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Introduction

1.1  Motivation

A deeper understanding of Quantum Gravity(QG) is an important goal in theoretical physics. In
the past century, interesting research was conducted in Semi-Classical Gravity employing pertur-
bative tools in physics. In this regime, the gravitational force is much weaker as compared to other
fundamental forces, the perturbative calculations prove to be insightful and threw in interesting
questions and puzzles. This led physicists to explore new avenues and pursue for a full Quantum
Gravity theory. Various ideas were tried out to quantize gravity, ranging from treating space-time
as discrete, or to giving a geometric picture to remaining fundamental forces. Nonetheless, most of
these approaches had limited success, and needs further research for concreteness. But, String The-
ory has emerged to be the most successful candidate in capturing some important aspects of QG.
It’s central idea of considering fundamental particles as excited states of tiny extended objects nat-
urally encapsulate the massless spin-two state, gravitons which is the quanta of gravitational force.
Amongst various successes it had, it’s most important achievement is giving a well-defined example
of QG - Gauge-Gravity duality [4, 5].

The Gauge-Gravity duality also famously referred to as the AdS/CFT correspondence is a nice
toy example of Quantum Gravity. Over past two decades it has been theorist’s favorite “labora-
tory” setup to test QG. It proposes that large /V limits of certain Conformal Field Theories(CFT)
in d dimension can be described in terms of (super-)gravity on d + 1-dimensional Anti-de-sitter
(AdS) space-time. Maldacena [4] gave the first complete example of this correspondence from Su-

perstring Theory, where it was shown that Type IIB Superstring Theory on AdS5 x S % is dual to



N = 4 super Yang-Mills theory in four dimensions with gauge group SU (), in the large N limit.
Although, the main idea is not that supergravity, or string theory to be present, but any suitable
theory on AdS441 space which would be equivalent to a CFT in d dimensions. This correspon-
dence was more mathematically established in [, 6] by equating correlation functions both sides.
Interestingly the quantum effects which come from 1/N corrections of the correspondence were
computed, and agreeable matching was found. Therefore this correspondence is true in the quan-
tum regime and not strictly a classical-correspondence statement. This opened the flood-gates of
research on QG for past couple of decades. And has possibly revealed an important nature of QG -
the “Holographic principle”, i.e QG could be described by a Quantum Field Theory(QFT), which
usually exists in one lower dimension.

AdS/CFT had an enormous success in understanding the Black Holes(BH), especially in the
study of entanglement entropy, phase-transitions and other thermodynamical properties. Also this
framework has led to a lot of open problems which wasn’t accessible earlier. Some of the important
open problems are the Quantum Information Paradox, equivalent de-Sitter/CFT correspondence
and phase-space of Quantum-Chromo-Dynamics(QCD). Although, to have a significant progress
in these problems there are various challenges. Amongst many, two major stumbling blocks turn
out to be our lack of understanding of open Quantum Field Theories(QFT) and strongly-coupled
QFTs. Though they existed before, discovery of AdS/CFT correspondence has given us sharper
questions to pursue.

Open QFTs stand as interesting open problem in itself. Any physical system in the world, strictly
speaking is an open system, as it exchanges energy and matter with the environment. Even the act
of measurement can be thought of as forcing the environmental variables to interact with the phys-
ical system. A lot of paradoxes that arose in quantum mechanics, like the Schrodinger’s cat or the
Quantum Zeno Paradox could be traced to open QFTs. Recent technological advancement in
Quantum Information and Quantum Computation would also need a better understanding of
open QFTs. Also as our Universe is undergoing an accelerated expansion, we can only access a patch
of space-time. Hence the study of large space-time structure of Universe fall under the regime of
open QFTs. Possibly, one of the greatest unsolved problems in Physics - the mismatch of Cosmo-

logical constant and zero-point energy predicted by QFT which of order 1029, could be addressed



if one understood open QFTs better! In the context of AdS/CFT, it appears naturally when we
want to address the Black-Hole Information paradox. The paradox arises while reconciling notions
of general relativity with quantum mechanics. Since a region of space-time behind the horizon isn’t
accessible, the dual field theory can be thought of as attached to a heat bath, where the temperature
is a function of the area of the horizon. Also if matter falls into the BH, the dual field theory is an
open QFT. Although Schwinger-Keldysh formalism is a formalism to study open QFT, but there
are technical difficulties in doing calculations. Therefore it is interesting to invent new methods to
deal with open QFT.

Challenges in understanding strongly coupled field theory are ubiquitous, ranging from Con-
densed matter physics to QCD. It has been an age-old problem in theoretical physics which has in-
spired new techniques routinely. In some special cases, like large-N limit of field theories or Super-
symmetric field theories, strongly-coupled systems have been exactly solved, but the generic case still
remains an open problem. In the context of AdS/CFT conjecture, strongly coupled theories natu-
rally appear as they are expected to be dual to a weak gravitational theory. In this regime the usual
perturbative expansion is not helpful. But interestingly, few examples of AdS/CFT have emerged
in lower dimensions, where exploiting the symmetries of the field theory, many calculations are
doable. For instance, in AdS3/CFT} correspondence, we have a good mathematical understand-
ing of two-dimensional CFT(as it has infinite symmetries). These infinite symmetries allow for
exact computations in the CFT side, and has shed light on the dual gravitational theory. Inspired
by the success of AdS/CFT in lower dimensions, recently a new model was discovered in one fur-
ther lower dimension. It is a (conformal)-quantum mechanical (QM) model called the Sachdev-Ye-
Kitaev (SYK) [7, 8] model, and is thought to have a bulk dual in two-dimensions. It has generated
an excitement, as it a non-trivial example of strongly-coupled QM model which could be analyti-
cally solved. Also, it has led to discovery of few similar solvable QM models, like the Gurau-Witten

[9, 10] and Klebanov-Tarnopolsky [11] tensor models.



1.2 Problems addressed in the Thesis

During my graduate studies, I had the opportunity of studying a few aspects of open and strongly-
coupled QFTs. I have worked on three different projects, which I describe in the following sections.

These projects are motivated by recent approaches to address aforementioned problems of physics.

1.2.1 CoMPLEX LANGEVIN DYNAMICS IN LARGE N UNITARY MATRIX

MODELS

Exploring the QCD matter phase diagram has been important quest for both theoretical and exper-
imental high-energy physicist alike. The known phase diagram remains mostly conjectural because
it is difficult to perform calculations, as it is a strongly coupled theory at finite density and temper-
ature. The only available calculational tool is Lattice QCD which involves brute computational
power. Lattice QCD uses Monte-Carlo simulations to explore various configurations in the ensem-
ble with a probability weight which is positive definite. But in the case of QCD, the effective action
on integrating out fermionic degrees of freedom becomes complex and so does the measure. Be-
cause of this technical obstacle, known as the “Fermion Sign” problem, Lattice QCD can only be
used at low density and high temperature. Sign problem often arises when we numerically simulate
open QFTs and non-equilibrium physics.

An alternative approach has been invented recently based on “Complex Langevin Dynamics”.
The complex Langevin method was proposed in the early 1980s by Klauder [12] and Parisi [13].
Though it became popular in the beginning certain problems were found immediately after. First
one was the problem of runaways, where the simulations would not converge and the second one
was the problem of convergence to a wrong limit. In recent years the complex Langevin method has
been revived, with sometimes cases of impressive success [14, 15, 16]. It has been shown recently
that complex Langevin simulations produce seemingly correct answer, even when the fermion sign
problem is severe, for one-, three- and four-dimensional field theories with nonzero chemical po-
tential [17, 18]. The central idea is “Stochastic Quantization” where expectation values of observ-
ables are obtained as equilibrium values of a stochastic process. In order to achieve this we evolve

the system in a fictitious time 7, subject to a stochastic noise. That is, the system evolves according



to Langevin dynamics. When the action is complex it is still possible to consider Langevin dynam-
ics. The force (gradient of the action) becomes complex in this case making the fields also complex
during the evolution.

In this project we consider simple QFTs, large N Unitary Matrix Models with complex actions
and we make use of complex Langevin dynamics with stochastic quantization to study them. They
exhibit sign problem due to the fact that the action is complex. Standard Monte Carlo methods fail
to produce the correct equilibrium distributions of these models. We can use discretized complex
Langevin equation with Euler method (which is a first order algorithm) to find the equilibrium
field distributions of these models. If there is only one unitary matrix we can go the diagonal gauge,
and the fields/degrees of freedom can be expressed in angles 6;. Then let us take 0;(7) with ¢ =
1,---, N as the complexified angle variables of the gauge link U (7) at a Langevin time 7. We have

the discrete Langevin evolution equation

05

0;(r + A7) = 92-(7)—[ ]AT—}—\/EHZ-(T), (1.2.1)

where A7 is the Langevin time step, and 7, (7) is 2 Gaussian random variable satisfying the condi-

tions

(mi(7)) =0, (i(T)n; (7)) = 204507 (1.2.2)

We also need to impose the SU (V) constraint on the complexified angular variables after each

Langevin time step. That is,

Zgi(T) = 0. (r.2.3)

This can be easily implemented by subtracting the average value 0,,(7) from each 0;(7) variable.
To demonstrate the effectiveness of Complex Langevin Dynamics, we begin by studying a sim-
ple, yet non-trivial model — a complexified version of Gross-Witten-Wadia (GWW) Model [19, 20].

We refer to our model as ab-Model. It has two phases, confined and deconfined, exhibiting a third-



order phase transition. The action is given by
S:N(aTrU—i—bTrUT) (1.2.4)

where, a,b € C, U is an element of SU(N), and a = b is the Gross-Witten-Wadia model. We have
analytically solved the model in the Large N limit and compared Complex Langevin simulations
and found agreement. For instance, considering b = 2a, we have plotted the expectation value of
Polyakov Loop, (Tr(U)), we find a good match at different values of a.

<Tr(U) >

0.2 0.4 0.6 0.8 1.0

-0.2

-0.4

-0.6

-0.8

Then we turn to a more physical example; if we consider a a one-loop formulation of QCD (and
analogous SU (V) gauge theories) on compact spaces S7 X S3, 2 unitary matrix model arises. The
one-loop effective action of QCD on S* x S% with chemical potential x and quark mass m has the

form [21], with thermal Polyakov loop as the unitary matrix model

Nyzy (ﬁ mR> (" Te U™ + e " Tr U™] . (1.2.5)

The quadratic term in Polyakov loop is the contribution from adjoint fields and the linear term is
the contribution from the fundamental matter fields. Here, we have taken the adjoint contribution

to be bosonic and the contribution from fundamental fields to be fermionic. In free theory the
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effective action is determined in terms of single particle partition function

( )_2§:lk+2 AU+1)/ (1.2.6)

and

zf<%nné)=2§:uz+1y-%ﬂﬁbum%2 (127)
=1

In the above equations R is the radius of S* and m is the mass of the fundamental fermions. We
use dimensionless variables 5/ R, ;R and m R in numerical simulations. In the low temperature

limit, 5 — 00, we have 2,(00) = 0 and so the gluonic contribution is negligible. Thus the action is
S = Svam + 5, (128)

where, Syqam is the van der Monde term and S is the fundamental fermionic contribution. The

fermionic part could be summed in a logarithm

Zal log det 1+ ePlr—e U) det (1 + eﬁ(_”_el)U_l)}) . (1.2.9)

=1

Truncating the above action to a single level, in a double scaling limit:

B — oo, (1.2.10)

U — €o,

exp(B(p — &) = ¢,
where € is a fixed quark energy level and § the effective fugacity, the action becomes
S[U] = —olog (14 &U) (r.2.rr)

which can be solved analytically. Comparing complex Langevin simulations against analytic results
we get a good match. For instance, the expectation value of Polyakov Loop and Inverse Polyakov

Loops are evaluated for different values of N.



1 b <P> (analync N_oo)
F <P™'> (analytic, N_oo;

[ <P> (complex Langevm N = 500
09 [ <P >(complex Langevin, N = 500;
b <P> (complex Langevm N=3 ]

b <P™'> (complex Langevin, N=3) v 1
0.8 | ]

<P>, <pl>

1.2.2 BOUND ON HIGHER-POINT OUT-OF-TIME-ORDERED-CORRELATORS

(OTOCs)

Recent attempts to reconcile Quantum Gravity and Quantum Mechanics, has led to interesting
developments. Since the space-time behind the horizon is classically inaccessible in a Black Hole
geometry it becomes interesting to invoke the notions of Quantum information and computa-
tion(QIQC) in such a setup. In the past decade, many creative questions have been posed using
QIQC which has led to interesting revelations of QG. One such question arising from quantum in-
formation theory was to quantify the speed at which scrambling of information happens in a given
system. Applying it in the context of Black Hole, it was conjectured that there is a universal bound
on information scrambling [22, 23]. Using AdS/CFT, the information scrambling bounds trans-
lated to a universal bound on the growth of quantum chaos [24].

Quantum Chaos was inspired by the definition of classical chaos, which quantified the behaviour
of dynamical systems that are highly sensitive to initial conditions. In mathematical terms, given
two starting trajectories in the phase space that are infinitesimally close, with initial separation dz(,

at late times diverge exponentially as,

|6(t)|= |0y (r.2.12)



where A is known as the Lyapunov exponent. Schematically the above equation can be expressed in

terms of Poisson Bracket,

= {:U(t),p}pB (1.2.13)

Now lifting the observables to operators, and Poisson bracket to a commutator, we get a diagnostic
of quantum chaos. But in the thermal ensemble the commutator is often zero and one may need to

consider the square of it,

C = (W) VO)P),.

=Tr [e P W (1), V(0)]] . (1.2.14)

Here we have generalized &, p operators to generic Hermitian operators W, V. On expanding the

commutator square we get two pieces,
C = (W), V(0)), = -2(WHWH)V(0)V(0)); + 2 (W(H)V(0)W () V(0))5. (1.2.15)

The first term in the above expression is a time-ordered-correlator (TOC) and the second term is

an out-of-time-ordered-correlator (OTOC). The first term in the above expression goes to zero at
large time due to usual diffusion/relaxation. At a time scale of the order of diftusion time ¢4, we
have, W (t)V(0) ~ ¢~ Hence diffusion with large N factorization gives thermal factorization of
TOC:s, i.c. all time ordered thermal correlators factorizes to a product of thermal expectations. For

our particular example in hand, we have,
(W(OW @)V (0)V(0)) = (W(0)W(0)) (V(0)V(0)), (1.2.16)

at large time. Hence the large time behavior of the commutator is given by the OTOC.

Ata first look, OTOC may apparently seem to have a similar large IV factorization as TOC,

F =~ 2(W()V(0))" + (W (W () {(V(0)V(0)) + O(1/Na) (1.2.17)



However, the catch is that the sub-leading part of F'(t) grows with time. One may argue that for
a system with a large number of degrees of freedom, [’ tends to zero asymptotically. This could
be understood as following: in an chaotic system, at an intermediate time much larger than the

diffusion time ¢ >> ¢4, behavior of C'is given by
C o ee*M, (1.2.18)

where € is a small parameter related to the number of degrees freedom and A is the Lyapunov expo-

nent. Hence, F’ at an intermediate time would then behave like,
N 2t
F =~ fo—efie*". (1.2.19)

The second term become important at time scale t, ~ —% log €, which is known as the scrambling
time.
Using complex analytic techniques, [24] proves that maximum possible value of Lyapunov expo-

nent has an upper bound proportional to the temperature,
A < —. (1.2.20)

This maximum value of Lyapunov exponent is also known to saturate in holographic models with
gravity [25], certain two dimensional CFTs [26] and also in SYK model ([7, 8, 27]).
In our work [2], we continued the same logic as that of the previous paragraph, considered the

higher power of the commutator,

C = <H[V(T), V(O)]2"> (1.2.21)

and found the chaos bound of such a correlation function. For that purpose, we considered the

most generic n-point OTOC with a given scheme of regulation may be expressed as,

Foltinrs) = Tr (e PV (0)e 2 Va(ta) e AV (1)) (12.22)

10



where, I is the Hamiltonian of the system, 3; > 0 are separations between two consecutive opera-

tor insertions along the thermal circle, and therefore satisfy the constraint,

> Bi=5 (1.2.23)
=1

where (3 is the inverse temperature of the heat bath i.e the circumference of the thermal circle.

