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Synopsis

Motivation

Natural and industrial dense suspensions are studied by incorporating both lubrication
force and frictional interaction between the particles while assuming these forces to
be independent of each other. However, contact friction can only occur when physical
contact has been made, and lubrication theory suggests that physical contact between
the particles in a fluid takes infinite time with an exponentially decaying relative velocity.
Therefore, to understand suspensions one needs to separately analyze collision dynamics
between two spheres or a sphere and a wall in a viscous medium; the effect of contact
friction in dry multi-particle systems, and then combine the understanding of both these
interactions. This thesis presents an attempt to understand lubrication in a two-particle
system and the role of frictional forces in a static many-body assembly of particles. In the
next three sections, we will discuss the contact mechanics of normal collisions between a
solid sphere and a bottom wall in a viscous medium and will seek to understand this
dynamics both analytically and experimentally. After that we will investigate granular
packing and the pressure variation in the bulk of a 2D granular column-filled with
monodisperse frictional spheres, using numerical simulations. Finally, we will present an
experimental study of granular packing in a 2D fluid-immersed system.

I will start by asking a very fundamental question: Is there solid-on-solid contact
when a sphere falls toward a solid plane under gravity in a viscous medium. Normal
collisions in a viscous medium involving curved surfaces have an inbuilt singularity of
point contact, which makes it difficult to solve by traditional tools, either computation-
ally or experimentally. Computationally one runs into the problem of grid size - the
computational cost associated with resolving a contact is very high. Experimentally it is
difficult to spatially and temporally resolve a contact during a collision. I will address
this complicated problem first experimentally by using an electrical set-up and then
analytically by developing a formulation that goes beyond lubrication theory, to compute
hydrodynamic drag force on the sphere as it is approaching the bottom wall. Finally, I
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will try to understand the electrical measurements taken earlier by tracking the sphere
using a high-speed camera.

In granular systems, measuring pressure in the bulk is difficult experimentally. Usually
one tries to infer the bulk pressure from measurements of stress on the wall, and by
assuming the isotropy and homogeneity of stresses in the bulk. These assumptions might
not always be true. Since granular systems are known to be history-dependent, the
internal structure and stresses can depend on how the granular column was created. To
test these assumptions, I use molecular dynamics simulations in Chapter 5 to measure
stress in the bulk of a 2D granular column and see how these stresses vary by changing
the protocols by which the granular column is created. I will also show that qualitatively
different protocol-dependent stress profiles are possible in the bulk, though counter-
intuitive. This work was done in collaboration with Professor Bulbul Chakraborty from
Brandeis University.

Two-dimensional (2D) random packings of monodisperse spheres or disks are quite
unstable and crystallize easily. For this reason, monodisperse disordered packings in a
2D system are not well-studied and bidisperse mixtures of spheres are often used in the
granular community to study amorphous 2D systems. However, inter-particle friction
can stabilize non-crystalline arrangements of grains. In Chapter 6, I will present an
experimental protocol to create disordered packings of frictional, mono-disperse spheres
in the 2D systems.

Is there a contact in normal collisions?

The circumstances under which collisions between solid particles occur in viscous fluids
are relevant to many phenomena such as sedimentation, filtration, suspension flows,
smoke, and fog formation by aerosols. To my knowledge, the first study of two-sphere
collisions in a viscous fluid, where spheres were allowed to deform, was done by Davis
et al. (1986) within an elastohydrodynamic framework. Working within the lubrication
approximation, they suggested that pressure in the thin fluid film between the spheres is
large enough to elastically deform them. The stored elastic strain energy is released as
kinetic energy, causing the particles to rebound without solid-on-solid contact. This idea
is hard to reconcile with our everyday experience with acoustic emission and dents when
solids collide with each other, while immersed in a fluid.

To address the existence and influence of solid-on-solid contact in a sphere-wall
collision in a viscous medium, we use an electrical setup to investigate kinematics very
close to the moment of impact. It is now recognized that dynamics of such a collision is
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controlled by the Stokes number St, which compares a particle’s inertia to its viscous
forces and is defined as (Gondret et al., 1999, 2002; Joseph et al., 2001; Zenit and Hunt,
1999):

St = 1
9
ρsvcD

µ
= 2

9
ρs

ρf

Re, (1)

where D, ρs, and Re are the diameter, density, and Reynolds number of the sphere

Fig. 1 Schematic diagram of the experimental set-up. The voltage is measured across a
resistor (Rs) of 220 kΩ. Stokes number is varied by changing the height from which the
sphere is being dropped.

and ρf and µ are the density and dynamic viscosity of the fluid respectively. Here vc is
the velocity the sphere would have had at ho = 0, if the other body (another sphere or
bottom wall) was not present. The elastohydrodynamic lubrication theory predicts a
critical Stokes number Stc (Davis et al., 1986), below which a collision between smooth
spheres does not result in a bounce, and the solids remain in contact. Experiments on
sphere-wall collisions by Barnocky and Davis (1988), Gondret et al. (1999, 2002), Zenit
and Hunt (1999), and Joseph et al. (2001) measure, by video imaging, the coefficient of
restitution, which is the ratio of the velocity just after impact to the velocity just before
impact. They found, by plotting the coefficient of restitution as a function of St, that
there is a transition from settling to bouncing at Stc ranging from about 8 to 15. There
is only a modest variation of Stc with the material of the sphere/wall as seen in the work
of Gondret et al. (2002) and Zenit and Hunt (1999).

Surface roughness can play a role when the separation between the solids becomes
comparable to roughness. Davis (1987) and Barnocky and Davis (1988) accounted for
this theoretically by implementing an inelastic collision at a cutoff distance set by the
roughness. Joseph et al. (2001) used spheres with well-characterized roughness and
argued that the scatter in their data could be explained by surface roughness. Lecoq
et al. (2004), Mongruel (2012), and Chastel and Mongruel (2016) concluded that artificial
roughness can indeed increase the approach velocity before impact. Cawthorn and



12

Balmforth (2010) argue that an object falling under gravity will make contact with
the bottom wall if the object has sharp roughness. Whether contact occurs before the

Fig. 2 Voltage versus time graphs for increasing St with AC and DC voltages. (a) At
St = 5.8 with an AC applied voltage, no bounce occurs, but electrical contact is made in
a finite time. This is the generic behavior for St < Stc. (b) At St = 6.7 with DC and
AC voltages, respectively, we see a collision, and then a period of no contact, followed by
permanent contact. The contact has much lower resistance than the series resistance i.e.
Rc ≪ Rs. This is the generic behavior for St > Stc (Birwa et al., 2018).

rebound was still not completely established and understood. It is difficult with video
techniques to resolve contact dynamics, spatially or temporally, as attempted in earlier
works (Gondret et al., 1999, 2002; Joseph et al., 2001; Zenit and Hunt, 1999). So, we
decided to answer this question using an electrical set-up where a conducting sphere was
dropped on a conducting plate from a given height and a voltage was applied between
them as shown in Figure 1. When the sphere makes (or breaks) electrical contact with
the plate, the circuit closes (or opens). We observed that there is a critical Stokes number
Stc for collision below which the sphere does not bounce and here the first electrical
contact persists for all time as shown in Figure 2 (a). I will refer to this as the settling
regime.

For larger values of St, as shown in Figure 2 (b), the ball makes metallic contact
for a finite contact time δTc. It then breaks contact and is in the fluid for a flight time
TF before settling into permanent electrical contact. I will refer to this as the bouncing
regime. The sphere can have multiple bounces depending on the magnitude of St. The
experiments were conducted using DC and AC supply and at different voltages. It was
observed that all contacts (for both settling and bouncing regimes) were purely resistive
and the duration of contact and other properties were found to be independent of the
applied voltage.
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The contact time δTc decreases as the Stokes number is increased above Stc. The
relatively small change of δTc is consistent with the calculations for a Hertzian elastic
impact, see Landau and Lifshitz (1986), which predicts a very weak dependence of contact
time on velocity δTc ∝ (UReff)−1/5 ,where Reff is the effective radius at the point of
contact. For perfectly smooth spheres, Reff = R, whereas Reff will be smaller when a
bump on the sphere is presented to the plane. The duration between the bounce and the
next collision, which we refer to as the flight time, TF , is a measure of the kinetic energy
with which the ball rebounds from the plate. As expected, this is an increasing function
of St− Stc. Our experiments not only resolve the question of contact but also provide
information on the nature of the contact and the energy dissipation during such contacts.

We find a broad distribution of contact times, varying by an order of magnitude, for
a fixed value of St. Presumably this reflects the variation in the local topography of the
sphere (more information about the roughness of the spheres used, is in the thesis). We,
however, find much smaller variability in the flight time, particularly at larger St. Thus
the total energy dissipation in the sphere-wall encounter, as reflected by the flight time,
is not strongly affected by the duration of solid-on-solid contact. This indicates that
despite solid contact, the bulk of kinetic energy lost is due to fluid drag.

Even though solid dissipation does not play a prominent role, our result that solid-to-
solid contact does occur is of significance in contexts such as wear, charge transfer, or
chemical reactivity of solids in suspension. By analyzing the dent size, we also showed
that the contact is not a result of a few asperities touching the surfaces.

An article describing the above findings has been published in Physical Review Fluids
(Birwa et al., 2018)).

Going beyond lubrication theory

Our electrical measurements show that solid-on-solid contact does occur during a normal
collision between a sphere and a wall in a viscous medium. However, elastohydrodynamic
lubrication theory suggests that a sphere will rebound without making physical contact
with the bottom wall. To understand the contradiction between our electrical measure-
ments and theory, we revisited lubrication theory with a goal of releasing some of the
assumptions it is based upon. Lubrication theory was derived by Reynolds (1886) and is
used to obtain the pressure distribution across a thin film between two solid bodies. The
theory exploits the disparity in the lateral and longitudinal length scales in the problem
and as a consequence neglects the inertial terms in the Navier-Stokes equation. This
leads to the theory obtaining a parabolic profile for the radial velocity between the two
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solid bodies. The result is an equation for the radial pressure gradient commonly referred
to as Reynolds’s equation, which was a revolutionary equation in tribology, and can also
be used for a normal collision between a sphere and a wall in a viscous medium. In the
latter case, this equation may be used to update the vertical force, and therefore the
dynamics. This problem is solvable analytically.

Fig. 3 A sphere approaching a plane, where r, z are the radial and vertical directions,
D = 2R is the diameter of the sphere, g is the acceleration due to gravity, and h(r, t) is
the time-dependent distance between sphere and the bottom wall.

For small h(r = 0, t) (less than ∼ 0.01R), this theory gives us the lubrication drag
force also known as Taylor’s formula:

F = 6πµR2

ho

dho

dt
(2)

where ho is h(r = 0, t), see Figure 3. This equation predicts that a falling sphere will
approach the bottom wall infinitely slowly. While the decelerating force diverges as
ho → 0, the velocity in the numerator also decreases, and the ratio produces this result.

From our daily experience, we know that a falling sphere does not take infinite time to
make contact with the bottom wall and therefore, one needs to look closely at lubrication
theory. In the lubrication approximation, streamwise gradients in everything except
pressure are dropped, since they are assumed to be far smaller than gradients normal to
the wall. In our current analysis (explained below), we retain streamwise gradients to the
first order. In other words, we make a boundary layer approximation and allow for weak
departures from the similarity profile of the velocity. Our approximation is still not valid
for r ∼ O(ho) or smaller, and when r ∼ R. Since we are interested in the dynamics of
the sphere when it is very close to the plate, ho is very small, and the region r ≤ O(ho)
constitutes an extremely small fraction of the spherical area over which pressure acts. Its
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force contributions can be neglected due to this, and also because the pressure maximum
happens not to lie in this region. When r ∼ R too, the pressure contribution is very
small because of the large gap size. Thus the region where ho ≪ r ≪ R, gives most of
the contribution to the pressure force. Our analysis describes the flow very well for this
region. We obtain a single parametric differential equation which provides the velocity
profiles at different radii at a given time. These are then used to solve for the pressure and
the sphere’s acceleration. By defining an appropriate non-orthogonal coordinate system,
we are able to solve it as a succession of parametric ordinary differential equations.

We start with the axisymmetric Navier-Stokes equation written in cylindrical coordi-
nates in terms of the streamfunction (ψ) and vorticity (ω), and non-dimensionalize it in
a way that allows us to obtain solutions, which are not self-similar, for the radial velocity
u = ψz/2πr of the squeezed flow,

η = z

h(r, t) ; dζ = dr

h(r, t) ; t = td
vc

R
; ψ = ψd

Q
; ω = ωd

h

U
= ωd

f
, (3)

where Q is the flow rate and U is the average radial velocity at a given r and t.

After non-dimensionalization, we make the assumptions that h/R and r2/R2 are
small. This is a fair assumption at r ≪ R. Further, neglecting all except the first
derivative in ζ, we get the final equation:

[
hζ̇

ḣo

ψηηζ − ηψηηη + h

ḣo

ψtηη +
(
ḧoh

ḣo
2 − 2

)
ψηη − (h− ho)

rh
(ψηψηηζ − ψζψηηη)

−
(
h′

r

2ho − h

h
− 2(h− ho)

r2

)
ψηηψη + h′

r
ψψηηη

]
= 1
Re

[
1
hḣo

ψηηηη

]
, (4)

where Re = ρfvcR/µ and the dots represent partial or total derivatives in time. The
boundary conditions for this equation are:

ψ(η = 0, ζ, t) = 0; ψ(η = 1, ζ, t) = 1;
ψη(η = 0, ζ, t) = 0; ψη(η = 1, ζ, t) = 0. (5)

Thus, apart from allowing for first-order variations in the streamwise direction, we
explicitly include the effect of the acceleration of the body. These improvements constitute
“going beyond” lubrication theory. We use a double shooting method, described in the
thesis, for numerically solving equation 3.30, using which we compute the dynamics of
the sphere.
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This method provides a novel way to obtain the hydrodynamic force on the sphere
without neglecting unsteady and inertial terms. The pressure profiles and force obtained
are however similar to those obtained under the lubrication approximation. This is
because we find that the deviations from a parabolic velocity profile are significant only
at large r, where the contribution to upward pressure force is minimal. What then is
causing the difference between theory and experiment? It will be shown in the thesis
that even within the lubrication approximation, where pressure diverges as ho → 0, the
velocity of approach is significant at height of the sphere as small as 1 nm, for large
enough St. Based on this, one can argue that even a non-deformable sphere with an
atomic-scale roughness should be expected to make contact with the plate, even going
by the lubrication approximation. Besides this, other effects like those of higher-order
streamwise derivatives, surface roughness, and deformation could be contributing.

Tracking the sphere

Our electrical experiments have shown that a sphere falling under gravity in a viscous
medium will make physical contact with the bottom wall before bouncing, in contradiction
to the elastohydrodynamic theory which suggests the sphere will rebound without making
a physical contact with the bottom wall due to the heavy pressure build up in the gap
between the two. To understand this discrepancy, we tracked the sphere just before
and after it makes the contact with the bottom plate and observed deviations from the
lubrication theory.

Earlier experiments done by Barnocky and Davis (1988), Gondret et al. (1999, 2002),
Zenit and Hunt (1999), and Joseph et al. (2001) to understand the trajectory of the
sphere before and after collision have used high-speed cameras, but have failed to resolve
the near-collision dynamics. Lecoq et al. (1993) and Mongruel et al. (2010) tried to
resolve the dynamics just before the collision for a settling sphere using interferometric
techniques. But, there still remains a need to understand the dynamics, before and after
the collision, in the bouncing regime. This led us to modify our previous experimental
set-up and closely observe this part of the dynamics of the sphere.

We use our electrical set-up to trigger a high-speed camera. We observe a 1 mm dot
marked on the sphere, as the sphere falls towards the bottom wall. When the sphere
makes contact with the bottom wall, the electrical circuit is complete and a signal is sent
to the high-speed camera. This signal triggers the camera, operating at 50000 frames/sec,
to save a number of frames before and after this frame. We define the height at which
the contact is initiated as the zero height. The Stokes number is varied by changing the
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release height, which in turn affects the impact velocity. A sample trajectory is shown in
Figure 4, and as can be seen, we are able to resolve up to a few micrometers above the
bottom wall with the help of a macro lens and a bellow.

Using these trajectories, we obtain the variation of the vertical velocity with height
and test for the ability of lubrication theory to obtain the dynamics. We observe that the
lubrication theory correctly describes the experimental curves for a sphere approaching a
plate up to ∼ 50 µm above the bottom wall. After that, lubrication theory predictions
are seen to always lie below the experimental data, i.e., in experiments we observe the
sphere to have a larger downward velocity at a given height compared to theory. These
deviations become larger as the sphere advances towards the plate.

Fig. 4 A sample trajectory (height vs time) obtained for St = 15 by observing a dot of 1
mm on the sphere at 50000 frames/sec.

This experimental set-up allows us to track the sphere after collision too. It is compar-
atively easy to observe the rebound dynamics at larger St. The rebound trajectories for
these large St, barring a small deviation at small heights (similar to first impact curves),
follow the dynamics predicted by lubrication theory. The second impact dynamics for
these St is similar to the dynamics of the first impact for smaller St. In fact, at large
Stokes number, the approach curves for the second impact overlap with those of the first
impact for a corresponding smaller Stokes number. This observation of rebound curves
and second impact dynamics suggests that disturbances created due to first impact (or
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rebound after the first impact) might not be important in such systems and die quite
rapidly.

Stresses inside a granular column

Once the contact between the spheres is established, the friction between the surfaces
takes over and it is important to study the structure that these frictional contacts can
create and the stresses they carry as such structures are prevalent in the world at all
scales. These structures are heavily controlled by frictional contacts and the literature
on granular matter deals with such systems in zero resistance medium.

Stresses inside a static granular structure have been a subject of study for years now,
see e.g. Nedderman (2005). Janssen (1895) showed that pressure at the bottom of a
granular column, filled with grains, saturates with the fill-height of the container. He
predicted that the vertical stress (σyy) for a 2D column at a height y decays exponentially
with fill-height h and is given by:

σyy(y) = ρgW

2Kµw

(1 − e− 2Kµw
W

(h−y)) (6)

where g is the acceleration due to gravity, W is the width of the granular column, K is
the ratio of the lateral to the vertical stress (Janssen’s constant), µw is the coefficient of
wall friction and ρ is the bulk density. This behavior of a granular column is different
from that of a column filled with liquid. To test Janssen’s prediction, the vertical stress
at the bottom of a granular column has been widely documented for both 2D and 3D
cases, see e.g. Vanel and Clément (1999), Vanel et al. (2000), Ovarlez et al. (2003),
and Landry et al. (2003, 2004). Saturation of vertical stress, namely, no increase in σyy

beyond a certain fill-height, has been observed at large heights. A common explanation
for this saturation is that the walls of the column bear some of the load of the granular
pile with the help of wall-friction. Hence, filling the container beyond a certain height
merely increases the load on existing force chains and helps in creating new chains, while
the load at the bottom of the container remains unaffected.

Despite a large number of studies on measuring pressure at the bottom of a gran-
ular pile, it is still not clear how the vertical stress varies with vertical coordinate
in the bulk of the column. In particular, how close is it to Janssen’s prediction?
To understand this, we performed LAMMPS-based molecular dynamics simulations,
(https://lammps.sandia.gov/) Plimpton (1995). LAMMPS is an open-source code which
I have used in other studies too (Merrigan et al., 2018; Shah et al., 2017). The computa-
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Fig. 5 (a) A sample geometry used in our quasi-2D computational study. The domain
here has width W = 30, height h = 225, and is filled with ∼ 7500 monodisperse soft
spherical grains. Gravity is pointing downwards. Our analysis has been done on widths
W = 30, 60 and 90 and heights h = 225, 450 and 900. (b) Vertical stress, σyy, on the
bottom wall, created by the S2 method, as a function of fill-heights for W = 30 and µw

= 0.5. Error bars are the standard deviation obtained by running 20 different ensembles
at each height. The red dashed line is the best fit obtained by the Janssen model for a
K = 0.203.

tional domain in the present study is a quasi-2D rectangular box as shown in Figure 5
(a) filled with monodisperse particles of diameter 1 and mass 1, i.e., all lengths and
masses are measured in units of the diameter d and mass M , respectively. Stress has
been non-dimensionalized by Mg/d2. We construct our granular column in four different
ways. S1, Sedimentation: Creating all the grains at once, randomly placing them in a
non-overlapping fashion over the complete space within the column, and then letting
them settle under gravity till the kinetic energy of the whole system becomes less than
10−12. S2: We start in the same way as S1. But in this protocol, a high viscous damping
force that is proportional to the velocity of the grains is applied to each particle to drain
kinetic energy promptly, after the particles have settled under gravity for a while in
vacuum. V1, Vibration: Vibrating the final S2 system laterally for some time and then
letting it relax. P1, Pouring: Pouring a fixed number of grains from a fixed height above
the granular column at fixed time intervals until the total number of grains in the column
is equal to the desired value. One of the main assumptions in Janssen’s theory is that all
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the grains at the side-walls are fully mobilized. So, we studied the S2 protocol before
and after mobilizing the grains.

All these protocols for creating the granular column are widely used in the literature
(Landry et al., 2003, 2004) and we study how the stresses in the bulk vary in a 2D
monodisperse system with these protocols. The vertical stress on the bottom wall agrees
with the Janssen model for K = 0.203 as shown in Figure 5 (b). However, in the bulk
different protocols give different vertical stress profiles, some representing significant
departure from Janssen’s model. These differences and the different types of static
columns which emerge will be discussed in the thesis.

Immersed granular packing

The packing arrangements of multi-particle systems can be completely different inside a
fluid and can depend on many parameters [like buoyancy forces and St, if the packing is
created by sedimenting particles in a fluid (Farrell et al., 2010; Onoda and Liniger, 1990)].
This makes it interesting and important to understand how such packings come about
and if it can be exploited to understand the jamming transition O’Hern et al. (2002).

In a two-dimensional system, the highest packing arrangement for spheres is obtained
by hexagonal crystalline packing and the volume fraction is around φhex = 0.907. A
disordered or amorphous packing has a much smaller volume fraction. Random close
packing, the largest disordered packing fraction achievable without introducing crystalline
structures, is typically quoted for three dimensional systems to be ∼ 0.64 (Bernal and
Mason, 1960). However, the existence of disordered packing in a 2D system is a subject
of debate as monodisperse 2D packings crystallize and therefore bidisperse spheres are
used in the granular community to study the 2D systems.

We have developed an experimental protocol to create disordered packings of frictional,
mono-disperse spheres in 2D systems. Our goal is to use the principles learned earlier in
this thesis to deposit particles at Stokes numbers below a critical value, so that every
new particle incident on a packing delivers no momentum to the particles beneath. In
the protocol developed, spheres are allowed to roll downhill within a viscous fluid to
create disordered packings as shown in Figure 6. The particles are scattered initially to
occupy the whole space of the container. Then, one edge of the container is lifted slowly
to a finite angle which allows particles to roll towards the opposite side and create a
weakly packed structure. This method leads to packing with a nearly horizontal interface
[Figure 6 (a)]. For obtaining a packing with an inclined interface as shown in [Figure 6
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(b)], the particles, after being scattered, are first allowed to roll towards one of the longer
sides and then towards the short side.

Fig. 6 Top and front view of two different types of immersed packing. Packing (a) and
(b) are generated by different initial conditions. In both cases, the left side of the box is
lower than the right side and particles settle under gravity to prepare the initial packing.
Individual spheres are then rolled downhill to collide with the packing to study the
disturbances created by such impacts.

Packing has been observed at four different inclination angles, θ, of the substrate: 5◦,
7◦, 10◦ and 15◦. The packing density decreases with the lowering of this angle as shown
in Figure 7. Here, the packing density has been measured using three different radii as
we found out that determining the exact radius for hard particles in contact is difficult.
How we choose these three radii has been discussed in detail in the thesis. In a further
experiment, individual spheres are rolled downhill on a packing prepared either as in
Figure 6 (a) or as in Figure 6 (b). To understand the stability of the packing, the spatial
size of the resulting disturbance due to individual impacts was measured. Our data
suggest that under these conditions of the impact, the collisions are below the critical
Stokes number for rolling impacts. In this thesis, we study the disordered packings as a
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Fig. 7 Packing density is found to increase with the inclination angle, θ, of the box. The
packing density has been measured for the packed structure with a horizontal interface by
choosing three different radii. Black circle symbol corresponds to an average radius which
gives only one particle with 6 contacts in the packing. Magenta triangle symbol and red
square symbol corresponds to the radii at which the packing has coordination number
= 2 and 3, respectively. Error bars are the standard deviations of packing densities
measured from different trials at a fixed inclination angle.

function of deposition conditions and the changes in local packing following individual
impacts.

Main findings

Immersed normal collision: In agreement with previous observations and with elastohy-
drodynamic theory, we found that there is indeed a critical Stokes number (around 7),
marking the transition from settling regime to bouncing regime in immersed collisions.
However, in contradiction with lubrication theory, we observed direct mechanical contact
for 10-100 microseconds before bouncing. The duration of this contact was found to be
independent of the experimental parameters and weakly dependent on impact velocity,
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which is consistent with Hertzian elastic theory. From observing the scatter in contact
times and flight times for different trials at each St, we concluded that the total dissipa-
tion in the sphere-wall encounter is not strongly affected by the duration of solid-on-solid
contact at large Stokes number indicating that despite solid contact, most of the loss of
kinetic energy in this process is due to fluid dissipation.

