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Chapter 1

Introduction

Effective field theory (EFT) has been a fundamental tool in our understanding of various physical

systems - starting from standard model of elementary particles, study of critical and near criti-

cal phenomena, fluid dynamics, to our current understanding of cosmology etc. But, there are

other areas of physics involving dissipation and decoherence[1, 2, 3] which we do not have good

understanding of from an EFT point of view [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Study of most physical systems assumes the fundamental processes to be closed (unitary). But

a real system is not closed; it interacts with its surrounding at each instant of time. Real systems

that appear in cold atom physics, fluid dynamics, plasma physics, heavy ion collision etc. do

not possess an equilibrated and unitary description. Quantum information in these systems is

exchanged with the environment and we see decoherence and dissipation while coarse graining. It

may seem that the openness, if small, can be neglected, but physicists often are interested in late

time behaviour of a system. Thus the effect of the environment should be taken into account to

understand certain aspects of physical systems.

Open systems, due to their non-unitary nature, are described by mixed states which are char-

acterised by the density matrix. A quantum mechanical treatment of time evolution for a density

matrix was started by Schwinger [20] and formalised by Keldysh [21], commonly called Schwinger-

Keldysh (SK) prescription or closed-time-path or in-in prescription. Feynman and Vernon in [22]

carried out a systematic study of an open system, interacting with a harmonic bath via bilinear

coupling. They constructed an open effective action which they call influence phase of the system,

by integrating out the bath. This paradigm is well understood for Gaussian dynamics in quan-

tum mechanics, as illustrated by the Caldeira-Leggett description of quantum Brownian motion
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[23]. The next major advancement in this direction is the seminal works by Gorini-Kossakowski-

Sudarshan [24] and Lindblad [25]. They came up with a master equation to describe Markovian

(memoryless) open systems. The master equation can be promoted to path-integral to get the

Feynman-Vernon influence phase of an open system. A textbook treatment of open systems can

be found in [26, 27].

The broad motivation for studying open field theory is to understand decoherence and emer-

gence of dissipation from an EFT point of view. Open EFTs are obtained by integrating light

degrees of freedom which are also called the bath degrees of freedom. In this sense it is different

from the unitary EFTs which are usually obtained by integrating out heavy degrees of freedom.

The physics at different energy scales, in unitary EFTs, are well understood by the notion of

Wilsonian renormalisation. A similar understanding for open EFTs at different energy scales is

absent in literature. A Wilsonian renormalisation for open systems would help us understand the

emergence of dissipation in a coarse-grained description. As a first step we ask rather a simpler

question: Can we find UV-complete open field theories by computing the renormalisation flow

equation of coupling constants? Is there a systematic procedure to find open EFTs by explicitly

integrating out the bath? There are some works regarding UV completion in the non-relativistic

context [28]. However, a relativistic treatment is absent in the literature, which will be a check for

non-relativistic models and vice-versa.

Apart from decoherence, there are other motivations to construct and make sense of open

QFTs. We would like to know how to correct the classical description systematically due to

quantum/statistical fluctuations in dissipative field theories (e.g., fluid dynamics, gravity/field

theories in black hole backgrounds, field theories in the cosmological context, field theories that

emerge around critical points). Another question is whether a particular dissipative effect is

relevant or marginal or irrelevant in the Wilsonian sense. Recent progresses in experiment with non-

equilibrium quantum many body systems show new dynamical phase transitions [29, 30], dynamical

scaling[31, 32], universality in driven systems[33, 34] etc. Understanding these phenomena in non-

equilibrium field theory [35] is of acute physical importance.

A consistent model for relativistic open field theory can also be implemented in the study of

the following.

• The visible universe can be thought of as an open system in a bath of the unobserved

universe. During the inflationary period, quantum fluctuation went outside the horizon.
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It decoheres once it exits the horizon and re-enters as classical fluctuation after the end

of inflation [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. An open field

theoretic treatment using SK prescription has also been initiated to understand cosmological

correlation functions in [52, 53, 54, 55].

• A gravitational SK construction in the context of AdS/CFT (§§6) might help us understand

better the physics of disordered non-Fermi liquids [56, 57] (and references there in) and

various non-equilibrium steady state processes [58, 59, 60, 61, 62].

• A model for relativistic open QFT can be used in study of heavy ion collision, black hole

information paradox etc.

The central theme of this thesis is to study interacting open field theories in a systematic

way. We use two different tools for that: Feynman diagrammatic way and holography. In the

first approach, we start with a local, Lorentz invariant EFT of an open system and study its one

loop renormalisability. We write an ansatz for open scalar field theory using some consistency

conditions, then study renormalisation flow equations of coupling constants present in the theory.

We find that certain one loop diagrams are non-local divergent - thus can not be cancelled by

local counter-terms. We assure that these divergences are not cancelled among different diagrams

and channels while computing correction to coupling constants. This observation might be an

indication that low frequency and high frequency modes do not decouple in open field theory;

although we do not have a clear understanding or resolution to these divergences. We show that

open field theories with Fermionic d.o.f. (open Yukawa theory) also possess non-local divergences

- the divergences are even severe.

The rest of the thesis deals with derivation of an open SK EFT for a probe field by integrating

out a thermal CFT bath. We implement holographic tools to do that. The EFT has various

notable features. We find that the noise appearing in stochastic description of the EFT has

non-Gaussianity. This originates from the non-linear bath-bath correlation. We also find some

fluctuation-dissipation relations at the non-linear level. The relations seem generic, since these

appear for non-identical baths.

The organisation of the thesis is the following. We start with a brief discussion on SK formalism

followed by an application to open QFT in §§2. In §§3, we explore open φ3 + φ4 theory - an

EFT model of open scalar field. We compute one loop correction to various coupling constants
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using perturbation theory. We find these models to possess non-local divergences appearing from

triangle and higher order loop diagrams. In §§4, we show that these divergences appear even in

the bubble diagrams. §§5 deals with the new type of divergence (non-local) at generic one scalar

loop diagrams. Then we use a holographic prescription to study open φn theory in §§6. We derive

various fluctuation-dissipation relations at the non-linear level obeyed by a probe scalar field. We

end with few concluding remarks and open problems in §§7. In appendix A, we evaluate all one loop

integrals explicitly that appear in open φ3 + φ4 theory. We also compute β function of respective

couplings in a SK basis called average-difference basis. Appendix B deals with Passarino-Veltman

reduction of open loop integrals that appear in Fermion self-energy correction. These loop integrals

are used in open Yukawa theory discussed in §§4. A detailed computation of non-local divergences

in scalar loop integrals (including triangle diagrams) is done in appendix C. In the final appendix

D, we evaluate integrals appearing in §§6. These integrals emerge in the process of integrating out

thermal bath along the gravitational SK contour (discussed later).
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Chapter 2

Introduction to SK formalism and open

field theories

A quantum system is described by its state and observables (e.g. correlation functions) are com-

puted w.r.t. that state. As an observable people are often interested in real-time correlation

functions which can be computed by solving first the Euclidean problem and then analytically

continue to real time. The analytic continuation is difficult to perform at finite temperature be-

cause of the following reason. The temperature can be thought of as a compactified Euclidean

time. So the Fourier modes (Matsubara modes) corresponding to Euclidean time are discrete. This

makes thermal correlations discrete infinite sum over the Matsubara modes. These infinite sums

followed by analytic continuation to real time are often difficult to perform. The complication

associated to the Euclidean technique can be avoided by switching to SK prescription to compute

real-time correlation functions. The SK prescription is designed to compute real-time correlation

functions and has the potential to capture fluctuation dynamics[28, 63] in an apparent way.

SK prescription is a path integral prescription for the time evolution of density matrix. It can

be used to study both closed and open systems. In that sense, this is a unified approach to study

real-time correlation functions. In this chapter we introduce SK formalism for closed systems and

then generalise it to open systems. A detailed discussion of SK path-integral and its application

to non-equilibrium systems can be found in [63, 28, 55, 64].
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2.1 A brief discussion on Schwinger-Keldysh formalism

The SK prescription, as we have emphasised, is designed to compute real-time correlation function.

To compute the generating function for correlations let us first consider the density matrix of a

unitary system ρ(φ, φ′) =
∑

k λk ψk(φ)ψ∗k(φ
′). The time evolution of ψk is given as

ψk(φ2) =

ˆ
dφ1

ˆ
Dφ exp{iS[φ]}ψk(φ1) , (2.1.1)

where S[φ] is the action and ψk(φ1) & ψk(φ2) are initial and final states at times t1 and t2 respec-

tively. Multiplying (2.1.1) to its complex conjugate we get

ψk(φ2)ψ∗k(φ
′
2) =

ˆ
dφ1 dφ

′
1ψk(φ1)ψ∗k(φ1)

ˆ
DφDφ′ exp{iS[φ]− iS[φ′]} . (2.1.2)

Thus for a general density matrix we can write

ρ(φ2, φ
′
2) =

ˆ
dφ1 dφ

′
1 ρ(φ1, φ

′
1)

ˆ
DφDφ′ exp{iS[φ]− iS[φ′]} . (2.1.3)

Taking a trace over the out states we get

1 =

ˆ
dφ2dφ

′
2 ρ(φ2, φ

′
2) δ(φ2 − φ′2)

=

ˆ
dφ1 dφ

′
1 ρ(φ1, φ

′
1) δ(φ2 − φ′2)

ˆ
DφDφ′ exp{iS[φ]− iS[φ′]}

≡
ˆ φ2=φ′2

ρi

DφDφ′ exp{iS[φ]− iS[φ′]} .

(2.1.4)

We call the final expression as the SK generating function in the absence of any source.

The partition function in presence of source is given by

ZSK [JR, JL] =

ˆ φR=φL|t=∞

ρi

DφRDφL eiSSK [φR,φL]+i
´
dt(JRφR−JLφL) . (2.1.5)

Here we have relabelled φ, φ′ as φR, φL representing the ket and bra d.o.f. respectively (R,L label

will be extensively used onwards.) and we have pushed the final time to infinite future. ρi is the

initial density matrix and JR, JL are the sources for φR, φL respectively. SSK is the SK action

which for unitary system is given by

SSK [φR, φL] = S[φR]− S[φL] . (2.1.6)

A diagrammatic interpretation of the SK path-integral is shown in figure 1. At future infinity, the

R and L d.o.f. are identified, which is known as the SK boundary condition.
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φR →

← φL

Re(t)

Im(t)

ρi } 2iε

Figure 1: The Schwinger-Keldysh contour - R,L d.o.f. evolve along the forward and backward time respectively. The

initial state is described by the density matrix ρi.

A consequence of the SK boundary condition is that the generating functional is unity in absence

of the sources JR, JL. This property of the SK path-integral makes the generating functional a

good candidate to compute real-time correlation functions.1

If a unitary QFT is in perturbative regime, the path integral (2.1.5) can be used to set up

the Feynman rules [28, 63]. The Feynman rules, in SK formalism, have the following defining

properties for a unitary system.

1. In a unitary QFT, the action does not have any R,L-mixing term. Thus there are no vertices

coupling the bra and ket fields. The bra vertices are complex conjugate of ket vertices.

2. The ket propagator is time-ordered while the bra propagator is anti-time ordered. In addi-

tion to these, SK boundary condition also induce a bra-ket propagator which is the on-shell

propagator (obtained by putting the exchange particle on-shell). We will term these propa-

gators as cut propagators. The terminology here is borrowed from the discussion of Cutkosky

cutting rules where one thinks of the dividing lines between bra and ket parts of a Feynman

diagram as a ’cut’ of the diagram where particles go on-shell.

We will call these rules as Veltman rules after Veltman who re-derived these rules in his study

of unitarity [65, 66]. To reiterate, a fundamental feature of Veltman rules is the fact that in a

unitary theory, bra and ket fields talk only via cut propagators - not via cut vertices. As we will

see in the following, Feynman and Vernon [22, 67] showed, there are novel cut vertices which signal

non-unitarity.
1The out states in SK prescription are identified. Thus the generating function does not refer to the out state

unlike Feynman path integral. In Feynman path integral, the scattering processes are assumed to be adiabatic.

Consequently, the in and out states only differ by a phase which is sum over the vacuum bubbles. Conversely, the

SK prescription does not have any vacuum bubbles since it refers only to the in state. A discussion on this can be

found in [28]
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Now we describe the procedure to relate SK correlators to real-time correlators. The SK

correlators are obtained by inserting operators on the SK contour in figure 1. An n-point SK

correlation function of operator O (R and L type) can be written as

〈OL(tn)...OL(tk+1)OR(tk)...OR(t1)〉 = tr [Uc(−∞,−∞)O(tn)...O(t1)ρi(−∞)] . (2.1.7)

Here ρi is the initial density matrix defined at past infinity and Uc is the contour ordered time

evolution operator. Since the operators are contour ordered, operators on R and L branch should

be time ordered and anti-time ordered respectively. Thus (2.1.7) can be written as

〈OL(tn)...OL(tk+1)OR(tk)...OR(t1)〉

= tr
[
T̄
(
U(−∞,∞)O(tn)...O(tk+1)

)
T
(
U(∞,−∞)O(tk)...O(t1)

)
ρi(−∞)

]
.

(2.1.8)

Note that SK correlators violate the time ordering atmost once. However one can in principle

consider a generating function of correlators with arbitrary number of time-ordering violation

[68, 69, 70] (for example, the correlator used to obtain the Lyapunov exponent involves two time-

ordering violations [71]).

We end this section with a short discussion of SK two point functions. Since the d.o.f.s are

doubled, we expect to get at most four SK two-point correlators:

〈OR(t2)OR(t1)〉 = 〈T O(t2)O(t1)〉 , 〈OL(t2)OR(t1)〉 = 〈O(t2)O(t1)〉 ,

〈OL(t2)OL(t1)〉 = 〈T̄ O(t2)O(t1)〉 , 〈OR(t2)OL(t1)〉 = 〈O(t1)O(t2)〉 .
(2.1.9)

The RR and LL ones are the time-ordered and anti-time-ordered two point correlators. The rest

of the correlators do not have any time-ordering, thus are the Wightman correlators.

It is often convenient to adopt a basis called the average-difference (a-d)/Keldysh basis, defined

as

Oa =
1

2
(OR +OL) Od = OR −OL . (2.1.10)

Oa can be interpreted as classical d.o.f. and Od as fluctuation d.o.f. of a system. In a unitary

system, Od consists of only quantum fluctuation. But, if the system is in a (thermal) bath, then

the fluctuations have bath contribution which is related to noise in the system. The leading order

bath contribution is often classical with sub-leading quantum corrections. We can distinguish the

classical and quantum components in Od in a cleaner way by restoring ~ and proper scaling of

parameters & d.o.f. as shown in [28](chapter 4). Then the classical limit is obtained by taking

~→ 0.
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× =
(

× ×
)
Unitary QFT

cut propagator of Env. field

Figure 2: Blue solid, dashed lines represent the system ket, bra d.o.f. respectively. The red line represents the environ-

ment. Here we see that non-unitary bilinear coupling (ket-bra mixing coupling) is generated via onshell environment

d.o.f.

One advantage of using a-d basis is that the number of correlators is less than that of R-L

basis. The two-point correlators in this basis are given as

〈Oa(t2)Od(t1)〉 = Θ(t2 − t1) 〈[O(t2),O(t1)]〉 , 〈Oa(t2)Oa(t1)〉 = 〈{O(t2),O(t1)}〉 ,

〈Od(t2)Oa(t1)〉 = −Θ(t2 − t1) 〈[O(t2),O(t1)]〉 , 〈Od(t2)Od(t1)〉 = 0 .
(2.1.11)

We see that dd correlator is identically zero2. Later we will argue that correlators with only d-type

operator are always zero (A proof can be found in [73]). Another advantage of a-d basis is that

the SK path-integral in this basis has a dual classical stochastic description which we will discuss

in the holographic context (see §6.2.2).

2.2 Introduction to open quantum field theories

An open system is an effective description of a system, obtained by integrating out the bath.

Feynman and Vernon in [22, 67] found an effective path integral for a system interacting linearly

with a harmonic bath. They showed that a coupling between bra and ket d.o.f. is induced as

shown schematically in figure 2.

The existence of a Markovian limit was proved by Caldeira-Leggett by considering a spectral

function for the bath at high temperature. However, an extension of this to field theory is a difficult

problem due to the following reasons. First of all, engineering bath spectral function in field theory

is hard unlike Caldeira-Leggett model. Moreover, even at high temperature there are long lived

hydrodynamic modes which need to be separated out to get a local description. Challenges to

derive open EFTs (even for non-field theoretic systems) also appear from non-linear baths. So far
2The d-d correlator being zero is a manifestation of the largest-time equation, which is used to prove unitarity

in QFTs. A discussion on this can be found in [72]
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we have only talked about the linear baths. However a bath need not always be linear and to have

a complete description of open systems, we should involve non-linear baths.

Non-linear baths, unlike linear baths, are hard to integrate out in practice; one relies on per-

turbation theory provided the bath-bath interaction is weak. But, weakly coupled bath is not

a good candidate to obtain local (Markovian) description for a system. One has to wait for a

non-perturbatively long time for a local description to be valid. On the contrary, strongly cou-

pled baths thermalise fast - thermalisation time scale being roughly proportional to the inverse

coupling constant[74]. This means that derivation of local open QFTs inevitably involves the non-

perturbative regime of bath. This explains to some extent why there are no simple microscopic

models from which a local non-unitary interacting quantum EFT has been systematically derived
3.

We circumvent the above problem by following two alternate procedures: 1. take an ansatz

for a local open EFT action and study its dynamics 2. integrate out strongly coupled bath using

holography (§§6). We will discuss the first procedure below.

To write an ansatz for an open system, we follow the following steps. First we take the SK

action for a closed, unitary system (2.1.6):

SSK [φR, φL] = S[φR]− S[φL] . (2.2.1)

Here, R and L d.o.f. do not mix. The naive expectation is that R-L mixing terms in the above

SK action break unitarity and lead to openness. This is indeed true. However, along with R-L

mixing terms, one should also add imaginary pure R and pure L terms. These terms which lead to

non-unitarity, are conventionally called the Feynman-Vernon influence phase. The phase should

be in the following form, called the Lindblad form[79, 76].

SFV = i

ˆ ∑
k

γk

(
L†k(φR)Lk(φL)− 1

2
L†k(φR)Lk(φR)− 1

2
L†k(φL)Lk(φL)

)
. (2.2.2)

Here Lk are function of fields. The Lindblad form can be derived from the master equation of

Markovian open quantum systems, known as Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)

equation[25, 24].

The GKSL equation is a differential equation for non-unitary time evolution of density matrix,
3See [75] for early work on the subject and [5] for recent attempts in this direction, in addition to [76, 4, 77,

78] for technical issues regarding renormalization.
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given by
dρ

dt
= −i[H, ρ] +

∑
k

γk

[
LkρL

†
k −

1

2

{
L†kLk , ρ

}]
. (2.2.3)

Here, H is the Hamiltonian of the system leading to unitary part of evolution, whereas non-unitary

(Feynman-Vernon) part of the evolution comes from rest of the terms on RHS. The non-unitarity

is captured by a set of operators Lk and a set of couplings γk of the system. A textbook treatment

of GKSL equation can be found in [26, 80, 81, 82, 83]

It is easily checked that (2.2.3) implies

d

dt
tr ρ = 0 , (2.2.4)

i.e., it is trace-preserving. The trace preserving nature is a manifestation of the fact that the

system has an underlying microscopic unitary description. We can understand this by the following

argument. The density matrix ρ with a unitary microscopic description is obtained by tracing over

the bath d.o.f. as ρ = trb ρsb. Taking a further trace over the system d.o.f. we get

tr ρ = trs trb ρsb = trsb ρsb = 1 . (2.2.5)

Thus, trace of ρ for a system with a microscopic unitary description, is always preserved as also

asserted by GKSL equation. As a result the Feynman-Vernon influence phase in Lindblad form

(2.2.2) ensures microscopic unitarity. If γk is positive, one can show that (2.2.3) describes a dissi-

pative system. Further, positive γk keeps eigenvalues of ρ non-negative. The trace-preserving and

positivity condition (along with the linearity of ρ) qualify Lindblad form of evolution as a physi-

cally sensible dynamics describing an open quantum system. The GKSL equation in Schrödinger

picture has an equivalent Heisenberg picture description via an evolution equation for operators:

i~
dA
dt

= [A, H] + i
∑
k

γk

(
L†kALk −

1

2
L†kLkA−

1

2
AL†kLk

)
. (2.2.6)

Equivalently, one can obtain a path-integral description as
ˆ
DφRDφL eiSFV (2.2.7)

We note that Lindblad form of the influence phase (2.2.2) has a particular structure which relates

the φR-φL cross-terms with the imaginary parts of both φR action and φL action.

Let us note some important features of (2.2.2). If we set φR = φL, the influence phase vanishes.

It is clear that this is exactly the calculation done few lines ago in the Schrödinger picture to show
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that Lindblad evolution is trace-preserving. Thus, trace preserving property in the Schrödinger

picture becomes φR, φL identification condition at the level of SK path integral for the EFT.

We also note that if we take one of the Lindblad operators as identity operator, the Lindblad

form becomes a difference operator, i.e., it can be written as a difference between an operator made

of ket fields and the same operator evaluated over the bra fields. This is the form of SK action for

a unitary QFT and it merely shifts the system action. But when both Lindblad operators are not

identity, one gets various cross terms and associated imaginary contributions to pure φR and pure

φL action. Thus, once the cross couplings are determined, one can use the Lindblad form to find

all imaginary couplings. This is the route we will take to study a toy model of open EFT (φ3 + φ4

theory).

Having finished a brief review of the necessary ideas, let us turn to study renormalisation of

open φ3 + φ4 theory. We will begin by describing in detail the effective action and the associated

Feynman rules in the next section.
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Chapter 3

Renormalisation of open φ3 + φ4 theory

Scalar field theory has been extensively used as toy model for various purposes. The commonly

used models are the scalar φ3 and φ4 theory. In our understanding of relativistic open QFTs, we

consider φ3 + φ4 theory in d = 4 space-time dimensions. We begin by writing an ansatz for the

open EFT as the following.

Sφ = −
ˆ
ddx
[1

2
z (∂φR)2 +

1

2
m2φ2

R +
λ3

3!
φ3
R +

λ4

4!
φ4
R +

σ3

2!
φ2
RφL +

σ4

3!
φ3
RφL

]
+

ˆ
ddx
[1

2
z?(∂φL)2 +

1

2
m2?φ2

L +
λ?3
3!
φ3
L +

λ?4
4!
φ4
L +

σ?3
2!
φ2
LφR +

σ?4
3!
φ3
LφR

]
+ i

ˆ
ddx
[
z∆ (∂φR).(∂φL) +m2

∆φRφL +
λ∆

2!2!
φ2
Rφ

2
L

]
.

(3.0.1)

This is the most general local, power-counting renormalisable, Lorentz invariant and CPT invariant

action that could be written down involving φR and φL. Note that CPT acts as an anti-linear,

anti-unitary symmetry exchanging φR and φL and taking i 7→ (−i). It can be easily checked that,

under this anti-linear, anti-unitary flip eiS remains invariant provided the couplings appearing in

the last line of action {z∆,m
2
∆, λ∆} are real. This action along with a future boundary condition

identifying φR and φL at future infinity defines the SK effective theory which we will study in this

chapter.

There are two features of the above action which makes it distinct from the SK effective action

of the unitary φ3 + φ4 theory. First, there are interaction terms which couple ket field φR with

the bra field φL. Such cross couplings necessarily violate unitarity and the breakdown of the usual

Cutkosky cutting rules. They are also necessarily a part of ’influence functionals’ as defined by

Feynman and Vernon and are generated only when a part of the system is traced out [22, 67]. A

more obvious way the above action violates unitarity is due to the fact that S is not purely real.
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If we turn off all cross couplings between φR and φL and set to zero all imaginary couplings in S,

we recover the SK effective action of the unitary φ4 theory :

Sφ,Unitary = −
ˆ
ddx
[1

2
Re[z] (∂φR)2 +

1

2
Re[m2]φ2

R +
Re[λ3]

3!
φ3
R +

Re[λ4]

4!
φ4
R

]
+

ˆ
ddx
[1

2
Re[z](∂φL)2 +

1

2
Re[m2]φ2

L +
Re[λ3]

3!
φ3
L +

Re[λ4]

4!
φ4
L

]
.

(3.0.2)

Our aim is to deform φ4 theory away from this familiar unitary limit and study the theory defined

in (3.0.1) via perturbation theory.

The first question one could ask is whether this theory is renormalisable in perturbation theory,

i.e., whether, away from unitary limit, the one-loop divergences in this theory can be absorbed into

counter terms of the same form. We show in this chapter that the action is one loop renormalisable

due to tadpole and bubble diagrams. It is worthwhile to note at this point that loops in open scalar

field theories are not always well behaved. Loop diagrams other than tadpole and bubble diagrams

are non-local divergent. These divergences can not be regulated by adapting usual renormalisation

prescription. We will elaborate these in §§4 and §§5.

One might ask why are we interested in Lorentz invariance of the EFTs. This is because, if the

field theory describes an open system, it most likely dissipates. Thus one should break Lorentz

invariance by adding all possible single derivative terms. But, one can show that the Lorentz

violating terms have different divergence structures of loop integrals and it does not remove the

non-local divergences. Thus to keep the theory simple, we drop all non-Lorentz invariant terms.

3.1 Lindblad conditions and Feynman rules

3.1.1 Lindblad condition

Imposing CPT and demanding that the action (3.0.1) should be of the Lindblad form, we get

four constraints among the coupling constants - one for field renormalisation, one for the mass,

one for the cubic coupling and one for quartic coupling terms. We call these constraints as the

Lindblad conditions. The Lindblad form as discussed in 2.2 ensures the presence of a microscopic

unitary description of the system. So, we expect the Lindblad conditions bear the same physical

significance. We tabulate all the power counting renormalisable Lindblad terms in the φ3 + φ4

theory in Table. 3.1. We will now consider various parts of the action in turn and rewrite them in

a way that Lindblad conditions become manifest.
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Lindblad couplings L†α[φ] Lβ[φ] Imaginary coupling of Lindblad condition

Γαβ L†αLβ

z∆ ∂µφ ∂µφ Im z Im z = z∆

m2
∆ φ φ Imm2 Imm2 = m2

∆

λ∆

2!2!
φ2 φ2 Im λ4 Im λ4 = 3λ∆ − 4 Im σ4

iσ4

3!
φ3 φ Im λ4

−iσ
?
4

3!
φ φ3 Im λ4

iσ3

2!
φ2 φ Imλ3 Imλ3 = −3 Imσ3

−iσ
?
3

2!
φ φ2 Imλ3

Table 3.1: Renormalisable Lindblad operators for φ3 + φ4 theory

Real terms of the action

The real part of the action is given by

Re [S] = −
ˆ
ddx
[1

2
Re[z] [(∂φR)2 − (∂φL)2] +

1

2
Re[m2](φ2

R − φ2
L)
]

−
ˆ
ddx
[Re λ4

4!
(φ4

R − φ4
L) +

Reσ4

3!
φRφL(φ2

R − φ2
L)
]

−
ˆ
ddx
[Re λ3

3!
(φ3

R − φ3
L) +

Re σ3

2!
φRφL(φR − φL)

] (3.1.1)

We note that CPT constrains this action to vanish when φR = φL. As a result, there are no

condition on these real coupling from the Lindblad structure.

Imaginary Quadratic terms of the action

The imaginary part of the quadratic terms is given by

Im [S2] = −
ˆ
ddx
[1

2
Im[z] ((∂φR)2 + (∂φL)2)− z∆ (∂φR).(∂φL)

]
−
ˆ
ddx
[1

2
Im[m2](φ2

R + φ2
L)−m2

∆φRφL

]
= −
ˆ
ddx
[1

2
Im[z] (∂φR − ∂φL)2 +

1

2
Im[m2](φR − φL)2

]
+

ˆ
ddx
[
(z∆ − Im[z]) (∂φR).(∂φL) + (m2

∆ − Im[m2])φRφL

]
(3.1.2)
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The Lindblad condition is given by

z∆ = Im [z] , m2
∆ = Im [m2] , (3.1.3)

Imaginary Cubic coupling

Now we compute the imaginary part of the cubic terms in the action

−Im [S3] =

ˆ
ddx

[
Imλ3

3!
φ3
R +

Imλ3

3!
φ3
L +

Imσ3

2!
φ2
RφL +

Imσ3

2!
φ2
LφR

]
=

ˆ
ddx

[
Imλ3

3!
(φR − φL)(φ2

R − φ2
L) +

(
Imλ3

3!
+

Imσ3

2!

)(
φ2
RφL + φ2

LφR
)]
(3.1.4)

The Lindblad condition is given by

Imλ3

3!
+

Imσ3

2!
= 0

⇒ Im λ3 + 3Im σ3 = 0

(3.1.5)

Imaginary Quartic coupling

The imaginary part of action at the level quartic coupling is given by

Im[S4] = −
ˆ
ddx
[ 1

4!
Im[λ4](φ4

R + φ4
L) +

1

3!
Im[σ4](φ3

RφL + φRφ
3
L)− λ∆

2!2!
φ2
Rφ

2
L

]
= −
ˆ
ddx
[( 1

4!
Im[λ4] +

1

3!
Im[σ4]

)
(φ2

R − φ2
L)2 +

1

3!
Im[σ4](φR − φL)(φ3

R − φ3
L)
]

+

ˆ
ddx
[ λ∆

2!2!
− 2 Im

(λ4

4!
+
σ4

3!

)]
φ2
Rφ

2
L

(3.1.6)

The Lindblad condition at for the quartic couplings is given by

λ∆

2!2!
= 2 Im

(
λ4

4!
+
σ4

3!

)
⇒ Im λ4 + 4Im σ4 − 3λ∆ = 0

(3.1.7)

Since the Lindblad conditions indicate the presence of a microscopic unitary theory, we expect

these conditions are preserved under renormalisation.

3.1.2 Exact propagators

The ket field φR and the bra field φL in SK path-integral satisfy the following boundary condition

φR(t =∞) = φL(t =∞) (3.1.8)
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Owing to this boundary condition and the mixing term between φR and φL fields, the kinetic

matrix derived from the action (3.0.1) is given by

K =

 i(z k2 +m2 − iε) z∆k
2 +m2

∆ − 2 ε Θ(−k0)

z∆k
2 +m2

∆ − 2 ε Θ(k0) −i(z? k2 + (m2)? + iε)

 (3.1.9)

where the ε prescription implements Schwinger-Keldysh boundary conditions. We define the kinetic

matrix K by

iS 3 −1

2

(
φR(−k)φL(−k)

)
K
( φR(k)

φL(k)

)
(3.1.10)

Its inverse (viz., the propagator) can be written as

K−1 ≡

(
〈φR(−k)φR(k)〉 〈φR(−k)φL(k)〉

〈φL(−k)φR(k)〉 〈φL(−k)φL(k)〉

)

= z−1

(
−i

Re[zk2+m2]−iε 2πδ(Re[zk2 +m2])Θ(−k0)

2πδ(Re[zk2 +m2]) Θ(k0) i
Re[zk2+m2]+iε

)

+ z−1 (−i)
Re[zk2 +m2]− iε

× i

Re[zk2 +m2] + iε
×

(
Im[zk2 +m2] z∆k

2 +m2
∆

z∆k
2 +m2

∆ Im[zk2 +m2]

)
(3.1.11)

where,

z ≡ 1 +
(−i)

Re[zk2 +m2]− iε
× i

Re[zk2 +m2] + iε
×

(
(Im[zk2 +m2]− ε)2 − (z∆k

2 +m2
∆ − ε)2

)
(3.1.12)

Please note that when the Lindblad conditions (3.1.3) are satisfied, we have

z = 1 . (3.1.13)

Further, it can be easily checked that in this limit, the sum of diagonal entries in the propagator

matrix equal to the sum of off-diagonal entries, i.e.,

(K−1)RR + (K−1)LL = (K−1)RL + (K−1)LR . (3.1.14)

The corresponding property in the unitary quantum field theory is the well-known relation between

the various correlators in the Keldysh formalism [28]. This can equivalently be reformulated as

the vanishing of two point function of two difference correlators :

(K−1)R−L,R−L = 0. (3.1.15)
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In this work, we will work in the limit where the non-unitary couplings Im[m2] and m2
∆ are

considered as perturbations to Re[m2], and similarly, Im[z2] and z2
∆ are considered small compared

to Re[z2]. Further, since 1-loop correction to the propagators do not generate field renormalisation

we can also set z = 1. In this limit, the propagators in equation (3.1.11) reduced to those given

by figure 1.

3.1.3 Feynman rules

In this paper henceforth, we will set z = z∆ = 1 (which is not renormalised at one-loop in d=4

dimensions). We will treat all other parameters in our action except the real part of m2(i.e.,

Re(m2)) perturbatively. This includes λ3, σ3, λ4, σ4 and λ∆, as well as Imm2 and m2
∆.

The propagators of φ fields are given below. We have used solid blue and dotted blue lines for

φR(ket fields) and φL(bra fields) fields respectively. Note that in the cut propagators P and M the

energy is restricted to flow from the ket field to the bra field.

p

Propagator R −i
p2+m2−iε

p

Propagator P 2πδ+(p2 +m2)

p

Propagator M 2πδ−(p2 +m2)

p

Propagator L i
p2+m2+iε

Figure 1: SK propagator for φ fields

We will now set up the Veltman rules for the vertices to compute SK correlators in the open

φ3 + φ4 theory:
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Vertex Factor

φ3
R (−iλ3)(2π)dδ (

∑
p)

φ3
L (iλ?3)(2π)dδ (

∑
p)

φ2
RφL (−iσ3)(2π)dδ (

∑
p)

φRφ
2
L (iσ?3)(2π)dδ (

∑
p)

φ4
R (−iλ4)(2π)dδ (

∑
p)

φ4
L (iλ?4)(2π)dδ (

∑
p)

φ3
RφL (−iσ4)(2π)dδ (

∑
p)

φRφ
3
L (iσ?4)(2π)dδ (

∑
p)

φ2
Rφ

2
L (−λ∆) (2π)dδ (

∑
p)

−iλ3 iλ?3 −iσ3

iσ?3 −iλ4 iλ?4

−iσ4 iσ?4 −λ∆

Figure 2: Diagrammatic Representation of all the Tree level processes
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3.1.4 Lindblad condition from tree level correlators

In an unitary Schwinger-Keldysh theory, the correlator of difference operators vanishes in all order

of perturbation theory and that this is equivalent to Veltman’s largest time equation [73]. We want

to see whether that statement is valid in our non-unitary theory. We have already remarked during

our discussion of propagators around equation (3.1.11) that the quadratic Lindblad conditions are

equivalent to the vanishing of difference operator two point functions. We can extend this to higher

point functions simply. Consider the tree level correlator of three difference operators

〈(φR(p1)− φL(p1))(φR(p2)− φL(p2))(φR(p3)− φL(p3))〉

= −i(λ3 − λ∗3)− 4i(σ3 − σ∗3) = 2(Imλ3 + 3 Imσ3)
(3.1.16)

the correlator of four difference operators is given by

〈(φR(p1)− φL(p1))(φR(p2)− φL(p2))(φR(p3)− φL(p3))(φR(p4)− φL(p4))〉

= −i(λ4 − λ∗4)− 4i(σ4 − σ∗4)− 3λ∆ = 2(Imλ4 + 4 Imσ4 − 3λ∆)
(3.1.17)

The correlators of the three and the four difference operators are precisely given by the Lindblad

violating couplings. This implies at tree level, Lindblad conditions are same as the vanishing of

correlators of the difference operators.

One can, in fact, show the following statement [84]: consider an open EFT, which is obtained

by tracing out some subset of fields in an underlying unitary theory. Then, the unitarity of the

underlying theory implies that the open EFT satisfies the Lindblad condition.

3.2 One loop beta function

In this section, we compute the beta function for all the mass terms and the coupling constants

that appear in the action of the open φ3 + φ4 theory. The main aim in this section would be to

demonstrate the following three claims :

1. Despite the novel UV divergences that occur in the open φ3 +φ4 theory, one can use a simple

extension of the standard counter term method to deal with the divergences. Thus, the open

φ3 + φ4 theory is one-loop renormalisable.

2. Once these UV divergences are countered, the standard derivation of beta functions and

RG running also goes through, except for the fact that one has to now also renormalise the

non-unitary couplings.
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3. We will also demonstrate that the running of a certain combinations of the couplings, the

ones which given by the Lindblad conditions (equation (3.1.3), equation (3.1.5) and equa-

tion (3.1.7) respectively), under one-loop renormalisation are proportional to the Lindblad

conditions.

We shall provide an all-order proof in the next section that the Lindblad conditions are never

violated under perturbative corrections. Here we shall use the notations and results presented in

appendix A.2.

3.2.1 One loop beta function for m2

We will now begin a discussion of various loop diagrams. The simplest is perhaps the tadpole

diagrams which can be cancelled by a counter term linear in φR and φL. It is easily demonstrated

that the necessary counter-terms do not violate the Lindblad condition (See appendixA.5).

Let us compute the one loop beta function for m2. We shall consider all the one loop Feynman

diagrams that contributes to the process φR → φR. One can verify that there are mainly two types

of diagrams - one class of diagrams due to the cubic couplings, as depicted in figure 9, and the

other class of diagrams due to quartic couplings, depicted in figure 4.

The sum of the contribution from all the Feynman diagrams is given by

−im2

+
(−iλ3)2

2
BRR(k) +

(iσ?3)2

2
BLL(k) + (−iσ3)2BLR(k)

+
(iσ∗3)(−iλ3)

2
BPM(k) +

(iσ∗3)(−iλ3)

2
BMP (k) + (−iσ3)2BPP (k)

+(−iλ3)(−iσ3)BPR(k) + (−iλ3)(−iσ3)BMR(k)

+(iσ∗3)(−iσ3)BPL(k) + (iσ∗3)(−iσ3)BML(k)

+
(−iλ4)

2
AR +

(−λ∆)

2
AL + (−iσ4)AM (3.2.1)

Using the results in (A.2.79a)-(A.2.79d), we can see that the contribution is divergent and one

needs to add one loop counter-terms δm2, in the MS scheme, to absorb the divergences.

δm2
∣∣∣
MS

= − 1

(4π)2

[
(λ3)2 − (σ?3)2 + 2

{
λ3σ3 + |σ3|2

} ][ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
− 1

(4π)2
[λ4 − iλ∆ + 2σ4]

[ 1

d− 4
+

1

2
(γE − 1− ln 4π)

] (
Rem2

)
(3.2.2)
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× ×

(−iλ3)2

2 BRR(k)

×1 2 × ×

(iσ∗3)2

2 BLL(k)

1 2 × ×

(−iσ3)2BLR(k)

1 2

× ×

(iσ∗3)(−iλ3)

2 BPM(k)

1 2 × ×

(iσ∗3)(−iλ3)

2 BMP (k)

1 2 × ×

(−iσ3)2BPP (k)

1 2

× ×

(−iλ3)(−iσ3)BPR(k)

1 2 × ×

(−iλ3)(−iσ3)BMR(k)

1 2

× ×

(iσ∗3)(−iσ3)BPL(k)

1 2 × ×

(iσ∗3)(−iσ3)BML(k)

1 2

Figure 3: One Loop corrections to m2 due to cubic couplings
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×

(−iλ4)
2 AR

×

(−λ∆)
2 AL

×

(−iσ4)AM

Figure 4: One loop correction to m2 due to quartic couplings

×

−iδm2

1 2

Figure 5: Diagrammatic representation of the one loop counter-term for m2

Using the standard methods of quantum field theory, one can then compute the one loop beta

function as

βm2 =
1

(4π)2

[
(λ3)2 − (σ?3)2 + 2

{
λ3σ3 + |σ3|2

}
+ (λ4 − iλ∆ + 2σ4)

(
Rem2

)]
(3.2.3)

If set σ3 = σ4 = λ∆ = 0, then we get back the standard results of φ3+φ4 theory in d = 4 space-time

dimensions.

3.2.2 One loop beta function for m2
∆

Now, we will compute the one loop beta function for m2
∆. As in the case of m2, there will again be

two classes of diagrams. The diagrams due to cubic and quartic couplings are as shown in figure

10 and in figure 8 respectively. The sum over all the contributions are given by

−m2
∆

+
(−iλ3)(−iσ3)

2
BRR(k) +

(iλ?3)(iσ∗3)

2
BLL(k) + (−iσ3)(iσ?3)BLR(k)

+
(−iλ3)(iλ?3)

2
BPM(k) +

(−iσ3)(iσ?3)

2
BMP (k) + (−iσ3)(iσ?3)BPP (k) (3.2.4)

+(iσ?3)(−iλ3)BPR(k) + (−iσ3)2BMR(k) + (−iσ3)(iλ?3)BPL(k) + (iσ?3)2BML(k)

+
(−iσ4)

2
AR +

(iσ?4)

2
AL + (−λ∆)AM
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× ×

(−iλ3)(−iσ3)
2 BRR(k)

1 2 × ×

(iλ?3)(iσ∗3)

2 BLL(k)

1 2 × ×

(−iσ3)(iσ?3)BLR(k)

1 2

× ×

(−iλ3)(iλ?3)

2 BPM(k)

1 2 × ×

(−iσ3)(iσ∗3)

2 BMP (k)

1 2 × ×

(−iσ3)(iσ?3)BPP (k)

1 2

× ×

(iσ?3)(−iλ3)BPR(k)

1 2 × ×

(−iσ3)2BMR(k)

1 2

× ×

(−iσ3)(iλ?3)BPL(k)

1 2 × ×

(iσ?3)2BML(k)

1 2

Figure 6: One Loop corrections to m2
∆ due to cubic couplings

24



×

(−iσ4)
2 AR

×

(iσ∗4)

2 AL

×

(−λ∆)AM

Figure 7: One loop correction to m2
∆ due to quartic couplings

Some of these one loop contributions are divergent and one needs to add one loop counter-terms.

The m2
∆ counter-term in MS scheme is given by

δm2
∆

∣∣∣
MS

= − 1

(4π)2

[
− 4(Reλ3 + Reσ3)Imσ3 + (2λ∆ − 2Imσ4)(Rem2)

]
[ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.5)

and the beta function for m2
∆ is given by

βm2
∆

=
1

(4π)2

[
−4(Reλ3 + Reσ3 ) Imσ3 + (2λ∆ − 2Imσ4)(Rem2)

]
(3.2.6)

3.2.3 Checking Lindblad condition for mass renormalization

From equation (3.2.3), we find that the beta function for Imm2 is given by

d (Imm2)

dlnµ
=

1

(4π)2

[
2(Reλ3 + Reσ3)(Imλ3 + Imσ3)

+(Imλ4 + 2 Imσ4 − λ∆)(Rem2)
]

(3.2.7)

Now, using equation (3.2.7) and equation (3.2.6), one gets the beta function for (Imm2 −m2
∆)

β(Imm2−m2
∆) =

2

(4π)2
[(Imλ3 + 3 Imσ3)(Reλ3 + Reσ3) + (Imλ4 + 4Imσ4 − 3λ∆)(Rem2)]

(3.2.8)

equation (3.2.8) shows that the one loop beta function for Lindblad violating mass terms vanish in

the absence of Lindblad violating cubic (equation (3.1.5)) and quartic coupling (equation (3.1.7))

at the tree level.

3.2.4 One loop beta function for λ3

Now we will compute the one loop beta function for various cubic couplings. The Passarino-

Veltman C and D integrals will have no contribution to the one loop β function for the cubic
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× ×

(−iλ4)(−iλ3)
2 BRR(k3)

×

1

2

3 × ×

(−λ∆)(iσ?3)

2 BLL(k3)

1

2

3 × ×

(−iσ4)(−iσ3)BLR(k3)

1

2

3

× ×

(−iλ4)(iσ?3)

2 BPM(k3)

1

2

3 × ×

(−λ∆)(−iλ3)
2 BMP (k3)

1

2

3 × ×

(−iσ4)(−iσ3)BPP (k3)

1

2

3

× ×

(−iλ4)(−iσ3)BPR(k3)

1

2

3 × ×

(−iσ4)(−iλ3)BMR(k3)

1

2

3

× ×

(−iσ4)(iσ?3)BPL(k3)

1

2

3 × ×

(−λ∆)(−iσ3)BML(k3)

1

2

3

Figure 8: Diagrammatic representation of the Ten 1-Loop Integrals φRφR → φR
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(and quartic) couplings, since they are UV finite 1. Hence, we shall not consider those Feynman

diagrams in our analysis. We begin with the beta function computation of λ3. The diagrams for

one of the channels are depicted in figure 8. The other two channels are obtained by interchanging

1←→ 3 and 2←→ 3. The sum over the all the Feynman diagrams is given by

− iλ3

+
(−iλ4)(−iλ3)

2
BRR(k3) +

(−λ∆)(iσ?3)

2
BLL(k3) + (−iσ4)(−iσ3)BLR(k3)

+
(−iλ4)(iσ∗3)

2
BPM(k3) +

(−λ∆)(−iλ3)

2
BMP (k3) + (−iσ4)(−iσ3)BPP (k3)

+ (−iλ4)(−iσ3)BPR(k3) + (−iσ4)(−iλ3)BMR(k3)

+ (−iσ4)(iσ∗3)BPL(k3) + (−λ∆)(−iσ3)BML(k3)

+ Two more channels

(3.2.9)

Using the results in (A.2.79a)-(A.2.79d), we see that the one loop contributions are divergent and

we need to add one loop counter-terms δλ3 to cancel the divergences.

