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Introduction
***

This thesis consists of two distinct areas of work, and is divided into five chapters. The

first half of the thesis is a theoretical and numerical investigation of nonlinear nonmodal

analysis of fluid flow. The second half is concerned with measurements and analysis of

geophysical turbulence in the Bay of Bengal. The first half was motivated by observations

in the Bay of Bengal, and future work will be aimed at connecting the two studies, as

described at the end of this chapter. This chapter gives a general background on the

areas of work connected to this thesis.

1.1 Transition to turbulence

The transition of a flow from a laminar to turbulent state has been an age-old problem,

studied ever since Reynolds (1883) investigated ‘sinuous’ motion of fluids and the tran-

sition to same from a ‘straight’ (or laminar) flow. Turbulence is characterised by the

existence of vortical motions (eddies) of different sizes, ranging from the size at which

energy is imparted into the flow to the size at which dissipation by molecular action

happens. The transition from a laminar to a turbulent state typically occurs when the

Reynolds number (Re), (which is a ratio of inertial to viscous forces), is increased be-

yond a certain value. We define a critical Reynolds number Recr as one below which all

small (linear) normal mode perturbations decay exponentially. Shear flows, under cer-

tain conditions, display a supercritical transition, where transition to turbulence occurs

beyond, even well above, Recr. But often in shear flows, the transition from laminar flow

to turbulence is subcritical, in that it occurs below Recr, but above an energy critical

1



2 CHAPTER 1. INTRODUCTION

Reynolds number ReE, defined as the Reynolds number below which the total energy

in any general perturbation will decay monotonically. In a subcritical transition, thus,

both laminar and the turbulent states of the flow can coexist as equilibrium solutions

between Recr and ReE. For certain wall-bounded shear flows, Recr is infinite, i.e., the

flow is stable to small disturbances at every Reynolds number, e.g., the flow between two

infinite and parallel sheared plates (called Couette flow), or flow through straight pipes.

However, depending on the type of the flow and the exact definition of the Reynolds

number, these flows transition to turbulence somewhere between Re ∼ O(100 − 1000),

and this transition a spatio-temporal process (Barkley, 2016).

1.2 Fluid stability

Studying the stability of flow provides understanding about its possibility to undergo a

transition to turbulence or its propensity to continue in the laminar state. Transition

is initiated when disturbances are imposed over the flow. This can either be ambient

noise or perturbations due to the set-up of an experiment, or numerical disturbances in a

simulated flow, either injected deliberately or in the form of numerical round-off errors.

The stability study of a system when the disturbances are of infinitesimal amplitude

is called linear stability analysis (Kelvin, 1887; Rayleigh, 1880). When the amplitude

of disturbances is large, a nonlinear stability analysis would become appropriate. A

quantity of interest here could be the evolution of some measure of the amplitude of the

disturbances to the flow. A natural choice is the square of the perturbation amplitude,

which is often a measure of the energy in the disturbances. So, in our stability study, we

wish to ascertain how much energy growth in the disturbances can occur within a certain

period of time. A natural follow-up question would be whether that growth in energy is

capable of triggering a transition to turbulence, but that question is beyond the scope of

this thesis, and constitutes our next planned study.

Every disturbance to the flow can be decomposed into a combination of modes. Linear

stability analysis, as noted, is concerned with infinitesimal amplitude disturbances, and

often examining the behaviour of individual modes. By the very definition of stability,

we are looking for the response of a system to being perturbed away from an equilibrium

state. In our case, the equilibrium state is the laminar base flow. We can understand
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this growth using a cartoon of flow between two steady and infinite parallel walls as in

figure 1.1. A disturbance (in red) is imposed on the base flow of the system which has a

magnitude u at the centerline. As noted, this perturbation has origins in experimental

or numerical noise. The base state shown in black line in figure 1.1 (I) is the laminar

state of the flow. This combination of the base flow and the perturbation can evolve in

time to either of two cases: figure 1.1 (II) or (III). When the perturbation cannot survive

and dies down from its initial magnitude, we have case II where the flow has settled to

its base state or the laminar state. In an alternative situation, the perturbation could

grow in magnitude. This happens when the perturbations extract energy from the base

or laminar state of the flow. In figure 1.1 (III), we can see this alternative happening.

When the perturbations grow in magnitude, the mean velocity magnitude shrinks (i.e.,

the value of u in (III) is less than that in (II)) and the mean profile of the flow is much

flatter as compared to the original laminar profile between the two walls. What has been

described with this cartoon is a very crude version of transition to turbulence in flow

between two parallel walls driven by a pressure gradient, called a channel flow. Case

(II) presents a scenario when the flow did not transition and settled back to its original

laminar state while case (III) is a transition scenario with the flow becoming turbulent

and the perturbations growing in magnitude. Some shear flows could also settle down

into a state which is not a steady laminar flow, but is also not fully turbulent. Such states

are unsteady and may be termed as ‘transitional.’

1.2.1 Energy growth of disturbances

The process of investigating the individual behaviour of the modes of a disturbance is

called a modal analysis. The linearised system is cast in the form of an eigenvalue problem

and stability analysis consists of finding the least unstable eigenmode of the system. The

writing down of such a linear equation was first accomplished for viscous parallel shear

flows by Orr (1907) and Sommerfield (1908) and were solved accurately for a channel flow

using spectral methods by Orszag (1971). This idea has existed in the hydrodynamic

stability theory for a long time and has successfully described instabilities and transition

in flows like Rayleigh-Bénard convection. Eigenvalue analysis, however, fails to reproduce

the experimentally observed transition to turbulence due to infinitesimal perturbations

in shear flows like the Couette flow, pipe flow and channel flow. For decades it was
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Figure 1.1: A cartoon of disturbance decay and growth over a base state in a parallel

shear flow between two walls. The disturbance is in red and the base state in black. (I)

A disturbance is imposed over the laminar base state. The disturbance can either die

down as in (II) or grow in magnitude as in (III). The mean profile in (III) is flatter as

compared to (I) and (II).

assumed that these flows undergo a nonlinear instability but later it was found (Butler

and Farrell, 1992; Ellingsen and Palm, 1975; Landahl, 1980; Reddy and Henningson,

1993; Trefethen et al., 1993) that disturbances could grow algebraically to significant

amplitudes by a linear mechanism. This happens when the linear stability operator is

nonnormal, as will be discussed later in this thesis. In fact, in unbounded parallel flows

of constant properties, it can be shown that the initial growth must be linear (Schmid

et al., 2002). This is termed “nonmodal growth of perturbation” and we shall refer

to “nonmodal analysis” in this thesis. Nomodal growth is also referred to as transient

growth or optimal growth across literature. In this viewpoint of stability, individual

eigenmodes of the system are not considered alone but various combinations of these

modes are studied to understand their effective behaviour. In a system described by a

nonnormal matrix, the perturbation energy could always decay monotonically. This, in

shear flows, happens below a particular Reynolds number, which we have referred to above

as ReE. Above ReE, the behaviour depends on the nature of the perturbation. Certain

perturbations decay monotonically. When perturbations are such that they contain a

linear combination of certain eigenmodes in the correct range of initial amplitudes, they

can (i) grow algebraically for some time before decaying (ii) grow algebraically to such

an extent that nonlinear behaviour is initiated, and the system can go into a transitional

or even a turbulent state. The latter also needs some minimum initial amplitude of
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perturbations, not just the right linear combination. Nonmodal growth can occur only

when the eigenvectors of the linear system are not all orthogonal to each other. Here,

even when each individual mode is decaying, their resultant can grow for a short time.

A schematic taken from Schmid (2007) as shown in figure 1.2 shows how even decaying

nearly colinear vectors Φ1 and Φ2 can allow for their resultant f = Φ1−Φ2 to grow. With

increasing time, as in each of the four frames of figure 1.2, Φ1 decreases by 20% while

Φ2 decreases by 50%. The nonmodal analysis (looking at the combination of Φ1 and Φ2

rather than individually) shows the possibility that at intermediate times, some measure

of a norm or resultant of vectors can grow. It also shows that the resultant progressively

orients itself in the direction of the least stable eigenvector Φ1 as time progresses. This

growth in norm can also be translated to growth in energy and such intermediate-time

energy growth can be enough for the transition of flow from laminar to turbulence.

Figure 1.2: A schematic of nonmodal growth. While vectors Φ1 and Φ2 decay in time

from left to right by 20% and 50% respectively in every frame, f = Φ1−Φ2 grows because

of non-orthogonality of the two vectors, and directs itself to the direction of the least

stable vector Φ1. The red line shows the change in magnitude of the resultant f with

time. Adapted from Schmid (2007). Used with permission from the Annual Review of

Fluid Mechanics.

So, essentially, nonmodal analysis is the study of an initial value problem, often in a

subcritical system, and concerned with finding the initial condition that can cause the

highest transient growth of some measure. For example, we can look at the maximum

amplification of the energy from its initial value. It becomes obvious here that the time

over which we want to maximise the energy enters into the stability calculations and
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a disturbance that causes the maximum growth over a fixed time interval may not be

the most dangerous initial condition when we analyse a different time horizon. This

technique of nonmodal analysis is helpful when the eigenvectors of the flow operator are

not orthogonal to each other and the most unstable mode of the system as uncovered by

the linear modal stability fails to address the short-time dynamics of the system. Böberg

and Brosa (1988); Butler and Farrell (1992); Reddy and Henningson (1993) among others

calculated optimal disturbances for nonmodal energy growth. Butler and Farrell (1992)

calculated the three-dimensional perturbations that gain the most energy in a given time

period. They pointed out that the disturbance that grows in energy the most is not of the

modal form but is in the form of elongated vortices in the flow direction and is oriented

opposite to that of the mean flow. We underline that the most unstable perturbation

often has a specific structure, which most often does not resemble that of the least stable

eigenmode found by eigenvalue analysis. The nonmodal energy growth can be as large as

O(1000) in channel and Couette flows even with small amplitude perturbations (Reddy

and Henningson, 1993).

These traditional analyses are based on the premise that the base flow of the system is

independent of time, i.e., the mean flow as shown in figure 1.1 does not change over time.

And then the growth of the perturbations over and above this base state is calculated.

But this does not have to be the case with many real-life complex flows. The base flows

can be time-periodic or even be slowly varying in time. Still, nonmodal analysis can be

conducted for such flows but not in its current form. To analyse such time-varying flows,

it is required to formulate the stability of the flow as a variational problem (Hill, 1995).

Rather than using matrix decomposition techniques, an iterative algorithm in time can

be constructed and applied to any generic flow to study nonmodal energy growth of

disturbances (Schmid, 2007). The outcome of such an analysis is the optimal disturbance

that is responsible for the highest nonmodal growth and under some conditions can cause

the transition to a different state like turbulence.

In the recent years, this generalised technique of using variational principles to study

nonmodal energy growth and calculating the most energetic disturbance, called the opti-

mal, has been applied to a range of complex flows and reviewed in Kerswell (2018). It in-

volves an iteration to maximise or minimise a certain quantity of interest, e.g., the kinetic

or potential energy of velocity perturbations or scalar etc. Foures et al. (2014) worked on
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optimising for mixing of temperature in a two-dimensional channel flow. Despite being

in the linearly stable regime, due to nonmodal energy growth, mixing of temperature

was observed to be enhanced. The optimal disturbance found using this technique was

also found to enhance the transport of temperature across the breadth of the channel.

Marcotte and Caulfield (2018) extended the above study to a stratified channel flow by

including gravity in the governing equations of the flow. They also observe something

similar to Foures et al. (2014) where mixing is enhanced due to the nonmodal growth

induced by the optimal disturbance, and with an increase in the strength of stratification,

this energy growth was reduced.

When the initial energy of the perturbation goes to zero, i.e., the amplitude of the

disturbances are infinitesimal, we must recover the results of the linear nonmodal analysis.

Kaminski et al. (2014) studied linear optimal perturbations for a stratified shear layer.

They studied nonmodal growth both in stable and unstable regimes as dictated by linear

stability analysis. They found that despite linear stability analysis suggesting that for a

flow with a Richardson number (nondimensional ratio of buoyancy to shear) > 1/4 being

stable, the linear optimal undergoes transient growth due to the nonnormality of the flow

operator. The growth in energy was shown to be greater than what would be expected

out of the singular value decomposition of the linearised stratified governing equations.

They found that over long times, the nonmodal growth was dependent on the degree

of temperature stratification and approached an increasingly two-dimensional form (as

opposed to the three-dimensional form in the case of short-time analysis), similar to what

had been found by Arratia et al. (2013) for an unstratified time-evolving mixing layer.

Nonmodal analysis, when applied to a nonlinear system, constitutes the theory of

nonlinear nonmodal analysis. Nonlinearity can, of course, introduce physics in the system

which will be missed if we consider only the linearised version of the equations. Pringle

and Kerswell (2010) studied the nonlinear optimal for a pipe flow and found it to be

different from the linear optimal. The linear optimal is two dimensional and independent

of the length of the pipe, whereas the nonlinear optimal is three-dimensional and localized.

They also found the nonlinear three-dimensional optimal to be more dangerous than the

linear optimal to trigger turbulence in pipe flow. Cherubini et al. (2010) studied nonlinear

optimal perturbations in a boundary layer and found localised structures for the transition

to turbulence. This points to the importance of nonlinearity in the nonmodal analysis.
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This is the reason why we carry out full nonlinear nonmodal analysis in a part of this

thesis. The geometry of our interest is the canonical channel flow.

The study of nonlinear nonmodal analysis in this thesis is carried out with a numerical

solver which was developed to solve the governing equations in a parallel processing

mode in a computer. The variational method, that we have already commented upon,

introduces a certain set of equations called the adjoint equations, which can be solved

using numerical techniques similar to the governing equations. The governing equations

of the flow are the Navier-Stokes equations, and the adjoint of the Navier-Stokes needs

to be derived to formulate the nonmodal analysis. The Navier-Stokes equations can

also be coupled to the temperature equation. This happens when the density or the

viscosity of the flow varies due to changes in temperature. The temperature equation is a

proxy for any time varying passive quantity and is a generic equation that can represent

concentration of any scalar in a flow. But the effect of this scalar on the flow is particular

to the nature of the scalar.

1.3 Viscosity variations

In multi-component flows, the viscosity of the fluid is not constant. This can happen

when the flow is laden with particulates like polymers or sediment, or some quality of the

flow varies. Most of the flows that are observed in nature are of varying viscosity. For

example, viscosity variations can happen in flows like oceanic and atmospheric flows. In

the simplest case, this happens when the temperature changes in the flow. To study a

simple case of viscosity variation, we study laminar flow in a channel. It is to be expected

that the stability calculations could be modified by the presence of viscosity variations

in the flow. This is because viscosity, and its variations, (Ranganathan and Govindara-

jan (2001) and other later works reviewed in Govindarajan and Sahu (2014)), at high

Reynolds number, act as a singular perturbation in the stability equations (Govindarajan,

2004). It is because the inverse of the Reynolds number (a small quantity) is multiplied

by the highest derivative in the governing equations. In a part of this thesis, we have

analysed the effects of viscosity variations on stability properties of a three-dimensional

channel flow. As noted earlier, the nonmodal energy growth calculations are dependent

on the time during which we are interested in the growth of perturbations. So, it is to
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be expected that the optimal disturbances that cause transient growth at different time

intervals would be different.

The nonmodal energy growth and its ability to transition a flow from laminar to

turbulence is a broad topic of interest in itself. In this thesis, we touch upon both the

concepts of stability of a flow and the properties of turbulence. Next, we study the

turbulent properties of geophysical flows with special focus on the Bay of Bengal, a part

of the Indian ocean. We elucidate the various turbulence signals in the Bay and attempt

to study its importance in the Indian monsoon system. We first present an overview

of our motivation to make the jump from nonmodal stability analysis to geophysical

turbulence.

1.4 Earth’s oceans

The storage and transport of heat in the ocean around the globe is a matter of concern

and scientific study because of its importance in global climate. Water has a much higher

heat capacity than air. Hence the oceans, which cover more than 70% of the earth’s

surface, store a major portion of the heat. To put into context the importance of oceans,

we point out that the upper few metres of the ocean contain as much heat as the whole

atmosphere above it (which is O(km)). The oceans also absorb a large amount of heat

without any significant increase in their temperature. Evidently, the oceans play a major

role in the heat balance, and understanding the physical mechanisms that maintain this

balance is evidently of great importance. Major events like the 1997-98 El Niño have had

a strong impact in the world’s climate (McPhaden, 1999). Studying and quantifying the

effects of oceanic processes is important to understanding their interaction and feedback

to the atmosphere. With gradual warming of the world oceans (Levitus et al., 2000),

a need for more dedicated understanding of the ocean-atmosphere coupling is required.

Projects like the Tropical Ocean-Global Atmosphere (TOGA) Program (McPhaden et al.,

1998) had tried to decipher some of the air-sea interactions, in what has become currently

a well-studied subject like the El Niño Southern Oscillation.

Long term observations of the oceans have provided significant understanding of their

annual cycle. There are various ways to undertake the observational task of the oceans and

the atmosphere, and depending on the method undertaken, the temporal and the spatial
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extent varies. Properties of the oceans that have been traditionally measured include

temperature, conductivity (to infer salt content), speed of the flow, current direction,

and turbulence.

1.5 Methods of Ocean Observation

One of the first recorded oceanographic measurements began with measuring ocean ve-

locity and temperature with flowmeter and thermistors behind a ship and on a submarine

(Grant et al., 1959, 1968, 1962). The experiments of Woods (1968) introduced dye in the

ocean with the purpose of investigating thin sheets of high temperature gradient in the

thermocline - the portion of the ocean just below the upper mixed layer where the mean

temperature decreases with depth. A few other investigations (e.g., Bowden (1965)) de-

rived estimates of turbulent mixing in the ocean from distributions of temperature and

salt content (salinity) and from the results of a few earlier dye releasing experiments. It

was inferred from studies of Grant et al. (1968) that the temperature structure in the

ocean is not uniform as the thermistor sampled turbulent patches where temperature

showed small scale variations. They found turbulence to be of more intensity in the

upper 50m which then decreased to almost negligible values by 200m depth. Stommel

and Fedorov (1967) and Woods (1968) observed staircases in temperature and salinity

measurements in the ocean where the properties varied in a small depth range. These

tried to establish that the ocean was not laminar and turbulence in the ocean occurred

routinely to be observed by various experiments across different oceans. These turbulent

fine-scale structures in the ocean were further explored by freely-falling vertical profilers

by Osborn and Cox (1972). They dropped the thermistors from a ship which would

measure the vertical profile of the ocean mostly focusing on the thermocline. These early

studies gave rise to the research area of physical oceanography.

With developments in various technologies, the oceans began to be explored more

and with the already available theoretical understanding, these explorations provided

knowledge about the dynamics of the oceans and their impact on weather systems. Some

of the common ways in which ocean observations have been carried out are

1. Oceanographic mooring,

2. Shipboard measurements,
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3. Argo floats, and

4. Satellite observations.

Each of these ocean observation techniques have limitations, but when used in concert

help in a better understanding of the oceans. As we use only mooring measurements in

this thesis and I had collected data from shipboard instruments, I describe only those

two in detail here.

1.5.1 Oceanographic mooring

Figure 1.3: A schematic of a mooring. A float, made of a buoyant material, stays over

the ocean surface and the anchor at the end of the mooring wire lies on the ocean bed

to keep it at a fixed location. Various instruments to measure oceanic properties are

fitted to the mooring wire. Sometimes instruments are also fitted to the float to measure

meteorological data.

A mooring is a float (figure 1.3) that has various instruments on its wire and can be

deployed in the ocean for long periods of time (> 1 year) to collect data. A mooring thus

allows for long time oceanic observations without continuous human effort. Moorings

have been successful in studying extreme events like cyclones if they are situated in their

paths where human presence is not possible. Apart from oceanographic instruments, a

mooring float can be fixed with sensors that can measure atmospheric properties like

humidity, wind speed, wind direction, rainfall, heat flux among others.
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Research Moored Array for African-Asian-Australian Monsoon Analysis and Predic-

tion (RAMA; (Mcphaden et al., 2009)) is an array of moorings in the Indian Ocean for

better observation of the Indian monsoon, and has been active for almost two decades

now (see e.g., Beal et al. (2020)). It has provided an extensive understanding of the in-

traseasonal oscillations in the Indian monsoon and the seasonality in the properties of the

Indian Ocean (Sengupta et al., 2007), and also its response to extreme events like tropical

cyclones. The Tropical Atmosphere Ocean (TAO) array of moorings (Hayes et al., 1991)

have been in the Pacific Ocean for more than three decades and a similar mooring array

in the Atlantic Ocean (Prediction and Research Moored Array in the Tropical Atlantic

(PIRATA) (Servain et al., 1998)) have studied the long-term air-sea interactions, with

potential consequences to droughts, floods, hurricanes etc. Apart from providing many

years of data, they also provide information about the spatial variation in the oceanic

properties and that of air-sea fluxes across the globe.

1.5.2 Research expeditions to the Bay of Bengal

Oceanographic data collecting instruments can also be carried on board research vessels,

i.e., ships designed to carry out research expeditions. This method, however, is limited by

the maximum amount of time the ship can afford to be in the ocean at one go. I was a part

of two research expeditions to the Bay of Bengal to collect oceanographic and atmospheric

data. The data from these research cruises have not been directly used for the turbulence

analysis presented in this thesis but have helped initial preliminary understanding about

the Bay, like spatial variations in salinity and temperature, air-sea fluxes etc. I describe

briefly these expeditions here since they were a learning experience, and also importantly

they informed my understanding of the turbulence measurements studied in this thesis,

and helped immensely in handling the data. The mooring whose data a part of this thesis

is based on was recovered during one of the cruises. The first cruise was in January-

February of 2016 and was on the Oceanic Research Vessel (ORV) Sagar Kanya. It was

a joint effort by the National Centre for Polar and Ocean Research, National Institute

of Ocean Technology (NIOT), and Woods Hole Oceanographic Institution (WHOI). The

second cruise in the southwest monsoon month of July 2019 was a part of the Monsoon

Intraseasonal Oscillation in the Bay of Bengal (MISO-BoB) project, funded by the US

Office of Naval Research and participated by Oregon State University, Scripps Institution
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of Oceanography, WHOI, NIOT among others. I briefly describe the two cruises I was a

part of.

ORV Sagar Kanya

Figure 1.4: An approximate track of the Sagar Kanya in the Bay of Bengal in January-

February 2016 is shown as red lines with arrows denoting directions. Two moorings are

marked “I” and “II”, and Chennai port is marked as green filled circle.

This research expedition was for 17 days starting from the Chennai port (India) on 23

January 2016 with 21 scientists on board. The surveyed path of this cruise is shown as

red line in figure 1.4. The yellow filled circles mark the locations of moorings that were

recovered. Some of the objectives of the expedition were

1. to recover the Woods Hole Oceanographic Institute mooring from 18◦ North, 89.5◦

East (yellow circle in figure 1.4 marked II) which was deployed in December 2014.

The data obtained from instruments fitted on this mooring have been extensively

used in this thesis. These data include temperature, salinity, velocity, turbulence,

air-sea fluxes, wind speeds etc., in the Bay of Bengal.

2. Extensive upper ocean survey of the North Bay of Bengal. The ship itself is

equipped with thermosalinograph, underway CTD (conductivity, temperature, and

depth probe) and acoustic Doppler current profiler (ADCP) to carry out ocean ob-

servations. We collected temperature and salinity data by continuously profiling

the Bay using vertically falling underway CTDs.
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3. Deployment of seven Argo floats, and recovery of a mooring in south Bay (marked

I in figure 1.4) and deployment of another mooring at the same location.

ORV Sally Ride

Figure 1.5: Recovery of a drogue buoy in the Bay of Bengal from the Sally Ride in July

2019. Photo courtesy of San Nguyen (Scripps Institution of Oceanography). Used with

permission.

The research expedition on ORV Sally Ride started on 06 July and ended on 04

August 2019. We started from Chennai port and did many transects of the Bay of

Bengal to measure ocean temperature, salinity, velocity, and turbulence in the 15◦-17◦

North region along with other meteorological measurements. The main objective was

to study the evolution of the ocean’s surface boundary layer under strong atmospheric

forcing during the summer monsoon and collecting extensive dataset to better sample the

monsoon intraseasonal oscillations. We also recovered a RAMA mooring that had been

in the Bay for more than a year. Sixty-nine radiosondes were launched from the ship to

have concurrent atmospheric measurements to estimate the air-sea fluxes.

1.6 Some properties of oceanic flows

Because the Earth rotates about its axis, oceanic flows are governed by the Navier-Stokes

equations in a rotating frame of reference. Many mechanical forcing agents like winds,

the differential gravitational attraction of the moon and the Sun (tidal forces), and solar
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heating, act to set the ocean in motion. Depending on the scale of these motions, the

apparent force due to earth’s rotation, also known as the Coriolis force, may or may not

affect the motion. Winds can generate fluid motions in the upper hundreds of meters of

the ocean. But the deep ocean water is also recirculated albeit in timescales of thousands

of years due to the differential heating at the poles and the equator. The Coriolis force

turns the oceanic currents to their right in the northern hemisphere and to their left in

the southern hemisphere. If winds steadily blow over a surface, steady motion can be

generated and is termed as Ekman flow (Ekman, 1905). The net Ekman transport of

water can be derived to be at right angles to the wind direction in both the hemispheres.

These steady motions can cause local convergences and divergences in the ocean surface.

When constantly blowing wind moves surface waters from a given place, deeper water

comes up to conserve mass. This is called upwelling. If the opposite happens, the process

is called downwelling. Both are observed near land boundaries and also in the open

ocean like currents near the equator (e.g., Johnson et al. (2001)). Vertical velocities

associated with both are of the order of metres per day and hence present a challenge

to accurate measurements but are nevertheless an important component of oceanic flows

with importance linked to the biogeochemical cycle (Chavez et al., 1999).

The currents in the ocean can undergo instabilities and form eddies that can extend to

hundreds of metres deep into the ocean can be as large as ∼100 km (Gordon et al., 2017).

These are an important part of the ocean because they transport heat, salt, sediments,

and carbon, determine the density structure of the oceans, and play an important role in

the global circulation (Hallberg and Gnanadesikan, 2006). These eddies can range from

O(∼1km) to O(100km) and are termed submesoscale and mesoscale eddies, respectively

(Thomas et al., 2008). Mesoscale flows are mostly governed by the balance between

the Coriolis force and the pressure gradient (geostrophic balance) and are essentially

two-dimensional. Submesoscale flows, on the other hand, have one or two orders of

magnitude higher vertical velocities (Capet et al., 2008) and act to extract the energy from

the geostrophically balanced flows. They disintegrate to small-scale three-dimensional

motions that eventually cause turbulence.

