside the sheet and show that there exists a jump in the stress at the contact line

dependent on the equilibrium Young’s contact angle.
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TRANSITION FROM OPEN STATE TO CLOSED STATE

We started out by solving for the contact angles and how they relate to the stresses in the sheet.
We have calculated the stresses in the previous section and we now evaluate the angles from
the minimised solution. Using the equations obtained by minimising energy in eq. 3.7, 3.8,

we obtain an expression for cos 6, cos ¢:

T2 -T2 41
cosf = 7~I, I
o7 (3.13)
T2+ T2 -1
COS = I
¢ 7T (3.14)

Few important implications arise just by looking at the expression for cos 6, cos ¢. Firstly we
want the vales of @ and ¢ to be real and this implies cos 8, cos ¢ lie in the interval [—1, 1]. This
immediately implies from egs. 3.13, 3.14 that T+T; >1and|T —Ty| < 1. Using eq. 3.11

these expressions simply mean:

|cosdy | <1, (3.15)
T > T. = cos*(9y /2). (3.16)

The first inequality simply defines the criteria for partial wetting whereas the second inequal-
ity is more interesting as it sets alower bound on the value of tension for which partial wetting
phase exists.

When T — T.. the tension in the buckled zone approaches T; — sin?(dy-/2). For values
of tension lower than T, we see that the sheet configuration in partial wetting phase goes
unstable and enters a partial wrapping phase. We describe the characteristics of this transition

in the next subsection by expanding the energy of the system around this “fixed point”.

PARTIAL WETTING-WRAPPING TRANSITION

We see from the previous subsection that the lower bound on tension for stable partial-wetting
phase implies that the configuration goes unstable below a critical tension value, denoted by
T.. For T < T, the energy of the system Uy is minimised when ¢ = 7,6 = 0. This simply
means that there is no liquid-vapour interface, Ly — 0 whereas L, — 27 Rg,. The reason

why this phase is called “partially-wrapped” phase is because there is a fract of the sheet which
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is still exposed to vapour, i.e., the length of the dry region is not zero. The total energy of the
partially-wrapped phase is given by:

Z/lwraup :z;[f(gb =m0 = 0) — \/77'(1:‘—(30819}/).

Now to probe the transition from partial wetting to partial wrapping, we expand around the
equilibrium configuration ¢ = 7,0 = 0. We introduce new variables (which we will see is
more useful) in terms of ¢, . These are: §¢) = m— ¢, 0T = Ty —sin®(Vy /2) = sin b/ sin ¢ —
sin?(Jy /2). The control parameters T,y can then be written as: 67, = (T — T.), 0y =

arccos(Av/v). Equation 3.14 can be written using these new variables as:

1— 8(5T0(1 + (5TO) — cos 20y
1+ 85T0(1 + 6To) — cos 20y
6TV = 67T, (3.18)

§¢° = arccos (3.17)

Here the superscript of 0 is introduced to indicate the solution of the energy minimised
configuration. When 67, — 0 we get back the solution at the transition such that §¢ —
0,877 — 0. To see how they approach the energy minimised state, we expand the solution

expression around 67, — O state to get:

4 . .
0_ 3/2
o) . 0T, + O(6T,)7), (3.19)
0° = 5¢" sin? <192Y> : (3.20)

We can substitute this into the energy expression in eq. 3.6 to get:

- 9 ~ 16 ~ N
0 _ -2 (VY . 3/2 5/2
Uy = /msin ( 5 ) + /7T, 73\/7?811119}/5% + O(8T,)"#). (3.21)
We note that as 87}, — 0, the variables 6¢°, 6TIO and the energy L_{}) as well as their derivatives
approach the equilibrium value continuously to the partially wrapped state. This simply im-
plies that the partial-wetting to partial-wrapping transition in the limit of vanishing bending

effects is a second order transition or a super-critical bifurcation.
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EQgIPARTITION OF ANGLES UNDER LARGE TENSION

In the work of Schroll et al. [122] it was observed that for large boundary tension the angles
¢, (0y —0) are equal. It would be interesting to see if the low-dimensional analog of the same
problem also carries this feature. In order to do that, we expand the expressions 3.13, 3.14 in
the limit 7 >> 1 and we get:

sin 19y

Wy —0) = 7 +0(1/T%), (3.22)
! (23

which leads to the conclusion that (¥y — 6)/¢ — 1/2. Thus we see that in the 2D version of
the droplet-on-sheet problem, the contact angles get equipartitioned.

PARTIAL-WRAPPING TO COMPLETE WETTING TRANSITION

The energy of the sheet in the partially wrapped phase can be written in dimensional form
as:
uwrap = 275vL + (To - AP)/)va

where L, = 2mRg, for circular wrapping, however other non-circular shapes are possible
for reduced values of tension T' < T, where 2r Ry, < Ly < L. Moreover we see that for
T,/~ < cos vy, the energy contribution of the second term is negative for 0 < cos ¥y < 1,
ie, 0 < ¥y < 7/2and thus the total energy is minimised when L, = L, as more the
negative contribution from the second term, the lower the total energy gets. Thus entire dry
portion of the sheet is encapsulated by the droplet for T =T, /v < cosVy. This phase we
call the complete wetting phase and we see a transition from partial-wrapping to completely
wet phase in the limit of vanishing sheet thickness for T < cosdy. The partial wrapping
to complete wetting transition happens for —1 < cosdy < 0or7/2 < ¥y < 7 when the
tension 7, < -y cos ¥y which means that the tension must be compressive,. Thus we see for
this range of contact angles, the drop-sheet morphology remains in partially-wrapped phase

for all values of extensile boundary tension.
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Figure 3.4: Schematic of the inner-zone, close to the contact line. 6., - contact angle of droplet, determined
from force balance; 0, - far-field angle at the applied tension end; x;,, - half-length of liquid-vapour interface;
2z - leading order height of bending from liquid interface.

3.5 BENDABILITY EFFECT ON PARTIAL-WETTING TO PARTIAL-WRAPPING TRAN-
SITION

In the previous section we looked at the sheet morphology and their transitions under differ-
ent values of tensions, in the limit of e 7' — +oo0. In all the experiments, which we discuss in
detail in the later sections of the chapter, we also want to understand the effects of non-zero
values of e. We account for finite bending rigidity by considering the energy due to bending
in the total energy. The bending energy of the sheet is nothing but:

Z/{bend =5 ’%2(8) dS, (324)

where B = Et3 is the bending stiffness, «(s) is the curvature along the sheet arc-length s. We
will see in the next section that there is a universal solution to the shape of the sheet, obtained
by accounting the bending energy close to the partial wetting to partial wrapping transition.
We show that we can split the sheet into two regions, the inner region or commonly referred
in fluid mechanics nomenclature as the boundary layer, close to the droplet contact line and
the outer region, far from the contact line (shown schematically in fig. 3.4). In the ensuing

subsections we present the shape of the sheet in both these regions.
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INNER REGION AND OUTER REGION

The equilibrium equations obtained by minimising the bending energy of the sheet are known
as the Foppl-von Karman (FvK) equations for large deformation or the Kirchhoff equations.
Kirchhoft equations are derived for filaments, however since the transverse axis of the sheet
in our case does not play a role in the sheet morphology, the equations reduce to that of fil-
ament. We show here that there exists an ¢! independent asymptotic self-similar solution
to Kirchhoft equations close to the contact line, i.c., the inner region has a bendability inde-
pendent self-similar solution. We divide the sheet into two parts: dry and wet regions, where
sheet is in contact with vapour and droplet respectively. Now the force balance in the normal

and tangential directions of the sheet can be written as [11, 79]:

K3(s
B |:/€(8) + 2( )} — Tjk(s) = —ysin(fcon)da(s) — pj

T,-Tr = —7y COS Ocon (32‘5)

where 0.on is the angle between the tangent vector at contact-line and meniscus (shown in
fig. 3.4), j = dry/wet with T}, p; being the corresponding tension in the sheet and Laplace
pressure. T; = Ty, p; = 0in the dry region, T; = T7,p; = p in the wet region.

The outer zone in the wet region is defined by the region far from the contact line. Since
high-bendability implies scale separation between elastocapillary and droplet size, the rele-
vant length scale far from contact line is nothing but droplet size,  ~ Ry, (refer fig. 3.4) as
bending is important only close to the contact line. This simply implies & ~ ! everywhere

and thus the force balance in the outer wet region gives

B
57“*3 —Trrt =~ p.

Dominant balance between any two terms gives us three possible scenarios:

pr 1 |T7|
— - — <, (3.26)
gl 2 gl
r T 1
bir o Tl (327)
Y yo2
r T
PPl s (3.28)
Y Y
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The first two are rather peculiar as their realisations are physical only when 6o, =~ 7/2 where
tension vanishes with ¢, while the third scenario is more general. Using this, we can generalise
the pressure for e ! > 1, Ty, = pand k, — r~! forms the outer solution to leading order.
This we see is also consistent with the solution obtained in the earlier section where the sheet
takes the shape of a circle of radius r where r — Ry, when e ™! — +o0.

Now moving close to the contact-line which is the inner zone, eq. 3.25 has two elasto-tensile
length scales, l,, [;: one each in dry region (where the tension is 7;,) and wet region (where
the tension is 77). The point of s = 0 is used to denote the location of contact line on the
sheet. We can solve the Kirchhoft equations parameter-free to leading order in both dry and

wet regions when scaled using appropriate length-scale.
lo = !PT 2Ry, i = x 2! 2T 2Ry, (3.29)

where we have introduced a new non-dimensional number x = T7/T5,. This unique combi-
nation accounts for effect of tension in dry/wet region as well as bendability. The leading or-
der non-dimensional pressure inside the droplet from eq. 3.25 becomes: p = '/2T7~1/2x~1/2,
which is evidently O(+/€) and will not play a role in determining sheet’s shape at O(1). This

we show in detail here.

DRY REGION

The dry region exists in the region defined by s € [L/2, %) where s}, is the coordinate that
needs to be found by matching with that of the wet region solution. The non-linear curva-

ture equation for a sheet with infinite lateral width can be written from eq. 3.25:

K(s)
2

B [R(S) + ] —Tor(s) =0 (3.30)

This if we scale by bendability dependent,, we are left with a parameter free non-dimensional

equation:

10+ 5] i) =0 53)

We see that this equation can be integrated by multiplying with £/, and we get:



This gives us the functional form for curvature that decays to zero at far-field as:

—4¢® .
= m = -2 SeCh(S).

fa(8)
The analytical form of the curvature is integrated to obtain the angle ¢/(5) which the tangent
vector makes with z-axis. This angle can further be used to calculate the coordinate of the
sheet. It is worth highlighting that the solution in the dry region is complete and not pertur-
bative as the pressure in the dry region is zero everywhere. Itis the pressure in the wet region

that, we will show, that is accounted at higher orders in e.

WET REGION

In the wet region, defined along s € [s}, 2T Ry, ), where s}, is again a value arising out of

matching with the dry solution, the equation governing the behaviour of the sheet is, as seen

in eq. 3.25:

K3 (s)
2

B5t6) + 2] - Tinto) = (.32)

where T7 is the tension inside sheet in wet zone and p the Laplace pressure of droplet. When
we are in a scale separated regime of R, > lec, Where . is the elasto-capillary length scale,
we can see from eq. 3.28 that the terms due tension and Laplace pressure are to leading order
of magnitude O(Ry,). To put it differently, the pressure effect on the shape of the sheet in
the inner region occurs only at higher orders in e. Thus in the wet region close to the contact
line, the filament is governed mainly by the non-linear bending and tension. The equation

when scaled using [; = x Y2et/27-12R, the leading order equation is:

[A// i (3)

4(6) + "5 - hu(s) =0, (533

We know that in the infinite bendability limit, p = T7/Rg4, and thus the non-dimensional
pressure becomes = €'/27~1/2x~1/2, which is O(y/€). This shows that the solution main-

tains a similar functional form as dry-region to leading order given by:

e 4t .
Ruw(8) = poran —2 sech($)

We note here that the curvature of the sheet, £4(54), #w(5,) — 0 in the limit §; —
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—00, 8,y — oo. This is because 54 — —oo corresponds to s = —L/2 in the limite — 0

and §,, — oo corresponds to s = TRy,

MATCHING CONDITIONS

At the contact line, the solution from the dry and wet region needs to be matched with self-
consistent set of matching conditions. These conditions arise out of continuity of curvature
for torque balance, jump in gradient of curvature due to normal-force balance, and in-plane
force balance. Continuity of curvature at the contact line can be written in non-dimensional

terms as:
Ra(57) = VX Fu(3y), (3.34)

where we see the appearance of \/x because of T appearing in the length scale of wet region.
The normal force balance can be obtaining be integrating eq. 3.2 at the contact line and the
contributions are only from the linear bending term and surface tension which has a delta

force at the contact line. This reads as:

T(’%Zi(‘ém - X ’%L(éru)) = —sinOcon- (3-35)

Finally, the in-plane force balance on the other hand is simply:

T(1 —x) = —cosbeon- (3.36)

However we now know from the outer solution that to leading order in ¢, the stresses satisty
the elastic Young-Laplace-Duprét relation, derived in eq. 3.11. This simply means that the
contact angle in the inner region from eq. 3.36, fcon = ¥y. We can also rewrite eq. 3.36 in

terms of 877, 6T, as simply:
08 Oeon = cos Dy + (6T, — 6T7), (3.37)

using the relation 677 = Ty — sin?(dy /2), 6T, = T,, — cos?(y /2). Moreover we know that
6Ty = 6T, in the limit e — 0.
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Figure 3.5: (a) — (c) The curvature of the sheet x(s), angle the tangent makes with the contact line, ¢ (s)
and shape of sheet close to the contact line for different values of tension in the partial-wrapping phase. (d)
Scaled curvature of the sheet for large values of tension collapses onto a single curve, showing the self-similar
nature in the large tension limit. All plots are for ¥y = 7 /3.
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If Ocon = Yy, we can write the continuity of curvature and normal force balance as:

\/ (T — cos ¥y sech(3 \fsech (83), (3.38)

- - 9
T'sech(s})tanh(8})) — [T — cos 794 sech(§) )tanh(8})) = _sin Y.

5 (3.39)

The above two equations can be solved exactly for 83, 5 in MATHEMATICA. The solution

reads:

§y = — acosh(aT"/?) (3.40)
5= acosh[a(f — oS ﬁy)l/Q], (3-41)

b+ Vb 1/2 szT—cosﬁy.

The angle the tangent along the sheet makes with z-axis is obtained by integrating the solu-

 sin 19y

tion for curvature and is given by:

s < 0:19(84) = m + 2atan [tanh(sd—;sd>], (3.42)

s> 0:19(8y) =7 — ¢ — 4atan [tanh(éw—;gj”)] (3.43)

We plot in fig. 3.5(c) the shape of the sheet close to the contact line, using these expressions.
We observed in the experiments, as we detail later in this chapter, that the curvature close to
contact line decreases with increase in tension. Thus for large values of tension, T > 1we
find that rescaling » by multiplying it with ¢'/27/2 and s by ¢'/2T~1/2 collapses different

curvature shapes on to a single curve as shown in fig. 3.5(d).

3.6 COMPLETE WETTING PHASE AS WILLMORE PROBLEM

The completely wet state as we have seen in section 3.4.2 is characterised by the entire sheet
engulfing the droplet where the wetting length of the sheet, L, = L. The shape of sheet
when its length is 27 R, is a perfect circle of radius Ry, as it possesses minimum bending
energy. But for any L > 27 R, the droplet has to increase its perimeter while preserving its

area to adapt to increase in sheet length.
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The contribution to bending energy of sheet arises from Laplace pressure of droplet and
moreover since there is no liquid-vapour interface, surface energy contribution from liquid-
solid contact and solid-vapour contact is a constant. Leaving aside this constant surface en-

ergy, the total energy can be written as:

B L L
Unend :/ k2ds — / T(|t|2 —1)ds—p / dA — mw? (3.44)
2 Jo 0 a0

where T is the tension in the sheet which enforces length constraint, Laplace pressure p is the
lagrange multiplier that preserves area, d€2 is the boundary of the droplet. The problem of
minimising the squared difference of principal curvature for a surface with a given enclosed
volume has been studied in 3D, and is called as Willmore energy [8]. This Willmore energy
in the 2D setting becomes the complete wetting problem we have here. We see that when the
energy is scaled by B, the solution is independent of bendability and the problem is purely
geometric whose state is determined uniquely by the value of ® = L/Ry;,.

NEAR CIRCULAR WRAPS, & ~ 27

The solution to shape of sheet for & = (27 + 1), where < 1 can be approximated by a
shape with two halves of a circle of radius (R4 — dRgy) connected by a rectangle of width,
A. The bending energy of such a configuration istf = B /(Rg, — dRg,) and constraints of

length, area combine to give:

(L —2))? (L - 2>\> L2
Sl - .
47 s (2m +n)?

This geometric problem under 77 < 1 can be expanded and we find:

Lyn . 3n
R~ 1——
A Qﬁ( 877)

Ry, T 2V T 27w

which shows both the increase in length as well as change in radius, A, d Ry, ~ /7 away from

a circle.
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Figure 3.6: Schematic representation of the sheet represented using ¢ (t), j = ,y. Both ¢¥(t) and ¢” ()
are series of rods connected to its neighbour under consistency condition of continuous slope and curvature
at end points.

NUMERICAL MINIMISATION OF WILLMORE ENERGY

We compute the sheet morphology for differen values of ® by direct numerical minimisa-
tion of total energy of drop-sheet system in eq. 3.44. This is performed by expanding the
sheet position vector (z(s), y(s)) in a cubic-hermite polynomial basis and expressing bend-
ing energy in terms of coefficients of these polynomials explained in detail in the ensuing
subsections. In order to minimise the energy function in a wrapped state for different val-
ues of ® > 27, we write the energy of system in terms of (z(t), y(t%)) with ¢? being an

arbitrary parameter that goes from 0 to 2. The connectivity of sheet’s ends is ensured by:
z(0) = z(27), y(0) = y(2).

2m 27
thns =5 [ e a1 ([T ) - o).

where the curvature in this new parameterisation is nothing but:

(1) (1) — (12" (1)
(x/Z (td) + y/2(td))3/2

K(th) = (3.45)

We now divide the sheet into (N — 1) rods each of constant length (see fig. 3.6(a)), | =
L/(N — 1). The discrete points (z(t¢), y(t¢)) = (z;,y;) are then used to construct a spline
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using Hermite polynomials:

!l — s

/
() =y st o) ¢ P gty S T B ot
(3.46)
gy sV 4 8% . — 2y
() = i+ st =y + Uty S B o e
(3.47)

Variables s7, s? are the slope of spline at the beginning of i*" rod and

;o T4l — T, Yirl — Y
'/L'Z_ l ’Z_ l .

The bending energy term can be expanded using the curvature expression from above and

integrated using a Gauss-quadrature scheme given by:

B 27
Uhena =5 [ w2(E" (5.43)
N-1 M d d
B (terl - ti) N
=5 2> g w)ki(my), (3-49)
=1 j=1
(., —t) jm
m; = +12 cos ar-1) (3.50)

The function w(j) is the weight function for the quadrature scheme on Lobotto points. The

curvature between nodes (i, + 1) can be explicitly written using the ¢ (), ¢? (t¢) as:

g (t)a! () — ' (t")gf" (t)

Hi(td) - ; 7
(g7 [2(t4) + |q [>())3/2

(3.51)

What remains to be done is to match the slope, second derivative and end points of the sheet.

This can be written as:

5] = s, (3-52)
ai (t1) = qly_1) (%), (3-53)

(j1 +in_1), for j = (z,y). (3-54)
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Figure 3.7: Energy of the sheet in a wrapped state as a function of ® = (L/Rg ;) with and without self-
intersection. ® = 27 represents a circle and all higher values are non-circular configurations and numerically
we find the critical value where self-intersection begins to be . ~ 12.5.

Apart from these boundary conditions, we also have the consistency condition that ties two

rods together. This is used to find slopes at nodes :
s+ 48] + sl =30 + Jig)-

From eq. 3.49 we see that the discrete form of bending energy is only a function of the coeth-
cients of the hermite polynomial and we minimise this energy with (V + 1) rigid constraints.
N of them come from length conservation of each of the rod while the last one to keep the
area fixed for a given Ry,. These integral constraints are again written in quadrature form

and supplied into the minimisation toolbox of MATLAB.

NON-INTERSECTING BOUNDARY CONDITION

We see from fig. 3.7 that as we decrease the size of droplet for a fixed sheet length which in-
creases the value @, there exists a critical value of ® which we call ®. beyond which the sheet
starts to self-intersect, while still preserving area (trajectories of solid line in fig. 3.7(a)). The
numerical minimisation with area constraint however works because the sign of area in the in-
tersected region is opposite to other region. In order to look for physically relevant solution,

we must prevent sheet from passing through itself. We do that by the following technique:

+ Compute two points (L, Ym), (k, yx) thatare closest along the sheet for & < @ and
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might touch for a higher value of ®.
* Locate a series of n. points that are neighbouring (z, yx ), on either of its sides.

+ To ensure non-crossing, with respect to vector X,,,+1 these 2n. + 1 must points remain
g +
on the same side as we increase ® beyond ®. where X; = (z; — T, Yj — Um).

* Using the sign of cross-product we can write:
sgn (X1 X Xg) < 0.

This we supply as inequality constraints for 2n. + 1 points into the minimisation tool-
box. The advantage of this technique compared to other techniques such as adding
same signed charges at nodes is that the form of the energy of the sheet remains un-
changed, except now for a few additional constraints.

3.6.1 SHEET MORPHOLOGY WHEN ¢ > 27

Using the numerical technique describe in the previous subsection, we go beyond small vari-
ations about a circle, i.e., we explore the regime of ® >> 2. We see from fig. 3.7(a) the shape
of the sheet for ® > 27 and we also see a dipole mode with two lobes as the minimum en-
ergy morphology of the sheet. A simple way to see this mode selection is to calculate the
energy for a mode with n-lobes. Like in section 3.6, we can approximate n-lobes of the sheet
as circles of radius a connected to each other by straight segments of length X. The bending
energy of such a state is given by U,eng = nBm/a. Moreover from area constraint we have
o = Ry, /+/n. Thus we see thatUpeng ~ n/2. Sincein the scenario we are interested inn > 2,
we see dipole being the least energy mode. In order to ensure that the dipole mode is not a
meta-stable solution, we initialise the numerical minimisation with shapes that have higher
modes and find that the minimised solution eventually reach a dipole (see fig. 3.8(a)). Mov-
ing ahead, by simply minimising the energy in eq. 3.44 the solution starts self-intersecting
after a critical @, ~ 12.5 and since these self-intersection solutions are unphysical, we ensure
that any two points on the sheet do not cross each other by the technique described earlier. In
fig. 3.7 we plot the energy with and without non-intersecting constraint and @, is the point
at which the energy deviates from that of self-intersecting solutions.