δλ3

∣∣∣
MS

= − 3

(4π)2

[
λ4λ3 − 2λ∆Imσ3 + λ4σ3 + σ4λ3 + σ4σ

∗
3

]
[ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.10)

Following the standard methods of quantum field theory, we compute the one loop beta function

given by

βλ3 = 3
(4π)2

[
λ4λ3 − 2λ∆Imσ3 + λ4σ3 + σ4λ3 + σ4σ

∗
3

]
(3.2.11)

3.2.5 One loop beta function for σ3

As described in previous subsection, we will only consider PV B type diagrams for two of the chan-

nels are depicted in figure 9 and in figure 10. The remaining channel is obtained by interchanging

1←→ 2 in the diagrams in figure 10. The sum over all the contributions are given by

−iσ3 + iM1(k3) + iM2(k2) + iM2(k1) (3.2.12)
1Note that the standard C and D integrals are well-known to be UV finite in the Euclidean theory. Since the

SK versions of these integrals are different analytic continuations of these Euclidean integrals, they continue to be

UV finite. We will leave the detailed computation including these finite contributions to future work.
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× ×

(−iλ4)(−iσ3)
2 BRR(k3)

1

2

3 × ×

(−λ∆)(iλ?3)

2 BLL(k3)

1

2

3 × ×

(−iσ4)(iσ∗3)BLR(k3)

1

2

3

× ×

(−iλ4)(iλ?3)

2 BPM(k3)

1

2

3 × ×

(−λ∆)(−iσ3)
2 BMP (k3)

1

2

3 × ×

(−iσ4)(iσ∗3)BPP (k3)

1

2

3

× ×

(−iλ4)(iσ∗3)BPR(k3)

1

2

3 × ×

(−iσ4)(−iσ3)BMR(k3)

1

2

3

× ×

(−iσ4)(iλ?3)BPL(k3)

1

2

3 × ×

(−λ∆)(iσ∗3)BML(k3)

1

2

3

Figure 9: Diagrammatic representation of the Ten 1-Loop Integrals φRφR → φL

28



Here iσ3 is the tree level contribution. The term iM1(k3) denotes the sum over Feynman diagrams

in figure 9 whereas iM2(k2) denotes the sum over Feynman diagrams in figure 10. The contribution

iM2(k1) is obtained by interchanging 1↔ 2 in figure 10. The expression for iM1(k3) is given by

iM1(k3) =
(−iλ4)(−iσ3)

2
BRR(k3) +

(−λ∆)(iλ?3)

2
BLL(k3) + (−iσ4)(iσ∗3)BLR(k3)

+
(−iλ4)(iλ∗3)

2
BPM(k3) +

(−λ∆)(−iσ3)

2
BMP (k3) + (−iσ4)(iσ∗3)BPP (k3)

+(−iλ4)(iσ∗3)BPR(k3) + (−iσ4)(−iσ3)BMR(k3)

+(−iσ4)(iλ∗3)BPL(k3) + (−λ∆)(iσ∗3)BML(k3) (3.2.13)

The divergent contributions from iM1(k3) is cancelled by the following counter term

δσ3

∣∣∣(1)

MS
= − 1

(4π)2

[
2iλ4 Imσ3 − iλ∆(σ?3 + λ?3) + σ4λ

?
3 + σ4σ3

]
[ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.14)

The expression for iM2(k2) is given by

iM2(k2) =
(−iσ4)(−iλ3)

2
BRR(k2) +

(iσ?4)(iσ?3)

2
BLL(k2) + (−λ∆)(−iσ3)BLR(k2)

+
(−iσ4)(iσ∗3)

2
BPM(k2) +

(iσ?4)(−iλ3)

2
BMP (k2) + (−λ∆)(−iσ3)BPP (k2)

+ (−iσ4)(−iσ3)BPR(k2) + (−λ∆)(−iλ3)BMR(k2) + (iσ∗4)(−iσ3)BPL(k2)

+ (−λ∆)(iσ∗3)BML(k2)

(3.2.15)

The divergent contributions from iM2(k2) (and from iM2(k1)) are cancelled by the following

counter term

δσ3

∣∣∣(2)

MS
= − 2

(4π)2

[
σ4λ3 + 2iIm[σ4σ3]− iλ∆(λ3 + σ∗3) + σ∗4σ3

]
[ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.16)

Hence the total one loop beta function for σ3 is given by

βσ3 ≡
dσ3

dlnµ
=

1

(4π)2

[
2iλ4Imσ3 − iλ∆(σ?3 + λ?3) + σ4λ

?
3 + σ4σ3

+ 2σ4λ3 + 4iIm[σ4σ3]− 2iλ∆(λ3 + σ∗3) + 2σ∗4σ3

] (3.2.17)
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×

×

(−iσ4)(−iλ3)
2 BRR(k2)

1

2

3
×

×

(iσ?4)(iσ?3)

2 BLL(k2)

1

2

3
×

×

(−λ∆)(−iσ3)BLR(k2)

1

2

3

×

×

(−iσ4)(iσ?3)

2 BPM(k2)

1

2

3
×

×

(iσ?4)(−iλ3)

2 BMP (k2)

1

2

3
×

×

(−λ∆)(−iσ3)BPP (k2)

1

2

3

×

×

(−iσ4)(−iσ3)BPR(k2)

1

2

3
×

×

(−λ∆)(−iλ3)BMR(k2)

1

2

3

×

×

(iσ?4)(−iσ3)BML(k2)

1

2

3
×

×

(−λ∆)(iσ∗3)BPL(k2)

1

2

3

Figure 10: Diagrammatic representation of the Ten 1-Loop Integrals φRφR → φL
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3.2.6 Checking Lindblad condition at the level of cubic couplings

From equation (3.2.11), we obtain the beta function for Imλ3 as

d (Imλ3)

dlnµ
=

3

(4π)2

[
Reλ4 (Imλ3 + Imσ3) + Reσ4 (Imλ3 − Imσ3)

+(Reλ3 + Reσ3)(Imλ4 + Imσ4)

]
(3.2.18)

and the beta function of Imσ3 can be computed from the imaginary part of equation (3.2.17). We

obtain

d (Imσ3)

d lnµ
=

1

(4π)2

[
2Reλ4 Imσ3 + Reσ4(7 Imσ3 + Imλ3) +

3(Reλ3 + Reσ3)(Imσ4 − λ∆)

]
(3.2.19)

Adding these two equations we get

d

d lnµ
[Imλ3 + 3Imσ3] =

3

(4π)2

[
(Reλ4 + 2Reσ4)(Imλ3 + 3Imσ3)

+ (Reλ3 + Reσ3)(Imλ4 + 4Imσ4 − 3λ∆)

] (3.2.20)

Again, one can see that the one loop beta function for the Lindblad violating cubic coupling is

zero when there is no Lindblad violating coupling in the tree level Lagrangian.

3.2.7 One loop beta function for λ4

Now we proceed to compute the one loop beta function for the quartic couplings. We will only

consider the bubble diagrams since the triangle and box diagrams are finite. Let us consider all the

one loop Feynman diagrams that contributes to the process φR +φR → φR +φR. All the diagrams

are depicted in figure 11. The sum over all the Feynman diagrams is given by

− iλ4

+
(−iλ4)2

2
BRR(ks) +

(−λ∆)2

2
BLL(ks) + (−iσ4)2BLR(ks)

+
(−λ∆)(−iλ4)

2
BPM(ks) +

(−λ∆)(−iλ4)

2
BMP (ks) + (−iσ4)2BPP (ks)

+ (−iλ4)(−iσ4)BPR(ks) + (−iλ4)(−iσ4)BMR(ks)

+ (−λ∆)(−iσ4)BPL(ks) + (−λ∆)(−iσ4)BML(ks)

+ (ks ←→ kt) + (ks ←→ ku)

(3.2.21)
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× ×

(−iλ4)2

2 BRR(ks)

×

1

2 3

4

× ×

(−λ∆)2

2 BLL(ks)

1

2 3

4

× ×

(−iσ4)2BLR(ks)

1

2 3

4

× ×

(−λ∆)(−iλ4)
2 BPM(ks)

1

2 3

4

× ×

(−λ∆)(−iλ4)
2 BMP (ks)

1

2 3

4

× ×

(−iσ4)2BPP (ks)

1

2 3

4

× ×

(−iλ4)(−iσ4)BPR(ks)

1

2 3

4

× ×

(−iλ4)(−iσ4)BMR(ks)

1

2 3

4

× ×

(−λ∆)(−iσ4)BPL(ks)

1

2 3

4

× ×

(−λ∆)(−iσ4)BML(ks)

1

2 3

4

Figure 11: Diagrammatic representation of the Ten 1-Loop Integrals φRφR → φRφR (Here ks = k1 + k2)
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×

−iδλ4

1

2 3

4

Figure 12: Diagrammatic representation of the one loop counter-term for λ4

Using the results in (A.2.79a)-(A.2.79d), it’s easy to see that the contribution is divergent and we

need to add one loop counter-term δλ4 to cancel the divergences;

δλ4

∣∣∣
MS

= − 3

(4π)2

[
λ2

4 + 2 σ4(λ4 + iλ∆) + λ2
∆

][ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.22)

Using the standard methods of quantum field theory, we can compute the one loop beta function

as

βλ4 =
3

(4π)2

[
λ2

4 + 2 σ4(λ4 + iλ∆) + λ2
∆

]
=

3

(4π)2
(λ4 + 2 σ4 − iλ∆)(λ4 + iλ∆) (3.2.23)

By setting σ4 = λ∆ = 0 we recover the standard result of unitary φ4 theory.
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3.2.8 One loop beta function for σ4

Again, only the Passarino-Veltman B type diagrams contribute to the one loop beta function for

σ4. All the B type diagrams are depicted in figure 13. The sum over all of them is given by

− iσ4

+
(−iλ4)(−iσ4)

2
BRR(ks) +

(iσ?4)(−λ∆)

2
BLL(ks) + (−iσ4)(−λ∆)BLR(ks)

+
(−λ4)(iσ?4)

2
BPM(ks) +

(−λ∆)(−iσ4)

2
BMP (ks) + (−iσ4)(−λ∆)BPP (ks)

+ (−iλ4)(−λ∆)BPR(ks) + (−iσ4)2BMR(ks)

+ (−iσ4)(iσ?4)BPL(ks) + (−λ∆)2BML(ks)

+ (ks ←→ kt) + (ks ←→ ku)

(3.2.24)

The one loop counter term for σ4 is given by

δσ4

∣∣∣
MS

= − 3

(4π)2

[
σ2

4 + (λ4 + σ∗4)(σ4 − iλ∆) + λ2
∆

][ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.25)

and the one loop beta function is found out to be

βσ4 =
3

(4π)2

[
σ2

4 + (λ4 + σ∗4)(σ4 − iλ∆) + λ2
∆

]
(3.2.26)

3.2.9 One loop beta function for λ∆

The Passarino-Veltman B type contributions for s-channel and t-channel is being shown in figure

14 and figure 15 respectively. u-channels diagrams are obtained by interchanging 1 ↔ 2 in figure

15. The sum over all the contributions is given as

−λ∆

+
(−iλ4)(−λ∆)

2
BRR(ks) +

(iλ?4)(−λ∆)

2
BLL(ks) + (−iσ4)(iσ?4)BLR(ks)

+
(−iλ4)(iλ?4)

2
BPM(ks) +

(−λ∆)2

2
BMP (ks) + (−iσ4)(iσ?4)BPP (ks) (3.2.27)

+(iσ?4)(−iλ4)BPR(ks) + (−iσ4)(−λ∆)BMR(ks)

+(−iσ4)(iλ?4)BPL(ks) + (iσ?4)(−λ∆)BML(ks)

+
(−iσ4)(−iσ4)

2
BRR(kt) +

(iσ?4)(iσ?4)

2
BLL(kt) + (−λ∆)2BLR(kt)

+
(−iσ4)(iσ?4)

2
BPM(kt) +

(iσ?4)(−iσ4)

2
BMP (kt) + (−λ∆)2BPP (kt)

+(−iσ4)(−λ∆)BPR(kt) + (−iσ4)(−λ∆)BMR(kt)
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(−iλ4)(−iσ4)
2 BRR(ks)

1

2 3

4

× ×

(iσ?4)(−λ∆)

2 BLL(ks)

1

2 3

4

× ×

(−iσ4)(−λ∆)BLR(ks)

1

2 3

4

× ×

(−iλ4)(iσ?4)

2 BPM(ks)

1

2 3

4

× ×

(−λ∆)(−iσ4)
2 BMP (ks)

1

2 3

4

× ×

(−iσ4)(−λ∆)BPP (ks)

1

2 3

4

× ×

(−iλ4)(−λ∆)BPR(ks)

1

2 3

4

× ×

(−iσ4)2BMR(ks)

1

2 3

4

× ×

(−iσ4)(iσ?4)BPL(ks)

1

2 3

4

× ×

(−λ∆)2BML(ks)

1

2 3

4

Figure 13: Diagrammatic representation of the Ten 1-Loop Integrals φRφR → φRφL
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× ×

(−iλ4)(−λ∆)
2 BRR(ks)

1

2 3

4

× ×

(iλ?4)(−λ∆)

2 BLL(ks)

1

2 3

4

× ×

(−iσ4)(iσ?4)BLR(ks)

1

2 3

4

× ×

(−iλ4)(iλ?4)

2 BPM(ks)

1

2 3

4

× ×

(−λ∆)2

2 BMP (ks)

1

2 3

4

× ×

(−iσ4)(iσ?4)BPP (ks)

1

2 3

4

× ×

(iσ?4)(−iλ4)BPR(ks)

1

2 3

4

× ×

(−iσ4)(−λ∆)BMR(ks)

1

2 3

4

× ×

(−iσ4)(iλ?4)BPL(ks)

1

2 3

4

× ×

(iσ?4)(−λ∆)BML(ks)

1

2 3

4

Figure 14: Diagrammatic representation of the Ten 1-Loop Integrals φRφR −→ φLφL (Here kt = k1 + k2)
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+(iσ?4)(−λ∆)BPL(kt) + (iσ?4)(−λ∆)BML(kt)

+(kt ←→ ku)

The one-loop divergence can removed by adding the following the counter term

δλ∆

∣∣∣
MS

= − 1

(4π)2i

[
(λ4 + 2σ∗4)(σ∗4 + iλ∆) + 3iσ4λ∆ − c.c.

]
[ 1

d− 4
+

1

2
(γE − 1− ln 4π)

]
(3.2.28)

and one loop beta function for λ∆ is given by

βλ∆
=

1

(4π)2i

[
λ4(σ∗4 + iλ∆)− 2σ2

4 + 5iσ4λ∆ − λ∗4(σ4 − iλ∆) + 2(σ∗4)2 + 5iσ∗4λ∆

]
=

1

(4π)2i

[
(λ4 + 2σ∗4)(σ∗4 + iλ∆) + 3iσ4λ∆ − c.c.

]
(3.2.29)

3.2.10 Checking Lindblad condition for quartic couplings

From equation (3.2.23), equation (3.2.26) and equation (3.2.29), we can compute the one loop beta

function for the Lindblad combination. We have

β(Im λ4+4 Im σ4−3λ∆) =
6

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Re λ4 + 2Re σ4) (3.2.30)

This equation, along with (3.2.7) and (3.2.8), implies that if one starts with a Lindblad theory

then one loop renormalization preserves the Lindblad condition.
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×

×

(−iσ4)(−iσ4)
2 BRR(kt)
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2 3

4
×

×

(iσ?4)(iσ?4)

2 BLL(kt)

1

2 3

4
×

×

(−λ∆)2BLR(kt)

1

2 3

4

×

×

(−iσ4)(iσ?4)

2 BPM(kt)

1

2 3

4
×

×

(iσ?4)(−iσ4)

2 BMP (kt)

1

2 3

4
×

×

(−λ∆)2BPP (kt)

1

2 3

4

×

×

(−iσ4)(−λ∆)BPR(kt)

1

2 3

4
×

×

(−iσ4)(−λ∆)BMR(kt)

1

2 3

4

×

×
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1
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4
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×
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1

2 3

4

Figure 15: Diagrammatic representation of the Ten 1-Loop Integrals φRφR → φLφL (Here kt = k1 + k4)
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3.2.11 Summary of the results

We started with the most general Lagrangian of a mixed system described by a scalar field with

cubic and quartic coupling in (3.0.1). Using this action, we have demonstrated that the standard

counter term technique of unitary QFTs can be extended to deal with the one-loop UV divergences

of the open EFT. We have then computed the beta functions of this open EFT, summarised as

the following.

dm2

dlnµ
=

1

(4π)2

[
(λ3)2 − (σ?3)2 + 2

{
λ3σ3 + |σ3|2

}
+ (λ4 − iλ∆ + 2σ4)

(
Rem2

)]
dm2

∆

dlnµ
=

1

(4π)2

[
−4(Reλ3 + Reσ3 ) Imσ3 + (2λ∆ − 2Imσ4)Rem2

]
dλ3

dlnµ
=

3

(4π)2

[
λ4λ3 − 2λ∆Imσ3 + λ4σ3 + σ4λ3 + σ4σ

∗
3

]
dσ3

dlnµ
=

1

(4π)2

[
2iλ4Imσ3 − iλ∆(σ?3 + λ?3) + σ4λ

?
3 + σ4σ3

+ 2σ4λ3 + 4iIm[σ4σ3]− 2iλ∆(λ3 + σ∗3) + 2σ∗4σ3

]
dλ4

dlnµ
=

3

(4π)2

[
λ2 + 2 σ(λ+ i∆) + ∆2

]
=

3

(4π)2
(λ+ 2 σ − i∆)(λ+ i∆)

dσ4

dlnµ
=

3

(4π)2

[
σ2 + (λ+ σ∗)(σ − i∆) + ∆2

]
=

3

(4π)2
(λ+ σ + σ∗ + i∆)(σ − i∆)

dλ∆

dlnµ
=

1

(4π)2i

[
λ4(σ∗4 + iλ∆)− 2σ2

4 + 5iσ4λ∆ − λ∗4(σ4 − iλ∆) + 2(σ∗4)2 − 5iσ∗4λ∆

]
.

(3.2.31)

One can then use these beta functions to determine the running of the Lindblad violating com-

binations (Imm2 −m2
∆), (Imλ3 + 3Imσ3) and (Imλ4 + 4Imσ4 − 3λ∆). The following equations

shows that the beta function of the Lindblad violating couplings are proportional to the Lindblad

violating couplings.

β(Imm2−m2
∆) =

2

(4π)2

[
(Imλ3 + 3 Imσ3)(Reλ3 + Reσ3)

+(Imλ4 + 4Imσ4 − 3λ∆)(Rem2)

]

β(Imλ3+3Imσ3) =
3

(4π)2

[
(Reλ4 + 2Reσ4)(Imλ3 + 3Imσ3) (3.2.32)

+(Reλ3 + Reσ3)(Imλ4 + 4Imσ4 − 3λ∆)

]
β(Imλ4+4Imσ4−3λ∆) =

6

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Re λ4 + 2Re σ4)
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In other words, if we set the Lindblad violating coupling to zero at tree level then the Lindblad

violating coupling will not be generated under one loop renormalization.

3.3 Computation in the average-difference basis

In section 3.2, we had computed the one loop beta functions for various couplings of an open

φ3 + φ4 theory. In particular, by looking at the Lindblad violating couplings, we found that the

Lindblad condition is preserved under one loop renormalization. In this section, we will rewrite

the perturbation theory in a different basis where this fact is manifest. We would also like to prove

that the preservation of Lindblad conditions hold to arbitrary perturbative order. The proof that

we present here is very much inspired by a correponding argument in the context of cutting rules

in unitary theory and uses a version of Feynman tree theorem.

The basis we shift to is often termed the Keldysh basis. It is made of the average and difference

of bra and ket fields. This basis has an advantage that the difference operator decouplings are

more manifest in this basis while it obscures the cutting rule interpretation of various diagrams

involved. While the unitary vertices are mixed up with the Feynman-Vernon couplings in this

basis, the computations do greatly simplify owing to lesser number of divergent diagrams and

vanishing of difference-difference propagator. Our discussion here would necessarily be brief, since

the details are straightforward and similar to the computation in the previous section. Reader

desiring a more detailed presentation can refer to appendix A.4

3.3.1 Action in the average-difference basis

We define φa and φa such that

φd = φR − φL φa =
1

2
(φR + φL) (3.3.1)

where the subscripts d and a denote ‘difference’ and ‘average’ respectively.
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The Lagrangian in this basis is given by

iL = +
1

2× 2!
(Im z + z∆)(∂φd)

2 + (−i)(Re z)(∂φa).(∂φd)

+
1

2× 2!
(Im m2 +m2

∆)φ2
d + (−i)(Re m2)φaφd

+ (−i)(Re λ3 + Re σ3)
φ2
aφd
2!

+
1

2
(Im λ3 − Im σ3)

φaφ
2
d

2!
+

(−i)
4

(Re λ3 − 3 Re σ3)
φ3
d

3!

+ (−i)(Re λ4 + 2 Re σ4)
φ3
aφd
3!

+
1

2
(Im λ4 + λ∆)

φ2
aφ

2
d

2!2!
+

(−i)
4

(Re λ4 − 2 Re σ4)
φaφ

3
d

3!

+
1

8
(Im λ4 − 4 Im σ4 − 3λ∆)

φ4
d

4!

+
1

2!
2(Im z − z∆)(∂φa)

2 +
1

2!
2(Im m2 −m2

∆)φ2
a

+ 2(Im λ3 + 3 Im σ3)
φ3
a

3!
+ 2(Im λ4 + 4 Im σ4 − 3λ∆)

φ4
a

4!

(3.3.2)

The Feynman rules in this basis are given in figure 8. Note that the terms in the last two lines of

the Lagrangian involves only the average fields φa. The coefficients of the purely average couplings

are exactly the Lindblad violating couplings. This is expected for the following reason : since φd

vanishes when φR = φL, the terms that can contribute to the imaginary part of the action, in

that limit, are the pure φa vertices. Since all Linblad terms vanish in this limit, it follows that

pure φa vertices should be Lindblad violating. In addition, we observe that in the open φ3 + φ4

theory, all Lindblad violating couplings are of pure average type. This clear separation of the

Lindblad violating couplings is the most salient aspect of this basis making it easy to trace their

renormalisation.

The propagators in this basis are given by [63, 28, 73]

a : 〈TSKφaφa〉 =
1

2
〈TSKφRφR〉+

1

2
〈TSKφLφL〉

f : 〈TSKφaφd〉 = 〈TSKφRφR〉 − 〈TSKφRφL〉

b : 〈TSKφdφa〉 = 〈TSKφRφR〉 − 〈TSKφLφR〉

d : 〈TSKφdφd〉 = 0

(3.3.3)

Please note that we will use a different color for propagators in the average-difference basis. Also,

we shall be using results presented in appendix A.3. In this basis, only the tadpole Aa diverges

(A.3.1) and its divergence is same as the divergence of usual PV A diagram. All other A integrals,

Af , Ab and Ad, vanish. Similarly, only the bubbles Baf , Bab diverge and their divergence is half

the divergence of the usual PV B diagram (A.3.3).
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Propagator a φa φa

Propagator f φa φd

Propagator b φd φa

Propagator d φd φd

Figure 16: Propagators in the average-difference basis

3.3.2 One loop computations

As mentioned before, the computation greatly simplifies in this basis. All the computations in

average-difference basis can be found in appendix A.4. Here we shall demonstrate only a few

examples. For instance, let us compute the beta function of one of the Lindblad violating terms,

(Im m2 − m2
∆). In figure 17, we have considered all the divergent diagrams (i.e., the diagrams

involving Aa, Baf and Bab) that contributes to the process φd → φd. The total contribution to the

process is given by

×× ×× ×

Figure 17: Renormalization of the Lindblad violating mass term in the average-difference basis

2(Im m2 −m2
∆) + 2(Im λ3 + 3 Im σ3)× (−i)(Re λ3 + Re σ3)(Baf +Bab)

+ 2(Im λ4 + 4 Im σ4 − 3λ∆)(Re m2)Aa

(3.3.4)

Hence, the one loop beta function for the Lindblad violating mass term is given by

d

dlnµ
(Im m2 −m2

∆) =
1

(4π)2

[
2(Im λ3 + 3 Im σ3)(Re λ3 + Re σ3)

+ (Re m2)(Im λ4 + 4 Im σ4 − 3λ∆)
] (3.3.5)

We obtained the same result (equation (3.2.7)) in the other basis. Notice that beta function of the

Lindblad violating term can easily be computed just by computing one process in this basis.
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Similarly, one can calculate beta function of the Lindblad violating term (Im λ3 + 3 Im σ3).

Divergent diagrams for one particular channel is depicted in figure 18. There are two more channels.

The total contribution is given as

1

2

3

×× ××1

2

3

Figure 18: Renormalization of the Lindblad violating cubic coupling in the average-difference basis

2(Im λ3 + 3 Im σ3)

+ 2(Im λ3 + 3 Im σ3)× (−i)(Re λ4 + 2 Re σ4)[Baf (k1) +Baf (k2) +Baf (k3)]

+ 2(Im λ4 + 4 Im σ4 − 3λ∆)× (−i)(Re λ3 + Re σ3)[Bab(k1) +Bab(k2) +Bab(k3)]

(3.3.6)

Following the standard procedures, we can very easily compute the one loop beta function and it

is given by
d

dlnµ
(Im λ3 + 3 Im σ3) =

3

(4π)2
(Im λ3 + 3 Im σ3)(Re λ4 + 2 Re σ4)

+
3

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Re λ3 + Re σ3)

(3.3.7)

Now, let us we compute the beta function of Lindblad violating term (Im λ4 + 4 Im σ4 − 3λ∆)

by computing the process φdφd → φdφd via φ4
a vertex, which is depicted in figure 19. The total

contribution is given by

1

2

3

4

×× ××
1

2

3

4

Figure 19: Renormalization of the Lindblad violating quartic coupling in the average-difference basis

2(Im λ4 + 4 Im σ4 − 3λ∆)

+ (2 diagrams)(3 channels)× 2(Im λ4 + 4 Im σ4 − 3λ∆)× (−i)(Re λ4 + 2 Re σ4)× i

32π2

2

d− 4

= 2(Im λ4 + 4 Im σ4 − 3 λ∆) + 2(Im λ4 + 4 Im σ4 − 3 λ∆)× (Re λ4 + 2 Re σ4)× 6

(4π)2

1

d− 4

(3.3.8)
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Hence, the one loop beta function is

d

d lnµ
(Im λ4 + 4 Im σ4 − 3λ∆) =

6

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Re λ4 + 2Re σ4) (3.3.9)

The usefulness of average-difference basis is quite evident from these three calculations. The

complete computation in average-difference basis can be found in appendix A.4.

3.3.3 Lindblad condition is never violated by perturbative corrections

In this section, we will give an all order perturbative argument for while Lindblad conditions are

not violated to arbitrary order in perturbation theory. Consider the Lagrangian in the average-

difference basis given in (3.3.2). From this expression we note that all the Lindblad violating

couplings of open φ3 + φ4 theory appear as the coupling constants for the pure average vertices.

Our argument below can be easily extended to any open QFT which has this property that all

Lindblad violating vertices are pure average vertices. Note that the converse is always true in an

open EFT : any pure average vertex is necessarily Lindblad violating (since it contributes to the

action even in the φR = φL limit).

Now, we want to show that if we start from the open φ3 +φ4 theory, then Lindblad condition(s)

are never violated under perturbative corrections using the fact that they are all of pure average

type. In other words, by assuming that there is no pure average vertex at tree level and that

there is no difference-difference propagator, we would like to show that such vertex/propagator

can never be generated under loop corrections. We will prove it in three steps.

We will begin with an

• Assumption: At tree level, one has no pure-average vertex and no pure-difference propa-

gator. All Lindblad violating couplings are assumed to be pure average vertices and hence

are taken to vanish at tree level.

• Statement 1 : Say we assume that there is no pure-average 1PI 2 point vertex generated

at g loop. Then, it implies that there is no pure-difference 1 PI propagator generated at g

loop.

Proof : According to our beginning assumption, there is no tree level pure-difference propa-

gator. Such a propagator can then only be generated by a Feynman diagram of type depicted

in figure 20.
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dif-dif propagator

≡

pure average two point vertex

Figure 20: Pure difference propagator from loop correction(s)

So, any contribution to pure-difference 1 PI propagator is of the form

(difference to average tree level propagator)× (pure-average 1PI 2 point vertex) × (average

to diff tree level propagator).

Thus, if there are no pure-average 1PI vertices, there are no pure-difference 1PI propaga-

tor.(QED)

• Statement 2 : If there is no pure-average 1PI vertex at g loops, there is no such vertex

at g + 1 loops. This statement via induction, then implies that pure-average 1PI vertices

are never generated at any loop order. By our previous statement, this implies then that

pure-difference 1 PI propagators are also never generated at any loop order. In order to prove

this, we first prove

– Statement 2a: Consider a Feynman diagram contributing to a pure-average 1PI ver-

tex. There must be at least one vertex (internal or external) such that the following is

true : there exists a closed path completely made of b-type propagators which begins

and ends in that vertex (it may or may not pass through external vertices).

Proof : Since we are considering a diagram contributing to a pure-average 1PI vertex,

all the external propagators at every external vertex are of a-type. By our assumption,

there is no pure-average 1PI vertex. Thus, there should be at least one d-type line

leaving at a given external vertex. Since there is no pure-difference propagator, this

d type line necessarily converts itself into an a type line : thus the propagator is of

average-difference b type with the arrow leaving the external vertex. This propagator

thus ends as an a type line either in the vertex that one began with, or another external

vertex or an internal vertex.
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In the first case, we have obtained the desired result : there exists a closed path com-

pletely made of b-type propagators which begins and ends in that vertex.

In the second case, we note that the external vertex has an external a-type leg, and the

b-type propagator which went from the starting vertex also ends with an a-type leg on

the second vertex. Since there are no pure-average vertex, there should necessarily be

a d-type leg which is going out of the second vertex. The d-type leg can again only be

a part of an b-type propagator since there is no pure-difference propagator. A similar

argument also applies to the third case of an internal vertex.

We can now follow the b-type propagators and repeat the argument again. This process

would terminate (since we are looking at a finite graph) and we would return to some

vertex on the path for second time, closing the loop. (QED)

– Statement 2b: Any Feynman diagram with a closed path completely made of b-type

propagators is zero.

Proof: In position space, b-type propagators are just retarted propagators. The b-type

propagator, using equation (3.3.3), in position space is given by,
ˆ

d4p

(2π)4

(
−i

p2 +m2 − iε
− 2πδ−(p2 +m2)

)
eip(x−y)

=

ˆ
d4p

(2π)4

−i
p2 +m2 − iε

eip(x−y) −
ˆ

d4p

(2π)3
Θ(−p0)δ(p2 +m2)eip(x−y)

=

ˆ
d3p

(2π)3
ei~p·(~x−~y)

(
Θ(x0 − y0)

e−iωp(x0−y0)

2ωp
+ Θ(y0 − x0)

eiωp(x0−y0)

2ωp

)
−
ˆ

d3p

(2π)3
ei~p·(~x−~y) e

iωp(x0−y0)

2ωp
(Θ(x0 − y0) + Θ(y0 − x0))

= Θ(x0 − y0)

ˆ
d3p

(2π)3
ei~p·(~x−~y)

(
e−iωp(x0−y0)

2ωp
− eiωp(x0−y0)

2ωp

)
= GR(x− y)

(3.3.10)

where, ωp = (~p2 +m2)
1
2 and GR(x− y) denotes the retarted propagator.

We will now use the result that a closed loop of retarted propagators is identically zero.

This statement is a part of the Feynman tree theorem [85]. A closed loop of retarted

propagators can be written as
ˆ

ddp

(2π)d

∏
i

Gi
R(p+ ki) = 0 (3.3.11)
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where, ki denotes the external momenta. Since all the poles in a retarded propagator

are below the real p0 axis. So, one can close the contour from above, picking no residues

and, as a result, the integral vanishes. (QED)

• Statement 2a and 2b imply that if there is no pure average vertex operator or a pure difference

propagator at g loop then there will be no such vertex/propagator at g + 1 loop. From this

we conclude, via induction, that if there is no Lindblad violating coupling at tree level, such

a coupling is never generated by perturbative corrections.(QED)

This then concludes our argument in the average-difference basis that the Lindblad violating

couplings are never generated in loops. The readers familiar with cutting rule arguments ala

Veltman in unitary theories would recognise the style of the above argument. The proof that

difference operators decouple at arbitrary loops in a unitary theory, or equivalently the proof that

Keldysh causal structure is preserved under loop corrections for a unitary theory bear a close

resemblance to the proof above. The surprise here is that the argument goes through even without

assuming unitarity. We also note the perturbative nature of the above argument, since it invokes

the fact that the graphs at any given loop order are finite. It would be interesting to try and give

a non-perturbative proof of the statement of this section.

With this formal proof in hand, in next section, we will now turn to a prelimnary study of

what the RG running in our open EFT reveals. The interesting question is to map out behaviour

novel to open EFTs which cannot be found in unitary QFTs.

3.4 Running of the coupling constants and physical meaning

In this section, we will perform an analysis of the running of couplings from our 1-loop beta

functions. Given the many couplings involved in the the RG equations in (3.2.31), we will begin

with a judicious rewriting of our equations. Once the Lindblad conditions are imposed, we obtain

the following count for the couplings :

1. 5 quartic couplings + 1 lindblad condition (3.1.7) =⇒ 4 independent quartic couplings

2. 4 cubic couplings+ 1 lindblad condition (3.1.5) =⇒ 3 independent cubic couplings

3. 3 mass terms + 1 lindblad condition (3.1.3) =⇒ 2 independent mass terms
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Our RG equations for these 9 independent variables can then be recast into the following

convenient form :

βRe λ4+2Re σ4 =
3

(4π)2
(Re λ4 + 2Re σ4)2

βIm λ4+Im σ4 =
5

(4π)2
(Im λ4 + Im σ4) (Re λ4 + 2Re σ4)

βRe λ4 =
1

3(4π)2

(
9Re λ4 (Re λ4 + 2Re σ4)− 8 (Im λ4 + Im σ4)2)

βIm λ4−4Im σ4 =
10

(4π)2
Re λ4 (Im λ4 + Im σ4)

βRe λ3+Re σ3 =
3

(4π)2
(Re λ3 + Re σ3) (Re λ4 + 2Re σ4)

βIm λ3 = −3βIm σ3 =
1

(4π)2
(3 (Im λ4 + Im σ4) (Re λ3 + Re σ3) + 2Im λ3 (Re λ4 + 2Re σ4))

βRe λ3−Re σ3 =
1

3(4π)2
(9Re λ4 (Re λ3 + Re σ3)− 8Im λ3 (Im λ4 + Im σ4))

βRe m2 =
1

(4π)2

(
(Re λ3 + Re σ3)2 + Re m2 (Re λ4 + 2Re σ4)

)
βIm m2 = βm2

∆
=

2

3(4π)2

(
2Im λ3 (Re λ3 + Re σ3) + Re m2 (Im λ4 + Im σ4)

)
(3.4.1)

Note the simple structure of the 9 coupled differential equations given above. We have ordered

them such that the jth equation depends only on the variables appearing in the first j−1 equations.

As a result, a step by step method of solution becomes viable : one can start by solving the first

equation for a given initial condition and then use the solution of the first equation as an input to

solve the second equation and so on, for all the subsequent equations.

The first, the second and the fifth equation imply the existence of the fixed point, given by

Re λ4 = −2Re σ4, Im λ4 = −Im σ4 (3.4.2)

Re λ3 = −Re σ3. (3.4.3)

To analyse the nature of this fixed point, we turn to the first equation which drives them all. It

can be written as

β|Re λ4+2Re σ4| = sign(Re λ4 + 2Re σ4) 3
(4π)2 |Re λ4 + 2Re σ4|2 (3.4.4)

This implies that depending on the sign of the initial value, Re λ4 + 2Re σ4 either increases or

decreases as we go to higher energy scales. As we will see, this sign controls whether theory is UV
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free or IR free. We recognise in the RG equation for Re λ4 + 2Re σ4 the usual φ4 coupling RG

equation with Re λ4 + 2Re σ4 serving as an effective φ4 coupling. The asymptotically free regime

and the negative beta function corresponds to this effective φ4 coupling turning negative and is

hence akin to the theory studied by Symanzik [86].2

We will begin by performing a linearised analysis around the fixed point mentioned above and

follow it up with a more detailed numerical analysis.

3.4.1 Linearized analysis around the fixed point

In this section, we study linearized beta functions around the fixed points and we find the eigen-

values and eigenvectors of the beta function matrix. Consider small deviations around the fixed

points

Re λ4 + 2Re σ4 = ε1

Im λ4 + Im σ4 = ε2

Re λ3 + Re σ3 = ε3

(3.4.5)

where, we have assumed

|εi| << 1 ∀ i = 1, 2, 3 (3.4.6)

The linearized beta functions for Re λ4 + 2Re σ4, Im λ4 + Im σ4 and Re λ3 +Re σ3 are zero. This

suggests that ε1, ε2 and ε3 remain constant (i.e., they are marginal couplings at the fixed point).

The rest of the linearized beta functions about the fixed point can be written as

d

dt
G(t) = BG(t) (3.4.7)

in terms of the RG time t ≡ ln µ
(4π)2 . Here we have defined the coupling constant matrix G as

G ≡



Re λ4

Im λ4 − 4Im σ4

Im λ3

Re λ3 − Re σ3

Re m2

Im m2


(3.4.8)

2We would like to thank Nima Arkani-Hamed for a discussion of this issue and bringing the relevant literature

to our attention.
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and the beta function matrix B is given by

B ≡



3ε1 0 0 0 0 0

10ε2 0 0 0 0 0

0 0 2ε1 0 0 0

3ε3 0 −8ε2
3

0 0 0

0 0 0 0 ε1 0

0 0 4ε3
3

0 2ε2
3

0


(3.4.9)

The six eigenvalues of the matrix B are - 0, 0, 0, ε1, 2ε1, 3ε1. The corresponding eigenvectors are

given by: 

0

1

0

0

0

0


,



0

0

0

1

0

0


,



0

0

0

0

0

1


,



0

0

0

0

3ε1

2ε2


,



0

0

3ε1

−4ε2

0

2ε3


,



3ε1

10ε2

0

3ε3

0

0


(3.4.10)

Eigenvalues of the matrix B suggest that the first the coupling combinations are also marginal at

the fixed point. The asymptotic behavior of rest of the variables depend only on the sign of ε1 or

Re λ4 + 2Re σ4. A positive ε1 would mean that the couplings become relevant in UV, whereas

a negative ε1 would mean that the couplings are relevant in IR. This conforms to the intuition

we presented in the beginning of this section : the coupling Re λ4 + 2Re σ4 runs like the quartic

coupling of an ordinary φ4 theory : the theory is IR free for positive value of this combination

whereas it is UV free (asymptotically free) for negative value of this combination. This coupling

then drives all other couplings to be either IR free or asymptotically free.

Let us now extend our analysis beyond the linearised regime around tthe fixed points, given by

Re λ4 = −2Re σ4, Im λ4 = −Im σ4 (3.4.11)

Re λ3 = −Re σ3. (3.4.12)

We will begin by re-examining eqn.(3.4.1) to gain more qualitative insight on the nature of running

in this theory:

1. We will begin with the statement that, depending on the sign of the initial value, Re λ4 +
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2Re σ4 either increases or decreases as we go to higher energy scales . Thus, we can have

two distinct scenarios

(a) Re λ4 + 2Re σ4 > 0

(b) Re λ4 + 2Re σ4 < 0.

2. The second equation depends upon the sign of (Re λ4 + 2Re σ4) as well as on the sign of the

initial value of Im λ4 + Im σ4. For instance, keeping a positive Re λ4 +2Re σ4 and a negative

initial value of Im λ4 + Im σ4 would result in a decreasing behavior as shown in figure 22 and

figure 24. Thus, we have two further sub-cases, depending upon the sign of Im λ4 + Im σ4.

3. The third and fourth equation implies that the evolution of Re λ4 and Im λ4 − 4 Im σ4

depends only on the values of Re λ4 + 2Re σ4 and Im λ4 + Im σ4, given the assumption that

the imaginary couplings are small compared to the real ones.

4. The fifth equation is similar to the second equation. Hence, there will again be two sub-cases.

5. It’s easy to verify that, with the help of similar reasonings, the remaining equations will not

provide us with further sub-cases.

We found that the key conclusion remains unchanged for Re λ3 +Re σ3 ≷ 0. So we will always be

considering the case Re λ3 + Re σ3 ≷ 0 together. Thus, we conclude that we can broadly have 8

cases in total and they basically correspond to the two sides of either of these three fixed points:

each fixed point will provide two cases and we have 23 cases altogether.

With this insight, we will proceed to a more detailed numerical analysis.

3.4.2 Numerical analysis of RG equations

In this subsection, we continue our analysis of the various possible cases in the RG evolution

equations. It is useful to have a rough criteria to check the validity of our analysis and as to when

the analysis can be interpreted physically. We will perform these analysis only for the Lindblad

theory, where the coupling constants obey the Lindblad conditions. We shall always work in a

regime where the imaginary couplings are smaller compared to the real ones (since this is the

regime where our beta functions were derived). Moreover, we will demand the following bounds

λ∆ < 0, m2
∆ < 0 (3.4.13)
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which seem to be reasonable from the point of microsocopic unitarity[84]. We will deem the

couplings which do not satisfy this bound as unphysical in the following. The initial conditions

are chosen keeping these physical bounds in consideration and we shall analyse the dynamics

corresponding to all the possible behaviors.

I: Re λ4 + 2Re σ4 > 0, Im λ4 + Im σ4 > 0 and Re λ3 + Re σ3 ≷ 0

The first equation in (3.4.1) tells us that the sign of Re λ4 + 2Re σ4 will remain positive in this

regime. In particular, Re λ4 + 2Re σ4 evolves in the same way as λUnitary 3 . Now, from the second

equation, one can see that Im λ4 + Im σ4 will keep increasing if it starts at a positive initial value,

but at a slower rate compared to Re λ4 + 2Re σ4. Similarly, from the third and fourth equation,

one can see that, keeping in mind the assumptions, both Re λ4 and Im λ4 − 4Im σ4 will increase

in the way as shown in figure 21. Note here that Im λ4 − 4Im σ4 rises faster than Im λ4 + Im σ4

and thus, it results in a continuously increasing Im λ4 and a decreasing Im σ4 as shown in the

second diagram in figure 21. Also, the increase of Im λ4 is faster than the decrease of Im σ4 and

thus, under the RG flow, λ∆ becomes positive, which is unphysical. Evolution of the remaining

cubic couplings and mass terms variables will not affect the evolution Im λ4 and Im σ4. So, both

the sub-cases due to different signs of Re λ3 +Re σ3 would have a positive λ∆ and thus, these two

cases can be deemed as unphysical.

II: Re λ4 + 2Re σ4 > 0, Im λ4 + Im σ4 < 0 and Re λ3 + Re σ3 ≷ 0

The evolution of each variable for this case is depicted in figure 22. We observe that the couplings

do not violate the physical conditions throughout. One can see that the couplings become stronger

in the UV and attain a Landau pole.

III: Re λ4 + 2Reσ4 < 0, Imλ4 + Imσ4 > 0 and Reλ3 + Reσ3 ≷ 0

This is a case where the couplings are relevant in IR and remain within the physical bounds

throughout as can be observed in figure 23. In this case, Reλ4 + 2Reσ4 becomes asymptotically

free as can be seen from the first equation in (3.4.1). The second and fifth equation, meanwhile,

tells us that Imλ4 + Imσ4 and Reλ3 + Reσ3 would go to zero as we go to higher energies. This

would also mean that Imλ4 − 4 Imσ4 becomes constant as Imλ4 + Imσ4 goes to zero. Imλ4 and
3λUnitary denotes the coupling constant of an unitary φ4 theory
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Reλ4 + 2Reσ4 Imλ4 + Imσ4 Reλ3 + Reσ3 Conclusion

> 0 > 0 ≷ 0 Unphysical

> 0 < 0 ≷ 0 Landau pole

< 0 > 0 ≷ 0 Relevant in IR

< 0 < 0 ≷ 0 Unphysical

Table 3.2: Running of coupling constants

Imσ4 become constant at higher energies and λ∆ attains a fixed point. With similar reasonings,

one can predict the behavior of other couplings.

IV: Reλ4 + 2Reσ4 < 0, Imλ4 + Imσ4 < 0 and Reλ3 + Reσ3 ≷ 0

One can observe from figure 24 that this case can be deemed as unphysical as λ∆ attains a positive

value. It basically comes about due to the sign of Imλ4 + Imσ4 as can be seen from the second

equation in (3.4.1).

3.5 Conclusion

In this chapter, we considered a simple φ3 + φ4 toy model of an open quantum field theory and

studied renormalisation of couplings. By enumerating all power-counting renormalisable terms, we

demonstrate that the theory is 1-loop renormalisable due to tadpole and bubble diagrams, whereby

all UV divergences can be absorbed into appropriate counter-terms. This is in analogy with the

standard result for a unitary QFT. The novelty lies in non-unitary Feynman-Vernon couplings and

their corresponding β functions. One of the main results of this chapter is that the beta functions

surprisingly restrict the Lindblad violating couplings to flow under renormalisation. We end with

an all loop argument on why this restriction should extend to any order in perturbation theory.
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(a)

(b)

Figure 21: Figures showing the evolution of all the couplings for the case Reλ4 + 2Reσ4 > 0, Imλ4 + Imσ4 > 0 and

the two subcases - Reλ3 + Reσ3 > 0(figure a) and Reλ3 + Reσ3 < 0 (figure b)
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(a)

(b)

Figure 22: Figures showing the evolution of all the couplings for the case Reλ4 + 2Reσ4 > 0, Imλ4 + Imσ4 < 0 and

the two subcases - Reλ3 + Reσ3 > 0(figure a) and Reλ3 + Reσ3 < 0(figure b)
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(a)

(b)

Figure 23: Figures showing the evolution of all the couplings for the case Reλ4 + 2Reσ4 < 0, Imλ4 + Imσ4 > 0 and

the two sub-cases - Reλ3 + Reσ3 > 0(figure a) and Reλ3 + Reσ3 < 0(figure b)
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(a)

(b)

Figure 24: Figures showing the evolution of all the couplings for the case Re λ4 + 2Re σ4 < 0, Im λ4 + Im σ4 < 0 and

the two sub-cases - Re λ3 + Re σ3 > 0(figure (a)) and Re λ3 + Re σ3 < 0(figure b)
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Chapter 4

Open Yukawa theory

We extend our study of open EFTs beyond scalar field theory; we introduce a Fermion in our

theory via a Yukawa coupling. We write the most general action for an open Yukawa thoery. Then

we compute the scalar tadpole and self-energy correction to the Fermion and scalar field. The loop

diagrams are evaluated using the PV reduction described in appendix B.

We show that one loop correction to Fermion self energy is non-local divergent. This essentially

means that these divergences can not be cancelled by local counter terms. Note that this behaviour

is worse than that of a non-renormalisable theory where the UV divergences can be cancelled by

local counter terms, albeit an infinity of them in total.

4.1 Action for open Yukawa theory and Feynman rules

The action for unitary Yukawa theory is given by

S[φ, ψ] =

ˆ
d4x

[
− 1

2
zφ(∂φ)2 − 1

2
m2
φφ

2 + iZψ ψ̄ /∂ψ −mψψ̄ψ

−
(
λ3

3!
φ3 +

λ4

4!
φ4 + yφψ̄ψ

)]
,

(4.1.1)

where y is the Yukawa coupling. To construct open SK effective action from a unitary one, we

follow the procedure described in the last chapter. First we double the degrees of freedom:

(
φ, ψ

)
−→

(
φR, ψR

)
,
(
φL, ψL

)
. (4.1.2)
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R (L) fields evolve along the forward (backward) time on the SK contour. The SK action is given

by

Sunitary
SK = S[φR, ψR]− S[φL, ψL] . (4.1.3)

The above action has no mixed R-L term and the couplings are also real. Thus it describes a

unitary system. To get an open action out of (4.1.3), one needs to add all possible Feynman-

Vernon influence phases [22, 67] (which include addition of imaginary part to existing couplings).

Finally, the action for open Yukawa theory is given by

SSK =

ˆ
d4x
(
Lφ + Lψ + LYuk

)
, (4.1.4)

where Lφ is the action for open scalar field theory (discussed in the last chapter).

Lφ = −
[1

2
zφ (∂φR)2 +

1

2
m2
φφ

2
R +

λ3

3!
φ3
R +

λ4

4!
φ4
R +

σ3

2!
φ2
RφL +

σ4

3!
φ3
RφL

]
+
[1

2
z∗φ(∂φL)2 +

1

2
m2
φ
∗
φ2
L +

λ∗3
3!
φ3
L +

λ∗4
4!
φ4
L +

σ∗3
2!
φ2
LφR +

σ∗4
3!
φ3
LφR

]
+ i
[
z∆ (∂φR) · (∂φL) +m2

φ∆φRφL +
λ∆

2!2!
φ2
Rφ

2
L

]
.

(4.1.5)

where z∆,m
2
φ∆, σ3, σ4, λ∆ are the couplings corresponding to the R ,L mixing terms in the action.

Lψ in (4.1.4) is the open Dirac action with a mass term.

Lψ = −
[
zψψ̄R(−i/∂)ψR +mψψ̄RψR

]
+
[
z∗ψψ̄L(−i/∂)ψL +m∗ψψ̄LψL

]
+ i
[
zψ∆ ψ̄R(−i/∂)ψL +mψ∆ψ̄RψL

]
+ i
[
ẑψ∆ ψ̄L(−i/∂)ψR + m̂ψ∆ψ̄LψR

]
.

(4.1.6)

LYuk includes all possible open Yukawa action.

LYuk =−
[
yφRψ̄RψR + yσφLψ̄RψR

]
−
[
yκφRψ̄RψL + yρφRψ̄LψR

]
+
[
y∗φLψ̄LψL + y∗σφRψ̄LψL

]
+
[
y∗κφLψ̄RψL + y∗ρφLψ̄LψR

]
,

(4.1.7)

where yσ, yκ, yρ are R, L mixing terms in the above Yukawa interaction terms.

Note that we have chosen the coupling constants on L branch to be complex conjugate to that

of R branch. The couplings corresponding to L, R mixing terms are chosen such that the action

respects the SK CPT symmetry [79]. We write the full open Yukawa action in Lindblad form [79]

and the corresponding Lindblad conditions are the following.

Imm2
φ = m2

φ∆ , 2Immψ = mψ∆ + m̂ψ∆ , (4.1.8a)

Im zφ = zφ∆ , 2Im zψ = zψ∆ + ẑψ∆ , (4.1.8b)
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Imλ3 + 3 Imλ3σ = 0 , Imλ4 + 4Imλ4σ = 3λφ∆ , (4.1.8c)

Im y + Im yσ + Im yκ + Im yρ = 0 . (4.1.8d)

These conditions ensure that the SK action vanishes if we set φR = φL and ψR = ψL.

