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Abstract

This thesis describes three aspects of the gravitational-wave astron-

omy: modeling of gravitational-wave (GW) signals from binary black

holes, tests of general relativity (GR) from GW observations, and as-

trophysical exploration using GWs, in particular, gravitational lens-

ing of GWs. The data analysis involved in the detection of GWs

and extraction of the source parameters requires computationally-

efficient and theoretically accurate models of GWs. The first part of

the thesis describes the modeling of higher harmonics of GWs from

non-spinning quasi-circular binary black hole (BBH) systems. The

second part of the thesis describes a “no-hair” test of BBHs that is

based on checking the consistency between the parameters estimated

from the different harmonics of the GWs and presents an example

where this test might be useful, e.g., distinguishing between BHs and

other (exotic) compact objects. The third part of the thesis deals with

the gravitational lensing of GWs from massive objects such as galax-

ies. Such massive objects produce multiple “images” of a source (i.e.,

multiple copies of a GW signal). The thesis describes a Bayesian tech-

nique developed for identifying the multiple images of GW signals

among the BBH events detectable by advanced LIGO and Virgo. The

thesis also presents the results from the first search for lensing sig-

natures in the Advanced LIGO and Virgo BBH observations during

their O1 and O2 runs, which shows no strong evidence of strong

gravitational lensing.

Chapter 1 presents an overview of the basic theory needed for un-

derstanding the gravitational waveforms produced by BBHs. It starts
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with discussing the linearised regime of the Einstein equations where

the source motions are assumed to be Newtonian and the gravity is

assumed to be very weak. It then discusses the post-Newtonian (PN)

theory, which corrects the Newtonian motions by taking into account

the non-linearity of the Einstein equations. This theory provides

a good model for the gravitational waveforms produced by BBHs

during their slow inspiral. It ends with the discussion of numerical

relativity (NR) theory, which provides accurate models of the post-

inspiral phase (i.e., merger and ringdown phase) of the gravitational

waveforms.

In chapter 2, we present an analytical inspiral-merger-ringdown

waveform (IMR) model of higher harmonics of the GWs from non-

spinning quasi-circular BBHs, in the frequency domain. We start

with the available PN waveforms and then add some fiducial higher-

order PN parameters to the amplitudes and the phases of the wave-

forms to capture the merger dynamics, i.e., when the black holes

(BHs) are moving very near to each other. The post-merger dynam-

ics (i.e., ringdown) is modeled by taking information from the wave-

forms predicted by BH perturbation theory. The fiducial parameters

appearing in the model are fixed by calibrating the model with a set

of hybrid waveforms, which are made by matching NR waveforms

with the PN waveforms. We asses the accuracy of our model with

a different set of hybrid waveforms and show that they are highly

faithful towards them with mismatches < 0.04%.

In chapter 3, we discuss a test of BBHs that we developed using

our IMR waveforms containing higher harmonics. This is based on

inferring the intrinsic parameters of BBHs from the different har-

monics of the GWs and checking for the consistency between them.

In GR, the multi-harmonic structure of GWs is uniquely determined

by the intrinsic parameters, such as masses and spins of the black

holes. Thus any inconsistency between different harmonics would

point to either a departure from GR, or the non-black hole nature of

the compact objects. Using our test, we demonstrate that it might be
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possible to distinguish BHs from the other compact objects.

In chapter 4, we present an overview of gravitational lensing the-

ory. We describe how a massive object (a gravitational lens) affects

the propagation of GWs. We show that the gravitational lensing can

lead to the formations of multiple images of a source which reach

the observers at different times. For transient GW source like BBHs,

this implies that multiple GW events can be observed, from the same

source. We describe different kinds of lenses and their lensing prop-

erties, e.g., the number of images formed, the typical time delay be-

tween the images, their magnifications, etc. In chapter 5, we present a

Bayesian method to identify the multiply imaged GW signals among

the BBH events detectable by advanced LIGO and Virgo. We find

that a small fraction (⇠ 0.5%) of the BBH events detectable by Ad-

vanced LIGO and Virgo will be strongly lensed. Using simulated

lensed and unlensed BBH merger events, we demonstrate how and

with what efficiency our method can distinguish images of strongly

lensed merger events from unlensed events. We finally present the

results from the first search for lensing signatures in the Advance

LIGO and Virgo BBH observations during their O1 and O2 runs. We

show that there is no strong evidence of strong gravitational lensing.
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1 An introduction to the physics

of gravitational waves

This chapter will give a brief introduction to the gravitational wave

physics. Starting from the Einstein equations of general relativity

which describes the dynamics of gravity, we will see how gravita-

tional waves naturally arise from the weak-field limit. We will dis-

cuss in detail a particular kind of gravitational wave source, i.e., bi-

nary compact objects. In the subsequent sections, we will go through

the tools that have been developed to solve Einstein equations be-

yond the weak-field limit.

The material presented in this chapter is based on standard theory

of gravitational waves. For a longer discussion, see for e.g., [87, 103].

1.1 Gravitational waves

In 1905, Albert Einstein formulated the special theory of relativity

which postulates two things: 1) The speed of light is same in all iner-

tial frames of reference, 2) The local measurement of physical quan-

tities is independent of a chosen inertial frame. These two postulates

together imply that space and time can no longer be separated from

each other, i.e., time becomes a coordinate like spatial coordinates,

and together they form a four-dimensional manifold called spacetime.

This means that there is no notion of absolute time coordinate (as is

assumed in Newtonian gravity), i.e., time runs differently in different

inertial frames. In this sense, Newtonian gravity is incompatible with

the special theory of relativity because Newton’s law of gravitation
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defines a force between two distant bodies at a given instant in time.

This requires a unique notion of simultaneity, which conflicts with

the very principle of the special theory of relativity. Otherwise, the

Newtonian gravitational force between two bodies will be measured

differently in different inertial frames.

In 1915, Einstein formulated a relativistic theory of gravity known

as general theory of relativity 1 which respects the principle of general 1 We will instead use "general relativ-
ity." elsewhere.

covariance, i.e., no coordinate system is preferred at all, in contrast to

special theory of relativity, where the physical quantities are invari-

ant only in a certain class of transformation known as Poincare trans-

formation, i.e., under translation, rotation and boosts. This means

that in general relativity, we can work in any coordinate system that

we like, e.g., one can always construct a freely falling frame of ref-

erence associated with a freely falling observer. Any physical exper-

iment carried out in such a freely falling frame will give the same

results as a similar experiment done in the absence of gravitational

fields. The physical effect of gravity starts showing up only when we

look at the geodesics of two nearby particles.

General relativity describes gravity as the change in the geome-

try (i.e., the metric, which determines the distance between the two

infinitesimally separated events) of the spacetime due to the pres-

ence of matter-energy distribution in the spacetime itself. In other

words, matter curves the spacetime. This is expressed through the

Einstein field equations 2: 2 Throughout this thesis, we would be
working in natural units: G = c = 1,
unless we explicitly specify. Here G is
Newton’s gravitational constant, and c
is the speed of light in vacuum. In these
units 1M� ' 5 ⇥ 10�6s ' 1.5km

G
ab

= 8pT
ab

, (1.1)

where the left hand side represents the geometry of spacetime while

the right hand side represents the matter-energy content of it. Math-

ematically, G
ab

:= R
ab

� 1
2

g
ab

R, where g
ab

is the metric of the space-

time. R
ab

is the trace of Riemann tensor R
abgd

which is a function

of metric g
ab

and involves first and second derivatives of it. The
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particular combination R
ab

� 1
2

g
ab

R is divergenceless, i.e.,

raG
ab

= 0, (1.2)

where r
a

is a natural generalisation of partial derivative in the flat

spacetime to the curved spacetime. T
ab

is known as stress-energy

tensor, because it is constructed by combining the energy density,

momentum density and the stress tensor of a material body (as de-

fined in the Newtonian physics). From the definition itself, one can

show that the stress energy tensor is covariantly conserved 3, i.e., 3 Analogous to the conservation law
∂

aT
ab

= 0, in the flat spacetime.

raT
ab

= 0. (1.3)

Einstein equations (Eq. 1.1) make sure that this requirement is ful-

filled. The conservation law in the Eq. 1.3 determines the equations

of motion for the matter in the curved spacetime.

For a given matter-energy distribution (i.e., T
ab

), Eq. 1.1 could, in

principle, be solved. As of now, there exist only a few exact solutions

of Eq. 1.1, among which are Schwarzschild metric and Kerr metric 4. 4 They correspond to Schwarzschild
black hole and Kerr black hole, respec-
tively.The Schwarzschild black hole metric is described by just one param-

eter, its mass while the Kerr black hole metric is described by two

parameters, its mass and the angular momentum. The exact analyti-

cal solution of Einstein equations for the time evolution of a generic

two-body system, such as, two black holes in a bound orbit, is still

an open problem in general relativity. In the coming sections of this

chapter, we, however, will go through some approximate methods

that have been developed to deal with such systems.

First of all, let us understand the behaviour of Einstein field equa-

tions in the case where the curvature produced by the sources is very

small, i.e., when the metric of the curved spacetime deviates by a just

little amount from that of the flat spacetime. Mathematically,

g
ab

= h

ab

+ h
ab

, (1.4)



16

where,

|h
ab

| ⌧ 1. (1.5)

and h

ab

is the metric of flat spacetime expressed in Cartesian coor-

dinates where the modulus of each matrix element is 1. Computing

the Einstein tensor G
ab

and keeping the terms up to only first or-

der in h
ab

(linearised gravity regime), the Einstein field equations 1.1

reduce to

⇤h̄
ab

= �16pT
ab

, (1.6)

where h̄
ab

is the trace-reversed form of h
ab

. Note that, this partic-

ular form of Eq. 1.6 is valid only in a specialised coordinate system

known as Lorenz gauge which is constructed by using up the gauge

degrees of freedom in general relativity. In this gauge, h̄
ab

has zero

divergence which helps cast Einstein equations in the above form.

Notice however that, outside the source, T
ab

= 0 5, for which Eq. 1.6 5 Assuming that the source is localised
in the space.

becomes

 

� ∂

2

∂t2 + r2

!

h̄
ab

= 0 (Vacuum equations). (1.7)

This is a wave equation in three spatial directions. The solution is

h̄
ab

= A
ab

exp(ik
µ

kµ), (1.8)

where k
µ

represents the direction of propagation of the gravitational

wave. Since h
ab

is a symmetric tensor, it has 10 independent compo-

nents. However, Lorenz gauge condition imposes four conditions on

them which means that we have only six independent components.

Furthermore, Lorenz gauge is not uniquely fixed, i.e., there is resid-

ual gauge degrees of freedom which preserves the Lorenz gauge.

This further imposes four conditions on the six components, imply-

ing that h̄
ab

actually has only two independent degrees of freedom.

This can be independently verified by computing the components

of Riemann tensor which is a gauge independent quantity in lin-
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earised gravity. In short, the Lorenz gauge choice makes the metric

perturbation look like a transverse wave while the residual gauge

degrees are used to make h̄
ab

traceless and purely spatial. We refer

this gauge as transverse-traceless (TT) gauge. For a wave travelling

along z-direction, h̄
ab

can be written as

�

h̄TT
ab

�

=

2

6

6

6

6

6

6

6

6

4

0 0 0 0

0 ATT
xx ATT

xy 0

0 ATT
xy �ATT

xx 0

0 0 0 0

3

7

7

7

7

7

7

7

7

5

exp(ikz � iwt), (1.9)

where w = k. The two independent components, h̄TT
xx and h̄TT

xy corre-

spond to the two polarisation states of gravitational waves, denoted

as h+ and h⇥, respectively.

We saw that the vacuum Einstein equations predict wave-like so-

lutions which can propagate out to the asymptotic infinity. Thus it

would be interesting to ask whether an observer sitting at the asymp-

totic infinity would be able to detect these waves. This is related to

asking whether gravitational waves have any physical effects on the

bodies (or observers) they pass through. Let us take a system com-

posed of two test particles at rest and separated in x-direction by a

distance L. In TT gauge, one can show that the coordinates of free

test particles do not change with time 6 even if there is a gravitational 6 Note that if they are not free, then
the coordinates will change, e.g., for the
end points of a rigid ruler. In other
words, an object can not have rigid
walls in TT gauge.

wave propagating along the z-axis. However, the proper distance (s)

between them does change and up to linear order in h̄TT
xx can be given

by

s ' L
⇥

1 +
1
2

h̄TT
xx
⇤

, (1.10)

alternatively, the change in the proper length L,

DL ' L
⇥

1 +
1
2

ATT
xx cos(wt)

⇤

. (1.11)

This means that the proper distance between the test particles will

oscillate with time if there is a gravitational wave passing through.

Now consider these two test particles as the mirrors and a light beam
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is allowed to travel back and forth between them. The time taken by

the light to make a round trip depends on the proper distance be-

tween them. The change in the proper distance in the presence of

gravitational waves implies that that the gravitational waves can be

detected by measuring the round trip time between the mirrors. The

interferometric gravitational wave detectors like LIGO and Virgo are

based on the very same principle. Experimentalists, however, pre-

fer to work in the so-called proper detector f rame, i.e., a sufficiently

small region of space around a chosen origin of the detector system.

Mathematically, the size of the detector (L) should be much smaller

than the reduced wavelength of the gravitational waves, i.e., L ⌧ l̄.

In this frame, the metric can be taken to be flat even in the presence

of gravitational waves. The geodesic deviation equation between a

test mass at origin and another one at some distance from it is given

by

ẍ

i =
1
2

ḧTT
ij x

j, (1.12)

where x is the separation vector between the test masses. With re-

spect to the origin, this is analogous to a Newtonian f orce acting on

a point particle of mass m:

Fi =
m
2

ḧTT
ij x

j. (1.13)

Thus, in the proper detector frame, the response of a detector to grav-

itational waves can be treated solely within the Newtonian physics.

Also,

∂iFi =
m
2

ḧTT
ij dij. (1.14)

and since hTT
ij is traceless, the divergence of the force vanishes, i.e.,

r · F = 0. This implies that F can be represented pictorially by its

field lines in the detector plane. At each point in the plane, the lines

go in the direction of the force and their density provides the strength

of the force (|F|). The zero divergence of the force implies that there

are no sources nor sinks for the field lines, analogous to magnetic
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fields in electrodynamics. The field lines for h+ and h⇥ polarization

of gravitational waves passing through a ring of particles centered on

the origin of the detector take shape corresponding to + and ⇥ sign,

respectively. This is the reason behind the names of the polarisations.

1.2 Generation of gravitational waves

Eq 1.7 represents the case when we are in a region far away from

the source, known as the far-field zone. Here, we have plane wave

solutions, but the values of amplitudes and phases are completely

unknown. We can fix them by solving Einstein equations near the

source (called near zone) which produces it. In the presence of mat-

ter, the Einstein equations in Lorenz gauge are

⇤h̄ab = �16pTab, (1.15)

where h̄
ab

is the trace-reversed metric perturbation. Since ⇤ is the

flat space operator, the solution to Eq 1.15 is

h̄ab(t, x) = 4
Z Tab(t � ||x � x

0||, x

0)
||x � x

0|| d3
x

0. (1.16)

We will solve Eq. 1.16 in both far region and near region assuming

that the source is moving slowly. An important point to note is that

the Lorenz gauge, i.e.,
∂h̄ab

∂xa

= 0 implies the conservation laws,

∂Tab

∂xa

= 0. (1.17)

One can directly see this using Eq. 1.15.

1.2.0.1 Far zone

In this region, the point at which we want to compute the field is at

a distance (r) much greater than the gravitational-wave wavelength 7

7 Later we will see that, for a source
moving at a speed v, the gravitational
wave produced by it, has the wave-
length, l ⇠ c

v
R. Thus, a non-relativistic

source (v ⌧ c) implies R ⌧ l.

(l). This means that, for a source of size R,

R ⌧ l ⌧ r. (1.18)



20

In the far-field approximation then, the quantity ||x � x

0|| ' r would

not vary significantly across the source and hence can be taken out of

the integral in the Eq. 1.16. Furthermore, the slow motion assump-

tion of the source allows us to approximate t � ||x � x

0|| ⇡ t � r, in

other words, the relative retardation effect between two points of the

source can be neglected 8. With these valid approximations, Eq. 1.16

8 Relaxing this approximation would
lead to multipole expansion of the
source, i.e., the expansion of Tab(t �
||x � x

0||) in x

0 around Tab(t � ||x||).
can be written as

h̄ab(t, x) ' 4
r

Z

Tab(t � r, x

0)d3
x

0. (1.19)

In the far-field region, we can work in TT gauge where only spatial

components of the metric are non-vanishing. Hence, we can work

with only the spatial components,

h̄ij(t, x) ' 4
r

Z

Tij(t � r, x

0)d3
x

0. (1.20)

Using conservation equations 1.17, we can show that the spatial com-

ponent of the stress-energy momentum tensor Tij is related to the

time-time component by

Tij =
1
2

∂

2

∂t2 (xixjT00) + boundary terms of integral. (1.21)

Eq. 1.20 can then be written as

h̄ij(t, x) ' 2
r

∂

2

∂t2

Z

(x0ix0jT00)(t � r, x

0)d3
x

0. (1.22)

Defining, what is called quadrupole moment tensor by,

Iij(t) =
Z

(xixjT00)(t, x)d3
x. (1.23)

the solution then takes the form,

h̄ij(t, x) ' 2
r

∂

2

∂t2 Iij(t � r). (1.24)
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With the constants G and c, this looks

h̄ij(t, x) ' 2G
rc4

∂

2

∂t2 Iij(t � r/c). (1.25)

Note that not all of the spatial components are physical. We can

see this by projecting h̄ij into TT gauge which will select out only

the physical degrees of freedom. We proceed as follows: given the

direction of propagation of the gravitational waves (n), we construct

a transverse projection operator

Pij = dij � n̂in̂j, (1.26)

where n̂i = xi/r is the unit vector. This operator projects a vector into

a plane orthogonal to the direction of propagation of gravitational

waves. Using Pij, we construct a projection tensor that can be used

to project any second rank symmetric tensor into TT gauge,

Lij,kl(n̂) = PikPjl � 1
2

PijPkl . (1.27)

Then, for a plane wave solution in Lorenz gauge 9, the corresponding 9 Note that, it’s important to start with
Lorenz gauge, otherwise the fact that
⇤h̄ij = 0 no longer holds and TT pro-
jection will not work.

solution in TT gauge is

h̄TT
ij = Lij,kl h̄kl , (1.28)

and by construction, the right hand side of Eq. 1.28 is transverse and

traceless in (i, j).

1.2.0.2 Near-field zone

Near-field zone describes the dynamics of the source. This is defined

as a region of spacetime in which a point at distance r from the

source satisfies the following condition:

R ⌧ r ⌧ l. (1.29)
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Since we are working with slow motion source in weak gravity, the

source dynamics can be described by Newtonian mechanics. The

equation of motion of the source is then described by the Newtonian

potential,

F = �1
2

c4h00 = �1
2

c4
⇣

h̄00 + c�2
dij h̄ij

⌘

. (1.30)

For a given energy momentum tensor (Tµn), the solution to this po-

tential is 10

10 We have ignored the retardation ef-
fects, which is a valid assumption in
near zone.

F(t, x) = �G
Z T00(t, x

0) + c�2
dijTij(t, x

0)

||x � x

0|| d3
x

0. (1.31)

We can neglect the term dijTij which represents the internal stresses

in the source, because this is suppressed by a factor
1
c2 in Newtonian

limit and is thus much smaller than the mass energy density c2T00.

We then have,

F(t, x) = �G
Z T00(t, x

0)
||x � x

0|| d3
x

0. (1.32)

We can write a perturbative solution for the potential by expanding

||x � x

0||�1 in powers of 1/r,

F(t, x) = �G

"

M
r

+
Dixi

r3 +
3
2

Iijxixj

r5 + · · ·
#

, (1.33)

where,

M : =
Z

T00(x)d3
x (1.34)

D : =
Z

xiT00(x)d3
x (1.35)

Iij : =
Z

⇣

xixj � 1
3

r2
dij

⌘

T00(x)d3
x. (1.36)

We can set the origin of the coordinate system at the centre of the

mass which remains fixed in time for Newtonian motions. Thus,

in the centre of mass coordinates, the dipole moment of the source

(Di) can be set to zero for all time. Note that, ITT
ij = ITT

ij , because

they differ from each other only by the trace which, in TT gauge,

is anyway zero. From Eq. 1.25, we see that far-field solution i.e.,
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the gravitational waves, is related to the near zone solution, i.e., the

Newtonian potential (given in terms of Iij)

hTT
ij ' 2G

rc4
∂

2

∂t2 Iij(t � r/c). (1.37)

1.2.1 Gravitational wave luminosity

The energy momentum tensor associated with gravitational waves is

given by the expression

t
µn

=
c4

32pG
h∂

µ

h
ab

∂

n

habi. (1.38)

11 and the conservation laws, when taking the effect of gravitational 11 The notation hi represents an average
over many wavelengths of gravitational
waves. In general relativity, there is no
notion of unique local gravitational en-
ergy. The reason is that one can always
choose to work in a local inertial frame
where it would vanish. In other words,
gravitational waves can not be confined
locally. Finding an expression for the
energy carried by gravitational waves
requires decomposing the total metric
into a background metric (smooth) and
the metric perturbation, h

µn

(highly
oscillating). Averaging procedure
gives a way for such a decomposition.
t
µn

obtained this way is an invariant
quantity, i.e., its value does not depend
on a chosen coordinate system. Thus
we can replace h

ab

by the physical
modes hTT

ij in TT gauge.

waves on the background spacetime, modifies to

D̄µ(T̄
µn

+ t
µn

) = 0, (1.39)

where the D̄µ is the covariant derivative w.r.t the background curva-

ture and T̄
µn

is the matter energy density 12. Far from the source,

12 Eq. 1.39 shows that there is an ex-
change of energy and momentum be-
tween matter and gravitational waves.

this reduces to

∂

µt
µn

= 0 (1.40)

In TT gauge, the energy density carried by gravitational waves would

be given by

t00 =
c2

32pG
hḣTT

ij ḣTT
ij i, (1.41)

where the dot represents the partial derivative w.r.t the time 13

13 For a plane gravitational wave prop-
agating along the z-direction, the only
non-vanishing components are t03 and
t00 and are related to each other by
t03 = �c�1t00.

Using the Eq. 1.40, we can show that the gravitational wave flux,

i.e., the amount of energy passing through an area dA of a spherical

surface surrounding the source at a large distance r, is given by

dE
dtdA

= � c3

32pG
hḣTT

ij ḣTT
ij i. (1.42)

In terms of gravitational wave amplitudes 14, 14 For a plane wave, hTT
ij = h+e+

ij +

h⇥e⇥
ij , where e+

ij and e⇥
ij are the two po-

larization tensors, which depend on the
direction of propagation.dE

dtdA
= � c3

32pG
hḣ2

+ + ḣ2
⇥i. (1.43)
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Using Eq. 1.37, we can write the gravitational wave flux directly in

terms of the source moments,

dE
dtdA

= � G
8pc5r2 h

...
I ij

TT
...
I TT

ij i. (1.44)

Thus the energy radiated per unit solid angle at the source is

dE
dtdW

= � G
8pc5 h

...
I TT

ij
...
I ij

TTi. (1.45)

To find the gravitational wave luminosity, i.e., the total energy emit-

ted by the source per unit time, we would need to integrate over all

solid angles. This gives

LGW = �dE
dt

=
1
5

G
c5 h

...
I ij

...
I iji. (1.46)

1.2.2 Radiation reaction

When a system radiates gravitational waves, it loses its energy as

a consequence of energy conservation. This means that the system

would feel a back reaction because it loses its energy. In general,

a body experiences a force as a result of its own gravitational field,

known as self-force. This has a contribution from both the conserva-

tive and non-conservative (gravitational radiation) part of the grav-

itational field. In general relativity, it is this force that ensures that

bodies move on the geodesics of spacetime where the gravitational

fields of bodies are also included.

To describe the source dynamics fully, we must know the form

of radiation reaction force. In general, its computation is difficult.

However, for weakly gravitating and slowly moving bodies we can

find it by enforcing the energy conservation. By definition, the work

done by the radiation reaction force (FRR) on a body should be equal

to the negative of the power radiated by it in the gravitational waves,

i.e.,
Z

F

RR · vdt = �1
5

G
c5

Z ...
I ij

...
I ijdt, (1.47)

where the integral is to be performed over a many gravitational wave
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cycles. From this, we can show that, the radiation reaction force on

the body with mass m 15, is given by 15 Assuming that the body can be
treated as a point particle.

FRR
j = �2

5
G
c5 mxi d5 Iij

dt5 , (1.48)

where x is the position of the body. The associated potential for this

force such that, F

RR = �rFRR, is

FRR =
1
5

G
c5 xixj d5 Iij

dt5 . (1.49)

In short, the equations of motion of a system should be obtained

from a potential which is the sum of the Newtonian potential and

the radiation reaction potential. The former gives the conservative

dynamics of the system while the later includes the effect of the en-

ergy loss by the system in gravitational waves.

It is easy to show that a body moving under this radiation reaction

force, will lose the angular momentum too. This fact can then be

used to find a formula for the angular momentum carried by the

gravitational waves. The rate of change of angular momentum of a

point particle due to the force F

RR acting on it is

dJ

dt
= x ⇥ F

RR, (1.50)

which after a few steps of computations gives

dJi
dt

= �2
5

G
c5 eijkh

...
I k

l Ïl ji. (1.51)

The R.H.S term represents the angular momentum carried by the

gravitational waves.

1.3 Gravitational wave source: binary system

Let us now apply the tools developed in the earlier section to com-

pute the gravitational waves from a particular kind of source, the

binary system. Throughout the thesis, we will mainly be interested
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Figure 1.1: A binary system with two
point masses in x1 � x2 plane encircling
each other [87].

in computing the gravitational waves from such systems.

Consider a system consisting of two-point particles with masses

m1 and m2 orbiting each other (see Fig. 1.1). We assume that the orbit

is circular. We choose to work in the center of mass coordinates.

Let us say; there is an observer at a distance r from the center of

the binary plane forming an angle i with the axis (x3) of the orbital

plane. Since we assume Newtonian dynamics of the system, the

orbital angular momentum direction (x3) will not change with time,

i.e., the plane of binary will remain fixed.

We compute the quadrupole moment tensor for this system and

put in Eq. 1.25. This gives us the two polarizations of gravitational

waves as follows 16, 16 It is easy to compute the quadrupole
moment tensor in the binary frame it-
self with coordinates chosen as shown
in the Fig. 1.1 and it turns out that the
metric perturbation tensor 1.25 already
has a form that we want it to have in
TT gauge. Hence one can directly read
off the polarizations. This metric tensor
can then be transformed to any other
coordinate system attached to the bi-
nary plane, e.g. the one whose axis is
inclined at an angle i with respect to
the orbital angular momentum of the
binary system.

h+ = �2Gµ

c2r
(1 + cos2 i)

⇣

n

c

⌘2
cos(2j) (1.52)

h⇥ = �2Gµ

c2r
2 cos i

⇣

n

c

⌘2
sin(2j), (1.53)

where j = worbt and worb is the orbital frequency of the system. The

other parameters are defined below:

µ =
m1m2

M
; M = m1 + m2 (1.54)

n = (GMworb)
1/3. (1.55)
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We see that the gravitational wave generated by such a system has a

frequency twice the orbital frequency, i.e., wGW = 2p f = 2worb. The

energy lost by the system in gravitational waves has to come from

its orbital energy itself. This means that the orbit will decay with

time which will cause the orbital frequency and amplitude both to

increase. To understand this mathematically, we first compute the

luminosity (the energy lost by the system) using the Eq. 1.46 (which

requires the third time derivative of quadrupole moment tensor)

LGW =
32
5

c5

G
h

2
⇣

n

c

⌘10
, (1.56)

where h = µ/M is called the symmetric mass ratio. The orbital energy

of the system is simply the sum of the kinetic energy of the indi-

vidual particles plus their gravitational interaction potential energy.

They combine to give,

E = �1
2

µn

2. (1.57)

Since LGW = �dE/dt, we have

d(n/c)
dt

=
32h

5
c3

GM

⇣

n

c

⌘9
. (1.58)

This gives the evolution of the orbital frequency worb with time as a

consequence of the back reaction which the system feels due to the

gravitational wave radiation. Let us investigate this a bit more.

First of all, we would like to know the time that binary takes to

coalesce starting from some initial orbital velocity/frequency (n0), so

that it would give us a feel about the length of time duration of the

gravitational waves being produced. Using Eq. 1.58, we can write

Z •

n0/c

d(n/c)
(n/c)9 =

32h

5
c3

GM

Z

tc

0
dt, (1.59)

where tc is called the time until coalescence. Upon integration we get,

tc =
5

256h

GM
c3

⇣

n0
c

⌘�8
. (1.60)

The important quantity for the gravitational wave data analysis 17 is 17 The tools required for gravitational
wave detection and subsequent investi-
gations.
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the phase evolution of the binary due to the loss in orbital energy

and angular momentum. Let us define two useful quantities, the

energy function E(n) and the flux function F (n) as

E(n) :=
E(n) � Mc2

Mc2 (1.61)

F (n) :=
G
c5 LGW(n). (1.62)

For our system, they become

E = �1
2

h

⇣

n

c

⌘2
, (1.63)

F =
32
5

h

2
⇣

n

c

⌘10
. (1.64)

Using LGW = �dE/dt, we can write

dt
dn

= � GM
c3

1
F

dE
dn

. (1.65)

Let us take tc as the time of coalescence 18. Then the time corre- 18 Note that this is not the time un-
til coalescence tc, rather, it represents
the time at which the coalescence takes
place.

sponding to a given orbital velocity n can be found by

t(n) = tc +
GM
c3

Z

nc

n

1
F

dE
dn

dn, (1.66)

where nc is the velocity at the time tc. The orbital phase as a function

of orbital velocity/frequency can be easily computed by

dj

dn

=
dj

dt
dt
dn

= �
⇣

n

c

⌘3 1
F

dE
dn

, (1.67)

which gives

j(n) = jc +
Z

nc

n

⇣

n

c

⌘3 1
F

dE
dn

dn. (1.68)

The gravitational waveform in Eq. 1.74 can be now completely parametrized

by n = (GMworb)
1/3, where f is gravitational wave frequency, as

h+(t(n)) = �2Gµ

c2r
(1 + cos2 i)

⇣

n

c

⌘2
cos 2j(n) (1.69)

h⇥(t(n)) = �2Gµ

c2r
2 cos i

⇣

n

c

⌘2
sin 2j(n), (1.70)

Where t(n) and j(n) are given by Eq. 1.66 and 1.68, respectively.
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Note that n is directly related to the gravitational wave frequency as

n = (pGM f )1/3, since f = 2worb/2p. The frequency evolution can

be computed by

d f
dt

=
d f
dn

dn

dt
=

96
5

p

8/3
h

 

GM
c3

!5/3

f 11/3. (1.71)

Introducing a quantity known as the chirp mass, M = h

3/5M =

µ

3/5M2/5 = (m11m2)3/5(m1 + m2)�1/5, we can write the frequency

evolution as
d f
dt

=
96
5

p

8/3

 

GM
c3

!5/3

f 11/3. (1.72)

This shows that the frequency evolution depends on just the chirp

mass and not on any other combination of component masses. In

fact, we can show that, the entire gravitational waveform has the

mass dependence only through the chirp mass 19 as expressed below 19 Note that this is true only for New-
tonian limit of gravity, i.e., where the
gravity is weak and particles are mov-
ing slowly.

h+(t) = � GM
c2r

1 + cos2 i
2

 

c3(tc � t)
5GM

!�1/4

cos

"

2fc � 2

 

c3(tc � t)
5GM

!5/8#

(1.73)

h⇥(t) = � GM
c2r

cos i

 

c3(tc � t)
5GM

!�1/4

sin

"

2fc � 2

 

c3(tc � t)
5GM

!5/8#

.

(1.74)

1.4 Post-Newtonian theory

In the previous section we discussed the generation and propaga-

tion of gravitational waves in weak field limit of Einstein equations

with sources following Newtonian dynamics, i.e., linearised grav-

ity regime. For example, we discussed the production of gravita-

tional waves from a binary system where the component objects were

moving slowly and were assumed to be the weak source of gravity.

