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Abstract

The theory of nonlinear filtering concerns with the estimation of underlying signal (which is Marko-
vian) given that it has been indirectly and partially observed via. an observational model that is
noisy. These estimates can be understood by studying the conditional distribution of the signal at
any instant given observations made upto that instant (referred to as filter). The filter as a function
of time is given by a recursive algorithm for discrete time and is a measure valued solution to a
stochastic partial differential equation in continuous time. The filter necessarily depends on the ini-
tial condition of the signal. In practice, if the signal cannot be observed directly, it is highly unlikely
that we have the information about the initial condition of the signal. Therefore, it is desirable for the
filter to behave nearly independently with respect to initial conditions after large times. This thesis
studies the long time behavior of the filter in terms of sensitivity of the filter to the initial conditions,
in the framework of deterministic signal. A good understanding of the long behavior of the filter
with respect to initial conditions is important for practical applications of nonlinear filters.

The first topic of my thesis is the long time behavior of the filter with respect to the initial condi-
tion in the case of linear deterministic dynamics and linear observation model. This is a much stud-
ied problem in the context of noisy linear non-autonomous dynamics with linear non-autonomous
observation model. Here, we study filter stability in the case of deterministic signal using the notion
of uniform complete observability. We showed that the filter (in this case) is stable in the almost
sure sense. We have also showed that for a given set of observations, true conditional distribution
(coming from true signal dynamics with small stochastic perturbations) and distribution given by
the incorrect filter (assuming that the underlying signal is the true dynamics which is deterministic)
are close to each other for all times. This problem is again important in cases where the simulation
of the filter is efficient when the signal dynamics is deterministic.

The second and final topic of my thesis is the long time behavior of the filter with respect to initial
conditions in the case of non-linear deterministic dynamics and non-linear observation model. Here,
we study the stability of the filter by studying the proximity of conditional distribution of initial
condition given observations and the Dirac measure at the initial condition. The main result is that
conditional distribution of initial condition given observations converges to the Dirac measure at the
initial condition, if the dynamics is such that the orbits are neither converging towards each other
nor going far away from each other and the observations are rich enough. It is observed through
numerical computations that for sufficiently rich observations, very common chaotic systems like
Lorenz 63 and Lorenz 96 models satisfy the assumptions of the result.
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Chapter 1

Introduction

Filtering theory deals with estimating the state of an underlying system from the
observations that are made. Systems in engineering and nature are evolving with
time according to certain rules. These rules are modelled by dynamical systems.
Very often, systems in practice interact with the environment whose rules of evolu-
tion are unknown. It may happen that we only know some "averaged" version of
the rules and the interaction with environment is treated as random with appropri-
ate "averaged" properties. Effectively, these systems are modelled as noisy dynami-
cal systems. To study these systems, we need to make measurements/observations
using a measuring device. Since measurements can also interact with the environ-
ment, it is also modelled as a noisy dynamical system (with measurement noise).
Now, one question of practical interest is how to deduce the state of the underlying
system using the observations made on the system. We thereby need a systematic
way to filter out the measurement noise to deduce useful information about the
state of the system. In particular, we would like estimate the state of system (using
observations made on the system) by running an algorithm (referred to as filter, for
now and will be made precise below). The following diagram illustrates this idea.

Measurement

Noise

Filter

Estimate of system

Noise
System

Initial conditions

+

−

Estimation error

In our context, the best estimate of the state given observations is considered to
be the one that optimizes in the L2 sense. In the following, we briefly introduce
filtering theory and the notion of filter stability. We defer a slightly detailed intro-
duction and relevant literature to the later chapters.
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1.1 Filtering Theory

To make the question of finding the best estimate of underlying system given the
observations mathematically rigorous in a general context, the language of proba-
bility theory and stochastic processes is used. We as usual, start with an abstract
probability space (Ω,F , {Ft}t≥0, P) . We denote signal state space by S and obser-
vation state space by So. Xt ∈ S denotes the underlying signal process (system)
and Yt ∈ So denotes the observation process. Until mentioned otherwise, we only
consider the case of t ∈ R+. From probability theory, it is known that best estimate
(in L2 sense) of a random variable given some information can be expressed using
conditional expectation with respect to that information. Mathematically, sigma
algebra plays the role of information. Therefore, the question of best estimate (in
L2 sense) of the state Xt given observations Y[0,t] is equivalent to finding E[Xt|Y o

t ],
where Y o

t is the σ- algebra generated by Y[0,t]. Very often, one may be interested in
estimating a function of Xt given the information obtained. This requires us to com-
pute the conditional distribution (or optimal filter or simply, filter), πt. In general,
the observation Yt and signal Xt do not necessarily have a simple relation. For-
mally, if one considers the following relation between the observation Yt and the
signal Xt

1:

Yt = ht(Xt) + Nt,

where, ht is a deterministic function and Nt is the measurement noise. Note that Yt

is considered to depend only on Xt, Nt and t, but not on any Xs (0 ≤ s < t). For t ∈
R+, very often, the measurement noise is modelled by white noise and the above
equation is not amenable to analysis. Therefore, to work with a mathematically
tractable object, we have to work with redefined form of the observational model.

Yt =
∫ t

0
hs(Xs)ds + Bt,

where, Yt is now the redefined observation process and Bt is Brownian motion (It
can be intuitively thought of as integral of white noise). Note that knowing the
integral of function of t from 0 to t for all t ∈ R+ is equivalent to knowing the
function for any t ∈ R+. Therefore, we did not lose any information in redefining
Yt and in return, we ended up with a tractable object Bt. Given the newly defined
observational model and assuming that Xt is a Markov process, the evolution of πt

1In discrete time, a more general well defined model like Yt = ft(Xt, Nt) (for a deterministic
function ft) can be considered.
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is given by the following equation: for a suitable function g : S→ R

πt(g) = π0(g) +
∫ t

0
πs (Ag) ds +

∫ t

0

(
πs(ghT)− πs(g)πs(hT)

)
(dYs − πs(h)ds) ,

(1.1)

where, πt(g) .
=
∫

S g(x)πt(dx), π0 = L(X0) and A is the infinitesimal generator of
Xt. πt can also written in the following form, for appropriate g : S→ R

πt(g) =

∫
C([0,∞),S) g(xt) exp

(∫ t
0 h(xs)TdYs − 1

2

∫ t
0 ‖h(xs)‖2ds

)
dPX(x)∫

C([0,∞),S) exp
(∫ t

0 h(xs)TdYs − 1
2

∫ t
0 ‖h(xs)‖2ds

)
dPX(x)

, P a.s., (1.2)

where, PX is the law of the process. Even though (1.2) is simple looking and (1.1)
is complicated stochastic partial differential equation (at least when X is a diffusion
process), (1.2) has limited practical use compared to (1.1). The reason is that (1.2)
requires the entire set of observations until t, whereas (1.1) requires incremental
observations. That being said, one should note that πt lies in an infinite dimensional
space. And for almost all of the systems, this is genuinely an infinite dimensional
object, except for linear case, Beneš filter etc. See next chapter for more details.

1.2 Applications of Filtering

Now that we know what filtering is (in a very informal way, at least), we give some
of the applications of filtering theory below. We also emphasize that this list is in
no way, exhaustive. In practice, the approximations of πt are used to compute the
conditional expectations numerically. Out of all different kinds of approximation
schemes, a Markov chain Monte Carlo algorithm known as particle filter [69] is
till now, best suited for approximating πt, at least in low dimensional S. It fails
very badly to approximate πt in case of very high dimensional S (a phenomenon
referred to as curse of dimensionality). In high dimensional setting, many ensemble
methods are known to perform well [96].

• Fault detection or changepoint detection

Filtering is used to detect sudden changes in the observations. When analysing
seismic data or behavior of a device using the noisy observational data or
biomedical signal like EEG, it is important to know that if a sudden change in
data is significant or not [77, 141, 12].

• Positioning and Tracking
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Filtering is used in positioning of underwater vessels, surface ships, cars and
aircrafts using the geographical information systems containing information
of the surroundings [69]. In addition, it is used in target tracking and car
collision avoidance [70].

• Active vision

To visually track an object and in the field of active vision, tracking deforming
objects via estimating global motion and local deformation of object, filtering
techniques are used [124, 123, 103].

• Robotics

In robotics, filtering methods are applied to the problem of SLAM (Simulta-
neous Localization And Mapping), where the aim is to build a map of an en-
vironment using a moving robot making landscape measurements. The robot
has to simultaneously determine its location in the map and also figure out
the locations of the landmarks in the map. The solution to this problem is
considered to be the pre-requisite for making autonomous robots[110, 13, 60].

• Aerospace industry

One of the first applications of filtering theory came in guidance and nav-
igation systems in the aerospace industry[34, 23]. It is also being used in
GPS/INS integration which is used in navigating a moving object that has
a time-dependent access to satellite. This compensates the short terms accu-
racy of INS (Inertial Navigation System) due to dead reckoning with long term
accuracy of GPS (Global Positioning System) and also combines with robust
nature of INS[40].

• Finance

Filtering techniques are used in estimating coefficients of models of financial
market models [128]. They are also used in the finding the optimum portfolio
(such that terminal wealth is maximized) by observing only the stock prices
[91, 56].

• Space industry

Filtering is also used in space navigation [34], satellite orbit determination,
satellite re-entry [79] and satellite launching [27].

• Seismology
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In extracting the seismic events from the noisy seismic data [11], filtering is
used. And also, it is used in estimating the structural damage due to seismic
activity [131].

• Other applications

Filtering is used in systems biology [145], speech recognition [65, 111, 122],
audio enhancements [63], weather prediction [4, 5] and software reliability
[42].

1.3 Stability of the filter

From Equation (1.1), it is evident that the evolution of πt depends on the law of X0.
In practice, many systems of interest are accessed indirectly through a measurement
device (which is in itself noisy) and therefore, it is very unlikely to have complete
information of the initial condition of the system when it is not even possible to
measure it directly. For this reason, it is desirable to have πt asymptotically inde-
pendent of law of X0 and depend only on the observation process Yt, if the filter is
to be of any use. The filter is said to stable if it is asymptotically independent of the
law of X0. The problem of filter stability is studied extensively in the literature. We
defer the extensive literature survey of filter stability to Chapter 3.

In this thesis, we study the asymptotic properties of the filter where Xt is deter-
ministic process. In the following, we motivate the need to study the deterministic
case: In practice, filtering for deterministic systems is quite commonly used in the
context of geosciences where the problem is known as data assimilation (cf. [39, 62,
6, 127, 96, 129, 96]). The signal being observed is the ocean and/or the atmosphere
through observations from sensors like satellites or those that are installed on-site.
The dynamical models used in these applications such as weather predictions are
derived from nonlinear partial differential equations. These models are determin-
istic (even though, stochasticity should be considered for better modelling) since
both the theoretical and numerical developments for stochastic PDE in this context
is still a fairly new research area [120, 100, and ref. therein]. Some of the important
characteristics of these systems are that:

1. They are high dimensional system. This is by far the biggest hurdle in achiev-
ing efficient numerical algorithms. As mentioned earlier, particle filters (which
are shown to be genuine approximations to the filter [15]) perform very badly
and we have to resort to ad hoc algorithms.

2. The observations are sparse and noisy.
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3. The dynamical models are very commonly deterministic.

4. They are chaotic. Even though it gives rise to a dynamically very complex
system, this complexity provides some advantage in the dealing with high
dimensionality. This is because significant part of the chaotic dynamics usu-
ally takes place in a much lower dimensional attractor. Many numerical al-
gorithms that exploit this behavior are being developed. In the applications,
this asymptotic low dimensional behavior and stability of the filter covariance
(but not of the filter mean) for discrete time Kalman filter has been studied re-
cently [68, 28]. These results about the rank deficiency of the filter covariance
provide a mathematical foundation for commonly used data assimilation al-
gorithms collectively called as “assimilation in unstable subspace” (AUS) [38,
119, 137].

Although many numerical algorithms that focus on one or more of these char-
acteristics are being developed, only a few theoretical results related to filtering for
deterministic, chaotic signal dynamics have been established so far. Even though
the stability of filter with noisy signal was studied extensively, the case of deter-
ministic signal is mostly unexplored in the literature (again, the relevant literature
survey for both is deferred to the later chapters). The main contribution of this
thesis is precisely to provide filter stability results that fill this gap.

Following is the outline of this thesis: In Chapter 2, we give briefly the fun-
damentals of the stochastic filtering theory. We define the filtering problem in the
very general setup and later focus on a specific setup that we deal with in the rest
of the thesis. We briefly describe the technical issues that come up when setting
up the general version of the problem in continuous time. In Chapter 3, we define
the notion of the filter stability and give a detailed survey of the literature on filter
stability. In Chapter 4, we introduce the linear filter, derive the Kalman-Bucy equa-
tions and state the already existing stability results in the case of stochastic signal.
We also establish filter stability in the case of linear filter with deterministic signal
under the assumption of uniform complete observability and study the small signal
noise asymptotics of the filter. We conclude the thesis by studying filter stability for
the non-linear filter (with deterministic signal) is established in Chapter 5. We also
study the support of the filtering distribution after long times.
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Chapter 2

Fundamentals of Filtering Theory

In this chapter, we briefly describe the general framework of the filtering theory. We
describe a general framework in the Section (2.1) and give two common approaches
to filtering in continuous time namely reference probability method in (2.1.1) and
innovations process approach in (2.1.2). Sections (2.2) and (2.3) contain the explicit
construction of signal and observation processes and brief description of finite di-
mensional filters, respectively. We hope that describing the framework makes this
thesis as self-contained as possible. Following textbooks are used as the references:
[82, 15, 99, 148]. As already mentioned, we only work with continuous time case
until stated otherwise.

Norbert Wiener [144] was the first to study the problem of estimation. He stud-
ied the problem of estimating a stationary process ft by observing Zt = ft + Wt,
where Wt is a noise, not necessarily independent of ft. Wiener showed, using
Fourier transform techniques (therefore, in frequency domain) that best estimate
X̂t, in the sense of mean square is given by

X̂t =
∫ t

−∞
h(t− s)Zsds,

where, h(s) is called a transfer function that depends on the auto-correlation and
cross-correlation coefficients of ft and Wt. This estimator goes by name of Wiener
filter. The discrete version of Wiener filter was independently derived by A. Kol-
mogorov [90].

The next significant progress in filtering is due to Kalman and Bucy [85] (in con-
tinuous time) and Kalman [84] (in discrete time) in their seminal work on the linear
filter where they considered the estimation problem in time domain. This allowed
for non-stationary process, in contrast to the independent works of Wiener and Kol-
mogorov. In this work, they studied the estimation of signal Xt which satisfies a lin-
ear stochastic differential equation with Brownian motion as the driving noise and
Xt is indirectly observed through a linear observational model with Brownian mo-
tion as the measurement noise (more details will be given in Chapter (4)). We refer
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the reader to Bain and Crisan [15, Section 1.3] and Crisan [51] for a nice historical
account.

2.1 General framework

Let (Ω,F , {Ft}t≥0, P) be a filtered probability space that satisfies usual conditions,
i.e., it is a complete probability space with Ft = ∩s>tFs and F0 contains all P- null
sets. We work with this abstract probability space until we define the stability of
the filter.

Before we start, let us define (S,S) and (So,So) as the signal state and observa-
tion state measurable spaces, respectively. As mentioned earlier, the main question
of interest in filtering theory is find the best estimate of some function of signal
Xt ∈ S given that indirect noisy observations are made up to time t, i.e., we have
Ys ∈ So, 0 ≤ s ≤ t. Intuitively, we expect to compute the best estimate if we have
the knowledge of Ys(0 ≤ s ≤ t). Mathematically, this means that the best estimate
is measurable with respect to sigma algebra Y o

t = σ{Ys : 0 ≤ s ≤ t} (see Theo-
rem (A.0.2)). And also, the best estimate that we consider is in the sense of L2 (or
mean square). It is a well known result in probability [148, Lemma 5.1] that the best
estimate of f (Xt) given Y o

t in the sense of L2 is given by the conditional expectation
of f (Xt) with respect to Y o

t , E[ f (Xt)|Y o
t ], for a bounded measurable f . In general,

we are interested in computing E[ f (Xt)|Y o
t ], for all bounded measurable f : S→ R.

Equivalently, we are interested in computing πt(A)
.
= E[1Xt∈A|Y o

t ], for all A ∈ S .
To have a sensible notion of conditional distribution, we should be able to define

πt(A)(ω) on all A ∈ S for all ω ∈ Ω. But from Remark (A.0.5), we know that
the conditional expectation E[1Xt∈A|Y o

t ](ω) can be defined uniquely for all ω not
lying in P-null set NA. Therefore, in general, E[1Xt∈A|Y o

t ](ω) is defined for all
ω ∈ N o .

= (∪A∈SNA)
c. But, since N o is an uncountable union of NA, N o is not

guaranteed to be a P-null set or even measurable set. So, E[1Xt∈A|Y o
t ](ω) is not a

well defined probability measure on (S,S) for ω in a non-measurable set.
To overcome this problem, the notion of regular conditional distribution (see

Definition (A.0.7)) is introduced. Assuming (S,S) to be such that there is an injec-
tive map g : S → R such that g is S- measurable and g−1 is B(R)- measurable, it is
known that regular conditional distribution exists [29, Theorem 4.34].

If we only want to compute the πt for a fixed time, the above statement gives the
existence of a well behaved conditional distribution. But, we are interested in the
evolution of πt with t ∈ R+. This requires us to treat πt as a continous time process
and the regularity and the measurability properties of πt become very important.
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In rest of the section, we closely follow the Chapter 2 of [15]. We assume that Xt

and Yt are continous in time and are Ft- adapted. Define

Yt
.
= σ (σ{Ys : 0 ≤ s ≤ t} ∪N ) ,

where, N is the set of all P-null sets. Note that in general, the way Yt is defined, it
does not necessarily contain all of the P- null sets. These are important because the
conditional expectation that we deal with later on, are only uniquely defined upto
a P- null set and without including these P- null sets we run into measurability
issues. So we work with Yt to avoid the technicalities. From Equation (1.1), it is
clear that we shall define a stochastic integral of πt(g) .

=
∫

S g(x)dπt(x), for some
appropriate g : S → R. And also, from stochastic calculus, we know that πt has
to be progressively measurable (see Definition (A.0.9)) with respect to Yt, for the
stochastic integral to make sense. Another issue that arises due to continuous time
is that it is non-trivial to construct a process from Xt that is Yt- adapted (in general,
Xt is not Yt-measurable or else the filtering problem would become trivial). We
cannot naively construct the adapted process by defining it to be E[Xt|Yt], since
this process is defined outside a P- null set for every t ≥ 0. Therefore, we may
end up defining that process outside an uncountable union of P- null sets (because
t ∈ R+), which can have non-zero measure or even be non-measurable.

Note that until now, no apparent relation between Xt and Yt is assumed. The
following theorem gives the partial answer to the above issue.

Theorem 2.1.1. [15, Theorem 2.24] Let (S,B(S)) be a Polish space. Then there exists a
P(S)- valued process denoted by πt such that

1. πt is Yt+- optional process1 (Yt+
.
= ∩s>tYs)

2. For any bounded measurable g : S → R, the process πt(g) .
=
∫

S g(x)dπt(x) is
indistinguishable from the process E[ f (Xt)|Yt+].

In the following, we assume that the observation process is such that Yt : (Ω,F )→
(Rn,B(Rn)) and

Yt =
∫ t

0
h(Xs)ds + Wt, (2.1)

where, Wt is n- dimensional Ft- Brownian motion independent of Xt. We also as-
sume that

E[
∫ t

0
‖h(Xs)‖2ds] < ∞

1See appendix for the definition
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to make integrals (that we come across) finite. Theorem (2.1.1) and the following
theorem gives existence of a Yt- adapted process that matches with regular condi-
tional distribution, for each t ≥ 0 outside a P- null set (independent of t).

Theorem 2.1.2. [15, Theorem 2.35] Suppose the observation process is of the form above
and

E[
∫ t

0
‖h(Xs)‖2ds] < ∞.

Then Yt = Yt+. In other words, observation filtration is right- continuous.

Proof. See the Appendix for the proof. �

As we established that filtering problem is well posed, we move onto the next
problem of computing πt(g). There are two ways to compute this quantity. One is
using Kallianpur-Striebel formula [81] that does not impose too many restrictions
on g and uses entire observation process Ys : (0 ≤ s ≤ t) to compute πt(g). The
other way of computing is through Kusher-Stratanovich equation [94, 149, 83, 80,
59], the evolution equation for πt(g) that puts slightly stronger restrictions on g. In
practice, it is useful to be able to compute πt+δ(g) from πt(g) and the observations
from Yt to Yt+δ. An evolution equation will satisfy this requirement (in our case, it
will be a stochastic equation).

In literature, there are two approaches to deriving the evolution equation. First
approach is known as the martingale method which is based on martingale repre-
sentation theorems and using properties of the innovations process. This approach
uses the Fujisaki-Kallianpur-Kunita formula [80] and was inspired from the work
of T. Kailath and P. Frost [64]. Detailed expositions of this approach can be found
in [82, 99, 15]. The second approach is known as the reference probability method
which uses the fact that filtering problems reduces to a simpler problem under the
change of probability measure. One derives the evolution equations under the new
probability measure and changes back to old probability measure to get Kushner-
Stratanovich equation. Detailed exposition of this approach can be found in [15, 22,
148].

Until now, no explicit type of property of Xt, other than continuity is assumed.
Without further assumptions, it is not possible to use the tools of stochastic calculus
(especially, the Ito’s integral). To that end, we make the following assumption.

Assumption 2.1.3. Let Xt be a solution of a martingale problem [86, Section 5.4] for
(A, µ), i.e., for L(X0) = µ, operator A : B(S) → B(S) domain D(A) and for any
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φ ∈ D(A),

Mφ
t := φ(Xt)− φ(X0)−

∫ t

0
Aφ(Xs)ds

is a Ft- martingale

From the definition of semi-martingale, φ(Xt) is a Ft- semi-martingale. There-
fore, Ito’s formula can be applied to φ(Xt).

2.1.1 Reference probability method

We now use the reference probability method to obtain the Kushner-Stratanovich
equation and the Kallianpur-Striebel formula. As mentioned already, we try to find
the new probability measure (referred to as reference probability) under which fil-
tering problem becomes simpler. We make the required computations under the
new probability measure and change back to the old probability measure to inter-
pret the results.

Before proceeding any further, it is useful to remind ourselves of a simple form
of Bayes’ rule.

Lemma 2.1.4 (Bayes’ rule). Let P and Q be two equivalent probability measures on
(Ω,F ) and let H ∈ L1(Ω,F , P) and G ⊂ F be a sub σ- algebra. Then

EP[H|G] =
EQ[H dP

dQ
|G]

EQ[ dP
dQ
|G]

, P− a.s. and Q− a.s.,

where, dP
dQ

is the Radon-Nikodym derivative (see Theorem (A.0.3)).

Proof. Let A ∈ G. Consider

EP[1A
EQ[ dP

dQ
H|G]

EQ[ dP
dQ
|G]

] = EQ[1A
dP

dQ

EQ[ dP
dQ

H|G]
EQ[ dP

dQ
|G]

]

= EQ[1AEQ[
dP

dQ

EQ[ dP
dQ

H|G]
EQ[ dP

dQ
|G]
|G]]

= EQ[1AEQ[
dP

dQ
|G]

EQ[ dP
dQ

H|G]
EQ[ dP

dQ
|G]

]

= EQ[1AEQ[
dP

dQ
H|G]]

= EQ[1A
dP

dQ
H]

= EP[1AH]
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= EP[1AEP[H|G]]

From uniqueness of conditional expectation upto a P- null set (equivalently, a Q-
null set) and arbitrariness of A ∈ G, we have the result. �

In our case, G = Yt, H = g(Xt), for nice enough g. Note that this lemma can
only be used for a fixed time t. In other words, every time we do computations,
we have to evaluate the integrals all over again. In principle, the above lemma
allows for any measure equivalent to P. But, this lemma is only useful in practice,
if one can compute both EQ[H dP

dQ
|G] and EQ[ dP

dQ
|G] in an simple way. The power of

reference probability method lies in choosing a particular Q such that computations
are simple.

To that end, define the measure Q by the following Radon-Nikodym derivative:

Z̃t(X[0,t], Y[0,t])
.
=

dP

dQ
exp

(
−
∫ t

0
h(Xs)

TdYs −
1
2

∫ t

0
‖h(Xs)‖2ds

)
.

Suppose Z̃t(X[0,t], Y[0,t]) is Ft- martingale2. Now, consider a measure Qt on (Ω,Ft)

which is given by the following Radon-Nikodym derivative.

dQt

dP
= Z̃t(X[0,t], Y[0,t])

The martingale property ensures that {Qt}t≥0 is a consistent family of measures
on Ft in the following sense: Suppose 0 ≤ s < t and A ∈ Fs. Now,

Qt(A) = EP[Z̃t(X[0,t], Y[0,t])1A]

= EP[EP[Z̃t(X[0,t], Y[0,t])1A|Fs]]

= EP[1AEP[Z̃t(X[0,t], Y[0,t])|Fs]]

= EP[1AZ̃s(X[0,s], Y[0,s])]

= Qs(A),

where, we used the fact that A ∈ Fs and the martingale property of Z̃t(X[0,t], Y[0,t]).
In other words, Qt put same measure on any A ∈ Fs as that of Qs, for any 0 ≤ s < t.
Even though we can define a new probability measure Qt on (Ω,Ft), unless a strong
integrability condition (uniform integrability) on Z̃t(X[0,t], Y[0,t]) holds, we cannot
define a measure on (Ω,F∞) with

F∞
.
= σ(∪t≥0Ft)

2Z̃−1
t (X[0,t], Y[0,t]) is a martingale under Q when Z̃t(X[0,t], Y[0,t]) is a martingale under P. And

also, sufficiency conditions on Z̃t(X[0,t], Y[0,t]) are given in [86, Section 3.5.D]
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We refer to [86, Pg. 192] for detailed discussion. The following example from [86,
Pg. 193] shows that if Z̃t(X[0,t], Y[0,t]) is not uniformly integrable, then Q̄ defined by
Q̄(A)

.
= E[1AZ̃t(X[0,t], Y[0,t])], for A ∈ F∞ is not equivalent to P.

Example 2.1.5. Consider a process, Yt = µt + Wt with µ 6= 0 and Wt being a Brownian
motion under the probability measure P. From Girsanov’s theorem (see Theorem (A.0.22)),
Yt is Brownian motion under probability measure Q̄. Note that the corresponding Radon-
Nikodym derivative is not uniformly integrable in P. Defining,

A .
= {ω ∈ Ω :

Wt(ω)

t
= 0},

we have

P(A) = 1 and Q̄(A) = 0

In the above conclusion, we used the strong law of large numbers for both probability mea-
sures. Therefore, P and Q are not equivalent.

