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Chapter 1

Introduction

1.1 Motivation and summary of results

In the absence of a complete quantum mechanical understanding, careful analysis of
the semiclassical theory offer surprisingly deep lessons and insights into the working
of gravity. Intuitions from quantum field theories in fixed background can often
break down once we allow the geometry to fluctuate. A lack of understanding of
these subtleties can lead to apparent inconsistencies and paradoxes, such as the
black hole information paradox.

One of the key results of this thesis is the holographic storage of information in a
theory of quantum gravity in asymptotically flat spacetimes. The holographic prin-
ciple refers to the proposition that in gravity the true quantum degrees of freedom
in a region are encoded in its boundary. This expectation stems from the fact that
the entropy of a black hole is proportional to the area [1], and not the volume, of
the event horizon. The most explicit and well understood realization of the holo-
graphic principle comes from string theory. The anti-de-Sitter space/conformal field
theory conjecture [2, 3, 4], or AdS/CFT for short, suggests that quantum gravity
in asymptotically AdS spacetimes is dual to a non-gravitational field theory in one
lower dimension. Although this explicit realization is built from string theory, we
would argue that we do not need detailed high energy structure of gravity to indicate
holography. A semiclassical analysis is enough to show that any reasonable theory
of quantum gravity must be holographic.

To be precise, we show that in a theory of quantum gravity in 4-dimensional
asymptotically flat spacetimes, all operators on the future null infinity (I+) can be
approximated by an operator in the neighbourhood of the past boundary of future
null infinity (I+

− ), with arbitrary precision [5]. This suggests that the quantum
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Chapter 1 Introduction

degrees of freedom in gravity are holographic. This leads to a complete breakdown
of locality. As I+ is a Cauchy slice, operators which do not have overlapping support
would commute, in a local theory. Even in gauge theories, we can define gauge
invariant operators localized in an interval of I+, that commute with all operators
which have no support on the interval. However, in gravity, no operator defined over
any interval of I+ commutes with all operators near I+

− .

The holographic encoding of degrees of freedom implies that all information about
the quantum state is always available at the boundary. So, any excitation in some
bounded region can be detected from the boundary, instantaneously. This is not
surprising, if we take seriously the notion of holography. As the boundary degrees
of freedom already encode all degrees of freedom, including those in the bounded
region, quantum state in some region cannot be changed independently of the quan-
tum state near the boundary. This has immediate implications for the black hole
information paradox (see section 1.2 for an introduction to the information paradox).
In particular, the notion of information escaping from the black hole is unfounded,
as all information about the quantum state is always available at the boundary. As
we discuss in detail later, this resolves many of the paradoxes associated with black
holes which are based on the incorrect premise of locality.

Our results only rely on simple assumptions about the low energy sector of the
theory, motivated from the semiclassical analysis. One of the physical feature re-
sponsible for such an identification of degrees of freedom is the access to all charges
and the Hamiltonian, at I+

− . This ensures that a vacuum state can be identified
through measurements in the neighbourhood of I+

− . Such a result can never hold in
usual quantum field theories, where Hamiltonian is an integral over the full Cauchy
slice. Related results for asymptotically AdS spacetimes can be found in [6, 7].
The analysis in flat space is more intricate due to the presence of infinitely many
conserved charges [8] that render the vacuum degenerate.

Over the years, various resolutions have been proposed for the black hole informa-
tion paradox. One such proposal is the fuzzball proposal [9]. Fuzzballs are smooth
solutions in higher dimensional supergravity theories that have same charges as black
holes, but no horizons. The size of compact directions, in these geometries, shrink to
zero at a distance larger than the radius of corresponding black hole horizon. The
fuzzball proposal posits that classical fuzzball geometries parameterize the phase

2



1.1 Motivation and summary of results

space of black hole microstates. If true, the fuzzball proposal would have two imme-
diate implications. First, it would account for the entropy of black holes. Second, it
would suggest that typical microstates of black holes do not have a horizon, hence,
bypassing the information paradox. However, this proposal has not been realized
for any macroscopic black hole yet.

In [10] we undertook a statistical analysis of the fuzzball program. We argued
that a typical fuzzball geometry can only differ from the conventional black hole
geometry at a Planck scale distance from the horizon. This can happen only if such
geometries explicitly contain Planck scale structures by introducing a length scale
which is at most of the order of Planck scale. However these length scales receive
quantum corrections of the same order. These quantum fluctuations render the
classical geometry unreliable. Hence, it is fallacious to conclude that typical black
hole microstates do not have a horizon. As an explicit check, we studied fuzzball
solutions obtained in [11, 12] and quantized in [13]. These solutions are dual to a
microscopic black hole of zero horizon radius. We computed the fluctuations in the
geometry of typical fuzzball solutions and showed that fluctuations were indeed large
close to the horizon. We also studied fuzzball solutions in the context of AdS/CFT
correspondence to provide further evidence to our assertion that fuzzballs do not
appear to be relevant for the black hole information paradox.

In [14], we proved a universal bound on n-point thermal Wightman functions
in any relativistic quantum field theory. In the limit when the momenta are large
and spacelike, that is frequencies are much smaller than spatial momenta, thermal
Wightman functions decay exponentially. The exponent is bounded by a universal
geometric quantity that depends only on the temperature and spatial momenta of
the operators in the correlation functions. We explored this bound in perturbative
quantum field theories and strongly coupled holographic theories. A special case
of such a bound was used in [10] to demonstrate the difference between fuzzball
geometries and black holes.

Application of semiclassical techniques can be useful in providing answers to other
fundamental questions about gravity. It is a long-lasting problem to understand
whether or not gravity is deterministic. This problem is especially acute for black
holes with multiple horizons, such as Kerr-black holes or Reissner Nordström black
holes. Such black holes have an inner horizon, which is also the boundary of space-
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Chapter 1 Introduction

time beyond which the Cauchy problem is not well defined. That is why inner
horizons are often known as Cauchy horizons. Initial conditions cannot fix the
evolution of fields beyond the Cauchy horizon uniquely. Hence, a smooth Cauchy
horizon could lead to a breakdown of determinism. To prevent such loss of determin-
ism, it was conjectured that for generic initial data, maximal Cauchy development
should be complete. This is a formulation of the strong cosmic censorship conjec-
ture [15]. For black holes, the conjecture implies that generic perturbations should
render inner horizons unstable. The validity of this conjecture has been a matter of
much interest in recent years. However, most of the works on this issue have focused
solely on classical perturbations. In [16], we developed a necessary quantum test for
violation of the strong cosmic censorship conjecture. We used this test to demon-
strate that Reissner Nordström black holes in anti-de-Sitter space do not violate the
conjecture. We also studied BTZ black holes and found that our test did not rule
out violations. We explored the constraints on extension of spacetime behind the
inner horizon.

Before proceeding to the structure of the thesis, we provide a brief pedagogical
introduction to the relevant aspects of the black hole information paradox.

1.2 The black hole information paradox

The study of quantum fields in the presence of a black hole reveals that they emit
thermal radiation [17]. Such thermal radiation is an inevitable consequence of the
assumption of a smooth horizon. Locally, the horizon is no different from any other
region of spacetime. For large black holes, the strength of the gravitational field
and tidal forces are small near the horizon. Hence, an astronaut crossing a horizon
does not experience anything out of the ordinary. This is simply a consequence
of Einstein’s equivalence principle. As local gravitational effects are not arbitrarily
large near the horizon, it is reasonable to expect that the experience of the astro-
naut would remain qualitatively the same, even after inclusion of quantum effects.
This justifies the assumption of smoothness of the horizon. It is a general property
of quantum field theories that smoothness entails entanglement. In particular, if a
quantum state is smooth across a null surface, then degrees of freedom across the
surface must be entangled [16]. Hence, if our measurements are restricted to one

4



1.2 The black hole information paradox

side of the surface, the quantum state would appear to be mixed. This entanglement
is the reason behind the Hawking radiation. It is important to realize that Hawk-
ing radiation alone does not accord special status to black hole horizons. Even in
Minkowski space, if we restrict to observables on one side of any null surface, then
we would perceive a similar thermal radiation. Such a restriction can be achieved by
choosing to study only accelerated observers. Locally, the source of this radiation
is identical to the source of the Hawking radiation, i.e., entanglement across a null
surface. Hawking radiation can be viewed as a consequence of a quantum version
of the equivalence principle. The global properties of a black hole spacetimes make
Hawking radiation more physical as no observer outside the black hole can access all
the degrees of freedom inside the black hole, if the theory is local. The temperature
of the Hawking radiation is universal and depends only on the surface gravity at the
horizon.

As the black hole radiates and shrinks, degrees of freedom inside the black hole
gets more and more entangled with the degrees of freedom outside. However, a finite-
size black hole only has a finite entropy. Eventually, the black hole would not have
enough internal degrees of freedom to accommodate the large entanglement with the
exterior. Hence, any more radiation out of the black hole must be entangled with
early radiation. Entanglement between late and early radiation is necessary to get
the Page curve of entanglement entropy between radiation and black holes [18, 19],
which is required for a unitary evaporation process. However, this seems to be at
odds with the assumption of smoothness of horizon, which requires the Hawking
quanta to be entangled with degrees of freedom inside the black hole. This apparent
inconsistency can be formalized into the strong subadditivity paradox [20].

We will briefly describe the Page curve and strong subadditivity paradox in this
section.

The page curve

Consider a collapsing shell in pure state that forms a black hole. We define the
radiation to be the collection of all degrees of freedom restricted to the region outside
the black hole. If the theory is local, then the full Hilbert space is a direct product
of black hole subspace and radiation subspace. In what follows, we will assume that

5



Chapter 1 Introduction

such a factorization is possible1.
Initially, when the black hole is formed, there is no entanglement between the

radiation and black hole. However, Hawking showed that black holes radiate. As
discussed, this radiation is a consequence of entanglement across the horizon. Hence,
as more and more Hawking quanta radiate, the black hole gets more and more entan-
gled with the radiation. Hawking’s calculations suggests that this should continue
until the black hole evaporates completely and we are left with a gas of radiation
with non-zero von-Neumann entropy. However, since the black hole has radiated
away, the radiation is now the full quantum system. It seems that we started with
a pure initial state and ended with a mixed final state. This is not possible in a
unitary theory.
Violation of unitarity is subject to the purity of the final state of radiation. It

is extremely complicated to determine whether or not a state picked from an en-
semble is pure. A pure state can mimic a mixed state with corrections that are
suppressed exponentially in entropy of the ensemble. Hence the question of purity
of the final state of Hawking radiation cannot be answered in a usual perturbative
analysis. Since Hawking’s calculations are only perturbative, we cannot conclude
that quantum gravity is not unitary.
However, if the black hole evaporation process is unitary, then the final state must

be pure. Hence the entanglement entropy of radiation must go to zero when the
black hole completely evaporates. This suggests that the entanglement entropy of
radiation should follow the Page curve [18, 19], Figure 1.1. The time at which the
Page curve reaches the maxima is called the Page time.

The strong subadditivity paradox

The Page curve immediately leads to a paradox that cannot be resolved by invoking
small corrections. Consider the Penrose diagram of an evaporating black hole in
Figure 1.2. The Cauchy slice Σ represents a late time slice, i.e., after Page time.
We have divided the Cauchy slice into three sub-regions. The region A corresponds
to the black hole. B is some region very close to the horizon, which contains all the
radiation escaping from the black hole at this instant. Finally region C contains

1One of the main result of this thesis is that such a factorization is not possible. However, this
assumption is implicit in the formulation of the black hole information paradox.
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1.2 The black hole information paradox

Figure 1.1: The Page curve of black hole radiation. Entanglement entropy of radia-
tion as a function of time. If unitarity is respected, then the entanglement entropy
of radiation must go to zero once the black hole completely evaporates.

the earlier radiation. Unitarity requires the degrees of freedom in region B to be
entangled with C. That is,

SBC < SC . (1.1)

However, if the horizon is smooth, then A must be entangled with B,

SBA < SA. (1.2)

So, B is entangled with both A and C. This violates the monogamy of entanglement.
More precisely, the equations above are in contradiction with the following property
of entanglement entropy, known as the strong subadditivity.

SBA + SBC ≥ SA + SC . (1.3)

This is known as the strong subadditivity paradox and this cannot be resolved via
small corrections [20].

A related paradox is the cloning paradox. Unitarity can be preserved only if
all information about the quantum state can be retrieved from Hawking radiation.
However, consider a Cauchy slice that intersects with an observer that has fallen into
the black hole and also collects most of the Hawking radiation, Figure 1.3. Then
the information about the observer can be determined from the interior of the black
hole, as well as Hawking radiation. It seems that quantum information has been

7



Chapter 1 Introduction

Figure 1.2: Strong subadditivity paradox : The Penrose diagram of an evaporating
black hole in flat space. Σ depicts a slice at a time later than the Page time. Smooth
horizon requires B to be entangled with A. Unitarity requires B to be entangled
with C. This violates the monogamy of entanglement.

cloned, which is not possible in a quantum theory.
This suggests that not all of the following statements can be correct in a theory

of quantum gravity.

1. Black holes have an interior.

2. Black holes have a smooth horizon.

3. Black holes evaporate completely.

4. Black hole evaporation is unitary.

5. Quantum gravity is local.

Various proposed resolutions have focused on various of these assumptions. For
instance, the fuzzball proposal [21] suggests that black holes have no horizon and
interior. The firewall proposal [22] suggests that the horizon is not smooth. Instead,
an infalling observer experiences an infinite flux of radiation. Planck scale remnants
of the evaporation process have been proposed. Even loss of unitarity has been
considered.
However, the most overlooked assumption is that of locality. In [5] we demon-

strated that the last item in the above list is an incorrect assumption. Careful
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1.3 Structure of the thesis

Figure 1.3: Cloning paradox : The Cauchy slice Σ intersects the observer O inside
the black hole. It also collects a large fraction of the Hawking radiation. If the
evaporation process is unitary, then the information about O can also be retrieved
from the radiation. This is in violation of quantum mechanics, which prohibits
cloning of information.

analysis of semiclassical gravity forces us to conclude that quantum gravity is holo-
graphic. Holography is a feature of quantum gravity, and not a choice. This feature
immediately resolves the strong subadditivity paradox and the cloning paradox, as
we will explore in chapter 2.

1.3 Structure of the thesis

In chapter 2, based on [5], we argue for holographic storage of information in quan-
tum gravity in asymptotically flat spacetimes. We detail the implications of holog-
raphy, especially for the black hole information paradox.
In chapter 3, based on [10], we explore the fuzzball resolution to the information

paradox. We argue that fuzzballs may not be relevant for the black hole information
paradox. We study study explicit fuzzball solutions to support our contention.
In chapter 4, based on [14], we describe and prove a universal bound on thermal

Wightman correlators in the limit when momenta are large and spacelike. We study
this bound in perturbative quantum field theories and holographic theories.
In chapter 5, based on [16], we show that a quantum state across a null surface

can be smooth only if degrees of freedom across the surface are entangled and use

9



Chapter 1 Introduction

this to develop a test for strong cosmic censorship conjecture. We implement the
test for Reissner Nordström black holes in anti-de-Sitter spacetime and BTZ black
holes. We also mention some constraints on extension of spacetime beyond the inner
horizon.
In chapter 6, we summarize the thesis and end with some open problems and

future directions.

10



Chapter 2

Holographic encoding of information in quantum

gravity

2.1 Introduction

As discussed in chapter 1, it is often expected that quantum gravity is holographic,
i.e., it can be described by a lower dimensional theory in absence of gravity. Can we
better understand holography without invoking detailed structure of the ultraviolet
completion of quantum gravity? Holography implies that it should be possible to
embed all degrees of freedom in a codimension-1 surface, in quantum gravity. Hence,
a necessary first step towards answering this question is to show that any theory of
gravity must encode quantum information holographically.
Over the past two decades, holography in asymptotically AdS spacetimes has been

explored extensively. The AdS/CFT conjecture [2, 3, 4], motivated by string theory,
suggests that quantum gravity in asymptotically AdS spacetimes can be described
by a lower dimensional conformal field theory. The operators in the dual conformal
field theory are related to asymptotic operators in AdS through the extrapolate
dictionary [23]. This suggests that the gravity degrees of freedom indeed resides
in the boundary of the AdS. The holographic nature of gravity can be inferred
even without invoking the AdS/CFT conjecture. In [6, 7] it was demonstrated that
any two quantum states distinguishable by a localized operator anywhere on some
Cauchy slice, can also be distinguished by an operator localized near the boundary
of the same slice, without relying on the details of the high energy structure of
the theory. This suggests that all information in a quantum theory of gravity in
asymptotically AdS spacetimes is contained in the boundary.
The aim of this chapter is to explore holographic storage of information in asymp-

totically flat spacetimes. A lot of work has been devoted to understanding holog-
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Chapter 2 Holographic encoding of information in quantum gravity

raphy in flat space [24], however, unlike in AdS, our understanding of holography
in flat spacetimes remain primitive. There is no counter part of AdS/CFT cor-
respondence for flat space, yet. Hence, the question of understanding holography
without reference to string theory, or any other completion of gravity, is of immense
importance.
In this chapter, based on [5], we argue that the following statements hold in a

theory of quantum gravity in 4-dimensional asymptotically flat spacetimes.

1. All operators on the future null infinity, I+, can be approximated by an oper-
ator in a neighbourhood of the past boundary of future null infinity, I+

− , with
arbitrary precision.

2. On future null infinity, all operators to the future of a cut can be approximated
by an operator in a neighbourhood of the cut, with arbitrary precision.

Precisely analogous statements hold for past null infinity, I−. All operators on
past null infinity, I−, can be approximated by operators in a neighbourhood of the
future boundary of past null infinity, I−+ . Also, all operators to the past of a cut can
be approximated by an operator in a neighbourhood of the cut. These statements
elucidate the holographic encoding of degrees of freedom in quantum gravity. Result
(1) suggests that all information about massless particles can be obtained from
measurements near the past boundary of future null infinity. Result (2) suggests a
nested structure of storage of information on I+. A cut of null infinity contains all
information to the future of the cut. These results are in contrast with the intuition
from local quantum field theories, where operators with non-overlapping support on
I+ commute.
To get result (1), we assume that in the full UV complete theory, there are oper-

ators in a neighbourhood of I+
− can identify the vacua and map any vacua to any

other. We also assume that the Hamiltonian in the full theory is bounded from
below. In the semiclassical gravity, all asymptotic charges and the Hamiltonian are
boundary observables. Hence, the assumptions about the vacua are valid in semi-
classical gravity. Moreover, as these assumptions pertain to the low energy structure
of the theory, we expect any reasonable UV completion to preserve this feature. It
should be noted that Hamiltonian is a boundary observable only in a theory of grav-
ity. Hence, result (1) does not hold in usual quantum field theories, including gauge
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2.2 Review of 4-dimensional asymptotically flat spacetimes

theories.

The stronger result (2) assumes that certain commutation relation in semiclassical
gravity are corrected only by local terms in the full theory. This assumption is valid
to all orders in perturbation theory.

The holographic encoding of information has important implications for the infor-
mation paradox. It immediately resolves the strong subadditivity paradox reviewed
in section 1.2. Moreover, as we explain in detail below, our results imply that the
often discussed Page curve of entanglement entropy is not the correct expectation.
Since all information of the quantum state, including that of the degrees of freedom
inside the black hole, is always available at the boundary, the correct Page curve
should be a constant. The notion of information escaping the black hole through
the Hawking radiation is based on the incorrect assumption of locality, and leads to
apparent paradoxes.

In section 2.2, we review some results from the quantization of 4-dimensional
asymptotically flat spacetimes. In section 2.3 we prove the holographic storage of
information. In section 2.4 we list some implications of holography, especially for
the black hole information paradox. Finally, in section 2.5 we end the chapter with
some concluding remarks.

2.2 Review of 4-dimensional asymptotically flat spacetimes

The objective of this section is to review aspects of quantum gravity in asymptoti-
cally flat spacetimes relevant for us. This has been subject to extensive study and
we refer the readers to review articles [25, 26] for details and further references. In
[27] it was noted that the symplectic structure of the full nonlinear theory takes
a remarkably simple form when the phase space is parameterized by data on null
infinity. Upon quantization, this structure leads to a Hilbert space that is the direct
sum of an infinite number of “soft” sectors, and this has received renewed attention
in light of the conservation laws associated to BMS symmetry [8, 28, 29].

In order to study quantum gravity in asymptotically flat spacetimes, we need to
first define the phase space. The space of all asymptotically flat space-times can be
parameterized in terms of the retarded Bondi [30] co-ordinates (u = t− r, r, Ω =

13



Chapter 2 Holographic encoding of information in quantum gravity

(θ, φ)) as

ds2 =− du2 − 2dudr + r2γABdΩAdΩB

+ rCABdΩAdΩB +
2mB

r
du2 + γDADDCABdudΩB + . . . ,

(2.1)

where γAB is the unit metric on S2, with the corresponding derivative operator DA.
CAB(u, Ω) is known as the shear field and contains complete information about the
radiative degrees of freedom. In the Bondi frame, CAB is trace free, γABCAB = 0.
This radiative data, in fact, “lives at" future null infinity I+ := S2 × R with
coordinates (Ω, u). Viewed in this way, S2 is a sphere at null infinity with the
intrinsic metric γAB, and is known as the celestial sphere. We will denote the S2

that lives at u → −∞ by I+
− . mB(u, ΩA) is called the Bondi mass aspect. In

our analysis, we allow inclusion of massless matter fields, for example scalar field
φ(r, u,Ω). We define O(u,Ω) = limr→∞rφ(r, u,Ω).
The components of the metric and the matter fields at null infinity are not all

independent. The rate of change of the Bondi mass aspect mB(u,Ω) is determined
in terms of the radiative data via the following constraint

∂umB =
1

4
∂uD

ADBCAB −
1

8
NABN

AB − 4πG TM(0)
uu , (2.2)

where NAB = ∂uCAB is known as the Bondi news tensor. T
M(0)
uu is the leading

1
r2 coefficient of the matter stress tensor TM(0)

uu = limr→∞ r2TMuu . It is a function
of the radiative data for the matter fields. In the case of the scalar field, TM(0)

uu =
1
2
∂uO∂uO. From eqn.(2.2), we see that mB(u, Ω) is determined in terms of radiative

data and the integration constant mB(u = −∞,Ω).
The symmetries associated with gravity in asymptotically flat spacetimes are an

infinite dimensional group of supertranslations1 [30, 31], generated by vector fields,

ζ = f(Ω)∂u −
1

r
DAf(Ω)∂A +

1

2
DADAf(Ω)∂r + . . . , (2.3)

where f is some function on the sphere. Action of supertranslation on fields can be
obtained by Lie-derivatives along the generator, ζ. For instance, the shear trans-

1We will label the vacua only by their supertranslation charges. Superrotations may further refine
the vacuum structure, however, our analysis will remain unaffected.
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2.2 Review of 4-dimensional asymptotically flat spacetimes

forms as,
LζCAB(u,Ω) = f(Ω)∂uCAB(u,Ω)− 2(DADBf(Ω))TF, (2.4)

where TF denotes the trace free component of a tensor, TTF
AB = TAB − γABTCC .

The integration constant, mB(u = −∞,Ω), can be used to define infinitely many
conserved charges by smearing with functions on the sphere,

Q`,m =
1

4πG

∫ √
γ d2Ω mB(u = −∞,Ω)Y`,m(Ω). (2.5)

These are called the supertranslation charges as they will turn out to be the gen-
erators of supertranslations (2.4). To see how, we need to analyze the symplectic
structure. The charge with ` = m = 0 is the Bondi mass at u → −∞, and it was
shown in [32] that this coincides with the standard ADM Hamiltonian [33].

2.2.1 Phase space and conserved charges

It was shown by [34] that the space of free data CAB(u,Ω) is the radiative phase
space of gravity in which the fall-off conditions on the shear field are given by

CAB(u,Ω)|u → ±∞ = C
(0) ±
AB (Ω) + O

(
1

|u|δ
)
, (2.6)

with δ > 0. It was also shown in [34] that the Poisson bracket structure of the
radiative data at I+ is given by,

{NAB(u,Ω), CMN(u′,Ω′) } =− 16πGδ(u− u′) 1√
γ
δ2(Ω− Ω′)

× [ γA(MγN)B −
1

2
γABγMN ].

(2.7)

The phase space of the full non-linear theory trivializes on I+ and is generated
by free fields. However, as noted earlier, the fields are related by the constraint
(2.2). Using these results, we can now demonstrate that Q`,m in (2.5) are indeed the
supertranslation charges. To see this, we first integrate the constraint (2.2) to get,

mB(u = −∞,Ω) = −1

4

∫ ∞

−∞
du [ −DADBNAB +

1

2
NABN

AB + 16πGTM(0)
uu ]. (2.8)
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Chapter 2 Holographic encoding of information in quantum gravity

The boundary term at the future of future null infinity, I+
+ , can be set to zero in the

absence of massive excitations2, which reach time-like infinity. The supertranslation
charges can then be written as a sum of two terms,

Q`,m = Qsoft
`,m +Qhard

`,m , (2.9)

where,

Qsoft
`,m =

1

16πG

∫ ∞

−∞
du d2Ω

√
γ Y`,m(Ω)[ DADB NAB ],

Qhard
`,m = − 1

16πG

∫ ∞

−∞
du d2Ω

√
γ Y`,m(Ω) [

1

2
NAB NAB + 16πGTM(0)

uu ].

(2.10)

The soft charge is generated by “zero mode" of the news tensor given by,

lim
ω → 0

∫ ∞

−∞
du e−iωuNAB(u,Ω) =: lim

ω→ 0
ÑAB(ω, Ω), (2.11)

and the hard charge depends on the total (gravitational and matter) stress tensor
at I+. The action of supertranslation charges on various fields can be determined
from the symplectic structure. For instance, the action on shear is,

{CMN(u,Ω),Q`,m} = Y`,m(Ω)∂uCMN(u,Ω)− 2(DMDNY`,m(Ω))TF. (2.12)

This precisely matches with the transformation of shear under supertranslations
(2.4), hence justifying the name.

Quantization

The theory can be quantized by promoting the Poisson brackets to commutators.
The elementary operators in the theory are the News tensor NAB. This approach
to quantization of gravity in 4-dimensional asymptotically flat spacetimes is known

2In this chapter, we only consider massless excitations. However, we believe that these arguments
can be generalized to include massive excitations as well.
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2.2 Review of 4-dimensional asymptotically flat spacetimes

as the asymptotic quantization program [27, 35, 36].

[ NAB(u,Ω), NCD(u′,Ω′) ] = i16πG∂uδ(u− u′)
1√
γ
δ2(Ω− Ω′)

[γA(C γD)B −
1

2
γABγCD ].

(2.13)

One can also define the algebra generated by the shear operators and the zero
mode of the news N (0)

AB(Ω′) =
∫
du NAB(u, Ω′) as [36, 25, 28]

[CAB(u,Ω), CCD(u′,Ω′)] = −i8πGΘ(u− u′) 1√
γ
δ2(Ω− Ω′)

[γA(C γD)B −
1

2
γABγCD ],

(2.14)

where Θ(x) = sign(x).

2.2.2 The Hilbert space of massless excitations

News tensor and matter fields can be decomposed into positive and negative fre-
quencies to define “creation” and “annihilation” operators,

Ñ±AB(ω,Ω) =

∫
due±iωuNAB(u,Ω);

Õ±(ω,Ω) =

∫
due±iωuO(u,Ω),

(2.15)

The positive frequency part of matter fields and News tensor would annihilate the
vacuum. However, this is not sufficient to fix the vacuum completely. Action of the
soft modes of News tensor must be specified. This can be done by specifying the
eigenvalue under all supertranslations.

Q`,m|{s}〉 = s`,m|{s}〉. (2.16)

This eigenvalue is also the eigenvalue of the “soft” part of the supertranslation charge,
since the “hard” part annihilates all the vacua. So, the set of all possible vacua are
given by specifying a (countably) infinite set of real numbers s`,m. The vacua, |{s}〉,
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Chapter 2 Holographic encoding of information in quantum gravity

are normalized such that,

〈{s}|{s′}〉 =
∏

`,m

δ(s`,m − s′`,m). (2.17)

On top of each such vacuum, one can construct a Fock space comprising the states

H{s} = span of{N(f1)N(f2) . . . N(fn)O(h1) . . . O(hm)}|{s}〉, (2.18)

where fAB1 (u,Ω) . . . fABn (u,Ω) and h1(u,Ω) . . . hm(u,Ω) are test functions on R×S2

and

N(fi) ≡
∫ √

γNAB(u,Ω)fABi (u,Ω)dud2Ω,

O(hi) ≡
∫ √

γO(u,Ω)hi(u,Ω)dud2Ω.

(2.19)

Each such space gives an irreducible representation of the algebra of news operators
and of the massless matter fields. But the full Hilbert space is obtained by taking
the direct sum of all of these Hilbert spaces

H =
⊕

{s}
H{s}, (2.20)

where the sum is over all possible values of all soft charges.

We now show that the full Hilbert space is closed under the action of all operators
in the theory. From the definition of the Hilbert space, it is evident that the action
of news tensor and matter fields do not generate any new state. As shear can be
obtained from the news tensor, up to a u−independent function, we only need to
consider the action of constant shear mode, C(0)

AB(Ω) on a soft vacua,

e−
i
2

∫ √
γFAB(Ω)C

(0)
AB(Ω)d2Ω|{s}〉 = |{s′}〉, (2.21)

where

s′`,m = s`,m +

∫ √
γ FAB(Ω)

(
DADB −

1

2
`(`+ 1)γAB

)
Y`,m(Ω)d2Ω. (2.22)
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2.2 Review of 4-dimensional asymptotically flat spacetimes

Clearly, constant shear mode does not generate any new state. We also note that the
action of constant shear mode is irreducible on the Hilbert space, H. This operator
can map any soft sector to any other. This point would be crucial to our analysis
later.
The only other operator in the theory is the Bondi mass aspect, mB. However, the

action ofmB is completely fixed by the action of other operators using the constraint
Eq. (2.2). Hence, Bondi mass aspect maps states in H to another state in the same
Hilbert space. This shows that the Hilbert space H is closed under action of all
operators.
In our analysis, we only restrict attention to massless excitations. However, in-

clusion of massive particles would not invalidate our results as the Hilbert space of
massive modes is independent of the Hilbert space H.
Also, we have labeled the vacua only by their supertranslation soft charges, re-

cent studies in asymptotic symmetries indicate that the so-called superrotation soft
charges commute with the supertranslation soft charges [37], and this may further
refine the vacuum structure of the theory. As we explain below, our analysis will not
be affected by such refinements, and so, for the sake of simplicity in presentation,
we restrict our vacuum-labels to supertranslations.
To avoid any confusion we make the following definition.

Definition 1. The Hilbert space of massless particles, H, refers to the space obtained
by starting with all possible vacua, exciting each vacuum with operators on I+ and
then taking the span of all states so obtained.

In the semiclassical theory, this leads to the space described by Eqn. (2.20) but
the definition above holds generally.

2.2.3 Algebra in the neighbourhood of a cut

We denote by A(I+), the set of all operators on future null infinity. We are especially
interested in the algebra of operators on a cut of null infinity, which we define now.

Definition 2. The algebra associated with an ε-neighbourhood of a cut u0 is denoted
by Au0,ε and consists of all possible functions of asymptotic operators with a u-
coordinate lying in (u0, u0 + ε).
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Chapter 2 Holographic encoding of information in quantum gravity

The algebra Au0,ε comprises of all functions of operators mB(u,Ω), CAB(u,Ω), and
the massless matter fields collectively denoted as O(u,Ω), such that u ∈ (u0, u0 + ε)

and Ω ranges over the entire celestial sphere3 . For instance some of the lowest order
polynomials that are elements of Au0,ε are

Au0,ε = {mB(u1,Ω), CAB(u1,Ω1), O(u1,Ω1),mB(u1,Ω1)CAB(u2,Ω2),

mB(u1,Ω1)O(u2,Ω2), CAB(u1,Ω1)O(u2,Ω2), O(u1,Ω1)O(u2,Ω2) . . .},
(2.23)

where ui ∈ (u0, u0 + ε).

As is standard in the analysis of algebras in quantum field theory, our algebra
includes polynomials and other functions constructed out of the elementary oper-
ators as well as their spectral projections4. Indeed, the spectral projections can
themselves be obtained just as limits of functions of the operators.

Finally an important special case of the definition above is the algebra obtained
near the boundary of null infinity.

Definition 3. The algebra near the past boundary of future null infinity, A−∞,ε is
the set of all functions of operators on I+ with u-coordinate in (−∞,−1

ε
).

2.3 Holographic storage of information

Having established the framework, we now turn to the main results of this chapter.
The results, stated and proved in this section, are based on reasonable assumptions
about the UV complete theory that are motivated from the low energy structure
of the theory, discussed in section 2.2. We will detail and justify the assumptions
below. Result (2.1) is a special case of result (2.2), and is based on more conservative
assumptions.

3It was argued in [38] that the Bondi mass may not be observable because, taking a naive limit
of the bulk metric as r → ∞ seems to lead to an operator with large quantum fluctuations.
However, as we explain in appendix A, if the limit is taken carefully, these quantum fluctuations
do not appear.

4Spectral projection corresponding to eigenvalue λ of an operator A is the orthogonal projection
on the kernel of A− λI.
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2.3 Holographic storage of information

2.3.1 Information at the past of future null infinity

In line with our motivation of understanding holography from semiclassical analysis,
the first result shows how all degrees of freedom in quantum gravity in 4-dimensional
asymptotically flat spacetimes are encoded in the boundary.

Result 2.1. Consider any operator on future null infinity, A ∈ A(I+). There exists
an operator near the past boundary of future null infinity, Ã ∈ A−∞,ε, such that

A =̇ Ã,

where =̇ denotes equality of at the level of matrix elements. That is,

〈Ψ1|A|Ψ2〉 = 〈Ψ1|Ã|Ψ2〉, ∀ψi ∈ H.

Loosely, result (2.1) implies that the algebra near the past boundary contains all
operators in the theory; or more precisely,

A−∞,ε=̇A(I+). (2.24)

The following corollary is immediately implied by result (2.1).

Corollary 2.1.1. Any two distinct states in the Hilbert space of massless particles
can be distinguished just by observables in an infinitesimal neighbourhood of I+

− .

Suppose two states, |Ψ1〉 and |Ψ2〉 can be distinguished by an operator on future
null infinity, A, i.e., 〈Ψ1|A|Ψ1〉 6= 〈Ψ2|A|Ψ2〉. Then, as a consequence of result (2.1),
these states can also be distinguished by an operator near the past of future null
infinity, Ã ∈ A−∞,ε. Hence, all information is encoded holographically.
Now, we will state and justify the assumptions involved. The first two assumptions

pertain to the low energy structure of the theory.

Assumption 2.1.1. The vacua in the full theory of quantum gravity can be com-
pletely identified by the values of operators near I+

−

Assumption 2.1.2. All operators that map the space of vacua back to itself are
contained in A−∞,ε.
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Chapter 2 Holographic encoding of information in quantum gravity

We now explain the validity of these assumptions in the framework elaborated in
section 2.2. As noted earlier, the vacua are labeled by eigen values of supertransla-
tion charges. These charges are defined at the past boundary of future null infinity
(2.5). However, note that, these charges alone cannot identify the vacua. We also
need the ADM Hamiltonian, which once again is an element of A−∞,ε. Note that, if
the vacua are labeled by additional charges, then our analysis would go through as
long as those charges can be defined at I+

−
5.

Recall that the algebra, A−∞,ε, also contain all projectors of operators. Hence, the
projector onto the space of vacua is also an element of the algebra. The projector,
P0, can be expanded as,

P0 =

∫ (∏

`,m

ds`,m

)
|{s}〉〈{s}| ∈ A−∞,ε. (2.25)

Now we can perform a spectral decomposition for each supertranslation charge6

Q`,m =

∫
dssP`,m[s]. (2.26)

Now, this supertranslation charge includes both hard and soft parts but by multi-
plying the projector onto the space of vacua with an infinite product of P`,m[s] we
can select a specific soft vacuum.

P0

∏

`,m

P`,m[s`,m] = |{s}〉〈{s}| ∈ A−∞,ε. (2.27)

Clearly, assumption (2.1.1) is justified in the framework of asymptotic quantization.
To see validity of assumption (2.1.2), recall that the constant shear mode acts ir-
reducibly on the Hilbert space H. The action of shear, coupled with the projector

5This is true for additional superrotation charges discussed earlier.
6The vacuum projector can be constructed explicitly as a limit of a bounded functions on A−∞,ε
through P0 = limα→∞ e−αM(−∞). The operator, P`,m[s], which we use for ease of notation,
selects a delta-function normalized state so it is not bounded. But the spectral projector onto
any range of values of Q`,m can also be constructed as a limit of bounded functions on A−∞,ε:∫ s′
s
P`,m[x]dx = limT→∞

1
2π

∫ T
−T e

iθQ`,m e−iθs−e−iθs
′

iθ dθ.
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onto the space of vacua can map one vacua to any other vacua.

P0e
− i

2

∫− 1
ε

−∞
√
γCAB(u,Ω)GAB(u,Ω)d2Ω|{s}〉 = |{s′}〉, (2.28)

where we see from (2.22) that

s′`,m = s`,m +

∫ − 1
ε

−∞
du d2Ω

√
γGAB(u,Ω)

(
DADB −

1

2
`(`+ 1)γAB

)
Y`,m(Ω). (2.29)

Since we can choose G to be arbitrary, we can attain any value of s′`,m starting with
a given value of s`,m. Therefore, using operator from the algebra, one can not only
select a particular vacuum but also cause transitions to any other vacuum.

T{s},{s′} = |{s}〉〈{s′}| ∈ A−∞,ε. (2.30)

So, in the canonical theory, any operator that maps the space of vacua back to itself
can be written as a linear combination of the transition operators above.
Having justified the assumptions semi-classically, we note once again that these

assumptions only pertain to the low energy structure of the theory. It is reasonable
to expect that the full theory of quantum gravity would not modify the vacuum
structure. Hence, we will extrapolate these assumptions to the full UV complete
quantum gravity.
The final assumption that we require is stated below. Finally, we need a third

physical assumption.

Assumption 2.1.3. The spectrum of the Hamiltonian of the full theory of quantum
gravity is bounded below.

This seems, to us, to be a very natural assumption, and so we do not justify it
any further. We merely note that the assumption above is weaker than any of the
commonly used energy conditions since it says nothing about the local positivity of
energy but merely about its global positivity. For convenience, we choose this lower
bound to be 0 and simply assume, below, that the energy eigenvalues are positive.
The assumption (2.1.3) immediately leads to the following Lemma.

Lemma 1. The Hilbert space H can also be generated by starting with all possible
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vacua and acting with operators from an infinitesimal neighbourhood of the the past
of future null infinity.

First consider the sector built on top of a particular vacuum as displayed in Eqn.
(2.18) by smeared news and matter operators. What we need to prove is that all
these states can be generated just by acting with operators near the past of future
null infinity

H{s} = span of {N(f̃1)N(f̃2) . . . N(f̃n)O(h̃1) . . . O(h̃m)}|{s}〉, (2.31)

where the notation is the same as (2.19) except that f̃i and and h̃i have support
only for u ∈ (−∞,−1

ε
). Note that this support is very different from the support of

the functions fi and hi in equation (2.18) that could be the entire real line.
We will prove the statement via contradiction. Imagine that there exists a state,
|Ψ⊥〉, that belongs to the Hilbert space but is orthogonal to all states of the form
above. This implies that whenever ui ∈ (−∞,−1

ε
), the following correlator vanishes.

κ(ui) = 〈Ψ⊥|NA1B1(u1,Ω1) . . . NAnBn(un,Ωn)

O(un+1,Ωn+1) . . . O(un+m,Ωn+m)|{s}〉 = 0.
(2.32)

We may now insert a complete set of eigenstates of the full Hamiltonian to evaluate
the correlator above.

κ(ui) =
∑

Ei

〈Ψ⊥|NA1B1(0,Ω1)|E1〉 . . . 〈En+m−1|O(0,Ωn+m)|{s}〉ei
∑n+m−1
i=1 Ei(ui+1−ui).

Now consider the variables

z1 = u2 − u1; . . . zn+m = un+m − un+m−1. (2.33)

As a function of these variables, and as a result of our assumption about the positivity
of the Ei above, we find that κ is analytic when we extend the zi to the upper half
plane.
Now, by the edge of the wedge theorem [39], if κ vanishes for all ui ∈ (−∞,−1

ε
),

it must vanish for all real ui. But this is impossible since, by assumption, |Ψ⊥〉 is
itself generated by acting with news operators on the vacuum. Therefore, we have
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reached a contradiction with our initial assumption. So |Ψ⊥〉 cannot exist. This
proves the lemma. �

We would like to make two short remarks. Although we have focused on a neigh-
bourhood near I+

− , the same argument above shows that any sector of the Hilbert
space can be generated by acting with operators from any infinitesimal neighbour-
hood of future null infinity. Second the argument above shows that Assumption
2.1.2 can also be phrased as an assumption about A(I+) rather than an assumption
about A−∞,ε.

Proof of result 2.1: We now move to the proof of result (2.1). Any operator on
future null infinity can be expanded as,

A =
∑

s,s′,n,m

c(n,m, s, s′)|n{s}〉〈m{s′}|, (2.34)

where the state |n{s}〉 belongs to the sector of the Hilbert space built on top of the
soft vacuum |{s}〉 i.e. |n{s}〉 ∈ H{s}, the state |m{s′}〉 belongs to the sector of the
Hilbert space built on top of the soft vacuum |{s′}〉 i.e. |m{s′}〉 ∈ H{s′}, and the
coefficients c(n,m, s, s′) are c-numbers.

But, by the result above, we can write

|n〉 =̇Xn|{s}〉; |m〉 =̇Xm|{s′}〉, (2.35)

where the operators Xn, Xm both belong to the algebra that lives near the past
boundary of future null infinity: Xn, Xm ∈ A−∞,ε. Combining this with the as-
sumption about operators in the space of vacua above, we find that we can write
the entire operator as

A =̇
∑

c(n,m, s, s′)XniT{s},{s′}X
†
mj

= Ã ∈ A−∞,ε. (2.36)

Since we started with an arbitrary operator in A(I+), we get the following result,

∀A ∈ A(I+) , ∃Ã ∈ A−∞,ε , such that A =̇ Ã. (2.37)

This completes the proof of result (2.1). �
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An analogous result holds for past null infinity, where all operators are encoded
in the neighbourhood of future boundary of past null infinity.

2.3.2 The nested structure of information on cuts of null infinity

The second result of this chapter shows that the future null infinity stores informa-
tion in an intricate, nested structure.

Result 2.2. Consider any operator, B, localized on future null infinity to the future
of a cut at u = u0. There exists an operator in the neighbourhood of the cut u = u0,
B̃ ∈ Au0,ε, such that

B =̇ B̃.

This suggests that all degrees of freedom in a semi-infinite interval to the future
of a cut are encoded holographically on the cut, which is the past boundary of the
semi-infinite interval.
An immediate corollary is the following.

Corollary 2.2.1. Any two states that are distinguishable by operators in Au1,ε can
be distinguished by operators in Au0,ε for any u0 < u1.

If we visualize the future null infinity as a Cauchy slice, then this suggests that
all information in a bounded region is contained in the boundary of the region.
We note that the result (2.2) is stronger than the result (2.1). The first result

is a limit of the second result, u0 → ∞. The second result is built on stronger
assumptions.
To motivate this result, we first integrate the constraint equation for the Bondi

mass aspect, given in (2.2), over the sphere. We find that the Bondi mass, M(u)

defined as
M(u) =

∫ √
γmB(u,Ω)d2Ω, (2.38)

satisfies the constraints

∂uM(u) = −
∫ √

γd2Ω

[
1

8
NABN

AB + 4πGTM(0)
uu

]
. (2.39)

Using the news-news commutators and the constraint equation given in (2.2), we
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2.3 Holographic storage of information

see immediately that

[∂uM(u), CAB(u′,Ω)] = 4πGi∂u′CAB(u′,Ω)δ(u− u′). (2.40)

The stress-tensor of the matter fields that appears in (2.2) has simple commutators
with the matter field

[TM(0)
uu (u,Ω), O(u′,Ω′)] =

−i√
γ
∂u′O(u′,Ω)δ(u− u′)δ2(Ω− Ω′). (2.41)

Therefore we see that the commutator of the derivative of the Bondi mass with
any matter field also has the same form as its commutator with components of the
metric

[∂uM(u), O(u′,Ω)] = 4πGi∂u′O(u′,Ω)δ(u− u′). (2.42)

Note that no factor of γ appears in this expression.

We now need to set initial conditions to derive the commutator of the Bondi
mass with dynamical fields. We assume that, even in the full quantum theory, as
u→ −∞, the integrated Bondi mass tends to the canonical Hamiltonian

lim
u→−∞

1

4πG
M(u) = H. (2.43)

We expect that the commutator of the Hamiltonian with the metric and matter
fields at null infinity simply generates translations along null infinity

[H,CAB(u,Ω)] = −i∂uCAB(u,Ω),

[H,O(u,Ω)] = −i∂uO(u,Ω).
(2.44)

Then using the constraint equation onM(u) above and the commutators ofM(u)

with the news, this leads to the following commutators of M .

[M(u), CAB(u′,Ω)] = −4πGi∂u′CAB(u′,Ω)θ(u′ − u),

[M(u), O(u′,Ω)] = −4πGi∂u′O(u′,Ω)θ(u′ − u).
(2.45)

The commutators above can be simply generalized to any polynomial in the met-
ric and matter fields, and have a very simple form. Taking a commutator of any
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Chapter 2 Holographic encoding of information in quantum gravity

observable at u′ with the Bondi mass at u is just like taking a u′-derivative of the
observable if u′ > u; otherwise the commutator vanishes.
The commutators (2.45) are exact in the full nonlinear Einstein theory. To prove

our second result above, we will need to make the following assumption.

Assumption 2.2.1. In the full theory of quantum gravity, the commutators of the
Bondi mass, M(u), with other asymptotic fields (given in (2.45)) and the evolution
equation for the Bondi mass (given in (2.2) ) are exact up to possible corrections by
local operators in the algebra at u.

This seemingly strong assumption can be proved to all orders in perturbation
theory. The commutators only depend on the weak-field structure of the theory. This
implies that even if we add infinite number of terms that only modify the non-linear
interaction terms in the Lagrangian, the commutators at null infinity would remain
unchanged. Even if this assumption fails nonperturbatively, our results would hold
to all orders in perturbation theory.