However, when the system is highly relativistic or strongly gravi-

tating, this approximation will no longer be valid and one should

consider going beyond the Newtonian limit. Post-Newtonian (PN)
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theory, as the name itself suggests, deals with systems that are mov-

ing with moderate velocities and thus gives relativistic corrections to

the equations of motion of bodies, in orders of their velocity. While

Numerical relativity (NR), discussed in next section, is an approach to

directly solve Einstein equations without resorting to any approxi-

mations.

A system with mass M and size R produces the gravitational

field, GM/c2R. We call this system a weak source of gravity if

GM/c2R ⌧ 1. If the system is self-gravitating, the virial theo-

rem implies that GM/c2R ⇠ n

2/c2. This means that for weak self-

gravitating sources, the internal motions within the system are small.

Post-Newtonian theory expands the equations of motion in the pow-

ers of n

2/c2 (or simply 1/c2). A full treatment of post-Newtonian

theory not just provides the corrections to the equation of motion

but also gives the general relativistic (non-linear interactions of grav-

itational field itself) corrections to the gravitational field in orders

of GM/c2R (or simply in orders of G). In this sense, the linearised

theory considers the leading order term in G (i.e., the term of O(h2)

was neglected). Our aim here is to compute gravitational waveforms

produced by inspiralling binaries to a very high order in n

2/c2 using

PN theory. This is motivated by the fact that a very accurate pre-

diction of gravitational wave signals is required to extract them from

the experimental data.

Before we proceed to the details, the whole problem of computing

gravitational waves from a system with typical velocity n and size

R 20, can be summarised as following 21: the near zone for such a 20 We assume that n/c ⌧ 1.
21 There have been developed differ-
ent approaches for solving this prob-
lem. Here we outline the steps used in
Blanchet-Damour approach.

system extends up to a radius R � R. The PN formalism is used to

find the gravitational field in the region, r < R. While in the region,

R < r < •, PN formalism breaks down and a different formalism

known as post-Minkowskian expansion is used to compute the gravita-

tional field. In fact, the post-Minkowskian formalism is applicable in

the whole region outside the source where the matter stress-energy

tensor vanishes. Thus, there is an overlapping region R < r < R
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where both formalisms are valid. The idea is then to match these

two solutions in the overlapping region. This allows us to express

the gravitational waveforms in terms of source parameters.

1.4.1 post-Newtonian expansion of Einstein equations

Let us first discuss how to find the lowest order correction 22 to the 22 Called as 1PN correction to the New-
tonian equations of motion.

equations of the motion of a source.

Ou aim is to expand Einstein equations in some small parameter.

Here, we introduce

e ⇠ (Rs/R)1/2 ⇠ n/c, (1.75)

where Rs = 2GM/c2. Since source components are assumed to be

moving slowly, we have e ⌧ 1. We also assume that the source

is weakly stressed 23, i.e., |Tij|/T00 = O(e

2). We now expand the 23 For a fluid with pressure p and en-
ergy density r, this would imply p/r =
O(e

2).metric and the stress energy tensor components in the powers of e

as follows 24: 24 If we neglect the gravitational radia-
tion for time being, then a closed sys-
tem must be invariant under time re-
versal, because there will not any non-
conservative forces acting on it. This
means that physical quantities such as,
the line element (ds2) must also be in-
variant. Then by definition, under time
reversal, g00 and gij become even while
g0i becomes odd (because with it comes
the term dt which is already odd ).

g00 = �1 + (2)g00 + (4)g00 + (6)g00 + · · ·

g0i = e

(3)g0i + e

(5)g0i + · · ·

gij = e

2
dij + e

2 (2)gij + e

2 (4)gij + · · · ,

(1.76)

and

T00 = (0)T00 + (2)T00 + · · ·

T0i = (1)T0i + (3)T0i + · · ·

Tij = (2)Tij + (4)Tij + · · · ,

(1.77)

where (n)g
µn

represents the term of order e

n in the expansion of g
µn

.

Note that we have included appropriate powers of e in g0i and gij

expansion just to keep count of relative order of each term needed

to be computed to work consistently to a given order in e

25. For 25 By inspecting Einstein equations, one
finds that compared to g00, g0i starts at
O(e) while gij at O(e

2).example, if g00 is to be computed up to a order e

n then one has to

compute g0i up to a order e

n�1 and gij up to a order e

n�2.
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We plug in these expansions in the Einstein equations and equate

the terms of the same order in e. However, in doing so, we would re-

quire to take into account of the fact that for non-relativistic sources,

the time derivatives of the metric (e.g., (n)g
µn

) is smaller than the

spatial derivatives by a factor of O(e), i.e,

∂

∂t
= O(e)

∂

∂xi , (1.78)

and whenever the d’Alembertian operator appears, it should be re-

placed by

⇤ = � 1
c2

∂

2

∂t2 + r2 = [1 + O(e

2)]r2. (1.79)

Or in other words, the retardation effects are assumed to be small in

the post-Newtonian theory. This means that any retarded quantity

F(t � r/c) (e.g., the metric components, (n)g
µn

) can be reconstructed

from its expansion for small retardation r/c ⌧ t 26

26 The truncation of the series depends
on the post-Newtonian order required
in the problem.

F(t � r/c) = F(t) � r
c

Ḟ(t) +
r2

2c2 F̈(t) + · · · . (1.80)

This also means that in the case of small retardation effects, we can

express any retarded function in terms of instantaneous functions.

Furthermore, ∂/∂t ⇠ w, where w is a typical frequency of radiation

emitted. Since w/c = 1/l̄, Eq. 1.80 is actually an expansion in r/l̄.

Thus post-Newtonian expansion would be valid only in region r ⌧

l̄, which is precisely the definition of near zone. As it turns out,

post-Newtonian theory can not simply be used in the region r �

l̄ otherwise it would lead to divergences. One must adopt a new

approach to compute gravitational field in the far region (radiation

zone).

We now insert the expansions in Eq. 1.76 and Eq. 1.77 in Einstein

equations. By computing the equation of motion of the source, we

see that the Newtonian dynamics can be recovered with g00 = �1 +

(2)g00, g0i = 0 and gij = 0 27. Thus the terms (4)g00, (3)g0i and 27 This is only true when we want to
compute equation of motion of non-
relativistic particles which is the case
in our problem. However, for relativis-
tic particles, we will also have contri-
bution from (2)gij at the leading order
only. For non-relativistic particles, (2)gij
contribution gets suppressed by O(n)
in the equation of motion.

(2)gij are expected to give the first post-Newtonian correction to the
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equation of motion while the higher order expansions in the metric

would provide the higher order post-Newtonian corrections. Let us

work out the first post-Newtonian (1PN) correction to the equation

of motion of the source.

1.4.2 First post-Newtonian order

It is better to choose a gauge from the beginning itself because a

right gauge can simplify the equations a lot. We choose what is

called harmonic gauge 28

28 Actually in this gauge, the coordi-
nates satisfy

∂

µ

(
p

�ggµn

∂

n

)xr = 0, (1.81)

and this is called harmonic condition.

∂

µ

(
p

�ggµn) = 0. (1.82)

Inserting the Eq. 1.76 and Eq. 1.77 in Einstein equations, we find that,

(2)g00 indeed describes Newtonian equations

r2[(2)g00] = �8pG
c4

(0)T00, (1.83)

while

r2[(2)gij] = �8pG
c4 dij

(0)T00

r2[(3)g0i] =
16pG

c4 dij
(1)T0i

r2[(4)g00] = ∂

2
0[

(2)g00] +
(2)gij∂i∂j[

(2)g00] � ∂i[
(2)g00]∂i[

(2)g00]

� 8pG
c4

n

(2)T00 + (2)Tii � 2 (0)g00
(0)T00

o

,

(1.84)

describes the 1PN correction to the metric.

Eq. 1.83 can be seen as Newton’s law with the replacement, (2)g00 =

�2f, where U = �c2
f is the Newton’s potential. The solution is

f(t, x) = � G
c4

Z

d3
x

0
(0)T00(t, x

0)
|x � x

0| . (1.85)

Solutions to the Eq. 1.84 turn out to be

g00 = �1 +
2
c2 V � 2

c4 V2 + O
⇣ 1

c6

⌘

g0i = � 4
c3 Vi + O

⇣ 1
c5

⌘

gij = dij

⇣

1 +
2
c2 V

⌘

+ O
⇣ 1

c4

⌘

,

(1.86)
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where V and Vi are retarded integrals of stress energy tensor of the

source 29,

29 Actually, like f, V and Vi are instan-
taneous functions too, but have been re-
expressed as retarded function at the
1PN order. While doing so, however,
one needs to use some boundary condi-
tion, such as no-incoming radiation at
spatial infinity. Since post-Newtonian
expansion holds only for r ⌧ l̄, this
creates a conceptual problem. How-
ever, we will see later that choosing
no-incoming radiation at spatial infin-
ity in this case is not a problem. The
reason is that the PN solution will be
matched with the post-Minkowskian
solution in the overlapping region. In
post-Minkowskian expansion, however,
choosing no-incoming radiation at spa-
tial infinity is allowed because its valid-
ity region extends up to spatial infinity.

V(t, x) = G
Z

d3
x

0 1
|x � x

0|s(t � |x � x

0|/c, x

0), (1.87)

and

Vi(t, x) = G
Z

d3
x

0 1
|x � x

0|si(t � |x � x

0|/c, x

0), (1.88)

where s =
1
c2
⇥

(0)T00 + (2)T00 + (2)Tii⇤ and si =
1
c
⇥

(1)T0i⇤.

Now that we have the near zone metric at 1PN order, we can

compute the equations of motion of a particle of mass m that moves

in this metric. This can be found by extremizing the action written

in this curved background

S = �mc
Z

dt

 

� g
µn

dxµ

dt
dxn

dt

!1/2

= �mc2
Z

dt

 

� g00 � 2g0i
vi

c
� gij

vivj

c2

!1/2

.

(1.89)

Let us compute the 1PN correction to the metric for a binary system

with point masses (particles). The stress energy momentum tensor

for a set of point-like particles with mass ma moving along the tra-

jectory x

a

(a = 1, 2) is defined by

Tµn =
1p�g Â

a
gama

dxµ

dt
dxn

dt
d

(3)(x � x

a

(t)), (1.90)

where xµ

a are the coordinates for x

a

(t). If we neglect the self-force 30, 30 This can not be neglected if radiation
reaction effects are being taken into ac-
count. However, we will see that this
occurs at high post-Newtonian orders.

then the metric felt by a particle is due to stress energy momentum

tensors of others. Thus the action can be divided into two parts

S = S1 + S2, where for example, S1 is due to the metric produced

by the second particle. The stress energy momentum tensor for S1 is
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then,

(0)T00(t, x) = m2c2
d

(3)(x � x2(t))

(2)T00(t, x) = m2

 

1
2

v2
2 + 2fc2

!

d

(3)(x � x2(t))

(1)T0i(t, x) = m2cvi
2d

(3)(x � x2(t))

(2)Tij(t, x) = m2vi
2vj

2d

(3)(x � x2(t)),

(1.91)

where f is the potential produced by the second particle (see Eq. 1.85).

Similarly, we can write for the first particle. From the total ac-

tion, we can extract the Lagrangian for the binary system. We get,

L = L0 + 1/c2L2, where

L0 =
1
2

m1v2
1 +

1
2

m2v2
2 +

Gm1m2
r

, (1.92)

and

L2 =
1
8

m1v4
1 +

1
8

m2v4
2

+
Gm1m2

2r

h

3(v2
1 + v2

2) � 7v1 · v2 � (x̂ · v1)(x̂ · v2) � G(m1 + m2)
r

i

,

(1.93)

where x denotes the separation vector between the two point par-

ticles with r = |x| and x̂ = x/r. The equations of motions can be

found from Euler-Lagrange equations

d
dt

∂L
∂vi

a
=

∂L
∂xi

a
, (1.94)

where a = (1, 2). It has the following form:

d2xi

dt2 = � GM
r2

�

x̂i⇥1 + O(e

2)
⇤

+ v̂iO(e

2)
 

, (1.95)

where M is the total mass. We can see that the leading order term

is the Newton’s force, which was expected and O(e

2) terms give the

first post-Newtonian corrections to the equations of motion 31. 31 The O(e

2) correction in the equations
of motion leads to the periastron ad-
vance of the orbit, e.g., the orbit of mer-
cury around the sun.

So far, we have neglected the gravitational radiation to keep things

simple. However, before we proceed to a systematic post-Newtonian
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expansion where the radiation reaction effect will automatically be

taken care of, we should pause for a moment and think of what

would happen to the equations of motions if the gravitational radia-

tion is to be also included. First of all, our assumption that g00 will

have a contribution from only even powers of velocity and similarly

for other components, will break down. This is because the radiation

breaks the time-reversal symmetry. Thus g00 might as well contain

odd powers of velocity.

From linearised gravity, we know that the power radiated by a

self-gravitating system with typical velocity n is P ⇠ GM2v6/(c5r2),

where M denotes the mass scale of the system and r its typical

size. Furthermore, the virial theorem implies that the total energy

of the system is Etot = �(1/2)Mv2. From the energy conservation,

dE/dt = �P, we get,

dv
dt

⇠ GM
r2

⇣

n

c

⌘5
. (1.96)

Thus we expect the radiation reaction effects to occur at O(e

5) in the

equations of motion. Hence, we expect the equations of motion to

look like,

d2xi

dt2 = � GM
r2

n

x̂i⇥1 + O(e

2) + O(e

4) + O(e

5) + O(e

6) + · · ·
⇤

+ v̂i⇥O(e

2) + O(e

4) + O(e

5) + O(e

6) + · · ·
⇤

o

.

(1.97)

Note that there are no O(e

3) terms, because no PN correction leads

to this power of velocity.

1.4.3 The relaxed Einstein equations

A particular convenient formulation of Einstein equations (called re-

laxed Einstein equations) useful for systematic post-Newtonian ex-

pansion is given by

hab ⌘ (�g)�1/2gab � h

ab. (1.98)
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Note that this is just an another way of writing the same metric 32. 32 However, we should note that there
is a non-linear relation between the hab

and gab.There is no assumption involved here 33. Again we start by choosing
33 The notation hab is also different from
the linearised gravity hab. However,
one can show that, in linearised grav-
ity limit, hab reduce to h̄

ab

except for
an overall sign. Also, (�g)�1/2gab is
called "gothic metric".

the harmonic gauge,

∂

b

hab = 0. (1.99)

In this gauge the Einstein equations take the form,

⇤hab =
16pG

c4 t

ab, (1.100)

where ⇤ ⌘ �∂

2/∂t2 + r2 is the usual d’Alembertian operator in flat

spacetime 34 and the quantity appearing in the right hand side is 34 Actually, this is the benefit of recast-
ing Einstein equations in the relaxed
form, i.e., we know how to deal with
the d’Alembertian operator.

t

ab ⌘ (�g)Tab +
c4

16pG
Lab, (1.101)

where Tab is the matter stress energy tensor while Lab is indepen-

dent of the matter variables and is given by

Lab =
16pG

c4 (�g)tab

LL + (∂

n

haµ

∂

µ

han � hµn

∂

µ

∂

n

hab), (1.102)

tab

LL is called Landau-Lifshitz energy momentum pseudotensor, which

is highly non-linear in h
µn

. Eq. 1.98 and Eq. 1.99 together are com-

pletely equivalent to the Einstein equations in Eq. 1.1 and Eq. 1.3.

The gauge condition in Eq. 1.99 leads to the conservation law and

hence provides the equation of motion for the matter variables

∂

b

t

ab = 0. (1.103)

Mathematically it makes perfect sense to solve Eq. 1.100 first with-

out requiring the gauge condition (Eq. 1.99) to be satisfied, i.e., with-

out requiring the matter variables to follow their equations of mo-

tions. This allows us to write an expression for the solutions and

then we impose the gauge condition on them 35. With no-incoming 35 The Eq 1.100 are called relaxed equa-
tions because of the very reason that we
have relaxed the condition that particles
have to follow their equations of mo-
tion.

boundary condition the solutions to Eq. 1.100 are given by

hab(t, x) = �4G
c4

Z

d3x0 t

ab(t � |x � x

0|)
|x � x

0| . (1.104)
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Since t

ab is a functional of hab and its derivatives, it is extremely

difficult to find an exact solution to Eq. 1.104. The key idea is then

to resort to approximation methods, e.g., solving this in near and far

zone separately. Let us briefly discuss these methods in the follow-

ing.

1.4.4 Post-Minkowskian expansion outside the source

In the region outside the source, R < r < •, the matter stress en-

ergy tensor (Tab) vanishes. Since we are interested in weak sources,

Einstein equations Eq. 1.1 suggest that the metric will not deviate

much from the flat spacetime (h
ab

). The correction to the flat metric

should be given as an expansion in Rs/r, where Rs = 2Gm/c2, with

m being the mass scale of the system. We will simply write this as

an expansion in G. We thus write

(�g)�1/2gab = h

ab + Ghab

1 + G2hab

2 + · · · . (1.105)

This means,

hab =
•

Â
n=1

Gnhab

n . (1.106)

Putting this ansatz in the relaxed Einstein equations, Eq. 1.100 with

Tab = 0, gives a form which looks like the following:

⇤hab = Lab, (1.107)

where Lab contains all possible powers of h
µn

. We now equate the

terms of same order in G. We find that, to linear order in G,

⇤hab

1 = 0. (1.108)

This is because the Lab contain terms starting from quadratic in hab

1 .

And to higher orders, we find,

⇤hab

2 = Nab[h1, h1], (1.109)
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and so on 36. The general n-th order equation can be written as 36 Nab just represents a function
quadratic in hab.

⇤hab

n = Lab

n [h1, h2, . . ., hn�1]. (1.110)

We should remember that all this is valid only in the region r > R.

The Eq. 1.108 represents the linearised gravity limit. The most

general solution to this equation is given in terms of retarded multi-

polar waves,

hab

1 =
•

Â
l=0

∂L

"

1
r

Kab

L (t � r/c)

#

, (1.111)

where Kab

L ⌘ Kab

i1i2,...,il
are traceless and symmetric with respect to

i1i2, . . . , il . We now impose the gauge condition, Eq. 1.99 on this

solution. This reduces the number of independent components of

hab

1 from 10 to 6 and the most general solution in the outer region of

source becomes

hab

1 = kab

1 + ∂

a

j

b

1 + ∂

b

j

a

1 � h

ab

∂

µ

j

µ

1 . (1.112)

It turns out that kab

1 are fully described by a set of symmetric and

traceless (STF) tensors IL(u) and JL(u), with u being the retarded

time. They are called mass type and current type, respectively. The

j

b

1 are fully described by four STF tensors WL(u), XL(u), YL(u) and

ZL(u).

The idea is now to plug the solution of linearised, Eq. 1.112, in

the right hand side of the Eq. 1.109 and solve for h2. One can go on

doing this till we achieve our required order in G.

Note that the multipole moments (IL, JL, WL, XL, YL, ZL) that char-

acterize the gravitational field outside the source (i.e., the vacuum

Einstein equations) are freely specifiable variables, i.e., they have not

yet been related to the source properties. This would be possible

only after we find the solution in the near zone.
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1.4.5 Post-Newtonian expansion in the near region

We have already derived the first post-Newtonian correction to the

metric in the section 1.4.2 (see Eq. 1.86). Our aim here is to expand

this to get higher order corrections. The post-Newtonian expansion

of hµn is,

hµn =
•

Â
n=2

1
cn

(n)hµn, (1.113)

and for the effective stress energy momentum tensor 37, we similarly

37 Note that the expansion starts from
n = �2, because t

µn has the dimension
of rc2.

write,

t

µn =
•

Â
n=�2

(n)
t

µn. (1.114)

Plugging this in the relaxed Einstein equations, Eq. 1.100, and keep-

ing the terms with same powers of c, gives a recursive set of equa-

tions,

r2⇥(n)hµn

⇤

= 16pG
⇥(n�4)

t

µn

⇤

+ ∂

2
t
⇥(n�2)hµn

⇤

. (1.115)

These equations can be solved iteratively 38. The solutions, of course, 38 There are a few technical details that
we will not discuss here, e.g, a naive
poisson integration gives divergent re-
sults because the boundary condition
at spatial infinity for the field can not
taken to be vanishing.

have to described in terms of instantaneous potentials (sourced by

matter stress energy tensor) . We can further expand these func-

tions in the powers of R/r, where R is the size of the source, to get

the multipolar post-Newtonian expansion, in the region outside the

source (called exterior near zone) 39. For example, the expansion of 39 Note that post-Newtonian expansion
is valid in the region 0 < r < R.

|x � x

0| around x

0 in the Eq. 1.87 and Eq. 1.88 will give the multipolar

expansion of the potentials V and Vi.

1.4.6 Matching of the solutions

To make the matching possible in the intermediate region R < r <

R, each term of the multipolar post-Minkowskian expansion can be

further expanded in post-Newtonian way, i.e., in powers of n/c. It

turns out that the n-th term of post-Minkowskian expansion has the
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following PN orders

h00
n = O

⇣ 1
c2n

⌘

, h0i
n = O

⇣ 1
c2n+1

⌘

, hij
n = O

⇣ 1
c2n

⌘

. (1.116)

This suggests that if we want to compute the corrections to the New-

tonian metric at 2PN order, i.e., keeping the term up to O
⇣ 1

c4

⌘

in

the metric, then we would need to compute hn up to n = 3 (see,

Eq. 1.113). In other words, we will have to iterate the linearised solu-

tion h1 twice. It is now possible to compare the two solutions at each

PN order. The comparison will allow us to express the multipole

moments (IL, . . . , ZL) in terms of stress energy tensor of the source.

We must note that the key idea in this whole formalism is the

existence of an overlapping region which, however, is not guaran-

teed. Let us investigate this. We had said that for a system of size

R with n ⌧ c, the near region extends up to the distance r < R,

where R � R. The PN expansion is valid until r < R 40 and break 40 Remember that, R is of the order of
the reduced wavelength (l̄) of the grav-
itational wave.down at distances, r ⇠ l̄ ⇠ (c/n)R. From linearised gravity theory,

we know that the higher multipole moments of the source produce

gravitational waves at higher frequencies, e.g., n-th order multipole

produces radiation with a set of frequencies ranging from source fre-

quency ws to a maximum frequency nws. In PN expansion, n-th

order term contains the multipoles of up to order ⇠ n producing

radiation with frequencies up to ⇠ nws. This means that the re-

duced wavelength will now be l̄ = O
⇣ 1

n

⌘

l̄0, where l̄0 ⇠ (n/c)R.

Thus, when n becomes larger than O
⇣ c

n

⌘

, the condition l̄ � R will

no longer hold, implying that the matching region will not exist for

arbitrarily large PN order. This suggests that we can compute gravi-

tational waves only up to a PN order ⇠ O(c/n).

1.4.7 Radiative field at infinity

In the subsection 1.4.4, we discussed the solution outside the source.

The gravitational waves can then be extracted from the solution at

the future null infinity 41, where we expect them to be found. Let 41 This means, at spatial infinity r ! •
with u = t � r/c fixed.
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us choose what is called radiative coordinate system at the future null

infinity 42, i.e., Xµ = (T, X) with R = |X| and U = T � R/c. In this 42 One can choose any other coordinate
system as well. However, it turns out
that most of the coordinate systems in-
volve logarithmic terms and thus not
suitable for dealing with the radiation.

coordinate system the n-th term of the post-Minkowskian expansion

is given by

Hµn

n =
•

Â
k=1

Kµn

L,(k,n)(U)
N̂L
Rk , (1.117)

where N = X/R is unit radial direction 43. For gravitational waves, 43 Note that R is not the size of the sys-
tem as used earlier.

we need to select only the 1/R part of Hij. The physical components

can be extracted by projecting it into TT gauge using the Lambda

tensor Lij,kl (see, Eq. 1.27). The result is,

HTT
ij (U, N) =

4G
c2R

Lij,ab

•

Â
l=2

1
cl l!

(

NL�2UabL�2(U)

� 2l
c(l + 1)

NcL�2ecd(a Vb)dL�2(U)

)

,

(1.118)

where we have introduced two sets of STF tensors UL(U) and VL(U).

They are called radiative multipole moments and describe the gravi-

tational waves at future null infinity. We need to connect the radiative

moments to the source multipole moments, in order to describe the

gravitational waves in terms of the source parameters. Notice that, to

lowest order in post-Minkowskian expansion (linearised theory) 44, 44 That is, hij = Ghij
1 (see, Eq. 1.112).

there is no difference between harmonic coordinates and radiative

coordinates. Thus 1/R term in the radiative coordinates is simply

given by the 1/r terms of Eq. 1.112. We find that the radiative mo-

ments satisfy the following relations:

UL(U) = I(l)
L (U), VL(U) = J(l)

L (U). (1.119)

This means that, to lowest order, the radiative moments UL and VL

are given by the l-th time derivative of the source multipole mo-

ments IL and JL, respectively 45, e.g. by second derivative of mass 45 This is the same result one gets from
the linearised theory. We have thus re-
produced the result.quadrupole moment, by third derivative of mass octupole moment

and so on.

As usual, we can consistently iterate this to get higher-order cor-

rections to the radiative moments. This will provide us the grav-
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itational waves at the required PN order. The power radiated by

gravitational waves can then be computed using Eq. 1.42.

1.4.8 Radiation from inspiraling compact binaries

Let us now compute the gravitational waves from inspiraling com-

pact binaries 46. In section 1.3, we saw that such systems produce 46 More specifically, black hole binaries.

"chirp" like gravitational waveforms, i.e., the amplitude and frequency

gradually increase with time. Here we will compute the PN correc-

tions to the gravitational waveforms. The PN computations are valid

only in what is called inspiral phase, i.e., where the component ob-

jects are far apart and thus move slowly enough. However, when

they come close to each other, their speeds become significantly high

and make the PN computations fail. This is called the late inspi-

ral phase, which is followed by the merger phase where they finally

plunge into each other. In the case of black hole binaries, the result-

ing system is a deformed black hole which settles down into a stable

rotating black hole (Kerr black hole) by radiating the asymmetries

into gravitational waves. Thus the coalescence of compact binaries

can be divided into three phases: inspiral, merger and ringdown.

The ringdown refers to the phase after the merger. We will discuss

the methods developed to deal with merger and ringdown phases in

the following sections.

For the time being, we are interested in computing the gravita-

tional waveforms produced by compact binaries during their inspiral

phase where post-Newtonian theory is applicable.

1.4.9 3.5 PN equations of motion

For a binary system made of two point particles, the equation of

motion in the centre of mass coordinate has the following form:

dn

i

dt
= � Gm

r2

"

(1 + A)
xi

r
+ Bn

i

#

+ O
✓

1
c8

◆

. (1.120)
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It has two terms: one proportional to the relative separation xi and

other to the relative velocity n

i. Finding A and B for a generic orbit

is really difficult task. However, for binaries moving in the circular

orbits, it turns out to be relatively easier 47. For such binary systems, 47 We also neglect the spins of the com-
ponents objects.

the equations of motions have been computed to 3.5PN orders, which

is
dn

i

dt
= �w

2
s xi � zn

i, (1.121)

where

w

2
s =

Gm
r3

(

1 + (�3 + h)g +

 

6 +
41
6

h + h

2

!

g

2

+

"

� 10 +

 

22log(r/r0
0 � 75707

840
+

41
64

p

2)

!

h +
19
2

h

2 + h

3

#

g

3

)

+ O
 

1
c8

!

,

(1.122)

and

z =
32
5

G3m3
h

c5r4 + O
 

1
c7

!

. (1.123)

Here h is the symmetric mass ratio of the binary system (see, Eq. 1.56)

and g = Gm/rc2 is the post-Newtonian expansion parameter 48. 48 Note that for self-gravitating system,

g =
Gm
rc2 ⇠ O(n

2/c2) .
The first term in Eq. 1.122 is simply the Kepler’s law and other

terms represent the PN correction to the Newtonian dynamics. In

Eq. 1.121, the velocity-dependent term is due to the radiation reac-

tion and Eq. 1.123 provides 2.5PN radiation reaction term, (O(1/c5))

that appears in the equation of motion.

The 3.5PN expansion of the energy of the circular orbit is,

E = � µc2x
2

(

1 +

 

� 3
4

� 1
12

h

!

x +

 

� 27
8

+
19
8

h � 1
24

h

2

!

x2

+

"

� 675
64

+

 

34445
576

� 205
96

p

2

!

h � 155
96

h

2 � 35
5184

h

3

#

x3

)

+ O
 

1
c8

!

,

(1.124)
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where x =

 

Gmws
c3

!2/3

is a dimensionless variable. Note that this is

a physical quantity and is thus measurable. While the parameter g is

a gauge-dependent quantity as this depends on the separation r be-

tween the objects which of course is a coordinate dependent quantity.

Thus, a physical observable expressed in g might contain coordinate

dependent terms, e.g., r0
0 in Eq. 1.122. However, when we re-express

the observables (e.g., the orbital energy, gravitational wave flux, etc.)

in the parameter x, the coordinate dependent terms go away.

1.4.10 Energy flux and orbital phase to 3.5PN order

The energy flux carried by gravitational waves produced by a non-

spinning quasi-circular binary system has been also computed up to

3.5PN order. The power radiated can then be computed by averaging

over the full sky,

Pgw =
32c5

5G
h

2x5

(

1 +

 

� 1247
336

� 35
12

h

!

x + 4px3/2

+

 

� 44711
9072

+
9271
504

h +
65
18

h

2

!

x2

+

 

� 8191
672

� 583
24

h

!

px5/2

+

"

6643739519
69854400

+
16
3

p

2 � 1712
105

C � 856
105

log(16x)

+

 

� 134543
7776

+
41
48

p

2

!

h � 94403
3024

h

2 � 775
324

h

3

#

x3

+

 

� 16285
504

+
214745
1728

h +
193385
3024

h

2

!

px7/2 + O
 

1
c8

!)

,

(1.125)

where C = 0.577 . . . is the Euler-Mascheroni constant. The limit

h ! 0 corresponds to a test particle moving in the background of

a massive object. This falls under the regime of black hole pertur-

bation theory, which we will discuss later, allows to compute the

power radiated in gravitational waves up to 5.5PN order. It turns out

that there is an excellent agreement between these two computations
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up to 3.5PN order, up to which PN computation is available. This

provides a remarkable consistency check for the PN computation.

Given the the PN expansions of orbital energy and the energy

flux, one can easily find the orbital phase evolution by integrating

the energy balance equation,

dE
dt

= �Pgw ) dE
dx

dx
dt

= �Pgw. (1.126)

From this, we can compute the orbital frequency (ws) as a function

of time and the phase evolution can be computed by df/dt = ws.

Alternatively, we can also write

dt
dx

= �dE
dx

.

Pgw, (1.127)

and
dj

dx
= ws

dt
dx

. (1.128)

This will give us the parametric solution to the phase, {t(x), j(x)}.

We call this TaylorT2 time-domain approximate. One might as well

wish to first Taylor expand the polynomials in the Eq. 1.127 and keep

the terms up to required PN orders. This would give some other ap-

proximate. One can also solve numerically the coupled equations,

Eq. 1.127 and Eq. 1.128. Asking that which approximate is better,

would really depend on the level of accuracy required in the prob-

lem.

1.4.11 3PN polarisation waveforms

Using Eq. 1.123 and Eq. 1.128, we can compute the time derivatives

of the various source moments which are required to compute the

polarization waveforms (Eq. 1.118). For an observer located at some

distance, r, from the origin of the coordinate system attached to the

binary making an angle, i, with the z�axis (orbital axis) and f with

the x�axis, the polarization waveforms h+ and h⇥ (presently known
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up to 3PN) are given by,

h+,⇥(t) =
2Gµx

c2r

(

H(0)
+,⇥ + x1/2H(1/2)

+,⇥ + xH(1)
+,⇥ + x3/2H(3/2)

+,⇥ + x2H(2)
+,⇥

+ x5/2H(5/2)
+,⇥ + x3H(3)

+,⇥ + O
 

1
c7

!)

.

(1.129)

The leading term are,

H(0)
+ (t) = �(1 + cos2

i) cos 2y(t),

H(0)
⇥ (t) = �2 cos i sin 2y(t),

(1.130)

where y is given in terms of the orbital phase j

49 as 49 The initial phase f is absorbed into
the orbital phase j(t).

y(t) = j(t) � 2Gmws
c3 log

 

ws
w0

!