Define, Q(A)
.
= E[1AZ̃t], for A ∈ ∪t≥0Ft. To summarize, Q can be defined on

∪t≥0Ft and not on F∞. But, this will not be an issue in our case. The reason is that
we use the change of measure only for finite time, make the computations under
new probability measure and transform back to the old probability measure using
Bayes’ rule. This is the main reason for not studying filter stability problem under
the new measure (see next chapter).

We make the following assumption that ensures that Z̃t(X[0,t], Y[0,t]) is an Ft-
martingale [86, Corollary 3.5.16].

Assumption 2.1.6. S = Rm

Assumption 2.1.7. h : S → Rn is such that ‖h(x)‖ ≤ K(1 + ‖x‖), for any x ∈ S and
for some constant K > 0.

Now returning to the reference probability method, from Girsanov’s theorem
(see Theorem (A.0.22)), Yt is Ft- Brownian motion under Q. Another consequence
of Girsanov’s theorem is captured by the following proposition [15, Proposition
3.13].

Proposition 2.1.8. Under Q and with Assumptions (2.1.6) and (2.1.7), processes X3 and
Y are independent and law of X is same under Q and P.

3We denote any process {At}t≥0 by A
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Using the above proposition and Bayes’ rule, we have

πt(g) =

∫
C([0,∞),S) g(xt) exp

(∫ t
0 h(xs)TdYs − 1

2

∫ t
0 ‖h(xs)‖2ds

)
dPX(x)∫

C([0,∞),S) exp
(∫ t

0 h(xs)TdYs − 1
2

∫ t
0 ‖h(xs)‖2ds

)
dPX(x)

, P a.s. (2.2)

where, g ∈ L1(Ω,F , P), PX is the law of Xt and E stands for EP (we use this no-
tation from now on). The above equation is known as Kallianpur-Striebel formula.
Note that the above formula is not incremental, i.e., to compute πt(g), we have to
use the entire observation process (upto t) Yt : 0 ≤ s ≤ t.

In the following, we use the reference probability method to derive the evolution
equations for σt(g) .

= EQ[g(Xt)|Yt] and πt(g). We first derive the equation for σt(g)
and then use Kallianpur-Striebel formula along with Ito’s rule to get the equation
for πt(g).

To simplify the derivations, we focus only on a particular case of Assumption (2.1.3).
Let Xt be a strong solution of the following stochastic differential equation:

dXt = f (Xt)dt + N(Xt)dBt, (2.3)

where, f : Rm → Rm, N : Rm → Rm×p and Bt is Ft- Brownian motion. In addition,
let us also assume the following: NNT is a strictly positive matrix and for some
constant K > 0,

‖ f (x)− f (y)‖+ ‖N(x)− N(y)‖ ≤ K‖x− y‖, ∀x, y ∈ Rm

‖ f (x)‖2 + ‖N(x)‖2 ≤ K(1 + ‖x‖2)

It is well known from Ito’s stochastic calculus [86, Theorem 5.2.9] that Xt exists.
Define,

A
.
=

1
2

m

∑
i,j=1

(N(x)N(x)T)ij
∂2

∂xi∂xj
+

m

∑
i=1

fi(x)
∂

∂xi

We choose the domain D((A) = C2
b(R

m), space of twice differentiable bounded
continuous functions on Rm. From Ito’s formula (see Theorem (A.0.17)) and prop-
erties of Ito’s Integral, we have

Mφ
t := φ(Xt)− φ(X0)−

∫ t

0
Aφ(Xs)ds, ∀φ ∈ D(A)

is a Ft- martingale. Clearly, this is special case of Assumption (2.1.3).

Remark 2.1.9. It is important to note that the evolution equations that will be derived
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below hold for Xt belonging to a much larger class. We refer to [15] for further details on
dealing with larger class of signal processes Xt.

Let us define for any g : Rm → R ∈ C2
b(R

m)

σt(g) .
=
∫

C([0,∞),Rm)
g(xt)Zt(x[0,t], Y[0,t])PX(dx)

Recall that

Zt(x[0,t], y[0,t]) = exp
(∫ t

0
h(xs)

Tdys −
1
2

∫ t

0
‖h(xs)‖2ds

)
Now, Kallianpur-Striebel formula can be written as

πt(g) =
σt(g)
σt(1)

, P− a.s.

Theorem 2.1.10. Under P, suppose L(X0) = µ. Assume the following conditions:

1. E[
∫ t

0 ‖ZsAg(Xs)‖ds] < ∞.

2. E[(Mg
s )

2] < ∞.

3. EQ[
∫ t

0 ‖g(Xs)Zsh(Xs)‖2ds] < ∞.

Then the process σt follows the evolution equation, called the Zakai equation given below

σt(g) = µ(g) +
∫ t

0
σs(Ag)ds +

∫ t

0
σs(ghT)dYs, Q− a.s. ∀t ≥ 0, (2.4)

where, g ∈ D(A)

Proof. We know that, from Ito’s formula, Zt satisfies the following satisfies the fol-
lowing equation:

Zt(X[0,t], Y[0,t]) = 1 +
∫ t

0
Zs(x[0,s], y[0,s])h(Xs)

TdYs. (2.5)

And also, recall that

g(Xt) = g(X0) +
∫ t

0
Ag(Xs)ds + Mg

t (2.6)

To keep the expressions small, we suppress the arguments in Zt(x[0,t], y[0,t]). Apply-
ing the Ito’s formula to g(Xt)Zt, we have

g(Xt)Zt = g(X0)Z0 +
∫ t

0
Zsdg(Xs) +

∫ t

0
g(Xs)dZs +

1
2
〈g(X), Z〉t



Chapter 2. Fundamentals of Filtering Theory 16

= g(X0) +
∫ t

0
ZsAg(Xs)ds +

∫ t

0
ZsdMg

s +
∫ t

0
g(Xs)Zsh(Xs)

TdYs

+
1
2

∫ t

0
Zsh(Xs)

T〈Y, Mg〉s

= g(X0) +
∫ t

0
ZsAg(Xs)ds +

∫ t

0
ZsdMg

s +
∫ t

0
g(Xs)Zsh(Xs)

TdYs

In the above, 〈Y, Mg〉t = 0 from independence of Yt and Mg
t under the measure Q

(see Proposition (2.1.8)). Note that Xt and Yt are independent under Q, from Propo-
sition (2.1.8). Therefore, EQ[·|Yt] is same as considering marginal on X. Applying
EQ[·|Yt] on both sides, we have

EQ[g(Xt)Zt|Yt] = EQ[g(X0)|Yt] + EQ[
∫ t

0
ZsAg(Xs)ds|Yt]

+ EQ[
∫ t

0
ZsdMg

s |Yt] + EQ[
∫ t

0
g(Xs)Zsh(Xs)

TdYs|Yt]

σt(g) = µ(g) +
∫ t

0
EQ[ZsAg(Xs)|Yt]ds

+ EQ[
∫ t

0
ZsdMg

s |Yt] +
∫ t

0
EQ[g(Xs)Zsh(Xs)

T|Yt]dYs

σt(g) = µ(g) +
∫ t

0
EQ[ZsAg(Xs)|Yt]ds +

∫ t

0
EQ[g(Xs)Zsh(Xs)

T|Yt]dYs

σt(g) = µ(g) +
∫ t

0
σs (Ag) ds +

∫ t

0
σs

(
ghT

)
dYs

In the above, we used the fact that, under Q, X and Y are independent and X has
the same law under both Q and P. Therefore, we have

EQ[g(X0)|Yt] = EQ[g(X0)] = E[g(X0)] = µ(g)

From Fubini’s theorem, we have

EQ[
∫ t

0
ZsAg(Xs)ds|Yt] =

∫ t

0
EQ[ZsAg(Xs)|Yt]ds

From Fubini’s theorem for stochastic integral [99, Theorem 5.15 and 5.14],

EQ[
∫ t

0
g(Xs)Zsh(Xs)

TdYs|Yt] =
∫ t

0
EQ[g(Xs)Zsh(Xs)

T|Yt]dYs

From the independence of X and Y, we have

EQ[
∫ t

0
ZsdMg

s |Yt] = 0
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�

Note that

σt(1) = 1 +
∫ t

0
σs(hT)dYs (2.7)

We now use the following fact to derive the evolution equation for πt:

πt(g) =
σt(g)
σt(1)

Theorem 2.1.11. Under the conditions of Theorem (2.1.10), πt satisfies the following evo-
lution equation, known as Kushner-Stratanovich equation.

πt(g) = µ(g) +
∫ t

0
πs (Ag) ds +

∫ t

0

(
πs(ghT)− πs(g)πs(hT)

)
(dYs − πs (h) ds) ,

(2.8)

where, g ∈ D(A).

Proof. Applying Ito’s formula (see Theorem (A.0.17)) to σt(g)
σt(1)

, we have

σt(g)
σt(1)

=
σ0(g)
σ0(1)

+
∫ t

0

1
σs(1)

dσs(g)−
∫ t

0

σs(g)
σ2

s (1)
dσs(1)

+
1
2

(
−
∫ t

0

1
σ2

s (1)
d〈σ(g), σ(1)〉s + 2

∫ t

0

1
σ3

s (1)
d〈σ(1)〉s

)
σt(g)
σt(1)

= µ(g) +
∫ t

0

1
σs(1)

(
σs(Ag)ds + σs(ghT)dYs

)
−
∫ t

0

σs(g)
σ2

s (1)
σs(hT)dYs

+

(
−
∫ t

0

1
σ2

s (1)
σs(ghT)σs(h)ds +

∫ t

0

1
σ3

s (1)
σs(hT)σs(h)ds

)
πt(g) = µ(g) +

∫ t

0
πs(Ag)ds +

∫ t

0

(
πs(ghT)− πs(g)πs(hT)

)
(dYs − πs(h)ds)

�

Till now, we have derived the evolution equation for πt (known as Kushner-
Stratanovich equation) using the evolution equation of σt (known as Zakai equa-
tion). We now briefly describe the other approach to deriving the Kushner-Stratanovich
equation.
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2.1.2 Innovation process approach

In this approach, we directly derive the Kushner-Stratanovich equation using a rep-
resentation theorem. And also, the assumption that processes X and W are inde-
pendent can be easily relaxed. Here, the main object of use is the innovations pro-
cess It

.
= Yt −

∫ t
0 πs(h)ds. Before proceeding further, we need to make following

assumption on the system:

Assumption 2.1.12. E
[∫ t

0 ‖h(Xs)‖2ds
]
< ∞, ∀t ≥ 0

Let us mention the following important representation theorem that is the basis
for the entire approach.

Theorem 2.1.13. [80, Theorem 3.1][Fujisaki-Kallianpur-Kunita formula] Let Mt be a right
continuous square integrable Yt- martingale. Then there exists a representation such that

Mt = E[M0] +
∫ t

0
νT

s dIs, (2.9)

where, νt is a progressively measurable process that is Yt- adapted such that

E

[∫ T

0
‖νs‖2ds

]
< ∞.

And also, Mt is continuous.

Remark 2.1.14. At first glance, it may seem that the above theorem is a special case of the
usual martingale representation theorem [86, Theorem 3.4.15]. But, we apriori do not know
if Yt = σ(Is : 0 ≤ s ≤ t) ∨ N . So, this is still a non-trivial result which states that any
right continuous square integrable Yt- martingale can be written as a stochastic integral
with respect to It. In general, it is known that (from[20]) σ(Is : 0 ≤ s ≤ t)∨N ( Yt. [82,
Theorem 11.4.1] and [2] (due to D. F. Allinger and S. K. Mitter) give sufficient conditions
for the equality to hold.

It is clear that the process It plays a very important role in innovations process
approach and below result gives its most important property.

Proposition 2.1.15. The process It is Yt- Brownian motion.

Proof. Note that Yt =
∫ t

0 h(Xs)ds + Wt. We now prove that It is a continuous Yt-
martingale and apply Levy’s characterization theorem (see Theorem (A.0.21)) to
get the result. To that end, since Yt and

∫ t
0 πt(h) =

∫ t
0 E[h(Xt)|Yt] are Yt- adapted,

continuity of It follows from the continuity of both Yt and
∫ t

0 πs(h)ds.
For any 0 ≤ s ≤ t, Consider
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E[It − Is|Ys] = E[Yt −Ys −
∫ t

0
πu(h)du +

∫ s

0
πu(h)du|Ys]

= E[Wt −Ws +
∫ t

0
h(Xu)du−

∫ s

0
h(Xu)du−

∫ t

s
πu(h)du|Ys]

= E[Wt −Ws +
∫ t

s
h(Xu)du−

∫ t

s
πu(h)du|Ys]

= E[Wt −Ws|Ys] + E[
∫ t

s
h(Xu)du−

∫ t

s
πu(h)du|Ys]

= E[Wt −Ws|Ys] +
∫ t

s
E[h(Xu)− πu(h)|Ys]du

= E[Wt −Ws|Ys] +
∫ t

s
E[h(Xu)−E[h(Xu)|Yu]|Ys]du

= E[Wt −Ws|Ys] +
∫ t

s
E[h(Xu)|Ys]−E[h(Xu)|Ys]du

= E[E[Wt −Ws|Fs]|Ys] = 0

In the last two equalities, we used the fact Ys ⊂ Yu, Ys ⊂ Fs (see properties of con-
ditional expectation in Appendix (A)) and Wt is a Ft- Brownian motion. Therefore,
It is a Yt- martingale.

Since It =
∫ t

0 h(Xs)ds + Wt −
∫ t

0 πs(h)ds, the quadratic variation 〈I〉t is same as
that of the martingale part Wt, i.e.,

〈I〉t = 〈W〉t = t

Therefore, from Levy’s characterization theorem, It is Yt- Brownian motion. �

Using Theorem (2.1.13), we shall derive the Kushner Stratanovich equation.

Theorem 2.1.16. Suppose L(X0) = µ. Under the Assumption (2.1.12), πt satisfies Equa-
tion (2.1.11), i.e,

πt(g) = µ(g) +
∫ t

0
πs (Ag) ds +

∫ t

0

(
πs(ghT)− πs(g)πs(hT)

)
(dYs − πs (h) ds) ,

where, g ∈ D(A).

Proof. We follow the proof of [15, Theorem 3.35]. Choose g ∈ D(A) = C2
b(R

m).
Firstly, we show that Ut

.
= πt(g)−

∫ t
0 πs(Ag)ds is a square integrable Yt- martin-

gale. Since g and Ag are bounded, Ut is square integrable. And also, from the
property of πt, Ut is Yt- adapted. It only remains to show that Ut is a martingale.
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To that end, for 0 ≤ s ≤ t, consider

E[Ut −Us|Ys] = E[πt(g)− πs(g)−
∫ t

0
πu(Ag)du +

∫ s

0
πu(Ag)du|Ys] (2.10)

= E[E[g(Xt)|Yt]−E[g(Xs)|Ys]−
∫ t

s
E[Ag(Xt)|Yt]du|Ys] (2.11)

= E[E[g(Xt)|Yt]−E[g(Xs)|Ys]E[−
∫ t

s
Ag(Xu)du|Yu]|Ys] (2.12)

= E[g(Xt)− g(Xs)−
∫ t

s
Ag(Xu)du|Ys] (2.13)

= 0, (2.14)

where, we used Fubini’s theorem for the last term of Equation (2.11) to get Equa-
tion (2.12). We then used the property of conditional expectation in Equation (2.12)
and the Dynkin’s formula for Equation (2.14). This concludes that Ut is a square
integrable Yt- martingale.

Therefore, we can apply Theorem (2.1.13) to Ut and we know that there exists a
progressively measurable process νt with respect to Yt such that

Ut = U0 +
∫ T

0
νT

s dIs

If we can show that νs = πs(ghT) − πs(g)πs(hT), then we are done. To that end,
expanding above equation, we have

πt = µ(g) +
∫ t

0
πs(Ag)ds +

∫ t

0
νT

s dIs. (2.15)

From properties of X, we also have

g(Xt) = g(X0) +
∫ t

0
Ag(Xs)ds + Mg

t (2.16)

Consider a class of functions,

St
.
=
{

γt : Ω→ R : dγt = iγtrT
t dYt with γ0 = 1, where, r· ∈ L∞([0, t], Rm)

}
Fix r· ∈ L∞([0, t], Rm). Applying Ito’s formula to πt(g)γt and g(Xt)γt with

dγt = irT
t dYt, γ0 = 1,
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we get

πt(g)γt = µ(g) +
∫ t

0
γsdπs(g) +

∫ t

0
πs(g)dγs + 〈γ, π(g)〉t

= µ(g) +
∫ t

0
γsπs(Ag)ds +

∫ t

0
γsν

T
s dIs +

∫ t

0
πs(g)γsrT

s (dIs + πs(h)ds)

+
∫ t

0
γs(rT

s νs)ds

g(Xt)γt = µ(g) +
∫ t

0
γsdg(Xs) +

∫ t

0
g(Xs)dγs + 〈γ, g〉t

= µ(g) +
∫ t

0
γsAg(Xs)ds +

∫ t

0
γsdMg

s +
∫ t

0
g(Xs)γsrT

s dYs + 〈Y, Mg〉t

Since W and X are independent, 〈Y, Mg〉t = 〈W, Mg〉t = 0. Subtracting and taking
expectation, we have

E[(πt(g)− g(Xt)) γt] = E[
∫ t

0
γs (πs(Ag)−Ag(Xs)) ds]

+ E[
∫ t

0
γsrT

s

(
πs(g)πs(hT)− g(Xs)hT(Xs)

)
ds]

+ E[
∫ t

0
γs(rT

s νs)ds]

We used the fact that expectation of martingale terms is zero. We also note that νt is
Yt-measurable and clearly, so does γt.

E[E[g(Xt)γt|Yt]− g(Xt)γt] =
∫ t

0
E[E[γsAg(Xs)|Ys]− γsAg(Xs)]ds

+
∫ t

0
E[γsrT

s (πs(g)πs(h)− g(Xs)h(Xs))]ds

+
∫ t

0
E[γs(rT

s νs)]ds

0 =
∫ t

0
E[γsrT

s (πs(g)πs(h)−E[g(Xs)h(Xs)|Ys] + νs)]ds

In the above, we used Fubini’s theorem in exchanging the integrals and also used
the properties of conditional expectation (see Appendix (A)). We finally ended up

∫ t

0
rT

s E[γs (πs(g)πs(h)−E[g(Xs)h(Xs)|Ys] + νs)]ds = 0, ∀t ≥ 0.
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From above, we have

E[γs (πs(g)πs(h)−E[g(Xs)h(Xs)|Ys] + νs)] = 0

From [22, Lemma 4.1.4], we conclude that

νs = πs(gh)− πs(g)πs(h), P− a.s.

�

Remark 2.1.17. In the proof of above theorem, independence of processes X and W is used
in a crucial way. But this approach can also be used to derive corresponding evolution
equation for correlated noise case (where, X and W are correlated). For more details, we
refer to [15, Section 3.8].

Remark 2.1.18. Till now, we have dealt with deriving equations for πt and σt. Analysis
of these equations lack mathematical rigor unless the existence and uniqueness results of
these equations are established. We refer to [15, 148] for positive results in this direction.
In discrete time case, the conditional expectations given in a recusive form and the condi-
tions for existence of densities for conditional distribution is very simple. In continuous
time, as we have seen already, the conditional expectations are given in an implicit way
through Kushner-Stratanovich equations. In this case, the question of existence of densi-
ties for conditional distribution becomes very non-trivial. We refer to [15, Theorem 7.8,
Corollary 7.18] for the results on existence and smoothness of conditional density. When
the conditional density exists, the evolution of the unnormalised conditional density (pt) is
given by

pt(x) = p0(x) +
∫ t

0
A∗ps(x)ds +

∫ t

0
hT ps(x)dYs

One can also arrive at an evolution equation without any stochastic integral term by defin-
ing p̃t(x) .

= exp
(
−YT

t h(x) + 1
2‖h(x)‖2t

)
. p̃t(x) satisfies the following equation

dp̃t(x) = exp
(
−YT

t h(x) +
1
2
‖h(x)‖2t

)
A∗
(

exp
(

YT
t h(x)− 1

2
‖h(x)‖2t

)
p̃t(x)

)
dt

with p̃0(x) = p0(x). See [15, Section 7.3] for more details.

Remark 2.1.19. Often in practice, the observations are smoother than a typical continuous
path as the background noise in the observations is never truly white noise. Due to this, it is
desirable for the us to have filter be continuous with respect to the observation path. In the
framework that is studied until now, this is not possible. This is because the filtering equa-
tion and the Kallianpur-Striebel formula involve a stochastic integral over the observation
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path which can only be guaranteed to be measurable and can only be defined upto a measure
one set. This motivated the rise of a new approach to filtering known as the pathwise filter-
ing introduced by J. M. C. Clark [49] and subsequently studied by M. H. A. Davis [53] and
other authors. In this approach, filter is a continuous functional on the observation path
space. See [15, Chapter 5] for more details.

To recap, in an abstract filtered probability space (Ω,F , {Ft}t≥0, P), we have the
following model:

dXt = f (Xt)dt + N(Xt)dBt, L(X0) = µ (2.17)

dYt = h(Xt)dt + dWt, (2.18)

where W, B, X0 are mutually independent. W, B are n and m- dimensional Ft-
Brownian motions, respectively. X ∈ Rm, Y ∈ Rn are referred to as signal and
observation process, respectively. Our goal is compute and study the following
object:

E[g(Xt)|Yt],

where, g belongs to an appropriate class of functions on Rm. Since, in this entire
endeavour, there are only two processes that really matter, viz., X and Y, it is useful
to work with the explicit construction (instead of abstract setup) of these processes
for computations. We describe the explicit construction below.

2.2 Explicit construction of the X and Y

Since we desire for X and Y to be Rm and Rn-valued continuous processes, we
consider the space to be

Ω = C ([0, ∞), Rm)× C ([0, ∞), Rn) ,

where, C ([0, ∞), Rq) is space of Rq- valued continuous functions on [0, ∞) with the
underlying topology as the uniform topology. The σ- algebra is choosen as

F = B(Ω),

where, B(·) is the Borel σ- algebra. On this measurable space, we define the canon-
ical coordinate process ωt

.
= (xt, yt) such that

ω· : Ω→ Rm ×Rn
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Using this canonical coordinate process, we define the processes X and Y as follows.

Xt : Ω→ Rm, Xt(ωt) = xt

Yt : Ω→ Rn, Yt(ωt) = yt

Define,

Ht
.
= σ(ωs : 0 ≤ s ≤ t), Yt

.
= σ(Ys : 0 ≤ s ≤ t),

We choose the probability measure P such that the following holds:

1. Wt
.
= Yt −

∫ t
0 h(Xs)ds isHt- Brownian motion under P

2. X and W are independent.

3. Marginal of P on X is PX, the law of the process given by Equation (2.17).

Consider the following as the filtration:

Ft
.
= Ht ∨N ,

where,N is the set of P- null sets. This filtration is right continuous [86, Section 2.7].
Therefore, the constructed probability space can be used for filtering problems.

2.3 Finite dimensional filters

From Equation (2.2), it is clear that, in general, to completely determine the con-
ditional probability, it may not be sufficient to compute πt(g) for finitely many g.
But there are few exceptions to this general rule. The filters that can be completely
determined by finitely many g’s are referred to as finite dimensional filters. The
following are some concrete examples of finite dimensional filters:

1. (Kalman-Bucy Filter) This filter was given by R.E. Kalman and R.S. Bucy [85].
The signal and the observation processes satisfy linear stochastic differen-
tial equation and the initial condition of signal X0 is Gaussian. Under this
setup, the conditional probability is also Gaussian. Therefore, we can com-
pletely determine πt(g) if we evaluate for g(x) = xi and g(x) = xixj, where
x = (x1, x2, x3, . . . , xm)T. More details will be given in Chapter (4). For non-
Gaussian initial conditions, it is shown that filter is finite dimensional using
different methods in [104, 21].
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2. (Beněs Filter) Given the success of Kalman-Bucy filter [79, 34], V.E. Beněs
showed that certain class of diffusions with non-linear drift and linear ob-
servational model correspond to finite dimensional filter [19]. The model he
considered is

dXt = f (Xt) + dBt,

dYt = Xtdt + dWt,

where, f satisfies the following equation: f ′(x) + f 2(x) = ax2 + bx + c with
a ≥ −1. The linear model (signal and observation process satisfy linear SDE)
belongs to the above class of models.

3. A general class of filtering models that includes both the above filters is stud-
ied in [52].

The systematic study of finite dimensionality of the filter was inspired by the works
of Brockett, Mitter and Clark [109, 31, 32]. They considered a Lie algebra that is
generated by operators that appear in Zakai equation (written in terms of unnor-
malised density). The finite dimensionality of the filter is very closely related to the
properties of this Lie algebra [14, Chapter 2] [115]. For more details in this regard,
see [15, Section 1.3] and the references therein. It is now believed that it is very
common for a non-linear filter to be genuinely infinite dimensional [76, 75].

To summarize, in this chapter, we developed the general framework of filtering.
We studied two known approaches to filtering, viz., reference probability approach
and innovations process approach. Even though in a general framework we worked
with an abstract probability space, we explicitly constructed the signal and obser-
vation process and setup the filtering problem in an explicit probability space. We
finally discussed the finite dimensionality of the filter.
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Chapter 3

Stability of the Filter

In this chapter, we introduce the notion of filter stability, briefly describe the tools
and give the relevant literature.

In Chapter (2), we have already seen that πt satisfies the following equation:

πt(g) = µ(g) +
∫ t

0
πs (Ag) ds +

∫ t

0

(
πs(ghT)− πs(g)πs(hT)

)
(dYs − πs (h) ds) ,

(3.1)
where, g ∈ D(A). Clearly, the conditional distribution depends on µ, the law of
the initial condition X0. In practice, we rarely have the knowledge of the initial
condition. This can happen because initialising the signal process may not be in
the control of the observer. Since the signal process is being indirectly observed,
we lack the knowledge of the initial condition. The question of resolving this issue
gives rise to the notion of filter stability.

3.1 Filter Stability

Because of the reasons mentioned above and the fact that Equation (3.1) depends
on µ, the law of X0, it is desirable for the filter to be independent µ. Of course,
the independence we desire is asymptotic in time (that is, after large times). In
other words, we can initialise Equation (3.1) with other initial conditions (referred
to as incorrect initial conditions) and after large times, still be close to the actual
filter. This brings us to definition below. From now on, we denote the solution of
Equation (3.1) (initialised by β) by π

β
t . Filter πt is now denoted by π

µ
t , where, µ is

the law of X0.

Definition 3.1.1. The filter is said to be stable if ‖πµ
t − πν

t ‖ → 0 as t → ∞, in an
appropriate metric, for a class of distribution ν.

The above definition is not precise as the metric varies from case to case and so
does the class of distribution.
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Remark 3.1.2. At the first glance, it may seem like a usual stability problem for dynamical
systems, that is, the long time effects of initialising the system with different initial con-
ditions. This is incorrect. In the filter stability, we do not initialise the system (which is
the signal process X) with different initial conditions, but rather just the Equation (3.1) is
initialised with different initial conditions. The main difference between these two ways of
studying the problem is that in the former, even the the observation process Y is different for
different initial conditions, whereas the observation process remains the same in the latter.
Therefore, it is useful to think of filter stability as the stability of Equation (3.1).

Remark 3.1.3. Another important point to note is that unlike π
µ
t , πν

t (g) cannot be written
as the conditional expectation of g(Xt) with respect to Yt.

The filter stability (referred to as stability, from now on) was first studied for
the case of linear signal and linear observational model in the seminal paper of
R.E. Kalman and R.S. Bucy [85]. [95] contains detailed exposition of discrete and
continuous version of linear filter. The authors of [85, 33] establish stability under
assumptions of uniform complete observability and uniform complete controllabil-
ity. In [3], stability was established under weaker notion of controllability. Then
after, the asymptotic properties of the filter in the non-linear case were not studied
until the famous work of H. Kunita [92]. In this work, author showed that if the
signal is Feller-Markov and the observational model is of the form (2.1), then π

µ
t is

also Feller-Markov on the space of probability measures. Even though the result
was established for compact S, it was later extended to the locally compact case
[93, 136] and to non-compact spaces [24]. Using the results of [92], authors of [116]
showed that if the Xt is uniquely ergodic then the filter is stable (without any rate
of convergence)1. Since then, the relation between the ergodicity of the signal and
the stability of filter was studied extensively.

In contrast to the non-linear case, as already mentioned, stability for the linear
case (which is non-ergodic) was established under the assumptions that observa-
tions are rich enough. And also, when S is finite, it is observed that ergodicity and
good enough observations ensured stability (we will elaborate on this later). This
suggests that in order to guarantee stability, system has to obey either of the follow-
ing conditions (in an appropriate sense):

1Unfortunately, it turned out that the proof of Theorem 3.3 in [92] is incorrect (there was an
exchange of intersection and supremum operations of σ- algebras without any proof). We refer
the reader to [18] for more details on this issue. Budhiraja (in [35]) showed that under appropriate
conditions, unique ergodicity of the filter is equivalent to its stability. Van Handel (in [71]) showed
that one can construct a nondeterministic example of a filtering problem where the exchange of the
aforementioned operations is not allowed
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1. (Mixing) The process X is sufficiently ergodic i.e., law of Xt is asymptotically
independent of law of X0. This in turn, makes the process Y to forget about µ,
the law of X0.

2. (Observability) The observations made are rich enough that observing long
enough gives the entire information about the law of X0. In other words, even
though we initialised Equation (3.1) with different initial condition ν (referred
to as incorrect initial condition, from now on), πν

t comes close to π
µ
t due to

common driving term that contains the information of X0.

Note 3.1.4. In this thesis, we focus on the latter one to establish the stability. We indeed
show that if X is deterministic, then good enough observations will guarantee stability.

In light of above evidence, we give the literature review by categorizing the
existing results into two groups viz.,

1. (Ergodicity assumptions) Results which assume some kind of ergodicity of X.

2. (Observability assumptions) Results which assume that observations are rich
enough.

Results are further categorized based on compactness of S.
We now give the literature review on stability in the case of both continuous and

discrete times.

3.2 Literature review

In this section, for the sake of reviewing the results, we consider the following con-
tinuous time observational model (instead of (2.1)):

Yt =
∫ t

0
h(Xs)ds + ηWt (3.2)

3.2.1 Ergodicity assumption

S is compact

After the earlier work of [85, 3, 92], the stability results along with the rates of con-
vergence were obtained in the case of finite S (for both continuous and discrete
time). The continuous time filter with finite signal state space S with observation
model of the form (3.2) is referred to as Wonham’s filter[147].

Since S is finite (with cardinality say, d), π
µ
t and πν

t are coordinates of points on
a d- dimensional simplex and therefore, all the norms are equivalent. Under the
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ergodicity of X and sufficiently high signal to noise ratio in observation, authors of
[55] established that

γη
.
= lim

t→∞

1
t

log ‖πµ
t − πν

t ‖ ≤ −δη, (3.3)

where, η denotes the strength of the observation noise and δη > 0 is some constant
depending on η. The Lyapunov exponent techniques were introduced for the first
time in filtering theory context.

In [10], Wonham filter and discrete version of Wonham filter is considered. Ap-
plying the techniques of multiplicative ergodic theory to the unnormalised condi-
tional density (which evolves linearly, both in discrete and continuous time), au-
thors showed that (3.3) holds and moreover, γη is related to the gap of top two
Lyapunov exponents of the evolution of unnormalised conditional density. In ad-
dition, dependence of γη is studied in the limit η → 0 with the conclusion that nice
enough observations make ‖γη‖ → ∞ as η → 0 .

In [9], it is shown that if X is a diffusion with strictly elliptic generator, then
results analogous to those in previous paragraph hold.

In [133], geometric ergodicity of the filter for discrete time filtering model is
established along with bounds on the rates of convergence.

In [18], authors considered the continuous time Wonham filter and showed that
ergodicity alone can imply (3.3) along with non-asymptotic estimates. And also,
even under the relaxed condition of non-ergodicity of the signal and nice observa-
tions, filter is stable in the L1 sense.

In [44], ergodic properties for the Wonham filter is studied. In particular, it was
shown that if X is ergodic, then the Feller-Markov pair process (X, π) is uniquely
ergodic. Stability was proved using the subsequent limit theorem for pair process
(X, π) along with new bounds on the rates.

In [46], discrete time filter with the following observation model is studied:

Yn =
d

∑
i=1

1Xn=iξn(i),

where, {ξn}n≥1 is an i.i.d. sequence of d- dimensional random vectors. Markov
chain X is such that transition probabilities to different states is small (represented
by a small parameter). Assuming appropriate regularity of of the densities of ξ0

and ergodicity of X, it is shown that discrete analog of (3.3) holds and rate of con-
vergence is lower bounded in terms of relative entropies of ξ0(i) and ξ0(j), for i 6= j.
Moreover, asymptotics of rate of convergence (as the parameter goes to zero) is con-
sidered.
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Detailed review of techniques used in above results can be found in [45, 7].
In [30], authors show that (3.3) holds for a discrete time filtering model, where

the process X is generated from iterating random i.i.d maps which are uniformly
expanding.

S is non-compact

The stability question of filter in the case of non-compact S (in continuous time) is
first studied by D. Ocone and E. Pardoux in [116], inspired by the work of H. Kunita
[92, 93] and Ł. Stettner [136]. They showed that using results of [92], if S is Polish
and X is Feller-Markov with unique invariant measure, then filter is stable (This
turned out be incorrect, in the light of the error in [92]). This work paved the way
for further research on stability of filter.

In [8], authors studied the case of one dimensional diffusion with constant dif-
fusion coefficient that is being observed through a linear observation model with
small observation noise. They establish that, under appropriate conditions on the
filtering model, distance between conditional densities corresponding to different
initial conditions converges to zero exponentially for sufficiently small observation
noise. The proof of their result relies on the tight upper and lower bounds of un-
normalised density obtained in [150, Theorem 1].

Authors of [9] establish that filter is stable exponentially in the case of continu-
ous and discrete time case using Hilbert projective metric and Birkoff’s contraction
inequality. They also establish exponentially stability result for signal in countable
state space.

In [37], authors studied the one-dimensional discrete time filtering model with
bounded observation noise. They established that (3.3) holds in sense of total vari-
ation, using Hilbert’s projective metric and Birkoff’s contraction inequality.

In [36], (3.3) is shown to hold for conditional densities of a discrete time filter,
where the signal X is Markov and signal noise satisfies certain non-degeneracy con-
ditions.

In [113], the Beneš filter is shown to hold (3.3) by obtaining the bounds on rela-
tive entropy of incorrectly initialised filter and optimal filter.

Under a very general setup (just assuming that (X, Y) is Markovian on a Pol-
ish space), relative entropy of incorrectly initialised filter with respect to optimal
filter is shown to be a non-negative supermartingale in [50]. They could not de-
rive the sufficiency conditions for convergence of relative entropy to zero. More-
over, it is shown that if Y is of the form (3.2), then under fairly general conditions,
E[
∫ ∞

0 ‖π
µ
s (h)− πν

s (h)‖2ds] < ∞. In other words, limt→∞ E[‖πµ
t (h)− πν

t (h)‖2] = 0.
In [114], assuming that X is diffusion, observation is of the form (3.2) and suitable
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regularity conditions, the aforementioned relative entropy is decomposed into sum
of an explicit decreasing process and a local martingale process.

In [35], author studied the relation among the properties like the stability, unique-
ness of invariant measure for pair process, memory of the filter, uniqueness of in-
variant measure for the filter etc., and showed that under suitable ergodicity as-
sumptions, the aforementioned properties are all equivalent.

In [48], (3.3) is shown to hold for a filter with Markovian X under a relaxed
condition which allowed for the Markov transition density to be zero.

In [97], a general discrete time filtering model is considered. It is shown, using
Hilbert’s projective metric, that (3.3) holds under suitable kind of mixing condition
on the kernels that arise in the filtering evolution.

Filtering model with the signal X being an inhomogenous diffusion and the lin-
ear time varying observational model is studied in [134, 135]. Author shown that
(3.3) holds, using a variational approach on pathwise filter (introduced by the same
author in his earlier work) in [134] and using gradient estimates of solutions solu-
tions to heat equations.

In [121], stability of discrete time filtering model along with unknown parameter
is considered. It is shown that under certain identifiability condition and mixing
conditions, filter is stable . Under appropriate ergodic assumptions, stability of
filter (in both discrete and continuous time) is established in [142, 89].

In [72], unique erogodicity of filter (and thereby filter stability) is established
under the assumptions of unique ergodicity of the signal and the non-degeneracy
of the observation noise.

In [57, 58], in discrete time setup, upper bounds on the total variation distance
between the incorrectly initialised filter and optimal filter are derived and particular
examples are studied where these bounds are decaying exponentially in time.

3.2.2 Observability assumption

We now give a survey of existing results that assume that observations are suffi-
ciently rich and encode complete information of the observations.

S is compact

A rigorous notion of rich observations (for both discrete and continuous time) is
given by Van Handel [139] for the case of compact S. Informally, a filtering model is
said to be observable if same law of observation process Y for two initial conditions
of X implies that the initial conditions are identical in distribution. In other words,
two initial conditions with different distributions can never give rise to same law of
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Y, if the system is observable. Under this notion, author showed that filter is stable,
without any rates of convergence.

S is non-compact

Even though the notion of rich observations was known for Kalman-Bucy filters
[116, 85], for non-linear case, this notion was not studied until the work of Baxen-
dale et al.[47]. For a general discrete time filtering model with Y ∈ R, it is shown
that if an integrable function f is such that

f (x) =
∫

R
g(y)λ(x, y)R(dy),

for some bounded measurable function g (where λ(x, y)2 is transition density for Y
with respect to a reference measure R), then

lim
n→∞

E[|πµ
n( f )− πν

n( f )|] = 0

In [78], (3.3) is shown to hold uniformly in η for finite or countable state space
(for discrete time) under some notion of observability and suitable conditions on
transition matrix for X.

In [138], author proved that a general discrete time filter with observation model
Yn = h(Xn, ξn) ∈ Rn is stable, if h has a uniformly continuous inverse and ξn has
a density with respect to Lebesgue measure along with a non-vanishing Fourier
transform.

In [73], author extended the notion of observability to Polish spaces. In this
work, a stronger notion of uniform observability is introduced. In the earlier no-
tion of observability [139], the map from initial condition to the law of Y is only
assumed to be one-one whereas in uniform observability, in addition, the map from
law of Y to initial condition has to be uniformly continuous. This stronger notion of
observability was shown to imply stability, without any rates of convergence.

In [106, 107, 108], authors defined the non-probabilistic version of observability
(in contrast to the notion in [139, 73]. Under the assumption of observability and
continuity of kernels involved, filter is shown to be stable. Again the rates of con-
vergence were not provided due to the usage of martingale convergence theorems.

In [105], the expectation of total variation distance between incorrectly initialised
and optimal filter is upper bound in terms of Dobrushin’s ergodic coefficients of sig-
nal and observation kernel, under the assumption of non-degeneracy of observation
noise.

2In general, λ(·, ·) and R depend on the observation model.
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Recall that filter corresponding to linear signal and linear observation model is
referred to as linear filter. The stability problem for the model with linear signal and
observation model was studied in [85, 33]. The authors of [116] studied the stability
in the linear case for non-Gaussian initial conditions using change of probability
measures. We refer to [26] for a detailed review of results in the linear case. In [55],
small and large observation noise asymptotics are studied (for Kalman-Bucy filter)
along with their relation to stability of the filter.

In [118], a robust filter (constructed from the restricting the support of likelihood
functions to a compact set) is used to study the stability for discrete time filtering
model. Under the assumption of non-degeneracy of kernel of X and surjectivity
of h (but can fail injectivity for arguments that are close enough), authors derived
the estimates on the distance between these robust filters initialised under different
initial conditions and uniform in time estimates on the distance between the robust
filter and the corresponding filter. For certain systems, these estimates were used to
prove stability of the filter.

As already mentioned in Chapter (1), the filtering model with deterministic sig-
nal is very often encountered in geosciences. The stability problem in this regard is
relatively new. In the case of deterministic signal, F. Cérou studied the problem of
consistency of the filter i.e., error the filter makes in estimating the state variable. In
the rest of literature survey, we assume that the signal is deterministic.

In [68, 28], authors studied the non-autonomous linear filter in discrete time
(known as Kalman filter). They, in particular, studied the asymptotics of the co-
variance of the filter under the assumption of uniform observability (a well known
notion in the linear context and will be defined in the next chapter for continuous
time).

Considering non-autonomous context and assuming uniform observability, long
time behavior of the conditional covariance of the Kalman-Bucy filter is studied in
[112] and stability of the Kalman-Bucy filter is derived under non-Gaussian initial
conditions in [126].

In non-linear context, the stability of filter is derived under suitable observability
condition and regularity of the signal in [125].

The results of [125, 126] are part of the doctoral work corresponding to this the-
sis. We describe these results in detail in the later chapters.

To summarize, we have seen that stability can be achieved either by having
strong mixing in the signal or having very rich observations. If we relax one, then
we have to strengthen the other to have stability. For more details on the techniques
in stability, we refer the reader to [45, 43]. In the above works, Lyapunov techniques
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in Wonham filter deal with the Kushner-Stratanovich (KS) equation to study stabil-
ity. The reason is that, in this case, this equation becomes a non-linear stochastic
differential equation, rather than a non-linear stochastic partial differential equa-
tion. In the case of continuous signal space, KS equation is seldom used to study
the stability. Kallianpur-Striebel formula is more suitable in this regard. On the
other hand, KS equation is more suitable for computing conditional expectations
due to its incremental structure, whereas Kallianpur-Striebel formula requires the
entire history of observations to compute the same.

Recalling the reference probability method, at first glance, it may seem that one
can study the stability problem under the reference probability measure and trans-
fer it back to original measure after we are done. This approach will not work as
the question of stability involves infinite times and the aforementioned measures
are not equivalent on the corresponding σ- algebra F∞ (see Chapter (2)).

We now give a trivial example of filtering models whose observations are sim-
ply not good enough to ensure stability without strong signal mixing. Non-trivial
examples can be constructed, but the example illustrates the basic idea of rich ob-
servations. (

dx1

dx2

)
=

(
f1(x1)dt + σ1(x1)dB1

t

f2(x2)dt + σ2(x2)dB2
t

)

Yt =
∫ t

0
x1(s)ds + Wt.

The signal in the above model is badly observed, as the observations do not give
any information about the x2 component. This model is also not observable in the
sense of [139, 73]. Indeed, law of observation does not change if we change the
initial distribution for the x2 component. The only way to achieve stability in this
extreme case is when the dynamics of x2 component is asymptotically independent
of initial conditions (in other words, ergodic).
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Chapter 4

Stability of the Linear Filter

In this chapter, we study the linear filter for stochastic signal and deterministic sig-
nal in detail. We derive the Kalman-Bucy equations for Gaussian initial conditions
and also derive the evolution equations for non-Gaussian initial conditions. We
then state the classical results of stability in the case of stochastic signal and derive
in detail, the stability results for the case of deterministic signal. We conclude this
chapter by studying the small noise asymptotics for the linear filter in the case of
Gaussian initial conditions. Theorems (4.1.13), (4.1.15) and (4.2.3) and Section (5.4)
are part of the doctoral work corresponding to this thesis.

Linear filtering model was the first model whose filtering distribution is known
to have a simple evolution equation. The reason is as follows: Considering a Gaus-
sian initial condition and linearity in the model (signal + observation), Gaussianity
of the filtering distribution is inherited from initial conditions and sustained by the
linearity of the model. Therefore, we only need to find the evolution equations
for conditional mean and conditional covariance. And the same thing with the
stability: we only have to consider the stability of equations for conditional mean
and conditional covariance (considering that incorrect initial condition is also Gaus-
sian). Even in the case of non-Gaussian initial conditions, we can get simple evolu-
tion equations because one can make appropriate change of measures that turn this
problem to a linear filtering problem with Gaussian initial conditions[104]. In the
sections to follow, we make precise, the arguments that are given in this paragraph.

Before we begin, let us introduce the filtering model that we work with in this
entire chapter. For the sake of completeness, we define the probability space
(Ω,F , {Ft}t≥0, P) below (we always work with this probability space). For conve-
nience, we define the probability spaces slightly differently for stochastic signal and
deterministic signal case. We also note that none of the calculations change due to
this difference.

For the case of stochastic signal,

Ω .
= Rm × C([0, ∞), Rm)× C([0, ∞), Rn)
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F .
= B(Ω)

P
.
= µ×Pm

W ×Pn
W ,

where, P
q
W is the Wiener measure on C([0, ∞), Rq) and µ is a probability measure

on Rm. Consider the canonical process on Ω denoted by ω,

ω(·)
.
= (X0, B(·), W(·)),

Ht
.
= σ(ωs : ω ∈ Ω, 0 ≤ s ≤ t)

Ft
.
= Ht ∨N ,

where, N is set of all P- null sets. The signal and observation processes are given
by

dXt = AtXtdt + NtdBt, L(X0) = µ (4.1)

dYt = CtXtdt + dWt, Y0 = 0. (4.2)

where, t ≥ 0, At ∈ Rm×m, Ct ∈ Rn×m and Nt ∈ Rm×m are uniformly bounded in t.
The construction above implies that X0, B and W are all mutually independent.

For the case of deterministic signal,

Ω .
= Rm × C([0, ∞), Rn)

F .
= B(Ω)

P
.
= µ×Pn

W ,

Consider the canonical process on Ω denoted by ω,

ω(·)
.
= (X0, W(·)),

Ht
.
= σ(ωs : ω ∈ Ω, 0 ≤ s ≤ t)

Ft
.
= Ht ∨N ,

where, N is set of all P- null sets. The signal and observation processes are given
by

dXt = AtXtdt, L(X0) = µ (4.3)

dYt = CtXtdt + dWt, Y0 = 0. (4.4)

where, t ≥ 0, At ∈ Rm×m, Ct ∈ Rn×m are uniformly bounded in t. The construction
above implies that X0 and W are mutually independent.
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Note that the constructions above differ slightly from the construction given in
Chapter (2). In both the cases, Yt has the same meaning as it did in earlier chapters.
We have now setup the probability space to work with.

4.1 Kalman-Bucy filter

In this section, let us assume that µ = N (M, P)1. The filter with linear filtering
model and Gaussian initial conditions is referred to as Kalman-Bucy filter. We are
now in a position to derive the properties of π

µ
t . To that end, we have the following

result [148, Theorem 9.4].

Theorem 4.1.1. For any t ≥ 0, π
µ
t is a Gaussian distribution on Rm.

Proof. We follow the proof of [148]. For a fixed, consider an increasing sequence
of the form SN

.
= {0 = tN

1 < tN
2 < . . . < tN

aN
= t} such that their union is dense

in [0, t]. Note that (X, Y) is a Gaussian process. Indeed, consider the augmented
process V .

= (XT, YT)T. Then equation for V is given by

dVt =

(
At 0
Ct 0

)
Vtdt +

(
Nt 0
0 In

)
dB̂t, V0 =

(
X0

0

)
,

where, B̂T .
= (BT, WT)T and Iq is q× q identity matrix. To keep the expression short,

let us define

Ât
.
=

(
At 0
Ct 0

)
, N̂t

.
=

(
Nt 0
0 In

)

Applying Ito’s formula to Γ−1
t Vt with Γ̇t = ÂtΓt, Γ0 = In, we have

Γ−1
t Vt = V0 −

∫ t

0
Γ−1

s Γ̇sΓ−1
s Vsds +

∫ t

0
Γ−1

s AsVsds +
∫ t

0
Γ−1

s N̂sdB̂s

Γ−1
t Vt = V0 −

∫ t

0
Γ−1

s AsVsds +
∫ t

0
Γ−1

s AsVsds +
∫ t

0
Γ−1

s N̂sdB̂s

Vt = ΓtV0 + Γt

∫ t

0
Γ−1

s N̂sdB̂s

Since Nt and Γt are non-random, Γt
∫ t

0 Γ−1
s N̂sdB̂s is a Gaussian process. From Gaus-

sianity of V0, we conclude that V is also a Gaussian process.
Since (X, Y) is a Gaussian process, the conditional distribution πN

t
.
= P(Xt ∈

·|σ(YtN
i

: 1 ≤ i ≤ aN)) is also Gaussian [79, Section 7.3](with say, mean mN
t and

1N (x, y) denotes m-dimensional normal distribution with mean x ∈ Rm and covariance y ∈
Rm×m.
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covariance QN
t ). Note that limN→∞ πN

t = πt, P− a.s. Now, consider

φN(λ)
.
=
∫

Rm
exp(ixTλ)πN

t (dx) = E[exp(iλTXt)|σ(YtN
i

: 1 ≤ i ≤ aN)],

for every λ ∈ Rm. From the properties of Gaussian, we have

φN(λ) = exp(iλTmN
t −

1
2

λTQN
t λ)

Since {SN}N≥1 is chosen to be increasing with N, {φN(λ)}N≥1 is a uniformly inte-
grable YN- martingale. Indeed,

E[φN(λ)|σ(YtN
i

: 1 ≤ i ≤ aN−1)]

= E[E[exp(iλTXt)|σ(YtN
i

: 1 ≤ i ≤ aN)]|σ(YtN
i

: 1 ≤ i ≤ aN−1)]

= E[exp(iλTXt)|σ(YtN
i

: 1 ≤ i ≤ aN−1)] = φN−1(λ), P− a.s.

In the above, we used the properties of conditional expectation. Therefore, from
martingale convergence theorem (see Theorem (A.0.12)), limN→∞ φN(λ) = φ∞(λ), P-
a.s. We now show that φ∞(λ) is the characteristic function of a Gaussian distribu-
tion. To that end, we known that

lim
N→∞

imN
t −

1
2

QN
t λ exists.

From the arbitrariness of λ, limN→∞ mN
t = mt and limN→∞ QN

t = Qt. This
concludes that πt is Gaussian distributed [140, Theorem 2.3]. �

Once we have the above result, we can now only focus on deriving evolution
equations of conditional mean and conditional covariance. Define, X̂t

.
= E[Xt|Yt]

and Pt
.
= E[(Xt − X̂t)(Xt − X̂t)T|Yt]. We follow the proof of [15, Proposition 6.14]

to derive the result below.

Theorem 4.1.2. If µ = N (M, P), then X̂t and Pt satisfy the following evolution equations:

dX̂t = AX̂tdt + PtCT
t (dYt − CtX̂tdt), X̂0 = M (4.5)

Ṗt = AtPt + Pt AT
t − PtCT

t CtP + NtNT
t , P0 = P (4.6)

Remark 4.1.3. Pt is a deterministic quantity. And also, the above equations are one way
coupled i.e., Pt influences X̂t, but not the other way around. This is practically very useful
as we can compute the conditional covariance even before any observations are made.

Proof. To derive the evolution equations for X̂t and Pt, we just have to write down
and simplify the Kushner-Stratanovich (KS) equation (2.1.11) for g(x) = xi and for
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g(x) = xixj, where x = (x1, x2, . . . , xm) and 1 ≤ i, j ≤ m. But this is not straight-
forward since xi and xixj are unbounded and Kushner-Stratanovich equation is
derived for g ∈ C2

b(R
m). We therefore, work with the cut-off versions of these

functions and then take the limit appropriately in the end. To that end, define the
following cut-off function with smooth compactly supported Λ : Rm → R,

Λk(x) .
= Λ(

x
k
), ∀x ∈ Rm

with

Λ(x) .
=


1 if ‖x‖ ≤ 1

exp
(
‖x‖2−1
‖x‖2−4

)
if 1 < ‖x‖ < 2

0 if ‖x‖ ≥ 2

Before we proceed any further, we note a few important properties of the above
defined cut-off function.

1. All the partial derivatives of Λk converge to 0 uniformly.

2. For any g : Rm → R,

lim
k→∞

gΛk = g uniformly, |g(x)Λk(x)| ≤ |g(x)| (4.7)

We now apply KS equation (2.1.11) to xiΛk(x), for fixed i (since it is smooth and
bounded). In this case, note that

A =
1
2

m

∑
p,q=1

(NtNT
t )pq

∂2

∂xp∂xq +
m

∑
p=1

(Atx)p
∂

∂xp

πt(xiΛk(x)) = µ(xiΛk(x)) +
∫ t

0
πs(As(xiΛk(x)))ds

+
∫ t

0

(
πs(xiΛk(x)(Csx)T)− πs(xiΛk(x))πs((Csx)T)

)
dIs, (4.8)

where, Is is the innovations process (see Chapter (2)). We evaluate individual terms
separately and take the limit k→ ∞. To that end, consider

At(xiΛk(x)) =
m

∑
p,q=1

(NtNT
t )pq

∂2

∂xp∂xq xiΛk(x) +
m

∑
p=1

(Atx)p
∂

∂xp xiΛk(x)
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= xi
m

∑
p,q=1

(NtNT
t )pq

∂2

∂xp∂xq Λk(x) +
m

∑
q=1

(NtNT
t )iq

∂

∂xq Λk(x)

+
m

∑
p=1

(NtNT
t )pi

∂

∂xp Λk(x) +
m

∑
p=1

xi(Atx)p
∂

∂xp Λk(x)

+ (Atx)iΛk(x)

Taking limit k→ ∞ in all the terms other than the stochastic integral term, we have

lim
k→∞

πt(xiΛk(x)) = πt(xi) (4.9)

lim
k→∞

µ(xiΛk(x)) = µ(xi) = Mi (4.10)

lim
k→∞

∫ t

0
πs(As(xiΛk(x)))ds =

∫ t

0
πs(Axi)ds =

∫ t

0
πs((Asx)i)ds (4.11)

where, in (4.9) and (4.10), we used dominated convergence theorem combined with
property (4.7). In (4.11), we used the Fubini’s theorem and dominated convergence
theorem along with uniform (in k) boundedness of partial derivatives of Λk. Note
that πt(xi) and πt(xixj) are both finite for any 1 ≤ i, j ≤ m due to Gaussianity of πt.
This allows us to apply dominated convergence theorem without any trouble.

Finally, consider the stochastic integral term

∫ t

0

(
πs

(
xiΛk(x) (Csx)T

)
− πs

(
xiΛk(x)

)
πs

(
(Csx)T

))
dIs

From the uniform convergence of Λk → Λ, we have the following

lim
k→∞

E[
∫ t

0

(
πs

(
xi (Λk(x)− 1) (Csx)T

)
− πs

(
xi (Λk(x)− 1)

)
πs

(
(Csx)T

))2
ds] = 0

This implies that, at least for a subsequence {kn}n≥1, we have

lim
k→∞

∫ t

0
πs

(
xiΛk(x) (Csx)T

)
− πs

(
xiΛk(x)

)
πs

(
(Csx)T

)
dIs

=
∫ t

0

(
πs

(
xi (Csx)T

)
− πs

(
xi
)

πs

(
(Csx)T

))
dIs, P− a.s.

Now combining the above equations, we have

πt(xi) = µ(xi) +
∫ t

0
πs ((Asx)i) ds +

∫ t

0

(
πs(xi(Csx)T)− πs(xi)πs((Csx)T)

)
dIs

= µ(xi) +
∫ t

0
πs ((Asx)i) ds +

m

∑
p=1

∫ t

0

(
πs(xi(Csx)p)− πs(xi)πs((Csx)p)

)
dIp

s
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Simplifying the above equation, we have (4.5) in terms of components.
Now to derive the equation for πt(xixj), for a fixed 1 ≤ i, j ≤ m, we follow

the same procedure of using a cutoff function and taking the limit. It works again
because of properties of Λk and the fact that πt has finite third moment, due to
Gaussianity. To avoid the repetition of similar calculations, we directly write down
the equation after this limiting procedure.

πt(xixj)

= µ(xixj) +
∫ t

0
πs

(
A(xixj)

)
ds +

∫ t

0

(
πs(xixj(Csx)T)− πs(xixj)πs((Csx)T)

)
dIs

(4.12)

= µ(xixj) +
∫ t

0

(
(NsNT

s )ij + ∑
p=1

πs(Aip
s xpxj + Ajp

s xpxi)

)
ds

+
∫ t

0

m

∑
p,q=1

(
πs(xixjxq)− πs(xixj)πs(xq)

)
Cpq

s dIp
s

To simplify any further, we use the following fact related to Gaussianity of πt:

πt(xixjxp) = −2πt(xi)πt(xj)πt(xp) + πt(xi)πt(xjxp) + πt(xj)πt(xixp)

+ πt(xp)πt(xjxi) (4.13)

(4.12) becomes

πt(xixj)

= µ(xixj) +
∫ t

0

(
(NsNT

s )ij + ∑
p=1

πs

(
Aip

s xpxj + Ajp
s xpxi

))
ds

+
∫ t

0

m

∑
p,q=1

(
−2πs(xi)πs(xj)πs(xp) + πs(xi)πs(xjxp) + πs(xj)πs(xixp)

)
Cpq

s dIp
s

πt(xixj) = µ(xixj) +
∫ t

0

(
(NsNT

s )ij + ∑
p=1

πs

(
Aip

s xpxj + Ajp
s xpxi

))
ds

+
∫ t

0

m

∑
p,q=1

(
πs(xi)Pjp

s + πs(xj)Pip
s

)
Cpq

s dIp
s (4.14)

Recall that dPij
t = dπt(xixj)− d

(
πt(xi)πt(xj)

)
and

d
(

πt(xi)πt(xj)
)
= πt(xi)d

(
πt(xj)

)
+ d

(
πt(xi)

)
πt(xj) + 〈xi, xj〉t
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=
m

∑
p=1

(
πt(xi)Ajp

t πt(xp)dt + πt(xi)(PtCT
t )

jpdIp
t + πt(xj)Aip

t πt(xp)dt
)

+
m

∑
p=1

(
πt(xj)(PtCT

t )
ipdIp

t

)
+ (PtCT

t CtPt)
ijdt (4.15)

We then have, from (4.15), (4.14),

dPij
t

= ((NtNT
t )ij + ∑

p=1
πt(Aip

t xpxj + Ajp
t xpxi))dt +

m

∑
p,q=1

(πt(xi)Pjp
t + πt(xj)Pip

t )Cpq
t dIp

t

−
m

∑
p=1

(πt(xi)Ajp
t πt(xp)dt + πt(xi)(PsCT

s )
jpdIp

t + πt(xj)Aip
t πt(xp)dt)

+
m

∑
p=1

(πt(xj)(PtCT
t )

ipdIp
t )− (PtCT

t CtPt)
ijdt

= ((NtNT
t )ij + ∑

p=1
(Aip

t Ppj
t + Ajp

t Ppi
t ))dt +

m

∑
p,q=1

(πt(xi)Pjp
t + πt(xj)Pip

t )Cpq
t dIp

t

−
m

∑
p=1

(πt(xi)(PtCT
t )

jpdIp
t + πt(xj)(PtCT

t )
ipdIp

t )− (PtCT
t CtPt)

ijdt

= ((NtNT
t )ij + ∑

p=1
(Aip

t Ppj
t + Ajp

t Ppi
t ))dt− (PtCT

t CtPt)
ijdt

This finishes the proof. �

To summarize, we have shown that if µ = N (M, P), then πt = N (X̂M,P
t , PP

t ),
where

dX̂M,P
t = AtX̂M,P

t + PP
t CT

t (dYs − CtX̂M,P
t dt), X̂M,P

0 = M

ṖP
t = AtPP

t + PP
t AT

t − PP
t CT

t CtPP
t + NtNT

t , PP
0 = P

Note that we changed the notation to emphasize the dependence on initial condi-
tion. We now study the stability of the Kalman-Bucy filter.

4.1.1 Stability of the Kalman-Bucy filter

To study the stability of the Kalman-Bucy filter, we only consider incorrect initial
condition ν which is Gaussian.

ν = N (M̄, P̄)
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We give the stability results for both the cases viz., stochastic signal and determin-
istic signal. But, we only prove the results for the deterministic case. In the case of
filtering model with stochastic signal, asymptotic behavior of (4.5) and (4.6) can be
summarized by the following results.

Theorem 4.1.4. [33, Theorem 4] Under the assumptions of uniform complete observability
and uniform complete controllability for the case of stochastic signal, we have

‖PQ
t − PQ̄

t ‖ ≤ K exp (−βt) ,

for some K, β > 0 and Q, Q̄ are any symmetric positive semidefinite matrices. K can depend
on Q and Q̄.

Remark 4.1.5. In the case of autonomous (time-independent) filtering model, more can be
said under weaker versions of observability and controllability viz., there exists a symmetric
positive definite matrix P̂ such that

AP̂ + P̂AT − P̂CTCP̂ + NNT = 0

Note that for autonomous case, At = A, Ct = C, Nt = N. From above theorem, conse-
quently, we have ‖PQ

t − PQ̄
t ‖ ≤ K exp (−βt). See [95, Chapter 4] for more details.

Theorem 4.1.6. [116, Theorem 2.3] Under the assumptions of uniform complete observ-
ability and uniform complete controllability for the case of autonomous filtering model with
stochastic signal, there exists α > 0 such that

lim
t→∞

exp (αt) ‖X̂M,P
t − X̂M̄,P̄

t ‖ = 0, P− a.s.

Remark 4.1.7. Even though authors in [116] prove the above result for autonomous case
under weaker assumptions, the extension of the same result to non-autonomous (time-
dependent) case is straightforward (under the above assumptions).

We now state and prove the stability of Kalman-Bucy filter for a deterministic
signal (Nt = 0). In this case, (4.5) and (4.6) become

dXM,P
t = AtXM,P

t dt + PP
t CT

t (dYt − CtXM,P
t dt), XM,P

0 = M, (4.16)

ṖP
t = AtPP

t + PP
t AT

t − PP
t CT

t CtPP
t , PP

0 = P, (4.17)

where P > 02. For the rest of this chapter, PP
t is always considered to be the solution

of (4.17) with PP
0 = P.

2For real symmetric positive semi-definite matrices X and Y of same dimension, we write X ≥ Y
whenever xT(X − Y)x ≥ 0, ∀ x 6= 0 ∈ Rm. Notations like X ≤ Y, X < Y and X > Y are adopted
accordingly throughout the chapter.
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We shall make the following assumptions for the rest of the chapter.

Assumption 4.1.8. At and Ct are all continuous and uniformly bounded in t and P is
invertible.

Assumption 4.1.9. The pair [At, Ct] is uniformly completely observable (see Definition (A.0.25)).

Throughout this chapter, we define the norm ‖ · ‖ of a m× n matrix Q as ‖Q‖ .
=

sup‖x‖=1 ‖Qx‖, where ‖ · ‖ on the right is a norm on the appropriate Rk for k = m, n.
To study the behavior of (4.17), we note that, for a symmetric positive semi-definite
initial condition P ≥ 0, solution to (4.17) can be written in an explicit form.

PP
t = Φt

√
P
(

I +
√

PC̄t
√

P
)−1√

PΦT
t , (4.18)

as can be verified explicitly by substituting (4.18) in (4.17), where,

C̄t
.
=
∫ t

0
ΦT

s CT
s CsΦsds.

We also note the following result (proved in [112]) that is used later.

Lemma 4.1.10. Under Assumptions (4.1.8) and (4.1.9), PP
t is uniformly bounded in t.

Remark 4.1.11. Consider the subspace of Rm defined by S .
= {u : ‖ΦT

t u‖ → 0 as t →
0}. For v ∈ S, it is clear from (4.18) that vTPP

t v→ 0 as t→ ∞ (since C̄t is positive semi-
definite, implying that the uncertainty along S reduces to zero asymptotically in time. This
feature is used in data assimilation algorithms in discrete time known as Assimilation in
Unstable Subspace (AUS) [38, 119, 137]. This and other properties of the filter covariance
(in discrete time) and their relation to Lyapunov vectors and exponents of the dynamics that
have been discussed extensively in [68, 28] extend to the filter covariance for the Kalman-
Bucy filter (in continuous time).

To prove the stability of (4.17), we use the well known Lyapunov function ap-
proach first used in [33], but also used extensively by later authors. In order to set
up our notation, we consider solutions PP

t and PP̄
t of (4.17) corresponding to two dif-

ferent initial conditions P and P̄ (P̄ > 0), respectively. A straightforward calculation
shows that Et

.
= PP

t − PP̄
t satisfies

Ėt = BP
t Et + Et

(
BP̄

t

)T
,

where BQ
t

.
=
(

At − PQ
t CT

t Ct

)
, for any symmetric positive semi-definite matrix Q.

Further, it can easily be verified that

Et = ΨP
t
(

P− P̄
)(

ΨP̄
t
)T, (4.19)
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with Ψ̇P
t = BP

t ΨP
t , ΨP

0 = Im, Ψ̇P̄
t = BP̄

t ΨP̄
t and ΨP̄

0 = Im. Therefore, stability of
the Riccati equation is related to studying the asymptotic properties of ΨP

t and ΨP̄
t .

Without loss of generality, it is sufficient to study asymptotic properties of ΨP
t . To

this end, consider a linear system

żt =
(

At − PP
t CT

t Ct
)
zt , (4.20)

whose solution is given by zt = ΨP
t z0, where z0 is the initial condition. The above

system (4.20) is said to be asymptotically stable if ‖ΨP
t ‖

t→∞−−→ 0 which is equiva-
lent to ‖zt‖

t→∞−−→ 0, ∀ z0 ∈ Rm. The following lemma is crucial in proving the
asymptotic stability of (4.20).

Lemma 4.1.12. [130, Lemma 2.5.2] Under Assumptions (4.1.8) and (4.1.9), [At−KtCt, Ct]

is uniformly completely observable, for any Kt that is continuous and bounded in t.

Proof. Define vt, wt, xt, yt in the following way:

ẋt = Atxt

yt = Ctxt

and

ẇt = (At − KtCt)wt

vt = Ctwt

Assume xt0 = wt0 and consider

xt − wt = −
∫ t

t0

Φ(t, s)KsCswsds

Ct (xt − wt) = −
∫ t

t0

CtΦ(t, s)KsCswsds

Define K̂t =
KsCsws
‖KsCsws‖ , if KsCsws 6= 0 and zero otherwise.

‖Ct (xt − wt) ‖2 ≤
(∫ t

t0

‖CtΦ(t, s)K̂s‖‖KsCsws‖ds
)2

≤
(∫ t

t0

‖CtΦ(t, s)K̂s‖‖Ks‖‖Csws‖ds
)2

≤ sup
s≥0
‖Ks‖2

(∫ t

t0

‖CtΦ(t, s)K̂s‖2ds
)(∫ t

t0

‖Cuwu‖2du
)
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Fix t = t0 + τ, where corresponds to the pair [At, Ct]. From triangle inequality, we
have(∫ t0+τ

t0

‖Csws‖2ds
) 1

2

≥
(∫ t0+τ

t0

‖Csxs‖2ds
) 1

2

−
(∫ t0+τ

t0

‖Cs (xs − ws) ‖2ds
) 1

2

≥ √ρ1‖wt0‖ −
(∫ t0+τ

t0

‖Cs (xs − ws) ‖2ds
) 1

2

, From the Assumption (4.1.9).

≥ √ρ1‖wt0‖ − sup
s≥0
‖Ks‖

(∫ t0+τ

t0

‖Cuwu‖2du
) 1

2
(∫ t0+τ

t0

(∫ r

t0

‖CrΦ(r, s)K̂s‖ds
)2

dr

) 1
2

≥ √ρ1‖wt0‖ − sup
s≥0
‖Ks‖

(∫ t0+τ

t0

‖Cuwu‖2du
) 1

2 √
τρ2

Therefore, we have

∫ t0+τ

t0

‖Csws‖2ds ≥ ρ1(
1 + sups≥0 ‖Ks‖

√
τρ2

)2‖wt0‖2 (4.21)

To prove the upper bound, we consider

‖Ctwt‖2 ≤ ‖Ctxt‖2 +

(∫ t

t0

‖Csws‖‖CtΦ(t, s)K̂s‖‖Ks‖ds
)2

≤ ‖Ctxt‖2 +
∫ t

t0

‖Csws‖2ds
∫ t

t0

‖CrΦ(t, r)K̂r‖2‖Kr‖2dr

Integrating the above inequality from t0 to t0 + τ, we have

∫ t0+τ

t0

‖Ctwt‖2dt ≤
∫ t0+τ

t0

‖Ctxt‖2dt +
∫ t0+τ

t0

∫ t

t0

‖Csws‖2ds
∫ t

t0

‖CrΦ(t, r)K̂r‖2‖Kr‖2drdt

≤
∫ t0+τ

t0

‖Ctxt‖2dt + sup
s≥0
‖Ks‖2ρ2

∫ t0+τ

t0

∫ t

t0

‖Csws‖2dsdt

From Gronwall’s inequality, we have

∫ t0+τ

t0

‖Ctwt‖2dt ≤ ρ2‖wt0‖2 exp

(
τ sup

s≥0
‖Ks‖2ρ2

)
(4.22)

The equations (4.21) and (4.22) together imply that the pair [A − KtCt, Ct] is uni-
formly completely observable.

�
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Using the above lemma, we can conclude that, from the continuity and bound-
edness of PP

t CT
t in t, [BP

t , Ct] is uniformly completely observable, i.e., there exist
τ̃, ρ3, ρ4 > 0 such that for all t > 0 we have,

ρ3In ≤
∫ t

t−τ̃

(
ΨP

t

)−T (
ΨP

s

)T
CT

s CsΨP
s

(
ΨP

t

)−1
ds ≤ ρ4In . (4.23)

Theorem 4.1.13. [126, 112] Let P be symmetric positive definite. Under Assumptions (4.1.8)
and (4.1.9), (4.20) is asymptotically stable and

∫ ∞

0

(
ΨP

s

)T
ΨP

s ds <
τ̃P−1

ρ3
(4.24)

Remark 4.1.14. Asymptotic stability of (4.20) is proved in [112], whereas the estimate
(4.24) is established in [126]. It turns out that (4.24) is sufficient to establish the stability
of (4.5) (Asymptotic stability of (4.20) by itself cannot imply stability of (4.5)).

Proof. We begin with a Lyapunov function

V(zt, t) .
= zT

t
(

PP
t
)−1zt. (4.25)

Using (4.17) and (4.20), we see that

dV
dt

(zt, t) = −zT
t (At − PP

tCT
t Ct)

T(PP
t
)−1

zt

+ zT
t (−AT

t
(

PP
t
)−1 −

(
PP

t
)−1

At + CT
t Ct)zt

+ zT
t
(

PP
t
)−1

(At − PP
tCT

t Ct)zt

= −zT
t CT

t Ctzt ≤ 0 , ∀t > 0 . (4.26)

Using the relationship zs = ΨP
s
(
ΨP)−1

t zt, we can write

V(zt+τ̃, t + τ̃)−V(zt, t) = −zT
t

∫ t+τ̃

t

(
ΨP

t
)−T(ΨP

s
)TCT

s CsΨP
s
(
ΨP

t
)−1ds zt .

Observe that from (4.23),

ρ3‖zt‖2 ≤ V(zt, t)−V(zt+τ̃, t + τ̃) ≤ ρ4‖zt‖2, (4.27)

which together with the assumption of uniform complete observability of [At, Ct]

imply that V(zt, t) → 0, and ‖zt‖ → 0, as t → ∞, and that (4.20) is asymptotically
stable.
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Next, in order to prove (4.24), observe that writing t = t′ + kτ̃, for some t′ ∈
[0, τ̃], we have

V(zt′+(k+1)τ̃, t′ + (k + 1)τ̃)−V(zt+kτ̃, t′ + kτ̃) ≤ −ρ3‖zt′+kτ̃‖2

Adding N such inequalities with k = 0, 1, 2, ..., N, we have

V(zt′+(N+1)τ̃, t′ + (N + 1)τ̃)−V(zt′ , t′) ≤ −ρ3

N

∑
k=0
‖zt′+kτ̃‖2

Using (4.26), and letting N → ∞,

∞

∑
k=0
‖zt′+kτ̃‖2 ≤ V(zt′ , t′)

ρ3
≤ V(z0, 0)

ρ3
. (4.28)

Integrating (4.28) with respect to t′ in the range t′ ∈ [0, τ̃], we have

∫ τ̃

0

∞

∑
k=0
‖zt′+kτ̃‖2dt′ ≤

∫ τ̃

0

V(z0, 0)
ρ3

dt′

∫ ∞

0
‖zt′‖2dt′ ≤ V(z0, 0)τ̃

ρ3

zT
0

( ∫ ∞

0

(
ΨP

t′
)TΨP

t′dt′
)

z0 ≤
V(z0, 0)τ̃

ρ3
=

τ̃zT
0 P−1z0

ρ3
(4.29)

Since (4.29) is true for all initial conditions z0,∫ ∞

0

(
ΨP

t′
)TΨP

t′dt′ ≤ τ̃

ρ3
P−1 (4.30)

which completes the proof. �

We now show that (4.5) is stable. To that end, we follow the method of [116].

Theorem 4.1.15. Under Assumptions (4.1.8) and (4.1.9), ‖X̂M,P
t − X̂M̄,P̄

t ‖ t→∞−−→ 0 P−
a.s

Proof. Let us begin by noting that innovations process dIt = dYt − CtX̂tdt, is a Yt-
Brownian motion (see Proposition (2.1.15)). Then, using (4.5), we see that the evo-
lution equation for X̂M,P

t − X̂M̄,P̄
t is

d(X̂M,P
t − X̂M̄,P̄

t ) = (At − PP̄
t CT

t Ct)(X̂M,P
t − X̂M̄,P̄

t )dt + (PP
t − PP̄

t )C
T
t (dYt − CtX̂M,P

t dt) .
(4.31)
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Using a simple application of Ito’s formula (see Theorem (A.0.17)), we observe that
solution to the above evolution equation is given by

X̂M,P
t − X̂M̄,P̄

t = ΨP̄
t (M− M̄) +

∫ t

0
ΨP̄

t

(
ΨP̄

s

)−1 (
PP

s − PP̄
s

)
CT

s dIs

Next, defining V̂t
.
=
∫ t

0

(
ΨP̄

s

)−1 (
Ps − PP̄

s

)
CT

s dIs, we can express the above solution
in a compact form as

X̂M,P
t − X̂M̄,P̄

t = ΨP̄
t (M− M̄) + ΨP̄

t V̂t. (4.32)

Observe now that using (4.19) to write (PP
s − PP̄

s )in terms of ΨP
s and ΨP̄

s , it is clear
that,

E[|V̂t|2] = E

[
tr
(∫ t

0
(P− P̄)

(
ΨP

s

)T
CT

s CsΨP
s (P− P̄)ds

)]
,

where tr(A) denotes the trace of the square matrix A. Using simple algebra, we
can easily conclude that for some K′ > 0, we have ‖P − P̄‖2 < K′. In particular,
we could choose K′ to be the squared sum of the largest eigenvalues of P and P̄.
Moreover, we also have ‖CT

t Ct‖ < K, for some K > 0, thus implying

tr
(∫ t

0
(P− P̄)

(
ΨP

s

)T
CT

s CsΨP
s (P− P̄)ds

)
≤ KK′tr

(∫ t

0

(
ΨP

s

)T
ΨP

s ds
)

≤ KK′tr
(∫ ∞

0

(
ΨP

s

)T
ΨP

s ds
)

< ∞,

where the last inequality follows from Theorem (4.1.13), indicating that V̂t is a
square integrable martingale. Therefore, by martingale convergence theorem (see
Theorem (A.0.12)), {V̂t}t≥0 converges almost surely, as t→ ∞, to an integrable ran-
dom variable, say V̂∞. Thus, we conclude that ΨP̄

t V̂t → 0 P− a.s, since we already
know by Theorem (4.1.13) that ΨP̄

t converges to zero as t → ∞. Similarly, we can
deduce that ΨP̄

t (M − M̄) → 0, as t → ∞, which in view of (4.32) completes the
proof. �

4.2 Linear filter with non-Gaussian initial conditions

In the previous section, the assumption of Gaussian initial condition was crucial to
most of the computations. However, this condition can be relaxed. Under different
assumptions on the non-Gaussianity of the initial conditions, the linear filtering



Chapter 4. Stability of the Linear Filter 50

is shown to exhibit finite dimensionality i.e., only finitely many statistics of πt are
needed to compute the entire πt [21, 104, 74]. In the following, we describe one such
result viz., that of [104], mainly because this approach is used later in filter stability
(for non-Gaussian initial conditions). In this section, µ is not necessarily Gaussian.

The main idea behind the approach in [104] is to perform a change of measure
under which filtering model takes a simpler form (Kalman-Bucy filter with corre-
lated noise case). Firstly, write (4.1) in the explicit form.

Xt = ΦtX0 +
∫ t

0
Φ(t, s)NsdBs

where, Φt is such that

Φ̇t = AtΦt; Φ0 = Im

Φ(t, s) .
= ΦtΦ−1

s

Now define

X̄t
.
= Xt − ξt with ξ̇t = Atξt, ξ0 = X0

From the above definition, it can be seen that

X̄t =
∫ t

0
Φ(t, s)NsdBs (4.33)

Yt =
∫ t

0
CsX̄sds + W̄t (4.34)

with

W̄t
.
=
∫ t

0
Csξsds + Wt

(4.33) and (4.34), look very similar (in form) to (4.1) and (4.2). This is the main
observation. Under P, W̄ is not a Brownian motion. But, from Girsanov’s theorem
(see Theorem (A.0.22)), we can make W̄ a Brownian motion under a new equivalent
probability measure P̄. The probability measure P̄ is defined by

dP̄

dP

.
= ∆−1

T0
,

for a fixed T0 > 0. Here, for t ≤ T0,

∆t
.
= exp

(
−
∫ t

0
ξT

s CT
s dW̄s −

1
2

∫ t

0
‖Csξs‖2ds

)
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P̄ is a indeed, a true probability measure in our case( see Lemma (A.0.23)). From
Lemma (2.1.4), we write, for G : Rm × Rm × R+ → R such that G(X0, X̄t, t) is
integrable,

E[G(X0, X̄t, t)|Yt] =
EP̄[G(X0, X̄t, t)∆t|Yt]

EP̄[∆t|Yt]
(4.35)

Notice that the variables X0, W̄t, X̄t are all mutually independent under P̄, and that
the distribution of X0, B remains unchanged. Therefore, from (4.33) and (4.34), we
can conclude that under P̄, X0 is independent of Yt. The other random variables
that are remaining in g(X0, X̄t)∆t are X̄t and ∆t. To get the joint conditional distri-
bution (under P̄) of X̄t and ∆t given Yt, we write ∆t as

∆t = exp
(
−XT

0 Lt −
1
2

XT
0 KtX0

)
,

where

Kt
.
=
∫ t

0
ΦsCT

s CsΦsds, Lt
.
=
∫ t

0
ΦT

s CT
s dW̄s.

Clearly, instead of joint conditional (under P̄) of X̄t and ∆t given Yt, we can consider
the conditional distribution (under P̄) of X̄t and Lt given Yt. Define ηt(dx1, dx2)

such that,

P̄[1(X̄t,Lt)∈B|Yt] =
∫

B
ηt(dx1, dx2), ∀B ∈ B(Rm ×Rm)

With the above definitions, we have

EP̄[G(X0, X̄t, t)∆t|Yt] =
∫

Rm
µ(dx)

∫
Rm×Rm

G(x, r1, t)e−
1
2 xTKtx+xTr2ηt(dr1, dr2),

(4.36)

The conditional distribution ηt is obtained by studying Kalman-Bucy filter in the
framework with correlated observation and system noises for the extended system,(

X̄t

Lt

)
. It is known that the conditional distribution ηt is again Gaussian [148, Sec-

tion 9.2], with mean

(
m̃t

L̃t

)
and covariance

(
R̃t St

ST
t Rt

)
given by the following set of

equations.

m̃t = Xm′,P′
t (solution of (4.5)), m̃0 = M′ = 0 , (4.37)
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R̃t = PP′
t (solution of (4.6)), R̃0 = P′ = 0 , (4.38)

dL̃t = (Φt + St)
TCT

t (dyt − Ctm̃tdt) , L̃0 = 0 ,

Ṙt = −ΦtCT
t CtSt − ST

t CT
t CtΦt − ST

t CT
t CtSt , R0 = 0 ,

Ṡt = AtSt − R̃tCT
t CtSt − R̃tCT

t CtΦt , S0 = 0 . (4.39)

Therefore,

E[G(X0, X̄t, t)|Yt] =

∫
Rm µ(dx)

∫
Rm×Rm G(x, r1, t)e−

1
2 xTKtx+xTr2ηt(dr1, dr2)∫

Rm µ(dx)
∫

Rm×Rm e−
1
2 xTKtx+xTr2ηt(dr1, dr2)

For every integrable g : Rm → R, choosing G such that G(X0, X̄t, t) = g(X̄t +

ΦtX0) = g(Xt) by noting that Xt = X̄t + ΦtX0, we have

π
µ
t (g) = E[g(Xt)|Yt] =

∫
Rm µ(dx)

∫
Rm×Rm g(r1 + Φtx)e−

1
2 xTKtx+xTr2ηt(dr1, dr2)∫

Rm µ(dx)
∫

Rm×Rm e−
1
2 xTKtx+xTr2ηt(dr1, dr2)

(4.40)

This completes the computation of π
µ
t for non-Gaussian initial condition. We now

give stability results in this case. For the case of stochastic signal, we have the
following result due to D. Ocone and E. Pardoux [116].

Theorem 4.2.1. Under the assumptions of uniform complete observability, uniform com-
plete controllability and E[‖X0‖2] < ∞, we have

lim
t→∞
‖E[Xt|Yt]− X̂M̄,P̄

t ‖ = 0 P− a.s.

and also in L2 sense. We also have,

lim
t→∞
‖πµ

t (g)−N (X̂M̄,P̄
t , PP̄

t )(g)‖ = 0, P− a.s.,

for any bounded uniformly continuous g : Rm → R.

Remark 4.2.2. The above result can be established using the same method that was used by
Ocone and Pardoux [116]. In [116], the above result was established under weaker versions
of controllability and observability for autonomous case. And also, even though rate of
convergence was not studied by the authors in [116], they can be obtained by a careful study
of their method (as pointed out by them).

In the case of deterministic signal, we prove the following result analogous to
the above result.
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Theorem 4.2.3. [126, Theorem 4.1] Suppose that Assumptions (4.1.8) and (4.1.9) hold.
Let X0 be square integrable and of the form X0

.
= V0 + X̄0, where X̄0 is a non-degenerate

Gaussian random variable independent of V0. Then for the system given by (4.3) and (4.4),

lim
t→∞
‖E[Xt|Yt]− X̂M̄,P̄

t ‖ = 0, P− a.s. (4.41)

We also have,

lim
t→∞
‖πµ

t (g)−N (X̂M̄,P̄
t , PP̄

t )(g)‖ = 0, P− a.s., (4.42)

for any bounded, uniformly continuous g : Rm → R.

Remark 4.2.4. The requirement that the initial condition X0 be a sum of a Gaussian and
a non-Gaussian random variables is not very restrictive. One quite large class of random
variables that satisfy this assumption is as follows: for every m-dimensional random variable
U with finite second moment and a density fU, there is a corresponding X0 satisfying the
assumptions of the theorem, where X0 is defined to be a random variable with density which
is a solution of m-dimensional heat equation initialised with fU.

Proof. The ideas of our proof are motivated by [104] and by those used in the proof
of [116, Theorem 2.6], with certain modifications to accommodate our model with
zero noise. m̃t in (4.37) is such that m̃0 = E[X̄0], R̃t in (4.38) is such that R̃0 =

Cov(X̄0) and (L̃t, St, Rt) are as defined before. We have seen that non-Gaussian case
is given by (4.40) is defined by evolution of finitely many objects viz., Kt, covariance
and mean of η(dr1, dr2) in (4.40). We have

E[g(Xt)|Yt] =

∫
Rm µ(dx)

∫
Rm×Rm g(r1 + Φtx)e−

1
2 xTKtx+xTr2ηt(dr1, dr2)∫

Rm µ(dx)
∫

Rm×Rm e−
1
2 xTKtx+xTr2ηt(dr1, dr2)

=

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm×Rm g(r1 + Φtx)η̃t(dr1, dr2)∫

Rm e
1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm×Rm η̃t(dr1, dr2)

=

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm×Rm g(r1 + Φtx)η̃t(dr1, dr2)∫

Rm e
1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

(4.43)

where η̃t is a Gaussian measure with mean

(
m̃t + Stx
L̃t + Rtx

)
and covariance

(
R̃t St

ST
t Rt

)
.

Setting γt to be a Gaussian measure with mean 0 and covariance R̃t, we have

E[g(Xt)|Yt] =

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm×Rm g(r1 + Φtx)η̃t(dr1, dr2)∫

Rm e−
1
2 xT(Rt−Kt)x+xT L̃t µ(dx)
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=

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm g(Φtx + m̃t + Stx + r3)γt(dr3)∫

Rm e
1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

.

(4.44)

Now setting g(x) = x (this can be done even though g is not bounded because g is
integrable with respect to Gaussian measure), we obtain the conditional mean as

E[Xt|Yt] = m̃t + E[(Φt + St)V0|Yt] = m̃t + (Φt + St)E[V0|Yt]

Now observe from (4.39) that

d
dt
(Φt + St) = (At − P̃tCT

t Ct)(Φt + St),

which has the same form as (4.20), and thus from Theorem (4.1.13) it follows that
‖Φt + St‖ → 0 as t→ ∞.

‖E[Xt|Yt]− m̃t‖ = ‖(Φt + St)E[V0|Yt]‖
≤ M0‖(Φt + St)‖ P− a.s.
t→∞−−→ 0 P− a.s. ,

because E[V0|Yt] is uniformly integrable (square integrable, in particular). There-
fore,

E[Xt|Yt]− m̃t → 0 P− a.s. and in L2

Now, if we can prove that (X̂M̄,P̄
t − m̃t)→ 0, P− a.s then we shall have shown that

E[Xt|Yt]− X̂M̄,P̄
t → 0, P− a.s

To that end, consider

d(m̃t − X̂M̄,P̄
t ) = (At − PP̄

t CT
t Ct)(m̃t − X̂M̄,P̄

t )dt + (R̃t − PP̄
t )C

T
t (dyt − CtE[Xt|Yt])

+ (R̃t − PP̄
t )C

T
t Ct(E[Xt|Yt]− m̃t)dt

whose solution can be expressed as

m̃t − X̂M̄,P̄
t = ΨP̄

t (m̃0 − M̄) +
∫ t

0
ΨP̄

t

(
ΨP̄

s

)−1
(R̃s − PP̄

s )C
T
s (dYs − CsE[Xs|Ys])

+
∫ t

0
ΨP̄

t

(
ΨP̄

s

)−1
(R̃s − PP̄

s )C
T
s Cs(E[Xs|Ys]− m̃s)ds
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= J1 + J2 + J3,

where J1
.
= ΨP̄

t (m̃0 − M̄), J2
.
=
∫ t

0 ΨP̄
t

(
ΨP̄

s

)−1
(R̃s − P̄s)CT

s (dYs − CsE[Xs|Ys]), and

J3
.
=
∫ t

0 ΨP̄
t

(
ΨP̄

s

)−1
(R̃s − P̄s)CT

s Cs(E[Xs|Ys]− m̃s)ds. In view of Theorem (4.1.13),
it is easy to check that J1 → 0 and J2 → 0 P− a.s. Thus, consider

J3 =
∫ t

0
ΨP̄

t

(
ΨP̄

s

)−1
(R̃s − PP̄

s )C
T
s Cs(E[Xs|Ys]− m̃s)ds

= ΨP̄
t (P′ − P̄)

∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s E[V0|Ys]ds

= ΨP̄
t (P′ − P̄)

∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s (E[V0|Ys]−E[V0|Y∞])ds

+ ΨP̄
t (P′ − P̄)

∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s ds E[V0|Y∞]

= L1 + L2,

where,

L1
.
= ΨP̄

t (P′ − P̄)
∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s (E[V0|Ys]−E[V0|Y∞])ds

L2
.
= ΨP̄

t (P′ − P̄)
∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s ds E[V0|Y∞]

Again, using the uniform bound on Cs and Theorem (4.1.13), it is clear that L2 →
0 P− a.s. In order to show that L1 → 0 P− a.s, It suffices to show that

‖
∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s (E[V0|Ys]−E[V0|Y∞])ds‖ < ∞

To that end, we know that for a given ε > 0, there is a tε > 0 such that for every
t > tε, ‖E[V0|Ys]−E[V0|Y∞]‖ < ε.

‖
∫ t

0

(
ΨP′

s

)T
CT

s CsΨP′
s (E[V0|Ys]−E[V0|Y∞])ds‖

≤ ‖
∫ tε

0

(
ΨP′

s

)T
CT

s CsΨP′
s (E[V0|Ys]−E[V0|Y∞])ds‖

+ ‖
∫ t

tε

(
ΨP′

s

)T
CT

s CsΨP′
s (E[V0|Ys]−E[V0|Y∞])ds‖

< ∞ uniformly in t, by (4.30)

Therefore, the above calculation implies that (X̂M̄,P̄
t − m̃t) → 0, P − a.s. This

concludes the proof of (4.41).
We again follow the method of [116] to next prove (4.42). To this end, consider
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the optimal filtering distribution π
µ
t (recall π

µ
t (B) = E[1Xt∈B|Yt]) and the Gaussian

distribution Ñt
.
= N (m̃t, R̃t). For a bounded uniformly continuous function g :

Rn → R, using the expression from (4.44),∫
Rn

g(x)πµ
t (dx)−

∫
Rn

g(x)Ñt(dx)

=

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm g(Φtx + m̃t + Stx + r3)γt(dr3)∫

Rm e
1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

−
∫

Rn
g(x)Ñt(dx)

=

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

∫
Rm [g(Φtx + m̃t + Stx + r3)− g(m̃t + Str3)] γt(dr3)∫

Rm e
1
2 xT(Rt−Kt)x+xT L̃t µ(dx)

,

(4.45)

where the last line is obtained by using definition of γt(dx) and by multiplying and
the second term in the second line above by

∫
Rm e

1
2 xT(Rt−Kt)x+xT L̃t π(dx). Now, if we

partition the µ(dx) integral into regions |(Φt + St)x| < δ and |(Φt + St)x| ≥ δ for a
fixed δ > 0, then∫

Rn
g(x)πµ

t (dx)−
∫

Rn
g(x)Ñt(dx)

≤ sup
|z1−z2|<δ

|g(z1)− g(z2)|+ 2 sup
z

(g(z))E[1|(Φt+St)X0|>δ|Yt]

≤ sup
|z1−z2|<δ

|g(z1)− g(z2)|+
2 supz (g(z))

δ2 ‖Φt + St‖2E[|X0|2]

≤ sup
|z1−z2|<δ

|g(z1)− g(z2)| as t→ ∞

where the second inequality follows from Chebyshev’s inequality. Observe now
that for any δ0 > 0, we can choose sufficiently small δ, such that

sup
|z1−z2|<δ

|g(z1)− g(z2)| < δ0

which implies that π
µ
t − Ñt → 0 P− a.s. weakly as t → ∞. Using now the fact

that (X̂M̄,P̄
t − m̃t) → 0, P− a.s and (PP̄

t − R̃t) → 0, we conclude that [πµ
t (g) −

N (X̂M̄,P̄
t , PP̄

t )(g)] t→∞−−→ 0, P− a.s. �

Remark 4.2.5. In contrast to the results in the case of non-autonomous filtering model with
stochastic signal for non-autonomous case, rates of convergence could not be estimated in
the case of non-autonomous filtering model with deterministic signal. The main obstruction
is in establishing the exponential stability of the (4.17).
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4.3 Small noise analysis

Suppose the underlying signal Xε is stochastic with L(Xε
0) = µ and a very small

noise (ε denotes the noise strength). Denote its filter by π
µ
t,ε, depending on ε. Con-

sider the evolution corresponding to π
µ
t,0 and let us drive this equation with ob-

servations Yε that are made on the true system (the one with stochastic signal)3.
Now π

µ
t,0(g) is not optimal estimate of g(Xε

t ) given Yε. The question of interest is:
Does this quantity remain close to π

µ
t,ε(g) at all times, for small enough ε. This is

desirable because the Kallianpur-Striebel formula in the deterministic signal case
involves only finite dimensional integrals (see next chapter). We provide the an-
swer to the question raised above, in the case of Kalman-Bucy filter (linear filter
with Gaussian initial condition). To that end, consider the processes given by,

Xε
t = Xε

0 +
∫ t

0
AsXε

sds + ε
∫ t

0
FsdBε

s, (4.46)

Yε
t =

∫ t

0
CsXε

sds +
∫ t

0
dWε

s , (4.47)

L(Xε
0)

.
= µ = N (M, P).

The probability space and the above model are constructed in a same way as men-
tioned in the begin of this chapter.As earlier, Xε

0, Vε
t and Wε

t are all mutually inde-
pendent. Let Y ε .

= σ{Yε : 0 ≤ s ≤ t} and π
µ
t,ε be the conditional distribution of Xε

t

given Y ε
t

4. Since Xε
0 is Gaussian, we have π

µ
t,ε = N (X̂M,P

t,ε , PP
t,ε), where,

dX̂M,P
t,ε = AtX̂M,P

t,ε dt + PP
t,εC

T
t (dYε

t − CtX̂M,P
t,ε dt),

ṖP
t,ε = AtPP

t,ε + PP
t,ε AT

t − PP
t,εC

T
t CtPP

t,ε + ε2FtFT
t ,

X̂M,P
0,ε = m, PP

0,ε = P.

We also define the new process X̂0
t as

dX̂0
t = AtX̂0

t dt + PP
t CT

t (dYε
t − CtX̂0

t dt).

Note that above definition involves Yε
t , instead of Y0

t and PP
t is solution to (4.17). To

proceed further, additional assumption is made in this analysis.

3Note that evolution equation of π
µ
t,0 is an algorithm which takes initial condition µ and a driving

process as inputs. To get the optimal estimate, the driving process has to be the observation process
coming from the corresponding model

4These quantities are already defined. But, we now explicitly show the dependence on ε
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Assumption 4.3.1. Ft is uniformly bounded in t and żt = (At − PP
t CT

t Ct)zt is exponen-
tially stable. i.e.,

‖ΨP
t

(
ΨP

s

)−1
‖ ≤ K0 exp(−α(t− s)),

for t ≥ s ≥ 0 and for some K0, α > 0. Here PP
t is solution to (4.17)

Theorem 4.3.2. [126, Theorem 5.3] Under Assumptions (4.1.8), (4.1.9) and (4.3.1),

P

(
lim inf

ε→0
sup

0≤t≤T0

||X̂M,P
t,ε − X̂0

t || = 0,

)
= 1, ∀T0 ≥ 0

Remark 4.3.3. We note the work of Baras J. S. et al.[16] in which the authors studied
the limiting finite time behavior of the autonomous Kalman - Bucy filter as the signal and
observation noises go to zero. In contrast, we study behavior of non-autonomous Kalman-
Bucy filter (corresponding to zero signal noise) over infinite time horizon where the driving
observations are from a linear filtering model with vanishing signal noise.

Proof. Let us begin with observing

d
dt
(PP

t,ε − PP
t )

= BP
t (PP

t,ε − PP
t ) + (PP

t,ε − PP
t )(BP

t )
T − (PP

t,ε − PP
t )C

T
t Ct(PP

t,ε − PP
t ) + ε2FtFT

t ,

where, PP
0,ε − PP

0 = 0. Recall that BP
t = At − PP

t CT
t Ct and ΨP

t is the fundamental
matrix solution. If we define ∆Pt

.
= PP

t,ε − PP
t , then we have

d
dt
[(ΨP

t )
−1∆Pt(ΨP

t )
−T] = (ΨP

t )
−1(−∆PtCT

t Ct∆Pt + ε2FtFT
t )(Ψ

P
t )
−T

∆Pt = ΨP
t

∫ t

0
(ΨP

s )
−1(−∆PsCT

s Cs∆Ps + ε2FsFT
s )(Ψ

P
t (Ψ

P
s )
−1)Tds

≤ ε2ΨP
t

∫ t

0
(ΨP

s )
−1FsFT

s (Ψ
P
s )
−Tds(ΨP

t )
T

From the assumption of exponential stability, we have ‖ΨP
t
(
ΨP

s
)−1 ‖ ≤ Ke−α(t−s),

for some K, α and for all t ≥ s ≥ 0. Therefore,

0 ≤ ‖∆Pt‖ ≤
ε2KF

2α

Now, we consider the evolution equation for X̂M,P
t,ε − X̂0

t

d(X̂M,P
t,ε − X̂0

t ) = BP
t (X̂M,P

t,ε − X̂0
t )dt + (∆Pt)CT

t (dYε
t − CtX̂M,P

t,ε dt), X̂M,P
0,ε − X̂0

0 = 0,
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X̂M,P
t,ε − X̂0

t =
∫ t

0
ΨP

t (Ψ
P
s )
−1(∆Ps)CT

s (dYε
s − CsX̂M,P

s,ε ds)

Define, ut
.
=
∫ t

0

(
ΨP

s
)−1

(∆Ps)CT
s (dYε

s − CsX̂M,P
s,ε ds) and It

.
= σ{Yε

r −
∫ r

0 CsX̂M,P
s,ε ds :

0 ≤ r ≤ t}. Clearly, ut is a It-martingale. We know that, from Proposition (A.0.28),

‖(ΨP
t )
−1‖ = ‖(ΨP

t )
−T‖ ≤ K′eα′t,

where, α′ can chosen as supt≥0
(
‖At‖+ ‖PP

t CT
t Ct‖

)
. Here, we used the fact that

d
dt

(
ΨP

t

)−T
= −

(
AT

t − CT
t CtPP

t

) (
ΨP

t

)−T

Then, for any given T0 ≥ 0 and λ > 0, applying Doob’s inequality to submartingale
(see Lemma (A.0.13)), ‖ut‖, we have

P

(
sup

0≤t≤T0

‖ut‖ ≥ λ

)
≤

E[‖uT0‖]
λ

P

(
sup

0≤t≤T0

‖
(

ΨP
t

)−1
(X̂M,P

t,ε − X̂0
t )‖ ≥ λ

)
≤

E[‖
(

ΨP
T0

)−1
(X̂M,P

T0,ε − X̂0
T0
)‖]

λ

P

(
K′eα′T0 sup

0≤t≤T0

‖(X̂M,P
t,ε − X̂0

t )‖ ≥ λ

)
≤ ‖

(
ΨP

T0

)−1
‖ ε
√

KFM
2αλ

Now, we take ε → 0 along an arbitrary sequence {εn}n≥1 → 0. Choose a subse-
quence {εnk}k≥1 such that ∑k≥1 εnk < ∞ and λ = λ0K′eα′T0(arbitrariness of λ is now
in λ0),

P

(
K′eα′T0 sup

0≤t≤T0

‖(X̂M,P
t,εnk
− X̂0

t )‖ ≥ λ0K′eα′T0

)
≤ K′eα′T0

√
KFMεnk

2αλ0K′eα′T0

P

(
sup

0≤t≤T0

‖(X̂M,P
t,εnk
− X̂0

t )‖ ≥ λ0

)
≤
√

KFMεnk

2αλ0

Then, applying Borel-Cantelli lemma (see Lemma (A.0.1)) to {Sk}k≥1, where Sk
.
=

{ω ∈ Ω : sup0≤t≤T0
‖(X̂M,P

t,εnk
− X̂0

t )‖ ≥ λ0}, we conclude that

P

(
lim
k→∞

sup
0≤t≤T0

‖X̂M,P
t,εnk
− X̂0

t ‖ = 0,

)
= 1, ∀T0 ≥ 0.

This proves the result. �

Remark 4.3.4. The second part of the assumption about exponential stability depends only
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on the matrices At, Ct (in particular, on uniform complete observability of the pair) but is
not related to the controllability of the pair At, Ft.

The following theorem gives the sufficient condition for the Assumption (4.3.1)
to hold.

Theorem 4.3.5. In the autonomous case (At = A, Ct = C), under the following assump-
tions,

1. A has exponential dichotomy (all eigenvalues have non-zero real part).

2. CTC, when evaluated in the eigenbasis of A (with p unstable and m− p stable eigen-
values), is in the form

CTC .
=

(
K 0
0 K̄

)
,

where, K ∈ Rp×p and invertible. Then

żt = (A− PR
t CTC)zt

is exponentially stable. Here, R > 0 and PR
t is solution to (4.17).

Proof. Let us work in eigenbasis of A. We first show that we can choose a positive
definite matrix P such that there exists a non-zero, non-negative matrix symmetric
matrix P f and PP

t − P f → 0 as t→ ∞.

Choose an invertible P =

(
P1 0
0 P2

)
. We guess that PP

t is of the form

(
Mt 0
0 Lt

)
.

Then the equation becomes(
Ṁt 0
0 Lt

)
=

(
Au 0
0 As

)(
Mt 0
0 Lt

)
+

(
Mt 0
0 Lt

)(
(Au)T 0

0 (As)T

)

−
(

Mt 0
0 Lt

)(
K 0
0 K̄

)(
Mt 0
0 Lt

)
.

We have, equivalently,

Ṁt = AuMt + Mt(Au)T −MtKMt

L̇t = AsLt + Lt(As)T − LtKLt

Since we chose the initial condition in the block diagonal form, it will remain in the
block diagonal form. We study the above equations separately It is clear that Lt → 0
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as t → ∞ (from the corresponding (4.18) and properties of As), supt≥0 |Mt| < ∞
(from (4.1.10)) and inft≥0 σmin(Mt) > 0 (from the corresponding (4.18) and proper-
ties of Au), where σmin is the minimum singular value. Therefore, we can study the
asymptotic behavior of Mt by studying the asymptotic behavior of M−1

t . One can
verify that

M−1
t = φT

−tM
−1
0 φ−t +

∫ t

0
φT

s−tKφs−tds,

where, φ̇t = Auφt. we know, from the property of Au, ‖φ−t‖ → 0 as t→ ∞.

lim
t→∞

vT
i M−1

t vj = lim
t→∞

vT
i

∫ t

0
φT

s−tKφs−tvjds

=
∫ ∞

0
e(λi+λj)(s−t)dsvTKv =

1
λi + λj

vT
i Kvj.

where, vi is unstable eigenvector with eigenvalue λi (Note that we are working in
the eigenbasis and v should be considered as p dimensional vector). Therefore,
M−1

t converges to M−1 (given by the above equation) and Mt → M as t → ∞.
Also, note that the convergence of M−1

t to M−1 is exponential implying exponential
convergence of Mt to M. Indeed,

‖V1 −V2‖ = ‖V1(V−1
1 −V−1

2 )V2‖ ≤ ‖V1‖‖V2‖‖V−1
1 −V−1

2 ‖.

Therefore, we can conclude that limt→∞ PP
t = P f .

=

(
M 0
0 0

)
. Now, we can show

that A− P f CTC is asymptotically stable (equivalently, exponentially stable).

A− P f CTC =

(
Au 0
0 As

)
−
(

M 0
0 0

)(
K 0
0 L

)
=

(
Au −MK 0

0 As

)

Therefore, if we can show that Au −MK is asymptotically stable, then we are done.
For p-dimensions, from (4.24) and invertibility of K , we have that this indeed is the
case.

Now to show that A− PR
t CTC is exponentially stable (R is any positive definite

matrix), we use the fact that ‖PR
t − PP

t ‖+ ‖PP
t − P f ‖ → 0 as t → ∞ and we use the

following theorem.

Theorem 4.3.6. [1, Theorem 4.4.6] If ψ̇t = Âtψt with ψ0 = Ip is exponentially stable i.e.,
‖ψtψ

−1
s ‖ ≤ K0 exp(−α(t− s)), for t ≥ s ≥ 0 and for some K0, α > 0 and a matrix δt is
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such that ‖δt‖ ≤ ε, for some ε > 0, then

‖ψ̄tψ̄
−1
s ‖ ≤ K1 exp(−β(t− s)), t ≥ s ≥ 0,

where, β = α − εK0 and ˙̄ψt = (At + δt)ψ̄t with ψ̄0 = Ip. In particular, if ε is small
enough, we have exponential stability for ˙̄ψt = (At + δt)ψ̄t.

In our case, Ât = A− PCTC and δt = (PR
t − P)CTC. We know that ‖δt‖ → 0 as

t → ∞. Since, exponential stability is concerned only with the long time behavior,
we wait long enough for ‖δt‖ to become sufficiently small. Therefore, we have the
desired exponential stability. �

4.4 Discussion and Conclusion

The problem that we described is the asymptotic behavior of the distance between
an incorrectly initialised linear filter and the correctly initialised linear filter. The
classical results on filter stability for the linear case with system noise are estab-
lished under the assumptions of observability and controllability. These results
cannot be trivially extended to the case of linear filter with zero system noise, since
such systems are not controllable. It has been shown in this chapter that control-
lability assumption can be completely discarded. Additionally, we have also seen
that system with small noise behaves approximately the same as system with zero
noise, i.e, small noise limit is non-singular in the case of Gaussian initial conditions.

For general non-autonomous systems, exponential convergence has not been
established, even though it is observed numerically in many examples, as noted in
[28, 68] and references therein, and as we have already mentioned, the main diffi-
culty is to establish exponential stability of (4.17). The minimal set of assumptions
under which exponential convergence of (4.17) is currently under investigation.
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Chapter 5

Stability of the Non-linear Filter

In this chapter, we describe the non-linear filtering model in the case of determin-
istic signal. We shall establish the filter stability in this case, under appropriate
conditions on signal and observation model. We consider the filtering problem in
this context as a parameter estimation problem (in this case, it is the initial condition
of the signal). It is a particular case of smoothing problem. Almost all of the content
of this chapter is taken from [125] (which is part of the doctoral work corresponding
to this thesis). We describe and prove the results for continuous time case (as we
did until now). But, we also state the analogous results in discrete time case.

5.1 Introduction

The techniques in this chapter are inspired from the work of F. Cérou [41]. In [41], F.
Cérou studied the problem of accuracy of the filter (which is a measure of deviation
of the filter from the signal) for the deterministic dynamics. We use the accuracy of
the smoother, i.e., the asymptotic convergence of the conditional distribution of the
initial condition given the observations (a particular case of the smoothing problem)
to establish stability of the non-linear filter. In contrast to the signal state space that
is considered until now (which is Rm), we allow S to be a complete m-dimensional
Riemannian manifold with metric d. The probability space (Ω,F , {Ft}, P) is con-
structed exactly in the same way as it was done in the case of linear filter for the
case of deterministic signal (see previous chapter). We give the details of the con-
struction below.

Ω .
= S× C([0, ∞), Rn)

F .
= B(Ω)

P
.
= µ×Pn

W ,
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Consider the canonical process on Ω denoted by ω,

ω(·)
.
= (X0, W(·)),

Ht
.
= σ(ωs : ω ∈ Ω, 0 ≤ s ≤ t)

Ft
.
= σ(ωs : ω ∈ Ω, 0 ≤ s ≤ t) ∨N ,

where,N is set of all P- null sets. From above, X0 and W are mutually independent.
We consider a continuous time dynamical system {φt}t∈R with initial condition X0,
on S. This dynamical system is observed through the observation process Yt ∈ Rn

in the usual way.

Yt =
∫ t

0
h(s, φs(X0))ds + Wt ,

where, h : R+ × S→ Rn. As earlier, Yt
.
= σ{Ys : 0 ≤ s ≤ t}.

We define the conditional distribution π
µ
t through smoother π̂

µ
t , that is the con-

ditional distribution of the initial condition X0, again conditioned on Yt. To that
end, we define

Z
(

t, x, Y[0,t]

) .
= exp

(∫ t

0
h (s, φs (x))T dYs −

1
2

∫ t

0
‖h (s, φs (x))‖2 ds

)
,

it follows from Bayes’ rule (see Lemma (2.1.4)), that for any bounded continuous
function g : S→ R, the smoother is given by

π̂
µ
t (g) .

= E [g (X0) |Yt] =

∫
S g (x) Z

(
t, x, Y[0,t]

)
µ (dx)∫

S Z
(

t, x, Y[0,t]

)
µ (dx)

,

Noting that Xt = φt(X0), the filter is given by

π
µ
t (g) .

= E [g (φt(X0)) |Yt] =

∫
S g (φt(x)) Z

(
t, x, Y[0,t]

)
µ(dx)∫

S Z
(

t, x, Y[0,t]

)
µ(dx)

.
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5.2 Stability of the non-linear filter

As earlier, we denote the incorrect initial condition to be ν. Then the corresponding
incorrect filter is given by

πν
t (g) =

∫
S g (φt(x)) Z

(
t, x, Y[0,t]

)
ν(dx)∫

S Z
(

t, x, Y[0,t]

)
ν(dx)

.

In the following, we prove that π
µ
t and πν

t merge weakly (in the sense of [61]) in
expectation. This will be established by firstly, proving that smoother is asymptoti-
cally accurate, under suitable conditions i.e., π̂

µ
t is supported around the true initial

condition X0 after large times. The asymptotic accuracy of smoother was studied in
[41], but under very restrictive conditions. The result we prove will be significant
generalisation of the result in [41]. As mentioned in the beginning of this chapter,
all results presented in this chapter have discrete time analogs. We only state these
results and not prove them (proofs are very similar to those in continuous time
case).

5.2.1 Main assumptions

We now state the main assumptions that are made in the analysis. We give the
significance of these assumptions later. Consider τ > 0 which will be defined in
Assumption (5.2.3).

Assumption 5.2.1. There exists a bounded open set U with diameter K < ∞ such that
φτ(U) ⊂ U.

Assumption 5.2.2. ∀x, y ∈ U, we have d(φτx, φτy) ≤ Cd(x, y), for some C = C(τ) >
1.

Assumption 5.2.3. There exists τ > 0 such that ∀t ≥ 0 and x1, x2 ∈ U,

ρtd(x1, x2)
2 ≤

∫ t+τ

t
‖h (s, φs−t(x1))− h (s, φs−t(x2))‖2 ds ≤ Rρtd(x1, x2)

2 , (5.1)

where, ρt is a positive non-decreasing function such that

lim
t→∞

ρt = ∞, lim
t→∞

∫ t
0 ρsds

ρt
= ∞ and

tρt∫ t
0 ρsds

≤ C′ < ∞,

for some C′ > 0 and R > 1.
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It follows from this assumption that ∀x, y ∈ U,

N

∑
i=0

ρiτd (φiτ(x), φiτ(y))
2 ≤

∫ t

0
‖h (s, φs(x))− h (s, φs(y))‖2 ds

≤ R
N+1

∑
i=0

ρiτd (φiτ(x), φiτ(y))
2 , (5.2)

where, N = b t
τ c. Define,

DN(x, y) .
=

(
N

∑
i=0

ρiτd (φiτ(x), φiτ(y))
2

) 1
2

and dN(x, y) .
= max

0≤i≤N−1
d (φiτ(x), φiτ(y)) .

It is straightforward to see that DN(x, y) and dN(x, y) are metrics on S (for a fixed
N ≥ 0). Moreover, they are such that

ρ0dN+1(x, y) ≤ DN(x, y) ≤ ρNτ

√
N + 1dN+1(x, y)

It follows from Assumption (5.2.1) that for x, y ∈ U, we have a uniform (in N)
bound

dN(x, y) ≤ K.

Indeed, from the invariance of U, we have φiτx, φiτy ∈ U and hence we get

d(φiτx, φiτy) ≤ K,

for all i ≥ 0.

Assumption 5.2.4. For (x, y) ∈ V ⊂ U ×U, compliment (in U ×U) of a zero Lebesgue
measure set satisfying d(x, y) ≥ b > 0, the following holds

D2
N(x, y) ≥ L2(b)

N

∑
i=0

ρiτ ,

where, L(b) is a positive constant.

Assumption 5.2.5. supp(µ) ⊂ U

Before proceeding further, we define the notion the spanning sets [143, Defini-
tion 7.8] which plays an important role in the proof of Theorem (5.2.8). It will help
us get the estimates of the covering number of a compact set with ε-balls (under the
metric dN), for any ε > 0.
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Definition 5.2.6. For a given compact set K, n ≥ 0 and ε > 0, the set F ⊂ X is called
(n, ε)-spanning set of K with respect to φτ if ∀x ∈ K, ∃y ∈ F such that

max
0≤i≤n−1

d (φiτ(x), φiτ(y)) ≤ ε.

Definition 5.2.7. r(K, n, ε, φτ) is defined as the minimum possible cardinality of (n, ε)-
spanning sets of K.

Note that for any n, r(K, n, ε, φτ) is finite due to compactness of K.

5.2.2 Significance of the assumptions

We now discuss the significance of the above assumptions individually. In the sec-
tion (5.5), a detailed discussion of some important examples (for which we can ex-
plicitly verify or provide strong numerical evidence for these assumptions) is given.

1. Relation to observability: Assumption (5.2.3) resembles closely the well-known
observability condition (see Definition (A.0.25)) in the linear case except for
the dependence of ρt on t satisfying certain conditions. And also, even though
the assumed upper bound in Assumption (5.2.3) is satisfied in many of the
filtering models, the assumed lower bound is really difficult to come by, in
practice. This intuitively implies that observing the signal long enough, we
can distinguish between the two initial conditions. As mentioned later, the
additional conditions on ρt are required precisely in ensuring the positivity
of the exponent in (5.17). This can be understood intuitively in the following
way. In general, deterministic dynamics has the tendency to lose information
which can be attributed to sensitive dependence of the dynamics on initial
conditions. Therefore, to establish the accuracy of the smoother, we have to
make observations at a rate faster than the rate at which dynamics loses the
information in the form of sensitive dependence to initial conditions.

To express this more precisely, we consider an open ball, denoted by QN(r, x),
of radius r around x ∈ S under the metric dN. It is clear that for y, y′ ∈ S,
dN(y, y′) ≤ dN+1(y, y′), ∀N ≥ 0. Therefore, the volume of QN(r, x) is non-
increasing in N. Informally, this means that set of all points whose orbits are
within a dN-distance r from the orbit of x can shrink to a zero volume set
containing x. If the dynamics is sensitive to initial conditions then the volume
of QN(r, x) goes to zero as N → ∞. In fact, Assumption (5.2.2) implies that the
volume of QN(r, x) goes to zero at a rate that is at most exponential, which can
be seen in (5.16), leading to the third term in the exponent on the right hand
side of (5.17). Considering ρt as mentioned in Assumption (5.2.3) leads to the
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third term going to zero, by ensuring that we are observing at a fast enough
rate.

2. Bounded orbits and Attracting set: Assumption (5.2.1) says that if the initial
condition lies in the set U, then it signal stays in U for all future times. The
assumption also implies the existence of an invariant set (UI) defined by UI =

∩t≥0φt(U). This is a reasonable assumption since in practice, even though the
initial condition may not lie in U, it is plausible to assume that the state being
observed (that started inside a bounded set), lies inside U, since a natural
system evolving over long enough time would have entered the set U when
U is a global attracting set, .

3. Divergence of nearby orbits: Assumption (5.2.4) says that two orbits, started
at a given distance away from each other, do not come too close to each other
very often. Intuitively, this is reasonable for a system for which the support
of the initial condition µ does not contain any stable periodic orbits or fixed
points. In Section (5.5), we give examples of general classes of systems that
satisfy this assumption.

4. We require the Assumptions (5.2.1) and (5.2.4) to ensure that signal process
neither converges to periodic orbits (or fixed points) nor escapes to infinity.
This is because we are proving filter stability using the smoother and by ob-
serving a signal that either escapes to infinity or converges onto a periodic
orbit (or fixed point), we lose all the information of the initial condition (as
time goes to infinity). This means that as time progresses, we do not gain any
more information about the initial condition than we already have. This can
be avoided if we consider a signal that neither converges to a periodic orbit
(or fixed point) nor escapes to infinity.

5.2.3 Asymptotic accuracy of the smoother

We now prove that asymptotically, support of the smoother π̂
µ
t is concentrated

around the initial condition X0. And this concentration happens at an exponential
rate.

Theorem 5.2.8. Suppose µ is absolutely continuous with respect to the volume measure
σ on S and dµ

dσ is continuous on the support of µ. Under the assumptions (5.2.1), (5.2.2),
(5.2.3), (5.2.4) and (5.2.5), for all a > 0, there exists α(a) > 0 such that the smoother
π̂

µ
t (·)

.
= P [X0 ∈ ·|Yt] satisfies

eα(a)t [1− π̂
µ
t (Ba(X0))

] t→∞−−→ 0 P-a.s.,
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where Ba(X0)
.
= {x ∈ S : d(x, X0) ≤ a} is the ball centred at X0 and the rate α(a) > 0

depends only on the radius a of the ball.

Proof. In order to show that π̂
µ
t (Ba(X0)) goes to one, we will show, in Lemma (5.2.11),

that π̂
µ
t (Ba(X0)

c) goes to zero at an exponential rate as t→ ∞.
Recall that for any measurable set A ∈ B(S),

π̂
µ
t (A) =

∫
A exp

(∫ t
0 h (s, φs(x))T dYs − 1

2

∫ t
0 ‖h (s, φs(x))‖2 ds

)
µ(dx)∫

S exp
(∫ t

0 h (s, φs(x))T dYs − 1
2

∫ t
0 ‖h (s, φs(x))‖2 ds

)
µ(dx)

We substitute dYs = h (s, φs(X0)) ds + dWs and multiply the numerator and the
denominator by exp(

∫ t
0 h(s, φs(X0))

TdWs − 1
2

∫ t
0 ‖h(s, φs(X0))‖2ds), which is inde-

pendent of x to get,

π̂
µ
t (A) =

∫
A exp

(∫ t
0 As(x, X0)

TdWs − 1
2

∫ t
0 ‖As(x, X0)‖2 ds

)
µ(dx)∫

S exp
(∫ t

0 As(x, X0)TdWs − 1
2

∫ t
0 ‖As(x, X0)‖2 ds

)
µ(dx)

,

where, As(x, X0)
.
= [h (s, φs(x))− h (s, φs(X0))]. Define the set

QN(r, x) .
= {y ∈ S : dN(x, y) < r},

for r > 0, and N .
= b t

τ c
We now consider,

π̂
µ
t (Ba(X0)

c) =

∫
Ba(X0)c exp

(∫ t
0 As(x, X0)

TdWs − 1
2

∫ t
0 ‖As(x, X0)‖2 ds

)
µ(dx)∫

S exp
(∫ t

0 As(x, X0)TdWs − 1
2

∫ t
0 ‖As(x, X0)‖2 ds

)
µ(dx)

≤

∫
Ba(X0)c exp

(∫ t
0 As(x, X0)

TdWs − 1
2 DN(x, X0)

2
)

µ(dx)∫
QN(r,X0)

exp
(∫ t

0 As(x, X0)TdWs − R
2 DN+1(x, X0)2

)
µ(dx)

using (5.2)

≤

∫
Ba(X0)c exp

(
−DN(x, X0)

2

(
− sup

x∈Ba(X0)c

∣∣∣∫ t
0 As(x,X0)

TdWs

∣∣∣
DN(x,X0)2 + 1

2

))
µ(dx)∫

QN(r,X0)
exp

(∫ t
0 As(x, X0)TdWs − R

2 DN+1(x, X0)2
)

µ(dx)
, (5.3)

where we used the fact that∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
DN(x, X0)2 ≤ sup

x∈Ba(X0)c

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
DN(x, X0)2
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and DN(x, X0)
2 = ∑N

i=0 ρiτd (φiτ(x), φiτ(X0))
2. From (5.3), it is clear that in order to

establish our desired result, it is sufficient to find suitable estimates on

sup
x∈Ba(X0)c

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
∑N

i=0 ρiτd (φiτ(x), φiτ(X0))
2 and sup

x∈QN(r,X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣ .

These bounds are stated in Lemmas (5.2.9)–(5.2.10).

Lemma 5.2.9. ∀a > 0 and ∀t ≥ τ with N = b t
τ c, we have

E

[
sup

Ba(X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]
≤ 48K(((N + 2)Rρ(N+1)τ)(p(N + 2) log C + log(qbp)))

1
2

+ 96
√

Kp
(
(N + 2)ρ(N+1)τR

) 1
4 , (5.4)

with b, q being the constants from Lemma (A.0.27), while C = C(τ), K, R are from as-
sumptions (5.2.3)–(5.2.2).

Proof. Since X0 and Wt are independent,

E

[
sup

Ba(X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]
≤ 2EX0EW

[
sup

Ba(X0)

∫ t

0
As(x, X0)

TdWs

]
, (5.5)

where, EX0 and EW are, respectively, expectations over distribution of X0 and Wiener
measure corresponding to Wt. Observing that

∫ t
0 As(x, X0)

TdWs is a centered Gaus-
sian process, we use the following result (see Theorem (A.0.24))

EW

[
sup

Ba(X0)

∫ t

0
As(x, X0)

TdWs

]
≤ 24

∫ ∞

0
log

1
2
(

N
(

Ba(X0), d̄t, ε
))

dε , (5.6)

where, N
(

Ba(X0), d̄t, ε
)

is the minimum number of balls of radius ε under the
pseudo-metric d̄t required to cover Ba(X0) (which is finite for all ε due to the com-
pactness of Ba(X0)), where,

d̄t(x, y) .
=

√√√√EW

[(∫ t

0
As(x, X0)TdWs −

∫ t

0
As(y, X0)TdWs

)2
]

=

√∫ t

0
‖h (s, φs(x))− h (s, φs(y))‖2 ds .
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From (5.2), It is clear that,

d̄t(x, y) ≤
√

RDN+1(x, y) ≤
√
(N + 2)Rρ(N+1)τdN+2(x, y) ,

which implies that

N
(

Ba(X0), d̄t, ε
)
≤ N(Ba(X0),

√
RDN+1, ε) ≤ N(Ba(X0),

√
(N + 2)Rρ(N+1)τdN+2, ε)

Denoting ε̄(a, N)
.
=
√
(N + 2)Rρ(N+1)τ supx,y∈Ba(X0)

dN+2 (x, y), we get the follow-
ing bound:∫ ∞

0
log

1
2
(

N
(

Ba(X0), d̄t, ε
))

dε

≤
∫ ε̄(a,N)

0
log

1
2

(
N
(

Ba(X0),
√
(N + 2)Rρ(N+1)τdN+2, ε

))
dε

=
∫ ε̄(a,N)

0
log

1
2

(
N
(

Ba(X0), dN+2, ε
(√

(N + 2)Rρ(N+1)τ

)−1
))

dε

=
√
(N + 2)Rρ(N+1)τ

∫ ε̄(a,N)√
(N+2)Rρ(N+1)τ

0
log

1
2 (N (Ba(X0), dN+2, β)) dβ . (5.7)

Note that N (Ba(X0), dN+2, β) = rN+2 (Ba(X0), β, φτ), introduced in definition (5.2.7).
Hence we will use the bound from lemma (A.0.27) with the choice

K .
= ∪y∈U{x : d(x, y) ≤ a} . (5.8)

This is a bound of rN+2 (Ba(X0), β, φτ) that is valid for all the realisations of X0.
Therefore, all the constants in equations below are also independent of realisations
of X0. Returning to (5.7) and using Lemma (A.0.27) for the chosen K along with
Assumption (5.2.2), we get

√
(N + 2)ρ(N+1)τR

∫ ε̄(a,N)√
(N+2)ρ(N+1)τ R

0
log

1
2 (N (Ba(X0), dN+2, β)) dβ

=
√
(N + 2)ρ(N+1)τR

∫ ε̄(a,N)√
(N+2)ρ(N+1)τ R

0
log

1
2 (rN+2 (β, Ba(X0), φτ)) dβ

≤
√
(N + 2)ρ(N+1)τR

∫ ε̄(a,N)√
(N+2)ρ(N+1)τ R

0
log

1
2

(
q
(

CN+2bβ−1
)p)

dβ

≤
√
(N + 2)ρ(N+1)τR

∫ ε̄(a,N)√
(N+2)ρ(N+1)τ R

0
log

1
2

(
q(CN+2b)p

(
β−1 + 1

)p)
dβ

≤
√
(N + 2)ρ(N+1)τR

∫ ε̄(a,N)√
(N+2)ρ(N+1)τ R

0

√
(log (q(CN+2b)p) + p log (β−1 + 1))dβ
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≤
√
(N + 2)ρ(N+1)τR

∫ ε̄(a,N)√
(N+2)ρ(N+1)τ R

0

(√
log (q(CN+2b)p) +

√
p log (β−1 + 1)

)
dβ

≤ ε̄(a, N)
√

p (N + 2) log (C) + log (qbp) + 2
√

ε̄(a, N)p
(√

(N + 2)ρ(N+1)τR
) 1

4
.

Here, we used the inequality: log(1 + 1
x ) ≤

1√
x and integrated. From the definition,

ε̄(a, N) ≤
√
(N + 2)Rρ(N+1)τK. Combining the inequalities (5.5), (5.6), and (5.7)

with the above inequality gives (5.4), completing the proof of the lemma. �

As noted earlier, we also need to have estimate on supx∈Ba(X0)c

∣∣∣∫ t
0 As(x,X0)

TdWs

∣∣∣
DN(x,X0)2

which is given by the lemma below.

Lemma 5.2.10. ∀a > 0, ∀t ≥ τ and N = b t
τ c, there exists Ga depending only on a such

that

E

 sup
x∈Ba(X0)c

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
DN(x, X0)2

 ≤ S(N)

∑N
i=0 ρiτ

Ga ,

where,

S(N) = 48K
√(

(N + 2)Rρ(N+1)τ

)
(p (N + 2) log (C) + log (qbp))

+ 96
√

Kp
(
(N + 2)ρ(N+1)τR

) 1
4 .

Proof. Consider a sequence {ak}k∈Z such that ak → 0 as k → −∞ and ak → ∞ as
k→ ∞. Let k0 be the largest integer such that ak0 ≤ a. From the Assumption (5.2.1),
there a k1 ∈ Z such that ∀x, X0 ∈ supp(µ), we have

ak0 ≤ d(x, X0) ≤ ak1 ,

Using this notation, we obtain the required bound as follows:

E

 sup
x∈Ba(X0)c

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
DN(x, X0)2

 ≤ E

 sup
{x:d(x,X0)≥ak0

}

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
∑N

i=0 ρiτd (φiτ(x), φiτ(X0))
2


≤ ∑

k1≥k≥k0

EX0

EW

 sup
{x:ak≤d(x,X0)≤ak+1}

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
∑N

i=0 ρiτd (φiτ(x), φiτ(X0))
2


≤ ∑

k1≥k≥k0

EX0

[
1

L2(ak)∑N
i=0 ρiτ

EW

[
sup

{x:ak≤d(x,X0)≤ak+1}

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]]
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≤ ∑
k1≥k≥k0

EX0

[
1

L2(ak)∑N
i=0 ρiτ

EW

[
sup

{x:d(x,X0)≤ak+1}

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]]

≤ ∑
k1≥k≥k0

EX0

[
1

L2(ak)

]
1

∑N
i=0 ρiτ

S(N)K

≤ S(N)

∑N
i=0 ρiτ

∑
k1≥k≥k0

1
L2(ak)

K . (5.9)

This completes the proof of the lemma. �

Using the fact that t→ ∞⇔ N → ∞ and NρNτ

∑N
i=0 ρiτ

≤ C′, it can be seen that

lim
t→∞

E

 sup
x∈Ba(X0)c

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
∑N

i=0 ρiτd (φiτ(x), φiτ(X0))
2

 = 0 . (5.10)

Finally, we need the lemma below to complete the proof of Theorem (5.2.8).

Lemma 5.2.11. ∀a > 0, ∃α = α(a) > 0 such that limt→∞ eαtπ̂
µ
t (Ba(X0)

c) = 0, a.s.

Proof. From (5.10), we have

lim
t→∞

sup
x∈Ba(X0)c

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
∑N

i=0 ρiτd (φiτ(x), φiτ(X0))
2 = 0, w.p.1

Recall that t → ∞ ⇔ N → ∞. In particular, the above equation holds for any
subsequence {tj} . Therefore, there is sub-subsequence {tjq} such that

lim
q→∞

sup
x∈Ba(X0)c

∣∣∣∫ tjq
0 As(x, X0)

TdWs

∣∣∣
∑

N(j,q)
i=0 ρiτd (φiτ(x), φiτ(X0))

2
= 0, a.s,

where N(j, q) .
= b

tjq
τ c.

From the above, for large enough q, we have

sup
x∈Ba(X0)c

∣∣∣∫ tjq
0 As(x, X0)

TdWs

∣∣∣
∑

N(j,q)
i=0 ρiτd (φiτ(x), φiτ(X0))

2
<

1
4

and thereby,

∫
Ba(X0)c

exp

−DN(j,q)(x, X0)
2

− sup
x∈Ba(X0)c

∣∣∣∫ tjq
0 As(x, X0)

TdWs

∣∣∣
DN(j,q)(x, X0)2 +

1
2


 µ(dx)
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≤
∫

Ba(X0)c
exp

(
−DN(j,q)(x, X0)

2 1
4

)
µ(dx)

≤ exp

(
−

L2(a)∑
N(j,q)
i=0 ρiτ

4

)
. (5.11)

Here, we used assumption (5.2.1) and the fact that µ (Ba(X0)
c) ≤ 1. We now, con-

sider∫
QN(r,X0)

exp
(∫ t

0
As(x, X0)

TdWs −
1
2

∫ t

0
|As(x, X0)|2 ds

)
µ(dx)

≥
∫

QN(r,X0)
exp

(∫ t

0
As(x, X0)

TdWs −
1
2

R
N+1

∑
i=0

ρiτd (φiτ(x), φiτ(X0))
2

)
µ(dx)

≥
∫

QN(r,X0)
exp

(∫ t

0
As(x, X0)

TdWs −
1
2

Rd2
N+1(x, X0)

N+1

∑
i=0

ρiτ

)
µ(dx)

≥
∫

QN(r,X0)
exp

(
−

N+1

∑
i=0

ρiτ

(
−
∫ t

0 As(x, X0)
TdWs

∑N+1
i=0 ρiτ

+
R
2

r

))
µ(dx), (5.12)

In the last inequality, we used the definition of QN(r, X0). And also, from the defi-
nition of QN(r, x), it is clear that QN(r, x) ⊂ Br(x) ⊂ Ba(X0). Therefore,

E

[
sup

QN(r,X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]
≤ E

[
sup

Br(X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]

≤ E

[
sup

Ba(X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]

From Lemma (5.2.9), it follows that

1

∑N+1
i=0 ρiτ

E

[
sup

QN(r,X0)

∣∣∣∣∫ t

0
As(x, X0)

TdWs

∣∣∣∣
]
≤ S(N)Ga

∑N+1
i=0 ρiτ

Again, since NρNτ

∑N
i=0 ρiτ

≤ C′, it converges to zero as t→ ∞ which again implies that

lim
t→∞

supBr(X0)

∣∣∣∫ t
0 As(x, X0)

TdWs

∣∣∣
∑N+1

i=0 ρiτ
= 0, w.p.1.
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In particular, it converges to zero in probability on subsequence tj. Therefore, we
can choose a sub-subsequence, {tjq} (that works for the previous scenario) such that

lim
q→∞

supQN(j,q)(r,X0)

∣∣∣∫ tjq
0 As(x, X0)

TdWs

∣∣∣
∑

N(j,q)+1
i=0 ρiτ

= 0, a.s.

For large enough q,

supQN(j,q)(r,X0)
|
∫ tjq

0 As(x, X0)
TdWs|

∑
N(j,q)+1
i=0 ρiτ

<
Rr
2

Therefore, (5.12) becomes

∫
QN(j,q)(r,X0)

exp

(
−

N(j,q)+1

∑
i=0

ρiτ

(
−
∫ t

0 As(x, X0)
TdWs

∑
N(j,q)+1
i=0 ρiτ

+
Rr
2

))
µ(dx)

≥
∫

QN(j,q)(r,X0)
exp

(
−

N(j,q)+1

∑
i=0

ρiτRr

)
µ(dx)

≥ exp

(
−

N(j,q)+1

∑
i=0

ρiτRr

)
µ(QN(j,q)(r, X0)) (5.13)

Combining inequalities (5.13) and (5.11), we have

π̂
µ
tjq
(Ba(X0)

c) ≤
exp

(
−∑

N(j,q)
i=0 ρiτ

(
L2(a)

4 − Rr
)
+ ρτ(N(j,q)+1)Rr

)
µ
(

QN(j,q)(r, X0)
) (5.14)

As mentioned in Section (5.2.2), in general, the set Qn(r, X0) will shrink to a set con-
taining X0 (which is not open) as n → ∞. This is because of sensitive dependence
on the initial conditions. We will see that µ

(
QNjq

(r, X0)
)

goes to zero at most at an
exponential rate.

From the assumption of absolute continuity of µ with respect to σ , we have
dµ
dσ (X0) > 0 µ− a.s. From the continuity of dµ

dσ , there exist r1 > 0 and C1 > 0 such
that dµ

dσ (x) > C1, for any x ∈ Br1(X0). Therefore, with the help of Radon-Nikodym
Theorem and choosing r < r1, we have

µ
(

QN(j,q)(r, X0)
)
> C1σ

(
QN(j,q)(r, X0)

)
. (5.15)
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From the Assumption (5.2.2), we have the following:

dN(x, y) ≤ CNd(x, y)

=⇒ B r
CN

(X0) ⊂ QN(r, X0)

(5.15) becomes

µ
(

QN(j,q)(r, X0)
)
> C1σ

(
QN(j,q)(r, X0)

)
> C1σ

(
B r

CN(j,q)
(X0)

)
> C1C2

(
r

CN(j,q)

)p
, (5.16)

for some C2 = C2(p,K) (with K defined in (5.8)) and (5.14) becomes

π̂
µ
tjq
(Ba(X0)

c)

≤ 1
C1C2rp exp

(
−

N(j,q)

∑
i=0

ρiτ

((
L2(a)

4
− Rr

)
−

ρτ(N(j,q)+1)Rr

∑
N(j,q)
i=0 ρiτ

−
N(j, q) loge C

∑
N(j,q)
i=0 ρiτ

))
(5.17)

Choosing r small enough such that L2(a)
4 − Rr > 0 and from Assumption (5.2.3)

(limt→∞ ρt = ∞ and limt→∞

∫ t
0 ρsds

ρt
= ∞), for large enough q, the exponent can

be made positive which results in π̂
µ
tjq
(Ba(X0)

c) converging exponentially to zero
almost surely as q → ∞. Since, the subsequence tj is arbitrary, it implies that
π̂

µ
t (Ba(X0)

c) converges exponentially to zero almost surely as t→ ∞. �

From Lemma (5.2.11), it is clear that the assertion of the Theorem (5.2.8) follows.
�

Remark 5.2.12. Note that until (5.17), all the computations go through if we assumed ρt is
constant. We used the assumed behavior of ρt only in (5.17). Let us assume, for the sake of
this remark, that ρt = ρ. Then for the exponent in (5.17) to be negative, we require that L(a)
is sufficiently large compared to the other terms viz., Rr and loge C. Even though Rr can be
made small (by choosing r small, as r can be chosen freely) and loge C is known beforehand,
the estimates on L(a) are difficult to come by for a dynamical system. In fact, even showing
existence of L(a) is seen to be difficult. This is the reason behind the assumption on the
behavior of ρt.

In the previous theorem, we established that conditional distribution of X0 given
observations is asymptotically supported only on closed balls around X0 of arbi-
trary radius. In the following, we extend the previous statement to any measurable
set, A ∈ B(S).
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Proposition 5.2.13. Under the hypothesis of Theorem (5.2.8), limt→∞ π̂
µ
t (A) = 0, ∀A ∈

B(S), X0 /∈ A

Proof. It can be seen easily that the conclusion of the theorem holds even if d(x, X0) ≤
a is replaced with d(x, X0) < a. Indeed, as Ba−ρ(X0) ⊂ {x ∈ S : d(x, X0) < a} ⊂
Ba(X0) holds for ρ < a and ∀γ > 0, ∀t > 0, we have

eγt (π̂µ
t
(

Ba−ρ(X0)
)
− 1
)
≤ eγt (π̂µ

t ({x ∈ S : d(x, X0) < a})− 1
)

≤ eγt (π̂µ
t (Ba(X0))− 1

)
,

We can clearly see that ρ can be chosen small enough such that there exists γ > 0
such that

lim
t→∞

eγt(π̂
µ
t (Ba−ρ(X0))− 1) = 0, and lim

t→∞
eγt(π̂

µ
t (Ba(X0))− 1) = 0

Indeed, the desired value of γ is minimum of the α(a) and α(a− ρ). Therefore,

lim
t→∞

eγt (π̂µ
t ({x ∈ S : d(x, X0) < a})− 1

)
= 0 a.s, ∀a > 0,

Writing the above in a concrete way, we have ∀b > 0, z ∈ S,

lim
t→∞

π̂
µ
t ({x ∈ S : d(z, x) < b}) = 1 a.s, : d(X0, z) ≤ b

= 0 a.s, : d(X0, z) > b

Extending this to all open sets, we have for any open U

lim
t→∞

π̂
µ
t (U) = 1 a.s, : X0 ∈ U

= 0 a.s, : X0 /∈ U

This can be done since open balls form a base of the usual topology of S. And also,
for any closed set C

lim
t→∞

π̂
µ
t (C) = 1 a.s, : X0 ∈ C

= 0 a.s, : X0 /∈ C

Finally, to extend it to all measurable sets, we use the property of regular probability
measure with Borel σ-algebra of a metric space [25][Theorem 1.1].

By [25, Theorem 1.1], for every measurable set A ∈ B(S), there exist closed set
C0, open set U0 such that C0 ⊂ A ⊂ U0 and π̂

µ
t (U0/C0) <

1
2 .
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Let A be such that X0 ∈ A which implies that X0 ∈ U0. Choose 0 < η < 1
4

and t large enough such that π̂
µ
t (U0) > 1 − η. Considering C0, if X0 /∈ C0 then

again by choosing t large enough, we have π̂
µ
t (C0) < η. But this is a contradiction.

Indeed, as π̂
µ
t (U0) = π̂

µ
t (C0) + π̂

µ
t (U0/C0) and π̂

µ
t (U0) < η + 1

2 < 1− η. Therefore,
X0 ∈ C0.

This implies that limt→∞ π̂
µ
t (A) = 0 �

5.2.4 Stability of the filter

We now state and prove the filter stability.

Theorem 5.2.14. Under the hypothesis of Theorem (5.2.8), If µ ∼ ν then for any bounded
continuous g : S→ R,

lim
t→∞

E
[∣∣πµ

t (g)− πν
t (g)

∣∣] = 0

.

Proof. From the Proposition (5.2.13), for any measurable A ∈ B(S)

π̂
µ
∞(A)

.
= lim

t→∞
π̂

µ
t (A) = 1 a.s, : X0 ∈ A

= 0 a.s, : X0 /∈ A

This is by definition the Dirac measure at X0. Therefore, for any integrable function
f : S→ R, E [ f (X0)|Y∞] = f (X0).

Suppose J .
= dν

dµ and sup
x∈S
|g(x)| < M. From the assumption on µ and ν, we can

express πν
t (g) as

πν
t (g) =

∫
S g (φt(x)) Z

(
t, x, Y[0,t]

)
ν(dx)∫

S Z
(

t, x, Y[0,t]

)
ν(dx)

=

∫
S g (φt(x)) Z

(
t, x, Y[0,t]

)
J(x)µ(dx)∫

S Z
(

t, x, Y[0,t]

)
J(x)µ(dx)

∫
S Z
(

t, x, Y[0,t]

)
µ(dx)∫

S Z
(

t, x, Y[0,t]

)
µ(dx)

=
E [g(φt(X0)J(X0)|Yt]

E [J(X0)|Yt]

E
[∣∣πµ

t (g)− πν
t (g)

∣∣] = E

[
|E [g (φt(X0)) (E [J(X0)|Yt]− J(X0)) |Yt]|

E [J(X0)|Yt]

]
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≤ E

[
E [|g (φt(X0)) (E [J(X0)|Yt]− J(X0))| |Yt]

E [J(X0)||Yt]

]

≤ ME

[
E [|E [J(X0)|Yt]− J(X0)| |Yt]

E [J(X0)|Yt]

]
≤ ME

[
|E [J(X0)|Yt]− J(X0)|

E [J(X0)|Yt]

]
(5.18)

Due to integrability of J, martingale convergence theorem implies

lim
t→∞

E [J(X0)|Yt] = E [J(X0)|Y∞] = J(X0) a.s

Choose a subsequence tn ↑ ∞. Apply the Lemma (A.0.6) for fn
.
= J(X0)

E[J(X0)|Ytn ]
(Note

that J(X0) > 0 P- a.s) and f .
= 1, to get the desired result. �

Remark 5.2.15. We show below that Theorem (5.2.8), Proposition (5.2.13) and Theo-
rem (5.2.14) together imply that Assumptions (5.2.3), (5.2.1) and (5.2.2) together form a
sufficient condition for the notion of observability defined in [139, Definition 2]. Since
E [ f (X0)|Y∞] = f (X0) for any integrable function f : S → R, X0 is measurable with
respect to Y∞. It implies that there exists a function F, that is measurable with respect to
Y∞ such that F : C ([0, ∞) , Rn) → X and X0 = F

(
Y[0,∞)

)
. Therefore, we arrive at

the conclusion that law of observation process determines the law of X0 uniquely which is
exactly the definition of observability in [139].

5.3 Discrete time nonlinear filter

In this section, we study the stability of the nonlinear filter in discrete time setting.
We will setup the discrete time filter in the form where the filter at any time instant
depends on the entire observation sequence up to that instant, which is unlike the
recursive form of the filter that is useful in applications.

5.3.1 Setup

Again let the state space, S be p-dimensional complete Riemannian manifold with
metric d. On S, we have a homeomorphism T : S → S along with initial condition
X0, whose distribution is µ. We denote discrete time with k. These dynamics are
observed partially in the following way.

Yk =
k

∑
i=1

h
(

i, Ti(X0)
)
+ Wk,
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where, h : Z+× S→ Rn and Yk ∈ Rn is the observation process and Wk ∈ Rn is the
position of an i.i.d random walk with standard Gaussian increment after k steps,
starting at origin. Moreover, X0 and Wk+1 −Wk are assumed to be independent for
any k ≥ 1. Therefore,{

S× (Rn)Z+
,B
(

S×Rn)Z+
)

, P = µ×PW

}
is considered to be our probability space. Here, PW is the probability measure of
W. Let Yk = σ {Yi : 0 ≤ s ≤ k, i ∈ Z+}, the observation process filtration. We shall
see that the results of stability for the case of continuous time extend to the discrete
time case with very minor changes. Noting this, we denote all the quantities that
appear in both continuous and discrete time cases by same symbols.

π̂
µ
k , π

µ
k , ν and πν

k have similar meanings to what they mean in continuous time
case. Define,

Z(k, x, Y0:k)
.
= exp

(
k

∑
i=1

h
(

i, Ti(x)
)T

(Yi −Yi−1)−
1
2

k

∑
i=1

∥∥∥h
(

i, Ti(x)
)∥∥∥2

)
,

with the convention that ∑0
1

.
= 0. From Bayes’ rule, for any bounded continuous

function g,

π̂
µ
k (g) = E [g(X0)|Yk] =

∫
S g(x)Z(k, x, Y0:k)µ(dx)∫

S Z(k, x, Y0:k)µ(dx)
(5.19)

For a fixed k, the filter is given by

π
µ
k (g) = E

[
g(Tk(X0))|Yk

]
=

∫
S g(Tk(x))Z(k, x, Y0:k)µ(dx)∫

S Z(k, x, Y0:k)µ(dx)

The expression for the corresponding incorrect filter is given by

π
µ
k (g) =

∫
S g
(
Tk(x)

)
Z(k, x, Y0:k)ν(dx)∫

S Z(k, x, Y0:k)ν(dx)
(5.20)

5.3.2 Stability of the filter

We show that the above mentioned filter is stable in the following sense:

lim
k→∞

E
[∣∣πµ

k (g)− πν
k (g)

∣∣] = 0,

for a bounded continuous g : S→ R.



Chapter 5. Stability of the Non-linear Filter 81

To establish the above, we need a discrete analog of Theorem (5.2.8). This can
be done under the following discrete analogs of Assumptions (5.2.3), (5.2.1), (5.2.2).
Again note that we use same symbols for the quantities that appear in both the
cases.

Assumption 5.3.1. There exists a bounded open set U such that TU ⊂ U.

Assumption 5.3.2. ∀x, y ∈ U, we have d(Tx, Ty) ≤ Cd(x, y), for some C > 1.

Assumption 5.3.3. There exists ρk, R, k0 > 0 such that

∀k ≥ 0, ρkd(x1, x2)
2 ≤

k+k0

∑
i=k

∥∥∥h
(

i, Ti−k(x1)
)
− h

(
i, Ti−k(x2)

)∥∥∥2
≤ Rρkd(x1, x2)

2,

(5.21)

where, ρk is a positive non-decreasing function such that ∀x1, x2 ∈ U limk→∞
∑k

i=0 ρi
ρk

= ∞,
NρN

∑k
i=0 ρi

≤ C′ (for some C′ > 0) and R > 1.

Assumption 5.3.4. For (x, y) ∈ V ⊂ U ×U, compliment (in U ×U) of a zero Lebesgue
measure set satisfying d(x, y) ≥ b > 0, the following holds

D2
N(x, y) ≥ L2(b)

N

∑
i=0

ρiτ,

where, L(b) is a positive constant.

Assumption 5.3.5. supp(µ) ⊂ U

Remark 5.3.6. From the Assumption (5.3.1), it follows that for x ∈ supp(µ) and y ∈
supp(µ), dN(x, y) ≤ K.

It follows from the Assumption (5.3.3) that

N

∑
i=1

ρik0d
(

Ti(x), Ti(y)
)2
≤

k

∑
i=0

∥∥∥h
(

Ti(x)
)
− h

(
Ti(y)

)∥∥∥2

≤ R
N+1

∑
i=1

ρik0d
(

Ti(x), Ti(y)
)2

, ∀x, y ∈ S, (5.22)

where, N = b k
k0
c.

Remark 5.3.7. The significance of the above assumptions is exactly the same as that of the
assumptions in Section (5.2).
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Now we state the discrete analogs of Theorem (5.2.8), Proposition (5.2.13) and
Theorem (5.2.14).

Theorem 5.3.8. Suppose µ is absolutely continuous with respect to volume, σ of S and dµ
dσ

is continuous on the support of µ. Under the assumptions (5.3.1), (5.3.2), (5.3.3), (5.3.4)
and (5.3.5),

lim
k→∞

eαk (π̂µ
k ({x ∈ S : d(x, X0) ≤ a})− 1

)
= 0 a.s, ∀a > 0,

and for some α
.
= α(a) > 0 which depends only on a.

Proof. The proof of this theorem follows exactly in the same lines as that of Theo-
rem (5.2.8). So the proof is omitted. �

Proposition 5.3.9. Under the hypothesis of Theorem (5.3.8),

lim
k→∞

π̂
µ
k (A) = 0, ∀A ∈ B(S), X0 /∈ A

Proof. We observe that the proof of Proposition (5.2.13) remains unchanged if the
continuous time is replaced with discrete time. �

Theorem 5.3.10. Under the hypothesis of Theorem (5.2.8), If µ ∼ ν then for any bounded
continuous g : S→ R,

lim
k→∞

E
[∣∣πµ

k (g)− πν
k (g)

∣∣] = 0

.

Proof. Proof is again omitted as it is exactly in the same lines as that of Theorem (5.2.14).
�

Remark 5.3.11. Remarks analogous to (5.2.15) and the rest of the remarks of the previous
section follow in the case of discrete time.

5.4 Structure of the conditional distribution

In this section, we will see that the conditional distribution after large times is sup-
ported nearly on the topological attractor. Recall that topological attractor is defined
as Λ .

= ∩n≥0TnU, where U is an open set such that TU ⊂ U [87, Pg. 128].

Assumption 5.4.1. Assume that there is an open set U such that TU ⊂ U and ∀x ∈ S,
there exists n(x) ≥ 0 such that Tn(x)x ∈ U.
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We restrict ourselves to the case of discrete time filter and adopt the notation of
Section (5.3) in this entire section. Let µ be equivalent to volume.

From (5.19), for any A ∈ B(S), we have

π̂
µ
k (A) = E[1{X0∈A}|Yk]

=

∫
A Z(k, x, Y0:k)µ(dx)∫
S Z(k, x, Y0:k)µ(dx)

=

∫
A exp

(
∑k

i=1 ∆h(i, x, X0)
T (Wi −Wi−1)− 1

2 ∑k
i=1 ‖∆h(i, x, X0)‖2

)
µ(dx)∫

S exp
(

∑k
i=1 ∆h(i, x, X0)T (Wi −Wi−1)− 1

2 ∑k
i=1 ‖∆h(i, x, X0)‖2

)
µ(dx)

,

where, ∆h(i, x, X0)
.
= h(i, Ti(x)) − h(i, Ti(X0))From (5.20), for any A ∈ B(S), we

have

π
µ
k (A) = E

[
1{Tk(X0)∈A}|Yk

]
=

∫
{Tk(x)∈A} Z(k, x, Y0:k)µ(dx)∫

S Z(k, x, Y0:k)µ(dx)
(5.23)

=

∫
A Z(k, T−ky, Y0:k)µ ◦ T−k(dy)∫
S Z(k, T−ky, Y0:k)µ ◦ T−k(dy)

Therefore, support of π
µ
k is always contained in the support of µ ◦ T−k. So, it is suf-

ficient to show that the asymptotically the support of µ ◦ T−k is near the topological
attractor to conclude that after large times, π

µ
k puts negligible mass far away from

the topological attractor.
To that end, we define the following disjoint family of sets, {Um}Z+ :

Um
l

.
=
{

x ∈ S : inf
{

k ∈ Z+ : Tk ∈ Λm

}
= l
}

,

where, Λm
.
= ∩m

n=0TnU. From the assumption (5.4.1), for any given m ≥ 0, it follows
that

S = ∪l≥0Um
l

Now, for a given m ≥ 0 and k ≥ m, consider

µ ◦ T−k(Λm) = µ
({

x ∈ S : Tkx ∈ Λm

})
= µ

({
x ∈ S : inf

{
n ∈ Z+ : Tnx ∈ Λm

}
≤ k

})
= µ

(
∪k

n=0Um
l

)
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From above, we have limk→∞ µ ◦ T−k(Λm) = 1, ∀m ≥ 0. Note that this is not a
uniform limit in m ≥ 0. This concludes that asymptotically π

µ
k is supported on

Λm for every m ≥ 0. Informally, it means that dynamical system started with initial
condition far away from the attractor will lie in some arbitrary small neighbourhood
of attractor after sufficiently long time.

As µ ◦ T−k is also asymptotically supported on Λm for every m ≥ 0, it is reason-
able to assume that initial condition of the system is supported on Λ.

5.5 Examples and Discussions

In the following, we describe the filtering models which satisfy the assumptions in
the Sections (5.2) and (5.3).

5.5.1 Examples with compact state space

We consider (S, d) to be compact and h(., .) : R+ × S → Rp is such that h(t, .) is
bi-lipshitz for every t ≥ 0 that satisfies the following:

K(t)d(x, y) ≤ ‖h(t, x)− h(t, y)‖ ≤ RK(t)d(x, y),

for some α > 0,R > 1, K(t) such that K(t) = O(tα) and is increasing in t. Since any
dynamical system {φt}t∈R with φt being a C1+α diffeomorphism on S (with α > 0,
for every t ∈ R) is such that φt is bi-lipshitz, we have

1
MCt d(x, y) ≤ d(φtx, φty) ≤ MCtd(x, y),

∀t ∈ R and for some C, M > 1. Now consider the following expression:

∫ t+τ

t
|h (s, φs−t(x1))− h (s, φs−t(x2))|2 ds

From the above, we have

∫ t+τ

t
|h (s, φs−t(x1))− h (s, φs−t(x2))|2 ds ≤

∫ t+τ

t
R2K2(s)d (φs−t(x1), φs−t(x2))

2 ds

≤ M2R2d(x, y)2
∫ t+τ

t
K2(s)C2(s−t)ds

Similarly we can obtain the following lower bound:

∫ t+τ

t
|h (s, φs−t(x1))− h (s, φs−t(x2))|2 ds ≥ 1

M2 d(x, y)2
∫ t+τ

t
K2(s)C−2(s−t)ds
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We consider K(t) to be of the form = Btq, for some q > 0. Define

ρ1
t

.
= B2

∫ t+τ

t
t2qC−2(s−t)ds and ρ2

t
.
= B2

∫ t+τ

t
t2qC2(s−t)ds.

It can be seen from computing the integrals that

1 ≤ ρ2
t

ρ1
t
≤ M̄,

for some M̄ > 1 independent of t ≥ 0. It can be seen that ρ1
t ∼ O(t2q). There-

fore, by defining ρt in Assumption (5.2.3) as ρt
.
= 1

M ρ1
t , we can conclude that the

above model satisfies both Assumptions (5.2.3) and (5.2.2). Since S is compact, As-
sumptions (5.2.1) hold trivially by choosing U in Assumption (5.2.1) as S. In the
above, we presented only continuous time models. Models in discrete time can be
constructed similarly.

In the following, we give sufficient conditions for Assumption (5.2.4) to hold.
Recall that Assumption (5.2.4) says that there is a set V ⊂ S× S that is of full mea-
sure under σ ⊗ σ such that for x, y ∈ V satisfying d(x, y) ≥ b > 0, the following
holds

D2
N(x, y) ≥ L2(b)

N

∑
i=0

ρiτ, (5.24)

where, L(b) is a positive constant. In the following, we show that (5.24) holds for a
particular type of dynamical systems viz., uniformly hyperbolic systems [132, Def-
inition 4.1]. The arguments made are independent of whether time is discrete or
continuous. So without loss in generality, let us suppose that the time is discrete
with T being the homeomorphism. Suppose T is a C1+α uniformly hyperbolic dif-
feomorphism with α > 0. From [132, Proposition 7.4], T is expansive, i.e., there
exists ε > 0 such that for every x, y ∈ S with x 6= y, there exists n ∈ Z such that
d(Tnx, Tny) > 2ε. From the continuity of T and compactness of S, we have the
following:

Lemma 5.5.1. 1 For any δ > 0 and for some ε > 0, if x, y ∈ S such that d(x, y) ≥ δ then
there exists J ∈N such that for some n ∈ Z with |n| ≤ J, we have

d(Tnx, Tny) > ε

1https://planetmath.org/UniformExpansivity
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Proof. Consider the compact set, K .
= {z = (x, y) ∈ S× S : d(x, y) ≥ δ}. Choose

x, y ∈ S such that d(x, y) ≥ δ. From expansivity, there exists n(x, y) ∈ Z such that
d(Tn(x,y)x, Tn(x,y)y) > ε.

Define, G(., .) : S× S→ S× S by

G(u, v) .
= (Tn(x,y)u, Tn(x,y)v).

It is clear that G is continuous on S × S and from the continuity of G, there is a
neighbourhood U(z̄) around z̄ = (x, y) such that d(Tn(x,y)u, Tn(x,y)v) > ε, ∀(u, v) ∈
U(z̄). Since z̄ = (x, y) is an arbitrary point in K, we can cover K by a family of open
sets given by {U(z)}z∈K. From compactness of K, there is a finite set {zi}k0

i=1 ⊂ K
such that K ⊂ ∪k0

i=1U(zi). Now, defining

J .
= max

i=1,..,k0
(|n(xi, yi)| : zi = (xi, yi)) ,

we have the result. �

In particular, if we choose δ < ε, d(Tnx, Tny) > ε for infinitely many n ∈ Z.
Suppose, x is in the global unstable manifold of y such that d(x, y) > ε, i.e.,

d(Tnx, Tny) ≤ Bλnd(x, y),

where, n ≤ 0, B > 0 and λ > 1 (independent of x and y). It is clear that there
exists N̄ such that d(Tnx, Tny) < ε, ∀n ≤ −N̄. Therefore, from the above lemma,
it is clear that if |n| > N̄ and d(Tnx, Tny) ≥ ε then n > 0. Let {nk(x, y)}k∈N be a
subsequence such that d(Tnk(x,y)x, Tnk(x,y)y) ≥ ε. From the above discussion, it is
clear that {nk(x, y)}k∈N is an infinite set and in particular, nk(x, y) > N̄ infinitely
many times. Therefore, without loss in generality, let us restrict the attention to
{nk(x, y)}k∈N such that nk(x, y) ≥ N̄, ∀k ∈ N. From Lemma (5.5.1) and above
discussion, we have the following:

nk+1(x, y)− nk(x, y) ≤ J.

Note that J is independent of x and y as long as d(x, y) ≥ ε. Therefore, the cardinal-
ity of the set {nk(x, y)}k∈N ∩ [N̄ + 1, 2, 3, ..., N̄ + N̂] is at least b N̂

J c, for any N̂ ∈ N.
As a result, we have the following for N > N̄:

D2
N(x, y) ≥ ε ∑

k∈N,
N̄<nk(x,y)≤N

ρnk(x,y)τ +
N̄

∑
i=0

d(Tix, Tiy)ρiτ ≥ ε

b N−N̄
J c+N̄+1

∑
i=N̄+1

ρiτ
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+
N̄

∑
i=0

d(Tix, Tiy)ρiτ

≥ min

ε, inf
x,y∈S,

d(x,y)>ε

(
min
i≤N̄

(
d(Tix, Tiy)

)) b N−N̄
J c+N̄+1

∑
i=0

ρiτ

≥ min

ε, inf
x,y∈S,

d(x,y)>ε

(
min
i≤N̄

(
d(Tix, Tiy)

)) b N
J c

∑
i=0

ρiτ (5.25)

≥ G(J)min

ε, inf
x,y∈S,

d(x,y)>ε

(
min
i≤N̄

(
d(Tix, Tiy)

)) N

∑
i=0

ρiτ, (5.26)

where, G (J) > 0 depends only on J. Inequality (5.25) follows from non-decreasing
property of ρt, applying the lowest bound to any sum up to first bN

J c terms of an
subsequence of a non-decreasing sequence and inequality (5.26) follows from the
form of ρt. And also, from uniform hyperbolicity, bi-lipshitz property of T and
d(x, y) > ε, for n ≤ N̄, we have

d(Tnx, Tny) ≥ 1
Cn d(x, y)

≥ 1
CN̄

d(x, y)

>
1

CN̄
ε,

for some C > 1. Therefore, we have

inf
x,y∈S,

d(x,y)>ε

(
min
i≤N̄

(
d(Tix, Tiy)

))
>

1
CN̄

ε

and we have shown that if x lies in the unstable manifold of y and d(x, y) > ε, we
have

D2
N(x, y) ≥ min

(
G (ε, J) ,

1
CN̄

ε

) N

∑
i=0

ρiτ

Now, we extend the above inequality, to x and y when x does not lie in either global
stable or unstable manifolds of y. To that end, from [17], it is known that global
stable manifolds form a foliation of S and global unstable manifold through a given
point in S is their transversal. Therefore, for a given x and y such that d(x, y) > ε

and x that does not lie in the stable manifold of y, there is a point z ∈ X contained
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in the global unstable manifold of y such that x is the global stable manifold of z
and we have

d(Tnz, Tny) ≤ d(Tnz, Tnx) + d(Tnx, Tny)

From the property of global stable manifold and Lemma (5.5.1), there exists J1 such
that d(Tnz, Tnx) ≤ ε

2 , ∀n ≥ J1. If J1 > J, we replace J by J1. Choosing n = nk(x, y),
we get

ε < d(Tnz, Tny) ≤ ε

2
+ d(Tnx, Tny)

ε

2
< d(Tnx, Tny).

Therefore, we have

D2
N(x, y) ≥ min

(
G
(ε

2
, J
)

,
1

CN̄
ε

) N

∑
i=0

ρiτ.

Since the global stable manifold is strictly a lower dimensional manifold due to uni-
form hyperbolicity, we proved that (5.24) holds on a full measure set under measure
σ× σ (σ is the Riemannian volume), which is sufficient for Theorem (5.2.8) to hold.

5.5.2 Examples with non-compact state space

We now consider S = Rp (which is non-compact) and continuous time models
only. Choose h(t, x) .

= K(t)h̄(x) : R+ × S → Rp with any bi-lipshitz h̄ : S → Rp

and K(t) = O(tq) . In the following, we show that the class of dynamical sys-
tems given by (5.27) along with the chosen observation model satisfy Assump-
tions (5.2.3), (5.2.1) and (5.2.2). To that end, let φt be the solution of the ordinary
differential equation given below

d
dt

φt + Aφt + B (φt, φt) = f , (5.27)

where, B(., .) : Rp×Rp → Rp is symmetric bi-linear operator such that uTB(u, u) =
0, ∀u ∈ Rp and A is p× p matrix such that uT Au > λ|u|2, ∀u 6= 0. Observe that
we have |uTB(v, w)| ≤ H|u||v||w|, for some H. From [88, Remark 2.4], we have the
existence of bounded open set U such that φtU ⊂ U. And also, from [88, Lemma
2.6], we have the following:

|φτ(u)− φτ(v)| ≤ eγτ|u− v|, (5.28)
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∀u ∈ U, ∀v ∈ Rp and for some γ > 0. Defining, et
.
= φt(u)− φt(v), we have

d
dt

et + Aet + B(φt(u), φt(u))− B(φt(v), φt(v)) = 0

eT
t

d
dt

et + eT
t Aet + eT

t (B (φt(u), φt(u))− B (φt(v), φt(u))) = 0

1
2

d
dt
|et|2 + eT

t Aet + 2eT
t (B (φt(u), et)− B (et, et)) = 0

1
2

d
dt
|et|2 + |A||et|2 − 2H|et|2|φt(u)| ≥ 0

d
dt
|et|2 + (2|A|+ 4HRU) |et|2 ≥ 0,

where, RU
.
= supu∈U supt≥0 |φt(u)| and we used the properties of A and B(., .). We

integrate the above equation to get,

|et|2 ≥ |e0| − (2|A|+ 4HRU)
∫ t

0
|es|2ds

Applying the inequality from [67, Lemma 2], we have

|φτ (u)− φτ (v) | ≥ exp (− (|A|+ 2HRU) τ) |u− v| (5.29)

From the above, it is clear that Assumptions (5.2.1) and (5.2.2) hold. From the calcu-
lations similar to those in Section (5.5.1), we can conclude that Assumptions (5.2.3)
holds when either of x1 or x2 in Assumption (5.2.3) lie in U. Note that this is always
true in the setup of the Theorem (5.2.8).

In the following, we provide two well-known models, viz., Lorenz 96 model
and Lorenz 63 model and give numerical evidence that these models satisfy As-
sumption (5.2.4). To that end, we will show from numerical computations that
DN(x, y) .

= ∑N
i=0 ρiτd(Tix, Tiy) ≥ H ∑N

i=0 ρiτ, for some H > 0 and x, y are such
that d(x, y) > b, for some b.

Lorenz 63 model:[101] In this case, S = R3, φt(u) = [xt(u), yt(u), zt(u)]T with

d
dt

xt = a(yt − xt)

d
dt

yt = xt(b− zt)− yt

d
dt

zt = xtyt − czt,

where, we dropped the dependence of u. For a = 10, b = 28 and c = 8
3 , it is known

that the above model exhibits a chaotic behavior. In the Figure (5.1), we can see that
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FIGURE 5.1: (Lorenz 63 model) Dependence of DN(x,y)
∑N

i=0 ρiδ
vs t = Nδ

with δ = 0.01 for 100 samples. We have plotted for ρt = 1000, t +
1000, log(t + 1000). The initial conditions for the samples are ran-

domly chosen from uniform distribution on [−10, 10]3.

EN(x, y) .
= ∑N

i=0 d(Tix, Tiy) ≥ HN, for some H > 0.

Lorenz 96 model:[102] For this model, S = Rp, φt(u) = [x1
t (u), x2

t (u), ..., xp
t (u)]

T

with

d
dt

xi
t = (xi+1

t − xi−2
t )xi−1

t − xi
t + F

where, it is assumed that x−1
t = xp−1

t , x0
t = xp

t , x1
t = xp+1

t and we again dropped the
dependence of u. For F = 8, this model is known to exhibit chaotic behavior. In the
Figure (5.2), we can see that EN(x, y) .

= ∑N
i=0 d(Tix, Tiy) ≥ HN, for some H > 0.

Note that, in both the Figures (5.1) and (5.2), the three plots with different choices
of ρt look very similar. The differences in the plots can only be seen at a much finer
scale (not shown). Since their main significance is only to show that all the curves
(in these plots) are bounded below, the finer structure of these plots is omitted.

5.5.3 Qualitative understanding of Assumptions (5.2.4) and (5.3.4)

In the remainder of the section, we try to explain the validity of the Assumptions
(5.2.4) and (5.3.4) in a qualitative way. We restrict ourselves to the discrete time
setup and to that end, we consider a bi-lipshitz homeomorphism, T : S → S. We
will see that the sensitive dependence and positiveness of Lyapunov exponent is
used in order to argue the validity of these assumptions.

To that end, we assume that T : S→ S satisfies the following properties:
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FIGURE 5.2: (Lorenz 96 model with N = 36) Dependence of DN(x,y)
∑N

i=0 ρiδ

vs t = Nδ with δ = 0.01 for 100 samples. We have plotted for ρt =
1000, t + 1000, log(t + 1000). The initial conditions for the samples

are randomly chosen from uniform distribution on [−10, 10]36.

1. Sensitivity to initial conditions: There exists δ > 0 such that for x ∈ S, ∀ε > 0,
there exists a σ-null (zero volume) set V(x) such that for all y ∈ Bε(x)\V ,
there is n(x, y) ∈ N such that d(Tn(x,y)x, Tn(x,y)y) > δ. And for y ∈ V(x),
d(Tnx, Tny) → 0 as n → ∞. (Note that this is a stronger notion than the one
given in [66]).

2. Positive Lyapunov exponent: If y ∈ Bc
r(x)\V then d(Tix, Tiy) > δ for i ∼

1
λ log δ

r , where λ > 0 plays the role of Lyapunov exponent (Note that this
property is qualitative in nature).

We give an informal argument using these properties to show that (5.3.4) holds.
Choose r > 0 and fix x and y such that d(x, y) > r. And also, define an =

d(Tnx, Tny). We assume that infn(an) = 0, otherwise (5.24) trivially holds for a
given x, y and of T . And also, we assume that lim supn→∞ an > 0.

Let C be the set of all subsequences {nk}k∈N of N such that ank → 0 as k → ∞.
Defining D .

= Cc, we see that for any {nk}k∈N ∈ D, infk (ank) > 0. Choose
{nk}k∈N ∈ D such that for any {pk}k∈N (such that {nk}k∈N ∩ {pk}k∈N is an infinite
set), there exists a sub-subsequence {qk}k∈N of {nk}k∈N ∪ {pk}k∈N with the prop-
erty aqk → 0 as k → ∞ ({nk}k∈N can be seen to exist). Suppose that nk+1 − nk → ∞
as k → ∞. From the definition of C and D, we can see that there exists an ele-
ment, {mk}k∈N ∈ C given by {mk}k∈N = N\{nk}k∈N (From the assumption that
infn(an) = 0, it is an infinite set). From the assumption on {nk}k∈N, it is clear that
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by choosing k becomes large enough, cardinality of the set [nk, nk+1]∩ {mk}k∈N can
be made as larger than any desired integer.

In other words, for every ρ > 0, M ∈ N, there exists k0 such that for all k ≥ k0,
we have

nk+1 − nk > M and am < ρ, ∀nk < m < nk+1.

Choosing x̄ .
= Tnk+1x and ȳ .

= Tnk+1y, we see that this violates the assumptions
on the dynamical system. Indeed, for i ∼ 1

λ log δ
r , we have d(Ti x̄, Tiȳ) > δ which

contradicts the statement that am = d(Tm−nk+1x̄, Tm−nk+1ȳ) < ρ, ∀nk < m < nk+1.
Therefore, the supposition that nk+1 − nk → ∞ as k → ∞ is false and there exists a
positive constant, J such that nk+1 − nk ≤ J for any k. This implies that cardinality
of the set {nk}k∈N ∩ [1, 2, 3, ..., N] is at least bN

J c. As a result, we have the following

D2
N(x, y) ≥ δ ∑

k∈N,
nk<N

ρnkτ ≥ δ

b N
J c

∑
i=0

ρiτ ≥ δG (α, J)
N

∑
i=0

ρiτ,

where G (α, J) > 0 depends only on α and J. The above inequalities follow from
non-decreasing property of ρt, applying the lowest bound to any sum up to first
bN

J c terms of an subsequence of a non-decreasing sequence and the form of ρt.
To summarize, in the current section, we studied various filtering models that

satisfy the assumptions of Sections (5.2) and (5.3).

5.6 Conclusion

The problem that we studied is the stability of the nonlinear filter with determinis-
tic dynamics. In order to establish stability, we first proved, in Theorem (5.2.8), an
accuracy or consistency result for the smoother, i.e., the convergence of the condi-
tional distribution of the initial condition given observations. We used this result
to prove the stability of the filter in Theorem (5.2.14). Using essentially identical
methods, we also established the accuracy of the smoother (Theorem (5.3.8)) and
the stability of the filter (Theorem (5.3.10)) in the case of discrete time.

The main assumptions used in proving these results are quite natural as dis-
cussed in Section (5.2.2), and are indeed satisfied by two classes of dynamical sys-
tems, as discussed in Section (5.5). In particular, these assumptions are valid for
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a class of diffeomorphisms of compact manifolds with appropriate enough ob-
servation function, as well as a class of nonlinear differential equations that in-
cludes models such as the Lorenz models (using numerical evidence for Assump-
tion (5.2.4)). It will be of interest to find examples of non-trivial observational model
(that is h(·, ·) is not invertible) that satisfy the assumptions.

There are various possible directions for further studies. Theorem (5.2.14) and
Theorem (5.3.10) do not give any rate of convergence, because of the use of Mar-
tingale convergence theorem, and it would be interesting to find finer methods that
may give the rate of convergence, such as those [28, Section 4.3] available for the
convergence of covariance of the filter for linear models. Further, partly because of
the use of convergence of the smoother to prove filter stability, our results do not
give much information about the structure of the asymptotic filtering distribution,
such as that which is available [28, Sections 4.3, 5], [126, Remark 3.2] for the linear
filter.
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Appendix A

Elements of Probability, Filtering
Theory and Dynamical Systems

Let (Ω,F , {Ft}t≥0, P) be a complete filtered probability space such thatFt = ∩s>tFs

and F0 contains all P- null sets. Until mentioned otherwise, on any complete metric
space, we always work with the Borel σ- algebra as the underlying σ- algebra.

Lemma A.0.1 (Borel-Cantelli lemma). Let {An}n≥1 ⊂ F such that

∑
n≥1

P(An) < ∞

Then

P({ω ∈ Ω : ω ∈ An for infinitely many n}) = 1

Theorem A.0.2. [117, Lemma 2.1.2] Suppose (Ω,F , P) be a probability space and (Z,Z)
be a measurable space. Let X, Y : Ω → Z be two random variables and GY be the σ−
algebra generated by Y. If X is measurable with respect to GY, then there exists a Z-
measurable function g : Z → Z such that

X = g(Y)

Theorem A.0.3 (Radon-Nikodym Theorem). [29, Theorem A.30] Let m1 and m2 be
two probability measures on (Ω,F ) such that m1 � m2 i.e., ∀A ∈ F , m2(A) = 0 =⇒
m1(A) = 0. Then there exists a unique (upto a m2- null set) non-negative measurable
function f such that

m1(A) =
∫

A
f dm2.

f is denoted by dm1
dm2

and called density of m1 with respect to m2.
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Definition A.0.4 (Conditional expectation). Let X : ω → R be an integrable random
variable i.e., E[|X|] < ∞ and suppose G is sub σ- algebra of F . Then a random variable
Y : X → R is defined as the conditional expection of X with respect to G if∫

A
YdP =

∫
A

XdP, ∀A ∈ G

and Y is G- measurable.

Remark A.0.5. Using Radon-Nikodym theorem, it can be shown that such a Y (denoted by
E[X|G]) exists uniquely almost surely.

Here are few important properties of conditional expectation. Let G,H ⊂ F be
sub σ- algebras such that G ⊂ H and X, Y be two integrable random variables

1. For constants α and β, E[αX + βY|G] = αE[X|G] + βE[Y|G], P- a.s.

2. E[E[X|G]] = E[X]

3. If X is independent of G, then E[X|G] = E[X], P- a.s.

4. If X is G- measurable, then E[X|G] = X, P- a.s.

5. E[E[X|H]|G] = E[X|G], P- a.s.

6. Analogous dominated convergence theorem, montone convergence theorem,
Fatou’s lemma, Jensen’s Inequaity hold for conditional expectations.

7. If X is G- measurable, then

E[XY|G] = XE[Y|G], P- a.s.

Lemma A.0.6 (Scheffe’s Lemma). [146, Pg. 55] Suppose fn and f are non-negative inte-
grable functions in L1(Ω,F , P) and fn

n→∞−−−→ f a.s. And also, suppose that E[ fn]
n→∞−−−→

E[ f ]. Then E [| fn − f |] n→∞−−−→ 0

Definition A.0.7 (Regular conditional distribution). A function P̃ : Ω×F → [0, 1] is
called regular conditional distribution of random variable X with respect to sub σ- algebra
G if the following is satisfied:

1. For any B ∈ F , P̃(. , B) is G- measurable.

2. For any ω ∈ F , P̃(ω, .) is a probability measure.

3. For any B ∈ F , P̃(. , B) is a version of E[1X∈A|G)(.)
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Definition A.0.8 (Stopping time). A random variable T : (ω,F ) → (R+,B(R+)) is
called Ft- stopping time if {T ≤ t} ∈ Ft, ∀t ≥ 0.

Definition A.0.9 (Progressive measurability). A process Xt : (Ω,F ) → (Γ,H), t ∈
R+ is progressively measurable with respect to a filtration Gt if the mapping (t, ω) 7−→
Xt(ω) : ([0, T]×Ω,B([0, T])⊗ Gt)→ (Γ,H) is measurable, for all T ≥ 0.

In the following, all the processes involved are R- valued until mentioned oth-
erwise. Appropriate multi-dimensional versions of the given results hold true.

Definition A.0.10 (Gaussian process). A process {Gt}t≥0 is Gaussian if for any finite
collection {ti}n

i=1, the law of the random variable {Gt1 , Gt2 , . . . , Gtn} is Gaussian.

Definition A.0.11 (Martingale). Let Xt be an Ft- adapted process. Then Xt is called Ft-
martingale if it satisfies the following conditions:

1. Xt is integrable for all t ≥ 0

2. ∀0 ≤ s ≤ t, we have E[Xt|Fs] = Xs, P− a.s.

If we replace ’=’ in the above condition with ’≥’ ( ’≤’), then it is called Ft- submartingale
(Ft- supermartingale ).

Theorem A.0.12 (Submartingale Convergence theorem). [86, Theorem 1.3.15]Let Xt

be a Ft- right continuous submartingale and let supt≥0 E[max{Xt, 0}] < ∞. Then X∞
.
=

limt→∞ Xt exists P- a.s. and E[X∞] < ∞. Moreover, if {Xt}t≥0 is a family uniformly
integrable random variables, then Xt converges to X∞ in L1.

Lemma A.0.13 (Doob’s submartingale inequality). [86, Theorem 1.3.8(i)] Let Xt be a
Ft-submartingale. For T > 0, we have

P( sup
0≤t≤T

Xt ≥ λ) ≤ E[max{XT, 0}]
λ

Definition A.0.14 (Local Martingale). A Ft- adapted process Xt is called Ft- local mar-
tingale if there exists an increasing sequence of Ft- stopping times {Tn}n≥1 ↑ ∞ such that
Xt∧Tn is Ft- martingale for every n ≥ 1 and X0 = 0, P− a.s. x ∧ y stands for minimum
of x and y.

Note that a martingale is trivially a local martingale.

Definition A.0.15 (Quadratic variation process). Let Xt be Ft- square integrable con-
tinuous local martingale. Then a process denoted by 〈X〉t is called quadratic variation
process if X2

t − 〈X〉t is a Ft- martingale. Existence and uniqueness of such a process is a
consequence of Doob-Meyer decomposition.



Appendix A. Elements of Probability, Filtering Theory and Dynamical Systems 97

Let us recall few properties of Ito’s integral of ft with respect to a square inte-
grable continuous martingale Xt and ft is such that it is progressively measurable
with respect to Ft and

E[
∫ t

0
f 2
s d〈X〉s] < ∞

Define, IX
t ( f ) =

∫ t
0 fsdXs

1. (Ito’s isometry) E[
(∫ t

0 fsdXs

)2
] = E[

∫ t
0 f 2

s d〈X〉s].

2. (Linearity) IX
t (α f + βg) = αIX

t + βIX
t , for α, β ∈ R.

3. (Martingale property) E[IX
t ( f )|Fs] = IX

s ( f ), P- a.s.

Definition A.0.16 (Semimartingale). A process Xt is a continuous Ft- semimartingale if
it has the following decomposition,

Xt = X0 + Bv
t + Mt, P− a.s.

where, Mt is continuous Ft- local martingale and Bv
t is a continuous bounded variation

process.

Theorem A.0.17 (Ito’s formula). Let f : R → R be twice differentiable and Xt be a Ft-
semimartingale with decomposition as above. Then f (Xt) is also a Ft- semimartingale with
the decomposition,

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)dMs +

∫ t

0
f ′(Xs)dBv

s +
1
2

∫ t

0
f ′′(Xs)d〈M〉s,

where, 〈M〉t is a process such that M2
t − 〈M〉t is a continuous local martingale.

In particular, a smooth function of a semimartingale is also a semimartingale.
We now consider the following process that is of interest in the context of filtering
theory:

Et
.
= exp

(
Xt −

1
2
〈X〉t

)
,

where, Xt is a continuous Ft- local martingale.

Proposition A.0.18. Process Et is a Ft- supermartingale.

Proof. Applying Ito’s formula to Et, we get

Et = E0 +
∫ t

0
EsdXs +

1
2

∫ t

0
Esd〈X〉s −

1
2

∫ t

0
Esd〈X〉s
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= 1 +
∫ t

0
EsdXs

This implies that Et is continuous local martingale. Then there exists a sequence of
stopping times Tn ↑ ∞ such Et∧Tn is a martingale, for n ≥ 1. Since Et ≥ 0, from
martingale property and Fatou’s lemma, we have

lim
n→∞

E[Et∧Tn |Fs] = lim
n→∞

Es∧Tn

E[ lim
n→∞

Et∧Tn |Fs] ≤ Es

E[Et|Fs] ≤ Es

Therefore, Et is a Ft- supermartingale. �

Definition A.0.19 (Optional process). The optional σ- algebra O is defined as the σ-
algebra on [0, ∞)×Ω generated by Ft- adapted right continuous (with left limit) processes.
A process is called optional if it is O- measurable.

Theorem A.0.20 (Optional projection). [54, Theorem 43] Let Zt be a bounded measurable
process (not necessarily adapted toFt). There exists an optional process denoted by ◦Zt such
that for every stopping time T, we have

E[ZT1T<∞|FT] =
◦ ZT, P− a.s.

Any other process ◦Z′t satisfying above condition will be such that

P
(
{◦Zt =

◦ Z′t, ∀0 ≤ t < ∞}
)
= 1.

Here, FT is collection of all sets A ∈ F such that A ∩ T ≤ t ∈ Ft, for each t ≥ 0. Above
statement hold also for unbounded non-negative measurable process.

Theorem A.0.21 (Levy’s characterization theorem). Let Xt be a continuous square in-
tegrable Ft- local martingale. If the quadratic process of Xt is

〈X〉t = t, ∀t ≥ 0,

then Xt is Ft- Brownian motion.

Theorem A.0.22 (Girsanov’s Theorem). [86, Theorem 3.5.1] Let V .
= {Vt}t≥0 be a Ft-

Brownian motion (of dimension n) and H .
= {Ht}t≥0 be a n-dimensional Ft- progressively

measurable process such that

P[
∫ t

0
‖Hs‖2ds < ∞] = 1, ∀t ≥ 0.
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And also, assume Zt
.
= exp

(∫ t
0 HT

s dVs − 1
2

∫ t
0 ‖Hs‖2ds

)
is a Ft- martingale. Then, for a

fixed T > 0,

Ṽt
.
= Vt −

∫ t

0
Hsds

is a Ft- Brownian motion for 0 ≤ t ≤ T on (Ω,FT, Q), where

Q(A)
.
= E[1AZT]

We now give a sufficient condition for Zt defined above to be a martingale. We
already know from Proposition (A.0.18) that Zt is a Ft- supermartingale.

Lemma A.0.23 (Beneš condition). [86, Pg. 200] Assume same conditions and definitions
as in Theorem (A.0.22). Let process H be of the form

Ht = Ĥ(t, V·),

where, Ĥ(t, ·) is a progressively measurable functional on C([0, ∞), Rn), for each t ≥ 0.
Suppose that for each T ≥ 0, there exist some KT > 0 such that

‖Ĥ(t, x)‖ ≤ KT

(
1 + sup

0≤s≤t
‖xs‖

)
, ∀0 ≤ t ≤ T and ∀x ∈ C([0, ∞), Rn).

Then Zt is a Ft- martingale.

Theorem A.0.24. [98, Theorem 6.1] Let U be the topological space and K ⊂ U be a com-
pact set in U. Suppose {Gx}x∈K is a Gaussian random field on (Ω,F , P) i.e., for any
finite collection {x1, x2, x3, . . . , xn}, the law of random variable {Gx1 , Gx2 , Gx3 , . . . , Gxn}
is centered Gaussian on Rn. Define the following quantity:

F(K) = E[sup
x∈K

Gx]

Then we have

F(K) ≤ 24
∫ ∞

0
log

1
2 (N(K, dG, ε)) dε,

where, dG(x, y) .
= E[|Gx − Gy|2]

1
2 and N(K, dG, ε) is the minimum number of ε- open

balls (under metric dG) needed to cover K.

Definition A.0.25 (Uniform complete observability). Let At : Rm → Rm and Ct :
Rm → Rn be two matrices continuous in t. Then the pair [At, Ct] is said to uniformly
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complete observable if there exist ρ1, ρ2, τ > 0 such that ∀t ≥ 0, we have

ρ1Im ≤
∫ t

t−τ
(Φs)

−T (Φt)
T CT

s CsΦt (Φs)
−1 ds ≤ ρ2Im,

where, Φ̇t = AtΦt with Φ0 = Im.

Definition A.0.26 (Uniform complete controllability). Let At and Φt be as defined
above. Suppose that Ct : Rn → Rm be a matrix continuous in t. Then the pair [At, Ct] is
said to be uniformly complete controllable if there exist ρ1, ρ2, τ > 0 such that ∀t ≥ 0, we
have

ρ1Im ≤
∫ t

t−τ
(Φt) (Φs)

−1 CsCT
s (Φs)

−T (Φt)
−T ds ≤ ρ2Im,

Lemma A.0.27. [143, Pg.181] For a given compact set K, there exist q = qK and b = bK
such that the following holds for all n ≥ 0.

rn(ε,K, φτ) ≤ q(Cnbε−1)p,

where, φτ is as defined in Chapter (5), rn(·, ·, ·) is as defined in Definition (5.2.7) and C is
as defined in Assumption (5.2.2).

Proposition A.0.28. [1, Theorem 2.3.1] Let Xt be a m×m matrix such that

Ẋt = ÃtXt, X0 = Im,

where, t ≥ 0, Ãt ∈ Rm×m such that supt≥0 ‖Ãt‖ < ∞. Then

‖Xt‖ ≤ K exp(αt),

for some K, α > 0. α can be taken to be supt≥0 ‖Ãt‖.

Proof of Theorem (2.1.2). We follow the proof of [15, Theorem 2.35]. We already know
that Yt ⊂ Yt+. To prove the other way, fix t ≥ 0 and fix A ∈ Yt+ to contruct the
process Ms defined as

Ms
.
=

1A −E [1A|Yt] if s ≥ t

0 if s < t

From the definition of Ms, Ms is right continuous. And also, Ms is a bounded Ys+-
martingale, from definition. From Theorem (A.0.12), There exists M∞ such that

lim
s→∞

Ms = M∞, P− a.s.
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and it can be seen that Ms = E[M∞|Ys+]. Now M∞ is Y∞- measurable. From [15,
Proposition 2.31], M∞ has the following representation.

M∞ = E[M∞] +
∫ ∞

0
ηT

u dIu,

where, ηu is progressively measurable with respect to Ys and E[
∫ ∞

0 ‖ηu‖2du] < ∞.
Conditioning the above equation with respect to Ys+, we have

E[M∞|Ys+] = E[E[M∞]|Ys+] + E[
∫ ∞

0
ηT

u dIu|Ys+]

Ms = E[M0] +
∫ t

0
ηudIu

This concludes that Ms is continous and Ys- adapted (from Theorem (2.1.13)). In
particular, A ∈ Yt. From arbitrariness of A, we have Yt+ ⊂ Yt �
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