In this complete wetting phase we see that the energy diverges with increase in ®, however

not indefinitely. This divergence is cut-off by the smallest length-scale in our working limit,
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Figure 3.8: Three different initial conditions corresponding to (a) tripole (b) quadrupole, (¢) pentapole
modes that result in the same dipole solution, (d) ® = 1.08 for these numerical optimisations.

which is lec. When the lobes in the wrapped state are smaller than O(le.), surface tension
can no more hold the sheet wrapped and the parcel becomes unstable. We can see that in the
limite~! > 1, the region of stable wrapping is set by the absolute value of e ! but the shape

interestingly is independent of this value.

3.7 FINDINGS

So far we have derived the solution for the morphologies of thin elastic sheets in contact with
a liquid droplet, with applied boundary tension. We have obtained exact results in the sin-
gular limit of e~! — 0, and in this limit there are two bifurcations resulting in three distinct
phases which we call the partial-wetting phase, partial-wrapping phase and complete wetting
phase. We also find that the stresses in the sheet obey an elastic Young-Laplace-Dupré rela-
tion, very similar to the classical Young-Laplace-Dupré relation, arising here out of global
energy minimisation. In the regime close to the transition of partial-wetting to partial wrap-
ping, we look at the shape of sheet close to the contact line and far from it. The problem of
shape near contact line has an inner region dominated by competition between bending and

tension and an outer region dominated by Laplace pressure of droplet. The morphology of
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the sheet in the inner region follows a universal self-similar shape, independent of € and the
sheet is circular in shape in the outer region.

In the complete wetting phase, we characterise the sheet shape by showing that the energy
in this phase is nothing but 2D Willmore energy, and use a Hermite polynomial based spline
technique to describe the sheet shape. The numerically minimised sheet shape is described by
a single parameter ® = L/R;,. When the length of the sheetis L = 2w Rgy, i.e., ® = 27 the
sheet becomes a circle while for very large values, ® > 12.5 the sheet starts self-intersecting.
We come up with a simple technique to robustly capture the physically relevant shapes, with-

out modifying the form of the Willmore energy.

3.8 BACKGROUND TO EXPERIMENTS

The wetting properties of a drop on a rigid substrate determines the angle of contact with
the solid, known as the Young angle of contact. However if the substrate is a soft solid [69,
127, 70, 104] or an unstretchable but thin film [64, 122, 131], it can deform under the capil-
lary action of the drop. In the former case, the liquid-vapour surface tension induces large
localised stretching close to the contact line while in the latter, the film bends without stretch-
ing, resulting in large bending close to the contact-line. In both these scenarios the perceived
contact angle at scales of the droplet-size deviates from the Young’s contact angle, 9y [3].
The magnitude of this contact angle is obtained from a global energy minimisation rather
than a simple local force balance [122]. This anomalous contact angle behaviour has several
applications ranging from bio-locomotion to creating hydrophobic fabric [17, 27, 42, 23].
We study a two-dimensional version of the wetting experiment at an air-water interface,
where the thin sheet is replaced by a slender elastic filament and is wet by a nearly flat oil
drop floating on the water interface. The three-dimensional problem of a droplet of liquid
on top of a floating thin sheet [64] was initially studied because the capillary forces at the
contact-line generate a radial wrinkling pattern [64, 122]. However, from the viewpoint of
studying the contact angle, the wrinkles are a hindrance, as they impede the measurement
of the contact angle and the deformation of the sheet close to the contact line where there is
large localised bending. On the other hand, the 2D system does not have the complication of
wrinkles which arise in 3D. When the droplet size approaches the size of the sheet, if the sheet
is highly bendable then it can wrap around the droplet and enclose it entirely. Wrapping in

2D can occur with smooth, isometric bending, unlike in 3D, thus the 2D filament-droplet
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(a) (b)

Figure 3.9: (a) Schematic of the experimental setup where a droplet of Mineral oil (orange) is placed in the
vicinity of a floating thin elastic filament at the air-water interface of a water bath. One end of the filament
is connected to a soft beam (green) whose end displacement is used to measure the applied tension 7T},. Ten-
sion in our experiments is controlled by inducing in-plane displacement of the free end of the filament. (b)
Variables of interest are shown on top of an image from experiments : 1, ¢ - angle made by the droplet with
the buckled filament; T}, - applied boundary tension and T - tension in the droplet-wet region, y - effective
surface tension of the 2-D droplet along “contact-line' as detailed in the article; R4, R}, - radius of curvature
of the free interface of droplet and the radius of curvature of the filament wet by droplet. The scale bar in the
image is 5mm. Further details of the setup are provided in fig. 7.7.

system allows us to study phenomenon of wrapping of the droplet by the filament more
easily than in the 3D system.

The entire range of phenomena, from the Young contact geometry, to large deviations
from apparent Young contact, to wrapping, can be obtained by tuning the competition be-
tween the liquid-vapour surface tension, and the bending rigidity of the sheet over the scale
of the drop. This competition is captured in a dimensionless parameter called the bendabil-
ity, which is the ratio of the droplet-size, w to the capillary-bending length, l.. which is the
length scale at which sheet bending and capillary forces are similar in magnitude. Most stud-
ies [111, 4, 118, 109, 43, 101] are in the regime where the bendability is O(1) while our exper-
iments are in the high-bendability limit. We achieve this limit by using thin filaments and
large droplet sizes. This guarantees a separation in scales between droplet size and capillary-
bending length, and the behaviour in this limit is dramatically different from that in low
bendability limit [122, 106, 76]. Another method to smoothly modify the rigidity of the
filament to the capillary force applied by the droplet is to place the filament under tension.
When the filament is under large tension, it does not deform and the Young scenario is recov-
ered; when it is slack, then large deformation and wrapping can occur.

As shown in fig. 3.9(b), we measure the contact angles 1, ¢ of a partially wetted filament
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as a function of applied tension. We show in this paper that the contact angles exhibit a uni-
versal behaviour in the thin-filament limit which were not measured in earlier work on the
equivalent 3D systems[131, 64, 122]. In the limit of infinite bendability, our results match
well with theory derived early in the chapter, with the effective surface tension of the 2-D
droplet being the only fitting parameter. Under large magnitudes of applied tension, the
theory predicts that though ¢ and (Jy — ) — 0, the ratio (Jy — ) /¢ asymptotes to a con-
stant of 1/2. We measure this ratio in our experiments and observe the trend predicted by
the theory to hold true. We also find that the applied tension and the tension in the buck-
led zone obey a force balance relation remarkably similar to the Young-Laplace relation. In
the theory of vanishing bending stiffness, the region close to the contact-line is of infinite
curvature. However, in the experiments the filament has a finite magnitude of curvature de-
noted by 1/ R, an elasto-bending scale; we study the variation of R, with 75, the applied
boundary tension. The effects of finite bendability here produce deviations from the high
bendability theory. In the wrapped regime when the filament length is less than the perime-
ter of droplet, we find that the filament forms part of a circle around the drop, unlike in the
sheet wrapping experiment[106] where the shape resembles a parachute. The circular shape
ensures there is no jump in curvature at the interface between filament end and droplet inter-
face; this leads to seamless wrapping as observed in the case of ultra-thin sheets [76]. Whereas
for low-bendability filaments, the radius of curvature of the droplet-interface diverges as the

ends of the filament approach each other.

3.9 RELEVANT VARIABLES FOR DROPLET-ON-FILAMENT

Four length scales govern the overall mechanics of the filament-drop system. These are the
diameter d of the filament, the droplet radius Rg;, the length of the filament L, the capillary-
bending length scale lo. = (B/7)'/3 with B being the bending stiffness, given for a filament
of circular cross-section as: B = Ewd?/64, (E - Youngs’ modulus of filament material). A
fifth length scale arising out of stretching, I,, = ~v/E (7 - droplet-vapour surface tension)
is irrelevant in our experiments because I, = 0.03pm < d ~ O(10um). Moreover we
are interested in a high-bendability regime where the size of droplet is much larger than the
capillary-bending length scale, R4, >> lcc. The non-dimensional quantity that indicates this
scale separation is the bendability: ! = (Rg, /lec)?.

By varying these length-scales and the applied tension we can explore the phases of the
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Figure 3.10: (a) Schematic of the soft beam attached to one end of the filament to measure tension in the

filament with the relevant variables: v(s) - angle between tangent and vertical; F* - non-dimensional force
applied at beam's end; o - angle at which the force is applied; s - non-dimensional arc-length; dx /1, dy /1 -
non-dimensional displacement along x, y-direction. Alongside is the image of the beam from the experiment
superimposed on the numerically-solved shape from eqn. 3.56. (b) Numerically computed displacement dy /1
vs non-dimensional force, F' for three different o values: 7/2, 7/4, /8. (¢) Fluorescence intensity along
two radial lines, one close to the contact-line of PDMS filament and one far from it (shown schematically in
the inset). This indicates that the presence of the filament does not distort the 3D height profile of the drop,
except perhaps very close to the 4-phase contact line as shown in (d) where we see 3-D effects appear as the
droplet becomes thin near the contact line. The droplet we use here is of Mineral oil and is dyed using Sudan
Red dye.

filament-drop phase diagram. The axes of the diagram are three non-dimensional quantities

constructed from these variables:

T = To/(ryd)v 6_1 = (Rdr/lec)Q, ¢ = (L/Rdr)~ (3'55)

Here T, is the applied tension at the sheet boundary, as seen in fig. 3.9(b); T is the non-
dimensional applied tension; ® the ratio of filament length L to droplet radius Rg,. In the
partially wet regime we maintain the limit: € 7! > 1, ® >> 2. In the second part of the article

we explore the other regime of e 71 > 1, & < 27 to understand the wrapping mechanism.

3.10 EXPERIMENTAL SET-UP

Our experiment consists of a thin elastic filament floating at air-water interface, placed in
contact with a floating oil droplet as shown in fig. 3.9(a). One end of the filament is attached
to a translation stage and the other end to a beam made out of a soft elastic material (Vinyl
polysiloxane). We control the tension in the filament by moving the beam. As described
in detail later, though the floating droplet is three-dimensional in shape, it is flattened by

gravity and so behaves approximately like a two-dimensional object. We define the contact
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angles ¥ and ¢ in the plane of the air-water interface (see fig. 3.9(b)). The effective surface
tension of this 2-D droplet is the line tension of the droplet at the air-water interface. In the
partially-wrapped state we vary the size of the droplet, diameter of the filament and the ap-
plied boundary tension, while in the wrapping experiments, we vary the droplet size for var-
ious filament diameters. These three parameters help us explore different high-bendability
morphologies of the filament. We image the filament shape and measure the curvature of the
filament close to contact-line of the droplet. The procedure used for filament shape extrac-
tion from images is the same as described for relaxing filaments in chapter 2, whose details
are in appendix. 7.1.1. Near full wrapping, we use fluorescence imaging to accurately capture
the shape of the filament. This allows us to calculate the radius of curvature of the filament

and that of the droplet as a function of its bendability.

MAKING FILAMENTS

The thin filaments used in our experiments are made out of Polydimethylsiloxane (PDMS)
whose Young’s modulus is E = 1MPa. We use a mixture of PDMS base (Sylgard 184, Dow
Corning), accelerator and cross-linker in the ratio (10:2:1) at room temperature, and as the
mixture begins to set, we take a droplet of this mixture and pull it using tweezers to create thin
long threads which then set. We make filaments whose diameter d varies between 80um —
200pm and with length, L = 1000d. In appendix 7.2 we provide details to make the filament

and images of these filaments under microscope.

MEASURING TENSION

The capillary forces originate from surface tensions thatare ~ 10mN /m (source: Data Sheet),
and they act on filaments ~ 100um in diameter, resulting in forces of O(1N) in magnitude;
this demands a sensitive force sensor. We clamp a long, soft beam at one end to a translation
stage and attach the filament at its other end. This is shown schematically in fig. 3.9(a). The
soft beam is made of Vinyl polysiloxane (VPS) and has a diameter of 0.5mm, length of | =
6cm and Young’s modulus of E; = 200kPa. When the translational stage is displaced the
beam bends and we track the tip of the soft beam at the end attached to the filament. The
standard small deflection approximation gives the dependence of force on displacement as:
F ~ 3B,0x/1? where B, is the bending stiffness of soft beam, given by B, = Esm‘g /4, ty -

beam diameter, 6z - horizontal displacement, [ - length of soft-beam as shown in fig. 3.10(a).
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However, for the range of tension we are interested in (which we shall see later, traverses
more than a decade in non-dimensional tension scale), we require the solution to the full non-
linear beam equation. Here, unlike in the small displacement limit, the displacement in the
vertical direction of the beam, 0y cannot be neglected and for large tensions the displacement
in this direction is sensitive to applied tension as shown in fig. 3.10(b). Furthermore, the angle
between the end of the filament and the initial configuration changes as a function of tension
creating an angle o (up to a maximum of 30 degrees in experiments). We measure o, dz, oy
for each tension value in the experiments. We then find solutions to the non-linear problem

given by:
Y (s) + F cos o sint(s) + Fsino cosy)(s) =0, (3.56)

where ¢ is the angle between the tangent to the beam and vertical (see fig.3.10(a)), s the non-
dimensional arc-length along beam (non-dimensionalised using /) with s = 0 indicating the
fixed end and s = 1 is the end connected to the elastic filament. F = FI?/B, is the non-
dimensional applied force. We solve this system numerically using a shooting method [9]
under boundary conditions: 1(0) = 0,¢/(1) = 0. From the solution for different values of
F for a given o we look for the F' that corresponds to the measured dz /1 and §y /I, which is
the required quantity to compute T;,. This procedure is executed for all displacements and
we show in fig. 3.10(a) that the computed shape (green line) matches well with the experi-

mentally observed shape (gray line).

DROPLET AND SCALE SEPARATION

We use mineral oil of density 0.86 g/mL for the droplets. The oil is dyed with Sudan red
G, a hydrophobic, water-insoluble dye. This captures the shape of the droplet precisely as
we image it under uniform light. The oil droplet is a three-dimensional object with three
length-scales relevant at different regions of the droplet. These are Ry, - radius of droplet,
d - diameter of filament, I, - capillary length. The droplet size Ry, is the largest of these
length-scales, d is relevant close to the region where the droplet is in contact with filamentand
lc in the curved region approaching air-water interface. For large droplets, gravity ensures a
uniform thickness ~ . and if we work with small-d filaments, then we are in a scale separated
regime given by: d < I, < Rg,. Furthermore the quantities of interest in our experiments

¥ and ¢, are all O(Ry,) features. We ensure this separation by choosing R, in the range
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0.5cm — 2cm with the capillary length of Mineral oil I, = 1.8mm and d = 80pum — 200um.
In fig. 3.10(c) we plot the droplet surface profile close to filament contact line, and far from
it, to show that the shape of the droplet is not strongly perturbed in the thin direction by the
presence of the filament and thus the 2-D approximation is valid.” We measure these profiles
in our experiments by measuring the fluorescence intensity of a droplet with Nile Red under
a uniform light source. These intensities act as proxy for the height of the droplet and we
have plotted the scaled value of the intensity (scaled by the maximum value, at the center of

the droplet) in fig. 3.10(c).

VISUALISING FILAMENT

In order to visualise the filaments in our wrapping experiments we wet the filament in a so-
lution of Nile Red (HIMEDIA RMo9734) in ethanol and allow the ethanol to evaporate. We
leave the droplet uncoloured and shine a laser beam (WickeD LASER, 500mW at 500nm)
on the filament. The filament fluoresces in the red, and a filter is used to eliminate the green
illumination line. Though Nile Red is a hydrophobic dye and diffuses into mineral oil at

long timescale, our experiments were performed before the dye diffuses into the droplet.

HIGHLIGHTS OF THEORY

We make comparisons to a theory of a 2-D drop-on-sheet problem, i.e., a drop modelled as
a cylinder sitting on top of an inextensible rectangular sheet, in the infinite-bendability limit.
This involves minimising the total surface energy of the system, with contributions from
liquid-vapour, liquid-solid, and solid-vapour interfaces. The analysis reduces to a purely geo-
metric question with contact angle, ¥y and applied tension, T being the relevant parameters.

Given these parameters, the complete shape of the droplet and sheet is predicted, for a fixed

"We do not explore here in detail the question of why the filament chooses to sit at the three phase
contact line instead of passing undeviated over or under the drop. Possibly the bending energy lost
in curving around the drop is more than compensated by the oil-air and water-air interface protected

by the filament.
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Figure 3.11: (a) Measured values of ¥ and ¢ from experiments for different bendability values of
the drop-filament system. For the filament diameter 205um, we choose four different droplet sizes:
12.7mm, 13.8mm, 18.0mm, 20.2mm shown using O. Similar angles 1) and ¢ measured for a filament of di-
ameter 77um and three different droplet sizes : 10.6mm, 14.2mm, 16.6mm plotted as ¢. We see a clear
collapse of all the dataindicating a universal behaviour of perceived contact angle in the high-bendability limit,
with solid line being eqns. 3.57, 3.58 for Jy = 115° and dashed line for ¥y = 125°. The point where 9, ¢
intersect is where T' = 27, which in our experiments give T./d = 2.2mN/m, from~y = 7.6mN/m, Jy =
115°. (b) Computed values of (Jy — 1) /¢ in experiments (symbols) compared to the theoretical predictions
from egs. 3.57, 3.58 which approach a value of 1/2 at large tensions. O corresponds to the thicker and < to
the thinner of the filaments. (7) — (iv) show the shape of filament-drop system as the tension in the filament

is decreased. Scale bar in () is 5mm.



area of droplet. The expressions for the angles 19, ¢ are given by eq. 3.13, 3.14:

(1+ 2T cosdy — cos? dy)

V= , .
coS o7 (3.57)
_ a 2.9 _ 72
cos b = (1 — cosvy /T + (cos 193/ 1)/2T ) (3.58)
1 —cosvy /T

From the expressions above, we see that the angles remain at ¥ = 0,¢ = 7 for values of
tension 7 smaller than a critical tension, T, = cos?(¢Jy/2). This is precisely the transition
from a partially wet state where only a part of the drop boundary is covered by the sheet, to
a wrapped state where the droplet boundary is completely encapsulated. Interestingly the
tension at which ¥ = ¢ occurs at T = 27,.. We will use the critical tension, 7. to measure the

unknown line tension 7 in our experiments.

3.1 RESULTS

CONTACT ANGLE AND CRITICAL WRAPPING TENSION

In fig. 3.11(a) we plot ¥, ¢ as functions of T, scaled by the critical tension for wrapping, 7. We
show data for filaments of two different diameters, 77m and 205um. The data were taken
by varying the tension while holding the drop size fixed. The drop size was then varied in the
range 10.6mm—20.2mm. These two filament diameters and the different droplet sizes helped
us span bendability values between e~ = 80 — 1920. The procedure used for extracting the
contact angles from the experimental images is explained in detail in appendix. 7.2.4. In order
to compute the bendability et = (Rg; /lec)? of the droplet-filament system, we need the line-
tension of the oil droplet. To obtain -, we note in fig. 3.11(a) that as the magnitude of tension
increases there is a crossover in magnitude between ¢ and . From the infinite bendability
theory we expect this cross-over to happen at T/T,. = 2 (see eqns. 3.57 & 3.58). In order to
match this cross-over point in experiments, + is the only fitting parameter. The ~-value here
is difficult to measure since this is not the usual surface tension of a liquid-vapour interface
but is the line-tension of the droplet contact line with the water bath. Traditional measuring
techniques such as pendant droplet technique, tensiometers do not provide a measure of this
line-tension. We find that all the data collapse with the analytical expression in fig. 3.11(a) for
v = 7.6mN/m. To extract )y we measure the contact angle for T >> T.. For this surface

tension v, we find 7, = 2.2mN/m when ¥y = 115° for the thicker filament and T, =
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Figure 3.12: (a) Non-dimensional applied tension T,, (b) tension in the portion of the filament wet by the
droplet 77, and (¢) the difference between these tension values, (TO - TI) evaluated by using angles 9, ¢
measured from experiments (using eqn. 3.59) as functions of the applied tension, T measured using soft-beam
displacement. O correspond to filament diameter 205m and < to diameter 77 m for different droplet sizes.
The solid and dashed lines respectively indicate theoretical predictions from eqgn. 3.60.

1.6mN/m when ¥y = 125° for the thinner one in our experiments.

Now for T' > cos?(dy /2) we can expand the egs. 3.57, 3.58 to get

PSRl S WA PV it & .
¢ 7 Y = (3.59)

From this it is easy to see that for applied tension, T > 1, the asymptotic value of the func-
tion (Vy — ¥)/¢ — 1/2. Using the measured values of ¥, ¢ and 9y in our experiments, we
compute (Yy — 9)/¢ as shown in fig. 3.11(b). The trend predicted by the analytical expres-
sion is captured, though the data are noisier at large tensions due to finite precision in the
measurement of ¢ whose magnitude approaches zero.

In the infinite bendability limit, the normalized internal stresses are related to geometric
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variables ¥ and ¢ alone through the expressions

7 sind - sin(d+ @)

T, = ——~. .
sing’ ¢ sin ¢ (3.60)

These expressions are derived by using the relation that the tension in the buckled zone
is given by T7/(dRy) = 7/ Rq where Ry, Ry are the radius of buckled zone of sheet and the
radius of the droplet interface. Now the ratio Ty = T /(dy) = Ry/ Ry can be written in terms
of ¥, ¢. The expression for T, on the other hand is derived by minimising the total energy
of the system as detailed in the previous section. In fig. 3.12(a) we compare the boundary
tension 7T, computed from ¥, ¢ and eqn. 3.60 and the direct measurement of tension using
the deflection of the soft beam-T". We next compare in fig. 3.12(b) experimental data for 77,
the stress in the buckled zone obtained from the measured contact angles, to the analytical
expression for Ty for two different ¥y = 115°,125° corresponding to the thick and thin
filament. The jump in the magnitude of tension at the contact line is proportional to the
equilibrium contact-angle ¥y and is given by: (TO — T]) = cos ¥y, which is the equivalent for
thin-filaments of the Young-Laplace-Dupré relation. In fig. 3.12(c) we compare the difference
(To —1T7) asa function of applied tension T and see that it remains constant, close to the value
cos Yy, predicted by theory. There is a reasonable match between experiments and the above

expression 3.60 with the biggest deviations at small tensions.