. (1.131)

Here w0 is a constant frequency which can be chosen as per conve-

nience 50. As expected, we see that, the leading order terms are sim- 50 We can choose this as the entry fre-
quency of an interferometric detector.

ply the linearised theory results, i.e., gravitational waveforms pro-

duced by the second time derivative of quadrupole moments of the

source. However, y(t) here denotes the full 3.5PN phase 51. For 51 One may not choose to take full
3.5PN order for the phase to work
consistently at the leading order, i.e.,
0PN. However, one can show that
up to 2PN order, the orbital phase
j(t) diverges in the limit x ! 0.
Only terms starting from 2.5PN
order gives the finite limit. Thus
for gravitational data analysis pur-
poses, one must keep the corrections
to the orbital phase at least up to 2.5PN.

very small values of x, the higher order corrections (e.g., x1/2H(1/2),

xH(1), etc.) to the amplitudes H(0)
+,⇥ can be neglected, because, in

the limit x ! 0 , they vanish. However, for moderate values of x, a

first few corrections can be important, keeping which would produce

modulations in the amplitude of the Newtonian chirp signal.

1.4.12 Mode decomposition of gravitational waveforms

The full waveform in the Eq. 1.129 can also be written in an expan-

sion of spin-2 weighted spherical harmonic basis functions 52, 52 We will come back to this again when
we discuss numerical relativity.

h+ � ih⇥ =
•

Ầ
=2

`

Â
m=�`

Y�2
`m (i, f)h`m, (1.132)

where the complex modes h`m can be computed by 53

53 This is an old way of computing h`m.
The better way would be to directly re-
late them with the radiative multipole
moments UL and VL by relating first the
STF tensor NL with spherical harmonics
Y�2

`m .

h`m :=
Z

Y⇤�2
`m (i, f)(h+ � ih⇥)dW, (1.133)
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and satisfy (for non-spinning binary systems),

h`,m = (�1)`h⇤
`,�m. (1.134)

The spin-s weighted spherical harmonic basis functions, Y�s
`m , can be

found in the literature [87].

Using the Eq. 1.133, we can find the complex modes, h`m(t), to

the PN order we want. A few modes up to the 1PN order are given

below,

h22 = �8
r

p

5
Gµ

c2r
e�2ijx

"

1 �
 

107
42

� 55
42

h

!

x

#

+ O
 

1
c5

!

h21 = �i
8
3

r

p

5
Gµ

c2r
dm
M

e�ijx3/2 + O
 

1
c5

!

h33 = 3i
r

6p

7
Gµ

c2r
dm
M

e�3ijx3/2 + O
 

1
c5

!

h32 = �8
3

r

p

7
Gµ

c2r
e�2ij(1 � 3h)x2 + O

 

1
c6

!

h44 =
64
9

r

p

7
Gµ

c2r
e�4ij(1 � 3h)x2 + O

 

1
c6

!

,

(1.135)

where dm := m1 � m2 with the convention that the first object is

always heavier than the second one. We see that the h22 mode has

the lowest power in x and hence is called the dominant mode. This

is also called quadrupole mode 54, because the first term appearing 54 Including h2,�2 mode.

in h22 is sourced by the quadrupole moment of the binary system.

In the literature, the other modes are either called higher modes or

sub-dominant modes or non-quadrupole modes.

1.4.13 Frequency structure of gravitational waveforms

Let us now look at the frequency structure of the full gravitational

waveforms given by Eq. 1.129 or Eq. 1.132. This can be done ana-

lytically using what is called stationary phase approximation 55, which 55 Phys. Rev. D, Vol. 62, 084036, Page
No., 14

requires that the change in the amplitude is much smaller than the

change in the phase of the waveform. This condition is well satis-

fied by the inspiral (PN) waveforms. Here, we restrict ourselves to
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the leading order term in Eq. 1.129

56. The Fourier transform of the 56 Or equivalently, only the dominant
(2, 2 and 2, �2) mode in Eq. 1.132 are
being taken. For this reason, this is also
called "restricted" waveform approxi-
mation.

restricted waveform is given by

h̃+( f ) =

 

5
6

!1/2
1

2p

2/3
c
r

 

GM
c3

!5/6

f �7/6 eiY+( f ) 1 + cos2
i

2
,

(1.136)

where

Y+( f ) = 2p f (t⇤ + r/c) � j(t⇤) � p/4, (1.137)

with j being the orbital phase of the binary and t⇤ is given by the

condition,

2p f =
dj

dt

�

�

�

t=t⇤
) f = F(t⇤), (1.138)

i.e., the largest contribution to the Fourier component h̃+( f ) comes

from the the time when the orbital frequency F(t) becomes equal

to the Fourier frequency f . The polarisation waveform, h̃⇥( f ) is

obtained by simply replacing (1 + cos2
i)/2 by cos i and with Y⇥ =

Y+ + p/2 in the Eq. 1.136.

Similarly, We can compute the Fourier transform of the higher

modes (or higher PN corrections). The important point to note is

that the stationary point (t`m
⇤ ) for a `m mode is now given by

f = mF(t`m
⇤ ) ) F(t`m

⇤ ) = f /m. (1.139)

This means that for a given Fourier frequency, say, the initial fre-

quency of a interferometric detector f0, the contribution of the dif-

ferent modes to h̃+,⇥( f0) come from the different times of the orbital

evolution.

1.5 Numerical relativity

In the previous section, we dealt with the case when the gravity was

weak. For self-gravitating systems, this also means that the source

motions were assumed to be small. However, if that is not the case,

then the PN theory might not give accurate results. This is because,

in strong gravity regime, the full non-linear structure of the Einstein
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equations starts playing the role, e.g., during the merger of the binary

black holes. In numerical relativity, one solves the Einstein equations

numerically. Initially, there were many challenges to developing nu-

merical methods to evolve Einstein equations, but now people have

succeeded in this. Here, we will discuss the basic ideas used in nu-

merical relativity and will see some results of the binary black hole

simulations.

Any correct theory of nature must posses the initial value formu-

lation, i.e., given the initial conditions, the dynamical variables must

be uniquely evolved in time. For example, in Newtonian dynamics,

once we specify the initial positions and momenta of the particles,

the theory uniquely predicts the time evolution of the positions and

momenta of the particles. Similar thing happens in Electrodynamics.

Analogously, we also expect Einstein equations to posses the initial

value formulation, if it has to represent a correct theory of gravity. It

turns out that it does admit a well posed initial value formulation 57. 57 There is a precise mathematical defi-
nition of being "well posed", but phys-
ically it means that "small changes" in
the initial data should produce corre-
spondingly "small changes" in the so-
lution.

This is shown by decomposing Einstein equations in a set of time

evolution equations and a set of initial value equations, analogous to

what is done in electrodynamics. This decomposition also becomes

a suitable choice for solving Einstein equations on computers. Here,

we are mainly interested in evolving Einstein equations for the coa-

lescence of compact binary objects, such as, binary black holes, etc.

1.5.1 The 3 + 1 decomposition of spacetime

Let us take a 4�dimensional spacetime manifold M with the metric

g
µn

. We assume that the spacetime (M, g
µn

) can be foliated by a set

of three dimensional surfaces St, where t is the time coordinate 58

58 Note that, it does not have to be the
time coordinate itself. One can instead
choose any scalar function. However,
the equations we are interested in, get
simplified a lot if we choose the label
parameter as the coordinate time itself.

of our coordinate system. The dual vector (1�form) associated with

the time coordinate t is,

W
a

= r
a

t = [1, 0, 0, 0]. (1.140)

Let us assume that the norm of this dual vector is �a

�2 59, i.e., 59 This is called lapse function. We will
discuss the reason behind it later.
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||W|| = gabr
a

tr
b

t = � 1
a

2 . (1.141)

We then find the normalised dual vector,

n
a

= �aW
a

= [�a, 0, 0, 0]. (1.142)

The unit normal to the hypersurface St is defined by

na = gabn
b

. (1.143)

We can see that na is a time-like vector, i.e.,

nan
a

= �1. (1.144)

We can think of na as the 4�velocity of a "normal" observer whose

worldline is always normal to the hypersurface St. The induced

metric on this hypersurface can then be given by

g

ab

= g
ab

+ n
a

n
b

. (1.145)

We can check that g

ab

is purely spatial, i.e., resides in St. This just

means that it has no component along na,

na

g

ab

= nb � nb = 0. (1.146)

Thus g

ab

is a projector tensor that projects out any 4�vector ly-

ing along na. Furthermore, we construct a projector using g

ab

that

projects any 4�vector lying in M into the St,

g

a

b

= ga

b

+ nan
b

= d

a

b

+ nan
b

. (1.147)

We can check that, for a given 4-dimensional vector va, g

a

b

vb is purely

a spatial, i.e., resides in St. This can be used to project any higher

rank tensor also, e.g.,

?T
ab

= g

µ

a

g

n

b

T
µn

, (1.148)
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where ? denotes the projection into the spatial hypersurface St.

Similarly, we would like to define a projector that projects a given

4�dimensional vector along the normal vector na. This can simply

be given by

Nb

a

= �nan
b

= d

a

b

� g

a

b

. (1.149)

It is now possible to write a given tensor as a sum of its spatial part

and its time-like part. For example,

va = d

a

b

vb = (g

a

b

+ Nb

a

)vb = ?va � na(n
b

vb). (1.150)

From the spatial metric g

ab

, we can compute the 3�dimensional co-

variant derivative and Riemann tensor
�

Ra

bgd

�

. Our aim is basically

to write Einstein equations in terms of these three dimensional quan-

tities. This would require us to decompose 4�dimensional Riemann

tensor
�

(4)Ra

bgd

�

into spatial tensors. However, this decomposition

will certainly not contain all the information encoded in (4)Ra

bgd

, sim-

ply because the later also contains the time derivatives (because it

lives in M), while the 3�dimensional Riemann tensor is a purely

spatial quantity, i.e., can be computed from only spatial derivatives

of g

ab

. The thing to note is that, Ra

bgd

just tells us about the in-

trinsic geometry of the spatial hypersurface. It does not tell us how

the hypersurface is embedded in M. The idea is that if we foliate

a spacetime M by a stack of 3�surfaces and we want to get all the

information that are there in the full metric g
ab

, then one must also

specify how these 3�surfaces are embedded in M in addition to the

intrinsic metric g

ab

. The quantity that characterises the embedding

is called the extrinsic curvatue.

1.5.2 Extrinsic curvature

The extrinsic curvature is defined as

K
ab

= �g

µ

a

g

n

b

r
µ

n
n

, (1.151)
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i.e., it represents the symmetric projection of the gradient of the nor-

mal vector na into the hypersurface St. Thus by construction, it is

purely spatial 60. Physically, this tells us how the normal vector na

60 However, since it involves the
normal vector which is actually a
4�dimensional vector, it measures the
curvature of the spatial hypersurface as
embedded in the spacetime.

changes if we parallel transport it to a infinitesimally nearby point.

Since the normal vectors are, by definition, normalised at all points

in M, they can only differ by the direction in which they are point-

ing. Thus, the extrinsic curvature gives us the information about how

much the direction of the normal vector changes from a given point

in St to a some other point on the same hypersurface. This means

that the extrinsic curvature can be used to find the rate at which the

hypersurface deforms as it moves in the time. Later we will show

that the extrinsic curvature K
ab

is actually related to the first time

derivative of the spatial metric g

ab

. We can thus think of (g

ab

, K
ab

)

as an analogue of the position and velocity in Newtonian mechanics.

To get the time evolution equations for Einstein equations, we

need to the first decide on the direction of the time evolution along

which they are to be evolved. Shall we evolve along the normal vec-

tor na or some other direction? First of all, the natural time flow

direction should be ana, not just na. Because the former has unit dot

product with the hypersurface dual vector W
a

61. However, if we add 61 The dot product is, anaW
a

=
agab(�aW

b

)W
a

= 1.
a spatial shift vector b

a to it, i.e.,

ta = ana + b

a, (1.152)

also has unit dot product with W
a

62. Thus we should take the nor- 62 Because, b

a is a spatial vector.

mal vector ta as the direction of the time evolution. We can also

understand it mathematically as follows: an infinitesimal change

in the coordinate time t if we move along the normal vector ta is,

dt = tar
a

t = 1 and thus has the same value at all points of hyper-

surface St. This means that if we move along the vector ta, we can

label the hypersurface at t = constant as St and the hypersurface

at t + dt = constant as St+dt, which is not possible with using the

vector na. Consequently, all infinitesimal vectors tadt originating on
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St will end on the same hypersurface St+dt, not on some other hy-

persurfaces. Also, the choice in the Eq. 1.152 for the time evolution

direction makes sure that the coordinate positions do not change

during the evolution from St to St+dt
63. The shift vector b

a then 63 Otherwise dt = 1 condition will not
hold.

measures how much coordinates have moved while going from St to

St+dt with respect to the normal vector ta.

We can now compute the spacetime metric g
µn

,

g00 = g
µn

tµtn = (g

µn

� n
µ

nnu)(anµ + b

µ)(ann + b

n) = gijbib j � a

2

g0j = g
µjtµ = g

µj(anµ + b

µ) = b j

gij = gij.

(1.153)

And therefore the proper interval,

ds2 = �a

2dt2 + gij(dxi + b

idt)(dxj + b

jdt). (1.154)

We can see that the lapse function a measures the proper time elapsed

between the spatial hypersurface St and St+dt and hence the name,

lapse function. The lapse function and the shift vector give the time

evolution of the coordinates and hence are purely the gauge degrees

of freedom. One can choose them as per convenience 64. This just 64 For example, since the lapse function
a depends both on t and on x, we can
choose it in such a way that it has dif-
ferent behaviour at the different point
of spacetime, e.g., in the case of binary
black holes evolution, there would be
singularities, which can be avoided by
choosing an appropriate a.

represents the coordinate freedom in general relativity. The Eq. 1.154

is known as 3 + 1 decomposition of spacetime.

1.5.3 The 3 + 1 decomposition of Einstein equations

Using the definition of K
ab

itself, we can show that it can be written

as

2K
ab

= �r
a

n
b

� r
b

n
a

� nµr
µ

g

ab

. (1.155)

This can be simply re-expressed as

∂gij

∂t
= �2aKij + Dib j + Djbi, (1.156)
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where Di is the covariant derivative associated with spatial metric

gij. This is related to the four dimensional covariant derivative r as,

D
a

wb = g

µ

a

g

b

n

r
µ

wn, (1.157)

where w is a 4�dimensional vector. Given this, we can easily de-

compose the 4�dimensional Riemann tensor in to its spatial part

and time-like part (which will involve the extrinsic curvature) 65.

65 Note that the Riemann tensor is com-
puted from the action of covariant
derivatives.

Now, the decomposition of the Einstein equations can be done.

One finds the following equations,

G
µn

nµnn =
8pG

c4 T
µn

nµnn =
8pG

c2 r

G
µn

g

µ

a

nn =
8pG

c4 T
µn

g

µ

a

nn = �8pG
c3 j

a

G
µn

g

µ

a

g

n

b

=
8pG

c4 T
µn

g

µ

a

g

n

b

=
8pG

c4 S
ab

.

(1.158)

∂gij

∂t
= �2aKij + Dib j + Djbi, (1.159)

∂Kij

∂t
=a

(

Rij � 2KikKk
j + KKij �

8pG
c4

"

1
2

rc2
gij + Sij �

1
2

gijS

#)

� DiDja + b

kDkKij + KkjDib
k + KikDjb

k,

(1.160)

along with two constraint equations: first the Hamiltonian constraint

equation

R + K2 � KijKij =
16pG

c2 r, (1.161)

and second the momentum constraint equation

g

jk(DjKik � DiKjk) =
8pG

c3 ji, (1.162)

where Rij is 3�dimensional Ricci tensor and R = g

ijRij, K = g

ijKij

and S = g

ijSij. Note that rc2 := nµnnT
µn

is the matter density.

Similarly, j
a

c is the current density and S
ab

is the matter stress tensor.

Once we choose the lapse function and shift vector, we can pro-
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ceed to solve the coupled first-order partial differential equations

(Eq. 1.159 and Eq. 1.160). However, we would first need to solve

the constraint equations, Eq. 1.161 and Eq. 1.162, for a given initial

value of (gij, Kij). It can be easily shown that Einstein equations make

sure that once constraint equations are satisfied on some initial hy-

persurface, it will continue to do so on spatial hypersurfaces at later

times during the evolution. The evolution equations combined with

the constraint equations are called 3 + 1 form of Einstein equations.

1.5.4 Numerical integration of 3 + 1 Einstein equations

It turns out the 3 + 1 equations are not suitable for numerical inte-

gration. The reason is that, the 3 + 1 evolution equations do not form

a symmetric hyperbolic set of equations for which the numerical sta-

bility is known. For hyperbolic equations, the solutions are wave-like

and propagate at a finite speed. Moreover, if there is a slight pertur-

bation in the initial data (i.e., in solving constraint equations), the

effect of it reaches to generic point (grid point on the computer) only

after a finite time. On the other hand, in an elliptic and parabolic set

of equations, any slight perturbation in the initial data would cause

an instantaneous effect on the whole of the domain. In practice, the

numerical codes are always prone to some errors, such as truncation

errors. This leads to the generation of "constraint-violating modes",

i.e., the solutions to the time evolution equations will not satisfy

the constraint equations. In recent years, a significant amount of

effort has thus gone into the development of the formulations of the

Einstein equations, different from the standard 3 + 1 equations that

keep under control the growth of these "constraint-violating modes".

Two main formulations have been developed. One is the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) formalism 66 which is actually a 66 Baumgarte-Shapiro-Shibata-
Nakamura(1987,1995,1999)

variant of standard 3 + 1 decomposition and other defers completely

from the standard 3 + 1 approach and is based on a generalization

of harmonic coordinates 67. 67 Frans Pretorius, 2005
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1.5.5 Constructing initial data

Let us discuss how to solve the constraint equations, once the ini-

tial data is specified. We know that the dynamical quantities are gij

and Kij. They have thus 12 independent components to be solved

for and we have only four constraint equations. This means that we

will have 8 undetermined components. Furthermore, we also have

four gauge degrees of freedom associated with choosing a coordi-

nate system. This reduces the undetermined components to four (2

for gij and 2 for Kij). Thus, we have just 4 freely specifiable compo-

nents. However, the question is, which four components of the gij

and Kij are freely specifiable and which four components are to be

constrained using constraint equations Eq. 1.161 and Eq. 1.162

68. If 68 Note that, after removing the coordi-
nate degrees of freedom, we have just 8
components to worry about.we choose one over others, then this will bring asymmetry among

the components of gij and Kij. There is, however, one mathematical

trick that can be used to overcome this problem. The trick is to use

the conformal transformation, i.e., to choose gij as a conformally flat

metric,

gij = W2
dij, (1.163)

where W is the conformal factor. Now we can solve for W using the

constraint equations. Notice that now there is no partiality among

the components of the spatial metric gij, because we are choosing

a background metric (here dij) where we are specifying all of the

components at once. The three dimensional Ricci scalar is,

R = W�2⇥� 4r2 ln W � 2(r ln W) · (r ln W)
⇤

. (1.164)

The most frequently used conformal factor is W = y

2, which implies,

gij = y

4
dij. Then the Ricci scalar becomes

R = �8y

�5r2
y. (1.165)

Let us say we want to construct an initial data for a static black

hole 69. The extrinsic curvature Kij for a static spacetime vanishes, 69 Schwarzschild black hole.
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which means that we have to just solve the Hamiltonian constraint

equation (Eq. 1.161),

r2
y = �y

5 2pG
c2 r. (1.166)

Outside the matter, this gives us the Laplace equation in y,

r2
y = 0, (1.167)

whose solution for a system of particles (static black holes in our

case) is

y(x) = 1 +
1
2 Â

A

GmA
c2||x � xA|| . (1.168)

However, for systems like two black holes orbiting each other in cir-

cular orbits, one would have to solve the momentum constraint too

along with the Hamiltonian constraint.

1.5.6 Extraction of gravitational waves

Finally, the gravitational waves can be extracted at the edge of our

numerical grids 70. We know that the gravitational waves have a very 70 Because they only make sense at the
far distances from the source.

simple form in TT gauge. On the other hand, numerical simulation

is performed in some other gauge (e.g., harmonic gauge). Thus, it

would be wise to extract the waves directly from the Riemann tensor

itself. We proceed as follows: First of all, we choose a set of four

linearly independent vectors 71. For the time being, let us denote 71 So that they form a basis for the
spacetime. They can be chosen as per
convenience. We would need to project
the Riemann tensor on these vectors to
extract the waves.

them by,

zµ

a = (lµ, qµ, mµ, m̄µ), (1.169)

where a labels the four-vector. We demand these vectors to be null,

i.e.,

g
µn

lµln = g
µn

qµqn = g
µn

mµmn = g
µn

m̄µm̄n = 0, (1.170)

with the condition that

g
µn

mµm̄n = 1, g
µn

lµqn = �1, (1.171)
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and other scalar products to be zero. This is then called a null tetrad

system. In this tetrad, the spacetime metric can be expressed as

gµn = mµm̄n + mnm̄µ � lµqn � lnqµ. (1.172)

1.5.7 The Weyl tensor

Weyl tensor is defined as the trace free part of the 4�dimensional

Riemann tensor,

C
µnrs

=R
µnrs

� 1
2
(g

µr

R
ns

� g
µs

R
nr

� g
nr

R
µs

+ g
ns

R
µr

)

+
1
6

R(g
µr

g
ns

� g
µs

g
nr

).
(1.173)

We can check that the trace of C
µnrs

(i.e., contraction of any pair of

its indices) vanishes. By construction, it has the same symmetries as

the Riemann tensor. Weyl tensor has a special property that under

conformal scaling of the metric, i.e.,

g
µn

(x) ! g0
µn

(x) = e2f(x)g
µn

(x), (1.174)

this transforms as

C
µnrs

(x) ! C0
µnrs

(x) = e2f(x)C
µnrs

(x), (1.175)

where f(x) is an arbitrary function 72. As a corollary, if the Weyl 72 Thus Weyl tensor is also called con-
formal tensor.

tensor vanishes in a coordinate system, then the metric in that coor-

dinate system can be always written as

g
µn

(x) = exp{2f(x)}h

µn

, (1.176)

and the converse is also true.

Projection of the Weyl tensor onto the null tetrad gives the follow-
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ing scalars,

Y0 = C
µnrs

lµmnlrms

Y1 = C
µnrs

lµqnlrms

Y2 = C
µnrs

lµqnl(lrqs + mrm̄s)

Y3 = C
µnrs

qµlnqrm̄s

Y4 = C
µnrs

qµm̄nqrm̄s.

(1.177)

These scalars encode the different physical effects. To see that, let us

choose the radiative null tetrad which is suitable for extracting the

waves at asymptotically large distance from the source (r),

lµ =
1p
2
(nµ + rµ)

qµ =
1p
2
(nµ � rµ),

(1.178)

where nµ = (�1, 0, 0, 0) is the unit normal to the constant time hy-

persurface St at the distance r and rµ = (0, 1, 0, 0) is the radial unit

vector. While mµ can be chosen as

mµ =
1p
2
(0, f̂ � iq̂), (1.179)

where q̂ = (0, 1, 0) and f̂ = (0, 0, 1) are 3�dimensional spatial unit

vectors on St. m̄µ is just the complex conjugate of mµ. In this null

tetrad, we can show that,

Y4 = ḧ+ � iḧ⇥. (1.180)

Thus Weyl scalar Y4 is the one which encodes all the informations

about the gravitational waves. Other Weyl scalars either vanish or

contain the non-radiative components of Riemann tensor, in which,

of course, we are not interested.

In numerical relativity, one usually measures Y4 at a finite ex-

traction radius. This might introduce errors. We must, therefore,

estimate the errors arising due to the finite extraction radius. This

can be done by comparing the results at various extraction radii.
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Another important point to note about Y4 is that, under the rota-

tion of our axes by an angle 2y around the direction of propagation,

it transforms as

Y4 ! e�2iyY4. (1.181)

The same property is followed by the spherical harmonics Y(s)
lm (q, f)

with s = �2 under the rotation. Thus Y4 can be expanded in the

spherical harmonics,

Y4(t, x) =
•

Ầ
=2

m=`

Â
m=�`

Y`m
4 (t, r)Y(�2)

lm (q, f). (1.182)

Note that there are no terms for ` < 2, because Y(s)
`m vanish for ` < |s|.

We can similarly expand the waveform, i.e.,

h+ � ih⇥ =
•

Ầ
=2

m=`

Â
m=�`

h`m(t, r)Y(�2)
lm (q, f), (1.183)

where h`m(t, r) are computed by integrating Y`m
4 (t, r) twice with re-

spect to time.

1.5.8 An example of a binary black holes simulation

Fig. 1.2 shows an example of a binary black holes simulation based

on the BSSN formulation of the Einstein equations. It shows the three

phases of the waveform, i.e., the inspiral, merger and ringdown. We

see that both amplitude and the frequency increase slowly during

the early inspiral phase, but start increasing steeply from the late

inspiral phase until they merge. The important point to note is that

the total energy radiated in the gravitational waves is ⇠ 4% of the

total mass of the binary and the most of the energy is radiated during

the merger phase.
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Figure 1.2: The top plot shows the two
polarisations h+ and h⇥ as the function
of time, for non-spinning equal mass
black hole binary with unit total mass.
The bottom plots shows the accumu-
lated fraction of total mass radiated in
(2, ±2) mode and all the modes from
` = 2 : 6 and m = �` : `, in the
percentage of the total mass of the bi-
nary. We can see that the energy radi-
ated in the subdominant modes is al-
most negligible compared to the (2, ±2)
mode for a nearly equal mass binary.
Here, Rs is the Schwarzschild radius
of the individual black hole. Note
that, the unit of M (= GM/c3) is
second. t = 0 corresponds to the
peak of the amplitude of the wave-
form [www.einstein.gatech.edu].

1.6 Organization of the thesis

The thesis is organised as follows: In chapter 2, we present an an-

alytical waveform family describing GWs from the inspiral, merger

and ringdown of non-spinning black-hole binaries including the ef-

fect of several non-quadrupole modes [(` = 2, m = ±1), (` = 3, m =

±3), (` = 4, m = ±4), (` = 3, m = ±2), (` = 4, m = ±3) apart from

the leading quadrupole mode, (` = 2, m = ±2)]. We first construct

spin-weighted spherical harmonics modes of hybrid waveforms by

matching numerical-relativity simulations (with mass ratio 1 � 10)

describing the late inspiral, merger and ringdown of the binary with

post-Newtonian/effective-one-body waveforms describing the early

inspiral. The analytical waveform family is constructed in frequency

domain by modeling the Fourier transform of the hybrid waveforms

making use of analytical functions inspired by perturbative calcu-

lations. We also develop a method for accurately modeling the ef-

fect of “mode mixing”, which is exhibited by (` = 3, m = ±2) and
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(` = 4, m = ±3) modes. The resulting highly accurate, ready-to-

use waveforms are highly faithful (unfaithfulness ' 10�4 � 10�2) for

observation of GWs from non-spinning black hole binaries and are

extremely inexpensive to generate. We use this analytical waveform

family to formulate a consistency test between the different modes

(harmonics) of gravitational waves from BBHs. The black-hole “no-

hair” theorem in GR asserts that, gravitational radiation (quasi-normal

modes) from a perturbed Kerr black hole is uniquely determined by

its mass and spin. Thus, the spectrum of quasi-normal mode fre-

quencies have to be all consistent with the same value of the mass

and spin. Similarly, the gravitational radiation from a coalescing bi-

nary black hole system is uniquely determined by a small number of

parameters (masses and spins of the black holes and orbital parame-

ters). Thus, consistency between different spherical harmonic modes

of the radiation is a powerful test that the observed system is a binary

black hole predicted by GR. In chapter 3, we formulate such a test,

develop a Bayesian implementation, demonstrate its performance on

simulated data and investigate the possibility of performing such a

test using previous and upcoming gravitational wave observations.

Chapter 4 provides an introduction to the theory of gravitational

lensing (GL). GL of EM waves is a well known phenomenon, where

EM waves get deflected off their paths due to presence of a mas-

sive object (lens). The gravitational bending of light was among the

first observational tests of GR. GWs undergo GL in the same way.

When the mass scale of the lens is large as compared to the wave-

length, GL magnifies/de-magnifies the GW signals without affect-

ing their frequency profiles. Thus sources could be detected from

higher redshifts which were otherwise not detectable. GL also pro-

duces multiple images of a source (strong lensing), which reach the

GW detector at different times. Based on the rate of GW detections

by Advanced LIGO and Virgo, we expect these detectors to observe

hundreds of binary black hole mergers as they achieve their design

sensitivities (within a few years). A small fraction of them can un-
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dergo strong gravitational lensing by intervening galaxies, resulting

in multiple images of the same signal. In chapter 5, we develop a

Bayesian inference technique to identify pairs of strongly lensed im-

ages among hundreds of binary black hole events, and demonstrate

its performance using simulated GW observations. We also search

for signatures of strong gravitational lensing in the binary black hole

events detected by Advanced LIGO and Virgo during their first two

observational runs. We find no compelling evidence of strong lens-

ing signature in the observed gravitational wave signals. However, as

the sensitivities of gravitational wave detectors improve in the future,

detecting lensed events may become quite likely.



2 Inspiral-Merger-Ringdown Grav-

itational Waveforms for Non-

Spinning Black Hole Binaries

LIGO’s recent observations of gravitational waves (GWs) from coa-

lescing binary black hole systems [22, 13] mark the beginning of a

new branch of astronomy. Based on the observed rate of GW sig-

nals, a large number of merger events can be expected in upcoming

observing runs of Advanced LIGO and Virgo [24, 21], providing us

a unique opportunity to constrain the mass and spin distribution of

binary black holes, to infer their astrophysical formation channels

and to probe the true nature of extreme gravity.

The most sensitive GW detection pipelines use the technique of

matched filtering to detect GW signals from binary black holes [139,

107], which involves cross-correlating the data with theoretical tem-

plates of expected signals. Post detection, the physical and astro-

physical properties of the GW source are inferred by comparing the

data with theoretical signal templates, by means of Bayesian infer-

ence [146]. Tests of general relativity (GR) using GW observations

also involves comparing the data with GR templates, to investigate

the consistency of the observation with the prediction of GR [23].

Thus, accurate theoretical models of the expected signals are an es-

sential input for GW astronomy.
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Theoretical templates describing the gravitational waveforms from

the inspiral, merger and ringdown of binary black holes have been

computed in the recent years by combining perturbative calcula-

tions in GR with large-scale numerical relativity simulations [49, 50,

134, 46, 112, 111, 113, 64, 65, 66, 29, 27, 117, 81, 90, 84]. Most of

these waveform families aim to model only the leading (quadrupole;

` = 2, m = ±2) modes of the gravitational radiation. Indeed, care-

ful investigations suggested that the systematic errors introduced by

neglecting subdominant (non-quadrupole) modes in the parameter

estimation of the LIGO events are negligible [20]. Due to the near

“face-on” orientations of the binaries and moderate mass ratios, the

effect of subdominant modes was negligible in the observed signals

– the systematic errors introduced by neglecting the subdominant

modes were well within the statistical errors [20]. However, for bina-

ries with large mass ratios or high inclination angles or large signal-

to-noise ratios, the systematic errors can dominate the statistical er-

rors, biasing our inference of the physical and astrophysical proper-

ties of the source (see, e.g., [144, 52, 142]). In addition, including the

effect of subdominant modes can improve the precision with which

source parameters can be extracted, due to the increased information

content in the templates (see, e.g., [123, 140, 33, 138, 32, 80, 96, 110]),

potentially improving the accuracy of various observational tests of

GR [108, 93].

In this chapter we present an analytical waveform family describ-

ing GW signals from the inspiral, merger and ringdown of non-

spinning black-hole binaries. These waveforms are constructed by

combining perturbative calculations in GR with numerical-relativity

(NR) waveforms in the “phenomenological” approach presented in

a series of papers in the past [30, 29, 27, 117, 26, 81, 90, 84, 102].

This frequency domain, closed form waveform family has excellent

agreement (faithfulness > 0.996) with “target” waveforms including

subdominant modes, for binaries with mass ratio up to 10. Target

waveforms including subdominant modes (with `  4, m 6= 0) have
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been constructed by matching NR simulations describing the late

inspiral, merger and ringdown of the binary with post-Newtonian

(PN)/effective-one-body waveforms describing the early inspiral. Our

highly accurate, ready-to-use, analytical waveforms are both effec-

tual and faithful for observation of GWs from non-spinning black

hole binaries and are extremely inexpensive to generate.