To justify perturbation theory, we assume all interaction couplings to be small. We also assume

that real part of a coupling is much smaller than its imaginary part. Using perturbation theory

we find the Feynman rules for propagators and vertices. Then we study one loop renormalisability

of this theory.

4.1.1 Propagators

There are four SK propagators for both scalar φ and Fermion ψ in the R-L basis. The explicit

derivation of the propagators using iε prescription for scalar field is given in (3.1.2). Given the

scalar propagators, Fermionic propagators are straightforward to find. The propagators and their

diagrammatic representation are shown in figure 1 and 2.

p→
R : φR φR

−i
p2+m2

φ−iε
p→

P : φR φL 2πδ+(p2 +m2
φ)

p→
M : φL φR 2πδ−(p2 +m2

φ)
p→

L : φL φL
i

p2+m2
φ+iε

Figure 1: SK propagators for the scalar field

p→
Rf : ψ̄R ψR

−i(−/p+mψ)

p2+m2
ψ−iε

p→
P f : ψ̄R ψL (−/p+mψ) 2πδ+(p2 +m2

ψ)
p→

Mf : ψ̄L ψR (−/p+mψ) 2πδ−(p2 +m2
ψ)

p→
Lf : ψ̄L ψL

i(−/p+mψ)

p2+m2
ψ+iε

Figure 2: SK propagators for the Dirac field
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4.1.2 Feynman rules

−iλ3 iλ∗3 −iσ3

iσ∗3 −iλ4 iλ∗4

−iσ4 iσ∗4 −λ∆

Figure 3: Feynman rules for scalar couplings

−iy −iyσ −iyρ −iyκ

iy∗ iy∗σ iy∗κ iy∗ρ

Figure 4: Feynman rules for scalar fermion couplings

The Feynman rules for cubic and quartic vertices are shown in figure 3 and 4. Given the

Feynman rules for vertices and propagators, one can compute correction to the self energies for

both scalar and fermion. Before proceeding further, let us fix a convention to name the Fermionic

loop integrals.

Scalar loop integrals (tadpole, bubble, triangle and square) are named as A,B,C and D type

integrals respectively [87, 88]. We will put ’f ’ in the superscript to refer a Fermionic propagator in

that loop. We demonstrate this by an example. Let us consider a bubble diagram with one scalar

and one Fermionic propagator as shown in figure 5. In case of bubble diagram, we can always
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1 2××

Bf
RP

Figure 5: One example of fermionic loop diagram in SK theory

choose the first propagator (from the left) to be Fermionic. Thus we can drop the scalar label from

the superscript. We call this diagram as Bf
RP .

4.2 Loop correction

4.2.1 Scalar tadpoles

×

(−iλ3)
2 AR

×

(iλ∗3σ)
2 AL

×

(−iλ3σ)AP

××

(−iy)AfR

××

(iy∗σ)AfL

××

(−iyκ)AfP

××

(−iyρ)AfM

Figure 6: One loop tadpole of φR

From our elementary understanding of unitary Yukawa theory, there are tadpole diagrams which

contribute to one point function of the scalar field. (The tadpole of a Fermionic field vanishes due

to underlying Lorentz invariance of QFT.) The contribution from these diagrams are divergent and

can be removed from the theory by introducing counter terms in the action. There are two types

of tadpole diagrams: scalar and Fermionic. The tadpoles are drawn in figure 6. The contribution
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from all of these diagrams are following.

−iλ3

2
AR +

iλ∗3σ
2
AL + (−iλ3σ)AP

+ (−iy)AfR + (iy∗σ)AfL + (−iyκ)AfP + (−iyρ)AfM

=
−i

(4π)2

1

d− 4

[
(m2

φ)(λ3 − σ∗3 + 2σ3)− (8m3
ψ)(y − y∗σ + yκ + yρ)

]
+ ... .

(4.2.1)

We see that above divergent piece is local. The scalar tadpole can be removed by a counter-term

of the form κφR to the action where κ is given by

i

(4π)2

1

d− 4

[
(m2

φ)(λ3 − σ∗3 + 2σ3)− (8m3
ψ)(y − y∗σ + yκ + yρ)

]
. (4.2.2)

4.2.2 Mass renormalization of the scalar field

Mass renormalisation is associated with the self energy correction of a field. The self energy to the

scalar field gets one loop correction from scalar tadpoles and scalar & Fermion bubble diagrams.

The relevant Feynman diagrams are drawn in figure 7, 8, 9 and 10.

× ×

(−iλ3)2

2 BRR(k)

× × ×

(iσ∗3)2

2 BLL(k)

× ×

(−iσ3)2BLR(k)

× ×

(iσ∗3)(−iλ3)
2 BPM (k)

× ×

(iσ∗3)(−iλ3)
2 BMP (k)

× ×

(−iσ3)2BPP (k)

× ×

−(λ3σ3)BPR(k)

× ×

−(λ3σ3)BMR(k)

× ×

(iσ∗3)(−iσ3)BPL(k)

× ×

(iσ∗3)(−iσ3)BML(k)

Figure 7: One loop corrections to m2
φ due to cubic couplings
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×
(−iλ4)

2 AR

×
(−λ∆)

2 AL

×
(−iσ4)AM

Figure 8: One loop correction to m2
φ due to quartic couplings

××

(−iy)2Bf2

RR

××

(iy∗σ)2Bf2

LL

× ×

(−iyκ)(−iyρ)Bf2

RL

××

(−iyρ)(−iyκ)Bf2

LR

××

(−iy)(iy∗σ)Bf2

PM

××

(iy∗σ)(−iy)Bf2

MP

××

(−iyκ)2Bf2

PP

× ×

(−iyρ)2Bf2

MM

Figure 9: One loop corrections to m2
φ due to fermionic couplings

The self energy of the scalar field, in dimensional regularisation, is given by

− izφ k2 − imφ
2

− i

(4π)2

[ 1

d− 4
+

1

2
(γE − 1− ln(4π))

]
[λ4 − iλ∆ + 2σ4]

(
Rem2

)
− i

(4π)2

[ 1

d− 4
+

1

2
(γE − 1− ln(4π))

][
(λ3)2 − (σ∗3)2 + 2

{
λ3σ3 + |σ3|2

} ]
+

4i

(4π)2

[ 1

d− 4
+

1

2
(γE − 1− ln(4π))

][
(k2 + 6m2

ψ)(y + y∗σ)(y − y∗σ + yκ + yρ)
]
.

(4.2.3)

××

(−iy)(−iyκ)Bf2

PR

× ×

(−iyκ)(−iy)Bf2

RP

××

(−iyρ)(−iy)Bf2

MR

× ×

(−iy)(−iyρ)Bf2

RM

××

(−iyκ)(iy∗σ)Bf2

PL

× ×

(iy∗σ)(−iyκ)Bf2

LP

××

(iy∗σ)(−iyρ)Bf2

ML

× ×

(−iyρ)(iy∗σ)Bf2

LM

Figure 10: One loop corrections to m2
φ due to fermionic couplings
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The terms in the above expression get contribution from various loop integrals. The second,

third and fourth line correspond to scalar A-type, scalar B-type and Fermionic B-type integrals

respectively. We find that the divergences to be local and thus can be removed by introducing a

local counter term to the action.

The anomalous dimension of the scalar field and its mass renormalisation can be found from

the self energy correction of the scalar field. The anomalous dimension is given by

γφ ≡
1

2

d ln zφ
d lnµ

= − 2

(4π)2
(y + y∗σ)(y − y∗σ + yκ + yρ) . (4.2.4)

The beta function for m2
φ is

d

d lnµ
(
m2
φ

)
=

4m2
φ − 24m2

ψ

(4π)2
(y + y∗σ)(y − y∗σ + yρ + yκ)

+
1

(4π)2

[
(λ3)2 − (σ∗3)2 + 2

{
λ3σ3 + |σ3|2

} ]
+

1

(4π)2
[λ4 − iλ∆ + 2σ4]

(
Rem2

φ

)
.

(4.2.5)

One can reproduce the well-known anomalous dimension and β function for φ in unitary Yukawa

theory by setting yσ = yκ = yρ = 0.

So far we have not noticed any unusual behaviour in open Yukawa theory. We will show that

the correction to Fermionic self energy suffers from non-local divergences. As the name ’non-local

divergence’ indicate, the UV divergent factors are not local in space and time.

4.2.3 Mass renormalization of fermionic field

The one loop self energy correction to Fermion gets contribution from loop integrals consist of

one Fermionic propagator and one scalar propagator. The corresponding Feynman diagrams are
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drawn in figure 11. The one loop correction is given by

(−iy)2Bf
RR(k,mψ,mφ) + (iy∗ρ)(iy

∗
κ)B

f
LL(k,mψ,mφ)

+ (−iyσ)2Bf
RL(k,mψ,mφ) + (−iyρ)(−iyκ)Bf

LR(k,mψ,mφ)

+ (−iy)(iy∗κ)B
f
PM(k,mψ,mφ) + (iy∗ρ)(−iy)Bf

MP (k,mψ,mφ)

+ (−iyρ)(−iyκ)Bf
PP (k,mψ,mφ) + (−iyρ)(−iyσ)Bf

MM(k,mψ,mφ)

+ (−iyσ)(−iy)Bf
RP (k,mψ,mφ) + (−iy)(−iyκ)Bf

PR(k,mψ,mφ)

+ (−iy)(−iyσ)Bf
RM(k,mψ,mφ) + (−iyρ)(−iy)Bf

MR(k,mψ,mφ)

+ (iy∗ρ)(−iyκ)B
f
LP (k,mψ,mφ) + (−iyσ)(iy∗κ)B

f
PL(k,mψ,mφ)

+ (−iyρ)(iy∗κ)B
f
LM(k,mψ,mφ) + (iy∗ρ)(−iyσ)Bf

ML(k,mψ,mφ) .

(4.2.6)

(−iy)2Bf
RR (iy?ρ)(iy

?
κ)Bf

LL (−iyσ)2Bf
RL (−iyρ)(−iyκ)Bf

LR

(−iyσ)(−iy)Bf
RP (−iy)(−iyσ)Bf

RM (−iy)(−iyκ)Bf
PR (−iyρ)(−iy)Bf

MR

(iy?ρ)(−iyκ)Bf
LP (−iyρ)(iy?κ)Bf

LM (−iyσ)(iy?κ)Bf
PL (iy?ρ)(−iyσ)Bf

ML

(−iyρ)(−iyκ)Bf
PP (−iy)(iy?κ)Bf

PM (iy?ρ)(−iy)Bf
MP (−iyρ)(−iyσ)Bf

MM

Figure 11: One loop mass renormalization of the fermion

To compute the loop integrals in (4.2.6), we use PV reduction formula summarised in appendix

B. The PV reduction formula for each diagram is non-local divergent1. To see this explicitly we

choose an integral Bf
PR(k,mψ,mφ) from the above set of integrals. This integral was chosen, in

1The PV reduction formula for Fermion self energy correction in unitary Yukawa theory consists of scalar A

and B type loop diagrams, which is naively non-local divergent. But, as one substitutes the divergences of A and

B type scalar loop integrals, the divergence becomes local.
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particular, because the combination of coupling constant that appears with this integral is unique;

it does not come with rest of the integrals. So, the divergence of Bf
PR does not cancel with the

rest. Thus analysing only Bf
PR will suffice.

The PV reduction of Bf
PR(k,mψ,mφ is given by

Bf
PR(k,mψ,mφ) = mψBPR (k,mψ,mφ)− /k

i AP (mψ)− (−k2 +m2
ψ −m2

φ)BPR (k,mψ,mφ)

2k2
,

(4.2.7)

The divergence structure of AP and BPR are following. (A detailed discussion on these integrals

can be found in A.2.)

AP (mψ) ∼
m2
ψ

(4π)2

2

d− 4
,

BPR(k,mψ,mφ) ∼ i

(4π)2

k2 −m2
ψ +m2

φ

2k2

2

d− 4
. (4.2.8)

Substituting these two back in (4.2.7) we get,

Bf
PR(k,mψ,mφ) ∼ i

(4π)2

[
mψ(k2 −m2

ψ +m2
φ)− /k

(
m2
ψ +

(k2 −m2
ψ +m2

φ)2

2k2

)]
× 1

2k2

2

d− 4
.

The divergent piece is clearly non-local since it has k2 in the denominator.

Now, since our original action is local, the counter-term action is expected to be local in a

renormalisable theory. Thus the one loop non-local divergences can not be cancelled in a renor-

malisable theory. Note that the divergence in (4.2.9) does not go away in the equal mass limit

m2
φ = m2

ψ. We write below the divergent piece of self energy correction for m2
φ = m2

ψ:

− (m− /k/2)
[
(y + y∗ρ)(y + yσ + 2iIm[yκ]) + (y + y∗κ)(y + yσ + 2iIm[yρ])

] 1

d− 4

i

(4π)2

−
/k

k2

[
(yσ − yρ)(y + yσ + 2iIm[yκ]) + (yσ − yκ)(y + yσ + 2iIm[yρ])

] 1

d− 4

i(m2)

(4π)2
+ ... .

(4.2.9)

The non-local divergent piece in the second line seems to go away if we set yσ = yρ = yκ which

imposes extra constraints on the dynamics. These constraints should not flow under renormalisa-

tion. One can show that (yσ − yρ) does flow under renormalisation. The non-local divergent piece

becomes local in the unitary limit (yσ, yρ, yκ = 0).
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4.3 Conclusion

In this chapter we write down the action for open Yukawa theory. We show that Fermion self

energy correction exhibits non-local divergence in this theory, unlike in open scalar field theory.

We do not have a way of resolving these divergences.

The absence of these pathological divergences in scalar field theory does not fit to our intuition,

provided Fermionic theory is not free from these. We suspect that either renormalisation prescrip-

tion for Fermionic theories are different or the scalar theory also possesses non-local divergences.

The later suspicion seems reasonable and those divergences might appear in higher order scalar

loop diagrams.

In the next chapter we will revisit open scalar field theory and check whether generic scalar

loop diagrams are also non-local divergent. We computed tadpole and bubble diagrams in §§3 to

self enerty and vertex factor corrections. One should also ensure, to show renormalisability, that

triangle and box diagrams are finite.
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Chapter 5

Non-local divergence in scalar loops: a

generic discussion

In this chapter our main focus is on computing and studying the structure of non-local divergences

which we pointed out in the last chapter. The structure of these divergences that appear in loop

integrals with SK propagators have quite complicated analytic structures where the answer for

the UV divergences depends sensitively on external momenta, e.g. whether external momenta

are space-like or time-like. The reader should compare this behaviour against usual Feynman

perturbation theory where loop integrals have nice analytic properties which allow them to be

Wick rotated and studied in Euclidean time. In the standard Feynman perturbation theory, the

UV divergences are solely due to high energy virtual particles which are local and insensitive to the

detailed structure of the external momenta. On the contrary, the complicated analytic structures

in open SK loop integrals preclude us from proposing a clean resolution to the problem of non-local

divergences.

5.1 Non-local divergences in generic scalar loop diagrams

5.1.1 A simple example

We move to describing the appearance of non-local divergences in a scalar one loop integral. The

Feynman rules (propagators and vertex factors) to write the loop integral, are given in 3.1.3. Using

those Feynman rules, let us consider the one loop diagram in figure 1 appearing as a part of the open

scalar perturbation theory. It is constructed by a ring of Wightman correlators (i.e., cut P type
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propagators). In particular we are interested in a (D−1)-gon diagram in D spacetime dimensions.

We will label the external momenta by pj=1,...,D−1 and call the loop momentum we integrate over

as q. The momenta appearing in the loop are then labelled successively as q+ k1, q+ k2, . . . where

we have defined the partial sums kj ≡
∑j

i=1 pi for future convenience. The partial momentum

sums ki have the same information as the external momenta pi and we will use it henceforth to

encode the external momentum data.

p1

pD−1

p4

p5
p3

p2 qq + k1q + k1

q + k2

q + k3 q + k4

Figure 1: The PD−1 diagram made of a ring of Wightman propagators . This illustrates in a simple way, interesting

UV divergences that occur in open QFTs.

In the momentum space, the Feynman integral for this diagram then takes the simple form

I[PD−1, {ki}] ≡
ˆ

dDq

(2π)D

D−1∏
j=1

2π δ+[(q + kj)
2 +m2] (5.1.1)

Here, PD−1 in the argument denotes the fact that there are (D − 1) number of P propagators.

We are interested in the structure of UV divergences in this integral. To begin with, we proceed

naively to estimate by power-counting and dimensional analysis the divergence of this diagram.

The naive dimension counting gives a degree of divergence as D − 2(D − 1) = 2 − D, which is

negative for D > 2. Thus, a naive expectation would be that, in D > 2, this integral would result

in a completely convergent expression. As we shall see in a moment, this expectation is entirely

wrong and the integral above, in fact, has an interesting UV structure. The crucial subtlety here

is that one is integrating over Lorentzian momenta and one cannot analytically continue/Wick
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rotate delta functions. To see this, let us begin by re-writing the above integral as

I[PD−1, {ki}] =

ˆ
dDq

(2π)D
2π Θ(q0)δ[q2 +m2]

D−2∏
j=1

2π Θ(q0 + k0
j )δ[2q · kj + k2

j ] (5.1.2)

For simplicity, let us assume that all the kµi are space-like and we will take them to be along the first

(D − 2) cartesian axes in the spatial directions, viz., we take kµi = |ki|êµi for i = 1, 2, . . . , (D − 2).

For example, inD = 4, we take k1 = |k1|êx and k2 = |k2|êy. Such a space-like external momenta are

appropriate if one is computing SK correlators in an open QFT of space-like separated operators.

Since we are taking k0
i = 0 by construction, all the step functions in the above integras collapse

into just a single step function Θ(q0).

Further, we are interested in the contributions from large value of q where we can approximate

δ[2q · kj + k2
j ] ≈ δ[2q · kj] and δ[q2 +m2] ≈ δ[q2]. The net effect of the delta/step functions is hence

to force the loops momentum q to be future light-like and be transverse to the hyperplane RD−2

defined by the external momenta.

Note that, the hyperplane spanned by D−1 external momenta is indeed RD−2 instead of RD−1

because of momentum conservation constraint
∑

i pi = 0 . Thus, the UV contribution in the

above integral comes essentially from integrating over future light-like vectors in the (x0, xD−1)

Minkowski plane (see fig. 5). As shown in the figure, we use Vc to denote the space spanned by

the external momenta of the open QFT whereas the orthogonal Minkowski plane is denoted by

V⊥. We denote by N+
⊥ the space of transverse, future-pointing null vectors.

Putting together the factors, we thus get a logarithmic UV divergence of the form

I[PD−1, {ki}]UV ≈
2

(2π)
∏D−2

j=1 2|kj|

ˆ Λ

0

dq0

2q0
≈ 1

2D−2(2π)Σc

ln Λ (5.1.3)

Here, in the first expression, the factor of 2 in the numerator comes from summing the contributions

from right moving/left-moving future light-like vector contributions. The factors of 2|kj| and 2q0

come from the delta functions. In the final expression, we have introduced Σc ≡
∏D−2

j=1 |kj|, which

is the volume of the hyper-rectangle formed by kµi . We are done !
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0

V⊥

q
q

D − 1

1, 2, . . . , D − 2

N+
⊥

Vc = RD−2
〈k1,k2,...,kD−2〉

Figure 2: Geometry of PD−1 loop : The external momenta form a RD−2 hyperplane denoted here by Vc. The UV part

of the loop integral comes from light-like excitations on the transverse Minkowski plane V⊥. The symbol N+
⊥ denotes

the space of transverse, future-pointing null vectors, which contribute to the divergence.

5.1.2 Enhancement of divergence

We have learnt in the example above that diagrams expected to converge by naive power counting

can, in fact, diverge. To see why, let us revisit the power-counting argument at the beginning of

this discussion and try to understand what went wrong.

The crucial step in this regard is the re-writing in Eq.(5.1.2). It is clear from that expression

that only one among the (D − 1) delta functions actually scale like 1
q2 . The rest of the delta

functions actually scale as 1
q
. We can do power-counting with this new understanding and we do

get a degree of divergence to be D−2−(D−2) = 0 which is consistent with logarithmic divergence

in the answer.

As we shall see, this transmutation of the degree of divergence due to delta functions is a

hallmark of open QFT divergences. As another example of this phenomenon consider the loop

integral given by

I[PNcRN−Nc , {ki, `j}] ≡
ˆ

dDq

(2π)D
2π δ+[q2 +m2]

∏Nc−1
j=1 2π δ+[(q + kj)

2 +m2]∏N−Nc
j=1 i[(q + `j)2 +m2 − iε]

, (5.1.4)

which corresponds to the diagram shown in fig.3 with Nc cut Wightman propagators and N −Nc

number of un-cut Feynman propagators. PNcRN−Nc in the argument simply denotes the number

of P propagators and R propagators. This has a naive degree of divergence given by D − 2 −

2(Nc − 1)− 2(N −Nc) = D − 2N . But, rewriting it as

I[PNc−1RN−Nc , {ki, `j}] =

ˆ
dDq

(2π)D
2π δ+[q2 +m2]

∏Nc−1
j=1 2π δ+[2q · kj + k2

j ]∏N−Nc
j=1 i[2q · `j + `2

j − iε]
, (5.1.5)
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qq + `1

q + k1

q + `2 q + k2

Figure 3: The PNcRN−Nc diagram : It is naively expected to scale with the UV cutoff as ΛD−2N , but the leading

divergence is actually enhanced to 1
kNc−1`N−Nc

ΛD−N−1 if even one cut Wightman propagator is present.

shows that the new degree of divergence is actually more and is given instead by

D − 2− (Nc − 1)− (N −Nc) = D −N − 1 .

In fact, by looking at the scaling of this integral with k and ` momenta, we can guess that the

cut-off dependence of divergences change at large `, k into

ΛD−2N 7→ 1

kNc−1`N−Nc
ΛD−N−1 , (5.1.6)

if even one cut Wightman propagator is present. As we shall show later, this new power-counting is

indeed the correct guess. As a careful reader might have guessed by now, for dimensional reasons,

the enhanced divergence goes hand in hand with momenta appearing in the denominator.

A more subtle example of failure of naive power counting comes about when a single anti-time

ordered propagator appears amidst the time-ordered Feynman propagators, viz.,

I[LRN−1, {`j}] ≡
ˆ

dDq

(2π)D
i

[q2 +m2 + iε′]
∏N−1

j=1 i[(q + `j)2 +m2 − iε]
, (5.1.7)

The naive power-counting again gives here a degree of divergence D − 2N . This can yet again be

proved to be wrong by an explicit calculation. The easiest way to show this is the use of Plemlj

formula

i

[q2 +m2 + iε′]
= − 1

i[q2 +m2 − iε′]
+ 2πδ+[q2 +m2] + 2πδ−[q2 +m2] . (5.1.8)

Substituting this into the integral above, the delta functions enhance the degree of divergence to

D−N − 1 with a non-local divergence of the form ∼ ΛD−N−1

`N−1 at large `, k. Going back to the steps
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in power counting argument, its failure here can be traced to the fact that poles of the anti-time

ordered propagator obstruct Wick-rotation. If one attempts to cross the poles via Plemlj formula,

one picks up residues with non-local divergences. The moral here is the failure of power counting

when Wick rotation is obstructed.1

Lest the reader concludes that the delta functions always make the divergence worse, we would

like to mention examples where delta functions serve to actually render a divergent diagram finite.

The simplest diagrams of this kind are diagrams that appear by cutting the diagrams of the

unitary theory which leads to Cutkosky rules [72]. A textbook example is the the cut self-energy

diagram in φ3 theory (see fig. 5). This belongs to a class of diagrams with two Wightman

correlators driving the loop energy in opposite directions (i.e., diagrams with both P and M

type Wightman propagators in the loop). The energy running in loops is bound by the opposite

Wightman propagators in this case, thus rendering the diagram UV finite.

To see how this works in general, consider a hexagon diagram with P and M propagators

adjacent to each other (see fig. 4 for example). Then the vertex between them is like a unitary

(or non Feynman-Vernon) vertex. The step functions of the cut Wightman propagators can be

combined into Θ(q0 +min{ki}P )Θ(−(q0 +max({ki}M)), which determines the support of the loop

integral . Now there are two cases:

• max{ki}M < min{ki}P : Then the integral is over the domain−min({ki}P ) < q0 < −max({ki}M).

Since q2 +m2 = 0 is one of the on-shell conditions, this means that ωq integral is also over a

finite domain. Hence the integral is finite.

• max{ki}M ≥ min{ki}P : Then the support of q0 becomes a measure zero set. Hence the

integral is zero.

5.1.3 Non-locality of divergences

Returning back to the PD−1 diagram, we note that the diagram is not only UV divergent, but the

divergences here are non-local. This follows from the fact that the external momenta appear in the

denominator of the divergence and such a divergence cannot be cancelled by local counter-terms.

This is in contrast to unitary field theories where UV divergences are always local and cancellable

by local counter-terms.
1We would like to thank Ashoke Sen for a discussion on this issue.
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p1

p6

p4

p5
p3

p2

q0

(q + p2 + p3)0

Effectively a unitary vertex

Figure 4: A hexagon one-loop diagram containing a unitary vertex; also shown in arrows the opposing direction of en-

ergy flow in the P and M Wightman propagators

q

q + k

Figure 5: Cut self-energy in φ3 theory in D = 4 : The delta functions render this diagram finite, though naive power-

counting suggests otherwise.
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We will begin by briefly reviewing why this is so, followed by an explicit argument for one

loop scalar diagrams. Let us first consider any UV-divergent one-loop diagram, of a closed scalar

QFT, defined by imposing some regulator. The standard textbook argument for the locality of

the divergence is that the diagram can be made “more convergent” by differentiating with respect

to the external momenta. If q is the loop momentum and ` is some linear combination of external

momenta, then differentiating a Feynman propagator with respect to `µ gives

∂

∂`µ

(
−i

(q + `)2 +m2 − iε

)
=

2i(qµ + `µ)

[(q + `)2 +m2 − iε]2
∼ 1

q3
as q →∞ (5.1.9)

Thus, differentiating with respect to external momenta always increases the number of powers of

q in the denominator. After Wick rotation, this is sufficient to conclude that if we differentiate the

diagram sufficiently many times with respect to the external momenta, the diagram will converge.

If the divergence can be annihilated by finite number of differentiations, it then follows that the

divergences should be polynomial in external momenta, and are hence local. The locality of these

UV divergences is what allows us to cancel them via local counter-terms in the Lagrangian.

We can try to extend this argument to loops with cut/Wightman momenta. Consider the

integral corresponding to the loop in fig. 3, viz.,

I[PNc−1RN−Nc , {ki, `j}] =

ˆ
dDq

(2π)D
2π δ+[q2 +m2]

∏Nc−1
j=1 2π δ+[2q · kj + k2

j ]∏N−Nc
j=1 i[2q · `j + `2

j − iε]
, (5.1.10)

where we have presented the integrand in the linear form. The reader can convince herself/himself

that differentiating this integral with respect to `µ gives no improvement vis a vis power counting

at large q. Thus, there is no amelioration of the divergence by differentiation, viz., differentiation

with respect to external momenta does not decrease the degree of divergence .

For a more explicit argument at one loop level, consider the integral corresponding to the

unitary diagram of the form
ˆ

dDq

(2π)D
1

N∏
i=1

i[(q + `i)2 +m2
i − iε]

. (5.1.11)

The standard estimate of the leading UV divergence goes as follows : combining the denominators

via Feynman parameters and shifting the loop momenta, we get

ˆ N∏
i=1

dxj δ(1−
∑

x)

ˆ
dDq

iN(2π)D
Γ(N)

(q2 +M2 − iε)N
(5.1.12)
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where we have defined

M2 ≡
N∑
i=1

xi(`
2
i +m2

i )−

(
N∑
i=1

`ixi

)2

. (5.1.13)

We can Wick rotate the integral above and then perform the sphere integrals to obtain

Γ(N)|SD−1|
iN+1(2π)D

ˆ N∏
i=1

dxj δ(1−
∑

x)

ˆ
qD−1
E dqE

(q2
E +M2)

N
, (5.1.14)

whose leading divergence can then be estimated as

Γ(N)|SD−1|
iN+1(2π)D

ˆ N∏
i=1

dxj δ(1−
∑

x)

ˆ Λ dqE
qE

qD−2N
E . (5.1.15)

This is the standard result that the degree of divergence in this case is D − 2N . Note the crucial

role played by Feynman parameters and Wick rotation in this argument. Both these techniques

fail for open QFT diagrams.

From the above formula, we can note the following points to be contrasted with the open QFT

divergences discussed before.

• The leading divergence of cut-free one-loop diagrams is always independent of external

momenta. This is because of the spherical symmetry of the integral. The leading divergence

in open QFTs on the other hand, depend on the external momenta and hence the IR data.

• The sub-leading divergences in general has at the most polynomial dependencies in the

external momenta. Thus the complete divergence is local. This is not true with open QFT

diagrams.

• The degree of divergence is D − 2N . So whenever D = 2N , we have the critical case of

logarithmic divergence. In that situation, there are no sub-leading divergences and the ex-

pression above gives the full answer. We have already discussed how the degree of divergence

need to be estimated with more care in open QFTs.

Finally, a careful reader might note that we have only shown that non-local divergences appear

in one of the diagrams in open QFT perturbation theory. There are many instances in unitary QFT

where particular diagrams contribute to non-local divergences which cancel out in the eventual

answer when the diagrams are summed [89, 90, 91, 92]. In the next section, we will show with a

particular example that this seems not to hold in open QFTs.
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5.2 Non-local divergences : open φ3 + φ4 theory

We revisit open φ3 +φ4 theory and study loop corrections more carefully. We study, in particular,

open triangle diagrams (C-type) which were presumed convergent (from our knowledge of unitary

scalar field theory) in §§3. We show that non-local divergences are present in triangle diagrams

and do not go away when summing over diagrams in a vertex correction. The action for open

φ3 + φ4 theory, as described earlier, is given by

Sφ = −
ˆ
ddx
[1

2
z (∂φR)2 +

1

2
m2φ2

R +
λ3

3!
φ3
R +

λ4

4!
φ4
R +

σ3

2!
φ2
RφL +

σ4

3!
φ3
RφL

]
+

ˆ
ddx
[1

2
z?(∂φL)2 +

1

2
m2?φ2

L +
λ?3
3!
φ3
L +

λ?4
4!
φ4
L +

σ?3
2!
φ2
LφR +

σ?4
3!
φ3
LφR

]
+ i

ˆ
ddx
[
z∆ (∂φR).(∂φL) +m2

∆φRφL +
λ∆

2!2!
φ2
Rφ

2
L

]
.

(5.2.1)

To proceed, we briefly summarise the classification of C-type integrals and comment on struc-

tures of non-local divergences.

5.2.1 C-type SK integrals in four dimensions

There are 43 C-type loop integrals in R-L basis. However we use CPT (described in (3.0.1)) and

cutting identity (see (3.1.14)) among all SK propagators to reduce the number of independent loop

integrals to four. We choose those to be the following: CRRR , CPRR , CPPR , CPPP . We write the

leading divergences of these loop integrals in this section. A detailed evaluation is done in C.3.

Single cut C-type: CPRR

The integral expression for CPRR is written below and the corresponding diagram is shown in fig.

6

CPRR = (−i)2

ˆ
d4q

(2π)4

2πδ+(q2 +m2)

[(q + `1)2 +m2 − iε] [(q + `2)2 +m2 − iε]
. (5.2.2)

The above integral is divergent and we regulate it using a hard cutoff regulator Λ. The explicit

evaluation of this integral is given in appendix C.3. Here, we will state the divergent piece of the

integral, given by

CPRR =
1

(4π)2

1

Σuc

tan−1

[
Σuc

`1 · `2

]
log Λ + . . . . (5.2.3)
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Here Σuc ≡
√
`2

1`
2
2 − (`1 · `2)2 is the area of a parallelogram formed by the uncut momenta. Note

that the Feynman iε prescription translates to shifting `0
j ’s by iε in the above formula i.e.`0

j →

`0
j + iε.

q

q + `1

q + `2

Figure 6: Triangle integral CPRR

Double cut C-type: CPPR

The diagram for CPPR is shown in figure 6 and its integral expression being

CPPR = (−i)
ˆ

d4q

(2π)4

2πδ+(q2 +m2) 2πδ+((q + k)2 +m2)

(q + `)2 +m2 − iε
. (5.2.4)

This integral vanishes for timelike k but has non-local UV divergence for spacelike k. A detailed

computation is done in C.3.2. We list the results below.

CPPR =


0, if k is timelike

iπ
(4π)2

csgn(k2`0−(`·k)k0+iε)√
−Σ2

c,uc

log Λ + . . . , if k is spacelike ,

where Σc,uc ≡
√
k2`2 − (k · `)2 is the area of a parallelogram formed by the cut momentum k and

the uncut momentum `.

q

q + k

q + `

Figure 7: Triangle integral CPPR
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Triple cut C-type: CPPP

The diagram for CPPP is shown in fig. 8 and the integral expression for CPPP is the following

CPPP =

ˆ
d4p

(2π)4
(2π)δ+(q2 +m2)(2π)δ+((q + k1)2 +m2)(2π)δ+((q + k2)2 +m2) (5.2.5)

q

q + k1

q + k2

Figure 8: Triangle integral CPPP

The solution to the above integral is given by

CPPP =


2π

(4π)2
1

Σc
log Λ + . . . , if k1, k2 span a spacelike subspace

Θoverall

8
√
−Σ2

, else,

where

Θoverall = Θ(ω0 −m) Θ

(
ω0 −

sgn(k0)√
−k2

(k1 · k)

)
Θ

(
ω0 −

sgn(k0)√
−k2

(k2 · k)

)
Θ(1− |β|) (5.2.6)

Given the above divergences, we compute correction to a vertex (e.g., σ3) in open φ3 + φ4 theory.

5.2.2 Correction to σ3 vertex due to triangle diagrams

There are 43 triangle diagrams contributing to the correction to σ3. However, many of these

diagrams are obtained just by interchanging the external legs. We draw only those SK diagrams

which cannot be obtained by interchanging the external legs. The diagrams can be found in figure

9, 10, 11, 12 and 13. For our convenience we have classified the triangle diagrams depending on

type of propagator (R,L, P,M) that appear in a diagram.

1. All three propagators are same: These type of diagrams can be found in fig. 9.

The algebraic expression for all diagrams with all identical internal propagators is given by

the following.

MI = (−iλ3)2(−iσ3)CRRR + (iλ?3)(iσ?3)2CLLL + (−iσ3)2(iσ?3)(CMMM + CPPP ) (5.2.7)
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(−iλ3)2(−iσ3) (iλ?3)(iσ?3)2 (−iσ3)2(iσ?3) (−iσ3)2(iσ?3)

Figure 9: Feynman diagram for one loop renormalization to σ3 - I. In these diagrams all of the internal propagators are

same.

2. Two propagators are same: These type of diagrams can be found in fig 10 and 11 and the

expression being the following.

MII =(−iσ3)3CRLR + (−iλ3)(−iσ3)2(CRPR + CRMR)

+ (−iλ3)(−iσ3)(iσ?3)CPRP + (−iσ3)(iσ?3)2CPLP + (−iλ3)(iσ?3)2CPMP

+ (iλ?3)(−iσ3)2CLRL + (iλ?3)(−iσ3)(iσ?3)CLML + (iλ?3)(−iσ3)(iσ?3)CLPL

+ (−iσ3)(iσ?3)2CMLM + (−iλ3)(−iσ3)(iσ?3)CMRM + (−iλ3)(iσ?3)2CMPM

(5.2.8)

MIII =(−iλ3)(−iσ3)(iσ?3)CRLR + (−iλ3)(−iσ3)2(CRPR + CRMR)

+ (−iλ3)(−iσ3)(iσ?3)CPRP + (iλ?3)(−iσ3)2CPLP + (−iλ3)(iλ?3)(−iσ3)CPMP

+ (−iσ3)(iσ?3)2CLRL + (−iσ3)(iσ?3)(iλ?3)CLML + (iσ?3)3CLPL

+ (−iσ3)(iσ?3)2CMLM + (−iσ3)3CMRM + (−iσ3)2(iσ?3)CMPM

+ one channel (p2 ←→ p3) .

(5.2.9)

3. All three propagators are different: These type of diagrams can be found in fig 12, 13 and

14. The algebraic expression being the following.

MIV+V+V I

= (−iσ3)2(iσ?3)CRLP + (−iσ3)2(iσ?3)CRLM + (−iλ3)(−iσ3)(iσ?3)CRPM

+ (iσ?3)(iλ?3)(−iλ3)CLMP + one more channel (p2 ←→ p3)

+ (−iσ3)2(iσ?3)CRLP + (−iλ3)(iσ?3)2CRLM + (−iλ3)(−iσ3)(iσ?3)CRPM

+ (iσ?3)(iλ?3)(−iλ3)CLMP + one more channel (p2 ←→ p3)

+ (−iσ3)2(iσ?3)CRLP + (−iλ3)(−iσ3)(iλ?3)CRLM + (−iλ3)2(iλ?3)CRPM

+ (iσ?3)2(−iσ3)CLMP + one more channel (p2 ←→ p3)

(5.2.10)
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(−iσ3)3 (−iλ3)(−iσ3)2 (−iλ3)(−iσ3)2

(−iλ3)(−iσ3)(iσ?3) (−iσ3)(iσ?3)2 (−iλ3)(iσ?3)2

(iλ?3)(−iσ3)2 (iλ?3)(iσ∗3)(−iσ3) (iλ?3)(iσ∗3)(−iσ3)

(−iσ3)(iσ∗3)2 (−iλ3)(−iσ3)(iσ?3) (−iλ3)(iσ∗3)2

Figure 10: Feynman diagram for one loop renormalization to σ3 - II. These set of diagrams consist of two identical

propagators

Before we sum over all triangle diagrams described above, we summarise the domains of diver-

gence of basis triangle diagrams so that we can choose suitable external momenta to simplify our

computation. The domains of divergence are the following.

• CRRR is convergent.

• CPRR is divergent for all external momenta.

• CPPR is divergent for space-like cut momentum and for all uncut momentum.

• CPPP is divergent for only space-like cut momenta.

The correction to σ3 vertex simplifies if we choose the cut or uncut momenta to be time-like. As

a result, only single-cut diagrams contribute to the divergence structure.
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(−iλ3)(iσ?3)(−iσ3) (−iλ3)(−iσ3)2 (−iλ3)2(iσ?3)

(−iλ3)(−iσ3)(iσ?3) (−iσ3)2(iλ?3) (−iλ3)(iλ?3)(−iσ3)

(−iσ3)(iσ∗3)2 (−iσ3)(iσ∗3)(iλ?3) (iσ∗3)3

(−iσ3)(iσ∗3)2 (−iσ3)3 (−iσ3)(iσ∗3)2

Figure 11: Feynman diagram for one loop renormalization to σ3 - III.

Summing over all contribution we get

MI +MII +MIII +MIV +MV +MV I

=
[
(−iσ3)3CRLR + (−iλ3)(−iσ3)2(CRPR + CRMR)

+ (iλ?3)(−iσ3)2CLRL + (iλ?3)(−iσ3)(iσ?3)CLML + (iλ?3)(−iσ3)(iσ?3)CLPL

]
+
[
(−iλ3)(−iσ3)(iσ?3)CRLR + (−iλ3)(−iσ3)2(CRPR + CRMR)

+ (−iσ3)(iσ?3)2CLRL + (−iσ3)(iσ?3)(iλ?3)CLML + (iσ?3)3CLPL

+ one channel (p2 ←→ p3)
]

+
[
(−iσ3)2(iσ?3)CRLP + (−iσ3)2(iσ?3)CRLM + (−iλ3)(−iσ3)(iσ?3)CRPM

+ (iσ?3)(iλ?3)(−iλ3)CLMP + one more channel (p2 ←→ p3)
]

+
[
(−iσ3)2(iσ?3)CRLP + (−iλ3)(iσ?3)2CRLM + (−iλ3)(−iσ3)(iσ?3)CRPM

+ (iσ?3)(iλ?3)(−iλ3)CLMP + one more channel (p2 ←→ p3)
]

+
[
(−iσ3)2(iσ?3)CRLP + (−iλ3)(−iσ3)(iλ?3)CRLM + (−iλ3)2(iλ?3)CRPM

+ (iσ?3)2(−iσ3)CLMP + one more channel (p2 ←→ p3)
]
.

(5.2.11)
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(−iσ3)2(iσ?3) (−iσ3)2(iσ?3) (−iλ3)(−iσ3)(iσ?3) (iσ?3)(iλ?3)(−iλ3)

Figure 12: Feynman diagram for one loop renormalization to σ3 - IV.

(−iσ3)2(iσ?3) (−iλ3)(iσ?3)2 (−iλ3)(−iσ3)(iσ?3) (iσ?3)(iλ?3)(−iλ3)

Figure 13: Feynman diagram for one loop renormalization to σ3 - V.

Using the cutting identity (R + L = P + M) and relations given in C.3.4, the above expression

can be simplified to

MI +MII +MIII +MIV +MV +MV I

= 2i
[
σ3

3 − λ3σ
2
3 − λ?3σ2

3 + λ?3σ3σ
?
3 + σ2

3σ
?
3 − λ3σ

?
3

2
]
CRPR(p1, p2, p3)

+ i
[
2σ3(λ3σ3 − λ3σ

?
3 + σ?3

2)− σ?3
3 + σ3σ

?
3λ

?
3 + σ2

3σ
?
3 + λ3σ3λ

?
3

]
× [CRRP (p1, p2, p3) + CPRR(p1, p2, p3)] .

(5.2.12)

Since CPRR, CRPR, CRRP are non-local divergent, the above expression is also non-local divergent.

Hence we conclude that non-local divergences do not cancel among diagrams in one loop correction

to σ3 in open φ3 +φ4 theory. We suspect that same conclusion holds true for any vertex correction.

5.3 Geometry of leading one-loop divergences in open QFTs

Taking cue from the kind of features we saw in §5.1, it is useful to define certain geometric objects

that can be associated to a generic one loop diagram. These objects play an important role

in analysis of one loop integrals. The geometry of loop integrals is a deep and a vast subject,

especially as it relates to the structure of cuts singularity structures and the constraints due to

unitarity [93, 94, 95, 96, 97, 98, 99].

As we have emphasised, the one loop integrals in open QFTs are very different objects with

entirely different analytic structure and unfamiliar UV behaviours. Despite that fact, we will find
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(−iσ3)2(iσ?3) (−iλ3)(−iσ3)(iλ?3) (−iλ3)2(iλ?3) (iσ?3)2(−iσ3)

Figure 14: Feynman diagram for one loop renormalization to σ3 - VI.

some striking resemblances to the geometric ideas that have appeared in the literature on unitary

theories [96]. The crucial differences here arise from the enhanced degree of divergence in our loops

arising from ‘linearisation’ of propagators by delta functions. As a result, quadric structures often

get replaced by linear structures, simplifying the analysis in comparison to unitary theories.

The reader familiar with the unitary side, will hopefully find that whereas analysis differs very

much in crucial details, the underlying philosophy is the same : the integrals are associated with

geometric structures in the momentum space. Polytopes in momentum space and quadrics in

Feynman parameters make their appearance, as in unitary theories [96], but in the somewhat

unusual context of UV divergences.

qq + `1

q + k1

q + `2 q + k2

Figure 15: The PNcRN−Nc diagram : The cut Wightman propagators carry momenta qµ, q + kµ1 , . . . , q + kµNc−1. The

un-cut Feynman propagators carry momenta q + `µ1 , . . . , q + `µN−Nc

Let us begin by considering a generic one-loop scalar diagram in D dimensions with N external

legs, Nc number of Wightman/P propagators and N − Nc number of Feynman/R propagators.

We will denote this diagram by PNcRN−Nc and the corresponding integral by I[PNcRN−Nc ]. This

is a class of diagrams which in many senses capture the essential feature of one loop diagrams in
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open QFTs. We will thus discuss these class of diagrams in detail in this section.

We label the internal momenta as shown in fig. 15. The momenta flowing through the

cut/Wightman P propagators are q, q + k1, q + k2, . . . , q + kNc−1 respectively while the momenta

flowing through the un-cut Feynman R propagators are q + `1, q + `2, . . . , q + `N−Nc respectively.

We call the momenta {ki} as cut momenta since they flow through cut propagators while the

momenta {`i} as uncut momenta since they flow through ordinary Feynman propagators. With

these definitions in place, we can define several geometric objects associated to the cut and uncut

momenta data. In what follows, we will assume the cut momenta to be linearly independent. As

is usual in QFTs, at special kinematics of measure zero, the diagrams might show special kinds of

divergences. But, we would be interested in divergences that happen for generic values of momenta

of non-zero measure.

We define the following geometric objects for future convenience :

• Cut momenta subspace, Vc: This is the vector space spanned by the cut momenta {ki}.

It has a dimension of Nc − 1 (taking this to be less than spacetime dimension D, as we

will assume from hereon). As we shall see later, this vector space controls one of the IR

pre-factors in the open QFT divergences.

• Parallelotope of cut momenta, Pc: The parallelotope (which is a higher dimensional

generalisation of parallelogram) is formed out of the cut momenta and it lies within Vc . The

inverse of the proper volume of this parallelotope appears in the non-local structure in the

UV divergent diagram fig. 15. We will denote its proper volume by Σc.

• Subspace transverse to the cut momenta, V⊥: This is also a vector space, which is the

orthogonal complement of Vc. It has a dimension of D−(Nc−1). In open QFT diagrams with

at least one cut/Wightman propagator, the dominant UV divergences come from fluctuations

having momenta along Vc.

• Positive Null cone transverse to the cut momenta, N+
⊥ : This is the intersection of

the positive null cone (i.e., the space of future-pointing light-like vectors) with the transverse

space V⊥. For the transverse space V⊥ to have null vectors at all, it has to be time-like.

Equivalently, the span of cut momenta Vc has to be space-like. The physical significance of

N+
⊥ lies in the statement that the leading divergences come from the loop momenta drawn

from N+
⊥ .
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With these basic definitions in hand , we would like to give a derivation of the leading UV divergence

of a class of diagrams in open QFT in the rest of this section.

5.3.1 The parallelotope of cut momenta and its relativistic kinematics

In this subsection, we will describe in some detail how the geometry of the cut momenta appear

in the IR pre-factors of open QFT divergences. Consider an integral of the form
ˆ

dDq

(2π)D
F [q, `j] 2πδ+(q2)

Nc−1∏
j=1

2π δ[2q · kj] , (5.3.1)

describing the leading UV behaviour of the diagram shown in fig. 15. Here, qµ denotes the loop

momentum to integrate with linear delta function constraints imposed on it by the cut-momenta

q + kj of the Wightman propagators. We use the symbol q + `i to denote other un-cut momenta

associated with Feynman propagators. Further, F [q, `j] is some Lorentz-invariant function of

qµ and the un-cut momenta. For the diagram above, it arises from the UV limit of Feynman

propagators and it takes the form

F [q, `j] =
1∏N−Nc

j=1 i(2q · `j − iε)
. (5.3.2)

Since, this particular form does not matter for the computation in this subsection, we will leave it

implicit for now.

Our goal in this subsection would be to perform the integral over the delta functions to reduce

the integral to a D−Nc + 1 dimensional integral. Without loss of generality, we will assume that

kµj are a set of Nc − 1 space-like vectors with Nc < D such that their spatial parts are mutually

orthogonal (i.e., ki · kj = 0 if i 6= j). We will also assume that any linear combination of kµj ’s is

also space-like.

• If their spatial parts were not mutually orthogonal to begin with, they can be made so by

Gram-Schmidt procedure and the delta functions can be rearranged without changing the

value of the integral.

• If they were not space-like, then the delta function with null-constraint q2 = 0 would have

no solutions. This follows from the fact that a vector transverse to a time-like vector should

necessarily be a space-like vector (this is obvious by going to the rest-frame of the time-like

vector in question). Thus, the above integral would evaluate to zero in that case. For the

same reason, we require that any linear combination of kµj ’s should also space-like.
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• If Nc ≥ D, there would have been no solution again to the linear constraints imposed by the

delta functions.