CLOSE TO THE CONTACT-LINE

The angles and tensions measured in the previous section were compared with an infinite-
bendability theoretical model. In this section, we explore quantities that reflect more obvi-
ously the finite bendability of the filaments. In the infinite-bendability prediction, the fila-
ment is buckled into a circle of radius Ry, where it is in contact with the droplet, and straight
elsewhere with a sharp cusp connecting the straight region and the wetted region. However,
finite bendability introduces finite curvature, 1/ R, in this transition zone close to the con-
tact line.

We measure 1/ Rep, as a function of applied tension, T for three different droplet sizes (w =
6.2mm, 7.6mm, 9.4mm) as shown in fig. 3.13(c). To image the filament shape near the droplet,
we dye the filament (and not the droplet as in the previous section) with Sudan Red G and
illuminate with a uniform white light source. After extracting the filament shape, we do a

B-Spline curve fit to the filament shape and calculate the signed curvature as a function of
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Figure 3.13: (a) Three different filament shapes extracted from experiments as the applied tension T}, is
decreased for a fixed droplet size of Ry = 6.2mm and filament diameter d = 120um. (b) Correspond-
ing signed curvature, x(s) of shapes in (a) computed as a function of non-dimensional arc length s (scaled
using filament length) after fitting Bezier spline to the extracted shapes. 1/Rep, 1/ Ry, correspond to maxi-
mum and minimum of k(s). (¢) The curvature of transition-zone close to the contact-line between filament
and droplet, 1/ Rep, and (d) the curvature of the droplet wet part of filament, 1/ Ry, as a function of applied
boundary tension T, (in 4 IN) for a filament of fixed diameter d = 120um but for three different droplet sizes
R4 = 6.2mm(A), 7.6mm(0), 9.4mm(0J) and several values of T},. The corresponding bendability values
calculated using these different droplet sizes are e =1 = 74, 110, 190. The solid lines in (¢, d) correspond to

T,;l,To_l/2 and the dashed ones are To_l/z,T(jl.

filament arc length as shown in fig. 3.13(b). The three shapes in fig. 3.13(a) correspond to
three different tensions in decreasing magnitude for a fixed droplet size of w = 6.2mm. We
identify the maximum value of curvature max(x(s)) with 1/Re, and the minimum value,
min(x(s)) with 1/R;,. We find that both curvatures decrease with increasing outer tension
T, as shown in fig. 3.13(c, d).

The curvature 1/ Ry, of the buckled part of the filament may be estimated in terms of the2D
Laplace pressure of the free surface of the droplet. This naive estimate predicts 1/R, ~ 1/T7,
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Figure3.14: R, ﬁ/]:?eb computed using the data showninfig. 3.13(¢, d), as a function of applied tension with
solid line indicating T'*/2.

however, the data are more consistent with 1/R;, ~ 1/+/T (note that T} and T, are propor-
tional to each other). The length-scale Ry, close to the contact line can be estimated from
balancing bending forces and tension in the filament. In an idealized 2D situation, the ten-
sion jumps across the contact line resulting in a change in curvature from el QTI_ Y2 n the
region wet by the droplet to e V2T 172 sutside. However, the experimental measurement
of 1/Rep, show curvature decreasing as 7, !. There are three major differences between the
experiment and the model: one is that the filament bendability ranges from 74-190, whereas
the model assumes infinite bendability. A second respect in which the experiment is non-
ideal is that the meniscus near the contact line is fully 3-dimensional, as shown in fig. 3.10(d).
This 3-dimensionality comes about because the droplet close to the contact line sees the ef-
fects of the thickness of the filament and the shape of the droplet at this scale depends now on
the filament thickness. Moreover our assumptions of scale separation where the observables
were of the O(Ry, ) fails at this scale. Lastly the theoretical estimates also assume fixed area of
the droplet while in the experiments a fixed volume of droplet is maintained as the tension
is varied. In this process the projected area varies, with only 5% change over the range of ten-
sions in the experiment. We guess that these contribute to the large spread in Ry+/€/Rep, vs
T,/ shown in fig. 3.14(b), which scales as T''/? as seen in fig. 3.5(d).
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Figure 3.15: (a, b) Fluorescence images showing shape of filament encapsulating the droplet for a filament of
diameter d = 90um, 170um and a droplet of size Ry, = 7.5mm, 2.3mm with droplet-interface shown as
dashed-line. The scale bar is 3.7mm. (c¢) Radius of curvature of the buckled zone in the filament, R}, vs the
radius of curvature of free interface of the droplet, R in mm. Solid line indicates R, = R4. We consider
three different filament diameters d = 80um(A), 90pm(0), 170um(O).

3.11.1 WRAPPING PROCESS

In order to emulate the process of complete wrapping of the droplet, we adopt the follow-
ing procedure. A freely floating filament is brought into contact with a floating droplet such
that ® < 27 and the droplet size is reduced until the ends of the filament come close to
touching. This we do by sucking the oil droplet from the water bath using a syringe and
imaging it after each such volume reduction. We extract the shape of the filament from flu-
orescence images such as in fig. 3.15(a). The experimental details of the fluorescence setup is
provided in appendix. 7.2.3. This procedure is followed for three different filament diame-
ters, d = 80pm, 90um, 170pum. The parameters R4 and Ry, the radius of curvature of the
droplet-water interface and radius of curvature of the buckled zone describe the geometry of
the droplet-filament system. In the high-bendability limit, as we shall see, these are enough

to describe the system’s entire shape.
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First, we observe that the thinnest filament has a constant curvature along the length as
shown in fig. 3.15(a). This radius of curvature matches that of the droplet interface radius
of curvature, R, plotted in fig. 3.15(c) corresponding to A, where the solid line indicates
Rq = Ry. As the droplet size decreases the buckling radius decreases as does the droplet
interface radius. However the thickest filament corresponding to O shows a deviation from
the straight line hinting that the interface becomes flatter before the ends come in contact.
This divergence is a low-bendability effect which does not exist for the thinnest filament as
seen in fig. 3.15(b).

Second, in the high bendability limit the shape of the filament is part of a circle which is
in contrast with the behaviour of an axisymmetric sheet seen in Paulsen et al. [106] where
the solution is not part of a sphere but resembles that of parachute. This difference comes
about from geometric constraints of area being preserved in inextensible sheets where it is

the length that is preserved in filaments. From the force-balance equation we have:

K(s)
2

B |:I£(S) + ] —Toh(s) = S (3.61)
Ry
where £(s) is the curvature along the filament. Now in the high-bendability limit the domi-
nant balance comes from tension in filament and droplet surface tension, . However since
T, = ~ this implies x =~ R'. The partially wrapped circular droplet now obeys Young-
Laplace relation over free interface of the droplet and the elastic Young-Laplace relation over
the filament. We see that R, determines the entire shape of the filament-droplet system, in-
dependent of any physical parameters in the system, just as in the unwrapping scenario. The
seamless behaviour seen in Kumar et al. [76] must be a consequence of the continuity of cur-
vature at the sheet-droplet boundary, as we observe in the case of filaments. This is in stark
contrast with the capillary origami [111], where the wrapped state of the origami presents large
openings with pointed ends because e 7! ~ O(1). The post-contact shapes of the filament

where it takes the famous tennis racquet shape is shown in appendix. 7.2.3.

3.12 CONCLUSION

The two dimensional experimental system developed here to study capillary bending and
wrapping illuminates some features of its three dimensional counterpart. The inextensible,

infinite-bendability 2D model gives a good description of the geometry of the contact an-
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gles in partial wetting. The tension inside the wetted region and the applied tension obey
the predicted elastic version of the Young-Laplace-Dupré relation. However, some features
of the experimental system, such as the 3D geometry of the drop near the contact line, not
high enough values of bendability in some of the experiments affect the comparison with
the purely 2D model, infinite bendability. Furthermore, fundamental questions such as the
mechanism behind effective surface tension of a floating droplet in contact with a filament
need further probing. The 2-D system also provides a venue to further explore different
phases in the wetting phase-diagram shown in fig. 3.2, such as the partial wrapping phase and
the complete wetting phase.
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“The only people who see the whole picture,” be mur-
mured, ‘are the ones who step out of the frame”

—Salman Rushdie, The Ground Beneath Her Feet

Shapes of a filament confined to a

bubble surface

4.1 INTRODUCTION

Geometry enters elasticity theory through the deformation that an elastic structure under-
goes from a reference configuration in space. In the case of elastic filaments, this is manifested
in the form of the curvature vector and its orientation in a given coordinate system, which
are required to describe the filament. Another aspect by which geometry comes into play in
slender elastic structures is through intrinsic curvature. The filament has a natural curvature
to which it relaxes in the absence of an external body force. This natural curvature couples
with bending and torsional moments to compete with applied body forces in determining
the filament morphology. These two ways by which geometry manifests through intrinsic fil-
ament characteristics have already been explored in literature. However a third way by which
geometry can affect filament morphology is through the filament’s confinement. When the
filament is confined to a 2D surface the geometry of the surface modifies the filament’s con-
figuration. This forms the motivation of this chapter where we look at the shapes an elastic
filament takes when it is confined to a 2D surface.

The surface we choose to explore the filament shapes is that of a sphere as this is the sim-
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Figure 4.1: (a) Experimental setup with a bubble hanging from the end of a capillary tube of diameter 1mm
and filament sitting on the bubble surface with one end hinged to the capillary tube. (b) Coordinate system
used in the calculation where u(1) is the azimuthal angle, u@ isthe polar angle and s being the arc-length of
the filament.

plest 2D closed surface with positive Gaussian curvature everywhere. This we realise in exper-
iments using a spherical soap bubble as our substrate and a thin elastic filament made out of
Silicone polymer. Our experimental system is shown in fig. 4.1(a) where the dark line is the
elastic filament sitting on the surface of the bubble. We hold one end of the filament hinged
to the north pole of the bubble where tge north-south vector is defined as being parallel to the
direction of gravity. Under such a setting we probe the different shapes the filament takes on
this spherical surface and the role of the spherical metric in determining the filament’s shapes.
Before we delve into the details of the length-scales that are important in this experimental

system, we describe our experimental setup in detail now.

4.2 EXPERIMENTAL SETUP

Our experimental setup consists of a pendent soap bubble, hanging at the end of a capillary
tube as shown in fig. 4.1(a). The bubble is made out of DAWN soap solution with high con-
centration of Glycerol (1:4 by volume) to reduce the effects of draining as Glycerol is highly
viscous with viscosity of 1000 Cst. This helps the bubble survive longer before bursting. We

place a thin elastic filament made out of Silicone on top of the bubble. We wet the filament
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by dipping it in the soap solution before placing it on the surface of the bubble as we do
not want the effects of filament surface energy to affect the filament behaviour on the sur-
face. One end of the filament is gripped near the end of capillary tube (see fig. 4.1(a)) and the
other end is free. We use a micropump to control the volume of air inside the bubble. Mi-
cropump supplies a specified flow rate of fluid by pushing the end of a syringe connected to
the pump at a constant rate. The photo of the experimental setup, the details of the bubble
making procedure and the filament making procedure are provided in appendix. 7.3.1. We
explore different shapes the filament takes by reducing slowly the volume of air inside the
bubble. We find that our system does not have any hysteresis until the filament is separated
and does not come into self-contact. Thus increase in volume of air in bubble also works.
We repeat this experiment for different filament lengths and thicknesses (we use thickness
and diameter interchangeably in order to refer to the filament diameter). As we shall see, this
helps us explore the phase-space of filament morphologies on this spherical bubble. All our
experiments are in the quasi-static regime and the dynamics of fluid are slow such that they
do not affect the shape of the filament.

Our filaments are made by first melting a bar of Silicone at 300°C using a Silicone gun and
then lifting a small droplet of the melt using tweezers. This droplet is then pulled quickly
such that they form a long filament that sets within few seconds. We check these filaments
by observing them under a microscope to check for uniformity in thickness as well as to mea-
sure their thickness (see appendix 7.2). After this fabrication procedure, these transparent
filaments are coated with Sudan Red G dye (SIGMA 17373), using a procedure already de-
scribed in chapter 3. Sudan Red dye makes the filament visible in uniform white light as

shown in fig. 4.1(a).

4.3 RELEVANT LENGTH-SCALES

A free standing elastic filament whose intrinsic curvature is infinity chooses a configuration
that minimises the bending energy arising out of the available two bending modes in a 3-
dimensional space. We neglect the torsional mode here because the twist due to the filament
confined to the sphere is small. Though the torsional stiffness of a filament is proportional
to d* (d - filament thickness), just like bending stiffness, but the angle of twist due to confine-
ment is small and thus we neglect this effect. If the filament is confined to a flat surface, such

as a horizontal soap film, with both ends of the filament free, the filament remains straight as
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this configuration has a total energy of zero. Now when the filament is confined to a spher-
ical surface, the configuration that minimises bending energy in the given spherical metric
can no more be zero as the sphere has positive Gaussian curvature everywhere on its surface
and thus the filament needs to have non-zero bending everywhere.

For a spherical bubble, which is the substrate on which the filament lives, made of a fluid
of surface tension +, radius Ry, and a filament of length L, Youngs’ modulus E, density o, and
thickness ¢, there are six length-scales that are at play in the experiments. These are L, Ry, t,
capillary length I. ~ +/7/og, elasto-capillary length lo. ~ (B/v)'/? and lastly the elasto-
gravitational length scale log ~ (0g7t?/(2ET))"/3. In this multi-scale problem we want to
ensure that the bubble remains spherical i.e., we want the capillary length to be the largest
length scale in the system and we want the surface energy of the bubble to not aftect fila-
ment bending i.e., we want the elasto-capillary length to be very small. This is ensured by
operating in a scale-separated regime: t < lee < (L, Rp,leg) < l.. When the relevant
length-scales are (L, Ry, leg), the filament morphology is governed by geometry, bending
force and weight of filament. This scale separation in our experiments is ensured by choos-
ing a thin (d ~ O(100pm)), soft filament (E' ~ 1M Pa) with a bubble size much larger than
filament diameter (I,w ~ O(cm)) leading to an elasto-capillary length-scale lo. ~ O(mm).
A non-dimensional number that quantifies the relative importance of gravity and bending
i.e., the “elasto-graviry” bendability is defined as Qg = (leg/Rp)® = ogRmt?/(2EI). Large
Q4 implies strong effects of gravity and small ©, implies strong effects of bending. The ra-
tio of capillary force and bending force can be quantified using capillary inverse bendability,
Q = (lec/ R)?. Thescale separation mentioned above can also be writtenas 1 > Q1 > 1.
Furthermore the filament remains inextensible and we are in the “elastica” limit (described
in detail in chapter 1). This, as we have seen in earlier chapters, is ensured by choosing l,,, =
v/E ~ O(nm) < t.

The radius of the bubble Ry, is the only length-scale associated with the 2D spherical sur-
face and the non-dimensional number pertinent to a filament of length [ on this surface is
¢ = (I/Rp). We call this non-dimensional number the “coiling paramerer”, as we will see
later this number helps describe the state of coiling. The two non-dimensional numbers of
interest thus are the coiling parameter ¢ and the elasto-gravity bendability €. Different
morphologies of the elastic filament on the spherical bubble are described in the phase space
defined by ¢ vs Q' Changing filament length I and bubble radius w and filament thick-

ness d helps explore different regions of the phase-diagram in experiments. We will see the
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numerical values of these variables used in our experiments in the results section.

4.3.1 ENERGY OF THE SYSTEM

In our experiments one end of the filament is hinged to the polar north with respect to the
direction of gravity. We first illustrate the coiling instability theoretically when both the fila-
ment ends are free on the bubble and will later extend our analysis to the fixed-end scenario
by accounting for the work done against gravity to hold the filament in place, as we study in
our experiments. This simple calculation provides important insights into the coiling insta-
bility which will help us understand further the fixed end scenario.

The total energy of the filament confined to a spherical surface is given by:

7Td2 L

L
/ () ds+og™s [ (S(s)—8.)- 2 s, (41)
0 0

_EI
2

&

where S(s) = S(u®(s), uV)(s)) is the location of the filament on the surface of the sphere
with 8, being a reference location, (s) the magnitude of curvature along arc-length s and 2
the direction against gravity (see fig. 4.1(b)). For the specific case of a sphere we can explicitly

write the parameterisation as:
S(u(Q), u(l)) = w(cos u® cosuM, cos u® sinu, sin u(Q)).
The curvature vector s can be decomposed in the orthogonal Darboux frame as:
s =2, N + »,(N x d3), (4.2)

s, being the normal curvature along the surface normal given by

- S, XS,
Hsu(l) X Su(Q) H
where S,(;) denotes derivative with respect to u/ and s is the geodesic curvature along the

binormal direction (N x d3), with d3 being the tangent vector along the curve S(s). The
arc-length, curvature and total energy can be written in non-dimensional form with bubble

radius w as length scale: § = s/w, 5 = swand & = &/(EI/2w). We get an expression for
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the non-dimensional form of the energy as:

~

&= [(162+52) + 2(8() - 8 - 21 ds (43)
0

For a sphere we know that the normal curvature is a constant, s, = (1/w) everywhere and

using this we can rewrite the energy expression as:
R Y, . o
é = [+ (8- 5) A di+ (4.4)

4.4 FILAMENT WITH FREE ENDS

When the ends of the filament are free, it is free to live anywhere on the sphere and it chooses
a shape that minimises the energy described above. We start by looking at the shape of the
filament when the effects of gravity are negligible and then move on to account for the effects

of gravity.

4.4.1 LIMIT OF ZERO GRAVITY, ; — 0

In the asymptotic limit of negligible gravity effects, i.e., when Q;l — 00, filament morphol-
ogy is determined only by the bending energy and the contribution from potential energy

becomes negligible. The solution amounts to minimising bending energy alone, given by:

R ¥
g:A 245+ . (45)

The constant ¢ remains fixed for a given filamentlength, l and bubble radius, w. ¢ isa positive
quantity and we can easily see that 5, = 0 is the state that minimises this energy. Moreover
sy = 0 is the definition of a curve being a geodesic, and thus in the weak gravity limit the
filament follows trajectories which are geodesics. This is a great circle, which is the geodesic
on a sphere, for ¢ < 27. Beyond this length of filament, i.e., ¢ > 27 we expect the solution
to deviate from a geodesic as filament would self-intersect if we increase the filament length.
We can now define that the critical length for coiling using the coiling parameter as the critical
filament length at which self-intersection occurs and filament starts coiling beyond this criti-

cal value. We use the variable ¢, to define the threshold for coiling, which for Q;l — 00 We
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see is . = 2m. We do not take into account any capillary interaction energy of the filament

with itself.

4.4.2% FINITE GRAVITO-BENDABILITY EFFECTS

One approach to understand the morphology of a filament when the gravity starts playing
arole is to solve the Kirchoft equations for filaments represented in the Darboux frame. We
however observe in experiments that the filament takes the shape of a longitude for a given
length to bubble radius beyond which it starts coiling at a given polar angle, approximated by
latitude, which is not a geodesic. Motivated by these experiments (detailed later), we model
the filament shape based on two configurations: a longitude (which is a geodesic), a latitude,
and calculate the critical coiling parameter, ¢ for transition from one to the other as a func-

tion of .

LATITUDE

The parameterisation of filament shape lying along any latitude with polar angle ¢ is given
by:
u? = ¢, uM =3/X 8 = (cos& cos(5/)),cos€ sin(§/)), sin €). (4.6)

Conservation of length, which is nothing but the inextensibility constraint, is enforced by

setting A = =+ cos &. The potential energy of this configuration can be calculated as:

R ¥
&y = /0 Qy(x —x,) - 2d3 (4.7)

%)
= Qg/o (sin€ + 20)ds = Qg(siné + 2z,)p (4.8)

We can write the geodesic curvature of any latitude using the Christoffel symbol for a spherical

metric as:
) '
%9 - \/ECOSE}E’ (4'9)
2 922 dgi1 .
Vg = cos&, (4.1)
3ty = tané. (4.12)
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Figure 4.2: (a)Total energy of a filament as a function of its non-dimensional length, ¢ when it lies on a longi-
tude and a latitude for 2, = 1. Filaments choose the minimum of these and we see the mode switching at

. = 5.13. (b)Phase boundary defined based on intersection of energy 57, éAag. The filament switches modes
beyond ¢, indicated here as green solid line, based on minimum of either energies.

We see that apart from I'}; all other components vanish for a spherical metric and /g here
is the square root of determinant of metric tensor. The complete energy of the latitude con-

figuration becomes

A @
Eiliesst) = Qyplsing +20) + [ 52 ds+ e
0

= p(Qy(sin € + z) + 1 + tan*(¢)), (4.13)
%—ig = Qg cos & + 2tan Esec’é = 0. (4.14)

Thus we have an ¢-independent but Q,4-dependent solution that minimises the energy for

any latitude given by the solution to the following non-linear equation:
= Q,cos’¢ = —2siné. (4.15)

LONGITUDE

Along a longitude the potential energy of any filament configuration depends on where the
starting point of the filament § = 0 lies. We can denote an arbitrary longitude by the parame-
terisation: u(® = § — ¢, u(®) = 0. This gives rise to the potential energy of the configuration

as: &7 = Qg [cos ¥ — cos(¥ — @) + 2] Since all longitudes are geodesics, », = 0 along these
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curves, leading to the total energy as:

A~

E1lp; Q] = Qfcos ¥ — cos(V — ¢)] + (1 + Qy2,), (4.16)
We can minimise the energy by calculating variation with ¥ to give:

% = Qy[—sinv —sin(¥ — ¢)] = 0. (4.17)

The ground state is thus given by:

= Umin = [(2n + 12)7T * 90]. (4.18)

The solution that indicates that the filament takes longitudes placed symmetrically around

the south pole of the sphere.

4.4.3 MODE SWITCHING AND COILING

As we have described earlier, the filament has two possible modes before coiling occurs. One
where it occupies a longitude or any of the latitude. However in order to see which of these
is selected, one has to look at the energy of these configurations. The filament shape is deter-
mined by whichever of latitude or longitude energy is minimum for a given coiling param-
eter and elasto-gravity bendability. In order to calculate the minimum energy, we look at
€q. 4.13, 4.16 and as an example plot it for Q; = 1 as a function of non-dimensional filament
length or the coiling parameter ¢ in fig. 4.2(a). The minimum energy stays along the longi-
tude trajectory as the energy of the solid black line is lower than the dashed gray line upto a
critical value of ¢ < 5.13. Beyond this critical value of coiling parameter the solution branch
shifts to that of a latitude, indicated by solid gray line, as the energy of the longitude exceed
that of the latitude of the same length.

The purple solid curve in fig. 4.2(a) is where the filament moves from longitude to lati-
tude, calculated as a function of ¢ for different values of €. The critical coiling parameter
is reached, as we have defined earlier, only when the filament wraps a given latitude com-
pletely and comes in self-contact. This is indicated by the blue curve in fig. 4.2(b), which is
calculated by using the relation ¢, = 27 cos(&.), where & is the polar angle of the latitude

configuration. It is interesting to find that the filament does not change its latitude location
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Figure 4.3: (a) Critical polar angle, &, (b) deviation of critical length from 27, § as a function of {2, which follow
the asymptotic scaling derived above plotted here as dashed line..

after undergoing bifurcation from a longitudinal configuration (as &, is independent of ¢,
seen in eq. 4.15). Further we see that as gravity becomes stronger or increase in €, we see that
the polar angle to which filament migrates moves towards south pole. This comes from a
compromise between bending energy and potential energy, where filament chooses to bend

more to reduce the potential energy with increase in €.

4.4.4 ASYMPTOTIC BEHAVIOUR

We see from fig. 4.2(b) that the critical ¢ at which bifurcation from a longitude configuration
to a latitude approaches ¢ — 27 as @, — 0. This latitude is described by the polar angle and
as ¢ — 2m, the polar angle (. — 0. Thus we have two small parameters & and Q, and we
evaluate their relationship by expanding the solution close to ¢ — 27 as Q; — 0. From the

minimised solution we know that the latitude’s polar angle satisfies:
Q cos? &, = —2siné&..

Expanding the above expression, we get the leading order behaviour:
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In order to find the relationship between the critical ¢ at which bifurcation happens in this

asymptotic limit of Q, — 0, we expand the full energy expression for a latitude in eq. 4.13 as:

éAag = o(Qg(sinée +20) + 1+ tan® (&), (4.19)

= @146 +Q8e) + O0(&), (4.20)
02

~ cp<l - 49> (4.21)

A similar expansion for the energy of a longitude can be performed to get
5 . P
81 = o — 2Q,sin 5 (4.22)

Since we are interested in the region close to ¢ — 2w, we have the small parameter, 6 =

(2m — ¢). The longitude energy can be written in terms of § as:
&~ 21 — 8§ — Q6+ O(6°) (4.23)

The critical ¢ at which bifurcation happens is when &, = &, and this can be evaluated by:

026 10?2

80T (424
2702 7§}

0~ a +g4 = Tg + O(Qg). (4.25)
g

We plotin fig. 4.3(a, b) the asymptotic expressions derived above for £ and § in dashed lines

and compare it with the full solution.

4.5 EFFECT OF END-PINNING

So far we have dealt with the case of filament ends being free, which lets the filament choose
either of the geodesic or latitude configuration. In this subsection we deal with one end of the
filament fixed, as in our experiments. Before we delve into the calculation, which is strongly
motivated by what we observe in experiments, we describe the experimental results for the
scenario with one end of filament hinged. As has been described, we explore the phase-space
© Vs Q;l by changing length of filament L, Ry, as well as thickness ¢ of the filament. In our
experiments, for a fixed length of filament hinged at north pole, we reduce the bubble radius
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(d) () (f)

Figure 4.4: Sequence of images from experiments where we decrease the bubble size from (a — f) for a fixed
filament length. We see that the filament stays in the longitude shape and deviates form a longitude shape to
a different shape at (b). As we further decrease the bubble size, the filament comes into self-contact in ( f),

which is the beginning of coiling. Scale bar is 3mm.
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Ry, and thus in the phase-space we travel along trajectories 1/ R, vs 1/R3. In fig. 4.5(a) we
show this trajectory taken for each experiment using dashed line. Different trajectories corre-
spond to different lengths of filaments. Along one trajectory, the purple dots correspond to
filament configuration along a geodesic and blue dots correspond to deviation from it. We
will describe the deviation in detail later in this section. We show the shape of the filament
on the bubble for one such trajectory in fig. 4.4, where see in fig. 4.4 (a — ¢) live along the
longitude, shown as pink dots in fig. 4.5(a) and at (d) we see a deviation form this geodesic
shape, which is the beginning of blue dots in fig. 4.5(a). We perform experiments with 11
different filament lengths and two different filament thicknesses ¢ = 70pm, 100pm. As has
been mentioned already, changing bending stiffness (B ~ t*) and thus changing bubble size
and filament thickness helps span different values of .

The transition from pink dots to blue dots in fig. 4.5(a) is similar to the transition from a
longitude state to a latitude state in the free ends case. We plotin fig. 4.5(a) the same curve
in solid green on top of data points to see the match between prediction with free ends and
experiments with fixed ends. We clearly see that there is mismatch in prediction of the transi-
tion ¢ value in both small and large €2, ! case. This empbhasises the role of boundary condition
in predicting the bifurcation point. We develop a simplified geometric model with one end

fixed to understand the mechanism of bifurcation observed in experiments.

4.1  GEOMETRIC MODEL

The fixed end case differs from the previous calculation in that there is work done against
gravity to hold itin place. In this section using our experience so far in writing energies for the
longitude and latitude, we make the Maxwell construction of “phase-coexistence”. We see in
fig. 4.4(d) the the configuration just after bifurcation can be approximated by a combination
of a part latitude and a part longitude. A fraction « of the non-dimensional length ¢ lies
along a longitude and remaining fraction (1 — a)¢ lives along a latitude. We write the energy

of such a state as:

& = éilag] + &1 - )¢, (4.26)
= ap(l4 Qyz,) + Qg{ cos? — cos(V — ) }
+ (1= @)p{ (1 +Qgzo) + Qy(sin€ + zo) + 1 + tan?(€) }. (4.27)
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Figure 4.5: (a) Critical length (g4 for transition from a longitudinal state to a super-posed longitude-latitude
state as afunction of Qg_l where circles correspond to data from experiments and the solid lines from calcula-
tion detailed in the text. (b) Bifurcation curve capturing the transition from a longitude state to a hybrid state.
The vertical axis is the fraction of filament along longitude in the hybrid phase, a as a function of ¢ for five
different Q;l values shown by different colours. o = 1 corresponds to the filament being along a longitude
state and deviation from 1 indicates the transition to a hybrid state. Thick black line correspondsto ap = 7
showing that & ~ ! for ¢ greater than the critical transition value.

Moreover we have the geometric constraint from conservation of length: ap = (7/2 — &)
and since the filament is hinged to the north pole, this implies ¥ = —7/2. The resultant

energy can be written after simplification as:
& = ap + Qg sin(ap) + (1 — a)p{ esc?(ap) + Qg cos(ap) } (4.28)

The energy & is however divergent when Qg_l — 400, — T, this is because the curva-
ture along the latitude diverges as the square of curvature of the latitude portion whereas
the fraction of length along latitude (1 — o) — 0 only linearly. In order to avoid this di-
vergence, we need a regularisation length scale coming from the sub-leading order physics.
The regularisation in experiments come from the smaller length scales which have been ne-
glected in the energy minimised here, such as [gc. In order to emulate the physics from this

length scales, we multiply the singular contribution by a function A(/3) that suppresses the
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singularity. The energy then becomes:

~

& = ap + Qgsin(ap) + (1 — ) cos(ap) + €
+ (1= a)p{(1 — Alap) — Alap — 1) — Aap — 27)) esc(ap) }, (4:29)

where A(8) = exp < _ n(ﬁ;)).

Here 1(12) is the cut-oft non-dimensional length-scale associated with the capillary bendabil-
ity, as this is the length scale that prevents the divergence in the experiments. When the radius
of curvature along a latitude approaches the length-scale associated with capillary bendabil-
ity, this energy expression is no more valid. We have added these regularising terms at three
locations ap = 0, 7, 2 as all these locations lead to divergences in the energy. We also add an
additional energy of constant magnitude €, which is the energy contribution from the tran-
sition zone between the longitude and latitude that has not been accounted for exactly. In
the next subsection we find how this transition zone energy scales with the non-dimensional
numbers in the system.

The equilibrium configuration is given by extremising the one parameter energy expres-
sion in eq. 4.5.1, achieved by setting 8& /8o = 0. We also have the condition that o € [0, 1].
The transition we see in fig. 4.4 from alongitude to a “hybrid state” can be seen in the bifurca-
tion diagram represented by the value of « as a function of ¢ for a fixed value of Q4. We plot
this bifurcation diagram for different values of Qg in fig. 4.5(b). Firstly, considering a fixed
value of Q0 we see that the o = 1 for different values of ¢ and there is a critical coiling param-
eter at which we see it deviate from this value. This point is nothing but the deviation from a
longitude and as we keep increase the coiling parameter or the length for a fixed bubble size,
we see this value decrease further, as & ~ ¢! beyond bifurcation. This we see by plotting
ayp = m as the solid black line in fig. 4.5(b). From the solid black curve in fig. 4.5(b) as well
as the black curve in fig. 4.5(a), we see that the filament bifurcates from longitude state only
after crossing the south pole. Which is why all the a values are above o« = /7. An impor-
tant aspect of this bifurcation diagram is that the filament undergoes a first-order transition
where there is a jump in the value of « at the critical coiling parameter at transition. This
critical point for transition is calculated for different values of 2! and plotted in fig. 4.5(a)
as solid black line. We see that the fixed calculation approximated by our simple geometrical

theory captures the transition accurately, both at small values of € as well as Q' ~ O(1).
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Figure 4.6: Comparison of different bifurcation curves measured in experiments and theory. Color of data
points from experiments correspond to a fixed value of Qg 1 and the solid lines from theory for the same value
of Q;l. Thick black line corresponds to ap = 7 and the gray region shows that the length of filament along
longitude s lessthan ¢ i.e., the longitude section does not cross the south pole in experiments while the theory
predicts that it does cross south pole. Value of Q;l for each colour is shown on the right.

4.5.2 COMPARING MAGNITUDE OF & IN EXPERIMENTS AND THEORY

So far we have seen that our model captures accurately the criterion for transition from a
longitudinal state to a hydrid state. The « value calculated from the theory now needs to be
measured experimentally, however in all the data shown so far in fig. 4.5(a), the trajectory
along ¢ vs Q! clearly varies along both the axis, along 1/w vs 1/w?, as already mentioned.
If we want to compare with the theoretical predictions of «, we need to keep Qg_l fixedina
given experiment. This we do by holding the bubble size fixed and increasing the filament
length on the surface. We do this for five different values of Q;l between 0.04 — 0.1 and
plotitin fig. 4.6(a). Firstly we see that the magnitude of o from experiments is lower than
the magnitude found in the theory. Secondly we see that all the experimental values of «
are below the ap = = line while the theory predictions are above this line. Further in the
calculation, though we see that the transition is happening for ¢ > 7 i.e. the filament crosses
the south pole for all values of Q ! before undergoing transition, immediately after transition
we see that the portion which is part of longitude is less than ap < 7. This is not captured by
the theory. In the theory, after the point where the filament deviates from the longitude part,
the length of the filament along the longitude remains fixed and any further increase is added
to the latitude. The reason for this has to do with the missing length-scale at the transition
zone, as mentioned already. Account for this missing length scale would reduce the length of
filament on the longitude and thus bringing the magnitude of o lower. We now estimate the

energy contribution from this portion, which is as yet not accounted for in the theory, apart
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Figure 4.7: d) Sequence of images post-self contact, in the coiling phase, where we see the filament
packing the surface of the bubble. Scale bar is 5mm.

from the constant e.

4.5.3 BENDING ENERGY IN TRANSITION ZONE

Estimating the contribution from the transition zone is useful since the contribution to the
total energy of the filament comes from bending and potential energy along the filament
latitude and longitude parts as well as the energy of the transition zone and see if accounting
this energy would correctly capture the value of a. We can write the scaling of individual
components of the energy i.e. due to bending to be & ~ Bl/w?, gravitation to be &, ~
09d?1? and bending in the transition zone to be & ~ Bleg(1/w? 4 1/I2,). The same scaling
can be written in non-dimensional terms in by scaling these energies with B /w as the energy
scale to get:
é%l ~ P, é%g ~ Qg‘P2; Cgat ~ (Q;/g + Qg_l/S)-

Though it might seem at first glance that the transition zone energy &, has singular contri-
bution since it diverges in both limits of Qg_l — 0, 00, this is however not the case as the
transition zone exists only when €y, Q' ~ O(1). Itis also evident from the scaling above
that the critical length for transition ¢ ~ Q;l, which we have observed already in the per-
turbation expansion in the previous section with free ends. Though we have found out the
scaling of & with respect to , this needs to be included in the calculation to see if the up-

dated prediction captures the right o
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4.6 COILING PHASE

We have studied the criterion for bifurcation from a longitudinal state to a hybrid state in the
previous sections. And as we keep increasing the length of the filament, the filament comes
into self-contact, which we define as the point of coiling. The theory developed so far fails
after the filament comes in self-contact and we enter a different regime which we call the
coiling phase where the filament start packing the surface of the bubble. The packing frac-
tion is a purely geometric quantity given just by the length and thickness of the filament and
bubble size. However the details of packing are different based on the magnitude of Q;l of
the filament-bubble system. The mechanism of coiling in this phase remains to be explored
both in theory and experiments. We however show the shape of coils we observe in fig. 4.7.
Our theoretical model will consist now of a part of a filament along the longitude and the
rest of the filament in a coiled state, approximated by a thick filament whose thickness is de-
termined by the volume of filament in the non-geodesic part. The minimisation procedure,
just as in the previous section, would involve identifying the polar angle where the filament

finally rests.

4.7 CONFINEMENT VS BENDABILITY

In chapter 1, we discussed the paradigm of confinement vs bendability and how it provides
a framework to look at shape instabilities in elastic structures. We can place the coiling insta-
bility we have presented in this chapter again in this framework. Confinement in the coiling
phase-diagram is represented by nothing but the coiling parameter. When the filament with
a fixed filament length is confined to the bubble, the confinement of the filament increases
with decrease in bubble size. The other axis we have in the coiling phase-diagram is noth-
ing but the elasto-gravity bendability. As we traverse across the confinement axis, for a fixed
bendability the filament undergoes instability as the paradigm predicts. In chapter 3 we saw
that the confinement came about due to applied boundary tension and droplet surface ten-
sion whereas in the coiling case it comes about only due to substrate and filament geometry.
Though confinement seems at first sight to manifest itself as a parameter in the wrapping
phase-diagram and the coiling phase-diagram, it happens to be the obvious external control
variable. By obvious control variable we mean that, for a fixed material of droplet or size
of bubble which in turn fixes the bendability, the obvious external parameter to explore the

phase-space is the tension or the filamentlength. Thus in all the instabilities studied so far we
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see that confinement vs bendability provides a comfortable framework that provides an uni-
tying picture, though the details of the mechanism of instabilities between different phases

can be different.

4.8 CONCLUSION

In this chapter we showed that the substrate geometry can play a vital role in triggering insta-
bilities in elastic filaments. Our experiments consisted of a spherical bubble with an elastic
filament confined to the bubble’s surface and with one end of the filament hinged on the
north pole of the bubble. For a fixed bubble size, a short filament takes the shape of a geodesic,
which is a longitude on a sphere. As we increase the length of the filament on the surface of
the bubble, the filament makes a transition from a longitude to a shape approximated by a
part longitude and a part latitude. We develop a simple geometric model that captures the
critical length of transition from the longitude state to the hybrid state. The theoretical pre-
dictions of the fraction of filament along the longitude in the hybrid state over-predicts the
observed values from experiments and this we reason is due to a missing energy cost in the
theory, which arises from the curvature in the zone of transition from longitude to latitude.
We place the coiling phase-diagram in the framework of confinement vs bendability that pro-
vides a universal method to understand pattern formation in elastic structures, leaving aside
the details of instability mechanisms between different phases.

We have considered here the substrate to be a spherical bubble which has constant positive
gaussian curvature everywhere. A future direction that we are currently pursuing is to con-
sider a surface with constant negative curvature everywhere. We consider a catenoid shaped
soap film between two circular rings held with axis parallel to gravity. Catenoid is a minimal
surface with a symmetry axis of revolution. We would like to see if the geodesic has any role

to play like the sphere scenario and further if there exists a coiling instability.
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“This is what I mean when I say I would like ro swim
against the stream of time: I would like ro erase the
consequences of certain events and restore an initial
condition. But every moment of my life brings with it
an accumulation of new facts, and each of these new
Jacts bring with it consequences; so the more I seek to
return to the zero moment from which I set out, the
further I move away from it....”

—Italo Calvino, If on a Winter’s Night a Traveler

Dynamics of spherical particles in flow

This chapter is a verbatim reproduction of our article to be published in the Journal of Fluid
Mechanics titled “ Accurate solution method for the Maxey-Riley equation, and the effects of
Basset bistory”.

5.1 INTRODUCTION

Particles in fluid flows are ubiquitous [134], examples include plankton in the ocean [6, 59],
colloidal spheres in Stokes flow, droplets in clouds [46, 57, 115], suspended particulate matter
in the atmosphere and various industrial flows. The simplest way to study these flows is
to assume a one-way interaction, where the particle dynamics is dictated by the flow, but
does not disturb the flow, nor is it influenced by other particles. This is a good assumption
when particles are far smaller than all relevant flow length scales, and when the suspension
of particles is dilute, as is the case in several of the examples given above. In this setting, the

particle obeys the Maxey-Riley (MR) [94] equation, which is a force balance in Lagrangian
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Figure 5.1: Situations for which analytical solutions including the Basset force are provided by the present ap-
proach. (a) Arelaxing particle, (b) particle settling under gravity, (c) particle in a oscillating field, (d) particle
in a shear flow, (e) particle in a single point vortex.

coordinates, given by

g =), 1)
. Du 1 3 (1 b (o(s) —u(s))
Rv = ST E(U —u) — 775{\/5(0(0) — u(0)) —i—/o t—sds}7 (5:2)
(12 14
BEZ’SE; 1{7RE(1+326), (5'3)

where y, v are the vector position and velocity respectively of the particle, and w represents
the (possibly spatially and temporally dependent) fluid velocity. We note here that when
spatial variation in the fluid is not accounted for in (5.2), the equation is known as the Basset-
Boussinesq-Oseen equation [29, 105]. As our focus is towards general fluid flows we stick to
the nomenclature of Maxey-Riley equations. Dots represent Lagrangian derivatives in time
t and D /Dt represents the material derivative with respect to the fluid velocity. Furthermore
0p, 0f are the particle and fluid density respectively, R the effective density ratio including
added-mass effects, and S the Stokes number, defined here as the ratio of particle relaxation
time-scale (a*/3v) to flow time-scale (T'). The last term on the right hand side of (5.2) is
known as the Basset history force or Basset history integral [12]. It is an integral force along
the trajectory of the particle, from the initial time until time ¢, resulting from the differences
in acceleration of particle and surrounding fluid, and will be of primary interest in this paper.
An important contribution to the force balance was brought out by [47] who showed the ex-
istence of a singular contribution from a non-zero relative velocity at the initial time-instant.
Thus far in the literature, the implications of this singular term are largely unexplored. We

will discuss its significance in later sections.
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Most studies concerning particle dynamics in the low Stokes number limit include con-
tributions from the Stokes drag, the second term on the right-hand side in equation (s.2),
but the Basset history integral is often neglected. The coefficient of this term is O(S'/2) rela-
tive to the Stokes drag, so it is nominally negligible at small Stokes number, but the factor it
multiplies could cause the effect to become important in physical flows. A major hurdle in
evaluating the Basset history integral is the continually increasing memory cost associated in
computing this term. The inclusion of the Basset history integral renders the MR equations
to not represent a dynamical system, i.e., the future evolution of the particle motion depends
not only on the current position and velocity, but also on the entire solution up to that time.
Standard analytical techniques such as performing a Laplace transform are in general not
useful in solving this system the full nonlinear equation. Moreover, even for the linear case,
inverting the Laplace transform of a general function G(t) with a kernel of the form ~ 1//¢
multiplied to it does not lead to an explicit function of ¢. Thus researchers have resorted to
quadrature schemes [135, 32 ] or approximations to the history kernel [ 74, 44, 105]. Since these
techniques approximate the history-kernel and are not aimed at obtaining the true asymp-
totic behaviour, they neglect the aforementioned (most bothersome) singular contributions
att = 0, which is a valid assumption when particles and fluid have the same initial veloc-
ity, which we emphasize, may not hold in many physical situations. By construction, the
approximate schemes mentioned are polynomial order accurate.

In this paper we present (i) analytical solutions, for the first time to our knowledge, of the
complete Maxey-Riley equation, including the Basset history term, for particle dynamics in
several canonical situations. The only solution we are aware of from earlier work is limited
to a relaxing particle [47, 80] where they use a Laplace transform approach. We show that
our approach provides a simpler and a more general solution. (i) demonstrate a numerical
approach, by means of an example, of particle dynamics near a point vortex, to solve the
complete equations for any general flow to spectral accuracy, again for the first time to our
knowledge. Our preference for spectral accuracy in the current work stems from our primary
goal of investigating the relevance and impact of the Basset history integral on the dynamics of
particles. Hence we seek to eliminate any possible source of error from lower-order schemes.

We do this by reformulating the equations of motion of the particle with the non-local
history-dependence into a local problem for an extended dynamical system. The main prin-
ciple employed in deriving the extended dynamical system is a domain extension [136]. In

other words, we represent the entirety of the MR equation as a boundary condition to the

99



one-dimensional diffusion equation. The extended dynamical system couples three quanti-
ties that march in time: the position of the particle, the velocity of the particle and the field
satisfying the diffusion equation (which effectively encodes the history term). The reformu-
lation enables us to write solutions explicitly for spatially uniform fluid flows. We derive
explicit expressions for (i) a particle relaxing in a stationary fluid. In this case, the equations
simplify to a constant coefficient linear problem which can be explicitly solved using Laplace
transform as well. However, even in this case, the solution by that approach is not an ex-
plicit function of time, but given as a convolution integral [47]; (i%) a particle settling under
gravity, (i44) a particle in an oscillating background and (iv) a particle in planar Couette flow.
For short times, we find the particle velocity relaxes faster when the Basset history integral
is accounted for than when it is not. Moreover, on accounting for the effect of the history
integral, a cross-over time exists beyond which the particle relaxes with a power-law decay,
whereas the decay would be exponential without. In the flows we study, we find that though
the transient behaviour of particles in flows is different, the infinite time behaviour remains
unchanged, consistent with the analysis of [80].

The solution formula that we obtain is of a form where Watson’s lemma [98] may be
applied and hence the large-time behaviour is readily computable. Our reformulation of
the MR equation has the additional benefit of being local. This allows us to construct a
novel numerical scheme that obviates the issue of rising memory storage. Since the effect
of the Basset history integral is accounted for in terms of a dynamical variable, our method
may also be employed in large simulations with restarts. In large numerical computations of
turbulence, for example in cloud flows, the number of particles considered could be of the
order of billions. Our method offers a way of including the Basset history integral into such
simulations without an unmanageable increase in storage requirements.

Close to a point vortex, upon neglecting the Basset history, the dynamics of particles has
been shown to obey a boundary-layer structure [114, 40], where particles initially located
within a critical radius 7. are able to form caustics and evacuate the vicinity of the vortex
rapidly, whereas particles initially outside this radius do not form caustics, and so their dy-
namics may be represented by a velocity field. We define caustics as space-time points where
two particles can exist simultaneously with different velocities. We demonstrate our numer-
ical method by studying how the Basset history integral affects caustic formation. We show
that the history integral shrinks the critical caustic radius, 7. for all Stokes numbers, but the

scaling . ~ /S is unchanged. Lastly, though all the boundary-bulk extension ideas are
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applied here to MR equations that describe dynamics of a spherical particle, we show that
an exact map can be applied to particles with other geometries such as spheroids and disks
in a flow where an analogous Basset history integral exists. We discuss the implications of
our findings to turbulent scenarios, where the effect of the Basset history integral on particle
clustering, is still not clearly understood.

While our present study is devoted to the Maxey-Riley equations, we note that convec-
tive inertia effects become important beyond the diffusive time scale [90, 91, 95], however
small the Reynolds number. So the asymptotic behaviour we calculate below using the MR
equation will only be valid up to this time scale, beyond which we must use the entire Navier-
Stokes equation to get the correct behaviour. For example, in a particle relaxing to rest in qui-
escent flow, as calculated in the pioneering work of [90], the relaxation behavour changes
from a 1/+/t decay, as predicted by the MR equation with Basset history, to a faster decay
of 1/t% at long times. In the present work, we assume a time-scale separation between the
history effects arising out of unsteady inertial effects and the time-scale due to convective in-
ertial corrections. As a consequence our long time asymptotic results are valid at time scales
shorter than the convective scale v//u?, where u, is a characteristic convective velocity. Two
situations where there is at least two orders of magnitude of separation between the Stokes
and convective time scales, and Basset history could be vital to understanding the relevant
dynamics, are droplet growth in cloud flows, and sedimentation of marine snow. It is sig-
nificant to note that that the technique developed here can be extended to account for the
convective inertia as well, using a history kernel introduced by [90], which will be addressed
in future work.

Before we dive into the details of the calculation, we describe our procedure to handle the
Basset history term. It is known that the history integral is nothing but a half-derivative in
time of the particle velocity relative to fluid motion and it is no surprise that the origins of
this half-derivative has to do with the unsteady Stokes equation with particle momentum
being diffused by viscosity. On the other hand, it is also known that the half-derivative is the
Dirichlet-to-Neumann map for the diffusion equation on the half-line. Let us unpack the
previous statement. Suppose go(t) is the Dirichlet condition for a function g(z, t) that satis-
fies the diffusion equation for z > 0 (with zero initial conditions). Then the half-derivative
of go(t) is equal to the Neumann condition g, (0, ). This fact allows us to relate the MR
equation, which is an ordinary integro-differential equation, to aboundary condition to a dif-

fusion equation. The boundary condition, which is the MR equation itself, is a time evolving
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Figure 5.2: (a) Region Z defined by z € [0, 00),t € [0, T in which the diffusion equation evolves and dZ
is its boundary. (b) Domain D where the integrating factor ew(k)t decays. The boundary of this region in
C~ is defined by contour 9D~ and Cr whose various contributions help establish the relation between the
Dirichlet and Neumann boundary conditions for the diffusion equation.

Robin-type boundary condition and using the Unified Transform Method, as described be-
low, we are immediately able to solve for the particle evolution for arbitrary time-dependent

flows.

5.2 DirrusioN EQUATION ON HALF-LINE

Before we discuss the MR equation itself, we first describe a few results pertaining to the 1-D
diffusion equation that are essential to our reformulation of the problem. The Unified Trans-
form Method, alternatively known as the Fokas transform method, is employed in deriving
the results in this section. These results are not new. Our intent is to introduce notation as
well as the techniques that will be relevant in the following sections. Further details regarding
the Unified Transform Method can be found in Fokas [s0]. For a brief introduction to the
method see Deconinck et al. [38].

Consider the 1-D diffusion equation on a half-line of ‘psendo’-space = with a Dirichlet
boundary condition given by g,(t) at « = 0 and let g(x, t) be the variable that gets diffused.
Note that  is a fictitious space, not to be confused with the physical space represented by
y, so we call z a pseudo-space. It is used only to establish the relationship between the Bas-

set history integral and the Neumann boundary condition for the diffusion equation. This
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problem can be formulated in a time-interval (0, 7] as

i = Qaz, x> 0,te (0,7],
q(7,0) = go(z) =0, x>0, (5-4)
Q(Oa t) = go(t)a te [07 T]'

Subscripts here denote partial derivatives and the evolution of the variable g(z, t) takes place
in the  — ¢ plane in the domain 2 shown schematically in figure s.2(a). As is typical for
problems posed on a semi-infinite domain, we assume the field g(z,¢) vanishes as z — oo
uniformly for all ¢. Though this problem may be solved using classical techniques, we employ
the Unified Transform Method for reasons that will become evident in subsequent sections.

We begin by rewriting the diffusion equation in its divergence form using the ‘local rela-

tion’ 38, 50, 39]
(e—ikz—‘rw(k)tq)t i (e—ikr—‘rw(k)t(qx + zk:q))x =0, ke C, (5-5)

which is valid in any small portion of 2 where w(k) = k*. The local relation is simply the

—ikx+w(k)t

diffusion equation multiplied by e , as one can see by applying the product rule of

differentiation to (s.s).
5.2.1 THE GLOBAL RELATION AND SOME NOTATION

Next we integrate equation (5.5), over the entirety of & and employ the divergence theorem

to obtain a ‘global relation’,

jj[(e—ikx+W(k)tq)t o (e—ikw-i-w(k:)t(qr + qu))x]diU dt :O7
9

(5-6)
= j [efikachw(k)tq dz + efik:erw(k)t(qx + ikq) dt] =0,
9

(5-7)

00 ] 00 ) T
= / e *2q,(z)dx — / e~ thete T g (p T)da — / e (g (0, ) + ikgo(t))dt = 0.

0 0 0

(5-8)
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The terms at the boundary of 7 at infinity vanish since g(x,t) — 0 asx — oco. Let us define

the Fourier transform in pseudo-space as

Go(k) = /0 e gy (2) da, (5.9)

(j(kv T) = / e—ikxq(x’ T) d.’E, (S‘IO)
0

and the time-transform of the boundary terms as

T
Go(,T) = [ g, (0 (s.1)
0
T
g1(w,T) :/ e“(k)tqz(O,t) dt. (5.12)
0
Further we define DT as
Dt ={keC : Rw(k)) <0,3(k) > 0},

and D~ as
Dt ={keC : Rw(k)) <0,3(k) <0},

k)

as shown in figure 5.2(b). Note e*(¥)* is analytic, bounded and decaying for large & in these

domains, a property we shall use repeatedly. Finally we arrive at the global relation given by
Go(k) — e*OTq(k, T) = g1 — ikg, =0, k€T (5.13)

Since the initial condition is zero everywhere on the real line, we have
ETG(k, T) + g1 +ikg, =0, keC™. (5.14)

5.2.2 DIRICHLET TO NEUMANN MAP

Equation (5.4) describes the Dirichlet boundary value problem for the diffusion equation.
We now compute the associated Neumann condition, i.e., we ask what Neumann boundary
condition would give the same solution as this Dirichlet condition in the entire domain. To

do so we multiply equation (5.14) by ike “*)* for 0 < ¢ < T and integrate over the contour
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0D, the boundary of D~ shown in figure 5.2(b).

T T
/ [zk:/ g, (0,5) ds — k2 / e gq(0, ) ds + ike*®T gk, T)| dk = 0.
oD~

0 0
(5.15)

After the manipulations detailed in Appendix 7.4.1, we obtain

[e%s) t
rqu(0.1) — ﬁq(0,0) _ / /O e 1=9)4(0, 5) ds dk = 0. (5.16)

Setting k?(t — s) = m?, where m is real and evaluating the resulting Gaussian integral, we

obtain the Dirichlet-Neumann map as

w00 =/ Law.0 - [ 40 g (517)

The integral term above is the definition of the Riemann-Liouville half-derivative. This
expression relating the Neumann condition for the diffusion equation and the Riemann-
Liouville half-derivative forms the basis of our reformulation of the MR equations. More
general connections between boundary-value problems to partial differential equations and
fractional derivatives are explored in Vasan et al. [136]. For the sake of completeness, we pro-

vide the details of the Neumann to Dirichlet map derivation in appendix. 7.4.4.

5.3 RECASTING THE MR EQUATION

We may now use equation (5.17) to rewrite the Maxey-Riley equation (5.2) in its entirety in a

reference frame moving with the particle as

v =q(0,t) + u, (5.18)
q:(0,t) + aq(0,t) — vg.(0,t) = f(q(0,1),y,1), (5.19)

0= pg 1= m\ o 700,900 = (5 1) D - a0.0) Vu, (520

105



Figure 5.3: Regionin k € CT where the poles k. from equation (5.32) are located for Stokes number S in the
range 0.01— 1 and density ratios corresponding to R in the range 1 /3 —5. As the Stokes number increases the
poles approach the real-line shown using arrows and similarly as we increase density ratio. Note that without
Basset history the poles would merely lie symmetrically on the k. line.

where g(0,t) = v(t) — u(y(t),t) is the relative velocity of the particle. In this choice of
reference frame, with the history term on the left-hand side in (5.19), we are left with a forcing
function f which is local in time, whereas in the original form (s.2) forcing appeared in a
non-local manner. As ¢(0,t) and g,(0,t) represent the Dirichlet and Neumann condition
of a field satistying the diffusion equation, we are naturally led to consider the following

boundary-value problem

q: = Quz, x> 0,te (0,7, (5.21)

q(z,0) =0, x>0, (5.22)

q:(0,1) + aq(0,t) — vq.(0,t) = £(q(0,1),y,1), te[0,T], (5-23)
y(t) = q(0,7) +u(y(t)), t€[0,T], (5:24)

lim ¢(0,7) = vo, (5:25)

y(0) =yo. (5:26)

The MR equation (5.2) thus manifests itself as a non-linear modified Robin boundary condi-
tion, on the time axis of figure 5.2(a), to the diffusion equation. The general time-translational

properties of MR equations and their interesting relation to the initial condition g(z,0) of
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the heat equation in appendix. 7.4.5. This we will see forms the basis for our numerical
scheme discussed in subsection. s.5.2. We do not yet know g(0, t) on this axis, i.c., the parti-
cle velocity in the relative frame of reference, for which we derive an expression in the next
sub-section. From here on we work with this form of the MR equation and the global re-
lation (5.14) for the diffusion equation. Higher order corrections in particle size, the Faxén
correction, etc. can also be accommodated in the forcing expression, f(g(0,t),y,t). Here u
is a known velocity field. In the general case, one would couple the MR equation with a fluid
model (such as the Navier-Stokes equation) to simultaneously resolve particle locations and
fluid velocities. An example of this kind, in the form of particles around a point vortex, is

studied in a later section.

5.3.1 SOLUTION FOR TIME-DEPENDENT FORCING

The form of the MR equation (5.19-5.20), suggests the forcing function is both space and
time-dependent. However it is instructive and useful to first study a case when the forcing is
a function of time alone, i.e., f(t). The ideas presented here will later be extended to more
complicated scenarios in later sections.

Using the definitions (5.11-5.12), we take the time-transform of the boundary condition

(5.23) and after integrating by parts we get
(“®M7Tq(0,T) = vo) + (= k)Go — 7G1 = f. (527)

Here f is the time-transform of the function f. Using the global relation (5.14) we eliminate
g1 from the above expression and multiply the resulting equality by ike *®t for0 <t < T
and finally integrate over 9D~ This leads to

f_ ewT _ wT 4
/ ikgo(w, T)e k) dfs = / ike_w(k)t{f <190, T) + vo — e T4k T)) o0
8D7 aD,

(o — k2 + ikvy)
(5.28)
T L=kt (F
. —k2¢ k2s B Zke (f(k’7 T) + ’UO)

/61) ike /0 e" °q(0,s)dsdk = /8D o= 2+ ik dk (5.29)

k2(T—t) S

- / e (¢(0,7) qu(k,T)) dk.
- (o~ K + k)

where (in the second line) we have used the definition of gg and the fact that w(k) = k2. We
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substitute k* = il in the left-hand-side term above, which describes the boundary 9D, see

figure 5.2(b), to arrive at

L i / ! _ / ike ¥ (F(k,T) + v,)
5 /Ooe ) Q(078) dlds = . (a ~ 2 —l—ik"y) dk (5,30)
k2 (T—t) -
_ / ae L @O0.T) 14k 1)) o
oD (o — k2 + iky)

ke~ R (t=s s) vyike Kt
—7Tq0t /8 / a—k2+k)dkd8+/(9p(a—k‘2—{—zk"y)dk

D-
ikek* (=) £(s)
/31) / (o — k2 + iky) dk ds
_/ €0 (a(0.T) + 44 (K, 7))
- (0~ k2 + i)

dk, (5.31)

where we have used the standard Fourier inversion formula on the left-hand side. There are

two poles due to the quadratic in the denominator of above equation which are located at

_ %m + Via—12). (5.32)

Since both y and a are positive parameters, the poles &+ alwayslie in C* and reach the real line
for v = 0, i.e., when Basset history is absent (see figure 5.3). An appeal to Jordan’s lemma [1,
page 222] shows that the third and fourth term (those involving function evaluations at 7T)
in equation (5.31) do not contribute, since k? is negative in D~ and (¢t — s) > 0. Itis not
surprising that these two terms do not contribute as this only ensures causality: the dynamics
of the particle for all times t < T' cannot depend on a quantity from future time 7". Using the
—k2t

fact thate is decaying in the region outside D™, we can write the final solution expression

as:

—k2 t—s) ) 00 v ike—kzt
— t) ds dk — B A — .
(0, /617 / (o — k2 +iky) /oo (o — k2 + iky) (5:33)

Note that the particle velocity is now given by the above expression directly (and explicitly) in
terms of the initial condition v, (= v(0) — w(0)) and the forcing f(¢) in the relative frame of

reference. The quantity g(0, t) represents the Dirichlet boundary condition for the modified
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Robin boundary value problem for the diffusion equation. Once the relative velocity g(0, t)
is available, one may readily compute particle trajectories y(t) from (s.24).

Without the Unified Transform Method, one may not have suspected such a boundary
value problem isindeed solvable. Of course, one could in principle have employed the Laplace
transform to obtain the solution though a couple of issues arise then. If one were to use
Laplace transform, the inverse would involve branch-cuts in the general case, which are dif-
ficult to evaluate, and as mentioned above, explicit solutions are most often not possible.
However the Unified Transform Method provides the appropriate re-parameterisation to
avoid these complications, and to further provide an explicit expression in ¢ for the solution,
given by equation (5.33). As we shall see in the following sections, especially when consider-
ing the nonlinear problem f(q(0,t),y, t), the true benefit of adopting the new formulation
is the local nature of the extended system which is precisely due to the connection between

the MR equations and the diffusion equation.

S-4 EXPLICIT SOLUTION FOR PARTICULAR FLOWS

In several fluid scenarios, there is a considerable separation between diffusive and convective
time-scales. Two such examples are highlighted below. In such scenarios, the Basset history
force has a non-negligible effect on the resultant particle dynamics. Consequently, we present
several example flows which permit explicit treatment of the Basset history term and its im-

pact on the particle motion.

* Clouds: In clouds the diffusion time-scale, 7 for a droplet of size a ~ 10um is O(ms)
while the energy dissipation rate of ¢ ~ 10m?/s® leads to a Kolmogorov eddy of size
n, ~ 0.1mm. Calculating the convective velocity scale uy, using the relation ugny, ~ v
where v is the kinematic viscosity, we get uj, ~ lem/s. From this we get the convective
inertial time scale 7;;, ~ v/uj = O(o.1s). We have a factor of O(100) showing that
there is along time region even at the length scale of a Kolmogrov eddy at which Basset
history is expected to play a role.

* Planktons: Planktons in the ocean come in various sizes and different density ratios.
The effect of turbulence on clustering [59] is poorly understood and we believe Basset
history, given its non-trivial dynamics, might play a role in its settling. A plankton of
size a ~ 100pm has a terminal velocity of U; ~ 0.1mm/s when Ap/p ~ 0.1 (where
Ap is the difference between particle density and fluid density and p being density of
water). The diffusive time scale a?/v ~ 1s while the 7;, = v/U? ~ O(hrs). This
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Figure 5.4: Particle velocity with (solid lines), and without (dashed lines) Basset history, along with the asymp-
totic solution (dotted lines) from equation (5.36). The curves from bottom to top correspond to three different
density ratios respectively: light particles, with 5(= gp/gf) = 0.01, neutrally buoyant particles with 5 = 1,
and heavy particles with 3 = 5 at a fixed Stokes number of S = 1. The decay rate of particle velocity goes
ast™3/2 for long times when Basset history is accounted for, in contrast to the exponential decay when it is

neglected.

clearly shows that such a huge time scale separation makes studying Basset history ef-
fects worthwhile. Also we suspect that the clustering of plankton could happen in
short time, dynamics dominated by diffusive effects.

Given this motivation, we start looking at simple scenarios where fluid velocity is only time

dependent and space independent as we build onto complex flows.

5.4.1 EXAMPLE 1: A RELAXING PARTICLE

In the absence of a background flow (namely when f = 0), expression (s.33) for the rela-
tive velocity q(0, t), may be analysed using Watson’s lemma. Since the real-line in k£ happens
to be the path of steepest descent, Laplace’s method provides the asymptotic behaviour for

functions of the form

b
H(C) = / IOUY(C) dC ast = co, £ > 0, (5:34)
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in terms of the local maximum value of function g(¢) when ¢ € [a,b]. This leads to the

well-known asymptotic result for integrals of the above form

H(C) :—/_OO e ty(0) \[Z 92ny, ; t7", ast — oo. (5-35)

On setting f = 0 we see that the dominant contribution of the integral in (5.33) comes from

k = 0. To leading order we have

q(0,t) ~ mﬁ + 0%,  t>o0. (5.36)
(47, 80] approached this problem by using Laplace transform. Their complete solution was
provided in terms of convolutions and not directly as we obtain in equation (5.33). For large
times however, [80] present the same equation as (5.36). Their solution for a relaxing par-
ticle is the only earlier closed form solution that we know of, which accounts for the initial
conditions correctly. We contrast the complete solution (s.33) with the one obtained upon
neglecting the Basset history integral in the original MR equation. This is equivalent to ne-
glecting the Neumann term g, (0, t) in equation (5.27) and repeating the calculation of (0, t).
Alternatively we just set v = 0 in (5.33) to obtain

[e's) o.k —k2t
wq(O,t)—/ %dk- (5:37)

The non-zero contribution to the integrand comes only from the poles as the integrand is

odd leading to
q(0,t) = voe™™, (5.38)

and is precisely the expression one gets by solving the Maxey-Riley equation directly without
the history term (and f = 0).

In figure 5.4 we plot the velocity obtained both by including the history integral and ex-
cluding it for three cases: neutrally buoyant (8 = 1), light (3 = 0.01) and heavy particle
(8 = 5). Two important features are evident. First, the solution with Basset history settles
not exponentially but as a power-law (in this case a very slow t=3/2). Secondly, there exists a

cross-over time prior to which, a particle evolving under the influence of the Basset history in-
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tegral and Stokes drag, relaxes faster than the particle evolving only under Stokes drag. How-
ever, after the cross-over time the particle that evolves only under Stokes drag relaxes faster.
This contradicts the popular notion that Basset history acts as an effective drag. Thus far, for
this example, we have considered the effect of varying density ratios on the particle relaxation
time. Note, varying the Stokes number does not lead to substantially different velocity pro-
files since the Stokes number may be scaled out of the solution by replacing & — k / V'S and
t — £S. Particle velocities for Stokes number S # 1 may be obtained from those depicted in

figure 5.4 by suitably scaling time.

5.4.2 EXAMPLE 2: SEDIMENTING PARTICLES

The dynamics of particles settling under gravity is relevant in industrial applications, for
aerosol particles and droplets in the Earth’s atmosphere, and for carbon sequestration by ma-
rine snow in the oceans. In this section a two-dimensional flow is considered, with a super-
script (+)?) indicating the vertical component of the relevant vector, while (-)™") indicates the
horizontal component. When the particle is acted upon by a body force such as gravity, the
vertical component of forcing function f, f(?)(t), is a constant of magnitude o. This allows
us to evaluate the time-transform explicitly as
F®(w,T) = /T oe*ds = o« -1 1).
0

W

The settling velocity of the particle is

00 oo —k2t, (2) 0o — k2t
) _ ike " g / oy(l—e 1)
m?00= [ et ey e 6

A solution for this problem is provided in [29]. However, their solution necessitates a zero
initial-velocity condition for the particle. Moreover their solution is in terms of sums of er-
ror functions, and so the asymptotic form for large time is difficult to glean directly. We
evaluate the full solution (5.39), without the zero initial-velocity requirement, for the same
particle density ratios as in the previous example (but fixed Stokes number S = 0.01), cor-
responding to neutrally buoyant, light and heavy particles: 8 = 1,0.01 and 5, respectively,
see figure 5.5(a,b). We also obtain the leading order asymptotic behaviour for the particle
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Figure 5.5: () Particle velocity relative to fluid, ¢(*) (0, ¢) along y(?)-direction and (b) particle trajectory as a
function of time for three density ratios, 5 = 0.01, 1, 5 corresponding to light, neutrally buoyant and heavy
particle when acted upon by gravity for S = 0.01, ¢ = —1inequation (5.39). The asymptotic expression for
velocity in (5.41) is plotted as dotted line in (a) and the dashed line in (b) is the trajectory of particle without
accounting for Basset history. Time taken by particles to reach y(z) = (0 when accounted for Basset history
for these density ratiosist = 1.1, 1.15, 1.2 and without Basset history it takest = 1,1.01, 1.04.

velocity
@)(0,) ~ c(a,7) + ——L— + OE32), >0 (5.40)
q ) & 0537 a2(7'rt)1/2 ) ) 5'4'0
e oy o
= k = — .
c(a,7) /_oo (@2 1129 dk=—, (5-41)

where ¢(a, ) is the velocity of the sedimenting particle at long times.

Note that the terminal velocity ¢(c, ) is in fact the same quantity as that obtained for a
particle in the absence of the Basset history force and more importantly, this terminal velocity
isindependent of 7. The expression o7/« is the constant velocity obtained from a balance of
gravitational forces and steady dragin our notation. The evaluation of the integral expression
for c(av, ) is via an appeal to the residue theorem, albeit for three different cases: v/ < 4,
v?/a = 4and v%/a > 4. In all three cases, the integral has the same value.