Proof of result 2.2: Subject to the assumption above, result (2.2) now follows in a
single step from our analysis. The commutators (2.45) lead to a differential equation
for the dynamical fields in the theory. Consider two points u, u′ ∈ (u0, u0 + ε) with
u′ > u. Since the algebra in the vicinity of the cut at u includes both M(u) and the
matter and metric fields at u′, we can use these to set the initial conditions for the
differential equation. This differential equation has a unique solution as we evolve
towards the future of null infinity. Explicitly, we have

CAB(u′ + U,Ω) = e
iM(u)
4πG

UCAB(u′,Ω)e
−iM(u)

4πG
U ;

O(u′ + U,Ω) = e
iM(u)
4πG

UO(u′,Ω)e
−iM(u)

4πG
U ;

(2.46)

for any U > 0.7 Once we have the operator values for all the matter fields, we may
obtain the value of M(u + U) by solving the constraint equation (2.2). This way,
we get all operators to the future of the cut u = u0. �
Note that this process is not reversible and the equation (2.46) does not hold for

U < 0 because the differential equation ceases to be valid in that domain due to
7We start evolving the fields from u′ > u rather than u to avoid any subtleties with the the value
of the theta function when its argument is exactly 0.
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2.3 Holographic storage of information

the θ-function in (2.45). So, the structure of future null infinity is asymmetric in its
information content. As we move towards the future, we lose information.
Of course, an analogous result holds at past null infinity. There, the information

in any cut of past null infinity is also contained in any cut to the future.

2.3.3 Some comments

Locality and causality

The results proved above are strikingly different from our expectations based on
local field theories. In a usual field theory, measurements over all of null infinity
I+ is required to determine the state. However, as we have demonstrated above, in
gravity measurements close to the past boundary of future null infinity is sufficient to
determine the state. At first, this sounds extremely counter intuitive. For instance,
this suggests that one can, in principle, detect a null signal supposed to reach I+ at
u = 0 from measurements much earlier, at u→∞.
One may naively think that our results imply a complete breakdown of the causal

structure. However, this conclusion is not correct. Instead our results imply a break-
down of locality. The reason why all information can be obtained even “before” the
signal has reached is due to non-local identification of degrees of freedom. Hologra-
phy implies that a quantum state in some bounded region, R, cannot be changed
without simultaneously changing the state near the boundary. This is because the
degrees of freedom in R are already encoded in the degrees of freedom in the bound-
ary. Hence, it is not that we have measured the signal “before” it reaches I+, rather
the signal is already present at I+

− .

Importance of gravity

As stated earlier, gravity was crucial to establish holography. We reiterate this point
here.
Result (2.1) crucially depended on the fact that the vacuum can be uniquely

identified through asymptotic measurements, i.e., assumption (2.1.1). Identification
of a vacuum state requires access to the asymptotic charges, as well as projector onto
the vacuum subspace. As we have already seen, this projector can be constructed
from the semiclassical Hamiltonian, which is a boundary observable only in a theory
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Chapter 2 Holographic encoding of information in quantum gravity

of gravity. Hence result (2.1) does not hold in usual quantum field theories, including
gauge theories.

The argument that leads to result (2.2) also cannot be generalized to a non-
gravitational setting since there is no analogue of the Bondi mass at a cut in a
nongravitational theory that can be used to evolve operators into the future.

Indeed in nongravitational theories it is easy to construct a counterexample to
(2.1) and (2.2). Consider any states |Ψ〉 and another state U |Ψ〉 obtained by exciting
the original state with a gauge-invariant unitary operator from the algebra near the
cut at u = 0. For instance, in QED we may take

U = ei limr→∞ r2
∫ √

γFµν(r,u,Ω)Fµν(r,u,Ω)f(u,Ω)d2Ωdu, (2.47)

where f smears the operator in a small region near u = 0. In the absence of gravity,
such an operator commutes with all operators in the algebra near any cut except for
the algebra near the cut at u = 0. So it is impossible to distinguish |Ψ〉 and U |Ψ〉
either at I+

− or at any cut at negative u.

Perturbative verification

Our results leads to implications that can be verified even in perturbation theory.
The analysis here is based on [40].

Consider a vacuum, |Ω〉 formed by taking an arbitrary superposition of the soft
vacua detailed above and normalized so that 〈Ω|Ω〉 = 1. Now, we excite this vacuum
by acting on it with a unitary operator that comprises the news insertion smeared
with a function of compact support near u = 0.

|f〉 = eiλ
∫
dud2Ω

√
γNAB(u,Ω)fAB(u,Ω)|Ω〉. (2.48)

The challenge is to back-calculate the function fAB using observations only in the
vicinity of u = −∞. The construction above is just like (2.47) but in gravity, unlike
QED, the challenge can be met.

A simple calculation shows that this can be done by considering the two-point func-
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tion of the Bondi mass at I+
− and news operator insertions in the interval (−∞,−1

ε
).

〈f |M(−∞)NCD(u,Ω′)|f〉 = λ

∫
dx16G

fAB(x,Ω′)

(x− u− iε)3
[ γA(MγN)B −

1

2
γABγMN ]+O

(
λ2
)
.

(2.49)
Since the function on the right hand side is analytic when u is extended in the
upper half plane given its value for u ∈ (−∞,−1

ε
) we can reconstruct fAB. A

similar calculation allows one to extract fAB from the neighbourhood of any cut for
negative u.
This calculation also explains why we need an infinitesimal interval rather than a

cut. Using the value of the two point correlator, (2.49), for only for a fixed value of
u it is not possible to reconstruct fAB. It may still be possible to reconstruct fAB by
using correlators of arbitrarily complicated complicated operators at a single value
of u. But using a small interval obviates the need for such complicated correlators
and allows a perturbative examination of how holographic information is stored. As
explained above, this computation crucially relies on gravity and on the nonvanishing
commutators of the Bondi mass with other operators.

Importance of quantum mechanics

Our results have no classical analogs. Classical, we can only measure product of
one-point functions, such as the average value of Bondi mass, 〈M(u)〉. To obtain
information about the quantum state, we need quantum correlators.

Nongravitational limit

In the limit where we take Mpl → ∞ and ignore the information in gravitational
correlators, we recover the usual picture of local quantum field theory where in-
formation is stored locally rather than holographically. When such a decoupling
limit is possible, results (2.1) and (2.2) remain true but may not be relevant from a
practical perspective.
All quantum-information experiments that are feasible with current technology

fall into the category above. For instance, if one is given a sealed box of qubits, in
the real world, it is not practical to read off the qubits just by making measurements
of the quantum fluctuations of the metric around the box, and the only practical
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Chapter 2 Holographic encoding of information in quantum gravity

possibility is to open the box and directly examine the qubits.

This is an obvious point but nevertheless we urge the reader to keep it in mind.
Our everyday intuition about the localization of quantum information is built by
our experiences in a regime whereMpl is very large compared to other energy scales.
Results (2.1) and (2.2) are in conflict with this intuition because they are relevant
in a regime where effects suppressed by Mpl are important.

2.4 Implications of holography for black hole information

paradox

Holography has striking implications for the black hole information paradox. A ped-
agogical introduction to the relevant aspects of black hole information paradox was
given in chapter 1. In this section we explain how holography modifies the expec-
tation for Page curve and resolves the strong subadditivity and cloning paradoxes.
The crucial point is that the paradox is built on the incorrect assumption of locality.

Before proceeding we point out that the effects of holography are always relevant
for the black hole information paradox. The reason is that the entropy of a black
hole scales with the Planck scale,

S =
A

4`2
pl
, (2.50)

where A is the area of the horizon and `pl is the Planck length.

To determine whether state of the black hole radiation is pure or not, we would
at least need S-point correlators with exponential, e−S, accuracy. Since the entropy
of a black hole always scales with the Mpl, there is no way to consistently decouple
quantum gravity corrections when answering fine-grained questions about the purity
of a state.

2.4.1 A constant Page curve

In this chapter we have explored how all information about a quantum state is always
present at the boundary, I+

− , including the information encoded in the interior of a
black hole. There is no sense in which information comes out of the black holes.
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2.4 Implications of holography for black hole information paradox

This can be formalized in the following two results, which follow immediately from
our previous results.8

Result 2.3. The fine-grained von Neumann entropy of the segment (−∞, u0) of I+

is independent of u0 for any pure or mixed state on H.

This result requires only result (2.1) as we show below. If we also assume result
(2.2), we find a stronger result

Result 2.4. The fine-grained von Neumann entropy of the segment (u1, u2) of I+

with u2 > u1 is independent of u2 for any state.

We first establish these results and then discuss their interpretation.

Proof of result 2.3: First, we review how the von Neumann entropy of the state
at future null infinity up to a cut at u0 is defined.
The first step is to consider the algebra, B−∞,u0 , formed by considering all pos-

sible functions of operators on I+ that lie in (−∞, u0). The definition is precisely
analogous to the definition of the algebras in the vicinity of a cut that we have
considered previously, except that we allow the operators to be localized within a
larger interval.

B−∞,u0 ={m(u1,Ω1), CAB(u1,Ω1), O(u1,Ω1),m(u1,Ω1)CAB(u2,Ω2),

m(u1,Ω1)O(u2,Ω2), CAB(u1,Ω1)O(u2,Ω2) . . .}
(2.51)

where ui ∈ (−∞, u0).
Now consider any density matrix from the Hilbert space H, which we denote by

σ. Recall that by the definition of H above that the algebra B−∞,u0 maps H back
to itself. Now the reduced density matrix associated with a segment is defined to be
the element of the algebra of the segment B−∞,u0 that, when traced with any other
observable in the algebra, reproduces the expectation value of the observable given

8We frame these results in terms of density matrices, traces and and von Neumann entropy since
we anticipate that these concepts are more familiar to most readers even if they need to be
carefully defined and regulated. For the more rigorously-minded reader, we note that similar
results hold for the relative-entropy of two states: it is independent of the upper-bound of the
segment of I+ on which it is evaluated.
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Chapter 2 Holographic encoding of information in quantum gravity

by the density matrix σ. More precisely, we choose the reduced density matrix of
the segment, ρ−∞,u0 , to satisfy

Tr(ρ−∞,u0b) = Tr(σb), ∀ b ∈ B−∞,u0 , (2.52)

subject to the condition that ρ−∞,u0 ∈ B−∞,u0 . The von Neumann entropy of the
segment is now defined as

S−∞,u0 = −Tr(ρ−∞,u0 log(ρ−∞,u0)). (2.53)

However, in result (2.3) we proved that any operator that mapped H → H could
be approximated arbitrarily well by an operator in A−∞,ε. So σ ∈ A−∞,ε. Therefore,
we can always choose

ρ−∞,u0 = σ ∈ A−∞,ε, (2.54)

But this choice is independent of u0. Therefore

S−∞,u0 = −Tr(σ log(σ)), (2.55)

which is manifestly independent of u0! �

Proof of result 2.4: The proof of result (2.4) is precisely analogous to the proof
above and so we only sketch it.

To define the reduced density matrix associated with a segment, we first define the
algebra Bu1,u2 in precisely the same fashion as above. Now consider a density matrix,
µ, in the full quantum theory and for the purposes of this result, such a state may
have both both massless and massive excitations. Then the reduced density matrix
we are looking for is defined by the condition

Tr(ρu1,u2b) = Tr(µb), ∀ b ∈ Bu1,u2 , (2.56)

subject to the constraint ρu1,u2 ∈ Bu1,u2 . But since, by result (2.2) any in Bu1,u2 can
be written as an operator in Au1,ε we can always choose

ρu1,u2 ∈ Au1,ε. (2.57)
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2.4 Implications of holography for black hole information paradox

This choice is manifestly independent of u2 and so the von Neumann entropy of this
density matrix is also independent of u2. �.

Failure of Page argument

The naive expectation of the Page cure [18], Figure 2.1, is based on the incorrect
assumption of factorization of the Hilbert space as a tensor product of Hilbert space
of sub-regions. From result (2.4), it is clear that the true Page curve should be
a constant, Figure 2.2. Note that the constant need not be zero, as we have not
included massive particles in our analysis.

Tf

S

u

Smax

Figure 2.1: The naive Page curve. If one incorrectly assumes that the Hilbert space
factorizes into degrees of freedom outside and inside the black hole, the von Neumann
entropy of the radiation that has emerged till retarded time u on I+ is expected
to obey the curve above indicating that “information is gradually returned to the
exterior.”

u

ρ(u)

Tf

S

u

Figure 2.2: The fine-grained von Neumann entropy (right) of any state of massless
excitations reduced on a segment that extends till the cut at u marked on the left
figure. The result directly follows from the arguments above. The information is
always outside, and so the entropy never goes up or comes down!

Recently, it has been suggested that the naive page curve, Figure 2.1, can be
derived from a semiclassical analysis [41]. These works are not in contradiction with
our results as the setup is very different. The naive Page curve has been achieved by
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forcing a factorization of the Hilbert space by coupling the spacetime with a non-
gravitational reservoir, and identifying the radiation and the reservoir. We make
two comments.

1. In these setup gravity switches-off at large distances. However, this is not
true for black holes in our world, where gravity is always present. Hence, the
relevance of these works remain unclear.

2. Identifying the radiation and the reservoir is misleading as the reservoir nec-
essarily excludes some of the radiation which continues to be described by the
gravitational theory.

Note: We are not claiming that there exist no sub-algebra of operators which
results in the traditional Page curve. For instance, if we restrict our attention to the
news operators alone, then we would be able to define sub-algebra of operators on
different cuts of I+ that commute. Hence, we may tweak the question such that the
answer is the Page curve. However, an observer at infinity can access other operators
as well, including the Bondi mass. Hence, a more physical algebra would contain all
asymptotic operators. In such a scenario, we will get the constant Page curve. We
reiterate the key point: all information is always available at the boundary.

2.4.2 Strong subadditivity and cloning paradox

The strong subadditivity and cloning paradox are based on the incorrect assumption
of the factorization of the Hilbert space into a Hilbert space of the black hole and a
Hilbert space of the radiation. However, we have shown that such a factorization is
not possible. Hence, the premise of these paradoxes breaks down.

2.5 Discussion

Summary

In this chapter we have demonstrated that the degrees of freedom in a theory of
quantum gravity in 4-dimensional asymptotically flat spacetimes are encoded holo-
graphically. Result (2.1) states that all operators on the future null infinity can be
approximated with arbitrary precision by an operator in the past boundary of future
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null infinity. To prove this result, we assumed that the vacua can be identified by
operators near the past boundary of future null infinity. Moreover, operators that
transition between any two soft vacua is also accessible at I+

− . We also assumed
that the Hamiltonian of the full theory is bounded from below.
We realized these assumptions explicitly in the framework of asymptotic quanti-

zation. We noted that this result is not valid in a non-gravitational theory as we
can never project onto the space of vacua by using operators that are localized near
the past boundary of the future null infinity, hereby violating our assumptions.
The result (2.1) implies that all information is always present at I+

− . This suggests
that the Page curve of black hole evaporation should be a constant, result (2.3).
We proved a stronger result (2.2) based on stronger assumptions. We showed

that future null infinity encodes the degrees of freedom in a nested structure. All
operators to the future of a cut can be approximated with arbitrary precision by
operators in the neighbourhood of the cut. This result assumes that certain com-
mutation relations hold even in the full UV complete theory. We argued that this
assumption is true to all orders in perturbation theory. Hence, our results at least
holds to all order in perturbation theory. This result implies that all information to
the future of a cut of I+ is also encoded in the cut, see result (2.4).
Since the Hilbert space fails to factorize into the subspace of interior and exterior,

our results resolved the cloning and strong subadditivity paradox.

Outlook

In our analysis, we did not include massive excitations. Extension of our results for
massive particles is an immediate future direction.
We restricted to study of 4-dimensional asymptotically flat spacetimes. Generaliz-

ing these results to other dimensions is another avenue that remains to be explored.
There is some debate in the literature on the vacuum structure of gravity in other
spacetime dimensions. However, regardless of the answer to this question, it ap-
pears likely that the vacua should be identifiable by charges supported near spatial
infinity. If so, the program outlined in this chapter should carry through to other
spacetime dimensions.
Another question to explore is whether we can make more refined statements, such

as the counter part of entanglement wedge reconstruction conjecture in AdS/CFT.
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Chapter 3

Critique of the fuzzball program

3.1 Introduction

Fuzzballs are smooth solutions in higher dimensional supergravity theories that have
same charges as black holes, but no horizons. The size of compact directions, in these
geometries, shrink to zero at a distance larger than the radius of corresponding black
hole horizon. The fuzzball proposal [21, 42] posits that classical fuzzball geometries
parameterize the phase space of black hole microstates. If true, the fuzzball proposal
would have two immediate implications. First, it would account for the entropy of
black holes. Second, it would suggest that typical microstates of black holes do not
have a horizon, hence, bypassing the information paradox.

The fuzzball proposal has garnered a lot of attention in the literature. Consider-
able efforts have been devoted to finding these microstate geometries. However, this
proposal has not been carried through in any setting corresponding to macroscopic
black hole, i.e., black holes with finite horizon radius. In this chapter, based on [10],
we undertake a careful statistical-mechanical analysis of the fuzzball proposal.

We first begin by noting some facts from quantum statistical mechanics concern-
ing typical states in subspace of Hilbert spaces with large dimensions. Consider a
subspace HE with energy E ±∆ and dimension eS. Our goal is to understand the
properties of typical states of this subspace. It can be shown that a state picked at
random from the subspace, would mimic the maximally mixed stated in HE with
exponential accuracy. More precisely, the expectation of any operator in the typical
state is the same as expectation in maximally mixed state, with e−

S
2 corrections.

It can also be shown that the subspace cannot be spanned by an atypical basis.
Almost all elements of the basis of HE must be typical.

These results greatly constrain the geometry of typical black hole microstates. We
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Typical states are
within e−

S
2 of

each other

Fuzzballs

of states.

can at most fuzzballs can show interesting
In the only region where typical

features, r − rh ∼ ℓpl, the metric
is unreliable due to quantum

r − rh ≫ ℓpl; may differ
at r − rh ∼ ℓpl

fluctuations. (Sec 3)

not viable microstates

Even basis states must
eigenvalues are sep-
arated by e−S (Exp 1)

Neighbouring energy

of each other (Exp 2)
have metrics within 1√

S

scopic structure are

span a basis

Geometry cannot

between typical
microstates

represent differences

(Sec 4)

Fuzzballs with macro- Fuzzballs are indist-
inguishable from bhs for

Figure 3.1: Logical flowchart. Statistical mechanics results are in magenta rectangles.
The physical expectation that they rely on is referred to in brackets. Implications for
the fuzzball are in orange ovals. Major conclusions are in brown boxes. Sections
where a conclusion is verified are given in brackets.

argue that if distinct fuzzball geometries parameterize the phase space of black hole
microstates, then these geometries must remain exponentially close to the conven-
tional black hole geometry, outside Planck scale distance from the horizon. Hence,
fuzzball geometries that are relevant for black holes can only differ from the con-
ventional geometry within Planck scale of the horizon. This can only be realized by
introducing explicit structures at a length scale, which is of the order of Planck scale.
Since any scale in quantum gravity undergoes fluctuations of the order of Planck
scale, the fluctuations in this scale is at least of the order of the scale itself. Hence,
the classical structures controlled by these scales cannot be trusted. This makes dis-
tinct classical fuzzball geometries unreliable. Instead, all typical black holes should
have a classical geometry that is identical to the conventional black hole geometry.
These arguments are explained in detail in section 3.2.

As explicit checks, in section 3.3, we explore two-charge Lunin-Mathur geometries
corresponding to ground states in the D1-D5 system [12, 43]. These solutions were
quantized in [13]. In this case, we can explicitly verify the claims made is section
3.2.

In section 3.4 we analyze a class of asymptotically AdS solutions that correspond
to 1/4-BPS states in the D1-D5 system [44]. Such 1/4-BPS states are described by
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a black hole with finite horizon area [45] but the geometries of [44] differ macro-
scopically from the black-hole geometry. We show that these differences can be
easily detected through simple asymptotic boundary observables. Since all fuzzball
solutions for this case are not known, we can only study a specific class of fuzzball
geometries. However, we believe that our conclusions can be realized more generally.

Figure 3.1 outlines the flow of logic in this chapter and explains how our calcula-
tions in sections 3 and 4 fit into this flow.

3.2 A statistical-mechanics evaluation of the fuzzball

program

In this section, we review some simple results from quantum statistical mechanics,
and explain their implications for the fuzzball program. These results will motivate
our calculations in section 3.3 and 3.4. We have organized this section into three
subsections: in subsection 3.2.1 we review some results from statistical mechanics; in
subsection 3.2.2 we explain the relevance of these results for the fuzzball program;
in subsection 3.2.3 we discuss the “Hawking theorem” described in [20] which is
sometimes used to indirectly infer properties of fuzzballs.

Some readers may be concerned that our arguments in this section are too ab-
stract. We urge these readers to read this section in conjunction with section 3.3
and section 3.4 where we have performed a number of calculations that support our
deductions in specific examples.

3.2.1 Some results from statistical mechanics

We now discuss some results that characterize (a) typical states in high-dimensional
quantum statistical systems (b) the extent to which elements of a complete basis can
differ from one another and (c) the gap between neighbouring energy eigenstates.

Result 3.1. Consider any subspace HE of a Hilbert space. Let dim(HE) = eS and
let µψ be the Haar measure on HE in the neighbourhood of a state |ψ〉. Then typical
pure states in HE are exponentially close to the maximally mixed state on HE in the
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sense that for any Hermitian operator A, we have

〈A〉 ≡
∫
〈Ψ|A|Ψ〉dµψ = Tr(ρA), (3.1)

where the density matrix, ρ = e−SP , and P is the projector onto HE. Moreover,
deviations from this mean value are exponentially suppressed

∫
(〈Ψ|A|Ψ〉 − 〈A〉)2 dµψ ≤

σ2
ens

eS + 1
, (3.2)

where σ2
ens ≡ Tr(ρA2)−

[
Tr(ρA)

]2.

To our knowledge this result was first described in [46]. To prove this result we
choose some basis for the subspace, and we label its elements by |f1〉, |f2〉 . . . |feS〉.
Then an arbitrary state in this subspace can be written as |Ψ〉 =

∑
i ai|fi〉. The

Haar measure is given by

dµΨ =
1

V
δ(

eS∑

i=1

|ai|2 − 1)
eS∏

j=1

daj, (3.3)

where V is a normalization-constant which can be set by demanding that
∫
dµΨ = 1,

which leads to V −1 = πe
S

Γ(eS)
. We emphasize that the measure (3.3) is independent of

the choice of basis.

Now consider an arbitrary Hermitian operator, A and denote its matrix elements
in the basis above by Aij = 〈fj|A|fi〉. Then

∫
〈Ψ|A|Ψ〉dµψ =

∫
dµψ

[ eS∑

i=1

|ai|2Aii +
∑

i 6=j
aia
∗
jAij

]
=

1

eS

∑
Aii = Tr(ρA), (3.4)

where we have used the fact that
∫
dµψaia

∗
j = 1

eS
δij.
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Figure 3.2: The subspace, HE, is a compact manifold. Most pure states in the space
are very close to the maximally mixed state. An exponentially small volume of states
(displayed in blue) can be atypical.

A simple computation yields the variance in the second part of the result.
∫ [
〈Ψ|A|Ψ〉 − Tr(ρA)

]2

dµψ =

∫ [∑

i,j

Aijaia
∗
j −

∑

i

Aii|ai|2
]2

=

∫ [ ∑

i 6=j,l 6=m
AijAlmaia

∗
jala

∗
m

]
dµψ =

∫ [∑

i 6=j
|Aij|2|ai|2|aj|2

]
dµψ

=
1

eS(eS + 1)

∑

i 6=j
|Aij|2 ≤

1

eS + 1
σ2
ens.

(3.5)

Here, in the second line we used the fact that unless i = m and j = l, the summand
vanishes upon integration. In the third line, we used the fact that

∫
dµψ|ai|2|aj|2 =

1
eS(eS+1)

for i 6= j. A small subtlety in the final step is that

1

eS

∑

i 6=j
|Aij|2 = Tr(ρ(PAP )2)− Tr(ρA)2 ≤ σ2

ens. (3.6)

This difference arises because A might have matrix elements that link states in HE

to states outside HE.

This result should be interpreted as follows: “On almost all of the volume of the
subspace, the expectation value of the operator differs from the typical expectation
value by an exponentially small amount. The expectation value may differ signifi-
cantly from the typical expectation value only an exponentially small region of the
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subspace.” The reader may consult Figure 3.2 for intuition.
This result tells us that typical microstates of HE are described by a universal set

of correlators. By itself, this does not disallow the possibility of an atypical basis of
states for HE. This is because the basis vectors themselves occupy only zero volume
in the Hilbert space. We now bound the atypicality of a basis in some cases of
interest.

Result 3.2. (Limit on atypicality of a basis) Assume that the ratio σens
〈A〉 vanishes

as 1
Sα

for large S and some positive number α. Given any basis, |f1〉 . . . |feS〉, for
HE, let |fα1〉 . . . |fαM 〉 be those of its elements where

∣∣∣ 〈fαj |A|fαj 〉−〈A〉〈A〉

∣∣∣ ≥ O
(

1
Sβ

)
in the

thermodynamic limit, with β < α. Then M
eS

vanishes at least as fast as O
(

1
S2(α−β)

)
.

This result follows from simple inequalities.

σ2
ens =

1

eS

∑

i

〈fi|A2|fi〉 − 〈A〉2

=
1

eS

∑

i

(
〈fi|A2|fi〉 − 〈fi|A|fi〉2

)
+

1

eS

∑

i

(〈fi|A|fi〉 − 〈A〉)2

≥ 1

eS

M∑

j=1

(
〈fαj |A|fαj〉 − 〈A〉

)2 ≥ Mκ2〈A〉2
eS

,

(3.7)

where κ = infj
∣∣∣ 〈fαj |A|fαj 〉|−〈A〉〈A〉

∣∣∣. By assumption κ = O
(

1
Sβ

)
in the thermodynamic

limit, and since σ2
ens
〈A〉2 vanishes like 1

S2α , therefore M
eS

must vanish like 1
S2(α−β) .

The result above is very simple, but it is relevant for those observables that take
on a finite classical expectation value. These are the observables where σens

〈A〉 vanishes
as S →∞. For such observables, the result states that one cannot construct a basis
whose elements are all individually very different, and only average out to give some
mean.
So far our results have been kinematical. We now state a dynamical expectation

about the spectrum, which should be true in almost all interacting systems. Let S
be the entropy at energy E. (We deliberately use the same notation as above since
eS = dim(HE) if HE is taken to the subspace corresponding to the microcanonical
ensemble.)

Expectation 1. (Almost continuous spectrum) The gap between the energy eigen-
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3.2 A statistical-mechanics evaluation of the fuzzball program

values of typical neighbouring high-energy eigenstates is O
(
e−S
)
in an interacting

theory in the thermodynamic limit.

The motivation for this expectation is as follows. Between the energy [E−∆, E+

∆] We expect to have eS states in a finite band of energies, 2∆. Except for an
exactly free theory, interactions generically break all degeneracies. Therefore, the
energy gap between neighbouring states scales like e−S in the thermodynamic limit.

Expectation (1) also holds in theories with supersymmetry. Supersymmetry might
ensure that some states, which saturate the BPS bound, are degenerate. However,
as soon as we move slightly away from the BPS bound, the gap between eigenvalues
becomes exponentially small.

Some systems may have a forbidden-zone of energies in which states cannot exist.
For example, superconformal field theories may have BPS representations that are
separated from other representations with the same charges by a finite mass gap.
(See, for example, the “b” representations in [47].) However, outside the forbidden
zone, we again expect exponentially small gaps between neighbouring eigenvalues.

Expectation (1) also holds in integrable systems. The statistical mechanics liter-
ature contains considerable discussion of the statistics of the distribution of energy
eigenstates. The statistics of eigenvalues differ in integrable and chaotic systems
(See, for example, [48].) But the fact that the energy gap is O

(
e−S
)
holds almost

universally.

In the context of the fuzzball proposal, there has been some discussion that the
correct gap between energy-eigenstates, even at the supergravity point of the D1-
D5 system, should be an inverse power of N1N5 (the product of the number of D1
and D5 branes) rather than an inverse exponential of this product [49, 50]. This is
based on the fact that, at the orbifold point, the D1-D5 CFT does have a gap that
scales with 1

N1N5
. However, the orbifold CFT is a free theory. The moment we turn

on the moduli that are necessary to reach the supergravity point, we expect that
the degeneracies in the orbifold CFT will be destroyed. The entropy at energy E
scales as S ∝ √N1N5E, and we expect that the gap between neighbouring energy
eigenstates is of order e−S at a generic point in moduli space.

The exponentially small gap can be easily detected by a two-point function. For
example, let A(t) be a simple operator localized in time. Then, given any typical
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high energy basis state, |f〉 of energy E (which may not be an eigenstate), consider

GF(ω0) =

∫
dt〈f |A(t)A(0)|f〉Fω0(t)dt, (3.8)

where Fω0(t) is a function whose Fourier transform is centered around ω0 with a
width δ � Ee−S. But we can take δ to be very narrow. For example, in the D1-D5
theory, we may take δ = 1

(N1N5)4 since this is still larger than e−S.

Then, by inserting a complete set of energy eigenstates, |Ei〉,

GF(ω0) =
∑

i,j

〈f |Ei〉〈Ei|A(0)|Ej〉〈Ej|A(0)|f〉
[ ∫

Fω0(t)ei(Ei−Ej)tdt
]
. (3.9)

Since the difference Ei − Ej takes on almost a continuous range of values we see
that GF(ω0) has support for a continuous range of ω0. Even if the state |f〉 is a
supersymmetric state, we can choose an appropriate operator A that moves us off
the BPS bound and whose two-point function displays a continuous spectrum.

States, where the two-point function does not have a continuous spectrum for any
simple operator typically correspond to microstates of a phase of zero-entropy. For
such states, the three point function 〈Ej|A(0)|f〉 that appears above vanishes for
almost all except an exponentially small set of eigenstates, |Ej〉. For example, the
boundary two-point function of light primary operators in the state dual to thermal
AdS is expected to have a discrete spectrum.

In the paper [51], it was argued that fuzzballs might represent typical states and
still not show the continuous spectrum described above. The paper [51] suggested
that the matrix elements 〈Ej|A(0)|f〉 could be subject to a selection rule: the matrix
element vanishes unless Ej −E = nEgap where Egap � e−S is some large gap and n
is an integer. Thus probing a particular fuzzball microstate with simple operators
only excites a tower of integrally spaced excitations on top of that microstate. A
probe of another microstate excites a parallel tower and it is impossible to move
between towers by probing the system with simple operators. (See Figure 3.3.) The
number of towers must be exponentially large to account for the total number of
states.

This picture would suggest that the matrix elements between different states not
only violate the eigenstate thermalization hypothesis (see below) but most matrix
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E ′ − E = O
(
e−S

)
E

E + Egap

E + 2Egap

E ′ + 2Egap

E ′ + Egap

E ′′ + Egap

E ′′ + 2Egap

E ′′

E ′
E ′′ − E ′ = O

(
e−S

)

Figure 3.3: An unusual possibility for the dynamics of fuzzball microstates. Probes
of one microstate only excite other microstates in a single tower (solid black lines)
and transitions between towers (dashed red lines) are disallowed.

elements actually vanish. Moreover, since it is impossible to transition between tow-
ers using simple operators, the system effectively breaks up into an exponentially
large number of disconnected phases. If the D1-D5 system, or any gravitational
system shows such unusual statistical behaviour, there should be a dynamical ex-
planation for this. The selection rule above cannot just be postulated to save the
fuzzball program from potential contradictions. In the absence of such a dynamical
explanation, the simplest possibility is just that fuzzballs and other states where the
two-point function does not show a continuous spectrum represent isolated states
whose degeneracy is exponentially small compared to the set of all microstates.

Relation to eigenstate thermalization. Before, we conclude our discussion
on general statistical expectations, we should clarify the relation to the commonly
discussed eigenstate thermalization hypothesis (ETH) [52].

The ETH is usually stated for energy eigenstates. However, it really only relies on
the assumption that, in a large statistical system, the eigenstates of most observables
are likely to be highly scrambled versions of eigenstates of the Hamiltonian. So, given
some basis of states for the microcanonical ensemble, |fi〉, the ETH can be stated
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as
〈fj|A|fi〉 = A

(
Ei
)
δij +B

(Ei + Ej
2

)
e
−S
2 Rij, (3.10)

where R is a matrix of random phases and Ei, Ej are the expectation values of the
Hamiltonian in |fi〉, |fj〉 and A,B are smooth functions of their arguments. Note
that A(E) is the microcanonical average of the observable at energy E.
If the ETH holds for some basis of states, this implies that most elements of

such a basis are typical even for operators where the standard deviation is not
parametrically small in the thermodynamic limit.
The ETH is a significantly stronger assumption than the vanishing of the micro-

canonical standard deviation for classical observables that is an input to result 3.2.
The ETH implies the typicality of most elements of the basis even for observables
that have large σens. The ETH arises from an assumption of quantum chaos, and in
such a system expectation 1 also holds.
Therefore, the ETH is stronger than the assumptions of result 3.2 and expectation

1. Nevertheless, we expect the ETH to hold in theories with holographic duals [53].

3.2.2 Implications for the fuzzball program

Now we discuss several implications of these results for the fuzzball program. In
what follows, to make contact with the results above, we take the Hilbert space HE,
to be the subspace that corresponds to black holes. If we consider large black holes
in the AdS/CFT correspondence, then this subspace can simply be taken to be the
microcanonical ensemble. However, note that the subspace corresponding to black
holes exists even in flat space, where black holes do not dominate the canonical or
microcanonical ensemble.

Information-free nature of the horizon/stretched horizon. The fuzzball pro-
gram is often motivated by the idea that the horizon should be replaced by the
surface of a fuzzball that would contain “information” about the initial state. It is
claimed that this structure would correct Hawking radiation at O (1).
We now apply result 3.1. Let A correspond to an operator that measures cor-

relations between different Hawking quanta. For example, A may be a product of
curvature invariants at distinct points. Since we are considering smooth geometries,
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such invariants are bounded and their fluctuations cannot be exponentially large.
Then result 3.1 tells us that such observations in a typical microstate yield only an
exponentially small amount of information.

In particularly, it cannot be the case that Hawking radiation differs by O (1)

amounts between different typical microstates. It is sometimes claimed that “high
energy” observables would take on a universal form but “low energy” observables at
the scale of the Hawking radiation would differ between microstates [54]. However
result 3.1 allows no such freedom. In a typical microstate, both high-energy and
low-energy observables take on a universal value, and all features of the microstate
can only be determined by exponentially precise observations.

The idea that the surface of a black hole should contain “information” is often
presented by making an analogy with a piece of coal. (For instance, see page 3
of [9].) When coal burns, the properties of the outgoing radiation are strongly
affected by the nature of its surface. However, this is a misleading analogy: everyday
pieces of coal are not completely thermalized. They have a number of distinctive
features because they are in highly atypical states. A better example, to visualize a
thermalized system, is a gas of radiation in a box. This gas is entirely featureless.
Individual photons that emerge from the box contain almost no information about
the state of the radiation inside the box; it is only by making exponentially precise
measurements on the radiation that we can discern the state of the radiation.

The universal fuzzball geometry. Above, we argued that correlation functions of
Hawking radiation measured in a typical microstate must take on a universal value.
We now argue that these correlators should correspond to correlators computed in
effective field theory about an approximately classical average bulk geometry in the
limit where the Planck length is smaller than all other scales.

The signature of an approximately classical bulk geometry is that correlators of
local operators factorize into products of lower-point functions [55].

In AdS/CFT the factorization of boundary correlators in the microcanonical/canonical
ensemble can be proved at large-N using the standard factorization arguments. We
can then use the standard HKLL construction [56, 57, 58] to construct approx-
imately local operators and the factorization of boundary correlators implies the
factorization of bulk correlators. This implies that, in AdS/CFT, the microcanon-
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ical/canonical ensemble is dual to an approximately classical bulk geometry. By
result 3.1 this is also the geometry dual to a typical microstate. This geometry can
also be used to compute n-point functions of simple operators to excellent accuracy.

In flat space, we cannot make such a clear argument that averages computed in
HE correspond to an approximately classical bulk. But, even here we expect that
S-matrix elements will factorize if the Planck length is much smaller than other
length scales in the problem. These S-matrix elements can be used to reconstruct a
bulk geometry that is approximately classical.

A priori, we do not know what this universal classical geometry should be. In
section 3.3, we will compute this average geometry for the two-charge Lunin-Mathur
solutions that have been quantized. However, in more general settings that cor-
respond to large black holes, we cannot compute this average geometry since all
fuzzball solutions have neither been found nor quantized. So, in the remainder of
this chapter, we will simply proceed with the following expectation.

Expectation 2. (Conventional geometry as average) The conventional black-hole
geometry — after incorporating classical string-theory corrections — correctly com-
putes the average value of bulk observables such as the metric and correlation func-
tions of the metric as long as we are more than Planck length outside the horizon.

We believe that this is a fairly uncontroversial assumption. If the geometry ob-
tained by averaging over all microstates differs significantly from the black-hole
geometry, this has significant implications for AdS/CFT: it would imply the com-
putations in a thermal state in the CFT should be matched to bulk computations
in this special average fuzzball geometry (whatever it may be) rather than the black
hole. This would be the case even for time-ordered correlators that are obtained
naturally from Euclidean computations. Therefore any claim that expectation 2 is
violated must be accompanied by an explanation for why the Euclidean saddle point
is not adequate for correlators outside the horizon. We are not aware of any place
in the literature where such a strong claim has been made.

Expectation 2 allows for the possibility that the average geometry to have Planck-
scale deviations from the conventional geometry. We discuss these deviations in
greater detail below.
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Distinct fuzzballs as a basis? Result (3.1) implies that the geometries corre-
sponding to typical states can only differ by an exponentially small amount from
the average geometry, We certainly do not expect to represent such exponentially
small deviations in terms of a classical metric, and therefore the idea that fuzzballs
can represent typical microstates is entirely untenable. Typical microstates are rep-
resented by the same average geometry.

One might imagine that while it is impossible to describe the different typical
microstates using geometries, perhaps one could use a set of distinguishable geome-
tries as a basis for all microstates of the black hole. However, we will now show that
result 3.2, together with expectation 2 constrains how much the typical element of
the basis can differ from the conventional black hole. To make this precise, we pause
to define some useful intermediate quantities that we will use later as well.

The “difference” and “quantumness” parameters. Let Ô(r) be a simple
bulk observable. For example, Ô(r) may be some coordinate invariant function of
the metric. Here r denotes the “radial” coordinate in a coordinate system where
the horizon is at r = rh and r = ∞ is the asymptotic region. To make physical
meaningful comparisons, r should be defined through the physical area of a compact
submanifold in the geometry.

Let Obh(r) be the expectation value of this observable in the black-hole, For a
fuzzball microstate, |f〉, we denote

〈f |Ô(r)|f〉 = Ofuzz(r). (3.11)

The quantum fluctuations of this operator, in the fuzzball state, are measured by

σ2(r) = 〈f |Ô(r)2|f〉 − 〈f |Ô(r)|f〉2, (3.12)

where the product of operators at a point may need to suitably renormalized.

We now define two parameters. The difference parameter, d is defined as

dO(r) =
∣∣O

bh(r)−Ofuzz(r)

Ofuzz(r)

∣∣. (3.13)
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The quantumness parameter, q is defined as

qO(r) =
∣∣ σ(r)

Ofuzz(r)

∣∣. (3.14)

For a classical solution to be “interesting” we require that the difference parameter
be large. On the other hand, for the classical solution to be reliable, the quantumness
parameter must be parametrically suppressed. This is particular important in a non-
linear theory like gravity. It makes no sense to trust classical general relativity in a
regime where quantum fluctuations of the metric are of the same order as the metric
itself.

We argue below that typical fuzzballs cannot meet both conditions simultaneously.
In the region where they are interesting, they also become unreliable.

Deviations of individual fuzzballs from the average geometry. From result
3.1, the fluctuations that enter result 3.2 are the same as quantum fluctuations
in a typical state. Since we argued above that typical states correspond to the
conventional black-hole geometry, we can estimate the fluctuations that enter result
3.2 by estimating quantum fluctuations in the black-hole geometry.

σens(r) =
1

eS
TrHEÔ(r)2 −

(
1

eS
TrHEÔ(r)

)2

= 〈Ψ|Ô(r)2|Ψ〉 − 〈Ψ|Ô(r)|Ψ〉2 + O
(
e−

S
2

)
,

(3.15)

where |Ψ〉 is a typical microstate, and we have used result 3.1 in the second equality.
Note that σens(r) may not coincide with σ(r) defined above if |f〉 is not a typical
state.

The leading quantum fluctuations in the black-hole geometry appear with a factor
of 1

GN
and on dimensional grounds, we expect that they are proportional to

(
`
`pl

)d−2

where ` is the typical length scale in the geometry. If we are far away from the
horizon, then we expect that ` ≤ rh. We also note that the entropy is proportional

to
(
rh
`pl

)d−2

. Therefore for simple gauge-invariant observables made out of the metric,
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we expect that for observables with a non-zero classical expectation value1

σ2
ens(r)

(Obh(r))2
= O

(
1

S

)
, r − rh � `pl. (3.16)

(The reader may consult [59] for a concrete calculation of quantum fluctuations in
the black-hole background.)

However, then result 3.2 tells us that for all but a vanishing fraction of fuzzball
states, we also have

dO(r) =
∣∣O

bh(r)−Ofuzz(r)

Ofuzz(r)

∣∣ = O
(

1√
S

)
, r − rh � `pl. (3.17)

Moreover, if dO is very small then quantum fluctuations of the metric in the fuzzball
geometry are also very close to quantum fluctuations in the black-hole geometry.
Therefore

qO(r) = O
(

1√
S

)
. (3.18)

So the deviation of the fuzzball metric from the black-hole metric can at most be of
the same order as the quantum fluctuations of the metric.

It is important that (3.17) continues to hold when r = rh + `str, where `str is
the string-length. The black hole metric is corrected at the string-scale but we can
compute fluctuations of the metric, using Euclidean quantum gravity, and we do
not expect quantum fluctuations in the black-hole geometry to become significant
at the string-scale.

Since, by definition, fuzzballs have no horizon they must start to deviate apprecia-
bly from the conventional black-hole geometry at some point. The argument above
tells us that for typical fuzzballs, this can only happen when r − rh = O (`pl). This
is precisely where expectation 2 also allows the average geometry to deviate from
the conventional geometry.2

1What we will need, in subsequent sections, is just that σens(r)
Obh(r)

is small — not that it takes the
precise value predicted by the black-hole geometry. This may hold even if expectation 2 fails:
as long as the typical microstate in HE corresponds to an approximately classical geometry,
we can estimate σens by quantizing metric fluctuations in this geometry, and these quantum
fluctuations will be small compared provided that typical curvatures are small.

2Standard calculations in the conventional black-hole geometry suggest that when the geometry
has a macroscopic horizon, we do not expect any unusual effects in the near-horizon region and
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But this means that the geometric solution — corresponding to a typical ba-
sis state or the average geometry — must explicitly have Planck-scale structures,
presumably through an explicit length-scale that takes on a Planck-scale value.
However, we expect that any length-scale in quantum gravity will itself undergo
fluctuations of the size of the Planck-scale. Therefore, in the region where we are
very close to the horizon, if the fuzzball has explicit Planck scale features, then
quantum fluctuations in the metric are expected to be of the same order as these
Planck-scale structures. So,

dO(r) = O (1) , but qO(r) = O (1) , when r − rh = O (`pl) . (3.19)

But if the parameter qO = O (1), then the classical solution becomes completely
unreliable. So, if we explicitly insert Planck-scale features into the fuzzball solution
in order to satisfy result 3.2, then we run into the difficulty that the geometry
becomes unreliable just where it appears to be interesting.
To summarize, we have argued the following. If fuzzballs are to represent typical

microstates then they must have the following features:

1. When we are far away from the horizon (in Planck units), the fuzzball geom-
etry is indistinguishable from the black-hole geometry up to terms that are
suppressed by the black-hole entropy. This follows from the fact that the av-
erage fluctuations of the metric — which can be computed in the black-hole
geometry — are small, and then result 3.2 limits the extent to which typical
basis elements can differ from the average.

2. When we approach within a Planck length of the horizon, the fuzzball geometry
may appear to deviate from the conventional black hole. But such a geometry
must explicitly contain Planckian structures, and then we expect that quantum
fluctuations will become large and so the fuzzball geometry becomes unreliable.
(Note that this is contrast to the conventional black-hole geometry, which

σens continues to be small there. However, it is difficult to prove this even in holography, since
the HKLL construction requires very long time-bands on the boundary to represent physics in
the region r − rh = O (`pl). The length of these bands scales with N and may interfere with
standard large-N counting. So we make a generous assumption for the fuzzball program by
allowing the possibility that some unknown hitherto unknown effect invalidates the standard
calculation of σens within a Planck length of the horizon and somehow makes it large.
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r = rh + ℓpl

Figure 3.4: A schematic representation of what a typical fuzzball geometry must
look like, if fuzzballs represent black-hole microstates. The geometry must closely
resemble the black-hole geometry away from the horizon (unshaded region) and then
suddenly deviate away to cause some extra-dimension to pinch off when we reach
within Planck length of the horizon (blue region).

remains perfectly reliable close to the horizon.)

This picture of the fuzzball is shown schematically in Figure 3.4
Therefore, it is wrong to think of fuzzballs as macroscopically distinct geometries,

which somehow average out to give the same answer as the black hole. Rather,
typical fuzzballs must all look like Figure 3.4 to satisfy result 3.2. Fuzzballs which
have structure on a scale larger than the Planck scale can only be a vanishing fraction
of microstates by result 3.2.

Requirement of large red-shifts. The discussion above utilizes expectation 2,
which is what leads to equation (3.16). However, even without invoking expectation
2, we can still use expectation 1 to justify the important aspects of the picture shown
in Figure 3.4.
Consider a quantum field that propagates in the bulk whose excitations about

the vacuum are gapped. In global AdS we can consider a massless field. If we
are considering flat space or Poincare AdS, we can consider a massive field. Then
expectation 1 implies that the asymptotic two-point function of this field must be
supported at arbitrary frequencies even though, locally, field excitations are gapped.
The reason that black holes allow this phenomenon is because of the infinite

redshift at the horizon. This red-shift allows for arbitrary low-energy excitations.
This is not a bug; it is a feature of the black-hole geometry which ensures that it can
be interpreted as a heavy state in a quantum-mechanical system with large entropy.
If fuzzballs are to represent black-hole microstates, they must also support a

continuous spectrum. Therefore, the fuzzball geometry must also have an extremely
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large-shift. In particular, if the geometry caps off to form a fuzzball at any length-
scale that is visible classically, then the inverse of this length-scale will be visible
as an energy gap that would violate expectation 1. Once again we see that the
requirement of an almost continuous spectrum disallows fuzzballs that are of size
`str or any other classical length-scale.
What if the geometry caps off at r = rh + `pl? Even such a geometry would

not support the exponentially suppressed gap that is required around a heavy pure
state since it would allow, at most, an energy gap that is power-law suppressed
in the entropy. So the only possibility is for the geometry to stop making sense
classically below r = rh + `pl. However if this happens we return to our conclusion
above, displayed in Figure 3.4: fuzzballs are uninteresting in most of space (where
r − rh � `pl) and unreliable where they are interesting (r − rh = O (`pl)).
Larger fuzzballs that are both reliable and interesting by virtue of having larger

than Planck scale structure are irrelevant to the discussion of black-hole microstates
since they do not have the right energy gap expected in a system with large entropy.