The material presented in this chapter is based on the articles [94,

104].

2.1 The waveform model

As we discussed in Eq. 1.132 and Eq. 1.183, for a gravitational wave

travelling along the direction (i, j0) in the source frame, the polar-

izations h+(t) and h⇥(t) can be expanded in terms of the spin �2

weighted spherical harmonics as

h+(t) � ih⇥(t) =
•

Ầ
=2

`

Â
m=�`

Y�2
`m (i, j0) h`m(t). (2.1)

The spherical harmonic modes h`m(t) are purely functions of the in-

trinsic parameters of the system (such as the masses and spins of the

binary), while all the angular dependence is captured by the spher-

ical harmonic basis functions Y�2
`m (i, j0). Here, by convention, the

polar angle i is measured with respect to the orbital angular mo-

mentum of the binary. From the PN inspiral waveforms in Eq. 1.135

we can see that the leading contribution to h(t; i, j0) comes from

the quadrupolar (` = 2, m = ±2) modes. The relative contribu-

tions of various subdominant (nonquadrupole) modes, however, de-

pend on the symmetries of the system. For non-spinning binaries,

Eq. 1.135 suggests that the subdominant modes with the largest am-

plitudes are (` = 3, m = 3), (` = 4, m = 4), (` = 2, m = 1) and

(` = 3, m = 2). This observation seems to hold through the merger

regime (described by NR waveforms) as well. Thus, in this chap-

ter we focus on the modeling of these subdominant modes 1, apart 1 Including (` = 4, m = 3) mode. We
will explain a slightly later why we also
include this mode.from the dominant quadrupole modes. Note that, due to the sym-
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Simulation ID q Mworb e # orbits

Fitting

SXS:BBH:0198 1.20 0.015 2.0 ⇥ 10�4 20.7
SXS:BBH:0201 2.32 0.016 1.4 ⇥ 10�4 20.0
SXS:BBH:0200 3.27 0.017 4.1 ⇥ 10�4 20.1
SXS:BBH:0182 4.00 0.020 6.8 ⇥ 10�5 15.6
SXS:BBH:0297 6.50 0.021 5.9 ⇥ 10�5 19.7
SXS:BBH:0063 8.00 0.019 2.8 ⇥ 10�4 25.8
SXS:BBH:0301 9.00 0.023 5.7 ⇥ 10�5 18.9
SXS:BBH:0185 9.99 0.021 2.9 ⇥ 10�4 24.9

Verification

SXS:BBH:0066 1.00 0.012 6.4 ⇥ 10�5 28.1
SXS:BBH:0184 2.00 0.018 7.6 ⇥ 10�5 15.6
SXS:BBH:0183 3.00 0.019 6.3 ⇥ 10�5 15.6
SXS:BBH:0182 4.00 0.020 6.8 ⇥ 10�5 15.6
SXS:BBH:0187 5.04 0.019 5.0 ⇥ 10�5 19.2
SXS:BBH:0181 6.00 0.017 7.9 ⇥ 10�5 26.5
SXS:BBH:0298 7.00 0.021 4.0 ⇥ 10�4 19.7
SXS:BBH:0063 8.00 0.019 2.8 ⇥ 10�4 25.8
SXS:BBH:0301 9.00 0.023 5.7 ⇥ 10�5 18.9
SXS:BBH:0185 9.99 0.021 2.9 ⇥ 10�4 24.9

Table 2.1: Summary of the parameters
of the NR waveforms used in this chap-
ter: q ⌘ m1/m2 is the mass ratio of the
binary, Mworb is the orbital frequency
after the junk radiation and e is the
residual eccentricity. The waveforms
listed under the title Fitting are used
to produce the analytical fits described
in Section 2.2.1 while those listed un-
der the title Verification are used for as-
sessing the faithfulness of the analytical
model in Section 2.4.

metry of non-spinning binaries, where the orbital motion is fully

restricted to a fixed plane, the negative m modes are related to pos-

itive m modes by a complex conjugation. That is h`�m = (�1)` h⇤
`m

[91]. Also, the m = 0 modes are comprised of the nonlinear memory

in the waveform, which has only negligible effect in GW detection

and parameter estimation. It is also challenging to accurately extract

this non-oscillatory signal from NR simulations [73, 115]. Thus, only

m > 0 modes are considered in this chapter.

In this chapter, we construct an analytical waveform family in the

Fourier domain, that describes the the subdominant modes (`m =

33, 44, 21, 32, 43) apart from the dominant 22 mode of the GW polar-

izations from non-spinning black hole binaries. We will first discuss

the modeling of (`m = 22, 33, 44, 21) modes and then the remain-

ing (`m = 32, 43) modes. The reason is that the modes 32 and 43

have a more complicated behavior in their post-merger part of the

waveforms 2 due to an effect known as mode mixing. As a conse- 2 Unlike other modes which we model.

quence, they posses some unusual bumps in the post-merger part
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which make it difficult to model them accurately. Thus we take a

slightly different route for modeling of these two modes. As GW

observations are entering a regime of precision astronomy, such as

precision tests of general relativity (GR) [19, 77, 106, 67], modeling of

such subtle effects in the waveforms becomes important.

2.2 Construction of hybrid waveforms

We start by constructing the spherical harmonic modes of hybrid

waveforms by combining PN and NR waveforms in a region where

both calculations are believed to be accurate.

PN inspiral waveforms (e.g., see Eq. 1.135), scaled to unit total

mass and unit distance, can be written as

hPN
`m (t) = 2 h n

2
r

16p

5
H`m e�i m jorb(t), (2.2)

where h = m1m2/M2 is the symmetric mass ratio and M = m1 + m2

is the total mass of the binary, n = (Mworb)1/3 is the PN expansion

parameter, worb = djorb/dt is the orbital frequency and jorb is the

orbital phase. The PN mode amplitudes H`m are currently computed

up to 3PN 3 accuracy by [45, 91, 31, 43] while the 3.5PN orbital phase 3 The dominant, 22 mode inspiral
model that we use here is actually
3.5PN accurate [74].

jorb(t) can be computed in the adiabatic approximation using inputs

given in [44] and references therein.

In order to improve the accuracy of the inspiral waveforms, we

compute the phase evolution of the inspiral part from the 22 mode

of the effective-one-body (EOB) waveforms calibrated to NR simula-

tions (SEOBNRv4 [46]). Hence our inspiral waveforms are given by

hPN
`m (t) = 2hn

2
r

16p

5
H`m e�i mjEOB22(t)/2, (2.3)

where jEOB22 is the phase of the 22 mode of the SEOBNRv4 wave-

form. Note that, for m = 2 modes, H`m contains imaginary terms at

order 2.5PN and above, which can be absorbed into the phase. How-

ever, since this correction appears at order 5PN and above in the
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phase, we neglect these corrections and use |H`m| instead of H`m for

the m = 2 modes.

Hybrid waveforms containing all the relevant modes (`  4, 1 

m  `) are constructed by matching NR modes hNR
`m (t) with PN

modes hPN
`m (t) with the same intrinsic binary parameters. The PN

waveforms are matched with NR by a least square fit over two ro-

tations4 on the NR waveform and the time-difference between NR 4 These two rotations are necessary due
to the freedom in choosing the frame
with respect to which the NR and PN
waveforms are decomposed into spher-
ical harmonics modes. In general three
Euler rotations (i, j0, y) can be per-
formed between the two frames. How-
ever, one angle (i) is fixed by the choice
of aligning the z axis along the direc-
tion of the total angular momentum of
the binary [144, 53].

and PN waveforms over an appropriately chosen matching interval

(t1, t2), where the NR and PN calculations are believed to be accu-

rate.

mint0,j0,y

Z t2

t1
dt Ầ

,m

�

�

�

hNR
`m (t � t0) ei(mj0+y) � hPN

`m (t)
�

�

�

. (2.4)

The hybrid waveforms are constructed by combining the NR wave-

form with the “best matched” PN waveform in the following way:

hhyb
`m (t) ⌘ t(t) hNR

`m (t � t00) ei(mj

0
0+y

0) + [1 � t(t)] hPN
`m (t), (2.5)

where t00, j

0
0 and y

0 are the values of t0, j0 and y that minimizes

the difference d between PN and NR waveforms. Above, t(t) is a

weighting function defined by:

t(t) ⌘

8

>

>

>

>

<

>

>

>

>

:

0 if t < t1

t�t1
t2�t1

if t1  t < t2

1 if t2  t.

(2.6)

Our hybrid waveforms include spherical harmonic modes up to ` =

4 and m = �` to ` in this analysis, except the m = 0 modes. We

use a subset of these hybrid waveforms for constructing the analyt-

ical waveforms in the Fourier domain and to test the faithfulness of

the analytical waveforms. The NR waveforms that were used to con-

struct the hybrids are listed in Table 2.1. Note that, although the

analytical waveforms only model the 22, 33, 44, 21 modes, their faith-

fulness is established by computing their mismatches with hybrids
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Figure 2.1: Comparison between the
amplitude (top panels) and phase (bot-
tom panels) of the hybrids and analyt-
ical waveforms for selected mass ratios
q = 2.32 (left panels) and q = 9.99 (right
panels). In each plot, the solid lines cor-
respond to hybrid waveforms for differ-
ent modes and the dashed lines corre-
spond to the analytical waveforms for
the same mode. The legends show the
`m value for different modes. The black
dots show the transition frequency ( f A

`m
and f P

`m) from the inspiral-merger to the
ringdown part of the phenomenological
amplitude and phase models.

containing all the modes up to ` = 4, except the m = 0 modes.

2.2.1 Construction of the analytical waveform model

In this section, we construct an analytical model for the Fourier trans-

form h`m( f ) of the real part of h`m(t) for the 22, 33, 44, 21 modes. Due

to the symmetry of the non-spinning binaries, the Fourier transform

of the imaginary part of h`m(t) can be computed by adding a phase

shift of p/2 to h`m( f ) (see Appendix A.3). Writing this in terms of a

Fourier domain amplitude and phase

h`m( f ) = A`m( f ) ei Y`m( f ), (2.7)
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our phenomenological model for the amplitude of each mode is the

following:

A`m( f ) =

8

>

>

>

>

<

>

>

>

>

:

AIM
`m( f ); f < f A

`m

ARD
`m ( f ); f � f A

`m.

(2.8)

The Fourier frequencies below the matching frequency f A
`m roughly

correspond to the inspiral-merger stages of the signal, while the fre-

quencies above f A
`m roughly corresponds to the ringdown stage. The

amplitude model for the inspiral-merger part is given by

AIM
`m( f ) = APN

`m ( f )

 

1 +
k=1

Â
k=0

⇣

ak, `m + a

L
k, `m ln v f

⌘

vk+8
f

!

, (2.9)

where v f = (2pM f /m)1/3 and APN
`m ( f ) is the Padé resummed ver-

sion of the 3.5PN (3PN) amplitude of 22 (33, 44, 21) mode in the

Fourier domain (see Appendix A.1). The Padé resummed version of

the PN amplitude was employed to provide a better agreement with

the late inspiral part of the hybrid amplitude. The inspiral-merger

amplitude is modeled as the product of a Padè resummed PN am-

plitude and another function that mimics a PN-like expansion. Such

a form allows the resulting function to include very higher order

terms, thus providing better fits to the late inspiral and merger part

of the hybrid amplitude 5. Above, ak, `m, a

L
k, `m and f A

`m are phe- 5 This idea is similar in spirit to the “fac-
torized resummed amplitude” for ef-
fective one body waveforms proposed
by [65].

nomenological parameters whose values are determined from fits

with numerical Fourier transforms of the hybrid waveforms.

The ringdown amplitude is modeled from the Fourier transform

of a damped sinusoid, which is exponentially damped to mimic the

high-frequency fall of the NR waveforms in the Fourier domain. That

is,

ARD
`m ( f ) = w`m e�l`m f |B`m( f )| , (2.10)

where B`m( f ) is the Fourier transform of the `, m, n = 0 quasi-normal

mode of a Kerr black hole with mass Mf and dimensionless spin
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a f [39], determined from initial masses:

B`m( f ) =
s`m � i f

f 2
`m + (s`m � i f )2 . (2.11)

The frequencies f`m and s`m are the real and imaginary parts of the

`, m, n = 0 quasi-normal mode frequency W`m0 = 2p ( f`m + i s`m).

The phenomenological parameters l`m in Eq.(2.10) are determined

from fits with numerical Fourier transforms of the hybrid wave-

forms, while w`m is a normalization constant to make the ampli-

tudes continuous at the merger-ringdown matching frequency f A
`m.

The mass Mf and spin a f of the final black hole are computed from

the masses m1 and m2 of the initial black holes, using fitting formu-

lae calibrated to NR simulations. For this work, we use the fitting

formulae given by [111].

Our analytical model for the phase of the Fourier domain wave-

form reads

Y`m( f ) =

8

>

>

>

>

<

>

>

>

>

:

YIM
`m( f ) ; f < f P

`m

YRD
`m ( f ) ; f � f P

`m

where the phase model for the inspiral-merger part of each mode

takes the following form:

YIM
`m( f ) = YPN

`m ( f ) +
k=4

Â
k=0

(bk, `m + b

L
k, `m ln v f + b

L2
k, `m ln2 v f ) vk+8

f ,

(2.12)

where YPN
`m ( f ) is the PN phasing of the `m mode, while the higher or-

der phenomenological coefficients bk, `m, b

L
k, `m, b

L2
k, `m are determined

from fits against the phase of hybrid waveforms. This particular

phenomenological ansatz is motivated from the PN expansion of the

frequency domain GW phasing of the inspiral waveforms in the test

particle limit (see, e.g., [143]).

For the ringdown part of the phase we simply attach the phase of

Fourier transform B`m( f ) of the `, m, n = 0 quasi-normal mode at a
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Figure 2.2: The estimated values of the
phenomenological parameters describ-
ing the analytical waveforms, plotted
against the symmetric mass ratio h. Dif-
ferent markers correspond to different
modes. Also plotted are the fits given
by Eqs. (2.28).

transition frequency f P
`m. Thus, our ringdown phase model reads

YRD
`m ( f ) = 2p f tP

`m + f

P
`m + arctan B`m( f ), (2.13)

where tP
`m and f

P
`m are computed by matching two phases (YIM

`m and

YRD
`m ) and their first derivative at the matching frequency f P

`m. Fig-
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ure 2.1 provides a comparison of the amplitude and phase of the

numerical Fourier transform of the hybrid waveforms, along with

the analytical fits given by Eqs. (2.8) and (2.12).

Finally, the phenomenological parameters describing the analyt-

ical model are represented as quadratic functions of the symmetric

mass ratio h

ai, `m = ai, `m + bi, `m h + ci, `m h

2 ,

a

L
i, `m = aL

i, `m + bL
i, `m h + cL

i, `m h

2 ,

bk, `m = ak, `m + bk, `m h + ck, `m h

2 ,

b

L
k, `m = aL

k, `m + bL
k, `m h + cL

k, `m h

2 ,

b

L2
j, `m = aL2

j, `m + bL2
j, `m h + cL2

j, `m h

2 ,

l`m = (a˘
`m + b˘

`m h + c˘
`m h

2) ,

f A
`m = (aA

`m + bA
`m h + cA

`m h

2) /M,

f P
`m = (aP

`m + bP
`m h + cP

`m h

2) /M . (2.14)

where the index i runs from 0 to 1, k runs from 0 to 4 and j is 0 except

for 21 mode (j=0,1). Figure 2.2 shows the values of the phenomeno-

logical parameters estimated from the hybrid waveforms, as well as

the fits described by Eq. (2.28).

2.3 Modeling of 32 and 43 modes

Figure 2.3 shows the amplitude (solid lines in left panel) and in-

stantaneous frequency (solid lines in right panel) of the second time

derivative of different spherical harmonic modes of the hybrid wave-

forms with mass ratio q = 4 6. We can see that the 32 and 43 modes

6 We consider the second time deriva-
tive of h (i.e., the Weyl scalar y4) here
instead of h itself in order to give a
cleaner illustration. If we make the
same plot using h , we find additional
oscillations, even in modes that are not
expected to have significant mode mix-
ing. These oscillations appear to be due
primarily to additional constant and
linear terms in h that are removed by
taking the time derivatives. Taking a
single time derivative of h (i.e., con-
sidering the Bondi news) removes most
of the oscillations, but taking a sec-
ond time derivative removes some re-
maining oscillations. Since we are con-
cerned with removing the mode mix-
ing in the frequency domain, where the
time derivatives correspond to a multi-
plicative factor, there is nothing lost in
illustrating the mode mixing removal in
the time domain using y4.

have some bumps in the post-merger regime (t > 0). The unusual

behavior of these modes is attributed to what is known as mode-

mixing, where multiple spheroidal harmonic modes are getting mixed

in one spherical harmonic mode. The prime cause of the mode mix-

ing is the mismatch between the angular basis that is used in NR

simulations to extract waveforms (spherical harmonics) and the one
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Figure 2.3: Left panel: Amplitude of
the second time derivative of differ-
ent spherical harmonic modes Yḧ`m(t)
(solid lines) from a nonspinning bi-
nary with mass ratio q = 4. Time
t = 0 corresponds to the peak am-
plitude of 22 mode. Note the oscil-
lations in the 32 and 43 modes for
t > 0, due to the mixing of multi-
ple spheroidal harmonic modes. The
dashed lines show the amplitude of the
second time derivative of the spheroidal
harmonic modes Sḧ`m0(t) for `m 2
{32, 43} constructed using the prescrip-
tion presented in Sec. 2.3.1, which are
better behaved in the ringdown regime
(t > 0). Right panel: The instanta-
neous frequency ḟ`m(t) of the second
time derivatives of the spherical (solid
lines) and spheroidal (dashed lines)
modes. The horizontal lines show the
quasi-normal-mode frequencies of dif-
ferent modes. Note that the 32 and 43
spherical harmonic modes’ frequencies
(solid lines) do not approach the corre-
sponding quasi-normal-mode frequen-
cies, while the spheroidal harmonic
modes’ frequencies (dashed lines) do.

that is used to separate the Teukolsky equations in Kerr black hole

perturbation theory (spheroidal harmonics) [89].

The mixing of multiple spheroidal harmonic modes creates mul-

tiple frequencies in the ringdown waveform that makes it hard to

model them using simple analytical functions. Figure 2.4 shows an

example of the Fourier domain amplitude |Yh̃R
`m( f )| of different hy-

brid modes — note the non-monotonic behavior seen in the higher

frequencies of the 32 and 43 modes. Our approach is thus to sub-

tract the effect of mode mixing from these modes which allows us

to model these “unmixed” modes using methods that we used for

22, 33, 44, 21 modes in previous section, and then reintroduce the ef-

fects of mode mixing to obtain the final model.

2.3.1 Removal of mode mixing from the 32 and 43 modes

The binary merger produces a perturbed black hole which settles

into a stationary Kerr black hole. Teukolsky’s solution for GWs from

a perturbed Kerr black hole has a natural decomposition in spin

�2 weighted spheroidal harmonics, S`mn ⌘ S`m(a f w`mn) associated

with quasinormal mode (QNM) frequencies w`mn, where Mf a f is

the spin angular momentum of the final black hole (of mass Mf ).

See, e.g., [38] for information about the properties of these functions.
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Thus, GW polarizations from the ringdown can be written as

h(t; i, j0) = Â
`0�2

Â
|m|`0

Â
n�0

S`0mn(i, j0)
Sh`0mn(t). (2.15)

Here the overtone index n measures the magnitude of the imagi-

nary part of the quasinormal mode frequencies w`mn. Note that the

spheroidal harmonic basis functions S`0mn can be expressed in terms

of (spin �2 weighted) spherical harmonics Y`m as

S`0mn = Â
`�|m|

µ

⇤
m``0nY`m, (2.16)

where µm``0n are mixing coefficients which can be computed sim-

ply using the fits provided by Berti and Klein [37] (there are more

complicated fits given in [100]) and the star denotes the complex

conjugate 7 . By inserting this expansion in Eq. (2.15), we have 7 We actually substitute µm``0n !
(�1)`+`0

µm``0n, where the prefactor cor-
rects for the difference in the sign
convention for spin-weighted spherical
harmonics that we use—the same con-
vention as [28], which is also the one
used in the SpEC code [1]—and the one
used by Berti and Klein. There is an ad-
ditional factor of (�1)m that we neglect,
as it is fixed for each mode we consider
(including its mixed modes).

h(t; i, j0) = Â
`0�2

Â
|m|`0

Â
n�0

Â
`�|m|

µ

⇤
m``0nY`m(i, j) Sh`0mn(t). (2.17)

Comparing this with Eq. 1.132, we get

Yh`m(t) = Â
`0�|m|

Â
n�0

Sh`0mn(t) µ

⇤
m``0n. (2.18)

Thus, spherical harmonic modes of the hybrid waveforms can be

written in terms of the spheroidal harmonic modes. From inspection

of the different spherical harmonic modes of the NR data, we get an

understanding of the relative amplitudes of these modes (see, e.g.,

Fig. 1 in both [111] and [59]). We thus make the following approxi-

mations when removing the mode mixing:

• The amplitudes of the higher spheroidal overtones are negligible

because their damping times are factors of & 3 smaller than those

of the leading overtone n = 0. Hence we will only consider mixing

from the leading overtone.

• For ` = m spherical modes, the mixing contribution from any

mode except the ``0 spheroidal mode is negligible.
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Figure 2.4: Fourier domain amplitude
|h̃R

`m( f )| of the spherical (solid) and
spheroidal (dashed) harmonic modes
from a nonspinning binary with mass
ratio q = 4. The vertical line with the
corresponding color represents f QNM

`m .

• For a general `m spherical mode, contribution from spheroidal

modes with `0 > ` is negligible, since the higher mode amplitudes

are much smaller than the `m0 spheroidal mode, and they are also

multiplied by the mixing coefficient which is already small.

As a result of these approximations, a particular `m spherical mode

will have contribution from spheroidal modes `0m0 with `0  ` (and

the obvious restriction of `0 � |m|). We thus have

Yh`m(t) ' Â
`0`

Sh`0m0(t) µ

⇤
m``00. (2.19)

To determine the spheroidal modes Sh`0m0(t) from the spherical modes

Yh`m(t), we observe that it is a perfectly determined system of cou-

pled equations when we consider different `m spherical modes. To

be specific, we compute the following spheroidal modes: 8

8 The same procedure also works for
modes with m  ` � 2 that have three
or more spheroidal modes mixed into
the spherical mode in our approxima-
tion, e.g., the 42 mode studied in [137].
However, this mode has a small enough
amplitude that we do not include it in
the present study.
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scaled appropriately to avoid overlap
with the 32 mode.

Sh320(t) '
Yh32(t) � Yh22(t)µ

⇤
2320/µ

⇤
2220

µ

⇤
2330

, (2.20a)

Sh430(t) '
Yh43(t) � Yh33(t)µ

⇤
3430/µ

⇤
3330

µ

⇤
3440

. (2.20b)

These spheroidal harmonic modes for a binary with q = 4 are shown

as dashed lines in Fig. 2.3 (as discussed there, we plot the second

time derivatives to give a cleaner illustration). It can be seen that the

amplitude oscillations seen in the spherical modes (solid lines) are

largely absent in the spheroidal modes (dashed lines). In addition,

the instantaneous frequency (right panel) of the spheroidal modes

approaches the corresponding quasi-normal-mode frequency.

We can also convert Eqs. (2.20) into the frequency domain, so that

we can remove the mode mixing from the frequency domain wave-

forms. Here we want to compute the Fourier transforms of the real

and imaginary parts separately, since in this nonprecessing case we

can focus on just modeling the real part, and the imaginary part can

be obtained from the real part by a phase shift of p/2. However, we
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give the expression for the imaginary part as well, for completeness.

A straightforward calculation, i.e., taking the real and imaginary

parts of Eq. (2.20a) and expressing them in the frequency domain,

gives us the following form for the 32 mode:

Sh̃R
320( f ) ' (a1µ

R
2330 � a2µ

I
2330)/|µ2330|2,

Sh̃ I
320( f ) ' (a2µ

R
2330 + a1µ

I
2330)/|µ2330|2,

(2.21)

where

a1 := Yh̃R
32( f ) �

✓

Yh̃R
22( f )r

R
2320 + Yh̃ I

22( f )r

I
2320

◆

,

a2 := Yh̃ I
32( f ) +

✓

Yh̃R
22( f )r

I
2320 � Yh̃ I

22( f )r

R
2320

◆

.
(2.22)

Here r2320 := µ2320/µ2220 and Yh̃R
`m( f ), Yh̃ I

`m( f ) are the Fourier trans-

forms of the real and imaginary parts of Yh`m(t), respectively. The

expressions for the 43 mode are analogous.

The amplitude |Yh̃R
`m( f )| in the Fourier domain is shown for the

32 and 43 modes in Fig. 2.5 (lighter shades). There are clearly two

features in the 32 mode at close to the QNM frequencies of the 320

and 220 modes and similarly for the 43 mode. Now the “unmixed”

modes are constructed as follows:

AU
`m( f ) :=

8

>

<

>

:

|Yh̃R
`m( f )|, f < f mix

`m ,

wU
`m|Sh̃R

`m0( f )|, f � f mix
`m ,

(2.23a)

YU
`m( f ) :=

8

>

<

>

:

arg(Yh̃R
`m( f )), f < f mix

`m ,

f

U
`m + arg(Sh̃R

`m0( f )), f � f mix
`m ,

(2.23b)

where AU
`m( f ) and YU

`m( f ) represent the amplitude and phase of the

unmixed modes respectively, while f mix
`m is a transition frequency.

The parameters wU
`m and f

U
`m are determined by demanding the con-

tinuity of the amplitude and phase at f mix
`m , respectively.

To determine f mix
`m , we note that the bump in the amplitude of

a certain `m spherical harmonic mode due to the mixing of the

(` � 1)m mode always appears at frequencies slightly below the `m
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Figure 2.6: Comparison between the
amplitude (left panel) and phase (right
panel) of the unmixed modes for the
hybrid and analytical model waveforms
for mass ratio q = 4. In each plot, the
solid lines correspond to the unmixed
modes and the dashed lines correspond
to the analytical model waveforms for
the same mode. The black triangles
represent the transition frequency from
inspiral-merger to ringdown as defined
in Eqs. (2.8) and (2.12), i.e., f A

`m and
f P
`m. The amplitude and phase of the 22

mode have been scaled appropriately to
make them fit inside the figure.

mode’s dominant QNM frequency f QNM
`m . When f mix

`m is allowed to

be a free parameter, it becomes degenerate with the model parame-

ters [Eq. (2.28)] and thus makes the model fail, i.e., the parameters

appearing in Eq. (2.28) do not have a simple dependence on h. We

find that fixing f mix
`m = 0.9 f QNM

`m gives good agreement of the model

parameters with quadratic functions of h. In Fig. 2.5, we also plot

the unmixed modes (dashed lines). The bumps in the amplitudes of

the spherical harmonic modes due to mode mixing are significantly

suppressed in the unmixed modes.

2.3.2 Construction of the analytical waveform model

To construct models for the amplitude AU
`m( f ) and phase YU

`m( f ),

`m 2 {32, 43}, we follow exactly the same procedure as in sec-

tion 2.2.1. Here again, the imaginary part of the unmixed mode

(in the time domain) is related to the real part by a phase shift of

p/2, due to the symmetry of nonprecessing binaries. Hence, we

only model the Fourier transform of the real part. The amplitude
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Figure 2.7: The estimated values of the
phenomenological parameters describ-
ing the analytical model waveforms,
plotted against the symmetric mass ra-
tio h.

model is thus

AU, mod
`m ( f ) =

8

>

<

>

:

AIM
`m( f ), f < f A

`m,

ARD
`m ( f ), f � f A

`m,
(2.24)
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where f A
`m denotes the transition frequency from the inspiral-merger

part of the waveform to the ringdown in the amplitude. The inspiral-

merger part is modelled as

AIM
`m( f ) = APN

`m ( f )

"

1 +
k=1

Â
k=0

⇣

ak, `m + a

L
k, `m ln v f

⌘

vk+8
f

#

, (2.25)

where v f = (2pM f /m)1/3 and APN
`m ( f ) is the Padé resummed ver-

sion of the Fourier domain 3PN amplitude of the 32 and 43 modes.

The Fourier domain amplitude is obtained using the stationary phase

approximation as in [141], starting from the time-domain PN results

in [45]. We use P0
4 and P0

3 Padé approximants for the 32 and 43

modes, respectively, similar to our treatment of the other modes

in [104]. The modeling of ARD
`m ( f ) exactly follows Eq. 2.10.

Similarly, for the phase model we have

YU, mod
`m ( f ) =

8

>

<

>

:

YIM
`m( f ), f < f P

`m,

YRD
`m ( f ), f � f P

`m,
(2.26)

YIM
`m( f ) = YPN

`m ( f ) +
k=3

Â
k=0

(bk, `m + b

L
k, `m ln v f + b

L2
k, `m ln2 v f ) vk+8

f ,

(2.27)

where YPN
`m ( f ) is the PN phasing of the `m mode and f P

`m denotes the

transition frequency from the inspiral-merger part of the waveform

to the ringdown in the phase. The ringdown part of the phase is

modelled as in Eq. 2.13.

As before, the phenomenological parameters appearing in the an-

alytical models (for the 32 and 43 modes) are represented as quadratic
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tude of the mixed modes for a mass
ratio q = 4, showing the hybrid (solid
lines) and analytical model (dashed
lines).

functions of the symmetric mass ratio h:

ai, `m = aa

i, `m + ba

i, `m h + ca

i, `m h

2 ,

a

L
i, `m = aa,L

i, `m + ba,L
i, `m h + ca,L

i, `m h

2 ,

bk, `m = ab

k, `m + bb

k, `m h + cb

k, `m h

2 ,

b

L
k, `m = ab,L

k, `m + bb,L
k, `m h + cb,L

k, `m h

2 ,

b

L2
0, `m = ab,L2

0, `m + bb,L2
0, `m h + cb,L2

0, `m h

2 ,

l`m = a˘
`m + b˘

`m h + c˘
`m h

2 ,

f X
`m = (aX

`m + bX
`m h + cX

`m h

2) /M,

(2.28)

where the index i runs from 0 to 1 and k runs from 0 to 3, while

X 2 {A, P}. We also refit the phase of the 22 mode using the smaller

number of coefficients given in (2.12); the fit in [104] has the same

form, except that the sum extends up to k = 4 instead of k = 3. We

use this refit since it improves the 22 mode’s overlap with high mass

ratio hybrid waveforms. Figure 2.6 provides a comparison of the

amplitudes and phases of the unmixed modes in the Fourier domain

with the analytical fits given by Eqs. (2.8) and (2.12). Figure 2.7 shows
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the values of the phenomenological parameters estimated from the

hybrid waveforms, as well as the fits given in Eq. (2.28).9 9 We find that quadratic polynomials in
h provide sufficiently accurate fits in
terms of mismatches. Hence we do not
consider higher order fits, even though
there appears to be some substructure
that would require a higher-order poly-
nomial to fit (Fig. 2.7). It is possible that
some of the structure seen in the 32 and
43 modes’ coefficients for h close to 0.25
is related to the fact that the mode mix-
ing removal does not work as well for
q < 3, as discussed below.

2.3.3 Adding the mode mixing contribution into unmixed modes

Having constructed analytical models for the amplitude and phase of

unmixed modes, we need to add the mode mixing contribution back

into this model in order to get the analytical model for the amplitude

and phase of the spherical harmonic modes Yh̃R
`m( f ). This is done as

follows: We denote the (Fourier domain) model waveform by

Yh̃mod
`m ( f ) := AU, mod

`m ( f ) ei YU, mod
`m ( f ), (2.29)

where AU, mod
`m ( f ) and YU, mod

`m ( f ) are given by Eqs. (2.8) and (2.12).

We then write

Mh̃R, mod
32 ( f ) = Yh̃R, mod

22 ( f )r

R
2320 � Yh̃ I, mod

22 ( f )r

I
2320

+ Uh̃R, mod
320 ( f )µ

R
2330 � Uh̃ I, mod

320 ( f )µ

I
2330,

(2.30)

where

Uh̃mod
320 ( f ) := #32

Yh̃mod
`m ( f ) ei d32p . (2.31)

The expressions for the 43 mode are analogous.