We analytically went beyond the lubrication theory by including unsteady terms and
inertial terms, which were neglected in lubrication theory. We derived a boundary layer
equation to describe the flow and solved it by a novel method. This allowed us to obtain
the radial velocity profile below the sphere. However, the deviations in the net force from
the lubrication theory were found to be very small and are not enough to explain our
electrical measurements.

We also found that the actual approach velocity is slightly faster than predicted by
lubrication theory at smaller heights by coupling a high-speed camera with our earlier
electrical set-up. Rebound and second impact dynamics behavior were found to be similar
to lubrication theory predictions, up to a point close to contact.

Granular packing: A numerical study in a mono-disperse 2D static granular column
showed us that the bulk stress profile can be very different from Janssen’s predictions
depending on the aspect ratio of the column and the protocol followed to prepare the
granular column.

Immersed packing: An experimental study of granular packing in an inclined 2D
immersed system where monodisperse spheres roll downhill to create a disordered packing
of grains showed us that the packing density decreases with the decrease in angle of
inclination of the substrate. By observing individual spheres rolling downhill and colliding
with the packing, we concluded that our experiment is below a critical Stokes number
for rolling impacts as we do not see any rebound of impacting particles.
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Chapter 1

Introduction

1.1 Motivation

Natural and industrial liquid-solid flows like dense suspensions, landslides, sediment
transport, etc. are studied by incorporating both lubrication force and frictional interac-
tion between the particles, often assuming these forces to be independent of each other.
However, contact friction can only occur when physical contact has been made, and
lubrication theory suggests that physical contact between the particles in a fluid takes
infinite time with an exponentially decaying relative velocity (Leal, 2007). Therefore,
to understand the physics of such systems one needs to separately analyze (a) collision
dynamics between two spheres or a sphere and a wall in a viscous medium, and (b) the
effect of contact friction in dry multi-particle systems. Only thereafter both the interac-
tions can be combined to study the coupling between the two. This thesis follows such
an approach and presents an attempt to understand normal collision in a fluid-immersed
two-particle system and the role of frictional forces in a static many-body assembly of
particles in a medium of negligible resistance. Finally, we present an experimental study
of multi-particle packing in a 2D fluid-immersed system.

This thesis thus revolves around two broad topics: immersed normal collisions
(Chapters 2-4) and granular packing (Chapters 5-6). I start by asking a fundamental
question: is there solid-on-solid contact when a sphere falls under gravity towards a
solid plane in a viscous medium? Normal collisions involving curved surfaces in a
viscous medium have an inbuilt singularity at the point of contact, which makes this
problem difficult to solve using traditional tools, either computational or experimental.
Computationally, one runs into the problem of grid size — the computational cost
associated with resolving a contact event is very high. Experimentally, it is not trivial to
spatially and temporally resolve a contact during a collision. I address this complicated
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problem first experimentally by using an electrical set-up (described in Chapter 2). The
problem is then approached analytically by developing a formulation that goes beyond
lubrication theory to compute hydrodynamic drag force on the sphere as it is approaching
the bottom wall (Chapter 3). Finally, I try to understand the electrical measurements
obtained experimentally by tracking the sphere using a high-speed camera (shown in
Chapter 4).

In granular systems, experimentally measuring pressure in the bulk is difficult. Usually
one tries to infer the bulk pressure from measurements of stress on the wall, and by
assuming isotropy and homogeneity of stresses in the bulk. However, these assumptions
might not always be true. Since granular systems are known to be history-dependent, the
internal structure and stresses can depend on how the granular column was created. To
test these assumptions, I use molecular dynamics simulations in Chapter 5 to calculate
stress in the bulk of a 2D granular column and see how these stresses vary on changing
the protocols by which the granular column is created. For some protocols, we find
stress-profiles which are counter-intuitive and does not follow Janssen’s model (Janssen,
1895; Sperl, 2006).

Two-dimensional (2D) random packings of monodisperse spheres or disks are quite
unstable and crystallize easily. For this reason, monodisperse disordered packings in
a 2D system are not well-studied and bidisperse mixtures of spheres are often used
in the granular community to study amorphous 2D systems. However, inter-particle
friction is known to stabilize non-crystalline arrangements of grains (Dong et al., 2006;
Farrell et al., 2010; Jerkins et al., 2008; O’Hern et al., 2002; Zhang et al., 2001). In
Chapter 6, I will present an experimental protocol to create disordered packings of
frictional, mono-disperse spheres in 2D systems.

1.2 Immersed collisions

The circumstances under which collisions between solid particles occur in a viscous fluid
are relevant to many phenomena such as sedimentation, filtration, suspension flows,
smoke, and fog formation by aerosols (Davis, 1984; Farrell et al., 2010; Gal et al., 1985;
Löffler, 1980; Payatakes and Gradoń, 1980). Energy losses in particle collisions arise
primarily either from viscous dissipation of the surrounding fluid or inelastic losses within
the solids or both. Heinrich Hertz in 1882 studied the normal collision between two
particles in an inviscid fluid. Hertz described the local stresses developed when two
elastic curved surfaces come in contact under a given load (Landau and Lifshitz, 1986).
This is famously known as Hertzian contact theory and can be used to obtain the contact
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area and duration of contact for an elastic collision if the velocity of impact is known.
Dahneke (1971, 1973) developed a particle beam apparatus to study inelastic collisions
and determine the sticking probability and coefficient of restitution of particle collisions
in a medium of negligible resistance. They found out that there is a critical velocity
below which the coefficient of restitution is zero and the particle sticks to the substrate.
Inter-particle adhesion plays a big role here (Dahneke, 1971, 1972, 1973; Löffler, 1980)
and, therefore, the physics in these collisions is very different from what we will be
discussing in this thesis.

1.2.1 Lubrication theory

Studies to understand collisions between rigid solids in a viscous fluid started by Reynolds
(1886), who derived a differential equation to obtain the pressure distribution across a
thin film between two solid bodies. The assumptions used in this derivation are referred
to as the lubrication approximation and it proved to be a revolutionary idea in the field
of tribology. Martin in 1916 (Hamrock, 1991) solved the Reynolds equation for a thin
film between two rigid cylinders and stimulated many other theoretical studies (Dowson
and Whomes, 1966; Grubin, 1949; Hamrock, 1991; Merritt, 1935). Martin’s solution
for the film thickness was found to be less than the surface roughness of the gear teeth
that they were studying and was later discovered to be inaccurate as they neglected
elastic deformations. The original work of Martin is not in English and Hamrock (1991)
discussed the results of this study in their publication.

Fig. 1.1 A sphere approaching a plane, where r, z are the radial and vertical directions,
D = 2R is the diameter of the sphere, g is the acceleration due to gravity, and h(r, t) is
the time-dependent distance between sphere and the bottom wall.
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Reynolds equation can also be used for studying normal collision between a sphere
and a wall in a viscous medium as shown in Figure 1.1. The theory exploits the disparity
between the vertical and lateral length scales in the problem and as a consequence neglects
the inertial terms in the Navier-Stokes equation. In the lubrication approximation,
streamwise (radial) gradients in every dynamical quantity except pressure are dropped,
since they are assumed to be far smaller than the gradients normal to the wall. This
leads to a parabolic profile across the gap at every radial location for the radial velocity
between the two solid bodies. Reynolds equation in cylindrical coordinates reads as:

1
12µr

∂

∂r

[
rh(r, t)3∂p(r, t)

∂r

]
= ∂h(r, t)

∂t
(1.1)

where r and t are the radial and time coordinates, µ is the dynamic viscosity of the
surrounding fluid, p(r, t) is the pressure between the sphere and the bottom plane, and
h(r, t) is the height of the sphere above the bottom plane as shown in Figure 1.1. Solving
equation 1.1 gives the pressure as a function of the radial coordinate r (under the
approximation that the profile of the sphere can be treated as a paraboloid for r ≪ R)
in the film to be:

p = 3πµRḣo

(ho + r2/2R)2 (1.2)

where ho is h(r = 0, t) and R is the radius of the sphere. The velocity of the sphere ḣo

at a time t is given by ∂h/∂t. For small ho (less than 0.01R), this theory gives us the
lubrication drag force also known as Taylor’s formula (Brenner, 1961; Cox and Brenner,
1967):

F = 6πµR2

ho

ḣo (1.3)

This equation predicts that a falling sphere will not make contact with the bottom wall in
finite time. While the decelerating force diverges as ho → 0, the velocity in the numerator
also decreases, and the ratio produces this result.

Cox and Brenner (1967) gave a correction for the hydrodynamic force on a rigid
sphere approaching a plane wall in a viscous medium, taking into account the first-order
effects of fluid inertia. They obtained a solution by incorporating small Reynolds number
effects and by employing the singular perturbation technique:

F = 6πµRḣo

[
R

ho

+ 1
5
(
1 + 1

2Re
)
ln R

ho

]
. (1.4)
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Cox and Brenner (1967) defined Reynolds number Re using the instantaneous velocity
of the sphere, Re = ρfhoḣo/µ. Where ρf is the density of the fluid. At ho/R ≪ 1 and
Re → 0, equation 1.4 reduces to the expression for the lubrication force (equation 1.3).
Equation 1.4 still suggests that a falling sphere will not come in contact with the bottom
wall within a finite time. Our experiments in Chapter 2 will show that this is not true
and that there is a vital need for a theoretical framework that allows for inertial effects
in their entirety. Such a framework has been attempted and discussed in Chapter 3.
However, the new theory also does not directly predict contact in finite time. We will
see, however, that all these theories predict a large downward velocity within nanometers
of the contact, where the continuum approximation is no longer valid. So, it may be
presumed that contact will occur.

1.2.2 Elastohydrodynamic lubrication

Following Martin’s work, Grubin in 1949 (Hamrock, 1991) included the elastic deforma-
tions and provided a solution for line contacts under load. The original work of Grubin
is not in English and Hamrock (1991) discussed the results of this investigation. The
so-called elastohydrodynamic lubrication solution assumed the deformation between
solids to be Hertzian and similar to what is produced in dry contacts. Grubin’s result
is considered to be an improvement on Martin’s work as their analysis predicted film
thickness one or two orders of magnitude greater than that predicted for a rigid cylinder
pair.

To the best of my knowledge, the first study of two-sphere collisions in a viscous
fluid where the spheres are allowed to deform was done by Davis et al. (1986) within
an elastohydrodynamic framework. Working within the lubrication approximation, they
suggested that the pressure in the thin fluid film between the spheres is large enough to
elastically deform them. The stored elastic strain energy is released as kinetic energy,
causing a rebound of the particles without solid-on-solid contact, at large enough inertia.
This idea must be reconciled with our everyday experience of acoustic emission and dents
which occur when solids collide within fluids. Since collisions of this sort are encountered
in our daily lives and industries regularly, it is very important to understand them.

It is now recognized (Gondret et al., 1999, 2002; Joseph et al., 2001; Yang and Hunt,
2006; Zenit and Hunt, 1999) that the dynamics of such a collision is controlled by the
Stokes number St, which is the ratio of a sphere’s inertia to viscous forces and is defined
as:

St = 2
9
ρsvcR

µ
= 2

9
ρs

ρf

Re; Re = ρfvcR

µ
, (1.5)
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where ρs and Re are, respectively, the density and the Reynolds number of the sphere and
ρf is the density of the fluid. Here vc is the velocity the sphere would attain at ho = 0, if
the other body (sphere or bottom wall) was not present and lubrication forces would
not have come into action. For a falling sphere, a large St means that the dynamics is
dominated by gravity. Small St means that the viscous forces dominate the dynamics of
the sphere. Similarly, for two spheres colliding in a viscous medium, a large St implies
that the dynamics is dominated by the inertia of the spheres. In general, for a particle in
an arbitrary background flow, a large St means that the particle trajectory will appear
to be uncorrelated to the background flow and St = 0 means that the particle will just
act as a tracer and follow the flow.

The elastohydrodynamic lubrication theory predicts a critical Stokes number Stc
(Davis et al., 1986), below which a collision between smooth spheres or a sphere and a
wall does not result in a bounce. Experiments on sphere-wall collisions by Barnocky and
Davis (1988), Gondret et al. (1999, 2002), and Joseph et al. (2001) measure the coefficient
of restitution (by video imaging), which is the ratio of the velocity just after impact to
the velocity just before impact. They found, by plotting the coefficient of restitution as
a function of St, that there is a transition from settling to bouncing at Stc ranging from
about 8 to 15. There is only a modest variation of Stc with the material of the sphere/wall
(Gondret et al., 2002; Joseph et al., 2001). E.g., Gondret et al. (2002) found similar Stc
for teflon (Young’s modulus E = 0.5GPa) and tungsten carbide (E = 534GPa).

Surface roughness can play a role when the separation between the solids becomes
comparable to the roughness. Davis (1987) and Barnocky and Davis (1988) accounted
for this in their calculation by imposing an inelastic collision at a cutoff distance set
by the roughness. Joseph et al. (2001) used spheres with well-characterized roughness
and argued that the scatter in their data could be explained by the surface roughness.
Lecoq et al. (2004), Mongruel (2012), and Chastel and Mongruel (2016) concluded that
artificial roughness can indeed increase the approach velocity before impact. Cawthorn
and Balmforth (2010) studied a two-dimensional (2D) wedge falling under gravity in
a viscous medium and predicted an upward drag force on the wedge which diverges
logarithmically with the minimum separation between the wedge and the bottom wall.
Based on this, they suggested that an object falling under gravity will approach the
bottom wall faster if the object has sharp asperities. They agreed that studying the
descent of a cone under gravity will be more relevant — we will present the study of a
cone falling under gravity in Chapter 3.

Barnocky and Davis (1989) studied the effect of pressure-dependent viscosity in the
elastohydrodynamic framework of Davis et al. (1986) by including the relation for viscosity
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proposed by Chu (1962). They concluded that the effect of this dynamic increase in
viscosity was weak and decreases Stc by a small amount. Donahue et al. (2010) suggested
that in a two-sphere collision, the rebound will occur when the sphere encounters the
largest of the three length scales below:

1. Elastohydrodynamic length scale (Davis et al., 1986, 2002)

Davis et al. (2002) derived the elastohydrodynamic length scale xe by using a
scaling argument and suggested that under the elastohydrodynamic lubrication
framework the sphere will rebound when the gap between the solid surfaces is equal
to this length scale:

xe =
(

3πθ0µR
3/2vo√

2

)2/5

(1.6)

where vo is the relative velocity between the two spheres in the Davis et al. (1986)
framework and can be taken as the terminal velocity for a sphere approaching a
bottom wall. θ0 is given by

θ0 =
∑

i=1,2

1 − ν2
i

πEi

(1.7)

where νi and Ei are the Poisson ratio and Young modulus of elasticity of the ith

sphere. This new length scale is very similar to the length scale obtained by Davis
et al. (1986), x1 = 4θ0µR

3/2vo.

2. Roughness scale (Barnocky and Davis, 1988; Davis, 1987; Davis et al., 2002)

If the sphere has sufficiently large asperities, then physical contact and rebound
can be presumed to occur when the gap between the solid surfaces has decreased
to the height of these roughness bumps.

3. Glass-transition length scale (Donahue et al., 2010).

In this condition, once the pressure in the gap (equation 1.2) has risen to the glass
transition pressure of the fluid pgt, the sphere will rebound.

xgt =

√√√√ 3µRḣo

pgt − po

; (1.8)

where po is the hydrostatic pressure of the fluid. There is a lack of well-established
data for pgt for most of the fluids. Donahue et al. (2010) used 0.55 GPa as the
glass transition pressure for silicone oil in their analysis based on their private
discussions with Scott Bair of Center for High-Pressure Rheology and the study of
Angel et al. (2007).
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Short-range forces such as Van der Waals forces could conceivably play a role close
to contact but are not considered in these studies of bouncing. Whether contact occurs
during rebound is still not established. It is difficult with video imaging techniques to
resolve contact dynamics spatially or temporally. In our experiments in Chapter 2, we
directly address the question of the existence of solid-on-solid contact using an electrical
set-up and in Chapter 4 we investigate kinematics very close to the moment of impact. In
Chapter 3 we try to compare our experimental observations to a more detailed theoretical
calculation by going beyond the lubrication theory.

1.3 Granular structure

Once the contact between the spheres is established, the friction between the surfaces
takes over. It is therefore important to study the structures that these frictional contacts
can create and the stresses they carry, as such structures are prevalent in the world at
all scales. These structures are heavily controlled by frictional contacts and a majority of
the literature on granular matter deals with such systems in a medium of zero resistance.
Stresses inside a static granular column have been a subject of study for years now,
see e.g. Nedderman (2005). Janssen (1895) showed that pressure at the bottom of a
container, filled with grains, saturates with the fill-height of the container (Sperl, 2006).
The major assumptions in Janssen’s theory can be summarised as:

1. The vertical component of the stress σyy is uniform across the cross-section.

2. The Coulomb friction at the wall is fully mobilized, i.e., shear stress, τ = σxz =
µwσxx, where µw is the coefficient of friction at the side walls of the column and
σxx is the horizontal normal stress.

3. Horizontal normal stress, σxx, is proportional to vertical stress, σxx = Kσyy. Where
K is the proportionality constant and is also referred to as Janssen’s constant.

Using these predictions, Janssen suggested that the vertical stress (σyy) at a height y
decays exponentially with fill-height h and is given by:

σyy(y) = ρgs

(
1 − e− (h−y)

s

)
, (1.9)
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where g is the acceleration due to gravity, and ρ is the bulk density. s is referred to as
the decay length and is determined by geometry. For a 2D container of width W ,

s = s2D = W

2Kµw

. (1.10)

A quasi 2D granular column is a container with a thickness just above the diameter of
the particles so that particles only form a single layer inside the container. For a quasi
2D container with thickness t and width W ,

s = sq2D = Wt

2W + 2t
1

Kµw

. (1.11)

For a 3D column of radius R,
s = s3D = R

2Kµw

. (1.12)

This behavior of a granular column is obviously different from that of a column filled
with liquid in which pressure increases linearly as we go down the column. To test
Janssen’s prediction, the vertical stress at the bottom of a granular column has been
widely documented for both 2D and 3D cases; see e.g. Vanel and Clément (1999), Qadir
et al. (2010), Bratberg et al. (2005), Liu et al. (2009), Bertho et al. (2003), Wen et al.
(2015), Chand et al. (2014) and Ovarlez et al. (2003) in experiments and Vanel et al.
(2000), Ovarlez and Clément (2005) and Zhao et al. (2018) in simulations. To satisfy
the second assumption of the Janssen’s theory, i.e., to make the particles at the side
walls fully mobilized, a common practice is to use a column with a moving wall (Ovarlez
et al., 2003; Vanel and Clément, 1999). Vanel and Clément (1999) used movable bottom
walls, whereas Ovarlez et al. (2003) translated the side walls vertically. The movable
wall is slowly translated to mobilize the particles in contact with the side walls and then
the packing is allowed to relax. Vanel and Clément (1999) proposed a two-parameter
fit to reconcile their experimental observations of pressure at the bottom of a granular
column with Janssen’s theory. They observed a hydrostatic-like region up until a certain
fill-height of the granular column, followed by a region at larger fill-height that obeys
Janssen model. They suggested that the hydrostatic-like region can be thought of as a
hydrostatic slice at the bottom of the container. Their two-parameter fit has been widely
accepted in the granular community.

A common explanation for the saturation of vertical stress at the bottom of a granular
column at large fill-heights is that the walls of the column bear some of the load of
the granular pile with the help of wall-friction. Hence, filling the container with more
particles just increases the load on existing, mutually-compressed particles. These
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mutually-compressed particles make a chain and transfer this load to the side walls
with the help of wall-friction. These chains are referred to as force chains and a set of
interconnected chains is referred to as force network (Majmudar and Behringer, 2005;
Vanel et al., 2000). Adding more grains in the column helps in creating new force networks
which transfer the load to the side walls, while the load at the bottom of the container
remains unaffected. Janssen’s pressure at the bottom of the container has been studied
in moving walls system as well. Bertho et al. (2003) measured Janssen’s pressure on the
bottom wall in a system in which the side walls were moved at different velocities while
the base remained fixed. This was achieved by using a tube of slightly bigger diameter
than the base as the side wall. They concluded that Janssen’s prediction is valid for
a large range of velocities. It is widely known (Hilton and Cleary, 2011; Janda et al.,
2012; Shah et al., 2017; Tighe and Sperl, 2007) that the efflux of granular matter from a
silo or a container occurs at a fixed speed, irrespective of fill height. This phenomenon
has also been related to Janssen’s observation of pressure saturation (Jaeger and Nagel,
1992; Jaeger et al., 1996). However, it has been proven now that constant efflux from
a granular container is not related to Janssen’s pressure as, unlike Janssen’s pressure
the efflux rate does not depend on the width of the container (Andreotti et al., 2013;
Mankoc et al., 2007).

Despite a large number of studies on measuring pressure at the bottom of a granular
pile, there is still not a clear understanding of local stress variation inside the granular
column, especially for a 2D granular column. Landry et al. (2004) and Zhao et al.
(2018) investigated the stress variation inside a cylindrical column to test the Janssen
model using numerical simulations. Landry et al. (2004) used pouring and sedimentation
techniques for creating the granular columns in their study. In the pouring technique,
a fixed number of grains are poured from a fixed height above the granular column
at fixed time intervals until the total number of grains in the column is equal to the
desired value. In the sedimentation technique, all the grains are first placed inside the
granular column with zero initial velocity to occupy the whole space of the container,
and then they are allowed to settle under gravity. Both these techniques are discussed
in detail in Chapter 5. Zhao et al. (2018) did not mention the protocol they used for
creating the granular column. Both Landry et al. (2004) and Zhao et al. (2018) found
the two-parameter form of Vanel and Clément (1999) to be a better fit than Janssen’s
form for their numerical data. Landry et al. (2003) measured the stress variation inside
a 2D granular column created by the pouring method and found the results to be closer
to the Vanel and Clément (1999) form. It is also not known if Landry et al. (2003, 2004)
and Zhao et al. (2018) mobilized the particles in contact with the side walls by moving
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bottom or side wall before measuring the vertical component of stress. As per the private
conversation with Steve Plimpton [one of the authors of Landry et al. (2003, 2004)], the
stress shown in their article was total or global stress of the granular column and not the
local stress. This brings us back to our initial point of the unavailability of thorough
studies on local stress variation inside a 2D granular column. One of the main reasons
for the lack of such studies is the fact that it is difficult to measure local stress inside a
granular column experimentally.

Therefore, it is still not clear how the local stress varies with the vertical or horizontal
coordinate in the bulk of the column and how it depends on the method by which
the column is being created. The series of assumptions used by Janssen has not been
fully tested for different methods by which a granular column can be created. This
will be addressed in Chapter 5 of this thesis. With the help of numerical simulations, I
will discuss how the stress profile in the bulk of a 2D granular column depends on the
fill-height of the column and how it can vary depending on the protocol used to create
the granular column.

1.4 Immersed packing

The packing arrangements of multi-particle systems can be completely different inside a
fluid and can depend on many parameters [like buoyancy forces and Stokes number St,
if the packing is created by sedimenting particles in a fluid (Farrell et al., 2010; Onoda
and Liniger, 1990)]. This makes it interesting and important to understand how such
packings come about and if it can be exploited to understand the jamming transition
(O’Hern et al., 2002).

In two dimensional systems, the highest packing arrangement is obtained by hexagonal
crystalline packing where the volume fraction is around φhex = 0.907. A disordered or
amorphous packing has a much smaller volume fraction. Random close packing (RCP) is
referred to as the largest packing fraction achievable without deliberately introducing
crystalline structures. In the literature, RCP limit has been discussed as a jamming
transition point considering the disordered structure to be glassy or liquid-like and the
crystalline structure to be solid (O’Hern et al., 2002). Random loose packing (RLP)
refers to the lowest packing fraction achievable in a disordered stable structure. RCP
and RLP limits are typically quoted for three dimensional systems to be 0.64 and 0.55,
respectively (Bernal and Mason, 1960; Berryman, 1983; Farrell et al., 2010; Onoda and
Liniger, 1990; Scott and Kilgour, 1969). However, it has been seen that RLP is a friction
dependent number and that there is no fixed limit (Dong et al., 2006; Farrell et al., 2010;
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Jerkins et al., 2008; O’Hern et al., 2002; Scott and Kilgour, 1969; Zhang et al., 2001).
Chaudhuri et al. (2010) established that there is no tight limit on RCP for frictionless
spheres in 3D systems.

In one of the first studies of loose packings, Onoda and Liniger (1990) developed a
value of RLP to be 0.555 ± 0.005 in the limit of zero gravitational force by sedimenting
glass spheres in a fluid of similar density. Though a question arises about the strength
of such packings and if more fragile packings can be created in such conditions when
the load on each particle is negligible. Farrell et al. (2010) studied the loose packing of
frictional spheres in a fluid and found that there exists a critical Stokes number at which
the loose packing limit is attained. They concluded that the limit is determined by the
friction of the particles and that this limit can be attained by going to slow deposition.

The existence of disordered packing in a 2D system is a subject of debate as monodis-
perse 2D packings easily crystallize. Therefore bidisperse spheres are used in the granular
community to study 2D systems. The RCP for a pile of monodisperse discs in a 2D system
is found to be near 0.82 (Berryman, 1983; Visscher and Bolsterli, 1972). Bidisperse
frictionless spheres in the 2D system seem to have a larger packing fraction of 0.84
(O’Hern et al., 2002). Loose packing in the 2D system has been scarcely studied and its
existence is under debate. An attempt to develop an experimental protocol to create
disordered packings of frictional, mono-disperse spheres in the 2D systems will form the
final chapter of this thesis.