F5(ti, 7;) can visualized as

ket (Thy)

Va(t2)

Figure 1.1: Generic n-point correlator on a thermal circle of radius ,3

where V(%;)’s are thermal ordered along 7 direction and time is perpendicular to the thermal

circle. We restrict ourselves to increasing linear functions.
ti = fi(t) = wit sw; = 0 (1.2.24)

and under analytic continuationt — ¢ + 47, we find the domain of analyticity to be a half-strip

D = (0,00) X (=T, T4),

T_ = min. { b } < 7 < min. { b } =T7,. (1.2.25)
Wy,j—1 Wi—1,i

II



Choosing an appropriate normalization factor N, we show that F(¢;, 7;) decays at late times as,

| Fal< N — | Falto)e™ (1.2.26)

and the Lyapunov exponent can be read-oft as A\;, = thus, it is just a function of the width

T4+ + 7
of the strip D. Therefore considering a correlators which is has a form (V' (¢)WW(0))"), choosing a

equispaced regulator,
F(t) = Tr ([)%V(t)ﬁMW(O))n (1.2.27)
we show that the Lyapunov exponent \; = % for such correlators.

1.2.3 €—EXPANSION IN THE GROSS-NEVEU MODEL FROM CONFORMAL

F1eLD THEORY

Symmetries have played an important role in studying strongly-coupled field theories. Instead of
working with a Lagrangian and doing tedious Feynman diagrams computation, the idea was to
study correlators and S-matrix. This emerged in the 1960’s known as the S-matrix bootstrap pro-
gram. The philosophy was to derive as much information as possible about the strong interaction
from plausible assumptions about the S-matrix which were analyticity, crossing symmetry and uni-
tarity. In early days, much of the success was in the context of two-dimensional conformal field
theories, i.e Conformal bootstrap program. Very recently there has been a revival of Conformal
bootstrap program in higher dimensional field theories.

In higher dimensions, conformal bootstrap was developed in [28, 29] numerically using semi-
definite programming. The method has been used to obtain many general results in conformal and
superconformal field theories in three, four, five and six dimensions. Applied to the conformal field
theory describing the critical point of the three-dimensional Ising model, it produced the most pre-
cise predictions [30, 31] for its critical exponents. An analytical approach using Mellin space repre-
sentation of CFT was introduced in [32].

Based on the techniques introduced by Rychkov and Tan [33], in this project [3], we study a

I2



certain non-Lagrangian description of fermionic CFTs. The underlying idea is, as a consequence
of equations of motion of Gross-Neveu model, the conformal multiplets ¢) and t(1)t)) combine
at the Gross-Neveu fixed point. Using this fact and other conformal properties we compute the
leading order - in the epsilon expansion - anomalous dimensions of a class of composite operators in
the Gross- Neveu model in 2+ ¢ dimensions. And it was accomplished without relying on Feynman
diagrams and conventional perturbation theory techniques.

The Gross-Neveu model is a renormalizable field theory in two dimensions. It is described by a

U(N) symmetric action for N massless self-interacting Dirac fermions {1, 9! }. We will consider

the Gross-Neveu model in 2 + € dimensions

S = /d2+€x [J/ééww %g/fE (sz)2 ., I=1,...,N. (1.2.28)

Here g is the coupling constant which is dimensionless in two dimensions. This theory has a weakly

coupled UV fixed point given by the non-trivial zero of the beta function,
B(g) =eg — (N —2) éq—, N:NTY{]I}- (1.2.29)

Here Tr{I} is the trace of identity in Dirac fermion space, and in two dimensions N = 2N. The

fixed point occurs at

+ O(€?). (1.2.30)

The dimensions of the fermion 1!, A1, and composite scalar DIt Ay, are given by

A=ttt oty
1= 71—2 5 T

AQZd—l—i—’}/g:l—f—E—f—’YQ (I.Z.}I)

The anomalous dimensions of the fundamental fermions and the composite scalar in the e-expansion

have been computed in perturbation theory using the standard Feynman diagram techniques and,

13



to leading order in €, are given by

M= 1672 7* 4(N— 2
 N-1  N-1 (o)
Yo = o Gy = N—QE' 1.2.32

Assuming that the fixed point is a conformal fixed point, we derive the above expressions and for
higher dimensional composite operators using CFT techniques. Starting with the equations of

motion at Gross-Neveu fixed point,

= _—g,uie ) 1.2
Pyt = o o' (P77, (1.2.33)
o C R S A L2
amr——%w(ww). (1.2.34)

In the free theory the fermions satisfy @i = 0, 9,1'T'* = 0 which are the shortening conditions
for the multiplets {¢’ } . and {)' } ee. In addition all other bilinears of ¢! and 1)’ are primary op-
erators. At the interacting fixed point {t)' } e pe and { e pe are no longer short multiplets. The
primary operators in the free theory ¢ (&J@b‘] ) and ! (’JJ‘] w‘]) now become descendants of the
{7 fed pe. and {7 ed pe. Tespectively. Now assuming that every operator O in the free theory has
a counterpart Vp at the interacting fixed point. The operators V» and their correlation functions in
the interacting theory, approach, respectively, O and their free correlation function in thee — 0
limit. In the Gross Neveu model at the IR free point, various operators are constructed out of prod-
ucts of elementary operators 1) and 7). Denoting these operators in the interacting theory as Va,,

Vop41and ‘_/2p+1 such thatin the limit € — 0 (IR free point)

Vap = (00)F, Vapy = (W)Y, Vgpuy — (P0)P0°. (12.35)
And requiring the multiplet recombination as
vi=avi, o,VITr=—aVf, (1.2.36)
for some unknown function & = «a(e), which is determined by OPE expansion and three-point

14



functions. Demanding in € — 0 limit,

(Vap(1)Vapir (2) V5 (23)) = ((&0)" (1) (¥)" 9 (w2) () 97 (23)) - (12.37)

and,

(Vi (22) Vi (23) — ((¥0) " (22) (Y1) ¥ (23)) (1.2.38)

the scaling dimensions of the following composite operators are,

N —
A(q/}q/,)p = Ay, =p -+ pe — He + 0(62) , (1.2.39)
_ 1 1 p(N—p—1)
A(W)W — A2]9+1 - (p + E) + (p + 5)6 — WE + O(€2> (1.2.40)

and the leading order anomalous dimension of scalar primary of the form,

) s1
O = lypT — WZ/JKW( (1.2.41)
to be,
1
Toun = {7 5¢: (1.2.42)

I



Complex Langevin Dynamics in Large N

Unitary Matrix Models

2.1 Introduction

A nonperturbative study of the phase structure of QCD at finite temperature and nonzero baryon
chemical potential still remains an outstanding problem [34, 35]. This is due to the fact that the
fermion determinant becomes complex and the theory has a sign problem. The standard methods
to study the theory, lattice QCD algorithms based on importance sampling, fail to produce reliable
simulations. There have been recent developments in tackling this problem. One method is the use
of complex Langevin dynamics with stochastic quantization [36, 13]. This method is not based

on importance sampling but instead on a stochastic exploration of an enlarged (complexified) field
configuration space. Another recently proposed method is the Lefschetz thimble method [37, 38,
39, 40, 41, 42], which is also based on complexification of the original real field variables.

The complex Langevin method was proposed in the early 1980s by Klauder [12, 43, 36] and
Parisi [13]. Though it became popular in the beginning certain problems were found immediately
after. First one was the problem of runaways, where the simulations would not converge and the
second one was the problem of convergence to a wrong limit. In recent years the complex Langevin
method has been revived, with sometimes cases of impressive success [44, 45, 46, 47, 14, 15]. It has
been shown recently that complex Langevin simulations produce seemingly correct answer, even
when the fermion sign problem is severe, for one-, three- and four-dimensional field theories with

nonzero chemical potential [17, 48, 49, 18]. There have also been studies of supersymmetric matrix
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models based on complex Langevin dynamics. See Refs. [16, 50, 51].

In this work, we consider a large /N unitary matrix model at low temperature with a finite quark
chemical potential and quark mass. This model is obtained from the one-loop formulation of
QCDon S x 83 at finite temperature with finite quark chemical potential y1, quark mass m,
and with NV number of colors and Ny number of quark flavors. After integrating out the quark
and gauge degrees of freedom we obtain the model of our interest — a conventional unitary matrix
model with a complex action. The unitary matrix U in this model is the holonomy (Wilson loop) of
the gauge field around the thermal time circle in Euclidean space. We can use the expectation value
of the trace of Polyakov line in the fundamental representation as order parameter for the phase
transitions. It is zero in the confined phase and non-zero in the deconfined phase. The model is in-
teresting as it exhibits a rich thermal phase structure. When the chemical potential passes one of the
quark energy levels there is a third order Gross-Witten-Wadia (GWW) transition from a confined to
a deconfined phase and back again. This model also exhibits another interesting feature known as
the Silver Blaze behavior. When the quark mass is nonvanishing the bulk observables of the model
are nearly zero until the onset transition to the deconfined phase, which occurs when the chemical
potential reaches the value of the lightest quark mass.

In the matrix model with complex action, the dominant contributions to the functional integral
come from complexified gauge field configurations. Due to this reason, the saddle point eigenvalues
of the unitary matrix U lie off the unit circle, on a contour in the complex plane. The eigenvalues of
U can be written as exp(26;) with §; the angle variablesand ¢ = 1, - - -, N. We can make a change
of variables such that the functional integral reduces to an integral over {6, }. Atlarge N, the func-
tional integral is dominated by a single saddle point but since the action is complex this saddle point
configuration lies out in the complex plane where the 0; are no longer real. As a consequence, the
Polyakov line and the inverse Polyakov line are not equal, thatis, (P) # (P~'). Through complex
Langevin simulations we indeed confirm this behavior. In fact the behavior of inverse Polyakov line
precedes that of the Polyakov line as a function of chemical potential. This feature was observed
analytically in an earlier work by Hands, Hollowood and Myers in Ref. [21].

In this work, we examine this large /N unitary matrix models using complex Langevin simula-

tions. It is possible to generate representative field configurations by integrating a stochastic differ-
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ential equation, known as the complex Langevin equation. The drift terms arising from the com-
plex action force the field variables to evolve in an extended (complexified) field space, in which the
large regions where the observables are plagued by phase fluctuations are avoided [14].

When N is large, we can consider the gauge field, corresponding to the angles of the Polyakov
line, as a distribution on a contour. From the equation of motion, the saddle point distribution of
the Polyakov line eigenvalues can be calculated analytically and plotted by mapping the angles from
an arc on the unit circle to a contour over the same range of angles in the complex plane [21]. The
theory is said to be in a confined phase when the contour on which the Polyakov line eigenvalues
are distributed is closed. The contour opens up in between quark energy level transitions giving rise
to a deconfined phase in the theory. The third derivative of the grand potential is discontinuous
at each energy level crossing. These are characteristic features of a third order, GWW transition
[19, 20].

This chapter is organized as follows, in Sec. 2.2 we give a brief outline of complex Langevin dy-
namics and stochastic quantization. In Sec. 2.3 we discuss a simple yet nontrivial matrix model
called the ab-Model, which is a complexified version of the Gross-Witten-Wadia (GWW) model.
This model has two phases, confined and deconfined, and it exhibits a third-order phase transi-
tion. In Sec. 2.4 we discuss another interesting large N unitary matrix model which arises in the
one-loop formulation of QCD on compact spaces. The model possess a tower of quark energy lev-
els due to compactification and is defined for positive and negative chemical potential values. We
then focus on to a truncated cousin of this model - a single quark energy level matrix model with
positive chemical potential. This model also has a complex action and captures the physics we are
interested in without loss of generality. We can define an effective fugacity in this model, and as we
change the fugacity, the model exhibits confinement/deconfinement phase transitions. We show
the eigenvalue distributions corresponding to the confined (closed) and deconfined (gapped) phases
of the theory using complex Langevin simulations. We also simulate the behaviors of Polyakov lines
and fermion number density as a function of effective fugacity. We simulate the model for a range
of temperatures and chemical potentials to study its phase structure. We also show the phase dia-
gram of the model, at low temperature, on the (1, 5) plane, in the vicinity where quark energy level

equals the chemical potential. Our simulation results agree well with the schematic prediction given
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by Hands, Hollowood and Myers in Ref. [21]. We then simulate the model at large quark mass
and show that the bulk observables exhibit the Silver Blaze behavior — the observables are roughly
zero until the onset transition to the deconfined phase, which occurs when the chemical poten-
tial equals quark mass. We then move on to discuss the single-level model with a simple non-trivial
gauge interaction turned on. We study the behavior of observables as a function of the interaction
parameter. We see that the model prefers to stay in the confined phase as the interaction strength is

increased. In Sec. 2.5 we provide conclusions and discussions.

2.2 Complex Langevin Dynamics

The central idea of stochastic quantization is that expectation values of observables are obtained as
equilibrium values of a stochastic process [52, 53]. In order to achieve this we evolve the system in
a fictitious time 7, subject to a stochastic noise. That is, the system evolves according to Langevin
dynamics. When the action is complex it is still possible to consider Langevin dynamics. The force
(gradient of the action) becomes complex in this case making the fields also complex during the
evolution.

In this work we make use of complex Langevin dynamics with stochastic quantization to study
large N unitary matrix models with complex actions. They exhibit sign problem due to the fact that
the action is complex. Standard Monte Carlo methods fail to produce the correct equilibrium dis-
tributions of these models. We can use discretized complex Langevin equation with Euler method
(which is a first order algorithm) to find the equilibrium field distributions of these models.

Let us take 0;(7) withi = 1, - -, N as the complexified angle variables of the gauge link U (7) at

a Langevin time 7. We have the discrete Langevin evolution equation

0S

0;(r + A7) = 9,-(7)—[ ]AT—F\/E?%(T), (2.2.1)

where A7 is the Langevin time step, and 7);(7) is a Gaussian random variable satisfying the condi-

tions

(mi(r)) = 0, (m(T)n; (7)) = 20077 (2.2.2)
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We also note that strictly at infinite N the fluctuation term in Eq. (2.2.1) could be safely dropped.

To reduce excursions in the imaginary directions of the field configurations, which would spoil
the validity of the method, we should use real Gaussian random variables [s4, 55, 56].

We also need to impose the SU (V) constraint on the complexified angular variables after each

Langevin time step. That is,

Z@i(T) =0. (2.2.3)

This can be easily implemented by subtracting the average value 0,y (7) from each 6;(7) variable.
We note that there also exists another complementary method in which one could implement
complex Langevin dynamics directly on the matrix variables U (7). In this case the evolution equa-

tion takes the form

U(tr+1)=R(n)U(1) (2.2.4)

where the matrix R is a stochastic unitary matrix. We note that this method can be used for study-
ing similar models in higher spacetime dimensions.
In this paper, we use the first method described above where the link field U is diagonalized and

the SU(N) constraint is imposed.

2.3 ab-Model

To demonstrate the effectiveness of Complex Langevin Dynamics, we begin by studying a simple,
yet non-trivial model — a complexified version of Gross-Witten-Wadia (GWW) Model [57, 19, 20,
58]. We refer to our model as 2b-Model. It has two phases, confined and deconfined, exhibiting a

third-order phase transition. The action is given by
S=N(aTrU+bTrUT) (2.3.1)

where, a,b € C, U is an element of SU(N), and @ = b is the Gross-Witten-Wadia model.
Before proceeding further let us make a few generic comments. A linear term in Tr U breaks

the center symmetry. Furthermore, the above action (or other polynomial generalization of it) is

complex. Ifa # b, then the Zy symmetry U — UT is broken. This implies (Tr U) # (Tr UT).