We observe that a sedimenting particle attains its terminal velocity at a rate of t~1/2 which
is far slower than the exponential trend as predicted without Basset history. Itis worth noting
that a sedimenting particle’s relaxation is even slower than the t~3/2 trend observed for the
force-free relaxation (s5.36). Another interesting feature of this dynamics, which would be
missed on neglecting the Basset history integral, is that the long time trajectory of the particle
is given by y ~ —1/(y(M) — ¢) (¢ being the final horizontal coordinate). This behaviour is
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Figure 5.6: (a) Velocity as a function of time, of a particle growing in size as it sediments through a uniform dis-
tribution of smaller particles and coalesces with those it collides with. (b) Size of this particle, a as a function
of time in terms of its relaxation time scale 7, (~ a?) with initial 7, = 0.01s, v =0.01,v = 1075m? /s
and 5 = 10 in an environment with solid fraction (o = 0.002. Solid lines correspond to dynamics accounting
for history effects while dashed to particles relaxation with Stokes drag alone.

anomalous in the sense that it is neither projectile nor ballistic.

The previous remarks suggest that Basset history could play a significant role in complex
flows. For example, sedimentation rates of individual particles will determine how frequently
particles collide with one another and coalesce as they sink. This question is of importance
to estimating carbon sequestration by plankton in the ocean, raindrop growth, and for pul-
verised coal in thermal power plants. To this end, we make here a simple estimate for how a
particle grows in size as it sediments through a sea of smaller particles.

It is simpler in this case to work with the dimensional equation, obtained by replacing
o — (B—1)g/R,S — 7, where g is gravity and 7, = a* /v is the particle time scale, so (5.39)

reads as

o M(l _eth)

T R T s R )

Now k has the dimensions of t~1/2 and vg), ¢ (0, t) are dimensional velocities. We follow
one large particle of growing radius a as it sediments through a quiescent fluid with a uniform
distribution of identical small particles of radius (as < a) occupying a solid fraction ¢. The
larger particle falls faster than the smaller ones, and in a short time At, it collides with all
small particles whose centres lie within a cylinder of radius (a + as) and height ¢(? (0, t) At.
Assuming that all small particles it collides with will coalesce with the bigger particle and that
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a > a, its volume increases by ema®q®(0,t)At. Thus we get an evolution for the particle

3 q(2) (0 t)At 2/3
n 3/2 )
;g ) ( p/ + 7490 pT ’

which modifies e, v in equation (5.33). After each time interval At we reinitialise the system

time-scale as

(5-43)

with a new initial condition vgz) being the velocity from the previous time instant and a new
relaxation time ngn). For a droplet of v ~ 107°m?/s, a ~ 0.3mm, 3 = 10 we get 7, ~
10~2s. In figure 5.6(a) we plot the dynamics of such a particle and in figure 5.6(b) the particle
size is represented in terms of its time scale 7, as a function of time for two scenarios: ()
accounting for history effects (solid lines) and (47) only Stokes drag (dashed lines). We see
that by neglecting the history force we will grossly overestimate particle size at a given time.
We have considered only vertical trajectories in this example. However in gravitational
setting in turbulent particulate flows the anomalous trajectory could introduce non-trivial

changes in the dynamics, which will be a topic for future study.

5.4.3 EXAMPLE 3: PARTICLE IN AN OSCILLATORY BACKGROUND

We now consider the behaviour of a single particle with a background flow that oscillates with
a single frequency. The forcing function is f(?)(s) = sin(\s) and the first term in equation

(5.33) can be rewritten as

ike—k*m £(2) m) . B
I = / / a—k2+zk > dm dk, withm = (t — s), (5.44)

B / ik AeF*t — X cos(Mt) 4 k2 sin(At)
) (@ — k2 +iky) (A2 + k%)

dk. (5-45)

The solution for the scenario with Stokes drag (but no Basset history integral) is

e~ asin(At) — A cos(At)

(2) 1) = (2) —at

(5.46)

We evaluate this velocity expression as a function of time in figure 5.7(a) and find that with
Basset history, particles oscillate with smaller amplitudes at early time, and that they attain
their final periodic state faster than when Basset history is neglected. This behaviour, gov-
erned by the short-time dynamics, is qualitatively different from that of the cases we studied

in earlier sections, where Basset history significantly slowed down the attainment of termi-
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Figure 5.7: (a) Particle velocity relative to oscillating background flow when 8 = 5, S = 1 for three different
oscillating frequencies, \ = 0.5, 1, 5. The dashed lines correspond to the solution with Stokes drag alone,
and the solid line accounts for Basset history as well, from equation (5.45). (b) Phase difference, ¢ between
solutions including and excluding history effects as a function of Stokes number, S, for afixed A\ = 1 and three
density ratios, 5 = 0.01, 1, 5.

nal velocity. In particular, the Basset history integral is not simply an additional drag. We
see that expressions (5.45) and (5.46) asymptote to similar expressions, albeit with a phase dif-
ference. We can quantify the phase difference ¢ that persists at long times between a particle
with history effects and with only Stokes drag at long times. This is shown in figure 5.7(b) for
Stokes number in the range S = 0.1 — 1 and for three different density ratios, 5 = 0.01, 1, 5.
We should however remind ourselves that though we have chosen A ~ O(1) where particle
relaxation time scale and forcing are similar, the solution expression is general and applies to

all scenarios with frequencies capped by the diffusive time scale.

5.5 SPATIALLY DEPENDENT FLOWS

Thus far we considered the MR equation with spatially uniform fluid flows. When the fluid
flow varies in space, the MR equation is generically nonlinear and one does not obtain a
closed-form expression for the particle velocity g(0, t). Most fluid flows are indeed spatially
dependent. The role of the Basset history integral in determining the dynamics of inertial
particles in such fluid flows has been investigated by others [102, 60, 34, 35, 33]. These stud-
ies focused on the contribution of the Basset history to particle collision rates, preferential
concentration and residence time of heavy/light particles. All of the aforementioned studies
employed the numerical scheme developed in [32] which approximates the singular kernel of
the Basset history integral. In this section, we show how our reformulation of the MR equa-

tion may be readily adapted to the case of spatially dependent fluid flows. We emphasize that
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no approximations are made in handling the singular kernel. Furthermore, the memory costs
are constant in time.

We begin the discussion in subsection s.5.1 by considering the dynamics of a particle in
planar Couette flow. Since the fluid velocity is linear in the spatial variable, this spatially
dependent problem is in fact exactly solvable. Moreover the exact solution found here may
be used to simulate the dynamics of particles in more complicated, but slowly varying, flow
fields by using the the leading order term in a gradient expansion of the fluid velocity.

Our next example, in subsection. 5.5.2, is that of a particle in the neighbourhood of a point
vortex. Here we probe the effect of the history-integral on caustics formation and also the
large-time behaviour of the particle. This requires some modification of our original method
to handle nonlinear forcing functions, which we describe in detail below. The extension
of the numerical method, presented in this section, to cases where the fluid velocity is not
specified explicitly is straightforward, though not the topic of the present manuscript. It is
thus our contention that the numerical method we develop here is directly applicable for

including the history integral in any general flow.

5.5.1 EXAMPLE 4: MIGRATION IN PLANE COUETTE FLOW

The Couette flow velocity profile is given by u)) = \y(?). As before, the superscripts (-)(*)

and (-)@ represent the horizontal and vertical components respectively. The particle velocity
evolution in such a background flow is given by

a0 [a Al [aM(0,0) 1 o] [¢V(0,0)
o [q@)(o,t)] T [0 a] [q<2>(o,t> 0 1] [9(0,& - b
—— ——

M I

Since the boundary condition is linear with constant coefficients, we may follow a similar
procedure as earlier. We now have two diffusion equations coupled at an interface where the
interfacial boundary condition in each is given by the MR equation (5.23). Note however,
that the diffusion equations themselves (i.e. in the bulk) are decoupled from each other. As
a result, the global relation for this system of diffusion equations is just the vector version of

(5.14)
O G(k, T) + g1 (k, T) + ikgo(k, T) =0, ke C. (5-48)
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Figure 5.8: Particle dynamics in Couette flow. Solid lines are the solutions in equation (5.52), while dashed
lines indicate dynamics upon neglecting Basset history in equation (5.53). Top row corresponds to solution
for S = 0.01 and bottom for S = 1 for a fixed density ratio of 3 = 5. (a, d) Horizontal component ¢(1) (0, t)
and vertical component q(2) (0, t) respectively of particle velocity relative to fluid velocity with initial velocity
of particle relative to fluid g(0,0) = 1. (b, e) Particle trajectory as a function of time. (¢, f) Off-diagonal
component of sensitivity matrix in equation (5.55) which is due to shear in the flow.
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The boundary condition becomes

<q(07 T)eWT - q(07 O)) - k‘QQo(k, T) - = M(aa s A)go(kv T) + ’Ygl(kv T) (549)

Eliminating g1 (k, T') just as earlier from the above equation, we get for g, (k, T)

(¥ = i) — M7, A)) ok, T) = {q<o, )T — g(0,0) + 7d(k. T)ewT} (5:50)

(k2 —a —iky)™t Ak? —a — iky)~2

where ((]432 — k)l — M(a, 7, )‘))_1 - [ 0 (k? —a — iky)~!

] - (5.51)

Multiplying the above equation by ike %t and integrating over 9D~ we obtain the solu-

tion

o k2 —a —iky)™t AK? — a —iky) 72
ra(00) = - [ k:k[( o= iy) ™ MR- a—il)

0 (k‘2 o — ik"y)fl ] q(0,0)dk.  (s5.52)

—00
On the other hand, the solution to the MR equation without the Basset history integral
simplifies to

1 =Xt
q(0,t) = [O

] q(0,0). (5-53)
The results are provided in figure 5.8. Sub-figures (a) and (d), respectively for Stokes number
S = 0.01 and 1, show particle trajectories with and without Basset history. The y®) coor-
dinate has saturated to the values shown. Clearly the migratory behaviour is different, and
neglecting Basset history predicts the final locations of the particles incorrectly. Furthermore,
the relaxation time is longer with Basset history, i.e. the velocity decay is slower, as seen in
figure 5.8(b, €). Note that the relative velocity is plotted here, so each particle at long time
attains the local velocity of the Couette flow (= Ay(?)). The solution expressions (5.52-5.53)

readily lead to the following expressions for the sensitivity of the solution to a particle’s initial
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velocity

0 2 -l 2 =2
<5q(0,t)> _ 1/ e [(k a — iky) Ak* — o — ik7) dk. (554)
His —o0

5Q(07 0) a ; 0 (k‘2 —a— ik’y)fl
0g(0,0)\  _ ar |1 A
(5q(07 0)>Sto B [O 1 ] . (SSS)

The eigenvalues of this sensitivity matrix provide the Lyapunov exponents and both eigenval-

ues are equal to 1 for the scenarios with and without Basset history. However the eigenvectors
corresponding to these matrices are different and in figure 5.8 (¢, f) we plot the evolution of

the off-diagonal component for two different S = 0.01, 1.

5.5.2 SOLUTION FOR NON-LINEAR SPATIAL FLOWS

So far, we have been able to explicitly compute the particle velocity, from go(w, T), see equa-
tion (5.31). However when the spatial dependence of the fluid is flow is nonlinear, i.e., when
f depends on y, equation (5.31) is not an explicit expression for the particle velocity. Con-
sequently we resort to a numerical scheme to evolve the dynamics of the particle, which we

present in this section. Our numerical method has the following advantages:

* The method completely eliminates the need to store the entire trajectory of the particle
to evaluate the Basset history term.

* Our method achieves spectral accuracy by employing Chebyshev polynomials to eval-
uate the integrals involved.

* The method involves a fixed memory cost (of O(N), N being number of Chebyshev
modes) independent of time, making long time simulations no more expensive than
short time. This is useful to compute statistics in turbulent simulations.

* The effect of history can be recorded (with fixed memory size), enabling simulations
to be restarted. Such a restart is impossible in other techniques owing to exponentially
large memory costs in evaluating the integral. While preparing the manuscript we be-
came aware of the work of [105] who approximate the history kernel by a summation
of exponentials and achieve the desired accuracy. However we would like to highlight
that our technique does not make any approximation to the kernel and we show later
that all information due to history can be stored in a variable whose computation is
of fixed memory throughout particle evolution. Moreover the form of the solution in
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Figure 5.9: Schematic showing numerical scheme where we evaluate g(k, t) atintervals t,, (¢, + At) from
the solution att € [t, — At, t,], [to, to + At] and so onin order to eliminate the need to store g(0, t) from
t €[0,t, + At].

equation (5.33) is specially useful for studying asymptotic behaviour (ref. [136]), unlike
other techniques.

In the following subsection we derive the equations we ultimately solve for the particle
trajectory and in the subsequent subsection we provide the details of the numerical imple-

mentation.

EvoLuTtioN EQUATION FOR BASSET HISTORY-INTEGRAL

We begin by dividing the = — ¢ plane into domains of size [0, c0) X [t, — At, t,], where t, =
mAt for some integer m, as shown in figure 5.9. Our procedure involves two steps, repeated

for each such domain:

1. Using the initial condition q(z, t, — At) in each domain (bottom wall of that domain
in the figure), we compute the boundary condition q(0,t), ¢ € (t,—At, t,)] (left wall of
that domain). This is done by solving the Maxey-Riley equation, in the form given by
equation (s.57) below. This equation is the extension of (5.33) to the case of arbitrary
initial conditions. Moreover the forcing f is now a function of g(0, t) and/or y(t). So
we start with a guess for g(0, t) and y(t), and iterate using a nonlinear solver. We thus
have the Dirichlet condition on the left wall of figure 5.9, over [t, — At, t,)].

2. Using the computed boundary condition g(0, t) from the previous step and the known
initial condition g(x,t, — At), we directly compute q(z,1,), the top wall of that do-
main, by using equation (5.58) which will be derived below. This step is equivalent
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to solving the diffusion equation with a Dirichlet boundary condition and the solu-
tion of this boundary-value problem leads to the initial condition for the next domain,
t € (to,t, + At]. Through an efficient use of the global relation, we do not require
the explicit solution expression q(z, t,), but only the Fourier transform ¢(k, t,) which
simplifies the calculations considerably.

We recognise that our system size (namely, the number of dependent variables) is higher
for a nonlinear case, and this is the price we need to pay to eliminate the rising memory costs
coming from the nonlocal time integral term.

In the first domain alone [0, 00) x [0, At], equation (5.33) may be used to obtain the par-
ticle velocity. We recognise that f now depends on y and q(0,t). Along with (5.24), where
we set T' = At, we now have two equations for two unknowns y and g(0, t) over the time
interval [0, At]. In a standard numerical method, one would approximate the first integral
of (5.33) using a quadrature rule. We however, adopt an alternative route (partly to ensure
accuracy) by representing the unknowns g(0, ¢) and y(t) in terms of Chebyshev polynomi-
als over the interval [0, At]. All integrals are readily evaluated to a high degree of accuracy.
With the Chebyshev polynomial representation, equations (s.33) and (5.24) are solved using
anonlinear solver, here Newton’s method, for the coefficients of the Chebyshev polynomials.
Once we have (0, t) (in terms of Chebyshev polynomials), we solve the diffusion equation
with this Dirichlet condition to obtain the solution g(z, At). The evaluation of such new ini-
tial conditions at every (¢, = mAt) is possible precisely because of the relationship between
Basset history integral and Neumann-condition to diffusion equation.

In all later domains, the initial condition q(z, t,) is no longer zero. Indeed g(z, t,) is the
solution of the diffusion equation at this time. The global relation of the diffusion equation

in the time interval t € (¢,,t, + At] can be written as

F* ot A G (1, + At)) = e tog(k, to) — ikGo(k2, to, to + At) — G1(k2, to,to + At), k € C™.
(5.56)

For the boundary terms represented by g; (k2,t1,t2), we have introduced the additional argu-
ments ¢1, t2, which are the limits of the integral defining the time transform. This notation

is also used in the forcing, as f (k2 t1,t2). Following a procedure similar to that employed to
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derive equation (5.31), we obtain the following expression for g(0, t)

~2a(0,1) = / ke RIS (ke 1)} di

0
H(t)
(ke FF(R2 b0, 1)
Y y Y0 A .
+/0 \S{ K1 ik) }dk, t € (to, o + At], (5-57)
F(t)

The term J#(k, t,) in the integrand of the first integral in the expression above, is the modi-

fied initial condition given by

_ [ 4a(0,to) +vq(k,to)
H (s to) = { (o — k2 + ikry) }

This term encodes all the information about the history of the particle from ¢ € (0, ¢,]. Equa-
tion (5.57) is thus the extension of equation (5.33) for a general initial condition to the diffu-
sion equation. The renormalised initial condition 7 (k, t) itself evolves in time and this
evolution is once again obtained from the global relation, see appendix 7.4.2 for details. We

state the relevant equation here.

o F(k2,t, — At t,)
I (k ty) = _szt% k to — At) — _k2t"/ ks 0 ds — —k2tof( s lo s lo
( ) ) S ( ) ) € A € q( ,s) sS—e (a o @'kry)

B2 B2

(5-58)

Note all terms on right-hand side of (5.58), including the forcing term, are known since they
depend on the previous time interval [t, — At, ,]. Equation (5.58) may also be written as a

dynamical system for individual modes of history as

f(t,y(t), q(0,1))
(o — k2 4+ ikvy)

H(k,t) + k2 (k,t) = q(0,t) + b€ [to — At t,]. (5.59)
Equations (5.57) and (5.58) represent the solution to the full MR equations for a particle in
a time-dependent inhomogeneous flow field. Note the individual modes k of #(k, t) in
equation (5.58) evolve independently. However the expression for the velocity in equation

(5.57) depends on all of them, and indeed depends on the integral of the history.
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We are now enabled to march repeatedly till any ¢, from any (¢, — At) using the set of initial
conditions §(k, t, — At), solving equation (s.57) for y(t) and ¢(0, t) in the interval (¢, — At)
to t,, and using these Dirichlet boundary conditions in equation (s.58) to get ¢(k, t,). Once
again, we emphasize that the above procedure eliminates the need to store the entire particle
velocity from the initial time instant. The effect of the Basset history integral is encoded in
H(k,t).

5.5.3 NUMERICAL TECHNIQUE

We now detail a numerical scheme to solve equations (5.57-5.58). The continuous variables ¢
and k are restricted to a set of discrete values over their respective intervals, t € (t,—At, t,] and
k € [0, 00), leading to discrete times ¢; and discrete wavenumbers k; where j = 1,..., L;1 =
0,...,N. In the case of t we employ Chebyshev nodes under an affine transform whereas for
k we employ a mapped Chebyshev node appropriate for rational Chebyshev approximations.
We then expand ¢(0, t) and 5 (k, t,,) in a Chebyshev polynomial basis 77, (t) (rational Cheby-

shev polynomials for 7#’). We adopt a collocation approach to solve the resulting nonlinear

equation.
The discrete version of equation (5.57) can be written as a nonlinear equation for the coef-
ficients as
s At jm
T (tj) = 5q(o,tj) +H(tj) +F(tj) =0, t; =t,+ - | 1+ cos (f) , (5.60)
where j = 1,..., L. Details on how to compute each term in the above equation are pre-

sented in the Appendix 7.4.3. The contribution from 7 (k, t,,) is captured in #(t;), whereas
the contribution from the nonlinear forcing due to the fluid velocity field is present in F(¢;).
An equation for the position, y can be obtained from the discretised version (5.24). A stan-
dard Newton root finder is employed to solve for g (0, t) and y(¢) in the time interval (nAt, (n+
1)At] foreachn = 0,1, ... with an appropriate initial guess, typically (0, ;) = —2/7H(t;).
Equation (5.58) on the other hand is a straightforward integral evaluation using known values
of q(0,t;) and 2 (k;,t, — At) from the previous time step. We show in the appendix that
expanding q(0,t) and #(k,t, — At) in Chebyshev basis allows us to pre-compute several

terms which speeds up evaluation of expressions in (5.58).
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Figure 5.10: Error estimates for the solution to a relaxing particle using the numerical scheme developed in
section (5.5.3). Error as a function of time for (a) different values of IV at fixed L = 20 and (c) different
values of L at fixed N = 50, 70. (b), (d) Maximum of the error as we increase the number of Chebyshev
modes in k and .
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5-5-4 CONVERGENCE PROPERTIES AND MEMORY REQUIREMENT OF THE NUMER-
ICAL SCHEME

To study convergence of our numerical scheme, we compare the exact velocity of a relaxing
particle (for which we have an analytic expression) to the numerical solution obtained from
the scheme described above. We first check the numerical method’s accuracy as a function of
the number of Chebyshev nodes N in wave number k, where & : k € [0,00] — [1,1]. We
also check the accuracy for number of Chebyshev nodes Lint € [t,, t, + At] within a time

interval of length At. The error in the calculated solution is given by
&(tj) = 140, ;) — ¢{V(0, ;)|

where qgl)(O, t;) is the exact solution evaluated at discrete ¢; and ¢(1)(0,;) is the solution
evaluated using the present numerical technique. In figure 5.10(a) we plot the error as a func-
tion of time for all the number of k chosen and we see its magnitude decrease with increase
in N. In figure s.10(b) we plot the maximum value of & (¢;). We clearly see that error is small
and decreases exponentially with increase in N for fixed L = 20. We can reach a desired
accuracy by choosing the appropriate number of Chebyshev nodes N. Moving now to the
convergence of solution with increase in nodes L in At we see there is a general increase in
error in figure s.10(d) for both fixed N = 50 and 70. Such a behaviour is expected and not an
anomaly. Firstly observe that the maximum error is attained, for all different values of L, N,

1/2 singularity at t = 0.

at the first grid-point i.e. ¢1 int; € (0, At]. This is because of the ¢~
As we increase the number of Chebyshev nodes in the interval of length At, the first Cheby-
shev grid-point moves closer to this singularity. We can easily account for this behaviour by
increasing the number of modes in space N. We show this by increasing the spatial Cheby-
shev modes from N = 50 to 70 in figure 5.10(d) which results in a drop in the maximum
error.

We emphasize the advantage a Chebyshev basis provides in terms of computational efh-
ciency. In order to compute the Chebyshev coefficients via the Discrete Chebyshev Trans-
form (DCT), we only require O(N log N) operations where N is the number of Chebyshev
modes. This is done by leveraging Fast-Fourier Transform (FFT) package to evaluate the DCTs
involved in the process of computing Chebyshev coefhicients.