1.5 Overview of work and findings

In the next chapter of this thesis, I will show that a sphere falling under gravity makes
direct mechanical contact with the bottom plate during the bounce, in contrast to
expectations based on elastohydrodynamic theory. An electrical set-up was used where a
conducting sphere was dropped from a given height on a conducting plate and a voltage
was applied between them. When the sphere makes or breaks electrical contact with the
plate, the circuit closes or opens. We observed that there is a critical Stokes number for
collision below which the sphere does not bounce and the first electrical contact persists
for all time. For larger values of St, the sphere makes metallic contact for a finite time
δTc. It then breaks the contact and is in the fluid for a flight time TF , before settling into
permanent electrical contact. It was observed that all contacts were purely resistive, and
the duration and other properties were found to be independent of the applied voltage.
The experiments not only resolve the question of the contact but also provide information
on the nature of the contact and the dissipation during such contacts.
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In an attempt to understand this difference between our experimental observations
and lubrication theory (and elastohydrodynamic lubrication theory), we develop a new
method to calculate the hydrodynamic force on a falling sphere in Chapter 3 of this thesis.
We analytically go beyond lubrication theory by including unsteady terms and inertial
terms, which were neglected in lubrication theory. We develop a boundary layer equation
to describe the flow and solved it by a novel method. This allows us to obtain the radial
velocity profile below the sphere which is then used to solve for the pressure and the
sphere’s acceleration. By defining an appropriate non-orthogonal coordinate system,
we are able to solve the dynamics as a succession of parametric ordinary differential
equations. At the end of the chapter, we also argue that even a non-deformable sphere
with an atomic-scale roughness should be expected to make contact with the plate just
using the lubrication approximation.

In the fourth chapter of this thesis, we experimentally observe the dynamics of the
sphere just before and after the contact and quantify the deviation from lubrication theory
which results in the final contact. We use our electrical set-up to trigger a high-speed
camera and use conventional image analysis to track the sphere at high resolution, with
the help of a bellow and a macro lens. The dynamics observed up to a few micrometers
above the bottom plate showed systematic deviation at small heights from lubrication
theory. We find that the actual approach velocity is slightly greater than predicted by
lubrication theory at these heights. Rebound and second impact dynamics are found to
be similar to the first impact dynamics.

In a separate study of frictional multi-particle systems, we show numerically how
a granular column can be different from both hydrostatic columns and the standard
Janssen model in Chapter 5 of this thesis. This is achieved by observing the stress
variation in the bulk of a 2D static granular column filled with monodisperse spheres. We
perform LAMMPS-based molecular dynamics simulations, (https://lammps.sandia.gov/)
Plimpton (1995) to construct granular columns in four different ways, as discussed in
the chapter. We study how the stresses in the bulk vary in a 2D monodisperse system
with these protocols. The different protocols give different vertical stress profiles and
forces on the walls. We also find that the static friction on the wall can be far from the
Coulomb yield limit and depends on the construction protocol.

In the last chapter, we present an experimental procedure to create disordered packings
of frictional mono-disperse spheres in 2D systems. Our goal is to use the principles
learned in Chapters 2-4 to deposit particles at St below a critical value, so that every new
particle incident on a packing transfers almost no momentum to the particles beneath.
In the protocol developed, the container is kept at an inclination angle θ and spheres are



50 Introduction

allowed to roll downhill within a viscous fluid to create disordered packings. Packing has
been observed at four different inclination angles and the packing density was found to
decrease with the reduction of this angle.



Chapter 2

Is there a contact in normal
collision?

The work in this chapter was done in collaboration with Dr. G Rajalakshmi. This
chapter’s content has been published in Physical Review Fluids (Birwa et al., 2018) and
the chapter follows that article closely.

2.1 Introduction

Wet collisions, collisions of two solids bodies in a viscous medium, have been a subject of
studies for years now. One of the celebrated triumphs of fluid mechanics is Reynolds
(1886) explanation of how a sheared viscous fluid generates sufficient pressure to separate
the moving rotors in a journal bearing. And yet, a spoon clangs against the side of a cup
as we stir a fluid. In Chapter 1, we have discussed the history of this problem.

In this chapter, we consider the simple situation of a sphere falling towards a plane
in a viscous fluid. Balls rebound when bounced on the floor. However, if the air is
replaced by a highly viscous fluid a ball can settle without bouncing depending on the
Stokes number of the ball. We ask whether solid-on-solid contact occurs during bouncing
collisions, and more generally whether solid dissipation plays a role in determining the
transition from bouncing to settling. Whether contact occurs during rebound is still not
established. It is difficult with video techniques to resolve contact dynamics spatially
or temporally. In our experiments, we directly address the existence and influence of
solid-on-solid contact using an electrical set-up to investigate kinematics very close to
the moment of impact.
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2.2 Experimental set-up

(a)

(b)

Fig. 2.1 (a) Schematic diagram of the experimental set-up. The voltage is measured
across a resistor (Rs) of 220 kΩ. (b) A sphere approaching a plane, where r, z are the
radial and vertical directions, D = 2R is the diameter of the sphere, g is the acceleration
due to gravity, and h(r, t) is the time-dependent distance between sphere and the bottom
wall.

We dropped stainless steel spheres on a stainless steel plate of 10 cm x 10 cm cross-
section and 1 cm thickness through silicone oil of dynamic viscosity µ = 0.336 ± 0.020
Pa-s, and density ρf = 970 kg/m3. As shown in Figure 2.1 (a), a voltage was applied
between the plate and the sphere. When the sphere makes or breaks electrical contact
with the plate, the circuit closes or opens, King et al. (2011). The current through the
resistor was sampled by a digital oscilloscope (Tektronics DPO 4054B) at a rate of 1 to 5
MHz. Both direct current (DC) and alternating current (AC) voltage sources were used
in the experiments.
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An electromagnet mounted on a micrometer translation stage released spheres from
different initial heights, allowing us to vary the incoming velocity and the Stokes number.
The release heights ranged from 1 mm to 70 mm and were determined to an accuracy of
20 µm, corresponding to a maximum error of 2% at the lowest height. In each case, the
nominal St was determined from the velocity vc computed at the height of the plate’s
surface in the absence of the plate (see equation 1.5). For this, we solved the equation of
motion of the ball under gravity, buoyancy and viscous drag (Figure 2.1 (b) using an
empirical formula from Flagan and Seinfeld (1988) applicable to our experimental range
of Reynolds number,

ρsV ḧo = (ρs − ρf )V g − 3πµDḣo(1 + 0.15Re0.687
in ), (2.1)

where Rein = ρfDḣo/µ is the instantaneous Reynolds number of the sphere defined
by using the instantaneous velocity and diameter of the sphere. Take note that Rein

is changing with time. V is the volume of the sphere and ho = h(r = 0, t) is the gap
between the sphere and the plate. The dot on ho represent total derivative in time. The
resulting Stokes numbers (St) ranged from 5 to 28 with a maximum error of 6.5% at the
largest St (including contributions from the temperature dependence of viscosity and
precision of release height). Corresponding Reynolds number Re, defined by using vc,
varied from 5.7 to 32.

2.3 Roughness

We used two types of spheres. One was as-purchased stainless steel ball bearings with
density ρs = 7630 kg/m3 in two diameters, D = 16 mm and 12 mm. The second
type of sphere, D = 15.4 mm, was produced by etching the 16 mm balls with HNO3

in a 1:3 aqueous solution for 10 minutes. We measured surface topography with a
diamond-tip Dektak contact profilometer and extracted position-dependent roughness
from the difference ξ between the measured height, and the best-fit spherical profile.
The as-purchased spheres had smooth patches with low rms roughness around ∼ 0.025
µm interspersed with widely separated pits (of typical height 1 − 2 µm) and mounds
(of typical height 0.25 µm), with lateral size ∼ 10 µm. These numbers varied slightly
between individual spheres. The etched spheres had larger, but more uniform roughness
with an rms value ∼ 0.4 µm but several larger peaks of the order of 1−2 µm. The typical
lateral scale of the roughness is ∼ 100 µm (see Table 2.1) and a probability density
distribution of roughness for all the three spheres is shown in Figure 2.2.
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Fig. 2.2 Probability density P (ξ) of the roughness of spheres as measured with a contact
profilometer. To obtain the roughness ξ, the path traced by profilometer as a function of
distance has been subtracted from the gross curvature of the sphere. The inset shows
typical profiles ξ(s) of roughness as a function of the position s along the surface, for all
the three spheres used.

Table 2.1 Roughness values

D = 12 mm 16 mm 15.4 mm
RMS (µm) 0.25 0.22 0.5

Max positive deviation (µm) 1.1 0.68 1.66
Max negative deviation (µm) -1.78 -1.77 -1.4

The profilometer has a lateral resolution of 0.5 µm and a vertical range of 65.5 µm.
The vertical resolution of the profilometer is ≈ 1 nm. The profilometer tip travels along
a path of length ∼ 0.4 mm along the surface of the sphere. We fit a circle with radius
value the same as the radius of the sphere to the height along the path traced by the
profilometer. This yields the global radius of curvature along this path as shown in
Figure 2.3. The deviations from this fit give the local roughness, ξ of the topography of
the surfaces. Note that the profile shown in Figure 2.3 is an example of a particularly
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rough region of the etched sphere. The unetched spheres are much smoother. In more
typical line profiles, much fewer asperities would be found. As can be seen from the
statistics of ξ given in Table 1, the etched 15.4 mm sphere’s surface was found to be
most rough; as discussed in above paragraph. It is also the least heterogeneous, with
relatively uniform roughness across the surface.

Fig. 2.3 A fit for the 15.4 mm etched sphere on the path traced by the profilometer as a
function of position along a line on the sphere’s surface is shown in red. The fit gives us
the global curvature of the path and the local roughness of the sphere is obtained by
subtracting the surface profile from this fit. The roughness (ξ) is shown in blue in the
inset.

The plate roughness was measured using optical profilometry. The rms roughness of
the plate was found to be around 0.29 µm and the average of the maxima of the peak
to valley height from 12 random samples of the plate was observed to be 3.2 µm. In
Chapter 1, we talked about Donahue et al. (2010) suggestion that in a two-sphere or a
sphere-wall collision, the rebound will occur when the separation between the sphere and
the plate decreases to any of the three length scales: 1.) Elastohydrodynamic length
scale, 2.) Glass-transition length scale, or 3.) Roughness length scale. In Figure 2.4, we
show the comparison between all the three length scales for 16 mm sphere and for the
range of St we are studying. Glass transition length scale is determined by using 0.55
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GPa as glass-transition pressure (Donahue et al., 2010). For both elastohydrodynamic
length scale and glass transition length scale, vc is used as the velocity (see Chapter 1).
Elastohydrodynamic length scale measurement requires the value of the initial relative
velocity and vc is a good assumption. However, for measuring glass transition length
scale, we need the impact velocity and vc will be an overestimate. We will learn in
Chapter 3 that this overestimate will be bigger for lower St and vc will be close to the
impact velocity at larger St. We note that the maximum combined roughness of the
plate and the sphere is ∼ 1.6 + 0.68µm. However, it can be seen from Figure 2.2 that a
vast majority of the roughness of the spheres is below this number and is much smaller
for unetched balls. We assume a similar distribution of roughness on the plate. Thus
given that the contact between a sphere and a plate initiated by a point contact, in a
vast majority of the trials we expect contact at a distance smaller than the maximum
combined roughness. Hence we have chosen rms roughness of the sphere as the length
scale for roughness. Even if we add the rms roughness of the plate to this value, we find
that the roughness length scale is below the other length scales, particularly at large St.

Fig. 2.4 Comparison between elastohydrodynamic, glass-transition, and roughness length
scale. The roughness length scale is chosen as 0.22 µm, the rms roughness value for
16 mm sphere, and glass transition length scale is determined by using 0.55 GPa as
glass-transition pressure (Donahue et al., 2010). For calculating the elastohydrodynamic
length scale, Poisson ratio of 0.3 and Young’s modulus of 210 GPa is chosen.
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As per Figure 2.4, both elastohydrodynamic and glass-transition length scales are
above rms roughness value for 16 mm sphere and, therefore, we should not encounter
solid-on-solid contact and the sphere should rebound without making contact. However,
our experiments contradict the theory and we do see contact before a rebound.

2.4 Contact observed

Fig. 2.5 Voltage versus time graphs for increasing St with AC and DC voltages. (a) At
St = 5.8 with an AC applied voltage, no bounce occurs, but electrical contact is made
in a finite time. This is the generic behavior for St < Stc. (b) At St = 7.1 and (c) at
St = 6.7 with DC and AC voltages, respectively, we see a collision, and then a period
of no contact, followed by permanent contact. The contact has much lower resistance
than the series resistance i.e. Rc ≪ Rs. This is the generic behavior for St > Stc. For
St > Stc, we also see the case shown in (d) where there is a high resistance contact (Rc

is of the same order as Rs) (see next section 2.5 : Effect of electrical forces).
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In Figure 2.5 we show examples of the collision obtained by applying both AC [Figure 2.5
(a), 2.5 (c), and 2.5(d)] and DC voltages (Figure 2.5 (b) between plate and sphere. At
very low Stokes number [panel (a), St = 5.8], we observe no bounces. The first electrical
contact persists for all time. At larger values of St, as shown in Figure 2.5 (b) and 2.5
(c), the ball makes metallic contact for a finite time, δTc. It then breaks contact and is in
the fluid for a flight time TF before settling into permanent electrical contact. There is a
clear separation of scale between the contact time, δTc (tens of µ-sec) and the flight time,
TF (tens of milli-sec). Contact can sometimes be noisy (as seen at late times in Figure 2.5
(b), presumably due to rolling or rocking of the sphere. Such differential motions have
been studied for a sphere in a rotating cylinder by Ashmore et al. (2005) and Yang et al.
(2006). Finally, we see instances, as shown in Figure 2.5 (d), where the contact resistance
(Rc) between the ball and the plate is comparable to the external series resistance (Rs).

To test if electrical forces play a role in contact mechanics, we compared our results
with high-frequency AC (100 to 500 kHz) to results with a DC voltage and made
measurements as a function of the amplitude of the applied voltage. We chose silicone oil
as the working fluid due to its high dielectric breakdown voltage (> 40 MV/m). There
appears to be no systematic effect of the amplitude or frequency of the AC voltage or
the choice of AC or DC voltage on the occurrence of contact, the duration of contact
and on the intervals between bounces at a given St (see next section 2.5 : Effect of
electrical forces). We thus conclude that our results are not due to dielectric breakdown.
All observed contacts are resistive, that is, with no phase shift between the applied and
measured voltages. However, we do point out that the relative frequency of low versus
high-resistance contacts can be affected by many factors such as the impurity content
of the oil, aging of the surface electrical properties, and the topography of the sphere
following repeated collisions. To achieve consistent results, we report data taken under a
set of fixed conditions.

The major qualitative result in Figure 2.5 is that the ball makes direct mechanical
contact with the plate during the bounce, in contrast to expectations based on the
elastohydrodynamic theory by Davis et al. (1986). Next, we explore the nature of that
contact.

We define contact fraction, φ, as the fraction of experiments at a particular Stokes
number in which the sphere made a low resistance contact with the plate’s surface
during the bounce, i.e., collisions as shown in Figure 2.5 (b) and 2.5 (c). The value
of φ rises sharply from zero above a critical Stokes number Stc, which is the same for
all three types of spheres we used. Thus solid-on-solid contact occurs even just above
the threshold of bouncing. The value of Stc ≈ 6.2 ± 0.5 that marks the transition to
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Fig. 2.6 Contact fraction (φ), contact time (δTc), and flight time (TF ) vs Stokes number
for the 15.4 mm etched ball, 16 mm and 12 mm unetched balls. Here we report data only
for low resistance contacts (Rc ≪ Rs) as in Figure 3b and 3c, however, the trends are
unaffected if we include more resistive contacts (see next section 2.5 : Effect of electrical
forces) as in Figure 2.5. Error bars are the standard deviation of measurements in panel
(a) and standard error of measurements in panel (b) and (c) taken at fixed St. Wherever
the error bars are not visible, errors are smaller than symbol size.

bouncing with mechanical contact is close to the bouncing transition observed in previous
experiments by Gondret et al. (1999, 2002) and Joseph et al. (2001). We refer to φ as
the contact fraction, even though it is actually a lower bound on the contact fraction, in
that high resistance events are not included. Including high resistance events, as shown
in Figure 2.9 does not change any qualitative trends (see the next section 2.5 : Effect of
electrical forces).

In Figure 2.6 (b) we show data for the duration of contact, δTc. The contact time δTc

decreases as the Stokes number is increased above Stc. The relatively small change of δTc

is consistent with calculations for a Hertzian, elastic impact which predict a very weak
dependence of contact time on velocity, δTc ∝ (UReff)−1/5, where Reff is the effective
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radius at the point of contact (Landau and Lifshitz, 1986). For perfectly smooth spheres,
Reff = R, whereas Reff will be smaller when a bump on the sphere is presented to the
plane. Contact times for the etched spheres are slightly longer than those for the unetched
spheres (which have very similar contact times for both sizes of the sphere). Roughness
at the point of contact, rather than the sphere radius, possibly sets the relevant curvature
at impact and influences the contact time (see appendix A: Hertzian calculation). In
Figure 2.6 (c) we show the duration between the bounce and the next collision, which we
refer to as the flight time TF . This is a measure of the kinetic energy with which the
ball rebounds from the plate. As expected, this is an increasing function of (St− Stc).
Furthermore, there is little or no variation with the type of sphere used, as opposed to
the data for δTc. This implies that the details of the solid contact may not affect the
total dissipation, as elaborated below.

Fig. 2.7 Flight time vs contact time for D = 16 mm un-etched, 12 mm and 15.4 mm
etched balls. Notice the increase in the scatter at lower St.
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Thus far, we have discussed mean values of the contact duration and flight times,
averaged over experimental trials at fixed St. However, the distribution of δTc and TF

reveals the source of dissipation. In Figure 2.7 we plot TF versus δTc for St varying from
just above Stc to about St = 28. In most cases, we find a broad distribution of contact
times varying by up to an order of magnitude, at a fixed value of St. Presumably this
reflects the variation in the local topography of the sphere. Remember that 16 mm and
12 mm spheres have inhomogeneous roughness whereas the etched sphere of 15.4 mm has
homogeneous roughness and, therefore, shows much less scatter in contact times. We,
however, find much smaller variability in the flight time, particularly at larger St for all
the three spheres. Thus the total dissipation in the sphere-wall encounter, as reflected by
the flight time, is not strongly affected by the duration of solid-on-solid contact. This
indicates that despite solid contact, the bulk of kinetic energy is lost to fluid dissipation.

At large Stokes numbers, a different trend sets in, most clearly observed in the etched
spheres: the contact time Tc becomes narrowly distributed. We suggest that at large
impact speeds, the effective radius of the Hertzian contact increases, and averages over
the roughness of the etched sphere (see appendix A: Hertzian calculation). Thus collisions
at different locations become similar in their contact mechanics and no longer depend on
local roughness. We anticipate another regime at even higher St where the dissipation
becomes solid-dominated (as in a ball bouncing in the air), but we do not observe that
regime. At the largest St, we observe plastic deformation in the form of pitting at the
point of impact (more details are in appendix A: Hertzian calculation).

Direct solid contact is likely to be a general feature, even close to the threshold of
bouncing. In this regime, the dissipation remains dominated by fluid mechanics, while
the duration of the contact is largely controlled by surface and bulk properties of the
solids. Even though solid dissipation does not play a prominent role, the presence of
solid-to-solid contact is of great significance in contexts such as wear, charge transfer, or
chemical reactivity of solids in suspension.

We do not observe a case where no contact was made by the sphere with the bottom
wall in a finite time. Even at the smallest Stokes number we studied (St = 5), the
contacts with the bottom wall were made which persist throughout the time. However,
it is difficult to speculate what will happen at very low Stokes number (St < 1) and if
we will see contact in a finite time or not.



62 Is there a contact in normal collision?

2.5 Effect of electrical forces

In order to verify that electrical forces do not play any role in the mechanics of contact,
we compared our results for a fixed Stokes number St at different AC voltages and
frequency. We did not find any systematic dependence on the duration of contact or
flight time with applied voltage or frequency. Results obtained with DC measurements
were found to be similar to AC measurements.

Fig. 2.8 (a) Low-resistance contact and (b) high-resistance contact at 50 mV, 100 kHz
and St = 19.7. Panel (c) and (d) are the zoomed-in version of contacts shown in panel (a)
and (b). The voltage shown in black is measured by a digital oscilloscope across a 220 kΩ
resistor. In panel (a) and (c), the output voltage is equal to the source voltage (shown in
red) of 50 mV suggesting that there is no voltage drop across the contact and the contact
has very low resistance. However, in panel (b) and (d), the output voltage is lower than
the source voltage suggesting that some contacts obtained during the experiments have
high resistance. Notice the zero phase shift in both cases.
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We used the same circuit as discussed before, Figure 2.1 (a). The output voltage
was measured across a 220 kΩ resistor, Rs. This meant that if the contact resistance,
Rc, is very low all the voltage drop would occur across Rs. This indeed was observed
in a majority of the experiments. An example has been shown in Figure 2.8 (a) and a
zoomed-in version of this contact is visible in Figure 2.8 (c). The output voltage (shown
in black) is equal to the applied voltage of 50 mV (shown in red) suggesting that no
voltage drop occurs across the contact. Such contacts will be called “low resistance
contacts”. In the rest of the experiments, we observed a significant voltage drop occurring
across the contact. Hence, the voltage measured across the oscilloscope is less than the
applied voltage as is visible in Figure 2.8 (b) and 2.8 (d). This suggests that Rc is of the
same order as Rs in these cases. Such contacts were termed as “high resistance contacts”.
The measurements shown in Figure 2.8 were taken at St = 19.7, 100 kHz for 16 mm
sphere. Contacts were found to be purely resistive as can be seen from the fact that
there is zero phase difference between the applied voltage and output voltage across Rs

in Figure 2.8, panels (c) and (d).

In Figure 2.9, we have made measurements as a function of the amplitude of the
applied AC voltage for the same Stokes number as above (St = 19.7) and D = 16 mm.
The applied AC voltage was varied from 50 mV to 10 V. The fraction of low resistance
contact (Rc << Rs) was found to be lower than unity, implying that high resistance
contact occurs in some of the trials. When high resistance contacts are also included,
the contact percentage becomes one and does not vary with applied voltage. We point
out that the fraction of high resistance contacts is variable and can be affected by many
factors such as the impurity content of the oil, aging of the surface electrical properties
and topography of the sphere following repeated collisions.

As is evident from Figure 2.9, no systematic dependence of contact time [panel (b)]
and flight time [panel (c)] on electrical voltage was observed. This suggests that electrical
forces do not play a role in the dynamics of the collision. In particular, there is no
observed change in the nature of the electrical signal, arguing that dielectric breakdown
of silicone oil does not occur during the collision process. The literature value of the
breakdown voltage is high but finite (> 40 MV/m), so perhaps breakdown is avoided due
to the very short time-scales of interaction. We thus infer that the values of contact time,
flight time and contact fraction reported in this article are independent of the voltage
applied.
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Fig. 2.9 There appears to be no systematic effect of the electrical voltage on the duration
of contact [panel (b)] or on the intervals between bounces [panel (c)]. This experiment
was carried out at 300 kHz, St = 19.7. The total measured contact fraction [panel (a)]
remains close to one. The fraction of low resistance contacts (black squares) is lower.
Error bars are the standard deviation of measurements in panel (a) and standard error
of measurements in panel (b) and (c) taken at fixed Stokes numbers. Wherever the error
bars are not visible, errors are smaller than symbol size.
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Fig. 2.10 Variation in flight time with frequency. No systematic trend was observed and
contact fraction was found to be equal to one for all values of frequencies.

The dependence on frequency (50 to 1000 kHz) of the applied voltage was also studied
and is shown in Figure 2.10. No systematic trend in the duration of contact, flight time
and contact fraction were observed. Figure 2.10 shows that there is no significant change
in flight time with frequency. As mentioned before, the contact fraction, when both low
resistance contacts and high resistance contacts are included, was found to be close to
one for all values of applied frequencies at St > Stc.

While the data make a clear case for solid-on-solid contact in all the spheres used,
the St−dependence of the details of the bounce appears to be influenced by the surface
quality of the sphere. This leads one to question whether our conclusions are valid for
spheres that are even smoother than the ball bearings employed here. The next chapter
is illuminating in this regard.





Chapter 3

Going beyond lubrication theory

To understand the contradiction between our electrical measurements from the last
chapter and lubrication theory, we revisit lubrication theory with a goal of releasing some
of the assumptions it is based upon. Equation 1.3 in the first chapter predicts that a
falling sphere will approach the bottom wall infinitely slowly. While the decelerating
force diverges as ho → 0 [recall that ho = h(r = 0, t) as shown in Figure 3.1], the velocity
in the numerator also decreases, and the ratio of ḣo/ho produces this result.

Fig. 3.1 A sphere approaching a plane, where r and z are the radial and vertical directions,
respectively, D = 2R is the diameter of the sphere, g is the acceleration due to gravity,
and h(r, t) is the time-dependent distance between the sphere and the bottom wall.