20



One may ask, that what it means in terms of manifestly gauge invariant operators. This means that
the contribution from baryon and anti-baryon is different. Another related observation is one may

naively expand Eq. (2.3.1) in series,

4
7 = /DUeS = /DU (1 + N2abTr U Tr UT + Nj(ab)z(TrUTrUT)z---) — (23.2)

N? N2
(Na TTU +bTr U — 7a2(T]f U)? - 752@ UT)2) 4.

Here we have separated the “mesonic” and “baryonic” contributions. Due to the center symmetry
only a gauge invariant combination of Tr U and Tr U t contributes. By mesonic contribution we
mean product of traces for which sum of powers all the occurrence of unitary matrix and its inverse
sum to zero. For baryonic operator, the sum is only zero up to modulo NV, i.e., proportional to a
non-zero integral power of V. If baryonic contributions are neglected then Eq. (2.3.1) is equivalent
to a model with parameters,a = b = 1/(ab). We will later see that for gauge invariant operators,
this equivalence is actually held in the ungapped phase.

Expressing the action in diagonal gauge, the effective action becomes

Yoo 0; — 0, al
Seff = Z —§ln <Sin2< : 5 J)) +iNMZHi
i=1

i,j=1,17#]

N N
+N <a26i9" —f-bZewi) , (2.3.3)
i=1 i=1

where the first term is the Vandermonde piece, and M is the Lagrange multiplier which ensures
thatdet(U) = 1.

Atlarge N, the theory is dominated by the saddle-point equation

05t
—— = 3.
which gives the equation of motion
. . 1 0. — 0,
. . i6; —i6;\ __ ? J
iM + i (ae™ — be™) —N;CO'E (T) : (2.3.5)
JFi
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On substituting z; = e the equation of motion becomes

M+ az; —1 (Z—Z> = N Z (ﬂ) 5 (236)

JF#i
and M is given by
N
1 b

In the saddle point, M may have a non-zero value and could be thought as effective baryon num-
ber.

At N — oo limit, we can replace the summation by an integral over a non-decreasing function

1 XN: R / " ds (2.3.8)

— — 2.3.

N — 27 }
and performing a change of variables from s to complex variables z(s)

ids B

E —p(Z), (2-3-9)

the equation of motion becomes

b d
M+az— (;) = Pj{Q—:ip(w) (jji) , (2.3.10)

and P implies we are taking the principal value of the integral.

2.3.1 UNGAPPED PHASE

In GWW model, it is known that for small potential, i.e., @ < 0.5, the theory is in an ungapped
phase. Assuming a similar picture also holds for the ab-Model, we solve it by taking an ansatz for

p(2) in ungapped phase as,

A A
plw)=Ag+ — + =+ (2.3.11)
woow
then
d A
P]{ —w.p(w) <Z+w) = —Apz4+ 2+ (2.3.12)
c 2mt z—w z
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Comparing with the LHS of Eq. (2.3.10)

Ag = —aand Ay = —b. (2.3.13)
Therefore p becomes,
A b
p(z) = —a4+ 2L - -+ (2.3.14)
z oz

We also find
d b
M = 7{ —Zp(z) (— — az) =0, (2.3.15)
c 2m z

which indicates that the theory is in an ungapped phase. Demanding normalization of p(z)

%d—z,p(z) =1, (2.3.16)

271

we fix A; = 1.

Therefore,

1 b

ple) =~ —a— S+ (23.17)

We can solve for the contour, where p(z) is positive definite, by integrating Eq. (2.3.9)
is = In(z) —az+g+c. (2.3.18)
Since s is purely real, and assuming that
z=r(0)e"?, a=lale’ and b = |ble?, (2.3.19)

the above equation is satisfied only if the real part of the RHS is zero. That is,

In(r(@)) — |a|r(f) cos(0 + ¢1) + 1o cos(f — ¢2) + Re(c) = 0. (2.3.20)

r(0)

To fix ¢, we invoke the condition that det(U) = 1, i.e., le\il 0; = 0, which translates to

/ ﬁ In(z)p(z) =0, (2.3.21)
c

271
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where the branch-cuts are taken from z = 0 to the point z(£7). Replacing In(z) using Eq.

(2.3.18), the above equation becomes

dz (. b
/%(zs—l—az—;—c)p(z)—()

= —c+ j{ %p(z)s =0
2m

,/7T ds
= —c+1 —s =0
_p2m

=c=0. (2.3.22)

Hence the contour is got by solving the transcendental equation

In(r(8)) — |a|r(f) cos(f0 + ¢1) + #‘9) cos(f — ¢q) = 0. (2.3.23)

Now we can compare the distribution of eigenvalues from complex Langevin dynamics with
the analytic result for any (a, b) combination. In Fig. 2.1 we show the analytical result and the data
obtained through complex Langevin simulations without noise for parameters a = 0.35,b = 0.2
and N = 100. In Fig. 2.2 we show the result with Gaussian noise turned on. We see an excellent

agreement between the analytical and numerical results *.

"These images were produced using Mathematica Plot function and the code was written from scratch.
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Figure 2.1: The distribution of eigenvalues of ab-model with parametersa = 0.35,b = 0.2and N = 100. The solid curve
is the analytical result and the data points are obtained through complex Langevin simulations without introducing the Gaussian
noise. The dashed curve is a unit circle.

-15¢

Figure 2.2: The distribution of eigenvalues of ab-model with parameters ¢ = 0.35,b = 0.2and N = 100. The solid curve is
the analytical result and the data points are obtained through complex Langevin simulations. The dashed curve is a unit circle.
We also note that the complex Langevin simulations show excellent agreement with analytical
results when the parameters are also complex. In Fig. 2.3 we show the analytical result and the data
obtained through complex Langevin simulations without noise for parameters a = 0.2 + 0.2,

b= —0.1410.1and N = 100. In Fig. 2.4 we show the result with Gaussian noise turned on.

25



Figure 2.3: The distribution of eigenvalues of ab-model with parameters a = 0.2 + 70.2, b = —0.1 4+ 70.1 and N = 100. The
solid curve is the analytical result and the data points are obtained through complex Langevin simulations without introducing the

Gaussian noise. The dashed curve is a unit circle.

1.5F

Figure 2.4: The distribution of eigenvalues of ab-model with parameters a = 0.2 4+ i0.2,b = —0.1 4+ 0.1 and N = 100.
The solid curve is the analytical result and the data points are obtained through complex Langevin simulations. The dashed curve is

a unit circle.

2.3.2  GAPPED PHASE

In the gapped phase, similar to GWW model, the eigenvalues lie on an open contour C.

To study this phase, we employ resolvent/spectral-curve method used in Ref. [21], and reviewed
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in Ref. [59]. The resolvent is defined as

w(z) = —% . (Z i Zj) : (2.3.24)

Z—Zj

Atlarge N limit, w(z) is analytic everywhere in the complex plane, except along a square-root
branch cut running along C, and expressed as
dz' z+ 2

_ /
w(z) = CQm'p Z>z—z"

(2.3.25)

For a given potential V' (2), the equation of motion (similar to Eq. (2.3.10))

Az, z+7
5P —
o 2mi z—z

2V'(z)=P (2.3.26)

can be expressed in terms of w(z) using the Plemelj formulae

2V'(z)==z[w(z+e)+w(z—¢)], z€C, (2.3.27)

N | —

where 2 = € lies on either side of the branch cut and € — 0 limit is taken.

We can also express p(z) as the discontinuity of w(z) across the cut C' as

[w(z+€) —w(z —€)]. (2.3.28)

N | —

zp(z) =

The expectation value of any function G(z) can be found as

dz dz
/C_p(z)g(z) :% w(2)G(z). (2.3.29)

2m1 o 4miz

For ab-model

w(z) = -M—az+ g + [V (2 = 2)(z — 2, (2.3.30)

where Z, Z* are the end points of branch cut C' and f(z) is an unknown function, which remains

to be fixed. Since w(2) has to be regular over the entire plane except along C' and the origin we can
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fix the form of f(z) as

f(2) :c—l—g.

Therefore w(z) becomes (substituting 7 = Re™)

w(z) =—-M—az+ g + <c+ g) V22 + R? — 2Rz cos(¢).

Normalization of p(2), from Eq. (2.3.25), translates to

1i =1
Jim ()

and
lim w(z) =-1
|z| =00
This fixes f(z) as
b

We also get two more relations between R, M and cos(¢)

aR+ beos(9) _ 1+ M,
R
and
b
acos(¢)R + = 1-M

(2.3.31)

(2.3.32)

(2.3.33)

(2.3.34)

(2.3.35)

(2.3.36)

(2.3.37)

To fix the three unknowns completely, we need a third equation, which comes from invoking the

det(U) = 1 condition, from Eq. (2.3.29)

/é = () n(z) = 0.

Az

(2.3.38)

where C'is a contour encircling the branch cut C, and the branch cut of In(z) ranges from (—o0, 0).

Deforming the contour Fig. 2.5 to the one in Fig. 2.6
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Figure 2.5: Actual contour over which Eqg. (2.3.38) Figure 2.6: Deformed contour over which the inte-
needs to be performed. gral was performed.

and evaluatingin € — O and I' — oo limits, we find that the divergences arising from the cutoffs

I" and € cancel separately and we arrive at the following condition

(e (=) (=50 (2579)

— <a3+ }%) (HCTOSW)> In(R). (23.39)

Now for a given a, b we can numerically solve the Egs. (2.3.36), (2.3.37), and (2.3.39) for R, M

and cos(¢), and hence fix w(z) completely. Also from Eq. (2.3.28) we can fix p(2)

p(z) = (g — %) V22 + R? — 2Rz cos(o). (2.3.40)

From Eq. (2.3.15), we can numerically compute M, both in ungapped and gapped phases, and
compare it against analytical results. Choosing b = 2.0a and varying a from 0 to 1.2, we find that it
matches very well both in ungapped and gapped regimes — see Fig. 2.7. (Gap opening point can be

found from Fig. 2.10.)
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Figure 2.7: The value of M at (a, 2a) for the ab-model with N' = 100. The solid curve is analytical result and the data points
are obtained through complex Langevin simulations.

Similarly we compare other observables, { Tr(U)) and ( Tr(U™1)). Analytically ( Tr(U)) is

given by,
dz (1 b
() = f 5= (a5 ) 2= (neipped
dz w(z) cosg +1
- 72% = (T) (a(cosqS —1)R* — 25) (Gapped)
(2.3.41)
Tr{U]
02 04 06 08 10 12 °
-0.2"
—04l
-06}+
-08"

Figure 2.8: The value of Tr(U) at (a, 2a) for the ab-model with N = 100. The solid curve is analytical result and the data
points are obtained through complex Langevin simulations.
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and (Tr(U1)) by,

dz (1 b\ 1
U =¢ Z (2 g-2)2=_
(Tr(U)) 7{27m' (2 a z2> . a (Ungapped)
dz w(z) 1 cosp+ 1Y\ (b(cosp — 1)
= BT 9
7{@4m' z z ( 4 )( R? ¢ (Gapped)
(2.3.42)
]
ol
02 04 06 08 10 12 °
-0.2+
04
-06+-
-0.8+-

Figure 2.9: The value of Tr(U_l) at (a, 2(1) for the ab-model with N = 100. The solid curve is analytical result and the data
points are obtained through complex Langevin simulations.

In Fig. 2.8 and Fig. 2.9 we show the observables ( Tr(U)) and ( Tr(U~')), respectively. The

analytical and numerical results show excellent agreement.

2.3.3 PHASE TRANSITION OF ab-MODEL

The eigenvalue density Eq. (2.3.17) on contour Eq. (2.3.23), is proportional to ds, which in terms

of r(#) is given by
ds = d% [e — |alsin(6 + ¢,)r(6) — T|<—b€|) sin(0 — (/52)] df
= [1 — lalcos(0 + ¢1)r(0) — |alsin(0 + ¢1)r'(0)
— % cos(0 — ¢a) + —’I:JZ;(;) sin(6 — ¢2)} d (2:3.43)
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which is not positive definite for all (a, b) combinations. It fails to do so, when the function inside
the brackets, [. . . |, becomes negative. Restricting to a,b € R, the condition simplifies as the gap

opens about § = 0

= exp{ (ar(O) + %) } > e. (2.3.44)

r(0) = eXp{ <CLT(0) - %) } (2.3.45)

4
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Figure 2.10: The phase diagram of the ab-model in the a-b plane.

It would be interesting to know how quantities change across the gap opening transition and
also the order of the phase transition. To study that we first restrict ourselves to a special case, b = 0
. _ 1 _ :
in our model. Then from Egs. (2.3.44) and (2.3.45) the gap opens abouta = , R = ¢, and since

the ungapped phase has no branch cuts in the eigenvalue distributions, ¢ should start from zero,
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about the gap-opening point. And the conditions Egs. (2.3.36) and (2.3.37) simplifies to
R (M) 1

and Eq. (2.3.39) to
(1 — cos(gb)) 1 (1 — cos(gzﬁ)) B <1 +cos(¢>)> | <E)
2 ! 2 - 2 o)
The observable ( Tr(U)) becomes

(Tr(U)) =0 (Ungapped)

_ (a(cos(qS) - 1R ) (Gapped)

Since the first derivative of free-energy F'[a] given by

OF|a) _ OlmZa] 1

da a2 / [DUITx(U) exp(a Tr(U) = (Te(L))

is the expectation value of Tr(U), we find that it is continuous across the gap.

Upon expanding about
1
a=—+da, cos(p)=1—2pand R=e+0R
e

the variation of 6 ( Tr(U)) is given by

From Egs. (2.3.46) and (2.3.47) we get

5
op = eda + —R,
e

33

(2-3.46)

(2.3.47)

(2.3.48)

(2.3.49)

(2-3.50)

(2.3.51)

(2.3.52)



and

oR
dpIn(op) = ~ (2.3.53)

Eliminating 6 R from above two equations we get the equation

dp(1 —In(dp)) = eda. (2.3.54)

To invert the above equation let us substitute dp — e*. Then we have
(k —1)e* Y = —ga. (2.3.55)

The above equation is of the form, ze® = y, which can be inverted to express = as a function of
y and it is known as the Lambert-W function [60]. (Itis often expressed as W, (y).) This function
is in general a multivalued-complex function, where ¢ € Z, chooses each branch. Since da > 0 and
dp € R we have two real valued branches: Wy (y) (the principal branch) and W_; (y).

Therefore,

op = eWo(=0a)+1 op W1 (=0a)+1 (2.3.56)

For small values of da we know that

lim Wy(—da) =0, lim W_;(—da) ~ In(da). (2.3.57)
da—0 da—0

Therefore, 0p will vanish as da — 0 only if we choose the second branch, i.e., 6p = eW-1(=da)+1

Hence

S(Tr(U)) = —eV-1{=0a)+2, (2.3.58)
Now the second derivative of free energy

PF - 0((Tx(U))) e?
0(6a)? ~  9(0a) W_i(—da)+1 (23:59)
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goes to zero as da — 0 and is continuous across the gap. But the third derivative

PE e*W_1(—6a) .
8((50,)3 o _5CL(W,1(—(5(L) + 1)3 (23 O)

diverges as 0a — 0. Hence it has a third order phase transition. It can also be shown that similar
arguments hold in the generic case b # 0. Thus we conclude that the ab-Model displays a third

order phase transition.

2.4 Gauge Theory to Unitary Matrix Model

A unitary matrix model arises in a one-loop formulation of QCD (and analogous SU (V) gauge
theories) on compact spaces (often S* x S®). This was originally derived in [61, 62, 63, 64] for
theories with more general matter content.

The one-loop effective action of QCD on S* x S* with chemical potential y and quark mass m

has the form [21], with thermal Polyakov loop as the unitary matrix model

> 1 n
g = Zﬁzb (Eﬁ) TTU” T U™
n=1

oo _1 n
+Z( n) Nyzy (%,mR) [e”ﬁ“ TrU" 4 e "PH Ty UT"} . (2.4.1)

n=1

The quadratic term in Polyakov loop is the contribution from adjoint fields and the linear term is
the contribution from the fundamental matter fields. Here, we have taken the adjoint contribution
to be bosonic and the the contribution from fundamental fields to be fermionic.

To be noted is that in the free theory the effective action is determined in terms of single particle

partition function

2 (%) =2 (I +2)e PR (2.4.2)
=1

and

2 <%,mR) _ 2Zl(l + 1)6—% (I+5)2+m2R? (2.4.3)

In the above equations R is the radius of S®. We use dimensionless variables 3/ R, R and mR

in numerical simulations.
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An analogous action, for the simpler 0 + 1 dimensional case would be,

Zp = 07 (2‘44)

zp=2e "M, (2.4.5)

where the parameter m is the mass of the fundamental fermions.
In the low temperature limit, 3 — 00, we have 2,(00) = 0 and so the gluonic contribution is

negligible. Thus the action is

S = S\/dm + Sf, (2.4.6)

where Sy is the fundamental fermionic contribution. The fermionic part could be summed in a

logarithm

Z oy log det 1 4 ePlr—e U) det (1 + eﬁ(_”_el)U_l)D . (2.4.7)

=1

2.4.1  OBSERVABLES

We can study several interesting observables in the model described above. We briefly describe them

below

1. The most natural set of observables are Polyakov line and inverse Polyakov line.

3. Fermion number fy

It gives the number of fermions minus the number of anti-fermions in a given volume

1 (0logZ
v = B( o ) (2.4.8)

In the model we study here we have a single chemical potential yi. In general there can be

chemical potential for each fermion flavor.

The quark number susceptibility x y measures the response of the fermion number density



to infinitesimal changes in the chemical potential,

Xf = laﬁ (2.4.9)
B ou

This observable follows the behavior of the Polyakov line. Thus, it also serves as an indicator

of confinement-deconfinement transitions for nonzero chemical potential.

4. Pressure p

_ 1 (0logZ ( )
p = 3 oV ) 2.4.10

with V3 denoting the spatial volume.

s. Energy £/

It can be constructed from pressure and fermion number density

E = —pVs+pufn. (2.4.11)

It is also possible to compute the chiral condensate and average phase, though we will not com-

pute them in this work. The chiral condensate (¢1)) is given by

_ 1 . dlog Z
(V) = —m gllglo ( om ) ) (2.4.12)
and the average phase (€’?),, has the form
: Z
o) _
(€")pq —qu : (2.4.13)

where pq refers to the phase quenched theory.
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2.4.2  SINGLE LEVEL MODEL WITH POSITIVE CHEMICAL POTENTIAL

We can truncate the action given in Eq. (2.4.7) in a double scaling limit:

B — oo, (2.4.14)

M — €o,

exp(B(u — &) =&,

where € is a fixed quark energy level and & the effective fugacity.

Only contribution from a single level survives here,

SlU]l = —olog(1+¢U). (2.4.15)

The eftective action on the angle variables include the Vandermonde piece and a Lagrange multi-
plier.
In the large NV limit, the integral over the angles is dominated by a saddle point obtained by solv-

ing the equation of motion that follows from the effective action involving Eq. (2.4.15)

35 . iNO'fCie N (9% — 9]
a@z = ZNN— m - (g) cot <T> . (2.4.16)
J(F#

Here also the action is not hermitian, giving rise to the sign problem in the presence of a chemical
potential. As a result the saddle point configuration will lie out in the complex plane. If we define
z; = exp(if;) then in the presence of the non-real potential the 2; will move off the unit circle in
the z-plane.

We can explore the nature of eigenvalue distribution on the complex plane for various values of
effective fugacity {. We find that when ¢ is either very small or large, the potential vanishes and so
we expect the {#;} to be uniformly distributed around the unit circle. Thus, when y varies from
p <K €to i > e the quark energy level becomes occupied and the effective fermion number jumps
by factor 0. In Ref. [21] the authors provide a detailed description of this transition.

Let us look at the various regimes of £ and see how it affects the eigenvalue distribution, follow-
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ing the analytical study given in Ref. [21].

1. The small § confined phase

In the small  confining phase the effective fermion number vanishes, N = 0,and the

Polyakov line expectation values are

P=0, P'=0¢ (2.4.17)

Thus we have P # P~!, as a result of the complex action.

As ¢ is increased the contour of eigenvalue distribution opens into an arc, just as the matrix

model solved by Gross and Witten [19] and Wadia [20, 57].

The line of phase transitions in the (1, T") plane corresponds to the straight line
= e—T[(l—FU) log(1+ o) —ologa]. (2.4.18)

Note that is approximation is valid only in the low temperature (5 — 00) limit.

2. Thelarge & confined phase

In this phase the effective fermion number is

N =o, (2.4.19)
indicating that the level is now occupied.
The Polyakov line expectation values are
P = %, P1=0. (2.4.20)

Comparing with the previous case the behavior of P and P~ swaps over along the replace-

ment £ — £71.
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The large £ confined phase persists until the value

o 1+o0
§=& = & (2.4.21)

0—0’

For smaller values of & the contour of eigenvalue distribution is not closed and the phase does

not exist. The points of transition § = &; and § = &y satisty ;& = 1.

In the (41, T') plane the boundary lies along the straight line
u=ec+T|(1+40)log(l+o0)—0clog a] : (2.4.22)

again valid in the low temperature limit.

3. The deconfined phase

In the region &; < & < &y, experience with GWW matrix model suggests that the eigenvalue

distribution exhibits the shape of an open contour.

In this regime we get a condition

(0 — N)TN(1 + N)HN
ST NV 40— AN (4:23)

This equation determines A" as a function of €.

From the above equation it follows that across the transitions at £ = £; and £ = &, fermion

number density A/ and its first derivative %/ are continuous, however higher derivatives

are discontinuous. Since V is the effective fermion number, the first derivative of the grand

potential, it follows that the transitions are third order, just as in the original GWW model.

For a single winding, the Polyakov lines are

- N 1 _1_0—./\/
P = pr gy vr2 Pl = 1+N$' (2.4.24)

Using complex Langevin dynamics we have simulated the single level matrix model. In Fig. 2.11

we show the eigenvalue distributions of the Polyakov line in the confined and deconfined phases as
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a function of the logarithm of the effective fugacity, log &, for SU (V) case with N = Ny = 500,
quark massm = 0 and inverse temperature 5 = 30 (low T"). We see that the eigenvalue distri-
butions start with a closed contour (confined phase), passes through an open contour (deconfined
phase) and again goes into a closed contour. (This figure can be compared with Fig. 12 in Sec. 4.1

of Ref. [21], where it was obtained through analytical methods.)
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Figure 2.11: The eigenvalue distribution in the confined and deconfined phases as a function of the logarithm of the effective
fugacity, log &, for single-level SU (V') matrix model with N = Ny = 500, quark mass m = 0 and inverse temperature
B = 30 (low T). The data are obtained through complex Langevin simulations with Langevin time step A7 = 0.000005,

thermalization steps Niherm = 18000, generation steps Nge, = 2000 and with measurements performed every 100 steps.
The solid unit circles are guide to the eye.

In Fig. 2.12 we provide the (normalized) effective fermion number (fy), and in Fig. 2.13 the
Polyakov line expectation value (P) and the inverse Polyakov line expectation value (P~') across
a pair of GWW transitions from the small { confined phase through the deconfined phase to the
large € confined phase. The transitions from confined/deconfined phases occur when either (P) or

(P~1) vanish. The parameters used are: N = N; = 3 and 500, quark massm = 0 and inverse
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temperature 5 = 30. The simulations show excellent agreement with the analytical results in the

large V.
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Figure 2.12: The (normalized) effective fermion number <fN> across the pair of GWW transitions from the small £ confined phase
through the deconfined phase to the large f confined phase. The solid curve is the analytical result (/N = 00). The data points are
obtained through complex Langevin simulations. We used Langevin time step A7 = 0.000005, thermalization steps Niherm =
10000, generation steps Nge, = 10000 and with measurements performed every 100 steps. Here red data points are for

N = Ny = 500 and blue data points are for N = Ny = 3. We used quark mass m = 0 and inverse temperature 3 = 30
(low T).
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Figure 2.13: The Polyakov line <P> and inverse Polyakov line (P_l> across the pair of GWW transitions from the small £ con-
fined phase through the deconfined phase to the large & confined phase. The transitions from confined/deconfined phases occur
when either (P) or <P71> vanish. The solid curves are the analytical results (N = 00). The data points are obtained through
complex Langevin simulations. We used Langevin time step A7 = 0.000005, thermalization steps Niperm = 10000, genera-
tion steps Ngen = 10000 and with measurements performed every 100 steps. We simulated the model with N' = Ny = 500
and N = Ny = 3. We used quark mass m = 0 and inverse temperature /3 = 30 (low 7).
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In Figs. 2.14 and 2.15 we show the Polyakov lines and fermion number density for a range of
simulation parameters: = {10, 15,---,100} and x = {3.0,3.025,3.05, - - -, 4.0}. The quark
energy level of the model is fixed to € = 3.5 corresponding to the third level. The Polyakov loops
peak around p = 3.5. In Fig. 2.14 we show the behavior of Polyakov and inverse Polyakov loops for
B = {25,50,75,100}. Itis clear that the widths of the Polyakov loops decrease as the temperature
is reduced (large ) and the behavior of inverse Polyakov line precedes that of the Polyakov line as a
function of 1. In Fig. 2.15 we show the behavior of the (normalized) fermion number density (fx)
as a function of chemical potential and inverse temperature. The transition in fermion number
becomes sharper as the temperature is decreased (high ). The model is in a deconfined phase when

0< (fn) <l
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Figure 2.14: Polyakov line <P> and inverse Polyakov line <P_1> as a function of chemical potential for single level matrix model
with quark energy level ¢ = 3.5 and quarkmassm = 0. Here N = Ny = 500and 8 = 25,50, 75, 100. The data are
obtained through complex Langevin simulations with Langevin time step A7 = 0.000005, thermalization steps Ninerm =
5000, generation steps Ngen, = 5000 and with measurements performed every 50 steps.
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<fN>

Figure 2.15: The (normalized) fermion number density <fN> as a function of chemical potential 14 and inverse temperature (3 for
single-level matrix model with quark energy level € = 3.5 and quark mass m = 0. Here N = Ny = 500. The model is in a
deconfined phase when 0 < <fN> < 1. The data are obtained through complex Langevin simulations with Langevin time step
A1 = 0.000005, thermalization steps Niherm = 5000, generation steps Ngen = 5000 and with measurements performed
every 50 steps.

When the quark mass is non-vanishing in QCD, the expectation values of bulk observables such
as the fermion number density, Polyakov lines and energy, exhibit the ‘Silver Blaze” behavior. The
bulk observables are nearly zero until onset [65] to a deconfinement transition, which occurs when
the chemical potential increases to the value of the lightest quark mass. In our model the onset oc-
curs at 1 = m. In Fig. 2.16 (Left) we show the effective fermion number density as a function of
chemical potential for large quark mass, near the onset t = m = 25for N = Ny = 100 and
B = 25 (low T'). The Polyakov line as a function of chemical potential is given in Fig. 2.16 (Right).
In the large m limit, similar to the m = 0 case, the behavior of inverse Polyakov line (P~') precedes

that of (P) as a function of x1. The transition in p occurs around onset at m.

2.4.3 SINGLE LEVEL MODEL WITH Two0 FUGACITIES

In this section we consider the phase diagram of the model given by the action with two effective
fugacities

S[U) = ~olog (1+ &U ) +log (1+ &UT) |, (2.4.25)
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Figure 2.16: The Silver Blaze behavior of observables (fN> <P> and <P_1> at non-zero quark mass m. (Left) Polyakov line <P>
and inverse Polyakov line <P_1> and (Right) fermion number <fN> as a function of chemical potential for large quark mass near
onsetatyt = m = 25.Here N = Ny = 100and 8 = 25 (low T)). The data are obtained through complex Langevin
simulations with Langevin time step A7 = 0.00005, thermalization steps Niherm = 5000, generation steps Ngen = 5000
and with measurements performed every 50 steps.

where

& = eﬁ(u—6)7

& = P9, (2.4.26)

Such a model naturally arises from 0 + 1-dimensional gauge theory with a fundamental fermion.

In Fig. 2.17 we provide the phase diagram of this model on the (1, ) plane for the level | = 1.
(Corresponding to quark energy level ¢ = 1.5 and o = 4.) From the behavior of the expectation
value of the fermion number density we see that the phase transition from confined to deconfined

phase is smooth on the (1, ) plane even at high temperature (0.1 < 5 < 2.0).
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<fN>

Figure 2.17: The (normalized) fermion number density <fN> as a function of chemical potential 14 and inverse temperature 15}

for the matrix model with two effective fugacities. The model has fixed quark energy level ¢ = 1.5, quark mass m = 0 and

N = Ny = 100. The model is in a deconfined phase when 0 < (fn) < 1. The data are obtained through complex Langevin
simulations with Langevin time step A7 = 0.00005, thermalization steps Ntherm = 10000, generation steps Ngen = 50000
and with measurements performed every 100 steps.

2.4.4 SINGLE LEVEL MODEL WITH INTERACTION

It would be interesting to consider the single-level matrix model with a non-trivial interaction

turned on. We take a Polyakov line interaction term of the form
Sis[U] = g (TrU)(Tr UY). (2.4.27)

Here g denotes a coupling parameter.

Thus we have

S[U] = —olog (1 + e"“=IU) + Sy [U]. (2.4.28)

Here also we take the quark energy level to be fixed at € = 3.5. The action is again not hermitian,
giving rise to the sign problem in the presence of a chemical potential. In Figs. 2.18 and 2.19 we
plot the fermion number density and the Polyakov lines of the interacting model for various values
of the coupling g = 0,5, 20, 100. It is evident that the confinement/deconfinement transition
becomes sharper as the interaction strength is increased. The behavior of the Polyakov lines show

that the model is in a confined phase for most of the values of the chemical potential.
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Figure 2.18: The (normalized) fermion number density <fN> as a function of chemical potential f4 for interacting single-level
matrix model with couplings g = 0, 5, 20, 100. We take the quark energy level ¢ = 3.5 and quark mass m = (. Here

N = Ny = 500. The data are obtained through complex Langevin simulations with Langevin time step A7 = 0.000005,
thermalization steps Niherm = 95000, generation steps Ngen, = 5000 and with measurements performed after every 50
steps. The model is in a deconfined phase when 0 < <fn> < 1. The data show that the phase transition becomes sharper as the
interaction strength ¢ is increased.
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Figure 2.19: The Polyakov line and inverse Polyakov line across a pair of GWW transitions for the interacting single-level matrix
model with a fixed quark energy level € = 3.5, quarkmassm = Oand N = Ny = 500. The data are obtained through
complex Langevin simulations with Langevin time step A7 = 0.000005, thermalization steps Niperm = 5000, generation
steps Ngen, = 5000 and with measurements performed after every 50 steps. The solid lines are guide to the eye. The plots
indicate that the model prefers to stay in a confined phase as the interaction strength ¢ is increased.
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2.5 Conclusions and Discussions

In this work we have successfully used complex Langevin dynamics with stochastic quantization to
simulate the thermodynamics of a large /N unitary matrix models with complex actions. We started
with a simple matrix model called the ab-model and investigated its phase structure analytically and
numerically. The numerical simulations show excellent match with analytical results. We also stud-
ied 2 model obtained from the effective theory of QCD on S* x S? at low temperature and finite
quark chemical potential. At zero quark mass and low temperature our simulations showed a series
of GWW confinement-deconfinement phase transitions as a function of the chemical potential.
The phases are characterized by the distribution of eigenvalues of the Polyakov line on the complex
plane. In the large quark mass regime we were also able to observe the Silver Blaze behavior in that
the bulk observables are roughly zero until the onset transition to the deconfined phase, which oc-
cursat ;i = m. We also simulated the model with a simple non-trivial Polyakov line interaction
turned on. The model prefers to live in the confined phase as the interaction strength is increased.