Eigenstate thermalization. The arguments that led to the structure expected
from typical fuzzball geometries shown in Figure 3.4 assumed that the bulk metric
was a good observable with small quantum fluctuations. We believe that this is a
very robust assumption.
However, if we assume the ETH, then we can deduce such a structure for typi-

cal fuzzballs while restricting our discussion to only asymptotic observables. If we
apply the ETH in the form (3.10) to fuzzball states, then we expect to get the
microcanonical average

〈f |A|f〉 = A(E), (3.20)

where E is the energy of the fuzzball state and A(E) is the microcanonical average
of A.
Therefore, the ETH tells us that even for asymptotic observables, we should get

precisely the same value in a typical fuzzball microstate as we do in the conventional
black hole.
Intuitively, this rules out fuzzballs that differ at leading order from the black-

hole metric. This is because if the geometry differs at leading order, then a simple
scattering experiment with waves sent in from asymptotic infinity will detect this
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3.2 A statistical-mechanics evaluation of the fuzzball program

variation and produce an answer that fails to satisfy the ETH. We will see in section
3.4 that this is precisely what happens for fuzzballs with macroscopic structures.

A cautionary note. We close this subsection with a note of caution. The reader
will note that our arguments above have been based on simple physical expectations
and general results from statistical mechanics. This makes them broadly applicable
but it also means that these arguments are only suggestive of the difficulties that the
fuzzball program must surmount and cannot be taken as a proof that the program
is not viable.
In section 3.3 and 3.4 we will verify the correctness of these arguments in specific

examples. But if the fuzzball program is to be carried through to completion in any
system, this must involve a loophole in the arguments outlined above, and it would
be interesting to understand the origins of such a loophole.

3.2.3 Indirect arguments for horizon structure

In an attempt to sidestep arguments of the kind that we have provided above,
Mathur put forward indirect arguments to show that the horizon must have structure
[20]. Mathur’s argument was based on the strong subadditivity and it was later used
to produce the firewall paradox [22]. See section 1.2 for details.
The difficulty with this argument is that the strong-subadditivity of entropy as-

sumes that the set of observables on a nice slice factorize into observables in the
black hole interior, a near horizon region just outside the horizon and everything
else. However, we have already seen in chapter 2 that in quantum-gravity this is
simply not true. To the contrary, observables near the boundary already contain
all observables. See [7, 60, 61] for related results which demonstrate breakdown of
locality in quantum gravity. In fact, it was shown in [61] that if we take strong-
subadditivity seriously in quantum gravity, we can construct paradoxes even in
empty AdS.
Modification to classical black hole geometry is not required for recovery of infor-

mation from the Hawking radiation as information can be stored in exponentially
small correlations between different Hawking quanta [62].
A related set of ideas suggests that a pure-state cannot have a horizon, because

a horizon has entropy whereas pure states cannot have entropy [63]. However, this
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is incorrect. The thermodynamic entropy should not be conflated with the von
Neumann entropy. So, pure-states can also have thermodynamic entropy which
arises after we coarse-grain the system and this entropy reflects the fact that coarse-
grained probes of the system leave its fine-grained features undetermined [64]. In
a theory of quantum gravity, the geometry is a tool to encode expectation values
of the metric and its low-point correlators — it is thus an explicitly coarse-grained
probe of the full theory. So it is perfectly consistent for the geometry to be described
by a metric with a horizon whose entropy reflects the fact that we have ignored the
fine-grained non-metric degrees of freedom that are part of the full description.

We note, parenthetically, that in anti-de Sitter space, the papers [65, 66] made an
entirely independent set of arguments to suggest that the black-hole interior cannot
be represented in the boundary CFT. These arguments are relevant for large AdS
black holes that are thermodynamically stable. Moreover, even if they are correct,
they suggest that the black hole has a horizon and the interior of a black hole has
a firewall rather than a fuzzball. For this reason the arguments of [65, 66] are not
directly relevant here, and a detailed discussion of their merits is beyond the scope
of this thesis. Nevertheless, a brief summary of their status is as follows.

Several authors [67, 68, 69, 70, 71] have pointed out that interior operators can
be constructed using a suitably state-dependent construction. The authors of [72]
suggested that state-dependence would lead to observable peculiarities for an in-
falling observer but it was explained in [73] that these effects were not observable in
physically reasonable experiments.

Physically, our understanding of the origins of state-dependence has also ad-
vanced. The state-dependence of the interior can be understood as arising from
a fat-tail in the inner-product of coherent states in gravity [69, 70] and this fat-tail
also contributes to the fact that interior operators, when gauge-fixed in a particular
manner, may fail to satisfy a non-perturbative version of the Hamiltonian con-
straints [74]. The origins of state-dependence can also be studied in toy-models [75].
Of course, several questions about state-dependence and the reconstruction of the
black-hole interior in AdS/CFT remain to be understood.

To summarize this subsection, we have argued that indirect arguments for the
relevance of fuzzballs to black-holes are invalid. This is an important point. It shows
that one cannot concede the limitations of supergravity solutions — as is sometimes
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done in the fuzzball program — but yet argue that black-holes do not have smooth
interiors. Neither a resolution to the information paradox nor an understanding
of the black-hole entropy requires the existence of fuzzballs. The relevance, or lack
thereof, of fuzzballs to the study of black-holes must follow from a study of the
known fuzzball solutions. If these solutions are irrelevant to black-holes, there is no
other valid argument for the relevance of fuzzballs for black-holes.

3.3 Quantum aspects of the two-charge solutions

In this section, we examine the original two-charge fuzzball solutions that were
discovered in [11, 12]. The literature on these solutions, and their relation to CFT
microstates is extensive. Our analysis will be simple and independent, but we note
a few salient results in the literature. In [76] and then in [77], it was pointed out
that the supergravity solution was not valid for typical states and as one travels
towards the fuzzball cap, it is necessary to transition out of the D1-D5 duality
frame. This can indeed be done in some cases, and for specific solutions the full
stringy description was analyzed in [78]. We will reach a similar conclusion, although
our reasoning will be slightly different and placed within the framework developed
in section 3.2.

There has also been work on identifying specific solutions with microstates in the
orbifold CFT [79]. We note that even for very simple states, such an identification
must be performed carefully since the supergravity point is very far from the orbifold
point in the D1-D5 moduli space and, moreover, states cannot be uniquely identified
just by specifying one-point functions of a few operators. In fact, in general, such
an identification is impossible since the matching between states at different points
in moduli-space is path-dependent [80]. Holographic correlators have also been
calculated in these solutions [81] as we will do for multi-charge solutions in section
3.4.

For us, what is important, is that these solutions were quantized in [13], following
a suggestion made in [82]. Therefore, we can study the quantum mechanics of this
set of solutions and we will use this system to verify the arguments of section 3.2.
We will compute the average fuzzball geometry, and we will also compute quantum
fluctuations in this geometry. This allows us to compute the parameters d (defined
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in (3.13)) and q (defined in (3.14)). This system differs slightly from the setup of
section 3.2 because the horizon of the conventional solution is of zero size because a
circle in the geometry shrinks to zero at that point. Nevertheless — using the size
of this circle as a measure of the distance from this zero-size horizon – we find that

1. As the distance from the position of the conventional horizon becomes greater
than the Planck length, the average fuzzball geometry tends rapidly to the
classical geometry.

2. The average geometry starts deviating from the conventional geometry when
we are within Planck length, and not string length, of the horizon. Moreover,
most of the entropy of the set of solutions comes from solutions that differ
from the conventional geometry at the Planck scale.

3. In the region where deviations of the average geometry from the conventional
geometry are appreciable, quantum fluctuations are of the same order as the
expectation values of components of the metric. Therefore the solution is
entirely unreliable.

We will consider the two-charge solutions in the following form, using the conven-
tions of [13].

ds2 = e−
φ
2 ds2

str; e−2φ =
f5

f1

;

ds2
str =

1√
f1f5

(
−(dt+ A)2 + (dy +B)2

)
+
√
f1f5d~x

2 +

√
f1

f5

d~z2;

f5 = 1 +
Q5

L

∫ L

0

ds

|~x− ~F (s)|2
; f1 = 1 +

Q5

L

∫ L

0

|~F ′(s)|2
|~x− ~F (s)|2

;

Ai =
Q5

L
dxi
∫ L

0

F ′i (s)

|~x− ~F (s)|2
ds; dB = ∗4dA;

C =
1

f1

(dt+ A) ∧ (dy +B) + C; dC = − ∗4 df5.

(3.21)

Here ~z denotes four compact directions. The conventional solution is obtained simply
by setting

f1 → 1 +
Q1

~x2
; f5 → 1 +

Q5

~x2
. (3.22)
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and setting A = 0, B = 0.

These solutions can be systematically quantized by recognizing that the space of
classical solutions can be bijectively mapped to points on the phase space; the action
of the theory yields a symplectic form on this space, and the machinery of geometric
quantization can then be applied to obtain a Hilbert space [83]. The result of this
process is very simple. The quantization promotes the functions F k(s) to operators
as follows

F k(s) = µ
∑

n>0

1√
2n

(
akne

−2πins
L + (akn)†e

2πins
L

)
, (3.23)

where [an, a
†
m] = δnm. The various parameters that appear here are defined as

µ =
gs

R
√
V4

; L =
2πQ5

R
. (3.24)

Here R is the coordinate radius of the y-direction and V4 is the coordinate volume
of the compact manifold. These are moduli of the solution. We are working in units
where the string length is set to unity. The charges are related to the brane-numbers
by

Q5 = gsN5; Q1 =
gsN1

V4

. (3.25)

For the purposes of counting states, it will be useful to define the following “Hamil-
tonian”

H =
∑

n>0,k

n(akn)†akn, (3.26)

where we have a infinite set of harmonic oscillators with creation and annihilation
operators specified by akn and k runs over 1 . . . 4. The fuzzball states dual to the
D1-D5 system with charges (Q1, Q5) are defined to be the states in this quantum
system that have H = N1N5.

We will not attempt to compute the full quantum expectation value of the metric.
Instead, we will focus on the following list of quantum expectation values,

〈Ψ|f5 − 1|Ψ〉, 〈Ψ|f1 − 1|Ψ〉, 〈Ψ|Ai|Ψ〉, (3.27)

in a typical state, |Ψ〉. Here, “typical state” is used in the sense of result 3.1.
These one-point expectation values were also calculated in [84], and our results
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agree precisely with theirs. We will not consider Bi separately since this field is
defined through the dual of A. Note that we also subtract off the uninteresting 1 in
both f1 and f5.

Ai vanishes in the conventional geometry, and it will turn out that 〈Ψ|Ai|Ψ〉 also
vanishes. So the difference and quantumness parameters ((3.13) and (3.14)) are not
well defined for this observable. Therefore, we will consider another one-form that
does not appear in the metric but is also an interesting probe of the geometry

Wi =
Q5

L

∫ L

0

Fi(s)

|~x− ~F (s)|2
ds. (3.28)

This quantity is of interest since it vanishes in the conventional geometry but, as
we will find, 〈Ψ|Wi|Ψ〉 takes on a finite value. So one can ask if this finite value is
reliable.

We will also compute the quantum fluctuations in these quantities by computing
the following quantum two-point functions

〈Ψ|(f5 − 1)2|Ψ〉, 〈Ψ|(f1 − 1)2|Ψ〉, 〈Ψ|WiWj|Ψ〉. (3.29)

We will use these two-point functions to evaluate the difference and quantumness
parameters for these observables. These calculations will allow us to verify all the
expectations outlined in section 3.2 in a precise setting.

3.3.1 One-point functions

Using result 3.1, the expectation value of the observables above in a typical state can
be computed by considering the microcanonical trace. Therefore, we can consider
the generating function

G(χ, α) =
1

eS(E)
Trmic

[∫ ∞

−∞

∏

k

dgk

∫ ∞

0

dt

∫ L

0

ds

L
: eF :

(
t

π

)2
]
, (3.30)

where

F = −
∑

k

tgkgk + 2it(xk − F k(s))gk +
∑

j

αjF j(s) + χj
dF j(s)

ds
. (3.31)
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Here the trace is taken over all energy eigenstates of the Hamiltonian with a large
total energy,

E = N1N5, (3.32)

and the degeneracy of states at that energy is given by eS(E). By normal ordering
we mean that when we expand the exponential in terms of creation and annihilation
operators, we move all annihilation operators to the right. This, of course, involves
a necessary choice of how to interpret the quantum operator corresponding to the
classical quantity.
From result 3.1, in a typical microstate |Ψ〉, we expect

〈Ψ|f5|Ψ〉 = 1 +Q5G(χ = 0, α = 0);

〈Ψ|f1|Ψ〉 = 1 +Q5 lim
χ→0

∂

∂χi
∂

∂χi
G(χ, α = 0);

〈Ψ|Ai|Ψ〉 = Q5 lim
χ→0

∂

∂χi
G(χ, α = 0);

〈Ψ|Wi|Ψ〉 = Q5 lim
α→0

∂

∂αi
G(χ = 0, α).

(3.33)

We can equivalently compute this object by using the equivalence of the canonical
and microcanonical ensemble at large S(E)

Gβ(χ, α) =
1

Z(β)
Tr

[
e−βH

∫ ∞

−∞

∏

k

dgk

∫ ∞

0

dt

∫ L

0

ds

L
: eF :

(
t

π

)2
]
, (3.34)

where the “temperature”, β−1, is set by demanding that the expectation value of the
Hamiltonian be N1N5 and Z(β) = Tr(e−βH). The equivalence of ensembles implies
that

Gβ(χ, α) = G(χ, α) + O

(
1√
S(E)

)
, (3.35)

and this accuracy is sufficient for our purpose. Similarly, the thermal expectation
values, 〈f5〉β, 〈f1〉β, 〈Wi〉β obtained from this generating function match the typical
expectation values of (3.33) up to terms suppressed by the entropy.
Before evaluating the traces we need, we remind the reader of a few simple results.

If we consider a single simple harmonic oscillator, corresponding to a given value of
n and k, then in a number eigenstate of that oscillator, |Nk

n〉, for any values of the
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c-number coefficients ckn and dkn, we have

〈Nk
n |ec

k
n(akn)†ed

k
na
k
n|Nk

n〉 =
N∑

r=0

N !

(N − r)!(r!)2
(cknd

k
n)r =

∞∑

r=0

Nk
n(Nk

n − 1) . . . (Nk
n − r + 1)

(r!)2
(cknd

k
n)r.

(3.36)
Here in the last step, we have simply noted that the sum over r can be extended
till ∞. All terms larger than N vanish because of the factor of (N − r + 1) in the
numerator. If we take the thermal trace and denote z = e−β, we find

Tr
(
e−βnN

k
nec

k
n(akn)†ed

k
na
k
n

)
=

∞∑

Nk
n=0

∞∑

r=0

Nk
n(Nk

n − 1) . . . (Nk
n − r + 1)

(r!)2
znN

k
n
(
cknd

k
n

)r

=
1

1− zn exp
(ckndknzn

1− zn
)
,

(3.37)

where we have used the identity

∞∑

N=0

N(N − 1) . . . (N − r + 1)xN = r!
xr

(1− x)r+1
. (3.38)

We now note that

F =
∑

k,n

µe−
2iπns
L akn(−2itgk + αk − i2πn

L
χk)√

2nL
+
µe

2iπns
L (akn)†(−2itgk + αk + i2πn

L
χk)√

2n

−
∑

k

tgk(gk − 2ixk).

(3.39)

The expression above is just in the form we need. We see that the thermal trace
breaks up into a product of the traces over individual oscillator sectors, and moreover
that for each oscillator the coefficients ckn and dkn can be identified from the expression
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above. This leads to

Tr(e−βH : eF :) = exp

[∑

k

2itgkxk − tg2
k +

∑

n

log(1− zn)

+
∑

n

1

1− zn
(−2µ2t2g2

kz
n

n
− 2iµ2tgkαkz

n

n
+

2π2µ2nχ2
kz

n

L2
+
µ2α2

kz
n

2n

)
]
.

(3.40)

Note that if we take the limit t, gk, αk, χk → 0 in (3.40), we simply get the partition
function, which is

Z(β) = e
∑
n,k log(1−zn). (3.41)

We can expand the logarithm in a power series and the interchange the order of
sums to get

Z(β) = exp
[
d
∑

n,m

1

m
znm

]
= exp

[
d
∑

m

zm

m(1− zm)

]
. (3.42)

At high temperatures, we can approximate

∑

m

zm

m(1− zm)
=
∑

m

1

m2β
+ O (1) =

π2

6β
(1 + O (β)) . (3.43)

and therefore,
Z(β) = e

2π2

6β , (3.44)

where we have dropped the O (β) errors that should be understood and will not be
displayed explicitly again.

From the partition function above, we find that the temperature and the energy
(at large energies) are related through

E =
2π2

3β2
. (3.45)

Moreover, the degeneracy of states at a given energy is given by

S(E) =
4π2

3β
= 2π

√
2E

3
= 2π

√
2N1N5

3
. (3.46)
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To evaluate the expression in (3.40), we need to evaluate one more infinite sum
over n.

∞∑

n=1

ne−βn

1− e−βn =
∞∑

n=1,m=1

ne−βnm =
∞∑

m=1

e−βm

(1− e−βm)2
−→
β→∞

π2

6β2
+ O

(
1

β

)
. (3.47)

Therefore we find at “high temperatures” that

Gβ(χ, α) =

∫ ∏

k

dgkdt
ds

L

(
t

π

)2

e

∑
k

[
−
(
π2µ2t2

3β
+t
)
g2
k−gk

(
iπ2µ2tαk

3β
+2itxk

)
+
π2µ2α2

k
12β

+
π4µ2χ2

k
3β2L2

]

=

∫
dt
ds

L

9β2e

(
π4µ2~χ2

3β2L2 +
π2~α2µ2+4t(π2µ2~x·~α−3βr2)

4(3β+π2µ2t)

)

(3β + π2µ2t)2

=

36β2e
π4µ2~χ2

3β2L2 − 3βr2

π2µ2

(
e
π2~α2µ2

12β
+ 3βr2

π2µ2 − e~x·~α
)

π4~α2µ4 + 36β2r2 − 12π2βµ2~x · ~α ,

(3.48)

where r2 =
∑

k x
kxk.

From this generating function we can immediately read off the various “thermal”
expectation values. We find that

〈f5 − 1〉β = Q5
1− e− r

2

τ

r2
;

〈f1 − 1〉β = Q5

24τ 2
(

1− e− r
2

τ

)

µ2L2r2
= Q1

(
1− e− r

2

τ

)

r2
;

〈Ai〉β = 0;

〈Wi〉β = −Q5

τxie
− r2
τ

(
1− e r

2

τ + r2

τ

)

r4
.

(3.49)

where
τ =

π2µ2

3β
, (3.50)

66



3.3 Quantum aspects of the two-charge solutions

In the second line of (3.49) we noted that

24τ 2

µ2L2
=

8π4µ2

3β2L2
=
Q1

Q5

. (3.51)

As advertised, 〈Ai〉β vanishes in the average fuzzball metric.

Analysis of one-point functions

The expressions in (3.49) start deviating from the conventional expressions when
r2 = τ . To understand this physically, we consider the radius of the y-circle when
r2 = τ in the conventional metric. We see that this radius (in the Einstein frame)
is given by

R2
stretch =

(
Q5

Q1

) 1
4
(

1

Q1Q5

) 1
2

τR2. (3.52)

Note that we have
τ =

µ2π2

3β
=
µ2S(E)

4
=
g2
sS(E)

4R2V4

, (3.53)

where we used the fact that µ2 = g2
s

R2V4
. We also note that the volume of the compact

manifold in the string frame is given by Vcom =
(
Q1

Q5

)
V4.

Putting all these factors together, and using (3.25) and (3.46), we find

R2
stretch =

(
Q5

Q1

) 1
4
(

V4

g2
sN1N5

) 1
2 g2

s2π
√

2N1N5

3

4V4

=

(
Q1

Q5

) 1
4 π

2

√
2

3

gs√
Vcom

. (3.54)

In these units, where string scale is set to unity, the fundamental (10 dimensional)
Planck scale is simply given by `8

pl = g2
s . Therefore we have found that

R2
stretch =

π

2

√
2

3

(
Q1

Q5

) 1
4 `4

pl√
Vcom

. (3.55)

Now, we should work in the duality frame, where the physical volume of the
compact manifold is at least Vcom ≥ 1 in string-units. If we are not in such a frame,
we should use T-duality in the compact directions to reach such a frame. Moreover,
we should work in the duality frame where the dilaton does not blow up at this point
in space, and therefore we need Q1

Q5
= O (1). Just as above, if this constraint is not
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met, we can use the U-duality group to change the values of N1, N5 while keeping
N1N5 constant to reach such a duality frame. Putting these physical constraints
into (3.55), we see that

Rstretch � O (`pl) . (3.56)

Therefore, in the average fuzzball solution, the metric starts to differ from the
conventional metric when the y-circle has a size that is smaller than the Planck
length. The solution is completely unreliable since, well before this size is reached,
classical string effects become important that have not been taken into account in
obtaining the solution (3.21). Moreover, in this region, as one might expect —
and as we compute explicitly in the next subsection — quantum fluctuations in the
geometry are as large as various classical expectation values. This implies that we
should not take (3.21) with the substitutions (3.49) seriously as a quantum-corrected
geometry.

3.3.2 Fluctuations

We now compute the quantum fluctuations in the thermally averaged ensemble as
an input to computing the quantumness parameters for these quantities. We do
not compute these parameters for Ai, since it vanishes both in the conventional
geometry and the black hole. We consider the generating function of the variance

Vβ(χ, α, χ̃, α̃) =
1

Z(β)
Tr
[
e−βH

∫ ∞

−∞

∏

k

dgkdg̃k

∫ ∞

0

dtdt̃

∫ L

0

dsds̃

L2

(
tt̃

π2

)2

: eF :: eF̃ :
]
,

(3.57)

where

F̃ = −
∑

k

t̃g̃kg̃k + 2it̃(xk − F k(s̃))g̃k +
∑

j

α̃jF j(s̃) + χ̃j
dF j(s̃)

ds̃
. (3.58)
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(Note that F and F̃ share the same value of x.) We can then obtain the required
two-point functions by differentiation

〈(f5 − 1)2〉β = Q2
5Vβ(χ = 0, χ̃ = 0, α = 0, α̃ = 0);

〈(f1 − 1)2〉β = Q2
5 lim
χi,χ̃i→0

∑

i,j

∂4

∂2χi∂2χ̃i
Vβ(χ, χ̃, α = 0, α̃ = 0);

〈WiWj〉β = Q2
5 lim
αi,α̃i→0

∂2

∂αi∂α̃j
Vβ(χ = 0, α, χ̃ = 0, α̃);

(3.59)

By the equivalence of ensembles these variances coincide with microcanonical vari-
ances up to terms suppressed by the entropy. Then, by result 3.1 these variances
also coincide with variances computed in a typical state:

〈(f5 − 1)2〉β = 〈Ψ|(f5 − 1)2|Ψ〉+ O

(
1√
S(E)

)
, (3.60)

and similarly for 〈(f1 − 1)2〉β and 〈WiWj〉β.

The computation of the variance is considerably more involved than the computa-
tion of the expectation value. So, we will not compute the function Vβ for arbitrary
values of its parameters, but simply compute the derivatives and limits that we are
interested in.

First we note that
: eF :: eF̃ :=: eF+F̃ : eN , (3.61)

where the normal ordering constant N arises because we need to move the creation
operators inside F̃ past the annihilation operators of F . This can be easily done
through the formula

ec
k
na
k
ned

k
n(akn)† = ed

k
n(akn)†ec

k
na
k
nec

k
nd
k
n . (3.62)
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In our case, we find that

N =
∑

n,k

e
2πin(s̃−s)

L

[
1

n

(
− 2µ2tt̃gkg̃k − iµ2tgkα̃k − iµ2t̃g̃kαk +

1

2
µ2αkα̃k

)

+
(2πµ2tgkχ̃k

L
− 2πµ2t̃g̃kχk

L
+
iπµ2αkχ̃k

L
− iπµ2α̃kχk

L

)
+

2π2nµ2χkχ̃k
L2

]

=

[
− log(1− e 2πi(s̃−s)

L )
(
− 2µ2tt̃gkg̃k − iµ2tgkα̃k − iµ2t̃g̃kαk +

1

2
µ2αkα̃k

)

+
1

(1− e 2πi(s̃−s)
L )

(2πµ2tgkχ̃k
L

− 2πµ2t̃g̃kχk
L

+
iπµ2αkχ̃k

L
− iπµ2α̃kχk

L

)

+
1

(1− e 2πi(s̃−s)
L )2

2π2µ2χkχ̃k
L2

]
.

(3.63)

Also,

F + F̃ =
∑

n,k

1

2L
√
n

×
[√

2µakn

(
e−

2iπns̃
L (−2iLtgk + Lαk − 2iπnχk) + e−

2iπns
L (−2iLt̃g̃k + Lα̃k − 2iπnχ̃k)

)

+
√

2µ(akn)†
(
e

2iπns
L (−2iLtgk + Lαk + 2iπnχk) + e

2iπns̃
L (−2iLt̃g̃k + Lα̃k + 2iπnχ̃k)

)

− 2L
√
n
(
−2ixk(tgk + t̃g̃k) + tg2

k + t̃g̃2
k

) ]
.

(3.64)

Therefore,
〈: eF+F̃ :〉β = e

∑
n,kQn,k , (3.65)
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with

Qn,k =
µ2zn

2n (zn − 1)

×
(

2tgke
2iπns̃
L + 2t̃g̃ke

2iπns
L + iα̃ke

2iπns
L +

2πn

L
χ̃ke

2iπns
L + iαke

2iπns̃
L +

2πn

L
χke

2iπns̃
L

)

×
(

2tgke
−2iπns

L + 2t̃g̃ke
−2iπns̃

L + iαke
−2iπns

L − 2πn

L
χke

−2iπns
L + iα̃ke

−2iπns̃
L − 2πn

L
χ̃ke

−2iπns̃
L

)

− tgk(gk − 2ixk)− t̃g̃k(g̃k − 2ixk).

(3.66)

We can compute the sums over n using the following formulas. As β → 0, we
have

∑

n

e−βn+2iπns

n (1− e−nβ)
→ Li2 (e2iπs)

β
;

∑

n

e−βn+2iπns

1− e−nβ → −
log (1− e2iπs)

β
;

∑

n

ne−βn+2iπns

1− e−nβ → 1

β (1− e2iπs)
.

(3.67)

We can then write

N +
∑

n,k

Qn,k =
∑

k

−(gk, g̃k) ·
(
τt2 + t ctt̃

ctt̃ τ t̃2 + t̃

)
· (gk, g̃k) + `k1tg

k + `k2 t̃g̃
k + z,

(3.68)
where

τ =
π2µ2

3β
, (3.69)
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as above in section 3.3.1 and the other coefficients take on the values

c =
µ2

β
L+ + cN ;

−i`k1 = 2xk −
µ2

3β

[
π2αk + 3α̃kL+ − 6iπ

χ̃k
L
L−
]
− i`k1N ;

−i`k2 = 2xk −
µ2

3β

[
π2(α̃)k + 3αkL+ + 6iπ

χk
L
L−
]
− i`k2N ;

z =
µ2

12β2

[
π2βα2

k +

(
−24π2β

χkχ̃k
L2

+ 4π4χ
2
k

L2
+ 4π4 χ̃

2
k

L2

)
+ π2βα̃2

k

+ 12iπβα̃k
χk
L
L− + αkα̃kL+ − 12iπβ

χ̃k
L
L−
]

+ zN ,

(3.70)

where

L+ = Li2

(
e−

2iπ(s−s̃)
L

)
+ Li2

(
e

2iπ(s−s̃)
L

)
,

L− = log
(

1− e− 2iπ(s−s̃)
L

)
− log

(
1− e 2iπ(s−s̃)

L

)
.

(3.71)

The contribution from the normal ordering constant in the coefficients above is
indicated with the subscript N and these numbers are given by

cN = µ2LN ;

`1N = −iµ2
(
iα̃kLN +

2πχ̃k
L (−1 + w)

)
;

`2N = −iµ2
(
iαkLN −

2πχk
L (−1 + w)

)
;

zN = − µ2

2 (−1 + w)2

×
[
αk (−1 + w)

(
α̃k (−1 + w)LN − 2iπ

χ̃k
L

)
− 2π

χk
L

(
2π
χ̃k
L
w − iα̃k (−1 + w)

)]
,

(3.72)

with w = e
2iπ(s−s̃)

L and LN = log(1 − 1/w). By comparing (3.72) to (3.70) we see
that the coefficients that come from normal ordering are all negligible when β � 1.
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So, for numerical purposes we will neglect these coefficients although the fact that
they are non-zero will play a role below.

In this form we can immediately do the integral over gk and g̃k, since these are
Gaussian. We find that

Vβ(χ, α, χ̃, α̃) =

∫ ∞

0

dtdt̃

∫ L

0

dsds̃

L2

e
tt̃(4τ2z+τ(`12+`2

2)−2c(2cz+`1·`2))+(4τz(t+t̃)+`1
2t+`2

2 t̃)+4z

4(tt̃(τ2−c2)+τ(t+t̃)+1)

(
tt̃ (τ 2 − c2) + τ(t+ t̃) + 1

)2 .

(3.73)

At this stage, rather than do the t-integrals in generality, it is convenient to
separate the computation of the different quantities.

〈(f5 − 1)2〉β: This is the simplest t-integral to calculate since we simply set χ, χ̃, α, α
to 0. With these substitutions, z → 0 and also `k1, `k2 → 2ixk. We then find that

Vβ(χ = 0, α = 0, χ̃ = 0, α̃ = 0) =

∫ L

0

ds

L

ds̃

L

∫ ∞

0

dtdt̃
exp

(
− r2(2tt̃(τ−c)+(t+t̃))

tt̃(τ2−c2)+τ(t+t̃)+1

)

(
tt̃ (τ 2 − c2) + τ(t+ t̃) + 1

)2

=

∫ L

0

ds

L

ds̃

L

[e− r
2

c

c2

(
Ei
(
r2

c

)
− 2Ei

(
(τ − c)r2

τc

)
+ Ei

(
(τ − c)r2

c(τ + c)

))

+
2τe−

r2

τ

cr2(τ − c) −
(τ + c)e−

2r2

τ+c

cr2(τ − c) −
1

cr2

]
.

(3.74)

Here Ei(x) = −
∫∞
−x e

−tP
(

1
t

)
dt The last integral, over s, s̃ must be done numerically

and we discuss that in section 3.3.3.

〈(f1 − 1)2〉β: It is convenient to first differentiate with respect to χ, χ̃ before
performing the t, t̃ integrals. These derivatives lead to a complicated expression.
However, it is important to realize that this expression involves terms that appear
at different orders in 1

β
.

The reader can persuade herself through inspection, or through an explicit calcu-
lation that the dominant terms at small β occur only when the χ, χ̃ derivatives act
on the χ2

k and (χ̃k)2 terms inside z in (3.70).
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This leads to the simple result

〈(f1 − 1)2〉β =
64π8µ4

9L4β4
〈(f5 − 1)2〉β (1 + O (β)) =

Q2
1

Q2
5

〈(f5 − 1)2〉β (1 + O (β)) ,

(3.75)
where we have used the ratio between coefficients displayed in (3.51) and neglected
the O (β) terms in the last equality.

〈WiWj〉β: The computation of 〈WiWj〉β is rather involved. We do not give the
details of all the intermediate steps, but simply note the final answer in the form of
an integral over s, s̃ that we will evaluate numerically below. We find that

1

Q2
5

〈WiWj〉β = Aδij + Bxixj, (3.76)

where

A =
(c− τ)e−

r2

c (r2(c− τ) + 3c(τ + c))
(
−2Ei

(
(τ−c)r2

τc

)
+ Ei

(
(τ−c)r2

c(τ+c)

)
+ Ei

(
r2

c

))

12c4

+
τe−

r2

τ (−τc2(τ + 3c) + r4(τ − c)2 + cr2(c− τ)(2τ + 3c))

6c3r4(τ − c)

+
(τ + c)e−

2r2

τ+c (c2r2(τ + c)2 + r6 (−(τ − c)2) + 2cr4(τ − c)(τ + c))

12c3r6(τ − c) ,

(3.77)

and

B =
(τ 2 + 4τc+ c2) e−

r2

c

(
−2Ei

(
(τ−c)r2

τc

)
+ Ei

(
(τ−c)r2

c(τ+c)

)
+ Ei

(
r2

c

))

6c4

+
τe−

r2

τ (τ 2 (2c2 + cr2 + r4) + τc (6c2 + 5cr2 + 4r4) + c2r2 (6c+ r2))

3c3r6(τ − c)

− (τ + c)e−
2r2

τ+c (τ 2 (2c2 + cr2 + r4) + 2τc (2c2 + 3cr2 + 2r4) + c2 (2c2 + 5cr2 + r4))

6c3r6(τ − c) .

(3.78)
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3.3.3 Analysis of the results

We now proceed to analyze the results obtained. We will compute the “difference”
and “quantumness” parameters defined in (3.13) and (3.14). For the harmonic func-
tions, we compute the following expressions both of which depend on ~x.

d5 =
∣∣∣〈(f5 − 1)〉β − fbh5 + 1

〈(f5 − 1)〉β

∣∣∣;

q5 =
∣∣∣
(
〈(f5 − 1)2〉β − 〈(f5 − 1)〉β2) 1

2

〈(f5 − 1)〉β

∣∣∣.
(3.79)

We do not need to compute these parameters separately for f1 since as we have found
above, 〈f1 − 1〉β = Q1

Q5
〈f5 − 1〉β and also 〈(f1 − 1)2〉β =

Q2
1

Q2
5
〈(f5 − 1)2〉β. Therefore

q1 = q5; d1 = d5.
Since Wi = 0 in the conventional black-hole geometry, we find dW = 1. Then, to

measure the size of quantum fluctuations, we compute

qW =
∣∣∣(x

ixj〈WiWj〉β − xixj〈Wi〉β〈Wj〉β)
1
2

xixj〈Wi〉β〈Wj〉β

∣∣∣. (3.80)

Difference and quantumness parameters for the harmonic functions, f1

and f5

We start by evaluating (3.79). Let us consider the remaining integrals over s, s̃ in
the results (3.74).
First note that s, s̃ only appear in these expressions through w = e

2πi(s−s̃)
L . More-

over, each integrand has a Laurent series expansion in w, and so the integral over
s, s̃ simply picks out the w0 term. Note also, that the integrand has potential sin-
gularities at τ = c. These poles arise when w solves

π2

6
− 1

2

(
Pl(2, w) + Pl(2, 1/w) +

2πβ

L
log(1− w)

)
= 0. (3.81)

At small β the pole is almost at w = 1 but the last term moves the pole slightly off
the |w| = 1 contour to |w| = 1 + O (β). Other than the effect above, the normal
ordering term is negligible. For ease with the final numerical integrals, we deal with
this as follows. We drop the term cN in (3.70) and instead add a small real regulator
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Chapter 3 Critique of the fuzzball program

to c so that cε = c−ε. We then compute (3.74) and (3.76) with c→ cε. Numerically,
it is easy to check that the value of this regulator does not alter any of the answers
provided it is kept small enough.
It is of interest to consider the behaviour near r = 0, where the fuzzball solution

differs from the conventional solution. We find that, in this limit (3.74)

1

Q2
5

〈(f5 − 1)2〉β =Q2
5

∫ L

0

dsds̃

L2

log
(

τ2

τ2−c2
)

c2
+
r2
(
τ(τ + c) log

(
1− c2

τ2

)
+ c2

)

τc3(τ + c)
+O

(
r4
)

= 1.182
1

τ 2
− 1.283

r2

τ 3
,

(3.82)

which leads to
q5 = 0.426− 0.119

r2

τ
. (3.83)

They key point is that, just as expected q5 becomes of order 1 just in the region
where r2

τ
� 1 and the average fuzzball geometry starts to differ appreciably from the

conventional solution. Therefore, in precisely the region where the average fuzzball
geometry predicts interesting effects, it becomes unreliable.
It is possible to numerically compute both d5 and q5 for larger values of x and we

display this in Figure 3.5. As we move to larger values of r2

τ
the solution becomes

more reliable, but then it also becomes indistinguishable from the conventional black
hole.

2 4 6 8

r2

τ

0.2

0.4

0.6

0.8

q5, d5

d5

q5

Figure 3.5: A plot of the “difference parameter”, d5 and the “quantumness parame-
ter”, q5 for the harmonic functions f5 and f1. The plot shows that in the average
fuzzball geometry, precisely in the region where f5, f1 differ significantly from their
conventional value, quantum fluctuations becomes large and the fuzzball geometry
becomes unreliable.
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Difference and quantumness parameters for Wi

We now turn to the difference and quantumness parameters for Wi. The difference
parameter is uniformly equal to 1 since Wi = 0 in the conventional black hole.
At small r2

τ
we find that

x̂ix̂j〈WiWj〉β

=

∫ L

0

ds

L

ds̃

L

[
(τ 2 − c2) log

(
τ2−c2
τ2

)
+ c2

4c3
−
r2(τ + c)

(
τ 2 log

(
τ2−c2
τ2

)
+ c2

)

2τc4

]
+ O

(
r4

τ 3

)

=
0.00489

τ
+

0.355r2

τ 2
+ O

(
r4

τ 3

)
.

(3.84)

At small values of r, when we combine this with the series expansion of (3.49), this
leads to

qW = 0.140

√
τ

r
+ 1.587

r√
τ
. (3.85)

Therefore, quantum fluctuations diverge near r = 0 and the expected value of Wi in
the average geometry becomes completely unreliable.
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r2

τ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

qw, dW

dw

qw

Figure 3.6: A plot of the “difference parameter”, dW and the “quantumness param-
eter”, qW for the one-form Wi. The difference parameter is uniformly 1, since this
function vanishes in the conventional black hole. But, the value it ostensibly takes
in the average fuzzball solution is always unreliable since quantum fluctuations are
the same size as its expectation value

We can numerically plot the quantumness parameter for larger values of r and
this leads to the curve shown in Figure 3.6. At both small r2

τ
and larger values of

r2

τ
the value for Wi given by the average fuzzball geometry is unreliable.
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Fuzzballs and entropy counting: In this section, we have argued that the average
fuzzball geometry is unreliable in the interesting region near r = 0. By result 3.1,
the geometry corresponding to a typical state in the Hilbert space produced by
quantizing fuzzball solutions is also unreliable near r = 0. Away from r = 0, this
average geometry is effectively indistinguishable from the conventional geometry
since its deviation from the conventional geometry is of the same order as quantum
fluctuations.
The reader might wonder how — in spite of this fact — counting the entropy of

fuzzball solutions succeeds in getting the correct form for the number of Ramond
ground states in the D1-D5 system.
The puzzle is made more acute by recognizing that most of the contribution to

this entropy comes from Planck-size fuzzballs. For small β, the reader can check
that τ also measures the average size of the profile function

∑

i

∫ L

0

〈: F i(s)F i(s) :〉β
ds

L
. = 2τ. (3.86)

Fluctuations in the size of the fuzzball are also controlled by τ . At high temper-
atures,

∑

i,j

∫ L

0

〈: F i(s)F i(s) :: F j(s̃)F j(s̃) :〉β
ds

L

ds̃

L
=

22

5
τ 2. (3.87)

This tells us that if we consider the entropy corresponding to fuzzballs that are
parametrically larger than (3.86), then this entropy is highly suppressed.
We do not have a complete explanation for the fact that quantizing the space

of fuzzballs gives approximately the correct counting — even though individual
fuzzball solutions that contribute dominantly to the entropy are unreliable. Our
best guess is as follows. We can consider the solutions (3.21) for profile functions,
F i(s) that are parametrically larger than (3.86). In this regime, the solutions are
reliable. Since they also saturate the BPS condition, they must correspond to some
ground-states of the D1-D5 system. This subclass of solutions can be quantized and
counted reliably. Then — perhaps as a result of one of the fortuitous coincidences
that occur while counting supersymmetric states — this counting formula can be
extrapolated to obtain a count of all ground states. Perhaps this last step can be
explained by going to some other point in parameter space, where these solutions
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can be mapped to better controlled states; this deserves to be understood better.
However, we emphasize that the entropy-formula itself cannot be taken as evi-

dence that fuzzballs are giving us an accurate picture of physics near r = 0 at the
supergravity point in moduli space, since the solutions that dominate the entropy
are unreliable in that region. It would be nice to understand the physics near r = 0

better but this clearly requires some other technique.
Another interesting open question is as follows. What is the basis whose elements

minimize q5, q1, qW so that the fluctuations in a typical state — as calculated in
(3.74), (3.75) and (3.76) — come from differences between elements of this basis
rather than fluctuations of the operator within given basis states? We do not expect,
that even in such a basis, q5, q1, qW will be parametrically suppressed near r = 0,
but in such a basis the fuzzball microstates would be reliable as possible.

3.4 Probing multi-charge solutions

In the previous section, we provided a detailed discussion of the two-charge fuzzballs.
However, the corresponding conventional solution has vanishing horizon area. So, it
is of interest to investigate fuzzballs that have the same charges as black holes with
a macroscopic horizon.
In this section, we will consider the class of asymptotically AdS fuzzball solu-

tions discovered in [44] following previous work in [85]. The conventional black-hole
geometry corresponding to these charges is given in [45]. We cannot repeat the
analysis of section 3.3 and compute quantum expectations and fluctuations since
(a) all fuzzball solutions with the charges of [44] have not been discovered and (b)
these solutions have not been quantized. Moreover, even in the set of solutions of
[44], we will consider only a subset for which the form of the metric was explicitly
given in [44].
These solutions are macroscopically distinguishable from the conventional black

hole. Therefore, if we believe expectation 2 then result 3.2 immediately tells us that
they cannot be typical elements of a basis. The calculations in this section show
that one can reach this conclusion even without assuming expectation 2 and simply
by considering asymptotic observables.
The solutions of [44] are asymptotically AdS, and the asymptotic observable we
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will focus on is a two-point function of a marginal scalar operator in the boundary
CFT. We will use this two-point function to investigate the energy-gap between
successive excitations of the fuzzball solutions. We find that this gap is too large
and violates expectation 1. We will also investigate whether fuzzball solutions satisfy
a specific bound for the falloff of the two-point function for large spacelike momenta.
This bound holds in any conformal field theory, and is saturated by the black-hole
geometry. However, fuzzballs fail to saturate this bound, indicating that they cannot
be typical microstates.

3.4.1 Review of the solution

The metric given in [44] is

ds2
6 = − 2√

P
(dv + β)(du+ ω +

1

2
F(dv + β)) +

√
Pds2

4;

u = (t− y)/
√

2; v = (t+ y)/
√

2; y ∼ y + 2πRy;

ds2
4 =

Σdr2

r2 + a2
+ Σdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2;

P = Z1Z2 − Z2
4 ; β =

a2Ry√
2Σ

(sin2 θdφ− cos2 θdψ); Σ = (r2 + a2 cos2 θ).

(3.88)

The functions Z1, Z4,F in the metric above depend on three integer parameters
k,m, n. We will consider the simplest case, k = 1,m = 0, n arbitrary, for which it
is easy to write down explicit expressions for these quantities. For this case, we find
that

Z1 =
(a2 + r2)

−n−1
(
a2b2Ry

2 sin2(θ)r2n cos
(

2
(
n(t+y)
Ry

+ φ
))

+ 2Q1Q5 (a2 + r2)
n+1
)

2Q5 (a2 cos2(θ) + r2)
;

Z4 =
abRy sin(θ)rn (a2 + r2)

−n
2
− 1

2 cos
(
n(t+y)
Ry

+ φ
)

a2 cos2(θ) + r2
;

F = −1− r2n (a2 + r2)
−n

a2
.

(3.89)
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The parameters in the solution are related through the constraint

Q1Q5

R2
y

= a2 + b2/2. (3.90)

The asymptotic geometry of these solutions is AdS3 × S3 with an AdS radius λ =

(Q1Q5)
1
4 . By the standard formula for the AdS central charge, we also have

3λ

2G3

= 6N1N5, (3.91)

where N1, N5 are the number of D1 and D5 branes and G3 is the 3-dimensional
Newton’s constant. In addition we set N = N1N5/(a

2 + b2/2).

The charges of the solutions — the angular momenta along the S3 (JL, JR), the
mass (M) and the momentum along the y-direction Py are given by

JL = JR =
N
2
a2; M = Py =

Nn
2Ry

b2. (3.92)

3.4.2 Physical quantities of interest

Let us consider a marginal scalar operator in the boundary theory. We will consider
the Fourier transform of itsWightman function in a state dual to the fuzzball solution

G(ω, γ) =

∫
〈f |O(t, y)O(0, 0)|f〉e

iωt
Ry e

iγy
Ry dtdy. (3.93)

It will also be useful to consider the Fourier transform of the commutator which is
just the difference of two Wightman functions

J(ω, γ) =

∫
〈f |[O(t, y), O(0, 0)]|f〉e

iωt
Ry e

iγy
Ry dtdy = G(ω, γ)−G(−ω,−γ). (3.94)

This Wightman function can be computed using the standard AdS/CFT dictio-
nary by considering the boundary limit of a bulk minimally coupled massless scalar,
φ, with no motion along the S3 coordinates.

G(ω, γ) = lim
r→∞

r4

∫
〈f |φ(r, t, y)φ(r, 0, 0)|f〉e

iωt
Ry e

iγy
Ry dtdy. (3.95)
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This follows from the standard “extrapolate” dictionary in AdS/CFT.3

It was shown in [87, 50] that, in the fuzzball background under consideration, the
massless scalar equation is separable. Furthermore, t and y are Killing vectors for
the metric, and therefore it is convenient to expand the bulk scalar field as

φ(r, t, y) =
∑

ω,γ

aω,γRω,γ(r)e
−iωt
Ry e

−iγy
Ry + h.c, (3.96)

where the bulk operators are normalized so that [aω,γ, a
†
ω′,γ′ ] = δωω′δγγ′ . We take the

radial wave-functions corresponding to different ω, γ to be orthonormal in the Klein
Gordon norm. Therefore they satisfy

∫
h(r)ωRω,γ(r)R

∗
ω,γ(r)dr = 1. (3.97)

where the measure factor, h(r) = 8π3
√−g/(sin θ cos θ) depends only on r. Note

that this requires us to consider only normalizable radial bulk solutions.