In the lubrication approximation, both the surfaces approaching each other are
considered to be flat and streamwise derivatives are neglected as discussed in Chapter 1.
Under this approximation, one obtains similarity profile in velocity, i.e., the radial velocity
always has the same parabolic form at all radii. In our analysis in this chapter, we account
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exactly for the shape of the object. We define a new non-orthogonal coordinate system
(η, ζ) in which the variation in shape (h) of the sphere with the radial coordinate is
considered. Besides this, explicit first-order streamwise derivatives are also considered. In
other words, we make a boundary layer approximation and also allow for weak departures
from the similarity of the velocity profile. Using this, we obtain a single parametric
differential equation which provides the velocity profiles at different radii at a given time.
The advantage of this new non-orthogonal coordinate system is that we are able to solve
our final equation as a succession of parametric ordinary differential equations. The radial
velocity profiles are then used to solve for the pressure and the sphere’s acceleration.

3.1 Falling sphere

We start by adopting the cylindrical coordinate system as shown in Figure 3.1 and using
the streamfunction-vorticity formulation. The axisymmetric continuity equation in this
coordinate system is:

1
r

(ru)r + vz = 0, (3.1)

where u and v are the velocities in the radial r (parallel to the wall) and z (normal to
the wall) directions, respectively and subscripts denote derivatives with respect to that
coordinate. Using the continuity equation, we can define the streamfunction, ψ, by

2πru = ψz; 2πrv = −ψr. (3.2)

Now writing the axisymmetric Navier-Stokes equation for the r and z components
(assuming that there is no flow in the azimuthal direction and the flow is axisymmetric),
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where t denotes time.
To eliminate pressure from the above equations, we take the derivative of equation 3.3

with respect to z and equation 3.4 with respect to r and take their difference, which
yields:
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Using the definition of vorticity ω,

ω = uz − vr, (3.6)

in equation 3.5, we get,

ρf

(
ωt + uωr + vωz + ω

(
ur + vz

))
= µ

(
ωrr + 1

r
ωr − ω

r2 + ωzz

)
. (3.7)

Now, using the definition of streamfunction in this equation, we finally obtain
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(3.8)
where the subscript d has been included just to show that all the variables are dimensional
in the equation. Derivatives have been mentioned explicitly, rather than by subscript.
As the sphere approaches the bottom wall, the fluid gets squeezed out. The flow rate
Q(r, t) across the gap at some radius r is given by

Q(r, t) = 2πr
∫ h(r,t)

0
u(r, t)dz = 2πU(r, t)rh(r, t), (3.9)

where U(r, t) is the vertically averaged velocity at any r and t and where h(r, t) is the
distance between the sphere and the bottom wall at some radius. By geometry, this is
given by

h(r, t) = ho +R −
√
R2 − r2. (3.10)

Note that at r = 0, h(r, t) = ho(t).

We now define a suitable non-orthogonal coordinate system:

η ≃ z

h(r, t) ; dζ ≃ dr

h(r, t) ; t ≃ td
vc

R
. (3.11)

Note the non-standard way of defining the streamwise coordinate. This simplifies our
final equation and allows us to eliminate higher-order terms in a consistent manner.
Here vc would have been the velocity of the sphere at ho = 0 had there been no bottom
wall, and is obtained by solving the equation of motion of the sphere under gravity,
buoyancy and viscous drag using an empirical formula given in Chapter 2 equation 2.1.
This coordinate system accounts for the curvature of the sphere, unlike the lubrication
approximation where h is considered independent of r. In this new coordinate system,
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the vertical coordinate η varies from 0 at the bottom wall to 1 at the sphere’s surface, at
all r.

We non-dimensionalise ψ and ω using the following transformations:

ψ = ψd

Q
; ω = ωd

h

U
= ωd

f
. (3.12)

Global continuity is imposed by prescribing that ψ varies from 0 at η = 0 to 1 at η = 1.
Using global continuity, the flow rate can be written in terms of the fluid displaced by
the sphere as it approaches the wall:

Q(r, t) = −2πR(h(r, t) − ho)ḣo, (3.13)

where the dot represents the derivative in time t.

Using this new coordinate system and non-dimensionalization, we find a solution in
the region where ho ≪ r ≪ R. and hence our solution will not be valid for r ∼ O(ho) or
smaller, and when r ∼ R. Since we are interested in the dynamics of the sphere when it
is very close to the plate (ho is very small), the region r ≤ O(ho) constitutes an extremely
small fraction of the spherical area over which pressure acts. The force contributions
from this region can be neglected consequently, and also because the pressure maximum
happens not to lie within this region. Even when r ∼ R, the pressure contribution is
very small because of the large gap size. Thus, the region where ho ≪ r ≪ R, gives most
of the contribution to the pressure force and is important to study.

Using equation 3.11, we can write the radial derivative as:
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. (3.14)

Now, we make the assumption that ho/R ≪ 1, and denote it by δ. This is a fair
assumption when the sphere is close to the bottom wall. From equation 3.10 and in the
region where r ≪ R, one can see that h/R is of the same order as r2/R2 as δ is very
small. In the region ho ≪ r ≪ R, the equations below elucidate the scaling.
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2R2 − ... . (3.17)
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Taking r2/R2 to be of O(ϵ), where ϵ ≪ 1 but for δ ≪ ϵ, we can determine that h/r is of
O(

√
ϵ).

h

r
= h

R

R

r
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√
ϵ). (3.18)

This gives,
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∼ r
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This makes all the terms of equation 3.14 ∼ 1
h
(
√
ϵ order) as ∂/∂ζ is ∼ O(h/r) which is

∼ O(
√
ϵ). The second derivative of h(r, t) with respect to r is:

hrr(r, t) = r2

(R2 − r2)3/2 . (3.20)

Using equation 3.20 and approximations as mentioned above, one can obtain that all the
terms of ∂/∂r2 are of order 1

h2 ϵ:
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In addition, we also have:
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h

∂

∂η
+ vc

R

∂

∂t
. (3.23)

where subscript d denotes that time is dimensional and the dot on ζ and ho represent
partial derivative and total derivatives in time respectively. Having discussed the scaling
for ho/R ≪ 1, we now go back to equation 3.8. Let us substitute the expressions for ψd

and ωd from equation 3.12 into equation 3.8. We get:

ρf

(
rf
∂ω

∂td
+ rω

∂f

∂td
+ Q

2π
∂ψ

∂z

(
f
∂ω

∂r
+ ω

∂f

∂r

)
−
(
Q
∂ψ

∂r
+ ψ

∂Q

∂r

)
f

2π
∂ω

∂z
− fQω

2πr
∂ψ

∂z

)

= µr

(
f
∂2ω

∂r2 + 2∂ω
∂r

∂f

∂r
+ ω

∂2f

∂r2 + f

r

∂ω

∂r
+ ω

r

∂f

∂r
− fω

r2 + f
∂2ω

∂z2

)
.

(3.24)
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Now, using equations 3.14, 3.22 and 3.23, we get
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From the definition of vorticity, we have

ωd = 1
r

∂2ψd

∂z2 + 1
r

∂2ψd

∂r2 − 1
r2
∂ψd

∂r
. (3.26)

Using equations 3.11 and 3.12, and shifting to non-dimensional coordinates, we get:

ωf = Q

rh2ψηη + Q

r
ψrr + 2

r
Qrψr + ψ

r
Qrr − ψ

r2Qr − Q

r2ψr; (3.27)

From the scaling of h/R ∼ O(ϵ) and h/r ∼ r/R ∼ O(
√
ϵ), we get:

ω = 2π∂
2ψ

∂η2 + (all ϵ order terms). (3.28)

To simplify the equation 3.25, we non-dimensionalize all lengths (ho and h) byR, velocities
(ḣo) by vc, and acceleration (ḧo) by v2

c/R. We now evaluate each term separately by using
h/R ∼ O(ϵ), r2/R2 ∼ O(

√
ϵ) and ∂/∂ζ ∼ O(h/r) ∼ O(

√
ϵ) and find that all the terms,

except for the last term, on the right-hand side of the equation 3.25 are small and thus
can be neglected. Retaining all the terms on the left-hand side and using equation 3.28,
we get:

ρfrfḣo

h

[
hζ̇

ḣo

ψηηζ − ηψηηη + h

ḣo

ψtηη +
(
ḧoh

ḣo
2 − 2

)
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rh
(ψηψηηζ − ψζψηηη)

−
(
hr

r

2ho − h

h
− 2(h− ho)

r2

)
ψηηψη + hr

r
ψψηηη

]
= µr

[
f

h2ψηηηη + ϵ

]
.

(3.29)
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After rearranging the terms, we get:
[
hζ̇

ḣo

ψηηζ − ηψηηη + h

ḣo

ψtηη +
(
ḧoh

ḣo
2 − 2

)
ψηη − (h− ho)

rh
(ψηψηηζ − ψζψηηη)

−
(
hr

r

2ho − h

h
− 2(h− ho)

r2

)
ψηηψη + hr

r
ψψηηη

]
= 1
Re

[
1
hḣo

ψηηηη

]
, (3.30)

where Re = ρfvcR/µ is the Reynolds number of the sphere. The no-slip and no
penetration boundary conditions for equation 3.30 are:

ψ(η = 0, ζ, t) = 0; ψ(η = 1, ζ, t) = 1;
ψη(η = 0, ζ, t) = 0; ψη(η = 1, ζ, t) = 0. (3.31)

Thus, apart from allowing for the first-order variations in the streamwise direction,
we explicitly include the effect of the acceleration of the body. Thus our formulation has
several improvements over lubrication theory. If we set all the left-hand side terms to
zero, we get ψηηηη = 0, i.e. the equation reduces to lubrication theory. The result is a
parabolic radial velocity profile at all t and r. Therefore, the lubrication theory comes
out to be a special case of the present formulation.

We use a double shooting method for numerically solving equation 3.30 in an approach
similar to Govindarajan and Narasimha (1995). Our first guess is obtained by neglecting
the streamwise (ζ) and time derivatives. This leaves a fourth-order ordinary differential
in η with two boundary conditions at η = 0 and two boundary conditions at η = 1. This
boundary value problem (BVP) can be solved by a shooting method which converts
a BVP into a system of initial value problems. We start with two known boundary
conditions at η = 0 (ψ(η = 0, ζ, t) = 0 and ψη(η = 0, ζ, t) = 0) and two guess conditions
for ψηη and ψηηη at η = 0. We then use Mathematica which employs the Newton-Raphson
method to update guess conditions until we get desired boundary conditions on the
boundary at η = 1.

We obtain such solutions at a given time, at two closely spaced streamwise locations
of ζ and ζ + ∆ζ, and at two close time instants of t and t+ ∆t. The differences in the
two solutions, when appropriately scaled, give us an estimate of the necessary derivatives
in ζ and t. This estimate is fed into the next iteration, and the process is repeated until
we obtain a converged solution of ψ as a function of η for a given ζ and t. The complete
solution over all radial locations and time may be obtained by sweeping the ζ − t space
in this manner.
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Fig. 3.2 Normalized radial velocity profile at r = 0.305R for St = 11 at ho = 0.0007R.
The instantaneous velocity ḣo at this time instant is 0.6vc and the non-dimensional
acceleration is 77v2/R. The lubrication theory is used to obtain these values of ho, ḣo and
ḧo. These values correspond to Stokes number St = 2ρsvcR/9µ = 11, Reynolds number
Re = ρfvcR/µ, Froude number Fr = v2

c/Rg = 1 and density ratio dr = ρf/ρs = 0.127.
For example, if a sphere is dropped from 0.59R height with zero initial velocity, it will
reach vc velocity when the sphere reaches ho = 0, if there was no bottom wall. For a given
R, ρf , ρs and µ, the initial height of drop decides vc and therefore the St, Re, and Fr.
If a bottom wall was present, using lubrication theory it will reach ho = 0.0007R with
ḣo = 0.6vc and ḧo = 77v2/R. The black curve is obtained by our new formulation for a
falling sphere and the red curve represents the parabolic profile used in the lubrication
theory for the same case. Even at a relatively large radius of 0.305, our approach
shows that a parabolic velocity profile is supported under the sphere. This validates the
lubrication approximation for this case.

Our method provides a novel way to obtain the radial velocity profile (as shown by
the black curve in Figure 3.2) and hydrodynamic force on the sphere without neglecting
unsteady and inertial terms. Only the highest contributing viscous term of equation 3.25
has been retained. The pressure in the gap and the hydrodynamic force on the sphere is
obtained in a manner similar to that in the lubrication approximation and is given by:

pr = − 2
Re

(h− ho)ḣo

rh3 ψηηη, (3.32)

Fp =
∫

2πrprdr. (3.33)

Here, pressure and the hydrodynamic force Fp have been non-dimensionalized by ρfv
2
c/2

and ρfv
2
cR

2/2 respectively. This hydrodynamic force will then be used in a vertical-force
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Fig. 3.3 (a) Pressure p and (b) 2πrp as functions of the radial coordinate for St = 11 at
ho = 0.0007R. Here r has been normalized by the radius of the sphere. The instantaneous
velocity ḣo at this time is 0.6vc and the non-dimensional acceleration used in equation 3.30
is 77. These values correspond to St = 11, Re = 6, Fr = 1 and density ratio dr = 0.127
(see Figure 3.2). The black curve is obtained by our new formulation for a falling sphere
and the red is predicted by the lubrication theory. The pressure profiles and the force
obtained by our formulation (black curves) are very close to those obtained under the
lubrication approximation (red curve). As is visible in (b), the maximum of 2πrp lies in
our region of study (ho ≪ r ≪ R).

balance equation of motion containing gravity, buoyancy, viscous drag (Flagan and
Seinfeld, 1988) and pressure force to get acceleration. In dimensional form this equation
is similar to equation 2.1 in Chapter 2:

ρsV ḧo = (ρs − ρf )V g − 3πµDḣo(1 + 0.15Re0.687
in ) − Fpd, (3.34)

where Rein is defined by the dimensional instantaneous velocity of the sphere ḣovc,
Re = ρf ḣoD/µ. Fpd = Fpρfv

2
c/2 denotes the dimensional upward pressure force exerted

by the fluid layer. As in equation 2.1, we use an empirical formula for the viscous drag
in the absence of a bottom plate. In non-dimensional form, this equation is:

ḧo = −1 − dr

Fr2 − ḣo

St
(1 + 0.15Re0.687

in ) + 3
8πdrFp, (3.35)

where dr = ρf/ρs is the density ratio. St = 2ρsvcR/9µ and Fr = v2
c/Rg are the Stokes

number and Froude number of the particle respectively.
The pressure profiles and force obtained are very close to those obtained under the

lubrication approximation as shown in Figure 3.3. This is because we find that the
deviations from a parabolic velocity profile are significant only at large r, where the
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contribution to upward pressure force is minimal. What is then causing the difference
between theory and experiment? There are many other effects like those of higher-order
streamwise derivatives, surface roughness and deformation which could be contributing.

3.2 Falling cone

Fig. 3.4 A cone approaching a plane, where r and z are the radial and vertical coordinates
respectively. R is the radius of the cone, g is the acceleration due to gravity, and h(r, t)
is the time-dependent distance between the cone and the bottom wall.

We can use the same methodology for a cone of radius R falling towards a bottom
wall with the apex of the cone facing downwards as shown in Figure 3.4 and obtain a
similarity solution. The geometry enables us to set all streamwise (ζ) derivatives to
zero and thus the radial velocity supports a similarity profile. No scaling argument is
necessary for this derivation.

The distance between the bottom wall and the surface of the cone h(r, t) is given by

h(r, t) = ho + cr, (3.36)

where c is a constant defining the angle made by the cone walls with the horizontal axis
and ho = h(r = 0, t) is the smallest distance between the cone and the bottom wall.
Three different values of c are used in this analysis as shown in Figure 3.5(a) and (b).
The global continuity equation gives us the flow rate Q(r, t) by using identical arguments
as employed to derive equations 3.9 and 3.13:

Q(r, t) = 2πU(r, t)rh(r, t) = −πrlḣo, (3.37)

where l = r
√

1 + c2 is slant height of the cone and U(r, t) is now the vertically averaged
velocity for the cone at any r and t. Reverting to the non-orthogonal coordinate system
employed earlier (equation 3.11), after non-dimensionalisation (see equation 3.12), we
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(a) (b)

Fig. 3.5 (a) Comparison between a sphere and cones of different slopes (c = 0.5, 0.05 and
0.005) and same radius R. The rectangular shadowed region in middle represents the
region (ho ≪ r ≪ R) for which computation is performed. Notice that the cone with
c = 0.005 is much flatter than the sphere. That is, on average the c = 0.005 cone has
much smaller variation in height with r compared to the sphere. Cone with c = 0.05 has
same order of magnitude variation in height with r compared to the sphere and c = 0.5
cone has much larger variation. (b) In a sphere, c is a function of r. Slopes c = 0.5, 0.05
and 0.005 are shown as tangents to the circle at different r. These tangent lines again
help to understand the difference between different slope cones. Note that the cones
drawn in (a) and tangent lines drawn in (b) are only for representation and are not to
the actual scale.

can write the derivatives of cylindrical coordinates in terms of η and t after neglecting
all the derivatives in ζ as:

∂

∂r
= −ηc

h

∂

∂η
, (3.38)

∂2

∂r2 = η2c2

h2
∂2

∂η2 + 2ηc2

h2
∂

∂η
, (3.39)

∂

∂td
= −ηḣo

h

∂

∂η
+ vc

R

∂

∂t
. (3.40)

Here again, the subscript d is used for dimensional time. Note that vc is the velocity of
a sphere of radius R at ho = 0, if there was no bottom wall. We continue to use vc for
non-dimensionalizing the velocity to compare the dynamics of a falling cone with that
of a falling sphere. The derivative of z remains unchanged from the case of the falling
sphere and is given by equation 3.22. Using this information and equation 3.24, we get
the final equation for the cone after non-dimensionalizing all lengths (ho and h) by R,
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Fig. 3.6 Normalized radial velocity profile for St = 11 at ho = 0.0007R. The instantaneous
velocity ḣo at this time is 0.6vc and the non-dimensional acceleration used is 77. Here vc

is the velocity of a sphere of radius R at ho = 0, if there was no bottom wall. We are still
using vc and the same values of ho, ḣo and ḧo as in Figure 3.2 to compare the results
for a cone with the results for a falling sphere. These values correspond to St = 11,
Re = 6, Fr = 1, and density ratio dr = 0.127. The black curve is obtained by our new
formulation for the cone and the red curve (parabolic velocity profiles) is from lubrication
theory. The top panel shows the velocity profile for c = 0.5, the middle panel for c = 0.05,
and the bottom panel for c = 0.005. Here r has been normalized by the radius of the
cone. The normalized radius r at which the velocity profiles are observed decreases from
left to right. The radius in all the left panels, middle panels, and the right panels is
r = 0.3, 0.0022, and 0.000066 respectively.
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Fig. 3.7 Pressure p and 2πrp profiles for St = 11 at ho = 0.0007R as a function of the
non-dimensional radial coordinate. The instantaneous velocity ḣo at this time is 0.6vc

and the non-dimensional acceleration used in equation 3.41 is 77. We are still using the
same values of ho, ḣo and ḧo as in the sphere case to compare the results for a cone with
the results for a falling sphere. These values correspond to St = 11, Re = 6, Fr = 1,
and density ratio dr = 0.127. The black curve is obtained by our new formulation for a
falling cone and the red dots are obtained by the lubrication theory for a falling cone.
The blue curve is obtained by using lubrication theory for a falling sphere as shown in
Figure 3.3. The top panel shows the profiles for c = 0.5, the middle panel for c = 0.05,
and the bottom panel for c = 0.005.



80 Going beyond lubrication theory

velocities (ḣo) by vc, and acceleration (ḧo) by v2
c/R:

−ηωη + h
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ωt +
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ḧoh
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)
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4ηc2 − 3hηc
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ω

]
, (3.41)

where Re = ρfvcR/µ is the Reynolds number of the cone and the vorticity ω is obtained
from equation 3.27 as:

ω = 2π
[
(1 + η2c2)ψηη +

(
2ηc2 − ηc

h

r

)
ψη

]
(3.42)

The boundary conditions given in equation 3.31 is applicable here as well. Equation 3.41
is solved to get the radial velocity profiles at different r and is shown in Figure 3.6.
The top panel shows the normalized radial velocity for c = 0.5, the middle panel for
c = 0.05 and the bottom panel for c = 0.0005. The radius is decreasing from left to right.
Lubrication theory predicts parabolic radial velocity profile for both the sphere and the
cone. The deviations from the parabolic profile are larger for the bigger values of c. At
c = 0.5 and r = 0.000066 < ho, we see larger deviations from the parabolic profile. At
smaller values of c, the radial velocity profile is closer to a parabola. We use this radial
velocity profiles in equation 3.3 to get the pressure between the cone and the bottom
wall. Equation 3.3 gives us pr in terms of ψ.

pr = l

h

(
ḧo − ḣo

2

h

)
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( 3
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h
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(3.43)

Note how the whole Navier-Stokes equation in the radial direction is used to get pr, unlike
in the case of the sphere in equation 3.38 where after using lubrication approximation
ψηηη proves to be bigger than all the other terms. Equation 3.33 gives us the final
drag force on the cone, which is used in non-dimensional vertical force balance to get
acceleration at each time-step:

ḧo = −1 − dr

Fr2 + 3
2πcdrFp. (3.44)

The pressure profiles, and therefore the force obtained, depend strongly on the value
of c as shown in Figure 3.7. The curves in the red represent the results obtained by the
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lubrication theory for a cone falling towards a bottom wall whereas the curve in the blue
shows the results for a falling sphere obtained by lubrication theory (see Figure 3.3). For
c = 0.5, shown in the top panel of Figure 3.7, we see the pressure and 2πrp obtained
for cone by our new formulation to be O(103) smaller than the plots obtained by the
lubrication theory for a falling sphere (shown in blue). At c = 0.05 (middle panel), the
values of pressure for a falling cone are not that different from the values for a falling
sphere and therefore the final forces are quite close to each other. At an even smaller
value of c = 0.005 (bottom panel), the pressure obtained between the cone and the
bottom wall proves to be much larger than that in the case of the sphere. This is true
because a sphere at small r behaves like a disc as it has a very small slope hr. But at
larger r, the slope of the sphere increases and crosses c = 0.005, thus allowing the fluid
between the sphere and the bottom wall to get squeezed out more easily. And hence at
very small c, the force obtained for the falling sphere is smaller compared to that of the
cone.

The results obtained by lubrication theory for a falling cone (shown in red in Figure 3.7)
matches well with the results obtained by our formulation at lower values of c. At c = 0.5,
lubrication theory over predicts the drag force on the cone. Hence, our new formulation
shows that at a larger slope, the lubrication theory is not completely correct. Such larger
slopes come at very large radial coordinates in the sphere. But for cone and similar
geometries, our method provides a novel way to calculate the drag force on the object.

From Figure 3.7, we understand that the fluid is squeezed out more easily in a sphere
than in a disc (or a cone with a very small slope) and even more easily in a cone with a
large c than in a sphere. Therefore, one would expect that a cone approaching a bottom
wall would be able to come in contact with the wall in finite time depending on the slope
of the cone. But we already know from our experiments (Chapter 2) that even a sphere
comes in contact with the bottom wall in a finite time before rebounding. In experiments,
the process of squeezing out the fluid can be assisted by the surface roughness, which can
be considered as conical objects on the surface of the sphere. The previous section 3.1
showed us that the dynamics of a smooth sphere falling towards a bottom wall is very
close to that predicted by the lubrication theory for a falling sphere. Hence, the question
arises whether we can observe contact just using the lubrication theory. The following
section attempts to answer this.
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3.3 Lubrication theory

We now return to the sphere. To compare the dynamics of the sphere with experimental
observations, we again work in dimensional cylindrical coordinates (see Figure 3.1) and
use the equation of motion for a smooth, rigid sphere approaching a plane under the
lubrication approximation (Davis et al., 1986; Leal, 2007). The minimum vertical distance
between ball and plate, ho = h(r = 0, t), can be determined from equation 3.45. The
horizontal force balance between pressure gradient and viscous forces, as per lubrication
approximation, is given by:

∂p

∂r
+ µ

∂2u

∂z2 = 0, (3.45)

where p(r, t) is the pressure. The radial velocity of the fluid u, squeezing out between the
plate and the sphere is assumed to have a parabolic profile (Leal, 2007). To obtain the
net pressure force Fp, we solve equation 3.45 using the relation given in equation 3.10 for
the surface profile of a sphere.

Equation 3.34 is numerically solved to obtain ḣo as a function of ho and is shown by
solid curves in Figure 3.8. In the calculation, we follow previous work by Davis et al.
(1986), except that they had made the further assumption that the region near r = 0 may
be modeled as a paraboloid rather than a sphere. The approximation of a paraboloid
allows for analytic solutions, as shown by the dashed curves in Figure 3.8, that are
quantitatively close to our numerical solutions for a sphere.

The asymptote, the portion for St = 5.4 and 6.95 that appears as a straight line in
this figure, has a slope of -1. This may be referred to as the “lubrication phase” of the
dynamics, where ḣo decreases at the same rate as the increase in 1/ho and consequently
the hydrodynamic force remains constant. All the plots at different St approach this line
just before contact, at lower ho for larger St. Even within these approximate treatments,
where p diverges as ho in the limit r → 0, the velocity of approach is significant at a
roughness cut-off scale as small as 1 nm, for sufficiently large St. Thus the calculation
indicates that contact occurs even when the spheres are atomically smooth. However, one
needs to test these trajectories with experiments and try to observe how the difference of
solid-on-solid contact comes into existence. The next chapter will attempt to answer this.
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Fig. 3.8 Velocity (ḣo) versus height (ho) of a rigid smooth sphere approaching a rigid
plane calculated from the equation of motion 3.34. The results shown are for a steel
sphere of diameter 15.4 mm (etched sphere dimension used in Chapter 2), dropped
from different heights yielding the labeled nominal values of St. The solid curves are
obtained by using equation 3.45 and equation 3.10 to get the net pressure force, and
then numerically solving equation 3.34. The curves for various Stokes numbers cross a
given height with different velocities; a typical example is shown by the vertical dash-dot
line at ho = 100 nm. At this height, the velocity for the curve labeled St = 12.25 is three
orders of magnitude higher than those for the curves shown for lower St. This implies
that even for extremely smooth surfaces, physical contact will occur prior to bouncing
for a high enough Stokes number. The dashed curves at St = 25.8 and St = 5.4 are
obtained by approximating the sphere as a paraboloid near r = 0, to compare with the
previous calculations in DSH86: Davis et al. (1986) that use this approximation.





Chapter 4

High-speed imaging of dynamics

Our electrical experiments have shown that a sphere falling under gravity in a viscous
medium will make physical contact with the bottom wall before bouncing, in contradiction
to the predictions of lubrication theory and elastohydrodynamic theory, as discussed in
Chapter 2 and Birwa et al. (2018). To understand this discrepancy, in this chapter, I
describe studies in which we observe near-collision dynamics of the sphere, before and
after the contact with the bottom plate, and observe the deviations from lubrication
theory. It is difficult to track the sphere up to a few micrometers by using normal video
techniques as the pixel resolution required for being able to observe the dynamics at
these length scales is quite high. Also, since the velocity of the sphere is quite large at
higher Stokes number (e.g. approximately 0.3 m/s at 10 µm for St = 18.15 as seen in
Figure 3.8 of Chapter 3), one needs high frames per second to resolve such fast dynamics.
Another important point in being able to track the collision dynamics is to have a good
estimate of “zero” height. This height is defined as the height at which the contact is
initiated and the gap between the undeformed sphere and the bottom plate is zero.

Earlier experiments done by Barnocky and Davis (1988), Gondret et al. (1999, 2002),
and Joseph et al. (2001) used a high-speed camera to image the trajectory of the sphere
before and after the collision but failed to resolve the contact dynamics. They had
limited spatial and temporal resolution in determining when the contact was initiated,
and therefore, do not have a good estimate of the “zero” height. Experiments by Lecoq
et al. (1993) and Mongruel et al. (2010) tried to resolve the dynamics just before the
collision for a settling sphere using interferometric techniques. They reported an error of
around 112 nm in contact position and therefore, have a good estimate of “zero” height.
However, their work only focused on the dynamics of a settling sphere. Hence, there still
remains a need to understand the dynamics of a sphere, before and after the collision, in
the bouncing regime.
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Fig. 4.1 Schematic diagram of the experimental set-up. A high-speed camera is triggered
via an oscilloscope which detects a voltage change as soon as the sphere touches the
bottom plate and the circuit gets completed. 1 is a macro lens and 2 is a bellow, both of
which help us in zooming in on a 1 mm dot on D = 16 mm sphere.

4.1 Experimental set-up

To overcome the difficulties discussed above, we use our electrical set-up from Chapter 2
to trigger a high-speed camera. The electrical set-up allows us to resolve the contact
point and we use a combination of a bellow and a macro lens to increase the spatial
resolution. We drop stainless steel spheres of diameter D = 16 mm on a stainless steel
plate of 10 cm x 10 cm cross-section and 1 cm thickness through silicone oil of dynamic
viscosity µ = 0.335 ± 0.02 Pa-s, and density ρf = 970 kg/m3. As shown in Figure 4.1,
a DC voltage is applied between the plate and the sphere. When the sphere makes
electrical contact with the plate, the circuit is completed and the current is sampled
by a digital oscilloscope (Tektronics DPO 4054B) across a 220kΩ resistor at a rate of 5
MHz. As soon as the contact begins, a pulse is sent to the high-speed camera (Photron
FASTCAM Mini AX 200 type 200K-M-32GB) from the oscilloscope which triggers the
camera. The camera is already in an endless record mode at 50000 frames per second
with a resolution of 384 x 256 pixels2 and saves a fixed number of frames before and after
the trigger event. This technique allows us to resolve contact within half a frame time,
10 µs, and gives a good estimate of “zero” height. The estimate of “zero” height in our
experiment varies from 0.3 µm at the smallest Stokes number (St = 6.5) to less than 5
µm at the largest Stokes number (St = 25). The number of frames saved varies with St.
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The roughness of the 16 mm sphere and the release mechanism of the sphere have
previously been discussed in Chapter 2. To track the motions of the sphere, we stick a
small piece of white paper, with a black dot of diameter d = 1 mm printed on it, on the
sphere using scotch tape. The tape protects the paper and the dot on it from the oil.
We track this dot, as the sphere approaches the bottom wall under gravity. To improve
the magnification, we use a bellow between the high-speed camera and a macro-lens
(Tamron SP AF 90 mm F/2.8). The bellow is a long tube, which helps in increasing the
distance between the macro-lens and the camera sensor. The result is a magnification
that makes each pixel equal to 6 µm. Thus, based on the resolution, our field of view is
2.29d x 3.05d. We observe the sphere in reflection-mode lighting using a Philips LED
flood-light (BVP 122 LED 110), which has an array of 64 LEDs working together to give
11000 lumens at 110 W.

Fig. 4.2 A sample trajectory is shown as a log-log plot (height versus time) obtained
for the Stokes number St = 15 by observing a dot of diameter 1 mm on the sphere at
50000 frames/sec. St is still defined using vc as the velocity scale as discussed in previous
chapters.
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Different Stokes numbers are achieved by releasing the sphere from different heights
using an electromagnet. We focus on the near-collision dynamics and therefore, our field
of view lies very close to the bottom wall. Hence, we only use data from the time frame
that marks the complete entry of the dot on the sphere into the field of view of the
camera, regardless of the dropping height of the sphere.

Fig. 4.3 Histogram of velocity when the sphere is at rest. The velocity when the sphere
is at rest is obviously supposed to be zero but due to pixel noise, we observe a standard
deviation of 0.01 m/s with zero mean velocity.

4.2 Image analysis

The resultant 8-bit frames are analyzed and the center of the 1 mm black dot on the
white piece of paper stuck to the sphere is found out by using ImageJ software. This is
done by converting the image into a binary scale by setting a cut-off threshold on the
intensity. If a pixel intensity is larger than the cut-off value then the pixel is considered
to be bright, otherwise dark. This method separates out the black dot clearly. After
this, the “Analyze particle” feature of ImageJ software is used to find the center of the
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dot. The dynamics of this center with time is studied to obtain the trajectory of the
sphere. A sample trajectory is shown in Figure 4.2. As can be seen in the log-log plot,
we are able to resolve up to a few micrometers above the bottom wall with the help of
our arrangement consisting of a macro lens and bellow.

To obtain the velocity, we first convolve the height data with a Gaussian kernel by
using “Gaussian filter” feature in Mathematica software. Then we use the quadratic
interpolation with spline method in Mathematica to smoothen out the height data and
convert it into a function. The advantage of the spline method is that it allows for the
evaluation of continuous first-order derivatives. Finally, we obtain the velocity of the
sphere by differentiating this function with respect to time. The velocity when the sphere
is at rest should be zero and its distribution should ideally be a delta function. But
due to the pixel noise, we get a velocity distribution which has a standard deviation
of 0.01 m/s with zero mean velocity as shown in Figure 4.3. The error in the velocity
measurement is considered to be equal to the standard deviation of this distribution.
This sets a lower bar on the error (0.01 m/s) in velocity. The error in height due to pixel
noise, measured by calculating the standard deviation of the sphere while it is resting on
the plate’s surface, is less than 0.06 pixels. This small error in the height and the velocity
is the consequence of detecting the center of a 168 pixels (1 mm) diameter dot on the
sphere. More the number of pixels in the dot, smaller is the error in the center detection.

A similar exercise was repeated by dropping the sphere from a large height (St = 25).
In the beginning, the drag force is zero and hence the sphere’s velocity increases rapidly.
After some time when drag force comes into action, the sphere’s acceleration decreases
and finally it starts to decelerate because of the lubrication forces. In the vicinity of the
maximum velocity, the sphere can be assumed to be moving with a constant velocity for
a small time. We sample 50 frames in this constant velocity region and find that the
standard deviation in the velocity is less than 0.01 m/s. We consider 0.01 m/s to be the
final error in velocity measurement.

4.3 Trajectories and first-impact dynamics

Figure 4.4 shows the trajectory in a linear scale for St = 15. Figure 4.4 (a) and (b) show
the height versus time and velocity versus time plots respectively (during the approach,
the impact, and rebound stages of the dynamics). One can see the sphere decelerating
before it comes in contact with the bottom wall. Figure 4.4 (c) and (d) are obtained by
zooming into (a) and (b) panels at the point of contact. The blue vertical lines show
the start and the end of the contact. The start of the contact is the point at which the
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Fig. 4.4 A sample trajectory plot for St = 15. (a) and (b) shows the variation of height
and velocity of the sphere with time, while it approaches the bottom wall, makes contact
and then rebounds. (c) and (d) panels are obtained by zooming in close to the point of
contact. The vertical blue lines, obtained by the data from the oscilloscope, show the
start and end of the contact. Note that we get the contact duration and flight time from
our electrical set-up.

oscilloscope triggers the camera and the duration of the contact is known by observing
the data recorded by the oscilloscope as discussed in Chapter 2 (Figure 2.4). As shown in
Figure 4.4 (d), it is clear that contact happens with a finite velocity, in contradiction to
lubrication theory and elastohydrodynamic lubrication theory. During the contact, the
sphere deforms and comes to rest before starting to bounce back. The precision in time
here is approximately 10 µs (half a frame time) and this error in time does not change
the velocity of impact considerably.

Using these trajectories, we obtain the variation of the vertical velocity with height
for different Stokes number as shown in Figure 4.5 and Figure 4.6 (a) and (b). Figure 4.5
shows the results of five distinct runs taken at St = 6.5 and 20, to illustrate the level of
reproducibility of the experimental trials. Different colors represent different trials at a
fixed St.
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Fig. 4.5 Velocity versus height curves for experiments at St = 6.5 and 20. Different
colors represent different experimental trials at the same Stokes number and show the
reproducibility in the data. Using these curves, an average velocity versus height curve is
obtained as shown in Figure 4.6.

We also observe a small amount of horizontal drift and rotation of the sphere and found
that it was difficult to completely remove these unwanted features. The horizontal drift
and rotation arise because of the asymmetry by which sphere leaves the electromagnet.
To measure this drift and rotation we use three non-collinear dots on the sphere rather
than one. We stick a small piece of white paper on the sphere with three black dots of 1
mm each on it using the scotch tape. The centers of the three dots make an isosceles
triangle with the equal sides of length

√
2 mm and the unequal side being 2 mm in

dimension. By observing the motion of these three dots while the sphere is falling, we
were able to estimate the horizontal drift and the rotation of the sphere. It was difficult to
measure the exact values of this drift and rotation and to separate out one from another
due to the limitations in the spatial resolution. For instance, rotation of the dots around
the vertical axis of the sphere was difficult to differentiate from the horizontal drift of
the sphere. The maximum horizontal drift and angular velocity observed were less than
0.009 m/s and 0.0015 radians/s respectively at St = 13, while the maximum vertical
velocity is around 0.25 m/s. The maximum horizontal drift and rotational velocity are
approximately two orders of magnitude less than the maximum vertical velocity of the
sphere. The drift and rotation remain variable in direction and magnitude from one trial
to another. Based on the reproducibility of our data, we speculate that the horizontal
and rotational movement of the sphere does not have any major effect in the estimation
of the sphere dynamics.

As the reproducibility is good, we can obtain the average velocity as a function of
height using data from different trials for each St as shown in Figure 4.6 (a) and (b).
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Fig. 4.6 Velocity vs height curves for experiments and theory at different St. Theoretical
curves (shown in green) are obtained by using the first values of height and velocity
captured by the camera as the initial condition. Experimental curves (shown in brown)
are obtained by taking an average of five trial curves at each St. (a) Log-linear plots
allow us to see the deviations in experiments from theory at small heights. (b) This
difference is less evident in the linear-linear plot which shows a good match with the
theory for most of the trajectory.
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Note that the curves only start at around 1 mm height, which is because of the small
field of view limited by the resolution of the camera at 50000 fps, as discussed earlier. To
compare the experimental dynamics with lubrication theory, we obtain theoretical results
by using the experimental data when the dot on the sphere first enters the field of view
as the initial condition in equation 3.34, and calculate the pressure force by lubrication
theory.

We see in Figure 4.6 (a) that the lubrication theory correctly describes the experimental
curves for a sphere approaching a plate up to ∼ 50 − 100 µm above the bottom wall.
At smaller heights, we see a systematic deviation between the experimental curves and
the theoretical results. The curves obtained from the lubrication theory lie below the
experimental data at smaller heights and the gap between the curves increases as the
sphere moves closer to the bottom wall. Hence, the sphere has a larger downward velocity
at a given height compared to what is predicted by the theory. In the linear plot in
Figure 4.6 (b), it is difficult to see these deviations as they are only prominent at smaller
heights. Note that we are only comparing our results with the lubrication theory and not
with the elastohydrodynamic theory. We expect elastohydrodynamic effects to produce a
smaller velocity at a given height as the theory predicts that the bottom surface of the
sphere will become flatter due to pressure build-up. The flattened surface will lead to
greater dissipation. One can also note that as per elastohydrodynamic theory the sphere
is supposed to reach zero velocity above the bottom surface, so the deceleration will be
faster in elastohydrodynamic theory compared to lubrication theory. So by showing that
our experiments observe larger downward velocity at a given height than predicted by
lubrication theory, we are automatically ahead of elastohydrodynamic theory.

To quantify these differences between dynamics observed by experiments from that
predicted by theory, we measured the relative deviations of experimental velocity Vexp with
respect to the theoretically estimated velocity Vth by lubrication theory, (Vexp − Vth)/Vth,
and plotted it against the height as shown in Figure 4.7. We find that the deviations
increase rapidly as the sphere approaches the bottom wall. This rapid increase in the
relative deviations is expected to result in a contact in a finite amount of time with a
finite velocity.

We track the sphere till one frame before the zeroth frame, the frame at which the
contact is initiated and the sphere reaches the “zero” height. If the Stokes number is
low, then the velocity of the sphere will be less at this “-1” frame compared to the
corresponding velocity for larger St. Hence, we are able to track the sphere to much
smaller heights at lower St. As discussed above, the deviations from lubrication theory
become larger as the sphere reaches closer to the bottom plate. Consequently, we are able
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Fig. 4.7 Relative deviations of experimental velocity from that obtained by lubrication
theory (Vexp − Vth)/Vth vs height. The deviations increase as height decreases. Different
colors are for different St. In the inset, the deviations are shown for St = 6.5. The inset
has the same units as the main figure.

to observe larger deviations for lower St as we can observe the sphere at smaller heights
and also the theoretical velocity at these small heights are less for lower St. This becomes
more comprehensible by looking at the inset of Figure 4.7. The inset corresponds to
St = 6.5 and has the same x-axis and y-axis as the main figure. The deviation shoots up
as the lubrication curve start approaching zero velocity (Vth) at small heights as can be
seen in Figure 4.6 (a).

4.4 Rebound and second-impact dynamics

We also track the sphere during the rebound phase after the first impact as shown in
Figure 4.8. It is comparatively easy to observe the rebound dynamics at larger St, as
the bounce is more prominent in such cases. Negative velocity in the figure represents
the upward motion of the sphere. For obtaining the rebound curves from lubrication
theory we first measure the smallest rebound height from the experiment. Now, we feed
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Fig. 4.8 Rebound curves for St = 20 and 25 plotted in (a) Log-linear scale and (b)
linear-linear scale. The curves start from the fourth quadrant once the sphere loses the
contact and starts to rebound. Negative velocity indicates upward motion of the sphere.
Corresponding lubrication curves are plotted for both the Stokes number. Lubrication
curves are obtained by using “X” as the initial condition in equation 3.34. A small region
near the maximum height during the rebound is missing due to the sphere briefly leaving
the field of view.
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trial velocities in equation 3.34 and choose the one based on the condition that at large
heights the lubrication curves matches well with the experimental data, similar to the
first impact curves. We use this as the initial condition “X” as shown in Figure 4.8. Due
to this choice of the initial condition, the theoretical rebound curves also show deviations
at small heights similar to the first impact curves.

Fig. 4.9 Comparison of the second impact of St = 20 and 25 (calculated based on
the first impact) with the first impacts of St = 6.5 and 8.5. After rebounding, sphere
corresponding to St = 20 and 25 bounce to a height similar to the height from which the
sphere is dropped to achieve lower Stokes number. The St during the second impact of
St = 20 is less than 6.5 and St = 25 is between 6.5 and 8.5.

The sphere bounces up to reach the maximum height where its velocity becomes zero
and then starts to fall towards the bottom wall for another impact. We refer to this next
impact as the “second impact”. As the sphere reaches the maximum height above the
bottom wall during rebound, it leaves our camera’s field of view. Therefore, there is some
data missing near that region in Figure 4.8 (a) and (b). The second impact dynamics for
these values of St (20 and 25) are similar to the dynamics of the first impact for smaller
St as shown in Figure 4.9.
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The second impact dynamics of a sphere whose first impact was at St = 20, corre-
sponds to a Stokes number less than St = 6.5. Therefore, it is appropriate to compare
this second impact dynamics to the first impact dynamics of a sphere corresponding to
St = 6.5. Similarly, the second impact of St = 25 corresponds to the dynamics of a case
where St (based on the first impact) lies between 6.5 and 8.5. These observations that
rebound after the first impact and second impact dynamics have the same qualitative
behavior as the first impact dynamics (and lubrication theory) of a suitably lower Stokes
number suggest that the disturbances created due to first impact (or rebound after the
first impact) might not be important in such systems and die quite rapidly.

This can also be proven by directly comparing the disturbance time scale, the time
taken for the disturbances to die, with the rebound time scale at St = 20 and St = 25.
The rebound time scale is taken as half of the flight time. As discussed in Chapter 2,
the flight time is the time duration between the two contacts. We find that the rebound
time scale is approximately 0.015 s and 0.024 s for St = 20 and St = 25 respectively.
The disturbance time scale is estimated by using L2/ν, where L is the rebound height —
the maximum height to which the sphere jumps after rebounding and ν is the kinematic
viscosity of the silicone oil. From this, we obtain the disturbance time scale of ∼ 0.0019
s and 0.012 s for St = 20 and St = 25 respectively. Comparing the two time scales,
we find that the disturbance time scale is smaller compared to the rebound time scale.
However, this difference seems to be decreasing with the decrease in St and we expect
the disturbances to play a significant role in the small rebounds of lower St like St = 16
and St = 13.

4.5 Coefficient of restitution

We are able to measure the approach and rebound velocity at heights closer to the
bottom wall than earlier studies by Barnocky and Davis (1988), Gondret et al. (1999,
2002), and Joseph et al. (2001). Therefore, we get a better estimate of the coefficient
of restitution η (the ratio of rebound velocity to the approach velocity) as shown in
Figure 4.10. We measure the approach velocity and the rebound velocity at three different
heights (ho = 13.5, 20, and 30 µm) and for four different St. We find that the coefficient
of restitution η at any St increases with decrease in the height ho at which it is measured.
This is more evident at lower St.

The coefficient of restitution is used as a measure of dissipation and inelasticity in
dry collisions. Reducing the height reduces the contribution from fluid dissipation and η
reaches closer to the dry coefficient of restitution limit. Therefore, it makes sense that
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Fig. 4.10 Coefficient of restitution η vs St measured at three different heights ho, above
the bottom wall. η increases with St as observed in earlier studies by Barnocky and
Davis (1988), Gondret et al. (1999, 2002) and Joseph et al. (2001). Also at small St, η
increases with the decrease in height at which it is measured.

η increases with a decrease in the height at which it is measured. The difference in
coefficient of restitution at different heights becomes less pronounced for larger St as the
incoming and outgoing velocity remains almost the same at all the three heights.

From Figure 4.10, we can also see that the coefficient of restitution increases with
St. This result is similar to earlier studies by Barnocky and Davis (1988), Gondret
et al. (1999, 2002), and Joseph et al. (2001), who found that beyond Stc, coefficient of
restitution increases with increasing the Stokes number. We expect a non-monotonic
behavior of η as the St decreases (or the velocity of impact decreases) as observed by
King et al. (2011), which can be the reason for Stc to be around 6 to 7 as reported in
Chapter 2. So, direct extrapolation of η versus St plot is not advisable as it might give
an erroneous value of Stc.
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4.6 Summary and conclusion

This chapter brings us to the end of the study of normal collisions in a viscous medium.
To summarise the results from Chapter 1-4, we found that there is indeed a critical Stokes
number (around 7), marking the transition from the settling regime to the bouncing
regime in immersed collisions. This is in agreement with previous observations and
with elastohydrodynamic theory. In contradiction with lubrication theory, we observed
direct mechanical contact for 10-100 microseconds before bouncing. The duration of this
contact was found to be independent of the electrical parameters and weakly dependent
on impact velocity, which is consistent with Hertzian elastic theory. We concluded that
the total dissipation in the sphere-wall encounter is not strongly affected by the duration
of solid-on-solid contact at large Stokes number. This indicated that despite solid contact,
most of the loss of kinetic energy in this process is due to fluid dissipation.

We re-analysed the problem analytically by including unsteady terms and inertial
terms, which were considered negligible in lubrication theory. We derived a boundary
layer equation to describe the flow and solved it by a novel method. This allowed
us to obtain the radial velocity profile below the sphere from which we can calculate
the hydrodynamic drag on the sphere. We found that the actual approach velocity is
slightly faster than predicted by lubrication theory at smaller heights by coupling a high
speed-camera with our earlier electrical set-up. Rebound and second impact dynamics
behavior were found to be similar to lubrication theory predictions.

4.7 Future work

There still remain a few unresolved issues in this work which needs to be addressed. As
discussed in Chapter 3, even an atomically smooth sphere is expected to make contact
with an equally smooth plate. Still, it will be intriguing to see if the duration of the
contact changes for a very smooth sphere and plate. One can use Mica surfaces of few
nanometer roughness (or less) for this purpose along with our electrical set-up.

The high-speed measurements in this chapter suggest that differences between the
theory and the experiments grow as the sphere approaches the bottom plate (see Fig-
ure 4.7). These deviations can explain the contradiction from lubrication theory. It
will be interesting to monitor these deviations at heights smaller than 1 µm and study
the deviations for surfaces of different roughness. Optical techniques like Newton ring
or evanescent-wave coupling along with a Borosilicate sphere can be used for this pur-
pose. Evanescent-wave coupling experiment might also give some insights into the
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time-evolution of the deformation of the sphere. Does the sphere always approximate a
disk in the contact region as Hertzian theory predicts? Or is there a small dimple at the
center of the contact region at the beginning of the contact? In addition, it would be
interesting to study how this deformation changes with the elasticity of the material and
how this changes the duration of contact.

The present study focuses only on normal collisions. Similar questions can be asked
for an oblique collision. Our electrical set-up can be used again for that purpose with the
bottom plate mounted at some finite angle with the horizontal and the variation of the
contact duration with the inclination angle of the plate can be studied. Also, it will be
interesting to study the change in dynamics if the sphere is rotating with large angular
velocity and compare it with the results of this chapter and the lubrication theory for a
rotating sphere.

It will be exciting to compare our results in this chapter with direct numerical
simulations. For this purpose, we are currently collaborating with Laurent Lacaze of
Institut de Mécanique des Fluides de Toulouse, France. He is studying the dynamics of
the sphere using the Immersed Boundary Method. Preliminary results look promising
and show a good match. A rather difficult but intriguing experiment will be to observe
velocity profiles in the gap between the sphere and the plate. Particle Image Velocimetry
(PIV) with nanoparticles can be used for this purpose. It will be interesting to see how
closely the experimental radial velocity profile resembles a parabola as predicted by
lubrication theory. One can expect the profile to change as the gap decreases owing to
the roughness and the deformation of the surfaces.



Chapter 5

Stress in a granular column

This work is done in collaboration with Professor Bulbul Chakraborty from Brandeis
University. In this chapter, we study the structures formed when many spheres are
allowed to settle under gravity and come to rest. We shall see later in this chapter that
heaving, namely, a collective bouncing back of particles after contact with the bed below
them, can reorganize particles in surprising ways. The granular structures are governed
by inter-particle frictional forces. This chapter focuses on understanding the stresses and
packing inside such 2D monodisperse structures. The numerical methodology used in
this study is discussed first and then the attention is shifted to different protocols used to
prepare the granular columns. We show that preparing the 2D static granular column in
different ways can generate completely different local stress profiles. Comparisons have
been made with Janssen’s model and other previous studies (Landry et al., 2004; Vanel
and Clément, 1999). In the end, a model has been presented that attempts to explain
the observed surprising behavior of vertical stress. The work discussed here is still in
progress.

5.1 Numerical simulations

Molecular dynamics numerical simulations are carried out using the granular package
of LAMMPS software (https://lammps.sandia.gov/) (Plimpton, 1995). The general
idea of creating the computational domain and interaction potential is the same as in
Merrigan et al. (2018). As we mentioned in the article, the computational domain is a
quasi-2D rectangular box as shown in Figure 5.1 (a) filled with monodisperse particles.
All lengths and masses are measured in units of the diameter d and mass M of the
particle respectively. As a consequence, the diameter and mass of the particle are 1 and
1 respectively. Acceleration has been non-dimensionalized by the acceleration due to
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gravity g and hence g = 1 in the simulation. We express all times in units of T =
√
d/g,

which is the time taken for a grain to fall through a distance of one radius 0.5d under
gravity, and each time step in the simulation is 0.0001 in these units. The velocities,
forces, stresses and damping constants in the simulations have been non-dimensionalized
by d/T , Mg, Mg/d2, and 1/T d respectively. The simulation geometry is effectively
two-dimensional since after each time step the force and velocity on each grain in the
third dimension is set to zero. In line with standard usage, the simulations are termed as
quasi-2D.

Fig. 5.1 (a) A sample geometry used in our quasi-2D computational study. The domain
here has width W = 30, height h = 225, and is filled with ∼ 7500 mono-disperse
soft spherical grains. Gravity is pointing downwards. Our analysis in this chapter has
primarily been done on widths W = 30, 60 and 90 and heights h = 225, 450 and 900.
(b) Vertical stress, σyy, on the bottom wall, created by the S2 method, as a function of
fill-heights for W = 30 and µw = 0.5. Error bars are the standard deviation obtained by
running 20 different ensembles at each height. The red dashed line is the best fit obtained
by the Janssen’s model which gives decay length s = W/2µwK = 148.1. The Janssen
form is taken from equation 5.11 and φ is chosen to be 0.87. This gives K = 0.203 and
saturating value 4sφ/π from equation 5.11 to be 164.
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The side walls are created using the ‘wall/gran’ package in LAMMPS. The grain-grain
and grain-wall forces are modeled by a Hertzian contact law coupled with a velocity-
dependent damping term. Under this law, the force between two overlapping spheres of
radii Ri and Rj and masses Mi and Mj is a function of their overlap δ = Ri + Rj − r,
with r being the center to center distance between the two adjacent grains. For the
positive values of overlaps, the components of force are given by:

Fnij =
√
δ

√
RiRj

Ri +Rj

[knδnij −meffγnvnij ]; (5.1)

Ftij =
√
δ

√
RiRj

Ri +Rj

[−ktuij −meffγtvtij ], (5.2)

where Fnij and Ftij are the normal and tangential force components respectively between
the two grains with corresponding elastic constants set to be kn = 2 x 105 and kt = 2kn/7
(Silbert et al., 2001). The first term in the normal force is along nij, the unit vector along
the line connecting the centers of the contacting spheres. The tangential displacement
vector is represented by uij. The tangential force is truncated to satisfy the Coulomb
yield criterion (Ftij ≤ µwFnij), where µw is the static coefficient of friction and is chosen
to be µw = 0.5 for both grain-grain interactions and grain-wall interactions. The reduced
mass is represented by meff = (MiMj)/(Mi +Mj) and vnij and vtij are the normal and
tangential components of the relative velocity between the two grains in contact. The
viscoelastic damping constant for normal contacts in our study is fixed at γn = 500.
However, we set γt = 0 for tangential contacts.

5.2 Methodology

The granular column is primarily prepared by three different protocols: S1 (Settling),
S2 (Viscosity), and V1 (Vibration). S1: At the start of the simulation, N grains with
zero initial velocity are placed randomly between the vertical coordinate 1 and initial
maximum height Hint within the column, with all lengths in units of d. The number
of grains N and Hint used for creating a granular column of fill-height h = 225 and
width W = 30 are 60000 and 800 respectively. These parameters (N and Hint) change if
a different-size granular column is being created. Once placed in the container, many
grains are found to be overlapping with each other, i.e., their center to center distance is
less than the diameter of each grain. The overlapping grains are removed and n grains
remain in the container. These remaining, non-overlapping grains are then allowed to
settle under gravity and the desired fill-height is obtained. The fill-height after settling
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n = 7400 − 7600 particles is ∼ 225. The grains are allowed to settle until the total kinetic
energy of the system is less than 10−12. This method of creating a granular column will
be called the “Settling protocol” and hereafter is referred to as the S1 protocol.

In the S2 protocol, once all the overlaps have been eliminated during initialization, the
grains are allowed to fall under gravity like in the S1 protocol. But in this case, after all
the grains have fallen, a viscous damping force that is proportional to the velocity of the
grains in the domain is introduced to drain the kinetic energy. This force can be thought
of as a Stokes drag on spherical particle arising because of a viscous medium. This simple
energy-minimization technique is commonly used to freeze the granular system (Landry
et al., 2003, 2004). The drag force is removed after the total kinetic energy of the system
is less than 10−12 and particles are allowed to relax normally for 100 units of time. This
method of creating a granular column will be called the “Viscous protocol” and hereafter
is referred to as the S2 protocol.

In the V1 protocol, this frozen S2 system is vibrated along x-axis [see Figure 5.1 (a)]
for 100 units of time and then the final system is allowed to relax till the total kinetic
energy is less than 10−12. The vibration is sinusoidal with an amplitude of 0.1 with a
period of 0.1 units of time. This method of obtaining the granular column will be called
the “Vibration protocol” and hereafter is referred to as the V1 protocol.

Once we have obtained the final granular column, the stress tensor on the ith particle
is calculated by summing over the contact stresses at all the contacts of this particle.
Then, the granular column is divided into horizontal strips of size 15 x W , where W is
the width of the granular column and 15 is the height of the strip. To obtain the stress
σαβ in volume V , which corresponds to a horizontal strip in the granular column, the
stresses of all the particles are summed over, and expressed per unit volume as (Silbert
et al., 2001):

σαβ = 1
V

Σi

Σj ̸=i
rij

αFij
β

2

, (5.3)

where Fij is the contact force between the ith and the jth particle. The stress tensors
in the vertical strips of size 5 x h are obtained using the same method, where h is
the fill-height of the column and 5 is the width of the vertical strip. This helps us to
understand how the stress components are varying across the horizontal direction in the
granular column.

The vertical variation of stress for different sizes of the granular column (widths =
30, 60, and 90 and fill-heights = 225, 450, and 900) and created by different protocols
(S1, S2, and V1) are discussed in next section. Wall friction is always kept equal to
inter-particle values.
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5.3 Variation of vertical stress

In this section, we discuss the variation of the vertical stress in different protocols. We
start by checking the stress at the bottom of the S2 protocol and comparing it with
Janssen’s model in section 5.3.1. Thereafter, we shift our attention to the variation of the
vertical stress inside the column for different fill-heights and widths in the S2 protocol.
Here, we encounter a peculiar looking stress profile, completely different from Janssen’s
prediction. This is the main result of this chapter. We also test for isotropy by observing
the variation in horizontal stress. We did not start with the S1 protocol, as it is just a
primitive version of the S2 protocol, and we observe in section 5.3.3 that the behavior of
vertical stress in both the protocols are similar. The S2 protocol is primarily used as it is
computationally least expensive to generate the packing and hence more data is available
for it.

In section 5.3.2, we ask the question of what happens if we vibrate the granular
column created by the S2 protocol? Can we change the vertical stress profile? If yes, is
the new vertical stress profile closer to the Janssen’s prediction? Then, in section 5.3.3, we
compare all the protocols discussed till now including the S1 protocol and also introduce a
new protocol called the Mobilize (M1) protocol. In this protocol, the particles in contact
with the side walls are mobilized by the moving the bottom wall slowly downwards and
then letting the packing relax. We observe that this protocol is closest to the Janssen
form.

To compare our results with the earlier study of Landry et al. (2004), we introduce
yet another protocol (Pouring protocol) in section 5.3.4. In this protocol, we pour the
particles from a fixed height above the column and use the same parameter values as
Landry et al. (2004). Finally, in section 5.3.5, we compare vertical stress profiles in
monodisperse packings with bidisperse packing. Here, we attempt to understand if the
peculiar behavior observed in the S2 protocol disappears for a bidisperse disordered
packing. We mostly concentrate on the vertical stress profiles in different protocols in
this section and revisit the topics like isotropy and wall friction in section 5.4. Note
that the mention of any particular protocol refers to a numerical experiment where the
column is formed using the concerned protocol.

5.3.1 The S2 protocol

Figure 5.1 (b) shows the comparison of the vertical stress at the bottom of the granular
column with Janssen’s model for different fill-heights. The comparison is done for a
column of width = 30 and µw = 0.5, obtained by the S2 protocol. To obtain the vertical
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Fig. 5.2 (a) Vertical stress as a function of the vertical coordinate in a granular column for
W = 30, µw = 0.5, and three different fill-heights of the granular column, created by the
S2 method. The vertical coordinate is measured from the bottom surface and therefore
h− y = 0 represents the top of the granular column. There is a linear hydrostatic-like
region near the free surface as observed by Landry et al. (2003, 2004) and Vanel and
Clément (1999). Interestingly, we observe a sudden change in slope after this hydrostatic-
like region and find a maximum which becomes sharper for higher fill-heights. (b) Vertical
stress as a function of h − y for h = 225, µw = 0.5, and three different widths of the
granular column, created by the S2 method, shows us that the maximum observed in (a)
vanishes at larger widths of the column. Error bars are the standard deviation obtained
by running 20 different ensembles at each height.
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stress at the bottom wall, we determine the total force applied on the bottom wall by
the particles which are in contact with it and then divide this force by the width of the
container. This method is only used to determine the stresses on the walls. The stresses
inside the container are obtained by using equation 5.3. As can be seen, the vertical stress
at the bottom of the container is consistent with Janssen’s prediction of stress saturation
beyond a certain fill-height. The Janssen’s model was discussed in Chapter 1 and will be
also be revisited in section 5.4. The Janssen form of equation 5.11 is used for fitting by
fixing y = 0 and choosing area-based packing fraction φ to be 0.87 in the equation. The
fit gives a decay length s = W/2µwK of 148.1. This, in turn, gives K = 0.203 and the
saturating value 4sφ/π is found to be 164 from equation 5.11. K is the ratio between
the horizontal normal stress to the vertical stress and is used as the fitting parameter. It
is also referred to as Janssen’s constant. To test if Janssen’s model adequately describes
local stress of the granular column, we obtain the variation of vertical stress with the
vertical coordinate inside the S2 granular column of different fill-heights at W = 30.

This brings us to the most interesting result of this chapter. Figure 5.2 shows the
variation in σyy with vertical coordinate in a column created by the S2 protocol. The
different curves are for different fill-heights of the granular column and the zero on the
x-axis represents the free surface of the packing. The trend depicted in Figure 5.2 (a) is
quite peculiar. All three curves show an almost linear increase in vertical stress close
to the free surface of the packing. This hydrostatic-like region near the free surface has
been observed previously in simulations (Landry et al., 2004). While Janssen’s model
has been extensively tested by examining stress at the bottom of a column, we have not
come across any earlier studies which asks whether this model is valid locally inside a 2D
column, to the best of our knowledge. For example, Landry et al. (2004) only measured
global vertical stress (total vertical stress) for different fill heights by raining particles
from a fixed height above the granular column at a fixed rate.

After the linear increase, the slope of the vertical stress changes in Figure 5.2 (a) and
a maximum in the vertical stress is observed. The figure does not show saturation as
predicted by Janssen’s model. Beyond the maximum, the stress decreases with height.
In other words, the particles below bear less weight than those above. This decrease
in pressure at greater depths is counter-intuitive and will be explained in more detail
in section 5.4. The maxima in σyy for h = 900, 450, and 225 curves obtained by the S2
protocol are different and occur at different heights. Despite this, the final σyy at the
bottom is remarkably the same, as can be seen by the dotted line in Figure 5.2 (a), and
as discussed earlier [see Figure 5.1 (b)].
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Fig. 5.3 Horizontal stress as a function of the vertical coordinate in a granular column
for W = 30, µw = 0.5, and three different fill-heights of the granular column, created by
the S2 method. Error bars are the standard deviation obtained by running 20 different
ensembles at each height.

The general understanding suggests that there are many force chains inside a granular
column (Majmudar and Behringer, 2005). Increasing the width of the granular column
should make it difficult for force chains to span the column width and thus transfer the
load on to the side walls. So, it is expected that the maximum in σyy at larger fill-heights
might start disappearing if the width of the column is increased. Figure 5.2 (b) shows the
vertical variation of σyy in the column for different widths at fill-height h = 225. There
is a maximum for width W = 30 case as already seen in Figure 5.2 (a). The maximum
disappears once the width is increased to W = 60 and W = 90 and the vertical stress is
maximum only at the bottom of the column.

A crucial assumption in Janssen’s model is that the stress is isotropic inside the
granular column. To test this, we plot the horizontal component of stress with the
vertical coordinate for different fill-heights as shown in Figure 5.3. The behavior of σxx

seems very much similar to the trend depicted by σyy. This shows us that even with
such a peculiar behavior of vertical stress, horizontal stress is almost proportional to the
vertical stress and σyy ∝ σxx is a good assumption to follow.
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Fig. 5.4 Horizontal stress as a function of the vertical coordinate in a granular column
for W = 30, µw = 0.5, and three different fill-heights of the granular column, created by
the S2 method. Horizontal stress behaves similarly to the vertical stress and agrees with
the Janssen’s assumption that stress inside a granular column is isotropic. Error bars are
the standard deviation obtained by running 20 different ensembles at each height.
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5.3.2 The V1 protocol

To understand the variation of σyy with vertical coordinate and the unexpected maximum
observed in the S2 protocol, we decided to investigate the role of wall-forces and reconcile
it with the common knowledge that wall-forces carry a significant part of the load in
granular systems. For this, the variation of σyy with the vertical coordinate in the V1
protocol is examined. Our instinct was since all peculiar stress distributions must come
due to inhomogeneous load borne by the walls, if we vibrate the column vigorously,
we would break all arches transmitting stress to the walls, and this would make the
maximum go away. After vibration, the fill-height decreases a little and the granular
column becomes more compact. Here a question now arises — are the wall forces carrying
much load in this newly rearranged column? Or are the particles just tightly squeezed?
Figure 5.4 (a) shows the variation of σyy with h− y for fill-heights h = 225, 450, and 900.
For all the three fill-heights, the vertical component of stress increases almost linearly as
we go down from the top of the column. There is a slight deviation from linearity for
h = 900 as it reaches close to the bottom of the wall. The behavior of σyy is similar to
what one observes in a compressible hydrostatic column. Hydrostatic stress gives the
total stress that the grains would have applied if the load was not shared by frictional
walls and is given by

∫
ρgdy, where ρ is the mass density and is a function of the vertical

coordinate.
So, we speculate that the walls in a granular column are not always carrying the load

and particles in contact with the walls of the column are not always at the Coulomb
friction limit, contrary to the assumption in the Janssen’s model. This will be further
discussed in section 5.4 and we will see that our speculation is correct by observing the
wall forces at different protocols.

If we completely remove the friction from the system, a granular column will show
hydrostatic behavior. In fact, the number density of particles is now practically a constant
and so the stress is linear in the vertical coordinate. This is shown in Figure 5.4 (b).
The granular column here is created by the S2 protocol for W = 30 and h = 210. This
analysis tells us that the friction in the system is important, along with the protocol
used to create the granular column as the V1 protocol almost completely attenuates the
importance of friction in the system.

5.3.3 Protocol dependence

The particles in contact with the side walls are not always at the static friction limit. To
get the particles closer to this limit a common practice is to use a column with a moving
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Fig. 5.5 (a) Comparison of vertical stress with the vertical coordinate for a granular
column with h = 225, W = 30, and µw = 0.5 obtained with four different protocols.
The Viscous (S2) and Settling (S1) protocol seem to behave similarly for a column of
this height. The vertical stress for the Vibration protocol (V1) increases linearly with
h − y [see Figure 5.4 (a)]. The Mobilize protocol (M1) does not have any maximum.
Janssen form is a good fit for the M1 protocol and predicts s = 85.53. (b) At h = 450,
the difference in σyy between the S1 and S2 protocols start appearing. Error bars are the
standard deviation obtained by running 20 different ensembles at each height.
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bottom wall (Vanel and Clément, 1999) or moving side walls (Bertho et al., 2003; Ovarlez
et al., 2003). The movable wall is slowly moved to mobilize the particles near the walls.
We also decided to follow this method to verify if the maximum observed in Figure 5.2
(a) disappears. We use a similar method as Vanel and Clément (1999) used to measure
the pressure at the bottom and will refer to this method as the “Mobilize” (M1) protocol.
In this method, the bottom wall of the final S2 packing is slowly moved downwards to
mobilize the grains, and then the new packing is allowed to relax. The wall is moved
by 10 units of height in 1000 units of time with the bottom wall moving sinusoidally as
−Sin(πt/4000) with time. Note that the speed of downward displacement in Vanel and
Clément (1999) was two orders of magnitude smaller than our average speed.

Figure 5.5 (a) shows the σyy variation with the vertical coordinate for all the four
protocols at h = 225. The maximum disappears for the M1 protocol and the behavior
far away from the free surface is the same as in Figure 3 of Landry et al. (2004). We
speculate that mobilizing the bottom wall dilutes the effect of the initial protocol. The
Janssen form as given in equation 5.11 seems to be a good fit for the M1 protocol and
predicts a decay length of s = 85.53. This gives K = 0.351 and this value is close to
the values referred to in Chapter 5 of Nedderman (2005) and obtained in earlier studies
(Landry et al., 2004; Zhao et al., 2018). Note that an area-based packing fraction φ = 0.87
was used for obtaining the Janssen fit.

Recall that S1 protocol is just a primitive version of the S2 protocol. We notice that
the S1 protocol shows similar behavior as the S2 protocol at h = 225. This is, however,
not true at h = 450 [Figure 5.5 (b)]. At h = 450, the S2 protocol shows a much bigger
peak than the S1 protocol, which leads us to believe that the time at which viscosity
is introduced in the system in S2 protocol is important. In the current S2 protocol,
viscosity was introduced after 50 units of time for both h = 225 and 450. For h = 900,
we introduced viscosity after 500 units of time (see Figure 5.2) as settling of grains takes
much more time at this height. In Landry et al. (2004), the extra viscous damping force
was introduced when the kinetic energy per particle reaches 10−3Mgd, as they found that
at this value the kinetic energy in their system was getting stabilized. We did not face
any such issues and hence decided to introduce viscosity at later times as discussed above.
One of the reasons we did not face this issue can be because of our higher viscoelastic
damping constant for normal contacts. In our simulations, γn = 500 and in Landry et al.
(2004) it was taken to be 50.
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Fig. 5.6 Variation of the vertical component of stress with h− y for the pouring protocol
at W = 30 and µw = 0.5. Error bars are the standard deviation obtained by running 20
different ensembles at each height. The Janssen form obtained by using equation 5.11
for φ = 0.87 gives the decay length s = 126.8.

5.3.4 Pouring protocol

The behavior of the M1 protocol is closer to the Janssen’s model than that of the other
protocols as shown in Figure 5.5 (a). One of the widely used protocols that we have not
discussed until now is the “Pouring” or raining protocol. In this protocol, an insertion
region of width W and height 1 is chosen above the desired fill-height. This is done to
mimic pouring of particles from a fixed height into the given container. Non-overlapping
particles are placed randomly in this region to keep a volume fraction of 0.26 inside the
insertion region at each time step. Inserted particles are not allowed to overlap and up
to 100000 attempts are made to insert each new particle without overlaps. Landry et al.
(2004) also used the same protocol for measuring total vertical stress in the granular
column at different fill-heights. To compare our results with Landry et al. (2004), we
use particles with diameters in the range of 1 to 1.1 and fill the W = 30 column with
20000 particles. Viscous damping force was used to drain the kinetic energy after all the
particles have settled in the column and the total kinetic energy of the system is less
than 10−5. For this simulation, the parameter values for Hertzian interaction were taken
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from Landry et al. (2004). Therefore, we fix γn = γt = 50 and all the other parameter
values remain the same as in section 5.1 of this chapter.

Variation of the vertical component of stress with h− y has been shown in Figure 5.6.
Landry et al. (2004) and Vanel and Clément (1999) saw a hydrostatic-like region at the
top of the packing until a cut-off y value in their work. We do not see any such region.
However, such regions are visible in the S1 and S2 protocols and become very clear when
plotted together with the V1 protocol as shown in Figure 5.5. We also see a slight dip in
Figure 5.6 near the bottom of the granular column which was not observed in Landry
et al. (2004). The difference can be attributed to the fact that Landry et al. (2004)
measured the vertical component of the global stress tensor in their work at different
fill-heights and not components of the local stress tensor. In other words, they measured
the stress of the whole granular column, whereas we measured the stress in horizontal
strips of 15 x W at different y for one particular column height. The comparison of the
vertical stress profile with the Janssen’s prediction (given by equation 5.11) gives a poor
fit as shown by the dotted line in Figure 5.5. The fit predicts a decay length of s = 126.8.

One should note that the Pouring protocol and S1 or S2 protocol are very different. In
the S1/S2 protocol, the packing at the bottom is created by particles settling gently from
a small height. As discussed before, the initial zero velocity non-overlapping particles
are placed in height 1 to Hint while using the S1/S2 protocol. The packing at the larger
vertical coordinate is created by particles falling with high speed from a larger height.
Whereas, in the Pouring protocol, the packing at the bottom is created by particles falling
from a large height at high speed and packing at the top is created by the particles settling
at smaller velocities. This important difference is the reason behind such contrasting
stress profiles between the Pouring protocol and the S1/S2 protocol.

5.3.5 Bidisperse

Till now, all of our studies have been done by using monodisperse particles. A packing of
monodisperse particles tends to crystallize in 2D. Now the question arises, can crystallinity
in the packing be a reason for the peculiar behavior of vertical stress profile? To answer
this, we study a disordered packing created by the S2 protocol. Bidisperse particles are
used to create disordered packing in 2D and we compare our results of monodisperse
packing with that of bidisperse packing.

We created a bidisperse packing filled with an equal number of particles of diameter
d1 = 1 and d2 = 1.2. The granular column was created by the S2 protocol and the case
of h = 225 was analyzed. The comparison of a bidisperse-filled granular column with
monodisperse packing has been shown in Figure 5.7. The maximum observed in the
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Fig. 5.7 Comparison between the same size monodisperse and bidisperse-filled granular
columns suggests that the behavior seen in bidisperse packing might be different from
that of monodisperse packing. The W = 30 container was created by the S2 protocol and
µw = 0.5 in both the cases. The maximum observed in monodisperse packing disappears
in bidisperse packing. Still, the Janssen form (with φ = 0.87) appears to be a poor fit
for bidisperse packing created by the S2 protocol. Error bars are the standard deviation
obtained by running 20 different ensembles at each height.

vertical stress for the monodisperse case disappears in the bidisperse packing at h = 225.
We see a linear region near the top of the packing similar to the monodisperse packing,
which was also observed by Vanel and Clément (1999) and Landry et al. (2004). But
after this hydrostatic-like region, σyy saturates and becomes constant. Janssen’s model
(showed by the red-dashed curve) appears to be a poor fit for the bidisperse packing
as well while using this protocol. The Janssen form predicts s = 1017.8 which is larger
than observed in Figure 5.1 (b). In the future, we will like to study if this behavior of
bidisperse packing continues at larger fill-heights or if a maximum in the vertical stress
appears like in the monodisperse case.
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5.4 Model

To understand the counter-intuitive result seen for the vertical stress variation with the
vertical coordinate in the S1 and S2 protocols, we decide to relax all the assumptions
made in the Janssen’s model and start by constructing a new force balance. We consider
a thin horizontal strip of height ∆y and width W within our computational domain.
As per the force balance, the weight of the particles in this strip must be equal to the
upward shear force applied by the wall, plus the upward reaction force applied by the
particles below and minus the downward force applied by the particles above. So,

Mgn(y)∆yW = (σyy|y+∆y − σyy|y)W + 2σxy|wall∆y. (5.4)

Here σxy|wall is the shear stress applied by the wall and n(y) is the number of particles in
the unit area at height y. If φ(y) is the packing fraction based on area, we have, assuming
no significant compression of the particles,

n(y) = 4φ(y)
πd2 . (5.5)

In the limit of δy → 0, equation 5.4 becomes

4Mgφ(y)
πd2 − d(σyy)

dy
− 2 1

W
σxy|wall = 0. (5.6)

Note, at this point, we can get Jannsen’s equation by assuming φ to be a constant at all
y and σxy|wall = µwσxx = µwKσyy. This gives us:

4Mgφ

πd2 − d(σyy)
dy

− 2µwK

W
σyy|wall = 0, (5.7)

σyy = 2MgφW

µwKπd2

(
1 − e

−2µwK
W

(h−y)
)
. (5.8)

Writing equation 5.8 in its familiar form, we get

σyy = ρgs

(
1 − e− h−y

s

)
, (5.9)

where ρ = 4Mφ/πd2 and s = W/2µwK. Equation 5.9 is the famous Janssen’s equation
as discussed in Chapter 1. Both equations 5.6 and 5.8 are retained in dimensional
form. Non-dimensionalising the stress with Mg/d (force/length, as our system is two
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dimensional) and all the length scales by d, we get:

4φ
π

− d(σyy)
dy

− 2
W
σxy|wall = 0, (5.10)

σyy = 4φs
π

(
1 − e− h−y

s

)
. (5.11)

Fig. 5.8 Scatter plot of the vertical stress with the horizontal stress. The packing is
created by the S2 protocol at W = 30 and h = 900. Black circles represent a region from
y = 0 to the vertical coordinate in the column at which the maximum in the vertical
stress is observed. Red squares represent the region from this vertical coordinate to the
free surface of the packing.

Now, it is clear that Janssen’s equation (equation 5.11) is a special case of equation 5.10
and is not valid if (i) the stress is anisotropic or (ii) the packing fraction varies with the
vertical coordinate or (iii) the particles at the wall are not mobilized. We have already
seen in Figure 5.3 that the behavior of horizontal stress is quite similar to the vertical
stress for S2 protocol. Our tests showed that this is true for all the protocols. Figure 5.8
shows a scatter plot between vertical stress and horizontal stress for a granular column
created by the S2 protocol. We realize that other than a small region in the middle of
the column, σyy ∝ σxx. The small region where this is not true is the region just before
the maximum in Figure 5.2 (a), if one is going down the column from the top.
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Fig. 5.9 Force balance at different vertical coordinates of the granular column. Here
β is the vertical force difference from above and below of a section of thickness ∆y at
any y and is given by (σyy|y+∆y − σyy|y)W . Note that the compressive stress has been
shown as positive in previous figures. But, while differentiating it is taken as negative
and therefore we get the present behavior of β.

Equation 5.10 shows us that the gradient of vertical stress can be positive in one
region and negative in another region based on how the packing fraction changes with y
and how much load the side walls are carrying. Hence, studying packing fraction and
wall-forces should help us in understanding the peculiar behavior of vertical stress in the
column. To start, we will use this force balance to understand how wall-force changes
with the vertical coordinate in comparison with the vertical stress.

Equation 5.10 shows us that the gradient of vertical stress can be positive in one
region and negative in another region depending on how packing fraction is changing
with y and how much load the side walls are carrying. Hence, studying packing fraction
and wall-forces should help us in understanding the peculiar behavior of vertical stress in
the column. First, we will use this force balance to understand how wall-force changes
with the vertical coordinate in comparison with the vertical stress. Figure 5.9 shows the
force balance at different vertical coordinates in a h = 900 granular column prepared by
the S2 protocol. The net force is zero at all y as expected for a static granular column.
The most important observation here is the interesting behavior of the force applied
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Fig. 5.10 Variation of Fy/Fx with the vertical coordinate for the S2 protocol, W = 30,
and (a) h = 450 and (b) h = 225. Fy and Fx are the vertical and horizontal force applied
by the side-walls on the particles. Note that Fx is of opposite signs on the two side walls
but for clarity of this figure we take it to be always positive. Therefore, negative Fy/Fx

represent a region where Fy is negative. Error bars are the standard deviation obtained
by running 20 different ensembles at each height.
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by the side walls. Interestingly, we find that there is a region in which the side walls
are applying downward force on the column just before the maximum in σyy profile [see
Figure 5.2 (a)]. This is also the region which showed a slight deviation from isotropy
in Figure 5.8. Such regions can exist in a static granular system depending upon the
history of the contacts in the system as is pointed out in section 5.6 of Nedderman (2005).
So it is of prime importance to study the formation of these packings in the S1 and S2
protocol and we will discuss this in the coming paragraphs.

Another observation comes by comparing the ratio of the vertical force with the
horizontal force applied on the particles by the side walls in different protocols as shown
in Figure 5.10 for (a) h = 450 and (b) h = 225. This figure shows us that the vertical
force on the walls is below the Coulomb yield limit of µwFx, as assumed in the Janssen’s
model, for all the protocols. The negative value of Fy/Fx shows that there is a region
where the side-wall is applying a downward force on the particles. In the V1 protocol,
there is no region in Figure 5.10 (a) and (b) where side-walls are applying downward
force on the particles. From Figure 5.10 (a), it is clear that Fy/Fx is lowest for the V1
protocol in most of the region. Fy/Fx saturates to zero near the bottom surface. This
is not due to the fact that the side walls are not carrying any load, but a consequence
of Fx becoming large in the region close to the bottom of the column. Notice that the
Mobilize protocol has a constant Fy/Fx value in Figure 5.10 (b) and therefore is closest
to the Janssen’s model. The M1 protocol case also has the largest Fy/Fx value amongst
all the protocols suggesting that the particles are more mobilized near the side walls
in this protocol. There is no region in Mobilize protocol where side walls are applying
downward force on the particles. Hence, we do not see any maximum in this protocol.

The peculiar behavior of σyy in the S1 and S2 protocols can be understood by
understanding how the particles are being packed in the columns when we use these
protocols. Figure 5.11 shows the variation of packing fraction for different fill-heights
in the S2 protocol. The behavior of packing fraction is similar to what we observed
for vertical stress in the S2 protocol. In particular, the location of maximum between
h − y = 425 to 445 for h = 900 is the same as that of the vertical stress. So, it is not
difficult to say that an assumption of packing fraction being a constant is not quite
correct. Furthermore, the two observations, the vertical stress and packing fraction, are
coupled with each other in a way suggested by equation 5.10. In fact, a scatter plot
between the vertical stress and the packing fraction as shown in Figure 5.12 shows a
systematic behavior, approximately linear, suggesting that the coupling between the two
is strong.
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Fig. 5.11 Variation of area-based packing fraction with the vertical coordinate for different
fill-heights. The packings are created by the S2 protocol at W = 30. The red dashed line
represents hexagonal close packing in 2D. Error bars are the standard deviation obtained
by running 20 different ensembles at each height.

Maxima similar to those in the vertical stress plots are seen for h = 450 and h = 225
also in Figure 5.11. No such maximum is observed for the V1 protocol as shown in
Figure 5.13. As you reach closer to the bottom surface, the packing fraction increases in
the V1 protocol. In fact, it goes above the hexagonal crystalline packing value of 0.907 at
h− y > 300. This means that the particles are heavily squeezed in the granular column
in the V1 protocol because of vibrations.

The maxima in Figure 5.11 and Figure 5.13 for the S2 protocol represents a region
around which the particles are tightly squeezed, so much so that the packing fraction
can even go beyond hexagonal crystalline packing limit for h = 900. Similar behavior is
expected from the S1 protocol. The question is why such a region exists in the S1 and S2
protocol in the middle of the column. This can be understood from Figure 5.14, which
shows us the formation of the h = 450 granular column by the S1 protocol. Figure 5.14 is
obtained by taking a snapshot of the whole container at different time frames. At t = 47,
the particles are still settling under gravity. The times are in non-dimensional units. At
t = 49, the grains near the free surface start heaving/bouncing upwards, followed by the
grains below the free-surface. This happens because while the particles are settling in the
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Fig. 5.12 Scatter plot of the vertical stress with the area-based packing fraction. The
packing is created by the S2 protocol at W = 30 and h = 900. Black circles represent a
region from y = 0 to the vertical coordinate in the column at which the maximum in the
vertical stress is observed. Red squares represent the region from this vertical coordinate
to the free surface of the packing.

container at initial times, there is a continuous bombardment of high-velocity particles
happening at the top as shown in the case of t = 47. We provide a descriptive account
below.

Remember that the S1 protocol is created by allowing particles with zero initial
velocity, placed randomly between height 1 to Hint, to settle. The Hint is 800, 1600,
and 3200 for h = 225, 450, and 900 respectively. Hence, the packing at the bottom is
made from particles settling from a small height. But as we go up in the column, the
structures are formed by the bombardment of high-velocity particles coming down from
a greater height. This leads to the particles getting increasingly squeezed in the column
as shown in Figure 5.15. The strength of the force network increases with height till
all the particles have fallen. At this moment the vertical stress (and packing fraction)
increases almost linearly with the vertical coordinate as shown in Figure 5.16.

This continues till t = 49 when all the particles have settled. At this moment, the
heavily compressed region at the top has a net upward force acting on it due to this
compression, and it achieves a more relaxed state by heaving up as shown in Figure 5.14.
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Fig. 5.13 Variation of area-based packing fraction with the vertical coordinate for the S2
and the V1 protocol at h = 900 and W = 30. The red dashed line represents hexagonal
close packing in 2D. Error bars are the standard deviation obtained by running 20
different ensembles at each height.

Using the large stored elastic potential energy (due to compression), first the particles
near the free surface bounce, followed by the particles just below it. The particles in
the compressed region in the top part of the column are able to bounce freely during
55 > t > 49 and falls back again during 73 > t > 55, this time from a very small height.
The particles at the bottom part of the column do not heave as the deformation in this
region is smaller compared to the particles at the top and because of the space constraint.

The particles in the top part of the column settle gently after heaving, as is evident
by looking at the force networks in Figure 5.15. All the strong force chains (shown in
red) at the top of the column at t < 49 disappear at t = 73 and therefore the column
is not under compression in this region. The stress now increases as we go down the
column in this region as shown in Figure 5.16. Below this region lie the particles which
are still under compression (less at the bottom, more at the top) and hence the stress
decreases as we go further down. The combination of the two loads during the re-setlling
process — (i) the compressive force because of which some particle in the middle of
the column wants to relax and (ii) the amount of downward force, on the same middle
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Fig. 5.14 Formation of a granular column shown for the S1 protocol with W = 30 and
h = 450. The dotted line shows an approximate free surface of the packing. Numbers
below the image gives the time frames t at which the image is captured. At t = 47, the
particles are still falling under gravity. Once all the particles have settled (t = 49), the
top part of the column heaves.
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Fig. 5.15 Force network during the formation of the granular column shown for a single
run of the S1 protocol, with W = 30 and h = 450. Different colors represent the
magnitude of the contact forces Fij; Fij < 250 data are not shown for clarity. Numbers
below the image give the time frames t at which the image is captured. At t = 47, the
particles are still falling under gravity. Once all the particles have settled, the top part
of the column heaves as shown in images at t > 49.
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Fig. 5.16 Variation of vertical stress with the vertical coordinate for a single run of
h = 450, S1 protocol, at two different times. t = 49 represents a time before heaving and
t = 73 represents a time when heaving is finished.

layer of particles, due to resettling particles from above — decides the region where the
maximum of the stress and packing fraction occurs.

As we discussed above, the particles in the middle of the column are still under
compression and are attempting to relax to a lower energy state. Since they are in a
state of compression (vertically and horizontally both), a spanning force network can also
form, which prevents further upward motion of the particles in the middle and bottom
region (Cates et al., 1998; Farr et al., 1997; Majmudar et al., 2007). The upward force
applied by the particles in the middle and the particles at the bottom, trying to relax,
on this force network is less than µw times the normal compressive force applied by
the network on the wall. So, these particles apply a net upward force on the side walls
and the side walls apply equal and opposite downward force on these particles as per
Newton’s third law. Hence, we see a region in the middle of the column with a negative
wall force on the particles. The column thus freezes in this configuration. The fact that
such a maximum is harder to observe at larger widths [see Figure 5.2 (b)] is indicative of
the lower propensity to form a spanning force network.
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As discussed in section 5.3.4, the packing at the bottom in the Pouring protocol is
created by particles impacting at high velocities and at the top by gently settling or low
impact speed particles. Hence, we do not see similar behavior of the S1/S2 protocol in
the stress profiles in the Pouring protocol.

5.5 Variation with the horizontal coordinate

For the sake of completeness, we will also like to discuss the variation of the vertical
stress with the horizontal coordinate in different protocols. This is a part which has been
accorded with little attention in previous investigations. We start with the S2 protocol
and see the variation of stress for different fill-heights as shown in Figure 5.17 (a). For
all fill-heights, a slight increase in σyy near the center of the column is observed. This
suggests that the load near the center of the column is more than that near the walls
and the effect of wall-friction might not be felt completely far away from the walls. This
weak maximum near the center of the column should become more prominent for larger
width granular column. To verify this, the variation of σyy with the horizontal coordinate
for three different widths at fill-height h = 225 is plotted as shown in Figure 5.17 (b).
The x coordinate for larger widths has been scaled to fit in the range of 0-30 to compare
with the W = 30 plot. As expected, the maximum becomes more pronounced at W = 60
compared to that at W = 30. Interestingly enough, a plateau-like region is observed at
the center of the column at W = 90.

A similar comparison of the vertical stress variation with the horizontal coordinate is
done for different protocols coordinate as shown in Figure 5.18. Plots for (a) h = 225 and
(b) h = 450 show maximum σyy at the center of the granular column for all protocols.
Similar to Figure 5.5 (a), the values of σyy at every x coordinate for the Mobilize protocol
is less than that for any other protocol. But unlike Figure 5.5 (a), the V1 protocol case
has similar σyy values as the V1 and S1 protocols within error bars at every x value. This
changes at larger height as shown in Figure 5.18 (b), where the behavior of the S1, S2,
and V1 protocols are all different.

5.6 Discussion and Future work

This chapter explained how the protocol used for preparing a granular column is very
important and how it governs the local packing of the column. We discussed various
protocols used for preparing the granular column — Settling, Viscous, Vibration, Pouring,
and Mobilize protocol. We showed that using the S1/S2 protocol for preparation of a
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Fig. 5.17 (a) Vertical stress as a function of the horizontal coordinate for three different
fill-heights at W = 30 and µw = 0.5, created by the S2 method. At any x, σyy is obtained
by measuring the vertical stress in vertical strips of size 5 x h. For all fill heights, we see
a small increase in σyy near the center of the column and the vertical stress seems to
be a little less near the side walls. (b) Variation of vertical stress with the horizontal
coordinate for three different widths, h = 225, and µw = 0.5. The x-axis of the figure has
been scaled to the smallest width W = 30 for comparison. Error bars are the standard
deviation obtained by running 20 different ensembles at each height.
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Fig. 5.18 (a) Comparison of vertical stress with the horizontal coordinate for h = 225,
W = 30, and µw = 0.5 granular column obtained with four different protocols. All the
four protocols seem to show a maximum of vertical stress near the center of the column.
(b) This behavior did not change at h = 450. Error bars are the standard deviation
obtained by running 20 different ensembles at each height.
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granular column creates a stress profile, which is very different from the Janssen form.
We also observed that tangential forces at the walls are not always at the Coulomb yield
limit. In the later part of the chapter, we explained the reason behind the peculiar
behavior of stresses in the S1/S2 protocol. The main reason is that σxy need not be
proportional to σyy and hence a static equilibrium of this kind is permissible. A plausible
route was proposed by our argument that the combination of — (i) the impact velocity of
the particles, while the packing is being formed and (ii) the heaving process after all the
particles have settled — leads to the non-monotonic stress profiles in these two protocols.

In the future, we would like to test these protocols for bidisperse packings. We
discussed the S2 protocol h = 225 packing with bidisperse spheres in the chapter, where
the two diameters used were 1 and 1.2. We did not see any maximum at h = 225, but this
can be because a lesser number of grains are required to fill height of h = 225 compared
to a monodisperse packing with particle diameter 1. We would like to see if the maximum
appears at larger fill-heights for bidisperse packing.

We would also like to solve equation 5.10 for realistic σxy profile for S1/S2 protocol. It
will be exciting to see if we can estimate the height at which the maximum in the vertical
stress profiles occurs in these protocols. For this purpose, we can try to vary the values of
elastic constants and the viscoelastic damping constants used in the Hertzian interaction
and observe how the location of the maximum changes. It would be interesting to study
the variation of these protocols in a three-dimensional column.



Chapter 6

Disordered packing in 2D

We have discussed 2D granular packing and normal collisions between the spheres in a
viscous fluid in previous chapters. Normal collisions in a viscous medium are governed
by the Stokes number (St). Collision below a critical Stokes number (Stc) leads to
completely inelastic collisions of spheres. The structure created by monodisperse spheres
after such inelastic collisions at low Stokes number can be quite different from what we
analyzed in Chapter 5. In this chapter, we will discuss such packings and their stability.

The goal here is to create a disordered packing by using our understanding from
earlier chapters. We will be creating a packing by depositing particles at low Stokes
numbers in a viscous medium. Every new particle incident on packing will deliver minimal
momentum to the particles beneath. Disturbance of the structure leads to rearrangements
and compaction, hence an impact that transfers almost no momentum is expected to
lead to loosely-packed structures. We start by proposing a protocol to develop such
two-dimensional (2D) disordered packing in the next section. In the succeeding sections,
we will try to see how this 2D packing changes with the Stokes number and study overall
area-based packing fraction of the structure. We will also discuss the local features of
this packing and talk about the stability of the structure when individual particles are
added. The collisions between particles in this more natural setting will be both normal
and tangential.

6.1 Experimental set-up

To obtain this 2D disordered structure, a rectangular glass container was filled with
silicone oil of dynamic viscosity µ = 0.0966 Pa-s and density ρf = 966 kg/m3. The
silicone oil was obtained from Clearco products (CAS No: 63148-62-9). About 2400 dry
stainless steel bearing balls of diameter d = 1/8th of an inch were poured gently into this
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Fig. 6.1 Top and front schematic view of two different types of immersed packing: (a)
packing with a horizontal free surface, “parallel packing” and (b) packing with an inclined
free surface, “oblique packing”. Both packings are generated by different initial conditions.
Parallel packing is created by first scattering the particles to occupy the whole space of
the container and then lifting one of the short sides of the container to angle θ by using a
vertical jack to give the desired packing. For oblique packing, after the initial scattering
of the particles, the set-up is tilted length-wise along one side till all the particles roll
towards the opposite side. The particles are then allowed to settle in θ = 0◦ state before
the container is lifted again breadth-wise as in the case of parallel packing to give the
oblique packing.

container of cross-section 96.4d x 64.25d filled with fluid up to 15d height. This process
introduced many bubbles in the fluid which escaped in a few hours. The glass container
was placed over a steel frame one of whose sides was maintained at a constant height.
The opposite side was mounted on a vertical jack, which allowed us to vary the elevation
of this side and tilt the container along the width as shown in Figure 6.1.

To prepare a packing, the container is placed horizontally and the particles are
manually scattered initially such that they remain in a single layer while occupying the
whole space of the container. Then, the edge which is mounted on a vertical jack is lifted,
without any jerks to the container, until we reach the desired angle. This inclination
allows particles to roll towards the opposite side and create a packing. This method
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Fig. 6.2 (a) Variation of velocity with distance from the free surface for different inclination
angle. The data have been obtained by releasing individual wet particles one-by-one
from the elevated edge of the container and letting them collide with the free-surface of
the packing. Only the region close to the free surface was observed and hence the initial
increase in the velocity is not shown. The time is moving forward from right to left of
x-axis and 0 in the x-axis refers to the free-surface of the packing. Data were obtained
from 10 trials for 5◦, 7◦, and 10◦ each, and 2 trials (due to limited data available) for 15◦.
The average values of the standard deviations of velocities from these trials for 5◦, 7◦,
10◦, and 15◦ are 0.00028, 0.00032, 0.00075, and 0.0007 respectively. (b) The terminal
velocity from (a) has been plotted against Sine of the inclination angle θ. The terminal
velocity was extracted by taking the mean of the velocity data for distance > 0.01 m
from the free surface as shown in (a). The error bars shown are the standard deviation of
this velocity. The terminal velocity increases almost linearly as shown by the red dashed
line.

leads to packing with a nearly horizontal free-surface [Figure 6.1 (a)], i.e., the top surface
or the free-surface of the packing is practically parallel to the width of the container. We
have termed such packings as “parallel packing”. We can also create a packing with an
inclined free surface by allowing particles to roll towards one of the longer sides of the
container first, after being scattered, and then towards the shorter side. These packings
with an inclined free surface as shown in Figure 6.1 (b) will be referred to as “oblique
packing” and will be discussed in the latter part of the chapter.

We have studied the packing for four different inclination angles θ = 5◦, 7◦, 10◦, and
15◦. The inclination angle in the experiment was varied gradually and it takes around 20
seconds to reach from 0◦ to 15◦. A wide LED diffusive light source was placed under the
container to increase the contrast, and high-resolution images/videos were taken from
above the container using a Nikon D5300 camera. We observed the rolling motion of
individual particles down the inclined surface and found that the particles roll in an
approximately straight line parallel to the length of the container. To determine the
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typical velocity of individual particles before they collide with the packing at different
angles of inclination, the particles were released from the elevated edge of the container
to roll downhill. The motion of the particles was tracked by the camera at 60 frames
per second and 1920 x 1080 resolution. As discussed in Chapter 4, “Analyze particle”
feature of ImageJ was used to determine the centers of these particles and finite difference
scheme was used on this data to get velocity.

The velocity as a function of the length traveled is shown in Figure 6.2 (a) and (b)
and we focus only on the data close to the free surface. All the individual particles reach
terminal velocity before colliding with the packing as shown in Figure 6.2 (a). Also,
notice the rapid decrease in the velocity before impact with the packing. This is due to
the lubrication forces as discussed in Chapter 2-4. The terminal velocity, as shown in
Figure 6.2 (b), is practically a linear function of Sin θ. This is expected as the force on
the particles is a function of Sin θ. Small deviations from linearity might be due to the
fact that the frictional force on the particle depends on Cos θ. The terminal velocity at
different angles of inclination acts as the upper bound of impact velocity for that packing,
as some collisions can happen at smaller velocities too during the initial formation of
the packing. These terminal velocities are used to assign a Stokes number to packings
created at different inclination angles, as shown in Table 6.1.

θ St
15◦ 0.427 ± 0.019
10◦ 0.237 ± 0.007
7◦ 0.161 ± 0.003
5◦ 0.109 ± 0.003

Table 6.1 Stokes number (St) values for different angles of inclination (θ). Stokes number
is calculated by using the diameter of the particle d and the terminal velocity obtained
from Figure 6.2 (b). The error in the Stokes number is considered to be solely from the
terminal velocity calculation [see the error bars in Figure 6.2 (b)].

The particle is believed to be rolling over a thin film of fluid above the bottom surface
of the container. These particles seldom get stuck at the surface of the container at
θ ≥ 10◦. But at smaller angles (θ ≤ 5◦) some particles can get stuck at the surface,
suggesting that the slope is nearing the rolling friction coefficient limit. For this reason,
we decided to limit our experiments to θ ≥ 5◦. The dimension of the container fixes the
upper limit on θ. It was fixed at 15◦ to keep the oil from spilling from the side of the
lower elevation and still have the elevated side of the container immersed. The effect of
single-particle collisions with “parallel” and “oblique” packing will be further discussed
in the last part of the chapter.
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a) b) c)

Fig. 6.3 A sample parallel packing image at 15◦ angle of inclination. (a) Shows the parallel
packing just after all the particles have settled and can be considered as the packing at
time = 0. (b) Shows the packing after 2 hours from (a). Notice some minor rearrangement
at the free surface. To observe these rearrangements image (b) is subtracted from the
image (a) and the net result is shown in (c). The black region means the subtraction
returned zero and suggest that there was no difference in (a) and (b) far away from the
free surface. The yellow color in (c) suggest that there were some minor rearrangements
near the free surface.

Though there was no visible motion after a few seconds of the formation of the
parallel packing, we waited for five minutes before capturing the images. The images were
captured using Camera Control Pro software with a resolution of 6000 x 4000 pixels2.
All the image analysis and data processing discussed from now onward were carried out
in MATLAB. A sample image of the parallel packing at 15◦ angle of inclination just
after all the particles have settled and the packing is formed is shown in Figure 6.3 (a).
Figure 6.3 (b) shows the image of the same packing after 2 hours. As can be seen, there
is no visible difference in the packing in the two time frames, other than rearrangements
of few particles at the free surface.

To determine the extent of this rearrangement, we subtracted Figure 6.3 (a) from
Figure 6.3 (b) by using “imsubtract” feature in MATLAB and obtained Figure 6.3 (c).
Any image is just an array of integers and can be subtracted like this. The subtracted
array is truncated by the software to fall in the range of the integer type of the input
images. The dark region in Figure 6.3 (c) represents zero intensity and suggest that
Figure 6.3 (a) and Figure 6.3 (b) are identical far away from the free surface. The bright
region, the color of the background, suggests that there are some small rearrangements
near the free surface in the 2 hour time. These could have been caused by some jerks to
the experimental set-up from external sources.

We found that five minutes are enough for such rearrangements and we waited only
for five minutes because these rearrangements at the free surface do not affect the packing
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Fig. 6.4 A sample parallel packing image at 10◦ angle of inclination. It took approximately
15 seconds to lift the container using a vertical jack and reach from 0◦ to 10◦. After that,
we waited for all the particles to roll down and for unstable structures to collapse and
give us the final stable packing.

in the interior. This shows us that the packing under observation is mechanically stable.
Similar features were observed for packings created at smaller angles of inclination.
Another sample image at 10◦ angle of inclination five minutes after the settling of the
particles has been shown in Figure 6.4. Notice the disordered structure in the packing.

6.2 Radius determination

The images obtained by the camera after five minutes of the creation of the packing
are thereafter analyzed to find centers and radius of individual particles using the
“imfindcircles” feature in MATLAB, which uses the circular Hough transform (CHT)
based algorithm to find circles. The method takes a gradient of the image and identifies
the pixels with high-gradient as the edge. The pixels on this edge are termed as “candidate
pixels” and are used as the centers to create circles of different radii. The point at which
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most of these new circles of a fixed radius intersect is the actual center of the particle
and the radius at which this happens is the best radius estimate of the particles.