The memory requirement for our technique comes from storing the variables g(0, ¢;) and

I (kj,t,). Considering L modes in t;, N modes in I;Zj demands only storage of O(N +
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L) values for all times. Whereas the other techniques require a linearly increasing memory
cost of O(t/At). For N = 30, L = 20 one requires to store only 50 values which remain
fixed throughout the simulation. In this estimate we of course do not account for the pre-
computed matrices which turn out to be three N x N matrices (see Appendix 7.4.3) resulting
in another 2700 values for N = 30 but this initial cost remains constant and helps in shorter

computation time.

5.5.5 EXAMPLE §: SINGLE POINT VORTEX AND CAUSTICS

The stationary flow-field corresponding to a single vortex is

_ T, v
U= o8 X R (5.61)
Though this flow field does not have a time varying component, it still has contributions
from both (u - V)u and (g(0,t) - V)u. This makes the system of evolution equations for

particle position, y(t) and velocity, (0, t) coupled and non-linear. The solution is given by

ds, (5.62)

y(t) :y(0)+/ q(0, s) ds+/ %éz « y;"‘;)

for the velocity evolution

a(0,0) +0g(0.) 10,00, = (- 1) (- Vyu - @0.0-Tu. (569

Using the numerical technique described in the previous section, we solve for position and
velocity for a Stokes number of S = 0.01, density ratio § = 20 and plot the radial and an-
gular velocity in figure s5.11(a, b). Different lines in the figure correspond to different initial
position separated by a distance of 0.15 though all particles start with a initial velocity of
(0.05,0.05). Once the particles get centrifuged far away from the vortex, the trajectory fol-
lows y(™(t) ~ t1/4, where y(r) is the radial distance from the point vortex. Thus the radial
velocity, ¢ (0,t) ~ t~3/% as in figure s.11(c). This long-time behaviour is the same as that
obtained by [114] without Basset history. The history integral affects the transient behaviour
and the approach to the long-time limit.

We discussed in the introduction about caustics near a vortex. As shown by [114] analyti-
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Figure 5.11: (a) Radial velocity, (b) angular velocity and (c) radial distance travelled by particles starting at
5 different locations separated by a non-dimensional distance of 0.15 at S = 0.01, 8 = 10 and with initial
velocity of v, = (0.05,0.05),T" = 2, the solid black lines correspond to power-law of t’3/4, /4. solid
lines represent simulation including the Basset history integral, Stokes drag and added mass effects while the
dashed lines are for Stokes drag with added mass.

cally, and in two-dimensional simulations of turbulence, particles inside a critical radius, 7.
are evacuated rapidly, resulting in a region of high particle concentration in the neighbour-
hood of r.. In order to identify this critical radius including the effects of Basset history, we
track the radial separation Ar between two particles that are initially placed close to each
other. This is shown in figure s5.12(a) for various initial radial distance r; from the vortex of
the inner particle (the one closer to the vortex). When Ar crosses zero, caustics have occurred.
We find that caustics occurs for r; < 0.44, i.e., r. = 0.44. for this Stokes number S = 0.02.
Also, the trajectories of particles that exhibit caustics take different paths compared to ones
that do not, in the phase-plane defined by Av, vs Ar where Awv, is the difference in radial
velocities for two closely placed particles (see [114]). This is shown in figure 5.12(b) where a
negative value of Av, implies that the inner particle travels faster than its neighbour. When
Ar goes negative it has overtaken its neighbour. Thus trajectories that cross the y—axis of the
phase-plane form caustics.

In figure s.12(c) we plot the critical radius, 7. (found by the location where min(Ar(t))=0)
as a function of the Stokes number S. Simulations with history integral and added mass ef-
fects included are shown as solid lines and with just Stokes drag as dotted lines. The history
integral and added mass together reduce the region over which caustics are formed, and may

cause a reduction in the number densities of particles predicted without the history term.
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Figure 5.12: (a) Evolution of the difference in radial distance between particles Ar for different initial particle
locations r; separated by a distance 0.05 for Stokes number, S = 0.02. The critical particle location at which
min(Ar) crosses t-axis is the location of end of caustic formation. (b) The phase-portrait defined by Av,. the
difference in radial velocity vs Ar also shows the transition from caustic formation to no caustic formation
with increase in ;. (c¢) Critical radius . for caustic formation as a function of Stokes number .S with history-
integral, added mass (solid line) and with Stokes drag alone (dashed line).

The implications for particle dynamics in turbulent fluids flows are beyond the realm of

present article and will be explored in our upcoming study.

5.6 DiscussioN

5.6.1 INTERPRETATION OF THE DIRICHLET-NEUMANN MAP

The map that we establish between the Basset history integral and the Neumann condition
of the 1-D diffusion equation arises on mathematical grounds, but can also be interpreted
physically as follows. The diffusion equation that the variable g(z, t) obeys can be seen as dif-
fusion of momentum from the particle boundary and the Neumann condition g, (0, t) on
the other hand would mean the flux of momentum transferred from the particle boundary
in the form of shear stress to the bulk of fluid. The trail left by the particle motion is a con-
sequence of this momentum flux that emanates from the particle boundary which has been
shown to arise from the map between Dirichlet-Neumann conditions to diffusion equation.
This relation to the diffusion or heat equation further emphasizes the fact that our analysis
accounts for the momentum diffusion valid before any convective inertial effects impact the

‘wake’ generated by the particle.
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Geometry N i

Sphere 1 1
2[x1 Va2 — 1) =2 —1
Prolate spheroids (s > 1) eln(e + Vo ) % ) 4621
22V — 1 — seln(sc 4+ V32 — 1) 3(@22 D (etVTo2) Vo 15
2 L — V1 — 322
Oblate spheroids (s < 1) [pecos” = ] 4(1=)
2\/1 — 32 — 3ccos™ ! x» 3[(1—25¢2) cos—1 (%/m) 4]

o ) (&)

Table 5.1: Comparison of drag-coefficients [29] of different particle shapes where s« is the aspect ratio of
spheroid, % 4 is the additional coefficient for added mass term, %, is the additional coefficient for stokes drag,
©n = €2 isin front of Basset history integral.

5.6.2 DIFFERENT GEOMETRIES

In the present manuscript, we have focussed on our reformulation of the Maxey-Riley equa-
tion for spherical particles. The technique used employed here is, however, general and ex-
tends immediately to other particle shapes. The only additional requirement for spheroids
and disks travelling parallel to their axis of symmetry is the redefinition of the three non-

dimensional quantities
B=PB/Cr, &=%.0,and 4 =Cyn,

which respectively appear in equation (5.2) as coeflicients to the added mass term, the Stokes
drag term and the Basset history integral. In table 5.1 we show how these quantities vary from
that of a sphere as the aspect ratio x is varied. The solution for all time-dependent spatially

homogeneous flows can now be easily written for all these geometries as

Ll UMY . S

_ t) = R S
7q(0,1) /aD (& — k2 £ ik7) oo (G — K2+ ik7)

The numerical method developed for spatially non-linear time dependent flow fields is usable

without any change.

5.6.3 IMPLICATIONS TO PHYSICAL SCENARIOS

In this paper we explored a range of scenarios, from that of a particle relaxing to zero velocity

from a given initial velocity to a particle in a non-linear flow such as the point-vortex. Real
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flow situations are often describable by a combination of these simple flow situations. Our
results on the droplet growth highlight that for raindrop formation rates, the Basset history
integral is important. Our exact solutions for oscillating flow can directly be used to study
particle dynamics in synthetic turbulence, defined by a superposition of sinusoidal forcing of
different frequencies (see e.g. [105]). Ashasbeen shown in [114] the behaviour of the particle
in the presence of a point vortex is directly applicable to 2-D turbulence. The fact that the

critical radius for caustic formation shrinks will have implications for droplet clustering.

5.7 CONCLUSION

The Maxey-Riley equation has been used extensively by researchers, but most often by ne-
glecting the history integral, primarily due to the difficulty in handling this term. The non-
locality in this term has been the barrier in terms of numerical progress as memory require-
ments keep increasing with time. This is a major hurdle especially when a large number of
particles need to be simulated in high Reynolds number turbulence. Another barrier was
that restarting a simulation with history integrals was practically impossible, owing to expo-
nentially large storage requirements. Both these issues have been addressed in this paper by
reformulating the Maxey-Riley equation as a boundary condition of the 1-D diffusion equa-
tion. Several analytical solutions to the complete Maxey-Riley equation, which can form the
basis for gradient expansions in more complicated background flows, have been obtained.
Our analysis suggests that the Basset history may not be categorised as an additional drag on
a particle. Its effect on particle velocity is seen to cause a more rapid stretched-exponential
decay at short times and a power-law at long times. Basset history, we show, has effects on
particles settling under gravity, droplet growth rate and migration in a simple shear, in all
of which neglecting this term would result in a qualitatively different (and incorrect) predic-
tion. Our numerical scheme is the first spectrally accurate method to our knowledge for the
complete Maxey-Riley equation. Its implementation is straightforward, since Chebyshev co-
efficients can be computed efhiciently using the FFTW package. Several open questions, e.g.
regarding statistical properties of particles in homogeneous isotropic turbulence can be stud-
ied by this approach, and the effect of Basset history in turbulence understood. The larger
question of understanding the MR equation from a dynamical systems perspective is as yet

unanswered, as is the question of whether attractors are modified by the history integral.
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Conclusion and future directions

In this thesis we have considered the role of elasticity and hydrodynamics interaction in deter-
mining the behaviour of filaments and spherical particles. We have explored using table top
experiments the behaviour of filaments, also supplementing the observations in experiments
with a theory that captures the observations accurately. In order to understand the dynamics
of tiny rigid spherical particles in a fluid flow we have developed a novel numerical technique
that captures the history effects of the particle accurately.

The experiments we have performed have provided the following insights into the me-

chanics of elastic filaments:

* Large deformation of an elastic filament across its length results in tension inside the
filament and this tension modifies the relaxation rate of elastic filaments.

* Large localised deformation of an elastic filament by contact forces such as capillary
force can affect large scale features such as contact angle.

* Substrate geometry over which an elastic filament resides plays a vital role in the mor-
phological instabilities of the filament.

We know that a fluid of constant density interacts with other fluid or a solid structure
through capillary forces at the fluid interface and viscous forces in the bulk of the fluid. Apart

from providing broad insights mentioned above, our experiments and theoretical models

132



provides a novel way by which fluid forces, both capillary and viscous, can interact with elastic
filaments to result in pattern formation in the fluid-elastic system.

In the case of dynamics of particles in fluid flow, our numerical technique opens up a
plethora of possible scenarios where the effect of Basset history can be immediately under-
stood. To our knowledge, ours is the only technique which allows for restarting of simula-
tion with the right initial condition for the particles. Beyond the implications with respect
to spherical particles, the method mends itself to anisotropic particles such as spheroids. Fur-
thermore, this is the first instance where Unified Transform Method has been used to create a
numerical scheme, opening up possibilities to extend our methodology in other fields where
this technique is used.

Using the studies conducted here, these are some of the future directions that can be pur-

sued with our results as starting point:

* Filaments in microorganisms are active, with stresses inside the filament arising out of
chemical gradients. This stress can easily be accounted in our model and this opens up
questions such as motility of microorganisms and their efficiency which is currently
a topic of serious research. Beyond single filament dynamics, understanding the col-
lective motion of active filaments with hydrodynamic interaction is a nascent topic in
terms of both experiments and theory.

* In chapter 3, we performed experiments to explore only the partial-wetting phase and
several features of the partial-wrapping and complete-wetting phase are as yet unex-
plored. Our quasi-2D experimental setup yields itself to exploring these phases easily.

* Leveraging the wrapping technique for parceling 2D droplet using filaments, shown
in chapter 3, we can create an array of 2D droplets. Using this collection of 2D droplets
protected by an elastic boundary, we can study difficult questions such as response of
collection of 2D soft discs (approximated by the wrapped droplet) to shear and other
external forces.

* In order to understand the role of substrate geometry in triggering instabilities, we
have only seen the tip of the iceberg. Our results only pertain to the specific case of
an elastic filament confined to a sphere. Does a filament behave differently on a hy-
perbolic surface i.e. surface with negative Gaussian curvature. Moreover, the bigger
question of shapes of elastic filaments on an arbitrary 2D surface is as yet unexplored.

* Particle dynamics in fluid flows accounting for Basset history force is shown in our
work to be important in several cases. However in order to simulate their dynamics
when there are a large number of them, such as in clouds, our numerical method can
be difficult to implement. In such a scenario we have proposed in chapter s that using
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leading order terms in gradient expansion, we can locally approximate flows using lin-
ear profiles and evaluate particle dynamics in a simpler way. This remains to be done
and can be done immediately using our technique.

* Sedimenting rain droplet from cloud grows in size mainly through collision and the
role of history force on this accumulation rate is as yet unknown, both in experiments
and through simulation.

Apart from the questions proposed here, which rely on the results presented in this thesis,
our experimental tools are useful beyond these questions. Our procedure for preparing thin
filaments, measuring tension inside filaments using soft-beams, the fluorescence technique
used to visualise thin filaments, and filament tracking technique are useful in a wide variety

of contexts.
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Appendix

All the codes used to extract shape of filament, shape of droplet and bubble are available
on GitHub.

7.1 RELAXING ELASTIC FILAMENT

7.L1 EXTRACTING FILAMENT SHAPE

The procedure we follow to track the filament in the relaxing filament experiments involves

a series of processes. They are:

* Extracting image sequence from experiments that capture the dynamics of the fila-
ment. Then trimming the image to the region of interest where the filament s situated.
Such a trimmed image is shown in fig. 7.1(a).

* The trimmed image is then passed through thresholding to capture its boundaries and
then a pruning procedure. This procedure is intended to capture the centerline of the
filament. We get an image like the one shown in fig. 7.1(b).

* After capturing the discrete pixels along the filament centerline, we have to arrange
these pixel coordinates in the right order, so that we can then calculate the arc-length
form of the filament centerline. In order to do this, we borrow the technique devel-
oped to create formulas for any curve on Wolfram Blog. This technique chooses a
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Figure 7.1: (a) Experimental image of the filament (in pink), (b) extracted shape of the filament centerline,
(c) calculated square of curvature along the filament arc-length using B-Spline fit to the shape in (b) after
arranging the pixel coordinates in right order.

random pixel in the image and then looks around in the neighbourhood for points
and arranges them in an array such that nearest ones are next in the array while farther
ones appear later in the array.

* After arranging the points in the right order, we then fit B-Spline curve to these points.

* Using the fit B-Spline, we calculate the curvature along the filament. We plotin fig. 7.1(c)
the square of curvature computed from the image shown fig. 7.1(a).

7.1.2  EXPRESSION FOR L(t)

The evolution of vectors at the boundary of the filament can be written as:

ﬂaﬂ’\o = _Tssss|0 + [TsasT(S)HO (71)
ﬂatr|L = _T'ssss|L + [T‘SOST(S)”L (72')
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Figure 7.2: (a) Energy, (b) end-to-end distance for different heights of glycerol. We do not see any significant
effect except at the shallowest height of 0.6¢m.

For symmetric initial conditions that we use in experiments, we can write:

Tssss |0 = Tssss |L

95T (s)lo = —0sT'(s)|L
Now using these the vector connecting the ends evolves as,

fi0y(rlo — r[L) = 9sT'(s,t)[o[rslo + 74| L] (7.3)
HOLL(t)eq = 205T(s,t)|o cos(0(t))es (7.4)

where 6(t) is the angle between the tangent vector at s = 0 and the horizontal. This shows
that the end-to-end distance depends only on the gradient of tension at the boundary and

bending is eliminated from the equation.

7.1.3 INDEPENDENCE OF HEIGHT OF GLYCEROL

One might be concerned that the relaxation dynamics would be affected by the depth of the
glycerol in the container. In our experiments, the filament is placed at the glycerol-air inter-
face. We report here the minimum height of glycerol required in the beaker for the filament
relaxation dynamics to be not affected by the volume of glycerol in the container. Fig. 7.2
shows the relaxation for four different height: A = 0.6¢m, 1.1em, 2.3¢m, 3.3cm. We see that
for height greater than 0.6¢m, the dynamics remain the same. Thus in all our experiments, a

height greater than 3.3¢m is used.
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Figure 7.3: & and L(t)/L, vs /7 for a filament with one end clamped and the other end deformed. L(t)
is obtained by mirroring the image about the normal at the hinged end. The effective length calculated by
combining the mirrored image and the normal relaxation is represented by L,. Blue circles correspond to
relaxation of the symmetric initial configuration described earlier.

7.1.4 EFFECT OF HYDRODYNAMIC INTERACTION

The model used to simulate the filament neglects the hydrodynamic interaction between
different points along the filament as mentioned in the main text. But these interactions
are present in the experiments and thus to see if the relaxation is radically modified by these
interactions, we perform the following experiment. We clamp one end of the filament and
deform the other end and let it relax from this configuration. The relaxation is mirrored
about the normal at the fixed end and the effective length of this combined filament is L,
Now L(t) is calculated for this combined picture that consists both the mirrored partand the
actual relaxation. Fig. 7.3 shows & vs t/7 and L(t)/L, vs t /7 for three different lengths and
we see that the collapse is spread. The blue rounds are that of the symmetric relaxation from
earlier experiments. Though this does not conclusively quantify the effect of hydrodynamic

interaction, we see that 7 is not exorbitantly modified.

7.1.5 EFFECT OF CONTACT ANGLE

The Bond number for the stiffer VPS measured is 5.6 x 10~ and that of softer VPS is 3.0 x
1072 and thus effects of density can be neglected. We have measured the wetting properties
of glycerol over VPS and validate our approximation that the motion of the filament is 2D.

We see that,
The effective diameter of filament under contact with glycerol for two diameters - 1.04mm,

138



—100 |-

l l l
0 02 04 06 08 1
S

() (d)

Figure 7.4: (a, ¢) Two arbitrary asymmetricinitial conditions relaxing to symmetric states with (b, d) showing
similar behaviour from numerics. (d) We see that the tension, T'(s) moves towards regions of zero bending
force and becomes symmetric. Even after symmetrising, the tension is still of finite amplitude, indicating that
the system is still non-linear.
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Contact angle of stiffer VPS 102.4°
Contact angle of softer VPS 94.6°

Density of softer VPS 1.02g/cc
Density of stiffer VPS 1.18g/cc
Density of glycerol 1.216g/cc
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Figure 7.5: Results comparing the method used in Quennouz et al. [112] assuming anisotropic drag for the
filament with that of the present technique without anisotropic drag.

0.57mm used in our experiments is now (see fig.2 of main article): d = 1.0367mm, 0.5682mm
for stiffer VPS and 1.0159mm, 0.5568mm for softer VPS. This shows that the contact area
of the filament is approximately half that of the surface area of the filament (neglecting sur-
face defects). Itis also worth noting that the dependence of the drag force per unit length on
the cylinder has only a logarithmic dependence on the cylinder diameter, making the effect
weak. This we believe is the reason behind minimal contribution of contact angle effects on
the factor of 4.2 in the article. Fischer et. al.[49] point out this drag dependence on the in-
terface Boussinesq number (see their fig. 2). For a length-to-diameter ratio of ~ 100, as in
our experiments, they observe a strong dependence on the interfacial Boussinesq number. A

discussion regarding this has been added to the experimental methods section.

7..6  ANISOTROPIC DRAG

We implemented the drag in Quennouz et al. [112] and we plot below in fig. 7.5 a compari-
son of implementations of the anisotropic and isotropic drag. As expected, we see relatively
small effects of the anisotropy due to movement primarily along the normal direction of the
filament. We have proceeded with the isotropic implementation, as the drag coefficients are
then independent of the aspect ratio L/d. This allows us to collapse the primary variations

in the experimental data, without worrying about the smaller effects of the anisotropy.
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Figure 7.6: Filaments made out of PDMS imaged under a microscope. These filaments have a diameter of
(a)30um, (b)80um and (¢)190um.

7.2 WRAPPING EXPERIMENTS

7.2.1  MAKING THIN PDMS FILAMENTS

Here describe briefly the procedure we follow to make thin elastic filaments.

* In order to make PDMS filaments we need Sylgard 184 Silicone Elastomer Kit and
Accelerator.

* We take the polymer base, accelerator and cross-linker in the ratio r:2:10. And mixitin
a petri dish.

* We centrifuge the mixture to remove bubbles.

* Once the mixture starts to settle, we wait for a time window between 35-45 minutes at
room temperature before we make filaments.

* Within this time window we find that the mixture is neither a solid nor a liquid but in
a state of transition between the two phases. Now we take a droplet of this mixture in
a capillary tube and pull this droplet using tweezers.

* The pulling process results in a long thread which can then be hanged.

* Once the filament sets to a solid, which takes place within 2 hours after mixing the
ingredients, we can use them in our experiments.

After making these filaments we inspect them under a microscope to check for the uni-
formity of the filament diameter. In fig. 7.6 we show some of the filaments made using this

procedure.

141



W
5
%O

A

Figure 7.7: Image of the experimental setup with floating droplet in orange (due to Sudan Red dye). One end
of the filament is attached to the soft-beam whose end displacement is used to measure tension. The other
end of the filament is attached to a rigid rod which is attached to a translational stage. Soft-beam diameter if
0.5mm for scale.

7.2.2 2-D EXPERIMENTAL SETUP

The experimental setup for the contact angle and wrapping experiments involve a droplet
floating at air-water interface. In fig. 7.7 we show the setup with all the components. The
soft beam in turquoise colour, attached to one end of the filament, is made out of VPS and
is connected to the end of a needle. These filaments are fabricated using the same procedure
described in chapter 2, using capillary tubes. The other end of the filament is attached to a
rigid rod. This rigid rod is then attached to a micrometer translational stage whose displace-
ment controls the tension in the filament. We attach the filament to the soft-beam as well as

the rigid rod using Fevikwik cyanoacrylate.

7.2.3 FLUORESCENCE EXPERIMENTS

In the fluorescence experiments discussed in chapter 3 we use Nile Red dye mixed in Ethanol
to coat the filament and then let ethanol evaporate. The dyed filament is floated at the in-
terface of the water bath. Using cylindrical lens we convert the circular cross-section of the
laser beam into a sheet. We then shine this sheet of laser close to the interface and capture the
shape of filament after filtering using a red filter.

We have shown in chapter 3 the shape captured using fluorescence on in high bendability
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Figure 7.8: Fluorescence spectra of Nile Red. We shine laser in the green part of the spectrum and the emis-
sions happen in the red part. (Image credit: Thermo Fisher)

Figure 7.9: Shapes of filament captured using fluorescence post self-contact. (a — d) shows the shapes as we
keep decreasing the volume of oil droplet.

and one in low bendability before the filament is wrapped. Herein fig. 7.9 we show the image

of filament shapes post wrapping where the filament is in self-contact.

7.2.4 MEASURING CONTACT ANGLE

In order to extract the contact angle from the experimental images, we use the following

technique.
* Colour the droplet alone such that it is visible in a uniform light.
* Threshold the droplet image to get the boundary of the droplet.