One of the main geometric objects of interest is the parallelotope formed by the momenta

kµj . We can define a Lorentz-invariant proper volume for this parallelotope by using the Gram

determinant

Σ2
c ≡

∣∣∣∣∣∣∣∣∣∣∣∣

k1.k1 k1.k2 · · · k1.kNc−1

k2.k1 k2.k2 · · · k2.kNc−1

...
...

...
...

kNc−1.k1 kNc−1k2 · · · kNc−1.kNc−1

∣∣∣∣∣∣∣∣∣∣∣∣
. (5.3.3)

Using the fact that ki are mutually orthogonal, we can do a short computation that yields the

answer for the proper volume as

Σ2
c =

(
1− v2

)Nc−1∏
j=1

k2
j . (5.3.4)

Here the vector v is defined by

v ≡
Nc∑
j=1

k0
j

|kj|2
kj , (5.3.5)

whose components along kj directions are given by

vj ≡
k0
j

|kj|
. (5.3.6)

To give a physical interpretation of v, note the fact that we should have Σ2
c > 0 because the

span of kµj ’s is space-like, by assumption. It follows that |v| < 1 and v can be thought of as

a velocity. Note that we can use this velocity to write k0
j = kj · v. This in turn implies that,

by boosting to a frame defined by the velocity, we can set to zero simultaneously all the time

components of the momenta kµj . Thus, the frame which is moving with this v elocity is the frame

of simultaneity for all kj and is also the frame where the energy of all the cut propagators, viz.,

(q + kj)
0 are equal. We can then recognise the relativistic/Lorentz-Fitzgerald contraction factor

γv ≡ 1√
1−v2 appearing in

Σc =
√

1− v2

Nc−1∏
j=1

|kj| . (5.3.7)
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With these definitions in hand, let us now perform the integral over the delta functions. We

will do this by choosing our co-ordinate axis appropriately : Let us choose the first Nc − 1 co-

ordinates to be along kj=1,2,...,Nc−1. We will denote the components of the loop momentum along

these directions as q||,j=1,2,...,Nc−1. The rest of the (D − Nc) spatial components perpendicular to

kj are labelled as q⊥,j=1,2,...,D−Nc .ˆ
dq0

2π

ˆ
dD−Ncq⊥
(2π)D−Nc

ˆ
dNc−1q||
(2π)Nc−1

F [q0, q⊥, q||, `j] 2πΘ(q0) δ
(
q2
⊥ + q2

|| − (q0)2
)

×
Nc−1∏
j=1

2π δ[2q||,j|kj| − q0 k0
j ] .

(5.3.8)

Using k0
j = vj|kj|, we can solve for the delta functions to get q|| = q0v. We can then perform the

integral over q|| which gives

1

2Nc−1
∏Nc−1

j=1 |kj|

ˆ
dq0

2π

ˆ
dD−Ncq⊥
(2π)D−Nc

2πΘ(q0) δ
[
q2
⊥ − (q0)2(1− v2)

]
× F [q0, q⊥, q|| = q0v, `0

j , `j⊥, `j||] .

(5.3.9)

We will now simplify this integral further by moving to the frame of simultaneity of the space-

like vectors kµj , i.e., we boost by a velocity v. The transverse/perpendicular components are

invariant under the boost, whereas the parallel components become

q|| = q0v 7→
(

1− vv

v2

)
· q|| + γv

vv

v2
·
(
q|| − q0v

)
= 0 ,

`j,|| 7→
(

1− vv

v2

)
· `j,|| + γv

vv

v2
·
(
`j,|| − `0

jv
)
≡ ˜̀

j,|| .
(5.3.10)

We will denote the new time components in the frame of simultaneity of kµj as q0
⊥ and `0

j⊥ respec-

tively. We have

q0 7→ γv
(
q0 − v · q||

)
= q0
√

1− v2 ≡ q0
⊥ ,

`0
j 7→ γv

(
`0
j − v · `j,||

)
≡ `0

j⊥ .
(5.3.11)

Using the Lorentz invariance of the function F [q, `j], we can then write

1

2Nc−1
√

1− v2
∏Nc−1

j=1 |kj|

ˆ
dq0
⊥

2π

ˆ
dD−Ncq⊥
(2π)D−Nc

2πΘ(q0
⊥) δ

[
q2
⊥ − (q0

⊥)2
]

× F [q0
⊥, q⊥, q|| = 0, `0

j⊥, `j⊥,
˜̀
j,||] .

(5.3.12)

We recognise here in the pre-factor, the inverse invariant volume of the cut momenta parallelotope

Σc. Further, if F is just a function of the dot product between qµ and `µj and does not involve any

factors of the form `i · `j, then the dependence on ̂̀j,|| completely drops out of the integral.
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To summarise the main result of this subsection, we have proven the following useful identity

ˆ
dDq

(2π)D
F [q, `j] 2πδ+(q2)

Nc−1∏
j=1

2π δ[2q · kj]

=
1

2Nc−1Σc

ˆ
dq0
⊥

2π

ˆ
dD−Ncq⊥
(2π)D−Nc

F⊥[q⊥, `j] 2πδ+

[
q2
⊥
] (5.3.13)

where the new loop function F⊥[q⊥, `j] is defined via

F⊥[q⊥, `j] ≡ F
[
q0
⊥, q⊥, q|| 7→ 0, `0

j 7→ γv
(
`0
j − v · `j,||

)
, `j⊥,

`j,|| 7→
(

1− vv

v2

)
· `j,|| + γv

vv

v2
·
(
`j,|| − `0

jv
)]

.
(5.3.14)

where the boost velocity to the frame of equal energy of the cut momenta (where kµj are purely

spatial) is given by

v ≡
Nc∑
j=1

k0
j

|kj|2
kj , γv ≡

1√
1− v2

, (5.3.15)

and Σc is the invariant volume polytope formed by kµj :

Σc ≡

∣∣∣∣∣∣∣∣∣∣∣∣

k1.k1 k1.k2 · · · k1.kNc−1

k2.k1 k2.k2 · · · k2.kNc−1

...
...

...
...

kNc−1.k1 kNc−1k2 · · · kNc−1.kNc−1

∣∣∣∣∣∣∣∣∣∣∣∣

1/2

=
√

1− v2

Nc−1∏
j=1

|kj| . (5.3.16)

The essential complication is this formula is the physics of the boost factors which capture the

relativistic kinematics. They simplify in the v → 0 limit, which is equivalent to working in the

frame of simultaneity of kµj from the start. Hereon, we will work in such a frame and the reader,

if interested, can easily go back to a general frame using the formulae given above.

Ignoring these kinematic factors, the important dynamical lesson here is that the leading di-

vergences arise completely from the interplay between

• IR pre-factor proportional to the inverse proper volume of cut momenta parallelotope,

• UV divergences from transverse, future pointing, light-like fluctuations, with momenta along

the transverse null-cone N+
⊥

We will next turn our attention to characterising the UV part of the loop integral.
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5.3.2 The transverse null fluctuations and their contribution to the di-

vergence

We now come back to the integral describing the leading UV divergence of the diagram shown in

fig. 15 :
ˆ

dDq

(2π)D
2πδ+(q2)

∏Nc−1
j=1 2π δ[2q · kj]∏N−Nc
j=1 i(2q · `j − iε)

=
1

2Nc−1Σc

ˆ
dq0
⊥

2π

ˆ
dD−Ncq⊥
(2π)D−Nc

2πδ+[q2
⊥]∏N−Nc

j=1 i(2q⊥ · `j⊥ − iε)
.

(5.3.17)

Here, we are working in a frame where all kµj to be purely spatial, in order to simplify the relativistic

kinematics. The corrected degree of divergence counting suggests that the above integral will

diverge as
ΛD−N−1

`N−NcΣc

,

and we would like to extract the precise form of this leading divergence.

Before we embark on a more detailed analysis of the integral, let us remark on the interesting

structure of this integral and its UV divergences. The expression here bears striking similarities

to the collinear divergences in scattering amplitudes dealt within the eikonal approximation (an

idea at the heart of both heavy quark effective theory[100] and soft-collinear effective theory[101]).

The integral above describes a hard particle world-line with momentum qµ emitting soft/collinear

particles with momenta `µj , suffering very little reduction in momentum. In the context of gauge

theory, such an emission of gluons with its associated IR divergences can be exponentiated into

a Wilson line. The difference here is that we are looking at a loop diagram and naively, the

divergence here is not IR but UV.

Let us come back to evaluating the integral under question. We will begin by perform this

integral by separating out the sphere integral over spatial parts of the loop momentum. We do

this by writing q⊥ = |q⊥|n̂, where n̂ varies over the sphere SD−Nc−1
⊥ , transverse to the cut momenta.

This yields

1

2Nc−1Σc

ˆ Λ

0

dq0
⊥

ˆ ∞
0

|q⊥|D−Nc−1d|q⊥| δ
[
|q⊥|2 − (q0

⊥)2
]

× 1

(2π)D−Nc

ˆ
n̂∈SD−Nc−1

⊥

1∏N−Nc
j=1 i(2|q⊥|n̂ · `j⊥ − 2q0

⊥`
0
j⊥ − iε)

.
(5.3.18)

Here ˆ
n̂∈SD−Nc−1

⊥

≡
ˆ
SD−Nc−1
⊥

dΩ[n̂]
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denotes the integral over the sphere SD−Nc−1
⊥ .

We can now do the integral over |q⊥| using the delta function. Since we are interested in the

large q0
⊥ contribution, we can then drop the small q0

⊥ contributions and then write

1

2Nc−1Σc

ˆ Λ dq0
⊥

2q0
⊥

(q0
⊥)D−N−1

× 1

(2π)D−Nc

ˆ
n̂∈SD−Nc−1

⊥

1∏N−Nc
j=1 i(2n̂ · `j⊥ − 2`0

j⊥ − iε)
.

(5.3.19)

Here, we have done the replacement ε 7→ εq0
⊥ which is admissible at large positive q0

⊥. We see in

the above expression a clean separation of the leading divergence into a product of three geometric

factors as advertised :

1. First, we have the proper volume of cut parallelotope Σc, defined in the previous subsection,

appearing in the denominator as
1

2Nc−1Σc

.

2. Next, we have the transverse sphere integral over the un-cut momenta

Ξuc⊥ ≡
1

2(2π)D−Nc

ˆ
n̂∈SD−Nc−1

⊥

1∏N−Nc
j=1 i(2n̂ · `j⊥ − 2`0

j⊥ − iε)
. (5.3.20)

This sphere integral is essentially an integral over the vectors nµ ≡ (1, n̂) in the future light-

cone. This can be made more explicit by introducing a time vector tµ ≡ (1,0), to write

Ξuc⊥ ≡
ˆ

dD−Ncn

(2π)D−Nc
δ(t · n+ 1)δ+(n2)∏N−Nc
j=1 i(2n · `j⊥ − iε)

. (5.3.21)

3. Lastly, we have a factor of ˆ Λ dq0
⊥

q0
⊥

(q0
⊥)D−N−1

from high frequency light-like fluctuations which provide the UV divergence. The leading

UV divergence of the diagram shown in fig. 15 then takes the form

Ξuc⊥

2Nc−1Σc

ˆ Λ dq0
⊥

q0
⊥

(q0
⊥)D−N−1 . (5.3.22)

This is the main result of this subsection.

As advertised, the leading divergence is consistent with the corrected degree of divergence

D − N − 1 for open QFT loop. More precisely, from the formula above, we make the following

observations about the degree of divergence:
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• If Nc = D, then there will be no integration to perform, and hence the result will always

be finite. This is simply because the delta functions/cut Wightman propagators of the loop

integral eat up all the components of the loop momentum.

• If Nc < D, we have three cases

1. If D −N < 1, there is no divergence.

2. If D−N = 1, the divergence is logarithmic and there are no sub-leading divergences.

3. If D − N > 1, the above result gives us the form of the leading universal divergence

only. The sub-leading divergences will in general depend on the masses of the various

propagators.

• If we restrict to the special case Nc = D − 1, the result above reduces back to the one

described in the introduction. In that case, there are no leftover angular integrals to perform

and the right answer is obtained by setting the volume of S0 to be |S0| corresponding to the

two branches of future light-cone.

5.4 Conclusion and discussion

We have shown in this chapter that a single scalar field theory exhibits non-local divergences in

one-loop correction to vertices. These divergences appear in certain non-unitary one loop diagrams

which have at least one cut internal propagator. While single cut diagrams always have this feature,

multiple cut diagrams have non-local divergences only for certain choice of cut momenta (momenta

flowing along cut propagators). The choice should be such that, there exists non-zero overlap of

the light cone with the plane transverse to cut-momenta.

One can show that the leading divergence of a non-local divergent diagram (with some open-

momenta and some unitary momenta) factorises into two parts. These parts admit an interesting

geometric interpretation. The part which comes from cut momenta, can be interpreted as the

inverse of volume of a paralellotope, with its sides being the cut momenta.

One possibility of appearing these divergences is that the bath may not be completely decoupled

from the system; some bath d.o.f. might be interacting with the high energy modes of system d.o.f.

A way to resolve this would be to come up with a microscopic description of the effective action in

weak-system-bath coupling limit. But we still lack such a description. One can also implement the

93



holographic construction [102, 103, 104] (will be discussed in the next chapter) to derive the SK

effective action of a system coupled to a CFT bath and reconcile with the non-local divergences.
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Chapter 6

Derivation of open effective action via

holography

Holography provides a playground for study of strongly correlated systems where analytic tech-

niques to compute response functions are limited. This approach has paid rich dividends over the

past two decades: ranging from understanding thermalisation [74], linear response and hydrody-

namics [105], to real-time transport computations [106]. Much of this success owes to the fact that

black holes in asymptotically AdS spacetimes are dual to thermal QFTs.

Here we will study open quantum field theory using holography, where d.o.f. of the quantum

system are non-trivially entangled with some external environment. The set-up we have in mind

is the following: consider a QFT say with one Bosonic degree of freedom Ψ(t,x) (for simplicity)

which is our system of interest. We will model the environment by another field theory, now with

many degrees of freedom Xi(t,x). The unitary microscopic theory is of the form:

Ss[Ψ] + Se[Xi] + Ss-e[Ψ, Xi] . (6.0.1)

The combined system and environment is prepared in some initial state, which we may even take to

be factorized between the respective degrees of freedom. Integrating out the environment degrees

of freedom Xi we end up with a non-unitary evolution of our system. The question we ask is to

find a local description of the open EFT (for our system degrees of freedom Ψ).

The set-up we have in mind is semi-holographic, cf., [107]. Say we wish to understand the

dynamics of a single bosonic degree of freedom which we continue to call Ψ(x) in d spacetime

dimensions. We imagine coupling this to a strongly coupled thermal environment comprising of
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some intrinsic microscopic degrees of freedom. For concreteness, one can imagine the environment

to be the thermal large N , strongly coupled, N = 4 Super Yang-Mills (SYM) theory (gauge group

SU(N)) in d = 4, or a large c thermal CFT in d = 2. Following common practice, we will often

refer to the system and the environment as the probe and the bath, respectively.

The coupling of the probe/system degree of freedom Ψ to the thermal bath is via a local

coupling
´
ddxΨ(x)O(x)where O(x) is a simple operator in the bath/environment theory. In the

aforementioned examplesO could be a low lying single trace conformal primary operator. Crucially,

the thermal bath theory is assumed to have a holographic dual. This will enable us model the

environment by a dual black hole geometry. The influence phases of our system are then encoded

in the real-time or Schwinger-Keldysh (SK) correlation functions of the environmental degrees of

freedom. The computation of the latter, thanks to the holographic map, is one which can be carried

out using classical fields propagating in a classical black hole background. From the holographic

standpoint, the problem therefore boils down to developing a formalism for computing real-time

observables in black hole backgrounds (or more generally in spacetimes with horizons).

Before commenting on the real-time computation let us first recall a well-known, but remark-

able, fact of the Euclidean gravitational path integral. Thermal boundary conditions require

that the Euclidean time (tE) direction be compact with period given by the inverse temperature

asymptotically. For the gravitational path integral these boundary conditions pick out the Wick

rotated black hole solution as the Gibbons-Hawking saddle point solution [108]. This is unlike

any non-gravitational system, where the Euclidean thermal circle is more of a computational aid,

the background geometry being non-dynamical. Said differently, gravitational dynamics interplays

non-trivially with thermal boundary conditions.

Given this solution, one way to pass to a real-time description is to slice open the Euclidean

solution at some instant of real-time, say at t = 0, which exposes quite naturally two copies of

the asymptotic region at (tE = 0 and tE = β
2
, respectively). This initial data can then be evolved

in real Lorentzian time to give the (future half) of the eternal black hole solution. This is the

gravitational preparation of the thermofield double state in the doubled field theory Hilbert space,

which in energy eigenbasis is expressed as

|TFD〉 =
1√
Z(β)

∑
n

e−
1
2
β En |ER

n〉 ⊗ |EL
n〉 (6.0.2)

where the R(L) refers to the asymptotic boundaries at tE = 0 (tE = β
2
).
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Insofar as thermal equilibrium properties are concerned, the thermofield double construction

proves ample. One gets to ask questions about correlation functions with operators inserted

in either copy of the doubled system. One can therefore view the gravitational path integral

as computing the following generating function for asymptotic observers (in asymptotically AdS

spacetimes)

ZTFD [JR, JL] = TrU(JR) ρ
1
2
β (U [JL])† ρ

1
2
β (6.0.3)

The fact that we slice open the functional integral midway is what is responsible for the fraction-

ation of the thermal density matrix ρβ.

To obtain real-time response one then has to analytically continue these results to the real-

time domain. In the absence of any sources deforming the state away from equilibrium there

is in principle no obstacle to carrying out this analytic continuation. However, once one moves

to the physics of systems in local equilibrium, or more generally out-of-equilibrium, which more

pertinently applies to our discussion of computing influence functionals, the thermofield double

state proves less useful. In this context the Schwinger-Keldysh formalism provides a cleaner and

more natural way for computing real-time observables by keeping manifest causality and unitarity,

without relying on the aforesaid analytic continuation. The Schwinger-Keldysh generating function

does not fractionate the density matrix, but rather computes the generating function:

ZSK [JR, JL] = TrU(JR) ρβ (U [JL])† . (6.0.4)

This fact is well-known in non-equilibrium QFTs where real-time observables, say linear response

captured by viscosity, conductivity, etc., are always computed (using Kubo formulae) from the

Schwinger-Keldysh formalism. The pictorial representation of the path integral contour shown in

1 provides a quick way to see the difference between the two constructions (cf., [73] for further

discussion).

Given this fact, it is natural to ask how the Schwinger-Keldysh construction can be adopted

to gravitational theories. We will primarily focus on situations where the system is prepared in a

thermal state. We wish to know how the gravitational dynamics fills in an asymptotic Schwinger-

Keldysh contour shown in 1(b). This question has been considered by many authors in the Ad-

S/CFT context over the years. In [109] the first proposal for computing real-time correlation

functions was given. These authors posited that one should consider the future half of the do-

main of outer communication of a Lorentzian black hole spacetime, and impose ingoing boundary
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CTFD

− iβ
2

− iβ
2

(a)

CSK

−i(β − ε)

−iε

(b)

Figure 1: A comparison of the (a) thermofield double and (b) Schwinger-Keldysh complex time contours for a sys-

tem prepared in a thermal state. The starting and end points of the contour are identified. The associated Euclidean

(imaginary time) periodicity is set by the inverse temperature β.

conditions on the future horizon to extract causal observables (retarded Green’s functions). In

addition they also argued for the absence of any boundary contribution from the horizon. This

prescription was justified shortly thereafter in [110] using the maximal Kruskal extension of the

black hole geometry (the logic was to exploit the analytic structure taking inspiration from the

Euclidean thermofield double construction). One limitation of this approach was that it was well

adapted to the computation of two-point functions, but it left implicit how to obtain higher point

functions. Nevertheless, over the years, various authors have attempted to use this prescription

for various applications [111, 112, 113, 114, 115].

In order to explain the subtlety let us remind the reader how Euclidean n-point correlation

functions in AdS/CFT are computed via Witten diagrams [116]. One first computes the appropri-

ate bulk-boundary propagators for various external operator insertions. These enable us to ‘evolve’

the corresponding fields into the bulk with sources set by the boundary conditions. One convolves

the bulk fields thus obtained using the bulk interaction vertices which are dictated by gravita-

tional dynamics. Since the fields interact locally, one has to integrate the position of the vertex

over the entire Euclidean bulk manifold. Modulo the choice of temporal boundary conditions one

expects something similar for the computation of real-time retarded observables. However, it is

was a-priori unclear what domain of the bulk geometry one ought to integrate the bulk interaction

vertex over, even assuming that the ingoing boundary conditions serve to pick out the appropriate

bulk-boundary propagator.

This issue was addressed in [103, 102] who gave a more detailed prescription for real-time

computations, arguing that one should fill in asymptotic Schwinger-Keldysh contours with piece-
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wise smooth geometries: real-time evolution sections of the boundary contour get filled in with

Lorentzian geometries, and imaginary-time segments with Euclidean geometries. These geometries

are glued together continuously along codimension-1 spacelike slices. The authors developed a ro-

bust holographic renormalization scheme for asymptotically AdS geometries [102]. Furthermore,

the ingoing boundary condition for retarded correlation functions was derived quite cleanly using

this prescription in [117]. This prescription was employed in the derivation of covariant holographic

entanglement entropy proposal [118].

Per se, it is then clear that in order to carry out the computation of real-time correlation

function of probe operators in a fixed state, one could simply use the prescription of [103, 102].

However, if one were to ask questions about dynamically evolving geometries, one realizes that

the piecewise smooth geometries pose a potential issue in the presence of horizons. Physically,

the question essentially becomes one of coming up with a prescription ensuring that effects of the

outgoing Hawking quanta are correctly accounted for (see [113, 114] for attempts in this direction).

While a complete answer to this question is still unclear, an interesting prescription was recently

given by [104] to address this lacunae in the probe limit (see also [119]).

The prescription of [104] postulates that the gravitational dual of the asymptotic Schwinger-

Keldysh contour is given by a complex two-sheeted spacetime. This geometry is made of two

copies of the black hole exterior smoothly glued together across the future horizon, with a particular

monodromy condition. One may view this as the statement that the asymptotic Schwinger-Keldysh

contour gets filled in by a complex geometry. This can be motivated by the slicing open the

Euclidean Gibbons-Hawking saddle [108] whilst incorporating the Schwinger-Keldysh boundary

conditions, as we have attempted to illustrate in 2. The authors of [104] already demonstrated

the efficacy of their prescription by obtaining the quadratic influence functional in a low frequency

and momentum expansion for a bulk scalar field in the probe limit.1

Subsequently, [120] explored how this prescription may be employed to study non-linear Langevin

dynamics of a single particle degree of freedom in quantum mechanics. Their analysis subjected

the prescription to the test of dealing with self-interacting fields in the bulk and demonstrated that

it continues to give reasonable answers. Specifically, the authors of [120] modeled the Brownian

particle using the holographic construction described in [121, 112]. Using the complex holographic
1The authors of [104, 119] also addressed the problem of Maxwell gauge field in the probe limit. However, as

pointed out in [104] many aspects of how the prescription works for gauge theories are still unclear.
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geometry of [104] to compute influence functionals, they demonstrated that general expectations

of non-linear Langevin dynamics explored in earlier [122, 123] was borne out. We will demonstrate

in the course of our analysis that the prescription correctly captures real-time observables and can

be used in the semi-holographic setting to model open effective field theories.

We have motivated the discussion in terms of invoking the holographic duality to learn about

influence functionals in an open quantum system. It is instructive to also keep in mind that

these influence functionals for holographic thermal baths in fact encode interesting semiclassical

gravitational information about black holes. In the semi-holographic set-up we motivated above,

the system degree of freedom Ψ gets imprinted upon by the characteristics of the environment.

Since our thermal environment is provided by a black hole, we would effectively be encoding

not only the dissipative behaviour of the horizon, which we know to be characterized linearly

by quasinormal modes, but also the fluctuations of the horizon. The latter are nothing but the

outgoing Hawking radiation. Since the quasinormal modes refer to the physical response of infalling

matter we would effectively be capturing, in the non-Gaussian influence functionals, the interaction

between infalling matter and the Hawking radiation.2

The coupling of AdS black holes to external systems has recently been of active interest in

the context of the black hole information paradox [124, 125] (cf., [126]). In these examples the

external system is treated as a passive reservoir wherein one captures the Hawking radiation. Our

discussion applies in this context as well; the external system’s observables will faithfully be able to

diagnose the interaction of Hawking radiation with infalling matter. The structure we get to probe

however is only the leading semiclassical pieces of the interaction. We are considering a single

gravitational saddle point configuration, and not including contributions from non-trivial replica

saddles which have been important in understanding the purification of the Hawking radiation and

the reproduction of the Page curve for AdS black holes [127, 128].

In this paper, we will be considering the coupling of our probe/system (modeled by a single

bosonic field) to a scalar operator in the holographic thermal system. Most of the technical

computations we report will involve computing Schwinger-Keldysh correlation functions of a scalar

field in an asymptotically AdS black hole background using the holographic Schwinger-Keldysh

geometry of [104]. This work had already considered the computation of the two point function
2The non-Gaussian correlations we compute holographically using the semiclassical gravity approximation are

suppressed in the planar expansion by powers of 1/N , as indeed are all higher point functions in a large N (or

large central charge) environment.
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in a low-energy gradient expansion, i.e., perturbatively at low frequencies and momenta. We

will extend this to higher point functions, but also show how to get results outside the gradient

expansion in two dimensional CFTs.

6.1 grSK: the gravitational Schwinger-Keldysh saddle

The Schwinger-Keldysh contour for a thermal state is a complex time path running from t = 0 to

t = T and thence to t = 0−i β as depicted in 1(b). Thus we have a contour in a complex time plane

for the temporal part of the action at the boundary for a holographic field theory. The proposal of

[104] is to extend this contour to a codimension-1 hypersurface in the complexified bulk spacetime

in gravity. To be specific, let us first introduce this geometry for stationary configurations with a

timelike Killing field, such as the planar Schwarzschild-AdSd+1 black hole.

We start with the metric written in ingoing Eddington-Finkelstein coordinates, which are reg-

ular at the future horizon, viz.,

ds2 = −r2 f(r) dv2 + 2 dv dr + r2 dx2 , f(r) = 1− rdh
rd
. (6.1.1)

The coordinate v is identified with the time coordinate t on the boundary of the spacetime r →∞,

which as we have argued, is to be interpreted as a curve in the complex plane. The idea is to also

upgrade the radial coordinate to the complex domain and pick a codimension-1 slice through the

resulting complex spacetime.

Operationally, we in fact upgrade radial tortoise coordinate to a complex variable, which we

refer to as the mock tortoise coordinate, ζ. We define this coordinate by the differential relation:

dr

dζ
=
i β

2
r2 f(r) , (6.1.2)

where β = 4π
d rh

is the inverse temperature of the black hole. The rationale for introducing this

coordinate is that ζ picks up a logarithmic branch cut from the integral about the zero of the em-

blackening function f(r) of the black hole. The choice of normalization is such that the monodromy

around this cut is set to unity. The coordinate ζ can be viewed as parameterizing a two-sheeted

surface, each of which can be thought of as the bulk extension of the Schwinger-Keldysh contour.

On each sheet ζ has an imaginary part running from 0 at the AdS boundary to ∞ at the horizon.

In addition it has a real part which differentiates the two sheets and is given by the monodromy

around the horizon. By convention we will choose one of the sheets to have vanishing real part,
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and the other to have unit real part (this is based on our choice of normalization). We will also

cut-off the AdS geometry at a radial cut-off r = rc for computational ease. With this choice, we

have the two branches on which the mock tortoise coordinate asymptotes to

ζ(rc + i ε) = 0 , ζ(rc − i ε) = 1 . (6.1.3)

A section of geometry in the mock tortoise complex plane is illustrated in 3.

The metric then takes the form

ds2 = −r2 f(r) dv2 + i β r2 f(r) dv dζ + r2 dx2 , f(r) = 1− rdh
rd

(6.1.4)

where we treat r(ζ) using (6.1.2). We will refer to this geometry as the gravitational Schwinger-

Keldysh (grSK) saddle or geometry. One can integrate (6.1.2) explicitly to find that the mock

tortoise coordinate for Schwarzschild-AdSd+1 geometries in terms of a hypergeometric function,

viz.,

ζ + ζc =
i d

2π (d− 1)

(
r

rh

)d−1

2F1

(
1,
d− 1

d
; 2− 1

d
;
rd

rdh

)
, (6.1.5)

where ζc is chosen to make ζ = 0 at r = rc + i ε. The branch-cut of the hypergeometric function

is taken to run from r = rh to ∞.3

One can motivate the grSK geometry by recalling the Schwinger-Keldysh generating function

(6.0.4) which computes casual response of the thermal state (as well as the fluctuations thereabout).

In particular, it requires that we do not fractionate the thermal density matrix. Since the excursion

into the complex time domain between the two segments of the contour on the boundary in 1(b)

is infinitesimal, the gravity saddle point should respect this separation. One way to achieve this is

to prepare the thermal state using the Euclidean path integral. The real-time part of the contour

can thence be obtained by slicing open the Euclidean black hole solution around t = i ε and

t = −i β + i ε and continue the geometry into the Lorentzian section. The evolution of the slice

at t = i ε will give a section of the domain of outer communication of the Lorentzian black hole

geometry. The slice at t = −i β + i ε will lead to something similar with a reversed temporal

direction. These are the two slices of the geometry living at ζ = 0, 1, respectively.

This basic picture was first espoused in [117], but the prescription of [104] has the added

advantage of smoothly connecting the two slices across a ‘horizon-cap’. The resulting geometry is

smooth and is coordinatized by (6.1.4). Pictorially, the construction is depicted in 2.

3It is actually convenient in explicit computations to work with a redefined radial coordinate % = rd

rdh
, which is

the argument of the hypergeometric function.
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Now that we have identified the grSK geometry we can explain how to study dynamics there-

upon. One should think of all the fields as residing on a complex ζ contour and upgrade the

classical bulk action to a contour integral over the mock tortoise coordinate. We write:

Sbulk =

˛
dζ

ˆ
ddx
√
−g L[gAB,Φ] , (6.1.6)

where xµ are the boundary coordinates. We will use this form of the action for computations of

influence functionals. Before we get to those however, we describe how to generalize our construc-

tion covariantly to spacetimes with a Killing horizon, and also explain some useful properties of

the grSK geometries.

Covariant grSK spacetime: While we described the construction in a coordinate dependent

manner, one can give a more covariant presentation of the same. We can describe this for any

spacetime with a smooth future horizon. Pick some intrinsic coordinates on the spatial sections of

the horizon, call them x. One can let the temporal evolution be determined by the affine parameter,

v, along the horizon generators. A natural radial coordinate r can be chosen by demanding that it

be generated by the null normal to the horizon, normalized with respect to the horizon generators,

i.e., ∂v · ∂r = 1. For a non-degenerate horizon one has ∂v being timelike outside the codimension-1

null hypersurface (the future horizon). In a local neighbourhood of the horizon one would then end

up with a metric of the form (6.1.1) with f(r) having a simple zero. The details of the rest of the

geometry will depend on the asymptotics etc., but the part of the construction that matters for us

is indeed the neighbourhood of the future horizon. One can now convert this classical geometry to

a two-sheeted geometry with a gluing condition across the horizon as described above by replacing

r → ζ.

To illustrate the construction more generally, it is sufficient to consider the near-horizon region

of the spacetime. For non-degenerate black holes this is given by the Rindler geometry. In this

case we have the familiar form of the geometry as well as the ingoing coordinatization to be given

as:

ds2 = −r2 dt2 + dr2 = −r2dv2 + 2rdvdr = 2dvdρ− 2ρdv2 . (6.1.7)

Here we have defined ρ ≡ 1
2
r2. It is then easy to explicitly identify the mock tortoise coordinate,

ζ = 1
2πi

log ρ on the primary branch (we work with the Rindler temperature normalized to be 2π).

The grSK Rindler geometry would then take the form

ds2 = 2e2πiζ dv(2πidζ − dv). (6.1.8)
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grSK time reversal: Before proceeding further, it is useful to note one useful feature of the

grSK geometries. These geometries are not time reversal invariant as is indeed appropriate for the

Schwinger-Keldysh dual. However, the Schwinger-Keldysh construction has a Z2 involution that

can be thought of as time-reversal (cf., [73] for a discussion). As described in [120] the geometry

does indeed have an involution which can be used to map ingoing solutions to outgoing ones. In

the coordinates used in (6.1.4) the transformation takes the form:

v → i β ζ − v , ω → −ω (6.1.9)

where ω is the frequency conjugate to v. More generally, on tensor valued fields the map acts via

an idempotent (1, 1) tensor:

T B
A ≡


1 i β 0

0 −1 0

0 0 δij

 , T B
A T C

B = δ C
A . (6.1.10)

Time reversal on tensors by contracting indices appropriately, which can be inferred from the

action on one-forms and vectors, respectively. These are given to be:

WA(v, ζ,x) 7→ T B
A WB(iβ ζ − v, ζ,x) ,

VA(v, ζ,x) 7→ VB(iβ ζ − v, ζ,x) T B
A .

(6.1.11)

It is useful to write these equations in terms of ingoing and outgoing modes explicitly, which we

denote with superscripts ‘±’. So one has

f−(v, ζ,x) = f+(i β ζ − v, ζ,x) (6.1.12)

leading to the general tensor transformation:(
T+
)B1···Bm
A1···An

7→ T C1
A1
· · · T Cn

An

(
T−
)D1···Dm
C1···Cn

T B1
D1
· · · T Bm

Dm
. (6.1.13)

We will exploit this symmetry to construct solutions of the scalar wave equations in an asymptot-

ically AdS grSK geometry to obtain the corresponding boundary-bulk Green’s functions.

6.2 Open scalar field theory and holographic baths

Our goal in this chapter is to construct the open effective field theory of a single scalar degree of

freedom coupled to a holographic thermal field theory. We will start by describing the general set-

up and then specialize to the case of two dimensional theories. We will first begin our description by
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focusing on the ‘bath/environment’ theory with a holographic dual and how its real-time correlators

can be computed via AdS/CFT. We will then describe how this computation amounts to deriving

the open effective theory for the probe.

6.2.1 General set-up

Let us consider a scalar probe Ψ(x) coupled to a d-dimensional field theory with fields denoted

collectively by X. The latter is taken to be in a thermal state and we let O ≡ O[X(x)] be a local

gauge invariant operator in this theory. The action for our system is then

S =

ˆ
ddx

(
L[Ψ] + L[X] + Ψ(x)O(x)

)
. (6.2.1)

We wish to integrate out the thermal degrees of freedom characterized by X and derive an effective

action for Ψ. The couplings in Seff[Ψ] are determined by standard sum rules in terms of the

Schwinger-Keldysh thermal correlators of the environment variables X [22, 23] (see also [76]).

So in what follows we will focus on computing thermal Schwinger-Keldysh observables for the

environment, with the understanding that these feed into the effective action of our open quantum

system. The implications for the open effective theory will be described below in 6.2.2.

The thermal field theory we consider will be taken to be holographic. For example we can

consider S[X] to refer to a strongly coupled, planar gauge theory in d > 3 (like N = 4 SYM) or

a large c 2d CFT. Concretely, in the familiar duality between SU(N) N = 4 Super Yang-Mills

(SYM) and string theory on AdS5 ×S5, the map between parameters is

g2
YM N ∼

(
`AdS
`s

)4

, N ∼
(
`AdS
`
P

)4

. (6.2.2)

where `s is the string length scale, and `
P

the five-dimensional Planck scale. We will work in

the regime N � 1 and g2
YM N � 1 whence the holographic system can be described by classical

gravitational dynamics on AdS5 ×S5.

The gravitational dual description is in terms of a planar Schwarzschild-AdSd+1 black hole,

whose metric in ingoing coordinates was presented in (6.1.1). The scalar operator, O, is charac-

terized by its conformal dimension ∆ and maps, under the AdS/CFT dictionary, to a scalar field

Φ propagating on this black hole background with mass m2 `2
AdS = ∆(∆ − d). In particular, the

marginal case ∆ = d corresponds to m2 = 0 in AdS. The correlation functions of the operator O

can be computed by studying the dynamics of Φ in the gravitational theory. For the purposes of
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our discussion we will model the scalar dynamics by a minimally coupled scalar with a contact

self-interaction. For the most part the self-interacting scalar action we work with takes the form:

SΦ = −
ˆ
dd+1x

√
−g

[
1

2
gAB ∂AΦ∂BΦ +

1

2
m2 Φ2 +

λn
n!

Φn

]
. (6.2.3)

While this will be sufficient to illustrate the general features, it should be borne in mind that one

can obtain in actual (top-down) holographic models, such effective action for the bulk fields using

dimensional reduction from 10 or 11 dimensional supergravity.

The above discussion describes the basic set-up for any AdS/CFT computation. However, for

the purposes of our real-time computation we would need to upgrade this action to reside on the

gravitational Schwinger-Keldysh black hole geometry (6.1.4). This is readily done, for we simply

change coordinates and rewrite the scalar action as a contour integral over the grSK geometry. To

wit,

SΦ = −
˛
dζ

ˆ
ddx
√
−g

[
1

2
gAB ∂AΦ∂BΦ +

1

2
m2 Φ2 +

λn
n!

Φn

]
. (6.2.4)

We will study this problem in general dimensions, constructing first the boundary-bulk propagators

on the grSK geometry. This involves only the quadratic part of the action; we essentially need to

invert the kinetic terms on the grSK geometry.

The boundary to bulk propagators will be specified by suitable boundary conditions around

the horizon-cap in the geometry (6.1.4) and non-normalizable boundary conditions characterizing

sources on the AdS boundary. We will find that there are two types of propagators: retarded

(ingoing) and advanced (outgoing). They will be related in a simple manner by the time-reversal

involution identified at the end of §6.1. These Green’s functions can be obtained by solving the

linear scalar wave equation on the grSK geometry. Working in momentum space variables allows

mode decoupling as usual. For a general field f on the grSK geometry we adopt the following

notational contrivance for Fourier transforms:

f(v, ζ,x) =

ˆ
dω

2π

dd−1k

(2π)d−1
f(ω, ζ,k) e−i ω v+ik·x ≡

ˆ
k

fk e
i k x . (6.2.5)

In general d dimensions we will not be able to solve for the propagator in an explicit analytic

manner, as the wave equation on the Schwarzschild-AdSd+1 black hole is not known to admit

closed form solutions. Hence we will resort to a gradient expansion in the frequencies and momenta,

aiming for a low-frequency, long-wavelength expansion. In d = 2 however we will be able to obtain

closed form expressions for the propagators.
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Once we have obtained the boundary to bulk propagators we can compute higher point functions

using standard Witten diagram technology in the grSK geometry. Consider the computation of the

4-point function of the operator O in the boundary theory on the Schwinger-Keldysh contour. Of

the 4! Wightman functions with various time-orderings, 8 are computed by the Schwinger-Keldysh

time-ordering. This is clear from the generating functional (6.0.4); on the Schwinger-Keldysh

contour operators can be inserted either in the forward (R) or backward (L) segments, effectively

doubling the number of correlators. These correlation functions are simply related via the Keldysh

rules to sequences of nested commutators and anti-commutators of the operator O with suitable

time-ordering step-functions, see [63, 73]. Furthermore, the thermal KMS relations group the

correlation functions into orbits of 4 elements (coming from cyclic symmetry of the thermal trace)

[69].

It is convenient to introduce a couple of different basis of operators and sources which are

convenient in the Schwinger-Keldysh formalism for various computations. First, we introduce the

average-difference or Keldysh basis

operators : Oa =
1

2
(OR +OL) , Od = OR −OL ,

sources : Ja =
1

2
(JR + JL) , Jd = JR − JL .

(6.2.6)

Within the Schwinger-Keldysh literature, the average/difference fields are also sometimes referred

to as classical/quantum components respectively. The Keldysh basis naturally separates out an

averaged mean field vs the corrections due to quantum/statistical fluctuations. Another useful

basis which manifests the KMS relations is the retarded-advanced (RA) basis4

J̄F (ω,k) ≡ −
(

(1 + nω) JR(ω,k)− nω JL(ω,k)

)
,

J̄P (ω,k) ≡ −nω
(
JR(ω,k)− JL(ω,k)

)
,

(6.2.7)

where nω is the Bose-Einstein statistical factor:

nω ≡
1

eβω − 1
. (6.2.8)

As we shall see below the distinction between the P and F combinations naturally shows up on

the holographic side as the distinction between the ingoing modes and the outgoing modes.
4Per se, our definition of the retarded-advanced basis differs mildly from what is commonly used in the lit-

erature say in [63, 73]. The choice we make is inspired by certain simplifications for the spectral decomposition,

not only of Schwinger-Keldysh observables, but also of the more general out-of-time-order correlation functions as

described in [70].
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The structure of the influence functionals we wish to extract can be now succinctly summarized

as follows. Having solved for the field Φ in terms of sources JR and JL on the asymptotic boundaries

of the AdS grSK geometry the influence functionals are obtained from the generating functional,

assuming an n-point bulk contact interaction:

S(n) ∝
n∏
i=1

ˆ
ki

δ(
n∑
i=1

ki)

˛
dζ

n∏
i=1

Φ(ζ, ki)

≡
ˆ n∏

i=1

ddki
(2π)d

(2π)d δ(
∑
i

ki)

˛
dζ

n∏
i=1

Φ(ζ, ki)

=

ˆ n∏
i=1

ddki
(2π)d

(2π)d δ(
∑
i

ki)

[
Ip,n−p(k1, k2, · · · , kn)

p∏
i=1

Ja(ki)
n∏

j=p+1

Jd(kj)

]

=

ˆ n∏
i=1

ddki
(2π)d

(2π)d δ(
∑
i

ki)

[
Ip,n−p(k1, k2, · · · , kn)

p∏
i=1

J̄F (ki)
n∏

j=p+1

J̄P (kj)

]
.

(6.2.9)

In case there are lower-point contact interactions in the bulk, then we should also include tree level

Witten diagrams where we have bulk-bulk propagators between the vertices of such lower order

contact terms. While self-evident we nevertheless provide a brief argument for this prescription in

Appendix D.3.

We have given the influence functionals both in the average-difference basis, denoted by I

as well as in the retarded-advanced basis, denoted I. We will later write down expressions for

them directly in terms of scalar Green’s functions. However, there are some general statements

that one can make regarding their structural properties prior to any explicit computation, which

follow directly from the generating function (6.0.4). In the average-difference basis the fact that

ZSK[J, J ] = Tr(ρβ) implies that

Ia···a(k1, k2, · · · , kn) = 0 . (6.2.10)

This is reflection of the Schwinger-Keldysh collapse rule: the difference operators (equivalently the

average source) cannot be futuremost.

In the retarded-advanced basis the fact that we have folded in the statistical factors makes not

only the Schwinger-Keldysh collapse rule manifest, but also incorporates the KMS condition. We

have

IP ···P (k1, k2, · · · , kn) = 0 = IF ···F (k1, k2, · · · , kn) . (6.2.11)

We shall see the holographic SK geometry naturally incorporates these relations through the

smoothness of the solution across the future horizon cap region that glues together the two sheets
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of grSK geometry.

6.2.2 Deriving an open EFT from holography

In 6.2.1 we have described how one could get a generating functional for Schwinger-Keldysh cor-

relators from holography. This generating functional is evaluated in the presence of a source J

for an operator O in the theory with holographic dual. This selfsame generating functional has

another physical interpretation as emphasized by Feynman and Vernon [22] in their seminal work

on open quantum systems.

The form of the coupling between the probe and the bath systems in (6.2.1) suggests that we

can interpret the source J of the operator O as the probe field Ψ itself. Further assuming that

the dynamics of our probe system is slow, we can then integrate out the ‘fast’ degrees of freedom

which make up the environment. This will obtain for us an effective SK action for this probe, which

was termed as the influence functional of the probe in [22]. The Schwinger-Keldysh generating

functional of the CFT ZSK[JR, JL] can hence be given an alternate interpretation as the influence

functional of the probe SIF[ΨR,ΨL].

Various structural features we described above for the generating functional can then be re-

interpreted as necessary features for the probe influence functional. If the environment is suffi-

ciently forgetful, one would expect that a local influence functional could be written down for the

probe. We will indeed see that the holographic influence functionals derived this way do satisfy

this property. Given the difficulty of constructing local influence functionals from perturbative

methods (see the introduction of this chapter), this is indeed a fortunate circumstance. We will

show that a variety of open EFTs can be derived this way by using grSK geometry and holography.

The KMS conditions and Schwinger-Keldysh collapse rule then have a definite counterpart from

the influence functional perspective. One can first of all construct a stochastic field theory that is

dual to the influence functional of the open system. In this stochastic field theory, the structural

features described above get re-interpreted as non-linear generalizations of fluctuation-dissipation

theorems (FDTs). Our holographic construction naturally leads to these non-linear FDTs via the

physics of the Hawking radiation and its interaction with the ingoing modes. As far as the authors

are aware, this is the first instance where these non-linear FDTs are derived within a field theoretic

setup by integrating out bath degrees of freedom.5

5The particle analogues of non-linear FDTs for a Brownian particle have for instance appeared in [122, 123,
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The stochastic description for the dynamics of the open system degree of freedom which follows

from the influence functionals SIF[ΨR,ΨL] can be obtained in the following manner. We work in

the average/difference basis Ψa and Ψd defined analogously to (6.2.6) for the system variables. The

idea is to write the dynamics of the average field Ψa as a Langevin equation after eliminating the

difference or fluctuation field Ψd. We recall that the average field is the ‘classical’ variable, where

the difference field is the ‘stochastic/fluctuation’ variable. One starts with the following ansatz for

the Langevin dynamics

E [Ψa, η] = f η ,

E [Ψa, η] ≡
(
−K ∂2

t +D∇2 + γ ∂t
)

Ψa

+
n−1∑
k=1

(
θk
ηk−1

k!

Ψn−k
a

(n− k)!
+ θ̄k

ηk−1

k!

Ψn−k−1
a

(n− k − 1)!
∂tΨa

)
.

(6.2.12)

The parameters {K, D, γ, θk, θ̄k} are coupling constants, to be determined in terms of the influence

phase parameters. The variable η here is the thermal/stochastic noise, with strength f ; it is drawn

from a non-Gaussian probability distribution

P [η] ∼ exp

(
−
ˆ
ddx

(
f

2!
η2 +

θn
n!
ηn
))

. (6.2.13)

To relate the Langevin ansatz (6.2.12) to an effective action arising from the influence func-

tionals (see Eq. (6.5.1) for an explicit action) we follow the Martin-Siggia-Rose (MSR) trick [130],

wherein one converts the stochastic Langevin equation into an effective action using a Lagrange

multiplier field Ψd and the functional integral identity:

1 =

ˆ
DΨaDΨdDη e−i

´
ddx (E[Ψa,η]−f η)Ψd P [η] . (6.2.14)

Integrating out the noise field η one obtains the SK effective action for Ψa and Ψd. To capture

the leading order influence phase we only need to shift η → η+ iΨd and take the limit η → 0. We

then arrive at the Schwinger-Keldysh effective action for our probe system

SΨ = −
ˆ
ddxΨd

[
−K∂2

t +D∇2 + γ ∂t
]

Ψa

+ i

ˆ
ddx

[
− f (iΨd)

2

2!
+

n∑
k=1

(iΨd)
k

k!

(
θk + θ̄k ∂t

) Ψn−k
a

(n− k)!

]
.

(6.2.15)

Recall that the standard (linear) FDT relates the friction term γ and stochastic noise f via

γ =
β f

2
. (6.2.16)

129, 120].
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We find that one obtains non-linear FDTs which relate the non-Gaussian couplings θk and θ̄k

amongst each other in the form.

2

β
θ̄k + θk+1 +

1

4
θk−1 = 0 . (6.2.17)

This is the advertised FDT for which we will give a derivation once we have derived the influence

functionals from holography in 6.5.

6.3 Scalar propagation in grSK geometries

We now turn to the solutions of the wave equations in diverse dimensions. We will first describe

the general set-up, identifying various Green’s functions of interest. Our goal is to determine the

full solution for the scalar field with prescribed sources JR and JL on the two boundary segments

of the grSK geometry. It will turn out that a useful way to proceed is to first identify the ingoing

propagator G+, which solves the wave equation with infalling boundary conditions, and thence

use time reversal to obtain the outgoing propagator G− (or a linear combination, the Hawking

propagator, GH , that we introduce below).