Here we have introduced two free parameters, #`m and d`m, cor-

responding to the amplitude ratio and phase difference at f mix
`m . We

fit these parameters by minimizing the mismatch of Mh̃R
32( f ) with

the corresponding hybrid mode. They are represented as cubic func-

tions of the symmetric mass ratio; we find similar functional behavior

when we compute the amplitude ratio and phase difference between

mixed (spherical) and spheroidal modes [Eq. (2.21)] at f mix
`m . Specifi-

cally,

#`m = a#

`m + b#

`m h + c#

`m h

2 + d#

`m h

3,

d`m = ad

`m + bd

`m h + cd

`m h

2 + dd

`m h

3,

(2.32)
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Figure 2.9: Comparison between hy-
brid waveforms and our analytical phe-
nomenological waveforms for a binary
with mass ratio q = 10. Hybrid
waveforms are constructed using all the
modes with `  4, except the m = 0
modes. Phenomenological waveforms
are constructed by taking the (discrete)
inverse Fourier transform of the analyt-
ical model waveforms in the Fourier do-
main. The top panel corresponds to a
“face-on” binary (inclination angle i =
0) while the bottom panel corresponds
to an “edge-on” binary (i = p/2). The
two phenomenological waveforms cor-
respond to the current model with and
without the 32 and 43 modes.

where `m 2 {32, 43}. The fits for parameters #`m and d`m are shown

in the Fig. 2.7.

The amplitude and phase of the complete model for Yh̃R
`m( f ) for

the mixed modes (32 and 43) are finally constructed as follows:

A`m( f ) =

8

>

<

>

:

|Yh̃R, mod
`m ( f )|, f < f mix

`m ,

wM
`m|Mh̃R, mod

`m ( f )|, f � f mix
`m ,

(2.33a)

Y`m( f ) =

8

>

<

>

:

arg(Yh̃R, mod
`m ( f )), f < f mix

`m ,

f

M
`m + arg(Mh̃R, mod

`m ( f )), f � f mix
`m .

(2.33b)

The parameters wM
`m and f

M
`m ensure the continuity of amplitude and

phase at f mix
`m , respectively. We compare the results of the final model

for the spherical harmonics with the hybrids in Fig. 2.8.

So far, we have used q = 4 for all our illustrations. We chose

this mass ratio to give a clean illustration in a case where the higher

modes are relatively prominent and the mode mixing is still fairly

large. (The mode mixing decreases as the mass ratio increases for

nonspinning binary black holes, as the final spin decreases with in-

creasing mass ratio.) We find that the mode mixing removal is less
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Figure 2.10: The unfaithfulness (mis-
match) of the analytical model wave-
form family towards hybrid waveforms
for inclination angle i = p/2. The an-
alytical model waveform family in the
top panel contains only the 22, 33, 44,
and 21 modes while in the bottom panel
the mixed modes we model here are
also included, i.e., also the 32 and 43
modes. The horizontal axes report the
total mass of the binary and different
curves correspond to different mass ra-
tios q (shown in the legend). Horizon-
tal black dashed lines correspond to a
mismatch of 1%. The overlaps are com-
puted assuming the design power spec-
trum of Advanced LIGO (in the “high-
power, zero-detuning” configuration),
assuming a low-frequency cutoff of 20

Hz. We do not consider a smaller low-
frequency cutoff or smaller total masses
due to computational difficulties with
constructing hybrid waveforms starting
from lower dimensionless frequencies.

effective for smaller mass ratios, for reasons that we do not under-

stand. Nevertheless, we still find that our model provides an accurate

representation of the waveforms in these cases, as is shown by the

match calculations below. We give illustrations of the mode mixing

removal and the accuracy of the model for q = 2.32 in Appendix A.5.

2.4 Assessing the accuracy of the analytical model

We now assess the accuracy of our model by computing mismatches

with a set of 10 hybrid waveforms used to validate the model (which

only share 4 waveforms—primarily high mass-ratio ones—with the

set of 8 waveforms that are used to construct the model; see table 2.1).

The overlaps are computed assuming the design power spectrum

of Advanced LIGO (in the “high-power, zero-detuning” configura-

tion [4]), 10 assuming a low-frequency cutoff of 20 Hz, for a range of

10 This noise curve has recently been up-
dated slightly with newer predictions
for the thermal noise [5]. We use the
older version.

total masses.
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Figure 2.9 shows the comparison of our waveform model in the

time domain against the hybrid waveforms for two cases, firstly

when the model waveforms contain only four modes, i.e., 22, 33, 44,

and 21, and secondly when it also includes the 32 and 43 modes in

addition to the four modes mentioned before. The hybrid waveforms

contain all modes with `  4, except for the m = 0 modes, which are

small and not well-resolved in the NR simulations. We see that the

inclusion of the two additional modes improves the agreement be-

tween the hybrid and phenomenological waveforms. Additionally,

comparing with Fig. 3 in [104], we see the improvement in the face-

on case due to the refit of the 22 mode, as well as the inclusion of the

32 mode; the 43 mode does not contribute for a face-on binary.

While Fig. 2.9 only shows qualitative agreement between the phe-

nomenological and hybrid waveforms, Fig. 2.10 shows the mismatch

plots. The top panel plots show the mismatch (unfaithfulness) be-

tween the hybrid waveforms and the case where the model wave-

forms contain only four modes for various inclination angles. The

bottom panel plots show the mismatch after including the 32 and

43 modes in the model waveforms for the same inclination angles.

We see that for high mass ratio waveforms, the maximum mismatch

reduces from 1% to 0.2% for the highest inclination angle i = p/2.

However, mismatches are even lower (⇠ 0.05%) for other inclination

angles. The lower mass ratio cases are almost unaffected, though

they show a little improvement. This is expected, because the contri-

bution of higher modes is significant for high mass ratio and inclina-

tion angles.

We also show the improvement in the accuracy of the model for

the 22 mode alone for higher mass ratios in Fig. 2.11. This comes

from a refit of this mode’s phase. Unfortunately, this improvement

for higher mass ratios comes at the cost of a somewhat larger mis-

match for mass ratios of 1 and 2. Future work will consider im-

provements to the structure of the model to improve the mismatch

for small mass ratios.
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Figure 2.11: The unfaithfulness (mis-
match) of the analytical model wave-
form 22 mode against the hybrid 22
mode. The left plot shows the mis-
match for the previous phenomenolog-
ical 22 mode and right plot shows the
mismatch for the current phenomeno-
logical 22 mode which has been remod-
eled. The horizontal axes report the
total mass of the binary and different
curves correspond to different mass ra-
tios q (shown in the legend). We can see
a significant improvement in the mis-
match for high mass ratio waveforms in
the right-hand plot.

2.5 Summary and Conclusions

In this chapter, we presented an analytical family of frequency-domain

waveforms describing the GW signals from non-spinning black-hole

binaries, including some of the leading subdominant modes of the

radiation (`m = 21, 33, 44, 32, 43), apart from the dominant (`m = 22)

mode. The construction of these analytical waveforms involves two

major steps: 1) the construction of a set of hybrid waveforms by

combining the spherical harmonic modes of PN and NR waveforms

corresponding to a limited set of mass ratios 1  q  10, 2) rep-

resenting the numerical Fourier transform of the hybrid waveforms

by a suitable set of analytical functions which allow us to interpo-

late these waveforms smoothly over the parameter space. In partic-

ular, the modes 32 and 43 exhibit the effects of mode-mixing, i.e.,

having multiple spheroidal harmonic ringdown modes mixed into a

single spherical harmonic mode. This leads to bumps in the ring-

down part of the waveform. We have introduced a simple way of ap-

proximately extracting the unmixed (spheroidal harmonic) modes.

We then model these unmixed modes using the method used for

the other modes in [104]. We then reinstate the mode mixing using
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the models for the unmixed modes to obtain the final model for the

spherical harmonic modes. We also refit our model for the dominant

22 mode to improve its accuracy for large mass ratios. The analytical

gravitational waveforms that are constructed in this way are highly

faithful (mismatch < 0.04%) to our target hybrid waveforms that in-

clude all the modes up to ` = 4 (except the m = 0 modes).

The Fourier domain amplitude of our phenomenological wave-

forms contain a inspiral-merger part that is smoothly matched to the

ringdown part. The inspiral-merger amplitude is modeled as the

product of a Padè resummed version of the Fourier domain PN am-

plitude and another function that mimics a PN-like expansion whose

coefficients are determined by fitting against the Fourier-domain am-

plitude of the hybrid waveforms. The ringdown part is modeled as

the Fourier transform of a time-symmetric damped sinusoid, which

is exponentially damped to mimic the high-frequency fall of the NR

waveforms in Fourier domain. Similarly, the Fourier domain phase

is modeled as a PN-like series including the known coefficients from

PN theory till 3.5PN order, while the higher order “pseudo-PN”

terms are determined by fitting against the hybrid waveforms. The

resulting waveforms are also computationally inexpensive to gener-

ate, allowing their direct implementation in GW searches and param-

eter estimation. As GW observations are becoming precision probes

of physics and astrophysics, accuracy requirements on GW templates

can only grow.



3 A “No-Hair” Test for Binary

Black Holes

One of the remarkable predictions of general relativity (GR) is that a

stationary black hole can be fully described by a small number of pa-

rameters — its mass, spin angular momentum and electric charge [85,

86, 54]. As a consequence of this “no-hair” theorem, frequencies of

the gravitational radiation (quasi-normal modes [147, 116, 55]) from a

perturbed black hole is fully determined by these parameters. Astro-

physical black holes are not expected to possess significant electric

charge; hence, different quasi-normal modes have to be consistent

with the same value of the mass and spin. Thus, the consistency be-

tween multiple quasi-normal modes provides a test of the “no-hair”

theorem for stationary, isolated black holes [70]. Similarly, the dy-

namics and gravitational radiation from a binary black hole (BBH)

system are uniquely determined by a small number of parameters

(masses and spins of the black holes and orbital parameters), and

hence different spherical harmonic modes of the radiation have to be

consistent with the same values of this small set of parameters. Thus,

the consistency between different modes of the observed signal is a

powerful test that the radiation emanated from a BBH. Inconsistency

between different modes would point to either a departure from GR,

or the non-black hole nature of the compact objects.

Coalescence of binaries composed of chargeless black holes would

produce a perturbed Kerr black hole as the remnant, and the late

time gravitational-wave (GW) signal is described by a spectrum of
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quasi-normal modes (see, e.g. [51]). While the relatively simple struc-

ture of quasi-normal modes has been known from black-hole pertur-

bation theory for a long time (see, e.g., [39] for a review), the radia-

tion from the full inspiral, merger and ringdown have a much more

complex structure. Fortunately, recent numerical-relativity simula-

tions, together with high-order analytical calculations, have enabled

us to accurately model several subdominant multipoles of the radi-

ation [111, 101, 104]. This allows us to formulate a powerful test of

the consistency of the GW signal with a BBH waveform in GR, based

on the consistency of different multipoles of the radiation. While the

relatively low signal-to-noise ratios (SNRs) of the ringdown signals

makes the measurement of multiple quasi-normal modes extremely

difficult using the current generation of GW detectors [40], we show

that the test proposed in this chapter can be performed using GW

detections expected in the next few years, because it makes use of

the full inspiral-merger-ringdown signal.

The material presented in this chapter is based on the article [67].

3.1 Method

In practice it is difficult to extract different multipoles of the radiation

from the GW observation of a single BBH system — all we measure

is a particular linear combination of the modes. Thus, our strategy,

developed below, is to introduce extra parameters that describe in-

consistency between different modes and to constrain them using a

Bayesian framework. This is similar in spirit to the tests of the “no-

hair” theorem using quasi-normal modes, developed in [79, 105].

As discussed in Eq. 1.132, the two polarizations h+(t) and h⇥(t)

of gravitational radiation in GR can be written as,

h(t; n, l) =
1

dL

•

Ầ
=2

`

Â
m=�`

Y�2
`m (n) h`m(t; l), (3.1)

where h(t) := h+(t) � i h⇥(t) and Y�2
`m are the basis functions of spin

�2 spherical harmonics, n := {i, j0} define the direction of radia-



93

Figure 3.1: The thick (thin) contours
show the 50% (90%) credible regions
in the joint posteriors of two param-
eters DMc and Dq (difference in the
chirp mass Mc and mass ratio q es-
timated from the quadrupole vs non-
quadrupole modes) from a simulated
BBH signal. Black histograms on the
side panels show the marginalized pos-
teriors in DMc and Dq, while the cyan
histograms show the 1-dimensional
posteriors in DMc and Dq estimated
from the data by introducing only one
variation (say, DMc) at a time, keep-
ing the other fixed (say, Dq = 0). It
can be seen that the posteriors are fully
consistent with the GR prediction of
DMc = Dq = 0 (shown by a “+” sign
in the center panel and by thin black
lines in side panels). In the side panels,
the dotted lines mark the 90% credible
regions. The simulated GR signal corre-
sponds to a BBH system with total mass
M = 80M�, mass ratio q = 1/9 and
inclination angle i = 60� observed by a
single Advanced LIGO detector with an
optimal SNR of 25.

tion in the source frame, dL is the luminosity distance to the binary,

and hlm(t; l) are the spherical harmonic modes of the waveform,

which are completely described by the intrinsic parameters l of the

system. We assume that the black holes are non-spinning and the

binary to be quasi-circular. Hence l consists of only the masses m1

and m2 of the black holes (it is more convenient to describe the sys-

tem in terms of the chirp mass Mc := (m1m2)3/5/(m1 + m2)1/5 and

mass ratio q = m2/m1  1). In GR, the gravitational radiation is

dominated by the quadrupole modes (` = 2, m = ±2); however non-

quadrupole modes can make an appreciable contribution if the black

holes have significantly unequal masses. The set of intrinsic param-

eters l := {Mc, q} completely determines the multipolar structure

(i.e., spherical harmonic modes) of the waveform hlm(t).

In order to formulate a consistency test between different mul-

tipoles, we rewrite Eq. (3.1) by splitting the contributions from the

dominant (` = 2, m = ±2) mode of gravitational radiation, and the
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sub-dominant (higher order) modes

h(t; n, l, Dl) = Â
m=±2

Y�2
2m (n)h2m(t, l)

+ Â
H.O.M

Y�2
`m (n)h`m(t, l + Dl) (3.2)

where the sum in the second term on the RHS is just over the higher-

order modes. Note that we allow a possibility of inconsistency be-

tween the dominant mode and higher order modes by introducing

a deviation Dl := {DMc, Dq} in the set of intrinsic parameters that

describe the higher order modes. For BBHs in GR, Dl = 0.

An interferometric GW detector observes a linear combination of

the two polarizations h+(t) and h⇥(t), given by

h(t) = F+(q, f, y) h+(t � t0) + F⇥(q, f, y) h⇥(t � t0), (3.3)

where F+ and F⇥ are the antenna pattern functions of the GW detec-

tor, t0 is the time of arrival of the signal at the detector, and (q, f), y

define the sky position and polarisation angle of the GW source,

respectively. For coalescing BBH systems in quasi-circular orbits,

the observed signal h(t) is described by a set of intrinsic parameters

l = {Mc, q} and extrinsic parameters q := {t0, i, j0, dL, q, f, y} in GR.

In addition to the parameters that describe signals in GR, we intro-

duce a set of parameters Dl describing difference between the in-

trinsic parameters used to generate the dominant and subdominant

modes. The combined set of parameters is denoted as x = {l, q, Dl}.

The data d(t) = n(t) + h(t) contains the observed signal h(t) given

in Eq. (3.3) along with noise n(t), which is modeled as a stationary

Gaussian random process. Given data d and assuming a particular

model of the waveform given in (3.2) as our hypothesis H, we can

compute the posterior distribution of the set of parameters x making

use of the Bayes theorem:

P(x | d, H) =
P(x | H) P(d | x, H)

P(d | H)
. (3.4)
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The posterior probability density P(x | d, H) that the data contains a

signal with parameters x is determined by the prior probability dis-

tribution P(x | H) and the likelihood P(d | x, H) that the data contains

a signal described by parameters x; P(d | H) is a normalization con-

stant, called the evidence. For stationary Gaussian noise with power

spectral density Sn( f ), the likelihood can be written as:

P(d | x, H) = exp


�1
2

Z fhigh

flow

|d̃( f ) � h̃( f ; x, H)|2
Sn( f )

d f
�

(3.5)

where flow and fhigh define the sensitivity bandwidth of the detec-

tor, while d̃( f ) and h̃( f ) are the Fourier transforms of d(t) and h(t),

respectively.

We estimate the posterior of x by stochastically sampling the like-

lihood function over the entire parameter space of interest. In this

work, we use the emcee [75] package, a Python implementation of

the stochastic sampling algorithm proposed by [78] 1. From the 1 We have compared the posterior dis-
tributions obtained from our emcee
based code with that from the Nested-
Sampling based LALInferenceNest

code [145] that is part of the LIGO Algo-
rithm Library (LAL) software suite [2].
Posteriors obtained from simulated GR
waveforms containing only the domi-
nant (` = 2, m = ±2) modes observed
by a single detector are in good agree-
ment.

posterior distribution P(x | d, H) of the full parameter set, we con-

struct the posterior distribution P(Dl | d, H) of the set of parameters

Dl := {DMc, Dq} describing deviation from the GR prediction of a

BBH signal, by marginalizing the posterior over all other parameters

{l, q}. If the data is consistent with a BBH signal in GR, we expect

P(Dl | d, H) to be consistent with zero.

3.2 Simulations using BBH waveforms in GR

We now demonstrate this test on simulated GW observations of

BBH signals predicted in GR. We employ the recent inspiral-merger-

ringdown waveform model proposed by [104], which provide ac-

curate Fourier-domain models of the following spherical harmonic

modes h`m( f ) of the expected GW signals from non-spinning BBHs:

(` = 2, m = ±2), (` = 2, m = ±1), (` = 3, m = ±3), (` = 4, m =

±4). (The other spherical harmonic modes that are neglected only

introduce an inaccuracy (mismatch) of less than 1% in the wave-

forms [104]). GW observations are simulated making use of Eqs. (3.1)
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and (3.3). For estimating the parameters, we assume the likelihood

function given in Eq. (3.5), with noise power spectral density antic-

ipated in Advanced LIGO’s “high-power, zero-detuning” configura-

tion [122]. We consider binaries with total mass M := m1 + m2 in

the range 40M� – 200 M� with mass ratio q := m2/m1 in the range

1/9 – 1, with varying inclination angles i (angle between the orbital

angular momentum of the binary and the line of sight).

We perform the test by introducing variations in the higher order

modes, as in Eq.(3.2). The higher-order modes h`m( f ; l + Dl) are

generated by introducing an extra parameter Dl while the quadrupole-

modes h2±2( f ; l) are generated by using the standard set of param-

eters l in GR. We make two choices for the deviation parameter

Dl: First, by introducing one deviation parameter at a time; i.e.,

Dl = DMc or Dl = Dq. Second, by introducing a concurrent de-

viation in two parameters Dl = {DMc, Dq}. We show in Fig. 3.1

the results of the tests performed by varying either one parameter or

two parameters, for a binary with total mass M = 80M�, mass ratio

q = 1/9, inclination angle i = 60� producing an SNR of 25 (SNR in

higher modes is ⇠ 10). We see that the posterior probability density

for the parameters Dq and DMc are consistent with zero as in GR.

As expected, the width of the posterior is smaller when only one

deviation parameter is allowed to vary at a time (either DMc or Dq).

Figures 3.2 and 3.3 show the 90% credible regions of the posteriors

of the deviation parameters for the case of binaries with different

masses, mass ratios and inclination angles. For all cases SNR is 25,

and either DMc or Dq is introduced at a time. This shows that bina-

ries with large mass ratios (q < 1/2) and inclination angles (i > 60�)

will allow precision tests of the GR predictions, reaching statistical

uncertainties < 10�2 for DMc/Mc and Dq.
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Figure 3.2: The figure shows the width
of the 90% credible region of DMc and
Dq for binaries with different mass ra-
tios q (horizontal axis) and inclination
angles i (legends). All binaries have a
total mass 40M�. Best constraints are
provided by binaries with high mass ra-
tios and/or large inclination angles.

3.3 Simulations using non-BBH waveforms

If the multipole structure of the GW signal is sufficiently different

from that of BBHs in GR (either when the underlying theory is dif-

ferent from GR or when the binary contains compact objects other

than black holes), then this test should be able to identity this dif-

ference. We demonstrate this by performing the test on a simulated

GW signal from a black hole-neutron star binary with mass ratio 1/6

from the numerical-relativity waveform catalog of the SXS collabora-

tion [3]. We rescale this waveform to a total mass of M = 120M� and

use it as a proxy for GW signals from a binary consisting of at least

one non-black hole compact object 2. Figure 3.4 shows the posteriors 2 Note that the rescaled signal will not
correspond to a black hole-neutron star
binary, as m2 ' 17M� is much larger
than the maximum mass of a neutron
star. However, we use this as a proxy
for GW signals produced by a binary
containing an exotic compact object.

of the deviation parameters DMc and Dq estimated from a simulated

observation containing this signal, which are inconsistent with the GR

prediction of BBHs. The Figure also shows the results of the test ap-

plied on a numerical relativity waveform from a BBH system with
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Figure 3.3: Same as Fig. 3.2, except
that the horizontal axis reports the to-
tal mass M. All binaries correspond to
a mass ratio q = 1/9.

same parameters, which shows consistency with DMc = Dq = 0.

The simulated signals correspond to binaries with inclination angle

i = 90�, producing SNR of 50 in Advanced LIGO.

3.4 Astrophysical prospects

Recent observations of GW signals from merging binaries of black

holes [11, 12, 21, 14, 15, 16, 18] and neutron stars [17] by LIGO

and Virgo have enabled the first tests of GR in the highly relativistic

regime [23, 21, 14, 15, 16]. However, the test proposed in this chap-

ter requires the observation of GW signals where the subdominant

modes can be observed with appreciable SNR. These modes are ex-

cited predominantly for binaries with large mass ratios. Also, due to

the radiation pattern, radiation from binaries with highly inclined or-

bits will contain appreciable contribution from subdominant modes.

Hence binaries with large mass ratios (q . 1/2) and inclined ori-

entations (i & 60�) are particularly suitable sources for performing



99

�0.2 0.0 0.2 0.4
P(
�

M
c)

P(�q)
�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

�Mc (M�)

�
q
�

10
3

Figure 3.4: Black contours show the
posterior distributions of DMc and Dq
(similar to Fig 3.1) estimated from a
simulated GW signal from a binary
containing at least one compact object
other than a black hole. The signal was
produced by rescaling a numerical rel-
ativity waveform from a neutron star-
black hole binary with mass ratio 1/6
to a total mass of 120M� (inclination
angle i = 90�, producing SNR of 50 in
Advanced LIGO). Note that the poste-
riors are inconsistent with a BBH sys-
tem in GR (DMc = Dq = 0, marked
by a “+” sign, is outside the 90% credi-
ble region). The orange contours show
the posteriors estimated from a numeri-
cal relativity waveform from a BBH sys-
tem with same parameters, which show
consistency with DMc = Dq = 0.

the test described in this chapter. Consequently, we do not expect

the test to be effective for GW signals observed by LIGO and Virgo

during their first two observational runs, for which mass ratios are

less than 2 and inclinations are close to being face-on/face-off [18].

The detection rate of binaries with large mass ratios depends on the

astrophysical merger rate of such binaries, which is currently uncer-

tain, while the detection rate of binaries with large inclination angle

is related to the same with small inclination angles by a simple geo-

metric factor.

Here we investigate the prospect of performing the proposed test

on BBH events that Advanced LIGO and Virgo could observe over

the next few years. We simulate populations of BBHs based on rea-

sonable astrophysical assumptions, and examine the distributions of

the mass ratio and inclination angle of detectable signals. In partic-

ular, we simulate binaries with two astrophysically motivated mass

distributions in the source-frame [9]:

1. Component masses following a power-law p(m1,2) = m�1
1,2 with

m1, m2 � 5M� and m1 + m2  100M�.
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Figure 3.5: Projected cumulative dis-
tribution of the mass ratio q (left) and
inclination angle i (right) of simulated
BBHs that are detectable by Advanced
LIGO, based on our assumed compo-
nent mass distribution. The two distri-
butions in the left plot corresponds to
two assumed distributions of the com-
ponent masses (see text).

2. Power-law p(m1) = m�2.35
1 on the mass of the larger black hole,

with the smaller mass distributed uniformly in q and with 5M� 

m1 + m2  100M�.

In both cases, binaries are distributed uniformly in the sky with

isotropic orientations. The distribution of the mergers in redshift

is chosen according to the prescription given in [69]. The cosmolog-

ical redshift on the GW signals can be absorbed by a rescaling of

the masses m1,2(1 + z) where z is the redshift. From the simulated

events, we compute the SNR expected in Advanced LIGO and apply

an SNR threshold for detection (the probability distributions are in-

dependent of the exact value of the SNR threshold). The cumulative

distribution of the mass ratio q and inclination angle i of binaries

crossing the detection threshold is plotted in Fig. 3.5. It can be seen

that ⇠ 20 � 40% of the detectable binaries will have a mass ratio

greater than 2, out of which ⇠ 15% will be observed with inclination

angle greater than 60�. Thus, only a few percent of the observed sys-

tems are likely to have large mass ratios (q < 1/2) and inclined orbits

(i > 60�). However, since Advanced LIGO and Virgo are expected

to observe hundreds of BBH mergers over the next few years [9], we

conclude that the proposed test could be performed when detectors

reach their design sensitivity over the next few years, if not sooner.

Indeed, the precision of such tests will depend on the SNR of the

observed signals. While the earlier examples that we studied assume
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a rather high SNR of 25, we show in Fig. 3.6 that interesting statisti-

cal constraints on the deviation parameters can be expected even for

modest SNRs, such as 10 or 12.
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Figure 3.6: The width of the 90% credi-
ble region of the posteriors of DMc and
Dq as a function of the optimal SNR of
the signal in a single Advanced LIGO
detector. The simulated GR signal cor-
responds to a BBH system with total
mass M = 80M�, mass ratio q = 1/9
and inclination angle i = 60� (same as
Fig. 3.1).

3.5 Conclusions and future work

In this chapter, we proposed a new method to test the consistency

of an observed GW signal with a BBH system predicted by GR. The

test relies on the fact that the multipolar structure of the radiated GW

signal from a BBH system in quasi-circular orbit is uniquely deter-

mined in GR by the masses and spins of the black holes and no other

parameters. Thus, if we estimate the parameters of the binary from

different spherical harmonic modes of the observed signal indepen-

dently, those estimates will have to be consistent with one another.

Any inconsistency between the different estimates will point to a

deviation from GR or to the non-black hole nature of the compact

objects. We have used Bayesian parameter inference to identify po-
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tential deviations from GR predictions, using simulated GW signals.

We provided the first estimates of the expected precision of such tests

that can be performed using GW observations of BBHs anticipated

by Advanced LIGO and Virgo in the next few years.

The specific implementation of the test presented in this chapter

checks for the consistency of the masses (and spins, in the case of

spinning binaries) estimated from the quadrupole/non-quadruple

modes. If we have enough SNR to distinguish different modes,

we can introduce deviation parameters for each mode (say, DM`m
c

and Dq`m). This is analogous to checking the consistency of differ-

ent quasi-normal mode frequencies, as the frequency evolution of

the binary is determined by these intrinsic parameters. In addition,

one could also check the consistency of the amplitudes of different

modes, by introducing extra parameters describing deviations from

the predicted amplitudes. While this would expand the scope of this

test, in general, introducing more parameters would increase the sta-

tistical uncertainties, due to correlations between different parame-

ters.

We have assumed, for simplicity, that the component black holes

of the binary have negligible spins. Nevertheless, the method can be

easily generalized to the case of binaries consisting of spinning black

holes. We have also neglected the systematic errors due to inaccura-

cies in waveform modeling and detector calibration; these need to be

understood before implementing the test on real observations. We

aim these investigations for future work.



4 Gravitational Lensing Theory

This chapter will discuss the gravitational lensing of gravitational

waves [92, 103, 133]. This is related to the study of the propagation of

the gravitational waves in the curved spacetime. Understanding the

effect of the gravitational waves on the background spacetime allows

us to find an expression for the energy carried by them. We here,

however, ask the opposite question, i.e., how does the background

object affect the propagation of the gravitational waves, having as-

sumed that the gravitational waves have a negligible contribution to

the background curvature. We will see that the background object

(called lens) can bend the trajectories of the gravitational waves (and

the electromagnetic waves) in such a way that the multiple trajecto-

ries can make their way to the observer, i.e., we might be able to see

the multiple images of a source 1. For transient gravitational wave 1 This phenomenon is called strong
lensing and the corresponding lens ob-
ject is called a strong lens, e.g., galaxies
can act as the gravitational lens.

sources, this implies that multiple gravitational wave events can be

observed, from the same source. For lensing by galaxies, the time

delay between the images can range from minutes to months, de-

pending on the mass of the lens.

The rough plan of this chapter is as follows: we will first discuss

the general case of lensing, i.e., the wave-optics limit of the gravita-

tional lensing and then discuss how to transition into the geometric

optics limit, in which we are mainly interested. We will compute

the lensing effect on gravitational waves from some of the lens mod-

els, such as point masses and spherical mass distributions. We will

end this chapter by discussing in detail the lensing phenomenon by

elliptical mass distributions, which are expected to be good models
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for the galaxy lenses 2. In the next chapter, we will discuss how to

2 We will later see that the galaxy lenses
are the dominant strong lenses.

identify such lensed pairs of images from a set of LIGO-Virgo binary

black holes merger detections.

The material presented in this chapter is based on standard theory

of gravitational lensing. For a longer discussion, see for e.g., [92, 103,

133].

4.1 Propagation of Gravitational Waves in Curved Spacetime

Consider a small perturbation field h
µn

in the background spacetime

metric ḡ
µn

, so that

g
µn

= ḡ
µn

+ h
µn

(4.1)

Let us assume that the typical scale over which the background

spacetime ḡ
µn

varies is LB. We further assume that the typical ampli-

tude of h
µn

is h and h ⌧ 1 3. From Einstein equations, we find that, 3 That is, we are considering a small rip-
ple in the background spacetime.

h ⌧ l̄/LB ⌧ 1 (4.2)

where l̄ is the typical wavelength of the perturbation h
µn

. We, thus,

have two expansion parameters, h and l̄/LB
4. We choose a gauge 4 In source-free spacetime, they are of

same order, i.e.,

h ⇠ l̄/LB (4.3)

, because the curvature is produced by
the ripple itself. In the presence of
the source, however, the background
curvature is dominated by the source
(Eq. 4.2).

such that,

D̄n h̄
µn

= 0 (4.4)

where D̄µ is the covariant derivative compatible with background

metric ḡ
µn

and h̄
µn

= h
µn

� 1
2

ḡ
µn

h, where h = ḡµnh
µn

.

We will restrict ourselves to only linear order in h. We find that,

outside the source, to leading and next-to-leading order in l̄/LB, the

Ricci tensor (to linear order in h) vanishes, i.e.,

R(1)
µn

= 0 (4.5)

which is,

D̄rD̄
r

h̄
µn

+ 2R̄
µrns

h̄rs � R̄
µr

h̄r

n

� R̄
nr

h̄r

µ

= 0 (4.6)
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Note that,

R̄
µrns

h̄rs = O(h/L2
B) (4.7)

While,

D̄rD̄
r

h̄
µn

= O(h/l̄

2) (4.8)

We thus see that the quantity in Eq. 4.7 is smaller than the one in

Eq. 4.8 by a factor O(l̄2/L2
B). Since we restrict ourselves to only

next-to-leading term in l̄/LB, this implies,

D̄rD̄
r

h̄
µn

= 0 (4.9)

This equation along with the gauge condition, Eq. 4.4 represent the

propagation of the gravitational waves in the curved spacetime, pro-

vided l̄ ⌧ LB
5. 5 It is this requirement that allows us

to decompose the spacetime metric into
a background metric and a fluctuating
part of the metric, h

µn

(Eq. 4.1). Other-
wise, we would not know how to pro-
ceed.

