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1

Introduction

Let M be a Kähler manifold and let there be a Hilbert space on it with a reproducing
kernel. In [2] Berezin developed a method of defining a non-commutative star product on
the symbol of operators acting on this Hilbert space (with a reproducing kernel). Under
certain conditions on M he shows that the star product satisfies the correspondence
principle. The literature on subsequent work after [2] on Berezin quantization is vast. We
mention that in [8] the conditions have been relaxed considerably. Another direction the
theory has developed is Berezin-Toeplitz quantization. Berezin-Toeplitz quantization has
been achieved on general compact Kähler manifolds [4], [13] and have been generalized
to symplectic manifolds of bounded geometry [11]. Berezin-Toeplitz quantization on
certain open sets of complex manifolds have been achieved in [10].

In this thesis we study the problem of Berezin quantization on a compact even
dimensional manifold M2d. We start by removing a skeleton of lower dimension such
that what remains is diffeomorphic to R

2d. This can always be done by [7]. We identify
R
2d with C

d and embed in CP d. We get an induced Berezin quantization from CP d. In
other words, we obtain a Hilbert space (with a reproducing kernel) on M �M0 induced
from CP d, where M0 is of lower dimension. We can define a local Poisson structure and
a star product on the symbol of bounded linear operators on the Hilbert space which
satisfy the correspondence principle, all objects are induced from CP d.

The Berezin quantization depends on the diffeomorphism of M �M0 to R
2d but if we

choose a different diffeomorphism of M �M0 to R
2d, then we obtain a quantization with

another reproducing kernel with star product on symbols which satisfy the correspon-
dence principle. These two quantizations need not be equivalent in the sense that there
is no natural map between the Hilbert spaces which preserve the reproducing kernel.

The situation is better if X =M �M0 has a complex structure. Suppose we have a
biholomorphism of X to C

d or to a polydisc �. Then one can show that X �X0 (X0 is
empty or a set of measure zero) is biholomorphic to C

d �N0 (N0 being empty or a set
of measure zero). As before we can embed C

d �N0 in C
d and then into CP d. Then we

can obtain on X �X0, a Hilbert space with a reproducing kernel and a star product on
the symbol of operators which satisfy the correspondence principle, all objects induced
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from CP d. Thus we have a Berezin-type quantization on X. Next we define equivalence
of two such Berezin-type quantizations. Suppose we have two biholomorphisms from
X � X0 to C

d � N0, then we have a correspondence of the two Hilbert spaces under
consideration such that the reproducing kernel of one of them maps to the reproducing
kernel of the other and the two quantizations are equivalent.

Next we give a local construction for an arbitrary compact complex manifold where
we use local coordinates to induce the quantization from CP d. We also study the
possibility of defining it globally using the correspondence between the Hilbert spaces
with reproducing kernels.

Next we give a construction where we embed a compact smooth manifold Mn into
R
2n by some means (could be the Whitney embedding). We embedd R

2n inside CPn

as one of the standard local charts U0 say. For compact integral Kähler manifold M we
could use the Kodaira embedding into CPn directly. We pull back the Hilbert space of
geometric quantization from CPn and define a Hermitian inner product on this space.
Next we consider pull back bounded linear operators on the pull back Hilbert space,
define the CPn-symbols on them and show that they have a star product which satisfy
the correspondence principle. This construction depends on the embedding.

Next we give a construction of Toeplitz quantization for any compact complex man-
ifold M . First we remove a measure zero set M0 from M and embed M �M0 into CPn.
Then we pull back Hilbert space, Toeplitz operators etc from CPn to M �M0.

In [5] we had constructed pull back coherent and squeezed states on compact smooth
manifolds. We give a very simple construction of them. We use smooth embeddings into
CP d to pullback the Hilbert space of geometric quantization of CP d. Then we construct
Rawnsley-type coherent and squeezed states on the manifold. We show that they satisfy
reproducing kernel property, maximal likelihood property, resolution of identity property
and overcompleteness. We also repeat the construction for a compact Kähler manifold
M with integral Kähler forms by using a Hilbert space of geometric quantization of M .
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Chapter 1

Preliminaries

We will review some material from [19] and [12].

1.1 Grassmannian and Projective space, Universal bundle,

Hyperplane bundle.

Projective spaces

One of the main references in this section is [19].

In this section we review projective spaces CPn.

CPn ∶= P (Cn+1) which is the set of all one dimensional vector subspaces of Cn+1.
In fact CPn is a compact complex manifold of dimension n [19]. The charts are given

as follows.

We write ⇡(z0, z1, ..., zn) = [z0, z1, ..., zn] and say that (z0, z1, ..., zn) are the homo-
geneous coordinates of [z0, z1, ..., zn]. Two homogeneous coordinates (z0, z1, ..., zn) and
(z′0, z

′
1, ..., z

′
n) of a point [z0, z1, ..., zn] ∈ CPn are related by multiplication by a non-zero

complex number. Let Ui = {[z0, z1, ..., zn] ∈ CPn, zi ≠ 0}, i = 0,1, ..., n with

�i([z0, z1, ..., zn]) = (z0zi , ...
zi−1
zi

, zi+1zi
, ..., znzi ) ∈ C

n defining a coordinate chart of CPn.

It is easy to see that �i ○�−1j is a biholomorphism from an open set of Cn to an open
set of Cn.

Grassmannian Manifolds

The main reference for this is [19]. Let V be a n-dimensional C-vector space and
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let Gr(V ) := {the set of r-dimensional subspaces of V }, for r ≤ dim(V ), r fixed. Such
a Gr(V ) is called a Grassmannian manifold. We shall use particular Grassmannian
manifolds, namely Gr,n(C) := Gr(Cn). The fact Grassmannian manifolds can be given
a complex manifold structure and are compact can be found in [19] for instance.

The Grassmannian manifolds are clearly generalizations of the projective spaces in
fact, CPn = G1(Cn+1).

Universal bundle on Grassmannians

The main reference for this is [19].

Let Ur,n be the disjoint union of the r-dimensional C-linear subspaces in C
n. Let

us name them W . Then there is a natural projection ⇡ ∶ Ur,n �→ Gr,n, where Gr,n =
Gr,n(C), given by ⇡(v) =W , if v is a vector in W and W is considered as a point in the
Grassmannian manifold Gr,n .
Thus the inverse image under ⇡ of a point p in the Grassmannian is the subspace W ⊂ Cn

where p is the subspace W . Thus we may regard Ur,n as a subset of Gr,n ×Cn.

We can make Ur,n into a bundle by using the coordinate systems of Gr,n to define
transition functions. In particular, ⇡ ∶ U1,n �→ G1,n = CPn−1, universal bundle over
complex projective space.

Fubini-Study form on CPn−1

The main reference for this is [19]. We follow the notation that G1,n(C) = CPn−1.
Let U1,n �→ CPn−1 be the universal bundle over the projective space. We see that

a frame f for U1,n �→ CPn−1 consists of an open set U ⊂ CPn−1 and smooth function
f ∶ U �→ C

n such that all coefficients of f are not simultaneously zero. A holomorphic
frame will simply have holomorphic coefficients. We define a positive definite metric on
U1,n by letting

h(f) = f̄T f

for any frame f for U1,n . If g is a change of frame, then we compute that h(fg) =
(fg)

T
(fg) = ḡT f̄T fg = ḡTh(f)g, thus we see that h defined above on frames gives a well-

defined Hermitian metric on U1,n, since the frame representation transforms correctly.

The canonical connection and curvature for U1,n with respect to this natural metric
is as follows. If f is any holomorphic frame for U1,n , we have
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✓(f) = h−1(f)@h(f)
⇥(f) = @̄(h−1(f)@h(f)).

Let h = h(f), ✓ = ✓(f), ⇥ = ⇥(f), then

⇥ = h−1 ⋅ dfT ∧ df − h−1 ⋅ dfT ⋅ f ⋅ h−1 ∧ f̄T ⋅ df ,

where h−1 = [f̄T f]−1.
Let W be an open subset of C

n. With notation as in [19] if � ∈ ["p(W )]n and
 ∈ ["q(W )]n, then

< �, >= (−1)pq ̄ ∧ �.

Then the curvature form for U1,n becomes

⇥(f) = −< f, f >< df, df > − < df, f > ∧ < f, df >
< f, f >2

, (1.1.1)

where f is a holomorphic frame for U1,n.

If we choose f to be of the form

f =

�����������

⇠1

⇠2

⋮
⇠n

�����������

(1.1.2)

where ⇠j ∈ #(U) and ⌃�⇠j �2 = �f �2 ≠ 0, then

df =

�����������

d⇠1

d⇠2

⋮
d⇠n

�����������

(1.1.3)

Thus
df

T = (d⇠1, ..., d⇠n) = (d⇠̄1, ..., d⇠̄n), (1.1.4)
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and

⇥(f) = −
�f �2∑n

i=1 d⇠i ∧ d⇠̄i −∑1
i,j=1 ⇠̄i⇠jd⇠i ∧ d⇠̄j

�f �4

Here ⇠1, ⇠2,...,⇠n are functions of the local coordinates on G1,n = CPn−1 and ⇥(f) is
a well defined 2-form on U ⊂ CPn−1.

We can also think of (⇠1, ⇠2, ..., ⇠n) as homogeneous coordinates on CPn−1 and get
the same result.

Hyperplane Bundle on CPn

Dual of the universal bundle is called hyperplane bundle. For r = 1 hyperplane
bundle is called hyperplane line bundle over projective space.

The curvature of the hyperplane line bundle is the Fubini Study form, which is
negative of the curvature of the universal bundle calculated above.

In fact if [t0, ..., tn] are coordinates on CPn, then i
2 times curvature of the hyperplane

bundle is given by ⌦, [19], page 225, as follows.

⌦ = i

2

�t�2∑n
µ=0 dtµ ∧ dt̄µ −∑n

µ,⌫=0 t̄µt⌫dtµ ∧ dt̄⌫
�t�4

In [19] page 189, it has been shown that this is a Kähler form on CPn.

A Grassmannian manifold is a coadjoint orbit.

The main reference for this section is Nakahara [12].

U(n) acts transitively on Gk,n transitively by the action induced from C
n and the

isotropy group is isomorphic to U(k) × U(n − k). Thus Gk,n(C) = U(n)
U(k)×U(n−k) . In fact

from calculations similar to [12], page 182, it follows that Gk,n(C) is a coadjoint orbit. In
particular, if we put k = 1 and n = d+1, then G1,d+1(C) = CP d. That is CP d = U(d+1)

U(1)×U(d)
In fact one can show that CP d = SU(d+1)

S(U(d)×U(1)) .



7

Chapter 2

Some reviews on quantization and
coherent states

2.1 Geometric quantization: a summary.

Let M be a manifold and f ∈ C∞(M) be a smooth function on it (to be thought of an
observable). We want to assign operators f̂ (acting on a Hilbert space) to functions f

such that Q ∶ f → f̂ follows the three conditions below laid out by Dirac.

1) the map Q is linear over R.

2) the map Q maps the constant function 1 to the identity operator.

3) the map Q maps Poisson brackets of two smooth functions to commutators of the
corresponding operators multiplied by a constant −i�h. This conditions imply that Q is
a (irreducible ) representation of C∞(M) on the Hilbert space H.

Suppose we have a symplectic manifold (M,!), with ! integral (i.e. its cohomology
class is in H2(M,Z)). Geometric quantization is a method of quantization developed by
Kostant and Souriau which assigns to certain smooth functions on M an operator which
acts on a section of a Hermitian line bundle, called the prequantum line bundle, such
that the Poisson bracket corresponds to the commutator. The prequantum line bundle
is a Hermitian line bundle with a connection whose curvature ⇢ is proportional to the
symplectic form. The assignment of a function f ∈ C∞(M) to an operator is as follows:
f̂ = −i∇Xf + f acting on the Hilbert space of square integrable sections of L (the wave
functions). Here locally ∇ = d−i✓ where ! = d✓ locally), i.e. ✓ is the symplectic potential
and Xf is defined by !(Xf , ⋅) = −df(⋅). We have taken �h = 1. The general reference for
this is Woodhouse, [20].

As mentioned earlier this assignment has the property that the Poisson bracket
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(induced by the symplectic form), namely, {f1, f2}PB, corresponds to an operator pro-
portional to the commutator [f̂1, f̂2] for any two functions f1, f2.

The Hilbert space of a pre-quantization is usually too huge for most purposes. Ge-
ometric quantization involves construction of a polarization of the symplectic manifold
such that we now take polarized sections of the line bundle, yielding a finite dimensional
Hilbert space in most cases. However, in general, for an arbitrary smooth function, f̂
does not map the polarized Hilbert space to the polarized Hilbert space. Thus only a
few observables from the set of all f ∈ C∞(M) are quantizable.

Holomorphic quantization.

Suppose M is a compact integral Kähler manifold, ! is an integral Kähler form, and
L the prequantum line bundle, one can take holomorphic square integrable sections of
L⊗m for m ∈ Z+ large enough as the Hilbert space of the quantization. Recall L might
not have any global sections so we need to have high enough tensor product, hence we
need L⊗m). L⊗m has curvature proportional to m!. Let {z1, ....zn} on M . The polarized
sections  are given by ∇⌘̄ = 0 where ∇ is the covariant derivative w.r.t. a connection
✓ (i.e. m! = d✓ locally) and ⌘̄ = { @

@z̄1
, ...., @

@z̄n
}. Let ✓ = ∑n

i=1 fidzi +∑n
i=1 gidz̄i. Then the

equation for  is @ 
@z̄i
− igi = 0, i = 1, ..., n. One can show that the most general solution

of this set of pde’s is  = G0(z, z̄)h(z), where h(z) is a holomorphic section of L⊗m
and G0(z, z̄) satisfies the equation @G0

@z̄i
− igiG0 = 0, i = 1, ..., n. Since G0 is completely

determined by ✓, there is a 1 − 1 correspondence between  and h i.e. the polarized
sections and the holomorphic sections.

In this thesis we need to consider the geometric quantization of CPn and use the
holomorphic sections of H⊗m where H is the hyperplane line bundle H on CPn. We
will not explicitly need the quantum operators f̂ .

2.2 Rawnsley Coherent states and Perelomov Coherent states:

a review.

Rawnsley coherent states

In [17], Rawnsley has defined coherent states on a compact Kähler manifold with
an integral Kähler form which arise naturally out of geometric quantization. This goes
as follows. Let H be space of holomorphic square integrable sections of the quantum
bundle L, the measure being e−Fdµ where F is a Kähler potential and dµ proportional



2.2. Rawnsley Coherent states and Perelomov Coherent states: a review. 9

to the volume form.

Let Lp be the fiber in the line bundle above p ∈ M . From L, we remove the zero
section and call it L0, that is L0 = L � {0}. Let s ∈ H, then the evaluation map
s → s(p) is continuous. For q ∈ L0, we obtain a continuous linear functional �q on H
by �q(s) ⋅ q = s(p) where p = ⇡(q). By Riesz representation theorem, there is a vector
eq ∈ H such that s(p) = (s, eq) ⋅ q. Clearly ecq = (c̄)−1eq for c ∈ C∗ and q ∈ L0. Let
e ∶ L0 →H − {0} defined by e(q) = eq.

Let P (H) denotes the projective space of H, then there is a unique map ✏ ∶ M →
P (H) such that ⇧ ○ e = ✏ ○ ⇡.

For each p ∈M , ✏(p) ∈ P (H) are called Rawnsley coherent states.

L0 H − {0}

M P (H)

e

⇡ ⇧

"

Perelomov coherent states

These are defined by Perelomov as generalized coherent states in [16], page 40 as
follows.

Definition(Perelomov): Let T be a representation of a Lie group G acting in the
Hilbert space H and  0 be a fixed vector in the Hilbert space. Then the system of states
{ g} given by  g = T (g) 0 is called the coherent state system {T, 0}. Let H be the
isotropy subgroup for the state  0. Then a coherent state  g is determined by a point
x = x(g) in the coset space G�H corresponding to the element g.

Rawnsley and Perelomov coherent states for CPn

Let the Hilbert space for quantization of CPn be identified with holomorphic sections
of the hyperplane bundle, as before. Thus one can define the Rawnsley coherent states.

The Perelomov coherent states on CPn can be seen as follows.

CPn = SU(n+1)
S(U(n)×U(1)) is a coadjoint orbit. Take a fiducial vector  0 which is invariant

under S(U(n) × U(1)) and let the group elements act on it. This gives the Perelomov
coherent states g ⋅ 0 = ei↵ (g⋅p), where p is an element of the coadjoint orbit and ei↵ is
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a phase factor, [16].

Proposition 2.2.1. (Rawnsley) The Rawnsley and Perelomov coherent states are the
same for CPn.

Proof. This follows from [17] as mentioned below. Let G = SU(n + 1), K = S(U(n) ×
U(1)) ⊂ G and  0 be a non-zero vector in the Hilbert space of geometric quantization
such that there exists a character � ∶ K → C

∗ such that Uk 0 = �(k−1) 0. Let Ug be
an unitary representation of G on the Hilbert space. Then for g ∈ G, e(g) = Ug 0 are
the states of the Hilbert space which are the global Perelomov states as in [17] (page
403-404) and they coincide with the Rawnsley coherent states.

2.3 Berezin quantization for Kähler manifolds under cer-

tain conditions: a summary.

In [2] Berezin developed the theory of a quantization which is now known as Berezin
quantization. We focus our attention on Kähler manifolds, though the theory is more
general. Let M be a Kähler manifold. Let H be a Hilbert space on it (constructed
through some means) which depend on a parameter �h. The Hilbert space comes equipped
with a complete basis {e↵}, ↵ ∈ M . We will show the existence of such basis (the
overcomplete basis of coherent states) in our context later. Let Â be a bounded linear
operator acting on H. Berezin defines the symbols of the operators Â, using expectation
values in these coherent states. He gives a formula to get the operators from the symbols.
Let Â1, Â2 be two such operators. He defines a (non-commutative ) star product on
the symbols of the operators, A1 ∗ A2, which corresponds to the symbol of Â1 ○ Â2.
There is a dependence on �h. In [2] Berezin shows that for Kähler manifolds under
certain conditions, (namely, hypothesis A, B, C and D), the star products satisfy the
correspondence principle which are as follows.

Let p ∈M , given by local coordinate ⌧ and {,}PB denote the Poisson bracket induced
by the Kähler form. Then the correspondence principle says

1. lim�h→0(A1 �A2)(⌧, ⌧̄) = A1(⌧, ⌧̄)A2(⌧, ⌧̄),

2. lim�h→0
1�h(A1 �A2 −A2 �A1)(⌧, ⌧̄) = i{A1,A2}PB(⌧, ⌧̄).
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Chapter 3

Berezin-type quantization of smooth
manifolds

In this chapter we explain some of our main results of the thesis. This chapter is mostly
based on our paper [6].

3.1 Review of Berezin quantization on CP n: local descrip-

tion

This section is a review based on ideas from [2]. In [2], Berezin considered CPn as a
homogeneous space in order to quantized it. In this section we give an another way to
the quantization using a local description.

Now we recall a local Kähler potential �FS for the Fubini-Study Kähler form ⌦FS

on CPn.

Let U0 ⊂ CPn given by U0 = {µ0 ≠ 0} where [µ0, ...., µn] are the coordinates on CPn.

On U0, let f(µ) = (f0(µ), ...., fn(µ)))t be a frame of vectors of C
n+1 on U0. We

will take f0(µ) = 1, fi(µ) = µi for i = 1, ...n, where [1, µ1, ..., µn] ∈ U0. Let the universal
bundle be denoted by U (where U dual is the hyperplane bundle on CPn). Let h(f) =
f̄ tf = ∑n

i=0 �fi�2. Then

⇥(f) = @̄(h−1(f)@h(f)) = @̄@ ln(h(f)) = −@@̄ ln(h(f))

is the curvature of the universal bundle on CPn, [19], page 82. We know that the
curvature of the hyperplane bundle is negative of the curvature of the universal bundle
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and hence ⇥(f) = −⌦FS . Let

�FS(µ, µ̄) = ln�
n

�
i=0 �fi(µ)�

2� = ln�1 +
n

�
i=1 �µ�

2�

be the Kähler potential of ⌦FS . The Kähler metric G is given by

gFS
ij =

@2�FS

@µi@µ̄j
.

The Kähler metric G and the Kähler form ⌦FS are related by ⌦FS(X,Y ) = G(IX,Y ).
The Fubini-Study form is given by

⌦FS =
n

�
i,j=1⌦

FS
ij dµi ∧ dµ̄j .

The coefficients of the inverse matrix is given by (⌦ij
FS). Then the Poisson bracket

of two smooth functions t and s of CPn are given by

{t, s}FS =
n

�
i,j=1⌦

ij
FS �

@t

@µ̄j

@s

@µi
− @s

@µ̄i

@t

@µj
� .

Let
T = {(µ, ⌫) ∈ Cn ×Cn�µ ⋅ ⌫̄ = −1}

and
S = (Cn ×Cn) � T.

Note that the diagonal � ⊂ S.

For (µ, ⌫) ∈ S, taking a branch of the logarithm, we can define

�FS(µ, ⌫̄) = ln (1 + µ ⋅ ⌫̄) .

Let H⊗m be the m-th tensor product of the hyperplane bundle H on CPn. Then
m⌦FS is its curvature form and m�FS is a local Kähler potential. Let �hol be holomor-
phic sections on it. Let { i}Ni=1 be an orthonormal basis for it. On U0, the bundles are
trivial, then restriction on U0, the sections of H⊗m are functions.
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Let �h = 1
m be a parameter. Then { i} implicitly depend on �h. We define a volume

form on C
n induced from CPn as follows

dV (µ) = �⌦n
FS(µ)�U0 � = G(µ)⇧n

i=1�dµi ∧ dµ̄i�

= G(µ)�dµ ∧ dµ̄� = �dµ ∧ dµ̄�
(1 + �µ�2)n+1

where G = det[gij �U0].

Then V = ∫Cn dV = ∫Cn
�dµ∧dµ̄�(1+�µ�2)n+1 <∞.

Now we give an explicit local description of Rawnsley-type coherent states on CPn,
following and modifying [5]. Let (µ1, µ2, ...µn) be coordinates on U0 ≡ C

n such that
[1, µ1, µ2, ..., µn] ∈ U0. We know that em�FS(⌫,⌫̄) = (1 + �⌫�2)m.

Let
(c(m))−1 = �

U0

1

(1 + �⌫�2)m
dV (⌫) = �

U0

e−m�FS(⌫,⌫̄)dV (⌫)
and

D(q1,q2,...qn;q) = c(m)�
U0

�⌫1�2q1 ...�⌫n�2qn
(1 + �⌫�2)m

dV (⌫),

where qi
′s are all possible positive integers such that q1 + ... + qn = q; q = 0, ...,m.

Let
 (q1,q2,...,qn;q)(µ) = 1�

D(q1,...,qn;q)
µq1
1 ...µqn

n

where q1 + ... + qn = q; q = 0, ...,m.

For shorthand, we will use I for the multi-index Iq = (q1, ..., qn; q) which runs over
the set q1 + ... + qn = q; q = 0, ...,m.

Then DI = c(m) ∫U0

�⌫�2I(1+�⌫�2)mdV (⌫).

Let us define an inner product on the space of functions on U0 as

�f, g� = c(m)�
U0

f(⌫)g(⌫)
(1 + �⌫�2)m

dV (⌫)

= c(m)�
U0

f(⌫)g(⌫)e−m�FS(⌫,⌫̄)dV (⌫).

Proposition 3.1.1. The { (q1,...,qn;q)} are restriction of a basis for sections of H⊗m on
U0. They are orthonormal in C

n with respect to the inner product defined as above.
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Proof. We know that sections of H⊗m are in one to one correspondence with homo-
geneous polynomials of degree m in the (n + 1) variables (w0,w1, ...,wn). On U0, we
represent points as [1, µ1, ...., µn] where µi = wi

w0
. Hence we get polynomials of degree

≤ m in coordinates (µ1, ...µn). They are of the form µq1
1 ...µqn

n , where q1 + q2 + ... + qn =
q; q = 0,1, ...,m. Orthonormality follows easily from the fact ∫

2⇡
0 ei✓d✓ = 0.

Let N is the dimension of the Hilbert space, i.e N = ∑J(1) where J runs over the
indices J = (p1, ..., pn, p), p1 + ... + pn = p, p = 0, ...,m and V = ∫U0

�⌦n�.

Definition: The Rawnsley-type coherent states are given on U0 by  µ as follows:

 µ(⌫) ∶= �
q1+q2+...+qn=q;q=0,1,...,m

 (q1,q2,...,qn;q)(µ) (q1,q2,...,qn;q)(⌫).

In shorthand notation we have

 µ ∶=�
I

 I(µ) I .

Proposition 3.1.2. Reproducing kernel property.
If  is any other section, then

� µ, � =  (µ).

In particular,
� µ, ⌫� =  ⌫(µ).

Proof. By linearity, it is enough to check this for all basis elements. Let  =  I0 be an
basis element.

� µ, I0� = ��
I

 I(µ) I , I0� =�
I

 I(µ) � I , I0� .

Now we observe that � I , I0� = �II0 . Thus � µ, I0� =  I0(µ).

Proposition 3.1.3. Resolution of identity property:

c(m)�
U0

� 1, µ� � µ, 2� e−m�FS(µ,µ̄)dV (µ) = � 1, 2� .

In particular,

c(m)�
U0

� ⌫ , µ� � µ, ⌫� e−m�FS(µ,µ̄)dV (µ) = � ⌫ , ⌫� .
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Proof. By reproducing kernel property, � µ, � =  (µ).

c(m) ∫U0
� 1, µ� � µ, 2� e−m�FS(µ,µ̄)dV = c(m) ∫U0

 1(µ) 2(µ)e−m�FS(µ,µ̄)dV

The above integral is � 1, 2�.

Notation: We denote by Lm(µ, µ̄) = � µ, µ� =  µ(µ) and

Lm(µ, ⌫̄) = � µ, ⌫� =  ⌫(µ).

Recall H is the Hilbert space of sections of H⊗m with the inner product

�f, g� = c(m)�
U0

f(⌫)g(⌫)e−m�FS(⌫,⌫̄)dV (⌫),

where dV is as before.

Let Â be a bounded linear operator acting on H. Then, following [2], we can define
symbol of the operator as

A(⌫, µ̄) =
� ⌫ , Â µ, �
� ⌫ , µ�

.

We can recover the operators from their symbols by the formula [2]:

(Âf)(µ) = c(m)�
U0

A(µ, ⌫̄)f(⌫)Lm(µ, ⌫̄)e−m�(⌫,⌫̄)dV (⌫).

We will give a proof of this in the appendix.

Let Â1, Â2 be two such operators and let Â1 ○ Â2 be their composition.

Then the symbol of Â1 ○ Â2 will be given by the star product defined as in [2]:

(A1 ∗A2)(µ, µ̄)

= c(m)�
U0

A1(µ, ⌫̄)A2(⌫, µ̄)
Lm(µ, ⌫̄)Lm(⌫, µ̄)
Lm(µ, µ̄)Lm(⌫, ⌫̄)

Lm(⌫, ⌫̄)dS,

where dS = e−m�FS(⌫,⌫̄)dV (⌫), 1
c(m) = ∫U0

e−m�FS(⌫,⌫̄)dV (⌫)
In the appendix we will give a proof of the fact that this is the symbol of Â1 ○ Â2.
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3.1.1 Some properties of the reproducing kernel and star product

Proposition 3.1.4.  µ(⌫) = (1 + µ̄ ⋅ ⌫)m.

Proof. By multinomial expansion formula we know that there exist positive real con-
stants aI such that

(1 + µ̄ ⋅ ⌫)m =�
I

aI(µ̄ ⋅ ⌫)I ,

where aI are given as follows.:

aIp = �
m

p
� p!

p1!...pn!
= m!

(m − p)!p1!...pn!

where Ip stands for (p1, ..., pn;p) where p1 + ... + pn = p for each p = 0,1, ...,m.

For each p = 0, ...,m, we denote D(p1,...,pn;p) = c(m) ∫U0

�⌫1�2p1 ...�⌫n�2pn(1+�⌫�2)m dV (⌫).

Computing the integral (see appendix), we find that

IIp = �
U0

�⌫1�2p1 ...�⌫n�2pn
(1 + �⌫�2)m

dV (⌫) = ⇡n

(m + n)!
p1!...pn!(m − p)!.

Similarly,
(c(m))−1 = Ip=0 = ⇡n

(m + n)!
m!.

Thus
D(p1,...,pn;p) = c(m)IIp = p1!...pn!(m − p)!

m!
.

Thus
aIpDIp = 1,

and thus for all multi-index I,
aIDI = 1.

 µ(⌫) =�
I

aIDI
(µ̄ ⋅ ⌫)I

DI
= (1 + µ̄ ⋅ ⌫)m.

It is easy to check that we have the following result (called hypothesis A in [2]).
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Lm(µ, µ̄) = � µ, µ� =  µ(µ) = em�FS(µ,µ̄) (3.1.1)

and for (µ, ⌫) ∈ S,

Lm(µ, ⌫̄) = � µ, ⌫� =  ⌫(µ) = (1 + µ ⋅ ⌫̄)m = em�FS(µ,⌫̄). (3.1.2)

Let (µ, ⌫) ∈ S. Then we define

�FS(µ, µ̄�⌫, ⌫̄) = �FS(µ, ⌫̄) +�FS(⌫, µ̄) −�FS(µ, µ̄) −�FS(⌫, ⌫̄).

In fact,

�FS(µ, µ̄�⌫, ⌫̄) = ln �
(1 + ⌫ ⋅ µ̄)(1 + µ ⋅ ⌫̄)
(1 + �µ�2)(1 + �⌫�2)

�.

Proposition 3.1.5. We have �FS is non-positive and has a zero and a non-degenerate
critical point ( as a function of ⌫) at ⌫ = µ.

Proof. We know

�FS(µ, µ̄�⌫, ⌫̄) = ln �
(1 + ⌫ ⋅ µ̄)(1 + µ ⋅ ⌫̄)
(1 + �µ�2)(1 + �⌫�2)

�.

By Cauchy-Schwartz inequality, we have �FS is non-positive definite. Fixing µ, a
straightforward calculation shows that @�FS(µ,µ̄�⌫,⌫̄)

@⌫i
�⌫=µ = 0 for each i and @2�FS(µ,µ̄�⌫,⌫̄)

@⌫i@⌫̄j
�⌫=µ ≠

0.

Using equations (3.1.1, 3.1.2), we have

Lm(µ, ⌫̄)Lm(⌫, µ̄)
Lm(µ, µ̄)Lm(⌫, ⌫̄)

= em�FS(µ,µ̄�⌫,⌫̄),

.

By the reproducing kernel property, we also have

�
U0

Lm(µ, ⌫̄)Lm(⌫, µ̄)
Lm(µ, µ̄)Lm(⌫, ⌫̄)

dV (⌫) = 1

c(m)
.

Definition:(Berezin) As in [2], we name a point µ ∈ Cn proper if for any neigh-
bourhood U of µ there exists an ↵(U) > 0 such that �FS(µ, µ̄�⌫, ⌫̄) > −↵(U) for ⌫ not
belonging to U .

Proposition 3.1.6. Let µ ∈ Cn. Then it is a proper point.
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Proof. Let Y = S ��. Then it is easy to see that Y = ∪U(U × Ū c) ∩ S where U is an
open set of Cn. It is easy to check that ⇡1(Y ) = Cn.

Let µ0 ∈ Cn. Then µ0 ∈ ⇡1(Y ).

Then there exists a ⌫ such that (µ0, ⌫) ∈ Y . We claim that µ0 is proper.

Let (µ0, ⌫) ∈ Y . Then (µ0, ⌫) ∈ (U0×Ū0
c)∩S for some open set U0. Since (U0×Ū0

c)∩S
is an open set, there exists an open neighbourhood of (µ0, ⌫) namely O, such that
O ⊂ (U0 × Ū0

c) ∩ S. Since O depends on U0, we name it O(U0).

Since O(U0) ⊂ S we have for all ⌫ ∈ U c
0 , there exists an ⌘(O) ≠ 0 such that�µ0⋅⌫̄+1�2(�1+�µ0�2)(1+�⌫�2) ≥ ⌘(O) > 0 . This ⌘ depends on U0, so we rename it ⌘(U0).

Take ↵(U0) = � ln(⌘(U0))�. Let ⌫ ∈ U c
0 .

Then �FS(µ0, µ̄0�⌫, ⌫̄) = ln( �µ0⋅⌫̄+1�2�1+�µ0�2)(1+�⌫�2)) > −↵(U0).

Now we have to show the existence of ⌘ and ↵ for any open neighbourhood of
µ0. Suppose V ⊂ U0 is any neighbourhood of µ0, then Ū0

c ⊂ V̄ c. Let ⌫̃ be such that
(µ0, ⌫̃) ∈ (V × V̄ c) ∩ S. Then there is an open set O(V ) such that (µ0, ⌫) ∈ O(V ) ⊂ S.
Then we can find an ↵(V ) which works.

Now let U1 be a neighbourhood of µ0 such that U0 ⊂ U1, the containment is strict.
Then Ū1

c ⊂ Ū0
c. Since µ0 ∈ U0 ⊂ U1, µ0 ∈ U1. If ⌫̃ is such that (µ0, ⌫̃) ∈ (U1 × Ū c

1) ∩ S
then (µ0, ⌫̃) ∈ (U0 × Ū c

0) ∩ S. Then we can take ↵(U1) = ↵(U0).

Thus µ0 is proper.

Then, we have the following result [2]:

Proposition 3.1.7 (Berezin). Let µ be a proper point in C
n.

The star product satisfies the correspondence principle:

1. limm→∞(A1 �A2)(µ, µ̄) = A1(µ, µ̄)A2(µ, µ̄),

2. limm→∞m(A1 �A2 −A2 �A1)(µ, µ̄) = i{A1,A2}FS(µ, µ̄).

Proof. The proof follows from Lemma (2.1) in [2]. This can be seen as follows.
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lim
m→∞(A1 ∗A2)(µ, µ̄)

= c(m)�
U0

A1(µ, ⌫̄)A2(⌫, µ̄)
Lm(µ, , ⌫̄)Lm(⌫, µ̄)
Lm(µ, µ̄)Lm(⌫, ⌫̄)

Lm(⌫, ⌫̄)e−m�̃(⌫,⌫̄)dV (⌫)
= c(m)�

U0

A1(µ, ⌫̄)A2(⌫, µ̄)em�FS(µ,µ̄�⌫,⌫̄)dV (⌫)

= ∫U0
A1(µ, ⌫̄)A2(⌫, µ̄)em�FS(µ,µ̄�⌫,⌫̄)dV (⌫)

∫U0
em�FS(µ,µ̄�⌫,⌫̄)dV (⌫)

The star product in the limit can be written as

lim
m→∞

mn ∫U0
A1(µ, ⌫̄)A2(⌫, µ̄)em�FS(µ,µ̄�⌫,⌫̄)dV (⌫)
mn ∫U0

em�FS(µ,µ̄�⌫,⌫̄)dV (⌫) .

Let I1 and I2 be the integrals on the numerator and denominator respectively.

Taking fµ,µ̄(⌫, ⌫̄) = A1(µ, ⌫̄)A2(⌫, µ̄), the limit of the integral I1 on the numerator
can be written as

lim
m→∞I1 = lim

m→∞mn�
U0

fµ,µ̄(⌫, ⌫̄)em�FS(µ,µ̄�⌫,⌫̄)dV (⌫).

Here �FS is non-positive and is zero only when ⌫ = µ and has non-degenerate critical
point.

They are uniformly convergent and are of the form of the integral in Lemma (2.2)
in [2]. Then by this Lemma, we get

lim
m→∞I1 = A1(µ, µ̄)A2(µ, µ̄) +

1

m
�(A1(µ, ⌫̄)A2(⌫, µ̄))�µ=⌫ + 1

m
F (µ, µ̄) + o( 1

m
),

where � is the Laplace-Beltrami operator induced by gFS
ij (i.e. � = ∑ gijFS

@2

@⌫̄i@⌫j
) and

F (µ, µ̄) is a function which depends on A1A2,�G etc, but does not involve any deriva-
tives of A1A2. It is symmetric in A1,A2.

Similarly, for the integral in the denominator, limm→∞ I2 can be seen to be 1.

Then it can be shown that

lim
m→∞(A1 �A2)(µ, µ̄) = A1(µ, µ̄)A2(µ, µ̄).
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The second correspondence principle can be seen as follows

lim
m→∞m(A1 �A2 −A2 �A1)(µ, µ̄)

= � gijFS�
@2(A1(µ, ⌫̄)A2(⌫, µ̄))

@⌫̄i@⌫j
− @

2(A2(µ, ⌫̄)A1(⌫, µ̄))
@⌫̄i@⌫j

��µ=⌫

= i�⌦ij
FS�

@A1(µ, ⌫̄)
@⌫̄i

@A2(⌫, µ̄)
@⌫j

− @A2(µ, ⌫̄)
@⌫̄i

@A1(⌫, µ̄)
@⌫j

��µ=⌫
= i{A1,A2}FS(µ, µ̄).

3.2 Berezin-type quantization on compact even dimen-

sional manifolds- I

Let M2d be an even dimensional compact smooth manifold. We do not consider any
symplectic structure or Poisson structure or group action on it. To obtain a Berezin-
type quantization on it, first we embed the manifold (after perhaps removing a subset
of measure zero) in CPn and then induce a local Poisson structure on the embedded
submanifold and induce the Berezin quantization from CPn. The Hilbert space of quan-
tization is expected to be of finite dimension, for that we choose CPn and not C

n.

Let M2d be a compact topological manifold. Then by [7], there exists a skeleton M0

of dimension at most 2d−1 such that X =M �M0 is homeomorphic to R
2d. We assume

M2d is equipped with a differentiable structure such that M �M0 is diffeomorphic to
R
2d with standard smooth structure.

Let ⌧ be the diffeomorphism and Y = ⌧(X) = R2d ≡ Cd. We name the coordinates
on Y as (⌧1, ⌧2, ...., ⌧d) where ⌧j = xj + iyj , j = 1, ..., d, where (x1, y1, ..., xd, yd) ∈ R2d. Let
Y be given by the coordinates (⌧1, ...., ⌧d). Let U0 be the open subset of CP d given by
{w0 ≠ 0} where [w0, ...,wd] is a local coordinate on CP d. Let U0 = {[1, ⌧1, ..., ⌧d]} where
⌧i = wi

w0
, i = 1, .., d.

Let us give a metric on X =M �M0 by identifying it with its image Y = ⌧(X). The
volume form is dV = �d⌧∧d⌧̄ �(1+�⌧ �2)d+1 and V = ∫Y dV <∞.



3.3. Algebra of operators on M �M0 21

3.3 Algebra of operators on M �M0

On M �M0, we define the Hilbert space of quantization to be H̃⌧ = ⌧∗(HY ) (i.e. pulled
back by the diffeomorphism ⌧), where the volume form on M �M0 is induced from
U0 ⊂ CP d. Let ⇣ ∈X. Let ⌧ = ⌧(⇣).

Let the volume form on M �M0 be given as

h(⇣)dS(⇣) = dVY (⌧) =
�d⌧ ∧ d⌧̄ �
(1 + �⌧ �2)d+1 .

In other words,

�
X
�⌧∗(s)�2(⇣)h(⇣)dS(⇣) = �

Y
�s�2 �d⌧ ∧ d⌧̄ �
(1 + �⌧ �2)d+1 = �CP d

�s�2 �d⌧ ∧ d⌧̄ �
(1 + �⌧ �2)d+1 .

Last two integrals are same because Y = CP d �C0 where C0 is of measure zero.

Let s̃ ∈ H̃⌧ such that s̃ = ⌧∗(s). Then we define bounded linear operators ˆ̃A to be

ˆ̃A(s̃)(p) ≡ Â(s)(z),

where z = ⌧(p) ∈ U0 and Â is a bounded linear operator on HY .

Then symbols and star product can be defined for ˆ̃A via Â and correspondence
principle follows. Now we elaborate this.

The symbol of ˆ̃A is defined to be

Ã(p, q) ≡ A(z, w̄)

where z = ⌧(p),w = ⌧(q).

Suppose we have two operators ˆ̃A1 and ˆ̃A2.

Then Ã1 ∗ Ã2 is defined on (M �M0) × (M �M0) to be

(Ã1 ∗ Ã2)(p, p) ≡ (A1 ∗A2)(z, z̄)

in CP d.

In general the algebra of operators will depend on the diffeomorphism.
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Then we can see that the star product satisfy the correspondence principle. The
proof is exactly same as the previous section with n = d.

Proposition 3.3.1. Let ⌧ ∈ Cd.

(Ã1 ∗ Ã2)(p, p) = (A1 ∗A2)(z, z̄) satisfy the correspondence principle.

1. limm→∞(A1 �A2)(⌧, ⌧̄) = A1(⌧, ⌧̄)A2(⌧, ⌧̄),

2. limm→∞m(A1 �A2 −A2 �A1)(⌧, ⌧̄) = i{A1,A2}FS(⌧, ⌧̄).

Proof. Use n = d in the previous section. Then the proof follows essentially from Lemma
(2.1) in [2] as elaborated in Proposition (3.1.7).

3.4 Equivalence of two Berezin quantizations:

On a smooth (complex) manifold M2d � M0, let there be a local Poisson structure
and a Berezin-type quantizations defined as above induced from CP d. Suppose there
are two diffeomorphisms (biholomorphisms, if M �M0 is complex) which induce two
such quantizations. Then there are two Hilbert spaces with reproducing kernels and
star products on symbols of bounded linear operators which satisfy the correspondence
principle. Suppose there exists a smooth (biholomorphic) bijective map  from M �M0

to M�M0 which preserve the local Poisson structures. If  induces a linear isomorphism
(i.e. a bijective linear map that preserves inner product) between the two Hilbert spaces
such that the reproducing kernel maps to the corresponding reproducing kernel then we
shall say the two Berezin quantizations are equivalent.

3.4.1 Dependence on the diffeomorphism:

The quantization of the even dimensional manifold M depends on the diffeomorphism
from M �M0 to R

2d. However if there is a complex structure on M and there is a
biholomorphism from M � M̃ to C

d �N0, then we have an equivalent quantization, in
the above sense. Here M̃ and N0 are of lower dimension and N0 could be empty.

First we explain why we may need to remove sets of measure zero. If M �M0 is
biholomorphic to C

d, we do not need to remove N0. However if there is a biholomorphism
of X =M �M0 to �, a polydisc in C

d, it is not biholomorphic to C
d. But we can show
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(see appendix) that there exists a set �0 (of measure zero in �) such that � ��0 is
biholomorphic to C

d �N0, (N0, a set of measure zero).

Thus there is a set X0 such that X �X0 is biholomorphic to ���0 which is biholo-
morphic to C

d �N0. ( Note that X �X0 =M � M̃ where M̃ = X0 ∪M0). Thus we have
a biholomorphism from M � M̃ to C

d �N0 ⊂ Cd ≡ U0 ⊂ CP d.

Let ⌧̃ and �̃ be two biholomorphisms from M � M̃ to C
d �N0. Let µ ∈M � M̃ . Let

⌧̃(µ) = ⌧ = (⌧1(µ), ..., ⌧d(µ)) and �̃(µ) = � = (�1(µ), ..., �d(µ)) be two charts on M � M̃ .
Then µ = ⌧̃−1(⌧) = �̃−1(�)

Let H⌧ be generated by orthonormal basis of monomials of the form { ⌧ICI
} and H�

is generated by orthonormal monomials of the form { �ICI
} mentioned before.

Note that ⌧i = ⇡i(⌧) = ⇡i(⌧̃(µ)) = ⌧i(µ), where ⇡i is the projection onto the i-th
coordinate. Then ⌧I = ⌧p11 ...⌧pdd is given by ⌧I(µ) = ⌧p11 (µ)...⌧

pd
d (µ).

Let f, g be two smooth complex valued functions on M�M̃ . Since µ = ⌧̃−1(⌧) = �̃−1(�)
we can define

�f, g�⌧ = c(m)�
Cd

f(⌧̃−1(⌧))g(⌧̃−1(⌧))
(1 + �⌧ �2)m+d+1 �d⌧ ∧ d⌧̄ �.

Similarly,

�f, g�� = c(m)�
Cd

f(�̃−1(�))g(�̃−1(�))
(1 + ���2)m+d+1 �d� ∧ d�̄�.

Then (H⌧ , �, �⌧) and (H�, �, ��) are the two Hilbert spaces corresponding to these
charts. Note the integrals take the same value on C

d and C
d�N0, since N0 is of measure

zero.

As showed earlier these two are Hilbert spaces with reproducing kernels constructed
out of coherent states.

Now ⌧I = ⌧p11 ...⌧pdd = ⌧
p1
1 (µ)...⌧

pd
d (µ) and �I = �p11 ...�pdd = �

p1
1 (µ)...�

pd
d (µ)

We note that � = F�⌧−1(⌧), where F�⌧−1 = �̃ ○ ⌧̃−1 is a biholomorphism.

�i = ⇡i(�) = ⇡i(F�⌧−1(⌧)). Then �I = ⇡1(F�⌧−1(⌧))p1 ...⇡d (F�⌧−1(⌧))pd .

Then one can define a biholomorphism on the components as follows. Let Si ∶ ⇡i(⌧)�
⇡i(�) be defined as Si(⇡i(⌧)) = �i = ⇡i(F�⌧−1(⌧)). This induces an invertible map from
SI ∶ ⌧I → �I and thus on the reproducing kernels.
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The local Poisson structure is preserved can be seen as follows.

In ⌧ -coordinates,

{t, s}PB =
d

�
i,j=1⌦

ij
FS(⌧, ⌧̄)�

@t

@⌧̄i

@s

@⌧j
− @s
@⌧̄i

@t

@⌧j
� ,

where [⌦ij
FS] is the inverse matrix of [⌦FS

ij ].

In � coordinates

{t, s}PB =
d

�
i,j=1⌦

ij
FS(�, �̄)�

@t

@�̄i

@s

@�j
− @s
@�̄i

@t

@�j
� ,

where [⌦ij
FS] is the inverse matrix of [⌦FS

ij ].

This gives us a proposition as follows. Let all notations be as above.

Proposition 3.4.1. If the diffeomorphism from X =M �M0 to C
d is a biholomorphism,

and if there are two such biholomorphisms, then there is a one-to-one, onto map from
(H⌧ , �, �⌧) to (H�, �, ��) which maps the reproducing kernels to each other. Also the
local Poisson structure is preserved. Thus the quantizations are equivalent. If, however,
there is a biholomorphism from X =M �M0 to only a polydisc �, then we can have a
biholomorphism from X �X0 to C

d �N0, where X0 and N0 are sets of lower dimension.
M � M̃ =X �X0 is biholomorphic to C

d �N0 and if there are two such biholomorphisms
then they induce a one-to-one, onto map from (H⌧ , �, �⌧) to (H�, �, ��) which maps the
reproducing kernels to each other. Also the local Poisson bracket is preserved. Thus the
quantizations are equivalent.

If the diffeomorphism is not a biholomorphism, then there is still a one-one, onto
map between the two Hilbert spaces. However it may not take the reproducing kernel
to the reproducing kernel.

Proposition 3.4.2. Two diffeomorphisms from M �M0 to R
2d induce a one-to-one,

onto map from (H⌧ , �, �⌧) to (H�, �, ��). It may not preserve the reproducing kernels.

3.5 Berezin-type quantization of a complex manifold

If M is a compact complex manifold and W be a neighbourhood of p in M . Then
there is a biholomorphism from W to a polydisc � and a set W0 of lower dimension
in W such that p ∈ W �W0 and W �W0 is biholomorphic to C

d �N0, N0 is of lower
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dimension (see appendix for a proof). If there is another biholomorphism from another
neighbourhood V of p to � then there is a lower dimensional set V0 such that p ∈ V �V0

and V � V0 is biholomorphic to C
d �N0. One can show that there is a one-to-one, onto

correspondence between the respective Hilbert spaces such that the reproducing kernel
maps to the reproducing kernel. This follows from an argument similar to Proposition
(3.4.1). Also, the local Poisson structure is preserved. In any case, there exist star
products on symbols of bounded linear operators on each Hilbert space which satisfy
correspondence principle. Thus we have that on (V �V0)∩(W�W0) the respective Hilbert
spaces have a correspondence with each other. Suppose there is a third neighbourhood
W1 such that p ∈ U = (V � V0) ∩ (W �W0) ∩ (W1 �W10), where W10 is a set of lower
dimension in W1. One can check on triple intersections that the correspondence makes
sense (i.e. order does not matter).

This can be seen as follows. Let ⌧̃ be a biholomorphism from V � V0 to C
d �N0, �̃

from W �W0 to C
d �N0 and �̃ from W1 �W10 to C

d �N0.

Let ⌧̃(U) = V⌧ , �̃(U) = V�, �̃(U) = V�

Now as before we let F�⌧−1 ∶ V⌧ ⊂ Cd�N0 � V� ⊂ Cd�N0 which maps ⌧ � �. Similarly,
F⌧�−1 ∶ V� ⊂ Cd �N0 � V⌧ ⊂ Cd �N0 such that � � ⌧ and

F��−1 ∶ V� ⊂ Cd �N0 � V� ⊂ Cd �N0 such that � � �.

On V = V⌧ ∩ V� ∩ V� , the order does not matter, F��−1 ○ F�⌧−1 = F�⌧−1 .

These induce correspondences between (H⌧ ,<,>⌧), (H�,<,>�) and (H� ,<,>�) such
that reproducing kernels are mapped to the corresponding ones respectively.

Thus there is a possibility of a global Berezin-type quantization on M � M̃ , where
M̃ is a set of lower dimension.

Also, locally one can define an algebra of operators on V � V0 using the pullback of
operators by ⌧ and define the symbol and star product via operators on CP d exactly as
in section (3.3). Similarly one can define those on W �W0, using pull back by �. There
is a correspondence of these two algebras induced by the map F�⌧−1 .

3.6 Berezin-type quantization of an even dimensional com-

pact smooth manifold- II

In the earlier section we removed a measure zero subset of M , namely M0 to achieve the
Berezin-type quantization. In this section we give a local description without removing
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M0, i.e. a Berezin-type quantization using local coordinates.

Let ⌃ be a totally real submanifold of CN of real dimension N . Let M be a manifold
such that ✏ be an embedding of M into C

N where ⌃ = ✏(M). Let C
N = (µ1, ..., µN) be

embedded in CPN as [1, µ1, ..., µN ].

Let Ui = {[w0, ..,wi, .,wN ]�wi ≠ 0} be an open set in CPN .

Let U0 = {[1, µ1, ..., µN ]} where µi = wi
w0

. Then U0 be biholomorphic to C
N =

{(µ1, ..., µN)}.

Let p ∈ ⌃. Let �(p) = (µ1(p), µ2(p), ..., µN(p)).

Locally, as we saw above, the Hilbert space H of the quantization on U0 are given by
the span of {�I} where �I is the multi index given by µp1

1 ...µpN
N , where p1 + ...+ pN = p,

0 ≤ p ≤m.

Then on M we define the Hilbert space H1 to be ✏∗(H). Let ˆ̃A be operators defined
such that ˆ̃A(✏∗(s)) � ✏∗Â(s), Â acts on sections of H. Given ˆ̃A, Â is unique because ⌃ is
a totally real submanifold of dimension N , [5]. If not, suppose ˆ̃A(✏∗s) .= ✏∗(Âs) = ✏∗(B̂s)
then on M , ✏∗(Âs)−✏∗(B̂s) = 0⇒ ✏∗(Âs−B̂s) = 0⇒ ✏∗((Â−B̂)s) = 0⇒ (Â−B̂) (s) = 0
on ✏(M) = ⌃ ⇒ Âs = B̂s on ⌃, since Â(s), B̂(s) are holomorphic and ⌃ is totally real
and of real dimension N , by identity criterion Â = B̂.

Then we define the symbol of ˆ̃A as Ã(p, q) = A(z, w̄) where z = ✏(p), w = ✏(q) exactly
as in [5]. Also, the CPN -star product is defined as (Ã1 � Ã2)(p, p) � (A1 �A2)(z, z̄) in
a similar way as [5].

Let us have two smooth functions f, g ∈ C∞(CPN). Recall {,}FS is the Poisson
bracket induced by the Fubini Study form. Let f̃ = ✏∗(f), g̃ = ✏∗(g). Let us define the
Poisson bracket of f̃ , g̃ as {f̃ , g̃} � {f, g}FS . Let f(z) = A1(z, z̄), f̃(p) = f(z) where
z = ✏(p). Let g(z) = A2(z, z̄), g̃(p) = f(z) where z = ✏(p). Then, {Ã1, Ã2} = {A1,A2}FS .

By definition it is easy to see that the CPN -star product on Ã1, Ã2 satisfy the
correspondence principle.

3.7 Toeplitz quantization for compact complex manifolds

Let M be a compact complex manifold of dimension n. Let M0 be a set of measure zero
such that X = M �M0 ≡ R2n ≡ V (diffeomorphisms) where V is a polydisc in C

n. Let
V0 be a measure zero set such that V � V0 is biholomorphic to C

n �C0 and contains p,
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C0 is a measure zero set (see appendix). Let U0 = (1, z1, z2, ..., zn) be a chart of CPn.
Then C

n � C0 is biholomorphic to U0 � U00. So V � V0 is biholomorphic to U0 � U00,
which is embedded in U0 and hence in CPn. Here V0, C0, U00 are all of lower dimension
and hence of measure zero. Thus there is an embedding, call it ✏, which maps M �M0

onto CPn �C00 where C00 is a set of measure zero. Here CPn is endowed with Fubini-
Study metric and metrics on V � V0, U0,C

n are induced by the Fubini-Study metric.
The volume element on CPn restricted to U0 is given as dV (µ) = �dµ∧dµ̄�(1+�µ�2)n+1 . Let us give
M �M0 a volume form as follows. Let ⌃ = ✏(M �M0). Let h(⇣)dS(⇣) = dV⌃(✏(⇣)),
where h is such that all pullback sections are square integrable w.r.t. the measure hdS

on M �M0.

Let H be the hyperplane line bundle on CPn and Hm be the m-th tensor power
of H. Let Hm be the Hilbert space of square integrable holomorphic sections of Hm

restricted on U0. Let Hm
X denotes ✏∗(Hm).

Let f, g be a smooth function on CPn restricted to U0 and let f̃ , g̃ be the smooth
functions on M �M0, which are pulled back by ✏, i.e., for µ ∈M �M0, f̃(µ) � f(✏(µ)),
similarly g̃(µ) � g(✏(µ)).

Now for CPn (restricted to U0), m-th level Toeplitz operator of f , denoted by Tm
f ,

defined onHm, defined as Tm
f (s) = ⇧m(fs), where ⇧m is the projection map from square

integrable section onto Hm and s ∈Hm. Let s̃ = ✏∗s.
For X = M �M0, we denote ��s̃��2 = ��s̃��2X = ∫X �s̃�

2h(⇣)dS(⇣) = ∫⌃ �s�⌃ �2dV⌃(✏(⇣)) where
recall ⌃ = ✏(X). But ∫⌃ �s�⌃ �2dV⌃(✏(⇣)) = ∫CPn �s�2dV since ⌃ = CPn �C00 where C00 is
a set of measure zero.

Thus we have
��s̃��2 = ��s��2 (3.7.1)

where the first norm is in X =M �M0 and second norm is in CPn.

Now for the functions f̃ , g̃, we define a set of operators for M �M0, defined on Hm
X ,

denoted by T̃m
f̃
, T̃m

g̃ defined as T̃m
f̃
(s̃) = ⇧̃m(f̃ s̃) where ⇧̃m✏∗ � ✏∗⇧m.

We know from Toeplitz quantization of CPn (see [4]), that,

lim
m→∞ ��T

m
f �� = ��f ��∞, lim

m→∞ ��m[T
m
f , Tm

g ] − iTm{f,g}�� = 0. (3.7.2)

Let {f̃ , g̃} � ✏∗{f, g}.
Proposition 3.7.1.

T̃m
g̃ ✏
∗ = ✏∗Tm

g
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and
T̃m{f̃ ,g̃}✏∗ = ✏∗Tm{f,g}

Proof. To prove the first equality,

T̃m
g̃ ✏
∗s(µ) = ⇧̃m(g̃ ⋅ ✏∗(s))(µ) = ⇧̃m(✏∗g ⋅ ✏∗(s))(µ) = ⇧̃m(✏∗(g ⋅ s))(µ)

= (✏∗⇧mg ⋅ s)(µ)

= (✏∗Tm
g )(s)(µ)

The second equality follows from this.

Recall that ��✏∗(s)�� = ��✏∗(s)��X and ��s�� = ��s��CPn . Now ��✏∗(s)�� = ��s�� by (3.7.1). This
implies ��T̃m

f̃
�� = ��Tm

f �� for each m.

lim
m→∞ ��T̃

m
f̃
�� = lim

m→∞ ��T
m
f ��. (3.7.3)

Proposition 3.7.2.

[T̃m
f̃
, T̃m

g̃ ](s̃) = (✏∗[Tm
f , Tm

g ])(s̃).

Proof. Recall ⇧̃m✏∗ � ✏∗⇧m.

⇧̃m(f̃⇧̃mg̃s̃) = ⇧̃m(S̃1) where S1 = f ⋅⇧mg ⋅ s and S̃1 = f̃⇧̃mg̃s̃ = ✏∗(S1).

Then, since ⇧̃m✏∗ � ✏∗⇧m, we have

⇧̃m(S̃1(µ)) = ✏∗⇧m(S1) = ✏∗⇧m(f ⋅⇧mg ⋅ s)

Interchanging f and g we have ⇧̃m(g̃⇧̃mf̃ s̃) = ✏∗⇧m(g ⋅⇧mf ⋅ s)

Thus ⇧̃m(f̃⇧̃mg̃s̃) − ⇧̃m(g̃⇧̃mf̃ s̃) = ✏∗⇧m(f ⋅⇧mg ⋅ s) − ✏∗⇧m(g ⋅⇧mf ⋅ s).

Thus we are done.

Theorem 3.7.3.

lim
m→∞ ��T̃

m
f̃
�� = lim

m→∞ ��T
m
f �� = ��f ��∞

lim
m→∞ ��m[T̃

m
f̃
, T̃m

g̃ ] − iT̃m{f̃ ,g̃}�� = 0.
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Proof. As seen before ��✏∗(s)�� = ��✏∗(s)��X = ��s��CPn = ��s��. This implies ��T̃f̃ �� = ��Tf ��.

Rest follows from the previous two propositions.

If we have two biholomorphisms ✏1 and ✏2 from M �M0 to CPn � C00 we have an
equivalent Toeplitz quantization because we can define an equivalence of the Hilbert
spaces and the Poisson bracket is also preserved. This is by the same argument as given
before proposition (3.4.1).
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Chapter 4

Pullback coherent and squeezed
states.

4.1 Coherent states on compact smooth manifolds

In [5] we had given a definition of coherent states on compact smooth manifolds, Mn by
embedding it into CPn and using pullback from CPn.

We can do it more straightforwardly as follows. We embed M into R
2n by the

Whitney embedding theorem. We identify R
2n with U0 ⊂ CPn. Let ✏ be the embedding

and ⌃ = ✏(M).

Let H⊗m be the m-th tensor product of the hyperplane bundle on CPn and { I}
be the multinomial orthonormal basis of holomorphic sections of H⊗m restricted to U0.
Let �I = ✏∗( I) be pullbacks of the global sections { I}. Let dS be a volume form
on M and H = Span{�I}. By Gram-Schmidt orthonormalization process, we get an
orthonormal basis {⌘i}ki=1 (w.r.t. volume form dS) of H on M .

Define the pullback coherent states as

 µ =
k

�
i=1⌘i(µ)⌘i.

We can see that, given any states  , 1, 2 ∈ H, we have completeness, the repro-
ducing kernel property as well as the resolution of identity property.

Proposition 4.1.1. (a) Reproducing kernel property:

� µ, � =  (µ).
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(b) Resolution of identity:

� 1, 2� = �
⌃
� 1, µ� � µ, 2�dS(µ).

(c) Overcompleteness:

� µ, � = 0,∀µ implies  = 0.

Proof. Proofs of (a) and (b) are the same as in propositions (3.1.2 ) and (3.1.3). Proof
of (c) follows from (a).

The pullback coherent states depend on the embedding.

4.2 Pullback coherent and squeezed states on integral com-

pact Kähler manifold.

Now we give a slightly different definition of pullback coherent states and squeezed states
on integral compact Kähler manifold.

This is achieved by modifying the definitions in [5] and could also be generalized on
a compact smooth manifold.

4.2.1 Pullback coherent states on integral compact Kähler manifold

Let (L,∇,2⇡i⌦)�→ (M,⌦) be a line bundle with ⌦ an integral Kähler form on M . Let
h be a Hermitian metric on Lk where k is such that Lk is very ample. Let � be the
space of global holomorphic sections of Lk.

We choose the inner product on � w.r.t. h, namely < �1,�2 >= ∫M �1�2hdV , to be
antilinear in the first term and linear in the second (unlike Rawnsley’s convention). We
will retain this convention henceforth. Let H be the space of square integrable sections
in �.

Let { i}mi=1 be an orthonormal basis for H which is basepoint free.
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Let � ∈ H, a square integrable holomorphic section of Lk, then � can be expressed
as a linear combination of the orthonormal basis elements { i}mi=1 as follows

� =
m

�
i=1 <  i,� >  i.

Let  i = fis0, where s0 is a fixed section such that its zero set is M0 ⊂M and fi are
meromorphic functions which are holomorphic on M �M0.

Definition 4.2.1. For µ ∈M , we define

�µ =
m

�
i=1 fi(µ) i

where  i = fis0 where fi is a meromorphic function on M , which is holomorphic on
M �M0.

For µ ∈M �M0 one sees that

�µ =
1

s0(µ)

m

�
i=1 i(µ) i.

Note that �µ is a smooth section of Lk.

Then
�µ(⌫) =

m

�
i=1 fi(µ) i(⌫).

Under the integrality condition on the Kähler form, we have a generalization of
Spera’s result, Theorem (2.1) [18] as follows:

Theorem 4.2.2. Let M be a integral compact Kähler manifold and let H, s0 and �µ be
as defined above. Then, for all µ ∈M , we have

(a) Modified reproducing kernel property.

�µ are Rawnsley-type coherent states of M .

In fact, for µ ∈M the formula is < �µ,� > s0(µ) = �(µ).

Also, < �µ,� >= �(µ)
s0(µ) for µ ∈M �M0.

(b) �µ satisfy

(i) the modified maximal likelihood property, namely,
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��µ(µ)�2 ≥ ��(µ)�2�s0(µ)�2 for all µ and all � ∈H such that < �,� >= 1.

(ii) the property that
��µ(µ)�2 ≥ ��µ′(µ)�2�s0(µ)�2.

(iii) the modified generalized resolution of identity, namely,

<  1, 2 >= �
M
<  1,�µ >< �µ, 2 > �s0(µ)�2h(µ)dV (µ).

(iv) overcompleteness, namely, < �µ, >= 0 ∀µ implies  = 0.

Proof. (a) follows from a simple calculation.

(b) The proof follows by modifications of [18] as below.

(i) ��(µ)�2 = � < �µ,� > �2�s0(µ)�2 ≤ ��µ�2���2�s0(µ)�2 = ��µ�2�s0(µ)�2, since ���2 = 1.

(ii) This follows along similar lines as (i).

(iii) Using (a),

<  1, 2 > = �
M
 ̄1(µ) 2(µ)h(µ)dV (µ)

= �
M
< �µ, 1 > < �µ, 2 > �s0(µ)�2h(µ)dV (µ)

= �
M
<  1,�µ >< �µ, 2 > �s0(µ)�2h(µ)dV (µ).

(iv) This follows from (a).

4.2.2 Squeezed states on an integral compact Kähler manifold

We define squeezed states in a similar fashion as the coherent states in the previous
subsection.

Let M be an integral compact Kähler manifold of dimension d. Let q ∈ U ⊂ M ,
where U is an open neighbourhood of q such that �U is a biholomorphism to an open
ball V ⊂ Cd to U . Let q = ⌫ = �U(⌫1 + i⌫2), where ⌫1 + i⌫2 ∈ V . Let ⇣ ∈ R be such that
⌫1 + i⇣⌫2 belongs to V . Then ⌫⇣ = �U(⌫1 + i⇣⌫2) ∈ U . Let q⇣ = ⌫⇣ .
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Proposition 4.2.3. Let M be a 2d-dimensional compact smooth manifold. Then there
exists a subset M̃ of dimension at most (2d− 1) such that M � M̃ admits an open cover
by a single open set U of the above kind.

Proof. A 2d-dimensional manifold admits a cell-decomposition as a single 2d-dimensional
cell glued to a skeleton of dimension at most (2d−1), [7]. Let M̃ be this skeleton. Then
M � M̃ is homeomorphic to C

d. Thus one open set U is enough to cover M � M̃ .

Let { i}mi=1 be the orthonormal basis for the Hilbert space of geometric quantization
as described in the previous section, with inner product < ⋅, ⋅ >. Let µ = �U(µ1 + iµ2)
and µ⇣ = �U(µ1 + i⇣µ2).

Let us define the squeezed states as follows. Let s0 be a fixed holomorphic section
of the prequantum bundle whose vanishing set is M0 ⊂M .

Then for µ⇣ ∈M � (M̃ ∪M0), we define the squeezed states as follows.

�⇣µ(⌫) =
1

s0(µ⇣)

m

�
i=1 i(µ⇣) i(⌫).

We have the theorem below.

Theorem 4.2.4. The �⇣µ satisfy the following properties.

1. The modified reproducing kernel property.

< �⇣µ,� > s0(µ⇣) = �(µ⇣)

.

2. The modified maximal likelihood property, namely,

��⇣µ(µ⇣)�2 ≥ ��(µ⇣)�2�s0(µ⇣)�2 for all µ⇣ ∈ U and all � ∈H such that < �,� >= 1.

3. Modified resolution of identity:

< �1,�2 >= �
M
< �1,�⇣µ >< �⇣µ,�2 > �s0(µ⇣)�2h(µ⇣)dV (µ⇣).

4. Overcompleteness:

< �⇣µ,� >= 0 for all µ iff � = 0.
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Proof. The proof is similar to Theorem (4.2.2). We have to use that M̃ ∪M0 is of
measure zero and removing this set does not affect the integrals.
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Chapter 5

An Example: Symmetric Product of
Riemann surface of genus g > 1
In this chapter we do not construct anything new but we show an example illustrating
the theory above. We use an embedding of the symmetric product (see Appendix)
of a compact Riemann surface of genus g > 1 into CPN , which is developed in [3]
and [1]. In [3], the authors construct an embedding of the symmetric product into a
Grassmannian manifold and finally into a projective space using the Plücker embedding
(see Appendix).

We closely follow Biswas and Romão [3] and Aryasomayajula and Biswas [1].

Let ⌃ be a compact connected Riemann surface of genus g > 1. Let T �⌃ = Holomorphic
cotangent bundle of ⌃. T �⊗k⌃ = k-times tensor product of the holomorphic cotangent
bundle of ⌃.

Let M = Symd(⌃).

⌦ = T �⌃ is the cotangent bundle on ⌃. A section of T �⊗k⌃ is of the form f(z)dz⊗k.
When lifted to the upper half plane (universal cover of ⌃), f(z) transforms as a cusp

form under the SL(2,Z) transformation �(z) = az+b
cz+d . This is because f(�(z))d�(z)⊗k =

f(z)dz⊗k implies that f(�(z)) = f(z)(cz+d)2k , by a simple calculation.

For any k > 0, let S2k(�) denote the complex vector space of weight-2k cusp forms
on ⌃.

In [3] Biswas and Romão have shown that Symd(⌃) can be embedded in a certain
Grassmannian using certain sections of H0(⌃, T ∗⊗k⌃ ).

Let us focus on L = T �⊗k⌃ = ⌦⊗k
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Let !,⌘ ∈ H0(X,T �⊗k⌃ ). Then !(z) = f(z)dz⊗k, ⌘(z) = g(z)dz⊗k and

�!,⌘�hyp = � y2kf(z)g(z)µhyp
⌃ (z).

Complex vector space H0(X,T �⊗k⌃ ) have dimension nk, where nk = (2k − 1)(g − 1),
k ≥ 2 and n1 = g.

Let {e1, e2, ..., enk} denote a basis of H0(X,T �⊗k⌃ ).

Set rk = nk − d, (where k is large enough such that rk ≥ 1). Let Gr(rk, nk) denote
the Grassmannian parametrizing rk dimensional subspaces of nk dimensional complex
vector space H0(X,T �⊗k⌃ ).

Let H0(⌃, T �⊗k⌃ ⊗O⌃(−x1 − x2...− xd)) consist of all the holomorphic sections (cusp
forms) of H0(X,T �⊗k⌃ ) which vanishes at the points x1, x2, ..., xd.
Clearly H0(⌃, T �⊗k⌃ ⊗O⌃(−x1 − x2... − xd)) is a vector subspace of H0(X,T �⊗k⌃ ).

Now in [3] and [1], the authors define a map �: Symd(⌃)�→ Gr(rk, nk) by mapping
(x1, x2, ..., xd) to the vector space H0(⌃, T �⊗k⌃ ⊗O⌃(−x1−x2...−xd)), where x1, x2, ..., xd’s
are (not necessarily distinct points) in ⌃.

For any k with (2k −1)(g −1) > d, we have dim H0(⌃, T �⊗k⌃ ⊗O⌃(−x1 −x2...−xd)) =
nk − d = rk.

So H0(⌃, T �⊗k⌃ ⊗O⌃(−x1−x2...−xd)) is a (nk−d) ie, rk dimensional vector subspace
of H0(X,T �⊗k⌃ ).
Therefore H0(⌃, T �⊗k⌃ ⊗O⌃(−x1 − x2... − xd)) is an element of Gr(rk, nk).
It is known that � is holomorphic embedding.

5.1 Embedding into CPN .

In this section we use the Plücker embedding (see Appendix) of Gr(rk, nk) into CPN .
Here P is the Plücker embedding ( where N = �nk

rk
�−1 ) which we use to embed Symd(⌃)

into CPN .

Recall, the embedding Gr(rk, nk) into projective space goes as follows. First we iden-
tify H0(⌃, L⊗k) locally with C

nk and denote orthonormal basis of Cnk by {e1, e2, ..., enk}
(using same notation for basis elements).
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Let C
nk be given by a basis {e1, ..., enk} and N + 1 = �nk

rk
�.

Let q ∈ Gr(rk, nk), that is q is a rk-dimensional vector subspace of Cnk .

V = ∧rkCnk = CN+1 has basis B = {ei1 ∧ ei2 ∧ .. ∧ eirk}1≤i1<i2<...<irk≤nk

Let P be the Plücker embedding. Then P (q) = [p] ∈ P (V ) where

p = �
1≤i1<i2<...<irk≤nk

ci1i2...irk (q)ei1 ∧ ei2 ∧ .. ∧ eirk ∈ V.

We can identify q ∈ Gr(rk, nk), with a point [p] in the projective space CPN , namely
the class of {ci1i2...irk (q)} (ordering is maintained).

One can embed Symd(⌃) into CPN by composing ✏ = P ○�.

5.2 Berezin and Toeplitz quantization and pullback coher-

ent states on Symd(⌃).
Let M = Symd(⌃), where ⌃ is a compact Riemann surface of genus > 1. Let x =
(x1, ..., xd) be a point on Symd(⌃) and let {ei(x)} be a basis of cusp forms on ⌃ which
vanish at x and {eI} = {ei1 ∧ ei2 ∧ .. ∧ eirk} be the basis of CN+1 = V . Let {ci1i2...irk (q)}
be the coordinates of [p] = ✏(x) in CPN . Suppose [p] ∈ U0 ⊂ CPN (w.l.g). Let us write
{ci1i2...irk (q)} as [p] = [1, µ1, ..., µN ] on U0.

Proposition 5.2.1. Let ⌃ be a compact Riemann surface of genus > 1. Then M =
Symd(⌃) has an algebra of operators acting on a Hilbert space which have a star product
on their CPN -symbol which satisfy the correspondence principle. Here N could be as
defined in the previous section.

Proof. Let ✏ be the above embedding of M into CPN . Then we can repeat what was
done in section (3.6) and get a Berezin-type quantization.

Proposition 5.2.2. There exists a measure zero set M0 such that M �M0 has a set of
Toeplitz operators which satisfy the Toeplitz quantization conditions as in (3.7).

Proof. This follows from section (3.7).
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Proposition 5.2.3. M has pull back coherent states and squeezed states which satisfy
overcompleteness, reproducing kernel property, maximum likelihood property and resolu-
tion of identity.

Proof. We have en embedding ✏ of M into CPN . Then one can define the pull back
coherent states and squeezed states as in the chapter (4).
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Chapter 6

Conclusion and Further work

6.1 Compact integral Kähler manifold

Suppose M is a compact integral Kähler manifold and suppose we embed it into CPn

and induce the Berezin quantization by the embedding as in [6]. Suppose M has a
Berezin quantization as in [2] under the conditions mentioned in [2]. Then we try to
answer the question how would the two Berezin quantizations differ.

6.2 Local Berezin-type quantization for compact odd-dimensional

smooth manifolds.

We can embed compact odd-dimensional smooth manifolds into CPn and try to execute
the Berezin quantization.

6.3 Berezin-type quantization for even dimensional non-

compact smooth manifolds.

1) If the volume of the even dimensional non-compact smooth manifold is finite, (with
respect to some Riemannian metric) then we embed the manifold into CPn and pull
back the Hilbert space of quantization from there, as we expect a finite dimensional
Hilbert space.

2) If the even dimensional non-compact smooth manifold is of infinite volume (with
respect to some Riemannian metric) we embed it into C

n and induces the quantization
from there. We will obtain an infinite dimensional Hilbert space but this is expected.
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Appendix A

Two Proofs

In this section we prove two statements in Berezin [2] whose proof is not provided in the
paper.

Let Â be a bounded linear operator acting on H. Then, as in [2], one can define a
symbol of the operator as

A(µ, ⌫̄) = � ⌫ ,Â µ�� ⌫ , µ� .
We can recover the operator Â from the symbols as in the next proposition.

Let 1
c(m) = ∫U0

Lm(µ̄,⌫)Lm(⌫̄,µ)Lm(µ̄,µ)Lm(⌫̄,⌫)dV (⌫).
Proposition A.0.1 (Berezin).

(Âf)(µ) = c(m)�
U0

A(⌫, µ̄)f(⌫)Lm(µ, ⌫̄)e−m�̃(⌫,⌫̄)dV (⌫).

Proof. Since Â is linear, we need to prove this only for f =  I , a basis vector.

R.H.S. = c(m)�
U0

� µ, Â ⌫�
� µ, ⌫�

 I(⌫)Lm(µ, ⌫̄)e−m�̃(⌫,⌫̄)dV (⌫)

= c(m)�
U0

� µ, Â ⌫� I(⌫)e−m�̃(⌫,⌫̄)dV (⌫)
= c(m)�

U0

(Â ⌫)(µ) I(⌫)e−m�̃(⌫,⌫̄)dV (⌫)
= c(m)�

U0

(Â(�
J

 J(⌫) J)(µ) I(⌫)e−m�̃(⌫,⌫̄)dV (⌫)

= c(m)(Â J)(µ)�
J
�
U0

 J(⌫) I(⌫)e−m�̃(⌫,⌫̄)dV (⌫)
= (Â J)(µ)�

J

�IJ

= (Â I)(µ) = L.H.S.
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Proposition A.0.2 (Berezin). Let Â1, Â2 be two bounded linear operators on the Hilbert
space H and let A1,A2 be their symbols. Then A1 ∗A2 is the symbol of Â1 ○ Â2.

Proof. The proof below holds in general, but we show it only for Berezin star product
in CPn.

Let Ã be the symbol of Â1 ○ Â2. It is given by

Ã(µ, µ̄) =
� µ, Â1 ○ Â2 µ�
� µ, µ�

.

In other words by reproducing kernel property, we get

Ã(µ, µ̄) =
(Â1 ○ Â2 µ)(µ)

 µ(µ)
.

Let  I , J , P , Q be different notations for the basis elements of H where I, J,P,Q

run over the same multi-indices.

Let Â2 I = ∑I C
J
I  J and Â1 P = ∑BQ

P Q, CJ
I ,B

Q
P are constants. Using the

definition of  µ, we get

Â1 ⌫ = �
P,Q

BQ
P Q(µ) P (⌫),

(Â1 ○ Â2 µ)(µ) = �
I,J,K

CJ
I B

K
J  K(µ) I(µ).

On the other hand, we have, [2],
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(A1 ∗A2)(µ, µ̄)

= c(m)�
U0

A1(µ, ