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Abstract

In this work, we address some puzzles about the black hole interior from the bulk
perspective. In the first part, we discuss how black holes in AdS can host an enormous
number of semiclassical excitations in their interior, which is seemingly not reflected in
the Bekenstein Hawking entropy. In addition to the paradox in the entropy, we argue
that the treatment of such excitations using effective field theory also violates black holes’
expected spectral properties. We propose that these mysteries are resolved because appar-
ently orthogonal semiclassical bulk excitations have small inner products between them;
and consequently, a vast number of semiclassical excitations can be constructed using the
Hilbert space which describes black hole’s interior. Further we verify our resolution using
consistency checks using the dual CFT. In the second part, we discuss a toy model in
empty flat space which captures the essential features of the monogamy paradox for old
flat space black holes within a clean calculational framework. The chief non-trivialities
here are a consequence of flat space gravity having a unique vacuum and infrared struc-
ture, say in contrast to AdS. We formulate the paradox in terms of monogamy of CHSH
correlations, which we use to quantify the monogamy of entanglement, and use it to write
a sharp statement of the violation of the monogamy of entanglement. We argue that the
resolution of the paradox is that the Gauss constraint is not properly taken into account
while posing the monogamy paradox.
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Chapter 1

Introduction

A major, if not the most significant, development in 20th-century physics has been the
development of the formalism of quantum field theory, which is the adequate formalism
to study different aspects of high energy physics. In particular, a significant revelation in
the development of this formalism was the advent of effective field theory, which enables
us to describe physics using a description conveniently (e.g., a path integral description)
that is valid in a chosen energy range.

Another significant development in 20th-century physics was discovering and further
studying the general theory of relativity, which works very nicely as a classical theory.
However, providing a consistent formulation wherein the classical general relativity theory
has an underlying quantum mechanical description has proven tricky, with only a few solid
promising avenues. There are many issues related to quantum gravity, and some of them
are apparent at the level of quantum field theory on background spacetime itself. An
important subclass of these problems arises when the background spacetime is a black
hole.

In this regard, although originating from a different perspective of bootstrapping the
S-matrix, string theory emerged as a strong candidate that describes gravity and low
energy effective field theory in terms of underlying strings and other extended objects. In
addition, string theory has provided insights into intricate relationships between entirely
different theories, referred to as dualities.

Despite the tremendous progress that string theory has offered, we cannot completely
understand the consequences of a stringy description when formulated in arbitrary back-
grounds. Nevertheless, we can exploit the resulting dualities and other state-of-the-art
tools better to understand traditional problems and newer aspects of quantum gravity.

In this regard, AdS/CFT [8–10] has provided us a robust framework to decipher
features of black holes and quantum gravity in AdS in terms of boundary non-gravitational
observables. The hope is that many of the issues arising in quantum gravity will be
clarified with progress in fundamental aspects of string theory.

Regarding quantum gravity, black hole information paradoxes [11–13] have tradition-
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2 CHAPTER 1. INTRODUCTION

ally served as beacons in the dark regarding physicists’ quest to understand quantum
aspects of black holes. Such paradoxes constitute an inter-related web of puzzles that
arise due to the existence of the event horizon. Some important works discussing the
black hole interior are [14–33].

In particular, the study of paradoxes related to the black hole interior is a promising
avenue for understanding quantum mechanics in the black hole interior and for a precise
realization of how quantum information is encoded in gravity. With this motivation, the
chief objective of this work is geared towards understanding certain aspects of quantum
gravity, guided by insights from the AdS/CFT correspondence and canonical gravity. In
this light, the central theme of this thesis is to pose two such paradoxes: the bags of
gold paradox [34] and the monogamy paradox [12, 35] using bulk effective field theory,
and to precisely understand what goes wrong while using such a description. Much of
the motivation and intuition behind such modeling comes from the setup of AdS/CFT.
These paradoxes serve as valuable frames of reference illustrating the interwoven web of
mysteries regarding the black hole’s interior.

A very brief overview

We will briefly summarize these aspects now, which we will motivate and further delve into
in the rest of the introduction. In [36], we investigated how single-sided and eternal black
holes in AdS can host an enormous number of semiclassical excitations in their interior,
naively leading to an entropy much larger than the Bekenstein-Hawking entropy. This
paradox in entropy is known as the bags of gold paradox and is visually represented in
Fig. 1.1. We argued that the EFT treatment of such excitations also violates the spectral
properties expected of black holes.

Using state-dependent maps [33] from the dual boundary theory to the bulk gravita-
tional theory, we concluded that these mysteries are resolved because seemingly orthog-
onal EFT bulk excitations have small inner products between them. Consequently, we
can construct many excitations using the EFT Hilbert space describing the black hole’s
interior, giving rise to a far greater entropy than the Bekenstein-Hawking entropy. As a
test, we also demonstrated our proposed resolution in the context of small N toy matrix
models.

Apart from the bags of gold paradox, which small corrections to the inner products
can potentially cure, we also studied a paradox that cannot be resolved using small
gravitational corrections (as in the case of small inner products) but requires corrections
of order one. In [37], we investigated a toy model in empty flat space, which captures
essential features of the monogamy of entanglement paradox [12, 20] for old flat space black
holes within a clean calculational framework. We formulated the paradox in terms of the
monogamy of Bell correlations, which we used to quantify the monogamy of entanglement.
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Within EFT, we showed that the entanglement of smeared bulk modes just outside
a light cone with modes just inside the light cone and with modes situated at the past
of future null infinity gives rise to an O(1) violation in the monogamy of entanglement.
These regions mentioned above are denoted in Fig. 1.2. We argued that the resolution
of the paradox is that spatially separated observables probe the same underlying degrees
of freedom, i.e., such observables act on a non-factorized Hilbert space.

In our work, we will see that studying puzzles regarding the black hole’s interior allows
us to better understand specific issues related to gravity. We hope that a study of such
inconsistencies leads to an enhanced understanding of quantum aspects of gravity and
quantum mechanics of black holes.

In the later part of this chapter, we will describe the paradoxes first, stating the
underlying motivations and the problem statements. We will also briefly motivate our
resolutions to the paradoxes while not going too deeply into technical aspects, so that
reader can skim through this trailer and expect what lies ahead in the rest of the work.
Later on, we will give a technical overview of some of the pre-requisites in §2 and analyze
the paradoxes in significantly more detail afterward in §3 and §4.

1.1 The bags of gold paradox

The Bekenstein-Hawking entropy is a coarse-grained thermodynamic measure that states
that the entropy of the black hole is proportional to its area [38, 39]. It tells us that
a microscopic description of the black hole exists, with the number of the constituent
microstates being the exponential of the entropy.

SBH = A

4 (1.1)

A thorough understanding of black hole microstates’ features is a fundamental question
in itself with important implications for quantum gravity.

1.1.1 The paradox

We will briefly discuss the paradox now, which is essentially a question about the correct
counting of these microstates. Specific spacelike slices which go inside the black hole
interior become very large in volume for a choice of boundary time. Therefore these
slices can host a considerable number of semiclassical excitations far higher than what
the Bekenstein-Hawking entropy suggests, which leads to the paradox. We select these
excitations such that they live far apart from each other on the Cauchy slices, thereby
having zero spatial overlaps. The central question raised by the paradox is: How do we
understand these states in the interior, given that they are seemingly not reflected in the
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Figure 1.1: The left figure displays the maximal volume slices for the eternal AdS Schwarzchild black hole.
The volumes of these slices increasingly grow with boundary time t thereby becoming very large at late times.
The right figure demonstrates the bags of gold paradox for the eternal black hole on the maximal volume
slices. We can accommodate an increasingly vast number of excitations placed far apart from each other on
these slices which leads to the paradox.

Bekenstein-Hawking entropy?

In our analysis, we work with black holes in AdS, where we formulate the paradox
on "nice spacelike slices" of AdS black holes. These slices stay away from singularities
and significant curvature invariants everywhere. We pose the bags of gold problem in
this spacetime, allowing us to utilize the AdS-CFT machinery to dissect the problem.
We consider the eternal black hole [40] first, where we will demonstrate the paradox to
its greatest extent by considering slices which possess the largest volumes for a given
boundary. Maximizing the spacelike volume for a given value of the boundary time
constructs the aforesaid nice slice. The salient feature of such a slice is that its volume in
the interior becomes increasingly large as the boundary time grows. Consequently, at late
times we have slices with gigantic volumes. On these late time slices, we will fit in a high
number of semiclassical bulk excitations placed spatially far apart from each other such
that they have zero spatial overlap, and consequently are independent of each other. The
number of such excitations is much more extensive than what is stated by the Bekenstein-
Hawking entropy, which leads to our paradox. Figure 1.1 displays the physical picture
of the paradox. We are thus led to the question: Given that the Bekenstein-Hawking
entropy is the area divided by 4, how do we account for the ever-increasing number of
bulk excitations? Stated differently, does the entropy in equation (1.1) correctly count
all these excitations or not?

In addition to the standard formulation of the bags of gold paradox as described
above, we also argue that the effective field-theoretic description of the bags of gold
excitations is inconsistent with the late time description of black holes using random
matrix ensembles [19, 22, 41–49]. We will study spectral observables such as the energy
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level spacing distribution and the spectral form factor, which we expect to behave in
specific fashions for Gaussian unitary ensembles [41, 50–52]. We will show that an EFT
description of bags of gold excitations will violate these observables’ expected features
either qualitatively or quantitatively or in both fashions, thus leading to inconsistencies.

1.1.2 Proposed Resolution

Our proposed resolution to the above paradoxes is that we have tremendously overcounted
the bulk states in the interior. Semiclassical bulk states placed far apart from each other
in the interior are seemingly orthogonal. However, these states have small and significant
inner products between them, which deviates from the semiclassical expectation of zero
inner products. This is because in gravity, two coherent states corresponding to even
vastly different classical configurations have a small non-vanishing inner product. In other
theories such as a theory of electrodynamic interactions, two such coherent states can have
a vanishingly small inner product. In contrast, the inner product between coherent states
in gravity does not go to zero but saturates to a number that is larger than O(e− S

2 ). The
non-vanishing of inner products between two sufficiently distinct coherent states is the
primary reason leading to overcounting.

More generally, we will show that the maximum number of vectors with small inner
products that can be accommodated in a Hilbert space is exponentially larger than the
dimension of the Hilbert space. This kinematical statement justifies the existence of an
enormous number of interior bulk excitations leading to our paradox. As an example, if
the bulk Hilbert space’s true dimensionality is eS and the inner products between bulk
excitations are of order e− S

4 , i.e. greater than O(e− S
2 ); then the maximum number of

bulk excitations (m) with such small inner products is a vast number given by 1:

m ∼ eS × exp

e
S
2

2

. (1.2)

If we consider even a small system with dimension eS = 3.6 × 105 with inner products
of the order e− S

4 then we can fit in up to 105 × e300 vectors in the Hilbert space which
is a huge number, far more sizeable than the number of atoms in our known observable
universe (∼ 1078 - 1082).

We will pause here to discuss some points. A natural extension to our present discus-
sion is to study the paradox for single-sided black holes. We will do so using a setting
similar to the eternal black holes, which we display in Figure 3.3. We advocate the same
resolution for the single-sided paradox as we have for the eternal case. Another point is
that there exists an entirely different way to arrive at this paradox. The paradox also
arises if we glue inflating or FLRW regions inside the interior by using junction conditions

1§3.2 gives the details of this calculation.



6 CHAPTER 1. INTRODUCTION

[53–57]. These glueings result in similar spacelike slices which have huge volumes in the
interior. As a consequence of the paradox, it is also argued that the CFT does not con-
tain the interior states. In our work, we assume that a state-dependent map reconstructs
the black hole interior, thus describing the states behind the horizon [29–33]. Thus, by
definition, the CFT captures our bulk interior excitations. On a related note, [58, 59] also
discuss various subtleties regarding the problem of large interior volumes and advocate a
similar resolution.

1.2 Monogamy paradox in flat space

Next, we move on to the monogamy paradox in flat space. Originally proposed in [12],
the paradox was extensively discussed in [13, 20, 21, 29, 30, 33, 35, 60–78]. In particular,
Raju [60] showed that the essential features of the monogamy paradox for old flat space
black holes could be modeled using a setup in empty AdS, leading to a violation in
the monogamy of entanglement there. The salient point of this setup was that it did
not require the existence of a horizon, in contrast to the previous discussions of the
paradox. A physically interesting question is whether such a violation in the monogamy
of entanglement can be described within empty flat space, which resembles our observable
universe to a good approximation. Our present work deals with addressing this question.

1.2.1 The paradox

We will briefly discuss the paradox below. Consider an old evaporating black hole in flat
space at time t, such that t > tPage

2. The outgoing near-horizon Hawking modes are
strongly entangled with the near-horizon interior modes. For the final state to contain all
information about the initial state, the near-horizon outgoing modes must also be entan-
gled with Hawking modes that came out of the black hole at early times. However, this
situation points to a violation of the monogamy of entanglement, which is an unavoidable
consequence of quantum mechanics. This paradox is also closely related to the cloning
paradox, which states that within effective field theory, a nice slice can capture both a
diary thrown into a black hole and a reconstructed copy of the diary from the outgoing
Hawking radiation, thereby violating the no-cloning theorem.

The physical picture portrayed by both the cloning and the monogamy paradoxes is
that the interior should contain a copy of the exterior to resolve contradictions with basic
assumptions of quantum mechanics (more precisely, with quantum information theorems).

2For a black hole with initial entropy given by S which has evaporated to S’, the number of states
in the exterior is approximately eS−S′ . We thus pose the paradox for old black holes when the exterior
contains enough degrees of freedom, i.e., S′ < S

2 . Later on, in line with the principle of holography of
information [79–81], we will argue why we do not need to necessarily go beyond the Page time in order
to set up the paradox, as is done in the standard case.
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This picture is reflected within the important idea of black hole complementarity as
explored in [14, 15, 82–84].

A key idea here is that the monogamy paradox for flat space black holes depends only
on the entanglement of near-horizon exterior modes with near-horizon interior modes
and also with modes far outside the horizon (e.g., at past of the future null infinity, i.e.,
I+

− ). Consider the simple situation of a radially outgoing light cone at r = r0 in an
empty flat space, as shown in Figure 1.2. A monogamy-type paradox arises here also if
we study the entanglement of the modes smeared just inside the light cone (region A)
with modes smeared just outside the light cone (region B) and with another spacelike
separated region (region C) (See Fig. 1.2).

1.2.2 The toy model in flat space

We will extend the construction of [60] which investigated the monogamy paradox in
asymptotically AdS using Bell inequalities to asymptotically flat spacetime to under-
stand the case of old flat space black holes. As done there, we will formulate the paradox
using CHSH inequalities [85], a convenient restatement of Bell inequalities [86]. This
formalism allows us to make quantitative statements regarding the monogamy of entan-
glement [87, 88], in particular, it allows us to rephrase statements about the monogamy
of entanglement in terms of statements regarding the monogamy of CHSH correlations.

An essential ingredient that facilitates calculations in this setup compared to the
original paradox is that the Hamiltonian of gravity is a boundary term [89], and thus
can be used to construct a projector that projects onto the degenerate subspace of vacua
labelled by supertranslations.

Important features unique to our toy model in flat space

The vacuum and low energy structure of the Fock space of canonical gravity in flat space
is completely different from the same in AdS, due to the presence of supertranslations
and the absence of a mass gap. In particular, AdS has a unique vacuum, while the flat
space vaccua span a degenerate subspace, and should be specified by their value in the
supertranslation sector as well. We build upon previous works [79, 90–93] which have
clarified the vacuum structure of flat space, and our definition of relevant operators and
their subsequent representation in terms of the Fock space rests on the same. Here,
supertranslations are not crucial to setting up the monogamy paradox in flat space but
necessarily complicate the rather straightforward analysis in AdS since they introduce an
additional vacuum structure.

Note that in the treatment for the AdS case in [60], there exists a natural cutoff scale
set by the cosmological constant. However the issue for flat space gravity in d = 4 is more
complicated, and one needs to specify an infrared cutoff in order to properly define the
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A

B C

U = 0

V = 0

I+

I−

i0

i+

i−

I+
−

Figure 1.2: Here the red line U = 0 denotes a radially outgoing light shell. Regions A, B, and C are marked
in blue. We will study the entanglement of modes smeared over region A with modes smeared over B and C
and arrive at a paradox.

theory. Therefore in our work, we have introduced a new physically motivated projector
Pδ, which projects onto energy scales below an infrared cutoff denoted by δ, and utilize
the same to construct relevant operators which demonstrate the violation in monogamy
of entanglement in our toy model. Physically this means that in practice, we do not
work with operators that project onto the vacuum exactly but project onto states with
very low energies below an IR cutoff, say E < δ. This also generalizes the more abstract
projector onto the vacua introduced in the context of AdS [84] and in flat space [79], and
their subsequent role in how information is stored at the boundary [80].

While we can set up the monogamy paradox in flat space using the abstract projector
introduced in [79] (as we demonstrate), the main thrust of our work is to utilize our
physically motivated projector Pδ and use it to set up the monogamy paradox. In our
work, given the infrared issues, we firstly demonstrate how operators Ci living in Region
C in Fig. 1.2 which have almost the exact correlation with operators Ai in A as operators
Bi defined over B have with operators Ai up to O(

√
GN). Afterwards we then construct

them using our physically motivated projector Pδ. This requires certain conditions on the
smearing functions of relevant observables as we will qualitatively as well as rigorously
explain in detail in our work.

Since these operators in C are constructed such that the AC system has almost
identical CHSH correlators as the AB system and consequently the same entanglement,
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we have a quantum information-theoretic contradiction.

Other details about our toy model

Given that we define our operators Ai, Bi and Ci supported in regions A,B and C respec-
tively, the reader may ask what we mean by operator insertions in a theory of gravity. As
opposed to local quantum field theory, there exists no definition of local gauge-invariant
operators in a theory of quantum gravity. However, we will work with approximately
local operators in our case, which involves taking an operator and smearing it over a
small spatial interval. One way of thinking about such approximately local operators is
to regard them as gauge fixing (i.e., up to small diffeomorphisms) in the bulk. We will not
work with explicitly diffeomorphism invariant operators constructed using gravitational
dressing, like ones formed by attaching geodesics from the boundary. This is because the
paradox necessarily requires us to look at local bulk observables and such constructions
are by definition non-local.

1.2.3 Proposed resolution

We note that the violation in the monogamy is O(1), and cannot be removed by including
minor corrections of O(

√
GN), which are essential to the resolution of Hawking’s original

paradox and the bags of gold paradox [1, 5, 28, 40, 58, 94–96]. As we discuss below, this
is an important observation that strongly hints towards a resolution of the paradox via
complementarity, i.e., the interior degrees of freedom are complicated polynomials of the
exterior degrees of freedom. The commutators are of O(1) because in principle, we are
acting upon the same degrees of freedom in the interior and the exterior, and complicated
enough exterior operators can probe the information contained in the interior. The
resolution is not surprising given that the Hilbert space does not factorize upon spatially
partitioning a given manifold in a theory of gravity. This simple fact follows from the
Gauss constraint of gravity. An implicit ingredient in our local quantum field theoretic
construction is that the system partitioned into regions A,B, and C has factorized Hilbert
spaces. However, the monogamy statement here is not violated since upon turning on
gravity, the Hilbert space does not factorize, and consequently, the interior and exterior
degrees of freedom are not independent degrees of freedom. This is the primary origin of
the O(1) violation, demonstrating why local quantum field theory is not a good framework
for dealing with questions regarding quantum information and entanglement in gravity.

1.3 Organization of the thesis

After this initial motivation, we will discuss some essential aspects of quantum aspects
of black holes in §2. In particular, we will stress how QFT in curved spacetime leads
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to puzzles about quantum information and use it to study some standard information
puzzles regarding the black hole interior. In the same chapter, we will also develop
necessary tools relevant to understanding later discussions regarding the paradoxes.

In §3, we will discuss the bags of gold paradox in detail, while in §4, we will discuss
the monogamy paradox in flat space. We will first set up the paradox in detail in both
cases and then discuss our resolution. In the case of the bags of gold, we will perform
various consistency checks that demonstrate our proposal.

Finally, in §5, we will summarize the thesis, discuss various aspects, and outline related
directions. The Appendices contain results and calculations which are too detailed to be
included in the main body of our work.



Chapter 2

Brief review of relevant topics

This section will first develop the necessary tools to understand quantum field theory in
curved spacetime. In particular, we will stress how the regularity of correlators across
horizons plays an essential role in understanding the physics of horizons. We then discuss
black holes, the properties of black hole horizons, and, consequently, the laws of black hole
thermodynamics. We then formulate QFT in black hole spacetime and deduce interesting
properties for black holes like Hawking radiation and black hole evaporation.

In the later part, we use these essential tools to probe the black hole’s interior and ana-
lyze related puzzles. In particular, we demonstrate Hawking’s paradox and use statistical
properties of pure states to demonstrate why the paradox is not on a firm footing. We
then introduce two related paradoxes: the cloning and the strong subadditivity paradox,
and briefly argue their resolutions. The notion of black hole complementarity is then
introduced to discuss these issues. Finally, we discuss how to write interior operators
using state-dependent formalism.

These tools serve as primary foundations, building upon which we will discuss our
thesis work on the bags of gold and the monogamy paradoxes.

2.1 QFT in curved spacetime

First, let us review some basic tools involving quantum field theory in curved spacetime,
which is the leading order contribution to quantum gravity. The basic idea here is that of
a fixed background upon which quantum fields can fluctuate without changing the space-
time geometry. These fields include not only matter but also gravitons. The Lagrangian
density of a minimally coupled real scalar field is given by

L =
√

−g
2

(
gµν∂µϕ∂νϕ− m2ϕ2

2

)
(2.1)

11
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where gµν is the metric and g = det(gµν). The action is the integral over the Lagrangian
density

S =
∫
ddxL. (2.2)

The corresponding equations of motion are given by

1√
−g

∂µ
√

−ggµν∂νϕ+m2ϕ = 0. (2.3)

As in any quantum field theory the key observables are the vacuum correlators,

⟨0|ϕ(x1)ϕ(x2) . . . ϕ(xn)|0⟩ (2.4)

The critical feature that distinguishes QFT on a generic curved spacetime compared to
QFT in Minkowski space is that the vacuum is not invariant, i.e., not all observers moving
in the geometry will agree on a common vacuum. Consequently, the particle number is
not an invariant measure as well. This is a consequence of the fact that there is no
canonical choice of time.

We can quantize the scalar field system by imposing equal time commutation relations.
Since there is no canonical choice of time, we make a choice of time by hand, i.e. we fix a
spacelike slice upon which the canonical commutation relations are imposed. The metric
then splits up into the so-called ADM form

ds2 = N2dt2 − hij(dxi +N idt)(dxj +N jdt), (2.5)

where we have √
−g = N

√
h. The commutation relations on a fixed spacelike slice

labelled by t are given by

[ϕ(x, t),Π(x′, t)] = iδ(x− x′) (2.6)

2.1.1 Bogoliubov transformations

We write the mode expansion of the solution to the field equations in (2.3) as follows

ϕ =
∑
i

aifi(t, x) + a†
if

∗
i (t, x), (2.7)

where i labels the quantum number over which the sum takes place, such as, the energy.
Substituting (2.7) in the canonical commutation relations gives us the commutators for
the creation and annihilation operators

[
ai, a

†
j

]
= δij (2.8)
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provided the mode functions satisfy the following relation:

∑
i

√
−g

[
fi(t, x)g0µ∂µf

∗
i (t, x) − f ∗

i (t, x)g0µ∂µfi(t, x)
]

= δ(x− x′) (2.9)

One can now use the creation and annihilation operators to construct the Fock space.
The important point here is that one can perform the mode expansion of equation (2.3)
in terms of a basis of completely different modes as well, i.e.

ϕ =
∑
i

bigi(t, x) + b†
ig

∗
i (t, x). (2.10)

However since ϕ is the solution of a linear differential equation, therefore both mode
decompositions are just a simple change of basis related by a linear transformation.

ai =
∑
j

αijbj + β∗
ijb

†
j

a†
j =

∑
j

βijbj + α∗
ijb

†
j

(2.11)

and consequently the mode functions similarly satisfy

gi =
∑
j

αijfj + βijf
∗
j

g∗
j =

∑
j

β∗
ijfj + α∗

ijf
∗
j

(2.12)

This implies that the positive frequency modes in one basis are just a linear combination
of positive and negative frequency modes in another basis. Let us define the different
vacua as

ai |Ω⟩ = 0; bi |0⟩ = 0. (2.13)

By imposing the canonical commutation relations in the other basis, one can show that
the vacuum in not invariant, but rather there is a relation between the two vacua. In
particular one vacuum written down in terms of oscillators acting on another vacuum
resembles a squeezed state:

|Ω⟩ = exp
(1

2b
†
jcjkb

†
k

)
|0⟩ (2.14)

where the matrix cmj is defined as

cmj = −
∑
i

β∗
miγij (2.15)

such that the matrix γij represents the inverse of the matrix αij:

∑
i

αjiγik = δjk. (2.16)
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Note, however, that the correlators defined in equation (2.4) are still the invariant quan-
tities since the field operators remain unchanged under the Bogoliubov transformations,
which compensate for the transformation of the state.

2.1.2 Rindler / Unruh modes and Bogoliubov coefficients

To initially define the Rindler and Unruh modes, we first work in flat space in two
dimensions where the metric is simply given by

ds2 = dt2 − dx2 (2.17)

Here we can define the coordinates U = t − x, and V = t + x. In the region x > |t|, we
define the Rindler coordinates

U = −1
a

exp(−a ur)

V =1
a

exp(a vr).
(2.18)

III I

II

IV

U = 0, ur = ∞, tr = ∞, xr = −∞

V = 0, vr = −∞, tr = −∞, xr = −∞

Figure 2.1: The Rindler coordinates

We call this region quadrant I which is depicted in Figure 2.1. The metric in these
new coordinates takes the conformal form

ds2 = exp(2axr)
a2

(
dt2r − dx2

r

)
, (2.19)

where ur = tr − xr, vr = tr + xr. One can define other quadrants similarly by changing
the signs in front of the exponential, e.g. in quadrant III given by x < −|t|, we can define
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the coordinates

U = 1
a

exp(−a ur)

V = −1
a

exp(a vr),
(2.20)

while in region II given by t > |x|, we have

U = 1
a

exp(−a ur)

V = 1
a

exp(a vr),
(2.21)

while correspondingly in region IV given by t < −|x|, we have

U = −1
a

exp(−a ur)

V = −1
a

exp(a vr).
(2.22)

Rindler mode expansions

Since the modes are conformally flat, we can define a mode expansion similar to the
Minkowski expansion. For region I, this takes the form:

ϕI =
∫ dω√

ω

(
aωe

−iωur + bωe
−iωvr + h.c.

)
. (2.23)

The mode expansion takes a similar form for Region III, which is given by

ϕIII =
∫ dω√

ω

(
ãωe

iωur + b̃ωe
iωvr + h.c.

)
. (2.24)

Note that the exponential signs here are different since the Rindler time tr runs in the
opposite direction in Region III compared to Region I. Consequently, on the slice at t = 0,
we have the following mode expansion:

ϕ =
∫ dω√

ω

(
aωe

−iωur + bωe
−iωvr + ãωe

iωur + b̃ωe
iωvr + h.c.

)
. (2.25)

Similarly in global modes, the left moving and the right moving modes of the Minkowski
space can be written as:

ϕ =
∫ dω√

ω

(
cωe

−iω(t−x) + dωe
−iω(t+x) + h.c.

)
. (2.26)
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Unruh modes

In general, finding Bogoliubov coefficients denoting the change of basis from Minkowski
to Rindler modes is cumbersome. However, one can define Unruh modes and use them
to find the Bogoliubov transformation conveniently between the Rindler and the Unruh
modes.

Then the task of calculating Minkowski to Rindler Bogoliubov coefficients simplifies
since the Unruh and Minkowski vacuum is essentially the same. We will not compute
the Minkowski to Rindler coefficients explicitly but will outline the construction of these
modes.

The Unruh mode is defined as follows:

UU(ur) =e−iωur , In Region III

=eπω
a e−iωur , In Region I

(2.27)

which can be essentially written as

UU(ur) = a
iω
a U

iω
a . (2.28)

Note that U iω
a has a branch cut, which we can choose in the upper half plane. Apart

from this U does not have any singularities in the lower half plane. Consequently one can
analytically continue U in the lower half plane from Region III to Region I. This gives
rise to the extra factor of eπω

a in eqn (2.27).

Since these modes are analytic in the lower half-plane, it is easy to see that the modes
satisfy the following property

∫ ∞

−∞
dU U

iω
a e−iω′U = 0, for ω′ > 0 (2.29)

since the integral can be continued analytically in the lower half-plane and is zero. Thus
the Unruh mode has only positive Minkowski frequencies, and since there is no mixing
of positive and negative frequencies, both the Unruh vacuum and the Minkowski vacuum
are the same.

Using the ur coordinate one can similarly define the other Unruh ŨU(ur) mode as

ŨU(ur) =eiωur , In Region III

=e− πω
a eiωur , In Region I

(2.30)

We can similarly define the corresponding Unruh mode using the vr Rindler mode,
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which is given by

VU(vr) =e−iωvr , In Region III

=eπω
a e−iωvr , In Region I

(2.31)

while the other Unruh mode ṼU(vr) is given by

ṼU(vr) =eiωvr , In Region III

=e− πω
a eiωvr , In Region I

(2.32)

The mode expansion of the scalar field in the Unruh modes is given by

ϕ =
∫ dω√

ω

(
eωUU(ur) + ẽωŨU(ur) + fωVU(vr) + f̃ωṼU(vr) + h.c.

)
. (2.33)

From the Rindler oscillators defined in eqn (2.25), we can simply read off the Rindler to
Unruh coefficients:

eω = aω − e− πω
a ã†

ω

e
πω
a − e− πω

a
and ẽω = ãω − e− πω

a a†
ω

1 − e−2 πω
a

(2.34)

Using these Bogoliubov coefficients and equation (2.14), one can write the Minkowski
vacuum in terms of the Rindler vacuum as

|ΩM⟩ = exp
(∑

ω

e− πω
a a†

ωã
†
ω + b-terms

)
|ΩI,III⟩ (2.35)

One can expand this state which results in the well-known property of Minkowski vacuum
that it looks like a thermofield doubled state when written in terms of Rindler modes:

|ΩM⟩ =
∑
E

e− βE
2 |E,E⟩ (2.36)

where β = 2π
a

and E = ∑
ωnω is the energy of the state. Note that if we sum over one of

either the regions I or III, we get the canonical density matrix for the other region, i.e.

ρ(E) = e−βE∑
E e−βE (2.37)
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2.1.3 Bogoliubov coefficients from the universality of two-point
function

Consider a d + 1 dimensional spacetime where we introduce the coordinates U = t − r

and V = t+ r, such that the metric takes the form

ds2 = −dU dV + . . . , (2.38)

where dots denote the contribution from d− 1 transverse directions. Then any two-point
function on this spacetime has a universal part, which nicely reflects itself at short enough
distances. This arises from the fact that zooming into a region of spacetime reveals a
universal Minkowski-like behaviour at the leading order. In particular, given a state |ψ⟩
dual to a given geometry, the two-point correlator at short distances takes the universal
form:

⟨Ψ|ϕ(x1)ϕ(x2)|Ψ⟩ = C

|x1 − x2|
d−1

2
(1 + O (|x1 − x2|)) (2.39)

where C is a constant that can be fixed using the free scalar theory, i.e.

C = Γ(d− 1)
2dπ d

1 Γ
(
d
2

) (2.40)

Extraction of modes and Bogoliubov coefficients

An interesting property follows from here, which is relevant to our later discussion of
the monogamy paradox. Consider the regions A and B, which are situated just inside
and outside an outgoing light cone as shown in Fig. 1.2. Given the scalar field, one
can construct any general correlator by extracting the oscillator creation/annihilation
operator.

We will consider the case of Rindler smearing. To perform this, we introduce a tuning
function T (U) such that it is supported only on the small bounded regions and smoothly
dies off. Thus we define the smeared operators on the regions A and B by

αA = 1√
VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A

(
U

U0

)iω0

T (U) Φ(tA(U), rA(U),Ω)

αB = 1√
VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

B

(
U

U0

)−iω0

T (U) Φ(tB(U), rB(U),Ω)

α†
A = 1√

VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A

(
U

U0

)−iω0

T ∗(U) Φ(tA(U), rA(U),Ω)

α†
B = 1√

VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

B

(
U

U0

)iω0

T ∗(U) Φ(tB(U), rB(U),Ω)

(2.41)

Here rs and ts, where s = A,B denote the coordinates on the regions A and B. The
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key idea here is that the smearing function oscillates increasingly as we tend to go near
U = 0, and thus even a small interval very close to U = 0 is useful to extract out the
Rindler modes.

One can use the above oscillators to calculate the two-point function involving the
creation and annihilation operators. This ultimately gives us the Bogoliubov coefficients
as derived in equation (2.34). This is demonstrated in detail in [80].

The above statement is quite general, and one can use such correlations across a null
surface to extract details of the Bogoliubov coefficients, with the key feature here being
the fact that there is a universal part of the correlator that, in some instances, can be
extracted out by smearing over a bounded region. We will discuss further details of this
construction in §4.

2.2 Black holes

We will now move on to a brief review of black holes and their properties.

2.2.1 Schwarzchild black hole

The metric of the Schwarzchild black hole in four dimensional asymptotically flat space
is given by

ds2 = −
(

1 − 2m
r

)
dt2 + dr2

1 − 2m
r

+ r2 dΩ2 (2.42)

On inspecting the metric, we observe two different singularities, one at r = 0 and another
at r = rh. The singularity at r = rh is not a real singularity but a coordinate singularity;
however, the one at r = 0 is a real singularity. This can be seen because scalar curvature
invariants diverge at r = 0 but not at r = rh.

We can also use other convenient coordinate systems to see that the singularity is
essentially due to our choice of coordinate system. One such coordinate system is the
Tortoise coordinate system.

In addition, we can calculate the proper time it takes for an observer to fall into a
black hole. Using this, we can see that it takes a finite proper time to pass through the
horizon as well as the observer reaches the singularity in a finite proper time. Hence
we can see that the proper time analysis indicates that the observer should eventually
cross the horizon, even though by computing the redshift, they never appear to cross the
horizon.

As argued before, he coordinate singularity can be replaced using an appropriate
coordinate redefinition such as the Tortoise coordinate system. These coordinates can be
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defined so that the metric looks like

ds2 = f(r∗)
[
−dt2 + dr2

∗

]
+ g(r∗)dΩ2. (2.43)

To do this, we need to define

(
1 − 2m

r

)
dr2

∗ = dr2(
1 − 2m

r

) ; i.e. dr∗ = dr(
1 − 2m

r

) (2.44)

which leads to
r∗ = r + 2m log

∣∣∣∣r − 2m
2m

∣∣∣∣. (2.45)

This has the following falloff for the Tortoise coordinate: as r → 2m, then r∗ → 0. Next,
we define the following Rindler like coordinates:

U = − expα (r∗ − t) , V = expα (r∗ + t) (2.46)

Using these coordinates, the metric takes the form

dU dV = −α2 (dr∗ − dt) (dr∗ + dt) exp 2αr∗ (2.47)

Now near the horizon the exponential part, i.e., exp 2αr∗ can be expanded as

exp 2αr∗ = exp 2αrh
(
r − 2m

2m

)4mα
(2.48)

Setting 4mα = 1, the near horizon metric becomes proportional to dUdV . The exact
metric then becomes

ds2 = −dUdV
(

32M3 e− r
2m

r

)
+ r2dΩ2 (2.49)

which is non-singular as we take the limit r → rh. Here the horizon is at U = 0, and
we can smoothly extend the metric into the region U > 0, reminiscent of Rindler space
as discussed earlier. The true singularity at r = 0 cannot be removed by any coordinate
redefinition and can be seen from the divergence of scalar curvature invariants.

Once again, as in the case of flat space, we can define coordinates in different regions.
We can similarly define coordinates in "Region IV" where (U < 0, V < 0):

U = − expα (r∗ − t) , V = − expα (r∗ + t) . (2.50)

Here surfaces of constant t are given by fixing U
V

, while surfaces of constant r are given
by fixing UV . So constant r surfaces are hyperboloids in the U −V plane while constant
t surfaces are straight lines passing through the origin.

In terms of the Tortoise coordinate, the singularity r = 0 is same as r∗ = 0 and
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Figure 2.2: Penrose diagram for Schwarzchild black hole in asymptotic flat spacetime. Image taken from
Google.

UV = 1.

2.2.2 Penrose diagrams

In our work, we will use Penrose diagrams to study various spacetimes. These diagrams
are very useful to study classical solutions. They help visualize the causal structure by
compactifying the spacetime, especially the boundary structure. As an example, for the
case of the Schwarzchild black hole, we can define

x = arctanU ; ξ = arctanV (2.51)

while compactifies the spacetime to the region x ∈
[
π
2 ,−

π
2

]
and similarly ξ ∈

[
π
2 ,−

π
2

]
,

except the cutoff at UV = 1 or tan x tan ξ = 1.
We can now rotate the resultant diagram by 45 degrees in the anti-clockwise direction

in order to make null rays at 45 degrees. This gives us the diagram in Figure 2.2.

Flat Schwarzchild black hole

Let us briefly discuss Figure 2.2. The rightmost region is the exterior of the flat Schwarzchild
black hole. The lightlike asymptotic boundaries of this region are called the future null
infinity I+ and the past null infinity I−, while the spacelike boundary is denoted by i0.
The timelike boundaries are denoted by i±. Note here that the causal structure of light
rays is preserved as can be seen from the horizons, i.e., the light rays are either at 45
degrees or 135 degrees.

The leftmost region and the bottom part are the Kruskal extensions of this Penrose
diagram. This Kruskal extension corresponds to a wormhole-like geometry, indicated
by a common shared interior region connecting two different exterior boundaries. As
indicated in the figure, this region is causally disconnected from the exterior in the right
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Figure 2.3: Penrose diagram of eternal black hole in asymptotically AdS, where the blue slice is a nice slice,
i.e. a spacelike Cauchy slice that stays away from singularities.

region.

Eternal AdS Schwarzchild black hole

The Penrose diagram for the eternal black hole in AdS is similar apart from the asymptotic
boundary structure, as shown in Figure 2.3. This again has the wormhole connecting two
different exterior regions. The only difference from the Kruskal extension of the flat space
two-sided Schwarzchild black hole is in the presence of timelike boundaries in AdS, which
is different from the asymptotic structure of flat space.

Limitations of Penrose diagrams

While Penrose diagrams are handy for studying classical geometries, they may be mis-
leading when one tries to visualize certain features of gravity, especially quantum effects.
One crucial effect in black hole spacetimes is the infinite blue shifts that emerge when we
backtrace light rays to the past, which naively is not apparent in the Penrose diagram.

Another important example is an evaporating black hole, where the final state after
evaporation becomes a flat spacetime with propagating gravitons and matter. One may
try to modify the Penrose diagram here by adding an extra wedge to denote the final state
of the evaporating black hole. However, this conflicts with how information is localized
in a theory of quantum gravity [80].

2.2.3 Astrophysical black holes

If we restrict ourselves to classical general relativity, then the Schwarzchild black hole in
flat space is eternal. However, even in classical general relativity, the eternal black hole
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is not a very physical scenario since most astrophysical black holes are formed from an
initial state of gravitationally collapsing matter.

A very general class of such solutions is the Oppenheimer-Snyder-Datt solution. A
crucial ingredient leading to this solution is the Birkhoff theorem: any spherically sym-
metric solution of Einstein field equations is static, i.e., the Schwarzchild solution is the
unique solution in the absence of matter.

Now consider two regions, the collapsing matter, and the external region with no
matter. As Birkhoff pointed out, the external solution is just the Schwarzchild solution.
Regarding the solution in the region of constant matter, we can write the candidate metric
as

ds2 = −dτ 2 + Adr2 +XdΩ2 (2.52)

One can systematically solve for this metric, i.e., the coefficients A and X using a partic-
ular form for the stress-energy Tµν , and glue it appropriately with the exterior solution
to extract the physics of the solution. The solution’s causal structure involves forming
an apparent horizon that merges into the Schwarzchild event horizon towards the end of
gravitational collapse.

As we will see later, by incorporating quantum effects, the late time state of a black
hole is not a stable black hole solution but is a final state involving Hawking quanta.

2.3 Focussing, light rays and black hole horizons

In this section, we will first develop the necessary mathematical tools leading to the
derivation of the Raychaudhuri equation. Using the Raychaudhuri equation, we will
describe the focussing effect of light rays given certain restrictions on the energy condi-
tions. Finally, we will apply our understanding to black hole horizons and use it to prove
theorems regarding the same.

2.3.1 Lie transport

Let us start with the weel-known notion of parallel transport. Recall that parallel trans-
port is necessary to define geodesics, i.e. to implement ξa∇aξ

b = 0 where ξ denotes the
velocity field. The reason is clear when we write the geodesic equation

d2xb

dτ 2 + Γbac
dxa

dτ

dxc

dτ
= 0 =⇒ dxa

dτ
.∇a

dxb

dτ
= 0, (2.53)

Now if we set dxa

dτ
= ξa, then it follows that (ξa∇aξ

b) = 0.
We can similarly parallel transport a vector T b around a curve ξa = dxa

dτ
by ξa∇aT

b =
0. The implication here is that the T b’s angle with the curve ξa will not be the same but
depend on the manifold’s curvature.
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However, consider the following physical situation. Consider a fixed observer at a
certain altitude over the earth (not the geosynchronous orbit, but say the observer is
kept afloat by some rockets). The observer wants to keep their telescope oriented directly
outward. How can the vector describing their telescope’s direction be transported along
the observer’s worldline? In other words, how is the telescope vector T shifted along the
observer’s vector field O?

The Lie transport LOT = 0 is designed to describe this situation. Consider a curve
C which is parametrized by xµ such that the tangent vector is given by

uµ = dxµ

dλ
. (2.54)

Then the Lie derivative is given by

Luv
µ = uν∇νv

µ − vν∇νu
µ (2.55)

This definition can be extended to tensors as well.
More precisely, Lie transport preserves the observer’s angle with the telescope, and

the Lie derivative is the generator of the telescope’s transport along the observer’s curve.
Another way to understand the same is that parallel transport depends on the mani-

fold’s intrinsic properties like connection, curvature, etc., while Lie transport depends on
the curves only and is independent of the manifold’s properties.

Isometries

The defining property of a Killing vector field ζ is that it satisfies the Killing equation,
i.e., the equation where the Lie transport is precisely zero.

Lζgµν = ∇µζν + ∇νζµ = 0 (2.56)

One can study the transport of metric along Killing vector fields and use it to define
spacetime isometries. Spacetimes in which the above equation has a maximal number of
solutions to the Killing equation, i.e., d(d+1)

2 Killing vectors are called maximally symmet-
ric spacetimes. Important examples of such spacetimes are flat space (where the Poincare
group constitutes the isometries), Anti-de Sitter space, and de Sitter space.

Static and stationery spacetimes

Stationary spacetime means a spacetime with an asymptotically timelike Killing vector.
Static means a stationary spacetime in which the asymptotically timelike Killing vector
is hypersurface orthogonal, and therefore the metric components g0µ vanish.
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2.3.2 Raychaudhuri equation

Consider a congruence of null geodesics, which is defined by each geodesic passing through
a point through which no other geodesic passes. Therefore one can define a notion of
distance between the geodesics, which is a vector field measuring the deviation between
the geodesics. We will call the deviation vector field η.1

Let the tangent vector field be denoted by ξa. We can define the following tensor
using the tangent vector field

Bab = ∇aξb,

which tells us how the deviation vector field η is parallel transported, as we shortly see.
Since the deviation vector field η is Lie transported along a geodesic, the Lie derivative
with respect to the tangent vector field ζ is zero.

Lξη = 0 =⇒ ξa∇aηb − ηa∇aξb = 0 =⇒ ξa∇aηb = ηa∇aξb = ηaB
a
b (2.57)

The above equation demonstrates that B tells us how the deviation is parallel transported
along a geodesic ξ.

Note here that the deviation vector field is not unique. One can have different notions
of the deviation vector, and the above equation is valid for all.

Now consider the following expression

ξa∇a(ξbηb) = (ξa∇aξ
b)ηb + (ξa∇aηb)ξb (2.58)

Here we have used the fact that ξa satisfies the geodesic equation given by (ξa∇aξ
b) = 0.

The second term in the above equation is zero as well. One way is to choose the deviation
vectors such that ξ.η = 0.

Another way to see why ξa∇a(ξbηb) vanishes is to note that

ξa∇a(ξbηb) = (ξa∇aηb)ξb−(ηa∇aξ
b)ξb+(ηa∇aξ

b)ξb = (Lξη)bξb+ηa∇a

(
ξbξb
2

)
= 0. (2.59)

We have thus shown that the transport of the non-orthogonal part of η (i.e., η.ξ) along
the vector field ξ is uninteresting as it is constant. We now focus when η is orthogonal
to ξ, i.e. η.ξ = 0. Consider the case when we have the null geodesics

ξ.ξ = 0 (2.60)

Given this class of geodesics, we consider the equivalence class of the deviation fields

1Note that the choice of the deviation is not unique, as we will shortly demonstrate later on.
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given by shifting the deviation along ξ and parametrized by λ

η → η + λξ, (2.61)

which leads us to consider the two-dimensional vector space spanned by η and ξ. This
space is convenient to consider because (η.ξ) = 0. Let us now consider the induced metric
on this two-dimensional space hab.

Note here that picking up different representations of η does not lead to two different
answers. This is because of the fact

habη
a(ηb + λξb) = 0, (2.62)

since (η, ξ) = 0. The tensor B also has a well defined action on this two dimensional
space because

(Ba
b ηa)ξb = 0. (2.63)

The action is well defined because taking η → η + λξ doesn’t change (Ba
b ηa)ξb = 0. We

now want to decompose the tensor Bab in the following fashion

Bab = 1
2θhab + σab + ωab (2.64)

which resembles the standard stress energy decomposition of a fluid. Here the different
stress energy components have the following relations:

σab = σba ωab = −ωba σabh
ab = 0 (2.65)

Given the decomposition, we can multiply the same with hab on both sides, and write
down θ in terms of Bab and hab.

θ = Babh
ab. (2.66)

Our goal is to study the evolution of θ as we move along the geodesic flow. More precisely,
we want to study how dθ

dλ
changes along the vector field ξ. Substituting the form for Ba

b

in eqn. (2.66) and taking appropriate covariant derivatives, we get

ξa∇aθ = ξc∇c∇aξbh
ab. (2.67)

Let us now analyse the term given by ξc∇c∇aξb, which takes the form

ξc∇c∇aξb = ξc∇a∇cξb+Rd
cabξdξ

c = −(∇aξ
c)(∇cξ

b)+Rd
cabξdξ

c = Rd
cabξdξ

c−Xc
aXcb. (2.68)

If we take the trace after substituting the above simplification in eqn (2.67), we get the
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following expression for change of θ along the affine parameter

dθ

dλ
= ξa∇aθ = −Rcdξdξ

c −Xc
aX

a
c = −1

2θ
2 − σabσ

ab + ωabω
ab −Rcdξdξ

c. (2.69)

Next we consider geodesic congruences which are hypersurface orthogonal. In other
words, we restrict ourselves to the class where ξ = fdg. Since d2 = 0, acting with the
differential operator on ξ gives us

dξ = df ∧ dg = df

f
∧ ξ =⇒ ∇aξb − ∇bξa = Vaξb − Vbξa. (2.70)

This sets ωab = 0, as now we have

∇[aξb]n
a
1n

b
2 = 0. (2.71)

We will now enforce the weak null energy condition, which is a classically reasonable
assumption 2

Rcdξ
cξd = Gcdξ

cξd = 8πTcdξcξd > 0. (2.72)

Consequently we arrive at the following equation:

dθ

dλ
≤ −1

2θ
2. (2.73)

Integrating the same with respect to the affine parameter λ gives us an useful result for
focussing of light rays,

1
θf

− 1
θi

≤ 1
2(λf − λi). (2.74)

This implies that θ always decreases. Once you have a negative value of θi = −θ0,
therefore in affine time λf = 2θ0, θf → −∞.

2.3.3 Key properties of black hole horizons

Recall that in a black hole, the horizon bounds the interior region where gravity is so
strong that massless signals from the interior cannot escape to its complementary region,
especially to the asymptotics. In other words, say in asymptotically flat space, a black
hole horizon in asymptotically flat spacetime is the boundary of the causal past of the
future null infinity. This implies that the horizon is a global aspect of general relativity.

We will now list some theorems about the black hole horizons in asymptotically flat
space and sketch rough proofs. Note that all theorems are generalizable to other space-
times if we replace the asymptotic structure of flat spacetime with another asymptotic
region. In particular, we can replace the spacetime boundary given by future null infinity

2but not quantum mechanically, as we will see for the case of Hawking radiation
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(I+) using a timelike boundary such as that of Anti-de Sitter. The focus is more on the
physical aspects of the proofs and not on mathematical rigor.

• Theorem 1: Let the horizon be denoted by H. If events P1 ∈ H and P2 ∈ H, then
P1 cannot be in the causal past of P2.

Proof : If P1 is in past of P2, then there is a timelike curve connecting the two
events. Then by continuity, in the neighbourhood of P2 there are timelike curves
from P1 which connect to P2. By definition the neighbourhood of P2 is in the
causal past of I+. Therefore there exist timelike curves from P1 ∈ H to I+, thereby
contradicting the statement that P1 ∈ H.

• Theorem 2: A horizon cannot be an entirely spacelike surface.

Proof : Consider a point P ′ in neighbourhood of P ∈ H. From the point P ′, there
are timelike curves from P ′ to I+. As we move P ′ to P , the timelike curves have no
choice but to become null, as null curves are the boundary between timelike and
spacelike. Therefore the horizon is composed of spacelike and null curves.

Note that one could use Theorem 2 as a starting point to prove Theorem 1 as well.

• Theorem 3: Null curves cannot intersect. Consider two null curves, curve A
passing through points A, O, and C; and curve B passing through the points B, O,
and D, which pass through the common point O. Then there exists a timelike curve
from Curve A to Curve B.

Proof : If A,B,C,D are infinitesimally close together, then the segments AO, OD
are future directed null vectors. So (AO +BD)2 < 0.

Therefore the null generators of the horizon do not intersect.

• Theorem 4: Null generators are hypersurface orthogonal.

Proof : Let ξ be the null tangent vector to the horizon. Let us consider a spacelike
cut of the horizon. If ξ is not orthogonal to this cut, we have

ξ = h+O (2.75)

where h lies along the horizon and ⟨O, h⟩ = 0. Then h must be spacelike as the
horizon can have only spacelike and null tangents, and a null tangent can be formed
only from the addition of two spacelike. Therefore O = ξ − h is also tangent to the
horizon, and since it is on the horizon, it is also null. But then we have

ξ2 = (h+O)2 = ⟨h, h⟩ + ⟨O,O⟩ + 2 ⟨h,O⟩ > 0. (2.76)

which contradicts the fact that ξ is a null vector.
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Therefore the tangent vectors are hypersurface orthogonal. There exists no com-
ponent h of ξ that lies along the horizon, which has a non-zero overlap with the
spacelike cut of the horizon, and hence the null generators are orthogonal to any
spacelike slicing of the horizon.

2.4 Laws of black hole thermodynamics

This section will briefly describe how our discussion leads to the laws of black hole thermo-
dynamics. For simplicity, we will start with the second law of black hole thermodynamics
and then move on to the other laws.

2.4.1 The area Law

The area law is the second law of black hole thermodynamics. Recall that the horizon is
made up of hypersurface orthogonal null geodesics which obey the following properties:

1. As shown previously, null rays constituting the same can not intersect by theorem
3.

2. The null rays cannot hit a singularity by assumption.

Keeping in mind these properties, we are led to demand θ ≥ 0 in the Raychaudhuri
equation (see (2.69) and (2.73)), which essentially implies that

dA

dλ
≥ 0, (2.77)

i.e., the horizon’s area always increases classically, provided weak energy condition is
satisfied.

2.4.2 First law of black hole thermodynamics

We will now move on to the first law of black hole thermodynamics. In order to go into
the same, we first outline the notion of surface gravity.

Surface gravity and Killing/Affine parametrization

Consider a stationary spacetime with a timelike Killing vector χ at asymptotic infinity.
This vector χ becomes null at the horizon for the stationary black hole. We normalize at
asymptotic infinity

⟨χ, ∂
∂t

⟩ → −1. (2.78)
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Since the Killing vector becomes a null vector at horizon, ⟨χ, χ⟩ = 0. In general, if a
surface is given by f(x) = 0, the normal to it is ∇µf(x) = ∇µ (χ.χ). Then the defining
equation for surface gravity is given by

∇µ (χ.χ) = −2κχµ. (2.79)

Using the Killing equation, the above relation becomes

χa∇aχµ = κχµ. (2.80)

Parametrizing geodesics on the horizon using an affine parameter would have given us a
vanishing result on the right-hand side of the above equation. Therefore κ measures the
failure of the affine parameter to be a Killing parameter.

Now let χ = dx
dv

, where v is the Killing parameter. Set dλ
dv

= eκv, and a new vector
kµ = dxµ

dλ
. Therefore we have λ = 1

κ
eκv from dλ

dv
= eκv. Using this we can see that

χµ = dλ

dv
kµ = eκvkµ = κλkµ, (2.81)

which is the standard relation between the Killing vector on the horizon with the Killing
parameter and the null vector with the affine parameter. One can also show that

kµ∇µk
ν = 0, (2.82)

which is expected of a null geodesic.

1st law of black hole thermodynamics

In order to focus on the physical aspects concerning black hole thermodynamics, we
consider non-rotating black holes first. Let us begin by throwing some matter into the
black hole. The energy current is given by

jµ = T νµχν (2.83)

and therefore the increase in mass is given by

δE =
∫
jµdx

µdA =
∫
jµk

µdλdA =
∫
T νµχνk

µdλdA =
∫
Tµν (κλ) kνkµdλdA, (2.84)

where the last line follows from the earlier definitions. Using the Einstein equation, we
have

δE = κ

8πG

∫
Rµν (κλ) kνkµdλdA, (2.85)
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Consider the stress-energy that is thrown in in the form of a shockwave. One can locally
make the shear, and the strain vanishes up to the first order. Therefore we have

dθ

dλ
≈ Rcdk

ckd. (2.86)

This gives us the first law of black hole thermodynamics

δE = − κ

8πG

∫ dθ

dλ
λdλdA = κ

8πG

∫
θdλdA = κ

8πGdA (2.87)

where in the second step the boundary terms were dropped as θ = 0 at the beginning
and the end of the process.

We can similarly generalize the first law to the case of rotating black holes, which we
will not perform here, but the proof is straightforward.3

2.4.3 Zeroth and the third laws

In addition, there are two other laws of black hole thermodynamics as well. We will list
them below with brief motivation:

• Zeroth law: For a stationary black hole, the surface gravity κ is constant through-
out the horizon. This is the thermodynamic analog of constant temperature through-
out a body.

• Third law: Naively, one would guess that the statement for the third law takes
the form S → 0 as T → 0. However, this definition does not hold for a specific
class of black holes. In particular, the entropy is finite for charged black holes, i.e.,
Reissner-Nordstrom black holes, as the temperature goes to zero, i.e., T → 0, since
the black hole has a finite area for extremal solutions.4

Therefore a better formulation of the third law is that one cannot reach T → 0
through a finite process. Again this mirrors the third law of thermodynamics.

Further details of these laws and the proof of the first law for rotating black holes are
given in [97].

3A rotating black hole in asymptotically flat space, or the Kerr solution, has an angular momentum
J about an axis and charge M . The presence of two horizons characterizes such a solution. In addition,
there exists a region called the ergosphere, where an observer is dragged so strongly that it cannot rotate
around the black hole in a direction opposite to the angular momentum of the black hole. Note that
there is no analog of the Birkhoff theorem for such solutions.

4A Reissner-Nordstrom black hole is a black hole with a charge Q and mass M . The crucial property
of this black hole is that it has two horizons; as we take the limit Q → M , both horizons coincide while
the temperature goes to zero. The entropy, however, is still finite.
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2.5 Black hole evaporation and Hawking’s paradox

We will calculate the temperature of the Schwarzchild black hole here and show that
a black hole solution is not a static solution but evaporates after a finite time due to
quantum effects.

Originally used by Hawking, a convenient and physically illuminating way to derive
the temperature of the black hole is through ray tracing. We will briefly sketch the picture
here. Consider a black hole formed from the gravitational collapse of a shell. Then the
evolution of the state in the exterior can be understood as the evolution from I− to
H ∪ I+, where H denotes the horizon. Let us start with the following mode expansion
on I−

ϕ =
∫ aω√

ω

eikV

r
Ym (Ω) + h.c. (2.88)

The universe in given in the initial state |Ω⟩ such that

aω |Ω⟩ = 0. (2.89)

Let the coordinate V0 denote the last ray that gets stuck at the horizon rather than
escaping from the black hole. Now modes that escape to I+ can be related to modes
with support just before the last ray at V0 by ray tracing. Appropriately mapping such
rays gives rise to the ray-tracing formula

Uout = 4m+ δV + 4m log δV4m − Vs (2.90)

where Vs is the coordinate of the collapsing shell, and δV denotes the distance from the
last ray at V0. Very close to the last ray, the relation approximately becomes

Uout = 4m log δV (2.91)

Therefore a solution of the form eiωU on I+ can be backtraced to

(V0 − V )4iωM

4m , V < V0 (2.92)

using the ray tracing formula on I−. Then at late times, we can consider the mode
expansion

ϕ =
∫ bω√

ω

(V0 − V )4iωM

4m Ym (Ω) + h.c. V < V0

=
∫ cω√

ω

(V − V0)4iωM

4m Ym (Ω) + h.c. V > V0

(2.93)

where we demand that the final state is in the b − c vacuum. Then the transformation
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between the initial and the final state is just the Minkowski to Rindler transformation
which we discussed in detail before. Consequently an observer at I+ who observes only
the b modes finds the state |Ω⟩ to be appearing as a thermal density matrix, whose
temperature is

β = 8πM ; (2.94)

which is the Hawking temperature of the Schwarzchild black hole.
Note that there is a caveat to this analysis: from the ray tracing formula, an infinite

region near I+ is filled from a small region near V0 on I−. This leads to the blueshifting
of rays at O(1) frequencies at I+ when traced back to I−. This potentially takes us
outside the domain of effective field theory.

A better derivation of the temperature is by using universal properties of the two
point correlator to argue that the expectation value of the number operator is exactly
thermal. More precisely, the number operator of b modes have to satisfy

⟨b†
ωbω⟩ = e−βω

1 − e−βω (2.95)

in order to reproduce the correct near horizon properties of the correlator

⟨ϕ(t, r,Ω)ϕ(t′, r′,Ω′)⟩ . (2.96)

Note that a failure to reproduce the correct near horizon properties implies that the
geometry is not regular near the horizon, which is not the case. Hence we infer that the
Hawking temperature of the black hole is β = 8πM .

2.5.1 Hawking radiation

One can further use the properties of near horizon correlators to find pair production
across the horizon and, consequently, show that radiation is emitted from the horizon.
In order to understand this, we need to look at the correlation of right moving operators
dω behind the horizon and right moving operators bω outside the horizon. Note that the
annihilation operators dω in the black hole interior carry the opposite energy due to the
flipping of space and time.

Again in order to get the correct behaviour of the two point correlator ⟨ϕ(t, r,Ω)ϕ(t′, r′,Ω′)⟩
across the horizon, one needs to impose

⟨bωdω⟩ = e− βω
2

1 − e−βω

⟨b†
ωd

†
ω⟩ = e− βω

2

1 − e−βω

(2.97)
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Therefore, we develop a physical understanding of Hawking radiation from the above
equations. There is a pair of positive and negative particles at the horizon, and the
positive particle escapes to infinity. In contrast, the negative particle falls into the black
hole and decreases the mass of the black hole. Note that both particles are entangled in
this description. This is the basic process through which black holes evaporate.

This statement can also be understood as the fact that there is a positive outward flux
of energy at asymptotic infinity, while there is an inward flux of particles at the horizon.

Note that the quantum effects leading to Hawking radiation due to pair production
violate the weak energy condition that we used to derive the second law of black hole
thermodynamics. Therefore the weak energy condition used in the Raychaudhuri equa-
tion to obtain the focussing effect is no longer valid, and as a consequence, we can violate
the second law of black hole thermodynamics in the presence of quantum effects, i.e.„ the
area decreases as Hawking quanta escape the black hole.

2.5.2 Hawking’s information paradox

Let us now look at a puzzle related to the black hole interior, which arises due to black
hole evaporation. From the two-point function, the black hole emits information just like
a blackbody5. Therefore the black hole loses mass at the rate

dM

dt
= −σAT 4 (2.98)

Since the area of the horizon A and the temperature T of the black hole go respectively
as A ∝ M2 and T ∝ 1

M
, we find that the lifetime of black holes is of the order

tlife ∝ M3. (2.99)

Now consider a black hole formed from gravitational collapse, which is a pure state. Our
analysis of Hawking radiation suggests that the quanta that went out constitute a thermal
bath at a temperature given by β = 8πM . This implies that the escaped Hawking quanta
obey a thermal ensemble of uncorrelated particles, and the final state on I+ is a thermal
density matrix. This leads to a picture where there is an evolution from an initial pure
state to a mixed state described by a thermal density matrix.

However, this paradox is not a paradox since a large class of pure states can mimic
mixed states to exponential accuracy, as described in the next section. Consequently,
the above analysis of Hawking quanta is not sufficient to distinguish between a final pure
state and a final mixed state.

5Strictly speaking greybody factors may also be involved.
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2.6 Statistical properties of typical states

This section will attempt to precisely understand how certain states in a statistical en-
semble, called typical states, mimic thermal behaviour. We will revisit some properties
of typical states within a general formalism.

We consider a n dimensional Hilbert space such that n = expS. Let us work with
an orthonormal basis of states |ψi⟩ where i ∈ [1, n]. We will now write down the most
general pure state living on this Hilbert space:

|ψ⟩ =
n∑
i=1

ci |ψi⟩ where
n∑
i=1

|ci|2 = 1. (2.100)

Equation (2.100) describes a sphere S2n−1 where all these vectors live, which we previously
encountered in §3.2.1. We define the Haar measure on the pure states which guarantees
that each pure state is equally likely.

dµ = a dc1 dc
∗
1 dc2 dc

∗
2 . . . dcn dc

∗
n δ

(
1 −

n∑
i=1

|ci|2
)

(2.101)

Here a is fixed using the following condition:
∫
dµ = 1. (2.102)

The measure dµ is invariant under independent rotations of phases ci → eiαici. Now
consider a linear operator O acting on this Hilbert space H. We want to study the
properties of the expectation value ⟨ψ|O|ψ⟩ and also how it depends on ci’s. We argue
that for most choices of ci, the expectation value is independent of the typical state ψ
provided that n is very large. Firstly the average ⟨ψ|O|ψ⟩ over all states is given by

⟨ψ|O|ψ⟩ =
∫
dµ ⟨ψ|O|ψ⟩ =

∑
i,j

Oij

∫
dµ c∗

i cj. (2.103)

This integral is non-zero only if i ̸= j due to invariance of dµ under independent rotations
of phases ci → eiαici. Therefore we write

∫
dµ c∗

i cj = Ai δij, where Ai =
∫
dµ |ci|2 (2.104)

Since all ci’s enter the measure in an equivalent way and dµ is independent under per-
mutations of ci’s, the index i on Ai is redundant. Therefore Ai ≡ A =

∫
dµ |ci|2. In order

to evaluate A we now sum over all ci’s in equation (2.104).

A =
∫
dµ1 = 1

n
. (2.105)
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We use the value of A to imply that:
∫
dµ c∗

i cj = 1
n
δij =⇒ ⟨ψ|O|ψ⟩ =

∑
i,j

Oij

∫
dµ c∗

i cj = 1
n
Oij = Tr [ρΩ O] , (2.106)

where ρΩ = 1
n

is the microcanonical density matrix. We thus conclude that the the average
of the expectation value of operators over all typical states is that of the maximally mixed
state. We now want to understand how close is the expectation value of an operator is
to the maximally mixed state. In order to do this we need to look at the variance which
can be similarly calculated in the following equation:

[⟨ψ|O|ψ⟩ − Tr (ρΩ O)]2 = 1
eS + 1

[
Tr (ρΩ O

2) − Tr (ρΩ O)2
]

(2.107)

We see that the variance is exponentially small in entropy. Therefore we conclude that
most pure states must look exponentially close to the mixed state, or else we will obtain
a more significant number in the variance. Therefore almost all states mimic thermal
behaviour, which justifies our claim that almost all states |ψ⟩ are typical |TYP⟩. As a
result, we write for almost all such states:

⟨TYP|O |TYP⟩ = Tr [ρΩ O] + O
( 1
eS

)
. (2.108)

An important assumption that goes into calculating the variance is that the degree of the
operator k is small compared to the dimension of the Hilbert space k ≪ n. A violation
of this property leads to a more substantial variance. Therefore, we demand that the
number of operator insertions is much smaller than the Hilbert space’s dimension. The
degree k being small provides a statistical basis for imposing this condition on operators
in the small algebra and is the boundary counterpart of demanding that the backreaction
due to operator insertions is small.

Now consider the case where we are looking at energy eigenkets spread over ∆E such
that ∆E ≪ E. In this limit, the canonical density matrix approaches the microcanonical
density matrix. Each typical state therefore satisfies the following property:

⟨TYP|O1 O2 . . . Ok |TYP⟩ = 1
Z(β)Tr

[
e−βH O1 O2 . . . Ok

]
+ O

( 1
S

)
(2.109)

where we have replaced the microcanonical ensemble with the canonical ensemble. Here
again the number of operators k is much smaller than the entropy of the state, k ≪ n.
(2.109) essentially says that k-point correlators on the typical state are indistinguishable
from thermal k-point correlators up to O

(
1
S

)
corrections. This kinematical statement

about the correlators is quite surprising; any typical state exhibits such behaviour.

We will clarify a physical question here. How does the typical state know about the
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inverse temperature β? This information is contained in the number of energy eigenstates
comprising the typical state and the energy interval where the states live. Hence the
system knows about the temperature.

The analysis in this section also addresses the question of Hawking’s paradox. Since we
have established that typical states are exponentially close to mixed states in an ensemble
and constitute most of the states in a statistical ensemble, Hawking’s calculation is not
precise enough to determine that the final state is a thermal state.

2.7 The cloning and strong subadditivity paradoxes

This section will look at two closely related puzzles regarding the black hole interior: the
no-cloning and the strong subadditivity paradoxes [12].

2.7.1 Cloning paradox

Consider a nice slice in a black hole spacetime that stays away from singularities and is
spacelike everywhere. We call such a slice a nice slice. Now consider an old black hole
that has evaporated past the Page time.6

We are concerned with slices that asymptote to substantially late times in the exterior.
This captures almost all the outgoing Hawking radiation. Now consider some infalling
matter, whose state is given by |ψ⟩. Therefore, this slice has two copies of information
from different regions, one from the infalling matter itself and another reconstructed from
the Hawking radiation. In other words, it seems that the Hawking process leads to the
following situation with two copies of the state on the nice slice:

|ψ⟩ → |ψ⟩ ⊗ |ψ⟩ . (2.110)

However, the above scenario contradicts the no-cloning theorem, which follows from a
fundamental assumption of quantum mechanics, i.e., the unitarity assumption. We will
now describe the proof of the no-cloning theorem in quantum mechanics.

The no-cloning theorem in quantum mechanics

Consider a factorized Hilbert space H = HA ⊗ HB denoting two subsystems A and B,
such that HA = HB. Using unitary operations, we want to copy a generic state |ϕ⟩A over
an "ancilla" state of the subsystem B given by |e⟩B to obtain |ϕ⟩B. In other words, we

6The Page time as defined here is half of the black hole evaporation time. The original motivation
of Page was to treat a black hole as a factorized system where we have separate interior and exterior
subsystems and quantify the flow of information between these subsystems. However, as we shall argue
later on, this assumption conflicts with the Gauss constraint of gravity.
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want to start with the initial composite system given by

|X⟩in = |ϕ⟩A ⊗ |e⟩B (2.111)

and show that there exists no unitary operator U 7 that takes us from the above initial
state to the following final state

|X⟩out = |ϕ⟩A ⊗ |ϕ⟩B . (2.112)

To demonstrate the proof, we consider two arbitrary states |ϕ⟩ and |ψ⟩ in the Hilbert
space HA. Then the unitary operator U operates on the initial state and takes it to the
final state

|ϕ⟩A ⊗ |e⟩B → |ϕ⟩A ⊗ |ϕ⟩B (2.113)

and similarly
|ψ⟩A ⊗ |e⟩B → |ψ⟩A ⊗ |ψ⟩B (2.114)

Since the operator is unitary the inner product between the two initial states and the
two final states must be the same. This implies

|⟨ϕ|ψ⟩|2 = |⟨ϕ|ψ⟩| (2.115)

which implies that either |⟨ϕ|ψ⟩| = 1 or |⟨ϕ|ψ⟩| = 0. But his implies that the states |ϕ⟩
and |ψ⟩ in the Hilbert space HA are specially selected and not arbitrary. Hence such an
operator U does not exist for a generic state.

One can also write down the representation of the unitary operator on the two-
dimensional subspace of initial and final states, and using unitarity show that such an
operator has a particular action and does not exist for a generic state.

Why the paradox may be ill posed

Note that this paradox cannot be resolved through small corrections of O(
√
GN) and is

an O(1) paradox.
In this regard, one might state the following reasons why the paradox can potentially

be ill-defined:

1. The paradox is difficult to observe since one needs to collect all the escaped Hawking
radiation and then perform a quantum computation of the radiation. Then in
order for the infalling observer to violate the no-cloning theorem, the details of this
quantum computation have to be sent to the infalling observer, which then has to
perform a measurement that demonstrates the violation of quantum mechanics.

7which in our case is the unitary time evolution operator
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Such a violation is seemingly hard in practice.

2. There exists a firewall at the horizon.

Even though the measurement of violation may be hard, a copy of the information on
the nice Cauchy slice still exists. In addition, firewalls imply a breakdown of effective
field theory, especially the two-point correlator across the horizon, which apriori seems
unnecessary. We will not further look into the firewall story in our work for these reasons.

2.7.2 Strong subadditivity paradox

This paradox is closely related to the cloning paradox, as described earlier. We will first
explain the statement of strong subadditivity, which is a fundamental theorem involving
Von Neumann entropies of subsystems.

Consider a tripartite system’s Hilbert space denoted by

H = HA ⊗HB ⊗HC . (2.116)

The strong subadditivity theorem states that

SABC + SB ≤ SAB + SBC (2.117)

Stated a different way by adding and removing a system D on this tripartite description,
one has the following relation

SAB + SBC ≥ SA + SC . (2.118)

We will be concerned with this above statement of strong subadditivity in our work.

The paradox

We look at three different regions given a black hole.

1. Region C just inside the horizon.

2. Region B just outside the horizon

3. Region A which is the rest of the slice outside the horizon.

In our discussion, we will neglect the entropy of the vacuum and will subtract this leading
correction. For our discussion, we assume that the entropy of region A follows the Page
curve, i.e., it attains a maximum value at the Page time tPage and gradually reduces
afterward till the black hole completely evaporates. We consider the situation where we
are after the Page time.
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All the three regions A, B, and C have Hawking quanta in them, which dynamically
shifts between these three regions, i.e., the quanta in Region B move out to region A after
a certain time interval. As a result, we can write

SA(t+ δt) = SAB (2.119)

where δt is the light crossing time for Region B. Then it trivially follows that

SAB < SA. (2.120)

Next the Hawking radiation in Region B and C are highly entangled. This means that

SBC < SB ≈ SC . (2.121)

Both B and C are approximately thermal when viewed independently but are almost
pure when viewed together. As a consequence, adding SAB and SBC up we obtain

SAB + SBC ≤ SA + SC . (2.122)

This indicates a violation of strong subadditivity as quantitatively posed in equation
(2.118). The violation of strong subadditivity is a statement about the violation of
monogamy of entanglement: If Region B is entangled with Region A, then it cannot
be entangled with Region C. Here Region B is entangled with Region A due to unitary
evolution and with Region C due to the smoothness of the horizon.

Just as in cloning paradox, the strong subadditivity violation is an O(1) violation and
is closely related to it as well. The fact that B is entangled with A and C is similar to
the paradox that quantum information is cloned on A and C.

2.7.3 Resolutions

One trivial way these paradoxes are resolved is due to the appearance of structure at the
horizon, i.e., fuzzball/ firewall kind of proposals. However, we focus on a more plausible
aspect that does not deal with the breakdown of effective field theory at the horizon.

The essential feature here which resolves the paradox is the fact that in gravity, the
regions A, B, and C are not independent, i.e. the decomposition assumption

H = HA ⊗HB ⊗HC . (2.123)

is incorrect. This essentially gives rise to the above-mentioned O(1) violation.



2.8. BLACK HOLE COMPLEMENTARITY 41

2.8 Black hole complementarity

The key idea of black hole complementarity is that different observers observe physics
differently, with none spotting a violation, i.e., one can have two alternative descriptions
of the black hole [14, 15]. These descriptions can be listed as follows, and the goal of this
section is to explain these statements in detail:

1. An outside observer who can think of a "membrane" at the stretched horizon and
consider unitary evolution. Here the stretched horizon is defined as

r = rh + l2P
rh
. (2.124)

The above equation implies that the stretched horizon area is l2P larger than the
event horizon.

2. An infalling observer who sees a smooth horizon but cannot verify unitarity since
they perish into the singularity before being able to perform any such experiment.

As we will show later on, one can formulate a stronger statement of black hole com-
plementarity using the non-factorization mentioned above of the Hilbert space while
considering high point correlators.

2.8.1 Thought experiments involving complementarity

We will briefly review the approach of [14, 15] here, who considered thought experiments
to show that no observer can detect complementarity without knowing about Planck scale
physics.

Existence of a stretched membrane

Consider an infalling observer who sends messages reporting the smoothness of the hori-
zon to an asymptotic observer. The redshift factor here is given by

ω∞ =
√

1 − rh
r
ωin (2.125)

which at the stretched horizon becomes

ω∞ =
√√√√1 − rh

rh + l2P
rh

ωin = lP
rh
ωin (2.126)
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The asymptotic observer is in a bath of radiation at temperature T ∝ M−1. To be able
to read a message the outside observer requires a frequency

ω∞ >
1
rh

=⇒ ωin >
1
lP
. (2.127)

Consequently, beyond the stretched horizon, the infalling observer has to use Planckian
frequencies to communicate the absence of a membrane to distinguish the signal from the
bath.

Alternatively, one can say that the acceleration required by an observer to go up to
the stretched horizon and then escape outside is of the order

a ∼ 1
lP

(2.128)

which again requires the knowledge of Planckian physics to confirm the existence of a
stretched membrane.

Is cloning possible?

Let us study whether the infalling and the exterior observer who falls in later can detect
information cloning.

Consider a situation where the first infalling observer crosses the horizon at V = 1.
The second observer waits for a time longer than the Page time, decodes the Hawking
radiation, and then jumps in at a late enough time, say of the order

V = exp
(
tPage
2rh

)
= exp rhK

(
rh
lP

)
(2.129)

where K is a numerical constant. Recall that the singularity is at UV = 1. Consequently
the first observer has to send a message before

U = exp
(

−tPage
2rh

)
(2.130)

in order for the second observer to receive the same. It can be shown that the maximum
proper time for the first observer to send this signal is

rh exp
(

−r2
h

l2P

)
(2.131)

which is simply the fact that the first observer has to use Planckian frequencies to send
the signal. In general, as long as the later observer jumps after

t = rh log rh
lP

(2.132)
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the first observer has to use Planckian frequencies.

Preskill Hayden time

Consider the following question: Suppose a black hole has evaporated past the Page time,
and someone collects all the radiation till that time. Now, if you throw new information
into the black hole, how long will it take before it emits the same?

It was argued in [19] that the black hole will emit this radiation in the time

t = rh log rh
lP
. (2.133)

The key idea in [19] is that the time it takes for the black hole to collect the information
about the diary is the same time that it takes for the black hole to scramble the infor-
mation of the diary over its degrees of freedom, which is a much shorter time scale as
compared to the evaporation time scale.

This time scale is reminiscent of the time scale encountered in the cloning process
and, more generally, is the threshold bound for black hole complementarity. In a certain
sense, the existence of this time scale demonstrates that it is impossible to obtain the
cloning of quantum information without going to Planckian frequencies.

2.8.2 Loss of locality in high-point correlators

The description here follows the analysis of [29–33]. Previously, the focus was not on
how to read information in Hawking radiation using local observables. The focus of this
subsection is that the exterior and interior regions are not independent. More precisely,
on a nice slice, the statement of complementarity that resolves cloning paradox (and also
has implications for the strong subadditivity paradox) is given by

ϕ(xin) = P
(
ϕ(xout1 ), ϕ(xout1 ), . . . , ϕ(xout1 )

)
(2.134)

Note that in ordinary quantum field theories such as scalar field theory such a relation is
manifestly wrong since causality implies that for spacelike points xi and xj, with xi ̸= xj

on a slice
[ϕ(xi), ϕ(xj)] = 0. (2.135)

The roots of this statement lie in the fact that there is a Gauss constraint in gravity. A
qualitatively similar statement can also be displayed in the case of gauge theories. We
will further look into such issues in §4.
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2.9 Interior operators in the state-dependent formal-
ism

In this section, we review the construction of state-dependent operators describing modes
behind the horizon [29–33]. This construction is similar to both pure and eternal black
holes. For eternal black holes, the CFT observables mean the right CFT’s observables,
which are our objects of interest.

We start with the black hole state |ψ⟩ whose average energy is given by E. Firstly an
algebra A8 is generated by simple operators which are defined as operator polynomials
of degree n such that n ≪ N , where N is the central charge of CFT (N = N2). We will
call this algebra the small algebra. The small algebra is associated with the state |ψ⟩ and
omits the Hamiltonian. We exclude the Hamiltonian because we do not want to include
any annihilation operators in the algebra, and the Hamiltonian annihilates the state, i.e.,
(H − E) |ψ⟩ = 0. However, we want the algebra to be approximately closed under time
evolution.

Keeping these aspects in mind, we construct and work in the small Hilbert space,
which is obtained by the action of these simple operators on the state |ψ⟩.

H|ψ⟩ := A |ψ⟩ (2.136)

By doing this, we have laid out the basic framework in order to derive various ax-
iomatic/algebraic QFT results. Note that this construction does not involve a doubling
of the Hilbert space. In particular, provided the algebra A is a Von Neumann algebra,
we can derive the Tomita-Takesaki theorem, which constructs a commutant algebra A′

for us.
To state the theorem, we firstly define the following antilinear map from S : H|ψ⟩ →

H|ψ⟩ and O ∈ A.
S O |ψ⟩ = O† |ψ⟩ (2.137)

We now decompose the operator S as S = J ∆1/2, where J is an anti-unitary operator
and ∆ is Hermitian. Consequently we have S†S = ∆. The Tomita-Takesaki theorem
says that there exists a commutant algebra A′ ≡ J A J, with the property that operators
Õ ∈ A′ defined by Õ = JO J commutes with all elements O′ ∈ A

[
Õ, O′

]
= 0. (2.138)

8The picture to keep in mind is that of a Von Neumann algebra, which is basically a set of bounded
operators closed under certain operation. More precisely, in quantum gravity, we do not deal with Von
Neumann algebras, but rather a subspace of bounded operators (constructed using smearing), which
approximates a Von Neumann algebra to a good degree. This is because the space of bounded oper-
ators is not closed under multiplication of operators, and one can go out of this space using repeated
multiplication.
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Since ∆ is Hermitian, we express it as ∆ = exp{−K}, where K is defined as the modular
Hamiltonian for the algebras A and A′ generating the Hilbert space H|ψ⟩, and is expressed
in terms of the antilinear operator S as:

K = − logS†S. (2.139)

Our job now is to construct the precise form of the modular Hamiltonian and the tilde
operators. To construct these, we will apply the above construction to a system with
Hamiltonian H acting on the state |ψ⟩. As given in [98], the modular Hamiltonian up to
the leading order in N takes the form:

K = β(H − E) + O
( 1
N

)
(2.140)

where E is the average energy of the state ψ on which it is acting. Therefore to the
leading order in N one can give a precise form for the Õ operators. Using the definition
given in equation (2.137) with the definitions given by S†S = ∆ and Õ = JO J, we can
write down the action of the Õ operators on the Hilbert space:

Õ(ω)O′ |ψ⟩ = O′ e−βω O†(ω) |ψ⟩ & [H, Õ(ω)]O′ |ψ⟩ = ω Õ(ω)O′ |ψ⟩ . (2.141)

The state-dependent operators Õ describing the right moving modes in the interior are
thus constructed in the above fashion. The commutant algebra allows us to impose
causality and locality between the interior and the exterior operators. The role of modular
operators is to push the excitations behind the horizon. The unique feature of this
construction is that this follows naturally for any well-defined quantum field theory,
provided the algebra of simple operators satisfies the requirements mentioned above.
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Chapter 3

The bags of gold paradox

Overview of results

Following our initial motivation and basic tools, we will now overview our results quickly.
§3.1 poses the paradox discussed above for eternal black holes in detail. §3.2 discusses
our proposed resolution, where we also determine the maximum number of vectors that
can be fit inside a Hilbert space with small inner products. In §3.3, we demonstrate
that the paradox does not show up in the fine-grained entropy of the CFT. From the
CFT perspective, the action of state-dependent operators on the state of the black hole
generates the interior bulk states in our construction. We show that the bulk state
produced by the action of interior operators on the thermofield double state [40, 99, 100]
does not lead to any change in the Von Neumann entropy of the CFT. We also calculate
the fine-grained entropy using quantum extremal surfaces for the eternal black hole. These
surfaces do not enter the black hole interior and, therefore, do not capture our interior
excitations. Consequently, there is no paradox in the dual CFT. These observations
strongly support our claim that the interior states arise due to overcounting and are not
independent excitations in quantum gravity.

In the bulk description, it is essential to understand the behaviour of the interior
excitations. From the CFT perspective, our excitations appear to be in equilibrium when
probed using simple operators in the right side CFT. However, they are out of equilibrium
when probed with operators belonging to the complement of the small algebra of simple
operators 1. These properties of the excitations lead to a bulk picture of the excitations
arising from the left-past horizon of the eternal black hole and travelling through the left
side. Afterwards, they fall into the left future horizon where they go on and intersect
the nice slices. The above nature of the excitations physically demonstrates the paradox
in Figure 3.1 where different excitations come out of the left horizon at particular times
governed by the unitary operator U(t). The initial bulk state of the excitations on the

1See §2.9 for the definition of simple operators, the small algebra and its complement

47
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black hole is a Euclidean black hole glued to the Lorentzian geometry [101, 102]. Here
the excitations are generated using operators at the Euclidean AdS boundary (See Figure
3.2).

We estimate that two excitations placed far apart on the nice slices of single-sided
black holes have an overlap larger than O(e− S

2 ). Such an overlap strongly backs our
resolution involving small inner products and is the topic of §3.5. We discuss how the
treatment of bags of gold excitations using effective field theory violates black holes’
expected spectral properties in §3.6. We provide some toy examples of bags of gold con-
figurations there, which violate the qualitative and quantitative features of spectral form
factor and energy level spacing distribution. We also argue how our resolution fixes these
issues. Next, we explicitly demonstrate that there can be a large number of excitations
living in the black hole interior using toy models in §3.7. These toy models are small
N matrix models in which we first construct a typical state [103–105] in order to model
single-sided black holes. We then use the typical state and the small algebra to construct
the small Hilbert space2 describing interior bulk excitations. Random combinations of
operators living on this small Hilbert space gives rise to smeared bulk excitations. We
see that the small Hilbert space can embed a large number of states having small inner
products with each other. We then construct states resembling excitations placed far
apart from each other on the Cauchy slice in these matrix models. These states have
small inner products, thereby confirming our resolution discussed in §3.5.

It is natural to ask why such an overcounting does not occur for quantum statistical
systems and is special to black holes. Consider a statistical system which has a Hilbert
space of dimension m. One can apply our resolution to this system and ask whether this
system has a much smaller dimension n, with m ≫ n. While we can kinematically pose
such a statement, such a situation leads to discrepancies in thermodynamic observables.
Another consequence of such a modelling is that forbidden quantum state transfers can
occur in the larger system modelled with n vectors. We discuss these issues in §3.8.

3.1 The bags of gold paradox for the eternal black
hole

This section will outline the construction of the maximal volume surfaces. Afterwards,
we will place excitations on these slices. Lastly, we will pose and discuss the paradox in
detail.

2See §2.9 for a review of the state-dependent formalism and associated definitions. Loosely speaking
this is also known as the code subspace.
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3.1.1 Maximum volume slices in the interior

Consider an eternal black hole at boundary time t as in Figure 1.1. We want to construct
nice slices which stay away from singularity everywhere and possess the maximum volume
for a given boundary time t. We will work with the AdS Schwarzchild metric in d + 1
dimensions is given by

ds2 = − 4f(r)
f ′(rh)2 e

−f ′(rh)r∗
duk dvk + r2dΩ2

d−1, (3.1)

where f(r) = r2 + 1 − C
rd−2 , rh is the black hole horizon and r∗ is the tortoise coordinate.

The subscript k denotes Kruskal coordinates. Our goal is to show is that the interior’s
volume grows as we increase the boundary time t.

Since the paradox involves only the interior, a demonstration of the growth of the
interior volume will be sufficient for our purposes. Instead of parametrizing the slices
with the boundary time, we will parametrize them using the Kruskal coordinates (u0, 0)
on the left horizon and (0, v0) on the right horizon, as shown in Figure 3.1. Thus we change
our problem to a similar one where we compute the maximum volume of slices which end
at (u0, 0) on the left horizon and (0, v0) on the right horizon. This problem has two
advantages. We see the first advantage of calculating the maximal volume surfaces in the
case of single-sided black holes in §3.5. These black holes possess the entire interior region
but do not have a boundary time on the left. Therefore we can utilize this construction
of maximum volume slices for the single-sided case. This problem also overcomes the
problem of infinite exterior volumes 3.

We set u0 = v0 using the isometry of AdS spacetime. It is convenient to use the
infalling Eddington-Finkelstein coordinate v = t+ r∗ in order to calculate the maximum
volume surfaces.

ds2 = −f(r) dv2 + 2dr dv + r2dΩ2
d−1 (3.2)

Note that v here is different from the Kruskal coordinate vk. We define an affine
spacelike parameter σ to parametrize the nice slice. We now need to extremize the
following volume integral to obtain the maximum volume of these surfaces.

V = Vd−1

∫
dσ rd−1

(
−f(r) v̇2 + 2ṙ v̇

) 1
2 , (3.3)

where Vd−1 is the volume of the (d − 1) spherical ball. We end up with the following
expression for the volume [106–108]:

V = βA(rmin)
2π log u0 + O (1) (3.4)

3though this can also be tamed by introducing a boundary cutoff.
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where A(rmin) and O (1) are terms of order one which do not grow with u0. In equation
(3.4), rmin is determined using

f(rmin) r2(d−1)
min + E2 = 0, (3.5)

where E is a conserved quantity E = −∂L
∂v̇

with L denoting the integrand of equation
3.3. The volume extremization, derivation of the resulting equation (3.4) and A(rmin) are
calculated in Appendix 6.3. The important observation here is that the interior volume
of the nice slice increasingly grows with the Kruskal time. The physical reason is that
the wormhole grows larger and larger with Kruskal time.

3.1.2 Placing semiclassical excitations on the nice slice

Since the volume of the nice slice in the interior keeps increasing with the Kruskal time,
the interior can accommodate an increasingly large number of semiclassical excitations
far apart from each other such that their spatial overlaps with each other are zero. At
late times the slice’s volume goes to infinity, and therefore a high number of excitations
can be placed far apart from each other. These interior excitations are created by acting
with unitary operators on the right CFT in the thermofield double state. Eqn. (3.6)
describes an interior excitation,

|ψe1⟩ = C1 e
− βHR

2 U1(O(t1)) e
βHR

2 |TFD⟩ . (3.6)

Here U(O(t1)) is an unitary operator acting on the right CFT, C1 is the normalization
constant, HR is the right CFT’s Hamiltonian. Here O(t1) is can be thought of as a
simple operator, i.e. a smeared single trace operator of low conformal dimension. The
state |ψe⟩ represents our excitation. These states are motivated by the state-dependent
formalism, which we review in §2.94. The unitary operator U1 controls the position of
these excitations on the slice. This control results due to the timelike coordinate t in
the exterior becoming a spacelike coordinate in the interior. We now create another
excitation in the interior:

|ψe2⟩ = C2 e
iHRT e− βHR

2 U2(t2) e
βHR

2 e−iHRT |TFD⟩ . (3.7)

4Since the unitaries that we are looking at are of the form U(O(t0)), indeed one can express them
in the form U(O(t0)) = eiP O(t0). Since this is an exponentiated operator, it is not really a monomial
constructed out of creation operators. Still in a certain sense, the above operators are motivated by the
state dependent picture, since the modulation by factors of e± β

2 pushes them inside the interior. The
state dependent formalism was invoked since a similar picture is arises there as well. Otherwise they could
be treated as independent excitations on their own. Thus even though these operators do not have the
standard form of being a monomial of creation operators, the reason why they describe (non-equilibrium)
insertions behind the horizon is essentially the same as the state dependent construction.
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The action of the Rindler Hamiltonian using factors of e−iHRT spatially separates
this second excitation from the first one. Since the exterior timelike coordinate becomes
spacelike in the interior, these excitations are placed far apart from each other if T is large
enough. We now generate m number of such excitations similarly, with each excitation
placed far apart from the previous one as a result of modulating with the factor e−iHT ,
where T denotes the time difference between consequent excitations. We will discuss the
nature of these excitations in more detail in §3.4. Therefore a physical picture of placing
the excitations on the nice slice is as follows: Consider an excitation created at time t1.
This excitation proceeds into the interior of the black hole and intersects the nice slice.
Other excitations are created at time t2, and so on at t3, t4 up to tm.

Physical properties of the excitations

We now demand certain physical properties which these excitations should satisfy. We
generate the excitations such that the backreaction is very small as compared to the mass
of the black hole. If we have m excitations each having energy of the order of E0, then
the condition for preventing backreaction is given by

mE0 ≪ MBH . (3.8)

We will ensure that the density of excitations ρ = m
V

is a finite quantity in the
thermodynamic limit, i.e. with m and V large. Fixing the density allows us to calculate
the entropy of these excitations in the effective field theory approximation by treating
the system as a "dilute gas" of excitations living on the nice slice of the black hole. We
also want that the separation between any two excitations is quite more substantial than
the smearing time scale δt associated with each excitation which leads to the following
condition.

δti ≪ |ti − tj|, ∀j ̸= i (3.9)

We also impose an IR cutoff for the excitations which restricts them completely to
the interior of the black hole. In the late time limit, we demand that the excitations
have a length scale shorter than the volume of the black hole divided by the number of
excitations, which gives rise to the following bound:

V

mVd−1
≫ 1

E0
. (3.10)

where Vd−1 is the volume of the unit spherical ball as defined previously. Thus our
construction defines a "dilute gas" of excitations living in the black hole interior, such
that each of these excitations has zero spatial overlap with the others. We will clarify
further details regarding the physical behaviour of the excitations in the bulk in §3.4.
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3.1.3 The paradox in the bulk

We will now roughly calculate the entropy of the "dilute gas" of excitations in the bulk
interior using the microcanonical ensemble, assuming that our excitations behave classi-
cally5. Let E denote the total energy of the configuration. The volume Σp of a shell with
uncertainty ∆E centred about E in the momentum space is given by:

Σp =
√
m

(m− 1)! E
m−1 ∆E. (3.11)

Using this we calculate the volume of the phase space spanned by the gas.

Ω(E, V,m) = V m

m!

√
m

(m− 1)! E
m−1 ∆E. (3.12)

The phase space volume enables us to calculate the entropy of the ensemble. We use
Stirling approximation and ignore the subleading terms in m. Finally, the expression for
entropy with ρ = m

V
is obtained to be

S(E, V,m) = m log V E

m2 = m log V E0

m
= V ρ log E0

ρ
, (3.13)

where E = mE0, with E0 being the average energy of a single excitation. Since we have
imposed that the density ρ is a finite non-zero quantity, (3.13) indicates that the entropy
scales as the volume. This scaling gives rise to the paradox that the entropy of the dilute
gas is larger than the Bekenstein Hawking entropy of the black hole at late times.

3.2 The resolution: Overestimation of the Hilbert
space’s dimensionality

The reason why the paradox arises is due to a colossal overcounting of the bulk Hilbert
space. In our construction, we ensured that the semiclassical excitations have zero spatial
overlap, which is sufficient for two different excitations to be independent in effective field
theory, i.e. with a vanishingly small inner product. This section motivates why the above
assertion is not correct in quantum gravity and demonstrates that we can embed many
more vectors in a Hilbert space with small inner products than given by the dimension of
the space. Some results in this section were also discussed in unpublished notes in [109].

We first review why semiclassical gravity predicts that the inner product between two
vectors in the Hilbert space can be arbitrarily small. Afterwards, we will look at why
such a prediction does not hold true in quantum gravity.

5By classically, here the assumption essentially means to perform such a counting while ignoring
particle production and related effects which may spoil the estimation.



3.2. THE RESOLUTION: OVERESTIMATION OF THE HILBERT SPACE’S DIMENSIONALITY53

Inner products in semiclassical gravity

We will follow the work of [33] here in order to compute the inner product between
semiclassical states. We work with a background metric g0

µν(x) in d+ 1 dimensions, and
consider small linearized fluctuations g′

µν = g0
µν +

√
8πGNδgµν about it. In general these

linearized fluctuations can be expressed in terms of creation and annihilation operators

δgµν(x) =
∑
i

∑
k

ai(k) giµν(k) + h.c. (3.14)

where i denotes the (d+1)(d−2)
2 polarizations and k goes over the momenta. We choose

the functions giµν(k) such that the creation and annihilation operators obey the same
commutation relations for a simple harmonic oscillator. We will look at the coherent
states formed by the action of the creation operators which creates the excited spacetime:

|α⟩ = Cα e
∑

i

∑
k
ai

†(k)α(k) |0⟩ , (3.15)

where Cα is the normalization constant and |0⟩ is the vacuum such that ai(k) |0⟩ = 0. The
expectation value of the metric operator on a coherent state |gcl⟩ gives us the classical
value of the metric:

gcl
µν = ⟨gcl |ĝµν(x)| gcl⟩ . (3.16)

We now consider the inner product between the background spacetime and the excited
spacetime, such that the two spacetimes are "distant" in the phase space. Here "distant"
means a substantial classical perturbation δgµν ∼ ∆√

8πGN
= ∆ N , where N is the central

charge of the CFT (N = N2 for gauge theories with gauge group N). For small linearized
fluctuations, we set ∆ ∼ O (1) ≪ O(N ) such that ∆ ≪ 1, which still allows us to
do linearized perturbations while not being vanishingly small. As shown in [33], the
semiclassical inner product between the two bulk states is given by

⟨g0
µν |gcl

µν⟩ = exp
{
−N v

(
g0, gcl

)}
(3.17)

where v
(
g0, gcl

)
is an O (1) quantity. Thus we conclude that the inner product between

two different semiclassical excitations can be arbitrarily small. This is a feature common
to a QFT, coherent states corresponding to quite different classical excitations can have
a vanishingly small overlap.

Inner products in quantum gravity from the CFT description

Using the dual CFT description, we will see why the analysis in the preceding subsection is
misleading when the phase space "distance" between the classical configurations becomes
large. Contrary to the semiclassical indication, the inner product between two different
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vectors might be a small but finite number even if the classical description is completely
different [32, 33, 110]. A simple example is the overlap between two factorized AdS
spacetimes and the thermofield double, which are very different classical configurations.
These two have an overlap given by:

⟨0, 0 |TFD⟩ = 1√
Z(β)

, (3.18)

which is small but nonvanishing. The physical basis behind this small overlap is the
following: the semiclassical inner product is obeyed only up to a particular "distance"
in the phase space between two different classical configurations. Beyond this distance,
inner products are saturated and differ from the semi classical inner product.

An example of this saturation is given by "time-shifted states" in the CFT [32, 33],
which represent different bulk configurations. Consider the time shifted state given by
time evolution on the left CFT acting on the thermofield double:

|ψT ⟩ = eiHLT |TFD⟩ . (3.19)

On the thermofield double consider m = eS distinct time shifted states each shifted by
a time (T1, T2 ... Tm). Now there exist a solution for αi’s given in the following equation:

∣∣∣∣∣∣|TFD⟩ −
eS∑
i=1

αi e
iHLTi |TFD⟩

∣∣∣∣∣∣
2

≥ O (e−N ). (3.20)

This leads to the inner products developing a saturated "fat tail" of magnitude larger
than O (e−N ) which is our primary motivation for overcounting. This shows that these
bulk states are not really independent of each other.

We give another proof of the presence of small inner products from the CFT descrip-
tion in §3.5.2 for single-sided black holes. Given a CFT dual to a single-sided black hole,
we will show that two far apart excitations have an inner product larger than O(e− S

2 ),
which serves as the basis for overcounting in the single-sided black holes.

The fundamental reason why this saturation of inner products happens in gravity
is an obstruction to the lifting of classical observables living on the phase space to the
Hilbert space. The d-metric and its canonical conjugate momentum in the d + 1 ADM
decomposition cannot be naively lifted to well-defined operators on the Hilbert space, as
they give rise to the semiclassical inner product. Apart from these examples, there also
exist other cases where the inner product in effective field theory receives small corrections
in quantum gravity. This "fat tail" is similar to the "spectral form factor" in [49]. Another
striking example is the statement that two states in quantum gravity might turn out to
be the same [111].
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3.2.1 How many bulk excitations can we possibly have?

We saw in the preceding subsection that all distinct bulk excitations are not independent
of each other. Since the inner products saturate, taking excitations far apart would not
make them independent. With this motivation, it becomes a natural question to ask how
many bulk excitations can we fit inside a Hilbert space of dimension n.

This question has a profound consequence: a black hole with coarse-grained entropy
SBH can still have a vast number of bulk excitations living on the nice slices, and hence
there is no paradox.

How many vectors can we fit inside a Hilbert space of dimension n?

We consider the following problem: In a Hilbert space H of dimension n, what is the
maximum number mn(ϵ) ≡ m of vectors {vi} which satisfy the following relations:

⟨vi|vi⟩ = 1 & |⟨vi|vj⟩| ≤ ϵ, i ̸= j; ϵ ≥ 1√
n
. (3.21)

We have mn(0) = n trivially. The solution to this problem is as follows. Unit vectors
in the Hilbert space live on the surface of an (2n−1) dimensional real sphere. We can fix
one vector to be |v1⟩ = (1, 0, . . . , 0, 0). The remaining vectors |vi⟩ = (a1, a2, . . . , an−1, an)
will satisfy the following equation,

|a1|2 + |a2|2 + . . . + |an−1|2 + |an|2 = 1. (3.22)

For i ̸= 1, (3.21) implies that |a1|2 ≤ ϵ2. Therefore around a vector |v⟩, there is an
exclusion zone where there can be no other vector. The boundary of this region is given
by

|a2|2 + . . . + |an−1|2 + |an|2 = 1 − ϵ2. (3.23)

Since ak ∈ C, we write ak = ck + idk, where ck, dk ∈ R. We perform the worst-case
estimate of the number of vectors by assuming all the inner products are of the order ϵ.
We obtain the naive estimate for the number of vectors that satisfy the inner product
bounds by dividing the surface area of the 2n−1 dimensional real sphere (since |a1|2 ∼ ϵ2)
with the area of the exclusion zone. The exclusion zone for each vector has the radius ϵ

2 .
Therefore each sphere will have the volume given by

n∑
k=2

c2
k + d2

k = 1 − ϵ2

4 . (3.24)

A more accurate computation would also require the packing fraction of such exclusion
zones. One can then count the number of vectors and multiply it by the packing ratio to
approximately get the highest number of vectors.
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m ≈ P S2n−1

V2n−2

(
1

1 − ϵ2

4

)2n−2

= 2πP
(

1 − ϵ2

4

)−2n+2

(3.25)

Here S2n−1 is the surface area of the (2n−1) dimensional sphere, the volume enclosed
by the (2n − 3) dimensional sphere is given by V2n−2 and P denotes the constant of
proportionality which gets contribution from the packing fraction and also takes into
account small errors which may have resulted from our rough counting method. We have
also used S2n−1

V2n−2
= 2π. Let us have a look at the function

(
1 − ϵ2

4

)−2n+2
. We are interested

when n becomes very large. Now using the definition of the exponential function we
obtain

lim
n→∞

(
1

1 − ϵ2

4

)2n−2

= lim
n→∞

1 −
nϵ2

4
n

−2n+2

≈ lim
n→∞

1 −
nϵ2

4
n

−2n

= e
nϵ2

2 . (3.26)

Note that the above expression is valid for any value of ϵ, including our case where
nϵ2 >> 1. We evaluate the value of m in the limit of large n to be

m ≈ 2πP enϵ2
2 . (3.27)

Since our small inner products in question are very close to zero, i.e. ϵ ≈ 0, we fix the
proportionality constant 2πP in the case when ϵ = 0, which sets 2πP = n. Therefore the
formula describing maximum possible vectors for small ϵ is given by

m ≈ n e
nϵ2

2 . (3.28)

We pause here to reflect upon what our formula in (3.28) tells us. With tiny inner
products ϵ ≪ 1 such that ϵ > e− S

2 , we can obtain an extremely enormous overcounting
of the Hilbert space. As an example consider all inner products ϵ ∼ e− S

4 . The maximum
number of states with such a small inner product that can be embedded in the Hilbert
space of dimensionality eS is given by:

m ∼ eS × exp

e
S
2

2

. (3.29)

This counting suggests that even for a small S like S = 105, m is a vast number. Thus
a high number of bulk states can be embedded in the actual smaller Hilbert space with
tiny inner products, which is the surprising fact underlying our resolution.

In low dimensions equation (3.28) seems to contradict our intuition, for we do not see
such tremendous growth. Appendix 6.1 deals with the calculation of inner products for
vectors denoting the corners of regular polyhedra in general dimensions while building
up from low dimensional examples. Inner products of these corner vectors of regular
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polyhedra eventually reproduce equation (3.28) when the dimensionality becomes large.
This approach helps develop our intuition for large Hilbert spaces since it builds up
starting from low dimensional examples.

3.3 Resolution of the paradox from the boundary
perspective

As mentioned in the introduction, equation (1.1) is the coarse-grained entropy of a black
hole. The origin of coarse-grained quantities like the thermodynamic entropy is due to
inherent sloppiness since we measure only a small subspace of the Hilbert space. As
a result, coarse-grained quantities can grow under unitary time evolution. In contrast,
the fine-grained entropy or the Von Neumann entropy is a more accurate measure of
the degrees of freedom. The fine-grained entropy remains invariant under unitary time
evolution.

We hereby investigate the paradox from the boundary viewpoint and calculate the
Von Neumann entropy on the CFT side. We will show that the calculation of the entropy
of the CFT reveals the absence of any paradox because the insertion of the excitations
on the thermofield double preserves the Von Neumann entropy.

Computation of the generalized entanglement entropy also demonstrates that there is
no paradox in the CFT. This computation involves a choice of quantum extremal surfaces
and does not depend on the precise details of the excitations.

We note an important point here: The proof that there is no paradox in the boundary
does not capture the qualitative picture of the paradox in bulk. However, this indicates
a crucial fact: the excitations do not increase the fine-grained entropy. The invariance of
fine-grained and coarse-grained entropy along with the assumption that state-dependent
operators reconstruct the black hole interior leaves us with no choice apart from over-
counting of vectors to resolve this paradox.

CFT excitations: No paradox

In this subsection, we will look at the entanglement entropy of the right CFT. Consider
the thermofield double state, which consists of the left and the right CFTs. Tracing over
the left region gives us the reduced density matrix for the right CFT, which is the thermal
density matrix ρT .

ρR = TrL |TFD⟩ ⟨TFD| =
∑
i

e−βEi

Z(β) |Ei⟩R ⟨Ei|R = ρT , (3.30)
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where ρT is the thermal density matrix. Equation (3.6) describes an excitation in the
interior:

|ψe1⟩ = N1 e
− βHR

2 U1
R e

βHR
2 |TFD⟩ , (3.31)

We will define the following unitary operators for our convenience:

V i
R ≡ eiHRTU i

Re
−iHRT . (3.32)

Note that here we have included the time evolution contributions e−iHRT ’s inside
the unitary V ’s since they represent unitary contributions. Till now we have worked in
the semiclassical picture where we have treated the excitations as m different vectors.
However from the CFT perspective, the boundary state with m interior excitations is
written as the action of a single interior operator on the thermofield double state. The
following expression is due to the specific form of the interior operators:

|ψe⟩ = C e− βHR
2 V m

R ( tm)V m−1
R ( tm−1) . . . V 2

R (t2)V 1
R (t1) e

βHR
2 |TFD⟩ = C e− βHR

2 VR e
βHR

2 |TFD⟩
(3.33)

We now calculate the reduced density matrix on the right region for this system of
excitations.

ρ′
R = TrL |ψe⟩ ⟨ψe| = |C|2 e− βHR

2 VR e
βHR

2 TrL |TFD⟩ ⟨TFD| e
βHR

2 V †
R e

− βHR
2

= 1
Z(β) e

− βHR
2 VR e

βHR
2 e−βHR e

βHR
2 V †

R e
− βHR

2

= ρT .

(3.34)

The above manipulations follow because VR is a unitary operator. We expect the
thermal density matrix to remain unchanged under interior operator insertions because
the thermal behaviour arises due to the horizon’s existence and is irrespective of insertions
in the interior unless a large backreaction changes the horizon. The interior operators
are defined only in the effective field theory limit, i.e. the backreaction is small, and
hence the thermal density matrix remains invariant. Since the density matrix itself does
not change due to the excitations, the entanglement entropy does not change as well.
Therefore we see that there is no paradox in the CFT as interior excitations do not
change the entanglement entropy.

Generalized entanglement entropy of the CFT

Using the generalized entanglement entropy [112–117], we can again show that there is no
paradox in the CFT. Quantum extremal surfaces are defined as surfaces which extremize
the sum of area and bulk entanglement entropy contributions, given a boundary subregion
B. This extremized sum is the generalized entanglement entropy of B.
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Figure 3.1: Bulk excitations denoted by orange and magenta lines arise from the left past horizon and fall into
the left future horizon. These states come out of equilibrium as indicated in equation (3.38) around the time
t1 and t2 for the orange and magenta excitations. In the bulk this out of equilibrium behaviour is indicated
by how far the excitations protrude out on the left. The unitaries control the position of the excitation on
the slice, and large |t1 − t2| leads to large spatial separation. Interior excitations at late times are visible only
to later slices. Consequently, we can keep accomodating more and more excitations at later and later times
which leads to the paradox.

Sgen(B) = MinX ExtX
[

Area(X)
4GN

+ Sbulk
(
ΣX
B

)]
(3.35)

Consider B to the right boundary region R on which the right CFT lives. We will
consider the case with no excitations living on the black hole first. Quantum extremal
surfaces for this case end at the horizon, therefore the generalized entanglement entropy
is given by:

Sgen(R) = Area of black hole
4GN

(3.36)

Now consider a situation where the matter content due to excitations in the interior
is very large, which is our case of interest. Consequently, the bulk entropy Sbulk in the
interior of the black hole due to all the excitations is very large. In this case, the quantum
extremal surfaces are no different and go only up to the horizon, thereby not capturing
Sbulk in the interior region. As a result, the fine-grained entropy again is given by (3.36).
Therefore we conclude that there is no bag of gold paradox. We note that we do not need
the precise form of the excitations in order to derive this conclusion.
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3.4 The nature of the excitations and the initial bulk
wavefunction

In this section, we are interested in understanding the exact nature of the excitations
created by interior operators as given in (3.6). The excitations’ behaviour also holds the
key to qualitatively understand the initial state in the bulk, which leads to the paradox.
From the CFT perspective, the states given in (3.6) are non-equilibrium states [98], which
we briefly describe. These states |ψe1⟩ = C1 e

− βHR
2 U1(t1) e

βHR
2 |TFD⟩ arise from the past

left horizon and end up at the future left horizon. To see this, we first show that these
excitations are invisible to the small algebra AR

6. Therefore the time dependence of
these observables cannot be seen by probing with O ∈ AR.

d

dt
⟨ψe1|O(t) |ψe1⟩ ∼ O

( 1
S

)
(3.37)

However, these states are truly non-equilibrium when probed by the Hamiltonian
[98]. The Hamiltonian has support on both AR and A′

R and therefore can detect the
excitations on the commutant A′

R. Writing the state as |ψe1⟩ = W (t) |TFD⟩, it can be
shown that

d

dt
⟨ψe1|O(t)H |ψe1⟩ = d

dt
⟨TFD|W † O(t) [H,W ] |TFD⟩ + O

( 1
S

)
. (3.38)

Equation (3.38) shows that the state |ψe1⟩ is out of equilibrium. The bulk interpreta-
tion is now clear as the operators in the right exterior of the black hole cannot detect the
excitations |ψe1⟩. These excitations emerge from the past singularity and are short-lived.
At around t ∼ t1 they arrive at the left part of the diagram. At a later time, they fall
into the future singularity. These non equilibrium states are out of equilibrium at around
t ∼ t1, but remain in equilibrium for t ≪ t1 and come back to equilibrium for t ≫ t1,
and are therefore transient.

It is now easy to generalize from a single excitation to many excitations as given in
(3.33), where as before, we include the factors e−iHRT ’s inside the unitaries V ’s.

|ψe⟩ = C e− βHR
2 V m

R ( tm)V m−1
R ( tm−1) . . . V 2

R (t2)V 1
R (t1) e

βHR
2 |TFD⟩ (3.39)

This state in (3.39) will be seen in equilibrium at t ≫ t1, t2, . . . , tm and t ≪
t1, t2, . . . , tm. However when probed by the Hamiltonian at intermediate times, say
at t ∼ t1, t ∼ t2 or at t ∼ tm the state will appear out of equilibrium. The bulk picture
describing out-of-equilibrium behaviour of the excitations at these intermediate times is
understood as them coming out of the past left horizon and travelling in the left exterior

6The algebras A, A′ and the associated small Hilbert space formed by acting with them on the
thermofield double state are reviewed in §2.9.
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Figure 3.2: The initial state of the black hole is created by glueing the Euclidean AdS to the bottom half of
the Lorentzian Penrose diagram. Boundary deformations of the Euclidean AdS create our excitations. Just
after the initial time, all the bags of gold excitations are in the left exterior.

before falling into the future horizon (See Figure 3.1).
The nature of the excitations reveals the physical picture of the paradox as well. As

we have argued earlier, all excitations possess an energy E0, where mE0 ≪ MBH . This
small energy means that the excitations cannot protrude very much outside the interior
on the left-hand side, and all excitations protrude a similar distance after coming out of
the past horizon before travelling and falling inside the future horizon.

Now consider early excitations governed by small t’s, e.g. (t1, t2 . . . ti), where i ≪ m,
which come out from the past horizon and fall into the future horizon. These excitations
intersect the Cauchy slices with boundaries at earlier Kruskal times and keep intersecting
future Cauchy slices at later Kruskal times as well. In contrast, the excitations which
come outside the past horizon and fall inside the future horizon at late t’s will not intersect
the early Kruskal time Cauchy slices. However, these excitations will intersect the late
Kruskal time Cauchy slices in the interior (See Figure 3.1). These above features give
rise to the physical picture of the paradox. On the late time slices, there will be more
and more excitations where the number of excitations is tuned such that they constitute
a dilute gas of a fixed density ρ. Therefore we have slices which have an increasingly
large value of entropy at late times which becomes more substantial than the Bekenstein
Hawking entropy.

In the bulk Lorentzian description it naively seems that the excitations emerge out
of the past singularity. This apparent problem is rectified by writing down an initial
bulk state for the problem [101, 102]. The way we construct the initial state or the
Hartle Hawking wavefunction of the eternal Lorentzian geometry is by glueing it to a
Euclidean AdS part and then performing the path integral over the Euclidean part. We
can thus obtain the Hartle Hawking state. At t = t0 all excitations are in the exterior and



62 CHAPTER 3. THE BAGS OF GOLD PARADOX

Figure 3.3: We demonstrate the paradox for pure state black holes which are single-sided. The dotted line on
the left denotes the UV cutoff for the theory living on the right boundary, which prohibits us from reaching
arbitrary close to the left boundary. Since the interior region is similar for both the single-sided and eternal
black holes, the physical picture of the paradox and its resolution is similar.

propagate afterwards on the left side of the Penrose diagram. We write our initial state
at this t = t0 when all excitations are outside the horizon. Here each excitation should
be treated as a small deformation of the initial wavefunction and can be generated by
inserting operators at the Euclidean AdS boundary as shown in Figure 3.2. This gives us
the CFT state (3.39). The initial state in the bulk is a path integral performed over this
configuration of an eternal geometry plus small boundary deformations, which is given
in (3.39). This path integral qualitatively resolves the problem of constructing a valid
initial bulk state in order to pose the paradox.

3.5 The paradox for single sided black holes

Till now, we have discussed at length the paradox for the eternal black hole. We can also
pose a similar paradox for pure state black holes. These black holes are described on the
boundary by a pure state on a single-sided CFT. Using a single side CFT on the right, the
bulk description of the black hole can be reconstructed using HKLL reconstruction [118]
in the exterior right. The top and bottom regions of the fully extended Kruskal diagram
of AdS Schwarzchild black hole can be reconstructed using state-dependent operators
as given in §2.9. A part of the left bulk region can also be reconstructed; however, we
cannot go too far on the left side as one needs operators with higher and higher energies
to approach closer and closer to the left boundary. In other words, a UV cutoff on the
right boundary CFT prevents us from going arbitrarily close to the left boundary in the
bulk.

Single sided black holes are represented by typical states [103–105] on the boundary
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CFT. We define these states by considering a quantum statistical system at a temperature
T and average energy E. The relevant example in our case is a CFT at a temperature T .
Let us consider a small interval ∆E centred about E in the CFT energy spectrum with
∆E ≪ E. We will be looking at n energy eigenstates |Ei⟩ in the interval ∆E, each with
energy Ei. The entropy is therefore given by ∆S = ∆E

T
, while the number of states n in

the interval is related to the entropy as n = e∆S. We now define a state by randomly
superposing the energy eigenstates:

|ψs⟩ =
n∑
i=1

ci |Ei⟩ (3.40)

such that ∑i |ci|
2 = 1. Here ci’s are chosen at random. These |ψs⟩ states obey a surprising

property: For a quantum statistical system, "almost" all the states |ψs⟩ mimic thermal
behaviour, and we define such states which look thermal as typical states |TYP⟩. Further
details of the construction of single sided black holes using typical states are reviewed in
§2.6.

3.5.1 The single-sided paradox and its resolution

We now state the paradox for the single-sided black holes. The construction of maximal
volume surfaces in §3.1 is the same for this case because the single-sided black hole
possesses the same interior region as the eternal black hole does. The excitations in the
black hole interior are also similar with the difference being their action on the typical
state rather than on the thermofield double state. A single excitation is given by:

|ψe1⟩ = C1 e
− βHR

2 U1(t1) e
βHR

2 |TYP⟩ (3.41)

As before, we can place similar excitations far apart from each other on the nice slice
by adjusting the unitary U to create a dilute gas of density ρ. Calculating the entropy
of this semiclassical configuration again violates the coarse-grained Bekenstein Hawking
entropy at late times in the bulk. The nature of the excitations is also similar, they emerge
out from the bottom interior by coming out of the left past horizon and propagate on the
left side for some time, and fall into the left future horizon.

Our resolution to the bulk paradox for the single-sided black holes is the same res-
olution which we have proposed for the eternal case. We have hugely overcounted the
excitations in this case as well due to small inner products between coherent bulk states
describing the excitations. The resolution for this case is unchanged because the interior
possessed by single-sided and eternal black holes is the same.

As before we see that the fine-grained entropy remains unchanged. This consistency
arises as the typical state is a pure state and the entanglement entropy of this system is
zero. Similar to what was derived in 3.3, insertion of multiple bulk interior excitations
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on the typical state leaves the density matrix unchanged. As a result, we again conclude
that there is no paradox in the CFT. Even though the fine-grained entropy of the system
is zero, the coarse-grained entropy is SBH . In the following §3.5.2 we justify our claim
that the enormous number of semiclassical bulk excitations arise due to an overcounting
of the bulk Hilbert space.

3.5.2 Why interior bulk states are non-orthogonal in the CFT
Hilbert space?

We consider typical states in the CFT which are dual to the single sided black hole in
the bulk and are centered about an average energy E with range 2∆E:

|TYP⟩ =
E+∆E∑
i=E−∆E

ci |ψi⟩ , (3.42)

where |ψi⟩ are normalized states and ∑i |ci|2 = 1. We will denote Oω as operators in the
boundary CFT with energy ω. (3.42) is constructed by acting with a string of O’s on the
ground state such that the string’s total energy is Ei, which then leads to the state |ψi⟩.
We are looking at states of the form:

|ψ⟩ = K e− βH
2 U(Oω) e

βH
2 |TYP⟩ (3.43)

where K is the constant of normalization, U(Oω) is an unitary operator creating bulk
excitation generated by products of Oω. These operator insertions do not change the
energy of the typical state much, i.e. ω ≪ O(N ). Another requirement is that the
number of single oscillator operator insertions in U(Oω) is lesser than O(N ). These
conditions define the small algebra of observables A which act on the ground state to
give the small Hilbert space. For the CFT this means that the number of operator
insertions is very small as compared to the energy of the state, and the insertions don’t
have very high energy themselves. We now want to evaluate the inner product of the two
such states in the small Hilbert space, where as previously, Vj(Oωj

, Tj) includes the eiHt

insertions, i.e. Vj(Oωj
, Tj) = eiHt Uj(Oωj

) e−iHt.

|ψi⟩ = Ki e
− βH

2 Vi(Oωi
, Ti) e

βH
2 |TYP⟩ & |ψj⟩ = Kj e

− βH
2 Vj(Oωj

, Tj) e
βH

2 |TYP⟩
(3.44)
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These states defined above live in the small Hilbert space and the indices i, j go over the
small Hilbert space. The inner product between these states is given by

⟨ψj|ψi⟩ = Ki Kj ⟨TYP| e
βH

2 V†
j(Oj, Tj) e−βH Vi(Oi, Ti) e

βH
2 |TYP⟩

= Ki Kj

∑
k,l,o,p,q,r

c∗
k cn ⟨Ek| e

βH
2 |Eo⟩ ⟨Eo| V†

j |Ep⟩ ⟨Ep| e−βH |Eq⟩ ⟨Eq| Vi |Er⟩ ⟨Er| e
βH

2 |El⟩

= Ki Kj

∑
k,l,p

c∗
k cn e

βEk
2 e

βEl
2 e−βEp ⟨Ek| V†

j |Ep⟩ ⟨Ep| Vi |El⟩

(3.45)

We see here that in general, these states are not orthogonal. This non-orthogonality
arises since we are working with restricted energy operators on the typical states. Because
these states are normalized and since e

βEk
2 e

βEl
2 e−βEp ≈ 1 as the states lie in the small

Hilbert space; we can write the inner products as

⟨ψj|ψi⟩ =
∑
k,l

(cjk)∗ cil, (3.46)

such that ∑l |cil|2 = 1. Equation (3.46) gives rise to a small but finite number larger than
O(e− S

2 ), where the dimension of the Hilbert space is eS 7. We thus see that the inner
product between the vectors is a small number if |ψj⟩ live in a huge dimensional Hilbert
space. These small inner products naturally give rise to overcounting in CFTs.

3.6 Spectral properties of bags of gold spacetimes:
Contradictions and Resolution

Till now we have discussed the paradox of the coarse-grained entropy of bags of gold
spacetimes. Let us now understand the spectral features of these spacetimes in the
context of effective field theory. Firstly we will work with the semiclassical Hilbert space
of the bags of gold spacetime spanned by the excitations placed far apart from each
other. We will argue that such an effective field-theoretic description of the Hilbert space
potentially contradicts with black holes’ spectral observables’ predicted behaviour.

Consider the phase space of a classical system exhibiting chaos. It was conjectured in
[41] that the quantum counterpart of such a system should have an energy level spacing
distribution which matches one of the three standard random matrix ensembles - Gaus-
sian orthogonal (GOE), unitary (GUE) or symplectic (GSE), depending on the inherent
symmetries of the system. Since black holes display scrambling properties, we expect
that their level spacing distribution matches the one given by the Gaussian unitary dis-

7The derivation of O(e− S
2 ) is straightforward, it is the same as calculating the expected displacement

in a random walk problem after n steps.
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tribution. Therefore a convenient way to model black holes is by using random matrices
constructed using Gaussian unitary ensemble. For GUE, the expression for the level
spacing distribution is [42]:

P (s) = 32 s2

π2 exp
[
−4s2

π

]
, (3.47)

where s is the distance between two consecutive eigenvalues, which we expect to be the
energy level spacing distribution of black holes as well. The conjecture [41] proposes that
the quantum counterpart of a classical system exhibiting chaos possesses either above
level spacing distribution or that of its two cousins, the GOE or GSE. This is in contrast
to the level spacing distribution obeyed by non-chaotic systems. As a drastically different
example, for integrable systems, the Berry-Tabor conjecture states that the level spacing
distribution should be Poissonian P (s) = exp{−s} [119].

Using the formalism of random matrix theory, we will argue that the violations of
spectral observables can be classified into two types. The nature of the first violation
is characterized by qualitative deviation from the expected GUE energy level spacing
distribution. To overcome this violation, we will demand that the only bags of gold
configurations which are allowed are strictly consistent with a GUE description. Such an
imposition drastically constrains the space of allowed bags of gold configurations. We will
observe that even after enforcing this condition, bags of gold configurations can still be
captured using the spectral form factor; a spectral observable which quantifies the discrete
nature of the system. Thus the effective field-theoretic description of the bags of gold’s
Hilbert space suffers from serious contradictions as compared to observed characteristics
of black holes. Towards the end of this section, we demonstrate how our overcounting
hypothesis resolves these contradictions in the spectral form factor.

3.6.1 Spectral observables in random matrix theory and dis-
crete systems

Random matrix theory observables

In this section, we briefly review the spectral observables of random matrices belonging
to the Gaussian unitary ensemble. The Gaussian unitary ensemble of Hermitian matrices
H of dimension N ×N is defined as follows

ZG =
∫

[dH] exp
(

−H2

4v2

)
. (3.48)

Here v2 is a real number which is O(1) and does not scale with N . A convenient
way to solve this integral is by decomposing these matrices in terms of their eigenvalues.
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From (3.48) the joint probability distribution of the eigenvalues λi, i ∈ [1, N ] belonging
to Gaussian unitary ensemble is given by

p(λ1, . . . λN) = C exp
2
∑
j<k

log |λj − λi| −
∑
j

λ2
j

2v2

 . (3.49)

The first term in the exponential of (3.49) arises from the Van der Monde determinant,
which comes from the Jacobian of the transformation in the measure, while the second
term arises due to the Gaussian potential from (3.48). The average density of eigenvalues
ρ̄(λ), where ρ̄(λ) =

∫
dλ2 . . . dλN p(λ, λ2 . . . λN); is given by

ρ̄(λ) = 2
√
R2 − λ2

πR2 ; R2 = 8v2N, −R ≤ λ ≤ R. (3.50)

Given this setup, we focus on the fluctuations of the eigenvalues, which are indepen-
dent of the potential V (λ) in the large-N limit. Regarding fluctuations, the vital quantity
of interest related to quantum chaos is the level spacing distribution given by P (s) as
given in (3.47).

Measure of discreteness: Spectral form factor

As we discussed, apart from the chaotic signatures, since the systems we are studying are
black holes which have discrete spectra, it is useful to look at physical observables which
can capture discreteness. In this regard, it is useful to understand the typical size of
the fluctuations at late times, which in turn characterizes the discreteness of the energy
spectrum. In order to define such a quantity, let us first generalize the partition function
of a system to include Lorentzian time along with the temperature:

Z(β + iT ) = Tr
[
e−βH−iHt

]
. (3.51)

At late times, this generalized partition function oscillates, and the time average of
this quantity is zero. Using this partition function, we will now define the spectral form
factor which captures the magnitude of such oscillations:

S(β, T ) = Z(β + iT )Z(β − iT )
Z(β)2 = 1

Z(β)2

N∑
i,j=1

e−β(Ei+Ej) ei(Ei−Ej)t (3.52)

Since the systems in consideration are chaotic, we now demand that the Hamiltonian
in consideration is described by a random matrix obeying GUE statistics. Therefore we
write the expression for the generalized partition function in Gaussian unitary ensemble:

⟨Z(β + iT )⟩G = 1
ZG

∫
[dH] e− H2

4v2 Tr
[
e−βH−iHT

]
, (3.53)
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where ZG is given by (3.48). Equation (3.53) can now be used to calculate the spectral
form factor in (3.52). It was shown in [49] that the curve describing the logarithm of
spectral form factor versus the logarithm of T obeys the following features:

1. The curve starts from 1 and starts decaying with a constant slope at early times.
This behaviour can be understood by plugging in the level density in (3.50) into
(3.53), and then using it to evaluate the spectral form factor in (3.52). The late-
time decay of the spectral form factor at high temperature is captured by S(β ≈
0, T ) ∼ T−3.

2. The decaying behaviour continues until the dip time, after which the curve rises with
a constant slope. The physical reason behind this is as follows: S(T, β) is roughly a
sum of connected and disconnected parts. The disconnected part contributes to the
decay which dominates until the "dip time". Equating the late time decay of the
spectral form factor and the ramp growth gives the value for the dip time, which is
td ∼ eN/2. After dip time the connected part dominates giving rise to the increasing
ramp, which at high temperature is given by S(β ≈ 0, T ) ∼ T

2π exp{2N} .

3. At a certain time called the plateau time, the ramp stops increasing and gives
rise to a constant plateau. Physically the plateau appears because oscillations in
the generalized partition function are random and out of phase at very late times,
contributing to a small but non-zero number. After the plateau time tp > 2eN , the
constant plateau of the spectral form factor is given by S(β ≈ 0, T ) ∼ 1

πeN .

This behaviour of the spectral form factor captures the discrete features of black
holes, which can be seen from the red curve in Fig. 3.5 for β = 1. We will now see that
treating the bulk effective degrees of freedom as independent degrees of freedom violates
the delicate structure expected from the above description.

3.6.2 Spectral properties of bags of gold excitations

As before, we construct several unitary excitations behind the horizon creating a bags of
gold configuration. These excitations are of the form given in (3.6), which we restate in
the frequency basis:

|ψi⟩ = Ki e
− βH

2 Vi(Oωi
, Ti) e

βH
2 |ψBH⟩ , i ∈ (1,m) (3.54)

Here as previously, Vj(Oωj
, Tj) includes the eiHt insertions, i.e.

Vj(Oωj
, Tj) = eiHt Uj(Oωj

) e−iHt.
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Here Oi ∈ A, where A is the algebra of simple operators. As argued before, these
operator insertions have small energies ωi ≪ N = N2. Consequently the energies of
these excitations belong to a small interval (E − ∆E,E + ∆E), where E ∼ O(N ), and
∆E ∼ O(1).

In the semiclassical description since states of the form (3.54) are spread wide apart
spatially, we naively think that such distinct configurations have zero inner product. Let
us represent the Hilbert space of the effective field theory of the bags of gold spacetime
by HBOG := {|ψi⟩}, i ∈ (1,m), which is m-dimensional. Following this semiclassical
logic, we saw previously that the m-dimensional space is very large as compared to the
n-dimensional black hole’s Hilbert space. Since the excitations are placed far apart, this
naive reasoning leads us to conclude that the vectors denoting the bags of gold excitations
in HBOG are orthonormal:

⟨ψj |ψi⟩ = 0, ⟨ψj| eiHt |ψi⟩. (3.55)

Violations of Type 1

We will now see how this naive EFT description violates the spectral properties expected
from §3.6.1. It is straightforward to construct bags of gold Hilbert spaces spanned by
vectors HBOG := {|ψi⟩} such that the difference in the energy levels of these vectors do
not obey the expected level spacing distribution given by GUE, which is given in (3.47).

A trivial example of such an EFT Hilbert space can be constructed by using vectors of
the form (3.54) such that Vi (Oi(ωi), Ti) has energies ωi in integer multiples of a constant
ωi = kic, ki ∈ R. The above example is an allowed bags of gold configuration because
the only physical condition we have enforced is ∑i ωi ≪ O(N ), with no condition on
the individual energies of the excitations. As before, we have denoted the number of
black hole states as n and the bags of gold configuration as m with m ≫ n. Thus the
Hilbert space is spanned almost exclusively by the bags of gold states, since m ≫ n.
Therefore in this scenario, the level spacing distribution is that of a bunch of simple
harmonic oscillators, which is an integrable system and thus is drastically different from
the expected distribution in (3.47). In addition, we can see from Fig. 3.4 that the spectral
form factor does not qualitatively match with the curve expected of black holes. Thus
this bags of gold configuration contradicts with spectral features expected from a black
hole.

In general, we can construct various bags of gold spacetimes by spanning the Hilbert
space of the EFT using appropriate vectors such that the energy level spacing distribution
and the spectral form factor deviates from the spacing distribution and spectral form
factor predicted by GUE. We will call these examples where the energy level spacing
distribution and spectral form factor do not qualitatively follow the GUE distribution as
violations of type 1.
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Figure 3.4: The spectral form factors for different distributions obeying violations of type 1 (See Table 3.1).
The figure on the top left consists of random energy levels taken from a uniform probability distribution. The
figure on the top right has energy levels picked from a near-uniform probability distribution. Both plots are
for 1000 energy levels at β = 2 over 100 iterations. The bottom figures have uniformly spaced energy levels,
and as a consequence, are integrable. The bottom left figure is plotted with 50 energy levels, with β = 1 over
50 iterations, while the bottom right figure is plotted with 250 energy levels, with β = 1 over 50 iterations.

Type Energy level spacing distribution Spectral form factor
P (s) S(β, T )

Violation 1 No specified distribution No correlation with black hole’s curve
Violation 2 Follows GUE distribution Different td, tp and plateau height

Table 3.1: The two types of violations in spectral properties between EFT treatment of bags of gold excitations
as independent states and black holes.

Configuration Dip Time Plateau time Plateau Height 2-pt function
(td) ∼ (tp) ∼ ∼ ⟨O(t)O(0)⟩ −Gp ∼

Black hole
√
n n n−1 t exp{−2SBH} − exp{−SBH}

Bags of gold
√
m m m−1 t exp{−2SBOG} − exp{−SBOG}

Table 3.2: Violation 2 - The dip time, plateau time and plateau height for a black hole and a bags of gold
configuration in EFT description obeying random matrix statistics in terms of the dimensionality of their
Hilbert spaces at β ≈ 0.

Violations of Type 2

As seen from the type 1 violations, the effective field-theoretic treatment of bags of gold
scenarios can not only lose important features like scrambling etc. but may also result



3.6. SPECTRAL PROPERTIES OF BAGS OF GOLD SPACETIMES: CONTRADICTIONS AND RESOLUTION71

Figure 3.5: The spectral form factors for the "black hole" of 100 states in red and a "bags of gold distribution"
with 1000 states in blue plotted using GUE ensemble, over 50 iterations with β = 2. The dip height, dip
time, plateau time and plateau height are visible here which are different for both these configurations, which
exemplifies violation 2.

in a completely different description which is integrable. In order to overcome these con-
tradictions, one can demand to consider only those bags of gold spacetimes in which the
energy level spacing distribution matches with the GUE level spacing distribution. Such
a demand substantially reduces the space of allowed bags of gold spacetimes. Conse-
quently, we have a more refined version of the paradox formulated in the effective field
theory Hilbert space which is seemingly consistent with a few basic spectral properties
of quantum chaotic systems.

However, we will show that even this restricted space of bags of gold spacetimes which
obeys naive GUE level spacing statistics is inconsistent with quantitative features of the
spectral form factor involving the height and time of the plateau, dip time and the slope
of the ramp, which is due to the fact that m ≫ n. We will call these examples where
the level spacing distribution follows GUE statistics along with a quantitative deviation
from the black hole’s spectral form factor as violations of type 2. For convenience, we
mention the properties characterizing these two classes of violations in Table 3.1. In order
to evaluate the plateau height, we need to look at the long term average of the spectral
form factor. The only terms which survive over large times are those with Ei = Ej, as
the rest of the terms cancel out due to dephasing and thus die off. The long time average
of the spectral form factor is thus given by:

lim
T→∞

1
T

∫ T

0
dt S(β, t) = 1

Z(β)2

N∑
i=1

g2(Ei)e−2βEi = 1
Z(β)2

n∑
k=1

e−2βEk , (3.56)

where g(Ei) denotes the degeneracy of states at energy Ei. For the EFT description of
the bags of gold spacetime, the plateau height is given by:

lim
T→∞

1
T

∫ T

0
dt S(β, t) = 1

Z(β)2

N ′∑
i=1

g2(Ei)e−2βEi = 1
Z(β)2

m∑
k=1

e−2βEk , (3.57)
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Here m is the number of the bags of gold states, such that m ≫ n. Since m ≫ n

there is a quantitative disagreement between the plateau height of the original black hole
and the bags of gold spacetime. For the high temperature case with β ≈ 0 as described
in the §3.6.1, we can conclude that the plateau height is e−N = 1

n
for the original black

hole and e−N ′ = 1
m

for the bags of gold spacetime. In addition the dip time is td ∼ e
N
2

for the black hole and td ∼ e
N′
2 for the bags of gold respectively, while the plateau time is

tp ∼ eN for the original black hole, while tp ∼ eN
′ for the bags of gold respectively. These

values are collectively summarized in Table 3.2. Thus even if we choose the bags of gold
configurations in such a way that they obey naively obey qualitative spectral properties,
there are quantitative differences which are captured using the spectral form factor.

[49] also pointed out the behaviour of the two-point function with the assumption
that the system obeys the eigenstate thermalization hypothesis, and has a ramp at late
times. They predicted that the two-point function should be of the following form:

G(t) = ⟨O(t)O(0)⟩ ∼ Gp + t

L2 − 1
L
, (3.58)

where L ∼ exp{S} of the system. Thus the two-point function for the effective field
theory of bags of gold and the black hole has different behaviour, as mentioned in Table
3.2.

3.6.3 Resolution of spectral puzzles using overcounting

We now ask whether our earlier proposed resolution to the paradox reconciles these
disagreements. We study the spectral properties in the context of pure state black holes
for convenience, and we are interested in the order of magnitude of the partition function.
Our conclusions can be extrapolated to general black holes as well. As before, we consider
typical states defined on the interval (E − ∆E, E + ∆E) to represent a pure state black
hole. The partition function of the dual CFT describing the original black hole over this
interval has the order of magnitude:

Z(β) = Tr
(
e−βH

)
∼ O(ne−βE). (3.59)

Here we have considered ∆E ≪ E, which gives us the above order of magnitude of the
partition function. We now evaluate the partition function of the bags of gold case where
we assume that the m states spanning the EFT Hilbert space are orthogonal. Therefore
the order of magnitude of the partition function is given by:

ZBOG(β) = Tr
(
e−βH

)
=

m∑
l=1

n∑
i,j=1

⟨l|i⟩⟨i|e−βH |j⟩⟨j|l⟩ = O(me−βE). (3.60)

This overcounting in the partition function manifests itself in wrong quantitative
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values for the entropy of the black hole, spectral form factor and the two-point function
at late times. As earlier, we will argue that the bags of gold states in quantum gravity
are not independent but have small inner products with each other. Therefore the actual
Hilbert space is spanned by n vectors, with m embedded Bags of gold vectors which
have tiny but non-zero inner products between each other. Thus we can arrive at the
correct conclusion that ZBOG ∼ O(ne−βE) by working with bulk states such that they
have small but finite inner products. The above conclusion holds as the correct sum over
l in (3.60) is really up to n instead of up to m. The conclusion that ZBOG ∼ O(ne−βE) is
also consistent with the entropy of the black hole as seen before. Similarly we repeat this
analysis for Z(β, T ) as well, and hence we argue that the correct spectral form factor for
the bags of gold spacetime should match the black hole’s spectral form factor by thinking
about the bulk interior states as embedded in the n-dimensional Hilbert space with small
inner products.

Another way to verify that overcounting resolves discrepancies is by observing that
the spectral form factor for the bags of gold configuration quantitatively matches with the
black hole’s spectral form factor in Table 3.2 if overcounting is taken into account. Given
that the actual dimensionality of the m dimensional overcounted Hilbert space is n, we
see that the dip time, the plateau time and the height of the plateau for the bags of gold
configurations match with the original black hole’s curve’s features. Similarly, overcount-
ing resolves the discrepancy between the 2-pt function in the bags of gold spacetime and
the black hole as well, in accordance with our earlier argument that Bekeknstein-Hawking
entropy gives the correct entropy of bags of gold configurations.

3.7 Study of the paradox using toy matrix models

In this section we explicitly demonstrate how overcounting allows us to construct an
immense number of bulk excitations in the context of toy matrix models. Even though
the bulk states arise from matrix models in the large N limit, we can understand aspects
of overcounting by performing computations even in small N toy matrix models. Such
matrix models have a small dimension of the Hilbert space, and it is possible to list out
the state-space explicitly.

By calculating the partition function of a matrix model at temperature T using the
canonical ensemble, we can extract out the average energy and entropy of the system.
Exponentiating the entropy gives us the dimension of the Hilbert space. We are interested
in the regime of small N and temperature such that the dimension of the Hilbert space
is less than 1000.

We will demonstrate overcounting in two different toy matrix models. The first ex-
ample is of a (0 + 1) dimensional two matrix model which has a U(N) global symmetry
group. We construct a typical state using the microcanonical ensemble. Afterwards, we
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will write down the small Hilbert space and demonstrate that we can embed a larger num-
ber of vectors compared to the dimension of the small Hilbert space. The second example
deals with a CFT consisting of 2 matrices defined on S3 × R. Here we will calculate the
Hagedorn temperature and construct the typical state above the Hagedorn temperature.
Again we will construct the small Hilbert space and demonstrate overcounting. These
toy examples show that overcounting with small inner products is natural in the small
Hilbert space.

A similar construction of states follows for bulk states at large N . Apart from com-
putational problems with enumerating the states explicitly, there is no further restriction
to doing the same for CFTs with holographic duals in the large N limit. Some results
obtained in this section are in agreement with recent related work [120].

3.7.1 Toy Model I: A (0 + 1)-d two matrix model

We will work with the two matrix model given by

L = 1
2

[(
∂tA

′
ij

)2
− ω2

A

(
A′
ij

)2
+
(
∂tB

′
ij

)2
− ω2

B

(
B′
ij

)2
+ λA′

ijB
′
ij

]
. (3.61)

Here we have put the interaction term with coupling λ so that A′ and B′ are not inde-
pendently diagonalized. We also demand that λ ≈ 0, so that this coupling term does not
have a significant contribution to the energy and the low energy states are the same as
the states in the free field theory to a very good approximation. The ω’s here enforce an
IR cutoff, and as a result, we do not have any soft modes in the problem.

We will also impose that our physical observables are singlets of the global group 8.
Therefore we diagonalize Bij by using U−1B′U = B, with B being a diagonal matrix
comprising of the eigenvalues of B. Under the same transformation, U−1A′U = A which
is a non-diagonal matrix. Note that this transformation is akin to gauge fixing and a
similar transformation in gauged matrix models removes most of the gauge freedom. In
the limit λ ≈ 0, the equations of motion of A and B are given by[

∂2

∂t2
+ ω2

A

]
Aij(x⃗, t) = 0,

[
∂2

∂t2
+ ω2

B

]
Bii(x⃗, t) = 0. (3.62)

In this case, we will have N2 +N number of independent oscillators, with N2 coming
from A and N coming from B. In the large N limit, the N2 oscillators are responsible for
the Hagedorn growth of states. We will quantize the system by imposing the commutation
relations

[
aij(k), a†

i′j′(k′)
]

= δii′ δjj′

[
bii(k), b†

i′i′(k′)
]

= δii′ δii′ . (3.63)
8In a sense this replicates features of matrix models in which the matrices transform under a gauge

group, where the relevant observables are gauge singlets.
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Figure 3.6: We display the inner products which arise from embedding m = 500 approximately equidistant
vectors in the n = 104-dimensional small Hilbert space of Toy Model I in the left figure and m = 800 vectors
in the same Hilbert space in the right figure. A point on these plots corresponds to the absolute value of
the inner product between vectors lying on the x-axis and the y-axis and hence x = y line has inner product
equal to 1.

The vacuum of this system is given in the following equation. We generate the state
space by the repeated application of these oscillators on the vacuum.

aij |0⟩ = 0, bii |0⟩ = 0. (3.64)

Typical states, the small algebra and the small Hilbert space

We work with N = 4 for Toy Model I, for which we have N2 + N = 20 creation and
annihilation operators. We will set the zero-point energy of the matrix model to zero for
our case by subtracting it off from the energy and thus redefining it, and set ωA and ωB

both to 1 while setting λ = 0.01.
The first thing to construct here is the typical state. To do this we first select energy

eigenstates in a range ∆E about average energy E such that the energies lie in the
interval E ± ∆E

2 . The typical state is now created using a random superposition of these
energy eigenstates. We take the E = 16 with an interval ∆E

2 = 3. We now construct a
typical state with random ci’s weighing energy eigenstates in the interval ∆E such that∑
i |ci|

2 = 1. The inverse temperature β of this system is calculated using the first law
β = ∆S

∆E = 0.92.
We will now construct the small algebra and subsequently, create the small Hilbert

space. We will demand the following three conditions on the small algebra:

• None of the operators in the small algebra annihilates the typical state.

• The maximum number of operator insertions on the state is less than 20, i.e. should
be lesser than O(N2 +N). We take the maximum number 4.
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Figure 3.7: We create m = 220 excitations in the small Hilbert space of Toy model I. Each excitation is
separated from the previous one by time T = 0 in the figure on the top left, T = 1000 in the top right and
T = 105 in the bottom. We see that increasing time separation gradually washes out the inner products,
especially the correlations on the line x = y. This behaviour of the inner products indicates that spatially
separated excitations on the maximal volume slice have small inner products and hence a "fat tail" in quantum
gravity and deviates from the semiclassical zero overlap prediction.

• The maximum energy of the operator insertions is 3, i.e. much less than average
energy E which in our case is 16. The energy of operator insertions should not take
us outside ∆E about E in order to ensure that the backreaction is small.

Using the above conditions we can identify all 104 possible operators and act them
on the typical state to generate the 104-dimensional small Hilbert space.

H |TYP⟩ := A |TYP⟩ , (3.65)

Although not orthogonal these vectors are all linearly independent. As a cross-check, we
computed the rank of the matrix constructed with all these vectors, which was found to
be 104.
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Kinematical demonstration of overcounting in toy model I

We will now use the small Hilbert space to create the interior states as given in equation
(3.66) where Oi(ω) ∈ A.

|ψi⟩ = Ki e
− βH

2 Oi(ω) e
βH

2 |TYP⟩ (3.66)

We now construct interior "bulk-like states" by taking combinations of singlet states
in (3.66). Each of these states corresponds to the action of an "interior bulk" operator
on the typical state. We generate m = 220 vectors |vj⟩ spaced apart from each other in
the Hilbert space by defining an energy cost between them, which minimizes their inner
products. We implement this energy cost numerically by pushing the vectors around in
the small Hilbert space (the sphere discussed in §3.2.1) such that they roughly become
equidistant. We discuss this technique in detail in Appendix 6.4. The resulting "interior
bulk states" are given below where each of them depends on the choice of coefficients Zj

i

|vj⟩ =
∑
i

Zj
i |ψi⟩ . (3.67)

Here the choice of Zj
i is determined by the energy cost which we can manually select.

We plot the vectors’ inner products in Figure 3.6, where each point denotes the absolute
value of the inner product between a vector on the x-axis and a vector on the y-axis. The
x = y line has inner product 1, which indicates that these vectors are normalized. As a
consistency check, the 220 × 220 matrix generated by these "bulk states" has rank 104. It
can be seen from Figure 3.6 that there is a finitely non-zero inner product between these
bulk vectors. As we increase the dimension of the Hilbert space, these inner products
can be made quite small yet finite.

Excitations separated far apart in the "interior"

Till now, we have given a kinematical description of the "bulk excitations", i.e. we took
the Hilbert space and showed that there exist vectors which have small inner products. In
order to model the placement of the "bulk excitations" far apart on the maximum volume
slices of the black hole, we need to send in each excitation long after the previous one.
The static description corresponds to the excitations all sent in at the same time, which
means that independent excitations are lying nearby close enough on the Cauchy slice
and are not separated far apart. We now plot the dynamical case in Figure 3.7 where we
send subsequent excitations with a time T separated between them. We now model the
bags of gold paradox as given in §3.1 by placing the excitations far apart from each other
on the Cauchy slice which corresponds to large numerical values of T .

We note a few interesting observations regarding the dynamical plot. The diagonal
line here is the inner product of a vector on the x-axis with time evolution acting on the
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same vector on the y-axis. At T = 1000, we see that the diagonal line fades away a bit
and the larger inner products get slowly washed out. At a very late time, T = 105 the
diagonal line completely vanishes. This disappearance corresponds to the case when the
excitations on the bulk are placed quite far apart on the maximal volume slices. As we
can see, the time evolution washes out correlations between the vectors, and the larger
inner products cease to exist. Such a washing-out behaviour verifies the "fat tail" of inner
products, which means that at late times the CFT excitations have a small overlap and
is consistent with our derivation in §3.5.2. This numerical overlap becomes lesser and
lesser if the dimension of the Hilbert space increases because there is much more space
in the Hilbert space to accommodate all the vectors.

3.7.2 Toy Model II: A (3 + 1)-d CFT on S3 × R

Toy matrix model I illustrates basic overcounting features for a thermal state constructed
out of a matrix model. We will now proceed onto another example which is given by a
CFT toy model. Here we first write down the CFT partition function and use it to
calculate the Hagedorn temperature which allows us to work in the regime of big AdS
black holes. We will construct a typical state at a temperature just above the Hagedorn
temperature and demonstrate overcounting of bulk excitations. The metric on S3 × R is
given by:

ds2 = −dt2 + a2 dψ2 + a2 sin2 ψ
(
dθ2 + sin2 θ dϕ2

)
, (3.68)

where a is the radius of the S3; ψ and θ go from (0, π) and ϕ goes from (0, 2π). On this
manifold, we write down a CFT action of two matrix-valued bosonic oscillators A and B
transforming under the adjoint representation of U(N) global group in (3.69).

SCFT = −1
2

∫
d4x

√
−g

(
gµν∂µA

′
ij ∂νA

′
ij + gµν∂µB

′
ij ∂νB

′
ij + R

6
[
(A′

ij)2 + (B′
ij)2

])
(3.69)

For the metric given in (3.68) the Ricci scalar is given by R = 6
a2 . As in the previous

toy model, we will add a small interaction term with a coupling λ ≈ 0. The small coupling
ensures that matrices A′ and B′ cannot be diagonalized independently, and the energy
eigenstates are approximately the same as that of free matrix models.

S = SCFT − λ

2

∫
d4x

√
−g A′

ijB
′
ij (3.70)

We will again demand that the physical observables are global group singlets. This
time instead of fixing the U(N) matrices using diagonalization, we will perform a pre-
cise counting of the number of global group singlets constituting a thermal ensemble.
We are interested in the following physical observables: average energy, entropy and the
dimensionality of the Hilbert space. We will derive these quantities by evaluating the



3.7. STUDY OF THE PARADOX USING TOY MATRIX MODELS 79

thermal partition function of the matrix model. We outline this calculation in Appendix
6.2 where we count the number of group singlets using characters of U(N) group and
use it to write down the partition function in terms of a Coulomb gas problem with an
attractive and a repulsive term. Counting only the group singlets allows us to model the
confinement-deconfinement phase transition in the matrix model [121–123]. We calculate
that the "Hagedorn temperature" of this system is given by TH = 0.63. The thermody-
namic observables at a temperature slightly above Hagedorn temperature T = 0.64 are
listed in Table 3.3.

N Entropy Average energy Dimension of Hilbert space
(SN) (EN) (D ≈ eSN )

2 3.43 0.54 31
3 4.76 1.64 116
4 5.68 3.25 293
5 6.59 5.63 725

Table 3.3: Entropy, Average energy and dimension of Hilbert space for small N Toy Matrix model II at
T = 0.64

Typical states, the small algebra and the small Hilbert space

We will work with the N = 5 case, which gives us N2 +N = 30 independent oscillators.
We set the following parameters: the radius of S3 is given by a = 1.55, λ = 0.01 and
T = 0.64. As in the previous model we now construct a typical state with T = 0.64,
which we accomplish by taking states in an interval ∆E such that 1

T
= ∆S

∆E . We take
energy eigenstates spreaded within ∆E = 3 about E = 5.63 and create the typical state
by random superposition of these vectors. This gives us a microcanonical description of
the matrix model for N = 5 at T = 0.64, the canonical description of which is given in
Table 3.3.

We again construct the small Hilbert space by the action of the small algebra on this
typical state, where the small algebra satisfies the following conditions:

• The number of operator insertions on the state is much lesser than 30, i.e. should be
lesser than O(N2+N). We choose that the maximum number of operator insertions
on the typical state is 1.

• The maximum energy of the operator insertions is 1.5, i.e. much less than average
energy E which in our case is 16. The energy of operator insertions should not take
us outside ∆E about E in order to ensure that the backreaction is small.

• None of the operators in the small algebra annihilates the typical state.
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Figure 3.8: In the left figure, we have m = 500 excitations embedded in the n = 61-dimensional small Hilbert
space of Toy model II. This embedding corresponds to the static case where the time difference between
consequent excitations is T = 0. The right figure deals with m = 1000 excitations created from the n = 61-
dimensional Hilbert space. Here we have a time difference of T = 105 between consecutive excitations. This
case corresponds to inner products between excitations placed far apart on the maximal volume slice. The
inner products saturate at late times which we can see from the washing out of inner products on the x = y
line.

Since the maximum number of operator insertions is 1, we have 61 states generated
by the creation and annihilation operators, and hence the dimension of the small Hilbert
space is 61. We will now construct the interior states using operators Oi(ω) ∈ A:

|ψi⟩ = Ki e
− βH

2 Oi(ω) e
βH

2 |TYP⟩ (3.71)

Kinematical demonstration of overcounting in toy model II

The vectors in (3.71) constitute the interior bulk excitations in the large N limit, where
smeared semiclassical states correspond to combinations of these excitations living in the
small Hilbert space. These bulk excitations have the form given in equation 3.67. Using
the energy cost defined in Appendix 6.4, we now construct m = 500 bulk excitations as
in Figure 3.8, which are approximately equidistant from each other. Each point in Figure
corresponds to the inner product’s absolute value between a vector on the x-axis and the
y-axis. As expected, the x = y line has an inner product of 1 along it since the states are
normalized.

Excitations separated far apart in the "interior"

Till now, we have analyzed overcounting for the static case where the excitations are
all situated close to each other on the maximal volume slices in bulk. We now proceed
to the dynamical case where we separate the excitations in time, and the corresponding
bulk states are spatially separated far apart from each other on the maximal volume nice
slices. We expect from the previous toy model that the inner products between these
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excitations get washed out at huge time separations. We now model m = 1000 vectors
embedded in the 61 dimensional Hilbert space and confirm this in Figure 3.8. Here we
see that the inner products saturate at a minuscule value if the time difference between
two successive excitations is T = 105. Thus we obtain the predicted "fat tail" for this
CFT as well.

We have thus shown using two toy matrix models that the inner products between
excitations spaced far apart on the maximum volume slices deviate away from the semi-
classically predicted inner product. This is consistent with our finding in §3.5.2 that
the inner products in CFTs get saturated at a small number. These serve as examples
demonstrating our resolution in §3.2 that the inner products are essential to resolve the
bags of gold paradox.

3.8 General properties of systems with overcounted
Hilbert spaces

We pose the following important question in this section: Since our proposed resolution
says that the Hilbert space is overcounted due to small inner products between vectors,
what are the physical consequences of such a resolution? In other words, can physical
systems in our real-world also have a similar overcounting situation, thereby leading to a
much smaller Hilbert space than what we think they have? We see that there exist some
significant obstructions to such a situation.

Simulating a quantum system’s Hilbert space using a smaller
Hilbert space

Consider an m-dimensional "original" Hilbert space, which can be spanned by m orthonor-
mal vectors. We will now simulate the m-dimensional Hilbert space using a smaller n-
dimensional Hilbert space, such that m > n and see whether it leads to any inconsistency
in physical observables. We construct a nearly orthogonal basis of m vectors, which then
"spans" the larger space with the following inner products:

⟨V1|Vm⟩ = 0, ⟨V1|Vi⟩ = ⟨Vm|Vi⟩ = ϵ ∀i = 2, . . . ,m−1; ⟨Vi|Vj⟩ = 0 ∀ i, j = 2, . . . ,m−2
(3.72)

These vectors are simulating orthogonal states in the larger Hilbert space. We will
now consider the Hamiltonian acting on the m-dimensional space given by:

H =
m−1∑
i=2

|Vi⟩⟨Vi|. (3.73)
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This Hamiltonian time evolves the state |V1⟩ to e−iHt |V1⟩. Therefore starting from
|V1⟩, time evolution will never lead to |Vm⟩ in the original Hilbert space. We will keep
the form of the Hamiltonian same in the smaller Hilbert space in order to not tamper
with the energy spectrum. This time evolution takes place within the space spanned by
the vectors:

|V1⟩, |Ψ⟩ = 1√
m− 2

P
m−2∑
i=2

|Vi⟩, |Vm⟩,

where P denotes a projector which projects a vector onto the subspace orthogonal to |V1⟩
and |Vm⟩. In this basis, the Hamiltonian in the above subspace takes the form:

≈


mϵ2 √

mϵ mϵ2
√
mϵ 1

√
mϵ

mϵ2 √
mϵ mϵ2

 . (3.74)

The original Hamiltonian acting on the m-dimensional Hilbert space expressed in the
orthonormal basis is given by the following matrix,

0 0 0
0 1 0
0 0 0

 . (3.75)

These matrices are not the same and their physical properties are very different for
large m. The matrix given in equation (3.74) can almost perfectly transfer the state |V1⟩
to |Vm⟩ in a time t = π/(1 + 2mϵ2) [124–126]. Therefore we arrive at a contradiction
here. If we try to simulate a system without compromising upon the Hamiltonian’s form,
then they can behave erratically under time evolution. Conventional quantum systems
thus cannot be described using a smaller Hilbert space as they can demonstrate forbidden
quantum state transfers. Such quantum state transfers are a generic feature of simulated
larger Hilbert spaces. Earlier, we argued that the semiclassical Hilbert space of gravity is
a simulated Hilbert space with small inner products. It will be interesting to understand
precisely what kind of such quantum state transfers occur in semiclassical gravity, and
what novel physical features do they display.

Simulating a thermal system using a smaller Hilbert space

Consider vectors in an n dimensional Hilbert space simulating a larger m dimensional
Hilbert space with m ≫ n. Here we consider that the physical system is thermal. The
vectors in the Hilbert space satisfy the following conditions:

⟨vi|vi⟩ = 1 & |⟨vi|vj⟩| ∼ ϵ, i ̸= j. (3.76)
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The thermal system under consideration is specified by energy levels spreaded over
(E ± ∆E) such that ∆E ≪ E. We are interested in the order of magnitude of the
partition function, which is given by:

Z(β) = Tr
(
e−βH

)
= O

(
me−β|E|

)
. (3.77)

We will now see that the simulated thermal system’s partition function is has a sig-
nificant correction.

Zsim(β) = Tr
(
e−βH

)
∼
∑
i

e−βEi +
∑
i ̸=j

[
e−βEϵ2

]
ij

= O
[
me−β|E| (1 +mϵ2)

]
. (3.78)

We can see that even with tiny corrections to the inner product of the order of |ϵ| ∼ 1√
m

we will end up with an immense contribution to the partition function. Thermodynamic
observables in a system are functions of the partition function and its derivatives. It is
safe to say that such a significant contribution to the partition function messes up details
of the thermodynamic observables in the system.

As long as |ϵ| ≪ 1√
m

we don’t have a problem with the thermodynamic observables.
This is consistent with our observation from (3.28) that such a situation does not lead to
the possibility of a big overcounting.
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Chapter 4

Monogamy paradox in flat space

We now discuss a toy model of the monogamy paradox in flat space. An essential feature
of the paradox is that such a paradox cannot be resolved using small corrections of O(GN)
as proposed in our previous analysis of the bags of gold paradox, but is an O(1) paradox.

4.1 Outline of our work

In §4.2 we review the construction of CHSH operators within quantum mechanics. We
generalize this construction in §4.3 and calculate the CHSH correlation between regions
A and B within a local quantum field theoretic framework for asymptotically flat space.

We now list the main non-trivial constructions and results of our work. In §4.4 we
outline the construction of the operators Ci living on region C, which mimic the action of
operators Bi on the global vacuum and write their CHSH correlation with Ai’s. We then
use the CHSH correlations between AC and AB to set up the paradox in monogamy. In
§4.4.4 we argue the resolution of the monogamy paradox in detail. In §5.2 we summarize
our work and discuss related perspectives. In Appendix 6.10, we give a Fourier analytic
proof for the existence of near boundary modes Ci subject to the constraints in our
construction.

4.2 CHSH inequalities in quantum mechanics

This section reviews the CHSH inequality for quantum mechanical systems and uses them
to provide a factual statement about the monogamy of entanglement.

4.2.1 CHSH operator and monogamy of entanglement

Consider a tripartite system composed of independent subsystems A,B, and C. We label
operators belonging to the algebra of A as Ai and so on for the other subsystems. Let us
look at two pairs of operators Ai and Bi where i ∈ (1, 2) which satisfy the commutation

85



86 CHAPTER 4. MONOGAMY PARADOX IN FLAT SPACE

relations [Ai, Bj] = 0. These operators are constructed such that their eigenvalues lie in
the interval [−1, 1], or in other words ∥A∥, ∥B∥ ≤ 1. The CHSH operator is given by

CAB = A1B1 + A1B2 + A2B1 − A2B2. (4.1)

Classically, the maximum value of the CHSH operator is given by 2, which is the case
when A1 and A2 are independent while B1 = B2 or B1 = −B2. However, this bound
no longer holds in quantum mechanics if we evaluate the expectation value of the CHSH
operator over a general state |ψ⟩.

In order to estimate the quantum bound on the CHSH operator, let us square the
same, which gives us C2

AB = 4 − [A1, A2] [B1, B2]. Since the norm of the commutator is
given by |[A1, A2]| ≤ 2, we arrive at |⟨CAB⟩| ≤ 2

√
2.

Now if we consider the square of the expectation value of the CHSH operators defined
over AB and AC, then the statement of the monogamy of entanglement is as follows [87]:

⟨CAB⟩2 + ⟨CAC⟩2 ≤ 8. (4.2)

The above relation statement quantifies the maximum entanglement that subsystem AC

can possess provided there is a given entanglement among the subsystem AB. An inter-
esting conclusion which follows is that there cannot be a scenario where the correlations
between AB and AC both possess a non-classical description, i.e. both ⟨CAB⟩ , ⟨CAC⟩ > 2.
Another outcome is that if the system AB is maximally entangled, i.e. ⟨CAB⟩ = 2

√
2,

then AB cannot be entangled. Thus we have a precise statement regarding the violation
of monogamy of entanglement, which violates the inequality given in (4.2).

4.2.2 Baby example: Bell operators using simple harmonic os-
cillators

Consider a pair of commuting simple harmonic oscillators living in separate regions A
and B. We denote their corresponding annihilation operators as αs, and their respective
vacua as |0⟩s, where s = A/B. We want to evaluate the expectation value of the CHSH
operator on the thermofield double state where x2 < 1,

|TFD⟩ =
√

1 − x2 exα
†
Aα

†
B |0⟩A|0⟩B. (4.3)
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The above state reduces to the standard thermofield double case if we set x2 = e−β.
Denoting projectors onto the s-th vacuum as Ps, we now choose Bell operators as follows:

A operators:
A1 = PA − α†

APAαA

A2 = α†
APA + PAαA

B operators: B1 = 1√
2
(
PB − α†

BPBαB + α†
BPB + PBαB

)
B2 = 1√

2
(
PB − α†

BPBαB − α†
BPB − PBαB

)
(4.4)

These operators are inspired by the Bell operators for spin-1
2 systems, and might look

confusing at first glance. However, expanding the operators in the number basis gives us
a much simpler looking form for the same.

A operators:
A1 = |0⟩A⟨0|A − |1⟩A⟨1|A
A2 = |0⟩A⟨1|A + |1⟩A⟨0|A

B operators: B1 = 1√
2
(
|0⟩B⟨0|B − |1⟩B⟨1|B + |0⟩B⟨1|B + |1⟩B⟨0|B

)
B2 = 1√

2
(
|0⟩B⟨0|B − |1⟩B⟨1|B − |0⟩B⟨1|B − |1⟩B⟨0|B

)
(4.5)

These are precisely the operators used in the spin-1
2 problem, with |0⟩ / |1⟩ denoting the

two states and the operators resembling combinations of Pauli matrices. We now evaluate
the expectation value of the CHSH operator on the thermofield double state, which gives
us

⟨CAB⟩ =
√

2 (1 + x)3 (1 − x) . (4.6)

This takes a maximum value at x = 1
2 with the maximum value being ⟨CAB⟩ = 27

√
2

16 ≈
2.39 > 2. Therefore using the above construction we see that the thermofield double
state is entangled for x = 1

2 , though not maximally entangled.

4.3 CHSH inequalities in local quantum field theory

In this section, we will extend the above construction of the CHSH correlator for simple
harmonic oscillators to analogously construct the CHSH correlator in a local quantum
field theory [60, 127–129]. We will then utilize this formalism to calculate ⟨CAB⟩ for
smeared modes within a small interval on either side of an outgoing light cone in an
empty flat space. This section is computationally intensive, and readers not interested
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in the details of the computation can skip directly to §4.3.4, where we summarize the
contents of this section.

4.3.1 Basic conventions and choice of operators

We define Hermitian operators (Xs,Πs) on the spatially compact regions A and B, such
that they satisfy canonical commutation relations. Consequently we can also define an-
nihilation operators given by αs = 1√

2 (Xs + iΠs). These operators obey the simple
harmonic commutation relations

[
αs, α

†
s′

]
= δss′ . (4.7)

In addition to these modes, there also exist global modes for flat spacetime. These global
modes in flat space obey the canonical commutators

[aωl, a†
ω′l′ ] = δl,l′ δ(ω − ω′). (4.8)

The global modes are related to αs by Bogoliubov coefficients

αs =
∑
l

∫
dω

(
hs(ω, l)aω,l + g∗

s(ω, l)a
†
ω,l

)
, (4.9)

where the functions hs(ω, l) and g∗
s(ω, l) are related by

∑
l

∫
dω [hs(ω, l)h∗

s′(ω, l) − g∗
s(ω, l)gs′(ω, l)] = δs,s′ . (4.10)

We rewrite (4.10) in the following fashion for convenience

hs.h
∗
s′ − g∗

s .gs′ = δs,s′ , (4.11)

where we have defined hs.h∗
s′ = ∑

l

∫
dω hs(ω, l)h∗

s′(ω, l). Let us now consider the scenario
where the CHSH correlators are evaluated on the global vacuum state, while the CHSH
operators are following combinations of αs/α†

s, which are precisely the same operators in
(4.4).

A operators:
A1 = PA − α†

APAαA

A2 = α†
APA + PAαA

B operators: B1 = 1√
2
(
PB − α†

BPBαB + α†
BPB + PBαB

)
B2 = 1√

2
(
PB − α†

BPBαB − α†
BPB − PBαB

)
(4.12)
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We will proceed using general αs in §4.3.2. Our physical case of interest is described in
§4.3.3, where we will take αs to be Rindler annihilation modes. Consequently, we have
an analogous interpretation of the global state as the thermofield double state as defined
in (4.3).

4.3.2 Vacuum projector and the most general two-point corre-
lator

In order to define Bell operators as given in (4.12), we need to construct projectors onto
the ground states of each oscillator, which are given by

Ps = − 1
π2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ 2π

0
dθs

e−(t21+t22)+κ(θs)(t1Xs−t2Πs)

eiθs − 1 − ϵ
(4.13)

where κ(θ) ≡ 2
√
i tan θ and ϵ is a small positive constant. The detailed construction of

this projector is given in Appendix 6.5.
We can conveniently extract the CHSH correlator from the expression for the most

general two-point correlator. Using the definition of the projector in (4.13), the most
general two-point function is given by:

Q[{vi, ζi}] = 1
π4

∫
d2t⃗ d2y⃗

∫ 2π

0
dθA dθB

e−(⃗t2+y⃗2)

(eiθA − 1 − ϵ)(eiθB − 1 − ϵ)
× ⟨ev2α

†
B eκ(θB)(y1XB−y2ΠB) eζ2αB ev1α

†
A eκ(θA)(t1XA−t2ΠA) eζ1αA⟩

(4.14)
where t⃗ = (t1, t2). Let us define ỹi = κ(θB)yi and t̃i = κ(θA)ti so as to write the
expectation value in the above integral as

⟨G⟩ ≡ ⟨ev2α
†
B e(ỹ1XB−ỹ2ΠB) eζ2αB ev1α

†
A e(t̃1XA−t̃2ΠA) eζ1αA⟩ (4.15)

The above two-point correlator and its derivatives at vi = 0, ζi = 0 can be used to obtain
the correlators of all relevant CHSH operators as defined in (4.12). As a demonstration,
the derivatives of Q[{vi, ζi}] can be easily used to generate correlators of the following
form:

∂m2
v2 ∂m1

v1 ∂n2
ζ2 ∂

n1
ζ1 Q[{vi, ζi}]

∣∣∣
vi=ζi=0

=
〈
α† m2
B PB α

n2
B α† m1

A PA α
n1
A

〉
. (4.16)

We will write the expression for ⟨G⟩ in terms of the global modes. This is performed by
expressing αs in terms of global modes using (4.10). This computation requires repeated
application of the BCH lemma while working in a coherent state basis. The detailed
calculation is given in § 6.7, and we state the final result here.

⟨G⟩ = exp
1

8

4∑
p,q=1

(fp.f ∗
q + f ∗

p .fq)mpmq − R
2

+ O
(√

GN

)
. (4.17)
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Here we have added corrections of O
(√

GN

)
to include the effects of interactions in an

interacting theory of the scalar field coupled to gravity, since the interacting vacuum is
different from the global vacuum upto O

(√
GN

)
. Defining ζ±

i = (ζi ± vi)√
2

, the expression
for R is given by

R =
(
m1ζ

+
1 + im2ζ

−
1 +m3ζ

+
2 + im4ζ

−
2

)
− v1ζ1 − v2ζ2, (4.18)

where the quantities fi,mi are defined as:

f1 = (hA + gA) ; f2 = −i(hA − gA) ; f3 = (hB + gB) ; f4 = −i(hB − gB) (4.19a)

m1 = (t̃1 + ζ+
1 ) ; m2 = (−t̃2 + iζ−

1 ) ; m3 = (ỹ1 + ζ+
2 ) ; m4 = (−ỹ2 + iζ−

2 ) (4.19b)

We can use (4.17) to obtain an expression for Q[{vi, ζi}] in (4.14), since the integrals
over t⃗ and h⃗ are Gaussian. The θ integration involves a trivial calculation of the residue
in the complex plane. We will not write the expression for general hs and gs but will
calculate the same for the Rindler to Minkowski Bogoliubov coefficients in the following
subsection.

4.3.3 CHSH correlation between regions A and B in field theory

Note that our specific case of interest involves smearing operators on bounded regions
A and B close to the light cone (See Fig. 1.2). Our smearing choice is such that the
operators αs denote the Rindler oscillators, and hs, gs denote the corresponding Rindler
to Minkowski Bogoliubov coefficients. While we express the CHSH operators in terms
of Rindler operators as given in (4.12), we take the expectation value in the CHSH
correlator over the global vacuum, which is a thermofield double state in terms of the
Rindler oscillators.

Massless modes in flat space

Consider a massless scalar coupled to gravity in d dimensional Minkowski space. The
modes of the massless scalar end up at future null infinity, a fact that will be important
in our posing of the monogamy paradox. The equation for the scalar field is given by:

∂

∂xµ

[
√

−g gµν ∂Φ
∂xν

]
= 0. (4.20)

We solve the above equation in global spherical coordinates (valid for d ≥ 3):

ds2 = −dt2 + dr2 + r2dΩ2
d−2 (4.21)
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where Ωd−2 denotes the angles of the d− 2 dimensional sphere. The equation of motion
can be solved by putting in the ansatz Φ(r, t,Ω) = T (t)χ(r)Yl(Ω), where Yl(Ω) denotes
spherical harmonics of a d− 2 dimensional sphere. Here χ(r) satisfies:

d2χ(r)
dr2 + d− 2

r

dχ(r)
dr

+
(
ω2 − l(l + (d− 3))

r2

)
χ(r) = 0, (4.22)

where ω is the frequency given by:

d2T (t)
dt2

= −ω2T (t). (4.23)

The solution for χ(r) is given by:

χ(r) = C1

r
d−3

2
Jm(rω) + C2

r
d−3

2
Ym(rω) (4.24)

where J and Y denote the standard Bessel functions and m = l+ d−3
2 . We discard the Y

term since it blows up at the origin. Thus the complete solution is given by:

Φ(r, t,Ω) = K
∑
l

∫
dω aω,l

Jm(rω)
r

d−3
2

e−iωt Yl(Ω) + h.c. (4.25)

Here K is a normalization constant used to impose the normalization of the canonical
commutator

[
aω,l, a

†
ω′,l′

]
= δ (ω − ω′) δl,l′ . Computing the momenta from the action of

the massless scalar and using the equal time canonical commutation relation:

[Φ(r, t,Ω),Π(r′, t,Ω′)] = iδ(r − r′)δ(Ω1 − Ω2), (4.26)

we obtain K = 1√
2 . Therefore the scalar field is expressed as

Φ(r, t,Ω) = 1√
2
∑
l

∫
dω aω,l

Jm(rω)
r

d−3
2

e−iωt Yl(Ω) + h.c. (4.27)

Note that in the preceding discussion we have suppressed the extra indices of the spherical
harmonics. As an example, we can explicitly write them for d = 4, which gives us

Φ(r, t, θ, ϕ) = 1√
2
∑
l,m̄

∫
dω aω,l

Jl+ 1
2
(rω)
r

1
2

e−iωt Y m̄
l (θ, ϕ) + h.c., (4.28)

where we have used Y m̄
l to denote the standard spherical harmonics to avoid confusion

with m from (4.25).
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Smeared operators on A and B

We now outline our construction of approximately local operators by smearing the scalar
field over the bounded interval in such a way that the Rindler modes are extracted out. To
perform this, we introduce a tuning function such that it is supported only on the small
bounded regions and smoothly dies off. Recall that the regions A and B are situated just
inside and outside an outgoing light cone at r0 respectively. Thus we define the smeared
operators on the regions A and B by

αA = 1√
VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A

(
U

U0

)iω0

T (U) Φ(tA(U), rA(U),Ω)

αB = 1√
VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

B

(
U

U0

)−iω0

T (U) Φ(tB(U), rB(U),Ω)

α†
A = 1√

VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A

(
U

U0

)−iω0

T ∗(U) Φ(tA(U), rA(U),Ω)

α†
B = 1√

VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

B

(
U

U0

)iω0

T ∗(U) Φ(tB(U), rB(U),Ω)

(4.29)

Here rs and ts, s = A,B denote the global spherical coordinates on the regions A and
B, as given in (4.21). The smearing function oscillates increasingly as tend to go near
U = 0, and thus even a small interval near U = 0 is useful to extract out the Rindler
modes. Consequently U is integrated from Ul to Uh such that the tuning function T (U)
vanishes smoothly as it approaches Ul and Uh. We work in the limit U0 → 0, such that

log Ul
U0

→ −∞ and log Uh
U0

→ ∞. (4.30)

Note that in our convention, we have included the sphere metric determinant √
γ inside

the angular integral in (4.29), such that

VΩ =
∫
dd−2Ω ≡ 2π d−1

2

Γ
(
d−1

2

) .
We assume that the errors due to these length scales are of O(ϵ) such that O(ϵ) ≫
O(

√
GN). In order to impose that the regions A and B remain causally disconnected, we

assume the following conditions:

tA(U) = U

2 − v0 rA(U) = r0 − v0 − U

2
tB(U) = −U

2 + v0 rB(U) = r0 + v0 + U

2

(4.31)
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We also impose the following conditions on the tuning function, so that it is sharply
centred about a particular frequency ω0

T (U)
[
U

U0

]iω0

=
∫

T̃ (ν)
[
U

U0

]iν
dν,

∫ dν

ν

∣∣∣T̃ (ν)
∣∣∣2 = 1

π
. (4.32)

using which we can recover the standard expressions for the commutator of the above
defined modes

[
αs, α

†
s′

]
= δss′ (See Appendix 6.6 for the detailed calculation). Another

relation which will be useful in the computation of ⟨CAB⟩ is

lim
ν→0

T̃ (ν)
ν

= 0 (4.33)

Bogoliubov coefficients for Rindler modes

In order to calculate ⟨CAB⟩, we first need to determine the Bogoliubov coefficients so as
to calculate the most general two-point correlator, whose simplification has been derived
in (4.17). Since we have smeared the field over the entire sphere in (4.29) on either side
of the light cone at r = r0, therefore we only need to look at the l = 0 mode. This is
because the modes l ̸= 0 vanish due to the angular integral. The radial part of the l = 0
mode takes a very simple form in d-dimensions:

χ(r) ∼
J d−3

2
(ωr)

r
d−3

2
(4.34)

We also note that since we have smeared our operators on very small spatial regions A
and B, the smearing functions remain almost constant over the region. However using
(4.33) our tuning function vanishes for small frequencies. Consequently the Bogoliubov
coefficients in (4.9) have support only for large frequencies ω, which we denote by ω > ω′,
where ω′ is a large enough frequency above which the Bogoliubov coefficients are non-zero.
In the large frequency limit, the above radial function simplifies to

χ(r) ∼
√

2
πω

1
r

d−2
2

cos
(
ωr − (d− 2)π

4

)
(4.35)



94 CHAPTER 4. MONOGAMY PARADOX IN FLAT SPACE

Using the large frequency limit, we evaluate the Bogoliubov coefficients. We refer to
Appendix 6.8 for the detailed calculation, and state the main result here.

hA(ω, 0) = e−iξ1

2
√
πω

∫
dν eπν/2(ωU0)−iνΓ(iν)T̃ (ν),

g∗
A(ω, 0) = eiξ1

2
√
πω

∫
dν e−πν/2(ωU0)−iνΓ(iν)T̃ (ν),

hB(ω, 0) = e−iξ1

2
√
πω

∫
dν eπν/2(ωU0)iνΓ(−iν)T̃ ∗(ν),

g∗
B(ω, 0) = eiξ1

2
√
πω

∫
dν e−πν/2(ωU0)iνΓ(−iν)T̃ ∗(ν).

(4.36)

⟨CAB⟩ > 2 for entangled Rindler modes in flat space

We will now use the Bogoliubov coefficients given in (4.36) to evaluate ⟨CAB⟩, using
(4.17). In order to do this, we need to calculate the 4 × 4 matrix fp · f ∗

q + f ∗
p · fq. The

detailed calculation of this matrix is given in Appendix 6.8, and we state the final result.

fp · f ∗
q + fq · f ∗

p = 2
1 − x2


1 + x2 0 2x 0

0 1 + x2 0 −2x
2x 0 1 + x2 0
0 −2x 0 1 + x2

 . (4.37)

Note that the matrix in (4.37) turns out to be the same as obtained for the Rindler-
to-global AdS case in [60]. Although solutions to the massless scalar field in AdS and
flat space are quite different, it is not surprising that the matrix turns out to be the
same. This is because the near-horizon local Rindler modes possess universal features as
explained in [80].

We now substitute (4.37) in (4.17) to derive the expression for ⟨G⟩. In order to do so,
we perform the Gaussian integrals over t⃗ and h⃗ and evaluate the θ integral by calculating
the residue about the pole. Using the expression for ⟨G⟩, we derive the result for ⟨CAB⟩,
which is again given by

⟨CAB⟩ =
√

2 (1 + x)3 (1 − x) . (4.38)

The reader might ask why our expression for the CHSH operator’s expectation value in
QFT is precisely the same as the expression we had derived for the quantum mechanical
case. This is simply because our chosen operators and states were essentially the same in
both cases. Again the expectation value is maximized at x = 1

2 , where ⟨CAB⟩ takes the
value

⟨CAB⟩ = 27
√

2
16 + O

(√
GN

)
+ O (ϵ) (4.39)
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Here we have included corrections since the interacting vacuum of the scalar-gravity
theory is different from the free field vacuum using O

(√
GN

)
. As defined before, we

denote small errors in length scales by O (ϵ).

4.3.4 Summary of this section

The main goal of this section was to show that within a local quantum field theoretic
framework, using a careful choice of operators, we can violate the classical bound. To do
this, we first developed the formalism for looking at CHSH correlators in terms of the most
general two-point correlator acting on the global vacuum. The key here is to write down
the CHSH correlator in terms of Bogoliubov coefficients between the spatially compact
regions’ modes and the global modes. We then wrote down creation and annihilation
operators by smearing the massless scalar field with Rindler smearing functions on small
bounded regions A and B situated just inside and outside an outgoing light cone at r0

and calculated the corresponding Bogoliubov coefficients between these operators and
the global Minkowski operators. We used these Bogoliubov coefficients to obtain ⟨CAB⟩,
where we take the expectation value over the global Minkowski vacuum, which looks like
a thermofield double in terms of the Rindler oscillators. In particular, our construction of
operators in the local QFT is the same as done for the quantum mechanical case described
earlier in §4.2. Consequently the CHSH correlator is given by (4.38), whose maximum
value is ⟨CAB⟩ ≈ 2.39, which violates the classical bound.

4.4 The monogamy paradox in flat space

We will now outline the paradox in the monogamy of entanglement. Previously in (4.39)
we have derived that up to small corrections, we can obtain ⟨CAB⟩ = 2.39 > 2, which
indicates non-classicality. We will now consider another region C situated far away from
our system AB at I+

− , and consider operators Ci supported on the same (See Fig. 1.2).
Applying (4.2) to a local QFT, we have the following upper bound on the CHSH corre-
lators between systems AB and AC

⟨CAB⟩2 + ⟨CAC⟩2 ≤ 8. (4.40)

In this section, we will show that using the Reeh-Schlieder theorem and the fact that in
a theory of gravity, the Hamiltonian is a boundary term [89], we can create operators
Ci such that their action on the vacuum is the same as the action of operators Bi.
Consequently, the expectation in (4.40) based on local quantum field theory is violated
up to an O(1) extent.

Unless indicated otherwise, from here on, we will restrict ourselves to describing the
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effects of gravity in four dimensions. Firstly we describe the Hilbert space of the theory
and construct operators relevant to our calculation. Then we calculate the ⟨CAC⟩ corre-
lator and pose the paradox. We will further discuss conditions on the vacuum structure
under which we can similarly pose the paradox in general dimensions. Towards the end
of this section, we discuss the resolution of the paradox.

4.4.1 Gravity in asymptotically flat spacetime

In this subsection, we will describe the Hilbert space of the four-dimensional flat space
theory and construct a boundary projector onto low energy states. This projector will be
essential to construct bounded operators Ci within a small region at the past of future
null infinity (I+

− ). Readers familiar with the details of this section can directly proceed
onto §4.4.2.

The Hilbert space

A good coordinate system which encapsulates the asymptotic large-r structure near the
future null infinity is the retarded Bondi coordinates [130].

ds2 = −du2−2 dudr+r2γAB dΩAdΩB+r CAB dΩAdΩB+2mB

r
du2+γDADDCAB du dΩB+. . .

(4.41)
There is an infinite-dimensional symmetry group in the asymptotic region consistent with
the leading falloff given above [130–135]. These symmetries are called supertranslations
which are generated by the following charges:

Qlm = 1
4πGN

∫ √
γ d2ΩmB(u = −∞,Ω)Yl,m(Ω) (4.42)

The Bondi news is given by the u-derivative of the shear, NAB = ∂uCAB. This tensor has
a zero mode, which is used to split the supertranslation charges into two parts, a soft part
and a hard part. Technically it is the soft part that leads to the asymptotic symmetries,
while the hard part contains stress-energy contributions.

We will briefly talk about the Fock space of this asymptotic theory [90–92] which is
elaborated in more detail in [79, 93]. Since the news tensor contains a zero mode, the
vacuum must be specified not only by the annihilation of the positive frequency modes of
the news tensor and the scalar field but should also be labelled by the eigenvalue under
the supertranslation sector

Qlm |0, {s}⟩ = sl,m |0, {s}⟩ (4.43)

Here 0 denotes that the positive frequency modes of the field, i.e. the hard part of the
supertranslation charges annihilate the vacuum. By smearing over the energies using
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suitable tuning functions1, where the smearing scale can be taken to be arbitrarily small,
the inner product between two states is given by

⟨ {nω}, {s} | {n′
ω}, {s′} ⟩ =

∏
l,m

δ{nω},{n′
ω} δ

(
sl,m − s′

l,m

)
. (4.44)

where the Dirac delta function goes over the space of all l, m. Consequently, we can build
up the Hilbert space by acting with the massless scalar and the news field on the top
of each vacuum labelled by |0, {s}⟩. Thus the Hilbert space is fragmented into different
sectors, with an element from one sector orthogonal to another from a different sector.
Thus Hilbert space of canonical gravity is given by

H =
⊕
{s}

H{s} (4.45)

We will pause here to clarify some important aspects while working with the Fock space
as described in (4.43), (4.44) and (4.45). Physically in order to compute meaningful
quantities, we write the state of our scalar field as follows:

|{nω},S⟩ ≡
∫ ∏

l,m

dsl,m

S({s}) |{nω}, {s}⟩ , (4.46)

where we have smeared the supertranslation of the vacuum, with the peak of the smearing
function S({s}) centred about a particular sl,m to ensure normalizability of states. The
smearing function S({s}) is chosen such that our states have unit norm. Therefore using
(4.46) and (4.44), the inner product between smeared states is given by

⟨ {nω},S | {n′
ω},S ′ ⟩ = δS,S′δ{nω},{n′

ω}. (4.47)

We note a critical assumption in our discussion: we have ignored UV corrections,
e.g., stringy effects, and assumed that the low energy effective physics correctly describes
the low energy structure of quantum gravity. This assumption seems quite reasonable
since gravity is an excellent effective field theory up to the Planck scale. In our work,
we pose the paradox within a low energy framework where we perform only tree-level
calculations, and hence we are not bothered by any possible modification to the Hilbert
space introduced by a UV completion of gravity such as string theory.

Finally, we also note that our construction manifestly ensures that our Fock space is
separable. This statement can also be motivated using constructive QFT [136–139].

1To see why smearing over energy kets is convenient, note that in QFT without the inclusion of gravity,
the vacuum is normalizable but the excited states are not. In order to work with states satisfying nice
properties, we smear over energy kets there as well. Also note that the Fock space in both cases, i.e.,
QFT with or without gravity is separable.
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Boundary projector

We will now use the gravity Hamiltonian to write down a projector in asymptotically flat
spacetime [79]. We first write the Bondi mass, which is the integration of the Bondi mass
aspect over the sphere at infinity.

M(u) =
∫
d2Ω √

γ mB(u,Ω) (4.48)

Note that the Bondi mass at u → −∞ is the m = 0, l = 0 component of supertranslation
charges Qlm. The Bondi mass reduces to the canonical ADM Hamiltonian in the limit
u → −∞ [89, 140, 141]:

lim
u→−∞

M(u)
4πGN

= H. (4.49)

The ADM Hamiltonian can be expressed in terms of the boundary metric, which is given
by

H = lim
u→−∞

M(u)
4πGN

= lim
r→∞

1
4πGN

∫
d2Ω √

γ (r h00(r,Ω)) . (4.50)

Using this boundary Hamiltonian, we can write down a projector residing at I+
− . The

projector onto the subspace of vacuum states labelled by supertranslations is constructed
by taking the following limit [79, 84]:

P0 = lim
a→∞

exp (−aH) . (4.51)

where the subscript 0 in the projector denotes that we are projecting onto the degen-
erate subspace of zero energy states spanned by supertranslations. We can express this
projector as an operator on the Fock space as follows2

P0 =
∫ ∏

l,m

dsl,m

 |0, {s}⟩ ⟨0, {s}| + O
(√

GN

)
. (4.52)

However, in practice, the projector written in (4.51) is defined only in an abstract sense.
A more physically motivated projector in flat space should project only up to energies
below an IR scale δ, such that O(δ) ≫ O(GN). We should be able to set the IR cutoff δ

arbitrarily small, i.e.; it should not appear in answers to a well-defined physical problem.
The expression for the projector onto low energy states in the Fock space is given by

Pδ = Θ (δ −H) . (4.53)

2Throughout this work, we will use the basis ({s}) to denote the supertranslation elements within
projectors rather than the basis of smeared supertranslations (S) to do so. The smeared basis is utilized
while labelling the vacuum state denoting our system.
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Since our projector is a function of the Hamiltonian, it is given by a boundary term as
well. The representation of this operator over states labelled by the energy and super-
translations is given by

Pδ =
∫ ∏

l,m

dsl,m

∑
i

Θ (δ − Ei) |Ei, {s}⟩ ⟨Ei, {s}| + O
(√

GN

)
, (4.54)

where for notational convenience we have relabelled the states as |Ei, {s}⟩. However it
should be kept in mind that states satisfy the inner product in (4.47). In particular states
with different energy distributions but with same total energy should be thought of as
labelled by different values of the index i.

4.4.2 CHSH correlation between regions A and C

We note that our calculation of ⟨CAB⟩ in the absence of gravity remains unmodified when
we turn on gravity (up to O(

√
GN)) since we have simply fixed sl,m in (4.46). Physically,

our operator insertions within CAB are hard, and such operator insertions do not change
the soft quantum numbers. As a result, the calculation of CAB goes through in gravity.

Now we can construct a spacelike nice slice containing the regions A,B and C. On
this slice, using the Reeh-Schlieder theorem [142, 143] we can construct local operators
Qi living on the region C which replicate the action of hard operators living on region
B, such that

Qi |0, {s}⟩ = Bi |0, {s}⟩ + O
(√

GN

)
(4.55)

where as usual we have added contributions due to the interacting vacuum. Apart from
the theorem guaranteeing their existence, in d-dimensions the operators Qi can be ex-
plicitly constructed as follows.

Consider region C denoted by the Rindler wedge covered by the chart z = Z+ζ cosh τ ,
t = ζ sinh τ , in the domain 0 < ζ < ∞, −∞ < τ < ∞ so as to have z > Z + |t|. To make
this wedge spacelike separated from the region AB we keep Z ≫ r0. The metric is

ds2 = −ζ2dτ 2 + dζ2 +
d−2∑
i=1

dx2
i . (4.56)

We take a separable solution of the form Φ(τ, ζ,x) = e−i(ωτ−k·x)χ(ζ) in order to solve
2Φ = 0. The ζ-equation is given by

ζ2d
2χ

dζ2 + ζ
dχ

dζ
+
(
ω2 − k2ζ2

)
χ = 0, (4.57)

where k ≡ |k|. Imposing boundedness of the solution in the limit ζ → ∞ at fixed τ and
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x, the the field can be expressed as

Φ(τ, ζ,x) =
∫
ω>0

dωdk
(2π)

d−1
2

√
2
ω
bω,ke

−i(ωτ−k·x)Kiω (kζ)
|Γ(iω)| + h.c.. (4.58)

where Kiω(kζ) is the modified Bessel function of the second kind. The ω dependent
factors inside the integral ensure the canonical commutation relations3: [bω,k, b†

ω′,k′ ] =
δ(ω − ω′)δ(k − k′) and [bω,k, bω′,k′ ] = 0 [29].

On the complement of this Rindler wedge we can again write down Rindler-like co-
ordinates, where in addition to the crossed over modes b and b†, there also exist a set of
modes with support on z < Z at t = 0 denoted by b̃ and b̃†. Since these tilde operators
are spacelike to Rindler wedge operators, they commute. Thus within the complement
of the Rindler wedge, where the coordinates are t = −ζ sinh τ, z = Z − ζ cosh τ , the field
operator can be written as

Φ(τ, ζ,x) =
∫
ω>0

dωdk
(2π)

d−1
2

√
2
ω
b̃ω,ke

i(ωτ−k·x)Kiω (kζ)
|Γ(iω)| + h.c. (4.59)

This is precisely how the smeared operators Ai and Bi in the previous section can be
constructed from wedge operators and its complement. From the Bisognano-Wichmann
construction [143], the complement operators are related to the wedge operators as:

b̃ω,l |0, {s}⟩ = e−πωb†
ω,l |0, {s}⟩ ; b̃†

ω,l |0, {s}⟩ = eπωbω,l |0, {s}⟩ (4.60)

where |0, {s}⟩ denotes the global vacuum. Thus we systematically obtain (4.55). Using
this construction, the action of the complement operators Bi on the vacuum can be
written in terms of the action of the wedge operators Qi on the vacuum.

The operators Qi constructed above are in general unbounded, whereas in order to
calculate CHSH correlations we require bounded operators. We will now construct oper-
ators Ci such that they satisfy

∥Ci∥ = ⟨B2
i ⟩ + O

(√
GN

)
⟨AjCi⟩ = ⟨AjBi⟩ + O

(√
GN

)
(4.61)

firstly using the projector P0 onto the flat vacua subspace. We will then use the physical
projector Pδ, and show that there exist our required operators Ci, and construct them
explicitly.

3We make use of ∫ ∞

0

dx

x
Kiω(x)Kiω′(x) = π

2 |Γ(iω)|2δ(ω − ω′)∫ ∞

0

dω

|Γ(iω)|2
Kiω(x)Kiω(x′) = π

2 xδ(x − x′)
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Construction of Ci using P0

In this part, we outline the construction of operators Ci using the exact projector onto
the vacuum. For notational simplicity, we will suppress factors of O

(√
GN

)
within this

subsection, and will reinstate the same in §4.4.3.

In order to construct bounded operators from Qi, we take combinations of products
of Qi with the projector P0. Consequently we recover the action of Bi on the vacuum,
and therefore the resulting operator can be bounded. We define the operators Ci by the
following expression

Ci ≡
⟨B2

i ⟩
(
QiP0 + P0Q

†
i − ⟨Bi⟩ P0

)
− ⟨Bi⟩QiP0Q

†
i

⟨B2
i ⟩ − ⟨Bi⟩2 , (4.62)

where the cumulants are defined with respect to the smeared state |0,S⟩. The operators
constructed in (4.62) might appear out of the blue, however they are systematically
constructed by considering the subspace spanned by {|0, {s}⟩ , Bi |0, {s}⟩}. For notational
convenience, we also define

|Bi, {s}⟩ ≡ Bi |0, {s}⟩ and βi ≡
√

⟨B2
i ⟩ − ⟨Bi⟩2.

Then the construction of Ci is as follows. We start with a candidate Ci with linear
combination of all possible outer products which do not involve cross terms from different
superselection sectors, i.e.:

{|0, {s}⟩ ⟨0, {s}| ; |0, {s}⟩ ⟨Bi, {s}| ; |Bi, {s}⟩ ⟨0, {s}| ; & |Bi, {s}⟩ ⟨Bi, {s}|}

multiplied by undetermined coefficients. These coefficients can be systematically deter-
mined such that they satisfy the bounds in (4.61), which gives us (4.62). To demonstrate
this, we rewrite the expression for Ci in (4.62) as a linearized sum of outer products with
determined coefficients

Ci =
∫ ∏

l,m

dsl,m

 ⟨B2
i ⟩

β2
i

|Bi, {s}⟩ ⟨0, {s}|

1 −
∫ ∏

l,m

ds′
l,m

 |Bi, {s′}⟩ ⟨Bi, {s′}|
⟨B2

i ⟩


+
∫ ∏

l,m

dsl,m

 ⟨B2
i ⟩

β2
i

|0, {s}⟩ ⟨Bi, {s}|

1 −
∫ ∏

l,m

ds′
l,m

 |0, {s′}⟩ ⟨0, {s′}|

 .
(4.63)

The proof of boundedness of Ci as defined in (4.62) and ⟨AjCi⟩ = ⟨AjBi⟩ + O
(√

GN

)
is

given in Appendix 6.9.
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Construction of Ci using Pδ

We will now proceed with the construction of Ci using the more physical projector Pδ.
Motivated by (4.62), we can write a similar expression for Ci, which is valid up to an
O(ϵ) correction.

Ci ≡
⟨B2

i ⟩
(
QiPδ + PδQ

†
i − ⟨Bi⟩ Pδ

)
− ⟨Bi⟩QiPδQ

†
i

⟨B2
i ⟩ − ⟨Bi⟩2 . (4.64)

To see why operators in (4.64) are valid operators upto O(ϵ), we firstly decompose the
projector Pδ as

Pδ = P0 + δP . (4.65)

The claim holds provided the contribution to Ci arises solely due to P0, with δP not
contributing to Ci. By acting operators Ci on the vacuum |0,S⟩, we can ensure that the
chief contribution to Ci comes from P0 by demanding

|⟨0,S|Qi |Ej,S⟩| ∼ O (ϵ) and |⟨0,S|AiQk |Ej,S⟩| ∼ O (ϵ) . (4.66)

where the net energy Ej of the state satisfies 0 < Ej < δ. This renders δP ′s contribution
within Ci very small, and consequently the Ci’s defined in (4.64) satisfy the constraints
in (4.61). Note that these extra contributions arise due to the last term in (4.64).

Note here that O(ϵ) denotes minor errors introduced due to smearing scales, i.e., the
operator smearing and the wedge smearing scales. We group all such scales as O(ϵ) since
relatively these errors are of the same magnitude, in contrast to much more minor errors
of O

(√
GN

)
.

Under what condition can we ensure (4.66)? To begin, consider a single-particle state
|jΩ⟩ = a†

Ej
|0,S⟩, such that Ej < δ. To ensure (4.66), we first evaluate the expression

Q1 |jΩ⟩.

Q1 |jΩ⟩ =
[
Q1, a

†
Ej

]
|0,S⟩ + a†

Ej
Q1 |0,S⟩ (4.67)

We will now argue that both the terms in (4.67) can be set small enough, thereby satisfy-
ing the conditions in (4.66). To see why the first term is small, let us discuss the energy
scales in the problem. Apart from the Planck scale, there are two other energy scales in
the problem: the energy ω′ as defined in §4.3.3 (below which the Bogoliubov coefficients
were close to zero); and δ, which denotes the IR cutoff. Now recall that B1 is given by

B1 = 1√
2
(
PB − α†

B PB αB + α†
B PB + PB αB

)
(4.68)

where PB denotes the projector onto the B-vacuum, i.e., PB = |0B⟩ ⟨0B|, and where we
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have suppressed the supertranslation labels for convenience. Note that the modes αB in
(4.68) are related to the global modes as given in (4.9), and consequently the vacuum
|0B⟩ is related to the global vacuum |0⟩ as follows:

|0B⟩ = exp
∑

jk

1
2 a

†
j Cjk a

†
k

 |0⟩ . (4.69)

where Cjk is the matrix outlined in the footnote4. Thus the operators Bi can be expressed
in terms of the global modes as outlined above. Note that the global operators a†

i can be
constructed only if we have access to the entire spacelike slice Σ, i.e.:

a†
k =

∫
Σ
ϕ(x) e+ikx dd−1x

(2π)d−1 (4.73)

and consequently Bi can only be written down provided we have access to the whole
entire spacelike slice. However, since we have access only to the wedge and not the entire
slice, an exact wedge reconstruction of the operator Bi is impossible. In particular, any
attempt to reconstruct a†

k will also necessarily include other creation and annihilation
operators. ∫

Σ′
ϕ(x) fk(x) dd−1x

(2π)d−1 = a†
k +

∑
j

cj aj +
∑
j ̸=k

dj a
†
j (4.74)

where Σ′ ∈ Σ denotes the spacelike part of the wedge and where fk(x) is a smearing
function with support on Σ′. In spite of this obstruction, the Reeh Schlieder theorem,
and in particular our wedge reconstruction analysis in §4.4.2 gives us (4.55), i.e.:

Q1 |0, {s}⟩ = B1 |0, {s}⟩

The critical point here is that there exist smearing functions fk(x), with support on the
wedge, which convolves with field operator ϕ(x) using which we can construct such an
operator Q1 from the wedge. Then the practical way to construct Q1 is as follows: we at-

4In general, for modes related by Bogoliubov transformations

ai =
∑
i,j

αij bj + βij b†
j (4.70)

with ai |Ω⟩ = 0 and bj |X⟩ = 0, the vacua |Ω⟩ and |X⟩ are related by:

|Ω⟩ = exp
(

1
2 b†

j Cjk b†
k

)
|X⟩ (4.71)

where the matrix Cjk is given by

Cmj = −
∑

i

β∗
mi γij with

∑
i

αji γik = δik (4.72)

where δik denotes the Kronecker delta function.
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tempt to closely simulate Bi by wedge reconstructing the global creation and annihilation
operators as in (4.74). We perform this attempt by choosing wedge smearing functions
appropriately and substituting the closely simulated operators in (4.68) (which is essen-
tially an infinite string of creation and annihilation operators from (4.9) and (4.69)).
Consequently, we have a vast choice in choosing the smearing functions since each global
operator insertion in (4.69) can be simulated using a reconstructed wedge operator. This
method gives us the action of B1 on the vacuum using Q1. As a result, Q1 has additional
terms than B1 since we cannot precisely reconstruct the operator B1.

Upon normally ordering, Q1 takes the following form:

Q1 = B1 +
∑
j

p1j(a†
k) +

∑
j

q1j(ak) (4.75)

where q1j contains at least one annihilation operator, while p1j contains the remaining
terms with zero or more creation oscillators (Note that the operator |0⟩ ⟨0| inside (4.68)
cancels the remaining terms). In order to demand (4.55), the complex coefficients multi-
plying operator distributions inside p1j in (4.75) are conveniently adjusted using smearing
functions such that the following inner product is ensured:

⟨0,S|Q†
1 Q1|0,S⟩ ≈ ⟨0,S|B†

1 B1|0,S⟩ . (4.76)

Now using (4.9), (4.68) and (4.69), we will argue that the wedge reconstructed operators
Q1 in (4.75) satisfy (4.55) along with ensuring the first term in (4.67) is small enough,
provided that Bi and the smearing functions fk(x) satisfy the following conditions:

1. B1 has a small overlap with a†
Ej

. In other words, the modes constituting B1 are
sufficiently high energy modes which are constructed such that ω′ ≫ δ. This ensures
that [

B1, a
†
Ej

]
∼ O(ϵ) (4.77)

Here O(ϵ) denotes the order of overlap between the high energy and the low energy
modes due to smearing scales. A physically intuitive way to understand why we
require ω′ ≫ δ in flat space is to view the projection onto states below δ as noise
in our description over the ground state subspace. Naturally, we do not want
operator insertions inside the correlators characterized by frequencies within the
noisy regime, rendering measurements meaningless. Therefore the noise δ needs to
be set sufficiently low enough for the construction to work5.

We also note that if ω′ < δ, the first term in (4.77) cannot be O(ϵ), but constitutes
an O(1) contribution.

5Note that in AdS, the AdS radius sets a natural length scale restricting δ once and for all, which is
not the case here since the cosmological constant is zero.
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2. This leaves us with the third term (note that the second term commutes with
a†
El

, and also has a very small magnitude) i.e., an infinite number of annihilator
strings q1j. These can provide a large contribution to the commutator in (4.67).
To circumvent this, we require that our smearing functions is chosen such that the
following contribution is ensured:

∑
j

[
q1j(ak), a†

El

]
∼ O(ϵ). (4.78)

In particular, the constraint in (4.78) implies that the third term of the operator
Q1 given in (4.75) has a minimal contribution from annihilators below δ, and hence
a slight overlap.

Thus using the conditions (4.76), (4.77) and (4.78) on Q1, we can ensure that the modes
constituting Q1 are engineered such that the following commutator in (4.67) is ensured:

[
Q1, a

†
Ej

]
∼ O(ϵ). (4.79)

A more rigorous approach to showing the existence of a suitable boundary observable can
be found in Appendix 6.10.

Let us now look at the second term in (4.67). This renders ⟨0,S| a†
Ej
Q1|0,S⟩ = 0,

thereby satisfying the first condition in (4.66). Regarding the other condition in (4.66),
using (4.67), the second term gives us ⟨0,S|Ai a†

Ej
Q1|0,S⟩. Now consider the commutator

Ai a
†
Ej

=
[
Ai, a

†
Ej

]
+ a†

Ej
Ai. (4.80)

Since Ai is again an operator with energy much higher than δ, the first term in (4.80)
is O(ϵ), and the second term is zero i.e. ⟨0,S| a†

Ej
AiB1|0,S⟩ = 0. We can repeat the

analysis for multi-particle states as well as straightforwardly generalize the result from B1

to Bi. We obtain similar conclusions for multi-particle states, with products of creation
operators replacing the single creation operator in the analog of (4.67) and (4.80). Given
the above discussed smearing conditions, operators in (4.64) represent valid operators Ci
satisfying constraints in (4.61), with errors from smearing again giving rise to an O(ϵ)
correction.

Existence of Ci using Pδ and the boundary algebra

In this subsection, we argue that we can always construct Ci using Pδ and other elements
of the boundary algebra which satisfy constraints in (4.61). This differs from our analysis
in §4.4.2 since our expressions for Ci satisfying (4.61) are exact here, without any factors
of O(ϵ).
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In general, to exactly construct Ci satisfying the constraints (4.61), we require other
boundary operators along with the projector Pδ. We define

|B⊥
i , {s}⟩ ≡ (1 − Pδ)

Ni

|Bi, {s}⟩

where Ni is a normalization constant. As an example, we can read off Ni = βi from (4.63),
when we work with the exact vacuum projector P0. On the lines of the construction of Ci
using P0, we write a candidate Ci, which is a sum of all possible outer products multiplied
by undetermined coefficients

Ci =
∫ ∏

l,m

dsl,m

 ∑
Ej ,Ek

Θ(δ − Ej) Θ(δ − Ek)xij,k |Ej, {s}⟩ ⟨Ek, {s}|

+
∫ ∏

l,m

dsl,m

∑
Ej

Θ(δ − Ej)
(
yij |B⊥

i , {s}⟩ ⟨Ej, {s}| + h.c.
)

+
∫ ∏

l,m

dsl,m

 zi |B⊥
i , {s}⟩ ⟨B⊥

i , {s}| .

(4.81)

Note that here the elements |Ej, {s}⟩ ⟨Ek, {s}| belong to the boundary algebra as argued
in [79]. We will systematically fix some of the coefficients in (4.81) as follows, where
we will suppress corrections of O(

√
GN) for presentation. The Hermiticity of Ci implies

xij,k =
(
xik,j

)∗
and zi ∈ R. Imposing Ci |0, {s}⟩ = Bi |0, {s}⟩, we fix the coefficients

xim,0 =
∫ ∏

l,m

dsl,m

 ⟨Em, {s}|Bi, {s}⟩ , yi0 = Ni. (4.82)

which ensures ⟨AjCi⟩ = ⟨AjBi⟩. Given that we still have undetermined coefficients in Ci,
we can always choose them in such a way that the absolute value of the largest eigenvalue
is given by

√
⟨B2

i ⟩, thereby giving us ∥Ci∥ = ⟨B2
i ⟩.

As an example, we will demonstrate this for the case of the exact projector P0. Here
we have Ni = βi. Consequently we obtain

∥Ci∥ = 1
2

(
⟨Bi⟩ + zi +

√
4β2

i + (⟨Bi⟩ − zi)2
)
.

Now requiring that the bound is satisfied, i.e. ∥Ci∥2 = ⟨B2
i ⟩ gives us zi = − ⟨Bi⟩, which

again leads to the seemingly serendipitously constructed Ci in (4.62).

4.4.3 The paradox and generalization to higher dimensions

In §4.4.2, using the wedge reconstruction, the boundary algebra, and the fact that the
Hamiltonian in gravity is a boundary term, we have constructed operators living in the
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exterior region C which essentially replicate the action of operators Bi on the vacuum
state, in three different fashions. Subsequently, we arrive at the following conclusion:

⟨CAC⟩ = ⟨CAB⟩ + O
(√

GN

)
. (4.83)

Consequently at x = 1
2 , the correlator ⟨CAC⟩ takes a maximum value ⟨CAC⟩ = 27

√
2

16 +
O
(√

GN

)
+ O (ϵ).

After getting all our ingredients in place we will now pose the paradox in monogamy
of entanglement. For the maximum violation at x = 1

2 , we obtain

⟨CAB⟩2 + ⟨CAC⟩2 = 11.4 + O
(√

GN

)
+ O (ϵ) > 8. (4.84)

Equation (4.84) contradicts the upper bound in (4.40) and gives rise to the paradox in
monogamy. As mentioned earlier, this is an O(1) violation. The violation does not have
a leading dependence on the IR cutoff δ, an expected feature of a well-defined physical
observable.

An immediate generalization of the paradox in four dimensions is extending the same
to general dimensions. In d ̸= 4, the low energy vacuum structure of gravity is not con-
cretely established (See [144–150] for recent discussions on the subject). Provided that the
vacuum structure of gravity in higher dimensions has a similar form, i.e., there is a unique
vacuum or degenerate vacua labelled by supertranslations, we can pose the paradox in
precisely the same fashion we have done presently. Regarding additional symmetries, we
can again treat them in a fashion similar to our treatment of supertranslations.

We will point out why analogs of supertranslations in general dimensions are not in
conflict with our calculation. The calculation of ⟨CAB⟩ does not require us to go to the
asymptotics since the operator insertions are deep inside the bulk, and hence our operator
insertions do not change the supertranslation of the state on which they act. More
precisely, these operator insertions are hard. The case of ⟨CAC⟩ is a bit more subtle since it
involves the construction of operators Qi and the projector Pδ both of which have support
near I+

− . However, from (4.55), the action of Qi on the supertranslation fixed vacuum is
precisely the action of the hard operators Bi on the vacuum. In addition, the projector
Pδ as defined in (4.54) is diagonal in supertranslation labelled vacua. Consequently, the
insertion of the operator Ci within the vacuum to vacuum correlators does not introduce
any new complications because of our construction and the very nature of the vacuum
structure.

4.4.4 Resolution of the paradox

In our calculation, we have explicitly pointed out small corrections of O
(√

GN

)
(See

(4.84)). Hence the paradox cannot be resolved by introducing small corrections, as is the
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case for Hawking’s original paradox and the bags of gold paradox [1, 28, 40, 58, 94–96].
Here the O(1) violation indicates the existence of a severe flaw in our basic assumption,
i.e., we have assumed that in the presence of gravity, our system admits a description in
terms of a local quantum field theory. Building upon this assumption, we have factorized
our Hilbert space into three different parts into three spatially disconnected and separated
regions A,B, and C.

However, it is a well-known fact that in gravity, the Hilbert space cannot be factorized
due to the Gauss constraint. Consequently, our factorization into a tripartite system each
described by a local QFT is incorrect, which resolves the paradox posed above. With
gravity turned on, degrees of freedom in the region B are secretly the same as degrees
of freedom in the region C. Therefore it is incorrect to describe operators probing the
underlying degrees of freedom using local quantum field theory, and we explicitly see an
O(1) violation if we assume a local quantum field theory setup in our case of empty flat
space.

In a certain sense, we can observe this non-factorization of Hilbert space of the effective
field theory based on spatial partitioning at the level of commutators itself 6. Note
that since our operator insertions Ai/Bi introduce energy into the bulk, the commutator
[H,Bi] ̸= 0. Since Ci is a function of boundary projectors, in general the commutator
[Cj, Bi] ̸= 0. Following the Gauss constraint, this is a complementary objection to why we
should not expect factorization based on spatial partitioning within a theory of gravity,
even though effective field theory reasoning naively indicates otherwise.

Since our calculation is performed in a general fashion, we can equivalently inter-
change the operators A and B describing the interior and the exterior respectively in
(4.84) to set up an information-theoretic inequality again. The resolution for this sit-
uation is precisely what black hole complementarity states, i.e., the interior operators
are complicated polynomials of the exterior operators. In principle, our setup provides
an explicit demonstration of the complementarity principle in flat space. Our boundary
projector is a vital ingredient in this construction, allowing us to write down operators
far away from the light cone that can probe the interior of the light cone.

6We thank Simon Caron-Huot for pointing out this issue.



Chapter 5

Summary and discussion

The underlying theme of the thesis was to pose these paradoxes using bulk effective field
theory and precisely understand what goes wrong while using such a description. Another
theme was understanding how quantum information is localized in a theory of quantum
gravity. In this light, we conveyed the basic idea that studying puzzles regarding the
black hole interior allows us to understand such issues better.

As a brief recap, we started by motivating our work from various angles in our intro-
ductory Chapter. In §2, we provided the basic background and technical tools necessary
to study various aspects of the rest of the thesis. In this chapter, we will be discussing
our work in §3 and §4.

We have hereby looked into two paradoxes from the bulk perspective: the bags of
gold, which can be resolved using small gravitational corrections, while the monogamy
paradox requires O(1) corrections for its resolution. Both approaches demonstrate the
failure of local effective field theory and require us to go beyond it. The case of bags
of gold requires quantum gravity corrections, i.e., the fat tail effects for its resolution.
In contrast, the monogamy paradox arises due to the assumption that the Hilbert space
does not factorize upon spatial partitioning.

We will now summarize different aspects of our work, outline how our work connects
to existing literature, and conclude by mentioning future possibilities.

5.1 The bags of gold paradox

Regarding our work on the bags of gold, we have demonstrated a possible resolution
to understand the case of several excitations living in the black hole interior. We have
proposed that these numerous excitations living on large volume Cauchy slices in the
interior are not inconsistent with the Bekenstein Hawking entropy, as they have small
inner products and thus are not independent excitations. We advocate that such a
situation is not a problematic feature of effective field theory but an essential aspect of

109
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quantum gravity. This overcounting naturally arises in the context of boundary theories,
as shown using toy matrix models. We also showed that spectral observables like the
form factor and the level spacing distribution are violated in the semiclassical treatment
of the interior excitations, and our proposal also resolves these contradictions.

The reader, at this point, might wonder what exactly our proposal accomplishes since
the bags of gold can also be conveniently settled using the fine-grained entropy, as we
outlined in §3.3. In a certain sense, as outlined there, the fine-grained entropy quite
cleanly settles this question by giving us the correct quantitative answer. However, while
these calculations potentially give us the correct answer, quite a few aspects of bulk
physics remain unknown. An important aspect involves a precise understanding of the
physics of the interior. In this regard, one may ask that even though the fine-grained
entropy predicts that the Bekenstein-Hawking formula gives the actual entropy, what
exactly are the bulk criteria for discarding most of the interior excitations in the first
place. More precisely, given some semiclassical excitations, what are the criteria for
discarding them as not contributing to the fine-grained entropy. In other words, since
the entanglement wedge goes only up to the neck, by performing entanglement wedge
reconstruction, one can only reconstruct operators within the wedge without a precise
bulk understanding of what exactly happens to the interior operators.

In this regard, the quantum extremal surface, which calculates the fine-grained en-
tropy, correctly counts the necessary degrees of freedom. We can use this correct counting
to construct a suitable basis spanning the actual Hilbert space. The rest of the interior re-
gion, with numerous semiclassical excitations giving rise to the paradox, can be described
using overcounting within this Hilbert space (i.e., embedded into the actual Hilbert space
via small inner products). This provides a bulk understanding of what gives rise to the
paradox.

The notion of small inner products is consistent with the breakdown of locality in
quantum gravity. We expect locality to hold in ordinary effective field theories describing
nature. In contrast, we expect locality to hold only in an approximate sense in quantum
gravity. Here locality can break down in various situations, such as the case where we
act with too many probes on the spacetime [151]. Small inner products between spatially
separated excitations can be understood as another such situation that demonstrates the
breakdown of locality in quantum gravity.

We saw some examples of the grave problems associated with simulating a Hilbert
space with a much smaller one. So we naturally ask: why are black holes unique? Quan-
tum and thermal systems have macroscopic observables which can be measured experi-
mentally, and in a certain sense, we can find out the Hilbert space’s correct dimension.
Thus the possible kinematic overcounting of Hilbert space is not realized in these sys-
tems. For the case of black holes, thermodynamic observables do point out that the
Hilbert space is far smaller than what bulk semiclassical quantization indicates. As an
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example, we know that the thermodynamic entropy of a black hole should go as area.
Further, from the CFT side, we showed using various examples that spatially separated
bulk interior states indeed have small inner products. These small overlaps between the
dual bulk semiclassical excitations hint at how the Hilbert space of gravity embeds bulk
states.

We now ask why we do not see an overcounting using effective field theory in empty
AdS. Given a holographic CFT, the HKLL prescription wholly reconstructs the empty
AdS bulk. As a result, the CFT description captures all the bulk excitations, and con-
sequently, there is no question of any overcounting. The HKLL prescription also recon-
structs the exterior regions of eternal black holes. The only places where overcounting
using effective field theory can arise are causally inaccessible regions from the boundary.
The black hole interior is an example of such an inaccessible region, and reconstruction
using state-dependent operators allows us to resolve apparent paradoxical situations like
the one we have treated here.

An important aspect that we have briefly touched upon here is the subject of quan-
tum state transfers in semiclassical gravity. We showed via an example in §3.8 that
overcounted Hilbert spaces can lead to quantum state transfers which are forbidden if
orthogonal vectors span the Hilbert space. Since we have argued that effective field the-
ory in the black hole interior leads to an overcounting of the Hilbert space, it will be
helpful to understand which forbidden semiclassical quantum state transfers are allowed
in quantum gravity. We think this holds important implications for black holes in AdS
and possibly in flat space as well.

For the general reader not interested in details, we have thus answered a seemingly
interesting puzzle: Can there exist a giant universe inside an AdS black hole, with the
universe’s coarse-grained entropy exceeding the Bekenstein Hawking entropy of the AdS
black hole, while an external observer in the black hole spacetime is utterly oblivious to
the universe’s existence? The answer to this question is yes, provided that the Hilbert
space of this universe is constructed from the small Hilbert space of the AdS black hole
using small inner products. A significant number of excitations can be described using
the overcounted Hilbert space, provided that their backreaction on the black hole is
extremely small (or, in other words, their states belong to the small Hilbert space).
Careful measurements of thermodynamic observables and state transfers in semiclassical
gravity can conclude that the Hilbert space of this universe is constructed from the small
Hilbert space of the black hole itself. The initial state giving rise to this universe is a
Euclidean state as mentioned in §3.4, while the future of this universe is doomed anyway
since it will eventually fall into the black hole.
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5.2 The monogamy paradox

Regarding our work on the monogamy paradox, firstly, we introduced a formalism for
treating Bell inequalities in a local QFT in an asymptotically flat space. We utilized
the fact that monogamy of Bell correlations is a concrete measure for monogamy of
entanglement and consequently used our formalism to compute Bell correlation between
regions A and B. Then bounded operators Ci were constructed in a spacelike separated
region C close to the boundary using the Reeh Schlieder theorem and the boundary
projector, replicating the operators Bi’s action on the vacuum. Using this, a concrete
paradox was posed in the monogamy of entanglement between the regions A, B and C.
We argued that the resolution to the paradox is as follows: in a theory of gravity, one
cannot factorize the Hilbert space into subspaces describing spatially separated regions,
which is necessary to set up a paradox in the monogamy of entanglement.

As discussed in our work, in canonical gravity, the Hamiltonian is a boundary term
that plays a crucial role in constructing bounded operators in the region C that replicate
operators Bi. The fact that the Hamiltonian is a boundary term is an essential feature
of gravity, which strongly hints at non-local aspects inbuilt within theories of gravity1.
Note that this feature is unique to gravity and is not true of other theories, say theories
with Gauss constraints. Case in point, operator insertions with zero charge in gauge
theories do not affect the field strength residing on the Gaussian surface. In gravity,
an operator insertion necessarily changes the stress-energy tensor, and consequently, one
cannot introduce invisible operator insertions2.

We now discuss the relation of our model to the monogamy paradox for old black holes
in flat space. Since non-local effects of gravity play a primary role in our problem, it is
only natural to assume that such effects play a similar role in the black hole problem3.
The operators Ci in our problem are in a spirit similar to complicated operators situated
far away from a black hole used to extract information from Hawking radiation. Our
construction also emphasizes the usage of CHSH correlations in studying the monogamy
of entanglement paradox, primarily how CHSH correlations can be used to quantify
entanglement. The study of these correlators is necessary since standard measures of
entanglement like Von Neumann entropy are not well defined in gravity.

Note that the monogamy paradox is conventionally posed within the context of old
black holes. However, our discussion only relies upon the entanglement of modes across
the horizon and the boundary. Consequently, we do not require an old black hole to pose

1In a certain sense, this is a generalization of the Gauss law in Newtonian gravity, where the effect of
any massive insertion at a point within a spacelike separated Gaussian surface is necessarily manifested
on the surface.

2This argument is also tied to why we cannot write diffeomorphism invariant local observables in
gravity.

3In fact, such non-local effects are a generic feature of quantum gravity, and manifestly reveal them
under extreme situations [151].
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the paradox, which is reflected in the fact that the validity of operators Ci does not involve
any particular time scale. In line with the principle of holography of information [79–
81], this is because the information about the non-boundary regions is always contained
within I+

− .
The issue with writing down a similar construction for evaporating black holes is that

we require a projector onto the space of black hole microstates, which we presently do not
understand how to construct. Consequently, it is not easy to write bounded operators in a
region far away from the black hole, which can be used to write down CHSH correlations.
However, there is no problem with calculating CAB correlator between modes just inside
and outside the horizon. Formulating the paradox in our toy model’s fashion also shows
that we do not need any modified structure in the black hole interior, as with firewall and
fuzzball constructions. Instead, such a paradox in monogamy is a natural consequence of
wrongly treating gravity as a local quantum field theory.

Before we conclude, we list out some related open questions. In our case, we need
to go very close to future null infinity to construct a projector onto our ground state.
In line with our holographic intuition that gravity knows about quantum information
inside a given region, is it possible to construct a similarly approximate projector onto
the vacuum at a finite radius? Finding such a projector will be pretty valuable not
only as an independent problem for our flat space toy model but also to pose a similar
resolution of the monogamy paradox for dS black holes. Besides, such a projector will be
pretty valuable for understanding aspects of the principle of holography of information
for compact spacetimes, where naively, a projector will project onto all physical states
in the Hilbert space since there is no boundary. Consequently, we need a projector at a
finite radius.

Another problem is to write down the projector onto the space of all black hole
microstates in flat space and AdS, which will allow us to write down a more accurate
toy model. A distant direction is to understand the asymptotic vacuum structure in
general dimensions, which will help pose the toy model concretely in such dimensions.
We envisage our present work as a starting point to address some of these issues in the
near future.

While at the risk of trespassing into areas wherein the author’s expertise is almost
non-existent, we wish to state a couple of lines about the possible relevance of our work
to low-energy experiments. The work discussed here was related to potentially resolving
inconsistencies arising in quantum gravity from a theoretical standpoint. However, in
general, the analysis of CHSH correlators in flat space could be used in the future to test
the localization of quantum information in quantum field theories. Another important
direction is to analogously extend this formalism to understand information-theoretic
statements in cosmology, especially in the context of CMB experiments. We believe
these issues deserve further attention.
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Chapter 6

Appendices

6.1 Explicit examples of overcounting in small vector
spaces

In this appendix we explicitly demonstrate that there can be many more vectors than
n, where n is the dimensionality of the vector space if ϵ ̸= 0. We will demonstrate this
using regular polyhedra. The study of overcounting using regular polyhedra serves as an
easy way to develop our intuition for understanding overcounting by starting from small
dimensions and gradually building up to higher dimensional examples. Note that our
vector space defined over reals in contrast to the Hilbert spaces in quantum mechanics.
We will denote the maximum number of vectors as a function of ϵ to be m̂n(ϵ) in the
previous case. Now regular polyhedra are classified into three classes:

• Simplex: This polyhedra is defined by the condition that the distance between
any two vertices is the same. Examples are : equilateral triangle with n = 2 and
tetrahedron with n = 3. The vectors corresponding to neighbouring vertices have
an inner product given by p⃗i.p⃗j = − 1

n
. Therefore we have m̂n

(
− 1
n

)
= n+1 number

of vectors for the simplex.

• Orthoplex: These polyhedra are defined such that they have a vector each pointing
towards each coordinate direction, suc that the inner product between the neigh-
boring vertices is given by p⃗i.p⃗j = 0. Consequently a simplex has m̂n (0) = 2n
number of vectors.

• Hypercube: In the Cartesian coordinate system, these polyhedra have vertices sit-
uated at the coordinates (±1,±1,±1,±1 . . . )/

√
n. Examples are : square with

n = 2 and cube with n = 3. The neighbouring vertices have inner products given
by p⃗i.p⃗j = 1− 2

n
. Consequently a hypercube has m̂n

(
1 − 2

n

)
= 2n number of vectors.
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We will now compute the inner products for representatives of these above-mentioned
classes of polyhedra. We will now give some examples in low dimensions below:

• Two dimensions: In n = 2 for a regular polygon, the scalar product between
position vectors of m neighbouring vertices is given by p⃗i.p⃗j = cos

[
2π
m

]
, where

m̂2
(

2π
m

)
= m.

• Three dimensions: In n = 3, the icosahedron has m̂3
(

1√
5

)
= 12 vertices while the

dodecahedron has m̂3
(√

5
3

)
= 20 vertices.

• Four dimensions: In n = 4, we consider the 24-cell which has total number of
vertices given by m̂4

(
1
2

)
= 24. Similarly the 120-cell has m̂4

(
1+

√
5

4

)
= 120 vertices

while the 600-cell has m̂4
(

1+3
√

5
8

)
= 600 vertices.

Overcounting in the limit m → ∞?

We will construct a situation where m vectors are approximately equidistant on the sphere
Sn−1 which has surface area of 2πn/2

Γ( n
2 ) . Each unit vector has an exclusion zone given by

2πn/2

mΓ( n
2 ) , where we cannot have any other vector. These exclusion zones have a radius r,

with the volume of these n− 1 dimensional zones given by π
n−1

2

Γ( n+1
2 )r

n−1. Therefore we can
solve for the radius of the exclusion zone as done in the following equation:

r ≈
(

2
√
πΓ(n+1

2 )
mΓ(n2 )

) 1
n−1

. (6.1)

The distance between two neighbouring unit vectors is given by d ≈ 2r. Therefore the
inner product between two neighbouring unit vectors can be easily computed and is found
to be:

p⃗i · p⃗j ≈ 1 − 1
2d

2 = 1 − 2
(

2
√
πΓ(n+1

2 )
mΓ(n2 )

) 2
n−1

. (6.2)

We can now solve the expression for inner products to obtain m. In the limit ϵ → 1
with 0 < 1 − ϵ ≪ 1, we obtain the following expression for m:

m̂n(ϵ) ≈ 2n/2
√

2πΓ(n+1
2 )

Γ(n2 ) (1 − ϵ)− n−1
2 . (6.3)

For 0 < ϵ ≪ 1, m takes the values:

m̂n(ϵ) ≈ 2n
( 2n
n+ 1

)nϵ
(6.4)

This expression for m is in agreement with our derivation of inner products between
neighbouring vectors of the simplex and orthoplex, which are given by m̂n

(
− 1
n

)
= 1 + n
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and m̂n (0) = 2n respectively. Equation (6.4) is also in agreement with our derivation for
the hypercube’s case, up to a minor factor of n

2e .

lim
n→∞

m̂n

(
1 − 2

n

)
→ 2n × n

2e. (6.5)

6.2 Partition function of the U(N) two-oscillator model

We outline the calculation of the partition function of two bosonic oscillators denoted by
A and B transforming under the adjoint representation of U(N) global group [121, 122].
We hereby define x = e−β.

Since we are interested only in the global group singlets, we calculate the partition
function by summing over all Boltzmann weights multiplied by the number of group
singlets at each Boltzmann weight. With Ei being the energy of the bosonic modes, the
partition function is given by

Z(x) =
∑
n1

∑
n2

xn1E1xn2E2
(
All singlets symn1 [adj] × symn2 [adj]

)
(6.6)

Here the index n1 goes over the A oscillators and n2 goes over B oscillators. Note that
here we have set the ground state energy of the oscillators to zero. We now return to the
problem of counting the group singlets. A convenient way to count the number of group
singlets is by using properties of characters, which are maps from the representation of
the group to complex numbers defined as

χR : G → C (6.7)

satisfying the property that for g ∈ G,

χR(g) = TrR(g). (6.8)

These satisfy the orthonormality relation, where [dg] is the Haar measure

∫
[dg]χ∗

Ri
(g)χRj

(g) = δRiRj
, (6.9)

chosen such that
∫
[dg] = 1. Since the character is the trace of the element, therefore

χR1×R2 = χR1 χR2 . The number of irreps can thus be counted using the above relation as

nRI
=
∫

[dg]χ∗
RI

(g)
∏
j

χRj
(g). (6.10)

We will now use this relation to count the number of group singlets. For a singlet
representation, by definition we have χs = 1. Therefore the number of singlets is given
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by
All singlets =

∫
[dg]

∏
j

χRj
(g) (6.11)

We will now use (6.11) to rewrite the partition function in (6.6) in terms of the
characters of U(N):

Z(x) =
∫

[dU ]
∏

i=A,B

∞∑
ni=0

xniEi χsymni (U). (6.12)

We will utilize the following relation for the characters in order to simplify the partition
function:

∞∑
n=0

tn χsymn
(g) = exp

{ ∞∑
l=1

tl χ(gl)
l

}
(6.13)

We denote zA and zB as the single particle partition functions for the A and the B
harmonic oscillators. Using (6.13), and using the bosonic partition function z(x) = zA+zB
and χadj(U) = Tr(U) Tr(U †) we get the partition function as

Z(x) =
∫

[dU ] exp
[ ∞∑
k=1

z(xk)
k

TrUk Tr(U †)k
]
. (6.14)

Rewriting this unitary matrix model in terms of the eigenvalues of the unitary matrix
easily solves the model [42, 152]. Denoting the eigenvalues of U by eiαi , we write the
measure of the model as:

∫
[dU ] =

∏
i

∫ π

−π
[dαi]

∏
i<j

sin2 (αi − αj)
2 (6.15)

Now the partition function is a function of the eigenvalues αi and is given by

Z(x) =
∫

[dαi] exp

−
∑
i ̸=j

V (αi − αj)

 (6.16)

where the potential is given by

V (θ) = − log
∣∣∣∣∣sin θ2

∣∣∣∣∣−
∞∑
k=1

z(xk)
k

cos kθ (6.17)

Equation (6.17) is reminiscent of the Coulomb potential for charges on a sphere where
the term coming from the measure is repulsive interaction between the like charges, and
the other term is attractive interaction due to electric field. The dynamics are similar to
the partition function of the Gross-Witten-Wadia model [153–155], and has a third-order
phase transition in the N → ∞ limit and has a free energy of O (N2). The average
energy is O (N2), and as a consequence, the entropy is also of the same order. Therefore
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we can see that the Hilbert space’s dimensionality is O (expN2).

Entropy, average energy and dimensionality of the Hilbert space
for oscillators on S3 × R

We now proceed to calculate the Hagedorn temperature of the CFT, which is essential
because we want to describe black holes, and going above the Hagedorn temperature is
the regime where we have black holes in the bulk. We will then calculate the entropy,
the average energy and the dimensionality of the Hilbert space.

The single particle partition functions

We evaluate the single-particle partition functions for the CFT living on S3 × R. With
λ ≈ 0 our bosonic harmonic oscillators A and B obey the equation of motion given by

(
−∂2 + a−2

)
Aij = 0 &

(
−∂2 + a−2

)
Bij = 0 (6.18)

In four dimensions we utilize the conformal map from S3 ×R → R4 to write the parti-
tion function Z = ∑

Ei
e−βEi in the form Z = ∑

∆ e
−β∆ where ∆ is the scaling dimension.

The scaling dimension goes over all the local operators in the theory which are generated
by repeated applications of the derivatives ∂µ on the fields, i.e. (A, ∂νA, ∂µ∂νA . . .) and
similarly for the B field modulo the equation of motion. Since [∂] = 1 a single derivative
gives rise to a factor in:

x0 + x1 + x2 + x3 + · · · = 1
1 − x

(6.19)

Four such derivatives will give rise to 1
(1−x)4 . The mass dimension of the matrix

oscillators is [A], [B] = 1. Without incorporating the equation of motion, the naive
partition function constructed using all local operators arising in the matrix model is
given by

x

(1 − x)4 (6.20)

We now need to take the modulus by the equation of motion. Notice that the equation
of motion imposes a condition on any local operator O of the theory:

(
−∂2 + a−2

)
O = 0. (6.21)

The factor (−∂2 + a−2) has a mass dimension x2 which we need to subtract off. The
CFT partition function for oscillators A and B upon this subtraction is therefore given
by

zA(x) = zB(x) = x− x3

(1 − x)4 = x+ x2

(1 − x)3 . (6.22)
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The Hagedorn transition

We calculate the entropy in this subsection and deduce the dimensionality of the Hilbert
space from it. First of all we set mA = mB = 1 for our convenience. The entropy from
the partition function with kB = 1 is given by

S = −∂F

∂T
= ∂ (T logZ)

∂T
= logZ + T

Z

∂Z

∂T
. (6.23)

We can write the potential in (6.17) as

V (θ) = log 2 +
k=∞∑
k=1

1
k

(
1 − 2(x+ x2)

(1 − x)3

)
cos kθ. (6.24)

In the low-temperature phase, it follows from (6.17) that the attractive second term
goes to zero as T → 0. Therefore at low temperature, the repulsive interactions dominate.
The way to solve this matrix model in (6.17) is to introduce the eigenvalue density and
solve using the mean-field theory approximation. The level density of the eigenvalues
is spread uniformly over the circle as T → 0. As we increase the temperature, this
distribution becomes more and more non-uniform, and the phase ceases to be stable
when the terms in the potential turn negative. The condition for the stability of the
potential then becomes

2(x+ x2)
(1 − x)3 < 1. (6.25)

Since 0 < x < 1 and x monotonically increases with temperature in this regime, the
leading k = 1 order well approximates the above condition since it gives the strongest
contribution. The temperature at which this phase becomes unstable is the Hagedorn
temperature and is given by

2(x+ x2)
(1 − x)3 = 1. (6.26)

Solving this the Hagedorn temperature is given by kbTH = 0.634484.

Evaluation of the partition function for small N

We use the single-particle bosonic partition functions to expand the complete partition
function up to the first two powers in cosines, as the remaining terms fall off quite rapidly
and therefore have negligible contributions. We will demonstrate this for the N = 2 case
and will treat higher N similarly. The partition function for N = 2 is given by

Z(x) =
∫ π

−π

∫ π

−π
dα1dα2 sin2

(
α2 − α1

2

)
exp

[ ∞∑
k=1

4 cos k (α2 − α1)
k

x+ x2

(1 − x)3

]
. (6.27)
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Upon the expansion to the first two orders, we obtain the partition function to be

Z(x) =
∫ π

−π

∫ π

−π
dα1dα2 sin2

(
α2 − α1

2

)
exp

[
4(x+ x2) cos (α2 − α1)

(1 − x)3 + 2(x2 + x4) cos [2 (α2 − α1)]
(1 − x2)3

]
.

(6.28)
We evaluate the partition function numerically for N = 2 using equation (6.28) at

temperature T = 0.64, which is just above the Hagedorn temperature. Similarly, we can
explicitly write down the first two terms in the partition function, which are the leading
contributions and numerically integrate them for N = 3, 4, 5 at T = 0.64. We use these
to derive the numerical values of entropy, average energy and use the entropy to calculate
the dimensionality of the Hilbert space. These values are given in Table 3.3.

6.3 Maximum volume slices for the AdS black hole

In this appendix we will maximize the volume of the nice slices of AdSd+1 black holes
whose endpoints are at (u0, 0) on the left horizon and (0, v0) on the right horizon. Using
the isometry of AdS, we will set u0 = v0. The following calculation holds for both the
one-sided black hole and the eternal black hole. The metric in the Kruskal coordinates
for the eternal black hole is given by

ds2 = − 4f(r)
f ′(rh)2 e

−f ′(rh)r∗
duk dvk + r2dΩ2

d−1, (6.29)

where f(r) = r2 + 1 − C
rd−2 , rh is the black hole horizon and r∗ is the tortoise coordinate.

The Kruskal coordinates are denoted with a subscript k in order to avoid potential
confusion with Eddington-Finkelstein coordinate v which we will be using later on.

The variational problem

In this subsection, we utilize the method given in [106, 107] to compute the volumes of
maximal slices. First, we will define a conserved quantity E and write the maximum
volume in terms of it. Afterwards, we will fix E in terms of the Kruskal coordinate u0.

Note that the method used to calculate the volume-maximizing slices is not restricted
to AdS black holes. As an example, we will calculate the maximum volume for slices in
the interior of a 2 + 1 dimensional AdS black brane.

Expression for the maximum volume in terms of the conserved quantity E

We write the black hole metric in infalling Eddington-Finkelstein coordinates where we
will be using v = t+ r∗. The method used to compute the volume does not depend on a
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specific f(r). In these coordinates, the metric takes the form:

ds2 = −f(r) dv2 + 2dr dv + r2dΩ2
d−1, (6.30)

where again f(r) = r2 + 1 − C
rd−2 . We assume that the nice slice of maximum volume has

the same symmetry as that of the (d− 1) sphere. Extremizing (6.31) gives the maximum
volume, where a dot denotes the derivative with respect to σ, which is a parameter
characterizing the nice slices. Here Vd−1 is the volume of the (d− 1) spherical ball.

V = Vd−1

∫
dσ rd−1

(
−f(r) v̇2 + 2ṙ v̇

) 1
2 (6.31)

Extremizing the above equation follows the same procedure for extremizing action,
with the integrand playing the role of a Lagrangian. Since the Lagrangian does not
depend on v, therefore we have a conserved quantity E = −∂L

∂v̇
.

The volume here (6.31) is reparametrization invariant as it does not depend on the
choice of σ. We will fix the parametrization as follows:

rd−1
(
−f(r) v̇2 + 2ṙ v̇

) 1
2 − 1 = 0. (6.32)

We can now write down equations determining r(σ) and v(σ) using the fixed parametriza-
tion and the expression for E, which allows us to write down r and v as coupled differential
equations in terms of E.

E − r2(d−1) [f(r)v̇ − ṙ] = 0 (6.33)

r2(d−1)ṙ2 − f(r) − r−2(d−1)E2 = 0. (6.34)

Eliminating v̇ using the above equation, the expression for the maximum volume takes
the following form:

V = 2Vd−1

∫ rh

rmin

dr

ṙ
= 2Vd−1

∫ rh

rmin

dr
r2(d−1)√

f(r)r2(d−1) + E2
, (6.35)

where r in the integral goes to a minimum value of rmin which is determined by substi-
tuting ṙ = 0 in (6.34).

f(rmin) r2(d−1)
min + E2 = 0. (6.36)

Fixing E in terms of Kruskal coordinate u0

Here we fix E in terms of u0. We see that E is negative since at r = rmin as we have
ṙ|r=rmin

= 0 and v̇|r=rmin
> 0. From the definition of the coordinate v, and using equations
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(6.33) and (6.34) we get

tr + r∗
h − r∗(rmin) =

∫ vrh

vmin

dv =
∫ rh

rmin

dr

 E

f(r)
√
f(r)r2(d−1) + E2

+ 1
f(r)

 (6.37)

Inside the horizon, the Kruskal coordinate uk is related to r∗ and t as u = e
f ′(rh)

2 (r∗−t).
Expressed in Kruskal coordinates (6.37) is given by:

log(u0) = log umin + f ′(rh)
2

∫ rh

rmin

dr

 E

f(r)
√
f(r)r2(d−1) + E2

+ 1
f(r)

 (6.38)

Analytic expression for the volume growth of maximum volume
surfaces in terms of Kruskal coordinate u0

We derive an analytic expression relating the volume growth of the maximum volume
surfaces in terms of the Kruskal coordinate u0. Notice that the integrands in (6.35) and
(6.38) are regular and don’t blow up at rh. The integrands are denoted below by V ′ and
I ′ respectively.

lim
r→rh

V′ = Vd−1r
2(d−1)
h

|E|
(6.39)

lim
r→rh

I′ = lim
r→rh

 E

(r2 − r2
h)
√

(r2 − r2
h)r2 + E2

+ 1
f(r)

 = 1
4
f ′(rh)r2(d−1)

h

E2 (6.40)

At rmin also both these integrands encounter a similar logarithmic blow-up.

lim
r→rmin

V′ = Vd−1r
2(d−1)
min√

E2 + r2(d−1)f(r)
(6.41)

lim
r→rmin

I′ = lim
r→rmin

 E

(r2 − r2
h)
√

(r2 − r2
h)r2 + E2

+ 1
f(r)

 = − f ′(rh)|E|
2f(rmin)r2(d−1)

min

r
2(d−1)
min√

E2 + r2(d−1)f(r)
(6.42)

Since these integrands have similar blow up, one can relate the volume with u0 as
follows using (6.36) and the definition of Hawking temperature β,

V = βA(rmin)
2π log u0 + O (1) (6.43)

Here O (1) is a subleading quantity which does not grow with u0.
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An example: The 2+1 black brane

As an example of this above volume maximization we will take a look at 2+1 dimensional
branes. This provides us an oppurtunity to study the late-time behaviour of E, thereby
allowing us to understand how E characterizes the slice. The general d + 1 black brane
metric is given by:

ds2 = −f(r) dv2 + 2dr dv + r2dx2
d−1, (6.44)

where f(r) = r2
(

1 −
(
rh

r

)d)
. The inverse temperature for the black brane is given by

β = 4π
f ′(rh) = 4π

drh
. The expression for umin takes the form

umin = e
drh

2 r∗(rmin), (6.45)

where rmin is calculated from (6.36) for d = 2 to be

rmin =

√√√√r2
h +

√
r4
h − 4E2

2 . (6.46)

Note that (6.46) has 3 more roots, two of which are dropped because they are negative.

The third root r =
√

r2
h

−
√
r4

h
−4E2

2 is dropped as the integrand becomes imaginary once the

lower limit of integration goes below rmin =
√

r2
h

+
√
r4

h
−4E2

2 . The volume and the relation
of E with u0 for d = 2 are respectively given by

V =
∫ rh

rmin

dr
r2√

(r2 − r2
h)r2 + E2

(6.47)

and

log u0 = log umin + rh

∫ rh

rmin

dr

 E

(r2 − r2
h)
√

(r2 − r2
h)r2 + E2

+ 1
f(r)

 (6.48)

Late time behaviour of rmin and E

The indefinite integrals indicate that the volume tends to infinity as E2 → r4
h

4 . We
took into account the largest root as rmin while solving the minimization equation E2 +
r2
minf(rmin) = 0. |E| characterizes the nice slice and it increases monotonically with

Kruskal time. Therefore at late times rm = lim(u0→∞) rmin is an extremum of r2f(r),
which translates to [r2f(r)]′ = 0. By definition rm is also a root of E2 + r2f(r) = 0.
Therefore we see at late times,

rm = rh√
2
, (6.49)
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Figure 6.1: We test the pushing technique for simplex in the left figure, orthoplex on the right and hypercube
in the bottom figure. We see that the inner products converge to their actual value after around 100 iterations
for the left and the right figures where we set the parameters α = 100, β = 4. In comparison, inner products
converge to their actual value after 200-220 iterations for the bottom figure which we perform with α = 1
and β = 1.

while late times E is related to rh by

E2 = r4
h

4 . (6.50)

The volume is given by (6.43), where we substitute rmin from (6.46).

6.4 Technique used to accommodate vectors on the
unit sphere in Hilbert space

In order to demonstrate overcounting, we construct a larger number of vectors on a sphere
than its dimension such that they are almost equally separated from each other. This
procedure is similar to the one we used to derive the worst-case overcounting formula.

In order to do this we define an energy function with a positive energy cost, i.e. a
repelling force if vectors are too close to each other. The energy is minimized when the
points are evenly distributed. We implement this numerically by pushing vectors away
from each other. For vector v⃗i where i ̸= j,
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v⃗i → v⃗i + α
(v⃗i − v⃗j)

|v⃗i − v⃗j|2β
(6.51)

This map drives a vector away from the nearest vectors and brings it closer to other
distant vectors. The action pushes the vector out of the sphere, and we compensate this
by normalizing the vector to bring them back on the sphere. α and β are parameters
which make the pushing action more or less. As a result, the pushing action separates
the vectors until they come close to equilibrium and are almost equally separated from
each other.

As a test, we check our program for the inner products of simplex, orthoplex and
hypercube whose inner product we have already computed in Appendix 6.1. We push
these vectors 200, 200, 300 times respectively with α = 100, 100, 1 for these three cases
and β = 4, 4, 1, and find that there is convergence to the theoretically estimated dot
product after approximately 120 iterations in each case. Figure 6.1 demonstrates the
convergence of the maximum inner products to their theoretical values.

Figure 6.1 gives a nice description of what the method does. Stronger values of α
and β means a stronger repelling force from nearby vectors and hence more energy cost.
Hence for α = 100, β = 4 we require about 120 iterations for the 300 points to converge.
However, for a much lower value of α = 1, β = 1 the repelling force is not that strong, and
hence the energy cost is not great. Hence it takes many iterations for the inner products
to converge to their theoretical value.

6.5 Projectors onto smeared modes’ vacua

In this section we shall verify the expression for projector onto vacuum (4.13). We first
take a variable transformation, z = t1 + it2 and z∗ = t1 − it2. With αs = 1√

2(Xs + iΠs)
and using Baker–Campbell–Hausdorff lemma, we can write the projector as,

Ps = − 1
π2

∫
d2z

∫ 2π

0
dθs

e−zz̄(1−i tan θs)

eiθs − 1 − ϵ
e−β(θs)z̄α†

se−β(θs)zαs

where β(θ) =
√

2i tan θ. Let us calculate ⟨is|Ps|js⟩, where |is⟩, |js⟩ are number states
corresponding to oscillator labelled by s. We get,

⟨is|e−β(θ)z̄α†
se−β(θ)zαs|js⟩ =

∞∑
m=0

∞∑
n=0

(−β(θs))m+n z̄
m

m!
zn

n! ⟨is|α† m
s αns |js⟩ (6.52)
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Figure 6.2: Contour used in the smeared vacuum projector calculation. There exist two poles at 0 and 1 + ϵ,
amongst which only the former contributes to the unit circle contour integral.

This is only non-zero if n+ is = m+ js. If we also perform the z, z̄ integral with z = reiϕ

and z̄ = re−iϕ, that further constrains us with a δis,js factor. Hence,

⟨is|Ps|js⟩ = − 1
π

∫ 2π

0
dθs

∞∑
n=0

(2i tan θs)n
(1 − i tan θs)n+1(eiθs − 1 − ϵ)

[
δis,js
n! ⟨is|α† m

s αns |js⟩
]
m=n

(6.53)
The term inside third braces is,

δis,js
1
n!⟨is|α

†n
s α

n
s |js⟩ =


δis,js

is!
n!(n− is)!

for n ≤ is,

0 for n > is.

(6.54)

Summing over n and further changing variable ω = eiθs , we have a contour integral

⟨is|Ps|js⟩ = −δis,js
2πi

∮
|ω|=1

dω
ω2is−1(ω2 + 1)

(ω − 1 − ϵ) . (6.55)

With ϵ > 0 as shown in Fig. 6.2 the contour evaluates to

⟨is|Ps|js⟩ = δis,jsδis,0 (6.56)

Hence,

Ps = − 1
π2

∫
dt1dt2

∫ 2π

0
dθs

1
eiθs − 1 − ϵ

e−(t21+t22)−κ(θs)(t1Xs−t2Πs) = |0s⟩⟨0s| (6.57)
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6.6 Explicit commutator of smeared Rindler modes

Consider the commutator of the modes on region A first. The modes are given by:

αA = 1√
VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A

(
U

U0

)iω0

T (U)ϕ(tA(U), rA(U),Ω), (6.58)

α†
A = 1√

VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A

(
U

U0

)−iω0

T ∗(U)ϕ(tA(U), rA(U),Ω) (6.59)

We integrate α†
A by parts, and the only part of α†

A that contributes to the commutator[
αA, α

†
A

]
is

1√
VΩ

∫
dd−2Ω

∫
dU r

(d−2)
2

A ∂Uϕ(U,−2v0,Ω)
∫ dν

iν
T̃ ∗(ν)

(
U

U0

)−iν
(6.60)

Note that here we have used T (U)
(
U
U0

)iω0 =
∫
dν T̃ (ν)

(
U
U0

)iν
to perform the following

replacement ∫ U

0

dU ′

U ′ T (U ′)
(
U ′

U0

)iω0

=
∫ dν

iν
T̃ (ν)

(
U

U0

)iν
. (6.61)

In terms of the light cone coordinates, the annihilation operator is given by

αA = 1√
VΩ

∫ dU

U

∫
dd−2Ω r

(d−2)
2

A ϕ(U,−2v0,Ω)
∫
dνT̃ (ν)

(
U

U0

)iν
(6.62)

Using the null surface canonical commutation [156] relation

[ϕ(U1, V,Ω1), ∂Uϕ(U2, V,Ω2)] = iδ(U1 − U2)δ(Ω1,Ω2)
2rd−2

1
(6.63)

we get

[αA, α†
A] = 1

2

∫ dΩ
VΩ

∫ dν1dν2

ν2
T̃ (ν1)T̃ ∗(ν2)

∫ dU

U

(
U

U0

)i(ν1−ν2)
(6.64)

= 1
2

∫ dΩ
VΩ

∫ dν1dν2

ν2
T̃ (ν1)T̃ ∗(ν2) 2πδ(ν1 − ν2) (6.65)

= 1 (6.66)

where we have used the normalization
∫ dν

ν
|T̃ (ν)|2 = 1

π
.

6.7 Computation of ⟨G⟩

We will discretize the frequency space with a ∆ gap for ease of calculation. Towards
the end of this appendix, we will go back to the continuous limit by taking ∆ → 0.
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Performing the discretization, the global mode commutation relation (4.8) becomes

[an,l, a†
n′,l′ ] = δn,n′δl,l′

∆ , (6.67)

where we have labelled the frequency ω with integer n. The global mode decomposition
(4.9) now looks like αs = ∆∑

n,l hs(n, l)an,l + g∗
s(n, l)a

†
n,l. Using the BCH lemma, we can

decompose the B piece in ⟨G⟩ in terms of creation and annihilation operators as

ev2α
†
Be(ỹ1XB−ỹ2ΠB)eζ2αB = e

(
v2+

(ỹ1−iỹ2)√
2

)
α†

B+
(
ζ2+

(ỹ1+iỹ2)√
2

)
αBe

− 1
2

(
v2

(ỹ1+iỹ2)√
2 +ζ2

(ỹ1−iỹ2)√
2 +v2ζ2

)
.

(6.68)
Similarly decomposing the A piece and then writing both in terms of global modes, we
get

⟨G⟩ =

〈
exp

(
∆∑

n,l

(
uB(n, l) + uA(n, l)

)
an,l +

(
u′
B(n, l) + u′

A(n, l)
)
a†
n,l

)〉

e
1
2

(
v2

(ỹ1+iỹ2)√
2 +ζ2

(ỹ1−iỹ2)√
2 +v2ζ2

)
e

1
2

(
v1

(t̃1+it̃2)√
2 +ζ1

(t̃1−it̃2)√
2 +v1ζ1

) , (6.69)

where

uA(n, l) =
(
v1 + (t̃1−it̃2)√

2

)
gA(n, l) +

(
ζ1 + (t̃1+it̃2)√

2

)
hA(n, l), (6.70)

u′
A(n, l) =

(
v1 + (t̃1−it̃2)√

2

)
h∗
A(n, l) +

(
ζ1 + (t̃1+it̃2)√

2

)
g∗
A(n, l), (6.71)

uB(n, l) =
(
v2 + (ỹ1−iỹ2)√

2

)
gB(n, l) +

(
ζ2 + (ỹ1+iỹ2)√

2

)
hB(n, l), (6.72)

u′
B(n, l) =

(
v2 + (ỹ1−iỹ2)√

2

)
h∗
B(n, l) +

(
ζ2 + (ỹ1+iỹ2)√

2

)
g∗
B(n, l). (6.73)

Next we use a simple result involving coherent states of harmonic oscillators to simplify
our expressions further. Consider a system of oscillators with ground states |0i⟩, where
(i = 1, 2, ...,∞), with commutation relations [α̂i, α̂†

j] = δij. Define the combined ground
state of the system as |0⟩ ≡ ⊗

i |0i⟩. This setup is intended to mimic the global modes
an,l, as in our theory the global vacuum is indeed the tensor product of all the different
global mode vacua. A coherent state in the j’th oscillator is given by |zj⟩ ≡ ezj α̂

†
j |0j⟩,

and the inner product between two such states is ⟨zj|z′
j⟩ = ez

∗
j z

′
j [157]. Then we have

〈
0
∣∣∣e∑i z∗

i α̂i+z′
iα̂

†
i
∣∣∣0〉 = e− 1

2
∑

i
z∗

i z
′
i

〈
0
∣∣∣e∑i z∗

i α̂i

e

∑
j

z′
j α̂

†
j ∣∣∣0〉 (6.74)

= e− 1
2
∑

i
z∗

i z
′
i

∏
ij

〈
0i
∣∣∣ez∗

i α̂iez
′
j α̂

†
j

∣∣∣0j〉 (6.75)

= e− 1
2
∑

i
z∗

i z
′
i

∏
j

⟨zj|z′
j⟩ (6.76)

= e
1
2
∑

i

z∗
i z

′
i

. (6.77)
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To make use of this in simplifying (6.69), we identify
√

∆an,l with α̂j. This gives us terms
like ∑n ∆uA(n, l)u′

B(n, l) on top of the exponential. Taking the limit ∆ → 0, the sum ∑
j

goes to an intgral and the whole expression simplifies to

⟨G⟩ =
exp

(
1
2 (uB + uA) · (u′

B + u′
A)
)

e
1
2

(
v2

(ỹ1+iỹ2)√
2 +ζ2

(ỹ1−iỹ2)√
2 +v2ζ2

)
e

1
2

(
v1

(t̃1+it̃2)√
2 +ζ1

(t̃1−it̃2)√
2 +v1ζ1

) , (6.78)

where uA · uB ≡ ∑
l

∫
dω uA(ω, l)uB(ω, l). Using the fp defined in (4.19), we obtain

uA + uB = 1√
2

[f1(t̃1 + ζ+
1 ) + f2(−t̃2 + iζ−

1 ) + f3(ỹ1 + ζ+
2 ) + f4(−ỹ2 + iζ−

2 )] (6.79)

u′
A + u′

B = 1√
2

[f ∗
1 (t̃1 + ζ+

1 ) + f ∗
2 (−t̃2 + iζ−

1 ) + f ∗
3 (ỹ1 + ζ+

2 ) + f ∗
4 (−ỹ2 + iζ−

2 )]. (6.80)

Re-arranging the terms to gather the fp’s together and using the mq defined in (4.19),
we finally obtain

⟨G⟩ = exp
1

8

4∑
p,q=1

(fp · f ∗
q + fq · f ∗

p )mpmq − R
2

 . (6.81)

6.8 Bogoliubov coefficients and ⟨CAB⟩ ≥ 2

In this appendix, we demonstrate the calculation of the Bogoliubov coefficients and show
that ⟨CAB⟩ ≥ 2.

Bogoliubov coefficients of local Rindler-to-global modes

From (4.35) we can read off the Bogoliubov coefficients using the large frequency limit,
which are given by

hA(ω, 0) = 1√
πω

∫ dU

U

(
U

U0

)iω0

T (U)e−iωtA cos
(
ωrA − (d− 2)π

4

)
,

g∗
A(ω, 0) = 1√

πω

∫ dU

U

(
U

U0

)iω0

T (U)eiωtA cos
(
ωrA − (d− 2)π

4

)
,

hB(ω, 0) = 1√
πω

∫ dU

U

(
U

U0

)−iω0

T (U)e−iωtB cos
(
ωrB − (d− 2)π

4

)
,

g∗
B(ω, 0) = 1√

πω

∫ dU

U

(
U

U0

)−iω0

T (U)eiωtB cos
(
ωrB − (d− 2)π

4

)
.

(6.82)

The above Bogoliubov coefficients are written in terms of integrals over U . We can
perform these integrals using our conditions on the tuning function in (4.32) and (4.33).
Since the form of the integrals is similar, we will demonstrate this by evaluating the
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Figure 6.3: The red and the blue contours are respectively used for the integrals I± =
∫

dx e±ixxiν−1. Both
the curved contours C± give 0 in the limit R → ∞. Since there are no poles inside either contour (they are
slightly separated from the real axis), the total contours also give 0. This lets us equate the integrals over
the real and the imaginary axes for both the eix and e−ix cases. We keep the branch cut (occurring due to
xiν) on the negative real axis so it doesn’t interfere with the calculation.

hA(ω, 0) integral:

hA(ω, 0) = 1√
πω

∫ dU

U

(
U

U0

)iω0

T (U)e−iωtA cos
(
ωrA − (d− 2)π

4

)

= 1
2
√
πω

∫ dU

U

(
U

U0

)iω0

T (U)
[
e−iξ1e−iωU + eiξ2

]
= 1

2
√
πω

∫
dν

T̃ (ν)
(U0)iν

[
e−iξ1

∫
dU U iν−1e−iωU + eiξ2

∫ dU

U
U iν

]

= e−iξ1

2
√
πω

∫
dν

T̃ (ν)
(ωU0)iν

∫
dx xiν−1e−ix + 0

where ξ1 = (d−2)π
4 − ωr0, ξ2 = (d−2)π

4 − ω(r0 − 2v0). The second term in the third line
vanishes because

∫ dU
U

(
U
U0

)iν
= 2πδ(ν), and using (4.33) T̃ (ν) vanishes at ν = 0. The x

integral can be evaluated by choosing a contour shown in Fig. 6.3. We encounter such
x integrals in the expressions for the other Bogoliubov coefficients as well, where we
similarly choose appropriate contours and obtain the following values for the integrals

∫ ∞

0
dx xiν−1e±ix = e∓πν/2 Γ(iν). (6.83)
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Thus the Bogoliubov coefficients can be conveniently summarized as

hA(ω, 0) = e−iξ1

2
√
πω

∫
dν eπν/2(ωU0)−iνΓ(iν)T̃ (ν),

g∗
A(ω, 0) = eiξ1

2
√
πω

∫
dν e−πν/2(ωU0)−iνΓ(iν)T̃ (ν),

hB(ω, 0) = e−iξ1

2
√
πω

∫
dν eπν/2(ωU0)iνΓ(−iν)T̃ ∗(ν),

g∗
B(ω, 0) = eiξ1

2
√
πω

∫
dν e−πν/2(ωU0)iνΓ(−iν)T̃ ∗(ν).

(6.84)

Calculation of ⟨CAB⟩ ≥ 2 for entangled Rindler modes

Here we will demonstrate the calculation of the element f1 · f ∗
1 = h∗

A · hA + g∗
A · gA + h∗

A ·
gA + g∗

A · hA. The typical integral encountered here is of the form

hA · h∗
A =

∫ dω

4πω

∫
dν1dν2 e

π(ν1+ν2)/2 (ωU0)i(ν2−ν1) Γ(iν1)Γ∗(iν2)T̃ (ν1)T̃ ∗(ν2)

= 1
2

∫
dν1dν2 e

π(ν1+ν2)/2 Γ(iν1)Γ∗(iν2)T̃ (ν1)T̃ ∗(ν2)
∫ dω

2πω (ωU0)i(ν2−ν1)

= 1
2

∫
dν1dν2 e

π(ν1+ν2)/2 Γ(iν1)Γ∗(iν2)T̃ (ν1)T̃ ∗(ν2)δ(ν1 − ν2)

= 1
2

∫
dν eπν |Γ(iν)|2| T̃ (ν)|2

= π

2

∫
dν

eπν

ν sinh(πν) |T̃ (ν)|2

= eπω0

2 sinh(πω0)
≡ 1

1 − x2 .

where x ≡ e−πω0 . Here in the fifth step, we have used the identity |Γ(iν)|2 = π
ν sinh(πν)

and used the fact that |T̃ (ν)|2/ν is sharply peaked around ω0 to go the sixth step. We
will now show that hA · g∗

A is zero.

hA · g∗
A =

∫ dω

4πω

∫
dν1dν2 e

π(ν1−ν2)/2 (ωU0)−i(ν2+ν1) Γ(iν1)Γ∗(iν2)T̃ (ν1)T̃ ∗(ν2)

= 1
2

∫
dν1dν2 e

π(ν1−ν2)/2Γ(iν1)Γ∗(iν2)T̃ (ν1)T̃ ∗(ν2)δ(ν1 + ν2)

= 1
2

∫
dν eπνΓ(iν)Γ∗(−iν)T̃ (ν)T̃ ∗(−ν)

= 0

The final step follows due to the fact that within the integral
∫
dνT̃ (ν)T̃ ∗(−ν), when

T̃ (ν) peaks at ν = ω0, the other term goes to zero, i.e. T̃ ∗(−ν) = T̃ ∗(−ω0) ≈ 0. The rest
of the terms are evaluated by straightforward replication of the above logic. We similarly
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evaluate the following expressions in order to completely determine the ff matrix.

hA · h∗
A = hB · h∗

B = 1
1 − x2 ;

gA · g∗
A = gB · g∗

B = x2

1 − x2 ;

hA · g∗
B = gA · h∗

B = x

1 − x2 ;

hA · g∗
A = hA · h∗

B = gA · g∗
B = hB · g∗

B = 0.

(6.85)

Substituting the expressions in (6.85) in fp · f ∗
q + f ∗

p · fq, we obtain

fp · f ∗
q + fq · f ∗

p = 2
1 − x2


1 + x2 0 2x 0

0 1 + x2 0 −2x
2x 0 1 + x2 0
0 −2x 0 1 + x2

 . (6.86)

6.9 Proof of ⟨AjCi⟩ = ⟨AjBi⟩ + O
(√
GN

)
and bounded-

ness of Ci of §4.4.2

In this appendix, we will show that the operators Ci constructed as

Ci ≡
⟨B2

i ⟩
(
QiP0 + P0Q

†
i − ⟨Bi⟩ P0

)
− ⟨Bi⟩QiP0Q

†
i

⟨B2
i ⟩ − ⟨Bi⟩2 . (6.87)

do indeed mimic the contribution of operators Bi in the two-point correlators and are
bounded.

Proof of ⟨AjCi⟩ = ⟨AjBi⟩

First we note that by construction we have Qi |0, {s}⟩ = Bi |0, {s}⟩ for all sectors {s},
which guarantees P0Q

†
i = P0B

†
i = P0Bi. Further, the fact that Bi is block diagonal

in and independent of supertranslation sectors, allows us to write ⟨0, {s}|Bi|0, {s′}⟩ =
Kδ({s} − {s′}). Taking the expectation value w.r.t. the smeared vacuum |0,S⟩ gives us
K = ⟨0,S|Bi|0,S⟩. Thus we have

⟨0, {s′}|Bi|0, {s}⟩ = ⟨0,S|Bi|0,S⟩ δ({s′} − {s}). (6.88)
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So, we have

P0Q
†
i |0,S⟩ = P0Bi |0,S⟩

=
∫ ∏

l,m

dsl,m

∫ ∏
l,m

ds′
l,m

 |0, {s′}⟩ ⟨0, {s′}|Bi|0, {s}⟩ S ({s}) + O
(√

GN

)

=
∫ ∏

l,m

dsl,m

∫ ∏
l,m

ds′
l,m

 |0, {s′}⟩ ⟨Bi⟩ δ({s} − {s′})S ({s}) + O
(√

GN

)

= ⟨Bi⟩
∫ ∏

l,m

dsl,m

 S ({s}) |0, {s′}⟩ + O
(√

GN

)

= ⟨Bi⟩ |0,S⟩ + O
(√

GN

)
.

(6.89)

Now

Ci |0,S⟩ =
⟨B2

i ⟩
(
Qi |0,S⟩ + P0Q

†
i |0,S⟩ − ⟨Bi⟩ |0,S⟩

)
− ⟨Bi⟩QiP0Q

†
i |0,S⟩

⟨B2
i ⟩ − ⟨Bi⟩2 + O

(√
GN

)

= ⟨B2
i ⟩ (Qi |0,S⟩ + ⟨Bi⟩ |0,S⟩ − ⟨Bi⟩ |0,S⟩) − ⟨Bi⟩ ⟨Bi⟩Qi |0,S⟩

⟨B2
i ⟩ − ⟨Bi⟩2 + O

(√
GN

)

=

(
⟨B2

i ⟩ − ⟨Bi⟩2
)
Qi |0,S⟩

⟨B2
i ⟩ − ⟨Bi⟩2 + O

(√
GN

)
= Bi |0,S⟩ + O

(√
GN

)
.

(6.90)

Thus we can clearly see that ⟨AjCi⟩ = ⟨AjBi⟩ + O
(√

GN

)
from here.

Boundedness of Ci

Let us define the orthonormal states |B⊥
i , {s}⟩ ≡ 1

βi
(1 − P0)Bi |0, {s}⟩, where βi ≡√

⟨B2
i ⟩ − ⟨Bi⟩2. Then Ci can we written as

Ci =
∫ ∏

l,m

dsl,m

( |0, {s}⟩ ⟨0, {s}| + βi
(
|0, {s}⟩ ⟨B⊥

i , {s}| + |B⊥
i , {s}⟩ ⟨0, {s}|

)
− ⟨Bi⟩ |B⊥

i , {s}⟩ ⟨B⊥
i , {s}|

)
.

(6.91)

In terms of the orthonormal basis {|0, {s}, |B⊥
i ⟩ {s}⟩}, it takes the form

Ci =
⟨Bi⟩ βi

βi − ⟨Bi⟩

⊗ 1 + O
(√

GN

)
(6.92)
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where the ⊗1 stands for Ci’s identity action on supertranslation sectors. The eigenvalues
of Ci are ±

√
⟨B2

i ⟩ + O
(√

GN

)
and hence the norm is

∥Ci∥2 = ⟨B2
i ⟩ + O

(√
GN

)
< 1. (6.93)

6.10 Proof of existence of Ci of §4.4.2

Let’s split the boundary observable as C = C(0) + C(δ) where C(0) contains P0 and C(δ)

contains δP (CHSH label is suppressed). We know that the C(0) part gives the desired
correlators and is bounded in a desired way by constructing a boundary Qi such that
Qi |0,S⟩ = Bi |0,S⟩, which Reeh-Schlieder guarantees can always be done. We need to
show that ⟨AjC(δ)

i ⟩ can be made arbitrarily small. We have

β2
i ⟨AjC(δ)

i ⟩ = ⟨B2
i ⟩ ⟨Ω|AjδP︸ ︷︷ ︸

energy< δ

Q†
i |0,S⟩ − ⟨Bi⟩ ⟨Ω|AjQiδP︸ ︷︷ ︸

energy< δ

Q†
i |0,S⟩ . (6.94)

Both of these terms can be interpreted as the inner product of Q†
i |0,S⟩ and a bra which

contains excitations on ⟨Ω| with energy less than δ. The latter is a linear combination
of bras of the kind ⟨Ω| aω1aω2 ...aωn such that ∑j ωj < δ. Here we have suppressed the l
label of the global annihilators because they don’t contribute to energy. Each of these
terms is

⟨Ω|aω1aω2 ...aωnQ
†
i |Ω⟩ = ⟨Ω|aω1 ...aωj−1aωj+1 ...aωn [aωj

, Q†
i ]|Ω⟩ , (6.95)

where ωj is any of the n different energies. So these terms can be made arbitrarily small
individually if we can guarantee

[Qi, a
†
ω] ≈ 0 ∀ 0 < ω < δ. (6.96)

where ≈ has been used to mean “arbitrarily close to”. This condition requires that Qi in
addition to satisfying

Qi |0,S⟩ ≈ Bi |0,S⟩ , (6.97)

needs to be constructed in a way such that it contains (arbitrarily) small contribution
from aω,l for ω < δ. To make this condition more precise we inspect how smearing of the
field operator translates into smearing of creation and annihilation operators in energy
domain. Consider a smearing of the kind ϕf =

∫
dtf(t)ϕ(t). We have suppressed the

position argument of both the field ϕ and the smearing function f for simplicity. This
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decomposes as,

ϕf =
∫
dt f(t)ϕ(t)

=
∫
dt f(t)

∫ ∞

0
dω

(
e−iωtaω + eiωta†

ω

)
=
∫ ∞

0
dω

(
f̂(ω)a†

ω + f̂(−ω)aω
)

= a†
f̂+ + af̂− ,

(6.98)

where the hats represent time domain Fourier transforms, the subscripts on mode oper-
ators denote the frequency space smearing: a†

f̂± ≡
∫∞

0 dω f̂±(ω)a†
ω and f̂±(ω) = f̂(±ω).

Again, we have suppressed the sum over spherical mode information l for the creation
and annihilation operators for brevity. Evidently, creation and annihilation operators are
weighted by the positive and negative Fourier modes of f(t) respectively.

Now we make the condition set on Qi more precise. Let A be the algebra generated
by all ϕ smearings in region C. Also, let Aδ,θ be the subset of A containing operators
of the kind ϕf1 + ϕf2ϕf3 + ... such that ∑i

∫ δ
0 dω

∣∣∣f̂−
i (ω)

∣∣∣2 < θ. In simple terms, Aδ,θ is
a subset of A in which all elements obey (6.96) up to precision θ (this may not be the
maximal subset with this property). We shall argue for the existence of a Qi obeying
both Eqs. (6.96) and (6.97) by showing that Aδ,θ |0,S⟩ is dense in the entire Hilbert space
H which is generated by field operations on |0,S⟩ for any θ > 0 however small. Notice
that the denseness of A |0,S⟩ in H is just the statement of the Reeh-Schlieder theorem
and hence the denseness of Aδ,θ |0,S⟩ in H is not too surprising.

To simplify things a little, we take A to be the algebra of all operator smearings with
support in some time band [0, ϵ] (as a simplified model of region C). We also simplify
the definition of Aδ,θ accordingly. Now, let us split the full Hilbert space into particle
number sectors as H = ⊕∞

n=0 Hn, where the n-particle sector Hn contains states like
a†
f̂1
...a†

f̂n
|0,S⟩. We shall show that Aδ,θ |0,S⟩ is dense in both even and odd particle

sectors by induction.

Even sector: Consider the hypothesis: Aδ,θ is dense in Hn. By axiom, the global
identity operator I exists in Aδ,θ (A is a von Neumann algebra), and hence Aδ,θ |0,S⟩
contains |0,S⟩. Therefore Aδ,θ |0,S⟩ is dense in H0, i.e. the hypothesis is true for n = 0.
Consider a general (2n+ 2) particle term a†

f̂1...
a†
f̂2n+2

|0,S⟩. Because we have all the f̂i(ω)
at our disposal, by the corollary stated and proved in §6.10.1, we can construct a gi(t)
with support in [0, ϵ] such that ĝ+

i (ω) ≈ f̂i(ω) and ĝ−
i (ω) ≈ 0 for 0 < ω < δ. This gives

ϕg1ϕg2 ...ϕg2n+2 |0,S⟩ ≈ a†
f̂1
a†
f̂2
...a†

f̂2n+2
|0,S⟩ + (H2n term) + ...+ (H2 term) + (H0 term) .

(6.99)
The first term on the RHS is the one we need to approximate, but other lower particle
number terms show up due to the non-commutativity of creation and annihilation oper-
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ators. If the hypothesis is true for n = 2, 4, ..., 2n, then these residual terms are also limit
points of Aδ,θ |0,S⟩ and can be cancelled off to any precision by summoning a state from
Aδ,θ |0,S⟩. But this means the (2n+2) particle term is also a limit point of Aδ,θ |0,S⟩.
Hence the hypothesis is true for all even n (including 0) and we have proved by strong
induction that Aδ,θ |0,S⟩ is dense in all even number particle sectors.

Odd sector: Consider a state a†
f̂

|0,S⟩ ∈ H1. Just like in the even case, f̂1(ω) lets
us construct g1(t) with support in [0, ϵ] such that ĝ+

1 (ω) ≈ f̂1(ω) and ĝ−
1 (ω) ≈ 0 for

0 < ω < δ. Then we have
ϕg |0,S⟩ ≈ a†

f̂1
|0,S⟩ . (6.100)

Since f̂1(ω) was a general smearing function, we know Aδ,θ |0,S⟩ is dense in H1 and the
hypothesis is true for n = 1. Tracing the exact same inductive steps as the above case,
we obtain that Aδ,θ |0,S⟩ is dense for all odd n.

This concludes the proof for denseness of Aδ,θ |0,S⟩ in H, and hence also the proof
for the existence of a Qi localised in region C and satisfying both Eqs. (6.96) and (6.97).

6.10.1 Positive Fourier mode reconstruction

Lemma: Given δ, ϵ > 0, the space of L2R functions with support in [0, ϵ] is dense in
L2R under the norm defined by ∥f∥2

δ =
∫∞

−δ dω
∣∣∣f̂(ω)

∣∣∣2, where f̂(ω) =
∫
R
dt
2π f(t)eiωt. More

explicitly, given a function f ∈ L2R, and δ, ϵ, w > 0, there exists a function g ∈ L2[0, ϵ]
such that

r ≡
∫ ∞

−δ
dω

∣∣∣f̂(ω) − ĝ(ω)
∣∣∣2 < w. (6.101)

Proof: Let Pϵ be the projector onto the space of all functions supported in [0, ϵ], and
P−δ be the projector onto the space of all functions which contain no Fourier modes in
the range (−∞,−δ). The quantity in question, r =

∫∞
−δ dω

∣∣∣f̂(ω) − ĝ(ω)
∣∣∣2 is manifestly

equal to 1
2π∥P−δf − P−δg∥2, where ∥∥ is the standard L2 norm. Since, we need to show

the existence of a g ∈ PϵL
2R such that r can be made arbitrarily small, it is enough to

show that the subspace P−δPϵL
2R is dense in P−δL

2R. Let C∞
C (R) be the subspace of all

smooth functions with compact support in L2R. This subspace happens to be dense in
L2R. Let us first show the denseness of P−δPϵL

2R in the subspace P−δC
∞
C (R). We shall

show this by contradiction.

Let P−δPϵL
2R not be dense in P−δC

∞
C (R). Then there exists a non-zero function
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χ ∈ P−δC
∞
C (R) such that (ϕ, χ) =

∫
R dt ϕ

∗(t)χ(t) = 0 for all ϕ ∈ P−δPϵL
2R. So,

(P−δPϵψ, χ) = 0 ∀ ψ ∈ L2R

⇒ (ψ, PϵP−δχ) = 0 ∵ both projectors are hermitian

⇒ (ψ, Pϵχ) = 0 ∵ P−δχ = χ

⇒ Pϵχ = 0 ∵ ψ is arbitrary

⇒ χ(t) = 0 ∀ t ∈ [0, ϵ].

(6.102)

Now, since χ(t) is a smooth function on R, identically vanishing over the interval [0, ϵ]
means while we Taylor expand it around some point in this interval, say 0, all the Taylor
coefficients turn out to be 0. χ(t) therefore vanishes identically all throughout the real
line. This is in contradiction to the hypothesis that χ(t) is non-zero. Hence we have
shown that P−δPϵL

2R is dense in P−δC
∞
C (R). On the other hand, P−δC

∞
C (R) is dense in

P−δL
2R because C∞

C (R) is dense in L2R. Hence, by transitivity of denseness of topological
spaces, we have shown P−δPϵL

2R is dense in P−δL
2R.

Corollary: Given a function f ∈ L2R, and δ, ϵ, w > 0, there exists a function g ∈ L2[0, ϵ]
such that ∫ 0

−δ
dω |ĝ(ω)|2 +

∫ ∞

0
dω

∣∣∣f̂(ω) − ĝ(ω)
∣∣∣2 < w. (6.103)

In other words, for any function f(t), there exists a g(t) supported in [0, ϵ] such that
it approximates f(t) in the positive Fourier modes with its modes in the [−δ, 0) range
suppressed to arbitrary precision.
Proof: Given f ∈ L2R, construct f1 ∈ L2R by deleting its Fourier modes in the [−δ, 0)
range. That is

f̂1(ω) =

0 if ω ∈ [−δ, 0)

f̂(ω) if ω /∈ [−δ, 0)
. (6.104)

Now applying the above lemma to f1(t) instead of f(t) proves the existence of the desired
g(t).
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