4.2 Eikonal Approximation

We can solve the Eq. 4.9 using what is called eikonal approximation 6, 6 It assumes that the the phase q of
the perturbation changes on the scale
l̄, while the amplitude changes on the
scale LB. In other words, the phase
changes much faster than the ampli-
tude.

where we make following ansatz,

h̄
µn

(x) = [A
µn

(x) + eB
µn

(x) + · · · ]eiq(x)/e (4.10)

Here e is just a book-keeping parameter, which will be later set to

unity. It is just there to remind us that a term before e

n is of order

(l̄/LB)n. The wave vector is defined by kµ = ∂

µ

q. We write the grav-

itational wave amplitude in terms of the polarization tensors e
µn

as,

A
µn

= Ae
µn

, where A is the scalar amplitude. Plugging the Eq. 4.10

in Eq. 4.4 and keeping only the lowest order in e, gives us 7

7 Using also the fact that the change in
the amplitude over length l̄ is negligi-
ble.

kµe
µn

= 0 (4.11)

From the Eq. 4.9, we get

kµk
n

= 0 (4.12)
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Using this equation we can show that,

k
µ

D̄µk
n

= 0 (4.13)

This says that the gravitons travel along the null geodesics of the

background spacetime metric ḡ
µn

8. We further find that, to next-to-

8 More appropriately, the curves normal
to the surfaces of the constant phase
(called ’rays’ in geometric optics limit)
travel along the null geodesics of the
background spacetime metric ḡ

µn

leading order in e, Eq. 4.9 gives

krD̄
r

e
µn

= 0. (4.14)

The Eq. 4.11 and Eq. 4.14 imply that the polarisation tensor is trans-

verse and parallelly transported along the null geodesic.

4.3 Gravitational Lensing: Wave Optics

We just showed that the polarisation tensor does not change during

the propagation. We can thus treat the propagating gravitational

waves as scalar waves times the polarization tensor as follows:

h
µn

= f e
µn

(4.15)

where f is a scalar wave. Then the propagation equation, Eq. 4.9

becomes,

∂

µ

�p

�ḡ ḡµn

∂

n

f

�

= 0 (4.16)

Let us assume that the background metric is given by

ds2 = �(1 + 2U)dt2 + (1 + 2U)dr

2 = ḡ
µn

dxµdxn (4.17)

where U(r)(⌧ 1) is the gravitational potential of the lens object. The

Eq. 4.16 in frequency domain f̃( f , r) takes the form,

(r2 + w

2)f̃ = 4w

2Uf̃ (4.18)

where w = 2p f . Now this is the equation that we need to solve to get

the lensing effect on the gravitational waves. These kinds of equa-

tions are solved using Kirchhoff integral theorem. The amplification
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Figure 4.1: Gravitational lens geome-
try for the source, the lens and the ob-
server. Dl ,Ds and Dls are the distances
between them. h is a displacement of
the source and x is an impact parame-
ter. We use the thin lens approximation
in which the gravitational waves are
scattered in the thin lens plane. [Taka-
hashi et al (2003)]

factor is defined as

F( f ) = f̃

L( f )/f̃( f ) (4.19)

where f̃

L( f ) represents the lensed scalar waves 9 while f̃( f ) repre- 9 Or the gravitational waves.

sents the unlensed scalar waves (i.e., U = 0).

To solve for F( f ), we need to first specify the gravitational lens

geometry of the source, the lens and the observer (see, Fig. 4.1). In

Fig. 4.1, Ds and Dl represent the distance to the source and the lens

from the observer, respectively. While Dls denotes the distance be-

tween the lens and the source. h is the position vector of the source

in the source plane and x is the impact parameter in the lens plane.

We assume that our lens can be characterized by its surface mass

density S(x). This is called ‘thin lens approximation’. This is a valid

approximation if the distances are much larger compared to the size

of the lens, which is true for astrophysical lenses. For this configura-

tion, the solution to the Eq. 4.18, i.e., the amplification factor is given

by

F( f ) = �i
Ds

Dl Dls

x

2
0

Dls
f
Z

d2
x exp [2pi f td(x, y)] (4.20)

where x = x/x0 and y = h/x0. x0 is an arbitrary normalization

constant with a dimension of length. td denotes the time taken by a
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ray originating from the source to reach the observer (i.e., the arrival

time). Note that |F| = 1, if U = 0, i.e., in the case of no lensing.

To take into account of the cosmological expansion, all we need to

do is to use angular diameter distances and replace f by f (1 + zl),

where the zl is the lens redshift. That is,

F( f ) = �i
Dsx

2
0(1 + zl)

Dl Dls
f
Z

d2
x exp [2pi f td(x, y)] (4.21)

but now Ds, Dl and Dls represent the angular diameter distances.

The arrival time td at the observer from the source at h with an

impact position x in the lens plane is given by

td(x, y) =
Dsx

2
0

Dl Dls
(1 + zl)

"

1
2
|x � y|2 � y(x) + fm(y)

#

(4.22)

where y(x) is called the deflection potential and is given by

r2
xy = 2S/Scr (4.23)

where r2
x denotes the two dimensional Laplacian with respect to x

and Scr = Ds/4pDl Dls is called the critical surface mass density.

Note that, by definition the deflection potential is dimensionless. We

choose fm(y) such that the minimum value of the arrival time be-

comes zero. The dimensionless mass density S/Scr is called the

convergence and is denoted by k.

4.4 Geometric optics limit

The geometric optics limit is approached when f � t�1
d , i.e., TGW ⌧

td
10. In this limit, only the stationary points of the td(x, y) con- 10 We will later see that td is actually

proportional to the redshifted mass of
the lens.tribute to the integral of Eq. 4.21

11, i.e., the image positions xj are
11 This is essentially the Fermat’s princi-
ple.determined by

∂td(x, y)/∂x = 0 (4.24)

This gives what is called the lens equation,

y = x � a(x) (4.25)
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where a(x) = ry(x) is called the deflection angle. The integral of

the Eq. 4.21 is then given by the sum over these images xj,

F( f ) = Â
j

|µj|1/2 exp[2pi f td,j � ipnj] (4.26)

where µj = 1/ det(∂y/∂xj) is the magnification of the j-th image,

td,j = td(xj, y) and nj = 0, 1/2, 1 when xj is a minimum, saddle,

maximum point of td(x, y).

4.5 Point Mass Lens

The surface mass density for a point mass lens is described by S(x) =

MLd

2(x), where ML is the mass of the lens. We choose the normali-

sation constant as x0 =
p

4MLDl Dls/Ds. The deflection potential for

this system (Eq. 4.23) is y(x) = ln x, where x = |x|. In this case, it is

possible to find an analytical expression of the Eq. 4.21. This is,

F( f ) = exp
h

pw

4
+ i

w

2

⇣

ln
⇣

w

2

⌘

� 2fm(y)
⌘i

G
⇣

1 � i
2

w

⌘

1F1

⇣ i
2

w, 1;
i
2

wy2
⌘

(4.27)

where w = 8pMLz f , fm(y) = (xm � y)2/2 � ln xm with xm = (y +
p

y2 + 4)/2, MLz = ML(1 + zl) is the redshifted mass of the lens and

1F1 is the confluent hypergeometric function. We can see that the am-

plification factor depends on just two lens parameters; the redshifted

mass of the lens ML and the source position y. In geometric optics

limit, i.e., TGW ⌧ td or f � M�1
Lz , Eq. 4.27 reduces to,

F( f ) = |µ+|1/2 � i|µ�|1/2 e2pi f Dtd (4.28)

where µ± represent the magnifications of the images, µ± = 1/2 ±

(y2 + 2)/(2y
p

y2 + 4) and the time delay between the double images

is, Dtd = 4MLz

h

y
p

y2 + 4/2 + ln
�

(
p

y2 + 4 + 4)/(
p

y2 + 4 � y)
�

i

.

The typical time delay expected is Dtd ⇠ 4MLz = 2 ⇥ 103 sec MLz/(108M�).

For galaxy lenses with the mass between 107M� � 1012M�, we thus

expect the typical time delay to vary from a few minutes to a few

months.
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4.6 Singular Isothermal Sphere Lens Model

This is most widely used model for the astrophysical lenses, e.g.,

galaxy lenses. If we consider the galaxies as the self-gravitating

spherically symmetric concentration of stars which behave like an

ideal gas in thermal and hydrostatic equilibrium, then a density pro-

file satisfying this condition is

r(r) =
s

2
v

2pr2 (4.29)

where sv is the velocity dispersion of the “gas” particles and r is the

distance from the center of the sphere. The surface mass density is

found by projecting r(r) along the line of sight

S(x) = 2
s

2
v

2p

Z •

0

dz
x

2 + z2

=
s

2
v

2x

(4.30)

We see that the surface density diverges at the center. This is the

reason they are called singular isothermal 12 sphere (SIS) lens. Nev- 12 Isothermal just means that the surface
mass density asymptotically decreases
as 1/distance.ertheless, this model has been used to describe the matter distribu-

tion in galaxies, especially because it can reproduce the flat rotation

curves of spiral galaxies.

Let us choose x0 = 4ps

2
v Dl Dls/Ds as a length scale on th lens

plane. The deflection potential for such a surface density is given

by, y(x) = x. In this case, there is no analytical expression for the

Eq. 4.21. In the geometric optics limit, however, the lens equation,

Eq. 4.25, reduces to a 1-d equation (due to the spherical symmetry of

the lens mass distribution),

y = x � x
|x| (4.31)

For y < 1, this has two solutions: at x = y + 1 and x = y � 1, on op-

posite sides of the centre of the lens. We can express these solutions

in terms of the angular variables by dividing with the corresponding
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Figure 4.2: Iso-density contours for the
SIS (dashed) and the SIE (dash-dotted)
with f = 0.6 for the same value of k

in both cases. The solid line represents
the contour of the deflection potential
y. We see that the contour of y looks
much rounder than corresponding iso-
density contour. [Astron. Astrophys.
284, 285-299 (1994)]

angular diameter distances. We find,

q± = b ± qE (4.32)

where b is the angular position of the source in the source plane and

qE is called the Einstein radius, defined as,

qE =

s

4ML(qE)
Dls

Dl Ds
(4.33)

where ML(qE) is the mass within the Einstein radius. We see that the

angular separation between the images is Dq = 2qE. Thus the Ein-

stein radius defines a typical scale for the angular separation between

the images. The time delay between the images is Dtd = 8MLz(qE)y.

The magnifications of these images are

µ+ = 1 +
1
y

; µ� = 1 � 1
y

(4.34)

For y ! 1, the magnification of the second image becomes weaker

and weaker until it disappears at y = 1. This is in agreement with

the fact that for y > 1, we have only one image.
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4.7 Singular Isothermal Elliptical Lens Model

A more realistic lens model for the galaxies is given by singular

isothermal ellipsoid (SIE), i.e., the surface mass density is described

by

S(x) =
p

q
s

2
v

2z

(4.35)

where z :=
q

x

2
1 + q2

x

2
2 and q is called the axis ratio (or ellipticity).

Note that q = 1 reproduces the spherical mass surface density with

z becoming the actual radial coordinate x. The pq factor makes sure

that the mass inside an elliptical iso-density contour (see, Fig. 4.2) for

a given value of density (S) is independent of q.

We choose the length scale x0 same as the SIS model. The dimen-

sionless surface density in polar coordinates is

k(x, j) =

pq
2xD(j)

(4.36)

where D(j) =
q

cos2
j + q2 sin2

j, since x1 = x cos j and x2 =

x sin j. The lens equation takes the form

y = x �
pq
q0

"

arcsinh

 

q0

q
cos j

!

e1 + arcsin(q0 sin j)e2

#

(4.37)

where q0 :=
p

1 � q2 and ei is the unit vector in the direction of xi.

The magnification is found from the Jacobian A = ∂y/∂x, also

called the distortion matrix. The trace free part of this matrix is an-

tisymmetric and called a shear matrix. The eigenvalues of the shear

matrix represent the amount of the shear produced in the images.

While the trace of the distortion matrix, which is 2(1 � k), produces

isotropic changes in the images, i.e., the images are only rescaled by

a constant factor in all directions. The Jacobian is found to be,

A =

2

6

4

1 � 2k sin2
j k sin(2j)

k sin(2j) 1 � 2k cos2
j

3

7

5

(4.38)

The magnification is defined as, µ = 1/ det(A) = 1/(1 � 2k(x)). We
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Figure 4.3: Cut and caustics of the SIE
for different values of the axis ratio. The
curves with the cusps are the caustics.
The high axis ratio means that we are
closer to the case of the SIS. In SIS, the
caustic degenerates to a point (top left
plot). The dashed lines have to be ig-
nored here. [Astron. Astrophys. 284,
285-299 (1994)]

see that the magnification of an image just depends on the value of

dimensionless mass density at its position in the lens plane.

One interesting aspect would be to ask about the set of points in

the source plane that will be associated with the multiple images. It

turns out that these points lie within the curves known as caustics,

i.e., the points outside the caustics have only one image. We discuss

this here in detail.

Critical curves are the curves on the lens plane that separate the

multiple images. This is given by the condition, det(A) = 0, i.e., a

critical curve is the locus of the points on the lens plane with infi-

nite magnifications. The images inside the critical curves have neg-

ative magnifications while those lying outside have positive mag-

nifications. The mapping of the critical curves to the source plane

through the lens equation gives the caustic curves. For our case (i.e.,
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SIE),

det(A) = 0 ) k =
1
2

, or, x =

pq
D(j)

(4.39)

Inserting this in the lens equation, Eq. 4.37, gives us the parametrised

equation for the caustics,

y1 =

pq
D

cos j �
pq
q0 arcsinh

⇣ q0

q
cos j

⌘

y2 =

pq
D

sin j �
pq
q0 arcsin

⇣

q0 sin j

⌘

(4.40)

There is an another important curve known as cut, which is the locus

of the points on the source plane with one and only one image, at

the center of the lens. This image is “infinitely faint” because the

convergence is infinite at the center and since, µ = 1/(1 � 2k). Thus

we can get this curve by setting x = 0,

y(j) = lim
x!0

y(x, j) = �a(j)

= �
pq
q0

h

arcsinh
⇣ q0

q
cos j

⌘

e1 + arcsin(q0 sin j)e2

i

(4.41)

The existence of the cut is due to the singular nature of the surface

density. If we make the core of the lens smooth by putting some

matter, i.e., if we introduce a finite core radius, then the cut will

transform into a caustic and consequently, the image at the centre

of the lens splits into a pair of images separated by the correspond-

ing critical curve. Fig. 4.3 shows the cuts and caustics of the SIE

for different values of the axis ratio. The positions of the cusps are

computed from the intersections of the caustics with the axes,

y1 = ±(s1 � p
q) with s1 =

pq
q0 arccosh

1
q

y2 = ⌥
⇣

s2 � 1pq

⌘

with s2 =

pq
q0 arccos q

(4.42)

Similarly, for the cut, we find

y1 = ±s1 and y2 = ±s2 (4.43)

From the Fig. 4.3, we see that the cusps on y2 axis can be inside and
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outside the region surrounded by the cut. We find that the cusps

are inside if q > q0, where q0 is the solution to the transcendental

equation, 2q0 arccos q0 =
q

1 � q2
0. The numerical solution gives q0 =

0.3942 · · · .

Finally we would like to solve the lens equation, Eq. 4.37, so that

we can find the positions of the images in the lens plane for a given

source position. However, it seems almost impossible to invert this

equation. Nevertheless, we can reduce this to a one-dimensional

equation as follows: the two components of the lens equation are

y1 = x cos j �
pq
q0 arcsinh

 

q0

q
cos j

!

y2 = x sin j �
pq
q0 arcsin(q0 sin j)

(4.44)

where we have used usual polar coordinates for x1 = x cos j and

x2 = x sin j. Now, if we multiply the first component of the above

equation by cos j and the second component by the sin j, we find

that,

x = y1 cos j + y2 sin j +

pq
q0

h

sin j arcsin(q0 sin j)+

cos jarcsinh
⇣ q0

q
cos j

⌘i

(4.45)

If we insert x back in the lens equation (Eq. 4.37), we find a one-

dimensional equation for j,

h

y1 +

pq
q0 arcsinh

⇣ q0

q
cos j

⌘i

sin j �
h

y2 +

pq
q0 arcsin(q0 sin j)

i

cos j = 0

(4.46)

This can now be solved numerically. Eq. 4.45 and Eq. 4.46 together

provide the positions of the images for a given source position. The

time delay between the images can be computed by finding the dif-

ference between their arrival times td using the Eq. 4.22.

The numerical solution to the Eq. 4.46 provides the following in-

formation: a source outside the cut 13 has only one image with 13 Just for the sake of example; we are
dealing with the case where the source
crosses the cut first and then the caustic.
This will be true when q � q0.

small positive magnification and lies outside the corresponding crit-
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ical curve. As soon as it crosses the cut, a second image appears

inside the critical curve and has very small negative magnification.

This is because the second image forms near the center of the lens

where the convergence (k) is very high. When it crosses the caustic,

two new images are formed which of course have to be separated by

the associated critical curve 14, i.e., one of them lies within the crit- 14 Note that, cut and caustic both have
critical curves.

ical curve having negative magnification and other lies outside the

critical curve having positive magnification. We find that we always

have an even number of the images. This is a property of lenses with

singular surface mass densities.

A source close to, but inside the caustic has two images close to.

This fact is universal in the nature, i.e., irrespective of the lens system,

if the caustic exists then a source close to the caustic will always have

two images close to each other 15. Furthermore, these images have 15 Note, however, that this is not true
near the cusps of the caustics.

very high and similar magnifications. The calculation shows that the

magnification is given by

|µ| =
4pqD

q02| sin(2j)|
1

dx
(4.47)

and the time delay between them is given by

cdtd = 2p

2(1 + zl)
s

4
v

c4
Dl Dls

Ds

q02| sin(2j)|pqD
(dx)3 (4.48)

where dx is the separation between the images in the dimensionless

units. If we take typical values of the parameter appearing in these

equations, e.g., sv = 220 km/s, zl = 0.5 and zs = 2 in an Einstein-de

Sitter universe with Hubble constant H0 = 100h km/(s Mpc) with the

axis ratio f = 0.8 at j = p/4, we find the approximate relations as

|µ| ' 700.2
dq

(4.49)

and,

dtd ' 15
h

 

dq

000.8

!3

hours (4.50)

where dq is the angular separation between the images. For h =
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0.5, two images with magnification |µ| = 20 would have roughly an

angular separation of 000.36 and the time delay dtd of roughly three

hours.





5 Identifying Strongly Lensed grav-

itational Wave Signals From Bi-

nary Black Hole Mergers

Arthur Eddington’s 1919 observation of the gravitational bending of

light was the first observational test that heralded the remarkable

success of general relativity (GR) [71]. Recent observations of gravi-

tational waves (GWs) by LIGO [8] and Virgo [25] have vindicated one

of the most famous astrophysical predictions of GR [11, 12, 14, 15, 16,

17]. While gravitational lensing (of electromagnetic waves) has been

well established as a powerful astronomical tool (see, e.g., [35] for

a review), GW observations are opening up an emerging branch of

observational astronomy (see, e.g., [118] for a review).

GWs are gravitationally lensed by intervening mass concentra-

tions along the line of sight from the source to the observer, in a

manner similar to electromagnetic waves. Several previous papers

in the literature have considered the resulting phenomenology for

GWs from a variety of compact object mergers [148, 131, 130, 121,

119, 120, 114, 42, 60, 68]. Recent estimates of the lensing rates have

shown that at upgraded sensitivities of Advanced LIGO, a small frac-

tion (< 1%) of the detected GW signals from stellar–mass binary

black hole mergers can be strongly lensed by intervening galaxies

and clusters (see, e.g., [109]). These mergers would produce mul-

tiple “images” at different times, with significantly different intrin-

sic masses and redshifts [61, 109, 127, 97]. It has even been sug-
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gested that a significant fraction of the detected merger population

was strongly lensed [47], which would require a strong redshift evo-

lution of the intrinsic merger rate. In the standard case, the lensed

fraction is expected to be small, but LIGO and Virgo are expected

to detect hundreds of binary black hole mergers over the next few

years [9]; thus it is quite likely that some of the detected signals

will be strongly lensed. Identification of strongly lensed GW signals

would be rewarding. On the one hand, we will be verifying a fun-

damental prediction of GR using a messenger entirely different from

electromagnetic radiation [98, 72]. In addition, such a detection can

potentially enable astrophysical studies of the lens galaxy and the

host galaxy [125].

In this chapter, we consider the problem of observationally iden-

tifying a pair of lensed signals coming from a single merger among

hundreds of unrelated merger signals. From the perspective of the

observer, these lensed images would appear as different GW sig-

nals that are separated by time delays of minutes to weeks. The ob-

served gravitational waveform depends on the zenith angle and the

azimuth of the merger relative to the detectors, which will be differ-

ent for each image. Moreover, each image will be observed against

a different realization of the detector noise. This makes it difficult to

compare multiple images at the waveform level, and necessitates a

comparison in the space of the estimated intrinsic parameters.

We work in the geometric optics limit, which applies when the

wavelength of the GW signal is small compared to the Schwarzschild

radius of the lens mass (lGW ⌧ 2GMlens/c2). This approximation

can fail to model the lensing of GW signals from supermassive black

holes lensed by intervening supermassive black holes or dark matter

halos with masses ⇠ 108M� (which leads to interesting wave effects

that could be observed by LISA [131, 130]), or of GW signals from

stellar mass black holes lensed by intermediate mass black holes or

compact halo objects with masses ⇠ 103M� (which can lead to in-

teresting wave effects observable by LIGO [95, 88]). However, the
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geometric optics approximation is adequate to model the GW sig-

nals from stellar–mass black holes observed in LIGO/Virgo that are

lensed by galaxies. In this regime, lensing will magnify/de-magnify

the GW signal without affecting its shape. Since the parameters of

the merging binary are estimated by comparing the data with theo-

retical templates of the expected signals (see, e.g, [10]), the estimated

parameters (barring the estimated luminosity distance, which is de-

generate with the magnification and hence will be biased) of these

different signals will be mutually consistent.

We develop a Bayesian formalism for identifying strongly lensed

and multiply imaged GW signals from binary black hole merger

events among hundreds of unrelated merger signals. From each pair

of GW signals, we compute the Bayesian odds ratio between two

hypotheses: 1) that they are the lensed images of the same merger

event, 2) that they are two unrelated events. Using simulated GW

events (lensed as well as unlensed), we show that this odds ratio

is a powerful discriminator that will allow us to identify strongly

lensed signals. Our method can be easily integrated with the stan-

dard Bayesian parameter estimation pipelines that are used to ana-

lyze LIGO and Virgo data [146].

The material presented in this chapter is based on the articles [82]

and [83].

5.1 Bayesian model selection of strongly lensed GW signals from

binary black hole mergers

Consider a data stream d(t) of a GW detector containing a signal

h(t, q) described by a set of parameters q and some stochastic noise

n(t):

d(t) = n(t) + h(t, q). (5.1)

For binary black holes in quasi-circular orbits, the GW signals h(t, q)

are described by a set of parameters q that consists of the redshifted

masses (mz
1, mz

2), the dimensionless spin vectors (c1, c2), the time
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Figure 5.1: 95% credible regions of
the marginalized posteriors of the red-
shifted masses mz

1, mz
2 (left) and sky lo-

cation cos a, d (right) of lensed images
of a sample binary black hole merger
event. Black stars show the actual in-
jected parameters.of coalescence t0 and the phase at coalescence j0, sky location (a, d),

the inclination i of the binary, the polarization angle y and the lu-

minosity distance dL to the source. The posterior distribution of the

set of parameters q can be computed from the data using the Bayes

theorem as follows:

P(q|d) =
P(q) P(d|q)

P(d)
, (5.2)

where P(q) denotes the prior distribution of q, P(d|q) is the likeli-

hood of the data d assuming the signal h(t, q) and

P(d) :=
Z

dq P(q) P(d|q) (5.3)

is called the marginalized likelihood. If n(t) can be well approxi-

mated by a stationary Gaussian process with mean zero and a one-

sided power spectral density Sn( f ), then the likelihood is given by

P(d|q) = N exp
⇢

�1
2
hd � h | d � hi

�

, (5.4)

where N is a normalization constant and h.|.i denotes the following

noise-weighted inner product:

ha|bi := 2
Z fupp

flow
d f

ã⇤( f )b̃( f ) + ã( f )b̃⇤( f )
Sn( f )

. (5.5)
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Figure 5.2: Distribution of the log of the
time delay between lensed event pairs
detected by the Advanced LIGO-Virgo
network, along with the distribution
from unlensed event pairs. The sim-
ulated binary black hole populations
have their component masses (source-
frame) distributed according to two
power laws (see text); however, note
that the time delays are practically in-
sensitive to the specific form of the
mass distribution. The redshifts of the
mergers are sampled with the distribu-
tion obtained in . We consider strong
lensing produced by intervening galax-
ies. In order to compute the distribu-
tion of the time delay between unlensed
events, we assume that they follow a
Poisson distribution with a rate of 10

mergers per month. The time delay dis-
tributions of unlensed event pairs get
skewed towards larger values as we in-
crease the observation time.

Above, flow and fupp denote the lower and upper cutoff frequencies

of the detector’s bandwidth, ã( f ) denotes the Fourier transform of

a(t) and a ⇤ denotes complex conjugation.

If we have two data streams d1 and d2 containing GW signals

from binary black holes, there is a small probability that these sig-

nals are lensed versions of a single merger event. In the geometric

optics approximation, lensing does not affect the frequency profile

of the signal. As a result, the lensed signals would correspond to the

same set of parameters q (except the estimated luminosity distance,

which will be biased due to the unknown magnification). In order to

determine whether d1 and d2 contain lensed signals from the same

binary black hole merger, we compute the odds ratio between two

hypotheses:

• Hl: The data set {d1, d2} contain lensed signals from a single bi-

nary black hole merger event with parameters q1 = q2 = q.

• Hu: The data set {d1, d2} contain signals from two independent

binary black hole merger events with parameters q1 and q2.

The odds ratio between Hl and Hu is the ratio of the posterior prob-
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abilities of the two hypotheses. That is,

Ol
u =

P(Hl|{d1, d2})
P(Hu|{d1, d2})

, (5.6)

Using Bayes theorem we can rewrite the odds ratio as

Ol
u =

P(Hl)
P(Hu)

P({d1, d2}|Hl)
P({d1, d2}|Hu)

= P l
u Bl

u (5.7)

Here P l
u := P(Hl)

P(Hu) is the ratio of prior odds of the two hypotheses

while the Bayes factor Bl
u := Zl/Zu is the ratio of the marginalized

likelihoods, where the marginal likelihood of the hypothesis A is

ZA := P({d1, d2}|HA) with A 2 {l, u}. Under the assumption of

d1 and d2 being independent, the marginal likelihood of the “null”

hypothesis equals the product of the marginal likelihoods from indi-

vidual events, i.e.,

Zu = P(d1) P(d2), (5.8)

where P(di) is the marginal likelihood from event i, defined in Eq. (5.3).

Now, we rewrite the marginal likelihood of the lensing hypothesis in

terms of the likelihoods of d1 and d2 as

Zl =
Z

dq P(q) P(d1|q) P(d2|q) . (5.9)

Using Eq. (5.2), we can rewrite this as

Zl = P(d1) P(d2)
Z

dq

P(q|d1) P(q|d2)
P(q)

(5.10)

Combining Eqs. (5.8) and (5.10), we obtain the following expression

for the Bayes factor:

Bl
u :=

Zl
Zu

=
Z

dq

P(q|d1) P(q|d2)
P(q)

. (5.11)

Thus, the Bayes factor is the inner product of the two posteriors that

is inversely weighted by the prior. This has an intuitive explanation:

if d1 and d2 correspond to lensed signals from a single binary black

hole merger, the estimated posteriors on q would have a larger over-
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Figure 5.3: Scatter plot of the two Bayes
factors Bl

u and Rl
u computed from the

unlensed (blue stars) and lensed (red
triangles) event pairs. The Bayes factors
computed from the posterior distribu-
tion of the binary’s parameters (Bl

u) and
that computed from the time delay dis-
tribution (Rl

u) are in general correlated.
However, they can be combined to im-
prove our ability to distinguish lensed
pairs from unlensed pairs. In this sim-
ulation, the component masses are dis-
tributed according to the second power
law given in the text.

lap, favoring the lensing hypothesis (see, e.g., Fig. 5.1). The inverse

weighting by the prior helps to down-weight the contribution to the

inner product from regions in the parameter space that are strongly

supported by the prior. The large overlap of the posteriors here is

less likely to be due to the lensing but more likely due to the larger

prior support to the individual posteriors.

While the odds ratio developed above checks for the consistency

between the estimated parameters of two GW signals, the time de-

lay between them can also be used to develop a potential discrim-

inator between lensed and unlensed events. This however, would

require certain assumptions on the distribution of lenses (i.e., galax-

ies) and the rate of binary mergers. If we assume that binary merger

events follow a Poisson process with a rate of n events per month,

one can compute the prior distribution P(Dt|Hu) of time delay be-

tween pairs of unlensed events (see Fig. 5.2). The prior distribution

of the time delay between strongly lensed signals, P(Dt|Hl), would

have a qualitatively different distribution, which can be computed

using a reasonable distribution of the galaxies and a model of the

compact binary mergers (see Sec. 5.2 for details). Following Eq.(5.3),

the marginal likelihood for the lensed/unlensed hypothesis can be
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computed from the time delay between two events d1 and d2 as

PDt({d1, d2}|HA) =
Z

dDt P(Dt|HA) P({d1, d2}|Dt, HA), (5.12)

where A 2 {l, u}. Typical statistical errors in estimating the time of

arrival of a GW signal at a detector are of the order of milliseconds

— much smaller than the typical time delay between any pair of

events. Thus, the likelihood function PDt({d1, d2}|Dt, HA) of the time

delay can be well approximated by a Dirac delta function at the true

value Dt0. Thus, the Bayes factor between the lensed and unlensed

hypotheses can be written as

Rl
u =

P(Dt0|Hl)
P(Dt0|Hu)

, (5.13)

where P(Dt0|HA) with A 2 {l, u} is the prior distribution of Dt

(under lensed or unlensed hypothesis) evaluated at Dt = Dt0. The

prior distributions are shown in Fig. 5.2.

The Bayes factors Bl
u and Rl

u could be combined to improve the

discriminatory power between lensed and unlensed events. Figure

5.3 shows a scatter plot of Bl
u and Rl

u computed from simulated pairs

of lensed and unlensed events. As one can see, combining Bl
u and

Rl
u improves the discriminatory power. Note that, since the fraction

of binary black hole mergers that are expected to produce strongly

lensed signals is very small, the ratio of prior odds P l
u is a small

number (< 1%). Hence, we need large values for the Bayes factors to

confidently identify strongly lensed pairs of signals.

5.2 Testing the model selection

In this section we test the efficacy of our Bayesian model selection

method to identify strongly lensed GW signals from binary black

hole merger events. We simulate a population of coalescing binary

black holes and compute the effect of strong lensing on the GW sig-

nals that they radiate. The binary black hole mergers are distributed
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Figure 5.4: Probability distributions
of the cosmological redshift (left) and
component masses m1, m2 in the source
frame (right) of the simulated binary
black hole merger events.

according to the cosmological redshift distribution given in [69]. We

use two different mass distributions proposed in [9] to sample com-

ponent black hole masses m1 and m2:

1. Masses following a power-law P1(m1, m2) ⇠ 1
m1

1
m2

with m1, m2 �

5M� and m1 + m2  100M�.

2. Masses following a power-law P2(m1) = m�2.35
1 on the mass of

the larger black hole, with the smaller mass distributed uniformly

in mass ratio m1/m2 and with 5M�  m1 + m2  100M�.

Figure 5.4 shows the redshift and mass distributions of the injec-

tions. The spin magnitudes c1 := ||ci|| of component black holes

are distributed uniformly between 0. and 0.99, with random direc-

tions with respect to the orbital angular momentum. The binaries

are distributed uniformly in the sky (i.e., uniform in cos a and d),

and the inclination and polarization angles are sampled uniformly

from polarization sphere (i.e., uniform in cos i and y). Note that the

GW signals will be redshifted due to the cosmological redshift, and

we infer the redshifted masses mz
1,2 := m1,2(1 + z) through parameter

estimation.