Once we have the general framework we will exploit the relative simplicity in d = 2 where

the BTZ black hole is a quotient of AdS3 to find an explicit expression for our propagators. For

d > 2 the Schwarzschild-AdSd+1 geometries do not admit closed form solutions to the scalar wave

equation. However, one can solve for the propagators explicitly in a gradient expansion, i.e.,

order by order perturbatively in frequencies and momenta. We further elaborate on this gradient

expansion scheme in D.1 exposing some useful technical tricks to organize the solution and extract

the propagators.

In what follows we impose Dirichlet (standard) boundary conditions for our scalar field asymp-

totically (for simplicity), so the conformal dimension of the CFT operator and the mass of the

field propagating in the grSK geometry are related by ∆ = d
2

+
√

d2

4
+m2 `2

AdS.

6.3.1 Scalar boundary to bulk propagators in grSK geometry

The classical equation of motion for a minimally coupled scalar field

∂A
(√
−g gAB ∂BΦ

)
−m2 Φ = 0 , (6.3.1)

111



in the grSK geometry (6.1.4). Written out explicitly in Fourier decomposition Φ(v, ζ,x) =´
k

Φk(ζ) ei k x we find:

∂

∂ζ

(
rd−1∂Φk

∂ζ

)
+
βω

2

(
rd−1 ∂Φk

∂ζ
+

∂

∂ζ

(
rd−1Φk

))
+
β2

4
rd−1 f(r)

(
|k|2 + r2m2

)
Φk = 0 . (6.3.2)

We can now proceed to solve this problem, but it is useful to understand some structural aspects

first.

We wish to identify the boundary to bulk propagators for the wave equation (6.3.2), which

allows us to evolve a non-normalizable source at the boundary of the spacetime into a field value

at a bulk locale. We will start by first identifying the retarded or ingoing bulk to boundary Green’s

function G+ and subsequently use information about the time reversal symmetry to extract the

outgoing or advanced Green’s function.

Let us first introduce a new pair of radial derivatives [120]

D±ζ =
∂

∂ζ
± β ω

2
, (6.3.3)

which conjugate to each other in the form:

eβω ζ D+
ζ e
−βω ζ = D−ζ . (6.3.4)

Notice that D±ζ are related to each other by time reversal. The rationale for introducing them is

that these derivatives allow us to absorb the odd powers of ω in the wave equation into themselves.

Indeed, in terms of these derivations the scalar equation of motion takes the form:

D+
ζ

(
rd−1D+

ζ Φk

)
+
β2

4
rd−1

(
f |k|2 + r2 f m2 − ω2

)
Φk = 0 . (6.3.5)

Ingoing boundary to bulk propagator: The ingoing Green’s function Gin ≡ G+ is a solution

to (6.3.5) satisfying a regularity condition at the horizon and normalized to unity at the cut-off

boundary of the spacetime.

G+
∣∣
rc

= 1 ,
dG+

dζ

∣∣∣∣
rh

= 0 . (6.3.6)

The choice of boundary conditions is such that we are looking at infalling modes across the future

horizon, which isolates for us the quasinormal modes (general solution being a superposition of

these modes in a linear theory). As such the ingoing Green’s function will the one that was obtained

in [109] who argue for the ingoing boundary conditions to compute the retarded propagator. We

will shortly demonstrate how to obtain G+ perturbatively in ω and |k|, i.e., in a gradient expansion

in general d and also obtain an explicit analytic form in d = 2.
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Outgoing boundary to bulk propagator: Once one knows ingoing Green’s function G+ the

advanced or outgoing Green function should be obtained by suitably time reversing it. As argued

at the end of 6.1, while our coodinatization of the geometry is not time reversal invariant, there

indeed an involution realized by the diffeomorphism (6.1.9). Let us see how this acts on the

equation of motion (6.3.5). First, we note that after reversing the frequency dependence we obtain

G−(ω,k) ≡ G+(−ω,k). Using the conjugation relation (6.3.4) we can then infer that the function

G−(ω,k)e−β ω ζ satisfies the wave equation provided

D−ζ
(
rd−1D−ζ G

−)+
β2

4
rd−1

(
f |k|2 + r2 f m2 − ω2

)
G− = 0 . (6.3.7)

Note that (6.3.7) differs from (6.3.5) only in the signs of the temporal derivatives i.e., through

ω → −ω. It therefore follows that the outgoing Green’s function can be obtained in Fourier

domain as

Gout(ω, |k]) ≡ G+(−ω, |k|)e−β ω ζ ≡ G−(ω, |k|)e−β ω ζ . (6.3.8)

Full solution and boundary conditions: Now that we have the formal expressions for the

ingoing and outgoing Green’s functions, we can take a suitable superposition to write down the

general solution for the linear wave equation. The explicit form of the full solution takes the form

Φ(ζ, ω,k) = C+(ω,k)G+(ζ, ω,k) + C−(ω,k)G−(ζ, ω,k)e−β ω ζ . (6.3.9)

We can now impose boundary conditions at the conformal boundary r = rc ± i ε of the grSK

geometry. We demand:

Φk

∣∣
ζ=0

= JL(ω,k) , Φk

∣∣
ζ=1

= JR(ω,k) . (6.3.10)

Using the fact that G+ and G− are normalized to unity at these boundaries, we find

C+(ω,k) + C−(ω,k) = JL , C+(ω,k) + C−(ω,k)e−βω = JR . (6.3.11)

which results in the solution

C−(ω,k) = −(1 + nω) (JR − JL) , C+(ω,k) = (1 + nω) JR − nω JL . (6.3.12)

Hence the general solution to the scalar wave equation (6.3.9) takes the form

Φk(ζ, ω,k) = G+(ζ, ω,k)

(
(1 + nω) JR − nω JL

)
−G−(ω,k) eβ ω (1−ζ) nω

(
JR − JL

)
. (6.3.13)
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where we have used the Bose-Einstein identity:

1 + nω = eβω nω . (6.3.14)

It is helpful, before proceeding further, to rewrite the result in terms of linear combinations of

the L/R Schwinger-Keldysh sources. For instance, in the retarded-advanced basis (6.2.7) we find

Φ(ζ, ω,k) = −G+(ζ, ω,k) J
F̄

+G−(ζ, ω,k) eβω(1−ζ) J
P̄
. (6.3.15)

More interesting to us is the solution in the average-difference basis:

Φ(ζ, ω,k) = G+(ζ, ω,k)

(
Ja(ω,k) +

(
nω +

1

2

)
Jd(ω,k)

)
− nω e

βω(1−ζ) G−(ζ, ω,k) Jd(ω,k) ,

≡ G+ Ja +
1

2
GH Jd .

(6.3.16)

In the last line we have isolated the contribution from the average and difference sources. The

coefficient of the latter is a suitable admixture of the ingoing and outgoing modes which in fact

deserves to be called the Hawking Green’s function which is a solution to the wave equation with

the boundary conditions

lim
ζ→0

GH = 1 and lim
ζ→1

GH = −1 . (6.3.17)

Explicitly, it is given by:

GH ≡ coth

(
βω

2

)
G− − e

βω
2

(1−2 ζ) csch

(
βω

2

)
G− . (6.3.18)

6.3.2 Propagators in d = 2

As a warm up we start with the BTZ geometry where d = 2. The metric we recall is

ds2 = −r2(1− r2
h

r2
) dv2 + 2 dvdr + r2 dx2

= −r2
h sinh2 ρ dv2 + 2rh sinh ρ dvdρ+ r2

h cosh2 ρ dx2 ,

(6.3.19)

where we have written the metric in ingoing coordinates both in the standard AdS radial coordinate

as well as in the BTZ adapted global coordinate r = rh cosh ρ. We have either by direct integration

or by simplifying (6.1.5) the following expression for the mock tortoise coordinate

dζ

dr
=
rh
iπ

1

r2 − r2
h

=⇒
√
r − rh
r + rh

= tanh
ρ

2
= eiπ(ζ+ζc) , (6.3.20)
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where accounted for the cut-off surface where we are imposing our boundary conditions.

We can solve the massive, minimally coupled, scalar wave equation (6.3.2) in terms of hyper-

geometric functions

(sech ρ)∆
(

1 + tanh2 ρ

2

)∆−p+−p−
2F1

(
p+ , p− , 1 + p+ + p− −∆ ; tanh2 ρ

)
,

(sech ρ)∆

(
tanh2 ρ

2

1 + tanh2 ρ
2

)∆−p+−p−

2F1

(
∆− p− ,∆− p+ , 1 + ∆− p+ − p− ; tanh2 ρ

)
.

(6.3.21)

The first of these is the solution that satisfies ingoing boundary conditions and is regular at the

future horizon (near ρ ∼ 0, we see that the linearly independent solutions are φ(ρ) = c1 +c2 ρ
i βω of

which the constant behaviour is the correct ingoing mode). To keep expressions compact, we have

introduced the lightcone like dimensionless combination of frequencies and momenta, including

contributions from the dimension which will appear in the solutions below:

p+ = i
β

4π
(k − ω) +

∆

2
, p− = −i β

4π
(k + ω) +

∆

2
. (6.3.22)

The ingoing Green’s function of interest, normalized to unit at the AdS boundary ζ = 0 or

ρc + i ε can then be immediately inferred to be:

G+(ζ, ω, k) =

(
1− e2πi (ζ+ζc)

1 + e2πi (ζ+ζc)

)∆ (
1− e2πi ζc

1 + e2πi ζc

)−∆ (
1 + e2πi (ζ+ζc)

1 + e2πi ζc

)∆−p+−p−

× 2F1 (p+ , p− , p+ + p− −∆ + 1 ; sec2 π(ζ + ζc))

2F1 (p+ , p− , p+ + p− −∆ + 1 ; sec2 πζc)
.

(6.3.23)

We have written the answer in the mock tortoise coordinate which makes clear that the solution is

continuous across the horizon-cap in the grSK geometry. The knowledge of the retarded Green’s

function is sufficient to obtain the full solution for the field Φ on the Schwinger-Keldysh contour

using (6.3.16).

6.3.3 Propagators in d > 2: gradient expansion

In dimensions d > 2 the scalar wave equation (6.3.2) does not admit a simple closed form solution in

the Schwarzschild-AdSd+1 backgrounds. One can however make progress by solving the equations

order by order in a low-energy, long-wavelength limit, i.e., we can expand our Green’s function in

the limit where βω, β|k| � 1. We consider

G+(ζ, ω, |k|) =
∞∑

n,m=0

G+
m,n(ζ)

(
βω

2

)m (
β|k|

2

)n
, (6.3.24)
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where we continue to work with the dimensionless frequency and momenta. We have isolated the

leading order term in the gradient expansion with some hindsight to simplify the computations.

To determine the solution for the scalar field, we first solve the equation (6.3.2) with ingoing

boundary conditions. This amounts to imposing the following boundary conditions on the Green’s

function G+:

G+

∣∣∣∣
r=rc

= 1 ,
dG+

dζ

∣∣∣∣
r=rh

= 0 . (6.3.25)

For the series coefficients in the gradient expansion this translates to the requirement

G+
0,0

∣∣∣∣
r=rc

= 1 , G+
n,m

∣∣∣∣
r=rc

=
dG+

n,m

dζ

∣∣∣∣
r=rh

= 0 , ∀ n,m ∈ Z+ . (6.3.26)

Some of the coefficients above are trivial, spatial reflection symmetry sets G+
n,2m+1 = 0, so we do

not encounter any terms which are odd in momenta.

It transpires that the knowledge of G+
n,m suffices to obtain the solution to the scalar wave

equation in the average-difference basis in the long-wavelength gradient expansion. The final

expression can be compactly summarized as

Φ =
∞∑

n,m=0

G+
n,2m

(
β2|k|2

4

)m
(D+

ζ )n
{
Ja −

1

2
Jd

[
(1− 2ζ) +

βω

2× 2!

(
(1− 2ζ)2 − 1

)
· · ·
]}

.

(6.3.27)

An explicit derivation of the above as is outlined in D.1, but the basic strategy is easy to describe.

We essentially introduce the bulk analog of the retarded-advanced sources and carry out the

gradient expansion both for the Green’s function and for the statistical factors that enter in the

construction (6.2.7). We then use the time-reflection symmetry (6.1.9) to determine the outgoing

Green’s function, and employ (6.3.16) to assemble the pieces to give the solution to the wave

equation.

Closed form solutions for the leading order terms in the gradient expansion can be obtained

(see D.2). We present below of the basic data that we will use in the rest of the discussion.

G+
0,0 =

P−∆
d

(
2 rd

rdh
− 1
)

P−∆
d

(
2 rdc
rdh
− 1
) ,

G+
1,0 = −G+

0,0

ˆ ζ

0

dζ ′

(
1−

(
G+

0,0(ζh)

G+
0,0(ζ ′)

)2 (rh
r′

)d−1
)
,

G+
0,1 = 0 .

(6.3.28)
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Higher order terms can similarly be obtained and we give some explicit expressions in D.2; see for

instance (D.2.23) for a massless scalar in arbitrary dimensions and (D.2.27) for an arbitrary scalar

in d = 2.

6.4 Influence functionals

We now have all the pieces necessary to compute the influence functionals of interest. We first

outline the computation of the quadratic effective action in 6.4.1. As is usual in AdS/CFT this is

obtained as a boundary term in the on-shell action computation. For the higher order influence

functionals we need to employ the standard Witten diagram technology on the grSK geometry

(justified in D.3). Armed with these results we compute the n-point contact influence functions

in 6.4.2. Along the way we will argue that the non-Gaussian contributions are well defined after

a renormalization of the sources, and determine the appropriate counterterm action necessary to

obtain the physical influence functionals. This will turn out to be crucial when our system couples

to a marginal operator of the environment theory. We will give some explicit results for cubic and

quartic self-interactions in 6.4.2. In D.4 and D.5 we compile various technical details underlying

the results we present in this section.

6.4.1 Quadratic effective action

Let us begin with the evaluation of the quadratic part of the influence functional. Since we have

solved for the field Φ on the grSK contour, it follows that result should be given by a boundary

term. This is indeed the case, for starting with (6.2.4) with λ = 0 we have upon passing to

momentum space

S(2) =
i

β

ˆ
ddk1

(2π)d

ˆ
ddk2

(2π)d
(2π)dδd(k1 + k2)

×
˛
dζ rd−1

[
D+
ζ Φ(k1)D+

ζ Φ(k2)− Φ(k1)
β2

4

(
f |k2|2 + r2 f m2 − ω2

2

)
Φ(k2)

]
=

i

β

ˆ
ddk1

(2π)d
ddk2

(2π)d
(2π)dδd(k1 + k2)

ˆ 1

0

dζ
d

dζ

[
rd−1Φ(k1)D+

ζ Φ(k2)
]

=
i

β

ˆ
ddk1

(2π)d
ddk2

(2π)d
(2π)dδd(k1 + k2)

[
rd−1Φ(k1)D+

ζ Φ(k2)

]ζ=1

ζ=0

.

(6.4.1)

In the second line we substituted the equation of motion (6.3.5) and performed the ζ contour

integral in the final line, expressing the result as a pure boundary term on the grSK contour.
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The general structure of the answer from evaluating the boundary term takes the following

form in the average-difference basis:

S(2) =

ˆ
ddk

(2π)d

[
Iad(ω, k) Ja(ω, k) Jd(−ω,−k) + Idd(ω, k) Jd(ω, k) Jd(−ω,−k)

]
. (6.4.2)

We see that Iaa = 0 a consequence of Schwinger-Keldysh unitarity of the microscopic theory. This

is because the coefficient of the average source is the ingoing Green’s function which is manifestly

regular on the grSK contour.

On-shell action in d = 2: Given our solution in the BTZ geometry it is straightforward to

evaluate the boundary term. Using the normalized wavefunction built from (6.3.21), the boundary

term contribution evaluates to

Iad(ω, k) =
4π2

β2

{
p+ + p− −∆

r2
c

r2
h

+

(
1− r2

h

r2
c

) 2 p+ p− 2F̃1

(
1 + p+, 1 + p−, 2− i βω2π

; 1− r2
h

r2
c

)
2F̃1

(
p+, p−, 1− i βω2π

; 1− r2
h

r2
c

) }
cf r4−2∆

c

.

(6.4.3)

where 2F̃1(a, b, c, ξ) is the regularized hypergeometric function 2F̃1(a, b, c, ξ) = 1
Γ(c) 2F1(a, b, c, ξ).

The subscript at the end instructs us to extract the coefficient of r4−2∆
c , which is the end result

of carrying out a counterterm subtraction using standard holographic renormalization methods.6

To understand this recall that we have normalized G+(ζc, ω, k) = 1 which means that the two

point function is obtained from the term that scales like
(

1
rc

)2∆−4

leading to the aforementioned

prescription. A short calculation results in:

Iad(ω, k) = 2 r2∆−2
h

Γ(p+) Γ(p−) Γ(2−∆)

Γ(∆− 1) Γ(p+ + 1−∆) Γ(p− + 1−∆)

= − 2

π
r2∆−2
h

1

Γ(∆− 1)2

∣∣∣∣Γ (p+) Γ (p−)

∣∣∣∣2 sin (π(p− −∆)) sin (π(p+ −∆))

sin(π∆)

= − 1

π
r2∆−2
h

1

Γ(∆− 1)2

∣∣∣∣Γ(∆

2
− i β(k + ω)

4π

)
Γ

(
∆

2
+ i

β(k − ω)

4π

) ∣∣∣∣2
×
(

csc (π∆) cosh

(
βk

2

)
− cot (π∆) cosh

(
βω

2

)
+ i sinh

(
βω

2

))
.

(6.4.4)

This result is indeed the correct expression for the retarded Green’s function GR(ω, k) for a

2d CFT on the infinite line. One can obtain it directly by starting from the conformal 2-point
6We assume, for simplicity, that the field Φ satisfies standard (Dirichlet) boundary condition at infinity.

While this restricts us to ∆ ≥ d
2 , the result is unchanged for ∆ ∈ (d2 − 1, d2 ) once we include additional boundary

terms to account for the alternate (Neumann) boundary conditions.
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function on the plane, conformally mapping it to the cylinder to obtain the (Euclidean) thermal

correlator, and thence take the discontinuity across the lightcone branch cut while analytically

continuing it to the timelike Lorentzian domain (using appropriate iε prescription to do so). The

result has been obtained in various places in the literature before. In [131] the computation of the

Fourier transform was described and the imaginary part of the Green’s function obtained (in the

context of computing the absorption cross-section of D-branes). The first, principled, holographic

derivation of the Green’s function was given in [109].

The retarded Green’s function GR(ω, k) has poles in the lower half complex ω plane, at

ωqn = ±k − 2πi T (∆ + 2n) , n ∈ Z≥0 . (6.4.5)

These poles of course correspond to the BTZ quasinormal modes and set the characteristic scale

for the decay of the response function in the time domain [74, 132]. Finally, we also note that the

expression can be written in a form that is symmetric between the operator O of dimension ∆

and its shadow Os of dimension ∆̃ = d−∆ (with d = 2 here). To make the operator dimension’s

contribution to p± defined in (6.3.22) explicit we redefine the light-cone momenta:

K+ = i
β

4π
(k − ω) = p+ −

∆

2
, K− = −i β

4π
(k + ω) = p− −

∆

2
. (6.4.6)

We can then write the 2-point influence functional in terms of the function

G(K+,K−,∆) ≡ Γ(K+ + ∆
2

) Γ(K− + ∆
2

) Γ(1−∆) , (6.4.7)

as

Iad(ω, k) =
2

2−∆
r2∆−2
h

G(K+,K−,∆)

G(K+,K−, ∆̃)
. (6.4.8)

We will find this notation useful in simplifying the analysis of the 3-point influence functional.

Having understood the computation of the influence functional Iad we next can compute Idd.

The computation proceeds along similar fashion lines and we obtain

Idd(ω, k) =
i

4

cos (π(p+ + p− −∆)) sin (π∆)

sin (π(p− −∆)) sin (π(p+ −∆))
Iad(ω, k)

=
r2∆−2
h

2πi

cosh
(
βω
2

)
Γ(∆− 1)2

∣∣∣∣Γ(∆

2
− i β(k + ω)

4π

)
Γ

(
∆

2
+ i

β(k − ω)

4π

) ∣∣∣∣2
=
i

2
coth

(
βω

2

)
Im (Iad(ω, k)) .

(6.4.9)

We have expressed the final result making manifest the fluctuation/dissipation relation. We recall

that Im(Iad) gives us the spectral function at finite temperature, see [63, 69] for further details.
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On-shell action in gradient expansion: The analysis of the influence functionals in a gradient

expansion is straightforward given our explicit expressions from before. It is however convenient in

actuality to assemble the pieces somewhat differently and work in a basis that is better adapted to

the bulk field Φ. We describe such a basis built from the even and odd parts of the ingoing Green’s

function in D.1. The expressions of interest are the solution to the wave equation (D.1.8), the field

radial gradient (D.1.12), and the expansion of the even and odd sources (D.1.9). To compute the

quadratic influence functional, we need to evaluate the on-shell action as a boundary term (6.4.1).

This amounts to knowledge of the values of G+
n,m and their derivatives at ζ = 0. Explicitly, letting

G+
n,m(0) =

 1 , n = m = 0

0 , (n,m) 6= (0, 0)

,
dG+

n,m

dζ

∣∣∣∣
ζ=0

= ġn,m , (6.4.10)

the quadratic influence functional can be simplified to the form

Iad(ω,k) =
i

β

{
rd−1
c

[
(1 + ġ1,0)βω +

(β|k|)2

2
ġ0,2 +

(βω)2

2
ġ2,0

]}
cf r2(d−∆)

c

,

Idd(ω,k) =
i

β

{
rd−1
c

[
(1 + ġ1,0) +

(βω)2

12
(1 + ġ1,0 + 3 ġ3,0) +

(β|k|)2

4
ġ1,2

]}
cf r2(d−∆)

c

.

(6.4.11)

We have been able to evaluate the expressions analytically to leading order in the gradient

expansion. We recall that we have normalized G+
0,0(0) = 1 and use the solution for G+

1,0 given in

(6.3.28), to learn that

rd−1
c (1 + ġ1,0) = rd−1

h

 P−∆
d

(1)

P−∆
d

(
2 rdc
rdh
− 1
)
2

. (6.4.12)

Expanding out the Legendre polynomial we pick up the a coefficient of the desired power of rc,

and find the influence functionals to be

Iad(ω,k) = i
Γ
(

∆
d

)4

Γ
(
2∆
d
− 1
)2 r

2∆−d−1
h ω ,

Idd(ω,k) =
i

β

Γ
(

∆
d

)4

Γ
(
2∆
d
− 1
)2 r

2∆−d−1
h .

(6.4.13)

While we are retaining terms only to leading order in the gradient expansion one can neverthe-

less see that the linearized version of the fluctuation dissipation relation (6.4.9) continues to hold

quite generally (as is in fact readily inferred from (6.4.11)).

The subleading terms in the influence functional Iad are computable. While they do not seem

to be amendable to a closed form analytic expression, we can easily extract the dependence on the
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physical parameters. Using the results for the higher order terms in the gradient expansion given

in D.2 we can show that the quadratic order terms in Iad are given by the following:{
i

β
rd−1
c ġ0,2

}
cf r2(d−∆)

c

= − 1

2πβ

Γ
(

∆
d

)4

Γ
(
2∆
d
− 1
)2 r

2∆−d−1
h g0,2 ,{

i

β
rd−1
c ġ2,0

}
cf r2(d−∆)

c

=
1

2πβ

Γ
(

∆
d

)4

Γ
(
2∆
d
− 1
)2 r

2∆−d−1
h g2,0 .

(6.4.14)

Here g0,2 and g2,0 are purely numerical coefficients and computed by the integral expressions

involving Legendre functions; see (D.2.21) and (D.2.22), respectively. Specifically, they are

g0,2 =

[ˆ %c

1

d% %−
2
d

(
P−∆

d
(2%− 1)

)2
]
finite

g2,0 = 2πi
G+

1,0(rh)

G+
0,0(rh)

+ g0,2 +

[ˆ %c

1

d%
%−

1
d

%− 1

(
%−

1
d P−∆

d
(2%− 1)2 − 1

)]
finite

.

(6.4.15)

We have used (D.2.14) and expressed the answer as integrals over Legendre functions which can

be evaluated numerically. For ∆ ∈
(
d
2
, d

2
+ 1
)
the integrals are absolutely convergent and thus may

be determined without need for a detailed counterterm analysis. Representative data for these

quantities as a function of ∆ in various dimensions is plotted in 4 within this window of conformal

dimensions. We will exploit this structural form when writing down the effective action for the

open quantum degree of freedom in 6.5.

6.4.2 Interactions: contact self-interaction

Using the standard Witten diagrams on the grSK contour, illustrated in 5 (we motivate this briefly

in D.3), the influence functionals can be straightforwardly written down. A contact n-point self-

interaction vertex in the bulk leads to the following contribution to the influence functional:

S(n) = −λn
n!

ˆ n∏
i=1

ddki
(2π)d

(2π)dδ

(
n∑
i=1

ki

)˛
dζ
√
−g

n∏
i=1

Φ(ζ, ki) (6.4.16)

We can in general simplify expressions such as the above by using the fact that the contour

integral over the mock tortoise coordinate can be done by basically integrating the discontinuity

across the branch cut extending from the horizon over the radial coordinate. To wit, for any

function on the grSK geometry L(ζ)
˛
dζ
√
−g L(ζ) =

ˆ ζc

ζh

dζ
√
−g
(
L(ζ + 1)− L(ζ)

)
=

ˆ rc

rh

dr rd−1

(
L(ζ(r) + 1)− L(ζ(r))

)
,

(6.4.17)
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where we used
√
−g dζ

dr
= rd−1. In the second line above, we have assumed that the integrand

doesn’t have a simple pole at r = rh and hence the horizon itself gives no contribution to the

integral. Consequently, entire contribution arises from the discontinuity across the branch cut

that extends from the horizon to the conformal boundary.

Influence functionals in the advanced-retarded basis

Using the explicit solution on the grSK contour (6.3.15) we identify from (6.2.9) the influence

functionals in the retarded-advanced basis to be

IF ···FP ···P (k1, · · · , kn) = coeff
(
J
F̄

(k1) · · · J
F̄

(kp)JP̄ (kp+1) · · · J
P̄

(kn)
)

= − λn
p!(n− p)!

˛
dζ
√
−g (−)p

p∏
i=1

G+(ζ, ωi,ki)
n∏

j=p+1

G−(ζ, ωj,kj) e
βωj(1−ζ) (6.4.18)

=
λn (−)p+1

p!(n− p)!

(
1− eβ

∑n
j=p+1 ωj

) ˆ rc

rh

dr rd−1

p∏
i=1

G+(ζ, ωi,ki)
n∏

j=p+1

e−βωjζG+(ζ,−ωj,kj) .

One can evaluate the integrals directly given the solution to the Green’s function on the grSK

contour. Note that the causal structure of the influence function is completely manifest. The

ingoing Green’s function G+(ζ, ω,k) is manifestly regular in the upper-half ω plane, while its

conjugate G−(ζ, ω,k) is regular on the lower-half plane by frequency reversal. The time-reversal

also correctly incorporates the statistical factor which enters the final expression.

In the holographic setting, we expect the only singularities in G+(ζ, ω,k) to arise from quasi-

normal poles, while those of G−(ζ, ω,k) are attributable to the time-reversed anti-quasinormal

poles. So the influence functional IF ···FP ···P (k1, · · · , kn) will have quasinormal poles for all the ωi

with i ∈ F and anti-quasinormal poles for ωk with k ∈ P . We shall see an explicit illustration of

this below.

The radial integral in the expression above, in general needs to be regulated. However, for a

certain range of operator dimensions, specifically, for ∆ < (1 − 1
n
) d the integrals are absolutely

convergent and need no regulating.7 In the discussion below we will focus on the case where the

operator coupling to our system is sufficiently relevant to avoid introducing any regulators.

As an illustration consider the result for the 3-point influence function in a 2d CFT which can
7One can infer this by examining the asymptotic behaviour of the Green’s functions. However, it is also worth

noting that the UV divergences are determined by the CFT correlation functions in the vacuum, for which the

criterion specified is well known, see eg., [133].
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be obtained to be (using energy-momentum conservation to eliminate the ω3 and k3)

IFFP (k1, k2, k3) = −λ r3∆−4
h

(
1− e−βω3

)
Γ
(
1 + iw3

π

) ∑
δi∈{∆,∆̃}

JδFFP (k1, k2, k3) (6.4.19)

where the function JδFFP is given as an infinite sum involving generalized hypergeometric functions:

JδFFP (k1, k2, k3) =
G(K1+,K1−, δ1)G(K+2,K1−, δ2)

G(K1+,K1−, ∆̃)G(K2+,K2−, ∆̃)

[
∞∑
n=0

(−)n Γ(1− δ3 − n)

Γ(n+ 1) Γ(1− δ3 − 2n)

×
G(K∗3+,K

∗
3−, δ3 + 2n)

G(K∗3+,K
∗
3−, ∆̃)

Γ(−1 + n+ δ1+δ2+δ3
2

)

Γ(n+ δ1+δ2+δ3
2

+ iw3

π
)

× 3F2

 K1+ + δ1
2
,K1− + δ1

2
,−1 + δ1+δ2+δ3

2
+ n

δ1 ,
δ1+δ2+δ3

2
+ n+ iw3

π

; 1


× 4F3

 K2+ + δ2
2
,K2− + δ2

2
,−n , 1− n− δ3

δ2 , 1− K∗3+ − δ3
2
− n , 1− K∗3− − δ3

2
− n

; 1

].

(6.4.20)

This result is valid for 1 < ∆ < 4
3
, chosen so that the radial integral was absolutely convergent. We

have employed a notational contrivance to keep the expression simple – the above is actually a sum

over eight terms with similar structure, where each of the three operators enters either as itself, or

its shadow. This is indicated by using δ to sample the operator and shadow operator dimension as

indicated in the summation. The lightcone momentum of the outgoing mode is conjugated because

of time-reversal. We can use energy-momentum conservation to rewrite K∗3± = K12± as a function

of ω1 + ω2 and k1 + k2. Finally, we have chosen to write the final expression as a infinite sum, but

one can equivalently have presented the result as set of contour integrals (which is where the sum

is obtained from). We give a detailed derivation of this result in D.4.

Let us focus on some of the features that the readily visible from the above parameterization

of the influence functional. Firstly, the result is factorized into right and left movers. This is not

manifest in when we consider the AdS radial integral representation, but is expected on grounds

that the Euclidean thermal 3-point correlator factorizes into holomorphic and anti-holomorphic

parts. Secondly, the influence functional, correctly captures the causality requirements noted

above. The only singularities which can arise in the complex frequency plane are from the Gamma

functions for ω1 and ω2. One can also check that the generalized hypergeometric functions do not

contribute any singularities (this is easier to see directly from the infinite sum or contour integral

representation (D.4.15)).
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Of the eight possible choices of δi we note that there can only be poles when δi = ∆. When

δi = 2 −∆ the Gamma function in the denominator also a pole which cancels out the behaviour

of the numerator leaving a finite answer. We conclude that the correlator is analytic in the upper

half of the complex ω1 and ω2 planes and encounters the usual quasinormal type poles in the lower

half-planes. So the influence functional only has simple poles at are at the following locations

determined by the quasinormal modes.

ω1 = ±k1 − 2πi T (2n1 + 2m1 + ∆) , ω2 = ±k2 − 2πi T (2n2 + 2m2 + ∆) ,

ω1 + ω2 = ±(k1 + k2)− 2πi T (2n3 + 2m3 + ∆) .
(6.4.21)

The last set translates upon using energy-momentum conservation to the anti-quasinormal modes

of the advanced operator with frequency ω3.

We note in closing that one can give a closed form expression for the thermal real-time 3-point

functions in 2d CFT in terms of Meijer G-functions. This has been derived by Fourier transforming

the cylinder correlator of a 2d CFT to momentum space with an appropriate iε prescription in

[134]. We have not attempted to simplify our expression (6.4.19) to this form, though we note

that the analytic structure does match between the two expressions (as it must).

Influence functionals in the average-difference basis

If we wish to evaluate the influence functionals in the average-difference basis we can simply

implement the basis transformation to go from (6.2.7) to (6.2.6). While working in the long-

wavelength gradient expansion however, one must also account for the statistical factor, which has

been folded into (6.3.27). We will now use this expression to evaluate the influence functionals in

the average-difference basis.

As noted above, depending on the nature of the operator O we may need to incorporate

counterterms to evaluate the influence functional which enter into the effective field theory of

open system degrees of freedom. For the influence functionals to respect the microscopic unitarity,

these counterterms must be both state independent and suitably factorized across the SK contour.

We see that this is indeed possible, provided that we suitably renormalize the sources for the

holographic operator O obtain finite correlation functions. Operationally, from our discussion in

6.2.2 this means that we must renormalize our system degrees of freedom while constructing the

open effective field theory.8

8We will continue here to write the expressions in terms of the boundary sources J of the holographic envi-
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We will first describe the structure of the divergences encountered in the computation of the

influence functionals themselves. These will appear from the bulk calculation in UV divergent

terms from the radial integral, scaling with our radial cut-off rc. We confine our attention to

the leading order terms in the gradient expansion, so the results will be accurate to O(βω), for

convenience. A more thorough analysis at arbitrary orders in the gradient expansion can be carried

out along similar lines, and the details will appear elsewhere.

To begin with let us make the following two assertions about the non-linear influence functional.

1. First, the anharmonic influence phase to linear order in the coupling λn takes the form:

Sbare
(n) = −λn

ˆ
ddx

n∑
k=1

1

(n− k)!

(
Jb
a +

i

8
β∂tJ

b
d

)n−k
×
[
F b
n,k

(Jb
d )k

k!
− F b

n,k+1

(Jb
d )k−1

(k − 1)!

i

2
β∂tJ

b
d

]
.

(6.4.22)

Here F b
n,k denotes the integral

F b
n,k ≡

˛
dζ
√
−g

(
G+

0,0

)n(
ζ − 1

2
+
G+

1,0

G+
0,0

)k
, (6.4.23)

where G+
m,n to the desired order are given by the expressions in (6.3.28). We have anticipated

the need for regulating the sources and the integrals and used the superscript b to denote

that the above expressions are the bare results, prior to any renormalization prescription.

2. Second, the integrals F b
n,k appearing in the computation could be divergent. This depends

on the conformal dimension ∆ of the operator O. We find:

• For ∆ < (1 − 1
n
)d the integrals involved in evaluating F b

n,k are convergent as noted in

6.4.2.

• For relevant operators with ∆ ∈ [(1− 1
n
)d, d) we need to regulate some of the integrals.

In particular, the integrals F b
n,2k+1 with an odd argument are divergent. We can estimate

them to behave as follows:

F b
n,2k+1 = F r

2k+1 +
Λ∆

4k
, Λ∆ =

r
n∆−(n−1)d
c

n∆− (n− 1) d
, (6.4.24)

where F r
n,k denote the renomalized integrals which are completely finite and well-defined

as rc →∞.

ronment, leaving implicit the identification Ψa ∼ Ja and Ψd ∼ Jd.
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• Finally, for a marginal operator ∆ = d all the integrals are divergent. The functions

F b
n,2k+1 are power-law divergent, but now for even argument F b

n,2k one encounters a

logarithmic divergence.

F b
n,2k+1 = F r

2k+1 +
Λd

4k
, F b

n,2k = F r
2k + k

Λl

4k−1
. (6.4.25)

The divergences Λd and Λl are given by

Λd ≡
rdc
d
, Λl ≡

i

π
rdh log

rc
rh

. (6.4.26)

We prove the aforementioned assertions regarding the structure of the bare influence functional

and the divergences of the integrals appearing therein in D.5.

Armed with these statements we can now assert the following result: define the renomalized

probes J r
a and J r

d via

Jb
a ≡ J r

a Jb
d ≡ J r

d ,
d

2
≤ ∆ < d ,

Jb
a ≡ J r

a −
Λl

2Λd

J r
d , Jb

d ≡ J r
d +

Λl

2Λd

i β∂tJ
r
d , ∆ = d.

(6.4.27)

While the integrals are divergent for some range of relevant operators, we will argue below that

the divergences can be canceled by a standard counterterm. However, we see that there is a

need for a non-trivial renormalization of the sources in the case of a marginal operator, arising

primarily from the logarithmic divergence encountered in F b
n,2k. Note that as rc → ∞ we have

limrc→∞
Λl
Λd

= 0, i.e., the bare and the renormalized sources agree when the cutoff is removed.

At finite cutoff however we need to renormalize the sources slightly; this is achieved by mixing

them with difference probes in a temperature dependent manner. If the influence functional was

completely finite, this deformation would disappear as we take rc → ∞ limit. But given the UV

divergences in the case under consideration, this small renormalization, when ignored, can lead to

new divergences which look like temperature-dependent divergences which cannot be canceled by

unitary, state-independent counterterms factorized across the SK contour.

However, with respect to the renormalized sources there is no ambiguity and the result is

consistent with the requirements delineated above. To see this, define the following counterterm

action in terms of the renormalized probes that is unitary, state-independent, and factorized across

the SK contour

Sc.t.
(n) =

ˆ
ddx

λn
n!

[(
J r
a +

1

2
J r
d

)n
−
(
J r
a −

1

2
J r
d

)n]
. (6.4.28)
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With this choice we obtain a manifestly finite influence functional to linear order in couplings λn

and to linear order in derivatives, given by the expression

S(n) ≡ − lim
rc→∞

(
Sbare

(n) + Sc.t.
(n)

)
= −λn

ˆ
ddx

n∑
k=1

1

(n− k)!

(
J r
a +

i

8
β∂tJ

r
d

)n−k [
F r
n,k

(J r
d)
k

k!
− F r

n,k+1

(J r
d)
k−1

(k − 1)!

i

2
β∂tJ

r
d

]
.

(6.4.29)

Once we have performed the renormalization described, we find that we have to evaluate the

renormalized integrals F r
n,k. We have been able to obtain closed form expressions for a marginal

operator with ∆ = d (see D.5.1). For the quartic influence functional, passing to momentum space

and letting δ(k) = (2π)dδd
(∑4

i=1 ki
)
, we find:

Iaaaa = 0 ,

Iaaad =
iλ4

3!

rdh
d
δ(k) ,

Iaadd =
−iλ4

4

rdh
d
δ(k)

βω4

4
,

Iddda =
iλ4

3!

rdh
d
δ(k)

(
1

2
+

3iζ(3)

2π3
βω4

)
,

Idddd =
iλ4

4!

rdh
d
δ(k)

(
3iζ(3)

π3

)
.

(6.4.30)

On the other hand closed form expressions for ∆ < d are not easy to come by. One can however

extract the overall dependence on the dimensionful parameters (rh which sets the thermal scale)

and obtain a result up to a numerical factor which is a function of the scaling dimension. These

coefficients are given in terms of integrals of Legendre functions. More specifically, we find that

the influence functionals are given in terms of the renormalized integrals

F r
n,k =

r
n∆−(n−1)d
h

d

Γ
(

∆
d

)2n

Γ
(

2∆
d
− 1
)n Fn,k(∆) (6.4.31)

where

Fn,k(∆) =

ˆ ∞
1

d%
[
P−∆

d
(2%− 1)

]n [( i

π

Q−∆
d

(2%− 1)

P−∆
d

(2%− 1)
+ i cot

(
π∆

d

)
+

1

2

)k

−

(
i

π

Q−∆
d

(2%− 1)

P−∆
d

(2%− 1)
+ i cot

(
π∆

d

)
− 1

2

)k ]
.

(6.4.32)

To derive this expression we used the fact that one can solve for the combination ζ+
G+

1,0

G+
0,0

explicitly

in terms of Legendre functions as we describe in (D.2.17). One can easily numerically estimate
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these integrals entering the effective action. For the range of relevant operators where the integrals

are convergent we quote results from a simple numerical integration in 6.

6.5 Stochastic description of the open effective field theory

Given that we have computed the influence functionals we can return to the problem of constructing

the open effective field theory for our system degree of freedom Ψ(x). As remarked in 6.2.2 this

is easy, since all we need to do at the linear order is replace the sources Ja and Jd by the average

and difference field Ψa(x) and Ψd(x), respectively. The renormalized effective action for when the

operator Ψ couples to has a n-point contact interaction in the holographic set-up is then immediate

to write down, using the results of 6.4.1 and 6.4.2. Collecting the results from (6.4.11), and (6.4.29)

the effective action in position space reads:

SΨ = N2

ˆ
ddx

(
−∂tΨa Ψd +

i

β
Ψ2
d −

β

4π
g2,0∂tΨa∂tΨd +

β

4π
g0,2∇iΨa∇iΨd

)
− λnNn

ˆ
ddx

[
n∑
k=1

Fn,k(∆)
Ψn−k
a

(n− k)!

Ψk
d

k!

− iβ

2

n−1∑
k=1

(
Fn,k+1 −

1

4
Fn,k−1

)
Ψn−k
a

(n− k)!

Ψk−1
d

(k − 1)!
∂tΨd

]
.

(6.5.1)

where

N2 = r2∆−d−1
h

Γ
(

∆
d

)4

Γ
(
2∆
d
− 1
)2 , Nn =

r
n∆−(n−1)d
h

d

Γ
(

∆
d

)2n

Γ
(

2∆
d
− 1
)n . (6.5.2)

The quantities g0,2 and g2,0 are finite numbers (they are functions of ∆ and d) obtained from

integral expressions in (6.4.14), as are Fn,k(∆) which is given in (6.4.32). Sample values of these

are also plotted in 4 and 6, respectively.

We can compare the effective action we have derived with the general expectation based on

stochastic dynamics of the open system (6.2.12). The coupling constants of appearing in the

Langevin effective action obtained earlier in (6.2.15) can be read off from (6.5.1). At the Gaussian

order we have the relations

γ = N2 , f =
2 γ

β
,

K =
β

4π
g2,0 γ , D =

β

4π
g0,2 γ

(6.5.3)
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while the non-Gaussian terms lead to

θk = − λn
ik+1
Nn Fn,k(∆) , for k ∈ {1, · · · , n} ,

θ̄k = −β
2

λn
ik
Nn
(
Fn,k+1(∆)− 1

4
Fn,k−1(∆)

)
, for k ∈ {1, · · · , n− 1} .

(6.5.4)

The first set of these relations (6.5.3) capture the standard fluctuation dissipation relations

expected from a Gaussian noise source. The fact that θk and θ̄k also owe their origins to the same

set of influence functionals (and thus to the same underlying microscopic dynamics of the bath

fields we integrated out) leads to a set of generalized FDTs quoted earlier in (6.2.17), which we

reproduce here for convenience:

2

β
θ̄k + θk+1 +

1

4
θk−1 = 0 . (6.5.5)

6.6 Discussion

We have initiated the study of open quantum systems, where the environment/bath is modelled

by a strongly correlated thermal medium with short relaxation times. We modelled the latter

using holography, and used standard arguments to relate the real-time thermal observables of the

bath to the influence functionals of the open effective field theory. For simplicity, our focus was on

systems comprising of a single scalar degree of freedom, coupled to a gauge invariant operator of

the bath theory of scaling dimension ∆.

As we have endeavoured to explain, it hitherto has been an unanswered question, at least

within the remit of perturbative techniques, whether the dynamics of the system is described by

a local influence functional, even assuming that the environment is sufficiently scrambling. As

one might suspect, holographic systems, dual to black holes are maximally efficient in scrambling,

and thus ought to be able to obtain local influence functions. This is indeed borne out by our

explicit analysis, whereby the holographic influence functionals are manifestly local, and provide

a proof-of-existence of such local open EFTs. We have furthermore shown that this open EFT

can be given a stochastic interpretation, satisfying the required non-linear fluctuation-dissipation

relations.

From a gravitational standpoint, the discussion also sheds further light on the semiclassical

geometries that compute real-time observables in black hole backgrounds, providing further evi-

dence to the proposal of [104]. In this context, we capture in the influence functionals, not only the
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known dissipative physics contained in response functions, gravitationally encoded in the quasinor-

mal modes, but also at the same time, learn about their interactions with the outgoing Hawking

quanta. While earlier works, [120], demonstrated this in the context of a single Brownian par-

ticle degree of freedom, the present discussion generalises this to scalar probes of the black hole

environment.

Finally, in the holographic setting, we have argued that one needs to carry out a suitable renor-

malization of the open system’s degrees of freedom, in order to derive a local effective field theory,

whilst respecting microscopic unitarity, state-independence, and factorization across the two legs of

the Schwinger-Keldysh contour. This was starkly visible at leading order in the gradient expansion

for the coupling of a bosonic degree of freedom to a marginal operator of the holographic thermal

field theory. While we have analyzed the renormalization effects at leading order, developing a sys-

tem holographic renormalization procedure, and understanding the requisite counter-terms, along

the lines of [102], would be very helpful. For one these would be invaluable in attempting to con-

struct a Wilsonian effective field theory for open systems (analogous to [135, 136]). Of particular

interest in this context is to understand how strongly correlated thermal environments evade the

issue of non-trivial (infra-red) divergences that appear to arise in perturbative open field theory

computations [76, 4, 78, 137].
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Figure 2: The two-sheeted complex grSK geometry shown from two different perspectives. On the top left we display

the boundary thermal SK contour which is filled in the Euclidean portion by the Euclidean black hole geometry (the

cigar) and in the Lorentzian section by two copies of the domain of outer communication of the Lorentzian black hole

spacetime. The top right panel displays the bulk perspective to emphasize the smooth join of the two sheets of the

Lorentzian section. On the bottom panel we illustrate the Lorentzian sections of the geometry on the Schwarzschild-

AdSd+1 Penrose diagram. with the regions pertaining to the L and R sheets of the grSK spacetime shaded.
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rc + iε
Re(ζ) = 0

Re(ζ) = 1
rc − iε

Im(r)

Re(r)

Figure 3: The complex r plane with the locations of the two boundaries and the horizon marked. The grSK contour is

a codimension-1 surface in this plane (drawn at fixed v). The direction of the contour is as indicated counter-clockwise

encircling the branch point at the horizon.
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Figure 4: The numerical values of the quantities g0,2 and i g2,0 as a function of the conformal dimension ∆ in dimen-

sions 2, 3, and 4, respectively. We have confined attention to the case of relevant operators ∆ ∈ (d2 ,
d
2 + 1) when the

integrals are convergent without need of additional counterterms.
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Figure 5: Illustration of Witten diagrams on the grSK geometry computing 3 and 4-point influence functions of the

boundary field theory. The boundary operator insertions (blue) lie on the thermal SK contour. The bulk field is con-

structed using the boundary-bulk propagators, and the bulk vertex is integrated over the Lorentzian section of the

grSK geometry.
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Figure 6: The numerical values of the quantities F3,k and F4,k as a function of the conformal dimension ∆ (normalized

by dimension). We have confined attention to the case of relevant operators ∆ ∈ (d2 ,
n−1
n d) when the integrals are

convergent without need of additional counterterms. We note that Fn,2k are purely imaginary and Fn,2k+1 are real –

we have thus plotted just the imaginary or real parts in the corresponding case.
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Chapter 7

Discussion and Conclusion

We study various aspects of open QFTs in this thesis. First of all we argue that it is technically

difficult to obtain EFT for an open QFT by integrating out its bath. As an alternative we assume

an ansatz for open QFTs and then study its renormalisation along with other aspects of openness.

In this approach, we write the most general power-counting renormalisable action for open

scalar field theory and study its renormalisation. We show that the theory is well behaved if

one includes tadpole and bubble diagrams in the computation of β functions. We solve these β

functions (analytically about the fixed points and numerically) and study scaling behaviour of

parameters present in the theory.

However diagrams such as triangle, box, etc in open scalar QFTs furnish non-local divergent

pieces which can not be regulated using local counter terms. These divergences in a generic

scalar loop integral have interesting structures. To study these structures, we classify all one loop

diagrams and write those in terms of few primitive diagrams. To demonstrate the divergence

structure, we consider primitive loop integrals with D − 1 internal propagators in D space-time

dimensions. We show that the divergences appear from certain domain of cut momenta (linear

combination of external momenta flowing along a cut propagator); the cut momenta have to form

a space-like hyper-surface perpendicular to null loop momentum. We also show that a Fermionic

theory (open Yukawa theory) is not free from these divergences; even bubble diagrams in Fermion

self-energy correction (unlike bubble diagram in scalar field thoery) are non-local divergent.

A second approach to study open QFTs in thermal bath is holographic. We construct effective

action of an open EFT in a bath of thermal CFT which has a gravitational dual. We integrate out

the bath in AdS along gravitation SK contour. The effective action has various notable features
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such as manifestly ’system+bath’ unitarity, fluctuation-dissipation relations (both linear and non-

linear) etc. The non-linear FDRs among parameters in the EFT emerge out of non-linear bath-bath

interaction. These parameters are related to scattering amplitude of ingoing and Hawking modes

in the AdS side. The SK EFT has a dual stochastic interpretation. In the stochastic description,

we obtain a Langevin equation for the system field. The noise in this equation is drawn from a

specific non-Gaussianity distribution which originates as a result of strong bath-bath correlation.

With this short summary, let us turn our attention to discuss non-local divergences in open

field theories again. Since the physics of their appearance is not well understood, we revisit here

the validity of the assumptions.

1. First of all, we assumed our theories to be Lorentz invariant. Thus any odd derivative

term in the action is forbidden. We justify this assumption by the following argument. We

are interested in relativistic open QFTs and their UV completion. If the energy scale is high

enough, the vacuum contribution dominates over the excited states in the absence of non-unitary

couplings. The Lorentz invariance breaking terms at such high energy is sub-dominant. We choose

this Lorentz invariant vacuum as our initial state. Then we turn on Lorentz invariant non-unitary

coupling perturbatively.

The above assumption has computational advantage - we do not know in general how to compute

Green’s function in field theory w.r.t. a generic state. But, in a Lorentz invariant open QFT, we

can make use of the vacuum propagators to do loop computation as done in §§3 and §§4.

2. The second assumption is locality of the effective action. There is no prior reason for us

to believe that the action should be local. However, as we will see in the next chapter, local

description of open QFTs (probe) does exists in a bath of thermal CFT. If the bath temperature is

high enough one obtain a local description of the probe QFT. But, if one pushes the temperature

of the bath towards zero, locality breaks down.

If we stick to our assumptions, then the divergences should not be physical and there should be

a way of absorbing those. For example, in holographic construction of open QFTs, we found some

unusual divergences which can be absorbed by a renormalisation prescription for open systems

(§6.4.2). A renormalisation of this sort might eliminate the non-local divergences.

The non-local divergences have similarities to the phenomenon dubbed ’UV-IR mixing’ within

non-commutative theories or open string theories [138, 139, 140]. If this analogy is taken seriously,

our experience with those theories suggests the following resolution: the introduction of UV cutoff
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and regularisation of these theories secretly also introduces an IR cutoff. The resultant UV di-

vergences then have to be re-interpreted as IR divergences (which could indeed be non-local) and

dealt with accordingly. A correct treatment of IR physics (which sometimes includes recognising

hidden IR modes in the microscopic theory and adding them in explicitly in the WIlsonian theory

[140]) then has potential to cure the divergences. Perhaps every open QFT also contains some IR

degrees of freedom coming from their bath which do not quite decouple even when the bath has

been integrated out. If so, the phenomenon of UV-IR mixing is perhaps more ubiquitous in nature

than hitherto believed, and is behind the emergence of classical field theory from the underlying

quantum description.

We conclude with the following open problems.

• First of all one can try understand the origin of non-local divergences and try to regularise

those. Once this behaviour is understood, there are many follow up questions in this direction.

One can study open version of guage fields and analyse various aspects of QFT such as

spontaneous symmetry breaking, anomaly etc.

• In the holographic setup there are several straightforward generalisations of our analysis

such as discussion open system with spin degrees of freedom coupled to holographic matter

[141]. More interesting are situation where the dynamics involves coupling the open system to

conserved currents of the holographic theory. For instance, the open system could be coupled

to a conserved R-current of the holographic field theory, or to the energy-momentum tensor.

In either case, one has to examine the dynamics of gauge fields in the grSK geometries and

compute the Schwinger-Keldysh correlators of these conserved currents. As mentioned in

the introduction, there already exists an analysis in [104] for the dynamics of a Maxwell

field in the grSK Schwarzschild-AdS geometry. However, there are several peculiarities of

the gauge dynamics which deserve clarification (as already noted in the reference cited).

Understanding probe gauge field dynamics is but a precursor to the more interesting question:

how does one account for gravitational backreaction and consider holographic environments

with non-trivial temporal evolution. A non-trivial example which would be worth analyzing

is the couping of our system to a holographic plasma which is spatially inhomogeneous

and temporally evolving towards equilibrium. This would require us to understand the

gravitational Schwinger-Keldysh construction for the fluid/gravity spacetimes [142].
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• While we have focused on understanding the influence functionals that are computable by

the Schwinger-Keldysh temporal ordering, some of these thermal observables are in turn re-

lated by the general KMS relations to certain out-of-time-order (OTO) observables [69]. For

instance, all OTO three-point correlation functions can be generated from two Schwinger-

Keldysh correlators, while many of the OTO four-point functions are related to ones with

Schwinger-Keldysh ordering. A natural question is to encode these into the influence func-

tionals, and use the system to probe OTO correlation functions of the holographic bath. This

requires a suitable generalisation of the grSK geometry to an grOTO saddle, which would be

interesting to analyze. Note that the imprints of OTO observables on a Brownian particle

probe has been analysed hitherto in [122].

• A limitation of the grSK contour is that it is ignorant of the initial state of the probe. The

initial state is required along with the action to compute real-time correlators. Therefore a

prescription with the incorporation of grSK saddle and the initial state would be a complete

prescription to study various non-equilibrium processes.
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Appendix A

Loop integrals in open scalar field theory

A.1 Notations and Conventions

Since more general diagrams can appear in this context we will introduce a suitable notation.

Following the standard notation [88, 87], we will use A for tadpole diagrams and B for bubble

diagrams. In addition, we will use R,L, P,M as subscripts to denote the corresponding propagators

as present in the diagrams. 1.

×

AR

×

AL

×

AM = AP

Figure 1: PV One loop A type integrals in SK theory

We are using slightly different normalization from [87] for Passarino-Veltman integrals. The

relation between our integrals and the integrals in [87] is given below

APV0 = −(4π)2A
R

(A.1.1)

BPV
0 = i(4π)2B

RR
(A.1.2)

CPV
0 = (4π)2C

RRR
(A.1.3)

DPV
0 = −i(4π)2D

RRRR
(A.1.4)

We also note that Passarino-Veltman definitions use mostly negative metric ηµν = diag(1,−1,−1,−1)
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, while in this work we use mostly positive metric ηµν = diag(−1, 1, 1, 1). This fact has to be taken

into account while comparing our expressions in terms of momentum-square against the standard

expressions in discussions of PV integrals.

In SK theory there are four A type integrals. They are given by

AR(k) ≡ µ4−d
ˆ

ddp

(2π)di

1

p2 +m2 − iε

AL(k) ≡ µ4−d
ˆ

ddp

(2π)di

(−1)

p2 +m2 + iε

AP (k) ≡ µ4−d
ˆ

ddp

(2π)di
2πiδ+(p2 +m2)

AM(k) ≡ µ4−d
ˆ

ddp

(2π)di
2πiδ−(p2 +m2)

(A.1.5)

Here

δ+(p2 +m2) ≡ Θ(p0)δ(p2 +m2) (A.1.6)

δ−(p2 +m2) ≡ Θ(−p0)δ(p2 +m2) (A.1.7)

In SK theory of one-scalar, there are ten B type integrals (compared to one B type integral

in ordinary QFT of a single scalar). For the sake of generality, we will evaluate the most general

scalar B-type integrals with unequal masses, m and m̄, that can occur in an open EFT perturbation

theory. These are 16 in number and they are defined as:

BRR(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

1

p2 +m2 − iε
× 1

q2 + m̄2 − iε
× (2π)d δd(p− q − k)

BLL(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

(−1)

p2 +m2 + iε
× (−1)

q2 + m̄2 + iε
× (2π)d δd(p− q − k)

BRL(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

1

p2 +m2 − iε
× (−1)

q2 + m̄2 + iε
× (2π)d δd(p− q − k)

BLR(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

(−1)

p2 +m2 + iε
× 1

q2 + m̄2 − iε
× (2π)d δd(p− q − k)

(A.1.8)
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BPM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2)× 2πiδ−(q2 + m̄2)× (2π)d δd(p− q − k)

BMP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ−(p2 +m2)× 2πiδ+(q2 + m̄2)× (2π)d δd(p− q − k)

BPP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2)× 2πiδ+(q2 + m̄2)× (2π)d δd(p− q − k)

BMM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ−(p2 +m2)× 2πiδ−(q2 + m̄2)× (2π)d δd(p− q − k)

(A.1.9)

BPR(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2)

1

q2 + m̄2 − iε
× (2π)d δd(p− q − k)

BMR(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ−(p2 +m2)

1

q2 + m̄2 − iε
× (2π)d δd(p− q − k)

BPL(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2)

(−1)

q2 + m̄2 + iε
× (2π)d δd(p− q − k)

BML(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ−(p2 +m2)

(−1)

q2 + m̄2 + iε
× (2π)d δd(p− q − k)

(A.1.10)

BRP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

1

p2 +m2 − iε
2πiδ+(q2 + m̄2)× (2π)d δd(p− q − k)

BRM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

1

p2 +m2 − iε
2πiδ−(q2 + m̄2)× (2π)d δd(p− q − k)

BLP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

(−1)

p2 +m2 + iε
2πiδ+(q2 + m̄2)× (2π)d δd(p− q − k)

BLM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di

(−1)

p2 +m2 + iε
2πiδ−(q2 + m̄2)× (2π)d δd(p− q − k)

(A.1.11)

In the following appendix, we will evaluate these integrals and their divergences.

A.2 Evaluating Passarino-Veltman Loop Integrals for open

φ3 + φ4 theory

In this section, we describe in some detail the loop integrals that appear in the perturbation

theory of open φ3 +φ4 theory. While some of the integrals are familiar from usual QFT textbooks

and a few other integrals occur in discussions of cutting rules, as far as the authors are aware,

the majority of the integrals described in this section are not analyzed elsewhere. Hence, these
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integrals are described in some detail with a special focus on the new kind of features that occur

when we try to do integrals in the real time (most of the integrals in this section do not admit

Wick rotation because of their unusual iε prescriptions) .

A.2.1 Passarino-Veltman A type integrals

There are four A type PV integrals : AR, AL, AP , AM . They satisfy the following relations

AR = A∗L AP = A∗P (A.2.1)

AR + AL = AP + AM ≡ 2AP (A.2.2)

First we compute the integral AR

AR = µ4−d
ˆ

ddp

(2π)d
−i

p2 +m2 − iε
=

ˆ
ddp

(2π)di

1

ω2
p − (p0)2 − iε

= µ4−d
ˆ

dd−1p

(2π)d−1

1

2ωp
= µ4−dVol(Sd−2)

2(2π)d−1

ˆ
m

(√
ω2
p −m2

)d−3

dωp

= Γ
[1

2
(2− d)

] m2

(4π)2

( m2

4πµ2

) d−4
2

=
m2

(4π)2

2

d− 4
+

m2

(4π)2

{
ln

m2

4πµ2e−γE
− 1
}

+O(d− 4)

(A.2.3)

Using this result and the relations (A.2.1)-(A.2.2), we can determine AL and AP . AL, AP and AM

are given by

AR = AL = AP = AM =
m2

(4π)2

(
2

d− 4
+ ln

m2

4πµ2e−γE
− 1

)
(A.2.4)

A.2.2 Integrals BPM(k) and BMP (k)

We will now consider the following two integrals

BPM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2)× 2πiδ−(q2 + m̄2)× (2π)d δd(p− q − k)

BMP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ−(p2 +m2)× 2πiδ+(q2 + m̄2)× (2π)d δd(p− q − k)

(A.2.5)

These integrals are well-known in discussions of cutting rules and we mainly discuss them here for

completeness. They represent the amplitudes for the two body decay of a particle with mass
√
−k2

to decay into two particles of massm and m̄. It follows that the integral BPM(k) vanishes unless kµ
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is future time-like, whereas BMP (k) is zero unless kµ is past time-like. Since BMP (k) = BPM(−k),

it suffices to argue this for BPM(k). The mathematical reasoning is as follows : if kµ were to

be space-like, we can go to a frame where k0 = 0 and the energy delta function then gives

δ(ωp + ω̄q) = 0, thus reducing the amplitude to zero. If kµ is time-like and we move to its rest

frame by setting kµ = {M,~0} where M = sgn(k0)
√
−k2. The energy delta function for BPM(k)

then gives δ(ωp + ω̄q −M) = 0, thus forcing M > 0, i.e., kµ should be future time-like.

By performing p0 and q0 integrals in the rest frame of kµ, we can reduce both integrals to the

two body phase space integral. Let us begin by defining the basic kinematics of a particle of mass

M =
√
−k2 decaying into two particles of mass m and m̄. Let p∗ be the momentum with which

these two particles fly away in the rest frame of M . Energy-momentum conservation then fixes

p? =
1

2M

[
M2 − (m+ m̄)2

]1/2[
M2 − (m− m̄)2

]1/2

=
M

2

[
1− 2

(
m2 + m̄2

M2

)
+

(
m2 − m̄2

M2

)2 ]1/2

ω?p ≡
√
p2
? +m2 =

1

2M
(M2 +m2 − m̄2)

ω̄?p ≡
√
p2
? + m̄2 =

1

2M
(M2 + m̄2 −m2)

(A.2.6)

These expressions make sense only when the argument of the square root is positive, i.e., when

M ≥ m + m̄ which is the condition for the two body decay to be kinematically possible. In this

regime, ω?p and ω̄?p are both positive as we would expect. Another useful identity is

1

(2ωp)(2ω̄p)
δ(ωp + ω̄p −M) =

1

4Mp?
δ(|p| − p?) (A.2.7)

Let us now compute this integral in terms of these kinematic variables. We have

BPM(k) = µ4−d
ˆ

dd−1p

(2π)d−1(2ωp)

dd−1q

(2π)d−1(2ω̄q)
× (2π)d δd−1(~p− ~q) δ(ωp + ωq −M)

= µ4−d
ˆ

dd−1p

(2π)d−1(2ωp)(2ω̄p)
2π δ(ωp + ω̄p −M)

= µ4−dVol(Sd−2)

(2π)d−2

ˆ ∞
0

pd−2 ddp

(2ωp)(2ω̄p)
δ(ωp + ω̄p −M) = µ4−dVol(Sd−2)pd−3

?

4M(2π)d−2

=
Vol(Sd−2)

32π2

(
M

4πµ

)d−4(
2p?
M

)d−3

(A.2.8)

which is the two-body phase space as advertised.

143



Restoring the kinematic constraints, we get

BPM(k) =
Vol(Sd−2)

32π2

(
−k2

(4πµ)2

) d−4
2 [

1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×Θ
(
−k2 − (m+ m̄)2

)
Θ(k0)

(A.2.9)

The integral can then be expanded near d = 4 to get

BPM(k) =
Θ (−k2 − (m+ m̄)2) Θ(k0)

8π

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] 1
2 (A.2.10)

Replacing kµ by −kµ we get

BMP (k) =
Θ (−k2 − (m+ m̄)2) Θ(−k0)

8π

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] 1
2
. (A.2.11)

These two expressions can be added to get

BPM(k) +BMP (k) =
Θ (−k2 − (m+ m̄)2)

8π

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] 1
2 (A.2.12)

When m = m̄, we can write

BPM(k) =
Θ(k0)Θ(−k2 − 4m2)

8π

√
1 +

4m2

k2
(A.2.13)

and

BMP (k) =
Θ(−k0)Θ(−k2 − 4m2)

8π

√
1 +

4m2

k2
(A.2.14)

A.2.3 Integrals BPP (k) and BMM(k)

We now turn to the ‘cross-cut’ integrals BPP (k) and BMM(k) which do not occur in the usual

discussions of cutting rules in a unitary theory. They are loop integrals peculiar to open QFTs

with their own characteristic kinematic behavior.
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Time-like kµ

We will begin by examining BPP (k) for time-like kµ. In the rest frame of kµ i.e., kµ = (M,~0), we

can do similar manipulations as in the previous subsection to get

BPP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2) 2πiδ+(q2 + m̄2) (2π)d δd(p− q − k)

= µ4−d
ˆ

dd−1p

(2π)d−12ωp

dd−1q

(2π)d−12ω̄q
δ(ωp − ω̄q −M)(2π)d δd−1(~p− ~q)

= µ4−d
ˆ

dd−1p

(2π)d−2

1

2ωp

1

2ω̄p
δ(ωp − ω̄p −M)

=
µ4−dVol(Sd−2)

(2π)d−2

ˆ ∞
0

pd−2dp

(2ωp)(2ω̄p)
δ(ωp − ω̄p −M) =

Vol(Sd−2)

32π2

(
|M |
4πµ

)d−4(
2p?
|M |

)d−3

(A.2.15)

where we have used

1

(2ωp)(2ω̄p)
δ(ωp − ω̄p −M) =

1

4|M |p?
δ(|p| − p?) (A.2.16)

with p? being the appropriate momentum which solves the kinematics (see below).

For M > 0, i.e., kµ being future time-like, we recognize the integral as the one describing the

phase space for a deep in-elastic scattering process : m̄ with momentum p strikes against the target

M at rest converting it into the particle m traveling with momentum p. The kinematics is solved

by

p? =
1

2M

[
(m+ m̄)2 −M2

]1/2[
(m− m̄)2 −M2

]1/2

=
M

2

[
1− 2

(
m2 + m̄2

M2

)
+

(
m2 − m̄2

M2

)2 ]1/2

ω?p ≡
√
p2
? +m2 =

1

2M
(m2 +M2 − m̄2)

ω̄?p ≡
√
p2
? + m̄2 =

1

2M
(m2 −M2 − m̄2)

(A.2.17)

which is sensible for M < m− m̄.Thus, in this kinematic regime we get

BPP (k) 3 Vol(Sd−2)

32π2

(
−k2

(4πµ)2

) d−4
2 [

1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×Θ
(
(m− m̄)2 + k2

)
Θ(k0)

(A.2.18)

For M < 0, i.e., kµ being past time-like, we recognize the integral as the one describing the

phase space for the two body decay of m̄ into a particle of mass |M | and m. The kinematics is
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solved by

p? =
1

2|M |

[
(m+ m̄)2 −M2

]1/2[
(m− m̄)2 −M2

]1/2

=
|M |

2

[
1− 2

(
m2 + m̄2

M2

)
+

(
m2 − m̄2

M2

)2 ]1/2

ω?p ≡
√
p2
? +m2 =

1

2|M |
(m̄2 −m2 −M2)

ω̄?p ≡
√
p2
? + m̄2 =

1

2|M |
(m̄2 −m2 +M2)

(A.2.19)

which is sensible for m̄ > |M |+m.Thus, in this kinematic regime we get

BPP (k) 3 Vol(Sd−2)

32π2

(
−k2

(4πµ)2

) d−4
2 [

1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×Θ
(
(m̄−m)2 + k2

)
Θ(−k0)

(A.2.20)

Thus, we conclude that for time-like kµ,

BPP (k) 3 Vol(Sd−2)

32π2

(
−k2

(4πµ)2

) d−4
2 [

1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×Θ
(
(m̄−m)2 + k2

)
Θ(−k2)

(A.2.21)

Note that BPP (k) = BPP (−k) could have been directly deduced from the integral form.

Space-like kµ

We will next study BPP (k) when kµ is space-like. We set kµ = {0, Q =
√
k2,~0d−2} where we take

Q > 0 without loss of generality. We have

BPP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ddq

(2π)di
2πiδ+(p2 +m2) 2πiδ+(q2 + m̄2) (2π)d δd(p− q − k)

= µ4−d
ˆ

dd−1p

(2π)d−1(2ωp)

dd−1q

(2π)d−1(2ω̄q)
× (2π)d δd−2(~p⊥ − ~q⊥) δ(p|| − q|| −Q)δ(ωp − ω̄q)

= µ4−d
ˆ

dd−1p

(2π)d−1(2ωp)(2ω̄p⊥)
2π δ(ωp − ω̄p⊥) =

µ4−d

(2Q)

ˆ
dd−2p⊥

(2π)d−2(2ωp⊥)

(A.2.22)

where, in the penultimate step we have defined ω̄p⊥ ≡ p2
⊥ + (Q − p||)2 + m̄2. In the last step, we

have used

1

(2ωp)(2ω̄p⊥)
δ(ωp − ω̄p⊥) =

1

4Qωp⊥
δ(p|| − p?||) (A.2.23)
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with the definitions

p?|| ≡
1

2Q
(m̄2 −m2 +Q2)

(ωp⊥)2 ≡ p2
⊥ + (p?||)

2 +m2 = p2
⊥ +

1

4Q2

[
(m+ m̄)2 +Q2

][
(m− m̄)2 +Q2

]
.

(A.2.24)

The rest of the integral is (d − 2) dimensional transverse phase space with the transverse mass

given by

m⊥ ≡
1

2Q

[
(m+ m̄)2 +Q2

]1/2[
(m− m̄)2 +Q2

]1/2

=
Q

2

[
1 + 2

(
m2 + m̄2

Q2

)
+

(
m2 − m̄2

Q2

)2 ]1/2

.

(A.2.25)

We thus get

BPP (k) = µ4−d Vol(Sd−3)

4Q(2π)d−2

ˆ ∞
m⊥

(√
ω2
p⊥
−m2

⊥

)d−4

dωp⊥

= µ4−dVol(Sd−2)

(2π)d−1

md−3
⊥

4Q
Γ
(3

2
− d

2

)
Γ
(d

2
− 1

2

)
=

Vol(Sd−2)

32π2

(
Q

4πµ

)d−4(
2m⊥
Q

)d−3
1

2π
Γ
(3

2
− d

2

)
Γ
(d

2
− 1

2

) (A.2.26)

Restoring the kinematical constraints, we get

BPP (k) 3 Vol(Sd−2)

32π2

(
k2

(4πµ)2

) d−4
2 [

1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×Θ(k)
1

2π
Γ
(3

2
− d

2

)
Γ
(d

2
− 1

2

) (A.2.27)

Putting together the various kinematical regimes, we obtain

BPP (k) =
Vol(Sd−2)

32π2

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×
{

Θ(k2)
1

2π
Γ
(3

2
− d

2

)
Γ
(d

2
− 1

2

)( k2

(4πµ)2

) d−4
2

+Θ
(
(m̄−m)2 + k2

)
Θ(−k2)

(
−k2

(4πµ)2

) d−4
2 }

(A.2.28)

Expanding around d = 4 we get

BPP (k) = BMM(k) =
1

8π

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] 1
2

×
{
−1

2
Θ(k2) + Θ

(
(m̄−m)2 + k2

)
Θ(−k2)

} (A.2.29)
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where we have used BMM(k) = BPP (−k) = BPP (k). Taking m = m̄, the second factor vanishes

and we obtain

BPP (k) = BMM(k) =
[−1

2
Θ(k2)]

8π

√
1 +

4m2

k2
(A.2.30)

A.2.4 Reduction of divergent integrals to BRP (k)

We now turn to the ‘quarter-cut’ integrals BRP (k), BRM(k), BLP (k) and BLM(k) which also do not

occur in the usual discussions of cutting rules in a unitary theory. They are also loop integrals

peculiar to open QFTs. However, unlike the integrals considered in the last section, they do not

evaluate to on-shell phase space for various processes. This off-shell nature means that they exhibit

UV divergences and hence are crucial to the issue of renormalizability of open QFTs. When the

open QFT is renormalisable, these diagrams contribute to β functions of an open QFT. As before,

we will evaluate this integrals in various kinematic regimes and then put together the answers at

the end.

We will consider the integral

BRP (k) = µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
2πi δ+(q2 + m̄2) (2π)d δd(p− q − k) (A.2.31)

This is the characteristic integral which leads to UV divergences in open QFT. Before analyzing

this integral further, we will show that the other divergent integrals can be reduced to this integral.

We start with

BRM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
2πi δ−(q2 + m̄2) (2π)d δd(p− q − k)

= BRP (−k)

(A.2.32)

Similarly

BLP (k) ≡ µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

−1

p2 +m2 + iε
2πi δ+(q2 + m̄2) (2π)d δd(p− q − k)

= [BRP (k)]∗

BLM(k) ≡ µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

−1

p2 +m2 + iε
2πi δ−(q2 + m̄2) (2π)d δd(p− q − k)

= [BRM(k)]∗ = [BRP (−k)]∗

(A.2.33)

The integrals with the subscripts exchanged can be obtained by exchanging m and m̄ (thus ex-

changing pµ and qµ) and reversing kµ. For example, BPR(k) = BRP (−k)|m↔m̄ and similarly for
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other integrals :

BPR(k) = BRP (−k)|m↔m̄ , BMR(k) = BRP (k)|m↔m̄ ,

BPL(k) = BRP (−k)∗|m↔m̄ , BML(k) = BRP (k)∗|m↔m̄ .
(A.2.34)

It is convenient to define the following combination of integrals :

B+
RL(k) ≡ BRP (k) +BML(k) = BRP (k) + [BRP (k)]∗m↔m̄

B+
RR(k) ≡ Θ(m > m̄)(BRM(k)−BML(k)) + Θ(m < m̄)(BPR(k)−BLP (k))

= Θ(m > m̄)(BRP (−k)−BRP (k)∗m↔m̄) + Θ(m < m̄)(BRP (−k)m↔m̄ −BRP (k)∗)

(A.2.35)

As we will see in next subsection, using these combinations, the rest of the divergent integrals can

also be reduced to BRP (k).

Time-like kµ : reduction of divergent integrals

We will begin with the case of time-like kµ and move to the rest frame of kµ i.e., set kµ = (M,~0).

Let us begin by evaluating

BRP (k) = µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
2πi δ+(q2 + m̄2) (2π)d δd(p− q − k)

= µ4−d
ˆ

ddp

(2π)di

ˆ
dd−1q

(2π)d−1(2ω̄q)

1

p2 +m2 − iε
(2π)d δd−1(~p− ~q) δ(p0 − ω̄q −M)

= µ4−d
ˆ

ddp

(2π)di

1

2ω̄p

1

p2 +m2 − iε
2π δ(p0 − ω̄p −M)

= µ4−d
ˆ

dd−1p

(2π)d−1i

1

2ω̄p

1

ω2
p − (M + ω̄p)2 − iε

=
µ4−d Vol(Sd−2)

2(2π)d−1 i

ˆ ∞
m̄

dω̄p
(ω̄2

p − m̄2)
d−3

2

ω2
p − (M + ω̄p)2 − iε

(A.2.36)

We will now show how the rest of the one-loop integrals can be reduced to BPR(k) for time-like

kµ. We have

BRL(k) ≡ µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
−1

q2 + m̄2 + iε
(2π)d δd(p− q − k)

= −µ4−d
ˆ

ddp

(2π)di2
1

p2 +m2 − iε
1

(p− k)2 + m̄2 + iε

= −µ4−d
ˆ

ddp

(2π)di2
1

(ωp − iε)2 − (p0)2

1

(ω̄p + iε)2 − (p0 −M)2
× eiδ

p0

M

(A.2.37)
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where in the last step, we have put ε, δ in different places to help in contour integration. Now we

perform the contour integral by closing the contour in the upper half plane for M > 0 and in the

lower half plane for M < 0. This gives

BRL(k) = µ4−d
ˆ

dd−1p

(2π)d−1i

( 1

ω2
p − (|M |+ ω̄p)2 − iε

1

2ω̄p
− 1

2ωp

1

ω̄2
p − (|M |+ ωp)2 + iε

)
=
µ4−dVol(Sd−2)

2(2π)d−1i

( ˆ ∞
m̄

dω̄p
(ω̄2

p − m̄2)
d−3

2

ω2
p − (|M |+ ω̄p)2 − iε

−
ˆ ∞
m

dωp
(ω2

p −m2)
d−3

2

ω̄2
p − (|M |+ ωp)2 + iε

)
= Θ(k0)[BRP (k) +BML(k)] + Θ(−k0)[BRM(k) +BPL(k)]

= Θ(k0)
(
BRP (k) + [BRP (k)]∗m↔m̄

)
+ Θ(−k0)

(
BRP (−k) + [BRP (−k)]∗m↔m̄

)
= Θ(k0)B+

RL(k) + Θ(−k0)B+
RL(−k)

(A.2.38)

where we have used the definition given in equation(A.2.35). Next, we turn to

BLR(k) ≡ µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

−1

p2 +m2 + iε

1

q2 + m̄2 − iε
(2π)d δd(p− q − k)

= BRL(k)m↔m̄ = Θ(k0)[BMR(k) +BLP (k)] + Θ(−k0)[BPR(k) +BLM(k)]

= Θ(k0)
(
BRP (k)m↔m̄ + [BRP (k)]∗

)
+ Θ(−k0)

(
BRP (−k)m↔m̄ + [BRP (−k)]∗

)
= Θ(k0)[B+

RL(k)]∗ + Θ(−k0)[B+
RL(−k)]∗

(A.2.39)

We then look at

BRR(k) = µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
1

q2 + m̄2 − iε
(2π)d δd(p+ q − k)

= µ4−d
ˆ

ddp

(2π)d i2
1

p2 +m2 − iε
1

(k − p)2 + m̄2 − iε

= µ4−d
ˆ

ddp

(2π)d i2
1

(ωp − iε)2 − (p0)2

1

(ω̄p − iε)2 − (p0 −M)2

(A.2.40)

We want to now write the answer of the contour integral with a definite ε prescription. An

examination of the sign of resulting ε’s shows that the form depends now on the sign of M as well

as m− m̄. A careful examination of ε’s give

BRR(k)

= Θ(m > m̄)µ4−d
ˆ

dd−1p

(2π)d−1 i

(
1

2ωp

1

ω̄2
p − (|M |+ ωp)2 + iε

+
1

ω2
p − (|M | − ω̄p)2 − iε

1

2ω̄p

)
+ Θ(m < m̄)µ4−d

ˆ
dd−1p

(2π)d−1 i

(
1

2ωp

1

ω̄2
p − (|M | − ωp)2 − iε

+
1

ω2
p − (|M |+ ω̄p)2 + iε

1

2ω̄p

)
(A.2.41)
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Transcribing it into BRP integrals, we obtain

BRR(k)

= Θ(k0)
{

Θ(m > m̄)(BRP (−k)−BRP (k)∗m↔m̄) + Θ(m < m̄)(BRP (−k)m↔m̄ −BRP (k)∗)
}

+ Θ(−k0)
{

Θ(m > m̄)(BRP (k)−BRP (−k)∗m↔m̄) + Θ(m < m̄)(BRP (k)m↔m̄ −BRP (−k)∗)
}

= Θ(k0)B+
RR(k) + Θ(−k0)B+

RR(−k)

(A.2.42)

It follows that

BLL(k) = BRR(k)∗

= Θ(k0)
{

Θ(m > m̄)(BRP (−k)∗ −BRP (k)m↔m̄) + Θ(m < m̄)(BRP (−k)∗m↔m̄ −BRP (k))
}

+ Θ(−k0)
{

Θ(m > m̄)(BRP (k)∗ −BRP (−k)m↔m̄) + Θ(m < m̄)(BRP (k)∗m↔m̄ −BRP (−k))
}

= Θ(k0)[B+
RR(k)]∗ + Θ(−k0)[B+

RR(−k)]∗

(A.2.43)

We will now turn to the case of space-like kµ to prove similar relations in that case.

Space-like kµ : reduction of divergent integrals

We will study BRP (k) when kµ is space-like. We set kµ = {0, Q =
√
k2,~0d−2} where we can take

Q > 0 without loss of generality.

BRP (k) = µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
2πi δ+(q2 + m̄2) (2π)d δd(p− q − k)

= µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
2πi δ+(q2 + m̄2)

× (2π)d δ(p0 − q0)δ(p|| − q|| −Q)δ(p⊥ − q⊥)

= µ4−d
ˆ

dd−1q

(2π)d−1i

1

2ω̄q

1

q2
⊥ + (Q+ q||)2 +m2 − ω̄2

q − iε

= µ4−d
ˆ

dd−1q

(2π)d−1i

1

2ω̄q

1

m2 − m̄2 +Q2 + 2Qq|| − iε

=
µ4−d

4Q

ˆ
dd−1q

(2π)d−1i

1

ω̄q

1

q∗|| + q|| − iε

(A.2.44)

where, we have defined

q∗|| ≡
m2 − m̄2 +Q2

2Q
.
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Now, we move on to calculating BRL(k), given by

BRL(k) = µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
−1

q2 + m̄2 + iε
(2π)d δd(p− q − k)

= µ4−d
ˆ

ddp

(2π)d
1

p2 +m2 − iε
1

(p− k)2 + m̄2 + iε

= µ4−d
ˆ

ddp

(2π)d
1

ω2
p − (p0)2 − iε

1

ω̄2
p⊥

+ (Q− p||)2 − (p0)2 + iε

= µ4−d
ˆ

dd−1p

(2π)d−1i

(
− 1

2ωp

1

m̄2 −m2 +Q2 − 2Qp|| + iε

+
1

m2 − m̄2 −Q2 + 2Qp|| − iε
1

2ω̄p−k

)
(A.2.45)

Now, we take p = −q in the first integral and p = k + q for the second integral to write

BRL(k) = µ4−d
ˆ

dd−1q

(2π)d−1i

(
− 1

2ωq

1

m̄2 −m2 +Q2 + 2Qq|| + iε

+
1

m2 − m̄2 +Q2 + 2Qq|| − iε
1

2ω̄q

)
= BRP (k)∗|m↔m̄ +BRP (k) = B+

RL(k)

(A.2.46)

Similarly,

BLR(k) = BRL(k)m↔m̄ = BRP (k)|m↔m̄ +BRP (k)∗ = [B+
RL(k)]∗ (A.2.47)

Let us now do the BRR(k) integral for space-like kµ :

BRR(k) = µ4−d
ˆ

ddp

(2π)di

ˆ
ddq

(2π)di

1

p2 +m2 − iε
1

q2 + m̄2 − iε
(2π)d δd(p+ q − k)

= µ4−d
ˆ

ddp

(2π)d i2
1

p2 +m2 − iε
1

(k − p)2 + m̄2 − iε

= µ4−d
ˆ

ddp

(2π)d i2
1

ω2
p − (p0)2 − iε

1

ω̄2
p⊥

+ (Q− p||)2 − (p0)2 − iε

= µ4−d
ˆ

dd−1p

(2π)d−1i

(
1

2
√
ω2
p⊥

+ p2
||

1

m̄2 −m2 +Q2 − 2Qp|| − iε sgn(ω̄p⊥ − ωp⊥)

+
1

m2 − m̄2 −Q2 + 2Qp|| − iε sgn(ωp⊥ − ω̄p⊥)

1

2
√
ω̄2
p⊥

+ (Q− p||)2

)

(A.2.48)
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Now, we take p|| = −q|| in the first integral and p|| = Q+ q|| in the second, to get

BRR(k) = µ4−d
ˆ

dd−1q

(2π)d−1i

(
1

2
√
ω2
q⊥

+ q2
||

1

m̄2 −m2 +Q2 + 2Qq|| − iε sgn(ω̄p⊥ − ωp⊥)

+
1

m2 − m̄2 +Q2 + 2Qq|| − iε sgn(ωq⊥ − ω̄q⊥)

1

2
√
ω̄2
q⊥

+ q2
||

)

= Θ(m > m̄)µ4−d
ˆ

dd−1q

(2π)d−1i

(
1

m2 − m̄2 +Q2 − 2Qq|| − iε
1

2ω̄q

+
1

2ωq

1

m̄2 −m2 +Q2 + 2Qq|| + iε

)

+ Θ(m < m̄)µ4−d
ˆ

dd−1q

(2π)d−1i

(
1

2ωq

1

m̄2 −m2 +Q2 − 2Qq|| − iε

+
1

m2 − m̄2 +Q2 + 2Qq|| + iε

1

2ω̄q

)
= Θ(m > m̄)(BRP (−k)−BRP (k)∗m↔m̄) + Θ(m < m̄)(BRP (−k)m↔m̄ −BRP (k)∗)

= B+
RR(k)

(A.2.49)

Here, in the penultimate step, we have done some variable redefinitions to obtain an answer similar

to the time-like case. We can finally compute

BLL(k) = BRR(k)∗ = [B+
RR(k)]∗ . (A.2.50)

Summary of divergent integrals

We can now put together various cases and write

BRL(k) = Θ(k0)Θ(−k2)B+
RL(k) + Θ(−k0)Θ(−k2)B+

RL(−k) + Θ(k2)B+
RL(k)

BLR(k) = Θ(k0)Θ(−k2)[B+
RL(k)]∗ + Θ(−k0)Θ(−k2)[B+

RL(−k)]∗ + Θ(k2)[B+
RL(k)]∗

BRR(k) = Θ(k0)Θ(−k2)B+
RR(k) + Θ(−k0)Θ(−k2)B+

RR(−k) + Θ(k2)B+
RR(k)

BLL(k) = Θ(k0)Θ(−k2)[B+
RR(k)]∗ + Θ(−k0)Θ(−k2)[B+

RR(−k)]∗ + Θ(k2)[B+
RR(k)]∗ .

(A.2.51)
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where

B+
RL(k) ≡ BRP (k) +BML(k) = BRP (k) + [BRP (k)]∗m↔m̄

B+
RR(k) ≡ Θ(m > m̄)(BRM(k)−BML(k)) + Θ(m < m̄)(BPR(k)−BLP (k))

= Θ(m > m̄)(BRP (−k)−BRP (k)∗m↔m̄) + Θ(m < m̄)(BRP (−k)m↔m̄ −BRP (k)∗)

(A.2.52)

This is apart from the other divergent integrals :

BRM(k) = BRP (−k) ,

BLP (k) = [BRP (k)]∗ , BLM(k) = [BRP (−k)]∗ ,

BPR(k) = BRP (−k)|m↔m̄ , BMR(k) = BRP (k)|m↔m̄ ,

BPL(k) = BRP (−k)∗|m↔m̄ , BML(k) = BRP (k)∗|m↔m̄ .

(A.2.53)

We note that all these integrals can be written in terms of BRP (k) as advertised.

Reduction and identities due to largest time equations

A further reduction is possible using largest time equations and their concomitant cutting rules :

BRR(k) +BRL(k) = BRP (k) +BRM(k)

BLR(k) +BLL(k) = BLP (k) +BLM(k)

BPR(k) +BPL(k) = BPP (k) +BMM(k)

BMR(k) +BML(k) = BMP (k) +BRM(k)

(A.2.54)

From applying these identities, we can conclude that Re[BRP (k) +BRP (−k)] and Im[BRP (k)−

BRP (−k)] is symmetric under m ↔ m̄ exchange. Further, the real part(viz., the cut) of BRP (k)

integral is given by

BRP (k) +BRP (k)∗ = Re B+
RL(k)

=
Vol(Sd−2)

32π2

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×
{

Θ(k2)
1

2π
Γ
(3

2
− d

2

)
Γ
(d

2
− 1

2

)( k2

(4πµ)2

) d−4
2

+[Θ(k0)Θ
(
(m̄−m)2 + k2

)
+ Θ(−k0)]Θ(−k2)

(
−k2

(4πµ)2

) d−4
2 }

(A.2.55)
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These conditions in turn lead to the identities :

BRP (k) +BLP (k) = BMR(k) +BML(k)

BRP (k) +BLM(k) = BMR(k) +BPL(k)

BRP (k) +BPR(k) = BRM(k) +BMR(k)

BPR(k) +BPL(k) = BRM(k) +BLM(k)

BPR(k) +BML(k) = BRM(k) +BLP (k)

BLP (k) +BPL(k) = BLM(k) +BML(k)

(A.2.56)

From, these identities we get

B+
RL(k) ≡ BRP (k) +BML(k) = BRP (k) + [BRP (k)]∗m↔m̄

B+
RR(k) = BRP (−k)−BRP (k)∗m↔m̄ = BRP (−k)m↔m̄ −BRP (k)∗

(A.2.57)

which in turn obey

B+
RR(k) +B+

RL(k) = BRP (k) +BRP (−k) = BRP (k) +BRM(k) (A.2.58)

Another implication is

Re B+
RR(k) =

Vol(Sd−2)

32π2

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

× 1

2
[Θ(k0)−Θ(−k0)]Θ

(
−(m̄−m)2 − k2

)
Θ(−k2)

(
−k2

(4πµ)2

) d−4
2

(A.2.59)

The following combination is symmetric under m↔ m̄ as well as k ↔ −k exchange.

BRP (k) +BRP (k)∗ +BPM(k)

=
Vol(Sd−2)

32π2

[
1 + 2

(
m2 + m̄2

k2

)
+

(
m2 − m̄2

k2

)2] d−3
2

×
{

Θ(k2)
1

2π
Γ
(3

2
− d

2

)
Γ
(d

2
− 1

2

)( k2

(4πµ)2

) d−4
2

+Θ(−k2)

(
−k2

(4πµ)2

) d−4
2 }

(A.2.60)

A.2.5 Evaluation of BRP (k)

The basic integral BRP (k) has the following form on the time-like case :

BRP (k) =
µ4−d Vol(Sd−2)

2(2π)d−1 i

ˆ ∞
m̄

dω̄p
(ω̄2

p − m̄2)
d−3

2

ω2
p − (M + ω̄p)2 − iε

=
µ4−d Vol(Sd−2)

2(2π)d−1 i

ˆ ∞
m̄

dω̄p
(ω̄2

p − m̄2)
d−3

2

2M(ω̄∗p − ω̄p)− iε

(A.2.61)
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with

ω̄∗p ≡
m2 − m̄2 −M2

2M
.

The same integral in the space-like case takes the form

BRP (k) =
µ4−d

2Q

ˆ
dd−1q

(2π)d−1i

1

2ω̄q

1

q∗|| + q|| − iε
(A.2.62)

where, we have defined

q∗|| ≡
m2 − m̄2 +Q2

2Q
.

Our aim in this subsection is to evaluate these integrals and extract out the appropriate divergences.

Time-like kµ : computation of divergences

We begin by setting ω̄p = m̄ cosh η in the time-like case to get

BRP (k) =
µ4−d Vol(Sd−2)m̄d−3

4M(2π)d−1 i

ˆ ∞
0

dη
sinhd−2 η

γ̄ − cosh η

=
Vol(Sd−2)

32π2

m̄

M

( m̄2

4πµ2

) d−4
2

ˆ ∞
0

dη

iπd/2−1

sinhd−2 η

γ̄ − cosh η

(A.2.63)

where we have defined

γ̄ =
ω̄∗p
m̄
≡ m2 − m̄2 −M2 − iε

2Mm̄
. (A.2.64)

Thus, we have reduced our analysis to the integral

F (γ̄) ≡
ˆ ∞

0

dη

iπd/2−1

sinhd−2 η

γ̄ − cosh η
(A.2.65)

This integral can then analyzed in detail to study the analytic structure of this integral. But, for

our purposes, it is sufficient to extract the divergences.

For our computation of β function, we need to extract out the divergent part of these integrals.

Focusing on the large ω̄p contribution, we can approximate BRP (k) by

BRP (k) =
µ4−d Vol(Sd−2)

2(2π)d−1 i

ˆ ∞
m̄

dω̄p (ω̄2
p − m̄2)

d
2

[
− 1

2Mω̄4
p

+
M2 + m̄2 −m2

4M2ω̄5
p

+O(ω̄−6
p )
]

=
i

128π2

Γ
(
d+2

2

)
Γ
(
d−1

2

)( m̄2

4πµ2

) d−4
2
{16m̄

3M
Γ
(3− d

2

)
−
√
πΓ
(4− d

2

)M2 + m̄2 −m2

M2
+ . . .

}
(A.2.66)

Near d = 4, this gives

BRP (k) =
i

(4π)2

{
−16m̄

3M
+
M2 + m̄2 −m2

2M2

[ 2

d− 4
+ ln

( 4m̄2

4πµ2e−γE

)
− 1

2

]
+ . . .

}
(A.2.67)

so that
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Space-like kµ : computation of divergences

In this subsection, we will consider the space-like case and confirm that the divergence structure

is same in the space-like case. Let us first get the real part of BRP (k), which is given by

BRP (k) =
µ4−d Vol(Sd−2)

2(2π)d−1 i

ˆ ∞
m̄

dω̄p
(ω̄2

p − m̄2)
d−3

2

2M(ω̄∗p − ω̄p)− iε
(A.2.68)

BRP (k) =
µ4−d

2Q

ˆ
dd−1q

(2π)d−1i

1

2ω̄q

1

q∗|| + q|| − iε

=
µ4−d

4Q(2π)d−1 i

ˆ ∞
m̄

dω̄q⊥ ω̄q⊥(ω̄2
q⊥
− m̄2)

d−4
2

ˆ ∞
−∞

dq||
1√

ω̄2
q⊥

+ q2
||

1

q∗|| + q|| − iε

(A.2.69)

where, we have defined

q∗|| ≡
m2 − m̄2 +Q2

2Q
.

Let us first get the real part of BRP (k), which is given by

BRP (k)

∣∣∣∣
real part

=
µ4−d

4Q(2π)d−1 i

ˆ ∞
m̄

dω̄q⊥ ω̄q⊥(ω̄2
q⊥
− m̄2)

d−4
2

ˆ ∞
−∞

dq||
1√

ω̄2
q⊥

+ q2
||

(
1

q∗|| + q|| − iε
− 1

q∗|| + q|| + iε

)

=
µ4−d

4Q(2π)d−1 i

ˆ ∞
m̄

dω̄q⊥ ω̄q⊥(ω̄2
q⊥
− m̄2)

d−4
2

ˆ ∞
−∞

dq||
1√

ω̄2
q⊥

+ q2
||

2πi δ(q∗|| + q||)

(A.2.70)

The above equation can easily be seen to be equal to BPP (k) for the space-like case in (A.2.22).

So, we have in the space-like case

BRP (k)

∣∣∣∣
real part

= BPP (k) (A.2.71)

Let us now get the imaginary part of BRP (k), which is also the divergent part. It is given by

BRP (k)

∣∣∣∣
imaginary part

=
i

2(4π)2

Q2 +m2 − m̄2

Q2

(
2

d− 4
+ ln

m̄2

4πµ2e−γE
− 1

)
+ .... (A.2.72)

when, m = m̄, we get

BRP (k)

∣∣∣∣
imaginary part

=
i

2(4π)2

(
2

d− 4
+ ln

m2

4πµ2e−γE
− 1

)
+ .... (A.2.73)

We see that these divergences are same as the time-like case.

157



Summary of divergences

We now summarize the divergences in various integrals. We start with

div[BRP ]m̄s =
i

(4π)2

k2 − m̄2 +m2

2k2

[ 2

d− 4
+ ln

( m̄2

4πµ2e−γE

)]
+ . . . (A.2.74)

and

div[B+
RL] =

i

(4π)2

m2 − m̄2

k2

[ 2

d− 4
+ ln

( m m̄

4πµ2e−γE

)]
+ . . .

div[B+
RR] =

i

(4π)2

[ 2

d− 4
+ ln

( m m̄

4πµ2e−γE

)]
+ . . .

(A.2.75)

Thus,

div[BRP ] = div[BRM ] =
i

(4π)2

k2 − m̄2 +m2

2k2

[ 2

d− 4
+ ln

( m̄2

4πµ2e−γE

)]
div[BPR] = div[BMR] =

i

(4π)2

k2 + m̄2 −m2

2k2

[ 2

d− 4
+ ln

( m2

4πµ2e−γE

)]
div[BRL] = −div[BLR] =

i

(4π)2

m2 − m̄2

k2

[ 2

d− 4
+ ln

( m m̄

4πµ2e−γE

)]
+ . . .

div[BRR] = −div[BLL] =
i

(4π)2

[ 2

d− 4
+ ln

( m m̄

4πµ2e−γE

)]
+ . . .

(A.2.76)

When m = m̄, we can thus summarize the divergence of ‘quarter-cut’ integrals as

div[BRP ] = div[BPR] = div[BRM ] = div[BMR] =
i

2(4π)2

[ 2

d− 4
+ ln

( m2

4πµ2e−γE

)]
+ . . .

div[BLP ] = div[BPL] = div[BLM ] = div[BML] = − i

2(4π)2

[ 2

d− 4
+ ln

( m2

4πµ2e−γE

)]
+ . . .

(A.2.77)

This along with

div[BRR] =
i

(4π)2

[ 2

d− 4
+ ln

( m2

4πµ2e−γE

)
− 1
]

+ . . .

div[BLL] = − i

(4π)2

[ 2

d− 4
+ ln

( m2

4πµ2e−γE

)
− 1
]

+ . . .

(A.2.78)

summarizes all the divergences needed in this work.

A.2.6 UV divergences and symmetry factors

In this subsection, we will collect the UV divergences of various B type diagrams for the convenience

of the reader.

div[BRR(k)] =
i

(4π)2

[
2

d− 4
+ ln

( m2

4πµ2e−γE

)
− 1

]
(A.2.79a)
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div[BLR(k)] = 0 (A.2.79b)

div[BPP (k)] = 0 (A.2.79c)

div[BPR(k)] =
1

2
div[BRR(k)] (A.2.79d)

Further, we have

div[BRR] = div[BLL]? (A.2.80a)

div[BLR] = div[BPM ]∗ = div[BMP ] = div[BPP ] = 0 (A.2.80b)

div[BPR] = div[BMR] = div[BPL]∗ = div[BML]∗ =
1

2
div[BRR] (A.2.80c)

We also give below the symmetry factors of the corresponding diagrams in figure 3. The divergences

given above along with the symmetry factors provides a quick way to write down appropriate β

functions for the open QFT. In the ensuing figure 4 and figure 5, we tabulate a set of useful

diagrammatic identities which relate the various SK loop integrals.

A.3 Passarino-Veltman diagrams in the average-difference

basis

Let us now take a look at the Passarino-Veltman diagrams in average-difference basis. It’s worth

remembering here that only three out of the four propagators, in this basis, are non-vanishing:

the ‘d’ propagator vanishes. This means that we have lesser number of non-vanishing diagrams in

this basis. As a matter of fact, some of the non-vanishing diagrams (in average-difference basis)

do not diverge. All these facts add up to give only a few divergent one loop diagrams - only one

A type and two B type integrals. Thus, computations for the beta functions greatly simplifies in

this basis. We will not try to evaluate the PV integrals from scratch. We will express the integrals

in the average-difference basis in terms of the integrals in the φR-φL basis and then, use the results

from the previous sections to determine the former.
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A.3.1 Passarino-Veltman A type integral in the average-difference basis

There are two A type PV integrals in this basis: Aa and Ab = Af . Using the relations in equation

(3.3.3) and equation (A.2.3)-(A.2.4), it’s easy to check that we get

Aa =
1

2
(AR + AL) =

1

(4π)2

[
2

(d− 4)
+ ln

( m2

4πµ2e−γE

)
− 1

]
m2

Ab = AR − AM = 0

Af = AR − AP = 0

(A.3.1)

A.3.2 Passarino-Veltman B type integral in the average-difference basis

There are six PV B type integrals in this basis: Baa, Baf , Bab, Bbf , Bfb and Bff = Bbb. Using the

relations given in equation (3.3.3), it is easy to check that

Baa =
1

4
(BRR +BRL +BLR +BLL)

Baf =
1

2
(BRR −BRP +BLR −BLP )

Bab =
1

2
(BRR −BRM +BLR −BLM)

Bfb = BRR −BRM −BMR +BMM

Bbf = BRR −BRL −BLR +BLL

Bff = Bbb = BRR −BRM −BMR +BMP

(A.3.2)

To compute the divergences for the above-mentioned integrals, we use the results given in equations

(A.2.79a)-(A.2.80c) in section A.2.6. So, we have

div[Baa] = 0

div[Baf ] =
1

2
div[BRR] =

i

2(4π)2

[
2

d− 4
+ ln

( m2

4πµ2e−γE

)
− 1

]
div[Bab] =

1

2
div[BRR] =

i

2(4π)2

[
2

d− 4
+ ln

( m2

4πµ2e−γE

)
− 1

]
div[Bfb] = 0

div[Bbf ] = 0

div[Bff ] = div[Bbb] = 0

(A.3.3)

We shall use these results for the computations in section 3.3 and in the next section.
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A.4 Computations in the average-difference basis

In section 3.3, we have already computed the beta functions for the Lindblad violating combinations

in the average-difference basis and we found that it matches with our computations in the φR-φL

basis. For the sake of completion, we calculate the beta function for rest of the mass terms and

the rest of the coupling constants in this basis. This computation enables one to verify the beta

functions computed in φR-φL basis. We shall start off by providing the set of Feynman rules in

this basis.

The propagators in this basis are given in equation (3.3.3). The vertex factors in this basis are

given by

Vertex Factor

φ3
d

(−i)
4

(Re λ3 − 3 Re σ3)(2π)dδ (
∑
p)

φ3
a 2(Im λ3 + 3 Im σ3)(2π)dδ (

∑
p)

φ2
dφa

1
2
(Im λ3 − Im σ3)(2π)dδ (

∑
p)

φdφ
2
a (−i)(Re λ3 + Re σ3)(2π)dδ (

∑
p)

φ4
d

1
8
(Im λ4 − 4 Im σ4 − 3λ∆)(2π)dδ (

∑
p)

φ4
a 2(Im λ4 + 4 Im σ4 − 3λ∆)(2π)dδ (

∑
p)

φ3
dφa

(−i)
4

(Re λ4 − 2 Re σ4)(2π)dδ (
∑
p)

φdφ
3
a (−i)(Re λ4 + 2 Re σ4)(2π)dδ (

∑
p)

φ2
dφ

2
a

1
2
(Im λ4 + λ∆)(2π)dδ (

∑
p)

A.4.1 Beta functions for the mass terms

In order to compute the beta functions of the masses Re m2, Im m2 and m2
∆, we need to compute

three different correlators. As usual, we omit all the finite terms which are irrelevant for beta

function computation.

We have chosen the following three correlators:
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φ2
a vertex

First we consider φa → φa via φ2
a vertex. There are three divergent one loop contribution, as

depicted in the first row of the figure 9. The total contribution is given by

2(Im m2 −m2
∆) + (2 diagrams)× 2(Im λ3 + 3 Im σ3)× (−i)(Re λ3 + Re σ3)

i

(4π)2

1

d− 4

+
1

2
× 2(Im λ4 + 4 Im σ4 − 3λ∆)

Re m2

(4π)2

2

d− 4

(A.4.1)

where, the first term is from tree level contribution and the rest are from loop level. Thus, from

equation (A.4.1), the beta function for (Im m2 −m2
∆) is given by

d

dlnµ
(Im m2 −m2

∆) =
2

(4π)2
(Im λ3 + 3 Im σ3)(Re λ3 + Re σ3) +

Re m2

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)

(A.4.2)

φaφd vertex

Next we consider φa → φa via φaφd vertex. It has same divergent diagrams as that of (A.4.1), but

with different vertex factors. The corresponding Feynman diagrams are depicted in the second

row of the figure 9. The total contribution is given by

(−i)Re m2 + (−i)(Re λ3 + Re σ3)× (−i)(Re λ3 + Re σ3)
i

(4π)2

1

d− 4

+ 2(Im λ3 + 3 Im σ3)× 1

2
(Im λ3 − Im σ3)

i

(4π)2

1

d− 4

+
1

2
× (−i)(Re λ4 + 2 Re σ4)

Re m2

16π2

2

d− 4

(A.4.3)

Again, the first term is the tree level and the rest are the one loop contributions. Thus, from

(A.4.3) the beta function for (Re m2) is as follows

d

dlnµ
Re m2 =

1

(4π)2
(Re λ3 + Re σ3)2 − 1

(4π)2
(Im λ3 + 3 Im σ3)(Im λ3 − Im σ3)

+
Re m2

(4π)2
(Re λ4 + 2 Re σ4)

(A.4.4)
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φ2
d vertex

The Feynman diagrams for φa → φa via φ2
d vertex are depicted in the third row of the figure 9.

The tree level and one loop contributions are given by

1

2
(Im m2 +m2

∆) + (2 diagrams)× 1

2
(Im λ3 − Im σ3)× (−i)(Re λ3 + Re σ3)

i

(4π)2

1

d− 4

+
1

2
× 1

2
(Im λ4 + λ∆)

Re m2

16π2

2

d− 4

(A.4.5)

From this equation we obtain the beta function for (Im m2 +m2
∆)

d

dlnµ
(Im m2 +m2

∆) =
2

(4π)2
(Im λ3 − Im σ3)(Re λ3 + Re σ3) +

Re m2

(4π)2
(Im λ4 + λ∆) (A.4.6)

Final β function

The beta functions of m2 (= Re m2 +i Im m2) and m2
∆ can be obtained from the equations (A.4.2),

(A.4.4) and (A.4.6)

dm2

dlnµ
=

1

(4π)2
(λ3 + σ∗3)(λ3 + σ3 + 2i Im σ3) +

m2

(4π)2

[
λ4 + 2σ4 − iλ∆

]
dm2

∆

dlnµ
= − 4

(4π)2
Im σ3 (Re λ3 + Re σ3) +

2

(4π)2
Re
[
m2(λ∆ + iσ4)

] (A.4.7)

A.4.2 Beta functions for the cubic couplings

We have four cubic coupling constants and the corresponding vertices are φ3
a, φ2

aφd, φaφ2
d, φ3

d and

we need to compute four correlators. In each case, we will keep only the divergent parts as before.

φ3
a vertex

The tree level and one loop Feynman diagram for φd → φdφd via φ3
a vertex is depicted in the first

row of the figure 10. These contributions are given by

2(Im λ3 + 3 Im σ3)

+ (3 channels)× 2(Im λ3 + 3 Im σ3)× (−i)(Re λ4 + 2 Re σ4)× i

(4π)2

1

d− 4

+ (3 channels)× 2(Im λ4 + 4 Im σ4 − 3λ∆)× (−i)(Re λ3 + Re σ3)× i

(4π)2

1

d− 4

(A.4.8)
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and from this equation we determine the beta function for Im λ3 + 3 Im σ3

d

dlnµ
(Im λ3 + 3 Im σ3) =

3

(4π)2
(Im λ3 + 3 Im σ3)(Re λ4 + 2 Re σ4)

+
3

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Re λ3 + Re σ3)

(A.4.9)

φ2
aφd vertex

Now we compute φd → φaφa via φ2
aφd vertex. The relevant tree level and one loop Feynman

diagrams are shown in the second row of the figure 10 and these contributions are given by

(−i)(Re λ3 + Re σ3)

+ (3 diagrams)× (−i)(Re λ3 + Re σ3)× (−i)(Re λ4 + 2 Re σ4)× i

(4π)2

1

d− 4

+ (1 diagram)× 2(Im λ4 + 4 Im σ4 − 3λ∆)× 1

2
(Im λ3 − Im σ3)× i

(4π)2

1

d− 4

+ (2 diagram)× 1

2
(Im λ4 + λ∆)× 2(Im λ3 + 3 Im σ3)× i

(4π)2

1

d− 4

(A.4.10)

This implies that the beta function for (Re λ3 + Re σ3) is given by

d

dlnµ
(Re λ3 + Re σ3) =

3

(4π)2
(Re λ3 + Re σ3)(Re λ4 + 2 Re σ4)

− 1

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Im λ3 − Im σ3)

− 2

(4π)2
(Im λ4 + λ∆)(Im λ3 + 3 Im σ3)

(A.4.11)

φaφ
2
d vertex

The contribution (upto one loop) to φa → φaφa via φaφ2
d vertex is given by

1

2
(Im λ3 − Im σ3)

+ (3 diagrams)× (−i)(Re λ3 + Re σ3)× 1

2
(Im λ4 + λ∆)× i

(4π)2

1

d− 4

+ (2 diagrams)× (−i)(Re λ4 + 2 Re σ4)× 1

2
(Im λ3 − Im σ3)× i

(4π)2

1

d− 4

+
(−i)

4
(Re λ4 − 2 Re σ4)× 2(Im λ3 + 3 Im σ3)× i

(4π)2

1

d− 4

(A.4.12)
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The corresponding Feynman diagram can be found in the third row of the figure 10. Hence the

beta function for (Im λ3 − Im σ3) is as follows

d

dlnµ
(Im λ3 − Im σ3) =

3

(4π)2
(Re λ3 + Re σ3)(Im λ4 + λ∆)

+
2

(4π)2
(Re λ4 + 2 Re σ4)(Im λ3 − Im σ3)

+
1

(4π)2
(Re λ4 − 2 Re σ4)(Im λ3 + 3 Im σ3)

(A.4.13)

φ3
d vertex

The tree level and the one loop Feynman diagrams for φa → φaφa via φ3
d vertex is depicted in the

fourth row of the figure 10 and the contribution from these diagrams are given by

−i
4

(Re λ3 − 3 Re σ3)

+ (3 channels)× (−i)(Re λ3 + Re σ3)× (−i)
4

(Re λ4 − 2 Re σ4)× i

(4π)2

1

d− 4

+ (3 channels)× 1

2
(Im λ4 + λ∆)× 1

2
(Im λ3 − Im σ3)× i

(4π)2

1

d− 4

(A.4.14)

which leads to the following beta function for (Re λ3 − 3 Re σ3)

d

dlnµ
(Re λ3 − 3 Re σ3) =

3

(4π)2
(Re λ3 + Re σ3)(Re λ4 − 2 Re σ4)

− 3

(4π)2
(Im λ4 + λ∆)(Im λ3 − Im σ3)

(A.4.15)

Final β function

From the equations (A.4.9), (A.4.11), (A.4.13) and (A.4.15) we can compute the beta functions of

λ3, σ3

dλ3

dlnµ
=

3

(4π)2

[
λ4(λ3 + σ3) + σ4(λ3 + σ∗3) + iλ∆(σ3 − σ∗3)

]
dσ3

dlnµ
=

1

(4π)2

[
(λ4 + 2σ∗4)(σ3 − σ∗3) + σ4(λ∗3 + 2λ3 + 3σ3)− iλ∆(λ∗3 + 2λ3 + 3σ∗3)

] (A.4.16)

A.4.3 Beta functions for the quartic couplings

In this subsection we compute the beta functions for the quartic couplings in the average-difference

basis. There are five different quartic coupling constants: these are the coupling constants mul-

tiplying the operators φ4
a, φ3

aφd, φ2
aφ

2
d, φaφ3

d, φ4
d. For all these couplings there are two distinct
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divergent diagrams (similar to the cubic coupling constants). As in the last subsection, we keep

only the divergent terms from the one loop contributions.

φ4
a vertex

We start by computing φdφd → φdφd via φ4
a vertex. The Feynman diagrams are depicted in the

first row of the figure 11 and the corresponding contributions are given by

2(Im λ4 + 4 Im σ4 − 3λ∆)

+ (2 diagrams)(3 channels)× 2(Im λ4 + 4 Im σ4 − 3λ∆)× (−i)(Re λ4 + 2 Re σ4)× i

32π2

2

d− 4

= 2(Im λ4 + 4 Im σ4 − 3 λ∆) + 2(Im λ4 + 4 Im σ4 − 3 λ∆)× (Re λ4 + 2 Re σ4)× 6

(4π)2

1

d− 4

(A.4.17)

Thus the beta function for (Im λ4 + 4 Im σ4 − 3λ∆) is given by

d

dlnµ
(Im λ4 + 4 Im σ4 − 3λ∆) =

6

(4π)2
(Im λ4 + 4 Im σ4 − 3λ∆)(Re λ4 + 2Re σ4) (A.4.18)

φ3
aφd vertex

Next we compute φdφd → φaφd via φ3
aφd vertex, which is depicted in the second row of the figure

11. The tree level and one loop contributions from these Feynman diagrams are given by

d

dlnµ
(Re λ4 + 2 Re σ4) + (3 channels)× 2(Im λ4 + 4 Im σ4 − 3λ∆)× 1

2
(Im λ4 + λ∆)× i

32π2

2

d− 4

+ (3 channels)× (−i)(Re λ4 + 2 Re σ4)× (−i)(Re λ4 + 2 Re σ4)× i

32π2

2

d− 4

= (−i)(Re λ4 + 2 Re σ4) + i(Im λ4 + 4 Im σ4 − 3λ∆)(Im λ+ λ∆)
3

(4π)2

1

d− 4

− i(Re λ4 + 2 Re σ4)2 × 3

(4π)2

1

d− 4

(A.4.19)

we can determine the beta function for (Re λ4 + 2 Re σ4) -

d

dlnµ
(Re λ4 + 2 Re σ4) =

3

(4π)2

[
(Re λ4 + 2 Re σ4)2 − (Im λ4 + 4 Im σ4 − 3λ∆)(Im λ4 + λ∆)

]
(A.4.20)
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φ2
aφ

2
d vertex

The tree level and one loop Feynman diagrams for φaφa → φaφa via φ2
aφ

2
d vertex, which is depicted

in the third row of the figure 11, contributes as follows

1

2
(Im λ4 + λ∆)

+ (3 channels)× 1

2
(Im λ4 + λ∆)× (−i)(Re λ+ 2 Re σ4)× i

32π2

2

d− 4

+ (2 channels)× 1

2
(Im λ4 + λ∆)× (−i)(Re λ4 + 2 Re σ4)× i

32π2

2

d− 4

+ 2(Im λ4 + 4 Im σ4 − 3λ∆)× (−i)
4

(Re λ4 − 2 Re σ4)× i

32π2

2

d− 4

=
1

2
(Im λ4 + λ∆) + (Im λ4 + λ∆)(Re λ4 + 2 Re σ4)

5

2(4π)2

1

d− 4

+ (Im λ4 + 4 Im σ4 − 3λ∆)(Re λ4 − 2 Re σ4)
1

2(4π)2

1

d− 4

(A.4.21)

From this equation we evaluate the beta function for (Im λ4 + λ∆),

d

dlnµ
(Im λ4 + λ∆) =

1

(4π)2

[
5(Im λ4 + λ∆)(Re λ4 + 2 Re σ4)

+ (Im λ4 + 4 Im σ4 − 3λ∆)(Re λ4 − 2 Re σ4)
] (A.4.22)

φaφ
3
d vertex

Here we determine the tree level and one loop contribution to φaφa → φaφa via φaφ3
d vertex. The

Feynman diagrams can be found in the fourth row in figure 11 and the corresponding contributions

are

(−i)
4

(Re λ4 − 2 Re σ4)

+ (3 channels)× 1

2
(Im λ4 + λ∆)× 1

2
(Im λ4 + λ∆)× i

32π2

2

d− 4

+ (3 channels)× (−i)
4

(Re λ4 − 2 Re σ4)× (−i)(Re λ4 + 2 Re σ4)× i

32π2

2

d− 4

=
(−i)

4
(Re λ4 − 2 Re σ4) + i(Im λ4 + λ∆)2(Re λ4 + 2 Re σ4)

3

4(4π)2

1

d− 4

− i(Re λ4 − 2 Re σ4)(Re λ4 + 2 Re σ4)
3

4(4π)2

1

d− 4

(A.4.23)

The beta function for (Re λ4 − 2 Re σ4) is given by

d

dlnµ
(Re λ4 − 2 Re σ4) =

3

(4π)2

[
(Re λ4 − 2 Re σ4)(Re λ4 + 2 Re σ4)− (Im λ4 + λ∆)2

]
(A.4.24)
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φ4
d vertex

The last computation of this section is φaφa → φaφa via φ4
d vertex, which is depicted in the fifth

row in figure 11. The tree level and one loop contribution to this process is given by
1

8
(Im λ4 − 4 Im σ4 − 3λ∆)

+ (2 diagrams)(3 channels)× 1

2
(Im λ4 + λ∆)× (−i)

4
(Re λ4 − 2 Re σ4)× i

32π2

2

d− 4

=
1

8
(Im λ4 − 4 Im σ4 − 3λ∆) + (Im λ4 + λ∆)× (Re λ4 − 2 Re σ4)× 3

4(4π)2

1

d− 4

(A.4.25)

this equation determines the the beta function for (Im λ4 − 4 Im σ4 − 3λ∆) and it is given by

d

dlnµ
(Im λ4 − 4 Im σ4 − 3λ∆) =

6

(4π)2
(Im λ4 + λ∆)× (Re λ4 − 2 Re σ4) (A.4.26)

Final β functions

From the five equations - (A.4.18), (A.4.20), (A.4.22), (A.4.24) and (A.4.26) we can determine the

beta functions of λ4 (= Re λ4 + i Im λ4), σ4 (= Re σ4 + i Im σ4) and λ∆ and they are given by

dλ4

dlnµ
=

3

(4π)2

[
λ2

4 + 2 σ4(λ4 + iλ∆) + λ2
∆

]
=

3

(4π)2
(λ4 + 2 σ4 − iλ∆)(λ4 + iλ∆)

dσ4

dlnµ
=

3

(4π)2

[
σ2

4 + (λ4 + σ∗4)(σ4 − iλ∆) + λ2
∆

]
=

3

(4π)2
(λ4 + σ4 + σ∗4 + iλ∆)(σ − iλ∆)

dλ∆

dlnµ
=

1

(4π)2i

[
λ(σ∗4 + iλ∆)− 2σ2

4 + 5iσ4λ∆ − λ∗4(σ4 − iλ∆) + 2(σ∗4)2 + 5iσ∗4λ∆

]
=

1

(4π)2i

[
(λ4 + 2σ∗4)(σ∗4 + iλ∆) + 3iσ4λ∆ − c.c.

] (A.4.27)

A.5 Tadpoles

In this appendix we compute various one loop tadpoles in this theory.

φR 1 loop tadpole The Feynman diagrams contributing to one loop tadpole of φR is being

drawn in figure 12. The sum of the contribution from all the Feynman diagrams is given by

iM = +
(−iλ3)

2
AR +

(iσ?3)

2
AL + (−iσ3)AM (A.5.1)

Now using result from appendix A.2 we get the following divergent contribution

=
−iRe [m2]

(4π)2

[
λ3 − σ?3 + 2σ3

2

](
2

d− 4
+ ln

m2

4πµ2e−γE
− 1

)
(A.5.2)
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This can be removed a counter term of the form

κ =
−iRe [m2]

(4π)2

[
Reλ3 + Reσ3 + i(Imλ3 + 3 Imσ3)

2

](
2

d− 4
+ ln

m2

4πµ2e−γE
− 1

)
(A.5.3)

Checking lindblad condition Now we want to check whether the counter terms that were

added to remove the tadpoles satisfy the Lindblad condition or not.

i
[
κ− aκ?

]
=
−1

(4π)2
[Imλ3 + 3 Imσ3]

(
2

d− 4
+ ln

m2

4πµ2e−γE
− 1

)
Re [m2] (A.5.4)

So, the counter-terms obey Lindblad condition if there is no Lindblad violating cubic couplings.
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× ×

BRR(k)

× ×

BLL(k)

× ×

BLR(k)

× ×

BRL(k)

× ×

BPM(k)

× ×

BMP (k)

× ×

BPP (k)

× ×

BMM(k)

× ×

BPR(k)

× ×

BMR(k)

× ×

BML(k)

× ×

BPL(k)

× ×

BRP (k)

× ×

BRM(k)

× ×

BLM(k)

× ×

BLP (k)

Figure 2: PV one loop B type integrals in SK theory. The momentum and mass corresponding to the lower propagator

is denoted by pµ and m respectively, whereas the momentum and mass corresponding to the upper propagator are qµ

and m̄ respectively. The momenta p and q are taken to flow anti-clockwise in the loop.
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1
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× ×

1

× ×

1
2

× ×

1
2

× ×

1

× ×

1

× ×

1

× ×

1

× ×
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Figure 3: Symmetry factors for all the ten one loop integrals

× ×

BRR(k)

+ × ×

BLL(k)

+ 2 × ×

2BLR(k)

= × ×

BPM(k)

+ × ×

BMP (k)

+ 2 × ×

2BPP (k)

Figure 4: Cutting identity of one loop integrals

171



Complex
Conjugation

× ×

BRR(k)

+ × ×

BLR(k)

= × ×

BPR(k)

+ × ×

BMR(k)

× ×

BPM(k)

+ × ×

BPP (k)

= × ×

BPR(k)

+ × ×

BPL(k)

× ×

BMP (k)

+ × ×

BMM(k)

= × ×

BMR(k)

+ × ×

BML(k)

× ×

BLL(k)

+ × ×

BLR(k)

= × ×

BPL(k)

+ × ×

BML(k)

Figure 5: Identities between the ten one loop B type integrals
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×

Aa

×

Ab = Af = 0

Figure 6: PV one loop A type integrals in the average-difference basis

××

Baa

××

Bab

××

Baf

××

Bbf

× ×

Bfb

××

Bff = Bbb = 0

Figure 7: PV one loop B type integrals in the average-difference basis
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2(Imm2 −m2
∆)

×

(−i)Re m2

×

1
2(Im m2 +m2

∆)

×

2(Im λ3 + 3 Im σ3)

×1

2

3

(−i)(Re λ3 + Re σ3)

×1

2

3

1
2(Im λ3 − Im σ3)

×1

2

3

−i
4 (Re λ3 − 3 Re σ3)

×1

2

3

2(Im λ4 + 4 Im σ4 − 3λ∆)

×
1

2

3

4

(−i)(Re λ4 + 2 Re σ4)

×
1

2

3

4

1
2(Im λ4 + λ∆)

×
1

2

3

4

(−i)
4 (Re λ4 − 2 Re σ4)

×
1

2

3

4

1
8(Im λ4 − 4 Im σ4 − 3λ∆)

×
1

2

3

4

Figure 8: Feynman rules in the average-difference basis
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(φ2
a)

vertex + ×× + ×× + ×

(φaφd)

vertex + ×× + ×× + ×

(φ2
d)

vertex + ×× + ×× + ×

φa → φa

Figure 9: Mass renormalization in the average-difference basis
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(φ3
a)

vertex
1

2

3

+ 1

2

3
×× + ××1

2

3

(φ2
aφd)

vertex
1

2

3

+ 1

2

3
×× + ××1

2

3

(φaφ
2
d)

vertex
1

2

3
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2

3
×× + ××1

2

3

(φ3
d)

vertex
1

2

3

+ 1

2
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3

φa → φaφa

Figure 10: Renormalization of the cubic couplings in the average-difference basis
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vertex
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×× + ××
1

2

3

4

(φ3
aφd)

vertex

1

2

3

4

+
1

2

3

4
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×× + ××
1

2
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4
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2

3
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×× + ××
1
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1

2

3

4
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φaφa → φaφa

Figure 11: Renormalization of the quartic couplings in the average-difference basis

×

(−iλ3)
2 AR

×

(iσ?3)

2 AL

×

(−iσ3)AM

Figure 12: 1 loop tadpole to φR
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Appendix B

PV reduction in open Yukawa theory

Passarino-Veltman (PV) reduction [87, 88, 143, 144] is a procedure to write tensor loop integrals

in terms of scalar loop integrals. We implement PV reduction to SK loop integrals that appear

in self energy correction to Fermion. The SK diagrams which contribute to the self energy are of

Bf
ab type. Here a, b ∈ {R,L, P,M}. The ’f ’ superscript in Bf

ab denotes that one of the internal

propagators is Fermionic - the other being scalar. We define the following quantity for future

convenience.

∆ ≡ −k2 +m2
ψ −m2

φ , (B.0.1)

The PV reduction formula for Bf integrals with no cut propagator are given by

Bf
RR(k,mψ,mφ) = mψBRR (k,mψ,mφ)− /k i AR (mψ)− i AR (mφ)−∆BRR (k,mψ,mφ)

2k2
,

Bf
LL(k,mψ,mφ) = mψBLL (k,mψ,mφ)− /k − i AL (mψ) + i AL (mφ)−∆BLL (k,mψ,mφ)

2k2
,

Bf
RL(k,mψ,mφ) = mψBRL (k,mψ,mφ)− /k − i AR (mψ)− i AL (mφ)−∆BRL (k,mψ,mφ)

2k2
,

Bf
LR(k,mψ,mφ) = mψBLR (k,mψ,mφ)− /k i AR (mψ) + i AL (mφ)−∆BLR (k,mψ,mφ)

2k2
.

(B.0.2)

Consider reduction formula for Bf with two cut propagators. Those are given by

Bf
PM(k,mψ,mφ) = mψBPM (k,mψ,mφ) + /k

∆BPM (k,mψ,mφ)

2k2
,

Bf
MP (k,mψ,mφ) = mψBMP (k,mψ,mφ) + /k

∆BMP (k,mψ,mφ)

2k2
,

Bf
PP (k,mψ,mφ) = mψBPP (k,mψ,mφ) + /k

∆BPP (k,mψ,mφ)

2k2
,

Bf
MM(k,mψ,mφ) = mψBMM (k,mψ,mφ) + /k

∆BMM (k,mψ,mφ)

2k2
.

(B.0.3)
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The remaining Bf integrals with one cut propagator are given by

Bf
RP (k,mψ,mφ) = mψBRP (k,mψ,mφ)− /k − i AP (mφ)−∆BRP (k,mψ,mφ)

2k2
,

Bf
PR(k,mψ,mφ) = mψBPR (k,mψ,mφ)− /k i AP (mψ)−∆BPR (k,mψ,mφ)

2k2
,

Bf
RM(k,mψ,mφ) = mψBRM (k,mψ,mφ)− /k − i AM (mφ)−∆BRM (k,mψ,mφ)

2k2
,

Bf
MR(k,mψ,mφ) = mψBMR (k,mψ,mφ)− /k i AM (mψ)−∆BMR (k,mψ,mφ)

2k2
,

Bf
LP (k,mψ,mφ) = mψBLP (k,mψ,mφ)− /k i AP (mφ)−∆BLP (k,mψ,mφ)

2k2
,

Bf
PL(k,mψ,mφ) = mψBPL (k,mψ,mφ)− /k − i AP (mψ)−∆BPL (k,mψ,mφ)

2k2
,

Bf
LM(k,mψ,mφ) = mψBLM (k,mψ,mφ)− /k i AM (mφ)−∆BLM (k,mψ,mφ)

2k2
,

Bf
ML(k,mψ,mφ) = mψBML (k,mψ,mφ)− /k − i AM (mψ)−∆BML (k,mψ,mφ)

2k2
.

(B.0.4)

Substituting the divergences of all scalar A and B type integrals given in (A.2.4) and A.2.5, we

find that Bf
RL, B

f
LR and all single-cut integrals in (B.0.3) are non-local divergent. They remain so

even in the equal mass limit (mφ = mψ = m). The divergence structure of BRL, BLR in the equal

mass limit, are given by

Bf
RL(k,m,m) =

i/k

k2

m2

(4π)2

2

d− 4
+ ... ,

Bf
LR(k,m,m) = − i

/k

k2

m2

(4π)2

2

d− 4
+ ... .

(B.0.5)

The divergence structure of single-cut loop integrals in the equal mass limit, are given by

Bf
RP (k,m,m) =

i

(4π)2

(
m−

/k

2
+
/km2

k2

)
1

d− 4
,

Bf
PR(k,m,m) =

i

(4π)2

(
m−

/k

2
−
/km2

k2

)
1

d− 4
,

· · · = · · · .

(B.0.6)
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Appendix C

Non-local divergences in scalar loops

C.1 Leading divergence in open QFTs

We summarise the general form of the non-local log divergences in Table C.1 appearing in cut

diagrams in D spacetime dimensions. In D dimensions there are a total of D−1 types of non-local

log divergent diagrams viz. PRD−2, P 2RD−3, P 3RD−4, . . . , PD−1 all of which have D − 1 external

legs. The extreme cases in this list are the single cut PRD−2 and the totally cut PD−1. These D−1

types completely classify non-local log divergences at one-loop in D dimensions. Any non-local log

divergent diagram in D dimensions will fall into one of these classes, meaning it will have structure

of non-local divergence similar to one from the set {PNcRD−Nc−1}D−1
Nc=1.
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Diagram Name Divergence condition Divergence structure1

Single cut PRD−2 No condition iD−2 Vol(SD−2)
2D−1(2π)D−1

´
∆D−3

D−2∏
i=1

dxi
sgnD−2 (k̃0)

(−k̃2)
D−2

2
ln(Λ)

Almost totally cut PD−2R Σ2
c > 0, (Σspace

cut )2 6= 0 i
2Dπ

sgn(Σ̃0
cut|x=1)√

−Σ̃2
cut|x=1

ln(Λ)

Totally cut PD−1 Σ2
c > 0, (Σspace

cut )2 6= 0 1
2D−1π

1
Σc
ln(Λ)

Multiple cut PNcRD−Nc−1 Σ2
c > 0, (Σspace

cut )2 6= 0

iD−Nc−1

2D−1(2π)D−Nc
Vol(SD−Nc−1)ΣD−Nc−2

c ×
ˆ

∆D−Nc−2

D−Nc−1∏
i=1

dxi
sgnD−Nc−1(Σ̃0

cut)

(−Σ̃2
cut)

D−Nc−1
2

ln(Λ)

Table C.1: Non-local log divergences in one-loop diagrams with D − 1 external legs in D spacetime dimensions; Λ is a

UV cutoff.

Examples

The D = 4 case has already been done explicitly in section C.3. Here we use the formulae listed

in Table C.1 to write down all the non-local divergences in D = 3, 4 dimensions. For D = 4, this

will serve as a consistency check against our explicit computations.

• D = 3: There are two non-local log divergent bubble diagrams PR, P 2.

Diagram Divergence condition Divergence structure

PR None i
8π

sgn(k0)√
−k2 ln(Λ)

P 2 k2 > 0 1
4π

1√
k2
ln(Λ)

Table C.2: Non-local log divergences at one-loop in D = 3 spacetime dimensions; Λ is a UV cutoff

1For the multiple cut case, the result given here should be multiplied by 2 if Nc = D − 1 which is nothing but

the totally cut case
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• D = 4: There are three non-local log divergent triangle (C-type) diagrams viz. PR2, P 2R,P 3.

Diagram Divergence condition Divergence structure

PR2 None 1

16π2
√

Σ2
c

arctan

(√
Σ2
c

k1.k2

)
ln Λ

P 2R k2
1 > 0 i

16π
√
−Σ2

c

sgn



∣∣∣∣∣∣∣∣∣∣∣∣∣
k0

2 k0
1

k2.k1 k1.k1

∣∣∣∣∣∣∣∣∣∣∣∣∣


ln Λ

P 3 Span of kµi space-like 1
8πΣc

ln Λ

Table C.3: Leading Non-local log divergences at one-loop in D = 4 spacetime dimensions. Here Λ is a UV cutoff and

Σ2
c ≡ k2

1k
2
2 − (k1.k2)2.

For the diagram P 2R in Table C.3, the answer seems to be apparently different from the

one calculated in Equation C.3.9. The mismatch is reconciled if we recall that the explicit

computation was done in a special frame where k0
1 = 0 (since k1 is space-like). In the result

above, if we substitute k0
1 = 0, we find that the two results agree as expected.

C.2 Feynman parameterisation of Ξuc⊥

The light-cone/sphere integral representation of Ξuc⊥ in (5.3.20) can be converted to a Feynman

parameter integral by using some well-known Dirichlet-type integral identities. The Feynman

parameter representation will be used to explicitly compute Ξuc⊥ for various log divergent C-type

diagrams in the next appendix.

The covariant light-cone integral expression for Ξuc⊥ is

Ξuc⊥ =

ˆ
dD−Ncn

(2π)D−Nc
δ(t · n+ 1)δ+ (n2)∏N−Nc
j=1 i (2n · `j⊥ − iε)

(C.2.1)
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Since all the denominators in the above expression have non-zero imaginary parts of the same

sign, we can combine them by Feynman parameter trick.

Ξuc⊥ =

ˆ
dD−Ncn

(2π)D−Nc

ˆ
[0,1]N−Nc

dXN−Nc
δ(t · n+ 1)δ+(n2)

iN−Nc(2n · L− iε)N−Nc
, (C.2.2)

where dXN−Nc ≡
∏N−Nc

j=1 dxj δ(1−
∑
x) Γ(N−Nc), is the Feynman parameter integration measure

(or more precisely the probability measure for a uniform Dirichlet distribution) forN−Nc Feynman

parameters, while Lµ ≡
∑N−Nc

j=1 xj`
µ
j⊥ is the Feynman parameter averaged momenta.

Written as a sphere integral, (C.2.2) takes the form

Ξuc⊥ =
1

2(2π)D−Nc

ˆ
n̂∈SD−Nc−1

⊥

ˆ
[0,1]N−Nc

dXN−Nc
iN−Nc(2n̂ ·LLL− 2L0 − iε)N−Nc

, (C.2.3)

C.2.1 Leading log divergence

Let us consider the case where N = D − 1, i.e., the diagrams where the leading UV divergence is

expected to be logarithmic (according to the modified degree of divergence). The sphere integral

can be performed in this case, using the Dirichlet-type identity

1

|Sd|

ˆ
n̂∈Sd

1

(1 + A · n̂)d
=

(
1√

1−A2

)d
(C.2.4)

The identity can be proven by writing

1

|Sd|

ˆ
n̂∈Sd

1

(1 + A · n̂)d
=
|Sd−1|
|Sd|

ˆ π

0

(sinϑ)d−1dϑ

(1 +
√
A2 cosϑ)d

. (C.2.5)

A binomial expansion yields an Euler-Beta integral, which in turn gives the result quoted above.

Using the identity quoted above, we can write (C.2.3) as

Ξuc⊥

∣∣∣∣
N=D−1

=
|SD−Nc−1
⊥ |

(4π)D−Nc(−i)D−Nc−1
E

[{
csgn(L0)√
−L2

}D−Nc−1
]

(C.2.6)

where by L0 we really mean complexified L0 viz. L0 + iε. Thus, L2 = −(L0 + iε)2 +LLL2 and

E

[{
csgn(L0)√
−L2

}D−Nc−1
]
≡
ˆ

[0,1]D−Nc−1

dXD−Nc−1

{
csgn(L0)√
−L2

}D−Nc−1

(C.2.7)
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is the expectation of the D − Nc − 1 power of signed (determined by sign of L0) inverse length,
csgn(L0)√
−L2 with respect to a uniform Dirichlet distribution.

The above expression thus lends a nice geometric interpretation of Ξuc⊥, in the case of log

divergent diagrams. It can be viewed as being proportional to the D − Nc − 1 moment (with

respect to a uniform Dirichlet distribution) of signed inverse length of vectors in the convex hull of

the transverse uncut momenta.

C.2.2 Leading power divergence

In this section we will consider the case of power law divergences i.e. when N < D − 1.

One can generalize the d dimensional sphere integral identity (C.2.4) to the case where the

degree of the denominator is some generic value s < d. The result of such an integral is a Gauss

hypergeometric function, that can also be interpreted as a beta distribution weighted average.

1

|Sd|

ˆ
Sd

1

(1 + A.n̂)s
= 2F1

(
s

2
,
s+ 1

2
;
d+ 1

2
;A2

)
=

ˆ 1

0

dbd,s(
1− (A

√
t)2
) s

2

(C.2.8)

where dbd,s ≡ dt fbeta(t;
s+1

2
, d−s

2
) ≡ dt t

s+1
2 −1(1−t)

d−s
2 −1

B( s+1
2
, d−s

2
)

is the probability measure corresponding

to the normalized beta distribution fbeta(t; s+1
2
, d−s

2
).

Using the identity quoted above and defining Lt ≡
(
L0 + iε,LLL

√
t
)
we can write (C.2.3) as

Ξuc⊥

∣∣∣∣
N<D−1

=
|SD−Nc−1
⊥ |

2(−2i)N−Nc(2π)D−Nc
E

{csgn(L0
t )√

−L2
t

}N−Nc
 (C.2.9)

where the expectation is with respect to the joint distribution of Feynman parameters (uniform

Dirichlet distribution) and the fractional spatial scaling parameter (beta distribution).

E

{csgn(L0
t )√

−L2
t

}N−Nc
 ≡ ˆ

[0,1]N−Nc+1

dbD−Nc−1,N−Nc dXN−Nc

{
csgn(L0

t )√
−L2

t

}N−Nc

(C.2.10)

Thus the above expression also admits a geometric interpretation, similar to the log divergent

case. Ξuc⊥ is proportional to the N−Nc moment of the signed inverse length of vectors in the set of
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convex hulls {Lt|t ∈ [0, 1]}, where the Feynman parameters follow a uniform Dirichlet distribution

while the fractional spatial scaling parameter follows a beta distribution.

C.3 Evaluation of C-type triangle diagrams

We compute C type loop integrals in four dimensions. As we shall see, the diagrams may be

convergent or divergent (with non-local structure) depending on the choice of external momenta.

In the case of divergent integrals, we only extract the leading divergent piece. By virtue of cutting

relations, it suffices to focus our attention on a basis set of integrals viz. the single-cut CPRR, the

double-cut CPPR and the triple-cut CPPP .

C.3.1 Single-cut C-type diagram

In this section we will compute the single-cut C-type diagram CPRR. The diagram corresponding

to CPRR is shown in figure (1).

q

q
+
`

1q
+

2̀

× ×

×

Figure 1: CPRR

The integral expression is

CPRR =

ˆ
d4q

(2π)4

2πδ+(q2 +m2)

i2 [(q + `1)2 +m2 − iε] [(q + `2)2 +m2 − iε]
(C.3.1)

This integral is log divergent from corrected power counting arguments we discussed in the

introduction. The leading divergence can be extracted and we borrow the results from the general

analysis in 5.3 to first note the three contributions to the overall divergence.

We have D = 4, N = 3, Nc = 1

1. Cut momenta geometric factor:

1

21−1Σc

= 1
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Σc = 1 as there is no cut momenta

2. Transverse uncut momenta geometric factor: Referring to the Feynman parameter

representation of Ξuc⊥ in (C.2.6)

|S2|
(4π)4−1(−i)4−1−1

ˆ 1

0

ˆ 1

0

dx1 dx2 δ(1− x1 − x2)
Γ(2)

−L2

where L2 = (`1x1 + `2x2)2. Note that the Feynman iε prescription translates to shifting the

`0
j by iε i.e. `0

j → `0
j + iε

The Feynman parameter integral can be done exactly to yield

1

(4π)2
√
−Σ2

uc

[
tanh−1

(
`1 · `2 − `2

1√
−Σ2

uc

)
+ tanh−1

(
`1 · `2 − `2

2√
−Σ2

uc

)]
=

1

(4π)2
√
−Σ2

uc

tanh−1

(√
−Σ2

uc

`1 · `2

)

where Σuc ≡
√
`2

1`
2
2 − (`1 · `2)2 is the area of the parallelogram made out of the uncut mo-

menta. Algebraically, −4Σ2
uc is the discriminant of the quadratic form L2.

3. UV lightlike fluctuations of transverse loop momentum: SinceD−N = 1, the leading

divergence is logarithmic

ˆ Λ dq0
⊥

q0
⊥

= log Λ

We can now combine all the three parts to write down the full leading divergence

div(CPRR) =
1

(4π)2

1√
−Σ2

uc

tanh−1

(√
−Σ2

uc

`1 · `2

)
log Λ (C.3.2)

C.3.2 Double-cut C-type diagram

Consider the double-cut C-type diagram CPPR. The diagram is shown in figure (2) and the integral

expression is

CPPR =

ˆ
d4q

(2π)4

2πδ+(q2 +m2) 2πδ+((q + k)2 +m2)

i[(q + `)2 +m2 − iε]
(C.3.3)
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Figure 2: CPPR

To integrate the above loop integral, we have two cases to consider:

• k is spacelike

• k is timelike

Spacelike cut momentum k:

The three geometric parts of the divergence (similar analysis done in case of CPRR) are listed

below.

We have D = 4, N = 3, Nc = 2

1. Cut momenta geometric factor:

1

22−1Σc

=
1

2
√
k2

2. Transverse uncut momenta geometric factor:

Referring to the Feynman parameter representation of Ξuc⊥ in (C.2.6), the contribution is

|S1|
(4π)4−2(−i)4−2−1

csgn(`0
⊥ + iε)√
−`2
⊥

=
2πi

(4π)2

csgn(k2`0 − (`.k)k0 + iε)
√
k2√

−Σ2
c,uc

where Σc,uc ≡
√
`2k2 − (` · k)2 is the area of the parallelogram formed out of the cut mo-

mentum k and uncut momentum `.

3. UV lightlike fluctuations of transverse loop momentum: SinceD−N = 1, the leading

divergence is logarithmic

ˆ Λ dq0
⊥

q0
⊥

= log Λ
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Putting all the three together we get

div(CPPR)
∣∣∣
spacelike k

=
iπ

(4π)2

csgn(k2`0 − (` · k)k0 + iε)√
−Σ2

c,uc

log Λ (C.3.4)

Timelike cut momentum k:

Let us work in the rest frame of the cut momentum k i.e. kµ ≡ (M,0).

The kinematics of the scattering process is solved by

q0 = ωq = −M
2
≡ ω0 (C.3.5)

provided

ω0 > m, ω0 +M > 0 (C.3.6)

The above two conditions cannot be simultaneously satisfied and hence the integral vanishes.

Thus we conclude that the loop integral corresponding to CPPR vanishes for timelike k.

CPPR

∣∣∣∣
timelike k

= 0 (C.3.7)

C.3.3 Triple cut C-type diagram

Here we will calculate CPPP from the list of all possible triple cut C-type diagrams. The diagram

is shown in figure (3).

q

q
+
k

1q
+
k 2

× ×

×

Figure 3: CPPP
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The integral expression for CPPP is the following.

CPPP =

ˆ
d4q

(2π)4
(2π)δ+(q2 +m2)(2π)δ+((q + k1)2 +m2)(2π)δ+((q + k2)2 +m2) (C.3.8)

We consider two possible cases:

1. k1, k2 span a spacelike subspace i.e. their span consists of only spacelike vectors (or Σ2
c > 0)

2. k1, k2 span a timelike subspace i.e. their span contains a timelike vector (or Σ2
c < 0)

k1, k2 span a spacelike subspace

The three geometric parts of the divergence are listed below. We have D = 4, N = 3, Nc = 3

1. Cut momenta geometric factor:

1

23−1Σc

=
1

4
√
k2

1k
2
2 − (k1 · k2)2

2. Transverse uncut momenta geometric factor: There is no uncut momentum. So the

contribution is just
|S0|

(4π)4−3(−i)4−3−1
=

2

4π

3. UV lightlike fluctuations of transverse loop momentum: SinceD−N = 1, the leading

divergence is logarithmic

ˆ Λ dq0
⊥

q0
⊥

= log Λ

Putting all the three together we get

div(CPPP )
∣∣∣
k1,k2 span a spacelike subspace

=
2π

(4π)2

1

Σc

log Λ (C.3.9)

k1, k2 span a timelike subspace

In this case Σ2
c < 0. This means k1 and k2 are linearly independent and there exists a timelike

vector in their linear span. We will perform the integral in the rest frame of that timelike vector.

Let k ≡ α1k1 + α2k2 be a timelike vector in the span of the cut momenta k1 and k2. Let us

now work in the rest frame of k i.e. kµ ≡ (M,0). Without loss of generality, we will assume k1 to
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have non-zero spatial part in the rest frame of k2. It then follows that α2 6= 03. We can thus take

α2 = 1 and call α2 as α. So k = αk1 + k2.

Next we determine an α such that k is timelike.

Let k1 be along the ẑ direction and the angle between q and k1 be θ. We will use ωq to denote

the expression
√
q2 +m2.