Sea-surface temperature (SST) is the temperature of the top surface of the ocean. SST

is one of the most important parameters controlling an air-sea coupled system and is fed

into climate prediction numerical models (Moore and Kleeman, 1999). In the review of
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Schott et al. (2009), it has been pointed out that due to the failure to represent oceanic

processes correctly like the SST, the ocean models have discrepancies in the Indian Ocean.

The mixed layer of the ocean is defined as the upper ocean which is actively mixed by wind

action. This mixing is done via turbulence. SST is greatly affected by the seasonal depth

of the mixed layer. The role of vertical mixing in the seasonal cycle of the SST has been

established in the equatorial pacific with subsurface turbulence measurements (Moum

et al., 2013). Similar spatial and temporal understanding from long-time oceanographic

mooring deployments is required to understand the role of the Bay of Bengal in the active

and break periods of the Indian monsoon. The Bay of Bengal monsoon experiment was

an attempt towards that understanding by a huge collaborative effort (Bhat et al., 2001).

1.7 Bay of Bengal and Indian monsoon

The surface waters of the Bay of Bengal are among the lowest salinity (or freshness) in the

tropics. In the Bay, surface salinity can dip to 25 practical salinity units (psu; measured

as grams of salt per kilograms of seawater) due to the freshwater outflow from rivers

and monsoonal precipitation. The Indian monsoon affects a significant portion of the

world’s population. Fluctuations in the intensity of the Indian monsoon system propagate

northward from the equator towards the Indian subcontinent (Sikka and Gadgil, 1980),

bringing intervals of relatively wet and dry conditions. Precipitation associated with

monsoon both feeds many rivers that discharge into the northern Bay of Bengal and

provides close to 2m of rainfall each year over the Bay. The freshwater persists as a

shallow layer in the Bay for 3-5 months starting around July (the latter half of the

summer monsoon). This shallow, freshwater layer adjusts quickly to changes in air-sea

heat fluxes but also limits atmospheric forcing of the ocean below. It is important to

understand the upper oceanic layer as it plays a major role in the inputs to the coupled

climate models. Monsoon convective activities have been suggested to be affected by the

presence of this low-salinity water.

1.7.1 Ocean-Atmosphere coupling in Indian ocean

Numerical modeling studies have shown that the coupled dynamics of the ocean-atmosphere

system, at timescales as short daily variations (diurnal), strongly affect the structure and
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variability of the large-scale tropical atmosphere (Woolnough et al., 2007). Simultaneous

observations have further demonstrated the co-evolution of the atmosphere and ocean

in response to monsoon forcing in the Indian Ocean (Sengupta et al., 2001), including

within the Madden-Julian Oscillation (McPhaden and Foltz, 2013; Moum et al., 2014),

and during the northern hemisphere summer intraseasonal oscillations (Li et al., 2017).

While sea surface temperature controls coupling at the air-sea interface, SST is itself

influenced by net atmosphere-ocean heat flux, turbulent entrainment of typically cooler

deep water into the mixed layer, horizontal and vertical advection, and the ocean’s mixed

layer depth.

Indian Ocean dipole (Saji et al., 1999) could have a strong impact on the Indian

monsoon and is an evidence of the existence of a coupled ocean-atmosphere system over

the northern Indian Ocean. Saji et al. (1999) showed a strong coupling of temperature

differences between the eastern and western Indian ocean with the winds and precip-

itation, which is a strong indicator of ocean-atmosphere coupling. Inclusion of these

interactions have helped improve prediction models but they are not ideal. Particularly

interesting with regard to Indian ocean is to capture the salinity stratification at the

surface of the Bay of Bengal and parametrisation of mixing in the upper ocean. A lack of

better parametrisation potentially contributes to poor modelling (Rahaman et al., 2014).

The spatial and temporal details lost due to averaging and interpolation, and hence in-

hibiting better parametrisation, can be improved upon by better and higher frequency

measurements.

1.8 Ocean Turbulence

Flows in the ocean, by virtue of being in large spatial scales, are of high Reynolds number,

defined as Re = UL/ν, where U is the flow speed (usually O(m/s)), L is a length scale

appropriately chosen to be representative of the flow, and ν is the kinematic viscosity of

water. As the density of water in the ocean varies primarily owing to changes in tem-

perature and salinity, the Richardson number is also another important nondimensional

parameter that govern the dynamics of the flows. These flows display many types of

instabilities when a nondimensional parameter is varied and, under certain conditions,

undergo a transition from laminar to turbulence. Turbulent overturns are a source of



18 CHAPTER 1. INTRODUCTION

transport of oceanic heat and can carry nutrients to the deeper ocean. Its large size (i.e.,

L in the definition of Reynolds number could be the depth of the ocean (O(kms)) which

is much larger than laboratory-scale experiments) and complexity, allow for a big range

of time and length scales to develop.

Turbulence is a major player in heat transfer to the deeper ocean and has been known

to have a seasonal nature. Bursts of turbulent events are interleaved with steady laminar

flows and have been postulated to be important for the global meridional circulation

(Munk, 1966; Wunsch and Ferrari, 2004). The two main drivers of turbulence are winds

and tides with ∼2 terawatt of energy input into the oceans (Munk, 1966). Other small

energetic candidates include surface buoyancy forcing and geothermal heating at the

ocean abyss. Tidal flows over topography generate internal waves (Varma and Mathur,

2017) that either break near the generation sites (Alford et al., 2012), lose energy by

nonlinear triadic interactions to small scales that eventually break (MacKinnon et al.,

2013) or survive and travel for thousands of kilometers before hitting coastal regions

and eventually breaking (Nash et al., 2004; Ray and Mitchum, 1996). Climate models

are sensitive to the presence of internal waves in the ocean models (Melet et al., 2013).

Because of the varied flavour in which they present themselves, they are difficult to be

represented in models and hence the turbulent mixing they induce is not parametrised

well.

1.8.1 Need for parametrisation

Turbulence in the ocean varies by many orders of magnitude in both space and time

as reviewed recently in Moum (2020). Because of the large range of scales of motion,

replicating the full dynamical properties of oceans in computations and laboratory ex-

periments are not possible. The minimum vertical resolution in the ocean models ranges

from 1-10m. Viscous dissipation by the turbulent cascade in the oceans can however

occur in the range of < 1 cm and hence there is a need to parametrise dynamics which

are smaller than the vertical grid size of the models. The spatial and temporal variability

of turbulent mixing gives rise to the ocean variability and incorrect parametrisation are a

primary source of error in ocean models. These errors become more pronounced in places

of strong currents and sharp changes in the topography like coasts, estuaries, and lakes

(Durski et al., 2004; Stacey et al., 1999).
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To this end, large scale ocean turbulence measurements have been conducted for a

number of years. And only due to huge efforts to sample turbulence extensively in the

ocean, it has led to the current level of understanding in its variability and its impor-

tance in controlling the feedback to the atmosphere. We present in this thesis turbulence

measurements from the Bay of Bengal which we hope will add to the current reposi-

tory of understanding and help improve turbulence parametrisation in coupled monsoon

prediction models.

1.9 Outline of the thesis

The two halves of this thesis are contained in five chapters. The first half is on nonlinear

nonmodal stability analysis of the viscosity stratified flows while the second part describes

oceanic turbulence in the Bay of Bengal using moored mixing meters called χpods. These

two parts are organised into different chapters as follows.

In chapter 1, we describe the principles of nonlinear nonmodal stability analysis. We

describe the numerical technique of ‘direct-adjoint looping’ to formulate this stability

study. We apply this technique to the full nonlinear Navier-Stokes equations and derive

the adjoint Navier-Stokes equations. We describe the numerical methods used to solve

the equations and also a numerical method of nonlinear optimisation. We then briefly

describe some optimal disturbances found using our solver that cause maximum transient

growth.

In chapter 2, we apply the nonlinear stability techniques developed in the first chapter

to derive the viscosity stratified adjoint Navier-Stokes equations. We show that viscosity

stratification plays a big role in the localisation of the optimal disturbances on the walls

of the three-dimensional channel. We see that nonlinearity is a crucial ingredient be-

cause certain mechanisms are totally missed when the optimal disturbances are found for

linear disturbance energies. We attempt to provide a physical mechanism of nonmodal

energy growth in this system and comment on the existence of well-known lift-up and

Orr mechanisms.

In chapter 3, we make a jump from nonmodal analysis to understanding geophysical

turbulence. We detail the theoretical principles of geophysical turbulence measurements

and describe the instrument χpod that had been used to measure turbulence in the Bay
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of Bengal. χpods are moored turbulence measuring instruments fitted to oceanographic

moorings and have provided year-long data in many different parts of the world. Turbu-

lence data obtained from χpods in the Bay of Bengal forms the basis of analysis in the

rest of the thesis.

In chapter 4, we detail the turbulence data obtained from the first year-long measure-

ments in the Bay of Bengal at 18 ◦N and 89.5 ◦E at four different depths. We show that

there is a seasonality to geophysical turbulence in this climatically important region. This

seasonality is linked to the Indian monsoon system. We also show a surprising phase of

suppressed geophysical turbulence that can have potential consequences to vertical heat

transport and hence convective activities in the post-monsoon season.

In chapter 5, we delve deeper into a particular diurnal signal in turbulence observed

in the Bay during the transition period (the month of May) to the southwest (summer)

monsoon. This turbulence varies by two orders of magnitude in turbulent diffusivity

and persists for about a month. We see a hitherto unobserved diurnal land-sea breeze

that is present at the WHOI mooring location which is about 400-500 km from the land

boundaries. This might be due to the unique topography and we strongly suspect that

this land-sea breeze might be responsible for generating this diurnal signal in turbulence.

However, we still discuss many other possible mechanisms which may have caused this

diurnal signal. Even though we have a strong suspect, this is ongoing work and we do

not have a complete understanding of the signal.

The thesis thus combines (a) an observational study of turbulence suppression and a

resulting long-term laminar state at some depths in the Bay of Bengal, where the eddy

viscosity in our region of interest varies by orders of magnitude, and (b) a theoretical

and numerical study in a much simpler well-defined flow (pressure-driven flow through

a channel) and how a variation of molecular viscosity affects instability and a departure

from the laminar state. The entire process of disturbance growth in the latter, as we

find, appears to be nonlinear, and this thesis develops the theoretical apparatus to study

disturbance growth in viscosity-varying flows in this regime. A theoretical study of tur-

bulence suppression by nonlinear stabilisation on a simple one-dimensional model of the

upper Bay of Bengal, during different times of year, is a natural next step.
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Nonlinear instability and numerics
***

In this chapter we first briefly describe the well-known concepts of linear modal and

nonmodal analysis for simple operators. We then extend the concept of nonmodal analysis

for nonlinear fluid flow problems. We describe a variational technique which could be

used for complex time-varying flows for nonlinear nonmodal analysis by optimising for a

desired cost functional. We introduce the adjoint of the Navier-Stokes equations. The

analysis is then employed to study the nonmodal growth associated with the Navier-

Stokes equations, subject to the boundary conditions appropriate to a three-dimensional

plane Poiseuille flow (channel flow). Then, we describe the development of numerical

techniques for solving the Navier-Stokes equations and their adjoints. We also describe

a nonlinear optimisation technique to arrive at the nonlinear optimal perturbations of

a channel flow which maximises a desired cost functional. This is a collaborative work

with Arjun Sharma of Cornell University. The equations in section 2.6 are independently

derived by the author and Arjun Sharma, and the numerical solver development and

validation is a joint effort with Arjun Sharma.

2.1 Introduction

A matrix M which commutes with its own transpose (or its conjugate transpose in case

the matrix M is complex), can be mathematically described as

MMT = MTM. (2.1)

21
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If all the eigenvalues of the matrix M in equation (2.1) are real, then M is also called

Hermitian or self-adjoint. M can also be an operator and the same definition would hold.

Fluid flow systems at various approximations can be assumed to be governed by different

flow equations, like the Navier-Stokes equations, Euler equations etc. We can express

these equations in the form of corresponding differential operators acting on flow variables

governing their evolution. When energy is considered, the presence of mean shear most

often makes the flow operator non-normal (this may, however, not hold for other kinds

of norms; see Held (1985)). In this case, M is not diagonalisable, its eigenvectors are not

pairwise orthogonal in the sense of energy, and hence they do not form a complete basis.

On the other hand, a normal operator in the sense of an appropriate norm would have

eigenvectors that are pairwise orthogonal. Normal operators can either be Hermitian and

satisfy (2.1) or satisfy MMT = −MTM (skew-Hermitian operators).

2.2 Modal stability analysis

Let u, v, and w be the x-, y- and z-component of a three dimensional disturbance to a

shear flow Ui = U(y)δi1 as shown in figure 2.1. Then, the y-component of vorticity (or

the curl of velocity) can be defined as,

(2.2)η = ∂u

∂z
− ∂w

∂x
.

We can express the y-components of disturbance velocity and vorticity in the normal

mode form as v = ṽ(y)eι(αx+βz−ωt) and η = η̃(y)eι(αx+βz−ωt). Using these forms in the

linearised governing equations of v and η, following Schmid et al. (2002), the resulting

equations can be cast in velocity-vorticity formulation for the shear flow as

∂

∂t

ṽ
η̃

 =

LOS 0

ιβU ′ LSQ


ṽ
η̃

 . (2.3)

Here α and β are the streamwise (x) and spanwise (z) wavenumbers, ω is the frequency,

and a prime (′) denote a y-derivative. Boundary conditions that should be imposed are

ṽ = ∂
∂y
ṽ = η̃ = 0 at the walls. LOS is the Orr-Sommerfeld operator which governs

the dynamics of the normal velocity ṽ and LSQ is the Squire operator that governs the
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Figure 2.1: A schematic of a three-dimensional shear flow through two parallel walls in

the y-direction. The base profile is U(y) = 1− y2 and hence has shear U ′(y) ≡ dU/dy. x

is the streamwise direction, y the wall-normal and z the spanwise direction.

dynamics of the normal vorticity η̃. They are of the form

LOS = ιαU(k2 −D2) + ιαU ′′ + 1
Re

(k2 −D2)2 (2.4)

and

LSQ = ιαU + 1
Re

(k2 −D2), (2.5)

with k =
√
α2 + β2, D = ∂/∂y, Re is the Reynolds number as defined in the previous

chapter. The characteristic length scale is most often half the height of the channel.

The formulation in equation (2.3) allows a recasting as an eigenvalue problem with the

frequency ω appearing as the complex eigenvalue

− ιω

k2 −D2 0

0 1


ṽ
η̃

+

LOS 0

ιβU ′ LSQ


ṽ
η̃

 = 0. (2.6)

We may then solve this eigenvalue problem to find if initial perturbations of any wave-

length can grow in time as t → ∞ assuming real α and β. This is also called modal

analysis.

The same eigenvalue problem (2.3) can also be compactly written in the form

∂q
∂t

= Mq (2.7)
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where

q =

ṽ
η̃

 and M =

LOS 0

ιβU ′ LSQ

 . (2.8)

From (2.7), the solution q after time t when initialised with a random initial condition

q0 can be written in the matrix exponential form as

q = eMtq0. (2.9)

The Reynolds number Re is the control parameter here, and with the above modal

analysis, the critical Reynolds number Recr above which an exponentially growing mode

exists, i.e., the system is unstable, can be predicted. Modal analyses predicts uncondi-

tional stability of laminar pipe and Couette flow, i.e., these flows should be linearly stable

to modal perturbations at all Reynolds numbers. However, these flows go to turbulence

at finite Reynolds number. This is thus a failure of modal analysis in describing the

dynamics for such flows.

However, modal analysis is successful in many cases too. A good example is the

buoyancy-driven Rayleigh-Bénard convection. Nondimensionalising the governing equa-

tions for this flow will introduce the control parameter Rayleigh number (nondimensional

ratio of diffusion transport rate to advective transport rate) (Rayleigh, 1916) as opposed

to the Reynolds number. A modal analysis of this system correctly predicts the critical

Rayleigh number at which the flow becomes unstable and can transition to turbulence.

This success of modal analysis for Rayleigh-Bénard convection is due to the absence

of mean shear. Because of this, the governing operator is normal, i.e., the equality in

equation (2.1) holds true and the eigenvectors of the operator are pairwise orthogonal.

The system is therefore fully governed by its eigenvalues. For shear flows, this is not the

case. From the flow operator in equation (2.3), it can be seen that solution of the normal-

velocity ṽ acts as a forcing to the equation of the wall-normal vorticity η̃ via the linear

coupling term ιβU ′. The resulting stability operator is non-normal due to the presence

of shear (U ′), and the equality in equation (2.1) does not hold. The Orr-Sommerfeld

operator as defined in equation (2.4) is itself non-normal, and can give rise to transient

growth. But the coupling term ιβU ′ often makes a bigger contribution. Even though the

eigenvectors of the Orr-Sommerfeld operator for a bounded domain form a complete basis

(Di Prima and Habetler, 1969), because the operator is non-normal, the eigenvectors are
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not pairwise orthogonal and are very sensitive to perturbations (Reddy et al., 1993).

Shear flows like channel flow, pipe flow, and Couette flow are collectively governed by

non-normal governing operators of form (2.3) with different boundary conditions.

While modal or eigenvalue analysis predicts the long-time behaviour of the flow but

due to the existence of suitably-arranged non-orthogonal eigenvectors of non-normal op-

erators, shear flows can instead experience intermediate-time energy growth (or transient

growth). The failure of modal analysis in shear flows is due its inability to reveal this

intermediate-time dynamics. That means modal or eigenvalue analysis does not convey

the full dynamics of a shear flow. Even in the linear limit, this necessitates the study of

a combination of eigenmodes and not individual eigenmodes in isolation. This study of

a combination of eigenmodes is called nonmodal analysis.

.

2.3 Nonmodal stability analysis

Linear modal analysis for unstratified parallel model shear flows like channel flow pre-

dicts the critical Reynolds number as 5772.22 (Orszag, 1971). Only for Re > 5772.22,

an unstable eigenvalue exist on the spectrum of the Orr-Sommerfeld operator. The cor-

responding disturbance is called the Tollmien-Schlichting (TS) wave (Schlichting, 1933;

Tollmien, 1930). For Re < 5772.22 called the subcritical range, same modal analysis

predicts that every disturbance should die down as t → ∞. In other words, all the

eigenvalues of the flow operator are negative and hence no single eigenmode can grow

in isolation. But experimentally, turbulent spots appear even at Re < 1000 (Tuckerman

et al., 2014), and the flow is usually fully turbulent by Re ∼ 1500. According to modal

analysis, pipe flow should be stable up to infinite Reynolds number, but experimentally

it goes to turbulence in the range of 1760-2300 (Eckhardt et al., 2007; Kerswell, 2005).

Also, Couette flow is linearly stable to all disturbances but this again is not observed

experimentally as Couette flow shows turbulent patterns at Reynolds number as small as

350 (Barkley and Tuckerman, 2005). The shortcomings of modal or eigenvalue analysis

when applied to Couette flow was first recorded by Case (1960) and it was suggested

that this problem be handled as an initial value problem. Non-modal analysis, as noted

in the previous chapter, is essentially an initial value problem where the evolution of a
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disturbance, which could be a combination of different eigenmodes, is analysed. Initial

value analysis can uncover any short-time or transient growth in energy that can occur

in the flow due to the superimposition of eigenmodes even though they are individually

decaying as described with figure 1.2 in the previous chapter. The discrepancies in ex-

perimental observations and theoretical predictions for channel, pipe, and Couette flow

are a manifestation of non-modal energy growths in these flows. For such shear flows,

non-modal analysis complement modal analysis in fully understanding their behaviour.

The method of nonmodal analysis was refined over the years and applied to canonical

shear flows by Böberg and Brosa (1988); Butler and Farrell (1992); Trefethen and Embree

(2005); Trefethen et al. (1993) (for a review, see Schmid (2007)) and could settle some

of the discrepancies between experiments and observations. Recent developments have

helped further the application of nonmodal analyses technique to identify the importance

of coherent structures and their role in short-time energy growth as will be elucidated in

the next chapter.

While modal analysis deals with exponential growth of instabilities, non-modal insta-

bilities are algebraic in nature. To define stability in a finite time interval of t ∈ [0, T ], we

define a certain quantity which is representative of growth of disturbances over any equi-

librium state. We are aiming at a general initial value problem by examining the growth

of any disturbance over this finite time interval and not just the asymptotic behaviour of

the eigenmodes of the system. Short-time dynamics is of importance for processes with a

finite lifetime related to some characteristic time in the flow like eddy turnover timescale

(Schmid and Brandt, 2014) and looking at only the long-time limit is not helpful as it may

not capture the full dynamics of the system. One of the most commonly used quantities

for nonmodal analysis in a system is the spatial integral (over a volume V) of the square

of the l2-norm of vector q which is the energy in the perturbations,

E(q(t)) =
∫
V

(q(x, t).q(x, t))dx ≡ ||q(x, t)||2V . (2.10)

To examine stability of the system over an equilibrium state due to any random initial

condition q0, we define a quantity,

G(t) = E(q(t))
E(q0) (2.11)
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which is the perturbation kinetic energy growth after some time when the system is

perturbed with q0. When this growth is optimised over all initial conditions we have

Gmax(t) = max
q0

E(q(t))
E(q0) , (2.12)

which is the envelope of energy growth over all initial conditions. The maximum growth at

different times would most likely be caused by different initial conditions q0. A linear non-

modal study often optimises for the energy growth of an infinitesimal initial perturbation

over all possible initial conditions, and from the singular value decomposition (SVD) of

the linear operator, reveals the optimal perturbation, i.e., the initial perturbation that

leads to the largest transient growth in the linear regime at a certain time t = T . Hence,

G(T ) as defined above can be obtained by SVD of the matrix exponential in equation

(2.9) and the optimal growth is the square of the l2-norm of the matrix exponential eMt,

if M is autonomous (see, e.g., Schmid and Brandt (2014)).

In a channel flow (at Re = 2000) and in Couette flow (at Re = 1000), the most ampli-

fied disturbance found via nonmodal analysis is a streamwise-independent structure with

the spanwise wavenumber β ≈ 2 appearing in the form of a pair of streamwise counter-

rotating vortices. However, the most unstable eigenmode, the TS wave is a streamwise-

dependent two-dimensional mode. Hence, the optimal disturbances, as recovered from

nonmodal analysis, may not have any structural similarity with the most unstable or the

least stable eigenmode of the system recovered via modal analysis. The highest energy

transfer due to this optimal disturbance happens from cross-stream velocities to stream-

wise velocity (Schmid and Brandt, 2014). This is a linear energy transfer phenomenon

and is called the lift-up mechanism, described for inviscid shear flows by Ellingsen and

Palm (1975); Landahl (1980) and reviewed for various flows in Brandt (2014). In this

process, streamwise-independent v and w perturbations (the cross-stream velocities) in-

duce growth in streamwise-independent u perturbations (streamwise velocity) giving rise

to streaks which grow in energy. Apart from the structural dissimilarity, it has also been

shown that TS instability is susceptible to variations in the base flow but the nonmodal

growth via lift-up mechanism due to this optimal structure (streamwise vortices) is more

stable to such variations.

Lift-up mechanism is hence a robust nonmodal growth mechanism in shear flows and

is often responsible for the subcritical transition to turbulence. Even in the presence of
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modal or exponential instabilities, this nonmodal growth mechanism can still be relevant,

especially if the former is slow. This growth is algebraic in nature and is most relevant in

subcritical Reynolds numbers, and can eventually induce instability in the flow despite

the flow not having any initial inflectional profile or not having any modal instability.

In channel flow, this lift-up process has been established to be the first growth mech-

anism in the subcritical transition to turbulence via generation of low and high speed

streaks (Henningson et al., 1993; Reddy et al., 1998). After these streaks grow in en-

ergy, nonlinear effects become important and they modify the base laminar velocity

profile. This introduces inflectional quality in the wall-normal and spanwise velocities

that undergo secondary instabilities that further appear as streak oscillations (Brandt

and Henningson, 2001) and finally turbulent puffs.

The consequence of the linear coupling term ιβU ′ in the flow operator (as discussed

in the previous subsection) is not just limited to introducing non-modal growth in tran-

sitional flows but also in maintenance of near-wall turbulent structures in full-developed

wall-bounded turbulence. Turbulence being a highly nonlinear process, the importance of

a linear coupling term in its sustenance seems counter-intuitive. However, a mechanism

has been described (Jiménez, 2013) where the inviscid Orr mechanism causes transient

growth of disturbances near the walls in fully-developed turbulence and could be respon-

sible for energetic events like bursts. The disturbance that causes transition to turbulence

with the least kinetic energy has been termed the minimal seed (Pringle and Kerswell,

2010) and shows this lift-up mechanism apart from another transient energy growth pro-

cess called the Orr mechanism (Orr, 1907). In other flows like boundary layers, Cherubini

et al. (2011) have identified mechanism of energy transfer analogous to the lift-up and

have termed it the modified lift-up mechanism.

Transition to turbulence in the absence of modal instability has also been termed

bypass transition because transition occurs without the supposedly traditional route

of growth and eventual breakdown of unstable TS waves. The existence of various

intermediate-time growth mechanisms, as briefly mentioned above, in transitional flows

as well as fully-developed turbulence, necessitates viewing flow stability from an initial

value perspective of non-modal growth rather than just eigenvalue analysis. SVD has

been shown to be the tool to optimise over initial conditions if the linear flow operator

is autonomous. But in the case of time-periodic or unsteady base flows, the nonmodal
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analysis is conducted by formulating a variational technique which views the flow as a

dynamical system.

2.4 Dynamical systems approach to fluid flow

One of the earliest attempts to understand laminar-turbulent transition from a dynamical

systems point of view is attributed to Hopf (1948). The state of the fluid is analysed as a

vector field in the ‘fluid space’, which is an infinite dimensional phase space, and the flow

evolves in this phase space. This phase space could have different possible attractors,

that are approached by nearby trajectories. The laminar and the turbulent states are

such attractors. In some flows and in some ranges of Reynolds number, these can co-

exist in the same phase space. Every attractor is surrounded by a basin of attraction and

the transition from an attractor Λ1 to another Λ2 would need an energy change that is

capable of taking the system out of the basin of attraction of Λ1. Λ1 and Λ2 can be either

laminar or turbulent state and the routes from one to the other could be uncountable.

This means that the dynamical systems approach of stability inherently includes the

concept of energy of perturbations in the analysis. When applied to a nonnormal sys-

tem which experiences nonmodal growth, it establishes a theory of nonlinear nonmodal

stability analysis. The most general approach is to formulate the stability analysis as an

adjoint optimisation problem using variational calculus which exploits the ability of the

adjoint fields to provide sensitivity to initial conditions. When combined with a gradient

optimisation technique like steepest descent or conjugate gradient, it can find the optimal

initial condition to optimise for any desired cost functional, not necessarily perturbation

kinetic energy (Arratia et al., 2013; Cherubini et al., 2010; Foures et al., 2014; Luchini

and Bottaro, 2014; Vermach and Caulfield, 2018).

2.5 Definition of adjoints

The adjoint and the adjoint operator are defined as

∫
u∗(X)Au(X)dX =

∫
u(X)A∗u∗(X)dX. (2.13)
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Here u∗ and A∗ are the adjoints of vector u and any operator A, respectively, and X

could be a spatial variable or time. The definition (2.13) is applicable to any system

of choice. We shall apply this definition to the full Navier-Stokes equations. In that

case, the operator A would be the Navier-Stokes operator and u would be the velocity

field. As the velocity field is both space and time varying, u(X) would now be u(x, y, z, t)

and the integral in (2.13) will be an integral over the whole flow volume and all times,

i.e.
∫ ∫

(...)dV dt, where dV is a volume element in the domain of the flow and t is

time. A procedure involving integration by parts of the left side of (2.13) will lead us

to find the adjoint operator A∗ and when similar arguments are applied to the Navier-

Stokes operator, it will lead us to find the adjoint Navier-Stokes operator. When the

same operation is applied to the temperature equation it will lead us to find the adjoint

temperature equation. The application of this definition of adjoint to the Navier-Stokes

and temperature equations will be discussed in this chapter and how they help formulate

a problem of nonlinear nonmodal analysis.

2.6 Variational method of nonmodal analysis

Adjoint equations (Hill, 1995) are sensitivity equations and can be applied to both dis-

crete and continuous fields, and has been used in a range of studies, not just limited to

fluid mechanics (reviewed in Luchini and Bottaro (2014)). It has found profound use in

optimisation problems where there are many inputs and the interest is in a certain opti-

mal input which would maximise or minimise a certain cost functional. The optimisation

problem is developed from principles of variational calculus which involves defining a La-

grangian of the flow which is the cost functional constrained by the governing equations

and other system-related constraints. These constraints are imposed with the help of

adjoint variables which were briefly defined in the previous section. In this thesis, we

have assumed that our cost functional is the kinetic energy of the perturbations. There

is, however, no restriction on what the cost functional can be, e.g., it can be potential

energy in the flow or turbulent kinetic energy or dissipation, and the exact choice would

depend on the problem of interest.

To analyse the nonmodal energy growth in any generalised fluid flow system, we start

by forming a Lagrangian to find an optimal perturbation that maximises the perturbation
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kinetic energy which is subject to the constraints such as Navier-Stokes and temperature

equation, the initial conditions of the flow, and the total initial energy in the perturba-

tions. These constraints are put in place with the help of adjoint variables. Equating the

variations of the Lagrangian with respect to flow variables to zero give us the evolution

equations of the adjoints. The variations with respect to the initial condition give us a

direction to the optimal perturbation. At optimality, the derivative with respect to ini-

tial condition goes to zero (or below some numerical tolerance) and we have the optimal

perturbation that causes the maximum perturbation kinetic energy growth.

This variational problem using adjoints is hence an optimisation in time as is repre-

sented in a schematic in figure 2.2. The aim of this loop is to find the optimal condition.

At the very first loop we have to guess an initial condition which in most of our simu-

lations is a random noise. Adjoint equations, as will be seen later, are well-posed only

in ‘backward’ time evolution. A loop in time is completed when the governing equations

are solved from t = 0 to t = T and the adjoint equations are solved in backward time

from t = T to t = 0. At the end of the looping, i.e. step (d) in figure 2.2, the gradient of

the Lagrangian with respect to the initial conditions at time t = 0 gives us the direction

towards the optimal condition and we use a gradient descent method (step (e)) to update

our guess and gradually march towards the optimal perturbation. We have to repeatedly

do the looping in figure 2.2 until the gradient with respect to initial condition is below a

certain numerical tolerance.

2.6.1 Application to the Navier-Stokes equations

The variational method of nonmodal analysis can be essentially applied to any system.

We elucidate how this can be applied to the Navier-Stokes and temperature equations.

The nondimensional equations governing mass conservation, momentum and temperature

of a fluid subjected to a pressure gradient are written in terms of the perturbations (about

a chosen laminar flow) evolution in equations (2.14)-(2.16). This set of equations will be

called the ‘direct’ equations and the variables as ‘direct’ variables. It is assumed that the

velocity field and pressure satisfies the homogeneous boundary condition, i.e., nonslip on

walls and periodicity in unbounded directions.

(2.14)∂ui
∂xi

= 0,
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Figure 2.2: Schematic of the direct-adjoint looping problem is shown inside the red dashed

box. The aim of this loop is to find the optimal initial condition or optimal perturbations

that maximises a cost functional of interest. To calculate optimal perturbations of the

Navier-Stokes equations, this loop has to run somewhere between O(10) to O(100) times

depending on the amplitude of the perturbations in the “guess an initial condition” step.

(2.15)∂ui
∂t

+ (Uj + uj)
∂ui
∂xj

+ uj
∂Ui
∂xj

= − ∂p

∂xi
+RibTni + 2

Re

∂

∂xj

(
sij + Sij

)
,

(2.16)∂T

∂t
+ (Uj + uj)

∂T

∂xj
+ uj

∂(T + T0)
∂xj

= 1
RePr

∂2T

∂x2
j

.

Uj are the components of the base (laminar) velocity profile whose stability we study.

ui are fluctuation velocities (imposed on the flow), p is the pressure, Re is the Reynolds

number defined as

Re = UcH/ν, (2.17)
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where Uc is the maximum velocity of the unperturbed and unstratified flow, H is the half

of the channel height, and ν is the kinematic viscosity of the fluid.

Rib = g

ρ

∂ρ/∂y

(∂U/∂y)2 (2.18)

is the Richardson number and is a ratio of buoyancy and shear, where ρ is the density

that can change only due to temperature. Sij and sij are the base and the perturbation

velocity strain tensors

Sij = 1
2

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
and sij = 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.19)

T is the fluctuation temperature, T and T0 (here taken as 290 K) are the background

laminar and the reference temperature respectively. We set a subcrtical Re = 500 and

Pr = 7 in all our simulations. Rib has been currently set to zero but study with non-zero

Rib is a work in progress. Hence we keep Rib in the derivations. We emphasize that these

equations are fully nonlinear and hence the perturbations uj can be of any arbitrary

magnitude. The initial perturbation u0,i is defined as

ui(0) = u0,i. (2.20)

We define the total kinetic energy of perturbations as

E(t) = 1
2V

∫
V
ui(t)2dV. (2.21)

Where
∫
V dV is the volume integral over the whole domain of flow.

Using this, we can define a cost functional J (T ) as an integral over time in the range

t ∈ [0, T ] of the normalised perturbation kinetic energy

J (T ) = 1
E0T

∫ T
0
E(t)dt, (2.22)

where the normalisation factor E0 is the energy in the initial perturbations defined as

E0 = 1
2V

∫
V
ui(0)2dV. (2.23)

As mentioned above, the Lagrangian L can now be defined as the cost functional J (T )
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constrained by the governing equations (2.14)-(2.16) and the initial condition (2.20).

L = J (T )−
[
∂ui
∂t

+ (Uj + uj)
∂ui
∂xj

+ uj
∂Ui
∂xj

+ ∂p

∂xi
−RibTni −

2
Re

∂

∂xj

(
sij + Sij

)
, vi

]

−
[
∂T

∂t
+ (Uj +uj)

∂T

∂xj
+uj

∂(T + T0)
∂xj

− 1
RePr

∂2T

∂x2
j

, τ

]
−
[
∂ui
∂xi

, q

]
−〈ui(0)−u0,i, v0,i〉.

(2.24)

Where the parentheses are defined as

[ai, bi] ≡
1
T

∫ T
0
〈ai, bi〉dt, 〈ai, bi〉 ≡

1
V

∫
V
aibidV, (2.25)

and the Lagrange multipliers v, τ and q are adjoint velocity, temperature and pressure,

and v0,i is the adjoint of the initial velocity u0,i. As the enforcement of the flow equations

are local in space and time, the adjoint variables will also have evolution equations (which

are functions of space and time) and are derived from variations of the Lagrangian L and

using integration by parts as detailed below.

We define the variation of the functional, L, w.r.t. a particular function, l, as

δL
δl
· δl ≡ lim

ε→0

L(l + εδl)− L(l)
ε

. (2.26)

The variation of L with respect to all the flow variables and their corresponding adjoints

are independent of each other. The vanishing variational derivatives with respect to p,

ui, and T give us the adjoint continuity, adjoint momentum, and adjoint temperature

equations governing the time evolution of adjoint variables, vi, q, and τ , and the ‘initial’

conditions of these adjoint variables at t = T . Similarly, the vanishing derivatives of L

with respect to the adjoint variables, give us back the direct equations (2.14)-(2.16). In

subsections (a)-(d) below, we take variations of the Lagrangian L with respect to each

and every independent direct variable and succinctly show how the adjoint equations

emerge in section 2.7.

(a) Variation with pressure

(2.27)δL
δp
· δp = −

[
∂(δp)
∂xi

, vi

]
.
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By definition of the operator [...], this can be expanded as

(2.28)= − 1
T V

∫ T
0

∫
V
vi
∂(δp)
∂xi

dV dt.

Using multidimensional equivalent of integration by parts

(2.29)
δL
δp
· δp = − 1

T V

∫ T
0

( ∮
S
viniδpdS −

∫
V

∂vi
∂xi

δpdV
)
dt

= − 1
T V

∫ T
0

( ∮
S
viniδpdS

)
dt+

[∂vi
∂xi

, δp
]
.

Where S is the surface of the volume V .

(b) Variation with velocity

δL
δui
· δui = 1

2E0
lim
ε→0

(
1
ε

[
ui(t) + εδui(t), ui(t) + εδui(t)

]
− 1
ε

[
ui(t), ui(t)

])
−
[
∂(δui)
∂t

+ Uj
∂(δui)
∂xj

+ uj
∂(δui)
∂xj

, vi

]
+
[
δuj

∂(ui + Ui)
∂xj

, vi

]
+
[

1
Re

∂

∂xj

(∂δui
∂xj

+ ∂δuj
∂xi

)
, vi

]
−
[
δuj

∂(T + T + T0)
∂xj

, τ

]
−
[
∂δui
∂xi

, q

]
− 〈δui(0), v0,i〉.

(2.30)

We can again make use of multidimensional integration by parts and expand the volume

and time integrals as defined in (2.25). This will generate surface integral terms as in

(2.29).

(c) Variation with temperature

(2.31)δL
δT
· δT =

[
RibniδT, vi

]
+
[
∂δT

∂t
+ (Uj + uj)

∂δT

∂xj
− 1
RePr

∂2δT

∂x2
j

, τ

]
− 〈δT (0), τ0〉.

(d) Variation with initial velocity

δL
δu0,i

· δu0,i = 〈δu0,i, v0,i〉. (2.32)
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2.7 Adjoint Equations

At the maximum of the cost functional and hence L, all the above first derivatives of L

go to zero identically. Equating the surface integrals to zero we obtain that the adjoint

velocity and pressure also satisfy the homogeneous boundary conditions similar to the di-

rect variables, i.e., no-slip on walls and periodic in unbounded directions. Equating other

independent integrals give us the adjoint equations and the initial and final conditions of

the adjoint variables. The adjoint equations are as follows.

Adjoint continuity equation (from variations with pressure)

When adjoint velocity vi satisfies the boundary conditions of the direct velocity, equating

the volume integral in equation (2.29) to zero, we get

∂vi
∂xi

= 0. (2.33)

That is, the adjoint velocity is also incompressible similar to the direct velocity.

Adjoint velocity equation (from variations with velocity)

When variations with respect to velocity in (b) above are set to zero, we get the following

equation which is the adjoint momentum equations

(2.34)
∂vi
∂t

+ vj
∂(uj + Uj)

∂xi
+ ∂(vi(Uj + uj))

∂xj
+ 1
Re

∂

∂xj

(( ∂vi
∂xj

+ ∂vj
∂xi

))
− τ ∂(T + T + T0)

∂xi
+ ∂q

∂xi
+ 1
E0
ui = 0,

The diffusion term above (involving Reynolds number) has opposite sign to that of the

diffusion term in direct equation (2.15) and hence the time marching of the above equation

is well-posed only when the sign of time is reversed, i.e., backward time evolution. An-

other particular interesting quality of this equation is that despite the direct momentum

equations being nonlinear, this adjoint equation is linear in adjoint velocity.

We also obtain the adjoint initial and final conditions as

− 1
T
vi(T ) = 0, (2.35)
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v0,i −
1
T
vi(0) = 0, (2.36)

Adjoint temperature equation (from variations with temperature)

Similarly from (c) above we have the adjoint temperature equation as

∂τ

∂t
+Ribnivi + ∂(τ(Uj + uj))

∂xj
+ 1
RePr

∂2τ

∂x2
j

= 0, (2.37)

and we also obtain the adjoint initial and final temperature conditions as

1
T
τ(T ) = 0, (2.38)

τ0 −
1
T
τ(0) = 0. (2.39)

Sensitivity to initial condition

At optimality, equating the derivative of Lagrangian with respect to the initial condition

as in (d), we get

δL
δu0,i

= v0,i := 0. (2.40)

u0,i is the only control parameter in this optimisation routine. Only at optimality, this

variation with respect to initial condition goes to zero. If the initial condition is not the

optimal condition, for the current choice of cost functional, this derivative is precisely

the adjoint velocity at time t = 0. This would, however, not hold when we change the

cost functional as then the derivative with respect to the initial condition would change

because the Lagrangian would be different. So, when we start with a random noise as

in the loop shown in figure 2.2, we will of course be far away from optimality. Hence,

v0,i > 0 for any random guess. This provides us with the direction of descent in which

we need to update our guess such that we move closer to the optimal condition. This

update is done using a rotation technique as in section 2.8. This whole procedure forms

the optimisation in time for the Navier-Stokes and temperature equations and can be

summarised as below.
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2.7.1 Looping algorithm for Navier-Stokes

• Start with a guess of the initial perturbation u(0). This is mostly a random noise.

• Solve the direct equations for momentum (2.15) subject to the incompressiblity

condition (2.14), and the temperature equation (2.16) from time t = 0 to t = T .

• ‘Initialise’ the adjoint velocity vi and temperature τ at time T from (2.35) and

(2.38).

• Integrate backwards in time from t = T to t = 0 the adjoint equations for mo-

mentum (2.34) subject to incompressibility (2.32), and the temperature equation

(2.37).

• Check if the gradient with respect to the initial conditions in equation (2.40) is zero.

Otherwise, it provides the next guess for the optimal perturbation and we update

our guess as in section 2.8.

• When the gradient in equation (2.40) is zero, we have the optimal condition that

maximises the cost functional J (T ) in equation (2.22) which represents the time-

integrated energy growth in t ∈ [0, T ].

This time-looping optimisation algorithm is same as the looping schematic shown in figure

2.2 but now we have provided the exact equations that needs to be solved to complete this

iteration for the fluid equations. This optimisation procedure has been termed direct-

adjoint looping. Another constraint that is missing in the constrained Lagrangian in

equation (2.24) is the imposition of a fixed initial perturbation kinetic energy E0. This

could have been done with a Lagrange multiplier in equation (2.24), but that has been

found to be numerically expensive and delicate (Foures et al., 2013). Hence, only during

the update of the initial perturbation as in the section 2.8 below, this constraint of a

fixed E0 is imposed.

It is underlined here that this procedure is applicable to any perturbation amplitude

and hence applies equally well to both linear and nonlinear equations. Whether or not

nonlinear mechanisms will be important will depend on E0. With E0 = O(10−2), as used

in nonlinear optimisation studies of Cherubini et al. (2010); Vermach and Caulfield (2018),
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this whole procedure would be a nonlinear optimisation problem as the perturbations are

only an order of magnitude smaller than the laminar base flow.

2.7.2 Change in cost functional

The cost functional as defined in equation (2.22) consists only of the time-averaged per-

turbation kinetic energy. By including the potential energy of the flow, we can form a

new cost functional

Jb(T ) = 1
E0T

∫ T
0
E(t)dt+ 1

2V

∫
V
Rib

T (t)2

Tref (t)2dV. (2.41)

With the choice of this cost functional, the adjoint momentum and temperature equations

can be derived using the same algorithm as above. We arrive at the same adjoint mo-

mentum and temperature equations as in (2.34) and (2.37). We also arrive at the same

momentum initial conditions as in equation (2.35). However, the adjoint temperature

initial condition (at t = T ) with Jb(T ) as the cost functional changes to (compare with

(2.38))

Rib
E0T 2

ref

T (T )− 1
T
τ(T ) = 0. (2.42)

The choice of cost functional would depend on the problem of interest and there could be

various combinations of kinetic and potential energy (e.g., Vermach and Caulfield (2018))

that could lead us to uncover interesting dynamics of the flow. However, for the rest of

the chapter and next, we stick to J (T ) as defined in (2.22) as the cost functional of

choice.

2.8 Optimisation

The aim of this section is to reach the optimal perturbation using a rotation technique

and a conjugate gradient method such that equation (2.40) is zero. To find the optimal

perturbation within a set numerical tolerance, we have to iterate repeatedly and gradually

march according to the gradient information and monitor a residual (which is equivalent

to the gradient defined in (2.40) but suited for this update method), as defined in other

studies like Vermach and Caulfield (2018), which denotes whether we have converged to
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the actual optimal or not.

We also have to ensure in this step that the initial energy of the perturbations E0 is

constant during each update of our guess of u0,i. We maximise the cost functional and

hence L in equation (2.24) such that at optimality,

δL
δu0,i

= v0,i := 0. (2.43)

To enforce the initial energy constraint and hence keep the perturbation amplitude

constant, we try (numerically) to stay on a ζ dimensional hypersphere as shown for ζ = 3

in figure 2.3. This method has been applied to Navier-Stokes optimisation problems,

e.g., by Foures et al. (2013). The dimension ζ is the dimension of a particular variable,

and in this case is the combined dimension of the velocity variable in all the grid points.

The initial energy of the perturbations E0 is proportional to the square of the radius

of the ζ-dimensional hypersphere. To simplify this geometric method of initial energy

constraint and update of initial conditions, we look only at a great hypercircle (figure

2.4) of the ζ = 3 hypersphere (figure 2.3). The gradient at each time step as in equation

(2.40), which is the adjoint variable v0 at time t = 0, gives the direction in which we need

to update to get to the optimal. A schematic of this update via rotation of the initial

condition is shown in figure 2.4.

With reference to figure 2.4, to make sure the new update u′i lies on the hypersphere,

we remove the hypersurface normal, i.e., the component of v0 along u0 and we are left

with v⊥0 , as

v⊥0 = v0 −
(u0, v0)
(u0, u0)u0. (2.44)

And then to ensure that we have the same initial energy E0, we normalise this gradient

and then scale it by the radius of the hypersphere (which is proportional to the square

root of energy E0) as

R = (E0)1/2 v⊥0
||v⊥0 ||

. (2.45)

We can then update the initial condition by rotating it by an angle θj

u′j = u0,i cos θj +R sin θj, (2.46)
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Figure 2.3: A ζ = 3 dimensional energy hypersphere with the velocity field u as the

radius. (After Foures et al. (2013, Fig 11).)

Figure 2.4: The great hypercircle from figure 2.3 shows the update procedure to find a

better guess of the optimal by rotation.

where uj=1,2,3....N are the updates corresponding to choice of angle θj. This technique is

combined with conjugate gradient algorithm (Polak, 1971) for a robust update. This is

done by redefining the descent direction R as R in every iteration (n denoting iteration

number),

Rn = Rn + βnR⊥n−1. (2.47)
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βn at every iteration is given by Polak-Ribiere formula (Polak and Ribiere, 1969)

βn = (Rn, (Rn −Rn−1))
(Rn−1, Rn−1) , (2.48)

and the initial value (i.e., in the first iteration) of Rn=0 ≡ R0 = R0.

And then update the velocity field as,

u′j = u0,i cos θj +R sin θj. (2.49)

We still have an unknown variable θj which is chosen with a line search algorithm (Den-

nis Jr and Schnabel, 1996). This amounts to first updating the direct variables at t = 0

after the nth iteration by an angle θj, between 0◦ and 360◦ as

un+1
i = uni cos θj +Rn sin θj. (2.50)

The next step involves evolving the direct equations with un+1
i for each update angle θj

and noting the cost functional J (T ). The update angle that provides the largest cost

functional is chosen as our desired update angle θmax. The whole optimisation procedure

continues with the final updated guess:

un+1
i = uni cos θmax +Rn sin θmax. (2.51)

We generally have to do this iteration in time a few number of times to reach the

optimal. To have an idea of how ‘far’ we are from the optimal after an update, we

monitor the residual following Rabin et al. (2012). This is the normalised gradient of the

Lagrangian with respect to the initial velocity but projected onto a plane tangent to the

hypersphere defined as

r = ||∇u0L⊥||2

||∇u0L||
. (2.52)

Following recent works (e.g. Vermach and Caulfield (2018)), when the residual isO(10−3−

10−4), we decree the optimiser to have found the optimal perturbation that maximises

the cost functional.
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2.8.1 Trusting the optimal

As we approach optimality, the need for higher accuracy schemes and how well we can

calculate the gradients become increasingly important. This means it gets harder and

harder to approach the ‘true’ optimal (i.e. one found with infinite accuracy), when we

are near it. We also cannot claim to have found the global optimal but what the opti-

mal we have converged to would be a local in a certain region of the energy landscape.

To have some confidence in our optimal, we start with different random noise. If we

converge to the same optimal, we assume it to be a robust one. It might also be the

case that we may be stuck at an optimal where small variations produce the same cost

functional (within numerical tolerance) and hence numerically not resolvable. Nonlinear

optimisation is inherently non-convex (Kerswell, 2018) and attaining a global maximum

cannot be concluded with certainty. This will, however, keep the main aim of the op-

timisation true, i.e. we converge to optimal disturbances, which will later be shown to

be organised structures, even when the guess was an absolute random noise. For a non-

dimensionalised channel of streamwise length 2π, spanwise length π, and channel height

2, it is noted that we optimise for O(106) variables and hence this procedure could be

termed as a highly-intensive numerical search.

The whole set of equations is solved for a channel flow in this thesis using numerical

techniques as described below. For the highest E0 = 10−2, we obtain the same nonlinear

optimal with our solver as in Vermach and Caulfield (2018) and the structures are shown

later in this chapter. Given that both are nonlinear optimisation problems solved on

independently written solvers (Vermach and Caulfield (2018) is based on Diablo (Taylor,

2008)), this provides a very strong validation of our solver.

On the other hand, with a small E0 of O(10−8), nonlinear mechanisms remain unim-

portant throughout our chosen time horizon, perturbations being several orders of mag-

nitude smaller than the laminar base flow, and their products vanishingly small. It takes

O(100) iterations to converge to the nonlinear optimal perturbation (E0 = 10−2), similar

to what is noted in Vermach and Caulfield (2018), while it takes less than 50 iterations to

converge to the linear optimal perturbation when starting from random initial conditions

as guesses. This ease of convergence to the linear optimal has also been reported in the

studies cited earlier. We find that even when we solve the viscosity-stratified equations
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as in the next chapter, this convergence remains similar.

2.9 Numerical method

We describe here the numerical techniques used in developing the three-dimensional

Navier-Stokes and adjoint Navier-Stokes solver in a channel. We also solve the tem-

perature equation and its adjoint. The solver we describe here is a fully nonlinear and

capable of parallel computation (using OpenMP) and has been used for the nonlinear

nonmodal analysis. It employs the rotation technique of nonlinear optimisation to nu-

merically calculate the optimal of time-integrated perturbation kinetic energy. We discuss

the spatial discretisation and the time integration schemes used in the solver. Bewley

(2012, p 413-432) describes in much detail the numerical method for solving the un-

stratified Navier-Stokes equations. For all the analysis, we use a nondimensional size of

Lx = 2π, Ly = 2, and Lz = π in which the streamwise extent is smaller than in Vermach

and Caulfield (2018), while the spanwise extent is the same. Our channel in x and y

direction is the same as in the 2D study of Foures et al. (2013). The direct and adjoint

equations solver and the optimiser have been written from scratch in Fortran.

Figure 2.5: The domain of integration with the pressure gradient dP/dx directing the

mean flow towards the positive x direction. The top wall is always hotter than the bottom

wall. The x and the z directions are periodic at the domain boundaries.
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2.9.1 Homogeneous directions

The equations are numerically solved in a domain as shown in figure 2.5. The x and z

directions are the homogeneous directions. We define periodic boundary conditions on

both of these directions. Wavenumbers in the homogeneous directions are

kx = 2π/Lx and kz = 2π/Lz. (2.53)

The gradients in the velocity and temperature fields are higher with nonlinear initial

energy (E0 = 10−2) when compared to linear initial energy (E0 = 10−8). Hence in x, y,

and z, we use 100 × 209 × 50 grid points for E0 = 10−2, while we use 50 × 209 × 25

grid points for E0 = 10−8. The makes the grid spacing in the x and z directions equal,

at 0.06 for E0 = 10−2 and at 0.12 for E0 = 10−8.

2.9.2 Wall normal direction

The wall normal or the y-direction is discretised into a staggered combination of base and

fractional grids (see e.g. Bewley (2012)). The base grid points (yj) are shown as filled

black squares and labelled in blue and the fractional grid points (yj + 1/2]) are shown

as black crosses and labelled in red in figure 2.6. There are a few ghost points (0, 1,

and NY+1 in base grid and 0 and NY+1 in fractional grid) which are used only during

wall-normal derivative calculations. The grid points are aligned such that the fractional

points 1 and NY lie on the top and bottom wall respectively. This is left as a choice and

even the base grid could be placed on the walls. The fractional grids are exactly at the

mid-location between the base grid points. Hence,

yj+1/2 = 1
2 (yj + yj+1) (2.54)

The streamwise (x) and spanwise (z) velocities, pressure, and temperature are discretised

on the fractional grid and the wall-normal velocity (v) on the base grid.