Multiple images dominantly arise due to galaxy lenses [76]. We

assume that the galaxy lenses are well modeled by singular isother-

mal ellipses [76, 92]. The lens parameters, namely velocity dispersion

s and axis-ratio q, are sampled from distributions modeled from the
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Figure 5.5: Distribution of the log10
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SDSS population of galaxies [58]. A detailed account on the lensing

probability, sampling of lens galaxies and computation of the mag-

nification factor and time delays is provided in Appendix A.6. We

simulate two populations of GW signals:

• Lensed: Pairs of events with same parameters q, with parameter

distributions as described above. We apply the lensing magni-

fications and time delays according to the prescription given in

Appendix A.6.

• Unlensed: Pairs of events with random parameters q1 and q2, with

parameter distributions as described above.

Figure 5.2 shows the distribution of time delays between pairs of

lensed events as well as pairs of unlensed events from simulations

assuming different distributions of source parameters. In the case of

unlensed events, we compute the distribution of time delay assuming

that the events follow a Poisson process with a rate of n = 10 events

per month. Naturally the distribution of time delays between event

pairs will depend only on the total observation time. The figure

shows the time delay distributions from all pairs of events assuming

observational runs of 1, 2 and 3 year duration.

To simulate GW observation coming from each population, we in-
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Figure 5.6: Receiver operating charac-
teristic curves for the Bayes factor statis-
tic Bl

u computed using the marginal-
ized posteriors on parameter sets
(mz

1, mz2), (cos a, d), (mz
1, mz

2, cos a, d)
and (mz

1, mz
2, c1, c2 cos a, d) respec-

tively with component masses sam-
pled from power law 1 (left panel)
and power law 2 (right panel). We
observe that the performance of the
statistic improves with with num-
ber of parameters. Bl

u computed
with (mz

1, mz
2, c1, c2 cos a, d) posteri-

ors identifies ⇠ 10 � 15% of the lensed
event pairs with a false alarm probabil-
ity of 10�5.

ject simulated GW signals from binary black holes in colored Gaus-

sian noise with the design power spectrum of the three-detector Ad-

vanced LIGO-Virgo network [7, 6, 136]. The signals are modelled by

the IMRPhenomPv2 waveform family [81, 84, 90] which describes

GW signals from the inspiral, merger and ringdown of binary black

holes with precessing spins in quasi-circular orbits 1.

1 Note that, in this waveform, the spin
effects modeled in terms of two effec-
tive spin parameters [81, 27].

From simulated events that cross a network signal-to-noise ratio

(SNR) threshold of 8, we estimate the posterior distributions of the

parameters using the LALInferenceNest code [146]. This code

provides an implementation of the Nested Sampling algorithm [124]

in the LALInference software package of the LIGO Algorithm Li-

brary LALSuite

2. From each population of injections (lensed and

2 https://wiki.ligo.org/DASWG/LALSuite

unlensed), we draw random pairs from the simulated events and

compute the Bayes factor Bl
u defined Eq. (5.11) by multiplying the

kernel density estimates of the two posterior distributions and inte-

grating them. Also we compute Rl
u using the time delay estimates

between the event pairs. Figure 5.3 shows a scatter plot of the two

Bayes factors Bl
u and Rl

u estimated from one set of simulated lensed

and unlensed events.

Figure 5.5 shows the distributions of log Bl
u for lensed and un-

lensed event pairs computed from the posteriors of {mz
1, mz

2, cos a, d, c1, c2}.

Indeed, there is a small probability that two independent event pairs

could have parameters that appear mutually consistent (accidentally)
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Figure 5.7: Receiver operating char-
acteristic curves for the Rl

u statistic
computed assuming a rate of 10 un-
lensed events per month and compo-
nent masses sampled from power law
1 (left panel) and power law 2 (right
panel). Three curves in each panel rep-
resent the ROC plots for Rl

u computed
assuming 1, 2 and 3 years as the obser-
vation time.

and produce a large value for Bl
u (“false alarm”). Similarly, the statis-

tic Bl
u computed for a truly lensed pair could sometimes attain small

values (e.g., due to fluctuations in the detector noise), and reduce

the efficiency for detecting truly lensed events. This causes the dis-

tributions of the Bayes factor computed from lensed and unlensed

events to overlap; a good discriminator should minimize this over-

lap. Figure 5.6 shows this efficiency for correctly identifying truly

lensed events, as a function of the false alarm probability (probability

of wrongly identifying unlensed events as lensed events). We show

such receiver operating characteristic (ROC) plots for Bl
u computed

using different sets of parameters. We see that the discriminating

efficiency of the Bayes factor increases when we add more signal

parameters while computing the statistic. The source sky location

parameters (cos a, d) are the ones that most significantly improve the

performance. However, considering the fact that the expected rate

of lensed events is very small (< 1% of all events), the ROC curves

indicate that Bl
u, by itself, is not a very efficient statistic for identify-

ing lensed events. The detection efficiency of Bl
u computed using 6

dimensional posteriors is ⇠ 10 � 15% for a false alarm probability of

10�5.

Similarly, in Fig. 5.7 we plot the ROC curves for the time-delay

Bayes factor Rl
u computed for the same simulated injected events

with an average rate of 10 events per month as the binary black hole
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Bayes factors are computed using the
marginalized posteriors on parameter
set (mz

1, mz
2, cos a, d, c1, c2). We use

one year of unlensed events for the sim-
ulation.

detection rate. The three curves represent the ROC plots for Rl
u

computed assuming 1, 2 and 3 years of observation time. The effi-

ciency of Rl
u increases with the total length of the observation time

included in the analysis. This is because the distribution of the time

delay between unlensed event pairs becomes more and more skewed

towards high values as the observation time increases (see Fig. 5.2).

The performance of Rl
u is better than that of Bl

u, with an efficiency

of ⇠ 45 � 50% corresponding to a false alarm probability of 10�5 for

an observation time of 3 years.

As one can see in the scatter plot of Bl
u and Rl

u of lensed/unlensed

events pairs in Fig. 5.3, applying individual thresholds on Bl
u (verti-

cal) and Rl
u (horizontal) are less effective in separating lensed pairs

(red triangles) from unlensed pairs (blue stars). However, a com-

bined threshold can improve the discriminatory power. Therefore,

as described in Sec. 5.1, we combine Bl
u with Rl

u and define their

product as a new statistic. Figure 5.8 shows the distributions of

this combined statistic for lensed and unlensed event pairs with one

year of observation time. Figure 5.9 shows the ROC plots for this

combined statistic computed assuming 1 and 3 years of observations

time. The results clearly demonstrate that the combined statistic has

a significantly higher detection efficiency when compared to Bl
u and
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Rl
u. For a false alarm probability of 10�5, the product statistic (com-

puted using the six dimensional posteriors) identifies ⇠ 80% of the

lensed event pairs.
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Figure 5.9: Receiver operating charac-
teristic curves for the combined Bayes
factor statistic computed using the
marginalized posteriors on parameter
set (mz

1, mz
2, c1, c2 cos a, d) with

component masses sampled from
P1(m1, m2) (solid) and P2(m1, m2)
(bashed). The statistic is able to
correctly identify ⇠ 80% of the lensed
events with a false alarm probability of
10�5.

5.3 Search for lensing signatures in BBH events detected by

LIGO and Virgo in their O1 and O2 runs

During first and second observation runs of Advanced LIGO and

Virgo, 10 BBH merger events were detected. We would like to see if

any two events among the 45 pairs is strongly lensed images of the

same merger event. We also explore the possibility of existence of at

least one strongly lensed pair among the 45 pairs.

From each pair of binary black hole signals detected by LIGO and

Virgo, we compute the ratio of the marginalized likelihoods (Bayes

factor) of the competing hypotheses: 1) that, the pair of signals are

strongly lensed images of a single binary black hole merger, 2) that,

they are produced by two independent mergers. This Bayes factor

can be computed using the Eq. 5.11, where q denotes the set of pa-

rameters that describes the signal (excluding the luminosity distance

and arrival time), P(q) denotes the prior probability distribution of

q, while P(q|d1) and P(q|d2) describe the posterior distributions of
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q estimated from the data d1 and d2 containing the pair of signals

under consideration.

The measured time delay Dt0 between two signals can also be

used to compute the likelihood ratio of the two hypotheses. The

Bayes factor between the lensed and unlensed hypotheses can be

computed using the Eq. 5.13, where P(Dt0|HA) with A 2 {l, u} is

the prior distribution of Dt (under the lensed or unlensed hypoth-

esis) evaluated at Dt = Dt0. The prior P(Dt0|Hu) of the unlensed

hypothesis is computed assuming that binary merger events follow

a Poisson process. We use 714 days3 as the observation time for 3 This is the total duration from the be-
ginning of O1 to the end of O2. In re-
ality, the data is not available for the
entire 714 days due to the limited duty
cycle of the Interferometers. We do not
expect a significant change in the prior
distribution even if we include this cor-
rection.

computing P(Dt0|Hu). The prior distribution P(Dt|Hl) of the time

delay between strongly lensed signals is computed from an astro-

physical simulation that employs reasonable distributions of galaxy

lenses, mass function of binary black holes and redshift distribution

of mergers, following.

We compute Bl
u from a pair of binary black hole signals by in-

tegrating the posterior distributions of the binary’s parameters re-

leased by the LIGO-Virgo Collaboration [18, 99]. These posteriors are

estimated by the LALInferenceNest [146] code using the gravita-

tional waveform family IMRPhenomPv2. We use the joint posterior

distributions of the following parameters q := {mz
1, mz

2, a1, a2, cos qa1,

cos qa2, a, sin d, qJN }, where mz
1, mz

2 are the redshifted component masses,

a1, a2 are the dimensionless spin magnitudes, qa1, qa2 are the polar

angle of the spin orientations (with respect to the orbital angular

momentum), a, sin d denote the sky location, and qJN is the orienta-

tion of the total angular momentum of the binary (with respect to

the line of sight). 4 The Bayes factor in Eq.(5.11) is computed by 4 [62] have discovered that, if we ne-
glect the effects of spin precession and
non-quadrupole modes, multiple im-
ages are related to each other by specific
phase shifts. Hence the consistency of
the coalescence phase fc and polariza-
tion angle y, which is degenerate with
fc can also be used to determine the
consistency of multiple images. How-
ever, we are using a more general wave-
form family that include spin preces-
sion, where such a relationship does not
hold. Hence we do not check the con-
sistency of f0 and y.

numerically integrating the products of the Gaussian kernel density

estimates of the posterior distributions of q from each pair of events,

after marginalizing them over all other parameters using standard

priors in the LIGO-Virgo parameter estimation [18].

Figure 5.10 presents a scatter plot of the Bayes factors Bl
u and Rl

u

computed from binary black hole event pairs observed by LIGO and
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Figure 5.10: Scatter plot of the log10
Bayes factors Bl

u computed from the
consistency of posteriors of signal pa-
rameters estimated from each pair of bi-
nary black holes events and Bayes fac-
tors Rl

u computed from the time delay
between pairs of events. The signifi-
cance of these Bayes factors is shown
by dashed lines (in terms of Gaussian
standard deviations). This is estimated
by performing simulations of unlensed
events in simulated Gaussian noise and
estimating the probability of unlensed
events producing Bayes factors of this
value. In summary, we do not see any
strong evidence for multiply lensed im-
ages in LIGO-Virgo binary black hole
detections. Note that, out of 45 event
pairs, only those pairs with log10 Bayes
factors greater than �2 are shown in the
plot. We have taken into account the
effect of trials factor due the 45 event
pairs.

Virgo during the first two observation runs. Since the Bl
u and Rl

u

are computed using unrelated information, we can compute a joint

Bayes factor by multiplying Bl
u and Rl

u, which is used to determine

the significance for each pair [83]. Figure 5.10 also shows the signif-

icance of these Bayes factor values, Bl
u ⇥ Rl

u, in terms of Gaussian

standard deviations. The significance is estimated from simulations

of unlensed binary black hole events in Gaussian noise with power

spectra of the Advanced LIGO-Virgo network with design sensitiv-

ity, presented in [83] 5. In the estimation of the significance, we have 5 The significance of lensed event pairs
will be even lower if we used the ac-
tual O1-O2 noise spectra, due to the
lower sensitivity. Hence this is an op-
timistic estimate of the significance of
these Bayes factors.

taken into account the effect of the “trials factor” due to 45 event

pairs produced by the 10 events — if p is the probability of an un-

lensed pair to have a Bayes factor greater than a given threshold

(that we estimate from the simulations), the probability of at least

one among N unlensed pairs to randomly cross this threshold is

1 � (1 � p)N ' Np, assuming that each pair is independent.

The event pairs GW170104-GW170814 and GW150914-GW170809

show the highest Bayes factors Bl
u ⇠ 198 and 29 — their posteriors
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overlap at a reasonable confidence level to suggest a possible expla-

nation of them as double images of a single source based on wave-

form similarity (see Figs. 5.11 and 5.12). However, galaxy lenses are

unlikely to produce time delays as long as 7 or 23 months between

the images [83], resulting in a small Rl
u ⇠ 4 ⇥ 10�3 and 10�4 for

both pairs. If galaxy clusters were a viable lensing source, then one

could expect time delays of a few months [129, 128]. However, the

rate of strongly lensed binary black hole mergers by galaxy clusters

at current sensitivity is around 10�5 per year [126], disfavoring this

scenario. On the other hand, the time delay between GW170809 and

GW170814 is consistent with galaxy lenses (Rl
u ⇠ 3.3). While the

projected 1-dimensional posterior of, e.g., chirp mass overlap within

90% confidence [48], this is mainly caused by correlation with other

intrinsic parameters, e.g. effective spin. The posteriors in higher di-

mensions do not show similar overlap (see Fig. 5.13), implying that

these waveforms can be discriminated from each other with reason-

able confidence. Indeed, a full higher-dimensional consistency check

between the estimated parameters from this pair does not signifi-

cantly favor lensing (Bl
u ⇠ 1.2). The joint Bayes factors Bl

u ⇥ Rl
u

for these pairs are 0.9 (GW170104-GW170814), 4 ⇥ 10�3 (GW150914-

GW170809) and 4 (GW170809-GW170814). In summary, we do not

see any strong evidence for the hypothesis that any of the pairs of bi-

nary black hole signals are lensed images of the same merger event.

We have also repeated the same calculation employing the waveform

family SEOBNRv3 [113, 134, 34]. The Bayes factors that we obtain

from this analysis are consistent with those presented in Fig. 5.10.

We also compute the Bayes factor of the hypothesis that there ex-

ists at least one multiply imaged event in the entire catalog of events

observed by Advanced LIGO-Virgo in the first and second observing

run (without specifically identifying that pair). Considering the fact

that the probability for observing more than 2 lensed images of a sin-

gle merger is negligible, the joint Bayes factor Âp2pairs Bl
u(p)Rl

u(p)

is equal to 5.2, and is not highly significant.
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Figure 5.11: Marginalized 2D and 1D
posterior distributions of the parame-
ters that are included in the consis-
tency test, for the event pair GW170104

(blue), GW170814(red). Here, mz
1, mz

2
are the redshifted component masses,
a1, a2 are the dimensionless spin mag-
nitudes, qa1, qa2 are the polar angle of
the spin orientations (with respect to
the orbital angular momentum), a, sin d

denote the sky location, and qJN is the
orientation of the total angular momen-
tum of the binary (with respect to the
line of sight). The solid (dashed) con-
dors corrsponds to the 90%(50%) con-
fidence levels of the 2D distributions.
The inset plot shows the marginalized
posterior distributions of the sky lo-
calization parameters for these events.
Overall, the posteriors have some levels
of overlap, thus resulting in a consid-
erable Bayes factor of Bl

u ⇠ 198 sup-
porting the lensing hypothesis, purely
based on parameter consistency. How-
ever, galaxy lenses are unlikely to pro-
duce time delay of 7 months between
the images, resulting in a small Bayes
factor Rl

u ⇠ 4 ⇥ 10�3 based on time de-
lay considerations.

5.4 Detailed investigations of event pairs showing marginal evi-

dence of lensing

Here we present additional investigations on the event pairs that

show marginal evidence of multiply-imaged lensing in the analysis

presented in Sec. 5.3, providing a qualitative explanation of the Bayes

factors presented in that section in terms of the overlap of the esti-

mated posteriors from these event pairs. Figure 5.11 presents the

2D and 1D marginalized posterior distributions of the parameters

that are included in the consistency test, for the event pair GW17014-
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Figure 5.12: Same as Fig. 5.11, ex-
cept that the figure corresponds to the
150914 (blue), GW170809 (red) event
pair. The inset plot shows the marginal-
ized posterior distributions of the red-
shifted chirp mass Mz and effective
spin ceff for these events. Marginal-
ized 1D posteriors have some levels of
overlap in many parameters; however
2D posteriors show good separation in
many parameters, e.g., in Mz � ceff.
The resulting Bayes factor supporting
the lensing hypothesis, based on pa-
rameter consistency is Bl

u ⇠ 29. How-
ever, galaxy lenses are unlikely to pro-
duce time delay of 23 months between
the images, resulting in a small Bayes
factor Rl

u ⇠ ⇥10�4 based on time de-
lay considerations.

GW170814. Posteriors have appreciable levels of overlap in many

parameters, thus resulting in a considerable Bayes factor of Bl
u ⇠ 198

supporting the lensing hypothesis, purely based on parameter con-

sistency. However, galaxy lenses are unlikely to produce time delay

of 7 months between the images [83], resulting in a small Bayes factor

Rl
u ⇠ 4 ⇥ 10�3 based on time delay considerations.

Figure 5.12 shows similar plots for the event pair GW150914-GW170809.

Although marginalized 1D posteriors have some levels of overlap in

many parameters, 2D posteriors show good separation in many pa-

rameters, e.g., in Mz � ceff. The resulting Bayes factor supporting
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the lensing hypothesis, based on parameter consistency is Bl
u ⇠ 29.

However, galaxy lenses are unlikely to produce time delay of 23

months between the images, resulting in a small Bayes factor Rl
u ⇠

⇥10�4 based on time delay considerations. Figure 5.13 shows similar

plots for the event pair GW170809-GW170814. Here also, the 2D pos-

teriors of several parameters (e.g., in Mz � ceff) show poor overlaps,

suggesting that the full multidimensional posteriors do not have sig-

nificant overlap. The resultant Bayes factor for parameter consistency

is Bl
u ⇠ 1.2, even though, the time delay between these events is con-

sistent with galaxy lenses, producing a Bayes factor Rl
u ⇠ 3.3 based

on time delay.

5.5 Summary and future work

In this chapter we proposed a method for statistically identifying

multiple images of strongly lensed binary black hole merger events

from a population of GW detections by the LIGO-Virgo network.

Recent estimates show that Advanced LIGO and Virgo, when they

reach their design sensitivities, will detect several binary black hole

mergers per year that are strongly lensed by intervening galaxies [109].

We will be able to observe multiple images of such GW signals,

which are separated by time scales of minutes to weeks. In the

case of GW signals from stellar mass black-hole binaries lensed by

galaxies (for which lGW ⌧ 2GMlens/c2), the lensing will result in a

magnification/de-magnification of the GW polarizations without af-

fecting their frequency profile. Hence, the parameters of the binary

that determine the frequency evolution of the signal (such as the red-

shifted masses and spins), which we extract from multiple images,

will be mutually consistent 6. In addition, since the deflection an-

6 Note, however, that the luminosity
distance that we extract using the pa-
rameter estimation using standard (un-
lensed) templates will be biased, due to
the unknown magnification in the sig-
nal. Hence the inferred redshift and in-
trinsic masses will also be biased [61].gle is small compared to the typical source-localization accuracies,

the sky-location of multiple images will also be the same. In order

to determine whether a pair of binary black hole signals are lensed

images of the same merger, we check the consistency of extracted
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Figure 5.13: Same as Fig. 5.11, ex-
cept that the figure corresponds to
the GW170809 (blue), GW170814 (red)
event pair. Marginalized 1D posteriors
have some levels of overlap in many pa-
rameters; however 2D posteriors show
good separation in many parameters,
e.g., in Mz � ceff. The resulting Bayes
factor supporting the lensing hypothe-
sis, based on parameter consistency is
Bl

u ⇠ 1.2.

parameters (except the luminosity distance) from the two signals. To

be precise, we computed the odds ratio between two hypotheses 1)

that they are the lensed images of the same merger event, 2) that they

are two unrelated events. This odds ratio can be written in terms of

the overlap of the posterior distributions of the extracted parameters

from the two events, inversely weighted by the prior [see Eq. (5.11)].

In addition, we make use of the fact that the distribution of the time

delays between a pair of lensed events will be different from that be-

tween a pair of random uncorrelated events (see Fig. 5.2). This allows

us to define another odds ratio between the two hypotheses based on
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the observed time delay between a pair of events [see Eq. (5.13)]. We

combine these two different odds ratios to form a more sensitive dis-

criminator between lensed and unlensed events.

We test the efficiency of the proposed statistic by simulating bi-

nary black hole merger events in the LIGO-Virgo network with de-

sign sensitivity. The simulations shows that the pipeline can distin-

guish images ⇠ 80% of strongly lensed merger events from unlensed

events with a false alarm probability of 10�5 for three years of obser-

vation time.

There are possible ways of improving the discriminatory power

of this statistic: one is by increasing the number of parameters that

are used to test the consistency between estimated parameters of

the two events (e.g., inclination angle, spin orientations, etc., if they

are well measured). Secondly, one can use the property discovered

by [62] that waveforms of different images are related by specific

phase shifts. Thirdly, one could explore the possibility of using priors

on the magnification ratios of multiple images (or the ratios of the

SNRs of multiple images) in a way similar to the way we used the

priors on time delays between multiple events to distinguish between

lensed and unlensed pairs. We leave these as future work.

We looked for evidence of multiply imaged signals in the binary

black hole observations by LIGO and Virgo during the observing

runs O1 and O2. We found no strong evidence of strong gravitational

lensing. However, in future, as the detector sensitivities improve

further, we hope to observe more than one strongly lensed signal per

year [109]. Apart from verifying a fundamental prediction of general

relativity using a messenger that is different from electromagnetic

waves, such an observation might enable precision localization of the

merger when combined with optical observations of the lens galaxy.

Since the fraction of lensed events will be small, we do not expect

lensing to introduce significant biases in population analysis.
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A Appendix

A.1 Padé summation on the post-Newtonian amplitude in the

Fourier domain

The PN expression for various mode amplitudes have a stationary

point at high frequencies when higher order PN corrections are in-

cluded. This makes it inconvenient to model the amplitude of the

phenomenological waveforms as a factorized correction to the PN

waveforms as shown in Eq.(2.9). In order to resolve this issue, and

to generally improve the agreement of PN amplitude with that of

the hybrid waveforms, we construct our inspiral amplitude model

by performing Padé summation of these expressions. Padé summa-

tion of a given function involves finding a suitable rational function

whose Taylor expansion to a given order matches exactly with the

Taylor expression of the original function to the same order. For in-

stance, Padé summation of a simple power series Ân
k=0 anxn can be

written as

Pp
q (x) =

Âp
k=0 bkxk

Âq
k=0 ckxk

, (A.1)

where p + q = n. Each of these coefficients (bk and ck) then can

readily be obtained by demanding that a Taylor expansion of the

above to order n reproduces exactly the first n terms the given power

series. Such rational functions are called Padé approximants (see

App. A of Ref. 1 for a related discussion). 1 T. Damour, B R Iyer, and B S
Sathyaprakash. Improved filters for
gravitational waves from inspiraling
compact binaries. Phys. Rev. D, 57:885–
907, 1998

After comparing various Padé approximants corresponding to PN

amplitude expressions for each mode we find the most suitable (i.e.,

an approximant with no point of inflection) approximant corresponds
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to the choice of rational functions associated with p = 0 and q = n,

i.e., P0
n . For instance for the ` = m = 2 mode whose (normalized)

amplitude is given by the series, Â7
k=0 akvk, the Padé approximant

we find most suitable for our purposes is given by

P0
7 (v) =

b0

Â7
k=0 gkvk

. (A.2)

Moreover by the virtue of the use of normalized amplitude expres-

sions in constructing the Padé approximants we can choose (without

any loss of generality), b0 = g0 = 1, which leads to the following

simple expression

P0
7 (v) =

1
1 + Â7

k=1 gkvk
. (A.3)

Figure A.1 shows a comparison of the standard Taylor expanded

3.5PN (3PN) amplitude for 22 (21, 33, 44) with our corresponding

resummed Padé function as well as the amplitude of the hybrid

waveform in the Fourier domain. Explicit expressions for Padé ap-

proximants for modes we consider here are listed in Appendix A.2

below.

A.2 Padé resummed frequency domain expressions for the inspi-

ral amplitude

As discussed above, occurrence of divergences in the PN ampli-

tudes when including higher PN terms motivates us to find Padé

resummed expressions of the PN amplitudes as our inspiral ampli-

tude model. Here we provide, analytical expression for the complete

inspiral model for each mode in the frequency domain which are

constructed using the prescription listed in Ref. [141] and uses Sta-

tionary Phase Approximation. Resulting expression for each mode

of the gravitational wave polarizations in the frequency domain take
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the following general form

h̃`m( f ) =
M2

DL
p

r

2h

3
v�7/2

f e�i m Y(v f ) H`m(v f ) . (A.4)
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Figure A.1: Comparison of the Padé
approximant of the PN inspiral ampli-
tude (thin, solid lines) with regular Tay-
lor expanded amplitude (thin, dotted
lines) and the amplitude of the hybrid
waveform (thick, solid lines) for differ-
ent modes `m = 21, 22, 33, 44. The left
panel corresponds to mass ratio q =
2.32 while the right panel corresponds
to mass ratio q ' 10.

Here, M and h again denote the total mass and symmetric mass

ratio parameter of the binary whereas DL is the luminosity distance

of the source. The quantity v f is given by v f ⌘ (2 pM f /m)1/3 and

Y(v f ) represents the orbital phase of the binary computed using sta-

tionary phase approximation (see for instance Ref. [141] for a related

discussion). Finally, H`m are the Padé resummed version of the in-

spiral amplitudes and takes following form for the modes whose

complete models are presented in this study. They read

H22 = 22P0
7 (v f ) (A.5a)

H21 = i
p

2
3

d [21P0
5 (v f )] v f (A.5b)

H33 = �i
3
4

r

5
7

d [33P0
5 (v f )] v f (A.5c)

H44 = �4
9

r

10
7

(1 � 3 h) [44P0
4 (v f )] v2

f (A.5d)

here, `mP0
n(v f ) are Padé resummed expressions for (normalized) in-

spiral amplitudes corresponding to p = 0 and q = n (see Appendix
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A.1 for related discussions) and can be expressed in the following

general form.

`mP0
n(v) =

1
1 + Ân

k=1 g

`m
k vk

, (A.6)

where g

`m corresponding to each mode can be written in the follow-
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ing form,
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Finally, the orbital phase takes the following form in Fourier do-

main

Y(v f ) = 2p f t0 � p/4 +
3

256 h v5
f

"

7

Â
k=0

ykvk
f

#

, (A.8)

where, t0 represents a reference time2 and yk denote the PN correc- 2 Note that we have set the phase at ref-
erence time to zero, since phase shifts
can be introduced on the waveform by
the spherical harmonic basis functions;
see Eq.(A.16).

tions to the leading order orbital phase. These read

y0 = 1, (A.9a)

y1 = 0, (A.9b)

y2 =
3715
756

+
55
9

h, (A.9c)

y3 = �16 p, (A.9d)
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ln(4v f ), (A.9g)

y7 =
77096675p

254016
+

378515p

1512
h � 74045p

756
h

2, (A.9h)

where gE is the Euler’s constant.

A.3 Computing the + and ⇥ polarization waveforms from the

spherical harmonic modes in the frequency domain

The complex time-series, h = h+ � i h⇥, can be decomposed into a

sum of spherical harmonic modes as

h(t) =
+•

Ầ
=2

`

Â
m=�`

h`m(t) Y`m
�2(i, j0) , (A.10)

where Y`m
�2 ’s (the spin-weighted spherical harmonics of weight �2)

are functions of the spherical angles (i, j0) defining the binary’s ori-
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entation, and are given as

Y`m
�2 =

r

2` + 1
4p

d `m
2 (i) ei m j0 , (A.11)

where d `m
2 (i) are the Wigner d functions (e.g., [149]). The spherical

harmonic modes of the waveform in time-domain have the following

generic form

h`m(t) = A`m(t) ei j`m(t) (A.12)

Further, m < 0 modes are related to m > 0 modes as h`,�m(t) =

(�)`h⇤
`m(t) [91]. Using Eq. (A.11) and Eq. (A.12) in Eq. (A.10) and

making use of the above property we can write expressions for the

real and imaginary part as

h+(t) =
+•

Ầ
=2

`

Â
m=1

r

2` + 1
4p

h

(�)`d `,�m
2 (i) + d `m

2 (i)
i

A`m(t) cos[j`m(t) + mj0],

(A.13a)

h⇥(t) =
+•

Ầ
=2

`

Â
m=1

r

2` + 1
4p

h

(�)`d `,�m
2 (i) � d `m

2 (i)
i

A`m(t) sin[j`m(t) + mj0].

(A.13b)

The frequency domain + and ⇥ waveforms can now be obtained

simply by taking Fourier Transform of h+(t) and h⇥(t), respectively

h̃+( f ) =
+•

Ầ
=2

`

Â
m=1

r

2` + 1
4p

h

(�)`d `,�m
2 (i) + d `m

2 (i)
i

⇢

cos(mj0) h̃R
`m( f ) � sin(mj0) h̃I

`m( f )
�

,

(A.14a)

h̃⇥( f ) =
+•

Ầ
=2

`

Â
m=1

r

2` + 1
4p

h

(�)`d `,�m
2 (i) � d `m

2 (i)
i

⇢

sin(mj0) h̃R
`m( f ) + cos(mj0) h̃I

`m( f )
�

.

(A.14b)

where h̃R
`m( f ) and h̃I

`m( f ) are the Fourier transforms of the real

and imaginary parts of h`m(t).

h̃R
`m( f ) =

Z •

�•
e2pi f t A`m(t) cos j`m(t) dt, (A.15a)

h̃I
`m( f ) =

Z •

�•
e2pi f t A`m(t) sin j`m(t) dt. (A.15b)
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We know that for non-spinning binaries (as well as for non-precessing

binaries), h̃I
`m( f ) = �ih̃R

`m( f ). This allows us to write Eq. (A.14) as

h̃+( f ) =
+•

Ầ
=2

`

Â
m=1

h

(�)` d `,�m
2 (i)

d `m
2 (i)

+ 1
i

Y`m
�2(i, j0) h̃R

`m( f ) (A.16a)

h̃⇥( f ) = �i
+•

Ầ
=2

`

Â
m=1

h

(�)` d `,�m
2 (i)

d `m
2 (i)

� 1
i

Y`m
�2(i, j0) h̃R

`m( f ). (A.16b)

Note that h̃R
`m( f ) can be written as

h̃R
`m( f ) = A`m( f ) ei Y`m( f ). (A.17)

The phenomenological model for the frequency domain amplitudes

A`m( f ) and phases Y`m( f ) are obtained by fitting the FFT of hybrids.

The signal observed at a detector is a linear combination of the

two polarizations h+ and h⇥. The Fourier transform of the observed

signal can be written in terms of the Fourier transform of the two

polarizations as

h̃( f ) = F+(q, f, y) h̃+( f ) + F⇥(q, f, y) h̃⇥( f ), (A.18)

where the antenna pattern functions F+(q, f, y) and F⇥(q, f, y) are

functions of two angles (q, f) describing the location of the binary in

the sky and the polarization angle y.