The kinematics of the scattering process is solved by

q0 = ωq =
αk2

1 + k2
2

2M
≡ ω0

cos θ =
2k0

1ω0 − k2
1

2|k1|
√
ω2

0 −m2
≡ β

(C.3.10)

provided

ω0 > m, ω0 + k0
1 > 0, ω0 + k0

2 > 0,

|β| < 1
(C.3.11)

The delta functions in the kinematically admissible domain can be written as

δ+(q2 +m2) =
δ(q0 − ω0)

2ωq

δ+

(
(q + k1)2 +m2

)
=
δ(cos θ − β)

2|q||k1|

δ+

(
(q + k2)2 +m2

)
=
δ(ωq − ω0)

2 |M |

(C.3.12)

After performing the q0, θ and ωq integrals with the delta functions above, we are left with a

one dimensional phase space integral

CPPP =
1

2π

1

23|k1||M |

ˆ 2π

0

dφ =
1

8|k1||M |
(C.3.13)

To rewrite everything in terms of the original frame data, we make the following substitutions:

M = sgn(k0)
√
−k2

k0
1 =− sgn(k0)√

−k2
(k1 · k)

k0
2 =− sgn(k0)√

−k2
(k2 · k)

|k1| =
√
−Σ2

√
−k2

(C.3.14)

2In the rest frame of k, both k1 and k2 cannot be simultaneously zero, otherwise k1 and k2 become linearly

dependent and hence Σ2
c = 0

3α2 = 0 =⇒ α1 = 0 since k1 6= 0. Then k becomes the 0 vector, which is not possible
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where Σ2 ≡ k2k2
1 − (k · k1)2 < 0 since k is timelike and computes the squared area of the parallel-

ogram formed by the cut momentum k1 and the timelike vector k.

We will now argue that Σ2 = Σ2
c . If α = 0, then the fact that Σ2 = Σ2

c is trivially true. Let us

then consider the case when α 6= 0. Then we can write4

Σ2 =
1

α2

{
k2(αk1)2 − (k · αk1)2

}
=

1

α2

{
k2

2(αk1)2 − (k2 · αk1)2
}

= Σ2
c (C.3.15)

Restoring the kinematical constraints, we have the following finite covariant expression for the

loop integral

CPPP =
Θoverall

8
√
−Σ2

c

(C.3.16)

where

Θoverall = Θ(ω0 −m) Θ

(
ω0 −

sgn(k0)√
−k2

(k1 · k)

)
Θ

(
ω0 −

sgn(k0)√
−k2

(k2 · k)

)
Θ(1− |β|) (C.3.17)

CPPP

∣∣∣
k1,k2 span a timelike subspace

=
Θoverall

8
√
−Σ2

c

(C.3.18)

C.3.4 Summary of divergences of C-type integrals

We summarise the divergences of all divergent C-type integrals. The divergences of integrals with

one-cut propagator is given by the following.

CPLL = CMLL = CMRR = CPRR =
1

(4π)2

arctanh
[

Σuc(p1,p2)
−p1·p2

]
Σuc(p1, p2)

lnΛ ,

CLPL = CLML = CRMR = CRPR =
1

(4π)2

arctanh
[

Σuc(p2,p3)
−p2·p3

]
Σuc(p2, p3)

lnΛ ,

CLLP = CLLM = CRRM = CRRP =
1

(4π)2

arctanh
[

Σuc(p1,p3)
−p1·p3

]
Σuc(p1, p3)

lnΛ ,

(C.3.19)

4here we use the basic linear algebra fact that Σ2
v1+v2,v1 = Σ2

v2,v1 where v1 = αk1, v2 = k2
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where Σ2
uc(p1, p2) = (p1 · p2)2 − p2

1p
2
2.

Integrals with two cut propagators have the following divergences.

− CLMM = CRMM = −CPPL = CPPR =
iπ

(4π)2

sgn(−p0
1)

Σc,uc(p1, p2)
log Λ ,

− CMML = CMMR = −CPLP = CPRP =
iπ

(4π)2

sgn(−p0
3)

Σc,uc(p2, p3)
log Λ ,

− CMLM = CMRM = −CLPP = CRPP =
iπ

(4π)2

sgn(−p0
2)

Σc,uc(p1, p3)
log Λ ,

(C.3.20)

where Σ2
c,uc(p1, p2) ≡ (p1 · p2)2 − p2

1p
2
2.

The divergent pieces of all tripple-cut diagrams are the following.

CPPP =
2π

(4π)2Σc(p1, p2)
log Λ ,

CMMM =
2π

(4π)2Σc(p1, p2)
log Λ ,

(C.3.21)

where Σ2
c(p1, p2) ≡ (p1 · p2)2 − p2

1p
2.

A point to note that the rest of integrals are not all convergent. But the divergences of those

integrals can be constructed using cutting identity that R + L = P + M . We list two of such

integrals.

CRLP = CRPP + CRMP − CRRP ,

CLLR = CLLP + CLLM − CLLL ,

...

(C.3.22)

where CRMP , CLLL are convergent.
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Appendix D

Open effective field theory via holography:

detailed computation

D.1 Gradient expansion on the grSK contour

In the main text we defined the retarded-advanced basis for the sources on the boundary. It is

useful to extend this to the bulk and define two related combinations:

Jeven ≡ −JF̄ + eβω(1−ζ) J
P̄

=

[
Ja −

(
eβω(1−ζ) − 1

eβω − 1
− 1

2

)
Jd

]
=
(
1− e−βωζ

)
(nω + 1)JR +

(
eβω(1−ζ) − 1

)
nωJL ,

Jodd ≡ −JF̄ − e
βω(1−ζ)J

P̄
=

[
Ja +

(
eβω(1−ζ) + 1

eβω − 1
+

1

2

)
Jd

]
=
(
1 + e−βωζ

)
(nω + 1)JR −

(
eβω(1−ζ) + 1

)
nωJL .

(D.1.1)

The solution for Φ can then be written as with this simple change of basis as

Φ = Geven Jeven +Godd Jodd , (D.1.2)

where

Geven ≡
1

2

(
G+ +G−

)
, Godd ≡

1

2

(
G+ −G−

)
. (D.1.3)

Note that G+
even, G

+
odd are obtained by separating the ingoing Green function G+ into even and

odd parts under frequency reversal once we recall that G−(ζ, ω,k) = G+(ζ,−ω,k).

The advantage of the combinations Jeven and Jodd lies in the following fact: given the ingoing

Green function G+ in a boundary gradient expansion, one can obtain the solution on the full grSK
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contour by a simple substitution. We simply multiply the even frequency part of the Green’s

function by Jeven and the odd frequency part by Jodd, i.e.,

Φ(ζ, ω,k) =
∞∑

n,m=0

(
G+

2n,m(ζ) Jeven +G+
2n+1,m(ζ) w Jodd

)
w2n qm , (D.1.4)

where we resort to the truncated notation:

w =
βω

2
, q =

β|k|
2

. (D.1.5)

There is another useful property obeyed by the even and odd combinations which is worth

highlighting:

D+
ζ Jeven = w Jodd , D+

ζ Jodd = w Jeven . (D.1.6)

This can be established by a direct differentiation of the definitions above. It follows that Jeven

and Jodd are solutions of the time-reversal invariant differential equation((
D+
ζ

)2 −w2

)
Φ = 0 . (D.1.7)

This equation involves no spatial boundary derivatives and hence should be thought of as a differ-

ential equation on each ingoing Eddington-Finkelstein tube in the grSK contour (the terminology

comes from the fluid/gravity correspondence, cf., [142]). We can then define Jeven as the solution

that interpolates between JL at ζ = 0 to JR at ζ = 1. The odd combination Jodd is obtained by

differentiation D+
ζ Jeven = w Jodd as given from (D.1.6). More explicitly, we have

Φ =
∞∑

n,m=0

G+
n,mq

m (D+
ζ )nJeven . (D.1.8)

For computations involving the full solution written down in a derivative expansion we can use

the following gradient expansions of the even and odd sources:

Jeven = Ja −
1

2
Jd

[
y +

w

2!
(y2 − 1) +

w2

3!
y (y2 − 1) +

w3

4!
(y2 − 1)2 + · · ·

]
2w Jodd = 2w Ja + Jd

[
2 + w y +

1

2!
(w)2

(
y2 +

1

3

)
+

1

3!
(w)3 y(y2 − 1)

+
1

4!
(w)4

(
y4 − 2y2 − 1

15

)
+ · · ·

]
.

(D.1.9)

Here we have introduced a new bulk variable y defined as

y = 1− 2 ζ , (D.1.10)
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to simplify the expressions somewhat. Using the gradient expansion of Jeven given above, in (D.1.8)

we end up the result (6.3.27) quoted in the main text. For certain computations it is helpful to

have the solution in the gradient expansion directly in position space. One can verify that (6.3.27)

can be simplified to the following form, accurate to linear order in the derivative expansion

Φ =

(
G+

0,0 +
i

2
G+

1,0 β∂t

){
Ja +

i

8
β∂tJd + Jd

(
ζ − 1

2
+
G+

1,0

G+
0,0

)
− i

2
β∂tJd

(
ζ − 1

2
+
G+

1,0

G+
0,0

)2}
+O

(
(β∂t)

2). (D.1.11)

It is also useful to record here a simple expression for the Dζ derivative of the field which enters

into the computation of the quadratic influence functional. It is

D+
ζ Φ =

∞∑
n=0

∞∑
m=0

qm
(

dG+
n,m

dζ
+G+

n−1,m

)
(D+

ζ )nJeven , (D.1.12)

with G+
−1,m ≡ 0.

Note that, by construction, Jodd occurs in the full solution with at least one βω factor multi-

plying it. It follows that if G+ has a derivative expansion, so does the full solution on the grSK

contour written in average-difference/Keldysh basis. Note also that when the even part of the

ingoing solution is lifted to the holographic SK contour, the order of the derivative expansion is

maintained. In contrast, when the odd part of the ingoing solution is lifted to the holographic SK

contour, the source Jd occurs with one less time derivative.

D.2 Gradient expansion of the Green’s functions

For a massive scalar field m2 = ∆(∆ − d) 6= 0 on the grSK geometry we now analyze the wave

equation (6.3.1) in a gradient expansion (6.3.24). It is helpful to introduce a new radial coordinate

% ≡ rd

rdh
=⇒ d

dζ
= 2πi %

1
d (%− 1)

d

d%
, (D.2.1)

and re-express (6.3.1) as(
d

d%

(
%(%− 1)

d

d%

)
− ν(ν − 1)

)
Φ = wS1[Φ] + q2 S2[Φ] , (D.2.2)

in terms of the following operators:

S1[Φ] = − 1

2π i

1

Φ

d

d%

(
%1− 1

d Φ2
)
,

S2[Φ] =
1

(2π)2
%−

2
d Φ .

(D.2.3)
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We have also defined a rescaled conformal dimension

ν =
∆

d
(D.2.4)

which will be the only parameter entering our expressions. Upon plugging in the expansion (6.3.24)

we immediately find the recursion relation:(
d

d%

(
%(%− 1)

d

d%

)
− ν(ν − 1)

)
G+
m,n = S1[G+

m−1,n] + S2[G+
m,n−2] , (D.2.5)

with the understanding that G+
m,n = 0 for either m < 0 or n < 0. We will now solve this order by

order sequentially.

We first note that the leading order term in the expansion, the zero-mode or the DC part, G+
0,0

satisfies the homogeneous equation with no sources:(
d

d%

(
%(%− 1)

d

d%

)
− ν(ν − 1)

)
G+

0,0 = 0 . (D.2.6)

We can exploit this fact to simplify our recursion relation, remove the contribution arising from

the mass, and rewrite the differential part of the expression as a total derivative, amenable to

integration by quadratures. Define the ratio

G̃+
m,n =

G+
m,n

G+
0,0

, (D.2.7)

which one can check satisfies the following equation

d

d%

(
%(%− 1)

(
G+

0,0

)2 dG̃+
m,n

d%

)
= G+

0,0

(
S1[G+

m−1,n] + S2[G+
m,n−2]

)
, (D.2.8)

where we have exploited the fact that G+
0,0 is in the kernel of the differential operator. We impose

regular boundary condition at the horizon and normalization at the conformal boundary at each

order in perturbation theory as described in (6.3.26). The general solution can then be immediately

written down:

G̃+
m,n =

ˆ %

%c

d%′

%′(%′ − 1)
(
G+

0,0(%′)
)2

ˆ %′

1

d%̄G+
0,0(%̄)

(
S1[G+

m−1,n] + S2[G+
m,n−2]

)
, (D.2.9)

where the inner integral has its constant of integration chosen to ensure that the pole at %′ = 1 is

canceled.
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Zeroth order solution: Let us examine some of the leading order terms in the gradient ex-

pansion explicitly. The differential operator appearing on the l.h.s. of (D.2.2) is the Legendre

differential operator. Consequently, G+
0,0 satisfies the homogeneous Legendre differential equation

(D.2.6) which has the general solution1

G+
0,0 = c1 P−ν(2%− 1) + c2Q−ν(2 %− 1) , (D.2.11)

It is easy to check that the Legendre function of second kind Q−ν(2%− 1) diverges at the horizon,

% = 1. Hence the normalized solution obeying our boundary conditions is simply

G+
0,0 =

P−ν (2 %− 1)

P−ν (2 %c − 1)
. (D.2.12)

This is the result quoted in (6.3.28).

First order solution: At the next order it is immediate to see that G+
0,1 (or for that matter

any G+
m,2n+1) vanishes. We then have to solve for G+

1,0 which can be ascertained to satisfy the

inhomogeneous equation

d

d%

(
(%2 − %) (G+

0,0)2
dG̃+

1,0

d%

)
= − 1

2πi

d

d%

(
%1− 1

d

(
G+

0,0

)2
)
, (D.2.13)

which gives a solution by quadratures

G̃+
1,0 = − 1

2πi

ˆ %

%c

d%′

(
1

%′
1
d (%′ − 1)

− 1

(%′2 − %′)P−ν(2%′ − 1)2

)
, (D.2.14)

where constants of integration have been chosen to ensure regularity at the horizon % = 1 and

vanishing of the function at the cut-off surface. We have in addition also made use (D.2.12) to

write the result as an integral over Legendre functions. It is useful to massage this to the form:

ζ + G̃+
1,0 =

1

2πi

ˆ %

%c

d%′

%′ (%′ − 1)

(
1

P−ν (2%′ − 1)

)2

, (D.2.15)

1We define the associated Legendre function of the second kind as in [145, Eq. 14.3.7] which disambiguates

the various definition for this function employed in the literature. In particular, we define it in terms of the regu-

larized hypergeometric function as

Qν(x) =
√
π

Γ(ν + 1)

(2x)ν+1 2F̃1

(
ν

2
+

1

2
,
ν

2
+ 1, ν +

3

2
,

1

x2

)
. (D.2.10)

This expression is well defined for x ∈ (1,∞) which is the domain of interest to us.
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which will enter in the computation of the influence functionals in the gradient expansion. This

integral can be explicitly evaluated in terms of Legendre functions of the second kind. In terms of

x = 2%− 1 we find after a small algebraic manipulation, the following simple relation

P−ν(x)2 d

dx

(
ζ + G̃+

1,0

)
=

1

iπ

1

x2 − 1

= − 1

iπ
Wr{P−ν(x), Q−ν(x)}

= − 1

iπ
P−ν(x)2 d

dx

(
Q−ν(x)

P−ν(x)

)
,

(D.2.16)

where we have identified the Wronskian of the Legendre functions, see [145, Eq. 14.2.10]. It then

follows that

ζ + G̃+
1,0 =

i

π

Q−ν(2%− 1)

P−ν(2%− 1)
+ i cotπν , ν /∈ Z+ (D.2.17)

where we fixed the constant by matching the asymptotics of the integral and the Legendre functions.

Note that the integral is convergent for ν > 1
2
, though in the main text we will often restrict

attention to ν ∈ (1
2
, 1] . The bound on ν arises from our focus on relevant and marginal operators

(a detailed analysis of convergence properties is given in D.5).

Second order solution: At the next order in the gradient expansion we first solve for G+
0,2

which satisfies the inhomogeneous equation

d

d%

(
(%2 − %) (G+

0,0)2
dG̃+

0,2

d%

)
=

1

(2π)2
%−

2
d

(
G+

0,0

)2
. (D.2.18)

Integrating this and imposing our boundary conditions (6.3.26) we find the integral expression

G̃+
0,2(%) =

1

(2π)2

ˆ %

%c

d%′

%′(%′ − 1)
(
G+

0,0(%′)
)2

ˆ %′

1

d%̄ %̄−
2
d

(
G+

0,0(%̄)
)2
. (D.2.19)

Similarly, one finds for the temporal component G+
2,0 the following expression:

G̃+
2,0(%) = − 1

2πi

ˆ %

%c

d%′

%′(%′ − 1)
(
G+

0,0(%′)
)2

ˆ %′

1

d%̄
G+

0,0(%̄)

G+
1,0(%̄)

d

d%̄

(
%̄1− 1

d

(
G+

1,0(%̄)
)2
)
. (D.2.20)

For the computation of the quadratic influence functional, we do not need the precise form of these

functions. Having their derivatives at the cut-off surface suffices to determine the quantities ġ0,2

and ġ2,0 entering Iad(ω,k) in (6.4.11). These can be computed straightforwardly as we have:

ġ0,2 =
dG+

0,2

dζ

∣∣∣∣
ζ=0

=
2πi

(2π)2

%
1
d
−1

c

G+
0,0(%c)

ˆ ρc

1

d% %−
2
d

(
G+

0,0(%)
)2

=
i

2π

%
1
d
−1

c

P−ν(2%c − 1)2

ˆ ρc

1

d% %−
2
d P−ν(2%− 1)2,

(D.2.21)
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and

ġ2,0 =
dG+

2,0

dζ

∣∣∣∣
ζ=0

= −%
1
d
−1

c

ˆ ρc

1

d%
1

G̃+
1,0(%)

d

d%

(
%1− 1

d G̃+
1,0(%)2G+

0,0(%)2
)

= − %
1
d
−1

c

P−ν(2%c − 1)2

ˆ %c

1

d%

(
d

d%

(
%1− 1

d G̃+
1,0 P−ν(2%− 1)2

)
+ %1− 1

d P−ν(2%− 1)2
dG̃+

1,0

d%

)
= − %

1
d
−1

c

P−ν(2%c − 1)2

[
− G̃+

1,0(1)− 1

2πi

ˆ %c

1

d% %−
2
d P−ν(2%− 1)2

− 1

2πi

ˆ %c

1

d%
%−

1
d

%− 1

(
%−

1
d P−ν(2%− 1)2 − 1

)]
,

(D.2.22)

where we have integrated by parts and used (D.2.14) to simplify the integral. These are the

expressions that are compiled in (6.4.14) and (6.4.15).

Explicit solutions for massless fields: The expressions are in fact simplest for d|∆, i.e.,

ν ∈ Z+, since then the Legendre functions are simple polynomials (note that P−ν(x) = Pν−1(x)

from the Legendre differential equation). For instance, carrying out the exercise we find for a

massless, minimally coupled field m2 = 0 or ∆ = d:

G+
0,0 = 1

G+
1,0 = −

ˆ ζ

0

dζ ′
(

1−
(rh
r′

)d−1
)

G+
0,1 = 0

G+
2,0 =

ˆ ζ

0

dζ ′
ˆ ζ′

ζh

dζ ′′
(

1 +

(
r′′

r′

)d−1)(
1−

(rh
r′′

)d−1
)

+

ˆ ζh

0

dζ ′
(

1−
(rh
r′

)d−1
) ˆ ζ

0

dζ ′′
(

1−
(rh
r′′

)d−1
)

G+
0,2 = −

ˆ ζ

0

dζ ′
ˆ ζ′

ζh

dζ ′′
(
r′′

r′

)d−1

f(r′′) .

(D.2.23)

Solutions in the BTZ geometry: It would not be a surprise to reader to know that the above

expressions can be integrated in d = 2. We can alternately use the knowledge of the hypergeometric

series to aid in expanding out (6.3.23).

2F1(a, b, c; z) =
∞∑
n=0

(a)n (b)n
(c)n n!

zn (D.2.24)

199



to aid the expansion, but note that we have resum the terms to get the perturbative contributions.

The resummation can be done in terms of polylogarithms. For example:

2F1(ε a, ε b, 1 + ε c; z) = 1 + ε2 a bLi2(z) +O
(
ε3
)

(D.2.25)

Using this we can expand G+(ω, k) to the desired order, for

G+(ζ, ω, k) =

[
1 + i

1

π
w log

(
1 + e2πi(ζ+ζc)

1 + e2πi ζc

)
− 1

2 π2
w2

(
log

(
1 + e2πi ζ

1 + e2πi ζc

))2

+ · · ·
]

×
[
1 +

1

4π2

(
q2 −w2

) (
Li2
(
sec2 π(ζ + ζc)

)
− Li2

(
sec2 πζc

))
+ · · ·

] (D.2.26)

where we have kept terms to O(w2) and O(q2), respectively. In other words, the analog of (D.2.23)

now reads to quadratic order:

G+
0,0 = 1

G+
1,0 =

i

π
log

(
1 + e2πi(ζ+ζc)

1 + e2πi ζc

)
G+

2,0 = − 1

2π2

[
log

(
1 + e2πi(ζ+ζc)

1 + e2πi ζc

)]2

− 1

4π2

(
Li2
(
sec2 π(ζ + ζc)

)
− Li2

(
sec2 πζc

))
G+

0,2 =
1

4π2

(
Li2
(
sec2 π(ζ + ζc)

)
− Li2

(
sec2 πζc

))
.
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D.3 Witten diagrams on the grSK contour

In this Appendix we give a short argument in favour of using Witten diagrams on the grSK contour.

Per se the argument is no different from the one used in the standard AdS/CFT context on a single

sheeted geometry, but for completeness we give a brief account. Consider the action (6.2.4) whose

equation of motion is:

1√
−g

∂A
[√
−ggAB∂BΦ

]
−m2 Φ− λn

(n− 1)!
Φn−1 = 0 . (D.3.1)

We can solve this equation perturbatively with λ as a perturbation parameter, viz.,

Φ = Φ0 + λΦ1 + · · · . (D.3.2)

Here Φ0 solves (6.3.2) while Φ1 satisfies the following inhomogeneous equation

1√
−g

∂A
[√
−ggAB∂BΦ1

]
−m2 Φ1 = λn

1

(n− 1)!
Φn−1

0 . (D.3.3)
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It will be helpful for our analysis to fix the boundary conditions in a manner that is well adapted

to this perturbation theory, so that a minimal number of terms contribute in the evaluation of the

action. We pick:

Φ0(ζ = 0, k) = JL(k) , Φ0(ζ = 1, k) = JR(k) , Φi(ζ = 0, k) = 0 ∀i > 0 . (D.3.4)

Assuming that we have the solution to a desired order we can then evaluate the on-shell action.

For instance, if we compute the action up to O(λn), as appropriate for a contact bulk interaction,

we will simply find the contribution from the zeroth order solution, for:

Sos = −
ˆ
ddx

˛
dζ
√
−g

[
gAB

2

(
∂AΦ0 ∂BΦ0 + 2λn∂AΦ1 ∂BΦ0

)
+
λn
n!

Φn
0

]
+O

(
λ2
n

)
,

= −
ˆ
ddx

˛
dζ

[
1

2
∂A

(√
−g gAB (Φ0 + 2λnΦ1) ∂BΦ0

)
− λn Φ1

[
∂B
(√
−ggAB∂AΦ0

)
−
√
−g m2 Φ0

]
+
λn
n!

√
−gΦn

0

]
+O

(
λ2
n

)
= −
ˆ
ddx

˛
dζ

[
1

2
∂A

(√
−g gABΦ0∂BΦ0

)
+
λn
n!

√
−gΦn

0

]
.

(D.3.5)

In passing from the first to the second line we plugged in the equation of motion. We then see

that as expected the first term in the second line is a total derivative, and thus a boundary term.

Since our boundary conditions (6.3.26) set Φ1 = 0 at the conformal boundary, so its contribution

to the boundary term vanishes. The other term in the expression is the Φ0 equation of motion

which vanishes on-shell. The action with the surviving terms is the expression which only cares

about Φ0 and indeed the contribution to the interaction can be obtained by writing out Φ0(ζ, x) in

terms of the boundary values using boundary-bulk propagators. Given this, we have chosen drop

the subscript ‘0’ from Φ0 in the main text.

D.4 Cubic influence functionals in 2d CFTs

The computation of the influence functional in the RA basis in a two-dimensional CFT is quite

general, since conformal invariance on the plane fixes the 3-point function in Euclidean space. One

can obtain the thermal correlation function by conformally mapping the complex plane onto the

cylinder. A further analytic continuation with suitable iε prescription gives the result in Lorentz

signature. For a certain choice of operator ordering the result is given in momentum space in
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[134]. We will now derive the general influence functions in momentum space from the bulk

BTZ geometry. It is worth emphasizing that while holography provides a simple way to get the

answer, the result is not particularly holographic, since it is constrained entirely by the underlying

conformal symmetry.

For definiteness we will compute the result for three scalar primary operators Oi with conformal

dimensions ∆i with i = 1, 2, 3. We will assume that the OPE coefficient is C123 which sets the

strength of the bulk vertex (the result presented in the main text corresponds to the special case

∆1 = ∆2 = ∆3 = ∆). We take the bulk action to be given by

S = −
3∑
i=1

˛
dζ

ˆ
d3x
√
−g

[
1

2
gAB ∂AΦi∂BΦi +

1

2
∆i (∆i − 2) Φ2

i

]

− C123

ˆ 2∏
i=1

d3ki
(2π)3

(2π)3δ

(
3∑
i=1

ki

)˛
dζ
√
−g

3∏
i=1

Φi(ζ, ki) .

(D.4.1)

The cubic influence functional IFFP is then given by

IFFP (k1, k2, k3) = C123

˛
dζ
√
−g G+

∆1
(ζ, ω1, k1)G+

∆2
(ζ, ω2, k2)G−∆3

(ζ, ω3, k3) eβω3(1−ζ)

= C123

(
1− eβ ω3

) ˆ rc

rh

dr r G+
∆1

(r, ω1, k1)G+
∆2

(r, ω2, k2)G−∆3
(r, ω3, k3)

(
r − rh
r + rh

)i βω3
2π

,

(D.4.2)

where the BTZ Green’s function in radial coordinates is given by

G+
∆(r, ω, k) = N

(rh
r

)∆
(

r

r + rh

)∆−p+−p−

2F̃1

(
p+ , p− , p+ + p− + 1−∆ ; 1− r2

h

r2

)
N ≡ Γ(p+) Γ(p−)

Γ(∆− 1)
,

(D.4.3)

where we have included the normalization factors which set the source term to unit on the boundary

of the spacetime.2 In the second line we have written out the discontinuity across the branch cut

which includes a factor of e−2βω3ζ in terms of the standard BTZ radial coordinate.
2This normalization is different from what is used in the main part of the discussion where we have left the

cut-off explicit. Here we choose to normalize the propagator by demanding that limr→∞ rd−∆G+
∆ = 1. If one

uses this normalization then the computation of the two point function proceeds as described in 6.4.1 with some

minor changes. Firstly, we should pick up the constant term in the asymptotic expansion to compute S(2). Sec-

ondly, there is a renormalization of the operator – the 2-point functions computed in this fashion are rescaled by

a factor of ∆
2(∆−1) relative to the result in (6.4.4). For the computation of the 3-point function, we should supply

a factor r∆1+∆2+∆3−6
h at the end to ensure that we have the correct scaling of the correlator.

202



The non-normalizable mode in G±∆ leads to a r∆−2 fall-off. This can be seen from the fact that

(with ε = rh
r
)

2F̃1

(
p+ , p− , 1− i

w

π
; 1− ε2

)
−→
ε→0

1

N
ε2−2∆ +

Γ(1−∆)

Γ( p+ + 1−∆) Γ( p− + 1−∆)
+ · · · (D.4.4)

This implies that the radial integral is absolutely convergent3 if ∆1 + ∆2 + ∆3 < 4. We

will restrict to this range of conformal dimensions to avoid introducing UV regulators in the

computation for the present (a discussion of the regulators can be found in D.5).

On way to proceed is to use the contour integral representation of the hypergeometric function.

A variant of the Barnes integral representation [145, 15.6.7] gives

2F̃1 (a , b , c ; z) =M(a, b, c)

ˆ
C

ds

2πi
Γ(s) Γ(c− a− b+ s) Γ(a− s) Γ(b− s)(1− z)−s ,

M(a, b, c) =
1

Γ(a) Γ(b)

1

Γ(c− a) Γ(c− b)
.

(D.4.5)

This is valid for | arg(1 − z)| < π and the choice of the contour C is as follows. One separates

the poles of the Gamma functions in the integrand into two sets. The first set includes the poles

of Γ(s) and Γ(c − a − b + s) i.e., s ∈ Pleft = {−n ,−n + a + b − c |n = 0, 1, 2, · · · }. The second

set comprises the poles of Γ(a − s) and Γ(b − s) i.e., s ∈ Pright = {a − n , b − n |n = 0, 1, 2, · · · }.

The contour C is chosen as a separatrix between Pleft and Pright. Depending on the range of z and

the parameters a, b, c one can either take it to be a vertical contour betweenPleft and Pright, or a

contour that encircles the poles of one of the sets.

For the BTZ Green’s function we can write the ingoing Green’s function using (6.4.6) and

(6.4.7) as

G+
∆(r, ω, k) =

1

G(K±, ∆̃)

(
r

r + rh

) i
π
w ˆ
C

ds

2πi
G∆(K,∆, s)

(rh
r

)∆−2s

,

G∆(K±, s) = Γ(s) Γ(1−∆ + s) Γ(K+ + ∆
2
− s) Γ(K− + ∆

2
− s) .

(D.4.6)

We also have shortened the notation for functions of both K+ and K− and written the dependence

into simply K± to allow for more compact formulae below. We will do likewise for G(K±,∆).

The contour we want to pick is one which encircles the poles in the left set

Pleft = {−n ,−n+ ∆− 1 |n = 0, 1, 2, · · · } , (D.4.7)
3In general dimensions the conformal three-point function in momentum space has a convergent integral rep-

resentation for ∆1 + ∆2 + ∆3 < 2d, see [133].
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and is anchored at −∞. As expected the leading divergence comes from the rightmost pole located

at s = ∆ − 1 which gives us the asymptotic behaviour in (D.4.4). Taking then si ≤ ∆i − 1 for

i = 1, 2, 3 we see that the influence functional receives contribution from the following radial

integral

ˆ ∞
rh

r dr
(rh
r

)∑3
i=1 (∆i−2si)

(
r

r + rh

) i
π

(w1+w2−w3) (
r − rh
r + rh

) iw3
π

= r2
h Γ

(
1 +

iw3

π

)
Γ
(
−1 +

∑3
i=1

∆i

2
− si

)
2 Γ
(
iw3

π
+
∑3

i=1
∆i

2
− si

) . (D.4.8)

We have explicitly used the fact that the integral is absolutely convergent when

Re

(
3∑
i=1

(2si −∆i)

)
< −2 =⇒ ∆1 + ∆2 + ∆3 < 4 , (D.4.9)

as argued earlier and have employed momentum conservation to eliminate w2. The integral as

defined appears to have poles when w3 = i π, but note that the prefactor (1− eβω3) also vanishes

at that point rendering this harmless.

Putting all the pieces together we find:

IFFP (k1, k2, k3) =
C123 r

2
h

(
1− eβω3

)
Γ
(
1 + iw3

π

)
G(K1±, ∆̃1)G(K2±, ∆̃2)G(K∗3±, ∆̃3)

[
3∏
i=1

ˆ
Ci

dsi
2πi

K(s1, s2, s3)

]
,

K(s1, s2, s3) = G∆1(K1±, s1)G∆2(K2±, s2)G∆3(K∗3±, s3)
Γ
(
−1 +

∑3
i=1

∆i

2
− si

)
2 Γ
(
iw3

π
+
∑3

i=1
∆i

2
− si

) . (D.4.10)

In writing the above expression we have used the fact that the sign reversal of ω3 owing to the

contribution coming from outgoing Green’s function G−(r, ω3, k3) can be expressed by complex

conjugation of the lightcone momenta, for K∗±(ω, k) = K∓(−ω, k).

The main point to note is that the choice of parameters we have made is such that the contri-

bution from the hypergeometric function arising from the radial integral is completely regular in

si. This means that we can close the contours Ci to the left picking up the contributions from the

poles in P i+ for i = 1, 2, 3. This implies that we can write the final result as a triple sum:

J(k1, k2, k3) ≡

(
3∏
i=1

ˆ
Ci

dsi
2πi

)
K(s1, s2, s3)

=
∞∑

n1,n2,n3

(
3∏
i=1

(−)niΓ(1− δi − ni)
Γ(1 + ni) Γ(1− δi − 2ni)

)
Γ
(
−1 +

∑3
i=1

δi+2ni
2

)
2 Γ
(∑3

i=1
δi+2ni

2
+ iw3

π

)
×G (K1±, δ1 + 2n1) G (K2±, δ2 + 2n2) G

(
K∗3±, δ3 + 2n3

)
.

(D.4.11)
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We have written this result in a shorthand notation: accounting for the poles from si = −ni
and from si = −ni + ∆i − 1 is tantamount to picking contributions involving either the operator

dimension or that of its shadow for each i. This is encoded in binary choice of our parameter δi,

viz.,

δi ∈ {∆i, 2−∆i} . (D.4.12)

The result is expressed in terms of the function G introduced during the analysis of the 2-point

function, Eq. (6.4.7), for brevity. To be explicit

G (K±, δ + 2n) = Γ

(
i(q−w)

2π
+
δ + 2n

2

)
Γ

(
−i(q + w)

2π
+
δ + 2n

2

)
Γ (1− δ − 2n) . (D.4.13)

Note that the first term in the parenthesis in the second line of (D.4.11) contains the residues

from the poles and includes a ratio arising from our having expressed the result in terms of the

functions G defined above.

To understand the analytic structure it is helpful to reinstate ω2 and use energy-momentum

conservation to eliminate ω3 instead. Noting that

K∗3± = ∓ i q3 ∓w3

2π
= ± i q1 + q2 ∓ (w1 + w2)

2π
≡ K12± , (D.4.14)

we can write the three-point influence functional by replacing G
(
K∗3+,K

∗
3−, δ3 + 2n3

)
with the

simpler expression G (K12+,K12−, δ3 + 2n3).

The full influence functional then can be expressed as (after supplying the factors of rh for

dimensional reasons, see 2)

IFFP (k1, k2) = C123 r
∆1+∆2+∆3−4
h

(
1− e−β(ω1+ω2)

)
Γ

(
1− i (w1 + w2)

π

)
[

∞∑
n1,n2,n3

(
3∏
i=1

(−)niΓ(1− δi − ni)
Γ(1 + ni) Γ(1− δi − 2ni)

)
Γ
(
−1 +

∑3
i=1

δi+2ni
2

)
2 Γ
(∑3

i=1
δi+2ni

2
+ iw3

π

)
× G (K1±, δ1 + 2n1) G (K2±, δ2 + 2n2) G (K12±, δ3 + 2n3)

G(K1±, ∆̃1)G(K2±, ∆̃2)G(K12±, ∆̃3)

]
.

(D.4.15)

The analytic structure of the influence function can be read off without further effort. The

terms on the second line of IFFP (k1, k2) involving the sum of ni are regular as a function of ω1

and ω2. The only singularities are from the Gamma functions containing pk± = Kk± + ∆
2
, i.e., the

pieces that occur already in the 2-point function. Of the eight possible choices of δi we note that

there can only be poles when δi = ∆i. When δi = 2−∆i the Gamma functions in the denominator

factor also have a pole which cancels against that of the numerator leaving a finite answer. We
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conclude that the correlator is analytic in the upper half of the complex ω1 and ω2 planes and

encounters the usual quasinormal type poles in the lower half-planes.

One can in fact carry out the two of the three sums by realizing that some of the sums are the

defining expressions for the generalized hypergeometric function. For instance, the sum over n1

leads to 3F2 with arguments comprising of the combination n2 + n3:

∞∑
n1=0

(−)n1

Γ(n1 + 1)
Γ(1− δ1 − n1) Γ(K1+ + δ1

2
+ n1) Γ(K1− + δ1

2
+ n1)

Γ
(
−1 +

∑3
i=1

δi+2ni
2

)
2 Γ
(∑3

i=1
δi+2ni

2
+ iw3

π

)
= G(K1±, δ1)

Γ
(
−1 + δ1+δ2+δ3

2
+ n2 + n3

)
2 Γ
(
δ1+δ2+δ3

2
+ n2 + n3 + iw3

π

) (D.4.16)

× 3F2

 K1+ + δ1
2
,K1− + δ1

2
,−1 + δ1+δ2+δ3

2
+ n2 + n3

δ1 ,
δ1+δ2+δ3

2
+ n2 + n3 + iw3

π

; 1

 .

One can then carry out the sum over n2 after a shift n3 + n2 = n, which allows performing the n2

sum. The result is given as

J(k1, k2, k3) = G(K1±, δ1)G(K2±, δ2)
∞∑
n=0

(−)n Γ(1− δ3 − n)

Γ(n+ 1) Γ(1− δ3 − 2n)

Γ(−1 + n+ δ1+δ2+δ3
2

)

2 Γ(n+ δ1+δ2+δ3
2

+ iw3

π
)

×G(K∗3±, δ3 + 2n) 3F2

 K1+ + δ1
2
,K1− + δ1

2
,−1 + δ1+δ2+δ3

2
+ n

δ1 ,
δ1+δ2+δ3

2
+ n+ iw3

π

; 1


× 4F3

 K2+ + δ2
2
,K2− + δ2

2
,−n , 1− n− δ3

δ2 , 1− K∗3+ − δ3
2
− n , 1− K∗3− − δ3

2
− n

; 1

 . (D.4.17)

This is the expression quoted in the main text in (6.4.19) and (6.4.20), modulo a reversion to our

standard notation and accounting for a symmetry factor from the k1 ↔ k2 swap of the F -type

sources.

D.5 Counterterm analysis for influence functionals

We prove the statements made in 6.4.2 regarding the renormalization of the nonlinear influence

functional. We will demonstrate the divergence of the integrals noted in the main text and then

argue that a suitable temperature dependent mixing of the difference source into the average source

serves to give a counterterm action that is consistent with microscopic unitarity.

The staring point of our analysis is the time-domain solution of the free massless scalar equation

on the gravitational SK contour (D.1.11) which we reproduce here with the bare sources explicitly
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marked.

Φ =

(
G+

0,0 +
i

2
G+

1,0 β∂t

){
Jb
a +

i

8
β∂tJ

b
d + Jb

d

(
ζ − 1

2
+ G̃+

1,0

)
− i

2
β∂tJ

b
d

(
ζ − 1

2
+ G̃+

1,0

)2}
+O

(
(β∂t)

2) (D.5.1)

where we are using (D.2.7). We work to linear order in the gradients, leaving a more detailed

analysis of the gradient expansion for the future.

To compute the influence phase to linear order in perturbation theory, this unperturbed solution

is sufficient. Taking the nth power of this solution, we obtain

Φn

n!
=

{
n∑
k=0

1

(n− k)!

(
G+

0,0

)n(
Jb
a +

i

8
β∂tJ

b
d

)n−k

× 1

k!

[
Jb
d

(
ζ − 1

2
+ G̃+

1,0

)
− i

2
β∂tJ

b
d

(
ζ − 1

2
+ G̃+

1,0

)2
]k}

+ n
i

2
β∂t

[(
G+

0,0

)n−1
G+

1,0

(
Jb
a + Jb

d

(
ζ − 1

2
+ G̃+

1,0

))]
+O

(
(β∂t)

2) .
(D.5.2)

Note that in the above expression we have expanded the solution accurately to linear order in

time-derivatives and we have combined all the contributions coming from i
2
G+

1,0β∂t into a total

derivative using Leibniz rule.

We now compute the integral over the bulk gravitational SK contour. Only the terms with

branch cuts can contribute to the radial integral: this implies we can drop the k = 0 term in the sum

above since it is analytic. As expected we get no contribution involving only the average sources.

We can also drop the total time derivative in the last line since it gives a boundary contribution

to the influence functional (this is partially the reason for working in coordinate space). Thus, we

have
ˆ
ddx

˛
dζ
√
−g Φn

n!
=

ˆ
ddx

˛
dζ
√
−g

{
n∑
k=1

1

(n− k)!

(
G+

0,0

)n(
Jb
a +

i

8
β∂tJ

b
d

)n−k
×

[
(Jb
d )k

k!

(
ζ − 1

2
+ G̃+

1,0

)k
− i

2
β∂tJ

b
d

(Jb
d )k−1

(k − 1)!

(
ζ − 1

2
+ G̃+

1,0

)k+1
]}

+O
(
(β∂t)

2) .
(D.5.3)
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Defining the integrals

F b
n,k ≡

˛
dζ
√
−g

(
G+

0,0

)n(
ζ + G̃+

1,0 −
1

2

)k
=

˛
dr rd−1

(
G+

0,0

)n(
ζ + G̃+

1,0 −
1

2

)k
,

(D.5.4)

we get the following contribution to the influence functional
ˆ
ddx

˛
dζ
√
−g Φn

n!

=

ˆ
ddx

n∑
k=1

1

(n− k)!

(
Jb
a +

i

8
β∂tJ

b
d

)n−k [
F b
n,k

(Jb
d )k

k!
− F b

n,k+1

(Jb
d )k−1

(k − 1)!

i

2
β∂tJ

b
d

]
.

(D.5.5)

To proceed we need to estimate the integrals. Since we have explicit expressions for the massless

scalar field we will first describe the computation in that case, before outlining the general story.

D.5.1 Divergence structure for a marginal operator

For the massless scalar, for which the radial functions appearing in the gradient expansion are

given in (D.2.23) we can simplify the integrals Fn,k defined in (D.5.4) since G+
0,0 = 1. Dropping

the subscript n, since it is unnecessary, we focus on the integrals F defined in (6.4.23), viz.,

F b
k =

˛
dr rd−1

(
ζ +G+

1,0 −
1

2

)k
(D.5.6)

We then can use the explicit form of G+
1,0 in (D.2.23)

G+
1,0 = −

ˆ ζ

0

dζ ′
(

1−
(rh
r′

)d−1
)

(D.5.7)

and immediately obtain ζ + G+
1,0 ∼ 1

rd
. Furthermore, since G+

1,0 is continuous across the grSK

contour the integrals F b
k are simply:

F b
k =

ˆ rc

rh

dr rd−1

[(
ζ +G+

1,0 +
1

2

)k
−
(
ζ +G+

1,0 −
1

2

)k ]
. (D.5.8)

To understand the divergence structure it is sufficient to use the asymptotic expansion, though we

will use the explicit form.

First consider the situation with the argument k being an odd integer. Then,

F2k+1 ∼
ˆ rc

dr rd−1

[
1

4k
+

(
2k + 1

2

)
1

4k−1
(ζ +G+

1,0)2 + · · ·
]

=
1

4k d
rdc +O

(
r−1
c

)
(D.5.9)
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To check that the other terms do not contribute realize that

ˆ rc

dr rd−1 log2

 1−
(
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r

)d
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(
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rc

)d
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(
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∣∣∣∣∣
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− 2

ˆ rc
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rdh
r2

1
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(
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)d log

 1−
(
rh
r

)d
1−

(
rh
rc

)d


(D.5.10)

The first term vanishes at the cut-off and the second is a convergent integral. Thus we have

established the first of the relations given in (6.4.26), for indeed

F b
2k+1 = F r

2k+1 +
1

4k
rdc
d

(D.5.11)

When the argument k is even case we have a divergence when we pick up the linear term in

ζ +G+
1,0, for integrating by parts we find

F b
2k ∼

ˆ rc

dr rd−1

[
2

(
2k

1

)
1

22k−1
(ζ +G+

1,0) + · · ·
]
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4k−1 πi
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(
rh
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= − k

4k−1 πi
rdh log
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+O(1) .

(D.5.12)

thus proving the second relation in (6.4.26)

F b
2k = F r

2k +
i

π 4k−1
rdh log

rc
rh
. (D.5.13)

For completeness let us record the integrals for the massless scalar that enter into the com-

putation of the quartic influence functional. In intermediate steps we define a rescaled radial

variable

y =
1

%
=
(rh
r

)d
which helps simplify the integration.

F b
1 =

˛
dr rd−1

(
ζ +G+

1,0 −
1

2

)
=

ˆ rc

rh

dr rd−1 =
1

d

(
rdc − rdh

)
. (D.5.14)
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F b
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2
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(D.5.15)

F b
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(D.5.16)

F b
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(D.5.17)

D.5.2 Divergence structure for relevant operators

We shall now generalize the discussion of the divergence structure to an arbitrary operator of

dimension ∆. We have derived hitherto the general expressions for the functions entering the

gradient expansion in (D.2.9). While there are still integrals to be done, for the purposes of

analyzing the divergence structure, it suffices to exploit the standard AdS asymptotics to extract

the leading behaviour.

We recall that, G+
0,0 solves the massive wave equation in the Schwarzschild-AdSd+1 geometry

and thus has both the non-normalizable r∆−d and the normalizable r−∆ fall-offs. As written in

(D.2.12) from the explicit solution we can see the asymptotic behaviour to be given by

%ν−1
c G+

0,0 = %ν−1

(
1− ν − 1

2

1

%
+ · · ·

)
+

Γ(ν)2 Γ(1− 2ν)

Γ(1− ν)2 Γ(−1 + 2ν)
%−ν

(
1 +

ν

2

1

%
+ · · ·

)
(D.5.18)

where ν = ∆
d
was defined earlier in (D.2.4). We recognize the leading term as the non-normalizable

mode %ν−1 ∼ r∆−d and the second series as the normalizable mode %−ν ∼ r−∆. Often it is

convenient to normalize the Green’s function to have a unit source, which would imply:

G+
0,0 =

1

rd−∆

(
1 +O

(
r−d
))

+ s∆
1

r∆

(
1 +O

(
r−d
))

s∆ =
Γ(ν)2 Γ(1− 2ν)

Γ(1− ν)2 Γ(−1 + 2ν)
r2∆−d
h .

(D.5.19)
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Notice that the subleading term in the source expansion appears at the order r∆−2d which is faster

than the normalizable fall-off of r−∆ provided ∆ < d. So for all relevant operators we can ignore

the subleading term in the expansion of the source. The special case of a marginal operator ∆ = d

was dealt with explicitly above in D.5.1.

To proceed we need estimates for the combination ζ + G̃+
1,0 which appears in the functions F b

n,k

defined in (D.5.4). We recall that this is the combination we solved for in (D.2.17). Expanding

out the integrand for large ρ we discern the asymptotic behaviour, directly from (D.2.15),

ζ + G̃+
1,0 ∼

ˆ
d%̄

%̄ 2ν
=

d

d− 2∆

(rh
r

)2∆−d
+ · · · . (D.5.20)

In deriving this expression we have used P−ν(% = 1) = 1 and also accounted for the normalization

factors in the source term of G+
0,0. Note that the most delicate case is when ∆ = d

2
for then

G+
0,0 ∼

log r

r
d
2
, which is nevertheless convergent. Recall that we are sticking to standard AdS boundary

conditions, so ∆ ≥ d
2
.

Armed with this information we can proceed to estimate the integrals F b
n,k given in (D.5.4).

We again note that the Green’s functions G+
n,m are continuous on the grSK contour, so the only

contribution to the contour integral comes from the explicit factor of ζ. We can therefore write

F b
n,k =

ˆ
dr rd−1 (G+

0,0)n
[(

ζ + G̃+
1,0 +

1

2

)k
−
(
ζ + G̃+

1,0 −
1

2

)k ]
. (D.5.21)

The leading divergence comes from the bare contribution in the case of odd argument, whence

F b
n,2k+1 ∼

1

4k

ˆ rc

dr rd−1
(
G+

0,0

)n ∼ 1

4k

ˆ rc

dr rd−1−n (d−∆) . (D.5.22)

This is absolutely convergent when

(1− n) d+ n∆− 1 < −1 =⇒ ∆ <
n− 1

n
d , (D.5.23)

but otherwise predicts a divergence

F b
n,2k+1 ∼

1

4k
r
n∆−(n−1)d
c

n∆− (n− 1) d
+ regular (D.5.24)

On the other hand for even argument we would estimate:

F b
n,2k ∼

2k

4k−1

ˆ rc

dr rd−1
(
G+

0,0

)n (
ζ + G̃+

1,0

)
∼ 2k

4k−1

ˆ rc

dr r−1+(n−2)(∆−d) (D.5.25)
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leading to

F b
n,2k ∼

2k

4k−1

r
(n−2)(∆−d)
c

(n− 2)(∆− d)
+ · · · . (D.5.26)

For n > 3 we thus end up with a convergent integral for all relevant operators (∆ < d).So the

only renormalization necessary for a relevant operator is to remove the power-law divergence in

the functions F b
n,2k+1 for the range of ∆ specified above.
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