We also note that each confinement-deconfinement transition in the Polyakov line is associated
with a quark energy level transition. It is interesting to note that the non-monotonic behavior of
Polyakov lines have been observed in lattice simulations of QCD with gauge group SU (2) near its
saturation density in Ref. [66].

There are several interesting future directions. One could consider complex Langevin simula-
tions of the model with several quark flavors with masses m ¢ and different chemical potentials
ft¢. One could also add other types of non-trivial interaction terms into the model and look for
cross-over transitions on the (1, 3) plane [67]. It would also be interesting to see if there exists
an AdS/CFT type gravitational dual of the models we studied here. One could ask the question
whether the infinite sequence of GWW transitions that we observe in the matrix model be seen in

the dual gravitational description.
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Bound on higher-point

Out-of-time-ordered-correlators (OTOCs)

3.1 Commutator, Scrambling and Chaos

A localized disturbance in a chaotic many body quantum system, with time evolution, spreads over
the whole phase space, and information associated with the initial perturbation becomes inaccessi-
ble to a simple local measurement. This effect is known as scrambling [22, 23]. In practice scram-

bling is measured by the growth (decay) of an out of time ordered correlator(OTOC) [24],
F = (V(t)V(O)V(t)V(O»ﬁ. (3.1.1)

where in Heisenberg’s picture W (t) = e "'V (0)e*"" and the expectation is a thermal trace. At
an initial time this correlator is finite. However due to scrambling the correlator tends to zero as
the time translation operator U (¢) = e/ becomes more convoluted with time. At later time, in
a chaotic system, we may replace U () by a generic unitary matrix, and assuming maximal scram-

bling, the correlator may be written as matrix average over all possible unitary matrix,

P / DU (V()V (0)V (1)V(0)) (3.1.2)

and asymptotes to zero in a theory with large number of degrees of freedom.

The OTOC is related to the commutator. In the thermal ensemble the commutator is often zero
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and one may need to consider the square of it,

C = (W), VO,

=Tr [e "W (1), V(0))]. (3.1.3)
One may expand the commutator square in (3.1.3) in two pieces,
C={([W(t),V(0)?) = =2(WHW(H)V(0)V(0)) + 2(W(H)V ()W (H)V(0)) . (3.1.4)

The first term in the above expression is a time ordered correlator (TOC) and the second term is
an OTOC asin (3.1.1). If we assume something like a large-/V factorization, that is if we assume,
there is a factorization in the number of degrees of freedom Ny, or in another terms the system has a

semi-classical description, where fluctuations are small, then we can factorize the TOC as,

(W (OW )V (0)V(0)) =2 (W ()V(0))* + (W (W (2)) (V(0)V(0)). (3.1.5)

The first term in the above expression goes to zero at large time due to usual diffusion/relaxation.
_t

At a time scale of the order of diffusion time ¢4, we have, W (¢)V'(0) ~ e %. Hence diffusion with

large N factorization gives thermal factorization of TOC:s, i.e. all time ordered thermal correlators

factorizes to a product of thermal expectations. For our particular example in hand, we have,
(W(OW @)V (0)V(0)) = (W(0)W(0)) (V(0)V(0)), (3.1.6)

at large time. Hence the large time behavior of the commutator is given by the OTOC (3.1.1).

Ata first look, OTOC may apparently seem to have a similar large IV factorization as TOC,
F a2 2(W(6)V(0))” + (W(HW (1) (V(0)V(0)) + O(1/Ny) (3.1.7)

However, the catch is that the sub-leading part of F(t) grows with time. One may argue that for

a system with a large number of degrees of freedom, [’ tends to zero asymptotically. This could
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be understood as following: in an chaotic system, at an intermediate time much larger than the

diffusion time ¢ >> ¢4, behavior of C'is given by
C o ee®M, (3.1.8)

where € is a small parameter related to the number of degrees freedom and A is the Lyapunov expo-

nent. Hence, [ at an intermediate time would then behave like,

F = fo—efie?. (3.1.9)

The second term become important at time scale ¢, ~ —% log €, which is known as the scrambling
time.
It has been proved in [24] using complex analytic techniques that maximum possible value of

Lyapunov exponent has an upper bound proportional to the temperature,

2
Amax S Eﬂ- (3.1.10)

This maximum value of Lyapunov exponent is also known to saturate in holographic models
with gravity ([25, 68, 69, 70]), certain two dimensional CFTs([26, 71]) and also in SYK model ([72,
8,27,73]).

Recently there are some interest in OTOCs with more than four insertions ([74, 75, 76, 77, 78,
79, 80, 81, 82]) *. Continuing the same logic as that of the previous paragraph, let us consider the

following higher power of the commutator,

G = <Hm<t>,m<o>]>. (111)

When expanded, C), contains and many other OTOCs and the time ordered correlators. In this ex-
pansion, F;, = ((V(T')V(0))?") is the most out of the time ordered OTOC. Here in this work we

investigate how analytic properties of an OTOC determines the late time behavior of an OTOC.

*Our original motivation to bound higher OTOCs formulated in a discussion with Chethan Krishnan related to his
questions about nature of k-point OTOC:s in a g-local SYK model [83, 84].

51



For that purpose we define a generic correlator which not only captures all possible time orderings
in (3.1.11) but also is a function of arbitrary temporal variables. After that, we discussed few known

examples in the literature and how our results match with them.

3.2 On the growth of generic OTOCs

In this section, we discuss the late time properties of an n-point OTOC. To be well defined a ther-
mal n-point functions needs to be properly regulated. The most generic n-point OTOC with a

given scheme of regulation may be expressed as,
Folti,m) = T (e PV (t)e 2 Va(ta) .. PV (1) ) (3.2.1)

where, H is the Hamiltonian of the system, 3; > 0 are separations between two consecutive opera-

tor insertions along the thermal circle, and therefore satisfy the constraint,

> Bi=5 (3-2:2)
=1

where (3 is the inverse temperature of the heat bath i.e the circumference of the thermal circle.

F5(ti, 7;) can visualized as shown below in fig. 3.1,

e (trr1)

Vie(te)

Figure 3.1: Generic n-point correlator on a thermal circle of radius 3
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where V;(¢;)’s are thermal ordered along 7 direction and time is perpendicular to the thermal
circle. One can notice from the figure that the lengths of the insertions are not following ascending
or descending order, as the correlator is not time-ordered. Various properties of the correlator has
been discussed in the appendix 3.5.1.

To proceed we shall assume that each ¢;, is some function of one temporal parameter ¢,i.e t; =
fi(t). In principle f;(¢) can be an arbitrary function of ¢, however in this work we restrict ourselves

to increasing linear functions.
ti = fi(t) = wit yw; 2> 0 (3.2.3)

We ask the question, how fast the correlators may grow (decay) with the time parameter . Mathe-

matically it means that we want to put a bound on \;, where

0
5 FaO]= Ml Fs ()] (3.2.4)
In [24], the authors considered four-point OTOCs and have shown that

A < KR (3.2.5)

The general idea for deriving a chaos bound for generic n-point correlators can be broken into few
steps, which closely follows the derivation given in [24]. First, we calculate a differential inequality,

and then the chaos bound is established from it under suitable condition.

* First, find the domain of analyticity of the correlator F when time ¢; is analytically contin-

ued from ¢ — ¢ + ¢7. For generic n-point correlator it is an asymmetric half-strip.

* Next, find an appropriate normalization factor g, such that g(t) = F 5 /N, < 1onthe

analytic domain. This step needs certain amount of care, we would discuss that in details.

* Finally, Schwarz-Pick theorem is used to put a bound on the growth of the correlator at late
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times. We find that,

d
£|g\< (1 =g (3.2.6)

We find that )\; is inversely proportional to the width (Aj;) of the asymmetric strip,

A < Als (3.2.7)

* The (3.2.6) is true for a large class of theories, whereas the chaos bound is derived under the

condition that correlators has an expansion in a small parameter . We assume,

g(t) ~ go — eeM g (t), (3.2.8)

where importantly € is a small quantity. For example in a large-N theory, € is the string cou-

pling # Putting the above in (3.2.6) and assuming a boundary condition at some initial

time t;, g(t;) = 1, we see that the bound becomes a bound on Lyapunov index in a time
scale determined by the condition % < Ag1 The boundary condition implies F3 ~ N at

For a large- N theory with dissipation, the initial time scale could be taken as the diffusion time

scale, i.e. t; ~ t4. Inalarge-N theory we can write,

o0) ~ 9ot) ~ 131 (0). (3.29)

Where go(t) approaches a constant g, for a time scale t >> t,4, i.c.,

t

go(t) ~ g, +o(e ). (3.2.10)

On the other hand, ¢; (¢) grows exponentially, g1(¢) ~ exp(At). The perturbative expansion
breaks down when At ~ log(N).
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3.2.1 DOMAIN OF ANALYTICITY

Domain of analyticity plays an important role in defining the large time behavior of the OTOC:s,
as it dictates the bound of the correlators. The question is, once analytically continued to complex
time variablest — t + i7, what is the domain on which the correlator is well defined. To evaluate
that, let’s re-express F in (3.2.1) by introducing dimensionless quantities o; = [3;/[3, and using

Heisenberg picture we can express analytically continued F3(t + i7, o;) correlator as,

Folt+ira) = Tr [ o5 DV (1)p( 5 V(1) 0550 plon= 25w 1) |

(3.2.11)
where, w; ; = w; — wj.
Expressing the trace in the energy basis,
wn,1 w1,2
fﬁ (t+ZT, az) — E efﬁEml(Ollf 7;3 T),U(l) efﬁEmg(aifiﬁ T)'U(2)
mi,m2 m2,m3
mi,m2,-,Mn

(n—1) —BEmy, (an—-"Z0r) (n)

Vpm € RN, (3.2.12)

where, U((;Z are the matrix elements of V;(t;) operator. Since, energies E, are bounded from below
for physically sensible theories, the above summations are convergent as long as the coefhicient mul-
tiplying F, are positive. When some coefficient, say, without loss of generality oy — w,, 17 = 0,
then the above expression becomes,

f/g(t + iT, CYZ') = Z Z (U(l) ’U(n) ) e*ﬁEmQ (0@*%7‘)@(2)

mi,m2 " Mmn,mi m2,m3

ma:-,Mp M1

“n—1,n
vgl7l_711)7mne_ﬁEm”(a"_ B T). (3.2.13)

: . . : .
Now the summation Zml v%j,mlv&f,mz is not necessarily convergent as it lacks the damping fac-

tor ~ e 7 Em1 for higher values of m; T.Therefore the correlator is well defined as long as two

neighbouring operators V;(t;), V11 (ti41) don’t collide with each other along the thermal circle

THere we have assumed discrete spectrum of the Hamiltonian, but similar argument will hold if we consider contin-
uous spectrum as well.
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(they need not be at equal times), and that dictates the domain of analyticity. We find that the do-

main is given by,

a; Q;
T_ = min. { it } < 7 < min. { i } =Ti (3.2.14)
Wij—1 Wi-1,i

Choosing t; = 0 translates to having one w; = 0, so the above equation is guaranteed to have
solutions and hence F is analytic on a half-strip D = (0, 00) X i(—7_, 7).

It should be mentioned that this is the minimum possible domain of analyticity. Depending on
the model, the actual domain could be much bigger. It is expected that in a integrable model the

domain would be much wider.

3.2.2 NORMALIZATION FACTOR

The derivation of chaos bound through the application of Schwarz-Pick theorem, demands a func-
tion bounded by unity on the domain D. This means F needs to be properly normalized by di-
viding it with a normalization factor. The normalization factor can be chosen to be greater than
the maxima of F3 on domain D which is finite and independent of 2 € D coordinates. In an un-
bounded domain using Phragmén-Lindel6f principle, all one needs show that the function Fj is
bounded by unity on the boundary and is bounded by a constant Nj in the interior. For us the un-
bounded domain is an asymmetric half-strip of width A and (z) > t,4, then Phragmén-Lindel6f
principle([85, 86]) needs that the function in the interior to be less than exp (exp <A153‘E(z)) ) ,ie
if the constant N < exp (eXp (Alsto)) then |F3| < 1 in the entire domain.

As we will discuss at the end of this section, there could be some subtleties on how big C' could
be. This issue is different from the issue of the order of normalization constant and when (3.2.7)
could be interpreted as a bound on the lyapunov index, discussed in the beginning of the chapter.
If one is does not need to be careful about this constant C' then one can simply use the methods of
appendix 3.5.3 to put a bound on the correlators to bound a correlator by a product of correlators
defined at a higher temperature. In the main text, we will discuss a different method and propose a
possible bound on correlators by a product of quantities defined at the same temperature.

To find such a bound, we first look at Fj at (¢, 74 ) boundaries. At these boundaries, operators
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hit each other on the thermal circle and we have various scenario of that happening,

* first only two operators say V;, Vj 41 hit each other then, Fj is of the form,

] + + + + +
F (t+ e, cq) = Tr | p"0 Vi(th)p" Va(ts) . .. (pb’“ Vk(tk>vk+1<tk+1)ﬂbk+2> L th} :

(3.2.15)

where,

(3.2.16)

and some b" 41 = 0. Itis not necessary that same two operators hit each other on on upper

and lower boundary of the strip.

* Many different pairs of operators hit each other

Fo (bt ire,00) = Tr [0 Vi) Va(ta) . (0% Vit Vi (tran) o2 )

+ +
(/)bj vk(tj>vj+1(tj+1)> L th} (3.2.17)

and a third scenario where more than two operators hitting each other, which can be avoided by
slightly changing the regulation scheme, but not changing the domain of analyticity. Therefore it is
sufficient to consider the second scenario (3.2.17) as the most general case.

Suppose 9 is the smallest positive distance between two neighbouring operators, i.e min. bfE > 0,

then if we choose some number & such that
— < (3.2.18)

then we can express the correlator Fg(t £ i1y, a;) as

2k

Fp=Tr| [[ M (3.2.19)

i=1
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where M; could have following forms,

p2F (3.2.20)
M; = pf’“_"Vi(ti)p" (3.2.21)
P Vit Vi (tiga)p” (3.2.22)

where 7, 77 are some positive numbers less than 1 / 2% . Using the trace inequality identity for prod-

uct of 2% matrices(proof is given in 3.5.3),

1/2F
Fsl= T | T v || < TT [1e00)”] (3.2.23)
we can put a bound on Fg(diagrammatic demonstration is in 3.2)

gk—171/2"
Fotiro) <[] [Tr<p<2kal—2m>w<zm>vi> 1
1 € isolated op.

1/2k
L /

" H lTr (p<2k—1_2773')‘/}(tj)‘/}+1(tj+1>,0(2m)‘/j+l(tj+1>‘/j(tj))2kF|

J € colliding op.

(3.2.24)

trace of operators M; of the form (3.2.20) will be just one, hence ignored. Index ¢ runs over isolated
operator insertions of the form (3.2.21), and these traces are independent of time.Index j runs over
all colliding operators of the form (3.2.22)., and we expect them to be finite due to diffusion. For a

time ¢ much greater than dissipation time t4, we have following thermal factorization (with a possi-

ble error ¢),

1

2k—1
[TT (P(Q'ﬁ_%)vj(tj>Vj+1(tj+1)P(277j)Vj+1(tj+1)vj(tj)> ]

~ (ger=2m) 17 2y, 2 (ger=2m) 7 2y, 2
~ |Tr( p\2 Vip™hV; x |Tr { p'\2 Vig1p™ Vi +¢e, (3.2.25)

which is a time independent quantity. Hence, | F;3| on the boundary is bounded by a time indepen-
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dent constant,

gk—171/2F
N = H lTr <p2k%1*277j‘/jp277j‘/j) ] + ¢ (3.2.26)

1€ all ops.

2]

Figure 3.2: Diagrammatic demonstration: Top view of thermal circle, blue/red dots indicate operators at different times.

Forany point z = ¢ + ¢7 strictly inside the domain D, if we split the thermal circle into 2k
segments with operators M/(z), similar to what is done in (3.2.19). If two operators collide in the
boundary then we keep them in the same segment. Here, the form of M (2)’s will be similar to M;
but in the third line (3.2.22) we will now have some power of p inserted between the two colliding
operators. For other case (3.2.21), only the insertion of p will be different from that in the bound-
ary, whereas M ,the operator itself, would be independent of the real part of time (t).

Now in both of cases the ratios between M (z) and M; is only a function of 7 and is of order
one. Therefore Applying Phragmén-Lindel6f principle (as discussed in the beginning of the sec-
tion) if we normalize F3(z) with N3, it shall remain bounded by unity in the entire domain D.

In [24] authors have used the contracting properties of ¥ to bound the correlators. This pro-
cedure result in an OTOC, where the total sum of the power of y is less than 1. To express such a
correlator as a product of thermal quantities we need to introduce ratios of partition functions de-
fined in two different temperatures. For example in the case of a large-/V gauge theory, this results

in a bound, which is of order ¢/¥*. Hence, technically speaking the particulars of the proof is strictly

59



valid in a time scale of the o(log V') + o(log(1/e)). In a large-N gauge theory 1/e ~ N?. This vir-
tually doubles the time scale. To be mentioned is that it is not entirely unreasonable to assume that
bounded correlators remain a 0(1) number and actual bound is much less what has been proved.

If one is fine to use the contracting properties of y, then one can use the inequality in the appendix

3.5.3 to bound a correlator by a product of correlators defined at a higher temperature.

3.2.3 BOUND ON GROWTH OF THE CORRELATOR

Continuing from the previous section g(t + i7) = Fz(t + i7)/Nj is an analytic function and
lg(t + i7)|< 1 on the half-strip D. In order to use Schwarz-Pick theorem we conformally map ¢

from D to a unit disk in complex plane C using the following transformation

- 1 — sinh [(u—iﬂ (t+iT i (%))] | -
1 + sinh [ﬁ (t—l—ir—i (%))1

Above mapping is shown in fig. 3.3, for (7. = 2, 7~ = —1). Fixed-time vertical lines at early times

begin as semi-circle on right, with endpoint coordinates [(0, 1), (0, —1)] and at late times converge

to the point (—1, 0) on the unit disk.

0.5 1:0

Figure 3.3: Conformal mapping from half-strip D = (0, oo) X i(fl, 2) to unit disk in complex plane C, each line map to its
corresponding colored line-segment on the disk.
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Let’s recall Schwarz-Pick theorem, which states that any conformal mapping f(2) from a unit

disk to another unit disk, shall satisfy the following inequality,

|df |
(1= 1f(2)]?)

|d2|
(1= 1z%)

< (3.2.28)

where 2 is the coordinates of the unit disk.
Since g(z) < 1on D (as well as on the unit disk), we can think of g(z) as a conformal mapping
from a unit disk to another unit disk, and hence applying Schwarz-Pick theorem for a fixed value of

7, we have

|0vg(t + i7)| 7r (1 —7) it
< —r 7 -
T lgterinF = 2vaa, A ) G,

T ort\ ]2
X [cos (Ks(u —T_ — 27')) + cosh (As )]

(3.2.29)

where, Ay is the strip width (71 4+ 7_). Fort > 0, the above inequality becomes

o< 55 o (A=) (1= ) (3:250)

Expressing g(t + i7) = u(t + i7) + tv(t + i7), where u, v are real-valued functions and using

Cauchy-Schwarz inequality one can easily show that

0 dg
—191< | = . 2.

S

Using the above relation, |¢|< 1, and choosing the minima of csc (W(T£77)> in the domain, the
inequality (3.2.29) becomes

™

A=) (3232)

4 1g1<
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Therefore we have a bound on how F(t) decays at late time,

| FslS N — [Falto)]ess! (3.2.33)
and the Lyapunov exponent can be read-off as A;, = AL thus, it is just a function of the width of

the strip D.

3.3 Examples

In this section, we find out Lyapunov exponents of few correlators. Before considering higher point

correlators let’s look at a generalization of four-point OTOC considered in [78]
1
F(1) = 5 T [p002 A0)pB0)o ) A1) *B(O)] (331)

Using analytic properties of the correlator and assuming late time behaviour of the correlator(briefly
described in ap. 3.5.1) they conclude that the Lyapunov exponent(i.e %r) is same as the original
four-point OTOC.

Using our approach we can as well derive the same expected Lyapunov bound, as the domain of
analyticity for the above correlator f., () lies between

(——5(1_7) 5—7) (3.3.2)
2 72 o

and therefore the strip width Ay = /2 which is independent of 7y and giving the same Lyapunov
exponent.
Next we consider 2n-“Tremolo” correlators mentioned in [76] which is has a form (V' (¢)1#/(0))™).

Choosing a equal-spaced regulation scheme,

F(t) = Te (p5V (55 W(0)) (33:)

it is easy to see from our method that the Lyapunov exponent \; = % Note that, for the above

correlator ChOOSiI’lg any other type ofregulation scheme would giVC usa greater Lyapunov €Xpo-
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nent, therefore equal-space regulation scheme is the best estimate of chaos bound. The reason be-
ing, if we chose unequally spaced regulation scheme, the width of the analytical strip would shrink
and therefore the Lyapunov exponent would increase, which would lead to a sub-optimal bound of

chaos.

3.4 Conclusion

In this work, we have discussed how complex analytical properties of OTOCs to put constraints
on the temporal behavior of OTOC:s. In a free or an integrable system, correlators do not grow ex-
ponentially with time. Hence, it is natural to ask, whether higher order chaos-bounds for a generic
operator ever gets saturated in a given theory. It is known that the four point OTOC:s saturate the
chaos bounds in gravity and few other large- N theories. One may guess that the growth of the
higher point correlators in a black hole back ground also saturate similar bound, and this may be
related to the stretching of the geometry discussed in [70]. In this regard, it would be instructive to
have a rigorous calculation of higher point correlators in CFTs and in SYK model or in other com-

putable theories.

3.5 Appendix

3.5.1 PROPERTIES OF GENERIC N-POINT CORRELATOR

Let’s look at few properties of F(t;, 3;). In a more conventional way it can be rewritten as,
Fp=Tr [ﬁ (e”ﬁ‘/l(tl)e_“ﬁ> (eTzﬁ\/Q(tg)e_mﬁ) . (eT”ﬁVn(tn)e_T”ﬁﬂ (3.5.1)

where, p = e~ PH / Z, is the thermal density matrix,

and1; = 22’21 B; — B. Using Heisenberg picture,

A(t) = et A(0)e 1 (3.5.2)



eqn. (3.5.1) can be compactly expressed as,

Flg(tl + ZTZ) ="Tr [pA ‘/1 (tl + iT1> ‘/2 (tg + iTg) RN Vn (tn + iTn>]

=Tr |p][Vilts + im) (3.5.3)
i=1
where, F3(t; + i7;) is understood as Fg(t1 + if1,ta + ifa, . . ., ty + 15,).
In this way of writing the correlator,
* the time translation invariance, and trace cyclicity gives rise to following relations,
Fp(ti +1i7i + ¢) = Fp(ti +im) (3-5-4)
Fa(ti +im) = Fa(tn + i1, —iB,t1 + iy, - -+ tn1 +iTn_1) (3.5.5)

* and its complex conjugate
Jrg(tl + iTl; e 7tn + Zﬁn) - fﬁ(tn - iﬁ?htn—l - iﬁn—l; T 7t1 - Zﬁl) (356)

implies that the generic correlator is not real, unlike the four-point OTOC considered in

[24].

* itis straightforward to see the analytic property

0 o, .
(8_251 + ZaTi) Fa(ti+im) =0 (3.5.7)
Further if we assume,
Fs(t) = Fg — 6]:516”, (3.5.8)

where ? is suitable linear combination of ¢;s. Then the above differential equation may be used to

bound the maximum value of the Lyapunov exponent A [79].



3.5.2 |TRACE INEQUALITIES

CAUCHY-SCHWARZ INEQUALITY FOR MATRICES

Here we give a short proof of Cauchy-Schwarz Inequality for matrices,
Tr(A'B) < [Tr(ATA)]V?[Tr(B'B)]Y?

where A, B are some generic finite dimensional matrices.
Proof :

Let [A];; = ayj, then [AT];; = a,, similarly for [B];;, we have b;;. Then
ATB Z ak.zb]ﬂ

If 0; = (ay;, ag;, - . . ) and W; = (byy, by, - - . ), we can write

Tr(A'B) = Z<U2|wz>

Using Cauchy-Schwarz(CS) inequality for v;, wj;

Te(A'B) < ZH%H [

() ()

(3.5.9)

(3.5.10)

(3.5.11)

(3.5.12)



Now thinking of p; = (3, aii)l/Q, g = (>, a%j) Y2 as vectors P, ¢'and using CS inequality

Tr(A'B) < (plq)
<|lpll llql|

= (Z|am|2))1/2(2\bmj|2)1/2

= (Tr(ATA))Y*(Tr (B B))"/?

Therefore, Tr(ATB) < (Tr(ATA))Y2(Tr(B'B))Y2.

(3.5.13)

3.5.3 BOUND ON TRACE OF PRODUCT OF MATRICES

With the help of above inequality, we put on a bound on the trace of product of matrices,

n n 1/2
([T ) < [Tr (MZTMZ)]
i=1 i=1

Proof:

Let,

where 7 < 7, and

P =VV,

Pi=ViVisr ... Vi) (ViVigr .. Vi) = M]Tijk

notice that, P’s are positive semi-definite matrices.

Applying CS inequality to Tr(Vi V5 ... V},),

Te(ViVs...V,) < [Tr (valﬂ v [Tr ((VQV3 V) (Vs

= [Tr(P)]"* [Tr (Paa)]
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(3.5.15)

(3.5.16)

W)

(3.5.17)



to the above inequality, applying CS inequality to Tr (P, ), we have

Te(WVa... V) < [Te(PO)Y2 [T (B2 [T (Ponr)?]

< [Tr(Py)]"2 [Tr (P)]"2 [Tr (P )] (3.5.18)

in the second line we have used the fact that, [Tr(P?)] 2 < Tr(P) for positive semi-definite ma-
trices. Now recursively applying CS inequality to Tr( P, ;)’s and using norm-inequality we get the
desired bound (3.5.14).

Using the above inequality, the correlator Fj in (3.2.17) is bounded by

1/2
fﬁ (t + T4, O,/i) < H [Tr (pbzi‘/;pbiﬂ/;)]

{i€ single op.}

N N 1/2
II [Tr (pb" V}(tj)v;’+1(thrl)pbj+2‘/j+1<tj+1)v;’(tj)>}
{j€ double op.}

(3.5.19)

here index i € { single op.} runs over all P; with single operators of the form as in (3.2.21), and in-
dex j € { double op.} runs over M; of the form given in (3.2.22) . It is easy to see that the product
of single operator traces are independent of time, but not double operator traces. To have a time-
independent normalization factor, we need to find an upper bound on the time dependent part of
the above inequality. For that, notice that the individual double operator trace is in fact time or-
dered, and now setting the initial time ¢y much greater than the dissipation time ¢4 but much less

the scrambling time 2., (3.5.19) these operators factorize to give a time-independent bound,

1/2
.Fg (t + 07y, Oéi) < H [Tr(pb?:vipbi-ﬂ/;)}

{i€&single op.}

1/2 1/2
< T [ (e v | (6 Vi v )|
{j€ double op.}

(3.5.20)



TRACE INEQUALITY FOR PRODUCT OF 2 MATRIX

The above inequality is useful for arbitrary number of matrices, but if the number of matrices is a

power of 2, say 2% then there is an interesting inequality

21€ 2k}
e 1/2F
Tr HMZ < H [Tr(Mi)2 } (3.5.21)
i=1 i=1
Proof :
Starting with CS inequality for two matrices A; o
I Tr( Ay 4,)] < (Tr (A{Al) Tv (AQAD)” Yo (Tr(42) Tr(42)) 2 (3.5.22)

now if A, is itself a product of two matrices By;_1 By;, then the above inequality becomes

Tr(ByByBsBy)| < (Tr(A2) Tr (42))"*

= [T (B3B2) Tx(B:B2)]
1/4

< [Tr (Bf) Tr(Bg) Tr(Bé) Tr(Bff)] (3.5.23)

hence for using the above argument recursively for a product of 2% matrices M;, we can show that

ok

Tr HMZ- SH[Tr(Mi)zT/Z- (3.5.24)
=1

=1
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e-Expansion in the Gross-Neveu model from

Conformal Field Theory

4.1 Introduction

In a recent work of [33] (see also [87]) the techniques of conformal field theory have been used for
the computation of leading order anomalous dimensions of composite operators in interacting
CFTs defined in terms of epsilon expansions about d = 3, 4 spacetime dimensions. The novelty of
this technique lies in using conformal symmetry judiciously without taking recourse to any pertur-
bative methods and Feynman diagrams, which has so far been used in such calculations.

The goal of this work is to compute the leading order - in the epsilon expansion - anomalous di-
mensions of a class of composite operators in the Gross- Neveu model in 2 4 € dimensions. Our
analysis involves two and three point functions and the OPE of relevant operators, and uses only
conformal symmetry. We thus accomplish this without relying on Feynman diagrams and con-
ventional perturbation theory techniques. The analysis follows closely the methods of [33] who
first used the method to determine anomalous dimensions of similar operators in the O (V) vector
model.

This chapter is organised as follows. We provide the basic set up in section 4.2. In section 4.3 we
use methods similar to [33] to compute the anomalous dimensions of the operators 1 and ). The
result of this section is in agreement with that available in the literature. After this simple illustra-
tion of the technique, we turn to the general case of higher composite operators. In the appendix

we compute the required combinatorial coefficients in the free theory OPE using a recursive dia-



grammatic approach [87]. In section 4.4, the two and three point functions, as well as the OPE, of
the interacting theory are used and matching with the expected free theory results ultimately leads
to a pair of recursion relations involving the leading order anomalous dimensions. The final result
for the leading order anomalous dimensions are given in equation (4.4.45). In section 5, we com-

pute the anomalous dimensions of scalars which are not singlet under U (V). As far we know, these

have not been computed before in the literature and the results of section 4 and 5 are new.

4.2 The Gross-Neveu model

The Gross-Neveu model [88] is a renormalizable field theory in two dimensions. It is described by a

U(N) symmetric action for N massless self-interacting Dirac fermions {1!, 1) }. We will consider

the Gross-Neveu model in 2 + ¢ dimensions [89]

S = /d2+6$ lzyﬁdil + %g,u6 (@Z_)Izl)l)2 , I=1,..,N. (4.2.1)

Here g is the coupling constant which is dimensionless in two dimensions. This theory has a weakly

coupled UV fixed point given by the non-trivial zero of the beta function,

2 ~
Blo)=eg—(N=2)3-.  N=NTI}. (422)

Here Tr{T} is the trace of identity in Dirac fermion space, and in two dimensions N = 2N. The

fixed point occurs at
2me

N _2 +0(e%). (4.2.3)

G«

The special case of N' = 2 for which the /3 function vanishes identically corresponds to the Thirring
model. In this paper we consider the case for which N' > 2.

The dimensions of the fermion ©!, Ay, and composite scalar il Ay, are given by

A=l 2tey
1 — 2 71_2 9 71,
Ag=d—1+rm=14+€e+. (4.2.4)
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The anomalous dimensions of the fundamental fermions and the composite scalar in the e-expansion
have been computed in perturbation theory using the standard Feynman diagram techniques and,

to leading order in €, are given by

M= 29*: 2
167 4(N —2)
 N-1  N-1 (ns)
Yo = 5 G« N o 4.2.5

The purpose of this note is to derive the above expressions, and similar ones for higher dimensional
composite operators, using conformal field theory techniques without doing Feynman diagram
computations’. For this we assume that the fixed point is a conformal fixed point.

In two dimensions, the fermion propagator is given by

_ ﬂf“(m - y)u

(W) ) = 3L (420
We normalise our fields
Yoy = V2l L = Vomy' (4.2.7)

In order to simplify the notation in the analysis below, we use the normalised elementary field but

denoted by the old variable. In this normalisation, the two point function is

I NTJ _ (@ =y )
(W@ W) = 87 = (423)

and the equation of motions are’

I 9 p Ty )
Py’ = —27T¢(¢1/)), (4.2.9)
e () LS A A ) 1o
00T = Lyl (57y7) (2.10)

In the free theory the fermions satisfy §p! = 0, ({9/,,1;[ I'* = 0 which are the shortening conditions

*See [90, 91] for various aspects of the Gross-Neveu model in 2 + € dimensions
In general, for non-integer dimensions, gamma matrices are infinite dimensional and there are infinite number of
antisymmetrized products. However for the calculation of anomalous dimensions to the leading order in ¢, for the class

of operators (01))™ and v(1)1))™, this complication will not play any role.
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for the multiplets {¢)’ } . and {4)"} fee. In addition all other bilinears of 1! and 17 are primary
operators. At the interacting fixed point {t }g,ea pe and {4 e pe are no longer short multiplets.
The primary operators in the free theory 1’ (zl_)Jw‘] ) and ¢! (L/;J w”’) now become descendants
of the {1 }gyed pe. and {4 ed pe. respectively. This phenomena of multiplet recombination was
observed in ¢*-theory [33] where two conformal multiplets in the free theory join and become a
single conformal multiplet at the interacting fixed point.

Asin [33] we assume that every operator O in the free theory has a counterpart Vj» at the inter-
acting fixed point. The operators V}» and their correlation functions in the interacting theory, ap-
proach, respectively, O and their free correlation function in the € — 0 limit. In the Gross Neveu
model at the IR free point, various operators are constructed out of products of elementary opera-
tors 1 and 1. We will denote operators in the interacting theory as Vo, Vo, 11 and ‘_/2p+1 such that

in the limit e — 0 (IR free point)

Vap = (00)?, Viboy — (W)Po’, Vi — ()Pl (4.2.11)
We also require that the multiplet recombination is achieved by
VI =aVy, 0 VITH=—aVy, (4.2.12)

for some unknown function & = a(€) which will be determined below. As an equation of motion,
this follows from the Gross-Neveu lagrangian, but in the non-lagrangian approach we follow it is

to be interpreted purely as an operator relation indicating that the operator V3 is, in the interacting
theory, a descendant of the primary operator V.

Let us illustrate, schematically, how multiplet recombination is used together with the OPE to
determine the leading order anomalous dimensions (This is the method developed by [33] and
used in later sections here). Suppose the interacting theory has an operator relation of the form
OVo = aVr (as explained above, O’s denote operators in the free theory whose counterparts in

the interacting theory are the V ’s ). We first find an OPE in the free theory of primary composite
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operators Oy, O, which contains, in the leading terms, O and O’ :
Op(2) x Oy (0) D (O + .....) + p(O" + .....) + subleading terms. (4.2.13)

The dots above denote descendant terms (derivatives acing on O) and other subleading terms con-
tain other operators in the spectrum (we have supressed various powers of x). The leading order
terms suffice for our purpose. p is a combinatorial coefficient, determined by Wick contractions in
the free theory (see the appendix). Now in the interacting theory, the corresponding OPE would
read:

Vo,() x Vo ,(0) D (Vo +q0Vo.....) + subleading terms. (4.2.14)

Note that, using the operator relation, the second term on the right hand side above is proportonal
to V. In the interacting theory, this operator (Vo) is a descendant and this crucial fact, together
with matching with the free theory in the ¢ — 0 limit, implies g = p. The coefficient ¢ will be
determined later in terms of anomalous dimensions of the operators in the OPE and will be seen to
be singular in the € — 0 limit. The coeflicient o is determined below (to the required leading order
in €) and the above relation will be seen (in section 4.3) to lead to a recursion relation for the leading
order anomalous dimensions.

We turn now to the determination of ov. We have

(Vi (2)V/ (y)) = 5”%' (4.2.15)

Differentiating the above expression and contracting with I'* matrices, we get
( / o F#(x - y)
(VI ()0, V) (y)I7) = (Wmh, (4.2.16)
where, using Ay = % + 71, we get

Now requiring that in the limite — 0, (VJ (x)V5/(y)) approaches the free theory correlation
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function
'z —y)u(N —1)

(WY@ G ) = 87—,

(4.2.18)

we get the expression for o

1/2
a =20 ( n ) , o==l1. (4.2.19)

4.3 Anomalous dimension of 1), 1) and 1)1}

In this section we will compute the anomalous dimensions of the fundamental fermion and the

composite scalar. The results of this section are in perfect agreement with the leading order anoma-

lous dimension computed from Feynman diagram techniques. In the next section we will generalise

this to higher dimensional operators and derive some new results for the anomalous dimensions.
We consider the OPE between ¢ and 11 in the free theory. * For this we do not need the full

OPE except those terms which are sensitive to the multiplet recombination,

91(@) X (F707)(0) 5 5 {#0' (0) + %! (547)(0) + .} (431

We will compare the above expression for the free OPE with the OPE at the interacting UV fixed

point. For this we need the three point function at the interacting fixed point. According to [92],

we have’
_ f 5IK
N | AN ) S A — (432)
(275) 7" 277 (af5235) 22
In the above f is a constant. From this we can compute the following OPE
VI(.I' ) x Vi f¢13 1
1 (71 2(w3) O 17 Cla13, )V (2) o=ay oo (4.3.3)

(ﬁs)%Aﬁ%

¥The OPE coefficients are determined in the free theory using Wick’s contraction- see the appendix.
SAs we will explain in the next section, in general conformal invariance requires the presence of another term in the
3-point function. However this extra term does not contribute in the calculation of this section.
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Here

C(z13,0,) = A+ (leﬁb3 + BQ¢13F“) 8u+(01xf3x11’3 + Coxligg I + C3x%3F“F”) 00+
(4.3.4)

It is important to note here that in the above OPE, we have kept only contributions coming from

the conformal family of V;/ which includes V5 as its descendant. Although the multiplet recombi-

nation does not necessarily require a lagrangian description, here our knowledge of the shortening

condition follows from the equation of motion (4.2.12). Even though we use difterent methods, we

are dealing with perturbative fixed points which do have a lagrangian description. Thus our analysis

is not entirely lagrangian independent?.

A, B;, C;, .. are functions of conformal dimensions which we determine by considering 21 —

x3 and expanding (4.3.2) in powers of 13,

f¢13¢2351K _ f¢13¢2351K [1 ofa 1A2 Tos3 - T13
(a3)0 738 (ahyad) 280 TE (ady) 300t () >

1 1'2 1 (1'23'1'13)2
— (A= Ay ) 23 4 Z(2A] — Ag)(2 4+ 2A; — Ag)=2 2L ]
O ) R e

(4.3.5)

Comparing with (4.3.3) we can get all the coefficients. We list here the first few coefficients

(A1 —34,) By

(201 — Ay) (2+ 20, — Ay)

C = —

! 2(2A, + 1) (2A; +3)

B 204 B 1 (A1 = 1A,)
02—2A1+1—d’ C3_2A1+1—d!1 90, + 1 (43.6)

Now we consider the following free correlators in the limit |21 |<< |22],

(0 () (8797 (0)55 (22)) ~ ﬁ—;@f(owf%xz» |
(0 ) (B ()55 (BP0 ) ~ (0 (B O)5 (BP0 () - (43)

SPresumably the shortening condition can be used for more general fixed points to fix values of anomalous dimen-
sions. It would be very interesting to understand the phenomena of multiplet recombination more generally.
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Using the OPE (4.3.3), we have

_ Af _
(Vi (Va0 (1)) ~ T EL (O (1)) (43
(xf)27272
This will match with the free correlator if f — —1in thelimite — 0. Next we compare the
correlation function with the insertion of the descendant operator V7,
_ f _
(Vi (1) Va(0) Vi (2)) ~ W%cm, ) (VI (0) V5 (22)) - (4.3.9)
1 2 2

Here V[ is the descendant of V€ defined in (4.2.12) and the derivative acts on the first insertion.
It is very easy to see that the first two terms containing A, B in the expansion of C' on the right
hand side go to zero as we take € — 0,

5IK ’yl(N — 1)
(22)A1+% 2o '

(VI OV (1) =~ (V0)0, 7 () T = - (13.10)

Now we see that the contribution to (4.3.9) will come from the term with Bs. In fact using the

expansion we get

V@GO @)~ B B 9, (O )
_ fBQOt
(@8]

(V5 0) V5" (22)) - (4.3.11)

In the above we used the equation of motion for the primary field (4.2.12). Thus we see that it will
go to the free correlator if f Boa ~ O(1) in the limit e — 0. Since f goes to constant and « goes to

zero, By must diverge. We also see from (4.3.6) that B; has a chance of blowing up. If we define

d—1
0= — Ay =0+7, Dy=20+, (4.3.12)

then
(71— %’72)

By ~ — .
2 27 (6 +m + 1)

(4.3.13)

Thus B, will blow up if 71 vanishes as at least O(€?)
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Now we write

Vi~ Y12€, Y2~ Ya€. (4.3.14)
Then we get
Y210 f
fBsax ~ ’ — 1. (4.3.15)
2 yl,Z(N — 1)

Using that f — —1, we get
Yo = —204/y12(N —1). (4.3.16)

Also in the interacting theory, the conformal dimension A3 of the descendant V3! (1) is related to

Al Of‘/l]<$1) by

Ag=Ar+1=35+7=0+mn+1,

V3= —€=>y31 =—1. (4.3.17)

We will show this by explicit computation in the next section.
Now we are interested in finding the OPE between V3’ and V3. This can be obtained from (4.3.3)

by acting with a derivative and using (4.2.12).

N S

‘/3[(1'1) X ‘/Q(xg) D) O($13;az>‘/1[(z)|z=x3+-n- (4.3.18)

Here

Cla15,0.) = A+ (le*fg + B2¢13rﬂ) 0, + (élx*fgxqg + Coaliyf TV + 03x§3rurV) 0,0yt
(4.3.19)

where

(4.3.20)
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In order to compare with the free correlator, we also need the following OPE

GG (0) X (@)(0) D (N = Di(0) + )0+ (43.20)

1

(i (i) (1) (0505) 0V (22) ) ~ ~—5—= (i (0) iy (22)) |

(i) (1) (05) (0) Dy (Piay) (2) ) ~ ) (i (0j07) (0) Dy (V) (22) ) -(4.3.22)

i
Proceeding as before, we find that for |21 |<< |23, we have

fB2¢1

(V5 (2)Va(0) V5" (22)) ~ ()5l

(V5 (0)Vi (2)) - (4.3.23)

Thus in order to match with the free correlator, we require f B, — 1. Now using that f — —1, we

get
(1—=A9)By— By =—1. (4.3.24)

Using (4.3.12) and (4.3.14), to leading order in €, we get

Yo,1 + yil =4y12. (4.3.25)

Using further (4.3.16), we get

2y12(N = 2) = T4/ yi2(N —1), (4.3.26)

which implies

] (N —1) N -1 ( )
o= — = - 3.
) y1,2 4(N _ 2)27 y?,l N _ 2 4.3.27
Therefore the anomalous dimensions are
(N-1) , N —1
_ _ _ 3.28
N 4(N—2)2€’ 2 N _9° (4.3.28)

These results are in agreement with results in [89, 93].
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4.4 Anomalous dimensions of (1)1))? and (1)1))P1)

In this section we will compute the leading order anomalous dimensions of a class of higher dimen-
sional composite operators in the interacting theory described by the UV fixed point of the Gross-
Neveu Model. In the free theory limit (¢ — 0) these operators are of the form (t1))? and ) (1)1))P
withp > 1. Let us denote these operators in the interacting theory as V5, and V5,11 such thatin

the limit € — 0 (axiom)

VYZp — (@Zw)pa Vp—i—l - (@/_)l/f)pw[ . (441)

4.4.1 THE STRUCTURE OF THE OPEs

We will need the following OPEs in the free theory

(¢¢)p (1) x (1Z¢)p1/11(0) ) % {wl(o) + 71p2p (1Z¢) 1/11(0)} , (4.4.2)

(1/7¢)p¢1($1) X (1/;¢>p (ﬁ_ﬂb) 0) f2p:i1 {¢1 )+ w%pr—l—l (257#) ¢I(0)} . (4.4.3)

where [ isan U(N) index. fop, fop+1 and pap, papr1 are combinatorial coefficients. Counting all

possible Wick contractions gives their values to be

P P
H =), fpr=@+1) Hz (4.4.4)
i=1 =1
P N—-p—1
P2p = N1 P2p+1 = N1 (4.4.5)

See the appendix for details of the calculation. Now let us consider the corresponding OPEs in the
interacting theory. The most general structure of the OPE, in the first case where the free theory

limitis eq. (4.4.2), is

Vop(21) X V2€;+1(0) 2 (( 21)(1

Lo

C(212, 0)V{ (22) + ¢212bD($12a32)V1]($2)+---) :
(212) 29=0
(4-4.6)
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The dots indicate other primary operators that can appear in the OPE. Here

a = <A2p + A2p+1 - Al) /2 ) (4~4-7)

b= (Azp + A2p—|—1 — Al + 1) /2 . (4.4.8)

The differential operators C'(z12, 02) and D(x12, 0) have the general form

C(.Ilg, 82) = AO -+ Boxlangu + B1¢12$2H + ... (4.4.9)
D($12, 62) = A6 + Béﬂ?‘llzagu + B1¢12$2H —+ ... (4.4.10)

For the OPE of two generic primary operators (one bosonic and the other fermionic) both of
these structures can occur. However now we will show that, for the Va, (1) V4, (0) OPE, only
the first structure in eq. (4.4.6) is consistent with our axiomatic requirement that in the limite — 0
correlators of the interacting theory should match with corresponding correlators in the free theory.

For this consider the 3 pt. function (Va, (1) V4, (22)Vy (x3)). Then using the OPE - eq.

(4.4.6) - we have,

<V2p($1)V2§+1(0)‘73,J(:1:3)>‘$1|<<|x3| ~ { (xi)a (Ao + Box’fgagﬂ) <V11(x2)\_/3‘7(:(:3)> + } )
¢12 / /l_,u I T rJ T
+ { (33%2)1) <A0 + By 12a2u> <V1 ( 2)V3 ( 3)> + ....}IFO
Bl¢12 ! (29) V5 (2 Bix%Q NV (2 11
o { (22,) <V}>< 2) Vi ( 3)> + (%) <V},( 2) Vi ( 3)>}x(213 )

In the free theory the OPE, eq. (4.4.2) gives,

(50" o) (B0) 070) (50) 70 (2835 Py (50) 0/ ) (50) 7 0)

le)p xo=0

Now since in the € — 0 limit we require

<V2p(x1)‘/2;+1(x2)‘73‘](x3)> — <(1/_)w)p (71) (&@b)pwl@ﬂ (1;@/)) &J(x3)> . (4.4.12)
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and,

(Vi (22) V5 (23) — (V) ¥ (x2) (W) 7 (w3)) (4.4.13)

Hence we clearly see that only the first structure in eqn. (4.4.6) needs to be considered. In other
words all the coefficients appearing in D(z12, 0) can be set to zero in this case.

Next consider the OPE of VQ; 41 and V5,1 5. Again just on grounds of conformal symmetry we
can write down an expression similar to eq. (4.4.6). But once again it is easy to show using the free

theory OPE, eq. (4.4.3) that our axiom

(Va1 (1) Vapio(@2) V5 (23)) = ((000)" " (z1) ()" () (w2) (V2p) 7 (x3)) . (4.4.14)

allows only the second structure of eq. (4.4.6) for the OPE of VQ; 4q and Vo,

Note that the above distinction is important when both operators involved in the OPE are pri-
mary operators. When one of the operators is a descendant the structure of the OPE simply follows
by acting with derivatives on the OPE of the primary operators. For example when p = 1 the OPE

of V3 and V4! can be obtained from the OPE of V}/ and V5 by differentiating the latter.

4.4.2 DETERMINING THE COEFFICIENTS IN THE OPE

We will now obtain the expression for the coefficients in eq. (4.4.9). The method for doing this is
simple. The form of the 3 pt. function which is fixed in the usual way by conformal invariance is
matched against the form obtained by taking the OPE of the first two operators within the 3-pt.

function. We start with the following 3 pt. function,

i 51J ¢ 5IJ
v VI i _ F19%13 23 .
< zp(l”1) 2p+1<372) 1 ($3)> 91 (x%Q)a+1/2(ajgg)b(l%l)c—&-l/? L (;g%z)a(xgg)b“/?(x%l)c
(4.4.15)

where
Y (Agp + A;p_u — Al)’ b— (Agpy1 +2Al — Ag) 7 (4.4.16)
o (At Aoy — Agp)

5 )
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The form is determined by conformal invariance which allows for both the above structures!. Now

using the OPE

Vi) % Va0 3 (e Clom 0V (an)) (44.17)

x2=0

1
(95%2)&

we get,

<V2p(:131)V2;+1(0)‘_/1‘](3E3)>‘$1|<<|x3| ~ (H%C(xlz,az)<V1](332)‘_/1‘]($3)>)

1) 29=0

A B (3

s IR T @A\

- (% + A1> ¢3¢1¢3) L DD =28 = V9 2 18)

(S

In obtaining the second line above we have used the following results:

Fas

(Vi (x2) V) (3)) = CARGER (4-4.19)
o () = e (8 = A = (A1 + Dt tafano)
U (235)A0 12 ) T (a3g) etz \ 1278 SIS YE )

7 (D —2A, —1)¢,
#1202 <<w33)§?§+1/2> IR P RVNESVE i (4.4.21)

But from eqn. (4.4.16),

I _ #17s 1\ (Fufs + #571)
Vap(2)Vap OV (53)), gy = 90 @@y | <C+ 5) 3
713 (¢1¢3 + ¢3¢1)
1
B TR el A
Comparing the above equation with eq. (4.4.18) we get,
AO = g2,
1
BO (5 — A1> + B1 (D - 2A1 - 1) = —CQga, (4423)
1
By (5 + Al) =Cg2 .

ISee, for example, [94]. Contrast this with Petkou’s result [92] where only the first term appears.
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Since the tensor structure of the first term in eq. (4.4.22) does not have any matching with the ten-

sor structures appearing in eq. (4.4.18), we can set g; = 0. Finally we have,

(A1 + Agy — Agpi1) Ap By
B = B = . 4.
0 20, + 1) ) 1 (2A, +1- D) (4.4.24)
Next we consider the following 3 pt. function
B 5IJ ¢ 51]
VI v VJ — ¢12¢32 / 13
Wipea(r)Vopealea V3 00)) = A g s (a7 B G a3
(4-4-25)
where,
r_ (Agpi1 + Agpya — A1)
2 Y
A A —A
b/ — ( 2p+2 + 21 2p+1) , (4426)
r_ (A + Agpir — Agyyo)
5 .
In this case using the OPE we get
Vap1 (1) X Vapi2(0) D <(x€1§a,D($1z,3z)Vf(fE2)> : (4.4.27)
12 xro=0

Therefore,

<‘/2€0+1<x1)‘/2p+2<0)‘_/1j(x3)>|x1|<<\w3| ~ (@D(‘Tu’ 32> <‘GI($2)‘71J<x3)>> )
z2=0
A RBY(1
i+ s (3 4) 4
1 S B(D — 2, — 1)z
_ <§ + Al) ¢3¢1¢3> + (;‘%)A1+1/2(;%)al %‘%’428)

In the limit |21|<< |23] eq. (4.4.25) becomes

11

I (7 J —
<‘/2p+1<x1>‘/2p+2<0)‘/1 (x3)>‘x1|<<|w3‘ - gll (x%)a’+1/2<x§)b’+1/2+0’

(bids+ Ft) |

L3

1+¢
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; 13 L1\ (Bt + 4st)
+ 9, (2) (22 T2 1+ (c + 2) o + ... (4.4.29)
Comparing the above equation with eq. (4.4.28), we obtain,
A6 = —01,
1
By <§ — Al) + B (D —2A, —1)=/{d¢g, (4.4.30)
1 !/
B() 5 + Al = —Cgy.
This gives,
/ (Al + A2p+1 B A2p+2) A6 / B(I)
B = B = . G
0 (2A1—|—1) 9 1 (2A1+1—D) (4431)

Here, similar arguments as above would set g5 = 0. This again shows that in the 3 pt. function of
two primary fermion operators and a primary scalar operator in general one must keep both ten-
sor structures. Which structure contributes in a specific case depends upon the particular primary
operators under consideration. When one of the operators involved in the 3 pt. function is a de-

scendant, the allowed structure is of course determined by the correlator of primary operators.

4.4.3 RECURSION RELATIONS FOR THE LEADING ORDER ANOMALOUS

DIMENSIONS

In the € — 0 limit, the OPEs of the interacting theory should go over to the free theory OPE:s - egs.

(4.4.2, 4.4.3) - and the corresponding 3 pt. functions must match as well. This matching gives

Ay = f2pa Bia = f2pP2p- (4.4.32)

(A1 + Agp — Agyi)
QA + 1) (20 +1-D

7O = P (4.4.33)

84



We use the following relations

1+e€

Ay = 5 T
1+e
Ny, = 2p< 5 )+72p,

1+e
Agpy1 = (2p+1) <T> + Yop+1 5

y 1/2
— 2 ! .
o J(N_l)

(vep — ’Y2p+1)0 N V2 ___ b
271 N

to get

Writing Vi (€) = k1€ + Yk 26> + ... We get,

1/2
Y1,2
Y2p+1,1 — Yop,1 = 20D <N — 1) :

Using 1 2 = ﬁ this gives,

p
Y11 = Yop1 = O -

Similarily we get for the other case,

!/ !/
Ay = fopr1,  Bia= fopripapi1,

(A1 + Agpr1 — Agpio) o —
(20, + 1) (2A, +1— D)~ Pt

= N_1

27
which gives

N—-p-—1
Yop+1,1 — Y2p42,1 = O N_3 |-

8s

(Yop+1 — 72p+2)0 Y1 12 _ N—-p—-1
N —1

(4-4-34)

(4.4.35)
(4.4.36)

(4.4-37)

(4.4-38)

(4.4.39)

(4-4.40)

(4.4.41)

(4-4-42)

(4.4.43)

(4.4-44)



Solving the recursion relations egs. (4.4.40) and (4.4.44) (with o = 1) we get our desired result,

Y2p,1 = _% ; Yop+1,1 = —%. (4-4-45)

Thus we have for the scaling dimensions of these composite operators,

_ p(N —p)
Ay = Doy =p + pe — EDN o(e?), (4.4.46)
_ 1 1 p(N —p—1)
Ay = Doprr = (p + 5) +(p+ 5)6 - We +O(€). (4-4-47)

Note, in particular, that the classically marginal operator (¢)1))? receives corrections to its confor-
mal dimension only at O(€?), since for p = 2 the second and third terms in the expression for
A (gypyrcancel. This is analogous to the bosonic case treated in [33] where the classically marginal

operator (¢.¢)? has the same property.

4.5 Other scalar primaries

In this section we will consider a scalar primary which is not a singlet under the symmetry group

U(N) and calculate its anomalous dimension. In the free theory we consider a scalar of the form

1J

_ 517
(D) _ 1) _ K, K L
o (U —N¢ (U (4.5.1)

In order to calculate the OPE we need the following correlation functions in the free theory:

_5KI5JL¢7£

(@) (0)0"(2) = ———3 7 (45-2)
O
Therefore for & ~ 0, we get
(R @0 )y = - TN
(WX @Oy = L TN TR

z
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Thus we get the following OPE in the free theory,

2

{p0m0) + 200070 )0) + 6o

(6KI(5JL _ %51]5KL)

12

W (2) x O1)(0) >

Now we proceed as before. We assume that there exists an operator Viyar () at the fixed point
corresponding to the operator OXM) (). Based on the symmetries, the 3-point function involving

the scalar at the fixed point is given by

- 1 SILSEM _ L SLM §IK
(Vi )V ) Vi ) — 715725t W) s

(l’%z)AI_%A(LM) (x;f?,fﬂgs)%A(LM)Jr%

The OPE obtained in (4.3.3) should hold in the case of scalar fields. All the corresponding coeffi-

cients are given in (4.3.6) except that A, is replaced by A(za7). Thus in this case,

JF¢13<51L(5MK . %5ML(51K)

(x%:a)%A(LM)JF%

‘/1[(1’1) X VO(LM) (1'3) D) E(l‘lg,az)‘/lK(Z)‘Z:m—f—.. (4.5.7)

with

E(113,0.) = A'+ (Bix‘f;; + B§¢13Fu) 8“—1—( 1213275 + Coatg I + C’éxfg)F“F”) e 7 R
(4-5-8)

where the relevant coefficients are

(A1 = 58um) o B;

Ap+L 7 T 2N 41— d

B = — (4-5-9)

Y

We proceed as in previous cases. We find that f should approach —1 in the limite — 0. Further-

more the 3-point function with the descendant has the form

f¢(51L5KM o L(SLM(SIK)

N
(x2)%A(LM>+%

J?(5IL(5KM _ %5LM51K>B§&

- (xQ)%A(LMr% <V3K(O)V3P(Z)> - (45:10)

(Vi (@)Vouwn (0)V5 (2)) ~

By(#T"0,) (Vi* (V5" (2)) ,
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Now comparing with the free correlator, we find that

. 1
fBéoz:—ﬁ. (4.5.11)
and
/ 7T(71 - %V(LM)) 2
By = ~ y o M1~ Yi2€, Y@M ™ Y(Lm),i€ - (4.5.12)
1
which implies that
- (4.5.13)
Yumy,g = N_9o 4.5.13
Therefore the leading order anomalous dimension is
- (4.5.14)
Youn = N _ 26- 4.5-14

We could not find a check for this result in the literature. It would be interesting to compare this

new result against a perturbative computation of the anomalous dimension.

4.6 Discussion

In this note we have computed, to first order in the epsilon expansion, the anomalous dimensions
of a class of composite operators in the Gross-Neveu model. As emphasised earlier, we have done
the computation without using the usual perturbative techniques. The primary input was confor-
mal symmetry, which fixed for us the two and three point functions and the required OPEs. The
main results, which, to our knowledge, have not been known before, are given in eq. (4.4.45), . Itis
to be emphasised that the methods used here can fix only the leading order anomalous dimensions.
It would be interesting to extend the computations to second order in €. As discussed in [33] for
the case of the O(N) bosonic vector model, two and three point functions would not suffice for
the higher order computation and one would require conformal bootstrap of the four point func-

tions to extract further information.
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4.7 Appendix

4.7.1  COMPUTATION OF f3, AND p2,

Here we follow the diagrammatic method [87] to compute the combinatorial factors appearing in

the OPEs (4.4.2), (4.4.3). A typical diagram will look like

Sb

gD

p blocks
—

PRary
DIRGDIO

~—
p blocks and a cross

<
g

where each block refers to a 1.1 pair, 1) is denoted by e and 1) by x, and each line denotes a con-
traction. Further we follow the convention that the top row corresponds to the operator at x and
the lower one corresponds to the operator at origin. In order to compute the combinatorial factors
we need to count all possible contractions, carefully picking up (-1) factors whenever we move a
fermionic operator through the other operator. To compute the combinatorial factors our strategy
will be to set up recursion relations. For this we contract one block at a time from the top row with

the blocks at the bottom row. The contribution of a given contraction is given by following rules:

1. While contracting we always keep the block at the position = on the left of the block at the

origin.

2. A diagram involving a complete loop will give a factor of +-N to the combinatorial factor.

()
()

3. Two blocks contracting to the same block results in one block with —1 factor.
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abaan, b

. .'..

. .

. ..
X

apldblabRapIdab

To compute fa, we need to contract p pairs of 1’s and finally leave ¢/, We will get the following

three diagrams. In these diagrams the top row has p blocks at z and bottom row has p blocks to-

gether with one X at origin.

BIapEar
BGPIc

The contribution of the above diagram is pN Tr{I} = pN.

[ ()
\/
m

A A
0
2
]

AT

Ayh
w
m

I

A

A

The contribution of this diagram is just —p. Therefore the recursion relation is

fop = PN = p(p = 1) = pl fap-1) = [PN = P*] fap-1) (4.7.1)
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For p = 1, we can see that fo = (N — 1), s0

faw) = H i(N —1). (4.7.2)

To get a recursion relation for fa,p2,, the strategy is to first draw one line, and then proceed recur-

sively by drawing two lines. To draw one line, we have three diagrams, but the first two diagrams

cancel each other, and only the third diagram

p blocks p-1 blocks and a cross
——
P—
p blocks and a cross [ blocks

will contribute as —p. Next we need to compute the contribution, ga,, from the new diagram,
()
()

p-1 blocks and a cross

ADIRO
JDINAD

p bIocks

which can be recursively reduced by contracting one block on the top and bottom row, by draw-

ing two lines,
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p-1 blocks and a cross

[abXaDIREDNO
aplapaplab

)@

.

.. ) @

The contribution from A is pN, from B is —p(p — 1) and from C is —p. Therefore the recur-

RV

[ [

ayawars
~

() [

A\

VAV
A

~

sion relation for gy, is

92 = (PN = p*) gap-1) - (4.7.3)
Knowing g = 1,
p
g = [i (N =) . (4.7.4)
=2
Since, foppap = —p(gap), we get
_ —plg2p) _ b
S e (4.7.5)

4.7.2 COMPUTATION OF fo,11 AND pg, 1]

The setup is,
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p blocks and a cross
—
Padb
PDaab
p+1 blocks

g

g
dbX¢

g

B
D

|
and we need to draw (2p + 1) lines. Analogous to the pa, computation, we first contract one line

involving the cross, to give a factor of +(p + 1) and the diagram

aplapmap
SplapiEabio

p blocks and a cross

which is nothing but fo,. Therefore,

p

o1 =0+ D fop = (p+ ) [ TN —4). (4.7.6)

=1

For the computation of fop11p2p+1 = §2p+1, we notice that the diagram is exactly same as that for

G2(p+1)- Therefore,
p+1

Gopi1 = Gopn) = | [#(N =) . (4.7.7)
=2
So,
92p+1 _ N—(p+1)
f2p+1 N - 1

P2p+1 =
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Summary and Future Work

To summarize, this thesis presents few approaches to understand open QFTs. Repeating myself,
Open QFTs are extremely difficult problems, and the work presented here is just few humble ap-
proaches, to study them. In future, these technologies can be extended for deeper insights into the

problem. Based on the thesis, I am currently working along the following directions :

* A computationally more efficient way of studying complex actions is needed. Also the phys-
ical world being 3 + 1 d, it is not always possible to reduce it to a simple matrix theory. One
needs to simulate complex actions on R3! manifold, and one such approach is using Thim-
bles. Using thimbles, we can also study dynamical symmetry breaking and dimensional re-

duction higher dimensional QFTs.

* To further study the MSS conjecture of bound on quantum chaos, it is interesting to com-
pute Lyapunov exponent for higher-point OTOC in Black Hole geometry and SYK model
and see if the conjectured value satisfies in these cases. For this one can consider, multiple
shock waves in a black hole background and see if it’s saturating the bound mentioned in [2].
Similarly, considering higher point correlators in SYK model, and computing it’s late-time
behaviour could be studied. For instance, a full analytic expression for six-point correlator in
SYK model, could be computed and the Lyapunov exponent can be extracted in the maxi-

mally out-of-time-ordered configuration.

* To study analytically higher order anomalous dimensions of CFTs, it turns out Mellin-space
representation is quite useful. Although(at the time of writing this thesis) lot of work has
been done in scalar field theories, not much has been done in Fermionic CFTs. It would be

interesting to develop Mellin-space representation for generic Fermionic CFTs.
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