The boundary Wightman function is then just given by

G(ω, γ) = Nω,γ|Cω,γ|2, (3.98)

where
Cω,γ = lim

r→∞
r2Rω,γ(r). (3.99)

and
〈f |aω,γa†ω′,γ′|f〉 = Nω,γδω,ω′δγγ′ . (3.100)

If the fuzzball state is approximately thermal, we expect that Nω,γ = 1
1−e−βω and

independent of γ. However, we can avoid any assumptions about the function Nω,γ

by considering the commutator. Then by using the fact that

〈f |[aω,γ, a†ω′,γ′ ]|f〉 = δω,ω′δγγ′ . (3.101)

3In some special cases in d = 4 that correspond to Coulomb branch solutions of N = 4 SYM, there
are subtleties with the standard extrapolate dictionary [86] but these subtleties are irrelevant
here.
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we see that the commutator is simply given by

J(ω, γ) = |Cω,γ|2. (3.102)

Therefore, the computation of the Wightman function and the commutator re-
duces essentially to a computation of Cω,γ which can be obtained by solving the
bulk radial equation and normalizing it under (3.97).

We will be particularly interested in the behaviour of these function in the limit
where γ � 1. In this limit, we can perform analytic calculations using a WKB
approximation. We will show that G(ω, γ) and J(ω, γ) have support on a discrete
set of frequencies with a gap between successive excitations that scales with a2

b2
.

Therefore, even if we take a
b
� 1 (but not suppressed by an exponent of N1N5), we

see by expectation 1 that these states are very atypical.

The large-γ limit of the Wightman function and the commutator is also of interest
because, by virtue of having a horizon, black holes saturate a bound on how slowly
these functions can decay at large-γ. We will show, again, that the fuzzball solutions
do not saturate this bound in the limit where a2

b2n
= O (1). Therefore, these fuzzball

solutions also do not obey the ETH.

3.4.3 Propagation of a massless scalar

When the angular momentum of the mode along S3 is zero, the wave-equation,
2φ = 0 yields the following equation for the radial mode

R′′ω,γ(r) +Q(r)R′ω,γ(r) + P (r)Rω,γ(r) = 0;

Q(r) =
a2 + 3r2

a2r + r3
;

P (r) =
1

4a2r2 (a2 + r2)n+2

(
− b4r2(ω − γ)2

(
r2n −

(
a2 + r2

)n)− 4a6γ2
(
a2 + r2

)n

− 2a2r2
(
b2(ω − γ)

(
r2n(ω − γ)− 2ω

(
a2 + r2

)n))
+ 4a4r2

(
a2 + r2

)n (
ω2 − γ2

) )
.

(3.103)
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With the appropriate translation of notation, this is the same as the wave-equation
derived in [50]. To put the equation in WKB form, we redefine

Rω,γ(r) = α
ψ(r)√

r(r2 + a2)
. (3.104)

Here α is a normalization constant that we will turn to in section 3.4.5 and we have
suppressed the ω, γ dependence on ψ and α. Further, changing variables to ξ = r

a

and setting b = aκ, we can put the equation for ψ in WKB form,

d2ψ(ξ)

dξ2
− V (ξ)ψ(ξ) = 0, (3.105)

with

V (ξ) =
1

4 (ξ2 + 1)2

[4γ2 − 1

ξ2
+ 4γ2 + 3ξ2 + κ2

(
κ2 + 2

)
(ω − γ)2 ξ2n

(ξ2 + 1)n

−
(
κ2(ω − γ) + 2ω

)2
+ 6
]
.

(3.106)

The potential has two turning points, and we can understand its qualitative be-
haviour as follows. We see that at small ξ (r � a), the potential is positive since it
is dominated by the 4γ2−1

ξ2 term in the numerator of (3.106). We remind the reader
that γ � ω and we will primarily be interested in a regime where κ � 1. Then it
is clear that for a range of values of ξ near ξ = 1, the potential becomes negative
before becoming positive again for large ξ due to the 3ξ2 term in the numerator. A
graph of the potential is shown in Figure 3.7 for some typical values of κ, n, γ with
ω = 0 for simplicity.

For large values of γ, the WKB approximation is valid everywhere except very
close to the two turning points or when ξ = O (γ). In this large ξ region, we will
match the WKB solution to a Bessel function, and we will deal with the turning
points by interpolating between the two sides using the Airy-functions.

Let us denote the position of the first turning point by ξ1 and the second turning
point by ξ2. Then, for small ξ if we insist that the solution be normalizable, we can
write

ψ(ξ) =
1

V (ξ)
1
4

e
∫ ξ
ξ1

√
V (ζ)dζ

, ξ < ξ1, (3.107)
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Figure 3.7: A graph of V (ξ) vs ξ with γ = 10, ω = 0, κ = 4 and different values of
n.

Near ξ = ξ1, we can approximate V (ξ) ≈ |V ′(ξ1)|(ξ1 − ξ) and therefore we have

ψ(ξ) =
2
√
π

|V ′(ξ1)| 16
Ai(|V ′(ξ1)|(ξ1 − ξ)), ξ ≈ ξ1, (3.108)

where we have chosen the Airy Ai-function based on the expected asymptotics for
ξ < ξ1. Matching again with the WKB solution we find that

ψ(ξ) =
1

|V (ξ)| 14
[
ei
π
4 e
−i
∫ ξ
ξ1

√
|V (ζ)|dζ

+ e−i
π
4 e

i
∫ ξ
ξ1

√
|V (ζ)|dζ]

=
1

|V (ξ)| 14
[
A−e

iπ
4 e

i
∫ ξ
ξ2

√
|V (ζ)|dζ

+ e
−iπ

4 A+e
−i
∫ ξ
ξ2

√
|V (ζ)|dζ]

, ξ1 < ξ < ξ2,

(3.109)

where
A± = e±i

∫ ξ2
ξ1

√
|V (ζ)|dζ . (3.110)

Near ξ ≈ ξ2 we need to use the Airy-function interpolation again and find that the
solution matches to

ψ(ξ) =
1

|V (ξ)
1
4 |
[
B+e

∫ ξ
ξ2

√
|V (ζ)|dζ

+B−e
−
∫ ξ
ξ2

√
|V (ζ)|dζ]

, ξ2 < ξ � γ, (3.111)
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with B+ = A−+A+

2
;B− = i

2
(A− − A+). Now, for very large ξ, we can also solve for

the wave-equation in terms of Bessel functions

ψ(ξ) =
2C

δ

√
ξI1

(
δ

ξ

)
, ξ � 1, (3.112)

where δ2 = 1
2
(γ2 − ω2)(2 + κ2), and we have picked the Bessel “I” function by

demanding that the solution be normalizable at infinity. Matching the solutions
(3.111) and (3.112) in the neighbourhood of some point ξ3 which satisfies 1� ξ3 �
γ, where both solutions are valid, we see that the solutions can only match if B+ = 0.
This simply tells us that in the region where the potential becomes positive again,
the magnitude of the wave-function cannot grow exponentially.

This gives us a quantization condition on the potential:

2

∫ ξ2

ξ1

|V (ζ)| 12dζ = (2m+ 1)π, (3.113)

for some integer m. From the formula above, we have B− = (−1)m and this addi-
tionally tells us that

2C√
2π

ξ3

δ
3
2

e
δ
ξ3 =

(−1)m

V (ξ3)
1
4

e−
∫ ξ3
ξ2
|V (ζ)| 12 dζ =⇒ C = (−1)m

δ

2

√
2πe

−
∫ ξ3
ξ2
|V (ζ)| 12 dζ− δ

ξ3 .

(3.114)
It is clear that the value of C does not depend on the precise value of ξ3 chosen to
perform the matching.

We will now use this WKB solution to compute some physical quantities of inter-
est.

3.4.4 Energy gap

First, we consider the gap in energies of states in the neighbourhood of the fuzzball
state. This is a question of the values of ω for which G(ω, γ) has support.

Clearly G(ω, γ) vanishes for those frequencies where no normalizable solution
exists. (This is independent of any assumption about Nω,γ.) So, the energy gap
can be obtained by examining the values of ω for which the quantization condition
(3.113) is satisfied. The quantization condition can be parsed as follows. First, in
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the limit ξ1 < ξ < ξ2, we expand the square-root of the potential as

√
|V | = V 1

2
,1γ − ωκ2V 1

2
,0 + O

(
1

γ

)
,

V 1
2
,1 =

√∣∣∣κ4
((

1
ξ2 + 1

)n − 1
)
− 2κ2 − 4

(
1
ξ2 + 1

)n+1
∣∣∣

2ξ2
(

1
ξ2 + 1

)n
2

+1
,

V 1
2
,0 =

(κ2 + 2)
((

1
ξ2 + 1

)n
− 1
)(

1
ξ2 + 1

)−n
2
−1

2ξ2

√∣∣∣κ4
((

1
ξ2 + 1

)n − 1
)
− 2κ2 − 4

(
1
ξ2 + 1

)n+1
∣∣∣
.

(3.115)

The absolute value sign inside the square-root is for later use and does not have any
effect in the range under consideration.

Now, at large γ, the values of ξ1 and ξ2 are controlled by V 1
2
,1 and do not depend

on ω. Therefore, if we consider two consecutive solutions of (3.113) that differ by
an amount δω, then this difference must satisfy

δω =
π

κ2gn
. (3.116)

where

gn =

∫ ξ2

ξ1

V 1
2
,0dξ. (3.117)

For general values of κ, this condition can only be solved numerically but it is
of interest to examine the limit where κ � 1. In this limit, we can approximate
ξ1 ≈ 2

κ2 and ξ2 ≈ κ
√

n
2
. For the calculation of gn, these limits are effectively 0 and

∞. Therefore, expanding V 1
2
,0 at large κ, we find

gn =

∫ ∞

0

dξ

√(
1
ξ2 + 1

)n
− 1

(
1
ξ2 + 1

)−n/2

2 (ξ2 + 1)
+ O

(
1

κ

)
. (3.118)

The first few values of gn (for n = 1 to n = 5) are {0.5, 0.574, 0.610, 0.632, 0.648}.
Therefore, at large γ and large κ, the energy gap between consecutive excitations

scales as 1
κ2 with a simple numerical prefactor.
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3.4.5 Large γ Wightman function and commutator

We now briefly explain the significance of the behaviour of the Wightman func-
tion and the commutator at large γ but small ω. As explained in [62], in any
conformal field theory, the large-γ, small-ω, limit of the thermal Wightman func-
tion/commutator must fall off exponentially, with an exponent that is bounded
below. We review this argument below. In [62], it was also shown that black holes
saturate this bound because of the presence of the horizon. It is therefore, of interest,
to understand whether fuzzballs also saturate this bound.

We will perform the analysis for the Wightman function below, although the
analysis for the commutator is precisely the same. To obtain the bound on the
behaviour of the Wightman function, we consider this correlator in a state with a
finite temperature and chemical potential for the momentum in the y-direction in
some arbitrary two-dimensional conformal field theory living on a circle with radius
Ry.

G (t, y) = Tr
(
e−β(H−µPy)O(t, y)O(0, 0)

)

=
∑

m,n

e−β(Em−µPm)e−it(En−Em)−iy(Pn−Pm)|〈m|O(0, 0)|n〉|2, (3.119)

where the sum over m,n runs over a complete set of energy/momentum eigenstates
and to lighten the notation we have the same symbol for the position-space Wight-
man function as for its Fourier transform. Now, by Fourier transforming in time,
we find that

G(ω, y) =

∫
G(t, y)e

iωt
Ry dt

= 2π
∑

m,n

δ(En −
ω

Ry

− Em)e−β(Em−µPm)−i(Pm−Pn)y|〈m|O(0, 0)|n〉|2.
(3.120)

Now, writing y = yr + iyi, and using the spectrum condition Em ≥ |Pm|, we see that
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the real part of the exponent in the sum over m,n can be written as

Re(−β(Em − µPm)− i(Pm − Pn)y) ≤ −βEm(1− |µ|) + (|Pm|+ |Pn|)|yi|

= β(1− |µ|) ω

2Ry

− (Em + En)
β(1− |µ|)

2
+ (|Pm|+ |Pn|)|yi|

≤ β(1− |µ|) ω

2Ry

− (Em + En)

(
β(1− |µ|)

2
− |yi|

)
.

(3.121)

Therefore the exponent always supplies a convergence factor in the sum over m,n
provided that |Im(y)| < β(1−|µ|)

2
and therefore the Green’s function can be analyti-

cally continued in the y plane in both directions up to this limit. But then writing

G(ω, yr − iyi) =

∫ ∞

γ=−∞
G(ω, γ)e

−iγ(yr+iyi)

Ry , (3.122)

we see that, in the regime where γ →∞, this is only possible if

lim
γ→∞

− log |G(ω, γ)|
(|γ|/Ry)

≥ β(1− |µ|)
2

. (3.123)

Note that the minus sign outside the log indicates that the Wightman function must
decay at large γ. Second, we also note that this bound can be written in terms of
the left and right temperatures that couple to the left and right Virasoro charges:
βL = 1

Ry
β(1−µ); βR = 1

Ry
β(1 +µ), if we recognize that β(1−|µ|) = Rymin(βL, βR).

In this notation the bound simply becomes

lim
γ→∞

− log |G(ω, γ)|
γ

≥ 1

2
min(βL, βR). (3.124)

Repeating the analysis above, we see that the same bound also applies to the com-
mutator (3.94)

lim
γ→∞

− log |J(ω, γ)|
γ

≥ 1

2
min(βL, βR). (3.125)

It was explained in [62] that black holes saturate this bound. Intuitively, this
happens for the following reason. In general, modes with large γ but small ω are
unusual because they have larger momentum than frequency and are “spacelike” near
the boundary. However, the black-hole horizon allows such modes to propagate in

89



Chapter 3 Critique of the fuzzball program

the bulk because of the red-shift near the horizon. The fuzzball also has a red-shift
but we will see below that fuzzballs do not saturate (3.124).
To calculate the large-γ behaviour of the Wightman function and the commutator

we need to compute α defined in (3.104) and the asymptotic behaviour of ψ. We
can compute

α−2 =

∫ ∞

0

ω
|ψ(r)|2

r(r2 + a2)
h(r)dr, (3.126)

where the measure factor, h(r), is given below (3.97)
However, we see that the WKB wave-function given in (3.107), (3.109) and (3.112)

has no growing exponential of γ and therefore

lim
γ→∞

log(α)

γ
= 0. (3.127)

This leaves us with the asymptotic part of the wave-function, which is controlled
by the coefficient C in (3.114). A simple calculation yields that at large γ we have

− log(C) =

∫ ξ3

ξ2

√
V (ξ)dξ +

δ

ξ3

+ O (1) =
πγ ((8κ2 + 11)n− 1)

32κ2n3/2
+ O (1) . (3.128)

Using the formula (3.98) the falloff of the Wightman function and the commutator
for the fuzzball geometry is given by

λfuzz ≡ lim
γ→∞

log |G(ω, γ)|
γ

= lim
γ→∞

log |J(ω, γ)|
γ

=
π

2
√
n

+
(11n− 1)π

16n
3
2κ2

. (3.129)

One subtlety in comparing the fuzzball result with the bound is that the fuzzballs
also have angular momentum along the S3. It is understood holographically that —
at least for the purpose of computing correlation functions such as (3.93), which do
not themselves depend on any S3 variable — black holes with angular momentum
along the S3 direction behave as if they have an “effective” Virasoro charges given
by-

Leff
0 = L0 −

J2
L

N1N5

, (3.130)

where we have recalled that the central charge of the theory is 6N1N5. (See, for ex-
ample, the discussion below (5.17) of [88] and the original discussion in [89].) We em-
phasize that using this “effective charge” rather than the original charge only weakens
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the bound (3.124) and so makes the comparison more favourable for fuzzballs.

The right inverse-temperature of the fuzzball is infinity because the solution sat-
isfies L̄0 = 0. The effective left inverse-temperature corresponding to the effective
charge above is given by

βL = π
(
κ2 + 2

)
√

1

κ2 (κ2 + 2)n− 1
. (3.131)

Comparing the decay of the fuzzball Wightman function and the commutator to the
bound we find that

λfuzz −
1

2
βL =

π(3n− 1)

16κ2n3/2
+ O

(
1

κ4

)
. (3.132)

Therefore, fuzzballs fail to saturate the large-γ bound (3.124) by the amount shown
above.

3.4.6 Numerical verification

We can verify the analytic results above by direct numerical analysis of the propa-
gation of a scalar field in the fuzzball background.

We consider a fuzzball background with a given value of κ and n and a scalar field
excitation with a given value of y-momentum, γ. The equation (3.105) is subject to
normalizability under the Klein-Gordon norm, and this fixes boundary conditions
both at ξ = 0 and at ξ = ∞. In fact, both ξ = 0 and ξ = ∞s are singular points
of the equation, and to solve the equation numerically, we must expand in a series
solution about the point ξ = 0 out to ξ = ε.

Near ξ = 0, we set the function and its derivative through the expansion

ψ0(ξ) =

(
ξ

ε

) 2γ−1
2 (

1 + a0ξ
2
)
, 0 < ξ ≤ ε, (3.133)

with

a0 = −γ
2 (κ4 + 4) + (κ2 + 2)

2
w2 − 2γκ2 (κ2 + 2)w − 8

16(γ + 1)
. (3.134)

Note that, for numerical convenience, the normalization used here is different from
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the normalization used in (3.107).

Near ξ =∞, we set the function and its derivative through the expansion

ψ∞ =
1√
ξ

(
1 +

a∞
ξ2

)
,

1

ε
≤ ξ <∞, (3.135)

with

a∞ =
1

32

(
−γ2κ4 + 4γ2 − ω2κ4 − 4κ2ω2 − 4ω2 + 2γκ4ω + 4γκ2ω

)
. (3.136)

Note that, for numerical convenience, this normalization is also chosen to be different
from the normalization used in (3.112).

The allowed values of ω can then be fixed by a shooting procedure. Given a guess
for ω, starting from ξ = ε, we solve the equation to the mid-point of the trough of
the potential: ξm = 1

2
(ξ1 + ξ2). This solution yields some values for the function and

its derivative: ψ0(ξm) and dψ0(ξm)
dξ

. Similarly, for the same value of ω, we can start
from ξ = 1

ε
and solve inwards to obtain a second set of values for the function and

its derivative: ψ∞ and dψ∞

dξ
. These values define a difference function for any given

value of ω
D(ω) =

dψ∞

dξ
ψ0(ξm)− dψ0(ξm)

dξ
ψ∞. (3.137)

We then use non-linear root-finding techniques to find the roots of D(ω). In our
analysis, we first bracketed the root, and then used the Brent method as implemented
in the GNU Scientific Library [90]. Bracketing methods are robust and guaranteed
to converge to a root in the bracketed interval.

Note that it is because the equation is linear that we can get away by just matching
the ratio of the function and its derivative at the point ξm. If this had not been the
case, we would have had to match both these quantities separately; this would have
forced us to use two-dimensional root finding, which is far less robust.

The asymptotic value of the function, C, as defined above, can be fixed as follows.
We denote the value that the solution starting at ξ = 0 takes at ξ1 by ψ0(ξ1). Then
C is given by

C =
ψ0(ξm)

ψinf(ξm)
× 2
√
πAi(0)

|V ′(ξ1)| 16
× 1

ψ0(ξ1)
. (3.138)

Note that Ai(0) ≈ 0.355028. This formula implements the following procedure:
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First we normalize the solution on the left so that it takes on the value given by
(3.108) at ξ1. Then, we normalize the solution on the right so that it matches the
left solution at the mid-point.
Unlike the WKB analysis, the numerical analysis is not restricted to large γ. How-

ever, we can use it in the same regime to verify the results of the WKB approximation
above.
In Figure 3.8, we show how the gap between the first two non-zero solutions of

ω matches with the analytic formula (3.116). We see that, at large κ (which is the

5 10 15 20
κ

0.1

0.2

0.3

0.4

0.5

0.6

δω

Figure 3.8: Comparison between a numerical calculation (dots) of the gap between the
first two allowed frequencies and the formula (3.116) (solid curve). Other parameters
are γ = 100, n = 2. In its regime of validity (large κ) the formula (3.116) shows
excellent agreement with the numerical results.

regime in which (3.116) is derived), the agreement is excellent. In Figure 3.9, we
show a comparison of the numerically computed asymptotic value for C with the
analytic formula (3.114) for a fixed value of κ = 5, n = 2 and varying values of γ.
We see, once again, that the agreement is excellent in the regime where the analytic
formula is valid.

3.4.7 Analysis of the result

The key results derived above are the formula for the mass-gap (3.116) and the decay
of the Wightman function (3.129) at large γ, which we also verified numerically. We
discuss their significance in turn.
The formula for the gap (3.116) tells us that the gap between the frequency of
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Figure 3.9: Comparison between a numerical calculation (dots) of the asymptotic
value C with the formula (3.114) (solid curves) for different values of n and γ.
Here, κ = 5 is held fixed. In the appropriate regime of validity of the analytic
formula (large γ), it agrees very well with the numerical results.

successive excitations of these solutions is far too large for a typical microstate. As
described in the discussion around (3.8), expectation (1) tells us that the Wightman
function (after a small amount of local smearing) should have continuous support
in frequency space. As explained there, this should be true even of the Wightman
function in a BPS state. Even though the original state is BPS, the scalar excitation
should connect these states to nearby non-BPS states that are expected to satisfy
expectation 1.

However, for the fuzzball solutions we find that the support is concentrated on
discretely spaced frequencies with a gap between consecutive frequencies that scales
with 1

κ2 . This means that the fuzzball solutions that we have analyzed, with any
finite value of κ (provided κ does not scale with the central charge) cannot serve as
microstates of a black hole.

Instead, the finite energy gap is reminiscent of a phase of zero-entropy — like
thermal AdS as explained below (3.9). This suggests that the states corresponding to
this set of fuzzball solutions belong to such a phase — which comprises exponentially
atypical states.

The formula for the decay at large-γ (3.129) tells us that if fuzzballs are mi-
crostates, then the set of fuzzball solutions correspond to states that violate the
ETH. This is because, on the basis of the black-hole calculation, the thermal state
is expected to saturate the bound (3.124). The ETH would then suggest that eigen-
states of the Hamiltonian, or indeed, typical elements of any other basis that spans
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3.4 Probing multi-charge solutions

that microcanonical ensemble should also saturate the bound.
We expect that the holographic theory dual to black holes should be chaotic in

supergravity regime, and therefore it should satisfy the ETH: the hypothesis that
fuzzballs are black-hole microstates contradicts this expectation.
Second, note that even if we disregard the ETH, the idea that fuzzballs are black-

hole microstates leads to a strange conclusion: since the set of fuzzballs we have
analyzed are below the bound, there must be some other fuzzballs that violate the
bound (3.124). This is the only way that the microcanonical average can saturate
the bound. Now, strictly speaking, this is not a contradiction since the bound
(3.124) is a bound for the behavior of the thermal state in different theories and
does not control the behaviour of specific pure states. But, on the other hand, we
are not aware of any geometry that violates the bound (3.124). In the absence of
such an example, it seems difficult to understand how the fuzzball geometries could
represent black-hole microstates.

Very large values of κ. We now briefly consider the limit where we take a ∼ `pl.
In this limit κ becomes large, and the decay of the large-γ Wightman function
approaches the bound (3.124). The energy-gap becomes small.4 However, this
energy-gap is still too large since it scales with an inverse power of the central charge
rather than being exponentially suppressed. So, even in this limit, the fuzzball
solutions do not yield the correct gap expected in the boundary theory. This, by
itself, ensures that even Planck-sized fuzzballs do not have the right properties
expected of a typical microstate.
We now discuss some independent problems with the idea of considering fuzzballs

with Planckian features. We will argue that for a ∼ `pl, such solutions become
indistinguishable from the black hole in most of space, and quantum fluctuations
are likely to be large in the near-horizon region where the fuzzball deviates from the
black hole.
First, note that in this limit, the angular momentum in the S3 directions, which

is proportional to a2, vanishes. So, in the subsector under consideration, solutions
with very long throats (small values of a) cannot correspond to states with arbitrary
charges. However, for the remainder of this section, we will assume that when the

4This is the gap computed in [50] by taking κ = N1N5.
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Chapter 3 Critique of the fuzzball program

full set of fuzzball-geometries is found, it will be possible to keep a arbitrarily small,
while keeping the charges constant by changing some other parameters.

Second, we note that the a→ 0 limit of (3.88) does not commute with the r → 0

limit. If we first take a→ 0 so that we can neglect terms of order a
r
, the metric has

the following smooth limit:

ds2
6 −→
a→0

(b2n− 2r2)√
2bRy

dt2 +
(b2n+ 2r2)√

2bRy

dy2 +
bRy√
2r2

dr2 +

√
2bn

Ry

dtdy

+
bRy cos2(θ)√

2
dψ2 +

bRy sin2(θ)√
2

dφ2 +
bRy√

2
dθ2.

(3.139)

A change of variables to ρ =
(
r2 + b2n

2

) 1
2 shows that this is the metric of an extremal

BTZ black hole × S3.

On the other hand, even when b
a
� 1, if we explore the regions of the geometry

where r = O (a), we find a different answer. In coordinates where r = aξ, the metric
expanded to O (ξ2) near ξ = 0 is given by

ds2
6 =− (2a2 − b2) (cos2(θ) + ξ2)

2λ2
dt2 +

b2 (cos2(θ) + ξ2)

λ2
dtdy +

(2a2 + b2) (cos2(θ) + ξ2)

2λ2
dy2

+ λ2
(
1− ξ2

)
dξ2 − 2

a2 sin2(θ)√
a2 + b2

2

dtdφ− b2 cos2(θ)√
a2 + b2

2

dtdψ − 2

√
a2 +

b2

2
cos2(θ)dydψ

+ λ2dθ2 + λ2 sin2 θdφ2 + λ2 cos2 θdψ2.

(3.140)

If we take a ∼ `pl, then the fuzzball metric has Planckian structures near r = 0 and
these structures are given by the metric in (3.140). Remarkably, curvature invariants
such as the Ricci scalar and even the square of the Riemann tensor, RµνρσR

µνρσ,
which can be computed from (3.140) remain finite in limit as a→ 0. So, in this limit,
the fuzzball metric cleverly introduces Planckian structures, without introducing
Planckian curvatures! This is a surprising and nice feature of the solution.

However, it would be incorrect to imagine that this makes the classical metric
immune to quantum fluctuations in this region. The study of section 3.3 tells us
that we must also take into account quantum fluctuations in the parameters that
specify a solution. In the two-charge case, the solution was specified by a profile
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3.4 Probing multi-charge solutions

function F i(s). But, in the quantum theory, the profile function did not have a
definite value because of the non-zero commutator, [F i(s), F i(s̃)]. We saw that
when the metric had Planck scale features, the uncertainties in the profile function
were enough to make these features unreliable.

In the absence of a moduli-space quantization of the solutions examined in this
section, we cannot make analogous precise statements for the multi-charge solutions.
However, a rule of thumb is that we do not expect to pin down bulk length-scales in
a theory of quantum gravity with perfect certainty. Therefore, it is fair to estimate
that in the quantum states corresponding to the metrics examined in this section,
the length-scale a will itself fluctuate and that δa = O (`pl).

If this is correct, then in the regime where a = O (`pl) we also have δa
a

= O (1).
But then, examining the metric (3.140), we see that such fluctuations will induce
fluctuations in the metric so that δgµν = O (gµν). For example, we see that for the
determinant of the metric (3.140)

g = det(gµν) = a4λ4ξ2
(
ξ4 − 1

)
sin2(θ) cos2(θ), (3.141)

and therefore
δg =

∂g

∂a
δa = 4g

δa

a
. (3.142)

If δa
a

= O (1) then δg
g

= O (1). So, while the Planckian structures are smooth, in
the sense that local curvature invariants remain bounded, they are nevertheless not
reliable features of the metric.

We caution the reader that our arguments in this last paragraph have been neces-
sarily somewhat imprecise. This is because the fuzzball program has itself not been
carried through to completion in this setting. But we believe that our reasoning
is robust for a simple reason. The parameters that specify a fuzzball solution are
coordinates on the phase space of gravity. Usually, we do not consider classical solu-
tions whose distinctive features depend on specifying phase-space coordinates to an
accuracy that depends on ~. Conversely, if we attempt to do so, we should expect
that the minimal fluctuations on phase space induced by the uncertainty principle
will wash out these features.
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Chapter 3 Critique of the fuzzball program

3.5 Discussion

In this chapter we explored the viability of the fuzzball proposal to the black hole
information paradox. We argued that the fuzzball geometries that differ from the
conventional black hole geometries cannot parameterize the phase space of all black
hole microstates. Hence, these geometries are not relevant for the black hole infor-
mation paradox. Classical geometries which differ from the conventional black hole
geometry only within Planck scale from the horizon are not reliable due to large
quantum fluctuations. Hence, one cannot argue that typical black hole microstates
do not have a horizon. We realized these expectations explicitly for two-charge
fuzzball geometries.
We studied asymptotically AdS fuzzball geometries corresponding to black holes

with finite horizon radius. The solutions which we analyzed were too atypical. The
deviations from the conventional geometry could be detected by simple asymptotic
correlators. We also showed that fuzzballs that cap off a macroscopic distance away
from the horizon have a gap between the frequency of allowed excitations that is
too large for black-hole microstates. We expect our results to generalize to arbitrary
solutions that have macroscopic features.
We note that structure at horizon is not required to resolve the information para-

dox. As we have already seen in chapter 2, holographic encoding of information is a
feature of quantum gravity. This feature is sufficient to resolve the strong subadd-
itivity and cloning paradox.
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Chapter 4

Bound on thermal Wightman correlators

4.1 Introduction

In this chapter, based on [14], we consider a novel limit of thermal correlation
functions in a relativistic quantum field theory in d spacetime dimensions. Let
O(t, ~x) be any local operator, which may be the elementary field itself or a more
complicated operator. Then consider the Fourier transformed correlation function
at finite temperature β−1

G(ωi, ~ki)δωδ~k ≡
∫ ∏

idtid~xi
1

Z
Tr
[
e−βHO(t1, ~x1) . . .O(tn, ~xn)

]
ei
∑

(ωiti−~ki·~xi), (4.1)

where Z is the partition function and we use the shorthand notation δω ≡ (2π)δ(
∑
ωi),

and δ~k ≡ (2π)d−1δ(
∑~ki) to indicate the delta functions that appear because the

position-space correlator on the right is invariant under overall spacetime transla-
tions.

The correlator above is a Wightman correlator which means that we just evaluate
the quantum expectation value of the product of operators shown and do not impose
time-ordering. We now consider the limit of this correlator where |~ki| → ∞ but ωi =

fixed.

About the vacuum, this limit would just yield zero since the spectrum condition,
H ≥ |~P |, in relativistic quantum field theories tells us that we cannot have ex-
citations with energy smaller than momentum. However, in a thermal state such
excitations can exist. For example, the operator O could create a particle with large
momentum ~k and simultaneously destroy a particle from the thermal background
with the opposite momentum. This would change the momentum of the state by a
large amount but the energy by only a small amount.
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Chapter 4 Bound on thermal Wightman correlators

In this chapter, we show that the correlators (4.1) are constrained by a beautiful
geometric bound. We prove, using analytic properties of correlation functions that
hold in any relativistic quantum field theory, that

lim
|~ki|→∞
ωi=const

1

R(~ki)
log
∣∣∣G(ωi, ~ki)

∣∣∣ ≤ −β, (4.2)

where R(~ki) is the radius of the smallest sphere that encloses the unique (non-
planar) polygon with ith edge labeled by ~ki. Less formally, our bound states that
in this limit, G(ωi, ~ki) must die off at least as fast as e−βR(~ki). Two examples of this
geometric radius are shown in Figure 4.1; these are relevant for a three-point and a
four-point function respectively.

Figure 4.1: The bounding sphere for a three-point function (left) and a four-point
function (right). The red polygon in both cases shows the spatial momenta.

Operators whose momentum is much larger than their frequency appear in the
map between bulk and boundary operators in the AdS/CFT correspondence [2, 4, 3].
The reconstruction of the field operator at a local bulk point at finite temperature
necessarily makes reference to such operators. Such operators also appear if one
attempts to reconstruct a causal wedge in the bulk from a boundary causal diamond
[57]. This led [57] to analytically continue their bulk-boundary smearing function
and has led to some claims that the bulk-boundary map is ill-defined or discontinuous
in black-hole backgrounds [91, 92].
This issue was examined in [62] and in [68], it was pointed out that the map was

still well-defined since it should be properly thought of as a distribution that acts on
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operators whose natural “size” at large spacelike momenta is small. (This idea was
subsequently also elaborated in [93].) For the purpose of the bulk-boundary map
at leading order, the only correlator that is relevant is the two-point function and
so [62] proved the bound (4.2) for two-point functions. In this chapter, we present
a generalization of this bound for arbitrary point functions, and also examine its
behaviour in various theories.

In section 4.3 we study correlators of the form (4.1) in weakly coupled theory. We
show that if we take the operators O(ti, ~xi) to be the elementary fields themselves,
then this bound is not saturated by the leading tree-level interaction. However, once
one goes to high-enough loop order, then the perturbative expansion always contains
a term that saturates (4.2).

This may suggest that holographic theories would always saturate the bound as
these theories are strongly coupled. However, as explored in section 4.4, this is not
always true. We consider holographic correlators of operators dual to propagating
fields in anti-de Sitter space. Although in d = 2, the leading order holographic two-
point function in a black-hole background saturates the bound, for higher d, the
two-point function remains below the bound. While the bound would suggest that
the two-point function could be as large as e−

β|~k|
2 it turns out that in d-dimensions

it is only as large as e−α
β|~k|

2 where α =
dΓ[1+ 1

d
]√

πΓ[ 1
2

+ 1
d

]
. For example, for d = 4, α = 1.67.

This factor was noticed earlier in [94, 91], although no connection to the bound (4.2)
was made.

While black-holes are sometimes believed to be “hypercompetitive” [95], this pro-
vides an example where the characteristic feature of a strongly coupled holographic
theory in a state with a bulk horizon is the under saturation of a bound that is
saturated by other theories. We do not have an intuitive understanding of this be-
haviour, and we believe that this is an important and striking feature that deserves
further attention.

We believe that this bound is interesting and may have other applications. For
example, the consideration of correlators with large spacelike momenta can serve as
a diagnostic of whether the state is thermal or not. This diagnostic was used in in
[10], where it was shown that fuzzball solutions do not saturate the bound even for
d = 2, suggesting that the known fuzzball solutions are not good representatives
of microstates of black-holes and are not dual to the boundary thermal state. The
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Chapter 4 Bound on thermal Wightman correlators

behaviour of correlators of operators with large spacelike momenta may also serve
as a diagnostic of when a theory is holographic, and when the bulk has a horizon,
just like the chaos bound [96]. This diagnostic was also examined in [97].
A brief overview of this chapter is as follows. In section 4.2, we prove the bound

for general relativistic quantum field theories. In section 4.3, we consider thermal
Wightman correlators in perturbative quantum field theories and show that at suf-
ficiently high-loop order we expect such theories to saturate the bound. In 4.4 we
turn to holographic theories. Here, we first analyze holographic two-point functions,
and then initiate a study of higher-point functions. The appendices contain a review
of the formalism used to compute thermal Wightman functions, and some further
details of the holographic analysis.

4.2 Proof of the bound

In this section, we will prove the bound (4.2). We consider a Wightman correlator
of the form (4.1) and make the following assumptions

1 The correlator (4.1) is well defined at all values of the temperature.

2 The underlying theory obeys the spectrum condition, so that states which are
simultaneous eigenstates of the energy and momentum, with eigenvalues E
and ~P , satisfy E ≥ |~P |.

Due to energy momentum conservation, note that the correlation function (4.1) only
has support on the submanifold where

∑
ωi =

∑~ki = 0. In particular, this means
that the momenta ~ki generically form a non-planar polygon in (d − 1)-dimensions.
We now wish to prove the bound (4.2) where R is the radius of the smallest (d− 1)-
sphere that encloses this polygon.
We will establish the proof in three steps. In the first step we will start with

thermal correlators in coordinate space and we will argue that the correlators can
be analytically continued to a particular domain of complexified coordinates. In the
second step we will show how the analyticity domain of the correlators in coordi-
nate space implies bounds for the momentum space correlators at large spacelike
momenta. Finally in the third step, we will show that the optimal such bound is
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related to a simple geometric extremization problem, whose solution we present.
This leads to the bound (4.2) for correlators in momentum space.

4.2.1 First part: on the analyticity domain of position-space thermal
correlators

We start with finite temperature, real-time correlators in coordinate space

G(xi) ≡ Z−1Tr[e−βHO(x1) . . .O(xn)]

These are Wightman correlators, so there is no time-ordering. For notational conve-
nience we take all operators to be the same; the generalization to different operators
is obvious. We use the notation x to denote d-vectors and x0, ~x to denote the timelike
and spacelike components respectively. We wish to examine the domain of analyt-
icity of these correlators. Our discussion closely follows [98], and a more detailed
discussion is available in [39]. The domain of analyticity for thermal correlators was
discussed in [99].

Using translational invariance we can parameterize this correlator as

Ĝ(ξi) ≡ Z−1Tr[e−βHO(0)O(ξ1)O(ξ1 + ξ2) . . .O(ξ1 + . . .+ ξn−1)], (4.3)

where ξ1 ≡ x2−x1, ξ2 ≡ x3−x2 etc. We introduce the timelike vector e ≡ (1, 0, . . . , 0)

and using the cyclicity of the trace we write this correlator as

Ĝ(ξi) = Z−1Tr[O(0)e−iP ·ξ1O(0)e−iP ·ξ2O(0) . . . e−iP ·ξn−1O(0)eP ·[βe+i(ξ1+...+ξn−1)]],

(4.4)
where P ≡ (H, ~P ) are the operators for space-time translations and the inner-
product between d-vectors is taken using the (−,+ . . .+) metric. We insert complete
sets of states between these operators, which leads to an expansion of the form

Ĝ(ξi) = Z−1
∑

i1,...,in

Oini1e−iPi1 ·ξ1Oi1i2e−iPi2 ·ξ2 . . .Oin−1ine
Pin ·[βe+i(ξ1+...+ξn−1)], (4.5)

where we defined the matrix elements Oij ≡ 〈i|O(0)|j〉 on eigenstates of the energy-
momentum P . Now we analytically continue the coordinates ξi as ξi → ξi + iηi.
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Under this analytic continuation in (4.5) we get factors of the form ePi·ηi in-between
the various operators. Using the spectrum condition H ≥ |~P |, the factors ePi·ηi will
improve the convergence of the sum over i1, . . . , in−1 provided that

ηi ∈ V +, (4.6)

where V + denotes the future timelike cone.

On the other hand, the convergence of the sum over in, corresponding to the
overall trace in (4.3), is improved provided that the last factor all the way to the
right in (4.5) is suppressed. After analytic continuation that term gives a factor
of ePin ·(βe−(η1+...ηn−1)]. From the spectrum condition this improves the convergence
provided that

βe− (η1 + . . .+ ηn−1) ∈ V +. (4.7)

Let us call F the domain of the coordinates {ξi + iηi} defined by simultaneously
imposing equations (4.6) and (4.7) for the imaginary parts ηi, i.e.

F ≡ {{ξi + iηi} ∈ C4n : ηi ∈ V + and βe− (η1 + . . .+ ηn−1) ∈ V +}

Notice that F must be least only part of the domain of analyticity of the correlator
Ĝ. This is because by assumption 1 above, the sum over i1, . . . , in is convergent
even for an infinitesimal value of β, and in the domain, F , the analytic continuation
only improves the convergence of the sum. Note that it may be possible to further
analytically continue into a larger domain. But, for the purpose of our proof we
only need that the correlators Ĝ in (4.3) can be analytically continued at least in F
without encountering any singularities. The region F is shown in Figure 4.2

Using the notation ηi = (η0
i , ~ηi), equation (4.6) is equivalent to

η0
i ≥ 0 and η0

i ≥ |~ηi|

and (4.7) equivalent to
β − (η0

1 + . . .+ η0
n−1) ≥ 0

and
β − (η0

1 + . . .+ η0
n−1) ≥ |~η1 + . . .+ ~ηn−1|
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Figure 4.2: The domain of analyticity F : if the first point is at O, then the correlator
is analytic if the imaginary coordinates of successive points are chosen from any
causal trajectory that lies within the shaded region.

Using these conditions, we find that any point in the domain F defined by equations
(4.6),(4.7) obeys

|~η1|+ . . .+ |~ηn−1|+ |~η1 + . . .+ ~ηn−1| ≤ β. (4.8)

Moreover, it is easy to see that for any choice of the spatial vectors ~ηi which satisfies
(4.8), we can select their time-components η0

i such that we are inside the domain of
(4.6),(4.7). In addition, this choice can be made so that the point {η0, ~ηi} can be
continuously connected to the real-plane ηi = 0 by a path inside F .
Hence we have established that the domain F contains points which completely

cover the domain in the spatial coordinates ~ηi defined by equation (4.8).

Now, we remember that ~ηi are defined as the spatial part of the imaginary part of
the complexified difference vectors ξi + iηi. Let us express the domain of analyticity
in terms of the complexification of the original coordinates xi → xi + iyi. We we
have ~η1 = ~y2 − ~y1 ~η2 = ~y3 − ~y2 . . . ~ηn−1 = ~yn − ~yn−1 Then (4.8) can be written as
|~y1 − ~y2|+ . . .+ |~yn − ~y1| ≤ β.

So finally we reach the following conclusion: the thermal correlator

G(xi) ≡ Z−1Tr[e−βHO(x1) . . .O(xn)]

can be analytically continued to complex space-time coordinates xi+ iyi in (at least)
a domain which contains points whose spatial imaginary parts can have any possible
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value obeying
|~y1 − ~y2|+ . . .+ |~yn − ~y1| ≤ β. (4.9)

Moreover these points are continuously connected to the real-domain yi = 0 by a
path in the domain of analyticity.

4.2.2 Second part: decay of spacelike correlators

Now we will explain how the analyticity of position-space correlators discussed above
is related to the decay of momentum space correlators at large spacelike momentum.
First we consider “mixed” correlators, where we Fourier transform in time but not

in space

G(ωi, ~xi)δω ≡
∫ ∏

i

dtiG(ti, ~xi)e
i
∑

ωiti

Now we want to analytically continue in ~xi. Notice that we can not just analytically
continue the integrand on the RHS in ~xi alone, as this would — in general— take
us out of the domain of analyticity of the correlator. However, we can analytically
continue the integrand in ~xi, provided that we shift, at the same time, the time
arguments ti in the complex plane (i.e. we shift the contours of integration by giving
nonzero values to Im[ti]). While doing this we need to make sure that Im(ti, ~xi) stays
within the domain of analyticity determined at the end of the previous subsection.
Notice that under this analytic continuation the factor eiω1t1+...+iωntn gives at most
a growing exponential, but can not introduce any singularities.
From this follows that the correlator

G(ωi, ~xi)

can be analytically continued as ~xi → ~xi + i~yi, in (at least) the domain determined
by

|~y1 − ~y2|+ . . .+ |~yn − ~y1| ≤ β. (4.10)

Finally we consider the fully Fourier transformed Wightman correlators in frequency
momentum space

G(ωi, ~xi) =

∫ ∏

i

dd−1~ki
(2π)d−1

G(ωi, ~ki)δ~ke
i
∑~ki~xi
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We argued above that the LHS is analytic in the domain (4.10) upon ~xi → ~xi + i~yi.
Under this analytic continuation, on the RHS we get the expression

∫ ∏

i

d~ki
(2π)d−1

G(ωi, ~ki)δ~ke
∑~ki·~yi

In general the last factor grows exponentially. In order for the integral to be conver-
gent it must be that G(ωi, ~ki) decays sufficiently fast at large ~ki, so as to suppress
the growth of the last term. This is the origin of the bound (4.2).
The strictest possible bound on G from these considerations will come from max-

imizing the expression
I ≡ |

∑
~ki · ~yi|, (4.11)

where
|~y1 − ~y2|+ . . .+ |~yn − ~y1| ≤ β, (4.12)

and also ∑
~ki = 0. (4.13)

This last condition comes from the fact that the momentum space correlator has
support only on momenta obeying this. Let us call Imax the maximum of I defined
by (4.11), where we vary the vectors {~yi} over all possible values, subject to the
constraints (4.12). The momentum vectors ~ki must obey (4.13). Then we find the
optimal bound, G ∼ e−Imax , or more precisely,

lim
|~ki|→∞
ωi=const

1

Imax

log(|G|) ≤ −1. (4.14)

Determining Imax corresponds to a simple geometric problem that we now con-
sider.

4.2.3 Third part: an extremization problem

Above we found that the momentum-space correlator will have to decay like (4.14),
where

Imax = {max|
∑

~ki~yi| : ~yi ∈ Rd−1, |~y1 − ~y2|+ . . .+ |~yn − ~y1| ≤ β}, (4.15)
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with
∑~ki = 0.

It is easy to see that this extremization problem can equivalently be formulated
slightly differently by redefining both the ~ki and the ~yi variables. First we introduce
n new vectors ~Pi such that ~k1 = ~P2 − ~P1, ~k2 = ~P3 − ~P2, . . . , ~kn−1 = ~Pn − ~Pn−1,
~kn = ~P1 − ~Pn. This does not uniquely fix the ~Pi, as we can add to then an overall
“center of mass” shift. However, this ambiguity will drop out in what follows. Also,
notice that if we parameterize the ~ki’s in terms of ~Pi’s as above, then the condition∑~ki = 0 is automatic. We also redefine the ~y variables by introducing ~a1 ≡ ~yn− ~y1

, ~a2 ≡ ~y1 − ~y2, . . . ,~an ≡ ~yn−1 − ~yn, where now we automatically have
∑
~ai = 0.

Now, it is a matter of simple algebra to check that the quantity I = |∑~ki~yi| that
we wanted to extremize takes the form

I =
∑
|~Pi~ai|, (4.16)

where we extremize over ~ai subject to the condition that
∑
~ai = 0 and the condition

(4.12) which becomes ∑
|~ai| ≤ β

It is now obvious that since
∑
~ai = 0 the overall center of mass shift ambiguity of

the ~Pi’s that we mentioned earlier has no relevance for the extremization problem.

To summarize, we have shown that the original problem (4.15) is equivalent to
the extremization problem

Imax = {max|
∑

~Pi~ai| : ~ai ∈ Rd−1,
∑

~ai = 0,
∑
|~ai| ≤ β}. (4.17)

The solution:

We now present the solution to the extremization problem (4.17). Consider n
points ~Pi in Rd−1. We define the “minimal enclosing sphere” in the obvious way. We
assume that this sphere has center ~C and radius R. The radius R clearly does not
depend on the overall center of mass position of the points ~Pi.

Consider all possible n-tuples of vectors ~ai ∈ Rd−1, with the properties required
in (4.17), i.e. that ∑

~ai = 0;
∑
|~ai| ≤ β. (4.18)
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4.2 Proof of the bound

We want to maximize
I ≡ |

∑

i

~Pi~ai|.

We will prove that
Imax = βR. (4.19)

. We first notice that for any ~ai’s obeying (4.18) we have the inequality I ≤ βR

since
I ≡ |

∑

i

~Pi~ai| = |
∑

i

(~Pi − ~C)~ai| ≤ R(
∑
|~ai|) ≤ βR, (4.20)

where in the second equality we used the fact that since
∑
~ai = 0 we can shift the

overall center of mass of the points by ~C without changing the value of I. In the
third equality we used |~Pi − ~C| ≤ R.

We have shown that for any ~ai obeying (4.18) we have I ≤ βR. Will now identify
a particular choice of ~ai which saturate the inequality (4.20). This will prove our
claim that Imax = βR.

First we will make use of a basic geometric result: the center ~C of the minimal
enclosing sphere of n points ~Pi in Rd−1 is in the convex hull of the points ~Pi. This
means that we can find n real numbers λi obeying λi ≥ 0,

∑
λi = 1 such that

~C =
∑
λi ~Pi. The proof of this result is simple: if ~C is not in the convex hull of ~Pi

then the hyperplane separation theorem says that there is a hyperplane separating
~C from all ~Pi. If we move ~C towards this hyperplane we reduce the distance from
all points ~Pi, contradicting the statement that ~C was the center of the minimal
enclosing sphere.

We will now consider a slight refinement of the aforementioned result. For a
particular choice of the set of points ~Pi we consider the minimal bounding sphere.
Some of the points will be exactly on the sphere, while the remaining will be inside.
We concentrate on the m points exactly on the sphere, let us call them extremal
points. We select the index i labeling the points, so that the extremal points are
the first m points ~Pi, i = 1, . . .m, The remaining points which are in the interior of
the sphere are labeled as ~Pi, i = m + 1, . . . , n. Notice that it may be that m = n.
We consider the minimal bounding sphere of the extremal points alone (i.e. simply
ignoring the interior points). It should be obvious that the sphere will be exactly
the same as before. Applying the previous theorem to the set of extremal points,
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Chapter 4 Bound on thermal Wightman correlators

we conclude that the center ~C of the minimal enclosing sphere is also in the convex
hull of the extremal points alone. This means that we can write

~C =
m∑

i=1

λ~Pi, λi ≥ 0 and
∑

λi = 1. (4.21)

Returning to the extremization problem (4.17), we then consider the following choice
of the vectors ~ai

~ai =
β

R
λi(~Pi − ~C) i = 1, ..m (4.22)

and
~ai = 0, i = m+ 1, . . . , n. (4.23)

It is easy to check, using (4.21) , that the choice of ~ai given by (4.22) and (4.23) is
consistent with conditions (4.18). For this choice we find

I = βR

which saturates the inequality (4.20). Hence we have shown that the solution to the
geometric problem is given by (4.19).
From this, using (4.14) and the fact that the minimal size sphere R enclosing the

vectors ~Pi has the same radius as the minimal sphere enclosing the polygon of the
difference vectors ~ki placed tip-to-tip, we find the claimed bound (4.2).

4.3 Weakly coupled theories

In this section, we consider the behaviour of thermal Wightman functions in weakly
coupled perturbative quantum field theories in the limit where we take the momenta
of the insertions to be large and spacelike. For simplicity, we will consider a scalar
field, φ, of massm, in a thermal bath at inverse temperature β in flat space. However,
our analysis can be easily generalized to weakly coupled gauge theories with a Gauss
law constraint by using the techniques of [100].
We are interested in an interaction Hamiltonian that is polynomial in the fields

HI =
∑

n

an

∫
φnI (t, xi)d

dxi, (4.24)
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4.3 Weakly coupled theories

where φI are the interaction picture operators and an the coupling constants. We
will present two approaches to analyzing Wightman functions of the field φ in pertur-
bation theory for the couplings (4.24)— using a straightforward canonical formalism
and thinking about (thermal) Wick contractions, or an equivalent set of diagram-
matic rules derived using the Schwinger-Keldysh formalism. We explain these in
turn.

Canonical formalism We consider the Fourier transformed Wightman functions
of elementary fields, which are the same as (4.1) except that we focus on the case
where the operators, O, are the elementary fields themselves.

G(ωi, ~ki)δωδ~k ≡
∫ ∏

i

dtid~xi
1

Z
Tr
[
e−βHφ(t1, ~x1) . . . φ(tn, ~xn)

]
ei
∑
i ωiti−~ki·~xi , (4.25)

where φ(ti, xi) are Heisenberg picture operators and Z = Tr(e−βH) is the partition
function.
Perturbative Wightman functions can be computed in such theories using the

formalism explained in Appendix B. The final result can be expressed in the following
form

G(ωi, ~ki)δωδ~k

=
∑

{sj}

∫ ∏

j,l

dωjl
2π

( n∏

j=1

2πδ(

sj+1∑

l=1

ωjl − ωj)g(ωjl )
)
× 1

Z
Tr
[
(1 + Z1)e−βH0

× [HI(ω
1
1), . . . [HI(ω

1
s1

), φI(ω
1
s1+1,

~k1)] . . .] . . . [HI(ω
n
1 ), . . . [HI(ω

n
sn), φI(ω

n
sn+1

, ~kn)] . . .] + Z2

]
.

(4.26)

Notice that this expectation value is with respect to the thermal density matrix
of the unperturbed Hamiltonian H0. The term displayed appears at order

∑
i si in

perturbation theory, and the leading sum runs over all such terms. In the expression
above g is a rational function of the frequencies that is specified in the Appendix
but is not important for our asymptotic analysis here.
The terms Z1 and Z2 are subtle terms that arise from infra-red effects in thermal

field theory. In the Schwinger-Keldysh formalism, these terms arise from the “vertical
part” of the contour as explained in Appendix B. In our calculations below, we will
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Chapter 4 Bound on thermal Wightman correlators

naively assume that

(1 + Z1) =
Tr(e−βH)

Tr(e−βH0)
, Z2 = 0. (4.27)

In Schwinger-Keldysh language, this corresponds to the assumption that the con-
tribution from the vertical part of the contour decouples. In weakly-coupled field
theories, the assumption (4.27) is believed to be justified provided we use a specific
prescription for the two-point function in evaluating Wick contractions [101]. More-
over, we do not believe that the terms Z1 and Z2 will change our conclusions below,
which are rather general and not specific to any particular field theory. Nevertheless,
(4.27) requires further analysis that we postpone to a later study.

Now, we may expand out the interaction-picture field in terms of creation and
annihilation operators

φI(t, ~x) =

∫
dd−1~k

(2π)d−1

1√
2ω~k

[
a~k e

−iω~kt+i~k·~x + a†~k e
iω~kt−i~k·~x

]
, (4.28)

where ω~k ≡
√
~k2 +m2 and the creation and annihilation operators satisfy

[a~k, a
†
~k′

] = (2π)d−1 δ(~k − ~k′). (4.29)

The thermal correlators of these operators follow from the commutators above using
the KMS condition

1

Z0

Tr(e−βH0a~ka
†
~k′

) =
1

1− e−βω~k (2π)d−1 δ(~k − ~k′),

1

Z0

Tr(e−βH0a†~k′a~k) =
e−βω~k

1− e−βω~k (2π)d−1 δ(~k − ~k′),
(4.30)

where Z0 = Tr(e−βH0). Note that the interaction Hamiltonian itself can be written
as a polynomial in the creation and annihilation operators. Therefore, each commu-
tator of the interaction Hamiltonian with the elementary fields that appears in the
expression (4.26) leads to polynomials in the creation and annihilation operators.
We denote a general such polynomial comprising only products of annihilation op-
erators with c-number coefficients as X({α}, ω,~k). For instance, at quadratic order,

112



4.3 Weakly coupled theories

an example of such a polynomial with frequency ω and momentum ~k would be
∫ ω

0

dω′
∫
d~k′aω′,~kaω−ω′,~k−~k′

Note that the energy, ω and momentum ~k of the polynomial is displayed explicitly in
our notation. Specifying the frequency and momentum does not uniquely specify the
polynomial and we have moved all the rest of the information about the polynomial
into the parameter {α}. This allows us to write

g(ωjn)[HI(ω
j
1) . . . [HI(ω

j
sj

), φI(ω
j
sj+1,

~kj)] . . .] =
∑

α,β

∫
dω1dω2d ~K1d ~K2

× (2π)dδ(ω1 − ω2 −
∑

q

ωjq)δ( ~K1 − ~K2 − ~kj)X({α}, ω1, ~K1)X†({δ}, ω2, ~K2)
(4.31)

We include the rational function g that appears in (4.26) inside the polynomials
to lighten the notation. At any order in perturbation theory, the polynomials that
appear above can be systematically computed by using the form of the interaction
Hamiltonian (4.24), the expansion (4.28) and the canonical commutators (4.29).

Note that the interaction Hamiltonian itself is integrated over all space, so it does
not contribute any momentum, and the momentum on the right hand side comes
purely from the insertion of φI .

We now need three key facts about these polynomials that appear in the expansion
of the Heisenberg picture operators. First, since all the annihilation operators that
enter the polynomial are on-shell, this tells us that the integral only has support
in the region ω > |~k|. Second, while the precise correlation functions of these
polynomials depend on the specific polynomial under consideration, we note that,
generically, as ω →∞,

1

Z0

Tr
(
e−βH0X({α}, ω, k)X†({δ}, ω′, ~k′)

)
→ O (1) δ(ω − ω′)δ(~k − ~k′),

1

Z0

Tr
(
e−βH0X†({α}, ω, k)X({δ}, ω′, ~k′)

)
→ O

(
e−βω

)
δ(ω − ω′)δ(~k − ~k′).

(4.32)

These correlators follow from the elementary thermal correlators (4.30). We have
suppressed the dependence on {α} and {δ} in the right hand side of the second line
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Chapter 4 Bound on thermal Wightman correlators

although in any concrete calculation this dependence is important. It is possible
to choose {α} and {δ} so that this coefficient is zero. The correlator is non-zero
when the polynomials have the property that their constituent operators can be
paired with each other as in (4.30) and, in the equation above, this is understood
to be the case. Third, in a general correlation function one might have n-point
correlators of such polynomials. These correlators can be combined by expanding
each polynomial in its constituent creation and annihilation operators, and then
using Wicks theorem.
We show below how this data is enough to argue that, at sufficiently high order in

perturbation theory, the bound (4.2) is saturated. To lighten the notation we now
denote 1

Z0
Tr(e−βH0O) ≡ 〈O〉β.

Diagrammatic rules As explained in Appendix B, the canonical formalism above
can be recast in a set of diagrammatic rules using the Schwinger-Keldysh formalism
[102]. The diagrammatic rules for computing thermal Wightman functions are more
elaborate than the rules for computing the most-commonly considered time-ordered
vacuum correlators.
In the Schwinger-Keldysh formalism, the subtlety corresponding to the factors of

(4.27) corresponds to the fact that, as explained in Appendix B, one must carefully
take into account the fact that the Schwinger-Keldysh propagators may receive
contributions from very early and very late times. This leads to mixed Euclidean-
real-time propagators that connect the vertical part of the Schwinger-Keldysh path-
integral to the horizontal part. However, it is believed [101, 103] that this effect can
be removed by using a specific prescription for the propagator that we adopt below.
This leads to the following simplified Feynman rules for our scalar theory are as

follows and that do not account for the vertical part of the contour

1. To compute a n-point function we consider ñ-copies of the field, where ñ = n

if n is even and ñ = n + 1 if n is odd. We introduce n-different interaction
vertices, each of which couples fields of type i only to other fields of type i.
The ith vertex comes with a sign of (−1)i+1.

2. In position space, all interaction vertices are integrated from time −∞ to ∞
and over all space. In frequency space, we just impose energy-momentum
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4.3 Weakly coupled theories

conservation at each vertex.

3. There are ñ2-types of propagators that connect fields of type i to fields of type
j. For the scalar field, these propagators, in frequency space, are given by

Dij(k) =





− i
k2+m2−iε + 2πδ(k2 +m2)n(|k0|) i = j and n− i even,
i

k2+m2+iε
+ 2πδ(k2 +m2)n(|k0|) i = j and n− i odd,

2πθ(k0)δ(k2 +m2) + 2πδ(k2 +m2)n(|k0|) i < j,

2πθ(−k0)δ(k2 +m2) + 2πδ(k2 +m2)n(|k0|) i > j.

(4.33)

4. The external legs are fields of type 1 . . . n.

In the rules above,

n(|k0|) ≡ 1

eβ|k0| − 1
.

Since the reader may find these rules unfamiliar, we give a very explicit example in
the case of the two-point function in Table 4.1 below.
We also note that for a n-point correlator, it is possible to extract information

about all n! Wightman functions by considering a smaller basis of correlators and
using the KMS relations to cleverly obtain information about other correlators [104].
Since our analysis is very simple, we will not utilize these techniques here although we
expect that they may be required for concrete calculations of higher-point functions.

4.3.1 Two-point functions

Let us now consider the example of a two-point function. We will analyze this both
using the canonical approach, and the diagrammatic approach.

Canonical analysis We consider

G(ω1, ~k1, ω2, ~k2)δωδ~k =
∑

{α},{δ},{α}′,{δ}′

∫ ∏

ij

[dωij d ~Kij] C,

C = 〈X({α}, ω11, ~K11)X†({δ}, ω12, ~K12)X({α}′, ω21, ~K21)X†({δ}′, ω22, ~K22)〉β.
(4.34)
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Chapter 4 Bound on thermal Wightman correlators

In the expression above, we have absorbed the delta functions that appear in (4.26)
and (4.31) into the measure, which we denote by the square brackets. The corre-
lator itself gives an overall energy-momentum conserving delta function, which also
appears on the left. These delta functions impose energy-momentum conservation
that leads to the constraints

~K11 − ~K12 = ~k1; ω11 − ω12 = ω1

~K21 − ~K22 = ~k2; ω21 − ω22 = ω2

~k1 + ~k2 = 0; ω1 + ω2 = 0.

(4.35)

The correlator can be calculated in terms of Wick contractions. In particular, one
term that appears above is just the product of two-point correlators of polynomials

〈X({α}, ω11, ~K11)X†({δ}′, ω22, ~K22)〉β〈X†({δ}, ω12, ~K12)X({α}′, ω21, ~K21)〉β
−→ e−βω12δ(ω12 − ω21)δ(ω11 − ω22),

(4.36)

for large values of ωij. This is the limit that is relevant since we recall that the
polynomials only have support for ωij > | ~Kij|. In the limit where the mass becomes
unimportant, the support of the polynomials actually starts from ωij ≈ | ~Kij|. This
implies that the largest term in the two-point Wightman correlator above emerges
from minimizing | ~K12| subject to all the delta function constraints above. It is clear
that this is maximized when ~K12 = ~K21 = −~k1

2
, ~K11 = ~K22 =

~k1

2
.

But this means that in the limit under consideration

G(ω1, ~k1, ω2, ~k2) −→ e−
β|~k1|

2 , (4.37)

precisely consistent with our bound. Note that, such a term appears already at
second order in perturbation theory for any φn interaction.

What we have shown here is that there exists a term in the perturbative expan-
sion that saturates the bound. The coefficient of this term depends on the precise
polynomials that appear above, and the coefficient of this term could vanish. In
fact, as we will see in the study of holographic theories for d > 2, these theories do
not saturate the bound at leading order in bulk perturbation theory despite being
strongly coupled in the boundary.
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4.3 Weakly coupled theories

Diagrammatic analysis We now consider the example of a φ3 interaction in
some more detail. The Feynman rules for the two-point function are given in Table
4.1.

Diagram Element Value
D11(k)
D12(k)
D21(k)
D22(k)

iλ

−iλ

Table 4.1: Feynman rules for a two-point Wightman function in a φ3 theory. The
explicit expressions for Dij(k) are given in (4.33).

The reader will immediately see that these rules give rise to multiple diagrams.
However, here we just want to show that the perturbative expansion contains a term
that saturates the bound and not compute the full two-point function. To this end,
we consider the diagram shown in figure 4.3. The corrections from this diagram can

Figure 4.3: Correction to the 2-point correlator leading to saturation of the bound.

extend the support of the two-point Wightman function to off-shell momenta. In
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fact, due to the absence of terms which mix different fields in the Lagrangian, figure
4.3 is the simplest diagram which achieves this feat. For simplicity we will study
the behaviour of this diagram in the limit k0 → 0, similar statements can be made
for finite k0. We have

lim
|~k|→∞

λ2

(~k2 +m2)2

∫
ddp

(2π)d
[2πθ(p0)δ(p2 +m2) + 2πδ(p2 +m2)n(|p0|)]

[2πθ((k − p)0)δ((k − p)2 +m2) + 2πδ((k − p)2 +m2)n(|k − p0|)]

Even without evaluating this expression exactly, we can estimate its behaviour in
the limit of interest as follows. As the external frequency, k0, is negligible, p and
k − p must have approximately equal and opposite frequencies. This implies that
θ(p0)θ(k0−p0) does not contribute. Moreover, the on-shell condition for the internal
propagator implies that |p0| = |k0 − p0| = |~p| = |~k − ~p|. To estimate the slowest
fall off, we want to minimize |p0|. From momentum conservation, vectors ~k, ~p and
~k − ~p form a triangle. Imposing |~p| = |~k − ~p| would imply that the minimum value
of |p0| is |~k|/2. The Boltzmann factor would become e−β|~k|/2. This implies that the
diagram is proportional to e−β|~k|/2 and therefore, the two-point function saturates
our bound at second order in perturbation theory.

This coefficient can be estimated by completing the evaluation of the diagram
above and we find that, in the limit of large-k, for d > 2, the diagram evaluates to

λ2

2

Sd−3

(2π)d−2

|~k| d2−7

β
d
2
−1

Γ

(
d

2
− 1

)
e−β

|~k|
2 , (4.38)

where Sd−3 is the area of the unit sphere in d− 3 dimensions.

4.3.2 Three-point functions

We now move to a consideration of three-point functions and we again perform the
analysis in two equivalent ways.
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Canonical analysis Just as previously, we now find

G(ω1, ~k1, ω2, ~k2, ω3, ~k3)δωδ~k =
∑

{α}q ,{δ}q

∫ ∏

ij

[dωijd ~Kij]C,

C = 〈
3∏

q=1

X({α}q, ωq1, ~Kq1)X†({δ}q, ωq2, ~Kq2)〉β,
(4.39)

and we have the constraints

ωq1 − ωq2 = ωq; ~Kq1 − ~Kq2 = ~kq. (4.40)

When the correlator above is expanded using Wick’s theorem at finite temper-
ature, we do not get only pairwise contractions of the X-polynomials, since some
annihilation operators in the first polynomial may contract with creation operators
from the second X† whereas some others may contract with creation operators from
the third X†. However, of the multiple terms that appear, one particular term that
appears in the Wick contraction is

C =〈X({α}1, ω11, ~K11)X†({δ}2, ω22, ~K22)〉β〈X†({δ}1, ω12, ~K12)X({α}3, ω31, ~K31)〉β
× 〈X({α}2, ω21, ~K21)X†({δ}3, ω32, ~K32)〉β + . . . ,

(4.41)

where . . . denote the other possible Wick contractions.

In the displayed term, we find some additional constraints if the term is not to
vanish

ω11 = ω22; ~K11 = ~K22,

ω12 = ω31; ~K12 = ~K31,

ω21 = ω32; ~K21 = ~K32.

(4.42)

In the limit where the ω1, ω2, ω3 are negligible, this just sets all the ωij equal to each
other.

Now, we note that the displayed term is suppressed by a factor of e−βω11 . In the
regime where the mass is unimportant, each polynomial only has support in the
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region where ωij ≥ | ~Kij| this means that we must have

ω11 ≥ | ~K11|; ω11 ≥ | ~K11 − ~k1|; ω11 ≥ |~k2 + ~K11|. (4.43)

In the expansion of the Wightman function, we must integrate over all values of ωij
that are allowed. However, the constraints above tell us that the largest contribution
to the integral comes precisely when ω takes the smallest value that meets (4.43).This
can be achieved by varying ~K11 and it is clear that the resultant ω11 is precisely the
radius of the smallest circle that contains the triangle formed by ~k1, ~k2, ~k3.

For any given interaction we can estimate the lowest order in perturbation theory
that the term above appears. For instance, consider a φ3 theory. Then, in general,
a non-trivial contraction above first appears at third order in perturbation theory,
where each of the X polynomials are just single creation and annihilation operators.
However, for such operators, the inequalities in (4.43) must actually be equalities
since these operators have frequency equal to the norm of their momenta. Now, it
is interesting that if the triangle formed by the three momenta ~ki is acute-angled,
then all three-points of the triangle lie on the smallest circle that contains it (the
so-called “circumcircle”.) Thus, when the triangle formed by ~ki is acute angled,
the minimum value of ω dictated by (4.43) coincides with the value obtained by
saturating all three inequalities. Therefore, for such configurations of momenta, the
bound is saturated at third order in perturbation theory for a cubic interaction.

In general, it is always possible to keep two points of the triangle on the smallest
circle that contains it. This corresponds to taking two out of three contractions in
(4.41) to be contractions of single annihilation and creation operators, while taking
the third contraction to comprise of polynomials that are at least quadratic in the
elementary annihilation and creation operators. The lowest such term appears at
fifth order in perturbation theory with a φ3 interaction. On the other hand, if the
interaction is φ5 then such a term appears already at third-order in perturbation
theory, and the bound can be saturated for all kinematic configurations at this order.

Diagrammatic analysis: The Feynman rules for the three-point function are a
natural generalization of the rules above. We are interested in the one-loop diagram
shown in Figure 4.4. This particular loop contribution is given by following integral.
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Figure 4.4: Contribution to the 3-point correlator that saturates the bound for special
kinematics

lim
~ki→∞

iλ3
∏ 1

~k2
i +m2

∫ ∏

i

ddpi
(2π)d

δ(k1 + p3 − p2)δ(k2 + p1 − p3)δ(k3 + p2 − p1)

(2π)3δ(p2
1 +m2)δ(p2

2 +m2)δ(p2
3 +m2)

[
(θ(−p0

1) + n(|p0
1|)
] [
θ(p0

2) + n(|p0
2|)
] [
θ(−p0

3) + n(|p0
3|)
]

We are interested in the limit where the masses and external frequencies are negli-

Figure 4.5: Momentum conservation for diagram 4.4.

gible. In this limit, the constraints imply that p0
1 = p0

2 = p0
3. The on-shell condition,

and momentum conservation (see Figure 4.5) then imposes |~p1| = |~p2| = |~p3| = Rc,
where Rc denotes circumradius of the triangle with sides ~ki. Due to the presence of
both positive and negative signs in theta functions, we are forced to include at least
one Boltzmann suppression factor, e−βRc . This diagram saturates the bound only
for limited kinematic configurations, that is, when the triangle formed by external
momenta is acute angled.
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Figure 4.6: Diagram for the three-point correlator that saturates the bound for all
external kinematics

In order to saturate the bound in all of kinematic space we require at least one
off-shell (but time-like) internal propagator (as we can always keep 2 propagators on-
shell and still saturate the bound). This can be achieved by correcting the internal
propagator by introducing two additional vertices as shown in Figure 4.6. Note that
no additional large-k suppressions are introduced as we are interested in the regime
where the internal propagators are time-like. Hence, for a φ3 interactions we need
5th order corrections in the coupling to saturate the bound for all of kinematic space.

4.3.3 Higher-point functions

The generalization to higher-point functions is now quite simple.

Canonical analysis For a n-point function, we obtain the perturbative series

G(ωi, ~ki)δωδ~k

=
∑

{α}q ,{δ}q

∫ ∏

ij

[dωijd ~Kij]〈
n∏

q=1

X({α}q, ωq1, ~Kq1)X†({δ}q, ωq2, ~Kq2)〉β.
(4.44)

The integral is subject to the constraints

ωq1 − ωq2 = ωq; ~Kq1 − ~Kq2 = ~kq. (4.45)
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Expanding this using Wick’s theorem, we now find the following term

G(ωi, ~ki)δωδ~k

=
∑

{α}q ,{δ}q

∫ ∏

ij

[dωijd ~Kij]

[
n−1∏

i=1

〈X({α}i, ωi1, ~Ki1)X†({δ}i+1, ωi+1,2, ~Ki+1,2)〉β
]

× 〈X†({α}1, ω12, ~K12)X({δ}n, ωn1, ~Kn1)〉β + . . . .

(4.46)

These correlators are additionally non-zero when the constraints

ωi1 − ωi+1,2 = 0; ~Ki1 − ~Ki+1,2 = 0, (4.47)

are satisfied. The only term that is exponentially suppressed in the expression above
appears on the second line. In the limit where ωi � |~ki|, it is clear that the smallest
value of ω12 that satisfies the constraints is the radius of the smallest sphere that
contains the polygon formed by the ~ki precisely in line with our bound.

As in the discussion of the three-point function, since we can always place at
least two points from this polygon on the sphere itself, this implies that two of the
contractions in (4.46) (which involve four polynomials) can comprise polynomials
of order 1. However the other (2n − 4) polynomials must be quadratic or higher.
For a φ3 interaction, this means that such a term first appears at order 3n − 4 in
perturbation theory. For a φ5 interaction on the other hand, such a term appears
already at order n in perturbation theory.

Diagrammatic analysis It is also simple to see the diagram that contributes
the relevant term in the n-point function. First, we need a minimum of n-th order
correction to allow all the external momenta to be spacelike. Now we need n −
2 internal momenta to be off-shell. This, in φ3 theory, would require additional
2(n− 2) vertices. So an n-point function will saturate the bound at order 3n− 4 in
perturbation theory. For instance, Figure 4.7 shows the diagram that saturates the
bound for 4-point function for the φ3 theory.

If we work with φ5 or higher interactions, then we can saturate the bound for
n-point functions at n-th order in perturbation theory. This is because we can keep
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Figure 4.7: The bound for four-point function is expected to be saturated at eighth
order in perturbation theory for arbitrary external kinematics by the diagram above.

all internal momenta off-shell without introducing additional vertices, as shown, for
instance, in figure 4.8.

Figure 4.8: A φ5 interaction can saturate the bound for n-point functions at nth

order in perturbation theory. The diagram above shows the relevant correction to
the 3-point function.

In the case of a φ4 interaction, odd-point functions vanish. Also, half of the
internal momenta can be made off-shell by the same logic as above. An even n > 2

point function could saturate the bound at order n + 2(n − 2 − n/2) = 2n − 4 in
perturbation theory.
In this section, we have considered correlators of elementary fields in weakly in-

teracting theories. However, as the canonical analysis above makes clear, even in
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a free theory, correlators of suitably complicated composite operators saturate the
bound.

4.4 Holographic theories

We now consider a large-N field theory with a gravitational holographic dual. In
such a theory, the natural low-energy operators are generalized free-fields. So in
this section, we analyze the behaviour of correlation functions of generalized free-
fields at large spacelike momenta. While our proof of the large-k bound is valid
for such theories, there is a subtlety. The bound proved in 4.2 is strictly valid
only for asymptotically large momenta. If we then consider a holographic correlator
where the insertions have momenta such that |~k| � ω, |~k| � T (where T is the
temperature), but also |~k| � N , is the bound obeyed, or is the bound valid only for
|~k| � N . In this section, we will make some progress towards understanding this
question, but we will not reach a final answer.

We analyze both two-point functions and higher-point functions in a holographic
theory at finite temperature. The two-point function can be analyzed by considering
the propagation of bulk fields on top of a black-brane background. An interesting
aspect of the holographic correlators, so obtained, is that their Fourier transforms
have non-zero support in the regime of our interest (large spacelike momenta), even
when the bulk theory is described by a free-field propagating in the curved back-
ground. We will show that, at this level, while the two-point function saturates
the bound (4.2) for AdS3, it remains strictly below the bound in higher dimensional
AdS. We do not understand the reason for this curious behaviour particularly since
the analysis of section 4.3 might have suggested that in a generic strongly coupled
theory (where all orders in the perturbative expansion are important) the bound is
always saturated.

In the second part of the section, we initiate the study of interactions for holo-
graphic correlators. Interactions introduce several dangerous terms in the bulk per-
turbative expansion that have the potential to violate the bound. This is because
the bulk theory does not obey the spectrum condition and has excitations with
frequency smaller than momentum. Nevertheless, by means of an analysis of the
analytic structure of Witten diagrams, we argue that tree-level contact Witten dia-
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grams do obey the bound. We make some brief comments about exchange diagrams
in 4.4.2.

We should emphasize that at all points in this section, we are only interested in
boundary correlators. Bulk correlators, where the operators are inserted at some
finite value of the radial coordinate manifestly violate our bound. This is because
these operators do not have well-defined correlators at all temperatures, which is
one of the assumptions in our proof. In particular, if we keep the radial position
of the operator fixed, and increase the temperature the operator will eventually fall
behind the horizon, where it must be described by the state-dependent operators of
[68, 67, 69, 70].

4.4.1 Two-point functions

To analyze the behaviour of two-point functions of generalized free-fields, we consider
free-fields in AdS, propagating on black brane backgrounds. For simplicity, we will
only consider scalar fields. A similar analysis was also performed in [91].

We set the radius of AdS to 1 so that the metric of the black-brane in AdS is
given by

ds2 =
1

z2

[
−h(z)dt2 +

1

h(z)
dz2 + d~x2

]
, (4.48)

where

h(z) = 1− zd

zd0
.

The horizon is at z = z0, the boundary at z = 0 and ~x is a (d − 1)-dimensional
vector. The inverse-temperature of this brane is given by

β =
4πz0

d
. (4.49)

We will consider a massive scalar field in the bulk that satisfies the wave-equation

(2−m2)φ = 0. (4.50)
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To analyze this wave-equation, it is useful to switch to coordinates defined by1

dz∗
dz

=
1

zh(z)
. (4.51)

The map and inverse-map between z∗ and z is given by

z∗ = − log
(
zd0 − zd

)

d
+

log
(
zd
)

d
; z =

z0

(1 + e−dz∗)
1
d

. (4.52)

We make an ansatz of the form φ = χω,~k(z)ei
~k·x−iωt. Further, it is convenient to

substitute χω,~k(z) = z
d
2ψ(z), where we suppress the dependence of ψ on ω,~k to

lighten the notation. We now find that ψ(z) obeys the equation

d2ψ

dz2
∗

+ V ψ = 0, (4.53)

with

V = z2ω2 + h(z)

(
−d

2

4
−m2 − z2~k2 − d2zd

4zd0

)
. (4.54)

We now consider this equation in the limit that |~k| → ∞ with ω fixed.
For this regime of parameters, it is most convenient to solve the equation in the

following three regions

Region I: z0−z
z0
� 1,

Region II: h(z)� ω2

|~k|2 and |~k|2z2 � 1,

Region III: z � 1,

(4.55)

and then match the solutions in their overlapping regimes of validity. The potential
has a turning point but this is included in region I above.

Approximate solution in different regions

Region I — In this region we find that z∗ � 1 and we can approximate

z ≈ z0(1− 1

d
e−dz∗). (4.56)

1Notice that the coordinate z∗ is not the same as the tortoise coordinate.
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We can also approximate the potential as

V ≈ z2
(
ω2 − h~k2

)
≈ z2

0

(
ω2 − e−dz∗~k2

)
. (4.57)

This leaves us with the differential equation

ψ̈ + z2
0

(
ω2 − e−dz∗~k2

)
ψ = 0, in Region I, (4.58)

This is just the modified Bessel equation (although the order is imaginary) and with
γ = 2z0d

−1, the solution is

ψ = AIKiγω(|~k|γe−dz∗/2) +BIR
(
Iiγω(|~k|γe−dz∗/2)

)
, (4.59)

where R yields the real part of its argument.

Region II — In region II, we will use a WKB approximation to solve the equation.
We approximate the potential by

V ≈ −z2h|~k|2, Region II (4.60)

Then, with,

W (z) =

∫ √
−V dz∗ =

∫ √
−V dz

zh(z)
= |~k|z 2F1

(
1

2
,

1

d
; 1 +

1

d
;

(
z

z0

)d)
, (4.61)

the solution is given by

ψ(z) =
1

(−V )
1
4

(
AIIe

W (z) +BIIe
−W (z)

)
. (4.62)

Region III— In region III, we can neglect the non-linear terms inside h and
approximate the potential by

V = −|~k|2z2 −
(
d

2

)2

−m2. (4.63)
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In this region, we also have

z = z0e
z∗ , Region III, (4.64)

The solution to the differential equation is

ψ = AIIIIν(|~k|z) +BIIIKν(|~k|z), (4.65)

with ν =
√(

d
2

)2
+m2.

Matching

We now match the three solutions, given in (4.59), (4.62), (4.65) to relate the con-
stants above to each other.

Now, as we enter the range where |~k|z � 1, but z � 1, which is the overlap be-
tween region III and region II, we find that the solution can be written by considering
the asymptotics of both (4.65) and of (4.62). In this region,

ψ =
AIII√
2π|~k|z

e|
~k|z +

e−|
~k|z

√
2π|~k|z

(
πBIII + iAIIIe

iπν
)

=
1√
|~k|z

(
AIIe

|~k|z +BIIe
−|~k|z

)
.

(4.66)

There is a subtlety about whether we should match both the positive and the
negative exponential terms in (4.66). However, note that first the leading constants
AII and BII that multiply these terms could make them of the same magnitude.
Second, we can also imagine continuing the exponential into the imaginary plane so
that the exponents become phases, and then match them.

This leads to the relations

AII =
AIII√

2π
; BII =

πBIII + iAIII√
2π

. (4.67)

Now we turn to region I. First, by extending from region II towards region I, we
find

W (z) −→
z→z0

|~k|√πz0Γ[1 + 1
d
]

Γ[1
2

+ 1
d
]

− 2|~k|d− 1
2 z

1
2
0

√
z0 − z. (4.68)
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For convenience below we define

κ =
|~k|√πz0Γ[1 + 1

d
]

Γ[1
2

+ 1
d
]

. (4.69)

So, the WKB solution, as we approach region I becomes

ψ =
1√

|~k|z0e−dz∗/2

(
AIIe

κ−2|~k|d− 1
2 z

1
2
0

√
z0−z +BIIe

−κ+2|~k|d− 1
2 z

1
2
0

√
z0−z

)
. (4.70)

On the other hand, we have a regime where |~k|e−dz∗ � 1, but nevertheless, z∗ � 1

that overlaps with the regime above and is part of region I. This happens for 1 �
z∗ � ln(|~k|). In this region, the expansion of the Bessel functions is

Kiγω(γ|~k|e−dz∗/2) ≈ 1√
4
dπ
|~k|z0e−dz∗/2

e−2z0|~k|d−1e−dz∗/2

R
(
Iiγω(γ|~k|e−dz∗/2)

)
≈ 1√

4π
d
|~k|z0e−dz∗/2

e2z0|~k|d−1e−dz∗/2 .
(4.71)

We can match these asymptotics with the asymptotics of region II, by using the
fact that in the overlapping region

e−
dz∗
2 =

√
d(1− z

z0

) = d
1
2 z
− 1

2
0

√
z0 − z. (4.72)

Therefore the solution from region I as we approach region II becomes

ψ = AI
1√

4
πd
|~k|z0e−dz∗/2

e−2|~k|z
1
2
0 d
− 1

2
√
z0−z+BI

1√
4π
d
|~k|z0e−dz∗/2

e2|~k|z
1
2
0 d
− 1

2
√
z0−z. (4.73)

Now matching (4.73) and (4.70) we see that we need

AI =

√
4

πd
eκAII ,

BI =

√
4π

d
BIIe

−κ.

(4.74)
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Combining (4.74) and (4.67) we find that

AIII = πAIe
−κ
√
d

2
,

BIII =

√
2

π
(BII − iAII) =

√
2

π

(
eκBI

√
d

4π
− ie−κAI

√
πd

4

)
.

(4.75)

Normalization

Finally, we need to normalize the solutions above so that they can be used as a basis
for expanding a quantum field. First, near the boundary we note that

ψ = AIIIIν(|~k|z) +BIIIKν(|~k|z)

−→
z→0

(|~k|z)ν
(
BIIIΓ(−ν)2−ν−1 + AIII

2−ν

Γ(1 + ν)

)
+ (|~k|z)−ν2ν−1Γ(ν)BIII .

(4.76)

Since we are looking for normalizable solutions, we set

BIII = 0. (4.77)

This also tells us that |BI | � |AI | in the large |~k| limit, and so we can neglect BI

in what follows. Next, in the region near the horizon, where z∗ � 1, we have the
expansion

Kiγω(γ|~k|e−dz∗/2) −→
z∗→∞

−
(

π

γω sinh(πγω)

)1/2

sin(−dγωz∗/2 + log(γ|k|/2)γω − δ).
(4.78)

where the phase δ = arg (Γ(1 + iγω)) and we have ignored the expansion of the
Bessel “I” function since BI is negligible.

We can use this to set the normalization of the field as follows. We expand the
bulk quantum field as

φ =

∫
dωdd−1~k

(2π)d
1√
2ω
aω,~kψ(z)e−iωtei

~k·~x, (4.79)
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with the creation and annihilation operators normalized so that

[aω,~k, a
†
ω′,~k′

] = (2π)dδ(ω − ω′)δ(~k − ~k′). (4.80)

The correct normalization of ψω,~k(z) can then be determined through the canonical
commutation relations

[φ(t, z, ~x), gttφ̇(t, z′, ~x′)] =
i√
−g(z∗)

δ(z∗ − z′∗)δ(~x− ~x′) (4.81)

By examining these commutation relations in the near-horizon region where the
wave-function varies exponentially, we find that

A2
I =

8zd0ω sinh(2πz0ω
d

)

π

Two-point functions

The analysis above permits us to calculate the two-point correlation function of the
generalized free-field on the boundary, O, that is dual to the bulk field φ through

〈Oω,~kOω′,~k′〉β = lim
z→∞

z−2∆〈φω,~k(z)φω′,~k′(z)〉β. (4.82)

Note that this two-point function is sometimes defined with a “wave-function renor-
malization” factor that we have set to 1. The quantum expectation value on the
right hand-side can be computed by using

〈aω,~ka
†
ω′,~k′
〉 =

1

1− e−βω (2π)dδ(ω − ω′)δ(~k − ~k′);

〈a†
ω,~k
aω′,~k′〉 =

e−βω

1− e−βω (2π)dδ(ω − ω′)δ(~k − ~k′).
(4.83)

This leads to the result

lim
|~k|→∞

〈Oω,~kOω′,~k′〉β = 2πdzd0 cosh(
2πz0ω

d
)|~k|2ν 2−2ν

Γ(1 + ν)2
e−2κδ(ω + ω′)δ(~k + ~k′).

(4.84)
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Apart from some leading constants, the important part of this result for us is that
in the large-k limit, the two-point function scales like e

−αβ|~k|
2 where2

α =
dΓ[1 + 1

d
]√

πΓ[1
2

+ 1
d
]
. (4.85)

While, for d = 2, we have α = 1 for d > 2, we have α > 1. In particular, for
d = 3, 4, 5, 6 we have α = 1.34, 1.67, 2.00, 2.32 respectively.
This means that while the bound is saturated in d = 2, it is under-saturated for

d > 2. It would be nice to understand the reason for this phenomenon.

4.4.2 Interactions and higher-point functions

We now examine how the correlators above behave when interactions are included.
We will prove that, at tree-level, holographic correlators computed via contact Wit-
ten diagrams obey the bound (4.2). Our arguments do not immediately show that
the bound is saturated, and we postpone a more-complete discussion of exchange
diagrams to future work. Interactions in holographic theories at finite temperature
have been considered extensively in the literature starting with the work of [94, 105].
We refer the reader to [106] for more details.
Our analysis proceeds as follows. We consider Witten diagrams in the background

of the Euclidean black brane. The Euclidean black brane metric is given by the
continuation of (4.48)

ds2
E =

1

z2

[
h(z)dτ 2 +

1

h(z)
dz2 + d~x2

]
, (4.86)

with a periodic identification of Euclidean time through τ ∼ τ + β. This metric
is completely regular and the τ -circle shrinks smoothly to zero at z = z0. For
notational consistency we will continue to use the coordinate t = −iτ .
In this section, we assume that the boundary correlator at real time and finite

temperature can be computed as follows

1. We integrate all bulk points and bulk to bulk propagators over the Euclidean
black-brane geometry.

2A similar factor appears in [91], although our expression is different. The discrepancy may be
due to a typographical error.
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2. We analytically continue the bulk to boundary propagators to account for
complexified positions of the boundary insertions.

This seems to be a natural prescription for computing finite-temperature, real time
correlators and avoids some of the difficulties that appear in the Schwinger-Keldysh
formalism, which are explained in Appendix B.
For simplicity, we will consider scalar fields dual to operators of dimension ∆.

We consider contact interactions in some detail, and then briefly mention exchange
interactions.

Contact interactions

Witten diagrams with contact interactions can be computed using the bulk-boundary
propagator in this background, K∆(t0, ~x0, t, ~x, ~z) from a boundary point (t0, ~x0) to
a bulk point (t, ~x, z) and a typical diagram is evaluated through an integral of the
form

W (ti, xi) =

∫ ∏

i

K∆i
(ti, ~xi, t, ~x, z)dtdd−1~x

dz

zd+1
, (4.87)

where the contour of integration is

0 ≤ z ≤ z0; ~x ∈ Rd−1 0 ≤ it ≤ β.

The purely Euclidean computation would involve purely imaginary values for the
boundary points ti and purely real values for xi. For such values, the bulk to
boundary propagator has no singularities. However, here, we will allow the boundary
points to be at general complex values of ti, ~xi, which can be done by analytically
continuing the bulk to boundary propagator.
Now, the key point is as follows. As we start with Euclidean boundary points and

continue them to complex values, the bulk to boundary propagator in (4.87) may
develop singularities. Nevertheless, the integral itself can usually still be defined
through analytic continuation. The integral develops singularities only when the
contour of integration gets pinched between two or more singularities of the integrand
[107].3

3This is similar to the method used in [108] to locate singularities in holographic correlators.
However, since the bulk background is that of a black brane rather than empty AdS, the
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Although, in general, we cannot find explicit analytic expressions for the bulk-
boundary propagator for higher than two boundary dimensions, we can still isolate
its singularities. The bulk-boundary propagator is singular whenever the boundary
point (ti, xi) is connected to the bulk point (t, x, z) by a null geodesic. Since the
boundary points are at complex positions, we consider complexified geodesics.

Conditions for the Contour to be Pinched We now review the conditions
under which the contour of integration may be pinched. Let the equation of the
light-cone emanating from a boundary point (ti, xi) to a boundary point (t, x, z) be
given by Si = 0. Then for the integral (4.87) to be singular, we require the following
necessary condition. For some q distinct values i1, i2 . . . iq, we should have

Si1 = Si2 = . . . Siq = 0;

q∑

j=1

γj
∂Sij
∂w

= 0; (4.88)

where γ1, γ2 . . . γq are arbitrary complex numbers and wk runs over t, ~x, z.

The first condition in (4.88) expresses the fact that the singularities are coincident.
The second condition expresses the fact that the normals to the light-cone at the
point of coincidence are linearly dependent on each other.

In addition, it is important that the singularities do not approach the contour
of integration from the “same” side. Let δ~xi = xi − x and δt = ti − t. Then we
require the following condition: if the vectors Im (δ~xi) are on the same side of any
(d− 2)-dimensional hyperplane that runs through the origin, then the singularity is
not pinched. Mathematically, this condition can be expressed by stating

@~b ∈ Rd−1, such that Im (δ~xi) ·~b > 0, ∀i. (4.89)

The reason for this is that, in such a case, by deforming the contour of integration
to give ~x a small imaginary part in the direction perpendicular to this hyperplane,
we simultaneously move away from all singularities.

We now prove that in a contact Witten diagram, the contour of integration cannot
be pinched between the singularities of the bulk-boundary propagators.

analysis here is considerably more involved.
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Sketch of Proof The proof below is somewhat involved, so we provide a brief
sketch of the steps involved.

1. First we show that, if the contour of integration lies on a real value of z
then singularities of the analytically continued bulk-boundary propagator only
occur when the imaginary part of the displacement from the boundary to the
bulk point is null or spacelike:

[Im(δt)]2 ≤ Im(δ~x) · Im(δ~x). (4.90)

2. Simple geometry then shows that if the boundary points are in the domain of
analyticity, then (4.89) cannot be met.

An analysis of complexified geodesics in higher-dimensional black branes
The null geodesic equations, written in terms of an affine parameter, λ tell us that

dt

dλ
= −k0iz

2

h(z)
;

d~x

dλ
= ~kiz

2; −h(z)

z2

(
dt

dλ

)2

+
1

z2h(z)

(
dz

dλ

)2

+
1

z2

(
d~x

dλ

)2

= 0,

(4.91)
where the subscript i indicates the different geodesics that end up at boundary points
(ti, xi). We remind the reader that these geodesics can move along the complexified
(t, ~x, z) manifold. Nevertheless, we will consider geodesics that originate at real z
since the contour of integration originally runs along real z. For bulk to boundary
propagators, the geodesic runs from a bulk point at an initial real value of z, which
we denote by zr, to the boundary, which is at z = 0 and so we are interested in
geodesics whose imaginary part again becomes zero when Re(z) = 0.

Using the last equation to solve for dz
dλ

we find that

dz

dλ
= −z2

(
k2

0i − ~k2
i h(z)

) 1
2
. (4.92)

The z-equation can be integrated to yield

λ =
1

z

√
k2

0i − ~k2
i

2F1

(
1

2
,−1

d
;
d− 1

d
;

~k2
i

~k2
i − k2

0i

zd

zd0

)
− f0, (4.93)
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where the constant f0 is set according to the convention that the affine parameter
is 0 for z = zr. Near the boundary, we have

λ −→
z→0

1√
k2

0i − k2
i z
, (4.94)

and so λ tends to ∞ near the boundary.
Since the geodesic must reach the boundary at a real value of z = 0, the allowed

geodesics must satisfy
k2

0i − ~k2
i > 0. (4.95)

We now proceed to prove that null geodesics obey (4.90). Our proof proceeds in
two steps.

1 First we show that the equation (4.91) where the derivatives of t and ~x need
to be integrated along the curve (4.93) to obtain the full displacement δt and
δ~x can also be integrated along the real z-axis by considering the equations

dt

dz
=

1
dz
dλ

dt

dλ
=

1

h(z)
√

1− ~c2
ih(z)

;
d~x

dλ
=

1
dz
dλ

d~x

dλ
=

~ci√
1− ~c2

ih(z)
, (4.96)

where ~ci =
~ki
ki0

. What we need to prove here is that dz
dλ
6= 0 at any point

between the trajectory of the original geodesic and the real z-axis. If so, then
we can deform the integration contour of the equations (4.96) from the original
geodesic to the real z-axis.

2 Then we show that along the real z axis, the condition (4.90) is satisfied.

We will assume, throughout this analysis that Im(~ci) 6= 0. This is the generic
case, and our proof is easily generalized to the special case where Im(~ci) = 0.
To prove property 1, we first note that along real z-axis, Im(

√
1− ~c2

ih(z)) cannot
change signs. This quantity can only change sign if, at some point on the real z-axis,
we have 1− ~c2

ih(z) > 0 as a real number. But this is impossible since h(z) ∈ R but
Im(~ci

2) 6= 0.
Now consider the family of geodesics with the same value of ~ki and ki0 but

starting at different initial values of the z-coordinate: 0 < z(0) < zr. These
geodesics cannot intersect the original geodesic that starts at z(0) = zr because
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the derivative along the curve is purely a function of z so a unique curve passes
through each complex value of z where dz

dλ
6= 0. These geodesics also cannot

intersect the z-axis. This is because if the geodesic intersects the z-axis, then
dIm(z)
dλ

= Im
(
−z2

√
(k2

0i − ~k2
i )− ~k2

i (h(z)− 1)

)
must have different signs at z = zr

and the point where it returns to the z-axis. However, by (4.95) and a simple
extension of the argument above, dIm(z)

dλ
, keeps a fixed sign for real z. Therefore

these geodesics must stay between the real z-axis and the trajectory of the original
geodesic that starts at zr. If we additionally assume that the geodesic curve varies
continuously as the initial starting point varies then it follows that all points in the
complex z-plane between the original geodesic and the real z-axis can be reached
by varying z(0). But since all geodesics terminate at the boundary, this means that
dz
dλ
6= 0 for any point between the original geodesic and the real z-axis.

This implies that to obtain the displacement δ~x and δt we may integrate their
derivatives, given by (4.96) along the real z-axis. Note that this immediately allows
us to obtain explicit formulas for δt and δ~x by explicit integration

δti =
zF1

(
1
d
; 1

2
, 1; 1 + 1

d
;
~c2i z

d

~c2i−1
, zd
)

√
1− ~c2

i

,

δ~xi = ~ci
z 2F1

(
1
2
, 1
d
; 1 + 1

d
;
~c2i z

d

~c2i−1

)

√
1− ~c2

i

,

(4.97)

where F1 is the “Appell F-function”.

Now we show property 2. First we perform a rotation in the transverse directions
so that ~ki = (ki, 0, . . . 0) and therefore ~ci = (c, 0 . . . 0) with c = ki

ki0
. Second, for

convenience, we consider the case where Im(c) > 0 so that Im( 1√
1−c2h(z)

) > 0 and

Im( c√
1−c2h(z)

) > 0. The other cases can be treated by trivially changing some signs

below.

We define

D(d, z) = Im

[
c√

1− c2h(z)
− 1

h(z)
√

1− c2h(z)

]
. (4.98)

We noting that, through some simple algebra, if D(d, z) vanishes for 0 < h < 1, this
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can only happen at

h =
−1 + Re(c)
|c|2 − Re(c)

. (4.99)

Since D(d, z) > 0 at z = 0 (h = 1) this means that D(d, z) is positive near z = 0

and can cross the real axis at most once between the boundary and zr.

To prove (4.90), we only need to integrate D(d, z) from the position of the contour
to the boundary. However, the property of D(z) above tells us that (4.90) will be
implied if we prove that

H(d) =

∫ z0

0

D(d, z) > 0. (4.100)

We will prove this as follows. First, we will show that once H(d) becomes positive,
it remains positive as we increase d. Then we will check that for d = 2, the integral
is positive which proves that it is positive for all d.

First, we note that
∂D(d, z)

∂d
=
∂D(d, z)

∂z

z

d
log(

z

z0

). (4.101)

Therefore

d
∂

∂d
H(d) = d

∂

∂d

∫ z0

0

D(d, z) =

∫ z0

0

∂D(d, z)

∂z
z log(

z

z0

) = −
∫ z0

0

D(d, z) log(
z

z0

)−H(d).

(4.102)
The boundary terms in the integration by parts vanish because the log vanishes at
z = z0, while at the boundary z = 0.

The differential equation above can be written as

∂

∂d
dH(d) = −

∫ z0

0

D(d, z) log(
z

z0

). (4.103)

Now by the assumption about D above we also have that
∫ z0

0

D(d, z) log(
z

z0

) < 0. (4.104)

since log( z
z0

) < 0 and moreover | log( z
z0

)| becomes larger as we go closer to z = 0.
Therefore in the integral above log(z) weights the positive section of D with a weight
that is larger in magnitude than the weight for the section where D is negative.

Turning now to H(2) this can be analytically computed using the formulas above
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to beH(2) = Im(log(1+c)). Recall that we are considering the case where Im(c) > 0

so that clearly H(2) > 0. Therefore H(d) > 0, ∀d ≥ 2. The result (4.90) now follows
immediately.

Analyticity of correlators in the domain ηi ∈ F The analyticity of correlators
in the required domain can now be proved. We let ηi be the imaginary part of
the displacement of the boundary points from each other and let (δti, δ~xi) be the
displacement in time and space from the point where the contour may be pinched
in the bulk. Then, we see that the imaginary parts of these displacements are given
by

(Im(δt1), Im(δx1)), (Im(δt1), Im(δx1)) + η1, . . . (Im(δt1), Im(δx1)) + η1 + . . . ηn−1.

(4.105)
However starting from a null or spacelike vector and adding future directed timelike
vectors, it is not possible to obtain a configuration of spacelike vectors whose spatial
parts are not on one-side of some codimension 1 hyperplane. So the singularity
cannot be pinched by boundary points whose imaginary displacements are in the
future timelike direction.

In fact, starting with the initial contour that runs from Im(t) = 0 to Im(t) = −β
and along Im(~x) = 0, we can deform the contour as shown in Figure 4.9. In the
Im(t), Im(~x) plane, the contour follows a causal path that tracks all the boundary
points. Such a path must exist since the imaginary displacement between each point
and the next point in the Wightman correlator is timelike and future directed.

On this contour of integration, it is clear that there are no singularities that remain
even in the integrand. this is because a singularity can only arise when one of the
boundary points is separated from a point on the contour by a spacelike imaginary
displacement. However, in Figure 4.9 the imaginary displacement between every
boundary point and every point on the contour is timelike.

It is also clear why the proof breaks down if the condition βei−
∑
ηi ∈ V+ is not

met. Since the boundary is identified in Euclidean time, it is possible for geodesics
to go both “forward” and “backward” in imaginary time. For points that are outside
the diamond of analyticity, what may seem like a timelike displacement ηi ∈ V+

may nevertheless be reached by a light ray going in the “wrong” direction in time.
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Im(~x)
Im(t) = −β, Im(~x) = 0

Im(t) = 0, Im(~x) = 0

Im(t)

Figure 4.9: A deformation of the integration contour that explicitly avoids all sin-
gularities for a contact Witten diagram. The boundary points are displayed as red
dots. The original contour is the dashed line along Im(~x) = 0. The final deformed
contour is the blue line. The red dots are the imaginary coordinates of the boundary
insertions.

See Figure 4.10. In this situation, it is clear that the proof of the previous section

Figure 4.10: It seems like the vector η’s imaginary coordinates are “timelike” sepa-
rated from O. But if we take into account the periodic identification of Euclidean
time, it is also possible to reach η from O via a “spacelike” imaginary displacement.

does not hold.
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Exchange interactions

We now turn to exchange interactions. Let G(t, x, z, t′, x′, z′) be the bulk-bulk prop-
agator. Then exchange interactions are given by summing Witten diagrams which
yield integrals of the form

W (ti, xi) =

∫ n1∏

i1=1

K∆i
(ti, ~xi1 , t, ~x, z)G(t, ~x, z, t′, ~x′, z′)

×
n2∏

i2=1

K∆i2
(ti2 , ~xi2 , t

′, ~x′, z′)G(t′, ~x′, z′, t′′, ~x′′, z′′) . . . dtdt′dd−1~xdd−1~x′
dzdz′

zd+1(z′)d+1
. . .

(4.106)

Now the singularities of the bulk to bulk propagator are also along the light-cone,
and so we need to repeat the analysis of the previous subsection for bulk-bulk prop-
agators.

Some parts of the previous argument go through. For example, if the bulk-bulk
propagator starts and ends at real values of z, then the displacement of δ~x and δt
between the two end-points of the bulk-bulk propagator can again be obtained by
integrating the geodesic equations along the real z axis. For such geodesics, the
condition (4.95) may not hold. Instead, such geodesics are separated by a point
on the real z-axis, where the sign of Im( dz

dλ
) changes sign. This is because if this

quantity has one sign at one endpoint (as the geodesic departs the real-z-axis), it
must have the opposite sign at the other endpoint (as the geodesic returns to the
real-z-axis). This point occurs at the unique value of h(z) for 0 < z < 1 where

h(zt) =
Im(k2

0)

Im(k2
i )

(4.107)

provided that we also have Re(k2
0)−h(zt)Re(k2

i ) > 0. Consider a geodesic that starts
at zr and terminates at z′r. Once again we consider geodesics with the same value
of k0 and ~ki that start between zr and zt. Since these geodesics cannot intersect
the original geodesic they must intersect the z axis at some point between zt and
z′r. Proceeding this way, by starting with different initial conditions, we can “fill up”
the entire region between the real z-axis and original geodesic with other geodesics.
This means that there are no points where dz

dλ
vanishes in the region between the

142



4.5 Discussion

trajectory of the geodesic and the real z-axis.
However, it is not true that for the bulk-bulk propagator, the vector (Im(δt), Im(δ~x))

must be spacelike. To consider a trivial counter-example, consider a geodesic that
propagates from a value of z close to the horizon to another value of z close

to the horizon. In the near-horizon region, we can make |Im
(

1

h(z)
√

1−c2h(z)

)
| >

|Im c√
1−c2h(z)

| and therefore we can easily achieve |Im(δt)|2 > Im(δ~xi) · Im(δ~xi).

This means that the proof of the previous subsection, that applied to contact
Witten diagrams is not immediately applicable.
This does not mean that exchange diagrams violate our bound. For example, in

some cases, such as the BTZ black hole, exchange Witten diagrams can be reduced
to sums of contact diagrams by extending the techniques of [109]. Then the proof
of the previous subsection indirectly implies that exchange diagrams also have the
correct analytic properties. However, for the more general case, we have not yet been
able to find an appropriate proof that exchange Witten diagrams lead to boundary
correlators obeying our bound. We leave the question of the analytic properties of
exchange Witten diagrams as an open problem.

4.5 Discussion

We studied the limit of Wightman correlators in a relativistic quantum field theory
at finite temperature, where the spatial momenta of the insertions became large
while their frequencies remained finite. Based on general properties of quantum
field theories, we showed that the correlator was bounded by the exponential of a
specific geometric term: the radius of the smallest sphere that could contain the
non-planar polygon of the momenta in units of the temperature.
We showed that this bound is saturated in weakly coupled theory at high enough

loop order for arbitrary n-point functions. However, we found that this bound is
not always saturated in holographic theories at leading order. This was surprising
as holographic theories are strongly coupled.
In the context of holographic theories, it would be interesting to explore whether

or not the bound holds for momenta which are much larger than the temperature, yet
parametrically smaller than N . It would also be interesting to understand whether
behaviour of correlators in this limit can help in identifying holographic theories.
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Chapter 5

A quantum test for strong cosmic censorship

5.1 Introduction

It is often believed, or at least hoped, that all fundamental theories of nature are
deterministic. In a deterministic theory, if the initial condition is specified, i.e., all
information about the system under consideration is supplied at some initial time,
then we can determine everything about the system at any later time. As an ex-
ample, if we know the initial position and velocity of a free particle in classical
mechanics, we can determine the trajectory of the particle completely. Often, we
may need to specify boundary conditions as well. For instance, we can confine the
free particle in a box. Now, the initial condition is not sufficient to determine the
trajectory of the particle. We also need to supply the boundary condition, which
in this case would be the shape of the box and its interaction with the particle.
Nonetheless, once the boundary condition is also specified, we can predict the posi-
tion of particle at any later time. The theory remains deterministic.

Of course, not all physical processes fall under this category. The simplest exam-
ple of a non-deterministic process is the motion of a Brownian particle in a fluid,
described by a stochastic equation. However, such an equation does not describe a
fundamental process. The Brownian motion is an effective description of a particle
in a fluid. The exact, and deterministic, description would take into account the mo-
tion of all fluid particles and interactions. In principle, a deterministic description
is achievable, even if not very illuminating.

One may argue that quantum mechanics is not deterministic. However calling
quantum mechanics non-deterministic is misleading. Even in quantum mechanics,
once the initial condition is supplied, we can evolve forward in time. In quantum
mechanics, a modification of what is meant by knowing everything about a system is
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Chapter 5 A quantum test for strong cosmic censorship

required. Position and momentum no longer describes a particle. Rather, a quantum
system is described by a state in an abstract Hilbert space. However, once the state
of a closed quantum system is given at some time, we can determine the state at all
times. In this sense, even quantum mechanics is deterministic.
However it is not clear whether general relativity is deterministic. In general

relativity, the initial data can be specified over any Cauchy slice, a spacelike slice
that foliates the spacetime. Cauchy slice is a generalization of the notion of a
constant time surface. Once the Cauchy data is specified, it is expected that the full
non-linear equations of motion can be solved, in principle, to determine the metric
and other dynamical fields everywhere.
This expectation seems to fall apart even in some of the simplest solutions of

Einstein’s equation. Black holes in outer space are typically described by additional
asymptotic charges apart from mass, such as angular momentum and electromag-
netic charge. Such black holes have multiple horizons. Apart from the event horizon,
these black holes have an inner horizon with following interesting properties.

1. Cauchy data on any spacelike slice cannot specify the evolution of fields be-
yond the inner horizon. Note that this is very different from what happens
for Schwarzschild black holes. If the data is specified on a slice which has no
support in the interior of a black hole, then we cannot evolve the fields be-
yond the outer horizon. However, we can extend the spacelike slice to include
the interior region. Cauchy data on such achronal1 nice slice is sufficient to
determine the metric and other fields everywhere in the spacetime2. However,
in the case of black holes with inner horizons, no such achronal slice exists.
Data on a Cauchy slice only allows unique evolution of fields up to the inner
horizon. The inner horizon is a Cauchy horizon, the boundary of domain of
validity of the Cauchy problem.

2. Timelike geodesics can reach the inner horizon in finite proper time and cur-
vature invariants do not diverge at the inner horizon. Hence, it should be
possible to extend the spacetime beyond the inner horizon.

1No two points in an achronal set can be connected by a timelike trajectory.
2Except near the singularity. It is expected that a complete theory of quantum gravity would
resolve the singularity.
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Cauchy data giving rise to such black holes are examples of Cauchy data for which
the maximal Cauchy development3 is incomplete. This seems to be a scenario where
determinism fails.
To sidestep this problem and restore determinism in gravity, Penrose proposed

the strong cosmic censorship conjecture [15], which can be phrased as follows.

Strong cosmic censorship conjecture - Maximal Cauchy development of a
generic Cauchy data is complete.

This suggests that initial data giving rise to spacetimes with traversable inner
horizons must be of measure zero in the space of all initial conditions. Hence,
generic perturbations to such solutions should render the inner horizon unstable.
For instance, if we study propagation of a scalar field on such spacetimes, then the
stress tensor of the scalar field at the inner horizon should be divergent. Hence, any
observer that approaches the inner horizon would be destroyed by an infinite flux of
radiation.
A physical intuition behind such an expectation is that the inner horizon is to

the future of all events in the exterior. Hence, perturbations outside the black hole
stretched over an infinite time, are experienced by an observer in finite proper time
near the inner horizon. This infinite blue-shift effect, characterized by the surface
gravity at inner horizon, could destabilize the inner horizon [110].
However, the decay of exterior perturbations at late times is controlled by the

quasinormal modes. If the decay is sufficiently fast, then the perturbations in the
exterior wouldn’t be strong enough to render the inner horizon unstable. Hence,
stability of the inner horizon is subject to two competing physical effects, namely
quasinormal frequencies and surface gravity at the inner horizon [111].
The validity of strong cosmic censorship conjecture under classical perturbations

has been a subject to extensive debate [112, 113]. Somewhat surprisingly, in several
cases, it is possible to extend the metric continuously across the horizon [114] and
only the derivatives of the metric diverge. The classical analysis has therefore focused
on the severity of this divergence and the question of whether solutions to the
equations of motion can be continued weakly past the horizon. The answer to this

3Maximal Cauchy development is the domain of validity of a Cauchy problem.
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question depends on the precise smoothness conditions that are placed on the initial
data [115].

In this chapter we explore quantum effects on the stability of inner horizon. Can
quantum effects rule out, or constrain the violations of strong cosmic censorship
conjecture? One way to understand the quantum effects is to study the renormal-
ized quantum stress tensor near the inner horizon [116, 117, 118, 119]. However,
computation of quantum stress tensor is very involved, and often impractical. Am-
biguities due to the renormalization procedure add another layer of complexity to
the problem.

In this chapter we develop of simple necessary criteria for a quantum state to be
smooth across any null surface. We study a quantum scalar field propagating in the
background of some d + 1-dimensional spacetime. We assume that the two point
function of the scalar field with insertions near the null surface should reduce to
the two point function in flat space, in the limit when the insertions approach each
other. In fact, in the computation of renormalized stress tensor, contribution of this
term is subtracted to get a finite answer. If this assumption fails, the stress tensor
would diverge, making the spacetime singular near the null surface.

This seemingly trivial assumption is sufficient to greatly restrict the quantum state
near the null surface. We define local modes near the null surface by integrating the
fields in local Rindler coordinates on both sides of the surface. Since Rindler modes
oscillate infinitely near the null surface, we can extract a mode even by restricting
the integral to a neighbourhood of the null surface. We show that these local modes
must be correctly entangled for the state to be smooth in the vicinity of the null
surface. We explore how this entanglement constraints the two point function of
global modes. For instance, if we apply this test to the horizon of a Schwarzschild
black hole, then we can show that the two-point function of Schwarzschild modes
must contain a piece proportional to a delta function in the frequency-difference with
a coefficient that is precisely the Boltzmann factor corresponding to the temperature
of the horizon.

We use this condition to develop a test for violations of strong cosmic censorship
conjecture. Recall that the conjecture can be violated if the inner horizon of a
black hole is smooth. However, the quantum state is already constrained due to
smoothness of outer horizon. It is non-trivial for this state to also be smooth across
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the inner horizon.

In section 5.2, we develop the precise quantum criteria for smoothness of a quan-
tum state across a null surface. In section 5.3 we implement this criteria to study
the violations of strong cosmic censorship in asymptotically AdS Reissner Nordström
(RN-AdS) black holes. We show that the cosmic censorship conjecture is not vio-
lated in RN-AdS. In section 5.4, we study BTZ black holes and show that our tests
do not rule out violations of the conjecture, as expected from the analysis of [119].
We point that this doesn’t imply violations of the conjecture, since our criteria is
only a necessary condition for smoothness. In particular, stress tensor at the inner
horizon can still be divergent even if our smoothness condition is satisfied.

We also study the possibility of extension of spacetime beyond the inner horizon.
We show that our smoothness criteria greatly constraints any violations of strong
cosmic censorship conjecture. This extension turns out to be nontrivial since the
standard construction of mirror operators [67, 68] that applies to the outer horizon
cannot be directly applied to the inner horizon of the BTZ black hole. This can be
understood in terms of the monogamy of entanglement. In the free-field limit, the
modes near the inner horizon can be written as linear-combinations of modes near
the outer horizon. Since the modes near the outer horizon are entangled with modes
outside the outer horizon, they cannot also be entangled with new modes behind
the inner horizon. It is possible to reuse the modes between the inner and outer
horizon in such a manner that not only are the constraints of locality respected,
the modes also have the correct two-point function dictated by the temperature of
the inner horizon. This also provides the unique extension of quantum fields in the
near-horizon region just beyond the inner horizon if the inner horizon is traversable.

Finally we close the chapter with some discussions in section 5.5. This chapter is
based on [16].

5.2 Entangled modes across a null surface

In quantum field theory, to test whether the spacetime in the vicinity of a surface
is smooth, we can test whether it is possible to transmit “messages” in that region
by turning on a source for a field at one point and measuring the response of the
field at another. While the long-distance propagation of the source will depend on
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the nature of the spacetime, in the short-distance limit, we expect that fields in the
neighbourhood of the source will respond in a universal manner. The response of the
one-point function of the field to a source depends only on the commutator, but the
response of higher-point functions also requires a specific short-distance behaviour
for the two-point function. This, in turn, requires degrees of freedom that constitute
the quantum field to be entangled with each other in a specific manner, as we now
explain.

In the neighbourhood of any null surface, the quantum fields can be expanded in a
set of modes corresponding to left and right movers. We will choose the convention
that the “left movers” are those that smoothly cross the surface, so that the phase
factor multiplying these modes varies smoothly as we move along the surface. On
the other hand, the modes that move parallel to the null surface (i.e. whose surfaces
of constant phase are parallel to the null surface) will be called “right movers”. See
Figure 5.1.

Figure 5.1: Near horizon right-moving modes of a free scalar field near a null surface
(black line). The red modes correspond to the operator a while the blue ones to ã (see
eq. (5.12)). The arrows indicate that the modes propagate parallel to the surface.

The specific technical result that we intend to show is that it is possible to define
appropriate “right moving” modes on the two sides of the null surface, so that their
action on the state of the system is related in a specific manner.4

4We use the term “entanglement” to denote this relationship although our result is primarily about
correlation functions, and not about any quantum-information measure of entanglement. The
reason for our terminology is that — as shown in [120] — it is possible to use these correlators
between near-horizon modes to extract Bell pairs from opposite sides of the horizon.
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We consider a small portion of a null surface, such that the metric is continu-
ous across the surface. In (d + 1)-dimensions, we introduce coordinates U ,V and
transverse coordinates, ξa with 2 ≤ a ≤ d. We use a calligraphic font for these
coordinates in this section to distinguish them from the coordinates that appear in
the black-hole geometry. The Greek indices below can take values in a larger range,
0 ≤ µ, ν ≤ d, and we set ξ0 = U and ξ1 = V . The null surface under consideration
is that of U = 0, and on this surface, we will consider the small patch near ξµ = 0,
where we write the metric as

ds2 = −dUdV + δαβdξ
αdξβ + g(1)

µν dξ
µdξν . (5.1)

We will assume that g(1)
µν → 0 as ξµ → 0 i.e. as we approach the patch under

consideration the metric is well approximated by the first two terms in (5.1).

Near-horizon 2-point function: Now consider a scalar field propagating in this
background. The precise assumption that we will make is that if the spacetime is
“reasonable” then, in the short-distance limit the two-point function of the scalar
field will be given simply by an inverse power of the geodesic distance. This is true
at least if the ultraviolet physics of the scalar operator is controlled by a free-fixed
point (at scales much lower than the Planck scale). A similar assumption can be
made for fermions, or fields with spin.

Consider two insertions of the field at two nearby, but distinct points, which may
be on the same side or on opposite sides of the null surface. We denote the state of
the full system by |Ψ〉. In AdS/CFT, this state may be considered to be a state in the
Hilbert space, as defined by the boundary conformal field theory. The assumption
above implies that if this state is “reasonable” then

〈Ψ|φ(U1,V1, ξ
α
1 )φ(U2,V2, ξ

α
2 )|Ψ〉 = N 1

s
d−1

2

+R. (5.2)

In the equation above, the leading-order square of the geodesic distance s is given
by

s = (−δU δV + δαβδξ
αδξβ), (5.3)

where δU = U1 − U2 − iε; δV = V1 − V2 − iε and we use the (d− 1)-vector, δ~ξ, with
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components δ~ξa = ξa1 − ξa2 to denote the displacement in the transverse directions
between the two points. Here, R can be any function of the variables (Ui,Vi, ξai )

that is less-singular than the displayed leading term as the points come close to each
other. We have also introduced −iε regulators with δU and δV , which reflect that
fact that we are interested in a Wightman function. This will be important when we
consider commutators below. The normalization of the short-distance singularity

N =
Γ(d− 1)

2dπ
d
2 Γ(d

2
)
, (5.4)

can be fixed by considering a canonically normalized field in flat-space and explicitly
checking its short-distance behaviour.

The important equation (5.2) makes the assumptions that the short-distance sin-
gularities of the two-point function arise only when the geodesic distance vanishes.
Note that the remaining part of the metric g(1)

µν does not appear in the leading
singular part of this expression, although it is important for the subleading terms
captured in the function R.
We will show that (5.2) forces a specific form of entanglement between right

movers across the surface U = 0. To see this, we take a further limit of (5.2) and
repeat the manipulations that led to equation (4.3) of [70]. If we first differentiate
the two-point function, we will find that

〈Ψ|∂U1φ(U1,V1, ξ
a
1)∂U2φ(U2,V2, ξ

a
2)|Ψ〉 = −d

2 − 1

4
N (δV)2

s
d+3

2

+ ∂U1∂U2R. (5.5)

We now consider the limit δV → 0. In this limit the derivative of the two-point
function above goes to zero unless δ~ξ = 0. But this point, where the transverse
displacement vanishes, gives a delta function contribution. We can check this, and
also determine the normalization of the delta function by performing an integral
over the transverse coordinates

lim
δV→0

∫
dd−1δ~ξ

(δV)2

s
d+3

2

= lim
δV→0

1

(δU)2

1

(−δUδV)
d−1

2

∫
dd−1δ~ξ

(
1 +

1

(−δUδV)
δ~ξ2

)− d+3
2

=
1

(δU)2
κN ,

(5.6)
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where

κN =

∫
dd−1δ~ξ

1

(1 + δ~ξ2)
d+3

2

=
4

d2 − 1

π
d−1

2

Γ(d−1
2

)
. (5.7)

It is important that, in the integral above, we take the range of the integral over
the transverse coordinates to be (−∞,∞) in order to be able to change variables
from δ~ξ → δ~ξ√

−δUδV . This is only a trick to determine the normalization. It does not
require that the expression for the two-point function remain valid for an infinite
separation in transverse coordinates or even that the transverse coordinates have an
infinite extent.

The various normalization constants in the equations above simplify when taken
together using

d2 − 1

4
κNN =

1

4π
. (5.8)

Note that if we were to perform the operations above on a term in the two-point
function that diverges with a smaller power of geodesic distance or on a regular
function, which may appear inside R, we would obtain a result that is non-singular
in the limit U1 → U2.

So we finally find

lim
V1−V2→0

〈Ψ|∂U1φ(U1,V1, ξ
a
1)∂U2φ(U2,V2, ξ

a
2)|Ψ〉 = − 1

4π

1

(U1 − U2 − iε)2
δd−1(δ~ξ)

+ lim
V1−V2→0

∂U1∂U2R̃.
(5.9)

If the reader is worried about the ultralocal delta function that appears above, she
should note that in the applications below we will always use (5.9) after integrating
both sides with test functions. Typically, we will consider fields that are separated
by εV in the V coordinate, and smeared over a range εU in the U coordinate and
εξ in the transverse coordinates. Then the formula above holds provided we take
εV � εU � εξ.

Near-horizon modes: We now define some modes by integrating the field over a
very short distance on both sides of the U = 0 surface and for a very short distance
over the transverse coordinates. We will show that the short distance structure of the
two-point function above forces these modes to have a specific two-point correlation
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function. We follow the procedure given in [120] to define the modes.

The intuition is the following: as we approach the null surface from below U → 0−

we can find solutions of the wave equation that behave like (−U)iω0 . These solutions
undergo an infinite number of oscillations until U = 0. If we think in terms of the
tortoise-like coordinate u = log(−U) these solutions behave like plane waves. This
approximation becomes better as we approach the null surface at U → 0 or u = −∞.
We define modes a corresponding to wave packets with highly peaked frequency ω0

and centered very far towards u = −∞, or equivalently around a point U0 very
near the null surface U = 0. We make sure that these modes are unit-normalized
(as opposed to having delta-function normalization). We define these modes as
Fourier modes with approximate frequency ω0 characterized by a window of support
in position space centered around U0 and with a very large width in u-coordinates
(though a small region in U coordinates).

This is achieved by introducing a “tuning function” T (U) which has the property
that T (U) is real and has support only for U ∈ [Ul,Uh], where 0 < Ul � U0 � Uh and
so that Uh is much smaller than the characteristic curvature scale of the geometry.
This tuning function is assumed to vanish smoothly at the end-points of its support
and normalized carefully as follows. First, we define its Fourier transform via

T (U) =

∫ ∞

−∞
s(ν)

( U
U0

)iν
dν; s(ν) =

1

2π

∫ ∞

0

dU
U T (U)

( U
U0

)−iν
. (5.10)

Then we normalize the “tuning function” by demanding
∫
|s(ν)|2dν = 1. (5.11)

We choose s(ν) to be sharply peaked around ν = 0, which corresponds to T (U)

being almost constant in the domain [Ul,Uh].
We now also integrate over a small volume Vol in the transverse coordinates and

define the modes

a =
1√
πω0

∫
dd−1ξa√
Vol

∫ −∞

0

dU∂Uφ(U ,V = 0, ξa)

(−U
U0

)−iω0

T (−U),

ã =
1√
πω0

∫
dd−1ξa√
Vol

∫ ∞

0

∂Uφ(U ,V = −ε, ξa)
( U
U0

)iω0

T (U).

(5.12)
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The domain of integration, which is controlled by T (U) is a very small region on both
sides of the null surface and also a very small patch in the transverse coordinates.
The modes have a nontrivial dependence on the choice of ω0 and, moreover, such
modes can be defined in the vicinity of any point of the null surface. But we have
suppressed this dependence on the left hand sides of (5.12) to lighten the notation.

In the rest of this section we will show how the short-distance behaviour of the
two-point function (5.9) determines the two-point correlators of these modes.

Before moving on, we emphasize that the modes a, ã depend on the choice of
U0,Ul,Uh and also the precise choice of the tuning function. We are interested in the
behavior of these modes in the limit U0 → 0 and UhU0

, U0

Ul � 1 and where s(ν) is sharply
peaked. The statements we are going to make about the modes a, ã correspond to
the behavior of these modes in this particular limit. However, in the equations
below, we will not display the dependence on these various cutoffs explicitly, since
the equations can be made arbitrarily precise by taking these cutoffs to be as small
as necessary.

Commutators: If we assume that the field operators satisfy canonical commuta-
tion relations then we find that at equal values of V we have

[φ(U1,V , ξa1), ∂U2φ(U2,V , ξa2)] =
i

2
δd−1(δ~ξ)δ(U1 − U2). (5.13)

This commutators has, inbuilt into it, the fact that the fields commute at spacelike
separation. We note that the commutator is also consistent with the two-point
correlator that we found above because

Im (〈∂U1φ(U1,V , ξa2), ∂U2φ(U2,V , ξa1)〉) = Im
[
− 1

4π

1

(U1 − U2 − iε)2

]

=
1

4
δ′(U1 − U2)δd−1(δ~ξ),

(5.14)

which can be seen from the identity − 1
(x−iε)2 = ∂

∂x
1

x−iε = ∂
∂x
P 1
x

+ iπδ′(x).

We can substitute these commutation relations into the definition of the modes
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to compute their commutators.

[a, a†] =
1

πω0Vol

∫
[∂U1φ(U1,V = 0, ξa1), ∂U2φ(U2,V = 0, ξa2)]

×
(
−U1

U0

)−iω0
(
−U2

U0

)iω0

T (−U1)T (−U2)dU1dU2d
d−1ξa1d

d−1ξa2 .

(5.15)

Using the canonical commutators (5.13), and doing the trivial integral in the trans-
verse directions, we find that

[a, a†] =
i

2πω0

∫
∂U1δ(U1 − U2)

(
−U1

U0

)−iω0
(
−U2

U0

)iω0

T (−U1)T (−U2)dU1dU2

=
i

2πω0

∫ −∞

0

∂U1T (−U1)T (−U1)dU1 +
1

2π

∫ −∞

0

T (−U1)2dU1

U1

.

(5.16)

In doing the integral over the delta function in the U coordinates, we were careful
that the U2 integral proceeds with dU2 < 0, and so the delta function sets U1 = U2

and gives an additional minus sign. The first term above vanishes if the tuning func-
tion vanishes at both its end points. For the second term, using the normalization
of the tuning function above we find

[a, a†] = 1. (5.17)

A similar calculation for ã leads to

[ã, ã†] = 1, (5.18)

and also
[a, ã] = [a, ã†] = 0. (5.19)
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Cross-correlators: For the cross-correlators we have

〈Ψ|aã|Ψ〉 =
1

πVolω0

∫
dU1dU2∂U1∂U2〈Ψ|φ(U1,V = 0, ξa1)φ(U2,V = 0, ξa2)|Ψ〉

× (−U1)−iω0(U2)iω0T (−U1)T (U2)dd−1ξa1d
d−1ξa2 .

(5.20)

In the small domain where the integrand above has support, note that the regular
parts of the two-point function just drop out and the only contribution comes from
the singular terms identified above.

Now, note that we may write

1

(U1 − U2)2
=

1

(−U1)U2

∫ ∞

−∞
ω

e−πω

1− e−2πω

(
−U2

U1

)−iω
dω, (5.21)

where U1 < 0 and U2 > 0. If |U1| > |U2| this identity follows from completing the
ω integral in the upper half plane and picking up the poles at ω = in; else we close
the contour in the lower half-plane and pick up the poles at ω = −in.

Substituting the short distance limit (5.9) into the expression above and doing
the transverse integral we find that

〈Ψ|aã|Ψ〉 =
1

4π2ω0

∫
dU1

U1

dU2

U2

ω
e−πω

1− e−2πω

(
−U2

U1

)−iω
dωT (−U1)T (U2)(−U1)−iω0(U2)iω0

=
1

ω0

∫
ω

e−πω

1− e−2πω
|s(ω − ω0)|2dω.

(5.22)

In the limit where s(ω) is very sharply peaked around ω = 0, and using the normal-
ization condition (5.11), the two-point function just reduces to

〈Ψ|aã|Ψ〉 =
e−πω0

1− e−2πω0
. (5.23)

This gives us the universal form of entanglement for short distance modes on opposite
sides of the horizon. As in [120], this two-point function can be used to extract Bell
pairs from either side of the null surface.
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Taking the Hermitian conjugate of this relation leads to

〈Ψ|a†ã†|Ψ〉 =
e−πω0

1− e−2πω0
. (5.24)

Finally, by a similar calculation we find

〈Ψ|a†ã|Ψ〉 = 〈Ψ|aã†|Ψ〉 = 0. (5.25)

Self-correlators: We can also determine correlators of the a and ã modes with
their own conjugates. In this case, we need the identity

−1

(U1 − U2 − iε)2
=

1

U1U2

∫ ∞

−∞
ω

1

1− e−2πω

(U2

U1

e−iε
)−iω

dω, (5.26)

when U1 < 0 and U2 < 0. The integral on the right can again be done by closing the
ω contour in the upper or the lower half plane and picking up the poles at ω = in.
Note that the iε term ensures that the integral converges both at large positive and
large negative ω.
Using this identity, we see that

〈Ψ|aa†|Ψ〉 =

∫
dU1dU2

U1U2

1

1− e−2πω

(U2

U1

)−iω
dωT (−U1)T (−U2)

(
−U1

U0

)−iω0
(
−U2

U0

)iω0

=

∫
1

1− e−2πω
|s(ω − ω0)|2dω.

(5.27)

Again, in the limit where s(ω) is sharply peaked we find that

〈Ψ|aa†|Ψ〉 = 1 + 〈Ψ|a†a|Ψ〉 =
1

1− e−2πω0
. (5.28)

A small subtlety that we note is that it is the iε prescription that is important for
ensuring that 〈aa†〉 and 〈a†a〉 have distinct values. Indeed, the reader might have
wondered whether it is possible to replace 1

1−e−2πω → e−2πω

1−e−2πω in the identity (5.26)
since both these terms have the same residues at the pole ω = ±in. However, with
an additional factor of e−2πω in the numerator, the integral will not converge for
large negative ω since the numerator and the denominator now grow at the same
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rate but the factor of e−εω grows in that regime. It is the iε prescription that forces
us to use the measure displayed in the equation (5.26) rather than the one with an
additional exponential factor. This, in turn, ensures that there is no exponential
factor in the numerator on the right hand side of (5.28).

Relating the action of modes on the state: Above, we derived the two-point
functions between the various modes. However, by putting these results together,
we can derive a stronger relationship that relates the action of the left-movers on
the quantum state to the action of the right movers.
Let us write

ã|Ψ〉 = c1a|Ψ〉+ c2a
†|Ψ〉+ |χ〉, (5.29)

where c1, c2 are constants to be determined and |χ〉 is orthogonal to the vectors
produced by the action of a and a† on |Ψ〉 so that

〈χ|a|Ψ〉 = 〈χ|a†|Ψ〉 = 0. (5.30)

Now, from (5.25) we have

〈Ψ|a†ã|Ψ〉 = 0⇒ c1 = 0. (5.31)

We can now set c2 using

〈Ψ|aã|Ψ〉 =
e−πω0

1− e−2πω0
⇒ c2 = e−πω0 . (5.32)

Finally, note that

〈Ψ|ã†ã|Ψ〉 =
e−2πω0

1− e−2πω0
⇒ 〈χ|χ〉 = 0. (5.33)

where we have also used the two-point correlator of a with its conjugate. As similar
procedure can be followed for the action of ã†. Therefore, we reach the simple
relations

ã|Ψ〉 = e−πω0a†|Ψ〉; ã†|Ψ〉 = eπω0a|Ψ〉. (5.34)

Null surfaces with spherical or translational symmetry: The analysis above
can be simplified slightly if the null surface under consideration has spherical or
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translational symmetry. Since the case of spherical symmetry is the case that will
be important for us later, we indicate the generalization explicitly.

Consider a spherically symmetric null surface so that the metric is given by

ds2 = −dUdV + r2
0dΩ2

d−1 + g(1)
µν dξ

µdξν . (5.35)

We now impose that g(1)
µν → 0 provided that U ,V → 0, and, as above, Greek indices,

µ, ν run over all coordinates.

We can now define modes by integrating all over the (d−1)-sphere and extracting
a particular spherical harmonic.

a =
r
d−1

2
0√
πω0

∫
∂Uφ(U ,V = 0,Ω)

(−U
U0

)−iω0

T (−U)dUY ∗` (Ω)dd−1Ω,

ã =
r
d−1

2
0√
πω0

∫
∂Uφ(U ,V = −ε,Ω)

( U
U0

)iω0

T (U)dUY`(Ω)dd−1Ω,

(5.36)

Now, rather than being defined in the neighbourhood of a point, the modes carry
an angular momentum, denoted by `. These modes depend both on ` and on ω0 but
we have suppressed that dependence to lighten the notation.

A precise repetition of the analysis above, leads to the same result for the action
of these modes on the state

ã|Ψ〉 = e−πω0a†|Ψ〉; ã†|Ψ〉 = eπω0a|Ψ〉. (5.37)

Note that the orthogonality of the spherical harmonics implies that the modes are
entangled only if the same value of ` is used in both lines of (5.36).

A note of caution: The relation (5.37) holds for the special modes that we
have defined, which use information from the field just next to the null surface.
In particular, even in the simple background of a Schwarzschild black hole, these
modes must be distinguished from the global Schwarzschild modes that are defined
by integrating the field all over the exterior or all over the interior.

The difference between these modes is manifest in their response to perturbations.
If we consider perturbations of the horizon generated by just throwing in some matter
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5.3 The Reissner-Nordström black hole in AdS

on top of an equilibrium black hole then this will change the form of the two-point
function between Schwarzschild modes in the interior and the exterior. However,
this perturbation does not affect the nature of the entanglement very close to the
horizon. In particular, the entanglement between the modes a and ã, which are
defined by integrals very close to the null surface U = 0, is unaffected by a smooth
deformation.

One way is that if we think of Schwarzschild modes with frequencies ω and ω′, then
the near-horizon modes defined above pick up the coefficient of the δ(ω − ω′) term
in their two-point function. The analysis above tells us that this coefficient must be
universal and cannot be changed by a smooth deformation. We will elucidate this
point further in our analysis of the Reissner-Nordström black hole below, where we
discuss global modes and explicitly relate them to the near-horizon modes defined
above.

5.3 The Reissner-Nordström black hole in AdS

We now apply the considerations above to the Reissner-Nordström (RN) geometry
in anti-de Sitter space. The techniques that we have developed here can be just
as easily applied to charged black holes in flat-space or in de Sitter space. The
reason for considering AdS is not only that this allows us to make a link with the
AdS/CFT conjecture but also because there is a canonical choice of a quantum state
with asymptotically anti-de Sitter boundary conditions—the Hartle-Hawking state.
In flat space, it was shown through an elaborate computation of the renormalized
stress-tensor that the Hartle-Hawking state led to a singular stress-tensor on the
horizon of this black hole [117, 118]. Here, we will show how a similar conclusion
can be reached for charged black holes in flat space much more easily using our test.

This section is divided into four parts. First, we review the features of the classical
RN geometry, which also serves to introduce necessary notation. Next, we describe
the global expansion of fields propagating on this background. Then we relate these
global modes to the near-horizon modes described in the previous section. The
criterion that the near-horizon modes should be correctly entangled leads to specific
constraints on the two-point functions of the global modes. Although we were not
able to check these constraints analytically, it is easy to check them numerically
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in any dimension. In the last subsection, we present evidence that the Hartle-
Hawking/Kruskal state is singular at the inner horizon both for asymptotically AdS
RN black holes and for asymptotically flat RN black holes in various dimensions.

5.3.1 The classical geometry

The classical geometry of the RN black hole in AdS, in general spacetime dimension
d+ 1, is described by the metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−1, (5.38)

where
f(r) = r2 + 1− A

rd−2
+

B

r2(d−2)
. (5.39)

Here we have set the radius of AdS to 1 and and the constants A and B are related
to the mass, M and charge Q by

A =
16πM

(d− 1)Vd−1

; B =
(8πQ)2

2(d− 1)(d− 2)Vd−1

, (5.40)

where Vd−1 is the volume of the unit (d − 1)-sphere [121]. We will consider non-
extremal black holes where f(r) has first order zeros at r− and r+, which are the
positions of the inner and outer horizons respectively.

As usual, it is convenient to introduce the tortoise coordinate

dr∗ =
dr

f(r)
. (5.41)

Near the outer horizon we have r∗ → −∞ and we choose the origin of r∗ so that
as one approaches the horizon, we have

(r − r+)→ 1

2κ+

e2κ+r∗ , (5.42)

where the surface gravity at the horizons is, as usual, given by κ+ = f ′(r+)/2. This
fixes r∗ to a constant asymptotic value near the boundary of AdS. Moreover, near
the future outer horizon, we also have t → ∞ and, as usual, spacetime can be

162



5.3 The Reissner-Nordström black hole in AdS

continued past this horizon by introducing coordinates

U = − 1

κ+

eκ+(r∗−t); V =
1

κ+

eκ+(r∗+t). (5.43)

In these coordinates, the right future outer horizon is at U = 0, V > 0. After
crossing this horizon, in the forward wedge, we define the t, r∗ coordinates by

U =
1

κ+

eκ+(r∗−t); V =
1

κ+

eκ+(r∗+t). (5.44)

Within the forward wedge, we can move to the left outer horizon where, again,
r∗ → −∞ but t → −∞. This horizon has V = 0. It is possible to cross this left
horizon to reach a left asymptotic region.

However, in the forward wedge, it is also possible to reach the region r∗ → ∞,
which marks the inner horizon. Within the forward wedge, the right inner horizon
has t → +∞, and the left inner horizon has t → −∞. Near the inner horizon, the
relationship between the tortoise and the ordinary radial coordinate becomes

r − r− →
ζ2

κ−
e−2κ−r∗ . (5.45)

Here, the surface gravity of the inner horizon is κ− = −f ′(r−)/2. Note that one
unavoidably obtains an additional constant, ζ, in the relationship between r−r− and
r∗ having fixed a similar constant to 1 near the outer horizon. Naively, it appears
that a simple change of coordinates will allow the continuation of the geometry
beyond the inner horizon as well, and this naive extension leads to an extended
spacetime diagram. In particular, define

U ′ = − ζ

κ−
e−κ−(r∗+t) V ′ = − ζ

κ−
eκ−(r∗+t). (5.46)

This places the right inner horizon at U ′ = 0 and the left inner horizon at V ′ = 0.
When we cross the right inner horizon, we may use the coordinates

U ′ =
ζ

κ−
e−κ−(r∗+t) V ′ = − ζ

κ−
eκ−(r∗+t). (5.47)

A similar change of coordinates allows an extension across the left inner horizon.
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The naive extended Penrose diagram is shown in Figure 5.2.

Figure 5.2: Maximal extension of the Reissner Nordström spacetime. The dots indi-
cate repetitions of the displayed pattern.

5.3.2 Quantum fields on the RN background

We now consider a scalar quantum field propagating on the background above. We
will assume that the scalar field is governed by an effective action

Seff =
1

2

∫ √−g
[
gµν∂µφ∂νφ−m2φ2

]
. (5.48)

Since the field equations are linear, we expect to be able to expand the field as

φ =
∑

`

∫
dω√
2π
Fω,`(r∗)e

−iωtY`(Ω) + h.c, (5.49)

where Fω,` are operators. We now describe the operators Fω,` in more detail in
various limits. This also serves to define our notation.
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Field expansion near the boundary of AdS: Near the boundary of AdS, we
demand that the field be normalizable. This corresponds to a situation where no
sources have been turned on for the field. Near the boundary we have

lim
r→∞

[r∆Fω,`(r)] = Oω,`, (5.50)

where Oω,` are the modes of the boundary operator of dimension ∆ that is dual to
the bulk field φ.

Field expansion just outside the outer horizon: The normalizable boundary
conditions link the left and right moving modes outside the horizon. As we approach
the outer horizon, the tortoise coordinate r∗ → −∞. A simple consideration of the
wave-equation resulting from the action (5.48) shows that as we approach the horizon
from outside, so that r → r+ but r > r+, the field has the expansion

Fω,` −→
r→r+

1
√

2ωr
d−1

2
+

aω,`
(
eiωr∗ + e−iδω,`e−iωr∗

)
. (5.51)

With the normalization above, the operators aω,` are canonically normalized

[aω,`, aω′,`′ ] = δ(ω − ω′)δ`,`′ . (5.52)

Field expansion just inside the outer horizon: Just inside the outer horizon,
the left-moving modes must be the same as the left-movers outside the horizon by
continuity of the field. However, it is possible to have new right-moving modes.
Therefore, as r → r+ but r < r+, the field has the expansion

Fω,` −→
r→r+

1
√

2ωr
d−1

2
+

(
ã†ω,`e

iωr∗ + aω,`e
−iδω,`e−iωr∗

)
. (5.53)

Field expansion just outside the inner horizon: As we approach the inner hori-
zon, we find that r∗ →∞. As we approach it from outside, i.e. r → r− but r > r−,
we find that the radial mode functions simplify again and we may write

Fω,` −→
r→r−

1
√

2ωr
d−1

2
−

(
b̃†ω,`e

iωr∗ + bω,` e
−iωr∗

)
. (5.54)
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The modes b and b̃ are not independent and must be related to the modes a, ã just
inside the outer horizon. The relationship can be obtained by evolving the expansion
given in (5.53) forward in time until one reaches the inner horizon. We will consider
this relationship in more detail in subsection 5.3.5.

Field expansion just inside the inner horizon: For the sake of completeness, we
also describe the field expansion just inside the inner horizon. This is an academic
exercise since we have not yet found any state where the conditions for smooth-
ness are met even outside the inner horizon. However, if such a state were to be
constructed, then the expansion behind the inner horizon would be relevant.

Just inside the inner horizon, with r → r− and also r < r−, we may write

Fω,` −→
r→r−

1
√

2ωr
d−1

2
−

(
b̃†ω,`e

iωr∗ + c†ω,`e
−iωr∗

)
. (5.55)

Here we have imposed the fact that the “right movers”, b̃ cross over smoothly whereas
the c are some new modes which may or may not be related to the earlier modes.
Notice that both b̃ and c have the wrong energy with respect to the Schwarzschild
Hamiltonian. This is because, in our coordinates as we move up on the diagram 5.2,
the value of t decreases.

Note that this expansion relies only on the continuity of the metric, and does not
make any assumptions about what happens deep inside the inner horizon.

5.3.3 Relationship between near-horizon modes and global modes

We can define near-horizon modes near all the horizons in this geometry. We will
define modes on both sides of the right outer horizon, and on both sides of the right
inner horizon. It is, of course, possible to define modes near the left-horizons but in
our description (which treats the horizons symmetrically) this is redundant and so
we will avoid it for now.
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So we define

a =
1√
πω0

∫
∂Uφ(U, V = 0,Ω)

(
− U
U0

)−iω0

T (−U)Y ∗` (Ω) dUdd−1Ω,

ã =
1√
πω0

∫
∂Uφ(U, V = −ε,Ω)

(
U

U0

)iω0

T (U)Y`(Ω) dUdd−1Ω,

b =
1√
πω1

∫
∂U ′φ(U ′, V ′ = 0,Ω)

(
−U

′

U ′0

)−iω1

T (−U ′)Y ∗` dU ′dd−1Ω,

c =
1√
πω1

∫
∂′Uφ(U ′, V ′ = −ε,Ω)

(
U ′

U ′0

)iω1

T (U ′)Y`(Ω) dU ′dd−1Ω.

(5.56)

Here ω1 = κ+ω0

κ−
. All these modes depend on a choice of ω0 and `0 and while we

suppress these quantities in the notation we will make some choices for them later.

The integrals in (5.56) can be performed as follows. For the first line of (5.56) we
find that

a =
1

π
√

2ω0

∫
∂U
[
Fω,`(r∗)e

−iωt + F ∗ω,`(r∗)e
iωt
](
− U
U0

)−iω0

T (−U)dUdω. (5.57)

Now, since the tuning function has support for only very small values of U , we may
expand the mode function using the approximation (5.51). We then find that up to
the O (ε) dependence on the cutoffs, described in section 5.2,

a =
1

2π
√
ω0

∫
aω,`(κ+)

iω
κ+

(
∂U(−U)

i ω
κ+

)(−U
U0

)−iω0

T (−U)dU
dω√
ω

=
1

2π
√
ω0

∫
i

κ+

√
ω(κ+U0)

iω
κ+ aω,`

(−U
U0

)i( ω
κ+
−ω0)

T (−U)
dU

U
dω

= i

∫
s(ω0 −

ω

κ+

)(κ+U0)
iω
κ+

√
ω

ω0

aω,`
dω

κ+

.

(5.58)

Note that the normalization of the modes is correct since, using the expression above,
and also the identity [aω,`, aω′,`] = δ(ω − ω′), we can check that

[a, a†] =

∫
|s(ω0 −

ω

κ+

)|2 ω
ω0

dω

κ2
+

=

∫
|s(ω0 − ω′)|2

ω′

ω0

dω′ = 1.

(5.59)
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where we used that s(ω) is very sharply peaked around ω = 0.

Similarly, we can express the near-horizon modes in terms of the global modes
near the other horizons as well. We find that that in the limit under consideration
precisely the same function s appears in these other expressions.

ã = −i
∫

(κ+U0)
−iω
κ+ s∗(ω0 −

ω

κ+

)

√
ω

ω0

ãω,`
dω

κ+

.

b = i

∫
(
κ−
ζ
U0)

−iω
κ− s(ω1 −

ω

κ−
)

√
ω

ω1

bω,`
dω

κ−
.

c = −i
∫

(
κ−
ζ
U0)

iω
κ− s∗(ω1 −

ω

κ−
)

√
ω

ω1

cω,`
dω

κ−
.

(5.60)

As advertised, in each case the near-horizon modes can be written as global modes
smeared with a function that is sharply peaked in frequency space.

5.3.4 Constraints on two-point functions

From the results of section 5.2, we now find the following constraints on the near-
horizon modes defined above. As explained there, smoothness of the outer horizon
implies that

〈Ψ|ãã†|Ψ〉 = 〈Ψ|aa†|Ψ〉 =
1

1− e−2πω0
;

〈Ψ|ãa|Ψ〉 = 〈Ψ|ã†a†|Ψ〉 =
e−πω0

1− e−2πω0
.

(5.61)

On the other hand, upon applying these constraints near the inner horizon we find
that

〈Ψ|bb†|Ψ〉 = 〈Ψ|cc†|Ψ〉 =
1

1− e−2πω1
;

〈Ψ|bc|Ψ〉 = 〈Ψ|b†c†|Ψ〉 =
e−πω1

1− e−2πω1
,

(5.62)

where ω1 = κ+

κ−
ω0 as above.

Now, as discussed earlier, the modes b, b† can in principle be expressed as linear
combinations of a, ã, a†, ã† by solving the wave equation in the region between the
two horizons. Hence it is not obvious whether equations (5.61) and (5.62) can hold
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5.3 The Reissner-Nordström black hole in AdS

simultaneously. In fact as we will show numerically in the next subsections, these
equations are incompatible in the case of the Hartle-Hawking state for the AdS-RN
black hole. This statement implies that this state is singular on the inner horizon
of the AdS-RN black hole.

Before we continue with this analysis, let us see what the constraints (5.61), (5.62)
imply for the two-point function of the global modes a, b, ã. Let us assume that the
two-point function of the global modes is given by

〈Ψ|aω,`a†ω′,`|Ψ〉 = A1(ω)δ(ω − ω′) +A2(ω, ω′);

〈Ψ|ãω,`ã†ω′,`|Ψ〉 = Ã1(ω)δ(ω − ω′) + Ã2(ω, ω′);

〈Ψ|aω,`ãω′,`|Ψ〉 = C1(ω)δ(ω − ω′) + C2(ω, ω′);

〈Ψ|bω,`b†ω′,`|Ψ〉 = B1(ω)δ(ω − ω′) + B2(ω, ω′),

(5.63)

where, in each case, we have separated the correlator into one part that is propor-
tional to a delta function and another part that is assumed to be smooth at ω = ω′.
(We have also used the spherical symmetry to set the same value for ` in all the op-
erators above.) Then, substituting the formulas above, we find that the coefficients
of the delta function are completely fixed by demanding smoothness at the outer
and the inner horizon. In particular, we find that

A1(ω) = Ã1(ω) =
1

1− e−
2π
κ+

ω
;

C1(ω) =
e
− π
κ+

ω

1− e−
2π
κ+

ω
;

B1(ω) =
1

1− e−
2π
κ−

ω
,

(5.64)

where we have used the relationship between ω1 = κ+ω0/κ−. Note that the factors
that appear in the exponentials above are just the standard inverse-temperatures of
the inner and outer horizons given by β± = 2π

κ±
.

Therefore we see that the two-point function of the near-horizon modes picks only
the delta-function piece in the two-point function of the global modes and completely
fixes that piece. This explains why a smooth deformation of the geometry cannot
change the two-point function of the near-horizon modes: a smooth deformation of
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the geometry may change the smooth part of the two-point function of the global
modes, but it cannot alter the coefficient of the delta function in this two-point
function. This is the only term that the near-horizon modes are sensitive to and it
must take a given value near a smooth horizon.
Now, as we explained above, in any given state of the system, the b modes are

obtained by evolving the a and ã modes in the region between the inner and outer
horizon of the black hole. Therefore, given the correlators of those modes, it is
possible to check whether the constraints (5.64) are satisfied. We will show that for
the RN geometry, in various dimensions, these constraints cannot all be satisfied
simultaneously.

5.3.5 Numerical results for the Reissner-Nordström black hole

We now check whether our constraints are satisfied in the AdS Reissner-Nordström
geometry.
In this situation, where the propagation is linear, and using the time-translation

isometry of the geometry we can write

b = κ1a + κ̃2ã
†. (5.65)

It is the time-translation invariance that allows us to relate modes with the same
value of ω, and we note that this equation may be modified if interactions are strong,
or if the geometry is strongly time-dependent. Therefore,

〈bb†〉 = 〈aa†〉|κ1|2 + |κ̃2|2〈ã†ã〉+ 2Re (κ1κ̃
∗
2〈aã〉)

=
1

1− e−2πω0

(
|κ1|2 + e−2πω0 |κ̃2|2 + 2e−πω0Re (κ1κ̃

∗
2)
)
.

(5.66)

So the question of checking whether the near-horizon constraints (5.61),(5.62) are
satisfied as we approach the near-horizon reduces to evaluating the Bogoliubov co-
efficients, κ1, κ̃2 and determining if the combination above is in agreement with
(5.62).By computing the two-point function of the modes near the inner horizon we
define

δ = 〈b†b〉(1− e−2πω1)− 1. (5.67)

which is the fractional difference from the expected Boltzmann factor. If the con-
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5.3 The Reissner-Nordström black hole in AdS

straints are satisfied we will have δ = 0.

Description of the numerical algorithm: These Bogoliubov coefficients can be
computed by solving the radial (ordinary) differential equation that fixes the evo-
lution of the field. We briefly describe our algorithm. A solution of the wave-
equation with frequency ω and angular momentum, ` can be written in the form
φω,`(r∗)e−iωtY`(Ω). The radial part of the solution φω,` obeys the equation

d

dr∗

(
rd−1dφω,`

dr∗

)
+ ω2φω,` − `(`+ d− 2)f(r)

φω,`
r2
−m2φω,`f(r) = 0, (5.68)

where r is determined by solving the auxiliary equation r′(r∗) = f(r). This auxiliary
equation must be solved first; demanding the behaviour (5.42) near the outer horizon
allows us to fix the value of r∗ near the boundary of AdS as r → ∞. Solving the
auxiliary equation between the inner and outer horizon allows us to determine ζ,
which appears in (5.45).

The equation (5.68) is now solved, as a set of two first-order differential equations,
starting from the boundary with initial conditions set by φω,`(r) → 1

r∆ at large r.
As r → r+, we can then read off the phase δω,` by matching the behaviour of φω,`
and φ′ω,` =

dφω,`
dr∗

to (5.51).

Now, starting at a point in the middle of the inner and outer horizons, we solve
the equation towards r∗ → −∞ (the outer horizon) and also r∗ → ∞ (the inner
horizon) with two separate initial conditions: once with φω,` = 0, φ′ω,` = 1 and a
second time with φω,` = 1, φ′ω,` = 0. Near both the inner and the outer horizons, the
asymptotic behaviour of the mode is given by (5.53) and (5.54). By determining the
coefficients of the terms that oscillate as e±iωr∗ for both sets of initial conditions,
we can solve for the Bogoliubov coefficients κ1 and κ̃2. This immediately leads to a
result for δ.

The procedure above is quite simple, and can be implemented using any standard
numerical library. In our own case, to solve the differential equations, we used an
eighth-order explicit Runge-Kutta solver with the Dormand and Prince coefficients
[122] as implemented in C using code from CALCODE [123]. We also used the
root-finding routines in the GNU scientific library [90] to locate the horizons and
GNU parallel [124] to parallelize the calculations.
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Results: In Figure 5.3 we present a plot for δ vs the frequency for the angular
momentum ` = 0 for various values of the radii of the inner and outer horizon and
in dimensions d = 3, 4, 5, 6. The black holes range from those that are near-extremal
to those where there is a significant separation of scales between the two horizons.
The AdS radius is fixed to unity.
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Figure 5.3: A plot of the fractional difference, δ, vs the frequency for ` = 0 for
various values of the inner and outer temperature. Non-zero values of δ indicate
that the constraints of section 5.2 are not satisfied.

These graphs are already sufficient to show that the Hartle-Hawking state is sin-
gular at the inner horizon of these geometries. This is because the criterion of section
5.2 must be satisfied for each value of frequency and angular momentum, as a nec-
essary condition, for the state to be smooth. Instead the graphs above all display
non-zero values of δ for generic choices of frequency and angular momentum.
Our numerical results are quite robust. In fact, the largest source of numerical

error arises from the relative phase between κ1 and κ̃2 in (5.66). This phase requires
a careful determination of ζ and a treatment of the wave-equation near the horizon.
However, even this is not a significant source of error since, unlike the case of [125],
we are considering a specific mode and so the wave-equation simplifies greatly near
the horizon. Moreover, it is not difficult to check that if one keeps the angular
momentum fixed and increases ω then beyond a point, no choice of relative phase
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between κ1 and κ̃2 will yield δ = 0. This allows us to reach the physical conclusions
above — that the inner horizon is not smooth in the Hartle-Hawking state — with
confidence.
However, it is also interesting to understand how the fractional difference varies

with angular momentum. In Figure 5.4, we present a plot for δ vs the angular
momentum for frequency fixed at the AdS scale for d = 4. The reader will note
the remarkable fact that at large `, the fractional difference tends to zero. This can
be explained via a semiclassical WKB analysis in this limit, as we demonstrate in
Appendix C. This WKB analysis serves as an additional check on our numerical
algorithm.
We note that in [118], it was pointed out that the renormalized expectation value

of φ2 is less singular than expected as one approaches the inner horizon. This
is directly a consequence of the large ` behaviour of Figure 5.4, since the fastest
divergence of φ2 as one approaches the inner horizon is controlled entirely by the
large-` modes.
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Figure 5.4: A plot of the fractional difference, δ, vs the angular momentum with
frequency fixed to the AdS scale for various sizes of the inner and outer horizons.

5.4 The BTZ black hole

We now turn to a discussion of the rotating BTZ black hole. It was argued in [119]
that a rotating BTZ black hole that is close enough to extremality violates strong
cosmic censorship, and so this presents an excellent test-case for our criterion.
We start by reviewing the geometry of the BTZ black hole, and the propagation

of quantum fields in this geometry. We then show that it is indeed the case that
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the near-horizon modes, as one approaches the inner horizon from the outside, have
the correct occupation number. This corresponds to the fact that if we set the
local temperature of the field correctly near the outer horizon, it is automatically
red-shifted by the geometry so that the local temperature of the modes near the
inner horizon coincides exactly with the temperature of the inner horizon! This is
in contrast to what we found numerically in the previous section for the AdS-RN
black hole in higher dimensions.

However, as explained in section 5.2, if we want to extend the spacetime behind the
inner horizon, we also require the existence of modes behind the inner horizon. The
reader may worry that the extension of quantum fields behind the inner horizon
is not unique. Nevertheless, as we have emphasized the near-horizon modes just
behind the inner horizon are fixed by requirements of smoothness and do not require
knowledge of the dynamics deep behind the inner horizon.

When one crosses the outer horizon, interior modes can be understood using the
standard construction of the mirror operators [68]. However, we show that this
construction fails at the inner horizon due to the monogamy of entanglement. In
particular, since the modes between the inner and the outer horizon are already
entangled with the modes outside the outer horizon, they cannot also be entangled
with new modes behind the inner horizon.

Nevertheless we show, remarkably, that it is possible to reuse the modes between
the inner horizon and the outer horizon behind the inner horizon as modes for
the field behind the inner horizon. This is dependent on the fact that the modes
outside the inner horizon are correctly populated. The modes that we write down
uniquely fix the behaviour of the field just behind the inner horizon although the
usual ambiguities associated with a Cauchy horizon arise if we attempt to probe
deeper into the geometry.

We will follow the notation of [119] in large part.

5.4.1 Classical geometry and propagation of fields

The BTZ solution can be written in the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dφ− Ω(r)dt)2, (5.69)
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where
f(r) =

(r2 − r2
+)(r2 − r2

−)

r2
; Ω(r) =

r+r−
r2

. (5.70)

Here we have set the AdS radius to 1.

The positions of the inner and outer horizon are at r+ and r−. The angular
velocities Ω± and surface gravities κ± of the two horizons are given by

Ω± =
r∓
r±

; κ± =
r2

+ − r2
−

r±
. (5.71)

The tortoise coordinate is defined as in (5.41) and we once again adopt the con-
vention that as one approaches the outer horizon, (r−r+) = 1

κ+
e2κ+r∗ . We can check

that near the inner horizon this leads to a relationship of the form (5.45) with

ζ = 2
r−+r+

2r− (r+ − r−)
r+
r−

+1
. (5.72)

We note that our conventions for r∗ differ from those of [119] by an overall additive
constant.

We now consider a minimally coupled scalar field φ propagating in this geometry.
Just as above, we may expand the field in various regions. However, the expansion
in terms of creation and annihilation operators is slightly more subtle than in the
non-rotating case, as we explain below.

Near the boundary of AdS we may, as usual, expand the field as

φ −→
r→∞

1

2π

∑

m

∫
dω
Oω,m
r∆

e−iωteimφ + h.c, (5.73)

where ∆(∆ − 2) = m2 and Oω,m are the Fourier modes of the primary operator of
dimension ∆ that is dual to the field φ.

Near the outer horizon, as we approach it from outside on the right, the expansion
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of the field φ is5

φ −→
r→r+

∑

m

∫
dω+

2π
√
r+

√
2ω+

aω+,m

(
eiω+κ+r∗ + e−iδω+,me−iω+κ+r∗

)
e−iκ+ω+teim(φ−Ω+t)+h.c,

(5.74)
where

ω+ =
ω −mΩ+

κ+

; ω− =
ω −mΩ−

κ−
. (5.75)

A subtlety here is that in the expression above, the question of whether the coeffi-
cient of the mode function is a creation or annihilation operator is determined by
the positivity of ω+ and not of ω. With this convention the operators above are
canonically normalized

[aω+,m, a
†
ω′+,m

′ ] = δ(ω+ − ω′+)δmm′ . (5.76)

The expansions (5.73) and (5.74) fix the relationship between the operators aω+,m

and Oω,m and also the phase δ. These can be determined by solving the wave-
equation between the boundary and the outer horizon, which can be done analyti-
cally [126]. We will use the solutions as written in the conventions of [119].

aω+,m =
1

C
Oω,m

C =

(
κ+√

2

)iω+

(r2
+ − r2

−)
∆
2

1√
r+

√
2ω+

Γ
(

1
2
(∆− iω+ − iω−)

)
Γ
(

1
2
(∆− iω+ + iω−)

)

Γ(∆)Γ(−iω+)

e−iδ =

(
κ+√

2

)2iω+ Γ(iω+)Γ
(

1
2
(∆− iω+ − iω−)

)
Γ
(

1
2
(∆− iω+ + iω−)

)

Γ(−iω+)Γ
(

1
2
(∆ + iω+ − iω−)

)
Γ
(

1
2
(∆ + iω+ + iω−)

) .

(5.77)

We now proceed with the expansion of the field just inside the outer horizon

φ −→
r→r+

∑

m

∫
dω+

2π
√
r+

√
2ω+

(
aω+,me

−iκ+ω+teim(φ−Ω+t)+

ãω+,me
iκ+ω+te−im(φ−Ω+t)

)
e−iω+κ+r∗ + h.c.

(5.78)

5We find it more convenient notationally to define the modes aω+,m in a somewhat asymmetric
conventions, so that there is no phase factor eiδω+,m in front of eiω+κ+r∗ .
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Once we are near the inner horizon, we may write

φ −→
r→r−

∑

m

∫
dω−

2π
√
r−
√

2ω−

(
bω−,me

−iκ−ω−teim(φ−Ω−t)+

b̃ω−,me
iκ−ω−te−im(φ−Ω−t)

)
e−iω−κ−r∗ + h.c,

(5.79)

where
ω− =

ω −mΩ−
κ−

. (5.80)

Note that in the expansion near the inner horizon, the classification of operators
into creation and annihilation operators is determined by the sign of ω−. Finally, if
the field extends across the inner horizon, we may write

φ −→
r→r−

∑

m

∫
dω−

2π
√
r−
√

2ω−

(
cω−,me

iω−κ−r∗+

b̃ω−,me
−iω−κ−r∗

)
eiκ−ω−te−im(φ−Ω−t) + h.c.

(5.81)

5.4.2 Near-horizon modes and constraints from entanglement

We now describe the relationship between the near-horizon modes and the global
modes described above, and explain the constraints that the analysis of section 5.2
places on the two-point functions of the global modes.
Here, it is more convenient to use Eddington-Finkelstein coordinates, rather than

Kruskal coordinates. These coordinates can be defined in the vicinity of both the
inner and the outer horizon. Near the outer horizon, we set v+ = r∗ + t so that the
metric is given by

ds2 = −f(r)dv2
+ + 2dv+dr + r2(dφ− Ω(r)dt)2. (5.82)

Now define x+ = r+− r and θ+ = φ−Ω+t. Then, as we approach the horizon which
is at x+ = 0, the metric becomes

ds2 = −2dv+dx+ + r2
+dθ

2
+ + O (x+) , (5.83)

which is the form that was required in section 5.2.
We now define near-horizon modes using the general prescription outlined in 5.2.
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In particular, define

a =
1√
πω0

∫
∂x+φ(x+, v+ = 0, θ+)

(
−x+

U0

)−iω0

T (−x+)dx+e
−imθ+dθ+

√
r+

2π
,

ã =
1√
πω0

∫
∂x+φ(x+, v+ = −ε, θ+)

(
−x+

U0

)iω0

T (x+)dx+e
imθ+dθ+

√
r+

2π
.

(5.84)

Such modes can be defined for any value of v+ but, as the reader can see from the
relationship with the global modes below, shifting the value of v+ only rescales the
mode by a phase.

Similarly, we can define near-horizon modes near the inner horizon. There, with
v− = r∗ − t, and x− = r− − r, and θ− = φ− Ω−t, as we approach the inner horizon
at r− = 0, the metric becomes

ds2 = −2dv−dx− + r2
+dθ

2
− + O (x−) . (5.85)

Therefore, the prescription of section 5.2 tells us that near-horizon modes can be
defined near the inner horizon using

b =
1√
πω1

∫
∂x−φ(x−, v− = 0, θ−)

(
−x−
U0

)−iω1

T (−x−)dx−e
imθ−dθ−

√
r−
2π
,

c =
1√
πω1

∫
∂x−φ(x−, v− = −ε, θ−)

(
−x−
U0

)iω1

T (x−)dx−e
−imθ−dθ−

√
r−
2π
.

(5.86)

As in the section above, ω1 = κ+ω0

κ−
.

Using the expansion of the field near the various horizons, we can relate these
modes to the global modes. In doing the relevant integrals, the reader should keep
in mind that the expressions above, which are given in terms of r∗ and t need to be
transformed to x±, v±. So, for instance,

eiκ+ω+(r∗−t) = e2iκ+ω+r∗e−iκ+ω+v+ = (κ+x+)iω+e−iκ+ω+v+ . (5.87)

Making similar substitutions in the other near-horizon expansions and using the
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definition (5.10), we find

a = i

∫
s(ω0 − ω+)aω+,m(κ+U0)iω+

√
ω+

ω0

dω+;

ã = −i
∫

s∗(ω0 − ω+)ãω+,m(κ+U0)−iω+

√
ω+

ω0

dω+;

b = i

∫
s(ω1 − ω−)bω−,m(

κ−U0

ζ
)iω−

√
ω−
ω0

dω−;

c = −i
∫

s∗(ω1 − ω−)cω−,m(
κ−U0

ζ
)−iω−

√
ω−
ω0

dω−.

(5.88)

The constraints of section 5.2 now lead to the following constraints on these modes.
At the outer horizon we have

(
a− e−πω0 ã†

)
|Ψ〉 = 0;

(
a† − eπω0 ã

)
|Ψ〉 = 0; [a, ã] = 0;

〈Ψ|aa†|Ψ〉 = 〈Ψ|ãã†|Ψ〉 =
1

1− e−2πω0
.

(5.89)

These constraints are automatically met in the Hartle-Hawking state. For the oc-
cupation of a this follows since, in that state, the global modes are populated as6

〈Ψ|aω+,ma
†
ω′+,m

′|Ψ〉 =
1

1− e−2πω+
δ(ω+ − ω′+)δmm′ . (5.90)

Moreover, the global ã modes can be constructed using the mirror-operator con-
struction [68], which yields modes whose two-point function is again

〈Ψ|ãω+,mã
†
ω′+,m

′|Ψ〉 =
1

1− e−2πω+
δ(ω+ − ω′+)δmm′ , (5.91)

and which are moreover entangled with the modes outside the horizon through

aω+,m|Ψ〉 = e−πω+ ã†ω+,m
|Ψ〉; a†ω+,m

|Ψ〉 = eπω+ ãω+,m|Ψ〉;
ãω+,m|Ψ〉 = e−πω+α†ω+,m

|Ψ〉; ã†ω+,m
|Ψ〉 = eπω+aω+,m|Ψ〉.

(5.92)

Using (5.88), we can then check that all the relations in (5.89) are satisfied.
Of more interest to us are the constraints that the analysis of section 5.2 places

6Notice that the occupation levels in (5.90) know about the temperature of the black hole via the
factor κ+ which enters in the relation (5.75) between ω+ and ω.
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on the modes near the inner horizon. Here the constraints of section 5.2 can be
divided into two parts. The first part is that as we approach the inner horizon from
the exterior, the modes should be correctly populated

〈Ψ|bb†|Ψ〉 =
1

1− e−2πω1
. (5.93)

The second condition is that the modes behind the inner horizon should be correctly
entangled with the modes in front

(
b− e−πω1c†

)
|Ψ〉 = 0;

(
b† − eπω1c

)
|Ψ〉 = 0; [b, c] = 0. (5.94)

We check (5.93) in section 5.4.3 and analyze (5.94) in section 5.4.4.

5.4.3 Checking the constraints on approaching the inner horizon

The constraint (5.93) can be checked by using the propagation of fields between
the inner and outer horizon and the propagation of fields from the boundary to the
outer horizon. First we note that by virtue of the Killing isometry of the geometry
we have

b = κ1a + κ̃2ã
†, (5.95)

Here the Bogoliubov coefficients, κ1 and κ̃2 can be obtained from the reflection and
transmission coefficients given in [119], after accounting for our different normal-
izations and also accounting for the relationship between local and global modes
described. They are given by

κ1 = eiδ1
(
κ+√

2

)iω+

√
ω−
ω+

Γ(iω−)Γ (1 + iω+)

Γ
(

1
2
(−∆ + iω− + iω+) + 1

)
Γ
(

1
2
(∆ + iω− + iω+)

)eiδ

κ̃2 = eiδ1
(
κ+√

2

)−iω+

√
ω−
ω+

Γ(iω−)Γ (1− iω+)

Γ
(

1
2
(−∆ + iω− − iω+) + 1

)
Γ
(

1
2
(∆ + iω− − iω+

) ,

(5.96)
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where the important phase eiδ is specified in (5.77) and the irrelevant common
phase-factor is given by

eiδ1 =

(√
2ζ

κ−

)iω−
(U0κ+)

iω+
κ+

(U0κ−)
iω−
κ−

. (5.97)

Note that, as we will check below, these Bogoliubov coefficients correctly satisfy

|κ1|2 − |κ̃2|2 = 1. (5.98)

Therefore we find that the condition that must be met for (5.93) to be satisfied is
that

|κ1|2
1

1− e−2πω+
+ |κ̃2|2

e−2πω+

1− e−2πω+
+(κ1κ̃

∗
2 + κ̃2κ

∗
1)

e−πω+

1− e−2πω+
=

1

1− e−2πω−
. (5.99)

At first sight this might seem a little surprising. But, in fact, the identity above
is true as can be checked by just repeatedly using the Gamma-function identity
Γ(iz)Γ(−iz) = π

z sinh(πz)
. In particular, we find that

κ1κ̃
∗
2 = −1

2

1

sinh(πω−) sinh(πω+)
(cosh(πω−)− cosh(π(ω+ + i∆)));

κ∗1κ̃2 = −1

2

1

sinh(πω−) sinh(πω+)
(cosh(πω−)− cosh(π(ω+ − i∆)));

|κ1|2 =
1

2

1

sinh(πω−) sinh(πω+)
(cosh(π(ω− + ω+))− cos(π∆));

|κ̃2|2 =
1

2

1

sinh(πω−) sinh(πω+)
(cosh(π(ω− − ω+))− cos(π∆)).

(5.100)

Putting these results together, with a little algebra, we find that (5.99) follows!

We should emphasize that this result arises as a result of a nontrivial conspiracy
between the reflection and transmission coefficients that control the propagation
between the outer and the inner horizon, and the phase factor e−iδ that arises from
propagation outside the outer horizon. This is reminiscent of the conspiracy between
properties of the mode functions in these regions that the authors of [119] noticed
when they were considering the classical problem in the same background.

Our test does not appear to be sensitive to the constraint, ∆r−
r+−r− > 1, that was
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found to be necessary in [119] for the stress-tensor to be regular at the inner horizon.
Indeed, from our point of view, this constraint is somewhat surprising since (5.99)
tells us that the state is as smooth as possible at the inner horizon: all the modes
are occupied at just the right temperature. It would be interesting to understand
this additional constraint through a mode-sum calculation of the stress-tensor near
the inner horizon [59].

5.4.4 Extending the field behind the inner horizon

The second part of our test in section 5.2 was that operators in front of the horizon
must also be correctly entangled with operators behind it. In this case, the key-point
is to focus on the operators c. One might have thought that since the c operators
could, in principle, be “new” operators, one could just write them down using the
standard mirror operator construction [68]. However, this is not possible due to
the monogamy of entanglement. Since the modes just outside the inner horizon are
linear combinations of modes near the outer horizon (5.95), and since those modes
are already entangled with modes outside the outer horizon as in (5.88), (5.89),
the modes near the inner horizon cannot also be entangled with fresh modes inside
the inner horizon. Note that this application of the monogamy of entanglement is
very different from the one used in the fuzzball or firewall arguments, since it can
be phrased entirely at the level of effective field theory and involves only simple
operators. Nevertheless, it turns out to be possible to cleverly reuse the modes
behind the inner and outer horizon to generate modes behind the inner horizon.

No new modes: The fact that any new modes behind the inner horizon decouple
can be seen from the following argument. Let us write

c = κ̃3ã + κ4a
† + κ5d + κ6e

†. (5.101)

where d and e denote candidate new modes which commute with ã and a†. We will
first show that the new modes d and e† can consistently be set to zero above.

This is done as follows. First, we use the maximal entanglement of a and ã to
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show that the new modes cannot have any correlators with them. We start with

(
a− e−πω0 ã†

)
|Ψ〉 = 0, (5.102)

and therefore,
〈Ψ|d

(
a− e−πω0 ã†

)
|Ψ〉 = 0. (5.103)

But since d computes both with a and with ã†,

〈Ψ|
(
a− e−πω0 ã†

)
d|Ψ〉 = 0. (5.104)

But note that we also have
〈Ψ|a = eπω0〈Ψ|ã†. (5.105)

Substituting this into the previous equation, we find that

2 sinh (πω0) 〈Ψ|ã†d|Ψ〉 = 0. (5.106)

After employing similar reasoning for the two-point function with a, we conclude
that

〈Ψ|ad|Ψ〉 = 〈Ψ|ã†d|Ψ〉 = 0. (5.107)

Similarly, we have
〈Ψ|ae†|Ψ〉 = 〈Ψ|ã†e†|Ψ〉 = 0. (5.108)

The constraints (5.94) require

c|Ψ〉 = e−πω1b†|Ψ〉. (5.109)

Expanding both the left and the right hand sides using (5.101) and (5.95), we see
that (

κ̃3ã + κ4a
† + κ5d + κ6e

†) |Ψ〉 = e−πω1
(
κ∗1a

† + κ̃∗2ã
)
|Ψ〉. (5.110)

But since d|Ψ〉 and e†|Ψ〉 are orthogonal to all the other vectors that appear above,
we see immediately that

(κ5d + κ6e
†)|Ψ〉 = 0. (5.111)
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But now using that
c†|Ψ〉 = eπω1b|Ψ〉, (5.112)

we can also conclude that
(κ∗5d

† + κ∗6e)|Ψ〉 = 0. (5.113)

But from (5.113) and (5.111), we find that

|κ5|2 − |κ6|2 = 0. (5.114)

So not only are the new modes not entangled with the old modes, they cannot even
contribute to the “norm” of the oscillators behind the horizon!

The results (5.107), (5.108) and (5.114) together constitute an important result.
They show us that we cannot define new modes behind the inner horizon that au-
tomatically have the right entanglement with modes in front of the inner horizon.
The reader might worry why the mirror operator construction [68] fails at the inner
horizon. The reason is given by the equation (5.102). This means that if we look
at the set of simple operators outside the inner horizon, the state is not separating
with respect to these operators.

Therefore, for the remainder of this analysis, we will set

κ5 = κ6 = 0. (5.115)

A pictorial representation of our result that one cannot arbitrarily define new
modes behind the inner horizon is shown in Figure 5.5

Reusing old modes: At first the reader might conclude that the analysis above
implies that it is impossible to extend the field behind the inner horizon. However,
it turns out that is possible to cleverly reuse the old modes by choosing appropriate
values for κ̃3 and κ4 in (5.101) so as to satisfy the entanglement constraints.

The concern is that the constraints might overdetermine κ̃3 and κ4. However, the
idea is to use the entanglement constraints between c and b to solve for κ̃3 and κ4

and then simply check whether [c, b] = 0 and [c, c†] = 1. This is done as follows. We
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5.4 The BTZ black hole

Figure 5.5: A figure of the outer and inner horizons and the modes near them. The
purple modes near the right inner horizon are linear combinations of the green and
violet modes near the outer horizons. But the green and violet modes are already
entangled together. So, it is nontrivial to find the brown modes behind the inner
horizon with the correct entanglement.

first note using (5.101) (and setting κ5 = κ6 = 0)

c|Ψ〉 = (κ̃3ã + κ4a
†)|Ψ〉 = (κ̃3 + κ4e

πω0)ã|Ψ〉, (5.116)

where we have used the entanglement between a and ã. On the other hand, using
the entanglement that is required between c and b and using (5.95) we find that

c|Ψ〉 = e−πω1b†|Ψ〉 = e−πω1(κ∗1a
† + κ̃∗2ã)|Ψ〉

= e−πω1(κ∗1e
πω0 + κ̃∗2)ã|Ψ〉,

(5.117)

where, in the last line, we again used the entanglement between the a and the ã

modes. Equating the final expressions on the two sides of the equations above, and
using the fact that ã|Ψ〉 6= 0 leads to the condition that

κ̃3 + κ4e
πω0 = e−πω1(κ∗1e

πω0 + κ̃∗2). (5.118)

We can perform a similar analysis using the action of c†. Here we find that

c†|Ψ〉 = (κ̃∗3ã
† + κ∗4a)|Ψ〉 = (κ̃∗3 + κ∗4e

−πω0)ã†|Ψ〉. (5.119)
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On the other hand, the smoothness of the inner horizon requires

c†|Ψ〉 = eπω1b|Ψ〉 = eπω1(κ̃2ã
† + κ1a)|Ψ〉

= eπω1
(
κ1e
−πω0 + κ̃2

)
ã†|Ψ〉.

(5.120)

Taking the coefficients of the right hand sides of the two results above, and then
taking the complex conjugate leads to the relation

κ̃3 + κ4e
−πω0 = eπω1

(
κ∗1e
−πω0 + κ̃∗2

)
. (5.121)

The relations (5.118) and (5.121) give linear equations for κ̃3 and κ4 that can be
solved in terms of κ1, κ̃2. In particular the solution is

κ̃3 =
1

sinh(πω0)
[κ∗1 sinh(πω1) + κ̃∗2 sinh[π(ω0 + ω1)]] ;

κ4 =
1

sinh(πω0)
[κ∗1 sinh[π(ω0 − ω1)]− κ̃∗2 sinh(πω1)] .

(5.122)

These solutions are subject to further consistency checks. The first consistency check
is that we need [c, b] = 0. This leads to the requirement

κ1κ4 − κ̃2κ̃3 = 0. (5.123)

Using (5.118) and (5.121) we find, after some algebra, that

κ1κ4 − κ̃2κ̃3 =
1

2

e−πω1

coth(πω0)− 1

(
|κ1e

πω0 + κ̃2|2 − |κ1 + κ̃2e
πω0|2e2πω1

)
. (5.124)

On the other hand, from the relations

〈Ψ|bb†|Ψ〉 = 1 + 〈Ψ|b†b|Ψ〉 =
1

1− e−2πω1
, (5.125)

we find that
|κ1 + κ̃2e

πω0 |2 = e2π(ω0−ω1) 1− e−2πω0

1− e−2πω1
, (5.126)

and also that
|κ1 + κ̃2e

−πω0|2 =
1− e−2πω0

1− e−2πω1
. (5.127)
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Substituting these relations in (5.124) we find that indeed (5.123) is satisfied.
The second consistency check is that the solution must satisfy [c, c†] = 1. This is

just the requirement that
|κ̃3|2 − |κ4|2 = 1. (5.128)

But this is also satisfied since

|κ̃3|2 − |κ4|2 =
e−2πω1

(e2πω0 − 1)

[
−|κ1e

πω0 + κ̃2|2 + |κ1 + κ̃2e
πω0|2e4πω0

]
= 1. (5.129)

One might have hoped that by placing reflecting boundary conditions at the sin-
gularity, one would correctly reproduce the coefficients κ̃3 and κ4 i.e. we quantize
the field behind the inner horizon assuming that the geometry is given the naive an-
alytic continuation and then also impose φ = 0 at the timelike singularity at r = 0.
However, a simple calculation shows that this does not give the right values of κ̃3

and κ4. It is possible that more sophisticated reflecting boundary conditions could
be used to reproduce the values of κ̃3 and κ4 but we have not yet discovered them.

5.5 Discussion

Summary

In this chapter we developed a necessary condition for a quantum state to be smooth
in the vicinity of a null surface. The condition is that the near-horizon modes defined
by (5.12), which have canonical commutators, must have the self-correlators given
by (5.27) and must be entangled with each other through the correlators (5.23).
This is a universal result, which relies just on the short-distance properties of the
correlator of the scalar field.
For static black holes, implementation of this test at the horizon imposes a univer-

sal behaviour on the two-point correlator of global modes. The two-point function
must have a delta-function piece in the frequency-difference, and the coefficient of
this delta function is the same in any smooth state.
Since it is nontrivial for a state to satisfy the above condition for smoothness

both at inner and outer horizon, this gives us a test for violations of strong cosmic
censorship conjecture. We applied this test to charged black holes in anti-de Sitter
space for boundary dimension, 3, 4, 5 and 6, where we were able to easily verify,
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for a range of parameters, that the naturally defined Hartle-Hawking state was not
smooth at the inner horizon. So, even in the absence of external perturbations,
quantum fluctuations destabilize the inner horizon for such black holes.

In [119], it was argued that BTZ black holes violate strong cosmic censorship for a
range of parameters. In this chapter, we found that our test was automatically sat-
isfied in the Hartle-Hawking state as a result of some non-trivial identities involving
the various reflection and transmission coefficients in the black-hole geometry.

We also explored the possibility of extension of spacetime behind the inner horizon.
Entanglement across the inner horizon constrains the modes behind the horizon. We
argued that expansion of fields in terms of new degrees of freedom is prohibited by
monogamy of entanglement. Instead, we are forced to reuse old modes to construct
near-horizon modes behind the inner horizon. We identified the correct combination
that could be used to expand the field just behind the inner horizon. This does not
completely fix the dynamics behind the inner horizon. If one considers points that
are finitely separated from the inner horizon, then the correlators of field insertions
at such points require information that is not contained in the near-horizon modes.
The arbitrariness in these correlators corresponds to the freedom that one has in
extending the metric and the fields behind the Cauchy horizon.

If BTZ black holes do violate strong cosmic censorship, the arbitrariness described
above would present interesting challenges for the AdS/CFT interpretation of such
black holes. The AdS/CFT conjecture suggests that a boundary CFT describes
all phenomenon in the bulk geometry but a traversable inner horizon would imply
that there are events (behind the inner horizon) that cannot be described by the
boundary CFT in an obvious way.

However, before concluding that the conjecture is violated, we need to understand
other effects that may influence traversability of the inner horizon. Since the inner
horizon is to the future of all events in the exterior, we would need to understand
non-perturbative effects as well. For instance, perturbations outside the horizon
never go to zero, rather develop a fat tail of the order of e−S after long time, O (S).
After this, the perturbations do not decay any further [127]. At even later times,
O
(
ee
S
)
, effects such as Poincare recurrence may have some implications for the

inner horizon.
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Outlook

Our work points to several directions for future work. One technical issue, which
we believe would be interesting to understand better, is as follows. In the Hartle-
Hawking state, the occupancy of the modes near the inner horizon of the BTZ black
hole, which we presented in section 5.4, provides enough information to compute the
stress-tensor at the inner horizon using mode sums. It would be nice to understand
the constraint found in [119]— which suggests that the stress-tensor is finite only
β = ∆

r+
r−−1

> 1 — from the perspective of direct mode sums.

It is also natural to use our test to understand both flat-space and de Sitter black
holes. The de Sitter case is particularly interesting because, classically, not only do
charged de-Sitter black holes violate even the weak formulations of strong cosmic
censorship [113], even non rotating and neutral black holes in de Sitter space have
two horizons: the black-hole and the cosmological horizon. So an interesting exercise
is to consider various possible quantum states and examine their smoothness on all
these horizon by the methods discussed here.
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Conclusions

In chapter 2, we argued that the degrees of freedom are encoded holographically in a
theory of quantum gravity in 4-dimensional asymptotically flat spacetimes. Hence,
any information about a quantum state can be recovered from almost instantaneous
measurements of boundary observables. Our analysis was based on assumptions
motivated from semiclassical gravity.

We studied implications of holography for the black hole information paradox.
Since all information is always present near the boundary, the notion of information
escaping from the black hole through Hawking radiation is ill-founded. This implies
that the often discussed Page curve is a wrong expectation based on incorrect as-
sumptions about quantum gravity, namely locality. The true Page curve should be
a constant. Strictly, this is not at odds with recent results on derivation of the Page
curve of black hole radiation, [41], as these results work in a setup where gravity
switches off and the Hilbert space factorizes. We also noted that mathematically, it
may be possible define a subalgebra for which the entanglement entropy follows the
traditional Page curve. However, physical relevance of such subalgebra is unclear.

The loss of locality also resolves the strong subadditivity and cloning paradoxes,
which incorrectly assumes that the full Hilbert space can be thought of as a tensor
product of subspace in the interior of a black hole and a subspace in the exterior.
However, this doesn’t resolve the paradoxes associated with the experience of an
infalling observer. In [65], it was argued that operators behind the horizon are ill-
defined. Non-locality discussed in chapter 2 does not shed light on this issue. To
resolve this issue we need to invoke state-dependence [62, 67, 68, 70].

Apart from extension of our results to arbitrary spacetime dimensions and includ-
ing massive excitations, an interesting direction for future work is to understand sub-
region duality in semiclassical gravity. Can similar semiclassical analysis elucidate
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the entanglement wedge reconstruction in AdS/CFT? It would also be interesting
to explore sub-region duality in asymptotically flat spacetimes.
In chapter 3, we analyzed the fuzzball resolution to the information paradox. We

argued that typical black hole microstates cannot be described by distinct classical
geometries. We also showed that fuzzballs differ too much from black holes, and
hence, cannot parameterize the phase space of black hole microstates.
In chapter 4, we derived a universal bound on the large spacelike limit of thermal

Wightman correlators. This bound is saturated in perturbative theories via suffi-
ciently high order loop diagrams. However, surprisingly, holographic theories do not
always saturate this bound, at least at the leading order. This is unexpected as
holographic theories are strongly coupled. It would be interesting to explore this
bound in holographic theories in greater detail. An open problem is to understand
whether our bound holds in holographic theories even for momenta that do not scale
with the central charge. Another direction to explore is whether these correlators
can be indicative of holography.
Finally, in chapter 5, we developed a quantum test for smoothness of a state

across a null surface. This requires the local modes, obtained by integrating the
quantum field in local Rindler coordinates near the null surface, to be entangled in
a particular way. This imposes nontrivial conditions on two-point functions of global
modes. We used this to develop a test for strong cosmic censorship. A violation
of strong cosmic censorship conjecture requires the inner horizon of a black hole to
be smooth. However, it is nontrivial for a state to be smooth at inner as well as
outer horizon. We used this test to rule out violations in RN-AdS. Our test did not
rule out violations in BTZ. We explored the possibility of extending the spacetime
behind the inner horizon. Such an extension is only possible if modes behind the
inner horizon are some combination of modes outside. No new mode can be defined
behind the inner horizon.
Implementation of our test for the strong cosmic censorship conjecture for other

black holes, such as black holes in de-Sitter space, is an immediate future direction
to be pursued. Since de-Sitter black holes also have a cosmological horizon, it would
be interesting to implement our analysis even for Schwarzschild black holes. It is also
important to understand other quantum effects, including non-perturbative effects,
that may have a bearing on stability of the inner horizon.
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Appendix A

Asymptotic charges as observables

In this section, we will address the argument of [38] that the ADM mass, the Bondi
mass and other asymptotic charges should not be observables at null infinity.
The argument of [38] is quite simple, and can be understood by considering even a

free scalar theory. Usually, we define the vacuum as an eigenstate of the Hamiltonian
which (after a possible shift in the zero-point point energy) annihilates it.

H|0〉 = 0. (A.1)

In a local theory, the operator H above is an integral of a Hamiltonian density,
H(~x, t) over an entire Cauchy slice. However, now consider integrating the Hamil-
tonian density only inside some ball of large radius, B(R),

H(R, t) =

∫

B(R)

H(~x, t)d3~x. (A.2)

The point made in [38] is that this truncated operator has large fluctuations: in
fact, 〈0|H(R)2|0〉 grows with R and so it appears that a naive R→∞ limit will of
H(R) will not yield the correct Hamiltonian, H.
Now, if one couples the scalar to gravity, the gravitational constraints relate some

components of the metric on a sphere of radius R to the energy contained inside
the sphere. Therefore [38] argued that these metric components would also have
large fluctuations that could only be tamed by smearing H(R) over a large time.
Their smearing prescription is shown in Figure A.1a. If such a smearing were indeed
necessary, it would be impossible to assign a meaning to the ADM mass or assign
a Bondi mass to a cut of future (or past) null infinity, since as we take R → ∞ in
figure A.1a, the smeared operator of [38] appears to have support over a semi-infinite
region of future null infinity.
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In this Appendix, we show that this conclusion is unwarranted. The large quantum
fluctuations can also be avoided by smearing H(R, t) radially before taking the
R → ∞ limit. Said another way, to obtain asymptotic charges at null infinity, we
first smear the bulk metric radially and then take its large-radius limit.
The ADMmass defined in this manner is related by the constraints to the following

operator H.

H = lim
R→∞

Hsm(R) = lim
R→∞

∫
dt′dR′g(t′)FR(R′)

∫

B(R′)

H(~x, t)d3~x. (A.3)

The smearing in time is controlled by g(t) and has support over a small user-defined
length scale, η around t = 0. The smearing function in the radial direction, FR,
varies the radius of the ball in the range R ± R1−δηδ, where δ can be chosen to be
any number satisfying 0 < δ < 1

3
. We show that the fluctuations of Hsm(R) in a

massless scalar field theory are then suppressed as

〈0|Hsm(R)2|0〉 =
1

120π

1

Rη

(
R

η

)3δ

, (A.4)

up to terms that fall off even faster with R. So this has a good limit as R → ∞.
We derive this result below.

(a) (b)

Figure A.1: The protocol of [38] (left) associates large regions of I+ with each mea-
surement of Bondi mass making it impossible to associate a value with a cut. In
contrast, our protocol (right) reduces quantum fluctuations by averaging over the
radial direction, associating an infinitesimal interval of I+ to each measurement of
the Bondi mass.
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Fluctuations of the smeared Hamiltonian

Consider the free massless scalar field in 3 + 1−dimensional spacetime.

φ(x) =

∫
d3k

(2π)3/2

1√
2ω~k

[
a~k e

ik·x + a†~k e
−ik·x

]
. (A.5)

The field satisfies canonical commutation relations provided

[a~k, a
†
~k′

] = δ3(~k − ~k′). (A.6)

The Hamiltonian density is

H(x, t) =
1

2
:
[
(∂tφ(x))2 + (~∇φ(x))2

]
: . (A.7)

As usual, we normal order the Hamiltonian so that the divergent contribution of the
zero-point energies is removed. Using the mode expansion we find

H(R, t) = −1

2

∫

|~x|≤R
d3x

d3k d3p

(2π)3

(
ω~k ω~p + ~k · ~p

)

2
√
ω~k ω~p[

a~k a~p e
i(k+p)·x + a†~k a

†
~pe
−i(k+p)·x − a†~k a~pe

−i(k−p)·x − a†~p a~kei(k−p)·x
]
.

(A.8)

Usually, we integrate over all ~x to define the Hamiltonian and then we just drop the
terms with two creation and two annihilation operators. However, if we integrate
over a finite region, these terms remain and the discussion here has to do with their
effect.

H(R, t) =

∫
d3kd3p

(2π)2

(
ω~kω~p + ~k · ~p

)

2
√
ω~kω~p

(
D(k − p,R, t)a†~pa~k −D(k + p,R, t)a~ka~p + h.c.

)
,

(A.9)
with

D(q, R, t) =
sin(|~q|R)− |~q|R cos(|~q|R)

|~q|3 e−iq
0t. (A.10)
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Appendix A Asymptotic charges as observables

In the large R limit, the function D(q, R, t) is sharply peaked around |~q| → 0.

As discussed earlier, we are interested in the smeared operator (A.3). We make
the following choices for the smearing functions.

FR(R′) =
1

λ
√
π
e−

(R′−R)2

λ2 ; g(t′) =
1

η
√
π
e
− t2

η2 , (A.11)

where
λ = R1−δηδ, (A.12)

and η is chosen to be a small length scale that does not scale with R.

Now we proceed to the computation of fluctuations of smeared Hamiltonian.

〈0|H2
sm(R)|0〉 =

∫
dt1 dt2 dR1 dR2 FR(R1)FR(R2) g(t1) g(t2) 〈Ω|H(t1, R1)H(t2, R2)|Ω〉.

(A.13)
Expanding out both factors of H in creation and annihilation operators, we see that
the only term that contributes towards vacuum fluctuations is the one which picks
up creation operators from the second factor and annihilation operators from the
first. This leads to correlators of the form 〈0|a~ka~pa

†
~k′
a†~p′|0〉 = δ(~k − ~k′)δ(~p − ~p′) +

δ(~k − ~p′)δ(~p− ~k′). We then find

〈Ω|H2
sm(R)|Ω〉 =

∫
d3kd3p

(2π)4

(
ω~kω~p + ~k · ~p

)2

2ω~kω~p
D(k + p,R1, t1)D∗(k + p,R2, t2)

× FR(R1)FR(R2)g(t1)g(t2)dR1dR2dt1dt2

(A.14)

Now we will perform all the smearing integrals to get the following.

〈Ω|H2
sm(R)|Ω〉 =

∫
d3kd3p

(2π)4

(
ω~kω~p + ~k · ~p

)2

2ω~kω~p
e−

1
2
η2(ω~k+ω~p)2 1

4
e−

1
2
λ2(|~k+~p|)2 1

|~k + ~p|6

×
[
(2 + λ2(|~k + ~p|)2) sin(|~k + ~p|R)− 2|~k + ~p|R cos(|~k + ~p|R)

]2

.

(A.15)

To simplify the above integral, we change variables to ~q = ~k + ~p and ~r = ~k − ~p.
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Then we see that the integral above only receives contributions from the range where
|~q|η � 1. This allows us to series expand all terms in a series in |~q| (except for those
that involve |~q|R) and do the integrals explicitly leading to

〈0|H2
sm(R)|0〉 =

R2

120πηλ3

(
1 + O

(
λ

R

))
=

1

120π

1

Rη

(
R

η

)3δ (
1 + O

(
λ

R

))
,

(A.16)
as advertised.
While we also required a small smearing over time, this only provided us with a

UV-momentum cutoff. However, our radial smearing was over a parametrically larger
region. This provided us with another momentum cut-off that was parametrically
smaller than the cutoff provided by the time-smearing. This is the crucial difference
with [38]. In fact, we can recover the results of [38] just by taking λ = O (η) in
our calculation. Then the fluctuations of our smeared Hamiltonian again start to
diverge with R as is evident above.
The fluctuations of the Bondi mass can be similarly suppressed by taking t = u+R

in the expression above, and smearing by a small amount in u and a large amount
in R.
The discussion here has had to do with the definition of asymptotic observables as

limits of bulk observables and not with the “difficulty” of measuring them practically.
To summarize, we do not see any, in-principle, obstacle to taking this limit and
obtaining asymptotic charges as observables in a quantum theory, provided the
limit is taken carefully.
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Appendix B

Thermal perturbation theory

In this appendix, we review the elements of thermal perturbation theory. Our anal-
ysis applies to any perturbative quantum field theory and is applied in the main
text, both to holographic correlators, and to weakly-coupled theories. We first de-
scribe a canonical formulation of thermal perturbation theory, and then describe a
diagrammatic formulation that naturally arises from the Schwinger-Keldysh repre-
sentation. The material covered here is standard, but we include it here for the sake
of completeness and also because it is somewhat difficult, in the extant literature,
to find a clear and concise description of the rules to carry out perturbation theory
for relativistic field theories.

Canonical formulation

We are interested in evaluating

Tr(e−βHφ(t1, x1) . . . φ(tn, xn)). (B.1)

At some point of time, τ we split the Hamiltonian into a free and an interacting
part

H = H0[τ ] +HI [τ ]. (B.2)

Here HI is the interaction Hamiltonian evaluated at real time τ and H0 is the
“free Hamiltonian”, also evaluated at time τ . Note that both H0 and HI depend
on the time we choose to make this split, τ , although this dependence on τ must
eventually drop out. Below, whenever HI is evaluated at time τ , we will suppress
this dependence to lighten the notation.
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Appendix B Thermal perturbation theory

Now consider
T (z) = ezH0e−zH . (B.3)

This satisfies

T ′(z) = ezH0H0e
−zH0ezH0e−zH − ezH0He−zH0ezH0e−zH

= −ezH0HIe
−zH0T (z).

(B.4)

The solution to this is just

T (β) = Tce−
∫ β
0 HI(τ−iz)dz. (B.5)

where
HI(τ − iz) = ezH0HIe

−zH0 , (B.6)

and Tc denotes a contour-ordering sign, where the contour moves down in imaginary
time from Im(t) = 0 to Im(t) = −β. In the expression above larger values of z are
placed to the left. More explicitly, we have

T (β) =
∑

n

(−1)n

n!

∫
Tc{HI(τ − iz1) . . . HI(τ − izn)}dz1 . . . dzn. (B.7)

Therefore we have
e−βH = e−βH0T (β). (B.8)

We can expand the interaction Hamiltonian as a sum of terms with various fre-
quencies (as measured by the free Hamiltonian). If we then write

HI(t) =

∫ ∞

−∞
HI(ω)e−iωt

dω

2π
, (B.9)

then we have
HI(t− iz) =

∫ ∞

−∞
e−iωt−zωHI(ω)

dω

2π
, (B.10)

and

T (β) =
∑

n

(−1)n
∫ ∏ dωi

2π

∫ β

0

dz1

∫ z1

0

dz2 . . .

∫ zn−1

0

dzne
−i∑ωi(τ−izi)H(ω1) . . . H(ωn).

(B.11)
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We now turn to the real-time part of the correlator. Using standard arguments
we have

φ(ti, xi) = T
[
ei
∫ t
τ HI(x)dx

]
φI(t, xi)T

[
e−i

∫ t
τ HI(x)dx

]
, (B.12)

where φI(t, xi) is the interaction-picture operator at time t.

With a little algebra this can be written as

φ(ti, xi) =
∞∑

N=0

iN
∫ t

τ

dtN . . .

∫ t2

τ

dt1[HI(t1), [HI(t2) . . . [HI(tN), φI(t, xi)] . . .]].

(B.13)

Combining (B.13) and (B.7) we immediately obtain a perturbative expansion for
(B.1).

For consistency, we would like to see the following two effects emerge from the
expressions above

1. Although we have suppressed this dependence, in fact both the free Hamilto-
nian and the interaction Hamiltonian depend on the time at which we make the
split, τ , and correspondingly τ also appears in the lower limit of the integral.

2. Second, the correlator above should be time-translationally invariant. So if we
shift ti → ti + x, the correlator should not change.

This is obvious in the original expression (B.1). However, in perturbation theory
this appears to be a little puzzling. To see the puzzle, let us suppress the separate
time-dependence and instead consider a single operator C(t). The generalization to
operators at different times will be given later, and will be obvious.

Therefore, we consider the expression Tr(e−βHC(t)). We will expand this out to
second order in perturbation theory to check the two consistency properties above.
To second order we have

T (β) = 1−
∫
HI(ω)e−iωτ

1− e−βω
ω

dω

2π

+

∫
HI(ω)HI(ω

′)e−i(ω+ω′)τ
[1− e−βω

ωω′
+
e−β(ω+ω′) − 1

(ω + ω′)ω′

]dω
2π

dω′

2π
.

(B.14)
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Appendix B Thermal perturbation theory

Further, we write the interaction picture operator as

CI(t) =

∫
CI(ω)e−iωt

dω

2π
. (B.15)

Inserting this into the nested commutators above yields an expression for the Heisenberg-
picture operator, which we will use below.
Before we turn to the general structure of the perturbative expansion we work

out the first order terms and the quadratic terms explicitly. The reader may skip
these explicit calculations if she is interested only in the results.

First order terms: The first order terms are
∫
F
dω

2π

dω′

2π
,

where

F = −Tre−βH0

[
HI(ω)

1− e−βω
ω

CI(ω
′)e−iω

′te−iωτ− 1

ω
[HI(ω), CI(ω

′)]e−iω
′t
(
e−iωt−e−iωτ

)
]
.

(B.16)
In general, we expect this correlator to have support for all values with ω + ω′ = 0.
However, this is puzzling, since in some of the terms above, we appear to get a
non-zero dependence on both t and τ .
This can be resolved by imposing the KMS condition.

Tr
(
e−βH0HI(ω)CI(ω

′)
)

= eβωTr
(
HI(ω)e−βH0CI(ω

′)
)

= eβωTr
(
e−βH0CI(ω

′)HI(ω)
)

= eβωTr
(
e−βH0

(
HI(ω)CI(ω

′)− [HI(ω), CI(ω
′)]
))
.

(B.17)

In particular this means that

(1− e−βω)Tr
(
e−βH0HI(ω)CI(ω

′)
)

= Tr
(
e−βH0 [HI(ω), CI(ω

′)]
)
. (B.18)

Therefore, we have

F =
−1

ω
Tr(e−βH0 [H ′I(ω), CI(ω

′)])e−iω
′te−iωt, ω, ω′ 6= 0. (B.19)
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Since the trace is proportional to δ(ω+ω′), in this form, it is clear that the correlator
is independent of both τ and t.

However, the contribution above is not the full contribution to the correlator since
in writing the final expression for F (ω, ω′) we divided by ω. This is not allowed
at ω = 0. In particular, if the thermal expectation of HI(ω)CI(ω

′) has a term
proportional to δ(ω)δ(ω′). This term is not cancelled off by the KMS condition.
However, this term is also manifestly independent of τ and t so the puzzle above
does not arise here. We will return to these correction terms below.

Second order terms: Now let us consider the second order terms. We need to
include the second order term from T (β) the second order term from the real-time
evolution, and the product of the first order terms. Therefore the full expression we
need to consider is as follows

S =

∫
dω1dω2dω3

(2π)3
Tre−βH0

[
T1 + T2 +R

]

T1 = e−i(ω1+ω2)τ−iω3t

∫ β

0

dz1

∫ z1

0

dz2e
−z1ω1−z2ω2HI(ω1)HI(ω2)CI(ω3)

T2 = −ie−iω1τ−iω3t

∫ β

0

dz1e
−z1ω1

∫ t

τ

dt2e
−iω2t2HI(ω1)[HI(ω2), CI(ω3)]

R = −
∫ t

τ

dt2

∫ t2

τ

dt1e
−iω1t2−iω2t2−iω3t[HI(ω1), [HI(ω2), CI(ω3)]].

(B.20)

We again consider the case where ω1 6= 0, ω2 6= 0, ω3 6= 0. For the term denoted by
T1 above we need to use the KMS relations twice. This yields

Tr(e−βH0HI(ω1)HI(ω2)CI(ω3)) =
Tr(e−βH0 [HI(ω2), [HI(ω1), CI(ω3)]])

(1− e−βω1)(1− e−βω2)

− e−βω3

(1− e−βω1)(1− e−βω3)
Tr(e−βH0 [CI(ω3), [HI(ω1), HI(ω2)]]).

(B.21)

We can put both these terms in the form of the commutator that appears in the
real-time expression by using the Jacobi identity for the second expression

[CI(ω3), [HI(ω1), HI(ω2)]] = −[HI(ω1), [HI(ω2), CI(ω3)]]+[HI(ω2), [HI(ω1), CI(ω3)]].

(B.22)
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Appendix B Thermal perturbation theory

After these steps, we find that

T1 =

(
ω1

(
e−βω2 − 1

)
+ ω2

(
eβω1 − 1

))
e−iτ(ω1+ω2)

ω1ω2 (eβω1 − 1) (eβω2 − 1) (eβω3 − 1) (ω1 + ω2)
e−iω3t

×
[
(
eβ(ω2+ω3) − 1

)
Tr(e−βH0 [HI(ω2), [HI(ω1), CI(ω3)]])

−
(
eβω2 − 1

)
Tr(e−βH0 [HI(ω1), [HI(ω2), CI(ω3)]])

]
.

(B.23)

We also find that

T2 =
e−iω3t−iτω1

ω1ω2

(
e−itω2 − e−iτω2

)
Tr(e−βH0 [HI(ω1), [HI(ω2), CI(w3)]]), (B.24)

whereas the real-time term is given by

R = −e−iω3t

(
(ω1 + ω2)e−i(tω2+τω1) − ω2e

−it(ω1+ω2) + ω1

(
−e−iτ(ω1+ω2)

))

ω1ω2(ω1 + ω2)

× Tr(e−βH0 [HI(ω1), [HI(ω2), CI(ω3)]]).

(B.25)

Upon adding these terms, and noting that within the integral we can switch the
dummy variables ω2 ↔ ω1 we find that the full quadratic term in the integrand for
ωi 6= 0 is

T1 + T2 +R =
e−iω3t

ω1ω2

Tr(e−βH0 [HI(ω1), [HI(ω2), CI(ω3)]]

[

e−(β+iτ)(ω1+ω2)

(eβω1 − 1) (eβω2 − 1) (eβω3 − 1) (ω1 + ω2)
×
(
ω1

(
eβ(2(ω1+ω2)+ω3) − eβ(ω1+ω2) + eβω1

)

− (ω1 + ω2)eβ(2ω1+ω2+ω3) + ω2

(
eβ(ω1+2ω2) − eβω2 + eβ(ω1+ω2+ω3) − e2β(ω1+ω2) + eβ(2ω1+ω2)

))

+
ω2e

−it(ω1+ω2) + ω1e
−iτ(ω1+ω2)

ω1 + ω2

+ e−iτ(ω1+ω2) + . . . ,

(B.26)

where . . . indicates terms that either integrate to 0 or contribute only when one of
the ωi’s is 0.
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However, recall that the thermal trace has support only on ω3 = ω1 + ω2. This is
because the trace can be evaluated in any basis, including the basis of eigenstates
of H0 in which the total H0-eigenvalue of the insertion inside the trace must vanish.
Imposing this condition, we find a tremendous simplification in the expression above
and the full quadratic term becomes

T1 + T2 +R =
1

ω2
1 + ω1ω2

Tr(e−βH0 [HI(ω1), [HI(ω2), CI(ω3)]]) + . . . . (B.27)

Even though the integral above is over three variables it is understood that when
we evaluate the trace, this will force the constraint ω3 = ω1 + ω2.

Result: General structure of the perturbative expansion: From the exam-
ples above, we arrive at the following general structure of the perturbative expansion.
In the perturbative expansion, there are two terms that are multiplied by phases
dependent linearly on τ . One term comes from the expansion of T (β). the other
term comes from the lower limit of the time-integrals. The two example calculations
above show that these two terms cancel with each other.

Since the full amplitude cannot depend on τ in any manner, this cancellation
must continue to all orders. Therefore, for generic frequencies of the operators that
appear in the perturbative expansion, the only term that can survive from the
multiple time-integrals comes from the upper limit of integration. The contribution
from the lower-limit of integration cancels with the contribution from (B.11) for
generic values of ωi.

However, this is not the full contribution to the correlation function. As pointed
out below (B.19) and in the discussion leading to (B.27), there may be terms in the
correlation function that, in the space of frequencies of the insertions, appear on
surfaces of codimension 1 or higher. These terms are, by themselves, independent
of τ and, in general, our argument that they cancel does not apply.

For instance, in (B.11) we may expect to get a finite contribution to the correlator
from frequencies that satisfy

∑
ωi = 0. We can quantify this contribution by ex-

tracting the part in the product of the interaction Hamiltonians that is proportional
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a delta function in the ωn (B.11)

(−1)n
∫ β

0

dz1

∫ z1

0

dz2 . . .

∫ zn−1

0

dzne
−i∑ωi(τ−izi)H(ω1) . . . H(ωn) = Z1(ωi)2πδ(

∑
ωi)+. . . ,

(B.28)
where . . . indicates terms that contribute for generic values of ωi. Then we set

(1 + Z1) =
∑

n

∫ ∏ dωi
2π
Z1(ωi)2πδ(

∑
ωi). (B.29)

However, one may also have contributions that appear from terms where the sum
of frequencies in (B.7) cancels with a frequency from the lower-limit of real-time
integration from the commutators. We write this contribution as Z2 and we will
quantify it when we turn to the Schwinger-Keldysh formalism.

This leads to the following general result At nth order in perturbation theory we
find that

Tr(e−βHC(t))

=
∑

n

∫ n+1∏

i=1

dωi
2π

Tr(e−βH0(1 + Z1)g(ωi)[HI(ω1), . . . [HI(ωn), CI(ωn+1)]]ei
∑
ωit + Z2),

(B.30)

where the factors Z1 and Z2 are discussed above. Even though the integral runs over
n+ 1 variables, the thermal trace yields δ(ω1 + . . . ωn+1) and therefore all functions
depend only on n variables. The function g(ωi) comes from the upper limit of
time-integration and is therefore given by

g(ωi) =
(−1)n∏n

k=1

∑k
j=1 ωj

=
(−1)n

ω1(ω1 + ω2) . . . (ω1 + . . . ωn)
. (B.31)

The alert reader might worry that (B.30) thatH0, HI and also CI are all implicitly
dependent on τ . However, consider making the split between the free and the
interacting part at a different time τ ′ = τ + x. Then we note immediately that

H ′0 = eiHxH0e
−iHx; H ′I = eiHxHIe

−iHx. (B.32)
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However, denoting the Heisenberg picture operator by CH , we have

C ′I(ω) =

∫ ∞

−∞
eiH

′
0tCH(τ ′)e−iH

′
0teiωtdt

=

∫ ∞

−∞

(
eiHxeiH0te−iHx

) (
eiHxCH(τ)e−iHx

) (
eiHxe−iH0te−iHx

)

= eiHxCI(ω)e−iHx.

(B.33)

We now see, using the cyclicity of the trace that the factors of e−iHx all cancel on
the right hand side of (B.30) so this correlator does not depend on τ as expected.
The result (B.30) can be easily generalized to evaluate a Wightman function that

involves insertions at different times. We find that

Tr(e−βHC(t1) . . . C(tn)) =
∑∫ (∏

j,l

dωjl
2π

)∏

j

g(ωjl )e
i
∑
j,l ω

j
l tjTr

(
e−βH0(1 + Z1)

× [HI(ω
1
1) . . . [HI(ω

1
s1

), CI(ω
1
s1+1] . . .] . . . [HI(ω

n
1 ), . . . [HI(ω

n
sn), CI(ω

n
sn+1

)] . . .] + Z2

)
.

(B.34)

Physically, this formula can be understood as follows. Consider taking τ →
−∞. This means that the split between the free and the interaction Hamiltonian is
performed at t = −∞. Then, if we proceed naively we might imagine that

1. By means of a suitable turning on/off function for the interaction we can make
the full Hamiltonian coincide with the free Hamiltonian at τ = −∞.

2. In the time-integrals that arise from the Dyson expansion, we can ignore all
the terms that arise from the lower limit of integration.

These steps are too naive because in the thermal case, as we adiabatically turn on the
interaction we may heat or cool the state or change it in some other manner. This
is the explanation for the term Z1 above. In fact, if the system does not thermalize
effectively, then some contributions from early times may remain important even at
late times and this is the physical explanation for the term Z2 above.
If we choose the interaction-term carefully so that it does not change the temper-

ature of the system then Z1 may just be a numerical factor that will cancel when
we compute thermal expectation values since it will also appear in the partition
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function. If the system thermalizes effectively then Z2 = 0 but this is a very subtle
issue as we discuss below.

Schwinger-Keldysh formalism

In this section we will briefly describe the Schwinger-Keldysh formalism, which yields
a diagrammatic approach to computing thermal Wightman functions in relativistic
field theories. In the process we will also clarify the functions Z1 and Z2 above.
Consider again the thermal expectation value (B.1). We now give small negative
imaginary parts to the time coordinates ti → ti − iεi so that ε1 > ε2 > . . . εn. At
the end of the calculation we will take εi → 0. Then we can represent all the points
on a time-contour that runs from −∞− iεn →∞− iεn, snakes back to −∞− iεn,
then moves down in imaginary time to −∞− iεn−1 goes to +∞− iεn−1 and so on.
At the end the contour moves in imaginary time and ends up at t = −∞ − iβ as
shown in Figure B.1a.

To write an expression for the correlator using this contour, we adopt the notation

UIi(t1, t2) ≡ e−i
∫ t2
t1
HIi(t̃−iεi)dt̃. (B.35)

Then we can write, using the analysis of the previous section,

Tr(e−βHφ(t1, ~x1)φ(t2, ~x2) . . . φ(tn, ~xn))

= Tr(e−βH0Tc
{
T (β)UI1(−∞,∞)φI(t1, ~x1)UI1(∞,−∞)

UI2(−∞,∞)φI(t2, ~x2)UI2(∞,−∞) . . . UIn(−∞,∞)φI(tn, ~xn)UIn(∞,−∞)
}

),

(B.36)

where Tc denotes ordering along the contour.

Now, in the limit where the εi → 0, note that the expression (B.36) has multiple
redundancies since parts of the various UI operators cancel with each other. In
Figure B.1a, for instance, the red parts of the contour cancel and so do the blue
parts, leaving only the thick black part. This allows us to collapse the contour of
B.1a to B.1b. Even the contour of B.1b has redundancies. However, it is convenient
to retain these redundancies in order to obtain easy Feynman rules.
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−∞− iǫn φn(tn, ~xn)

−∞− iǫn−1

∞− iǫn−1

∞− iǫ1

∞− iǫn

−∞− iǫ1

−∞− iβ

φn−1(tn−1, ~xn−1)

φ1(t1, ~x1)

(a) The original contour for expres-
sion (B.36)

φn(tn, ~xn)

φn−1(tn−1, ~xn−1)

φ1(t1, ~x1)

−∞− iβ

(b) The collapsed final Schwinger-
Keldysh contour in the limit εi → 0

Figure B.1: The Schwinger-Keldysh contour

Note that the final number of horizontal legs in the collapsed contour of Figure
B.1b is ñ where ñ = n if n is even and ñ = n + 1 if n is odd. This is because the
contour must return to −∞ before descending to −∞− iβ.
To obtain the Feynman rules, we now introduce ñ+1 types of fields, corresponding

to the factors ñ horizontal legs of the contour and the single vertical leg. We can
define a contraction1 of these ñ+ 1 fields that can be evaluated in terms of ordinary
interaction-picture fields as follows

Dij(t1, ~x1, t2, ~x2) =
1

Z0

×





Tr(e−βH0T φI(t1, ~x1)φI(t2, ~x2)) i = j and n− i even,
Tr(e−βH0T φI(t1, ~x1)φI(t2, ~x2)) i = j and n− i odd,
Tr(e−βH0φI(t1, ~x1)φI(t2, ~x2)) i > j,

Tr(e−βH0φI(t2, ~x2)φI(t1, ~x1)) i < j.

(B.37)
The first two lines above correspond to time-ordered and anti-time-ordered thermal
expectation values whereas the last two lines correspond to Wightman functions
where the field that appears later on the contour is placed first. These two-point
functions can be calculated using (4.28) and (4.30). For instance, the time-ordered

1The contraction can be defined, as usual, as the difference of the contour-ordered product and
the “normal ordered product”. However, the “normal ordered product” must be defined, by
making a Bogoliubov transform of the creation and annihilation operators so that its thermal
expectation value vanishes. This is explained in [128]
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Appendix B Thermal perturbation theory

propagators are,

1

Z0

Tr(e−βH0T φI(t1, ~x1)φI(t2, ~x2)) =

∫
dd−1~k

2(2π)dωk
ei
~k·(~x1−~x2) e

−iωk|t1−t2| + e−βωkeiωk|t1−t2|

1− e−βωk .

(B.38)
We can Fourier transform the propagator to obtain a momentum-space expression.

Dij(k1)(2π)dδ(k1 + k2) =

∫
ddx1d

dx2Dij(x1, x2)e−ik1·x1−ik2·x2 , (B.39)

and these are the expressions listed in (4.33).
The second feature that will appear when we expand out (B.36) using Wick’s

theorem is that the interaction Hamiltonian appears with a positive sign for odd
legs of the contour and a negative sign for even legs of the contour. These rules also
apply to the vertical segment where we take the value of t to be complex. If both
legs are on the vertical segment, then the propagator is the Euclidean two-point
function and if one leg is on the vertical segment and another is on a horizontal
segment then the propagator is the analytically continued Wightman function.
Therefore, in the end, when we expand out (B.36) and take εi → 0, we get the

following Feynman rules

1. There are ñ+ 1-types of interaction vertices. Of these ñ correspond to the dif-
ferent HI(t) on the horizontal parts of the contour. The 0th vertex corresponds
to the interaction vertex on the vertical part of the contour. The jth vertex
connects only fields of type i to each other and has a coefficient (−1)n−j(−i).
The 0th vertex comes has a coefficient (−1).

2. All interaction vertices on the horizontal parts of the contour are integrated
from time −∞ to ∞ and over all space.

3. The interaction vertex on the vertical part of the contour is integrated in
Euclidean time from [0, β] and over all space.

4. There are (ñ + 1)2-types of propagators that connect fields of type i to fields
of type j as given in (B.37)

5. The external legs correspond to fields of type 1 . . . n.
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More on the vertical part The vertical part of the contour corresponds to a very
subtle term. First note that the Feynman-diagram expansion yields terms where in-
teraction Hamiltonians from the vertical part only contract with each other through
a Euclidean propagator. These terms contribute a disconnected set of graphs that
are not connected to the external points. This is an overall numerical prefactor that

is clearly just
Tr(e−βH)
Tr(e−βH0)

.

Now, as we take the vertical part of the contour in real time to −∞, we may
expect that the mixed propagators that connect the vertical and horizontal part
die off due to the Riemann-Lebesgue lemma. However, this does not always happen
because some terms in the Feynman diagram may continue to contribute at t = −∞.
This is in contrast to the situation in perturbation theory about the vacuum, where
by evolving infinitely along a slightly imaginary direction we can project out all
contributions except those corresponding to the vacuum. It is this contribution
from the vertical part of the contour that leads to the factors Z1 and Z2 in (B.30).
This subtlety has been discussed in the thermal field theory literature and we refer
the reader to [101, 103, 129] for more details. In our calculations in the main text,
we will not include the contribution of the vertical part of the contour. We do
not believe that this will materially affect our results, but we leave a more detailed
discussion of these effects to a later study.

Interactions in the BTZ black hole

In this appendix, we provide some more details of holographic contact Witten dia-
grams for the BTZ black hole. We consider a four-point interaction between scalar
field with dimensions ∆i. In the BTZ black-hole we can explicitly compute the
bulk-boundary propagators, but our analysis here is entirely complementary to the
analysis in the main text. The alert reader may have noticed that in using (4.88)
in the main text, we did not need to use the condition of linear dependence of the
normals. This condition is only meaningful if less than d + 1-singularities collide
since otherwise it is met trivially. In this Appendix, we will see the relevance of this
condition for a four-point function and we will not need to use (4.89) at all in this
Appendix.
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Appendix B Thermal perturbation theory

We will consider the Euclidean, planar BTZ black hole with metric

ds2 = (r2 − r2
+)dτ 2 +

1

r2 − r2
+

dr2 + r2dφ2. (B.40)

Here the temperature is given by β = T−1 = 2π
r+
. The coordinate r here is related

to the coordinate z used in the main text through r = 1
z
.

The bulk to boundary propagator in this geometry between a boundary point
(τi, φi) and a bulk point (τ, r, φ) can then be found to be [130]

K∆i
=

N∆i(
cosh(r+(φi − φ)) r

r+
− cos(r+(τi − τ))

√
r2

r2
+
− 1
)∆i

. (B.41)

A contact Witten diagram in Euclidean space can then be calculated to be

G(ti, φi) =

∫
rdrdτdφ

4∏

i=1

N∆i(
cosh(r+(φi − φ)) r

r+
− cos(r+(τi − τ))

√
r2

r2
+
− 1
)∆i

,

(B.42)
where ∆i are the dimensions of the fields that participate in the interaction and N∆i

is a normalization that will be irrelevant for us.

To get the Lorentzian Wightman function with arguments extended in imaginary
time, we can write τi = iti + δi and the ordering in the Wightman correlator is set
by the ordering of the δi. Similarly, we can extend the transverse coordinates in
the imaginary direction through φi = xi + iεi in the imaginary direction inside the
integral expression (B.42). Let us order the δi so that δ1 < δ2 < δ3 < δ4. Without
loss of generality, we set δ1 = ε1 = 0; this just corresponds to setting the first
point in the four-point function to the origin, which can be done by a translation.
Then, to check the analyticity properties in position space, we need to check the
following property: Provided (i) δi − δi−1 > 0 and (ii) |δi − δi−1| > |εi − εi−1| and
(iii) |β − δ4| > |ε4|, the integral should not have any singularities.

Notice that the integrand in (B.42) then has singularities whenever

Si = cosh(r+(xi + iεi − φ))
r

r+

− cos(r+(iti + δi − τ))

√
r2

r2
+

− 1 = 0. (B.43)
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We see that the first bulk-boundary propagator cannot encounter a singularity. But
the other three bulk-boundary propagators can encounter singularities and in princi-
ple, either two or three singularities can collide at a point on the integration contour.
We now show that this cannot happen in such a way as to satisfy (4.88).

Two singularities colliding We will now prove that that contour cannot be pinched
by the meeting of any two singularities. Notice that when Si = 0, we have

∂Si
∂r

=
1

r+


cosh(r+(x1 + iε1 − φ)−

r
r+√

( r
r+

)2 − 1
cos(r+(iti + δi − τ))




=
−1

r+

cosh(r+(x1 + iε1 − φ))
1

( r
r+

)2 − 1
.

(B.44)

If the contour is pinched between two singularities, and if r <∞, we would find, by
demanding linear dependence of the derivatives, that

sinh(r+(x1 + iε1 − φ))

sinh(r+(x2 + iε2 − φ))
=

sin(r+(it1 + δ1 − τ))

sin(r+(it2 + δ2 − τ))
=

cosh(r+(x1 + iε1 − φ))

cosh(r+(x2 + iε2 − φ))

=
cos(r+(it1 + δ1 − τ))

cos(r+(it2 + δ2 − τ))
.

(B.45)

These conditions require the points to be either coincident or else separated by
∆ε = ∆δ = 2π

r+
. The second case, requires the imaginary shift to be larger than β,

whereas the first case involves a coincident singularity.

Three singularities colliding We may also consider the case, where three Si
vanish simultaneously for some r <∞. In this case, imposing the linear dependence
of derivatives implies that, for some constants γ1, γ2 we have

cosh(r+(x3 + iε3 − φ)) = γ1 cosh(r+(x1 + iε1 − φ)) + γ2 cosh(r+(x2 + iε2 − φ));

sinh(r+(x3 + iε3 − φ)) = γ1 sinh(r+(x1 + iε1 − φ)) + γ2 sinh(r+(x2 + iε2 − φ));

cos(r+(it3 + δ3 − τ)) = γ1 cos(r+(it1 + δ1 − τ)) + γ2 cos(r+(it2 + δ2 − τ));

sin(r+(it3 + δ3 − τ)) = γ1 sin(r+(it1 + δ1 − τ)) + γ2 sin(r+(it2 + δ2 − τ)).

(B.46)
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Appendix B Thermal perturbation theory

Using the fact that cosh2 x− sinh2 x = cos2 x+ sin2 x = 1 we see that the equations
above imply that we must have

cosh(r+(x1 − x2 + iε1 − iε2)) = cos(r+(i(t1 − t2) + (δ1 − δ2))), (B.47)

which immediately tells us that (by writing the cos as a cosh and equating the
imaginary part of the argument and excluding the case where the shift in imaginary
coordinates is larger than β) that |ε1−ε2| = |δ1−δ2| at the singularity. Namely that
the singularity cannot occur if we keep the difference of δ’s larger than the difference
of ε.
For the four-point function, we cannot have the situation where four or more

singularities coincide in the interior. This situation is relevant for higher-point func-
tions and in such a case, the linear dependence of the normals can be met trivially.
We now need to impose the additional condition, (4.89) imposed in the text: the
contour cannot be pinched if the imaginary part of the boundary points are on one
side of a hyperplane since by deforming the contour, we can remove the singularities.
However, it is interesting that this condition does not seem to be required for Witten
diagrams with a small number of external legs.
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Appendix C

Scattering in the Reissner-Nordström geometry at

large angular momenta

In Section 5.3.5, we noticed that the fractional difference between the expected
Boltzmann factor and the numerical Boltzmann factor at the inner horizon for large
` modes in Reissner-Nordström black holes tends to zero. Here, we will explain this
feature by using WKB approximation to solve wave the equation at large `. The
exact form of the metric is given in Section 5.3.

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−1. (C.1)

We reproduce the near horizon form of f(r).

f(r) = 2κ±(r − r±); r → r±. (C.2)

We consider a massless scalar Klein-Gordon field φ. The wave equation can be
solved with an ansatz of the form

φω,`(r, t,Ω) =
1

r(d−1)/2
ψ`,ω(r∗)e

−iωtY m
` (Ω), (C.3)

which leads to

ψ′′`,ω(r∗)− V (r∗)ψ`,ω(r∗) = 0,

V (r∗) = −ω2 +
f(r)

r2

(
`(`+ d− 2) +

(d− 3)(d− 1)

4
f(r) +

(d− 1)

2
rf ′(r)

)
,
(C.4)

where r∗ is the tortoise coordinate, defined by dr∗ = dr
f(r)

.
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Appendix C Scattering in the Reissner-Nordström geometry at large angular momenta

Large-` behaviour

At large `, the potential near outer horizon takes the following form.

V (r∗) ≈ −ω2 +
2κ+(r − r+)

r2
+

`2. (C.5)

Solving the ψ-equation, Eq. (C.4), with the above potential yields,

ψ`,ω(r∗) ≈ ABKiω/κ+

(
`

r+κ+

√
f(r)

)
+BBIiω/κ+

(
`

r+κ+

√
f(r)

)
. (C.6)

In the regime, `(r− r+)� 1 and r− r+ � r+, this solution can be approximated as

AB

√
π

2

(
r+κ+

`
√
f(r)

) 1
2

e
− `
√
f(r)

r+κ+ +BB

√
1

2π

(
r+κ+

`
√
f(r)

) 1
2 [
ie−πωe

− `
√
f(r)

r+κ+ + e
`
√
f(r)

r+κ+

]
.

(C.7)
The near horizon Bessel solution can be matched with a WKB solution in the large-`
limit. For large-`, the WKB approximation is valid at all radial points where f(r)

is finite (and nonzero).

ψwkb(r∗) ≈ Awkbe
−
∫ r∗ √V dr∗ +Bwkbe

∫ r∗ √V dr∗ . (C.8)

Near the boundary,

ψwkb(r∗) ≈ Awkbe
−`r∗ +Bwkbe

`r∗ , 1� r � `. (C.9)

Near the outer horizon,

ψ(r∗) ≈ Awkbe
Xe
− `
r+κ+

√
f(r)

+Bwkbe
−Xe

`
r+κ+

√
f(r)

,
1

`
� r − r+ � r+, (C.10)

where,

X =

∫ ζ∞∗

ζ+
∗

√
V (r)dr∗ (C.11)

with 1
`
� ζ+ − r+ � r+ and 1� ζ∞ � ` close to boundary.
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To a very good approximation, we can write

X ≈ l

∫ 0

−∞

√
f(r)

r
dr∗ ≡ lΛ, Λ > 0. (C.12)

Near the boundary, the normalizable mode behaves as

ψ(r∗) ≈ N
√
r∗J d

2

(
−ir∗
√
`2 − ω2

)
, r � `, (C.13)

where N is a normalization constant. For large-`, the normalizable mode behaves
as

ψ(r∗) ≈ N
i√
`

1√
2π

(
e−`r∗e

iπ
8
d + ielr∗e

3iπ
8
d
)
, 1� r � `. (C.14)

Matching this with the WKB solution Eq. (C.9), we get

Awkb

Bwkb
= −ie− iπ4 d. (C.15)

Near horizon behaviour would now become

ψ(r∗) ≈ N
i√
`

1√
2π

(
−ie− iπ4 delΛe−

`
r+κ+

√
f(r)

+ e−lΛe
`

r+κ+

√
f(r)
)
. (C.16)

We see that the coefficient of e
`

r+κ+

√
f(r) is exponentially suppressed. Hence, in the

large ` limit,
BB = 0 (C.17)

Close to horizon,

ψ`,ω(r∗) = ABKiω/κ+

(
`

r+κ+

√
f(r)

)
(C.18)

Now we consider the near horizon (`(r − r+)� 1) limit.

ψ`,ω(r∗) =
AB
2

[(
`

2r+κ+

) iω
κ+

Γ(− iω
κ+

)eiωr∗ + (ω → −ω)

]

=
AB
2

(
πκ+

ω sinh(πω
κ+

)

)1/2 [
e
iδω,`

2 eiωr∗ + e
−iδω,`

2 e−iωr∗
]
,

(C.19)
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where
δω,`
2

= arg

((
`

2r+κ+

) iω
κ+

Γ(− iω
κ+

)

)
; large-`. (C.20)

The mode expansion of the scalar field just outside the horizon as r → r+ is

φ(r, t,Ω) =

∫
dω

2π

1√
2ω

1

r
d−1

2
+

∑

`,m

e−iωtY`,m(Ω)aω,`
[
e−iδω,`e−iωr∗ + eiδω,`eiωr∗

]
+ h.c.

(C.21)

Scattering between horizons for large `

The mode expansion just inside the outer horizon, as r → r+ + 0− is as follows.

φ(r, t,Ω) =

∫
dω

2π

1√
2ω

1

r
d−1

2
+

∑

`,m

e−iωr∗
[
e−iδω,`aω,`e

−iωtY`,m(Ω) + ãω,`e
iωtȲ`,m(Ω)

]
+h.c..

(C.22)
While, just outside the inner horizon, as r → r− + 0+,

φ(r, t,Ω) =

∫
dω

2π

1√
2ω

1

r
d−1

2
−

∑

`,m

e−iωr∗
[
bω,`e

−iωtY`,m(Ω) + b̃ω,`e
iωtȲ`,m(Ω)

]
+ h.c.

(C.23)
To compute the occupation numbers of the modes at the inner horizon, we need to
relate the operators a and b. Consider a solution, Z(r), to the wave equation such
that

Z(r) ≈ Γ(1 + i
ω

κ−
)

(
`ζ

2r−κ−

)−i ω
κ−
Ji ω

κ−

(
`

r−κ−

√
|f(r)|

)
; r − r− � r−, (C.24)

where ζ is the factor introduced in the definition of the tortoise coordinate (5.45).
Close to the inner horizon,

Z(r) = e−iωr∗ ; r → r− + 0+ (C.25)
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When we move slightly away from the inner horizon such that `(r − r−) � 1 but
r − r− � r−,

Z(r) ≈Γ(1 + i
ω

κ−
)

(
`ζ

2r−κ−

)−i ω
κ−

(
r−κ−

2π`
√
|f(r)|

) 1
2

×
[
e−

iπ
4 e

πω
2κ− e

i
(

`
r−κ−

√
|f(r)|

)
+ e

iπ
4 e
− πω

2κ− e
−i
(

`
r−κ−

√
|f(r)|

)]
.

(C.26)

Away from the horizon, we can also use the large-` WKB approximation.

Z(r) ≈ 1

V 1/4

[
A+e

i
∫ r∗
−∞
√
V dr∗ +B+e

−i
∫ r∗
−∞
√
V dr∗

]

Z(r) ≈ 1

V 1/4

[
A−e

i
∫ r∗
∞
√
V dr∗ +B−e

−i
∫ r∗
∞
√
V dr∗

]
,

(C.27)

with,

A− = A+e
i
∫∞
−∞
√
V dr∗ = A+e

iθ B− = B+e
−i
∫∞
−∞
√
V dr∗ = B+e

−iθ. (C.28)

Matching the WKB solution with the Bessel expansion near the inner horizon, we
get

A− = Γ(1 + i
ω

κ−
)

(
`ζ

2r−κ−

)−i ω
κ−
√
κ−
2π
e
iπ
2 e
− πω

2κ− ;

B− = Γ(1 + i
ω

κ−
)

(
`ζ

2r−κ−

)−i ω
κ−
√
κ−
2π
e
πω

2κ− .

(C.29)

Close to the outer horizon, `(r+ − r) � 1 but r+ − r � r+, this solution can also
be written as

Z(r) ≈
√

2π

κ+

e
πω

2κ+

e
2πω
κ+ − 1

[
(A+e

iπ
4 −B+e

−iπ
4 e

πω
κ+ )J−i ω

κ+

(
`

r+κ+

√
|f(r)|

)

+(B+e
−iπ

4 − A+e
iπ

4 e
πω
κ+ )Ji ω

κ+

(
`

r+κ+

√
|f(r)|

)]
.

(C.30)

At the outer horizon, we can expand the Bessel function and substitute for A+
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and B+ to get,

Z(r) = Aω,`e
−iωr∗ +Bω,`e

iωr∗ ; r → r+ − 0+, (C.31)

where, for large-`,

Aω,` = Nω,`

[
e
− πω

2κ− ei(
π
2
−θ) − e

πω
2κ− e−i(

π
2
−θ)e

πω
κ+

]
e−i

δω,l
2 ;

Bω,` = Nω,`

[
e
− πω

2κ− ei(
π
2
−θ)e

πω
κ+ − e

πω
2κ− e−i(

π
2
−θ)
]
ei
δω,l

2 ;

Nω,` = eiδ
′
ω,`

√√√√sinh(π ω
κ+

)

sinh(π ω
κ−

)

e
πω

2κ+

e
2πω
κ+ − 1

;

eiδ
′
ω,` = e

i3π
4

(
`ζ

2r−κ−

)−i ω
κ−

√
Γ
(
1 + i ω

κ−
)

Γ
(
1− i ω

κ−
) .

(C.32)

We can check that the Bogoliubov coefficients satisfy,

|Aω,`|2 − |Bω,`|2 = 1. (C.33)

Using the mode expansion near the horizons,

bω,` = e−iδω,`A∗ω,`aω,` −B∗ω,`ã†ω,`. (C.34)

Using the constraints on operators a and ã, Eq. (5.64), and large-` Bogoliubov
coefficients, Eq. (C.32), we get the Boltzmann factor at inner horizon.

〈bω,`b†ω′,`′〉 =
1

1− e−
2πω
κ−

δ(ω − ω′)δ`,`′ , `� 1. (C.35)
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