The Hough transform method heavily relies on its first step, i.e., detection of edge
pixels. However, a hard particle in contact with other hard particles at different orien-
tations can hinder the accuracy of edge detection. We found that the algorithm often
underestimates the radius as shown in Figure 6.5 (a) and (b) and also introduces a slight
offset in the centers. The offset could be caused by the presence of the contacts or due to
the lighting or imaging feature of the set-up. A little asymmetry in lighting or imaging
can cause the image to have some reflection of background light from the surface of the
sphere in a particular direction. The blue circles in Figure 6.5 show the circles detected
by the circular Hough transform and black disks are the actual particles. Figure 6.5 (a)
shows the detection at an instant when the particles have been manually scattered to
occupy the complete space of the container and the container is placed parallel to the
ground, whereas Figure 6.5 (b) shows the detection via CHT for a packing at 10◦ angle
of inclination. The blue circles are not always touching where the contacts are present
as shown in Figure 6.5 and hence the CHT algorithm underestimates the radius of the
particles. This error in radius and offset in the centers is not more than 4 percent but
becomes important if one is calculating area-based packing fraction for a region with
1500-2000 particles.

(a) (b)

Fig. 6.5 Particles detected by the circular Hough transform (CHT) algorithm (a) after
manually scattering the particles to occupy the whole space of the container at 0◦ angle
of inclination and (b) after the formation of the packing at 10◦ angle of inclination. The
black objects are the particles and the blue circles are obtained by CHT. As can be seen,
CHT (blue circles) underestimates the radii of the particles and is therefore unable to
detect all the contacts.

In general, determining contact between hard particles requires very high precision
in the determination of the center as well as radius. To avoid this underestimation
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of radius, we devised a new method to determine the radius. In each trial, we first
detected individual particle radii by CHT and then took the mean over all the particles
in the packing. Now, each particle is considered to have this mean radius, RHough. The
average and standard deviation of these mean radii (RHough) over different trials at each
inclination angle are shown in column 2 and 3 respectively of Table 6.2. In each trial, the
radius of every particle is then increased from RHough in steps of 0.1 pixels until we detect
at least one particle with six contacts, representing a hexagonal crystalline structure. A
contact is established when the distance between the centers of any two particles is less
than or equal to the sum of the radii of the two particles. At this point, a new radius is
obtained by taking the mean center-to-center distance between the middle particle in the
hexagonal structure and the six contact particles and then dividing the mean by 2.

The average of this new radius, (Rhex), over different trials is shown in column 3 of
Table 6.2. The advantage of this method for determining the radius is that this is a local
measurement, and it helps in canceling some biasing in the center-determination of CHT.
Such particles with six contacts were present, though rare, at all the angles of inclination
studied. However, the occurrence became even rarer as we decreased the angle. In some
trials, there were actually no particles with six contacts in the packing and there were
some particles with five contacts and one particle just by 1 pixel or so away from being
the sixth contact. Hence in such trials where there were no particles present with six
contacts, this method might have lead to overestimation of the radius.

θ Average RHough Average error in RHough Average Rhex Average R3
15◦ 42.6 0.77 42.63 44.7
10◦ 45.12 0.74 46.22 47.79
7◦ 48.88 0.90 50.69 51.93
5◦ 46.7 0.84 48.95 49.99

Table 6.2 Radius in pixels obtained by different methods for different angles of inclination
(θ). RHough is the mean of the individual radii obtained by the circular Hough transform
in each trial at a particular angle of inclination. Error has been taken as the standard
deviation at each trial. Rhex is the radius of the particle at which the first occurrence of
any particle with six contacts is observed in the packing. R3 is the radius of the particle
at which the coordination number of the packing = 3. Averages over different trials at
each inclination angle are shown.

To determine if this method overestimates the radius, we measured the average
coordination number of the packing. The average coordination number is defined as the
average number of contacts each particle has in the packing. We found that the average
coordination number of the packing for all the angles of inclination at their particular
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Rhex is less than 3, the lower limit of the average contacts necessary in a 2D frictional
system (Andreotti et al., 2013). This is shown in Figure 6.6 where the x-axis has been
normalized by Rhex. This suggests that Rhex is not an overestimation of the radius of the
particle, but in fact, might still be an underestimation. The figure shows the increase in
coordination number with the increase in radii of the particle, Rhex(1 + ∆), where ∆ is
increasing in steps of 0.02 from -0.06 to 0.24. We refer to the radius at which the average
coordination number of the packing is 3 as R3. This radius is shown in column 4 of
Table 6.2 and is 1-2 pixels larger than Rhex. This radius gives a good ensemble-averaged
lower bound on the radius of the particle. However, it ends up imposing an average
coordination number, by assumption, on all the packings. Thus, even if packings are
different, by construction they all have the same coordination.

Fig. 6.6 Variation of average coordination number of the parallel packing with small
fractional change (∆) in the radius of the particle from Rhex for four different inclination
angles. The radius of the particles has been normalized by Rhex. The error bars are
the standard deviations of different trials at fixed angles of inclination. Notice that the
coordination number is less than three for all the inclination angles at normalized radius
= 1 or radius = Rhex.
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6.3 Global Packing

Hence, all the above-mentioned approaches (RHough, Rhex, and R3) to determine the
radius of the particles have some advantages and some disadvantages. These different
radii are used to calculate the area-based packing fraction at different inclination angles,
as shown in Figure 6.7. Packing fraction is the ratio of the total area of all the particles
to the total area of the boundary which envelops all the particles. This boundary area is
determined by using the “boundary” feature in MATLAB. This feature creates a compact
boundary around the outer-most particles and provides the area inside this boundary.
The packing fraction calculated by an intermediate radius R2 is also shown in the figure
for completeness. R2 is the radius at which the mean coordination number of the packing
is two. The packing fraction for parallel packing seems to decrease with the decrement of
the angle of inclination as we go above Rhex. This result is intuitive as one would expect
the load on spheres, away from the free surface, to be less at lower inclination angles.
Therefore, the random structures created at lower angles are loosely packed and are still
stable.

Fig. 6.7 Area-based packing fraction for four different inclination angles. Packing fraction
is calculated by using three different definitions of particle radius: Rhex, R2, and R3. The
dashed lines in red at π/4 and at 0.84 represent packing fraction for the square lattice,
and bidisperse random close packing in 2D respectively. The error bars are the standard
deviation of 9, 4, 16 and 20 trials at 5◦, 7◦, 10◦, and 15◦ angle of inclination respectively.
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To determine the orientational order in contacts in the packing, we measured the bond
orientational order parameter ψ4 and ψ6 (Steinhardt et al., 1983) for all the particles. As
the name suggests, ψ4 and ψ6 are measures of orientational symmetry amongst neighbors
of a given particle and are used to quantify the degree of crystallinity present in a system.
A particle will be deemed to be a neighbor of another particle if the distance between
the two is less than R3. For an ith particle, ψ4 and ψ6 are defined as:

ψ4i
=
∣∣∣∣ 1
Nb

Nb∑
m=1

e4iφmi

∣∣∣∣; (6.1)

ψ6i
=
∣∣∣∣ 1
Nb

Nb∑
m=1

e6iφmi

∣∣∣∣, (6.2)

where Nb is the number of neighbors and φmi is the angle between the x-axis and the
line joining the ith particle with its mth neighbor. For a square lattice in 2D, ψ4 will be
1 and for a hexagonal lattice in 2D ψ6 will be 1. Both ψ4 and ψ6 will be small if the
packing is completely random and has no orientational order.

After obtaining ψ4 and ψ6 for all the particles, we plotted a normalized histogram
(probability distribution) at different inclination angles as shown in Figure 6.8. The
probability of ψ4 lying below 0.5 value is higher for all inclination angles, suggesting that
there are very few square lattice-like structures, and the packing lacks ψ4 orientational
order. But in the ψ6 distribution, the probability increases with the ψ6 value and becomes
maximum at 1, suggesting that there are patches of hexagonal ordering in this disordered
packing. This does not necessarily mean that there are regions with hexagonal crystalline
packing as ψ6 can be 1 for a particle having less than six contacts or having vacancies if
the contacts are oriented along the hexagonal axes.

To determine how the disorder changes with the inclination angle, we analyzed
the Voronoi diagrams of the parallel packings, obtained by using “voronoi” package in
MATLAB, as shown in Figure 6.9. A Voronoi diagram made from n generating points
divides the plane into regions such that there is exactly one of the nth generating points
for each region and each point inside this region is closest to its generating point than any
other generating points. This diagram is created by drawing equidistant lines between
two generating points. In our case, centers of the spheres will act as generating points.

To understand the Voronoi diagram, we measured the areas of the polygons and
created a probability distribution of the areas. The distributions for four different
inclination angles are shown in Figure 6.10. The x-axis of the figure has been normalized
by the area of a regular hexagon inscribing a particle of radius R3, in a hexagonal
crystalline packing. The probability distribution of the area of Voronoi polygons for all



142 Disordered packing in 2D

Fig. 6.8 Probability distribution of bond orientational order parameter (a) ψ4 and (b) ψ6
for four different inclination angles. A small value on the x-axis indicates a disordered
state and a large value represents crystalline order.
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Fig. 6.9 A sample figure showing the Voronoi diagram for a parallel packing. The blue
lines outside the colored tessellations show that the Voronoi polygons are not closed for
particles at the boundaries of the packing (marked in black). We exclude these from the
subsequent analysis. To get the estimate of the polygon areas in the bulk we are ignoring
the polygons created by the boundary particles. The colors in the polygons are used just
to distinguish different polygons.

the four angles of inclination follow the same behavior. The distribution rises sharply to
a peak at a value greater than one and then decays exponentially and eventually gets
cut-off at some large value of the normalized area. The presence of peaks near the unit
value of the normalized area, for all the inclination angles, suggests that all the packings
are dominated by hexagonal ordering, similar to our observation from Figure 6.8.

The distribution tells us that the particles are more compactly packed at a larger
inclination angle as the peak in the distribution for larger inclination angle, θ = 15◦,
comes at a smaller value of the area. This is expected since particles have to carry
more load at a larger angle of inclination. The area for a square inscribing a particle
of radius R3 is 1.155. A large probability for an area bigger than 1.2 means that the
packing has many defects or empty regions. The probability of having large polygon area
is smallest for θ = 15◦ and hence big defects are lesser at a larger angle of inclination.
The cut-off comes at a very large value of the normalized area, more than 1.4 for all
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Fig. 6.10 Log-linear plot of the probability distribution of the Voronoi polygon areas for
four different inclination angles. The x-axis has been normalized by the area of a regular
hexagon inscribing a particle of radius R3. The vertical dashed line at normalized area
of 1 represent this area. The vertical line at 2/

√
3 represents the normalized area for a

square inscribing the same particle.

angles, suggesting that these empty regions can be large sometimes. These empty regions
increase in size and quantity with decreasing θ.

6.4 Spatial variation in packing

We now ask the question of how these packings change as a function of distance from the
free surface of the packing. Are the regions away from the free surface more crystalline as
they carry more load? To answer these questions, we coarse-grained the packing into 5d
x 5d square boxes and found the particles inside these boxes. If the center of a particle
was found to lie inside the box, then the particle was considered to be inside the box.
The center of the particle was found by circular Hough transform as discussed in the
previous section. After finding all the particles inside a box, a compact border was drawn
around the outer-most particles in each box using the “boundary” feature in MATLAB.
This border envelops all the particles in the square box as shown by green lines in
Figure 6.11. The area of the particles is determined by using R3 as the radius. Using the
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Fig. 6.11 An example of the coarse-graining in parallel packing. The packing is divided
into 5d x 5d square boxes and the centers of all the particles are checked to determine
the particles that lie inside the box. Once the particles inside the given box are known, a
tight outer boundary is created around the particles as shown by green lines in the figure.

area occupied by the particles and the area of this border, the packing fraction for each
box is determined. Note that this border was just created to determine the area-based
packing fraction and the square box is still our primary coarse-grained structure, whose
center is used to study the spatial variation in the packing fraction.

After determining the packing fraction in each box, we averaged the packing fraction
φ across the width of the container and then studied the variation of φ with the distance
from the free surface of the packing as shown in Figure 6.12. The x-axis in the plot shows
distance from the free surface in units of d and the zero on the x-axis represents the
free surface. As we move away from the free surface, we see an increase in the packing
fraction for some distance. This is expected as the load on the particles will increase
as we move away from the free surface of the packing, which can lead to more compact
structures. This increase is more prominent at larger angles like θ = 15◦. This is the
consequence of the fact that as the angle of inclination increases, the load on the particles
away from the free surface also increases.

In any individual trial, the free surface was never perfectly parallel to the width of
the container. This lead to fewer particles inside the boxes used for coarse-graining, near
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Fig. 6.12 Variation of area-based packing fraction with the distance from the free surface
of the packing for four different angles of inclination θ. The packing fraction was obtained
for each coarse-grained square box (Figure 6.11) and averaged across the width to study
the length-wise variation. Packing fraction increases as one moves away from the free
surface through most of the depth. Error bars are the standard deviations of packing
densities measured from different trials at a fixed inclination angle. The two horizontal
red-dashed lines at packing fraction π/4 and 0.84 represents square lattice and bidisperse
random close packing in 2D respectively. Values near the free surface (distance < 10d)
have big deviations due to poor sample size and this region has been shown in grey color.

the free surface as is evident from Figure 6.11. This region is shown in grey color in
Figure 6.12 and Figure 6.13 and has big error bars due to the limited sample size. For all
the angles, the packing fraction shows a tendency to saturate at large distances from the
free surface. This trend is not completely clear as the height of the packing is not much
larger than the width. It seems that this saturating value of packing fraction might be
different for different angles of inclination.

Similar plots can be obtained for variation of the ψ4 and ψ6 orientational order with
the distance from the free surface of the packing as shown in Figure 6.13 (a) and (b).
For all the angles of inclination, the ψ4 order seems to decrease as we move away from
the free surface before saturating, whereas the ψ6 values do not change much within the
error bars. In our discussion about the probability distribution of the ψ6 and the ψ4
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Fig. 6.13 Variation of bond orientational order (a) ψ4 and (b) ψ6 with the distance from
the free surface of the packing at different angles of inclination θ. The ψ4 orientational
order seems to decrease as we go away from the free surface of the packing for all angles
before saturating. The ψ6 order remains almost constant within the error bars. Error
bars are the standard deviations of ψ4 and ψ6 measured from different trials at a fixed
inclination angle. Values near the free surface (distance < 10d) have big deviations due
to poor sample size and this region has been shown in grey color.
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orientational order in the previous section, we saw that the ψ6 order is more probable.
Figure 6.13 (a) and (b) gives the same idea as the y-axis values in (b) are larger than
values in (a) at a particular distance from the free surface.

Figure 6.13 (a) and (b) suggest that as we move away from the free surface, the
packing starts losing its ψ4 orientational ordering and only the more preferred ψ6 ordering
remains. The ψ6 orientation order for the smallest angle of inclination studied (θ = 5◦)
was found to be lowest suggesting that packings created at a lower angle of inclination
are more disordered. Large error bars near the free surface are due to poor sample size
as discussed above.

6.5 Individual particle packing

The packings discussed previously are created by collective sedimentation. Hereafter, we
rolled particles one-by-one onto such a packing to understand the stability of the packing
under collisions. Figure 6.14 shows an example of a particle being rolled downhill to
collide with an oblique packing. Three scenarios are possible in this situation. First, the
particle rolling downhill (let’s call it A) impacts another particle (let’s call it B) of the
packing. Particle A rolls over the particle B to settle in the next minimum.

In the second scenario, particle A rolling over particle B does not stop at particle
B’s side but keeps rolling over another particle (say C) that is in contact with particle
B. Now, particle A can settle on particle C’s side or can keep rolling further and settle
next to some other particle or reach to the bottom of the oblique packing by rolling over
the particles. In the third scenario — which is quite rare — particle A impacting the
free surface of a delicately packed inclined pile can start an avalanche. We rolled 164
individual particles one-by-one on two different oblique packings at 15◦ inclination angle
and found that approximate probability of first, second and third scenario occurrence is
16.5%, 78.6%, and 4.9% respectively.

The whole process of particles rolling downhill and impacting the packing was recorded
in videos at 60 fps, 1920 x 1080 resolution. The recorded videos were then converted
into individual frames for analysis. The second and third scenarios discussed above have
been shown for the 15◦ angle of inclination in Figure 6.15. Figure 6.15 was created by
subtracting the nth frame from (n + m)th frame, where m is referred to as the frame
gap in the figure. The subtraction was done in the same way as in Figure 6.3. The
resultant figure was converted into a binary image and the area of the bright region was
calculated by using the “bwarea” feature in MATLAB. This area is referred to as the
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Fig. 6.14 The effect of individual spheres colliding with the packing. The figure shows
the top view of an oblique packing as shown in Figure 6.1 (b). Individual spheres (shown
by the red circle) are rolled downhill to collide with this packing. Three scenarios are
possible: 1.) First, the red particle rolling downhill impacts another particle in the
packing, rolls over this particle, and settles in the first groove (minimum), it encounters,
between two particles. 2.) The red particle after impacting and rolling over the first
particle does not settle in the first groove but keeps on rolling over one particle after
another, thus going downhill using the inclined free surface. In the bottom right figure,
the red particle has rolled over two particles, after impacting, before finally stopping.
Figure 6.15 top panel depicts this scenario. 3.) The red particle after impacting the
packing starts an avalanche changing the whole oblique packing structure.

“disturbance area” in Figure 6.15 and quantifies the dissimilarity between two separate
frames corresponding to the changes in the packing caused by individual impacts.

Figure 6.15 (a) shows the second scenario in which a particle is rolling over other
particles. It almost comes to rest when it reaches the grooves between two particles and
the velocity is minimum when it is in contact with both the particles in the gap. Hence,
the area between the two separated frames is also a minimum in this region. Such events
are shown by the minima in the plot. The maxima in the plot indicate the moments
when the tangent plane at the contact point of the rolling particle is parallel to the length
of the container.
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Fig. 6.15 Disturbance area created in the packing by individual particles rolling downhill
and colliding with the existing oblique packing at the 15◦ angle of inclination. (a) In this
plot, a particle rolls downhill, collide with a particle in the packing and then roll over one
particle after another present at the free surface of the packing. Minima are the events
when the rolling particle is in contact with two particles. (b) In the beginning, before
frame 5000, the impacting particle is rolling over the free surface of the packing. Between
frames 5100 to 5350, a new particle impacts the packing and starts a rare avalanche
event (identified by a sudden increase to larger disturbance area), in which the whole
top layer slides over the layer below it.
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(a)

(b)

Fig. 6.16 Effect on the packing after many individual spheres are rolled downhill, one by
one, to collide with the existing parallel packing. The image was obtained by taking an
absolute difference between the initial packing and the final packing after many impacts.
The bright full circles are the newly added particles. (a) Packing at 10◦ is not affected by
individual impacts. (b) Packing at 5◦ shows many bright regions in the bulk indicating
that all the particles in the original packing have undergone some movement as the result
of impacts by new particles.
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Figure 6.15 (b) shows the rare event of avalanche from frame 5100 to 5350. The
avalanche can be as simple as one layer of particles at the free surface sliding over the
other layer or it can be a major rearrangement of the first few layers near the free surface.
The rearrangement is always followed by one layer sliding over another in an attempt to
create hexagonal packing. Other than frames 5100 to 5350, little rearrangements follow
the bigger avalanche but most of the area contribution comes from a particle rolling
over the inclined free surface. Figure 6.15 (a) can be considered a zoomed-in version of
Figure 6.15 (b) at regions far away from frames 5100 to 5350.

We now shift our attention to individual particles colliding with a parallel packing.
We were able to obtain parallel packings of different packing fraction by varying the angle
of inclination at which the packing was created. By changing the angle of inclination,
we effectively changed the Stokes number at which the packing was being created. The
Stokes number of individual collisions during the formation of the packing was difficult
to determine and therefore we rolled down individual particles to impact the pile.

As discussed before (in Figure 6.2), particles reached terminal velocity before impacting
the free surface of the packing. Stokes number St was calculated by using this terminal
velocity for different angles of inclination and has been shown in Table 6.1. The St is
less than 0.5 for all the angles. We currently do not have data for larger Stokes number
(St > 1) but based on our understanding of normal collisions from previous chapters we
speculate that depending on whether the impacting sphere is above or below the Stc, one
would expect the sphere to either settle at the first minimum it encounters or to rebound
and choose a deeper minimum. In our present experiments, we encountered only one
scenario when a sphere collides with parallel packing. The sphere rolls over the particle it
impacts and settles in the first minimum it encounters, in case of parallel packing. This
suggests that if there is a critical Stokes number for rolling, our experiments are well
below this value.

In parallel packing, if the packing fraction is very low and the particles are delicately
packed, one might expect the impacting particles to do some rearrangements and increase
the packing fraction. To test this, we took two snapshots one before individual impacts
and another after the impacts and took the difference between the two. As can be seen
from Figure 6.16 (a) and (b), individual impacts do not affect the packing at θ = 10◦ but
local rearrangements take place after individual impacts in the packing at 5◦ angle of
inclination. The bright full circles near the free surface in Figure 6.16 (a) and (b) are
the new particles which collided with the original packing (in dark). Individual impacts
make fragile structures in 5◦ packing more compact. The change in packing fraction after
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a number of individual impacts is approximately 1.3% for packing at 5◦ whereas it only
changes by approximately 0.4% for packing at 10◦ angle of inclination.

6.6 Discussion

We have developed an experimental protocol to create a disordered packing of monodis-
perse spheres in a 2D system by allowing particles to deposit at low Stokes number.
Every time a new particle is added into the packing, it delivers almost no momentum
to the particles beneath and this helps in creating a loose packing. The area-based
packing fraction in this method can be decreased by decreasing the inclination angle of
the container. By studying the bond orientational order of the packing, we concluded
that there are patches of hexagonal ordering in this disordered looking packing. We also
observed that there are larger defects or empty regions in packings created at smaller
angles of inclination by calculating the probability distribution of Voronoi polygon areas.

The packing fraction was found to increase as we go away from the free surface of the
parallel packing, whereas hexagonal ordering remained almost the same throughout the
length. We found that an individual particle impacting the oblique packing can either
stop at the first minimum it encountered or it can keep on rolling over the particles at
the free surface before stopping at some nth minimum. We expect our experiments to be
below the critical Stokes number for rolling, as we do not see any rebound of impacting
particles. In rare events, we observed that even an individual particle can create an
avalanche after colliding with an oblique packing. We speculate that the avalanche event
is not governed by momentum transfer, as we are operating at very low Stokes numbers.
Therefore, this event points to the fragile nature of the packing as adding a point force is
enough to destabilize the surface.

In parallel packing, rearrangements by impacting particles were observed only for
small angles of inclination. In the future, one can try to repeat these experiments at
larger Stokes number. It will be interesting to see if there indeed exists a critical Stokes
number for rolling and how the packing fraction and more importantly the disorderedness
of the packing changes while crossing this critical number.





Appendix A

Hertzian calculation

For a perfect normal collision between two smooth, perfectly elastic spheres of radii Ri,
masses mi, Young’s modulus Ei, and Poisson ratio νi (i=1,2), the closest approach of
the spheres during mechanical contact can be calculated by Hertzian theory (Landau
and Lifshitz, 1986) and is given by

b =
(
meff

k

)2/5
v4/5, (A.1)

where b is the maximum overlap of the spheres (b = distance between the centers of the
sphere subtracted from (R1 +R2)) and v is the relative velocity between the spheres just
before contact. Here meff is the reduced mass of the spheres and is given by

1
meff

= 1
m1

+ 1
m2

, (A.2)

k is the effective modulus of the spheres, given by

k = 4
5D0

√
R1R2

R1 +R2
, (A.3)

where
D0 = 3

4

(1 − ν2
1

E1
+ 1 − ν2

2
E2

)
. (A.4)

In our electrical set-up, one of the spheres has been replaced by a plate, so 1/R2 = 0 and
1/m2 = 0.

For a smooth sphere of diameter 15.4 mm, the depth of the contact formed due to
the collision of the sphere with the plate for an impact velocity corresponding to the
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Fig. A.1 Craters are visible inside the marked circle. The sizes of the crater on the plate
is around 700 µm for St = 28.

velocity for St = 28 is ≈ 13.5 µm. The radius of the contact area is then given by

a =
√

2Rb. (A.5)

This gives the diameter of the contact area = 2a ≈ 900 µm. Of course, due to lubrication
forces, the actual impact velocity will be much lower, so these calculations considerably
over predict the size of the crater made.

A different possibility is that instead of the radius of the sphere setting the geometry
of the collision, the local radius of curvature set by the roughness of the sphere is the
relevant radius. If the characteristic height of bumps is q and the characteristic lateral
size is l, the local radius of curvature will be given by

Reff = 1
2q

(
l

2

)2
. (A.6)

For q = 1 µm and l = 100 µm, Reff = 900 µm. If we use this radius in Hertzian calculation
for collision, we get the depth and radius of the contact area to be ≈ 20 µm and 200 µm,
respectively.

At the largest Stokes numbers, we see that the sphere’s impact on the plate leaves
small craters (Figure A.1) ≈ 700 µm, thus the Hertzian calculation must be replaced by
a calculation involving material plasticity. Finally, we recall that all these estimates have
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used the Stokes number computed without wall effects, thus the actual impact velocity
will be lower. These estimates, therefore, overpredict the size of the region of contact.
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