A.4 Mode removal in frequency domain

Here we detail the calculation of the spheroidal harmonic modes

from spherical harmonic modes in the frequency domain, shown in

Eq. (2.21). From Eq. (2.20), we have,

Sh320(t) '
Yh32(t) � Yh22(t)µ

⇤
2320/µ

⇤
2220

µ

⇤
2330

, (A.19)
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Taking the real part gives us
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(A.20)

In frequency domain, this takes the following form,
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(A.21)

or

Sh̃R
320( f ) ' 1

|µ2330|2
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I
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, (A.22)

where

a1 := Yh̃R
32( f ) �

✓
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(A.23)

Similarly, one can show for the imaginary part,

Sh̃ I
320( f ) ' 1

|µ2330|2
⇣

a2µ

R
2330 + a1µ

I
2330

⌘

. (A.24)

A.5 Mode mixing removal for lower mass ratios

We give analogs of Figs. 2.3 and 2.8 for a mass ratio of q = 2.32 in

Figs. A.2 and A.3. The first of these figures illustrates that the mode

mixing removal is still effective in improving the agreement of the

instantaneous frequency with the expected QNM frequency, and in

reducing the amplitude oscillations of the 32 mode. However, the

mode mixing removal is less effective for q . 3, for reasons we do

not fully understand. Nevertheless, the second figure shows that the
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Figure A.2: This is the analog of Fig. 2.3
for mass ratio q = 2.32. The left-hand
plot shows the mode mixing removal
in the time domain amplitude of the
second time derivatives of the modes
and the right-hand plot shows the ef-
fects of the mode mixing removal on
the instantaneous frequency of the sec-
ond time derivatives of the modes. The
solid lines show the spherical harmonic
modes and the dashed lines show the
unmixed spheroidal harmonic 320 and
430 modes constructed using the pro-
cedure in Sec. 2.3.1. We see that there
are considerably larger oscillations in
the instantaneous frequency of the 320
mode than in Fig. 2.3, particularly in the
frequency. We also see some numerical
noise in the frequency plots, which we
find can be attributed to the extrapola-
tion procedure used to obtain the wave-
form at infinity.

final model for the mixed modes still agrees well with the Fourier

transform of the hybrid.
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Figure A.3: This is the analog of Fig. 2.8
for mass ratio q = 2.32. The solid lines
show the amplitude of the hybrid and
the dashed lines show the amplitude
of our analytical model for the mixed
modes (32 and 43). We can see that
the model is able to reproduce the hy-
brid modes quite well, even though our
mode-mixing removal method for this
mass ratio is less effective as compared
to the same for higher mass ratios.

The numerical noise we find in the instantaneous frequency of

the modes is reduced when considering the NR waveform with no

extrapolation to infinity. Experimentation with the equal-mass non-
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spinning Cauchy-characteristic extraction SXS waveform from [135]

finds that this does not suffer from the numerical noise that is present

in the instantaneous frequencies of the analogous finite radius or ex-

trapolated equal-mass nonspinning SXS waveform modes.

A.6 Generating samples of strongly lensed and multiply imaged

binary mergers

In this section, we outline our method for generating samples of

strongly lensed and multiply imaged binary merger events. We will

use results for strong lensing probabilities that have been derived

earlier (see e.g., [92, 57]). Given below is a brief summary of our

method and assumptions:

1. Given a source redshift, the bulk of the magnification probability

describes cases with a single lensed image [132, 61]. We are inter-

ested in multiply imaged mergers, so we do not need to accurately

model the cases with single images.

2. Multiple images dominantly arise due to galaxy lenses [76]. We

model individual strong lenses as isothermal ellipses with non-

zero ellipticity.

3. Singular isothermal ellipsoid (SIE) lens models have a surface

mass density that diverges at the center. These lenses produce

either two or four images [92].

4. The lens model has two parameters: velocity dispersion s and

axis-ratio q. We generate these parameters with distributions taken

from the SDSS galaxy population [57]. The axis-ratio does not

dramatically change the strong lensing cross section, so we can

estimate overall rates in the manner of Ref. [150].
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A.6.1 Probability of multiple imaging

Given the assumptions that are outlined above, the multiple imaging

optical depth t(zs) to a given source redshift zs is [150]:

t(zs) =
Z zs

0

dt

dzl
dzl, (A.25)

where the differential optical depth per unit lens redshift zl is

dt

dzl
=

Z

ds n(zl)
dp
ds

(1 + zl)
3 cdt

dzl
pDl(zl)

2
q

2(s, zl, zs). (A.26)

Here, s is the lens’ velocity dispersion, n(zl) is the comoving number

density of lenses, dp/ds is the PDF of the velocity dispersion s, Dl

is the angular diameter distance to the lens, and q is the angular

Einstein radius of a singular isothermal sphere (SIS) lens. We assume

a constant number density and an unchanging PDF of the velocity

dispersion, which are reasonable for galaxy lenses at relatively low

redshifts [41].

Let us start with the parameters for the population of early-type

galaxies from Ref. [56]: the number density n = 8 ⇥ 10�3h3Mpc�3,

and the distribution of velocity dispersion (VDF) is

dp
ds

=

✓

s

s⇤

◆

a
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"

�
✓
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s⇤

◆
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#

b

G(a/b)
1
s

, (A.27)

where a = 2.32, b = 2.67, and s⇤ = 161 km s�1. Substituting the

Einstein radius for a SIS q = 4p(s

2/c2)Dls/Ds in Eq. (A.26), we get

dt

dzl
= 16p

3(1 + zl)
2 c n

H(zl)

✓

DlDls
Ds

◆2
⇣

s⇤
c

⌘4 G([4 + a]/b)
G(a/b)

. (A.28)
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The total multiple-imaging optical depth is

t(zs) = 16p
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3
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n Dc

s
3
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Dc
s
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◆3
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(A.30)

In the last line, we have written the result in terms of the comov-

ing distance Dc(z) =
R z

0 dz0 c/H(z0), and used Dc
l and Dc

s to denote

Dc(zl) and Dc(zs), respectively. For the simulations in this work,

we use the following values for the cosmological parameters in the

LCDM model: H0 = 70Km s�1Mpc�1 and WL = 0.7.

Ref. [109] use a similar scaling as in Eq. (A.30) for the strong

lensing optical depth. However, their normalization (as derived in

Ref. [76]) is larger by a factor of 6.3. The difference arises because the

number density and VDFs provided in Ref. [56] are fits to the SDSS

population of early-type galaxies, which dominate the high velocity-

dispersion end (and can be dominantly selected for in strong lensing

surveys). Ref. [36] provide the number densities and VDFs for the

entire galaxy population, and obtain a similar enhancement in the

total characteristic number density n (and even larger characteristic

velocity dispersions for early-type galaxies). The selection effects for

GW lensing are very different from those for optical surveys (ob-

scuration by the stellar light from the lens galaxy is not an issue),

and hence, it is appropriate to use all lens galaxies when forward-

modeling the population of lensed sources. However, this difference

is immaterial for our study.

A.6.2 Method to generate samples of lensed events

In this section, we outline our method for drawing samples of strongly

lensed mergers from a given source distribution.
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Figure A.4: Distributions of the mag-
nifications µ1, µ2 (left) and the arrival
times dt1, dt2 relative to unlensed ar-
rival time (right) of the two dominant
images for simulated events (See Eqs.
A.41 ans A.42 ). Solid (dashed) traces
show distributions before (after) apply-
ing the detection threshold SNR � 8.
The component masses of the simu-
lated events are sampled from power
law 1 distribution.

1. Pick a source: We start with a merger whose intrinsic parameters

(total mass M = m1 + m2, symmetric mass ratio h = m1m2/M2,

and dimensionless spins c1 and c2) are drawn from given distri-

butions. In addition, we randomly draw the angles (i, y) associ-

ated with the binary’s plane so that its orbital angular momentum

is distributed uniformly over the sphere, and randomly draw its

position (cos a, d) so that the binaries are uniformly distributed in

the sky. The redshift zs is distributed as given in [69] (see, Fig. 5.4).

See, Sec. 5.2 for more details.

2. Accept/reject according to the multiple imaging probability: Given the

source redshift zs, we read off the multiple–imaging probability

t(zs) from (the enhanced version of) Eq. (A.30). If t(zs) is larger

than a random number uniformly distributed between 0 and 1,

we proceed to step 3. If not, we discard this source.

3. Draw the lens redshift: If the merger survives step 2, we draw a

sample r from the PDF

p(x) = 30 x2(1 � x)2, 0 < x < 1. (A.31)

and compute a sample lens comoving distance using Dc(zl) =

r Dc(zs); we obtain the lens redshift zl by inverting Dc(zl). Using

Eq. (A.29), we see that if a source at zs is multiply imaged, this

procedure yields lens redshifts with the right posterior distribu-
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tion.

4. Draw the lens parameters: We use the fits for the distribution of the

lens parameters from Ref. [57]. We draw a parameter a from a

generalized Gamma distribution

p(x) = xa�1 exp
⇣

�xb

⌘

b

G(a/b)
, (A.32)

where a = 2.32, b = 2.67, and set s = 161 km s�1 ⇥ a. We next

sample the distribution of the axis ratio of the lens. Given the

above sample of a, we repeatedly draw parameter b from a Rayleigh

distribution

g(x) =
x
s2 exp

✓

� x2

2s2

◆

, 0 < x < •, (A.33)

where,

s = 0.38 + 0.09177 a, (A.34)

until we get a sample b < 0.8. We then set the axis ratio q = 1 � b.

5. Draw a source–plane location: Given a lens with the above param-

eters, we then sample the source–plane location of the merger.

Since we have already determined that it is multiply imaged, we

only need to get the right posterior distribution of the source,

which is a uniform distribution within the cut/caustics of the lens

model. A complication is that we cannot analytically calculate the

intersection of the two and four image regions for small values of

the axis ratio. Our approach will be to use the results in Ref. [92],

and draw with repetition. The idea is to repeatedly draw points

(y1, y2) within a certain range, and solve the lens equation (as de-

tailed in Step 6), until we obtain a location with multiple images.

Given axis ratio q, we draw coordinates y1 and y2 from uniform
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distributions in the following ranges:

y1 2
✓

0,
r

q
1 � q2 arccosh



1
q

�◆

, (A.35)

y2 2

8

>

>

<

>

>

:

⇣

0,
q

q
1�q2 arccos [q]

⌘

, if q > q0

⇣

0,
q

1
q �

q

q
1�q2 arccos [q]

⌘

, if q < q0

(A.36)

Here q0 = 0.3942 is the numerical solution to the transcendental

equation 2q0 arccos q0 =
q

1 � q2
0.

6. Solve the lens equation: Given y1, y2, and q, we numerically find all

roots of the one-dimensional equation

"

y1 +
r

q
1 � q2 arcsinh

 

p

1 � q2

q
cos f

!#

sin f �


y2 +
r

q
1 � q2 arcsin

✓

q

1 � q2 sin f

◆�

cos f = 0 (A.37)

in the interval [0, 2p). Assuming that we get solutions {f1, f2, · · · },

we only retain those fi that satisfy the condition

"

y1 +
r

q
1 � q2 arcsinh

 

p

1 � q2

q
cos fi

!#

cos fi +



y2 +
r

q
1 � q2 arcsin

✓

q

1 � q2 sin fi

◆�

sin fi > 0 (A.38)

If the final list of solutions only contains one element, we go back

to Step 5 and repeat until we get a case with a set {fi} with with

multiple elements.

7. Read off image magnifications and time delays: The deflections are

typically small relative to the GW localization uncertainties, so we

ignore the differences between image positions on the sky while

computing the GW signal. However, we need the positions to

calculate the magnifications and time delays from the lens model.

Given the list of solutions {f1, f2, · · · } from Step 6, and the source

position (y1, y2) for each image, we compute the image positions
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Figure A.5: Left panel: The distributions
of red shifted component masses mz

1
and mz

2 for unlensed and lensed sim-
ulated events producing an SNR � 8
in the Advanced LIGO-Virgo network.
Solid and dashed curved correspond
to the source frame mass distributions
P1 and P2, respectively. Right panel:
The red shift distributions of detectable
(SNR � 8) unlensed and lensed simu-
lated events.

(x1,i, x2,i) as follows:

x1,i = y1 +
r

q
1 � q2 arcsinh

 

p

1 � q2

q
cos fi

!

, (A.39)

x2,i = y2 +
r

q
1 � q2 arcsin

✓

q

1 � q2 sin fi

◆

(A.40)

The magnifications of the images are given by

µi =

0

@1 �
s

q
x2

1,i + q2x2
2,i

1

A

�1

. (A.41)

The arrival times of the images relative to some common base

time), are:

dti = 16p

2 Dc(zl)
c

⇣

s

c

⌘4


1 � Dc(zl)
Dc(zs)

�

Fi

= 1.35 ⇥ 106 s
✓

Dc(zl)
1 Gpc

◆

⇣

s

161 km s�1

⌘4


1 � Dc(zl)
Dc(zs)

�

Fi,

(A.42)

where

Fi =
1
2

(xi � y)2 �

s

q(x2
1,i + x2

2,i)

1 � q2 ⇥
"

sin fi arcsin (
q

1 � q2 sin fi) + cos fi arcsinh

 

p

1 � q2

q
cos fi

!#

,

(A.43)
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where s is the velocity dispersion drawn in Step 4.

Figure A.4 shows the distributions of µi and dti corresponding to

two prominent images for simulated events before and after applying

the detection threshold (SNR=8) in LIGO-Virgo network.

A.6.3 Simulating GW observations

Appendix A.6.2 describes how we draw random samples of the bi-

nary’s parameters. Strongly lensed events produced multiple values

of the magnification {µi} and time delay {dti}. Multiply imaged GW

signals can be generated by multiplying the original signal with the

magnification factor and by applying the lensing time delay

hlens
+,⇥, i( f ; l) =

p
µi exp (i 2p f dti) h+,⇥( f ; l), (A.44)

where h+,⇥( f ; l) are the two polarizations of the original GW signal

in Fourier domain corresponding to a set of parameters l, f is the

Fourier frequency and i :=
p

�1. In practice, we compute different

gravitational waveforms by rescaling the luminosity distance dL by

1/p
µi, at different times t0 + dti, where t0 is a fiducial reference time.

We then project these polarizations on to the Advanced LIGO-Virgo

network and compute the optimal signal-to-noise ratio

r

lens
i = 2

 

Â
D

Z •

flow

hlens
D, i ( f )2

SD( f )
d f

!1/2

. (A.45)

Above, the summation is over different detectors, hlens
D,i ( f ) :=

F+, D(a, d, y) hlens
+, i ( f ) + F⇥, D(a, d, y) hlens

⇥, i ( f ) denote the observed sig-

nal in detector D whose noise has a one-sided power spectral density

SD( f ). The antenna patterns of the detector D is denoted as F+, D and

F⇥, D, which are functions of the source position a, d and polarization

angle y. The low-frequency cutoff is chosen to be flow = 20 Hz. If at

least two images have the network SNR ri greater than a threshold

of 8, we consider them as strong-lensing detections. In our simula-

tion, the fraction of events with more than two detectable images is
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negligible. We compute the Bayes factors described in Sec. 5.1 using

pairs of lensed events as described in Sec. 5.2. Figure A.5 shows the

mass and red shift distributions of detectable events.





List of Figures

1.1 A binary system with two point masses in x1 � x2 plane encir-

cling each other [87]. 26

1.2 The top plot shows the two polarisations h+ and h⇥ as the func-

tion of time, for non-spinning equal mass black hole binary with

unit total mass. The bottom plots shows the accumulated frac-

tion of total mass radiated in (2, ±2) mode and all the modes

from ` = 2 : 6 and m = �` : `, in the percentage of the to-

tal mass of the binary. We can see that the energy radiated in

the subdominant modes is almost negligible compared to the

(2, ±2) mode for a nearly equal mass binary. Here, Rs is the

Schwarzschild radius of the individual black hole. Note that, the

unit of M (= GM/c3) is second. t = 0 corresponds to the peak

of the amplitude of the waveform [www.einstein.gatech.edu].

62

2.1 Comparison between the amplitude (top panels) and phase (bot-

tom panels) of the hybrids and analytical waveforms for selected

mass ratios q = 2.32 (left panels) and q = 9.99 (right panels). In

each plot, the solid lines correspond to hybrid waveforms for

different modes and the dashed lines correspond to the ana-

lytical waveforms for the same mode. The legends show the

`m value for different modes. The black dots show the tran-

sition frequency ( f A
`m and f P

`m) from the inspiral-merger to the

ringdown part of the phenomenological amplitude and phase

models. 71
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2.2 The estimated values of the phenomenological parameters de-

scribing the analytical waveforms, plotted against the symmetric

mass ratio h. Different markers correspond to different modes.

Also plotted are the fits given by Eqs. (2.28). 74

2.3 Left panel: Amplitude of the second time derivative of different

spherical harmonic modes Yḧ`m(t) (solid lines) from a nonspin-

ning binary with mass ratio q = 4. Time t = 0 corresponds

to the peak amplitude of 22 mode. Note the oscillations in

the 32 and 43 modes for t > 0, due to the mixing of multiple

spheroidal harmonic modes. The dashed lines show the am-

plitude of the second time derivative of the spheroidal harmonic

modes Sḧ`m0(t) for `m 2 {32, 43} constructed using the prescrip-

tion presented in Sec. 2.3.1, which are better behaved in the ring-

down regime (t > 0). Right panel: The instantaneous frequency

ḟ`m(t) of the second time derivatives of the spherical (solid lines)

and spheroidal (dashed lines) modes. The horizontal lines show

the quasi-normal-mode frequencies of different modes. Note

that the 32 and 43 spherical harmonic modes’ frequencies (solid

lines) do not approach the corresponding quasi-normal-mode

frequencies, while the spheroidal harmonic modes’ frequencies

(dashed lines) do. 76

2.4 Fourier domain amplitude |h̃R
`m( f )| of the spherical (solid) and

spheroidal (dashed) harmonic modes from a nonspinning bi-

nary with mass ratio q = 4. The vertical line with the corre-

sponding color represents f QNM
`m . 78

2.5 The amplitude of mixed and unmixed modes as a function of

frequency for mass ratio q = 4. The dashed lines represent the

amplitude of unmixed modes. The 43 mode has been scaled

appropriately to avoid overlap with the 32 mode. 79
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2.6 Comparison between the amplitude (left panel) and phase (right

panel) of the unmixed modes for the hybrid and analytical model

waveforms for mass ratio q = 4. In each plot, the solid lines cor-

respond to the unmixed modes and the dashed lines correspond

to the analytical model waveforms for the same mode. The black

triangles represent the transition frequency from inspiral-merger

to ringdown as defined in Eqs. (2.8) and (2.12), i.e., f A
`m and f P

`m.

The amplitude and phase of the 22 mode have been scaled ap-

propriately to make them fit inside the figure. 81

2.7 The estimated values of the phenomenological parameters de-

scribing the analytical model waveforms, plotted against the

symmetric mass ratio h. 82

2.8 Comparison of the amplitude of the mixed modes for a mass ra-

tio q = 4, showing the hybrid (solid lines) and analytical model

(dashed lines). 84

2.9 Comparison between hybrid waveforms and our analytical phe-

nomenological waveforms for a binary with mass ratio q = 10.

Hybrid waveforms are constructed using all the modes with

`  4, except the m = 0 modes. Phenomenological waveforms

are constructed by taking the (discrete) inverse Fourier trans-

form of the analytical model waveforms in the Fourier domain.

The top panel corresponds to a “face-on” binary (inclination an-

gle i = 0) while the bottom panel corresponds to an “edge-on”

binary (i = p/2). The two phenomenological waveforms cor-

respond to the current model with and without the 32 and 43

modes. 86
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2.10 The unfaithfulness (mismatch) of the analytical model waveform

family towards hybrid waveforms for inclination angle i = p/2.

The analytical model waveform family in the top panel con-

tains only the 22, 33, 44, and 21 modes while in the bottom

panel the mixed modes we model here are also included, i.e.,

also the 32 and 43 modes. The horizontal axes report the total

mass of the binary and different curves correspond to different

mass ratios q (shown in the legend). Horizontal black dashed

lines correspond to a mismatch of 1%. The overlaps are com-

puted assuming the design power spectrum of Advanced LIGO

(in the “high-power, zero-detuning” configuration), assuming a

low-frequency cutoff of 20 Hz. We do not consider a smaller

low-frequency cutoff or smaller total masses due to computa-

tional difficulties with constructing hybrid waveforms starting

from lower dimensionless frequencies. 87

2.11 The unfaithfulness (mismatch) of the analytical model waveform

22 mode against the hybrid 22 mode. The left plot shows the

mismatch for the previous phenomenological 22 mode and right

plot shows the mismatch for the current phenomenological 22

mode which has been remodeled. The horizontal axes report

the total mass of the binary and different curves correspond to

different mass ratios q (shown in the legend). We can see a

significant improvement in the mismatch for high mass ratio

waveforms in the right-hand plot. 89
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3.1 The thick (thin) contours show the 50% (90%) credible regions

in the joint posteriors of two parameters DMc and Dq (differ-

ence in the chirp mass Mc and mass ratio q estimated from the

quadrupole vs non-quadrupole modes) from a simulated BBH

signal. Black histograms on the side panels show the marginal-

ized posteriors in DMc and Dq, while the cyan histograms show

the 1-dimensional posteriors in DMc and Dq estimated from the

data by introducing only one variation (say, DMc) at a time,

keeping the other fixed (say, Dq = 0). It can be seen that the

posteriors are fully consistent with the GR prediction of DMc =

Dq = 0 (shown by a “+” sign in the center panel and by thin

black lines in side panels). In the side panels, the dotted lines

mark the 90% credible regions. The simulated GR signal cor-

responds to a BBH system with total mass M = 80M�, mass

ratio q = 1/9 and inclination angle i = 60� observed by a single

Advanced LIGO detector with an optimal SNR of 25. 93

3.2 The figure shows the width of the 90% credible region of DMc

and Dq for binaries with different mass ratios q (horizontal axis)

and inclination angles i (legends). All binaries have a total mass

40M�. Best constraints are provided by binaries with high mass

ratios and/or large inclination angles. 97

3.3 Same as Fig. 3.2, except that the horizontal axis reports the total

mass M. All binaries correspond to a mass ratio q = 1/9. 98
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3.4 Black contours show the posterior distributions of DMc and Dq

(similar to Fig 3.1) estimated from a simulated GW signal from a

binary containing at least one compact object other than a black

hole. The signal was produced by rescaling a numerical relativ-

ity waveform from a neutron star-black hole binary with mass

ratio 1/6 to a total mass of 120M� (inclination angle i = 90�,

producing SNR of 50 in Advanced LIGO). Note that the poste-

riors are inconsistent with a BBH system in GR (DMc = Dq = 0,

marked by a “+” sign, is outside the 90% credible region). The

orange contours show the posteriors estimated from a numerical

relativity waveform from a BBH system with same parameters,

which show consistency with DMc = Dq = 0. 99

3.5 Projected cumulative distribution of the mass ratio q (left) and

inclination angle i (right) of simulated BBHs that are detectable

by Advanced LIGO, based on our assumed component mass dis-

tribution. The two distributions in the left plot corresponds to

two assumed distributions of the component masses (see text). 100

3.6 The width of the 90% credible region of the posteriors of DMc

and Dq as a function of the optimal SNR of the signal in a single

Advanced LIGO detector. The simulated GR signal corresponds

to a BBH system with total mass M = 80M�, mass ratio q = 1/9

and inclination angle i = 60� (same as Fig. 3.1). 101

4.1 Gravitational lens geometry for the source, the lens and the ob-

server. Dl ,Ds and Dls are the distances between them. h is a dis-

placement of the source and x is an impact parameter. We use

the thin lens approximation in which the gravitational waves are

scattered in the thin lens plane. [Takahashi et al (2003)] 107
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4.2 Iso-density contours for the SIS (dashed) and the SIE (dash-

dotted) with f = 0.6 for the same value of k in both cases. The

solid line represents the contour of the deflection potential y.

We see that the contour of y looks much rounder than corre-

sponding iso-density contour. [Astron. Astrophys. 284, 285-299

(1994)] 111

4.3 Cut and caustics of the SIE for different values of the axis ratio.

The curves with the cusps are the caustics. The high axis ratio

means that we are closer to the case of the SIS. In SIS, the caustic

degenerates to a point (top left plot). The dashed lines have to be

ignored here. [Astron. Astrophys. 284, 285-299 (1994)] 113

5.1 95% credible regions of the marginalized posteriors of the red-

shifted masses mz
1, mz

2 (left) and sky location cos a, d (right) of

lensed images of a sample binary black hole merger event. Black

stars show the actual injected parameters. 122

5.2 Distribution of the log of the time delay between lensed event

pairs detected by the Advanced LIGO-Virgo network, along with

the distribution from unlensed event pairs. The simulated bi-

nary black hole populations have their component masses (source-

frame) distributed according to two power laws (see text); how-

ever, note that the time delays are practically insensitive to the

specific form of the mass distribution. The redshifts of the merg-

ers are sampled with the distribution obtained in . We con-

sider strong lensing produced by intervening galaxies. In order

to compute the distribution of the time delay between unlensed

events, we assume that they follow a Poisson distribution with

a rate of 10 mergers per month. The time delay distributions

of unlensed event pairs get skewed towards larger values as we

increase the observation time. 123
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5.3 Scatter plot of the two Bayes factors Bl
u and Rl

u computed from

the unlensed (blue stars) and lensed (red triangles) event pairs.

The Bayes factors computed from the posterior distribution of

the binary’s parameters (Bl
u) and that computed from the time

delay distribution (Rl
u) are in general correlated. However, they

can be combined to improve our ability to distinguish lensed

pairs from unlensed pairs. In this simulation, the component

masses are distributed according to the second power law given

in the text. 125

5.4 Probability distributions of the cosmological redshift (left) and

component masses m1, m2 in the source frame (right) of the sim-

ulated binary black hole merger events. 127

5.5 Distribution of the log10 Bayes factor Bl
u computed from the

unlensed and lensed simulations with component masses sam-

pled from power law 1 and power law 2. The Bayes factors are

computed using the marginalized posteriors on parameter set

(mz
1, mz

2, cos a, d, c1, c2). It can be seen that the distributions

are not strongly dependent on the specific mass distribution cho-

sen. 128

5.6 Receiver operating characteristic curves for the Bayes factor statis-

tic Bl
u computed using the marginalized posteriors on parameter

sets (mz
1, mz2), (cos a, d), (mz

1, mz
2, cos a, d) and (mz

1, mz
2, c1, c2 cos a, d)

respectively with component masses sampled from power law 1

(left panel) and power law 2 (right panel). We observe that the

performance of the statistic improves with with number of pa-

rameters. Bl
u computed with (mz

1, mz
2, c1, c2 cos a, d) posteriors

identifies ⇠ 10 � 15% of the lensed event pairs with a false alarm

probability of 10�5. 129
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5.7 Receiver operating characteristic curves for the Rl
u statistic com-

puted assuming a rate of 10 unlensed events per month and

component masses sampled from power law 1 (left panel) and

power law 2 (right panel). Three curves in each panel represent

the ROC plots for Rl
u computed assuming 1, 2 and 3 years as

the observation time. 130

5.8 Distribution of the logarithm of the combined Bayes factor com-

puted from the unlensed and lensed simulations with compo-

nent masses sampled from power law 1 (solid) and power law

2 (dashed). The Bayes factors are computed using the marginal-

ized posteriors on parameter set (mz
1, mz

2, cos a, d, c1, c2). We

use one year of unlensed events for the simulation. 131

5.9 Receiver operating characteristic curves for the combined Bayes

factor statistic computed using the marginalized posteriors on

parameter set (mz
1, mz

2, c1, c2 cos a, d) with component masses

sampled from P1(m1, m2) (solid) and P2(m1, m2) (bashed). The

statistic is able to correctly identify ⇠ 80% of the lensed events

with a false alarm probability of 10�5. 132

5.10 Scatter plot of the log10 Bayes factors Bl
u computed from the con-

sistency of posteriors of signal parameters estimated from each

pair of binary black holes events and Bayes factors Rl
u com-

puted from the time delay between pairs of events. The signifi-

cance of these Bayes factors is shown by dashed lines (in terms of

Gaussian standard deviations). This is estimated by performing

simulations of unlensed events in simulated Gaussian noise and

estimating the probability of unlensed events producing Bayes

factors of this value. In summary, we do not see any strong ev-

idence for multiply lensed images in LIGO-Virgo binary black

hole detections. Note that, out of 45 event pairs, only those

pairs with log10 Bayes factors greater than �2 are shown in the

plot. We have taken into account the effect of trials factor due

the 45 event pairs. 134
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5.11 Marginalized 2D and 1D posterior distributions of the param-

eters that are included in the consistency test, for the event

pair GW170104 (blue), GW170814(red). Here, mz
1, mz

2 are the

redshifted component masses, a1, a2 are the dimensionless spin

magnitudes, qa1, qa2 are the polar angle of the spin orientations

(with respect to the orbital angular momentum), a, sin d denote

the sky location, and qJN is the orientation of the total angu-

lar momentum of the binary (with respect to the line of sight).

The solid (dashed) condors corrsponds to the 90%(50%) confi-

dence levels of the 2D distributions. The inset plot shows the

marginalized posterior distributions of the sky localization pa-

rameters for these events. Overall, the posteriors have some lev-

els of overlap, thus resulting in a considerable Bayes factor of

Bl
u ⇠ 198 supporting the lensing hypothesis, purely based on

parameter consistency. However, galaxy lenses are unlikely to

produce time delay of 7 months between the images, resulting

in a small Bayes factor Rl
u ⇠ 4 ⇥ 10�3 based on time delay con-

siderations. 136

5.12 Same as Fig. 5.11, except that the figure corresponds to the 150914

(blue), GW170809 (red) event pair. The inset plot shows the

marginalized posterior distributions of the redshifted chirp mass

Mz and effective spin ceff for these events. Marginalized 1D

posteriors have some levels of overlap in many parameters; how-

ever 2D posteriors show good separation in many parameters,

e.g., in Mz � ceff. The resulting Bayes factor supporting the

lensing hypothesis, based on parameter consistency is Bl
u ⇠ 29.

However, galaxy lenses are unlikely to produce time delay of

23 months between the images, resulting in a small Bayes factor

Rl
u ⇠ ⇥10�4 based on time delay considerations. 137
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5.13 Same as Fig. 5.11, except that the figure corresponds to the GW170809

(blue), GW170814 (red) event pair. Marginalized 1D posteriors

have some levels of overlap in many parameters; however 2D

posteriors show good separation in many parameters, e.g., in

Mz � ceff. The resulting Bayes factor supporting the lensing

hypothesis, based on parameter consistency is Bl
u ⇠ 1.2. 139

A.1 Comparison of the Padé approximant of the PN inspiral ampli-

tude (thin, solid lines) with regular Taylor expanded amplitude

(thin, dotted lines) and the amplitude of the hybrid waveform

(thick, solid lines) for different modes `m = 21, 22, 33, 44. The

left panel corresponds to mass ratio q = 2.32 while the right

panel corresponds to mass ratio q ' 10. 147

A.2 This is the analog of Fig. 2.3 for mass ratio q = 2.32. The left-

hand plot shows the mode mixing removal in the time domain

amplitude of the second time derivatives of the modes and the

right-hand plot shows the effects of the mode mixing removal on

the instantaneous frequency of the second time derivatives of the

modes. The solid lines show the spherical harmonic modes and

the dashed lines show the unmixed spheroidal harmonic 320

and 430 modes constructed using the procedure in Sec. 2.3.1.

We see that there are considerably larger oscillations in the in-

stantaneous frequency of the 320 mode than in Fig. 2.3, particu-

larly in the frequency. We also see some numerical noise in the

frequency plots, which we find can be attributed to the extrapo-

lation procedure used to obtain the waveform at infinity. 154

A.3 This is the analog of Fig. 2.8 for mass ratio q = 2.32. The solid

lines show the amplitude of the hybrid and the dashed lines

show the amplitude of our analytical model for the mixed modes

(32 and 43). We can see that the model is able to reproduce the

hybrid modes quite well, even though our mode-mixing removal

method for this mass ratio is less effective as compared to the

same for higher mass ratios. 154
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A.4 Distributions of the magnifications µ1, µ2 (left) and the arrival

times dt1, dt2 relative to unlensed arrival time (right) of the two

dominant images for simulated events (See Eqs. A.41 ans A.42

). Solid (dashed) traces show distributions before (after) apply-

ing the detection threshold SNR � 8. The component masses

of the simulated events are sampled from power law 1 distribu-

tion. 158

A.5 Left panel: The distributions of red shifted component masses

mz
1 and mz

2 for unlensed and lensed simulated events producing

an SNR � 8 in the Advanced LIGO-Virgo network. Solid and

dashed curved correspond to the source frame mass distribu-

tions P1 and P2, respectively. Right panel: The red shift distri-

butions of detectable (SNR � 8) unlensed and lensed simulated

events. 161



List of Tables

2.1 Summary of the parameters of the NR waveforms used in this

chapter: q ⌘ m1/m2 is the mass ratio of the binary, Mworb is the

orbital frequency after the junk radiation and e is the residual

eccentricity. The waveforms listed under the title Fitting are used

to produce the analytical fits described in Section 2.2.1 while

those listed under the title Verification are used for assessing the

faithfulness of the analytical model in Section 2.4. 68
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