* Calculate the curvature along the boundary of the droplet to identify shart corners.
These sharp corners represent the droplet-filament contact lines. An example of the
experimental image superposed with extracted droplet boundary and contact line is
shown in fig. 7.9(a).

* After finding these contact lines, we need the slope information to extract the contact
angles. In order to identify the right point to estimate the slope, we estimate the angle
as a function of the points along the droplet next to the contact line. In fig. 7.9(b) we
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plot the angles estimated as a function of the index of point from contact line, on both
sides (left contact line, right contact line) of the droplet.

* We choose the slope using the point where (9 + ¢) plateaus in fig. 7.9(c).

7.2.5 PINNING EFFECTS OF DROPLET CONTACT LINE WITH FILAMENT

In order to understand the pinning effects of droplet contact line with the elastic filament,
we experiments to see if there is any hysteresis in the 9, ¢ vs Ry, R, plane. We start the experi-
ments by decreasing the boundary tension of the filament and after sufficiently small tension
value, we increasing it. In fig. 7.9(c) we plot estimated values of ¥, ¢ as a function of Ry, Ry,
We see that the fluctuation in the values of contact angles is small and thus we neglect the

effects of contact line pinning.

7.3 COILING EXPERIMENTS

7.3.1 EXPERIMENTAL SET UP AND DETAILS

The experimental setup used in the coiling experiments consists of a capillary tube at whose
end hangs the bubble, a filament holder, mirror to get the bottom view of bubble, uniform
light source, and a camera. This setup is shown in fig. 7.11, mounted on a stainless steel bread-
board. The bubble is blown out of a syringe connected to a micropump.

The soap solution used to make these bubbles are made out of DAWN soap solution with
a high concentration of glycerol to reduce drainage in the bubble. The volume ratio of soap
solution to glycerol in our bubbles is 1:3. In our experiments we reduce the bubble size for a
fixed filament size, and we find that bubble solution with this concentration is stable up to
15 minutes. Another aspect in our experiments is that we do not want the surface energy of
the filament affecting the filament shape thus we coat the filament with soap solution before
feeding onto the bubble surface.

In order to make the filament visible under uniform light, we coat the filament with Sudan
Red using the same procedure described earlier for PDMS filaments. However for silicone
filaments used in coiling experiments we found that if the filament is coated with Sudan Red
+ Ethanol while the filament rests on a micro-slide, the filament gained natural curvature after

Ethanol evaporates. In order to avoid this natural curvature, we created a bath of Sudan Red
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Figure 7.10: (a) Extracted shape of droplet from experiment super-imposed over the experimental image.
Dots are the corners representing the contact line of droplet. R;,, R4 are the radius of curvature of the buck-
led zone and droplet. (b) Calculated value of (¢ + ¢) as a function of the index of point from the contact
line used to estimage 9, ¢. (c) Estimated value of , ¢ as a function of Ry, Ry, (in mm) from experiments for
repeated cycles of increase and decrease of tension in the filament.
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Figure 7.11: Photo of the experimental setup used in the coiling experiments in chapter 4. The bubble is held
at the end of the capillary tube. The filament holder is used to feed the filament onto the bubble surface. We

use mirror to observe the bottom view of the bubble to get the shape of the coils. The setup is lit from the top
of the bubble and behind the bubble.

+ Ethanol and floated the filament at the interface of this bath. After removing the filament
from this bath, we dry the filament by hanging with one end fixed. This procedure we find

resulted in straight filaments but now with a layer of Sudan Red, making the filament visible
when imaged.



7.4 HISTORY EFFECTS ON PARTICLE DYNAMICS

7.4.1  DIRICHLET TO NEUMANN MAP

For the convenience of the reader, we present here the details of the Dirichlet to Neumann
map for the diffusion equation. This calculation may also be found in [s0]. We begin with
the global relation for the 1-D diffusion equation, equation (5.14), and derive an expression
for g;(0,t) in terms of g(0,t). To do so we multiply (5.14) by ike “®)*, for0 < t < T,
and integrate over the contour 9D~ as depicted in figure 5.2(b). We denote by D~ (D)
the regions of the complex—Fk plane where R(w(k) = k%) < 0and (k) < 0 (respectively,
3(k) > 0). Note for k € DF, e*(®) is bounded and decaying for t > 0 as k — co. We now
have

/6 [ike* T DGk, T) + ike ") (g, + ikg,)] dk = 0. (7.5)

.

The first term in the integral affords no contribution. This follows by noting that the integral
of this term along Cp, see figure 5.2(b), vanishes as R — oo for (T" — t) > 0. Moreover since
there are no poles in D, the integral of the first term along the contour 9D~ is also zero.

Next we employ the definition of gy and g to obtain

T T
/ [zk/ B g.(0,s) ds — k? / B gq(0, 5) ds] dk =0. (7.6)
oD~ o o

The integrand of the contour integral in the above expression consists of the sum of two

terms. For the first term we substitute k2 = il, [ € R to obtain

T proo T
_;/0 / e =% g,(0,5) dI ds_/ma— k2</0 e (=0g(0, s) ds) dk=0.  (77)

The Fourier inversion theorem then allows us to replace the first term with the Neumann

condition g, (0, t). The second term on the left-hand side may be simplified as follows. First
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we integrate by parts once and then deform the integral from 9D~ to the real line

k2(T—t) _ k2%t T o,
—qu(O,t)—/ k2|:<e Q(OyT) S Q(0,0)> _/ k*(s—t) (0 S) ds| dk = 0,
oD~ 0

k2
(7.8)

g (0.1) — / 140, 0) dk

_/aD {ekQ(T 1 </ / ) 4(0, ) ds} dk = 0, (7.9)
e rgu(0.1) — ﬁq(O, 0) — /_ ) /0 e (5=04(0, 5) ds dk = 0. (7.10)

The last term of (7.9) consists of an integral over s € (¢, T]. This term vanishes since for (s —
t) > 0,eF” (=) i analytic, bounded and decays at infinity for k € D~. An appeal to Jordan’s
lemma assures us that the contribution from this term is zero. A similar argument implies
the term with g(0, T') also vanishes. Switching the order of integrations for the integral term

in (7.10) leads to the final expression for the Dirichlet to Neumann map

qx(O,t):—\/WT (0,0) — ;7? 0 ‘i(to’_sl ds. (7.1)

7.4.2 HISTORY EVOLUTION

Multiplying the boundary condition (5.23) by eF*t and integrating over ¢ € [t,, t, + At] leads

to

F* ot AT) (0, 1, + At)—e 1o q(0,t,) + (o — k2)Go (K2, to, to + At)
— g1 (K2 to to + At) = F(E2 to, to + Al). (7.12)

We may now eliminate g1 (k%, ¢, t, + At) in (5.56) using the above expression. Multiplying
the resulting expression by ke %t /(o — k% 4 ikv) and integrating over 9D~ results in the
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Figure 7.12: Map of variable k. — l;: where l%l are Gauss-Lobatto grid-points, the discrete version of l:: which
is used to evaluate integral in equation (7.15).

following relation for the Dirichlet condition g(0, )

—k2(t—to) —k2t £(1.2 A
ke k+/ ke "t f (k% to, to + Al) dk
oD~

inq(0,t) = gq(0, to)/ (o — k2 + iky)

—d
op- (o — k? + ik7)

ke R (t=to) G (k. t,)
P dk, t, <t <t,+ At. )
* /ap (a—K2+iky) 0 L (7.13)

To obtain the above expression we appeal to Jordan’s lemma several times in order to elim-
inate integrals that vanish. Equation (7.13) may be deformed back to the real line to obtain
equation (s.57).

Equation (7.13) expresses g(0, t) in terms of an initial condition q(0, t,), itself (via f) and
q(k,t,). We now derive an expression to relate g(k, t,) and q(k, t, + At) in order to obtain
a rule to update the g. Once again, eliminating g; from the global relation (5.56) and (7.12)

we obrtain after a bit of algebra

k2, to,to + At)
(a0 — k2 +iky) ’
(7.14)

F* Lot 32 (e ) + At) + Go(K2, Lo, to + AL) = ¥t (K, t,) +

where

Hety) = {q<07t0) +74(k, to) }

(o — k2 4+ ik~)

which at the initial time instantis 5#(k, 0) = q(0,0)/(a — k? +ik~). A similar relation exists
between 7 (k,t, — At) and 7 (k, t,) (obtained by considering (7.12) and (5.56) for the time
interval [t, — At, t,] ) which is precisely (s.58).

7.4.3 EVALUATING INDIVIDUAL TERMS IN EQUATION (5.57)

In order to reach equation (5.60), there are four steps in the process of building #(¢;) and

F(tj). We start with the first step which is to evaluate indefinite integrals. In order to evaluate
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integrals of the following type numerically
P(t) = / B(k)e ™t dk = / S{B(k) e ¥ dk. (7.15)
—00 0

Integrals of this form are prevalent in both equation (5.57-5.58) for smooth functions Z(k)
which are well behaved in the entire interval k € (—o0, 00). We first map the variable k — k
using the transformation: k = (1 +k)/(1 — k), k € [~1, 1). Using this map, we can expand
the function ${%(k)} using Chebyshev basis as: SN enTn (k). Using Fast Fourier Trans-
form (FFT) packages, we compute ¢,, and evaluate the integration &?(t). Thus evaluating
this integral just requires one forward Chebyshev Transform (CT). We show in figure 7.12 the
map between Gauss-Lobatto grid points k; € [~1,1) and &; € [0, 00). Using this method
we can evaluate the entire expression #(¢;).

We move to the second step in evaluating the equation (s.57) which is the term F(¢;). For
agiven guess q(0, t;), which we take as —2/7#H(t;), we can evaluate f(q(0,¢;),t;). The next
step is then to compute from this given ¢(0, ¢;) the integral F(¢):

[ ke FF (R, 1)
F(t) = /0 \c{ e } dk, t€ [t to + All, (7.16)
t 9] N keka(tfs)
= . f(q(o, S)) A \S{(OC—]{,‘Q—FZ]{“‘)/)} dk’ dS. (717)

Substituting (t — s) = m, we get:

Ft) = /Ot_to F(q(0,t —m)) /OOO %{Jf;iziw} dk dm. (7.18)

Z(m)

We can now expand f(q(0,t —m)) = SN S enTn((t —m) — (t, + At/2)/(At/2)) with ¢,
being function of g(0, ¢;). We choose ¢ — t, = #, which eliminates the ¢, dependence from
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the expansion and this lets us write

N i P i
F(tj) = ch/o Tn((tj A7)5/2 At/2>.$(m) dm, t; € [0, At], (7.19)

N
= Z cnMy,;. (7.20)

We can precompute M,,;, which isa N x N matrix, and evaluating F(t;) again requires only

one CT. The next term in equation (5.58) needs a small trick to simplify and is given by

to
= / N e (t=g(0,5) ds, (7.21)
to—At
1
= At/ e_kQTq(O, to — Att) dr, where s = t, — Atr, (7.22)
0
At (¥ A , A
= 192/0 e *q(0,t, — Atﬁ) d\, with T = = (7.23)

We immediately see from this expression that for large k, the integral goes to: (0, t,)At/k*+
O(1/k?) implying that this part can be separately evaluated by Taylor expansion around ¢,.
This gives rise to

L e a(0,5) ds, ifk=0
S

At1q(0,t0)(1 — ) + fo’“Q e <q(0, to — Aty) — q(0, to)> d)\] , ifk#0
(7.24)

The second term in the above equation is evaluated by expanding q(0, t) using values at t = ¢;
when t, <t; < (to+At)as N a, T (F) where T = (2t — (2t, + At)) /At is the map from
t — t. Given this polynomial approximation, we can write the integral as a precomputed
matrix Dy, times the CT vector of (0, t;), a,,. The subsequent integral .#; follows the same
argument and we can use the exact same matrix D,,,,, to compute it. Thus to compute 7 (t;),
all that we need is precomputed matrices Dy, ,,, and M,,; beyond which it is computing two
CTs for each time, t, < t; < (t, + At).
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7.4.4 NEUMANN-DIRICHLET MAP FOR HEAT EQUATION

—w(k)t

When the global relation of the heat equation is multiplied by e we get:

/8 TG0 T) + 0 G ikg)) d =0, (7.25)

The first term in the integral has no contribution because (T'—t) > 0 by definition and as the

contribution from Cp, (see fig. 5.2) is zero as R — oo since e(*)

is decaying for large k and
s > 0. Combining this with the fact that there are no poles in D~ ensures that the integral

along contour D~ is zero. After we expand the other two terms we get:

t T T
/ [/ e (=) g,(0, 5) ds + / e, (0, 5) ds + Zk/ e?g(0, 5) ds| dk = 0.
op- LJo t 0
(7.26)

The second term in the above expression give no contribution since (s —t) > 0and 0D~

is the region of decaying e(®)*

, essentially due to Jordan’s lemma. The first one can now be
mapped to the real line as there are no poles in C~. Due to the direction of definition of the

contour, we get an additional negative sign:

t o) T
—/0 </ e_k2(t_5)qz(0, s) dk> ds—l—/aD <zk7/0 ekz(s_t)q((),s) ds) dk =0. (7.27)

The next step is to substitute kv/t — s = m in the first term so that it becomes a Gaussian
integral and the second term can be simplified since we know 9D~ is where k, = +k;, which

implies the boundary 9D¥ is given by k2 = il and this leads to ikdk = —di/2. Substituting

this we get:
t OO —m?2 q.Z?(Oa S) I > —il(t—s) _
_/0 </;OOC \/mdm>ds_2/0' </_Ooe q(O,s)dl)dS—O (7.28)
(7:29)
We thus have the final map from Neumann to Dirichlet boundary condition as:
1 ["q(0,5)
0,t) = ——= | ——==ds. .
q(0, 1) s (7.30)
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In section app. 7.4.1 we saw the derivation of Dirichlet to Neumann map, and in 1-D this

0.0 =~ Lo, - [ 10 g, (730

However when the initial condition g, (z) is not zero, we have:

qx(O,t):—\/: (0,0 — \} \q./(oi)d - /a ke (k) (7.32)

Now for a system starting from time ¢ = 0 traversing upto (¢, + 7), the above expression

result reads:

becomes:

to+T 0 S)

74z (0, 10 + 7) = \/ﬁ ds. (7.33)

00+\F/

(t0+ )

We expect the same solution for a system starting at ¢, and traversing a duration of 7 but with

a different initial condition for the heat equation. We can then write:

—qu(O,to—FT):\/» (0,10) +\F/ Oto—l_s)ds—k/ ike _kT(kt)dk
oD~

VT —s
(7.34)
From heat equation we know the global relation precisely as:
Go(k) = e“WT4(k, T) — g1 — ikgo = 0V k € C. (735)
We can evaluate this expression for T' = ¢, and we thus get:
q(k,to) = —(g1 + ikgo)e “®e v ke C. (7.36)

We thus have the following integral for the map starting from t,,:

—7qz(0,t0 + T) :\/> (0,t0) + f/ (0.t +9) ds — / ike ¥ (to+7) (G + ikg,) dk.
oD~

T—S

(7.37)
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The first term can be evaluated as:

to
S = / / “tot=5)g +(0,5) ds dk, here (t, + 7 —s) >0V s € (0,t,),

oD_

(7.38)

= / / 2(totT—5)g +(0,s) ds dk. Substituting k* = il, (7.39)
oD_

= — f12/ / (to+7=5)0.(0, s) ds di, (7.40)

oD_

_ 7r/ 00, 5)5(ts + 7 — 5) ds = 0. (7.41)

0

The second term now simplifies to become:

/a . / ke R (tot7=5) (0, ) ds dk, (r.42)
- 7q(0,t,) — e Kot T)g(0,0)  [to e K (totT=s)
B /81)_ g { k2 /0 Tq(O, s) ¢ ds,
(7.43)

These three integrals can be immediately evaluated using Gaussian integral form after which

Sy = — ﬁq(o,to) - \/T (0,0) + f/to \/ﬁ ds. (7.44)

Substituting this back to eq.7.34 we get:

we get:

to
—ru(0,8) = 0.t + 5)

q(0,0) +\F/ f/to t+7_sd8 (7.45)

to
which is precisely the termsin eq. 7.33 which thus shows that when the system starts from zero
or t, and navigates till (¢, + 7), the effective Neumann condition remains the same while the
initial condition for the scenario starting at ¢, changes. We will use this result in the following

section.
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7.4.5 TIME TRANSLATIONAL PROPERTIES OF MAXEY-RILEY EQUATION

Autonomous system of ordinary differential equations have the property of time transla-

tional invariance. If the ordinary equation:
w(t) =f(w(t)), w(0) = w, (7.46)

has a solution w(t), then p(t) = w(t—t,) isalso a solution. We can easily see it by substituting

this in the equation with s = t — t,:

5(0) = St — 1) = Sw(s) = Fw(s) = F(pl1). (747)

S

However this is not the case for the Maxey-Riley equation specifically due to the presence of
the history integral. We now take the 1-dimensional version of Maxey-Riley just for the sake
of illustration however adding indices make it 2/3-dimensional immediately. We can write

the MR equation for relative velocity of a particle with the background velocity acting as

forcing as:
0 1 [
() = — aw(t) - v{’“’;j v [ fff)d} T Flwlt),u(t)). (7.48)
Now we translate in time by mapping t +— t, + 7 under which we get:
dw _ @ 1T its) }
g (ot 7) = —aw(to+7) 7{ et + \/77/0 \/mds (7.49)
+ fw(to + 1), ulto + 7). (7:50)

Now we replace w(t, + 7) by p(7) and we get:

- w to+T w(s
dp(r) _ _ap(T)_,y{&+\%/o \/%Jf%ds}Jrf(P(T),u(T)).

(7.51)
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We now add and subtract terms to make it look like eq. 7.50:

dlr) 0w p0) 1 [l
5 = () V{WJF\/W \/EJF\/E/O T (752
1 to+T 11)(5)
= [ s+ S0l ut) (759
We now make the substitution s’ = s — ¢, to get:
dp(r) p(0) 1 [T p(s) o,
3 ——ap(T)—’Y{\/E-i-ﬁ ; 7__S/dss} (7.54)

P w) L ()
| ﬁ*WWE/O Vi kT s

B

ds} FFp(r), u(r)).

(7.55)

We can immediately see that the second part of this equation exactly resembles eq. 7.44 whose
contribution comes from starting the solution from ¢, with new initial condition ¢(k, ¢,).
From this expression it is clear that the propagation of MR equation with the history integral
does not obey the properties of autonomous ordinary differential equation but on mapping
this to the boundary of heat equation, we convert this into a simple partial differential equa-
tion. Further the difference in solution arising out of translating the solution by ¢, i.e., the

additional terms in eq. 7.55 come from restarting MR with new initial condition ¢(k, t,).

7.4.6 GENERALISED DIRICHLET TO NEUMANN MAP

In this section we look at slightly different partial differential equation, in order to show
that the technique we develop is general and can be extended to linear PDEs with constant

coefficients of higher order.

Gt + Graz =0, x> 0,te (0,7, (7.56)
q(z,0) = go(z), x>0, (7:57)
q(0,t) = go(t), t e (0,7). (7.58)



It is easy to see that the dispersion relation for this system is: w(k) = —ik®. We can evaluate

the region in which R(w(k)) < 0, and is given by:

D= {k Cargk € (g?) U (TF, 4;) U (?,%) } (7.59)

These three domains are represented by D, D, D5 show in fig. X. Writing again the above

system in conservative form, we find the global relation to be:

Go(k) — [K%Go(w,T) — ik (w, T) — Go(w, T)] = T (k, T). (7.60)

Now the discrete symmetries of the dispersion relation are v (k) = e’ and vo(k) = 5.
When k € DT, we find that v (k), v2(k) lie in Dy, D5 . We can write the global relation, for

27
kEeDtwithQ =e73 as:

QO(Qk) - [Q2k2 ~O((/Jv T) - Zngl (Wa T) - §2(w7 T)} = ewT(j(Qk> T)a (761)
Go(Q?k) — [Qk%Go(w, T) — iQ%k1 (w0, T) — Go(w, T)] = e*T§(0%k, T). (7.62)
Using eq. 7.60, 7.61 we can write §; in terms of g, as:
1
ikg(w,T) = —Q%E%Go(w, T) — ) |:QO(Qk) - qo(k)} (7.63)
ewT . ()
- m |:Q(ka T) — 4(Qk, T)} : (7.64)

We now use the handy trick we have used extensively above, i.e., multiply above expression
4 Y , ply P
by ketk’t and integrate over the domain 9D . After a bit of algebra, quite similar to the earlier

calculation, we end up with:

30201 (1) 3020, /t q(0, s)
0,1) = 2228 0.0 + %) ds, 6
e i (763
01(t) = / e®’t dk, gy = / e** dk. (7.66)
oD+ oD+
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Cr

oD"
DZ Dl
Figure 7.13: Regions D, D7 , in the complex k-plane where the dispersion relation w(k) = —ik3 is well

defined i.c., R(w(k)) < 0and the integral path 9D used to find the generalised Dirichlet to Neumann
map.
7.4.7 CONVERTING IDE TO A BOUNDARY CONDITION TO PDE

Let us consider now the IDE of the form:

2 2 toi(s
0(t) + av(t) —7{wv(0) 4 302 Q2/0 ( ( ))§ ds} = f(¢). (7.67)

2m 2m t— s

From the equivalence established for the Maxey-Riley equation, we can clearly see that this

equation again can be written as a boundary condition to a PDE:

Gt + Qraz =0, x> 0,te (0,7, (7.68)
Q(ajv 0) = QO($)7 x>0, (7'69)
¢(0,1) + aq(0,t) — vg.(0,t) = f(t). (7.70)

The time-transform of the boundary condition becomes:

eTq(0,T) — ¢(0,0) + (o + ik*) — vg1 = f. (7.71)



We can solve for g,(w, T') to give:

q(0,0) + f(w, T) eTq(0,7)

Go(w,T) = (ik3 + (Q+ Viky + o) (ik3 + (Q+ 1)iky + a) (7.72)
ol Go(k) — Go(QK)
(k3 4 (4 1)iky + ) [ E(Q—1) ] (7.73)
iyet G(k, T) — G(Qk, T)
+ (ik?’ + (Q + 1)ik’y —+ a) I: k-(Q _ 1) :| (7.74)

On multiplying this above expression by k2ei*’t fort < T and integrating over 9D, we find

the solution to be:

o B k2t Lg(0,0) + f(w,t)}
—3 0= /am (ik3 + (Q + 1)iky + a) (7.75)
iryhetk’t Go(k) — Go(Q)
- /am (i3 + (Q + L)iky + o) [ Q-1 ] dk. (7.76)
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