A hyperbolic tangent function

yj = tanh
(
k

[
2(j − 1)
NY

− 1
])

, j = 1, 2, . . . NY , (2.55)

where NY is the number of grids in the wall-normal direction, is used to cluster both the
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x . x x x x xx x. . . . . . .
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0

01

1
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Figure 2.6: The base (solid squares) and fractional (crosses) grid in the y direction. Both

the grids are clustered towards the walls. The distance between adjacent fractional grid

points is dy while the distance between adjacent base grid points is dyf.

fractional and the base grid points towards the walls. This is to make sure that we are

able to capture the small scale near wall dynamics becaue gradients become high towards

the walls. The value of k in equation (2.55) has been kept constant at 1.5 and it creates

a y-grid with ∆ymax = 0.0159 (near the centre of the channel) and ∆ymin = 0.0029 (near

both the walls).

The wall normal spatial derivatives are computed using second order central finite

difference method. The spatial derivatives in x and z are calculated using Fast-Fourier

transform and we truncate the Fourier series using the 2/3-rule to prevent aliasing (see

e.g. Canuto et al. (2007)).

2.9.3 Temporal Discretisation

We employ a time-stepping algorithm which is a combination of an explicit method

(Runge-Kutta-Wray) for the nonlinear (convective) terms and an implicit method (Crank-

Nicolson) for the linear (viscous) terms and the wall-normal derivatives.

If we have a partial differential equation of form

∂φ

∂t
= N(φ) + A(φ), (2.56)

where N(φ) have the terms that need to be treated explicitly and A(φ) have terms that
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need to be handled implicitly, A(φ) must be either linear or linearised appropriately.

The time advancement scheme we use requires three sub-steps for a ∆t advancement

in time from t→ t+ ∆t and they can be compactly written as

φrk = φrk−1 + γrk∆tN(φrk−1) + ζrk∆tN(φrk−2) + αrk∆t
A(φrk) + A(φrk−1)

2 . (2.57)

Where the coefficients are specific to this numerical scheme and are (Bewley, 2012),

γ1 = 8
15 , γ2 = 5

12 , γ3 = 3
4 , ζ1 = 0, ζ2 = −17

60 , ζ3 = − 5
12 , α1 = 8

15 , α2 = 2
15 , α3 = 1

3 .

(2.58)

We will consider the terms involving spatial derivatives in the x and z directions

(parallel to the wall) explicitly as they are calculated spectrally. It is not impossible to

treat them implicitly as one could write the spectral derivatives as a product with spectral

derivative matrix. However, such a matrix will be dense and hence inverting it would

not be efficient. Also, due to the stretched grid used, the grid size is largely reduced near

the wall (i.e., ∆y becomes smaller). This would require a very small step size ∆t for

numerical stability if y-derivatives are treated explicitly. Hence, the terms involving the

wall normal derivatives are treated implicitly. In the solver, the scalar equation is solved

first, followed by the y-momentum equation. The x- and z- momentum equations are

solved simulataneously at the end. As the equations are sequentially solved, some of the

terms are available for the next equations to be treated implicitly during time evolution.

Momentum Equations

The momentum equations with this combination of Runge-Kutta-Wray and Crank-Nicolson

scheme can be written as,

urk =urk−1 + γrk∆tN(urk−1) + ζrk∆tN(urk−2) + αrk∆t
A(urk) + A(urk−1)

2

− αrk∆t
δprk−1

δxi
− αrk∆t

δq

δxi

(2.59)

where

q := prk − prk−1 (2.60)
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A fractional step strategy is employed to break the momentum equation into two distinct

steps. The first step involves neglecting the influence of the term δq/δxi and calculating

an intermediate velocity field vrk with the same boundary conditions as u.

vrk = urk−1 +γrk∆tN(urk−1)+ζrk∆tN(urk−2)+αrk∆t
A(vrk) + A(urk−1)

2 −αrk∆t
δprk−1

δxi
,

(2.61)

and then update the velocity by adding this neglected pressure update term q as

urk = vrk − αrk∆t∇q. (2.62)

This pressure update q is calculated such that the updated velocity field urk is divergence

free as

∇ · (urk) = 0 = ∇ · (vrk)− αrk∆t∇2q. (2.63)

This is ensured by defining q as the solution of the Poisson equation (2.64) solved with

homogeneous Neumann boundary conditions on q

∇2q = 1
αrk∆t

∇ · (vrk). (2.64)

The pressure at the current time step rk is then updated as

prk = prk−1 + q. (2.65)

2.9.4 Run-time of the code

About 40% of the run-time of the solver is due to input-output processes to the machine

hard disk. This is after optimising for cache misses. We employ a pseudo-spectral method

in which the nonlinear terms are not calculated in the Fourier space. We first inverse

transform the complex fields in the Fourier space to real space, multiply them in the real

space, and again transform the product into the Fourier space. These Fourier transform

take up significant amount of time and of course scales with the number of grid points.

We have optimised for the number of Fourier transforms in our solver. The adjoint

equations contain more terms to be calculated and hence backward time marching is

slower than the forward time marching. While marching backwards in time from t = T

to t = 0, we also need information of the direct velocity fields at each and every time
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step. This is required for calculating the product of direct and adjoint velocities. It

means that we have to store the real velocities in the computer memory or hard disk, and

it presents a huge computational challenge given that we solve the equations in a three-

dimensional channel. Also, as illustrated in figure 2.7, the time marching scheme that

we have adopted involves an unequal subdivision of the time-step in both the directions.

So, while marching backwards we do not encounter direct velocities at the corresponding

time step. So during “adjoint iteration” as in figure 2.7, we do a linear interpolation to

calculate the direct velocities at the location of red dots from the black dots. We tried a

cubic spline interpolation technique but it renders the solver numerically unstable.

Figure 2.7: Only a looping in [t, t + ∆t] is shown to explain the interpolation. The

RKW3/CN time stepping in both the direction divides a time step (∆t) into three unequal

subdivisions. The sum of all the subdivions is ∆t. The black dots are the locations where

we store the direct velocities.

2.9.5 Parallel processing using OpenMP

OpenMP is a programming interface for shared memory processing. This means the

threads (of computer cores) of computation should be using the same physical memory

(random access memory (RAM)). OpenMP suffices for our purpose because our memory

requirement is within the available single RAM capability at the ICTS supercomputing

facility. For more memory intensive operations, distributed memory sharing interface like

the message passing interface (MPI) would be required for parallel computing. A certain

section of Thomas matrix algorithm for matrix solution is shown below to show the use

of OMP directives. A, B, C, and D are three dimensional matrices. The !$OMP PARALLEL
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starts the parallel processing by allowing a processor thread to act as a master and others

as ‘slaves’ to the master thread. !$OMP END PARALLEL is the directive to end the parallel

process and the operations after that are done only on a single thread. It is advisable to

use the !$OMP DO directive separately from the !$OMP PARALLEL directive. The !$OMP

END DO directive ends the parallel do-loop. The NO WAIT clause turns off synchronisation

among threads. It is also advisable to iterate the matrix indices in reverse order (i.e the K

loop before J loop, and I loop as the innermost loop) to avoid cache misses and thereby

speed up calculations.

!$OMP PARALLEL

DO K = 2,NY-1

!$OMP DO

DO J = 1, NZ

DO I = 1, NX/2+1

C(I,J,K) = C(I,J,K)/(B(I,J,K)-A(I,J,K)*C(I,J,K-1))

D(I,J,K) = (D(I,J,K)-A(I,J,K)*D(I,J,K-1))/(B(I,J,K)-A(I,J,K)*C(I,J,K-1))

END DO

END DO

!$OMP END DO NOWAIT

END DO

!$OMP END PARALLEL

2.10 Outputs: optimal structures

After the detailed exposition of the whole theory of nonmodal analysis and the numerical

technique used for the same, we show some output of the whole process of optimisation.

For a fixed optimisation time of T = 8, we find that the optimal disturbances are oblique

vortices on both the walls of the channel as shown in figure 2.8. These structures have been

obtained from absolute random noise and are responsible for maximum time-integrated

energy growth in the channel at the specified parameters.

The convergence of the optimisation routine is shown in figure 2.9. We see that

the residual has reached values < O(10−4) in (a). When the residual goes to such low
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values, the angle of update θ defined in earlier sections, also go to zero (within numerical

tolerance) as shown in (c). This means there is no update angle θ that can be chosen by

the optimiser as we have already found the optimal disturbance. The cost functional as

shown in (b) is a measure of the nonmodal growth and is seen to continuously increase

until the optimiser finds the optimal when the nonmodal growth is the highest. This

was the ultimate aim of the optimiser we started with, i.e., to find the structure or

disturbance that causes maximum nonmodal energy growth. We also compare the linear

and nonlinear optimal disturbances in figure 2.10 for the same optimisation time of T = 4

and for subcritical Reynolds number of 500. We see that both the structures vary a lot

in that the linear has well defined wavenumbers while the nonlinear optimal is elongated

tubes in the x-direction. It is also to be mentioned that the linear optimal shown in figure

2.10(a) takes < 30 iterations to converge but the nonlinear optimal in figure 2.10(b) takes

O(100) iterations. In figure 2.11, we show the iteration in progress and how with more

number of iterations, we get closer and closer to the actual optimal disturbance. After 10

iterations, when started from random noise, the elongated structures had not formed as

can be seen from figure 2.11(a). But by 22 iterations as in (b), some of these disconnected

structures get connected and by 100 iterations we have the nonlinear optimal disturbance

(figure 2.11(c)).

Figure 2.8: Two views of the linear optimal perturbations with E0 = 10−8, Re = 500,

and time of optimisation T = 8. The colours are the 40% isosurfaces of the maximum

(yellow) and minimum (blue) values of the streamwise velocity (u) perturbations.



52 CHAPTER 2. NONLINEAR INSTABILITY AND NUMERICS

Figure 2.9: (a) The residual as defined in equation (2.52) is shown to go below O(10−4)

value when optimal condition as shown in figure 2.8 is found after 33 iterations. (b)

The cost functional (blue) is seen to continually increase and then reach a constant value

(within set numerical tolerance) after we find the optimal. The cost functional is the

measure of nonmodal energy growth that is brought about by the optimal structure. (c)

The angle of update θ hits zero (within a numerical tolerance) after we have found the

optimal perturbation. The use of a line search to choose θ is for the objective function

to monotonically increase and residual to continuously decrease.
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Figure 2.10: (a) Linear optimal and (b) nonlinear optimal perturbations for T = 4 and

Re = 500. The linear optimal perturbations are oblique vortices whereas the nonlinear

optimal perturbations are elongated vortex tubes on both the walls of the channel.

Figure 2.11: The optimisation loop in progress. (a) The nonlinear optimal for T = 4

after 10 iterations, (b) after 22 iterations and (c) after 100 iterations.
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2.11 Validation

2.11.1 Linear validation

To validate our optimisation (or direct-adjoint looping) solver, we compare our results

with the linear global maximum of channel flow for Re = 1000. The maximum transient

growth Gmax(t) = G(tmax) ∼ 196 and occurs for tmax ∼ 76 and is obtained via singular

value decomposition of the governing operator (Schmid et al. (2002)). When our solver

is run at very low initial energies of E0 = 10−8, and when the cost functional is defined as

the final-time energy growth, we find streamwise rolls which uses the lift-up mechanism

to transiently grow in energy which is much more efficient than the Orr mechanism (lift-

up has been briefly described in the previous chapter. Also see Brandt (2014)). We

reproduce both the optimal shape and the transient growth as can be seen in figures 2.12

and 2.13. The wavenumbers in x and z directions are kx = 0 and kz ∼ 2, quantised with

respect to the channel dimensions, as predicted by SVD of the governing operator.

Figure 2.12: Linear global optimal perturbations are streamwise rolls visualised as iso-

surfaces of 40% of the maximum (yellow) and minimum (blue) streamwise component of

the perturbation velocity. Re = 1000, time of optimisation T = 76.
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Figure 2.13: Transient energy growth G(t) ∼ 196 for the linear optimal in figure 2.12

recovered from our solver. The maximum energy growth occurs at t ∼ 76 and the

corresponding G(t) ∼ 196 as also predicted by SVD.

2.11.2 Nonlinear validation

We also need to validate our code at nonlinear energies because we are not yet sure the

nonlinear coupling terms (which were suppressed in low-energy case) have been correctly

coded. When the direct-adjoint looping is run at a higher initial energy of E0 = 10−2,

we also recover the unstratified optimal as obtained recently by Vermach and Caulfield

(2018) for a channel of Lx = 4π, Ly = 2, and Lz = π which incidentally is the only

existing study to our knowledge on nonlinear optimal perturbation in unstratified three

dimensional channel flow. When we optimise for time-integrated energy maximisation as

in Vermach and Caulfield (2018) for a final time of T = 2, in an unstratified channel,

achieve a J (T ) of over 93% of that of Vermach and Caulfield (2018) as shown in figure

2.14. When the optimal structure is evolved with the direct equations, the maximum in

J (T ) is obtained at t ∼ 8.5 from our solver whereas it occurs at t ∼ 8.1 for Vermach

and Caulfield (2018). The isosurfaces of the streamwise velocity that we obtain for the

nonlinear optimal perturbation with E0 = 10−2, closely agree with those of Vermach

and Caulfield (2018). In particular, both computations result in optimal perturbations

which are elongated in the streamwise direction, with streamwise wavelength far larger

than can be accommodated in the channel of 4π length, spanwise wavenumber of kz = 6,

and very similar levels of obliqueness as can be visually inspected in figure 2.15. We
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have achieved a very good match with a completely independently developed solver. A

check we performed to make sure we have converged to a local optimal is to start from

different initial conditions of random noise of the desired amplitude, as well as an optimal

perturbation from a different parameter set, to ensure that the optimal perturbations we

arrive at are the same within the finite-difference errors (O(10−4)). Also, given the lack of

any other numerical or analytical tool to arrive at the nonlinear optimal, this is probably

one of the best validation we can do at present.

Figure 2.14: Cost functional J (T ) of the nonlinear unstratified optimal compared with

Vermach and Caulfield (2018) for time of optimisation T = 2.. A perfect match is not

expected, as discussed in the text.

The theory of nonmodal analysis and the numerical technique to calculate the optimal

disturbances described in this chapter will be used in the next chapter to calculate the

viscosity-stratified optimal perturbations. In the sections above we have only shown the

optimal disturbances when the flow was unstratified. We will show how the introduction

of viscosity stratification changes the qualitative structures of both the linear and the

nonlinear optimal perturbations.
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Figure 2.15: (a) Nonlinear optimal perturbations (E0 = 10−2) for Re = 500, time of opti-

misation t = 2 in an unstratified channel. (b) Nonlinear optimal perturbations obtained

by Vermach and Caulfield (2018) for the same parameters as in (a). Colors mean the

same as in figure 2.12.
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Govindarajan, R. Early evolution of optimal perturbations in a viscosity-stratified chan-
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In this chapter, we study the early stages of perturbation growth in a viscosity-

stratified flow and how they are different from those in a constant-viscosity flow. We

will apply the theoretical and numerical methods developed in the previous chapter to

viscosity-stratified flows. We will show how nonlinearity (in velocity perturbations) is a

crucial ingredient in this energy growth. We derive the viscosity-varying adjoint Navier-

Stokes equations, where gradients in viscosity force both the adjoint momentum and the

adjoint temperature. By the technique of direct-adjoint looping as already described in

the previous chapter, we obtain the nonlinear optimal perturbations which maximises the

perturbation kinetic energy of the nonlinear system. While we study three-dimensional

channel flow with the walls at different temperatures, and a temperature-dependent vis-

cosity, our findings are general for any flow with viscosity variations near walls. The Orr

and modified lift-up mechanisms are in operation at low and high perturbation amplitudes

respectively at our subcritical Reynolds number of 500. The nonlinear optimal pertur-

bation contains more energy on the hot (less-viscous) side, with a stronger initial lift-up.

58
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However, as the flow evolves, the important dynamics shifts to the cold (more-viscous)

side, where wide high-speed streaks of low viscosity grow and persist, and strengthen

the inflectional quality of the velocity profile. We provide a physical description of this

process, and show that the evolution of the linear optimal perturbation misses most of

the physics. The Prandtl number does not qualitatively affect the findings. The study of

nonlinear optimal perturbations is still in its infancy, and viscosity variations are ubiq-

uitous. We hope that this first work on nonlinear optimal perturbations with viscosity

variations will lead to wider studies on transition to turbulence in these flows.

3.1 Introduction

A variation of viscosity in space and time occurs in a vast range of flows. Practically all

flows where composition or temperature are not constant are of varying viscosity. Changes

in viscosity are known to affect the stability of the flow dramatically. While an enormous

literature is available on viscosity stratification and its effect on linear instability, far less is

studied about how it impacts the nonmodal growth of perturbations. Understanding the

transition to turbulence in shear flow requires understanding how nonmodal perturbations

grow and propagate. In recent years, it has been recognised (Cherubini et al., 2010;

Pringle and Kerswell, 2010; Pringle et al., 2012) that studying the nonlinear optimal

perturbations is essential to this effort. The present study is the first to our knowledge

on nonlinear optimal perturbations in viscosity-stratified flows. Our interest is in a gentle

variation of viscosity rather than a sharp one, and we choose a pressure-driven channel

flow with the walls maintained at different temperatures as a prototypical model flow

to reveal the essential physics. Further, we are interested in short term optimisation, to

underline how viscosity varying flows already depart considerably from constant viscosity

flows. We set gravity to zero in this study to isolate the effects of viscosity variation.

The interaction of viscosity stratification and shear can lead to both suppression and

enhancement of flow instabilities (for a review, see Govindarajan and Sahu (2014)). A

viscosity jump across an interface can give rise to linear instability at any Reynolds

number (see e.g. Yih (1967)), i.e., the flow is always unstable. On the other hand, a

lowering of viscosity near a wall has been studied for decades as a means to stabilise

shear flow and to thus achieve drag reduction, e.g., in lubricating oil pipelines (Preziosi
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et al., 1989). Composition variation and the introduction of polymers, whence besides

elasticity, viscosity variations resulting due to shear thinning can be important, have been

explored over the years. In aerospace applications (Mack, 1984), a viscosity reduction

near the wall in a boundary layer can provide a fuller and more stable velocity profile.

By virtue of viscosity and its spatial gradients (Govindarajan, 2004; Schmid et al., 2002)

being multiplied by the highest derivatives in the stability equations, we are presented

with a singular perturbation problem. In other words, however high the Reynolds number

(or however small the viscosity), viscosity and its variations can have a large effect on

the flow. For example, Ranganathan and Govindarajan (2001) showed that a ten percent

change in viscosity across a thin layer can, if overlapped with the critical layer of the

least stable eigenmode, give rise to an order of magnitude change in the critical Reynolds

number Rec of 5772.22 in a channel. The effect of wall heating and subsequent viscosity

changes on a fully developed turbulent flow has been studied using direct numerical

simulations (DNS) for both a boundary layer (Lee et al., 2013) and a channel flow (Zonta

et al., 2012). Zonta et al. (2012) find vortical structures to be more populated near

the colder (more viscous) wall as compared to the hotter (less viscous) wall, while Lee

et al. (2013) find that vortical structures near the heated wall are unaffected, whereas

away from the wall, they become sparser with wall heating. The effects of a continuous

variation of viscosity have also been investigated in the linear stability studies of Potter

and Graber (1972); Sameen and Govindarajan (2007); Schäfer and Herwig (1993); Wall

and Wilson (1996).

For a channel flow belowRec, a traditional normal-mode analysis as discussed in earlier

chapters predicts that there is no modal stability. However, the linear stability operator

of the flow, obtained by linearising the Navier-Stokes equations about a laminar flow and

posing the resulting Orr-Sommerfeld and Squire equations as an eigenvalue problem, is

non-normal. This has already been described in the previous chapter where we see how

shear introduces non-normality. Hence, a transient (algebraic) growth in energy can occur

in the flow due to the superimposition of suitably arranged eigenmodes at intermediate

time (Reddy and Henningson, 1993; Trefethen et al., 1993). If the transient growth is large

enough, nonlinear mechanisms could be activated. For such flows, non-modal analysis

is extremely necessary to improve our understanding of short-time behaviour (Schmid,

2007).
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For any amplitude of initial perturbation, the optimal perturbation can be obtained by

an adjoint-based iterative optimisation procedure called direct-adjoint looping with the

full, or linearised, Navier-Stokes equations as has been described in detail in the earlier

chapter. It has been applied to the Navier-Stokes equations for control of fluid flow by

Abergel and Temam (1990); Bewley et al. (2000); Zuccher et al. (2004) among others, and

to numerically calculate the optimal perturbations and the associated transient growth,

within the framework of the linearised as well as of the nonlinear Navier-Stokes equations,

as in Monokrousos et al. (2011), Foures et al. (2013), Kaminski et al. (2014), Marcotte and

Caulfield (2018), Vermach and Caulfield (2018) (for a review, see Kerswell (2018)). We

have also mentioned why studying the nonlinear equations is important to fully uncover

the nonmodal energy growth mechanisms.

In this chapter, we investigate the sole effects of viscosity stratification on the optimal

perturbation and the resultant transient growth at early times. Our central idea is to

investigate how the process of subcritical perturbation energy growth in the nonlinear

regime is affected by viscosity variations. We consider the full nonlinear Navier-Stokes

equations, modified to account for varying viscosity, and derive the adjoint viscosity-

stratified Navier Stokes equations. We then use the direct-adjoint looping described

earlier to calculate the optimal perturbation for a fixed target-time. Performing studies

with very small and more significant initial perturbation amplitudes, our findings show

how nonlinearity is a crucial part of the initial evolution, although the Orr and lift-up

mechanisms in operation have linear underpinnings. The evolution of initial perturbation

which maximises linear energy growth is restricted to the hot (low viscous) wall, whereas

optimising for nonlinear energy growth shows how the cold (high viscous) wall is more

important, with persistent streaks and velocity profiles becoming increasingly inflectional.

3.2 Governing equations and problem formulation

We study pressure-driven flow through a three-dimensional channel bounded by two par-

allel walls, kept fixed at y = ±Ly as depicted in figure 3.1. This figure has been repro-

duced from the previous chapter just for ease of description. The mean pressure gradient

dP/dx forces the flow in the x direction. Hence, x is the streamwise direction and z

the spanwise direction. The temperature of both walls is kept constant, with the wall
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Figure 3.1: The flow domain being studied. The flow is from left to right, driven by the

mean pressure gradient dP/dx. Lx = 2πLy is the streamwise length, Lz = πLy is the

spanwise length, and Ly is the half-width of the channel. The hot and the cold walls at

y = ±Ly are kept at constant but different temperatures.

Figure 3.2: The wall-normal (y) profiles, for various temperature differences ∆T between

the walls, of (a) base viscosity µ(y) as given by equation (3.5). The profile for ∆T = 0 is

a vertical line at µ(y) = 1. The ratios of viscosity between the top (hot) and the bottom

(cold) wall are 0.61 for ∆T = 20 K (dashed line), 0.38 for ∆T = 40 K (dash-dotted line),

and 0.23 for ∆T = 60K (dotted line). (b) The unperturbed streamwise laminar velocity

U(y), normalised to have equal volumetric flux through the channel for unstratified case

(solid line) and different ∆T .
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at y = Ly at a higher temperature than the wall at y = −Ly. There is no gravity in

this problem, and non-Boussinesq effects arising from density change due to temperature

variations are neglected. The half-width, Ly, of the channel is chosen as our length scale.

The nondimensional size of the channel is fixed at 2π, 2, π in the x, y, and z directions,

respectively.

The unperturbed laminar flow through the channel is our base state. Three-dimensional

perturbations are introduced over this base state. The nondimensional governing equa-

tions for a viscosity-stratified flow read as,

(3.1)∂ui
∂xi

= 0,

(3.2)∂ui
∂t

+ (Uj + uj)
∂ui
∂xj

+ uj
∂Ui
∂xj

= − ∂p

∂xi
+ 2β
Re

∂

∂xj
[µ(sij + Sij) + µ̄sij] ,

(3.3)∂T

∂t
+ (Uj + uj)

∂T

∂xj
+ uj

∂(T + T0)
∂xj

= 1
RePr

∂2T

∂x2
j

.

Here Uj = δj1U(y) is the laminar base state, consisting only of a streamwise component,

uj(x, y, z, t) are the components of the perturbation velocity u(x, t) and p(x, t) is the

perturbation pressure. x, y, and z are referred to as x1, x2, and x3, respectively. Other

symbols are as defined in the previous chapter. T (x, t) is the perturbation temperature,

and the base state temperature T (y) + T0 is linear in y, varying from the reference tem-

perature T0 at the bottom wall to T0 + ∆T at the top wall. The base and perturbation

viscosities, µ(T ) and µ(T ) respectively, are functions of temperature alone, and are de-

fined in section 3.2.1. The Reynolds number Re and the viscosity ratio β have to be

defined separately in section 3.2.2 because of the introduction of viscosity stratification.

Pr = µ0cp/ρk is the Prandtl number, where µ0 is the viscosity at the reference tempera-

ture T0, cp the specific heat at constant pressure, and k the thermal conductivity of the

fluid. The density ρ of the fluid is taken to be a constant.

The initial condition for perturbation velocity

u(x, 0) = u0(x), (3.4)

is usually a random noise and temperature perturbations T (x, 0) are initialised to zero.

Barring the mean pressure drop dP/dx which is linear, all variables of the flow are
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prescribed to be periodic at the domain boundaries in x and z. No-slip velocity boundary

conditions are imposed at the walls.

We will refer to equation (3.2) as the modified Navier-Stokes equation, valid for

viscosity-stratified flow. The set of equations (3.1)-(3.3) are referred to as the ‘direct’

equations to distinguish them from another set of equations called the ‘adjoint’ equations.

The variables in equations (3.1)-(3.3) are direct variables as in the previous chapter.

3.2.1 Viscosity model and the base state

The local non-dimensional viscosity µtot in the flow is modelled as an exponential function

of the total temperature Ttot = T (y) + T0 + T , following Wall and Wilson (1996), as

µtot ≡ µ+ µ = exp(−κTtot)
exp(−κT0) , where µ = exp[−κ(T (y) + T0)]

exp(−κT0) . (3.5)

The viscosity of the cold wall is used as the scale here. With the constant κ chosen

to be 0.012 per degree Kelvin, this function closely follows the viscosity of water in our

temperature range. Since the density of water varies by less than 2 parts in a 1000 for the

largest temperature difference, variations in kinematic viscosity are mainly from changes

in dynamic viscosity. As is typical of liquids, the viscosity decreases with an increase

in temperature, as shown in figure 3.2(a). The laminar base profile of the streamwise

velocity given by (Wall and Wilson, 1996)

U(y) = −2α
κ∆T [1 + coth κ∆T + (y − coth κ∆T ) exp(κ∆T (1 + y))] , (3.6)

where

α = 2κ∆T
3

1
−2(1 + coth κ∆T ) + (exp(2κ∆T )− 1)/(κ∆T )3 , (3.7)

allows for the same non-dimensional volumetric flow rate through the channel for different

temperature differences ∆T as shown in figure 3.2(b). The nondimensional mean pressure

gradient is
dP

dx
= −2αβ

Re
. (3.8)
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3.2.2 The Reynolds number

In order to make a fair comparison between the growth of perturbation energy in a

stratified flow and an unstratified flow, a careful definition of the Reynolds number is

required. As the laminar base velocity profile in a stratified channel is asymmetric about

y = 0 (figure 3.2(b)), the centerline velocity is not a standard velocity scale across different

stratification levels, whereas the volume flux is. Secondly, the viscosity in the channel

decreases continuously when moving away from the cold wall at y = −1 (figure 3.2(a)).

If, for example, Re was defined based only on the viscosity at the cold wall, then the

effective Reynolds number of the stratified channel would be higher than this value,

and consequently the perturbation energy growth could be expected to be higher. So,

we choose the space-averaged mean viscosity as our viscosity scale to define Re. The

Reynolds number used in this chapter is

Re ≡ ρLy

Ly∫
−Ly

1.5U(y)dy

Ly∫
−Ly

µddy

= 1.5ρLy〈U〉
〈µd〉

, (3.9)

where µd(T ) is the dimensional base viscosity of the fluid, and the angle brackets represent

an average in the wall normal direction y. A factor of 1.5 is incorporated for ease of

comparison with earlier studies on unstratified flow which use the centerline velocity as

the velocity scale. The dimensional viscosity must therefore be scaled by the average

viscosity in the channel, but for ease of comparison, we have scaled it by its value at the

cold wall. This is adjusted for, by the introduction in equations (3.2) and (3.8) of the

viscosity ratio

β = µd(T0)
〈µd〉

. (3.10)

In this chapter, we remain in the subcritical regime by fixing Re at 500.

3.2.3 Direct-adjoint looping

To formulate the direct-adjoint looping for this viscosity-stratified case, we need to define

a cost functional which includes some measure of energy, and the aim of the optimisation

procedure would be to maximise this cost functional. Especially when density or viscosity
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or any flow component varies with space and time, there are many choices that may be

made for the cost functional, and each choice could lead to a different optimal perturba-

tion. For example, Foures et al. (2014) show interestingly that energy optimization leads

to weak mixing, but optimal perturbations obtained from mixing optimization are very

effective in mixing, though evolving to lower energies. Thus, the aims of each study are

critical in choosing an appropriate cost functional.

In this first attempt to understand the optimal perturbations in a viscosity-stratified

channel flow, we study the growth of kinetic energy of the velocity perturbations. The

cost functional is same as the prototypical one that we considered in the previous chapter

when elaborating on the optimisation technique. As noted in previous studies (Foures

et al., 2014; Vermach and Caulfield, 2018) perturbations growing through a given time

horizon may not have largest energy precisely at a target time. To account for this, we

choose the ratio of the integral over time, up to a preset target-time, of the perturbation

kinetic energy, to the initial perturbation kinetic energy, as our cost functional. The

time-integrated perturbation kinetic energy of the flow is defined as

(3.11)G(T ) = γ

2

∫ T
0
||u(x, t)||2Vdt,

where ||u(x, t)||V is the total (integrated over the channel volume V) l2-norm of the veloc-

ity perturbations u(x, t). Note that the math-calligraphy symbol T for the target-time

is distinguished from the italics T for temperature. γ is a constant with units of inverse

time, and has been set to unity throughout this study. T is non-dimensionalised with

the advective time scale, i.e., Ly/1.5〈U〉, a constant across the various stratification levels

studied here. Time-integration includes effects from the intermediate-time dynamics of

the flow as opposed to just the energy at the target-time T . The total initial perturbation

kinetic energy is same as that defined earlier

(3.12)E0 = 1
2 ||u0(x)||2V .

The cost functional J (T ) of our interest is

J (T ) = G(t)
E0

. (3.13)

Our aim is to find the optimal perturbation u0(x, 0)opt to get

Jopt(T ) ≡ Jmax(T ) = Gopt(T )
E0

, (3.14)
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with a fixed initial energy E0.

Following the methodology in the earlier chapter, we define the Lagrangian L which is

the cost functional J (t) in equation (3.13), constrained by the incompressibility condition

(3.1), the modified viscosity-stratified Navier-Stokes equations (3.2), the temperature

equation (3.3), and the initial velocity conditions of the flow (3.4). The constrained

Lagrangian L is

L = J (T )−
[
∂ui
∂t

+ (Uj +uj)
∂ui
∂xj

+uj
∂Ui
∂xj

+ ∂p

∂xi
− 2β
Re

∂

∂xj

(
µ(sij +Sij) + µ̄sij

)
, vi

]
−
[
∂T

∂t

+ (Uj + uj)
∂T

∂xj
+ uj

∂(T + T0)
∂xj

− 1
RePr

∂2T

∂x2
j

, τ

]
−
[
∂ui
∂xi

, q

]
− 〈〈ui(0)− u0,i, v0,i〉〉,

(3.15)

where parenthesis have already been defined. ui(0) = u0,i are the components of the initial

perturbation velocity u0(x). vi, q, τ , and v0,i are the already familiar adjoint velocity,

adjoint pressure, adjoint temperature, and adjoint velocity initial condition corresponding

to direct variables ui, p, T , and u0,i.

(3.16)∂vi
∂xi

= 0,

(3.17)

∂vi
∂t
− vj

∂(uj + Uj)
∂xi

+ ∂(vi(Uj + uj))
∂xj

+ β

Re

∂

∂xj

[
(µ+ µ)

( ∂vi
∂xj

+ ∂vj
∂xi

)]
− τ ∂(T + T + T0)

∂xi
+ ∂q

∂xi
+ γui = 0,

(3.18)∂τ

∂t
+ (Uj + uj)

∂τ

∂xj
+ 1
RePr

∂2τ

∂x2
j

− 2β
Re

[
∂µ

∂T
(sij + Sij) + ∂µ̄

∂T
sij

]
∂vi
∂xj

= 0,

vi(T ) = 0, τ(T ) = 0. (3.19)

Equations (3.16)-(3.18) are the adjoint equations corresponding to the direct equations

(3.1)-(3.3). For a constant viscosity flow, these adjoint equations reduce to those derived

by Vermach and Caulfield (2018) for mixing of a passive scalar and also noted in the

previous chapter. vi and q have the same dimensions as the direct variables ui and p.

But τ behaves as the square of a velocity per unit temperature. Nevertheless, we refer

to it as adjoint temperature since its evolution equation (3.18) is derived by taking a

variation of L in equation (3.15) with respect to T . We notice that in the absence of

viscosity stratification, the last term in equation (3.18) with the coefficient of 2β/Re,
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vanishes, and since we have no gravity, the solution to equation (3.18) is just τ = 0.

The temperature term will then drop out of the adjoint momentum equation (3.17). The

sign of the diffusion of adjoint momentum and temperature in equations (3.17) and (3.18)

imply that only during backward time evolution, i.e., from t = T to 0, these equations are

well posed as has been mentioned already. We use the rotation technique to constrain the

E0 of the updated perturbations on a fixed energy hypersphere. The adjoint equations

for a viscosity-stratified flow are derived here for the first time to our knowledge. We see

new terms involving gradients in viscosity, both of the mean and of the perturbations,

entering the adjoint velocity as well as the adjoint temperature equations.

The target-time of optimisation is fixed at T = 4 and we study the linear and nonlinear

optimal perturbations and the mechanism behind their evolution, for an unstratified

flow, and for stratified flows with temperature differences between the upper and the

lower channel walls at ∆T = 20 K, 40 K, and 60 K. Kaminski et al. (2017) studied the

non-linear evolution of the linear optimal perturbations in a density-stratified flow and

found the linear optimal perturbations to be sufficient to trigger non-linear effects when

evolved with sufficiently large E0. However, as we will show later for viscosity-stratified

flows, the linear optimal perturbation is qualitatively different in structure from the non-

linear optimal perturbation, and hence leads to qualitative and quantitative differences

even when scaled to have large E0. For unstratified flow despite the clear structural

differences in the linear and non-linear optimal perturbations, we find similar qualitative

and quantitative evolution of the two, when initialised at E0 = 10−2. Thus, the non-linear

O(uivj), O(uiτ) terms in the adjoint equations (3.17) and (3.18) are critical, especially

for the viscosity-stratified flow. We also remark briefly upon the effect of Prandtl number

on the evolution of the non-linear optimal perturbation.

Inclusion of viscosity stratification creates an asymmetric velocity profile and we ob-

tain that from our solver and we match with Wall and Wilson (1996) as in figure 3.3.

The figure also acts as a validation of the viscosity stratified terms in our solver.

For the viscosity-stratified case we ran the direct-adjoint loop at very low initial energy

of E0 = 10−8 to get the linear optimal perturbation by maximising E(T ), compared it

to the linear viscosity-stratified optimal perturbation obtained from SVD, and obtained

excellent agreement.
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Figure 3.3: (a) Streamwise velocity profile from the solver (black line) compared with

the viscosity stratified analytical profile (black dots (Wall and Wilson, 1996)) with ∆T =

20◦K. A parabola is plotted (red dotted) to show that the streamwise velocity profile is

skewed. Plotted in blue is the viscosity profile. (b) The error in the streamwise velocity

between the solver output and the analytical profile for a viscosity stratified case. With

time (t), the error decreases.

3.3 Evolution of stratified optimal perturbations

3.3.1 The linear optimal and its evolution

When the direct-adjoint looping is employed at E0 = 10−8, the optimal perturbation

obtained by direct-adjoint looping, and its early time evolution, remain linear. This was

remarked upon by Foures et al. (2013), and we checked this for stratified flows as well,

as will be discussed. By increasing E0, we may attain optimal perturbations which are

increasingly nonlinear. We will see below how nonlinear optimal perturbations are very

different from the linear, and how this impacts the evolution in a significant manner.

The optimal perturbations are visualised in this chapter as isosurfaces of maximum

and minimum streamwise velocity perturbations u1, e.g. as in figure 3.4 shown for linear

optimal perturbations. In this figure and those to follow, a yellow isosurface is plotted

at a certain percentage of the maximum over the channel of that quantity at that time,

while a blue isosurface indicates regions where the quantity is at the same percentage of
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the minimum (usually a negative quantity).

Figure 3.4: Three dimensional linear optimal perturbation (E0 = 10−8), which maximises

the cost functional in equation (3.13) for (a) unstratified (∆T = 0) and (b) stratified

(∆T = 40 K) channel flow for Re = 500, T = 4, and Pr = 7. The mean flow is along the

positive x as marked by arrows in (a) and (b). The colours are the 40% isosurfaces of the

maximum (yellow) and minimum (blue) values of the streamwise perturbations u1. The

isosurfaces for other stratification levels (∆T = 20 K and 60 K) are qualitatively similar

to (b), with 40% isosurfaces of u1 localised near the hot wall, where viscosity is lower.

The linear optimal perturbation (E0 = 10−8) consists of an array of streamwise veloc-

ity perturbations inclined against the mean flow and shear, on both sides of the channel

for the unstratified case (figure 3.4(a)). In the stratified case, similar structures are seen,

but all perturbations are remarkably localised close to the hot wall, where viscosity de-

creases towards the wall, with practically no action on the cold wall (figure 3.4(b)). Such

localisation of linear optimal perturbations was also found by Jose et al. (2020) using

SVD studies on a channel with viscosity-stratification and weak gravity. For our chosen

target-time of T = 4, we find that the nonmodal energy growth and the shapes of the

optimal perturbations are similar whether we optimise for a cost functional with energy

growth at the target-time or with time-integrated energy as in equation (3.13). As men-

tioned, the linear optimal perturbation for maximising energy at a target-time can also

be obtained by an SVD of the respective Orr-Sommerfeld and Squire operators for the

unstratified (Schmid et al., 2002) and viscosity-stratified (Chikkadi et al., 2005) cases.

The streamwise and spanwise wavenumbers of the linear optimal perturbation from SVD

for T = 4 and Re = 500 are kx ≈ 2 and kz ≈ 4, respectively, for an unstratified channel

and kx ≈ 2 and kz ≈ 5, respectively, for the viscosity-stratified channel with ∆T = 40

K. Quantized for channel length, we observe from figure 3.4 that these wavenumbers can
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be seen in the linear optimal perturbations obtained from direct-adjoint looping. Be-

sides revealing the localisation of the arrays of vortices near the hot wall due to viscosity

stratification, this result is also a validation for our direct-adjoint looping.

Figure 3.5: Wall normal profiles of root mean square (r.m.s., spatially averaged in the

x and z directions) of the linear optimal perturbations (E0 = 10−8). (a) Streamwise

velocity perturbations u1, (b) wall-normal velocity perturbations u2, and (c) spanwise

velocity perturbations u3 for various wall-temperature differences ∆T (in K). The solid

and the dash-dotted line in (a) correspond to the isosurfaces shown in figure 3.4(a) and

(b), respectively.

The corresponding root mean square (r.m.s.) profiles of velocity perturbations of

the linear optimal perturbations are shown in figure 3.5, where the quantities have been

averaged in the streamwise and spanwise directions. There is a significant proportion of

initial amplitude in each velocity component, and increase in ∆T increases the proportion
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Figure 3.6: Evolution of the linear unstratified optimal perturbation shown at two angles,

at times (a,b) t = 0, (c,d) t = 2, (e,f) t = T = 4, (g,h) t = 6, and (i,j) t = 8. The

structures are initially aligned against the shear, and as time progresses, realign along

the shear.

of energy in the spanwise and wall-normal perturbations u3 and u2. The localisation of

all perturbations on the hot side of the channel is underlined in this figure.

The time evolution, obtained by solving the direct equations initialised with the lin-

ear optimal perturbation, suggests the reason for its shape. For both the unstratified

and stratified cases, shown in figures 3.6 and 3.7 respectively, velocity perturbations are

initially tilted against the mean shear, and as time progresses, lean into the shear as
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Figure 3.7: Evolution of the linear viscosity-stratified optimal perturbation (∆T = 40 K)

shown at two angles. Optimal perturbations are strongly localised on the top (hot) wall

unlike in figure 3.6, and the Orr mechanism is in evidence. The times are as in figure 3.6.

they stretch. This is the well known, and probably oldest to be described, linear growth

mechanism, the Orr mechanism (Orr, 1907), where the tilting and the subsequent energy

growth is driven by the base, or laminar, shear. In stratified laminar flow, the magnitude

of shear is larger near the less viscous wall, which for liquids is the hot wall (figure 3.2(b)).

So, the Orr mechanism is much more efficient near the hot wall. It follows that for a

given E0, better growth can be achieved by placing perturbations in the high gradient

region, which explains the localisation of the initial velocity perturbations in stratified
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Figure 3.8: Energy growth with time of the linear optimal perturbations (E0 = 10−8) for

various stratification strengths. The labels at t = 2, 4, 6, 8 on the solid line correspond to

labels in figure 3.6.

flow (figure 3.4(b) and 3.5). The evolution of the optimal perturbations result in alge-

braic energy growth of disturbances for short duration of time which eventually decays as

shown in figure 3.8. For the linear optimal perturbations, the energy growth for stratified

flow is larger than for unstratified flow, but this conclusion will not be the same for the

nonlinear optimal perturbations, as we shall see.

We thus find that the Orr mechanism is the dominant linear growth mechanism for

small energy levels in this short target-time window. The other well-known linear growth

mechanism, the lift-up mechanism (Brandt, 2014), is not observed in the evolution of

linear optimal perturbation at small E0. Before we study nonlinear optimal perturbations,

it is instructive to study what would happen if the linear optimal perturbation was in large

enough amplitude to trigger nonlinearities. To this end, we rescale the energy of the linear

optimal perturbations to a higher initial energy, E0 = 10−2, while maintaining the shape

of the initial conditions corresponding to the case shown in figure 3.4(b) for ∆T = 40

K. The evolution of the streamwise velocity perturbations for this case is shown in figure

3.9. The low momentum fluid is transferred away from the walls, displaying features of

the classical lift-up mechanism (Brandt, 2014) driven by streamwise vortices (not shown).

Comparing figures 3.7 and 3.9 we see that the nonlinear evolution of the linear optimal
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Figure 3.9: Evolution of the linear viscosity-stratified optimal perturbation (∆T = 40 K)

scaled to nonlinear initial energy E0 = 10−2, shown at two angles. The lift-up mechanism

is in evidence. The times are as in figure 3.6.

perturbation is very different from the linear evolution of the linear optimal perturbation.

The non-linear evolution of the linear optimal perturbation for the unstratified case (not

shown) also shows a lift-up type mechanism in operation, albeit at both walls, and is

symmetric about y = 0. The physical mechanism for energy growth at small energy

levels (E0 = 10−8) is thus the Orr mechanism and that at high energy levels (E0 = 10−2)

is indicative of the lift-up mechanism. As we discuss below, in particular for stratified

flow, the linear optimal perturbations are not the most efficient way to extract energy
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from the mean flow into the perturbations for higher energy levels.

3.3.2 The non-linear optimal perturbation and its evolution

Figure 3.10: 40% isosurfaces of the maximum (yellow) and minimum (blue) values of the

streamwise perturbations u1 of the nonlinear optimal perturbation (E0 = 10−2) with (a)

∆T = 0 (unstratified); and of the viscosity-stratified nonlinear optimal perturbation with

(b) ∆T = 20 K and (c) ∆T = 40 K. (d) 20% isosurfaces of the maximum (yellow) and

minimum (blue) u1 for the viscosity-stratified nonlinear optimal perturbation with ∆T =

60 K. A slightly lower isosurface value had to be shown in (d) for better visualisation.

The perturbation leading to the maximum energy growth for the highest E0 of 10−2

considered here, is referred to as the nonlinear optimal perturbation. Isosurfaces of the

nonlinear optimal streamwise velocity perturbation (figure 3.10) and streamwise-spanwise

averaged r.m.s. wall-normal nonlinear optimal velocity profiles (figure 3.11) show some

localisation towards the hot wall due to viscosity stratification. But remarkably, unlike

in the linear case (figures 3.4 and 3.5), there is significant perturbation energy on both

walls of the channel for the stratified nonlinear optimal perturbation. Figure 3.11, in

stark contrast to figure 3.5, makes it clear that the asymmetry between the two sides

of the channel is small for the nonlinear optimal perturbation, whereas in the linear

optimal perturbation, energetic structures were absent in the bottom half of the channel.
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But in the nonlinear optimal perturbation too, the asymmetry increases with increasing

stratification, with more structures at the hot wall. The streamwise velocity perturbations

are now arranged in a series of elongated (mainly in the flow direction, but with a spanwise

inclination) high and low momentum zones near the walls. Increasing the stratification

level makes the population near the cold wall smaller (but not insignificant). From figure

3.11 we observe a significant contribution to the initial perturbation kinetic energy from

all three components of velocity.

Figure 3.11: Wall normal profiles of (a) streamwise velocity fluctuations u1, (b) wall-

normal velocity fluctuations u2, and (c) spanwise velocity fluctuations u3, averaged across

the x and z coordinates, of the nonlinear optimal perturbations (E0 = 10−2) for various

stratification strengths.

The energy-time graphs corresponding to the evolution of the nonlinear optimal per-

turbations in figures 3.10 and 3.11 are shown in figure 3.12 for various stratification levels.
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Figure 3.12: Time evolution of (a) the cost functional Jopt(T ) as in equation (3.14) and

of (b) energy, of the nonlinear optimal perturbations for various stratification strengths.

The time of optimisation is T =4 for all.

Figure 3.13: Evolution of energy of the linear (black lines) and nonlinear (red lines)

optimal perturbations when evolved with the modified Navier-Stokes equation with E0 =

10−2. Solid lines are for the unstratified cases (∆T = 0) while the dotted lines are for

stratified cases with ∆T = 40 K. Other stratification levels (not shown), show similar

behaviour to ∆T = 40 K.
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Figure 3.12(a) shows the cost functional Jopt(T ) of the optimal perturbation which is the

quantity that we optimised for, while figure 3.12(b) shows the volume-averaged kinetic

energy as a function of time. Growth is algebraic in the nonlinear regime as well, and

perturbations decay soon after the target-time of optimisation. Unlike in the linear evo-

lution of the linear optimal perturbation, there is no qualitative difference between the

growth in the unstratified case and those at various levels of stratification. We are now

in a position to compare the evolution, by the modified Navier-Stokes equations, of the

linear and the nonlinear optimal perturbations, both starting from the same initial energy

of E0 = 10−2, in figure 3.13. We may first satisfy ourselves of the higher energy growth

in the evolution of the non-linear optimal perturbation as compared to the linear optimal

perturbation, consistent with the definition of the nonlinear optimal perturbation. For

the unstratified flow, for a short target-time, it turns out that the linear and nonlinear

optimal perturbations show similar growth, though the linear is of course lower, whereas

the linear optimal perturbation shows a much lower growth in the stratified flow than

the nonlinear optimal perturbation (comparing the dashed black line to the dashed red

one in figure 3.13). This is consistent with the cold wall becoming more prominent in

the evolution of the nonlinear optimal perturbation, as we shall discuss below. It is also

worth mentioning that on comparison with figure 3.8 we see that the growth of energy

of the linear optimal perturbation, as a ratio of the initial energy, is significantly lower

with nonlinear evolution, for initial conditions differing only in amplitude. However, the

absolute value of perturbation energy always remains larger than the linear case since

the initial perturbation was large. When the initial perturbation is large, the available

energy from the laminar flow becomes a limiting factor, which could result in the lower

growth, as a ratio.

We now discuss how viscosity stratification changes the mechanism of subcritical dis-

turbance growth and how nonlinear optimal perturbations are fundamentally different

from linear optimal perturbations in this regard. Initially proposed by Hamilton et al.

(1995) and Waleffe (1997) and summarised by Brandt (2014), the regeneration/self-

sustaining cycle of wall turbulence involves three steps, (i) lift-up, i.e., transportation

of low (high) momentum fluid away from (towards) the wall by streamwise vortices, to

form streamwise independent streaks of low (high) momentum away from (near) the wall,

(ii) break down of these by inflectional secondary instability to acquire streamwise de-
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pendence and (iii) regeneration of elongated vortices by nonlinear interactions between

oblique modes. These arguments were initially made with the linear optimal perturbation

in mind. Through similar direct-adjoint looping methodology, Cherubini et al. (2011) for

a boundary layer and Cherubini and De Palma (2013) for a Couette flow showed that it

is much more efficient for the lift-up to be driven by streamwise modulated vortices in

the first place. The nonlinear optimal perturbation inherently contains such streamwise

modulation. This is referred to as the modified lift-up mechanism, as it can bypass the

stage of secondary (streak) instability en-route to transition to turbulence.

Figure 3.14: Evolution of the nonlinear unstratified optimal perturbation with E0 = 10−2,

shown at two angles. The times of evolution are marked.
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We detect similar optimal perturbation structures here for a channel flow, both in the

unstratified and stratified cases. Their evolution in time by the modified Navier-Stokes

equation is shown in figure 3.14 for the unstratified case. A modified lift-up mechanism

similar to Cherubini et al. (2011) and Cherubini and De Palma (2013) is seen to be in

operation, where low momentum fluid is lifted off the wall and high momentum fluid is

brought closer to the wall by streamwise modulated vortices (vortices not shown). This

translates into the algebraic growth of perturbation kinetic energy seen in figure 3.12.

Figure 3.15: Evolution of the nonlinear viscosity-stratified optimal perturbation (∆T =

40 K) with E0 = 10−2, shown at two angles. The times of evolution are marked.

The evolution of the nonlinear optimal perturbation in stratified flow is shown in
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figure 3.15. As mentioned earlier, the inception of an inflection point due to lift-up may

be expected to be more efficient near the less viscous wall as the wall-normal velocity

gradient is larger, and lift-up is usually associated with u2∂U/∂y (Cherubini et al., 2011).

Consistent with this, we have a larger population of optimal perturbation structures near

the less viscous wall, as seen in figure 3.10(a) and (b). Since mean shear is smaller at the

cold wall, its lift-up capability is lower, and therefore it may be argued that it is structures

which are already a little away from the cold wall, which can grow better on the cold

side. This is borne out by the optimal perturbation structures seen in the bottom half of

figure 3.15(b). An interesting feature of the evolution of the viscosity stratified nonlinear

optimal perturbation, which distinguishes it from the unstratified case as well as from the

evolution of the linear optimal perturbation, is that as time progresses action at the cold

wall is increasingly significant, and the high-speed structures at the hot wall shrink in

wall-normal extent. The evolution of perturbations at the cold wall is strong enough to

create points of inflection in the x−z averaged velocity profiles, and this will be discussed

with the aid of figure 3.16. We shall refer to a “strengthening (weakening)” of inflectional

profiles when the profile becomes more (less) strongly wavy in the wall-normal direction.

In panel (a) of this figure, we see that the unstratified flow progresses steadily towards

inflection, maintains this up to about t = 10, and become less inflectional thereafter. The

profiles are symmetric. In fact the perturbations in all cases decay at long times. This is

expected because we use a low Reynolds number and small target-time of optimisation

which means the asymptotic state would be laminar. In figure 3.16(b) the evolution of the

profile in the stratified case is shown. There is a strengthening of the inflectional profile

at early times at both walls, with the hot wall being more inflectional. After about t = 4,

the profile becomes weaker near the hot wall and more strongly inflectional than before

on the cold side, before eventually weakening at long time. The corresponding profiles

of the x − z averaged total viscosity are shown in figure 3.16(c). Upon comparing with

the laminar viscosity profile, up to a time of about 10, on the colder side, we see that

higher viscosity fluid from the cold wall has been lifted up towards the centreline and

lower viscosity fluid from the central portion of the channel has been carried towards

the wall. A similar exchange is visible on the hot side of the channel as well, but with

opposite signs of viscosity change. At the long time of t = 16, we see a mixing of fluids.

Below, we address the question: if lift-up is more efficient at the less viscous (hot) wall,
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why do perturbations grow near the other (cold) wall?

Figure 3.16: The total streamwise velocity at various times averaged across the x and z

coordinates for (a) the nonlinear unstratified optimal perturbation and (b) the nonlinear

viscosity-stratified optimal perturbation for ∆T = 40 K. (c) The evolution of the total

viscosity profile for the flow corresponding to (b). Solid black lines in each for t = 0, solid

red for t = 2, solid blue for t = 4, dashed black for t = 6, dashed red for t = 8, dashed

blue for t = 10, and solid green for t = 16.

After the inception of lift-up, near the hotter wall, less viscous fluid of low momentum

is brought away from the wall to the vicinity of more viscous and high momentum fluid,

and the opposite happens on the colder wall. Thus the low (high) momentum streaks near

the hotter wall are composed of less (more) viscous fluid, but those near the colder wall

are composed of more (less) viscous fluid than the local laminar values. This is evident

from the conditionally averaged viscosity profiles in figures 3.17(a) and 3.18(a) at time

t = 2 and 6 respectively. Here, at each y location, the viscosity 〈µ+〉 is averaged over all

positive u1 cells over the x− z plane, and 〈µ−〉 is the viscosity averaged over negative u1

cells in the same plane. A small cut-off ε = 0.001 in the velocity has been used for this

averaging, and it has been checked that the profiles are insensitive to the exact choice

of ε. These plots establish that on the colder side of the channel, low speed regions are

correlated with elevated viscosity, and high speed regions correlate with reduced viscosity,
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Figure 3.17: Flow driven by the nonlinear viscosity-stratified optimal perturbation at

∆T = 40 K and time t = 2. (a) Viscosity profiles averaged across the x and z coordinates

for positive streamwise velocity perturbation u1 > ε in red, and for u1 < −ε in blue. The

laminar viscosity profile is shown as a dashed black line. The four vertical black dotted

lines with labels denote the y locations of the plots in (b-e). Instantaneous streamwise

velocity perturbations u1 are shown in the x-z plane at y locations (b) -0.25, (c) 0.25,

(d) -0.75, and (e) 0.75. Refer to figure 3.15(c) for a 3D view of isosurfaces of u1 at this

time and the red solid line in figure 3.16(b) for the total U(y) averaged in x and z at this

time.

with the opposite correlations on the hotter side. The instantaneous streamwise velocity

perturbations in four different x−z planes are shown in figures 3.17 and 3.18 in panels (b)

to (e). The spanwise widths and spacing of the low and high speed streaks is significantly

larger on the cold side than on the hot side. Secondly the streaks persist up to t = 6 on

the cold side, whereas on the hot side the structure is practically lost by this time. A

physical argument for the relative persistence near the colder wall is as follows. Consider

that the streamwise pressure gradient is similar across the span of the channel. High

speed streaks of low viscosity alternating with low speed flow of higher viscosity would

be maintained by this pressure gradient. On the other side, i.e., at the hot wall, a higher

viscosity fluid of higher forward speed would tend to slow down, and a higher viscosity

fluid of lower speed to speed up, in response to a similar streamwise pressure gradient.

The greater persistence of streaks on the colder side is thus a consequence of the basic
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Figure 3.18: Same as figure 3.17 but for time t = 6. Refer to figure 3.15(g) for a 3D view

of isosurfaces of u1 at this time and the black dashed line in figure 3.16(b) for the total

U(y) averaged in x and z at this time.

asymmetry in the mechanics of the lift up on the two sides.

In figure 3.10(c) we had seen that the spanwise variation of the velocity perturbations

had different apparent wavenumbers on the two walls. The slices in figures 3.17 and 3.18

clarify this to be a sinuous variation. Such variation is known to be responsible for the

ultimate breakdown of streaks (Waleffe, 2009). A study at higher Reynolds number and

longer target-time could reveal this. Besides, the inflectional instability, discussed below

for the stratified case, extracts energy from the streaks (Waleffe, 2009) allowing further

energy growth beyond the lift-up. Further studies at higher Reynolds numbers and longer

target-times will be needed to explore these mechanisms in viscosity-stratified flows.

The observations in figures 3.16 to 3.18 enable us to schematically illustrate the lift-up

process in stratified flow, in figure 3.19. Panel (a) shows stronger inception of inflection

near the hot wall at early time. On the left of panel (b) we sketch how this lift-up results in

exchange of viscosities. On the right of this panel, we see how this exchange of viscosities

results in strengthening of the inflectional profile on the cold wall and weakening on the

hot wall. Wherever viscosity is higher than the surrounding laminar flow, gradients are

lowered and wherever it is lower, gradients are relatively increased.
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Figure 3.19: Schematic of the lift-up mechanism influenced by viscosity stratification:

(a) inception of the inflection in the velocity profile is stronger near the less viscous wall

as it has larger wall-normal velocity gradient, (b) persistence of the inflection created is

greater near the cold/more-viscous wall because the streak C2 of high momentum can

sustain higher wall-normal gradients of velocity than before, whereas the streak of low

momentum, C3 has higher viscosity velocity gradients within it will be lowered. The

opposite happens on the other wall where high momentum fluid H2 has higher viscosity

and low momentum fluid H3 has lower viscosity than the local laminar value. The dashed

line represents the undisturbed laminar profile, the dash-dotted line and the solid lines

are representations of early and later times respectively.
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Thus, the low viscosity streak at the cold wall brings with it higher velocity gradients,

leading to stronger lift-up. The persistence of high momentum and low viscosity streaks,

combined with stronger inflection in the velocity profile near the colder wall is consis-

tent with the observations of previous DNS studies (Lee et al., 2013; Zonta et al., 2012)

concerned with turbulence in stratified flow. In boundary layer flow (Lee et al., 2013)

heating the flat plate and hence making fluid less viscous in the vicinity leads to sup-

pression of turbulence and for channel flow (Zonta et al., 2012) turbulence is suppressed

on the hot/less viscous wall and enhanced on the cold/more viscous wall. Cherubini

et al. (2011) and Cherubini and De Palma (2013) highlight the importance of the Orr

and lift-up mechanisms, both linear mechanisms, in the creation of sub-critical transi-

tion through minimal seeds of turbulence transition (obtained by optimizing over much

larger target-times as compared to what we study in this chapter). Recently, Vavaliaris

et al. (2020) also reported the dominance of these mechanisms in the initial stages of

sub-critical turbulence in a boundary layer. We have shown how viscosity stratification

in a channel acts to modify these mechanisms. For the short target-time (T = 4) optimal

perturbations at the relatively small Reynolds number (Re = 500) that we have studied,

the interaction required for non-linear regeneration of the streaks and hence completing

the regeneration cycle en-route to transition (Waleffe, 2009) is absent. But the primary

role of viscosity stratification in the initial stages of the nonlinear nonmodal process has

been revealed.

3.3.3 Effect of Prandtl number

We performed simulations at three Prandtl numbers: Pr = 0.1, 7 and 5000, for ∆T = 20

K. Our lowest Peclet number, i.e., the product of the Reynolds and the Prandtl numbers,

is 50, which is too large for diffusion of the temperature perturbations to qualitatively

change the behaviour over our simulation times. We confirm this in our simulations.

Slices of temperature and viscosity perturbations are shown in figure 3.20 for two values

of Pr, when evolved with the corresponding nonlinear optimal perturbation up to the

target-time. We see that diffusion effects are greater at the lower Prandtl number, so

viscosity variations persist better at the higher Pr, while we find very similar structures

and their evolution (not shown) at all Prandtl numbers. However, in studies over longer

target-times, of the process of transition to turbulence, we expect the Prandtl number to
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Figure 3.20: Temperature perturbations at target-time at z = π/2 for (a) Pr = 0.1 and

(c) Pr = 7 when started with the corresponding nonlinear viscosity-stratified optimal

perturbation (∆T = 20 K). The corresponding viscosity contours at same time are in (b)

and (d). Note the presence of higher gradients in temperature and viscosity in (c) and

(d), respectively. The colour bars in (a) and (c) are different.

play an important role.

3.4 Conclusions

In this study we have derived, for the first time to our knowledge, the adjoint modified

Navier-Stokes equations for a viscosity-stratified flow. We have shown that viscosity

stratification brings important modifications to the operation of the lift-up mechanism

in the early stages of disturbance growth. Initially stronger lift up is set up at the

hot (less viscous) wall due to the higher mean velocity gradient, but the lift-up at the

cold (more viscous) wall increases in strength later, while that at the hotter wall weakens.

Significantly, at the colder wall, high-speed streaks are more persistent, of larger spanwise

extent, and give rise to a strengthening of the inflectional profile. We have presented

physical arguments for these observations. Thus the action shifts from the hotter wall to

the colder wall as time progresses. Most of the features we observe in the evolution of

the nonlinear optimal perturbation are completely missed in the linear study. A linear

optimal perturbation of small amplitude will only display the Orr mechanism and not

the lift-up. At higher amplitudes, lift up will be seen, but only at the hot wall. In fact

no perturbations are ever seen near the cold wall with the linear optimal perturbation.
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This work suggests several directions for future research. A starting point for un-

derstanding the role of viscosity stratification in the transition to turbulence will be the

study of nonlinear optimal perturbations over long target-times. Vermach and Caulfield

(2018) made an interesting finding that the initial condition which produces the most

efficient mixing could be quite different from that which gives the highest energy growth.

Recognising that most flows where questions about mixing are relevant are also stratified

in viscosity indicates this as an area of study. We expect the effect of Prandtl number

to be pronounced in flows with a sharp stratification, e.g., the flow of miscible fluids of

different viscosity, and also at long times in continuously stratified flows, and this bears

investigation. We have neglected gravity in this study but most flows with a composition

to temperature variation are subject to buoyancy effects. This combination will make

for interesting study. Given the number of industrial applications for which viscosity

stratification is important, a variety of experimental studies are called for.

Finally, oceanic flows are also of varying viscosity but in that case it is the turbulent

eddy viscosity that would be of importance and not molecular viscosity as studied in

this chapter. We hope that this first work on the effects of viscosity stratification in

nonlinear optimal perturbation growth will give rise to discussions on how to implement

such stability analysis for real-life flows like oceans. As have been mentioned earlier, some

of these model studies had been inspired from oceanographic observations in the Bay of

Bengal. From the next chapter onwards, we describe some of these oceanic observations,

and we can see that some are not well understood. We believe that the numerical tools

that have been developed in this first half of the thesis could prove useful in improving

understanding of more complicated oceanic flows.
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With this chapter we move on to the next half of thesis concerned with turbulence

measurements in the ocean. Some of the observations presented in this and the next

two chapters had inspired some of the earlier model studies on nonmodal fluid stability.

To understand the turbulence observations, we first describe the measurement of ocean

turbulence using mixing meters called χpods developed first in Moum and Nash (2009).

χpods are fitted with thermistors, Pitot tube, and other sensors which are required to

measure various flow quantities in the ocean to infer geophysical turbulence. We will

first discuss the theoretical principles behind turbulence measurements and how it has

been applied to the measurements from χpods. We then describe the raw signals that are

necessary to infer turbulence and the instruments used for the same. The turbulence data

from the Bay of Bengal that will be discussed later in this thesis is based on turbulence

measured by χpods.

4.1 Introduction

The direct methods of oceanic turbulence measure the vertical momentum or buoyancy

fluxes, w′ρ′ or w′b′ (where w′, ρ′, and b′ are vertical velocity, density, and buoyancy

fluctuations from some mean) (Moum, 1990; Osborn and Crawford, 1980; Osborn and

Lueck, 1985a,b). These measurements are limited due to the instrument’s inability to

capture small correlations of velocity and density measurements and are difficult to inter-

pret due to the natural unsteadiness of turbulence (Gregg, 1987; Ivey et al., 2008). The

measurements of these correlations could also be contaminated due to vibrations if the

90
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instruments are fixed on moorings or gliders (Rudnick et al., 2004) to obtain long-term

turbulence data. Another critical measurement is of the vertical velocity fluctuation w′ in

phase with density fluctuations. However, short-term measurements of turbulence have

been collected with this principle of direct measurement using vertically falling shear

probes (e.g., Moum (1990)). Oceanographers and others interested in long-term turbu-

lence data, rely on indirect estimates that infer dissipation of turbulent kinetic energy

and temperature variance, using theories devised by Osborn and Cox (1972) and Osborn

(1980). These estimates of turbulence are based on the premise that vigorous stirring will

eventually generate small scales of motion and at these scales, molecular diffusion will dis-

sipate momentum, temperature, and salinity alike. And hence, measurement of the rate

of that smallest-scale dissipation would give an estimate of the strength of turbulence.

Mixing meters called χpods infer turbulence by this indirect method.

4.2 χpods

χpods, as shown in figure 4.1 are about a meter long, 0.1m diameter cylindrical casings

with a thermistor and a Pitot tube at the top cap of the casing, another thermistor

(to act as a contingency against non-functionality of the first one) at the bottom cap,

a pressure transducer, and a streamlined vane along the casing length opposite to the

sensors to direct them to face the mean flow. χpods can be fixed to the line or wire of a

mooring and can be deployed for many months at a time. It has yielded turbulence data

at various sites across the globe, from the Pacific to the Indian Ocean (Cherian et al.,

2020; Moum et al., 2013; Pujiana et al., 2018; Thakur et al., 2019; Warner et al., 2016;

Warner and Moum, 2019). Not that it can be fixed only to a mooring, but very recently,

a miniature version of χpod have also been attached to a buoyant structure and towed

behind a research vessel to measure spatial variations of upper-ocean turbulence in the

Western Pacific (Hughes et al., 2020).

The long body of the χpod consists of a battery and circuit boards designed to carry

out conversion, reduction and storage operations of the recorded analog signal. The most

recent version of χpods record temperature using fast thermistors, current speed (u) with

Pitot tubes (Moum, 2015), pressure, and acceleration at 50 Hz. In an earlier version, the

velocity field required to infer the flow past a χpod was done using ancillary velocity
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(a) A schematic of a χpod attached to a

mooring wire, showing thermistors and the

Pitot tube among others.

(b) A χpod on a mooring wire before de-

ployment. From Moum and Nash (2009).

c©American Meteorological Society. Used

with permission.

Figure 4.1: Mixing meter χpod.

data, like from that of an acoustic Doppler current profiler (ADCP). The time rate of

temperature change (Tt) is measured at 100 Hz, and compass heading is sampled at 1

Hz. Acceleration and the compass heading is required to decompose the speed calcu-

lated using the Pitot tube into its x, y, and z components. The integrated motion of

accelerometers also provide the vertical motion of the χpod. As discussed later, speed

is used to convert temperature fluctuations in time to spatial fluctuations using Taylor’s

frozen flow hypothesis (Taylor, 1938). An iterative algorithm (Moum and Nash, 2009)

is used to determine the decay rate of temperature variance (χ) using an inferred tur-

bulent kinetic energy dissipation rate (εχ), as εχ = N2χ

2ΓT 2
z

. Here, Tz is the mean vertical

temperature gradient and square of Brunt-Väisälä N2 = −gρ ·dρ/dz, where ρ is the fluid

density. Γ is related to the efficiency of turbulent mixing and is set at 0.2 (Gregg et al.,

2018; Osborn, 1980) and is discussed in 4.3.1. Because turbulence inference using χpods

amounts to measuring χ in the ocean, hence the instrument is named so.
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4.3 Theoretical principles

The theoretical principle that underlies the indirect estimates of turbulence presented

here is based on the formulations of Osborn and Cox (1972) and Osborn (1980).

For any conserved passive tracer (like temperature) in a flow,

∂T

∂t
+ u.∇T = Dt∇2T. (4.1)

It is a local conservation (in time t) equation for instantaneous temperature (or any other

scalar) field T advected by instantaneous velocity field u. Molecular diffusivity Dt acts

to smoothen temperature gradients at the dissipation scales which are much smaller than

the forcing scales. ∇ is the divergence operator and ∇2 is the Laplacian operator. The

fluctuation temperature variance conservation equation, derived by Reynolds decomposi-

tion of the instantaneous temperature advection-diffusion equation (4.1) and multiplying

it by fluctuation T ′ is

∂T ′2

∂t
+ Ui

∂T ′2

∂xi
+ u′i∂T

′2

∂xi
+ 2u′iT ′

∂T

∂xi︸ ︷︷ ︸
P

= Dt
∂

∂xi

∂T ′2

∂xi
− 2Dt

[
∂T ′

∂xi

]2

︸ ︷︷ ︸
χ

. (4.2)

It is important to note that primes denote the fluctuation quantities (and not derivatives)

and overbars denote appropriate averages. The 3-dimensional instantaneous velocity field

u is also Reynolds decomposed into mean Ui and fluctuations u′i.

In a steady and homogeneous shear turbulence, from equation (4.2) we are left with a

balance between the turbulent production of scalar gradients by velocity fluctuations (P )

and the irreversible dissipation of the those gradients by molecular diffusivity (χ)(Pope

(2000), Kundu and Cohen (1990)). χ, which is the product of molecular diffusivity of

temperature and the square of the temperature fluctuation gradient, is the only sink in

the above equation. Hence, whatever variance is produced, is destroyed only by molecular

diffusivity at small wavelengths (or high wavenumbers), similar to what viscosity does

to velocity gradients. We assume that the mean temperature gradient, from which this

variance is being extracted, is present only in the vertical direction, i.e, the balance of P

and χ in equation 4.2 can be approximated as
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2u′iT ′
∂T

∂xi
≡ 2w′T ′∂T

∂z
= −χ. (4.3)

This assumption is justified by the fact that in a majority of ocean profiles, the tempera-

ture gradient is primarily in the vertical, and horizontal gradients are orders of magnitude

smaller than the vertical gradient.

Osborn and Cox (1972) assumed an eddy coefficient approach for the production

term, where correlations of vertical velocity fluctuation and temperature fluctuation is

parametrised to be only dependent on the strength of the vertical gradient, i.e w′T ′ =

−Kt∂T/∂z, where Kt is the parameter which measures the strength of this correlation

with respect to the vertical gradient. This quantity is named the turbulent (or eddy)

diffusivity of temperature (or heat). Kt is however a synthetic quantity and is not a

property of the fluid but of only of the flow. From equation 4.3 and Osborn and Cox

(1972) parametrisation,

Kt = χ

2T 2
z

. (4.4)

χ in the ocean is measured using χpods and the turbulent diffusivity Kt is inferred. The

quantity Kt is the basis of other analysis presented in this thesis.

The buoyancy flux is also modelled as an eddy coefficient formulation following Osborn

(1980) as in equation (4.5). The production of the buoyancy flux Jb is dependent only on

the mean Brunt-Väisälä frequency, N2. Assuming a constant flux Richardson number,

the equality in (4.5) can also be represented in terms of the rate of dissipation of turbulent

kinetic energy ε. N2 is a representative of the background density stratification over which

turbulent eddies create stirring motion.

Jb = KρN
2 = Γε. (4.5)

Kρ is the proportionality constant and is the diffusivity of density analogous to diffusivity

of temperature introduced in equation 4.4.

Using a constant value of Γ = 0.2 was first argued for by Osborn (1980). This quantity

represents how much gain in potential energy is obtained by a mixing event due to the

carrying of a high-density fluid to a lower-density neighbourhood in a stratified flow. The

higher the value, low is the loss of energy to viscous dissipation and more is the gain in
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potential energy of the flow.

We assume that the turbulent Prandtl number is unity , i.e., temperature, salinity,

density and any other scalar diffuse at the same rate as the velocity. By equating the

turbulent diffusivities of temperature and density, we have an estimate of the viscous

dissipation of turbulent kinetic energy. With Kt = Kρ,

εχ = χN2

2ΓT 2
z

. (4.6)

We name it εχ because this dissipation of turbulent kinetic energy is not obtained di-

rectly from direct measurements of turbulence like with microstructure profilers (see, for

example, Gregg (1989) among many), but is rather inferred from rate of temperature

dissipation χ. This whole set of equations forms the looping algorithm for our analysis

shown as a schematic in figure 4.3 and will be discussed in section 4.4.

4.3.1 Mixing efficiency Γ

The quantity Γ deserves a special mention as it has been a source of intense debate

regarding what the actual efficiency of mixing is for oceanic flows (reviews of Ivey et al.

(2008) and Gregg et al. (2018)). We are aware of studies that express concern about

using a constant Γ by showing it to have a dependence on the buoyancy Reynolds number

(Reb) or the strength of turbulence in the flow (Monismith et al., 2018). They present

different critical Reb above which the flow is Reb-dependent and below which the flow

is a constant-Γ flow. The scaling with Reb was however found to be not universal by

Mater and Venayagamoorthy (2014). This means a complete functional form of Γ is yet

to be uncovered. We agree that instantaneous χ values would change due to a sensitivity

to Γ, but as presented in the appendix of Moum and Nash (2009), this sensitivity is

about 30% for a Γ range of 0.1-0.35. So, assuming a constant Γ at 0.2 should not

qualitatively change the analysis presented in this thesis. Also, in a recent review, Gregg

et al. (2018) suggests that the use of a constant value of Γ = 0.2 could be continued until

“observations, laboratory experiments, and numerical simulations converge on a more

accurate formulation.”
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4.3.2 Spectrum of turbulence

We can expand any time-varying function T ′(t) as a series of its constituent frequencies

(Fourier, 1822). For any spatially varying T ′(x), we can expand it into its constitutive

wavenumbers,

T ′(x) = C
∫ b

a
T̂ ′(k) expikx dk, (4.7)

where x is the horizontal direction in our frame of measurements, i.e., parallel to the

surface of the ocean, k is the wavenumber space of x, a and b are the spatial bounds in

k, C is a constant, and T̂ ′(k) the Fourier transform of T ′(x). For such a one-dimensional

spatial function, Parseval’s theorem states that the variance in the real space is equal to

the variance in the wavenumber space. If we define a function ψTx(k), which is a power

spectral density for the variance in the wavenumber space, we have

[
dT ′

dx

]2

=
∫ ∞

0
ψTx(k)dk. (4.8)

Hence ψTx is the temperature fluctuations gradient spectrum. For isotropic turbulence,

2Dt

[
∂T ′

∂xi

]2
= 6Dt

[
dT ′

dx

]2
. Hence, from equation 4.2 and equation 4.8, we have

χ = 6Dt

∫ ∞
0

ψTx(k)dk. (4.9)

This can also be represented in terms of integral in frequency f = k/u. For the sake of

easing future discussions, we can safely assume the velocity u to be unity and write χ as,

χ = 6Dt

∫ ∞
0

ψTx(f)df. (4.10)

The spectrum of turbulence was coined for homogeneous isotropic turbulence by Tay-

lor (1938). After scaling arguments for energy distributions, Kolmogorov (1941) and

Obukhov (1941) established the existence of such a spectrum with a k−5/3 scaling in the

inertial subrange of a turbulent flow. The inertial subrange is a spectral range where the

effect of viscosity has not yet taken place (i.e., the length scales in the flow are bigger

than the Kolmogorov length scale). However, we are not concerned with the spectrum of

velocity fluctuations but that of the passive scalar in the flow. As the scalar is advected

in a flow and the eddies break down to smaller and smaller scales, equivalent destruction
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in the scales of a scalar occurs and hence the spectrum exists.

The scalar spectrum has a non-monotonic form with the contribution from each sub-

range marked (e.g., see Dillon and Caldwell (1980); Tennekes and Lumley (2018)):

ψTx(k) = [internal waves] + χ[ Cε
−1
3 k

1
3︸ ︷︷ ︸

inertia-convective

+ qν
1
2 ε
−1
2 k︸ ︷︷ ︸

viscous-convective

] + [viscous-diffusive]. (4.11)

Here ν is the viscosity of the fluid, C and q are constants and their numerical values

have been postulated to be 0.4 and 2.3 respectively in Sreenivasan (1996) and Klymak

and Moum (2007). A schematic of the spectrum is shown in figure 4.2 with the various

subranges. In the inertia-convective subrange as marked in equation (4.11) and in figure

4.2 between k1 and k2, temperature is simply advected around like a passive parcel.

This is because neither viscosity nor molecular diffusivity makes an appearance in this

subrange. In the viscous-convective subrange, which is higher in the wavenumber space

(and hence smaller length scale), as marked in figure 4.2 between k2 and k3, temperature

is still advected without any dissipation but the velocity gradients are being continuously

destroyed by the action of viscosity at the Kolmogorov scale. It can be seen from equation

(4.11) that viscosity ν makes its first appearance in the spectrum only in this subrange.

At the extreme end of the spectrum, called the viscous-diffusive subrange, both the

gradients in temperature and velocity are being smoothed out by the action of molecular

diffusivity of temperature and viscosity, respectively. The scaling arguments of the inertia-

convective subrange was first suggested by Corrsin (1951) and Obukhov (1949). The

form of the viscous-convective subrange is attributed to Batchelor (1959) and has been

confirmed to exist by measurements of Gibson and Schwarz (1963). A model with non-

uniform straining of scalar field was considered by Gibson (1968) as opposed to the

uniform straining model of Batchelor (1959), and still the scaling in the viscous-convective

subrange was preserved. Kraichnan (1968) took into account the intermittency effects of

velocity field and arrived at scaling which preserved the earlier scaling by Corrsin (1951),

Obukhov (1949), and Batchelor (1959). Hence, there are strong reasons to believe that the

scalar spectrum of the form (4.11) is universal. χpods are capable of resolving turbulence

in the viscous-convective subrange. The viscous-diffusive subrange occurs at very small

length scales and has an exponential cutoff. We cannot resolve this small-scale subrange

from our measurements and hence it has been left out of discussion. Bogucki et al.
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(1997) and Yeung et al. (2002) found using direct numerical simulations that the scaling

arguments of Kraichnan (1968) holds better than Batchelor (1959) in the viscous-diffusive

subrange (> k3 in figure 4.2).

Figure 4.2: A log-log plot showing a schematic of scalar variance whose form is given in

equation (4.11) for a fixed turbulent kinetic energy dissipation ε. The internal wave part

of the spectrum has a zero slope. k1-k2 is the inertia-convective subrange of scalar tur-

bulence, while k2-k3 is the viscous-convective subrange. f1-f2 is the thermistor frequency

range resolved by the χpod as mentioned in the iteration loop in figure 4.3. The subrange

> k3 is viscous-diffusive part of turbulence. Spectrum is not to scale. (After Becherer

and Moum (2017, Fig 1)).

4.4 Iterative procedure to calculate χ

We detail here the iterative looping algorithm based on the equations in section 4.3 for

estimating χ using χpods. The looping is represented as a schematic in figure 4.3. We

need an iterative technique because the spectrum depends on both χ and ε as in equation

(4.11) but we only have measurements of temperature fluctuations and we can resolve only

a part of the spectrum. The iteration is used to determine the decay rate of temperature

variance (χ) using an inferred turbulent kinetic energy dissipation rate (εχ) as εχ = N2χ

2ΓT 2
z

.
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Figure 4.3: The looping algorithm used to find the best fitting theoretical Batchelor

spectrum in the viscous-convective subrange. χ is determined from the full integral of

that theoretical spectrum.

For the first step in the iteration, the εχ is a guess. Apart from high frequency temperature

fluctuations, we need reliable measurements of vertical temperature gradient Tz, the

vertical stratification in density N2, and the speed of flow past the χpod to complete this

iterative looping.

Theoretically, after we measure the spectrum of temperature dissipation as in equation

(4.8), we could have obtained χ using the integral in equation (4.10). This is, however,

avoided for two reasons. Firstly, when the flow speed is high or the turbulent dissipation

ε is high, the spectrum is pushed to higher wavenumbers (see, e.g., Shroyer et al. (2018,

Fig 8)). This means, very high frequency measurements of temperature fluctuations

would be required to resolve the spectrum. This is not possible even with the fastest of

the glass rod thermistors available, which responds somewhere between 20-30 Hz (Gregg

and Meagher, 1980). This is a challenge to the method of estimating turbulence using

microstructure measurements of temperature. But the strength of this technique lies in

the fact that the spectrum is relatively robust to platform noise and hence can provide

long-term turbulence data as has been mentioned already. Secondly, surface wave signals



100 CHAPTER 4. OCEAN TURBULENCE WITH χPODS

act as contamination to the temperature spectra somewhere in the inertia-convective and

the viscous-convective subrange (Becherer and Moum, 2017, Fig 10). Hence, the full

integration in equation (4.10) will be erroneous. This necessitates estimating χ using

a part of the measured spectrum and not by integrating the whole. In this analysis,

we scale the 1-second spectrum as measured by the χpod to the theoretical Bathcelor

spectrum in the viscous-convective subrange. As this is not the full χ, we name it χpart
in the looping schematic in figure 4.3. We then try to fit this χpart to the integral of a

theoretical spectra in the same frequency range and calculate the full χ by integrating

the whole theoretical spectra. The iteration loop can be decomposed into the following

steps (also refer to figure 4.3).

1. Assume a certain rate of turbulent kinetic energy dissipation ε. The current guess

is ∼ 10−7.

2. From the measured spectra of temperature gradient from the ocean ψTx(f)|observed,

we choose a range f1 to f2, and the limits of the integral in equation (4.10) becomes

χpart = 6Dt

∫ f2

f1
ψTx(f)|observed(f)df. (4.12)

3. In the same range of f1 − f2 we try to find a theoretical Batchelor spectrum

ψTx(f)|Batchelor (whose nondimensional form is shown in figure 4.2) which when

integrated in f1 − f2 gives an estimate χtest.

4. If χtest and χpart are not within a certain tolerance (5 % is used in this analysis),

• we change our guess of ε, which gives a new Batchelor spectrum (the spectrum

depends on ε as in equation (4.11)),

• and steps 2 and 3 are repeated.

5. If χtest is matched with χpart within the tolerance, we assume to have found the

theoretical Batchelor spectrum that we need for the full integration of equation

(4.10).

6. After finding the actual theoretical spectrum ψTx(f)|Batchelor, we calculate χ using

the full integral in equation (4.10) as,
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χ = 6Dt

∫ ∞
0

ψTx(f)df ≡ 6Dt

∫ ∞
0

ψTx(f)|Batchelor(f)df. (4.13)

Temperature gradient spectra (ψTx) are calculated on 1-second sections, thus outside the

surface wave band (∼ 4-20 s). Fitting over a short time range also lends confidence

to the assumption that turbulence in that range is stationary and Taylor’s frozen flow

hypothesis is valid. Mean temperature and salinity (from conductivity-temperature-depth

probes) was sampled more slowly with effectively 10 minute-resolution so that surface

wave contributions are averaged out of these data. We use a 10-minute average (〈χ〉) from

1-second individual estimates of χ to derive 10-minute estimates of turbulent diffusivity

Kt as,

Kt = 〈χ〉2T 2
z

. (4.14)

A raw signal of χ and the turbulent diffusivity Kt for a few random days obtained from

the Bay of Bengal is shown in figure 4.4.

Figure 4.4: A raw signal of (a) temperature variance (log10 χ) as obtained from a χpod

and the (b) inferred turbulent diffusivity (log10 Kt) for a randomly-chosen period of seven

days in the month of February 2015 in the Bay of Bengal.
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4.4.1 Temperature fluctuations

A Reynolds decomposition of temperature T gives T = T +T ′, where T ′ is the fluctuation

and T is mean temperature, in time. A fast thermistor is designed to measure this

temperature fluctuation by changes in its resistance. As a turbulent patch is advected

past the thermistor, these fluctuations in time can be mapped on to fluctuations in space

using the flow past the sensor, described next. Figure 4.5 shows one hour of measured

temperature fluctuations using a χpod and a nearby instrument on the mooring line. The

hourly-averaged profile of temperature is also shown, which follows the generic trend.

These kind of measurements also provide a source of validation of the measurements by

χpods. Temperature fluctuations occur at various timescales and its averaging depends

on what physical aspect of the problem one is interested in.

Figure 4.5: Temperature for a randomly-chosen 24-hour period measured by χpod (red

line) is shown to match a nearby Sea-Bird electronics (SBE) temperature measuring

sensor on the mooring line (black line). The hourly interpolated temperature (in blue) is

shown just for reference.

With the measurement of temperature, we can measure the temperature gradient as

shown as an example in figure 4.6. The location of four χpods deployed in the Bay of

Bengal (Indian Ocean) are also shown (as red dotted lines) which form the basis of all

the turbulence analysis in this thesis. Depending on the limitations of the number of

instruments, we have to settle at different measures of temperature gradient Tz as can

be seen in figure 4.6 as “a) Tz” and “b) Tz”. So, the background temperature that the

χpods measure see different degrees of Tz depending on its how we measure this vertical

gradient. In this thesis, we use the nearest temperature sensors to measure Tz such we

can have as local a measure of turbulence as possible. This limitation in not having
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infinite resolution in the depth is also translated to the measurement of Brunt Väisälä

frequency N2 which also goes into the χpod iterative algorithm.

Figure 4.6: A sample temperature gradient from the Bay of Bengal and location of χpods

with respect to temperature and salinity measuring instruments (in empty circles). The

vertical temperature gradient is Tz. Locations of χpods are shown.

4.4.2 Speed past thermistor

A Pitot tube in a χpod measures pressure, and from Bernoulli’s principle, the speed of

flow past the thermistor is determined. The speed of the flow is a the vector sum of the

speed of the local currents and also the motion of the χpod due to the movement of the

mooring line,

u2 = (ux − umx)2 + u2
my + u2

mz (4.15)

where ux is the measured speed in the x-direction, and umx, umy, and umz are the speeds

of the χpod in the three directions. The 50 Hz raw voltage signal from the Pitot tube

is combined into 10 min bins and is superimposed with integrated instantaneous motion

obtained from the orthogonal accelerometers (Perlin and Moum, 2012).

Figure 4.7 shows the three components of velocity recovered by integrating accelerom-
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eter movements in the χpod. As can be seen, the χpod does not stay put in it actual

deployment depth but can have some horizontal and vertical movement, which is due to

the local currents and surface waves moving the mooring line where the χpod is fixed.

Figure 4.7: One second velocity measurements with Pitot tube on a χpod in (a) x direc-

tion, (b) y direction, and (c) z direction shows variations in a small period of about 10

minutes.

The temperature gradient defined in the section 4.4.1 in the temporal space is con-

verted to one dimensional spatial gradient by assuming Taylor’s frozen flow hypothesis

(Taylor, 1938), where a linear space-time relation maps the temporal derivative of tem-

perature (Tt) to the spatial derivative (Tx) using the total local velocity of flow (u) as in

equation (4.15) as

Tx = 1
u
Tt. (4.16)

Surface waves, as well as internal waves, generate motions which complicate the mo-

tion of the χpods for effective calculation of the this frozen flow. Due to local reversal

of flow and many other factors, the Pitot tube does not respond ideally. We get rid

of these data points which gives us unusable velocity data. Also, the flow needs to be

sufficient to flush the thermistor fast enough so that the χpod does not sample its own

wake. Hence, we get rid of speeds < 0.02 m/s (a small speed value). Pitot tube response

is also limited by the sensitive non-linear dependence of the pressure sensor on various

external factors like temperature and static pressure. A common mode rejection scheme

and an extensive calibration procedure has helped in obtaining robust estimates of speeds

from the Pitot tube. A detailed description of the development of a Pitot tube for use

in χpods and its sensitivities to various external factors is provided in Moum (2015).

Velocity measurements using χpods compare well with other established measurement

techniques. Comparison of Pitot tube data on a χpod and the more traditional ADCP is
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shown in Moum (2015, Fig 5). Detailed comparisons of turbulence estimates from χpods

and more traditional shear microstructure profilers are discussed in Perlin and Moum

(2012); Pujiana et al. (2015).

Turbulence as measured by χpods will be used in the next two chapters, where we

first show the year-long signal in the geophysical turbulence from the Bay of Bengal and

its depth dependence. We also show an interesting phase of suppressed turbulence during

and after the summer monsoon months. In the final chapter, we show a diurnal variation

in turbulence for about a month and comment on its importance in the Bay of Bengal

and its communication with the Indian monsoon system.
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This chapter is an enlarged version of the publication (reproduced with permission):

Thakur, R., Shroyer, E. L., Govindarajan, R., Farrar, J. T., Weller, R. A., & Moum,

J. N. (2019). Seasonality and buoyancy suppression of turbulence in the Bay of Bengal.

Geophysical Research Letters, 46(8).

Bay of Bengal in the northern Indian ocean is an important player in the regional

climate, specially Indian monsoon. Our year-long (year of 2015) dataset of tempera-

ture, salinity, velocity, and turbulence quantifies the upper-ocean turbulent mixing in

the northern Bay of Bengal (18N and 89.5E location). The instruments also provide

atmospheric data and in conjunction with oceanic measurements provide an estimate

of the air-sea interaction in the Bay of Bengal. Above 25 m, we find that (1) mixing

is very strong during the summer monsoon (June - September) due to the momentum

imparted by strong winds, (2) mixing is reduced from summer monsoon values during

the winter monsoon (nominally defined November - January), and (3) mixing is lowest

during transition periods between the two. The ocean responds differently below 25 m, a

depth that can be regarded as the average ocean mixed layer depth in the Bay of Bengal.

The freshwater layer on top of the Bay, arising from river discharge and precipitation in

the post-monsoon season, acts as a barrier to the wind-induced mixing and turbulence

106
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is suppressed for several months at the site of our experiment. Below 60 m, even an in-

tense cyclone could not generate appreciable ocean mixing when the freshwater layer was

present. Upper ocean turbulence is effectively decoupled from surface forcing by the in-

tense, persistent (multiple months), and shallow salinity-induced stratification associated

with this low-salinity water.

5.1 Introduction

The Bay of Bengal has one of the lowest-salinity surface waters in the tropical ocean due to

numerous rivers discharging into it from the Indian subcontinent (Sengupta et al., 2006)

and heavy local seasonal rainfall (Hoyos and Webster, 2007). This low-salinity surface

water has a seasonal nature and is highest after the monsoonal precipitation in the the

summer monsoon months. During the period of this low-salinity water over the Bay,

shallow mixed layer depths are observed. This makes the Bay an “active communicator”

with the atmosphere (Bhat et al., 2001), i.e., it promptly adjusts itself to change in air-

sea interactions, with potential consequence to the Indian monsoon system (Sengupta

and Ravichandran, 2001) and cyclonic activities (Balaguru et al., 2014). Due to its

potential importance, this portion of the Bay of Bengal has been a site of interesting

studies. Sree Lekha et al. (2018) have shown that the salinity changes in the northern

Bay are mainly related to the changes in the winds. When winds are high, the shallow

Ekman flow pushes the low-salinity water to the interior of the Bay. When winds are low,

the mesoscale (O(100km)) eddy field dominates the dispersal of the fresh (low-salinity)

water. Studies have also analysed the exit pathways of this low-salinity water from the

Bay (Jensen, 2003; Sengupta et al., 2006). However, the role of this low-salinity water in

modulating turbulent mixing had not been addressed before.

The upper ocean mixed layer has homogeneous properties like temperature and salin-

ity. Below the mixed layer the temperature decreases with depth (figure 5.1). This is

called the thermocline and it has a seasonal nature. Salinity and temperature both con-

tribute to the density of seawater. When there is a stable salinity gradient (i.e., low

salinity water above high salinity water), an unstable temperature gradient (i.e., cold

water above hot water) can survive (e.g. figure 5.1). It is called an inversion layer. In

the Bay as we observe here, salinity often dominates stratification at the base of the
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Figure 5.1: A barrier layer and an inversion layer as observed from salinity (red) and

temperature (black) at a random time of the day on 19 January 2015 in the Bay of

Bengal. The markers denote the location of the temperature and salinity sensors on their

respective profiles.

mixed layer, allowing for formation of a “barrier layer” defined as the salinity-stratified

region between the base of the mixed layer and the beginning of the thermocline (God-

frey and Lindstrom, 1989). Due to the strong salinity stratification, multiple fine-scale

(< 10 m) inversions in temperature are observed and subsurface warm layers can persist

(Shroyer et al., 2016). These subsurface warm layers provide an additional reservoir of

heat which may influence the sea-surface temperature. Tropical cyclones moving over an

ocean draw mass and sustain themselves by evaporation. This cools the ocean surface

(Emanuel, 2003). Ocean observations using buoys (D’Asaro, 2003), microwave satellites

(Chiang et al., 2011), and shipboard measurements (Leipper, 1967) have reported this

ocean cooling by tropical cyclones. A temperature drop as high as 10.8 ◦C has been

reported (Chiang et al., 2011) and numerical experiments have studied the mechanisms

leading to the ocean surface cooling after a tropical cyclone (Vincent et al., 2012). But

tropical cyclones within the Bay have been known to leave a salty wake, which however

is not pronounced in its cooling, due to the presence of this subsurface heat supported

by the strong salinity gradients (Chaudhuri et al., 2019). Long-term turbulence measure-

ments provide the opportunity to explore the seasonal nature of geophysical turbulence

in the Bay. We also describe how turbulent mixing influences the upper-ocean structure

within the context of the Bay’s evolving stratification, i.e., the variation in temperature

and salinity due to rainfall and riverine discharge and monsoonal wind forcing. High fre-
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quency measurements also capture intense bursts of turbulence associated with energetic

events like a tropical cyclone.

Moored mixing meters called χpods described in the previous chapter has made it

possible to resolve multi-year subsurface turbulence in the Bay. Warner et al. (2016)

studied the seasonality in turbulence in the Bay for the first time from a single χpod at

15m depth at 12N and 90E location. This study found that the turbulent heat fluxes were

of similar magnitude to the surface flux during the monsoon (stronger wind) periods,

whereas it was three orders of magnitude weaker during the transition (weaker wind)

periods. In the present study, we examine results from four χpods (at depths ranging from

22 to 65 m) on a heavily-instrumented upper-ocean mooring in the northern Bay (18N).

These data capture the development of intense, persistent (multiple months) near-surface

stratification and shallow mixed layers associated with the advective arrival of low-salinity

water from riverine discharge and rainfall. During this time, salinity contributed 3-5

times the magnitude of temperature to upper-ocean density stratification, supporting the

formation of a thin but intense barrier layer as has been shown above. These data provide

direct evidence on the role of low-salinity water in controlling the depth of penetration of

turbulent mixing in the northern Bay. A remarkable suppression of turbulence below 40

m is seen even during periods of strong winds including during the passing of a cyclone

when this low-salinity water existed on the surface.

5.2 Data and Methods

Here, we analyse data from a Woods Hole Oceanographic Institution (WHOI) mooring

which was deployed in the northernmost international waters of the Bay (18◦ N, 89.5◦

E) from 8 December 2014 to 29 January 2016 to record oceanic and atmospheric data.

The mooring location is shown in the map in figure 5.2. The deployment of the mooring

was a part of a 5-year joint effort between the Indian Ministry of Earth Sciences via the

Ocean Mixing and Monsoon (OMM) project and the US Office of Naval Research via the

Air-Sea Interactions in the Northern Indian Ocean: Regional Initiative (ASIRI) project.

The mooring was provided by Woods Hole Oceanographic Institution and the sensors in

the mooring by participating Indian and US institutes. This study of turbulent mixing in

the Bay was conducted in collaboration with Oregon State University (Emily L Shroyer
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and James N Moum) and Woods Hole Oceanographic Institution (J Thomas Farrar and

Robert A Weller). The dataset can be accessed as given in section 5.7.2.

The mooring line had instruments measuring various properties of the water column

from the surface of the ocean to ∼1 km deep into the ocean. A complete description of

the full dataset from the different instruments in the mooring is provided in Weller et al.

(2019). We present the turbulence estimates in this study. Thirteen Sea-Bird Electronics

37-SM MicroCATs from 2.5-95m logged conductivity (C) and temperature (T) of the

water column every 5 minutes. Two of these sensors at 1 m depth below the surface

sampled conductivity and temperature every minute, and several also recorded pressure

using pressure gauges. We infer salinity and density from conductivity and temperature

as given in McDougall and Barker (2011). An upward looking Teledyne RD Instruments

300 kHz acoustic Doppler current profiler (ADCP) was deployed at 80m. Data from a

meteorological package (ASIMET (Hosom et al., 1995)) were used to approximate the

air-sea fluxes (Fairall et al., 2003) which give a measure of the communication or the

coupled nature of the atmosphere-ocean system.

Six χpods were deployed from 22-65m; one was lost at sea, and a second returned data

for only half of the deployment. Here, we analyze data from the remaining four χpods

deployed at 22, 46, 55, and 65m. Estimates of χ are calculated on 1-second intervals, and

the turbulent diffusivity for heat (hereafter diffusivity) is calculated as Kt = χ

2T 2
z

(Osborn

and Cox, 1972), using 10-minute averages of χ and the mean temperature gradient. The

algorithm to estimate χ has been described in the previous chapter. Kt is not evaluated

when |Tz|< 10−3 ◦C/m, or when N2 < 10−6 s−2 to preclude estimates during periods of

convection and weak stratification. Based on these criteria, 7.5 percent (< 1.5 percent)

of the 1-second χ estimates are removed from the 22m χpod (other three χpods at 46,

55, and 65m). A time series of χ and Kt for a the whole year from daily averages is in

figure 5.3.

5.3 Results from the Bay of Bengal

At the mooring location, the 2015 winter or northeast (NE) monsoon was characterized

by negative net surface heat flux that acted to cool the ocean with seasonal-average (NE

monsoon) of -51.4 W m−2 (daily values peaked at -229 W m−2; figure 5.4 (a)), occasional
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Figure 5.2: A map showing the experimental location with a black star. The colour shows

sea-surface salinity (in psu) on 7 August 2015. The land boundaries and the respective

Exclusive Economic Zones (EEZs) of the countries are shown. The map is extracted from

a movie originally made by Andrew Lucas (Scripps Institution of Oceanography). Used

with permission.

precipitation (daily values ranged 0.2-1.5 mm hr−1; figure 5.4 (b)), and strong, persistent

winds (daily stress peaked at 0.2 N m−2; figure 5.4 (c)). In contrast, the 2015 winter -

summer transition period was characterized by positive net surface heat flux in excess of

120 W m−2 (peaking at 170 W m−2), negligible precipitation (< 0.3 mm hr−1), and low

wind stress (< 0.04 N m−2). During this transition, surface air temperature increased

from 24 ◦C in February to 31 ◦C in June as can be seen in figure 5.5. The increase in air

temperature was also followed by the increase in the SST and thus adding buoyancy to

the surface. The summer or southwest (SW) monsoon was characterized by fluctuating

net surface heat flux and a decrease in surface air temperature to 28 ◦C by September,

persistent and heavy precipitation events (> 2 mm hr−1), and the strongest observed

variability in wind stress, e.g., 0.01-0.1 N m−2 during 15-23 May and 0.04-0.3 N m−2

during 16-21 June. Cyclone Komen in late July is identified by its associated negative

net surface heat flux and the year’s highest precipitation and wind stress. This was the
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Figure 5.3: Time series of log10 Kt in red and log10 χ in black divided into 2.5 months

each in (a-d). Variability of turbulence across seasons is evident.

strongest cyclone in 2015 and, as expected, associated with intense cloud cover.

Figure 5.4 shows the whole monsoon cycle. The various seasons are marked on top

of (a). Upper-ocean temperatures (figure 5.4 (d)) increased during the transition to

SW monsoon, resulting in increased stratification (N2) over the upper 70 m. In June,

they reached maxima after which the upper 25 m cooled by almost 2.5 ◦C over a one

month period in concert with increasing monsoon winds. Large decreases in salinity (>

6 psu; figure 5.4 (e, f)) during the latter half of the SW monsoon mark the arrival of

Brahmaputra-Ganga-Meghna discharge with significant contribution from precipitation.

The first low-salinity pool arrived on 29 July accompanied by ∼ 0.5 ◦C drop in SST. The

pools of low-salinity water detected in the mooring location is seen in figure 5.4 (f) and

figure 5.6. It can be seen that the changes in the upper ocean density structure during

the low-salinity pools is majorly contributed by the changes in the upper ocean salinity.

The base of the low-salinity pool create intense salinity stratification and can sustain

temperature inversions.

Subsequent shallow (< 15 m) and low-salinity (< 27 psu) pools appeared over the

SW monsoon persisting for roughly 10 days and characterized by mixed layers (defined

by |Tmixedlayer - SST| ≤ 0.15 ◦C; figure 5.4 (f)) often less than 10 m deep. Low-salinity

features observed later in the year (November and December) show similar shallow mixed
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Figure 5.4: Daily-averaged (a) net surface heat flux QN (positive is heat going into the

ocean at surface), (b) precipitation P, (c) wind stress τw (black and red indicate periods

shown in figure 5.7), (d/e) temperature T/salinity S at 1 m (SST), 10 m, 26 m, 50 m,

and 70 m. (f) S in color with the temperature-based mixed layer depth (black), density-

based mixed layer depth (cyan), 27 ◦C isotherms (white) overlaid, and χpod deployment

depths (black circles). The climatologically-averaged Indian monsoon cycle is indicated

above (a).

layer depths with strong stratification at the base of the mixed layer.
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Figure 5.5: The gradual increase in ocean surface-air temperature (blue) and sea surface

temperature (red) is seen leading up to the summer monsoon of 2015. The oscillation in

both of them is the diurnal signal due to the solar cycle.

5.4 Observed Upper-Ocean Turbulence

Interpretation of the turbulence measurements from these four moored χpods requires

resolution of the mixed layer depth. The mixed layer was close to the 22 m χpod for a

significant portion of the year (figure 5.4 (f)). Responding to wind stress events greater

than 0.24 N m−2 in the SW monsoon, the mixed layer extended below the 46 m χpod for

a total of only 13 days. So for the rest of the analysis, we can safely consider the mixed

layer to be somewhere around the 22m χpod. The diffusivity indicates variability in

turbulence both above and below the mixed layer over a wide range of timescales (figure

5.7). The gray shading in figure 5.7 (a-e) are the one minute raw turbulence estimates at

different depths. The 10−4 and 10−5 lines are plotted to show the difference between the

turbulence at the upper 22m χpod and turbulence at deeper χpods. The characteristics

of turbulence differed based on whether or not the χpod was near the base of the mixed

layer (22m χpod; figure 5.4 (f) and figure 5.7 (b, g)) or below the mixed layer (other

three χpods; figure 5.4 (f) and figure 5.7 (c-e, h-j)), as the interplay of surface forcing and
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Figure 5.6: (a) Salinity in colour and (b) relative contribution of salinity and temperature

to density averaged across various depths assuming a linear equation of state. α and β

are the coefficients of contribution to density for temperature and salinity.

stratification differed within these two environments. One manifestation of this difference

is that turbulence at 22m tended to be stronger in magnitude and different in frequency

than the sub-mixed layer (> 40 m) turbulence. This was primarily set by surface forcing

during the SW monsoon when the median (mean) value of the 22m-diffusivity was one

(three) order(s) of magnitude higher than the sub-mixed layer diffusivity. A linear relation

between the wind stress and the turbulent diffusivity for the whole year shows that the

correlation at 22m is stronger as compared to 46m which is below the mixed layer (figure

5.8). This is consistent with the definition of mixed layer - a layer actively mixed by the

winds. Despite strong winds in the summer monsoon months and heavy rainfall creating

strong salinity stratification, this trend still holds, and the correlation between the wind

stress and turbulence is stronger at 22m when compared to 46m (compare insets of figure

5.8 (a) and (b)).

Intermittency is a strikingly unique feature of turbulence. Multiple definitions of in-

termitttency are possible and can be sometimes defined as where intense fluid motion

occurs when the ambient fluid is relatively quiet or the fraction of time the flow is turbu-

lent. These intermittent motions are widely accepted as a candidate for stronger energy
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Figure 5.7: (a) Daily-averaged wind stress τw. Daily-averaged diffusivity log10Kt at (b)

22 m, (c) 46 m, (d) 55 m, and (e) 65 m in black, and smoothed one-minute averages in

gray. (f) Normalized histograms of daily-averaged τw for 15 May - 15 July (gray), 15 July

- 15 September (red), and the whole year (black outline). (g-j) Normalized histograms

of daily-averaged log10Kt at same depths as (b-e) and colour coding similar to (a, f).

Median values are indicated in (f -j).

transfers during mixing, and reason for intense vortices in atmospheric and oceanic flows.

A more quantitative description of this intermittency is the deviation from a Gaussian

statistics of some measure of velocity difference between two points and is attributed to

strong vortical motions (Batchelor and Townsend, 1949). Intermittency in geophysical

turbulence can also be attributed to the natural variability in the forcing agents like winds
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Figure 5.8: Turbulent diffusivity (Kt) as a function of wind stress (τw) at (a) 22 m and

(b) 46 m for the whole year. The inset in each shows the correlation between Kt and τw

for the summer monsoon months as marked on top of figure 5.4(a). R2 is the coefficient

of determination in the fitted linear models.

and tides and turbulence suppressing agents like stratification, and this is what we will be

referring to in this chapter and next. Intermittency can be observed from both the one-

minute averages and the hourly averages of turbulent diffusivity in figure 5.7. Although

intermittent, variability in turbulence at diurnal, semi-diurnal, and shorter timescales is

observed at all depths below the mixed layer, and the correlations as shown in figure

5.8 exists. These turbulence signals were particularly enhanced within the diurnal band

during the transition and the SW monsoon (figure 5.11). For example, at 65 m, a persis-

tent (∼ one month) diurnal signal in diffusivity ranging two orders of magnitude is seen

through the majority of July (figure 5.11 (e, g)), coincident with a period of increased

subsurface stratification. The diurnal signal in diffusivity is also seen at 46 m and 55 m,

but it is not as persistent (< 15 days) as at 65 m. In contrast, the 22 m diffusivity shows

a broadband variability at the diurnal timescale (figure 5.11 (e, f)).

The origin of the diurnal cycle in diffusivity is not entirely clear and is a topic of

further exploration. A few noteworthy points: (1) the diurnal signal in diffusivity is

narrowband (figure 5.9 and 5.11), (2) the internal tide signal (as diagnosed with band-
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passed, depth-dependent velocity) has a stronger semi-diurnal component than diurnal,

and (3) a strong diurnal signal in temperature stratification (Tz) is not seen during this

time period (figure 5.9; e.g., as would be anticipated for the development of a diurnal jet

(Sutherland et al., 2016)). The periodicity is visualised with wavelet spectrograms (more

details on wavelet transforms in section 5.7.1). A weak narrowband diurnal signal is

apparent in the east-west wind stress during this time, so a possible interpretation is that

the signal is in response to acceleration of the water column by the winds. An alternative

theory is that layers of enhanced mixing are vertically advected past depth sensors by

the diurnal tide. This explanation depends on the vertical scale of stratification, shear,

and mixing layers and their location relative to sensors. Observed patterns in shear,

stratification, and Richardson number do not yield conclusive evidence of heaving (figure

5.10) in the month of July. One final possibility is that the diurnal signal is biological

in origin, i.e., forced by migrating zooplankton or fish (Pujiana et al., 2015). There is

also another diurnal signal with a month-long persistence in the month of May. These

interesting diurnal signals in May and July are followed up in the next chapter.

Figure 5.9: Wavelet transforms of (a) Tz at 65m and (b) log10 Kt at 65m for the period

of 05 July to 10 August. A diurnal signal is seen in log10(Kt) which is not seen in the Tz.

Turbulence also varied at the intraseasonal and seasonal timescales which is arguably

the most obvious feature of figure 5.7. For example, the 22 m χpod shows a strong 30-

day signal in diffusivity ranging three orders of magnitude during the SW monsoon. We
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Figure 5.10: Hourly averages of (a) net atmospheric heat flux QN , (b) eastward shear at

65 m (The ADCP bins are 2 m apart in depth (z)), (c) Brunt-Väisälä frequency log10 N
2,

(d) square of the total shear (S2 = (du/dz)2 + (dv/dz)2) at 65 m, (e) S2- 4N2 at 65 m,

(f) Richardson number (Ri = N2/S2) at 65 m (red dotted line is the 1/4 value), and (g)

diffusivity log10 Kt at 65 m.

distinguish two periods of the SW monsoon, 15 May-15 July and 15 July-15 September.

These periods were nominally defined by the build-up of the SW monsoon winds (figure

5.4 (c)) and similar wind stress distributions (figure 5.7 (a, f)). Hence, the first period

(black rectangle in figure 5.4 (c) and figure 5.7) represents conditions in the SW monsoon

before arrival of low-salinity water and the second period (red rectangle in figure 5.4 (c)
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and figure 5.7) represents conditions in the SW monsoon after arrival of low-salinity

water. Despite having similar wind stress, turbulence is quantitatively different in the

two periods for the sub-mixed layer χpods.

5.4.1 Seasonality in Turbulence Near the Base of the Mixed

Layer

Turbulence at 22m generally followed the strength of the surface winds (figure 5.7 (a, b)

and figure 5.8) with the weakest winds and diffusivities observed during the transition

and the strongest winds and diffusivity observed in the SW monsoon. The median dif-

fusivity during the transition to the SW monsoon was 1.5×10−5 m2 s−1 which increased

to 2.5×10−4 m2 s−1 during the SW monsoon. The highest diffusivity (1.1×10−2 m2 s−1)

is observed during the SW monsoon coincident with wind stress in excess of 0.3 N m−2

(figure 5.11 (b)). These are extremely energetic events in the ocean and turbulent in-

tensity of similar magnitude has been known to exist in isolated intense bursts (Alford

et al., 2015; Polzin et al., 1995).

The transition to the NE monsoon was associated with lower values of diffusivity

(median 1.9×10−5 m2 s−1; mean 3.8×10−5 m2 s−1). The distributions of 22 m diffusiv-

ity (figure 5.7 (g)) pre- and post-arrival of low-salinity water are very similar (median

2.5×10−4 m2 s−1 versus 2.4×10−4 m2 s−1) and an order of magnitude higher than the

full-year (median 4.2×10−5 m2 s−1). However, diffusivity from mid-September until the

end of October was low despite a few high wind stress events.

5.4.2 Seasonality in Turbulence Below the Mixed Layer

At the onset of the SW monsoon winds (0.01-0.1 N m−2 during 15-23 May), diffusivity

at 46, 55, and 65 m approached that of the 22 m (1.8×10−4 m2 s−1 on 23 May). (The 46

and 55 m diffusivity increased by roughly an order of magnitude within a few days at this

time, while the 65 m diffusivity, already elevated, increased at a slower rate.) Elevated

diffusivity below the mixed layer is also seen during other seasons in response to winds,

e.g., the peak on 1 January that coincided with a reduction in stratification (figure 5.7

(c, d)). Diffusivity distributions differ significantly from one another with an increasing

shift between median values progressing downwards in depth (figure 5.7 (h-j)).



5.4. OBSERVED UPPER-OCEAN TURBULENCE 121

Figure 5.11: Hourly-averaged (a) net surface heat flux QN , (b) wind stress τw, (c)

temperature T (black line is the 32 psu iso-salinity contour), (d) salinity S, and (e)

diffusivity log10Kt at 22 m and 65 m. Wavelet transforms of log10Kt at (f) 22 m and

(g) 65 m.

The most pronounced trend in turbulence below the mixed layer is the steady decline

in the intensity and variance of diffusivity observed during the latter half of the SW

monsoon and into the NE monsoon season (figure 5.7 (c-e)), despite strong winds. After

this decline, daily median and mean values of diffusivity remained low (10−5-10−6 m2 s−1)

for 3-5 months.
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Figure 5.12: Weekly-averaged (a) wind stress τw and (b) upper 30 m salinity S, with

error bars of maximum and minimum τw and S within each week (from hourly averages)

respectively. Hourly-averaged (c) Brunt-Väisälä frequency log10N
2 and (d) diffusivity

log10Kt interpolated linearly between 22 m, 46 m, 55 m, and 65 m χpods (black dotted

lines). (e) Weekly-averaged 46-65 m log10Kt with the 95 percent bootstrap limit.

5.5 Buoyancy Suppression of Turbulence

The low-salinity water was detected in the mooring in distinct pulses starting late-July

and continuing into the early NE monsoon (figure 5.4 (f); the first occurrence is a set of

three pools over two weeks (figure 5.11 (d))). The first pool, occurring on 29 July, was

∼ 40 m deep and the next two pools on 05 and 09 August were relatively shallow (∼ 20 m).
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The first caused an increase in stratification below 25 m while the following two caused

increased stratification above 25 m (in both cases N2 ∼ 10−3 s−2; figure 5.12 (c)). (Note

that during the arrival of these freshwater pools the near-surface salinity stratification

accounted for a majority of the total change in upper-ocean stratification. Both near-

surface low-salinity water and the compression of iso-density (isopycnal) contours at depth

contributed significantly to the stratification.

The response of diffusivity to the increase in stratification associated with arrival of

low-salinity water must be interpreted with consideration of surface forcing, especially

with regard to the strong storms occurring in June and July (wind stress > 0.3 N m−2).

The decrease in winds on 28 June and 12 July coincided with reduced diffusivities at all

depths (figure 5.7 and figure 5.11 (b, e)).

The reduction in diffusivity over this time span varied from 1.5-3 orders of magnitude

in hourly averages for the different χpods (figure 5.12 (d)). As compared to the late-June

storm, the increase in diffusivity during Komen was less in magnitude and restricted only

to shallower depths (figure 5.12 (d, e)). The signal of Komen is not at all obvious at 65

m (figure 5.11 (e)). This is despite stronger wind stress during Komen (Komen’s storm

center passed within ∼ 350 km of the mooring on 29 July.). High wind stress events

occurred during August and September, but diffusivities (and their daily ranges) below

the mixed layer remained low (figure 5.7 and figure 5.12 (d, e)). After Komen, extreme

turbulence events (1-minute data; figure 5.7) rarely exceeded 10−4 m2 s−1 below 45 m.

Over this time period, the daily mean diffusivity at 65 m was . 10−5 m2 s−1. Closer to

the surface (22 m), it ranged between 10−3 m2 s−1 and 10−6 m2 s−1.

Weekly averages of wind, salinity, and sub-mixed layer diffusivity reflect the relative

correlations between forcing, stratification, and turbulence at this timescale. Weekly-

averaged sub-mixed layer diffusivity mimics the weekly averaged surface-salinity rather

than the wind stress, in that the presence of low-salinity water (S < 32 psu; figure 5.12

(b)) is associated with reduced diffusivity (figure 5.12 (e)) but variable wind forcing

(figure 5.12 (a)).
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5.6 Conclusions

The upper-ocean turbulent response of the northern Bay is notable in several ways. First,

semi-diurnal to near-inertial variability in turbulence shows intermittency throughout the

year with periods of enhanced turbulence often spanning one week to one month. The

differences and variability at distinct depths (22, 46, 55, and 65 m) are a reflection of the

small vertical scale in the stratification (figure 5.12 (c)), which is often of the order of 10

m or less. Furthermore, as layers heave past the χpods, signals that persist on individual

layers will be interpreted as time variability at that depth.

Second, turbulence within and near the base of the mixed layer (22 m) shows a

strong seasonality that varies with monsoon winds, similar to results found by Warner

et al. (2016) at 12N. Turbulent diffusivity was strongest (> 10−3 m2 s−1) in the SW

monsoon with the two strongest storms of the year. In contrast to Warner et al. (2016),

diffusivity during the NE monsoon of 2015 was weaker than during the SW monsoon

at 18N. During times of weak winds, often during transition periods, the daily averaged

diffusivity occasionally dropped below 10−5 m2 s−1.

Third, turbulence beneath the mixed layer (46-65 m) was suppressed in the second

half of the SW monsoon during the period of arrival of low-salinity water from riverine-

discharge and precipitation (figure 5.12 (b, e)), coincident increase in near-surface salinity

stratification (initial response), and also elevated sub-surface temperature stratification

(boreal fall). A noteworthy example of this suppression is the lack of turbulent response

in the 65 m χpod when cyclone Komen transited the northern Bay (figure 5.11 (e)).

Following Komen, turbulence remained suppressed below the mixed layer for three to five

months (figure 5.12 (e)). Turbulence at 55 m recovered to its original strength by the

end of the year.

For 18N, the high near-surface stratification contributed significantly to limiting ver-

tical turbulent “communication” within the water column for multiple months, isolating

subsurface heat reservoirs with consequences to upper-ocean heat and salt content and

air-sea interactions. This suppression of turbulence will also limit storage of surface fluxes

at depth and must contribute towards the longevity of the low-salinity surface layer.

Turbulence suppression (Narasimha and Sreenivasan, 1979) or destabilisation of tur-

bulent flows (Kühnen et al., 2018) has also been of interest with regard to fundamental
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fluid stability. Studies on suppression or ‘relaminarization’ of turbulence in simple flows

reviewed by Narasimha and Sreenivasan (1979) indicates that this suppression could be

due to dissipation by viscosity, conversion of turbulent kinetic energy to other forms of

energy (Narasimha, 1983), or reduction in turbulent transport by changing the geometry

or other features of the flow. This observation of turbulence suppression in the Bay pro-

vides an opportunity to understand this fundamental transition question and the effect

of stratification, and the numerical tools developed in the earlier chapters could prove to

be helpful.

5.7 Appendix

5.7.1 Wavelet Transforms

When wavelet transforms are referred to in this thesis, we mean the continuous one-

dimensional wavelet transform of a signal using one of the many available analytic

wavelets (Lilly and Olhede, 2010). These analytic wavelets are wavelike oscillatory func-

tions localized both in time and frequency. These functions are rapidly decaying in time

and have a zero mean. Wavelet transforms allow us to analyze oscillatory signals (f(t))

by extracting the amplitude of convolutions with analytic wavelets. The analytic wavelets

used in our study are the generalized Morse wavelets (Lilly and Olhede, 2012). A certain

benefit of using wavelet transforms for our study is that is gives us time dependence of

the frequency in the signal as can be seen in figure 5.13. We have a signal of the form

sin(2π ∗10t) + sin(2π ∗30t) in time (t). A Fourier transform of the time series gives infor-

mation about the frequencies present in the signal as can be seen by comparing panels (a)

and (b) of figure 5.13. Panel (b) shows two peaks at 10 and 30 Hz. It says nothing about

when the signal with frequency 10 Hz ended and when the signal with frequency 30 Hz

begins. That can, however, be obtained with a wavelet transform which shows (panel (c))

that the signal with frequency 10 Hz ends at t ∼ 7.5 and the 30 Hz starts at that point

as can also be confirmed from the line plot in panel (a). The colour is the magnitude

of energy in the particular frequency. This information from wavelet spectrograms helps

with added understanding of a particular signal and has been applied to oceanographic

data in this thesis.
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Figure 5.13: An example of using wavelet analysis on a simple sinuous signal with two

different frequencies. (a) A signal of two frequencies (10 Hz and 30 Hz). (b) A Fourier

transform of the signal only gives us two peaks at the frequencies of the signal. (c) A

wavelet transform gives information about the frequencies in the signal and their time

dependence.

5.7.2 Accessing the dataset

WHOI surface meteorology and air-sea flux data are available in

http://uop.whoi.edu/projects/Bengal/. Upper-ocean temperature, salinity, and turbu-

lence data measured using χpods are available in https://doi.org/10.6084/m9.figshare.7416440.
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Conclusions
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Every end is the beginning of something.

This thesis has presented two different kinds of work: (a) nonlinear nonmodal fluid

stability and the importance of viscosity stratification and (b) observations of geophysical

turbulence in the Bay of Bengal. The connection between the two is not immediately

apparent, but ideas from one part of the work have served as inspiration for the other

part and can serve as future work directions. Nonmodal stability analysis itself is a

broad area of research, and we deliberately chose a simple channel flow as our model

study rather than working with a real-life complicated system like ocean turbulence. The

understanding and the abilities that have been developed via work in this thesis shall be

soon extended to study more ocean-like flows. Observations relevant to the ocean and

atmosphere that are currently not understood can ignite further fundamental questions

of fluid stability and the tools of nonlinear stability could prove to be useful.

We have first developed a theory of nonlinear nonmodal analysis for viscosity-stratified

flows. The adjoint viscosity-stratified Navier-Stokes and the adjoint viscosity-stratified

scalar equations have been derived in this thesis for the first time to our knowledge. We

have developed, from scratch, a fluid flow solver which can simulate stratified flows in a

three-dimensional channel (plane Poiseuille flow) and is a strong multi-purpose numerical

tool. We have also developed a nonlinear optimisation tool for viscosity-stratified non-

linear optimisation which is only a slight modification of already existing techniques, but

includes the effects of varying viscosity. Using this tool, we have studied the effects of vis-

cosity variations as a simple function of temperature in a channel flow. We calculate the

151



152 CHAPTER 7. CONCLUSIONS

linear and nonlinear optimal perturbations, which cause the highest perturbation energy

for fixed initial energy and fixed target time of optimisation. If the times of optimisation

were larger than those presented here, these optimal perturbations could represent, or be

related to, those that cause the lowest Reynolds number transition to turbulence. We

find that these optimal perturbations are sensitive to the various parameters of the flow

like Reynolds number, time of optimisation, temperature difference across the channel

walls etc. We find that the singular effects of viscosity stratification result in unique lo-

calisation of linear and nonlinear optimal perturbations on the hotter or the less viscous

wall. We find that the linear and the nonlinear optimal perturbations differ in shape and

also the degree of localisation varies. The nonlinear optimal tends to efficiently use the

lift-up mechanism to transiently grow in energy. This mechanism is totally absent in the

linear optimal, where disturbance growth is displayed by the fast-acting Orr mechanism.

In case of the nonlinear optimal, a shift of the dynamics from the hot to the cold wall, and

a strengthening and persistence of the inflectional profile at that wall are seen, and this,

we expect, will prove relevant to how the transition to turbulence differs in a viscosity-

varying flow from that in the constant viscosity flow. We provide a physical description

of this process. We thus demonstrate the power of the nonlinear optimisation technique

in tracking the complete physics in such problems and note its importance in transition

to turbulence. Given that it is a relatively new technique, we hope that this thesis will

ignite interest in understanding viscosity-varying and other flows in this context. We

plan to extend this work to understand our observations in the Bay of Bengal, where the

turbulent eddy viscosity has been seen to be a strong function of depth and time.

In the second half of the thesis, we have presented a year-long dataset of turbulence

in the Bay of Bengal as measured by χpods. We have presented a detailed analysis of the

turbulence signals and have commented on its importance for the Indian monsoon. This

work was done as a project of the ASIRI-OMM program to better understand the Bay

of Bengal and its impact on the Indian monsoon. We show that there is a seasonality

to turbulence in the Bay and as earlier thought, turbulence is not limited to the upper

20m of the ocean but it can penetrate as deep at 65m of the ocean. This presents an

interesting area of study of the amount of heat exchange between the upper ocean and the

deeper thermocline in the Bay, an open question even for the whole of the world’s oceans.

The depth-dependence of turbulence in the Bay is surprising in the sense that even a
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cyclone could not generate appreciable mixing below 60m of depth as opposed to the

oceans where much deeper mixing have been observed. This points to the importance

of the near-surface freshwater-induced salinity stratification in capping the transfer of

momentum from the surface to deeper depths. A suppressed phase of turbulence has

been observed where the Bay below the mixed layer remains quiescent for 3-5 months

which is visibly correlated to the existence of strong salinity gradients in the upper ocean.

This suppression of turbulence is of interest in fundamental fluid transition and will be

taken up for study using the numerical tools that we have developed. We have also

shown a low-intensity diurnal signal of turbulence in the Bay which could also act as

an important source of mixing of heat during the suppressed phase of turbulence. We

could not, however, reproduce this diurnal signal using a numerical model but we strongly

suspect that this signal is related to the diurnally periodic winds which is a huge land-sea

breeze extending to more than 400km into the interior of the ocean. The presence of

land boundaries on three sides of the Bay could play an important role in sustaining this

month-long land-sea breeze and the diurnal turbulence in the summer monsoon months.

7.1 Future directions

When we look around us, we realise that shear flow in combination with viscosity variation

is very common. Understanding the transition to turbulence in these flows is a big

question, and the first part of this thesis could provide the first stepping-stone to a

number of problems that could have both academic interest and industrial usefulness. For

example, viscous flow through pipelines still presents a challenge to oil-drilling industries.

If using the technique of nonlinear adjoint optimisation, the loss of pumping energy to

viscous losses or turbulence could be minimised, this presents an economical advantage.

Another study which could have potential is that of the effect of boundary conditions,

specifically periodic heating and cooling, on the transient growth mechanisms and the

transition to turbulence. Because we have used a small subcritical Reynolds number, the

flow did not transition to turbulence and the mechanisms presented in this thesis could

be investigated with higher Reynolds numbers. We could study Couette flow instead of

channel flow, which has a simpler shear profile, to understand the effect and interaction

of viscosity with a different shear profile. The Couette flow system is unique in the sense
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that it goes to turbulence despite being linearly stable at any Reynolds number, i.e., all

perturbation eigenmodes, taken individually, decay exponentially. We have only studied

a certain viscosity-stratification model and an extension of the present numerical methods

to a different viscosity model is not a difficult task.

The second part of this thesis could ignite some further studies like investigations

into the spatial dependence of turbulent mixing in the Bay of Bengal. The Bay is an

important influence in the Indian monsoon system and a better understanding could

only improve the forecast abilities of the monsoon. An interesting signal that has been

observed is the buoyancy suppression of turbulence which will be definitely followed up as

it needs much more understanding, both theoretically and also its practical implication

in the heat exchange between the atmosphere and the deeper ocean. This suppression

of turbulence could also be further investigated using tools of nonlinear simulations and

stability. Another interesting question of study is the vertically propagating internal wave

signal which could be investigated with regards to the Bay to understand the transfer

of wind-imparted energy to the deeper ocean and where and how it causes mixing. As

mentioned earlier, in the ocean, it is the eddy viscosity, and not the molecular viscosity,

whose variation in space and time is of importance. Given that the eddy viscosity is a

construct, new stability methods will need to be devised to study this case.
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Böberg, L. and Brosa, U. (1988). Onset of turbulence in a pipe. Zeitschrift für Natur-

forschung A, 43(8-9):697–726.

Bogucki, D., Domaradzki, J. A., and Yeung, P. (1997). Direct numerical simulations of

passive scalars with Pr> 1 advected by turbulent flow. Journal of Fluid Mechanics,

343:111–130.
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Gaspar, P., Grégoris, Y., and Lefevre, J.-M. (1990). A simple eddy kinetic energy model

for simulations of the oceanic vertical mixing: Tests at station papa and long-term

upper ocean study site. Journal of Geophysical Research: Oceans, 95(C9):16179–16193.

Gibson, C. and Schwarz, W. (1963). The universal equilibrium spectra of turbulent

velocity and scalar fields. Journal of Fluid Mechanics, 16(3):365–384.

Gibson, C. H. (1968). Fine structure of scalar fields mixed by turbulence. i. zero-gradient

points and minimal gradient surfaces. The Physics of Fluids, 11(11):2305–2315.

Godfrey, J. and Lindstrom, E. (1989). The heat budget of the equatorial western Pacific

surface mixed layer. Journal of Geophysical Research: Oceans, 94(C6):8007–8017.

Gordon, A. L., Shroyer, E., and Murty, V. (2017). An Intrathermocline Eddy and a

tropical cyclone in the Bay of Bengal. Scientific Reports, 7:46218.

Govindarajan, R. (2004). Effect of miscibility on the linear instability of two-fluid channel

flow. International Journal of Multiphase Flow, 30(10):1177–1192.

Govindarajan, R. and Sahu, K. C. (2014). Instabilities in viscosity-stratified flow. Annual

Review of Fluid Mechanics, 46:331–353.

Grant, H., Moilliet, A., and Stewart, R. (1959). A spectrum of turbulence at very high

Reynolds number. Nature, 184(4689):808–810.

Grant, H., Moilliet, A., and Vogel, W. (1968). Some observations of the occurrence of

turbulence in and above the thermocline. Journal of Fluid Mechanics, 34(3):443–448.

Grant, H., Stewart, R., and Moilliet, A. (1962). Turbulence spectra from a tidal channel.

Journal of Fluid Mechanics, 12(2):241–268.

Gregg, M. (1987). Diapycnal mixing in the thermocline: A review. Journal of Geophysical

Research: Oceans, 92(C5):5249–5286.

Gregg, M. (1989). Scaling turbulent dissipation in the thermocline. Journal of Geophysical

Research: Oceans, 94(C7):9686–9698.

Gregg, M., D’Asaro, E., Riley, J., and Kunze, E. (2018). Mixing efficiency in the ocean.



160 BIBLIOGRAPHY

Annual Review of Marine Science, 10:443–473.

Gregg, M. and Meagher, T. (1980). The dynamic response of glass rod thermistors.

Journal of Geophysical Research: Oceans, 85(C5):2779–2786.

Hallberg, R. and Gnanadesikan, A. (2006). The role of eddies in determining the struc-

ture and response of the wind-driven Southern Hemisphere overturning: Results from

the Modeling Eddies in the Southern Ocean (MESO) project. Journal of Physical

Oceanography, 36(12):2232–2252.

Hamilton, J. M., Kim, J., and Waleffe, F. (1995). Regeneration mechanisms of near-wall

turbulence structures. Journal of Fluid Mechanics, 287:317–348.

Hayes, S., Mangum, L., Picaut, J., Sumi, A., and Takeuchi, K. (1991). TOGA-TAO: A

moored array for real-time measurements in the tropical Pacific Ocean. Bulletin of the

American Meteorological Society, 72(3):339–347.

Held, I. M. (1985). Pseudomomentum and the orthogonality of modes in shear flows.

Journal of the atmospheric sciences, 42(21):2280–2288.

Henningson, D. S., Lundbladh, A., and Johansson, A. V. (1993). A mechanism for bypass

transition from localized disturbances in wall-bounded shear flows. Journal of Fluid

Mechanics, 250:169–207.

Hill, D. (1995). Adjoint systems and their role in the receptivity problem for boundary

layers. Journal of Fluid Mechanics, 292:183–204.

Hopf, E. (1948). A mathematical example displaying features of turbulence. Communi-

cations on Pure and Applied Mathematics, 1(4):303–322.

Hosom, D. S., Weller, R. A., Payne, R. E., and Prada, K. E. (1995). The IMET (Improved

Meteorology) ship and buoy systems. Journal of Atmospheric and Oceanic Technology,

12(3):527–540.

Hoyos, C. D. and Webster, P. J. (2007). The role of intraseasonal variability in the nature

of Asian monsoon precipitation. Journal of Climate, 20(17):4402–4424.

Hughes, K. G., Moum, J. N., and Shroyer, E. L. (2020). Evolution of the velocity structure

in the diurnal warm layer. Journal of Physical Oceanography, 50(3):615–631.

Ivey, G., Winters, K., and Koseff, J. (2008). Density stratification, turbulence, but how

much mixing? Annu. Rev. Fluid Mech., 40:169–184.

Jensen, T. G. (2003). Cross-equatorial pathways of salt and tracers from the north-



BIBLIOGRAPHY 161

ern Indian Ocean: Modelling results. Deep Sea Research Part II: Topical Studies in

Oceanography, 50(12-13):2111–2127.
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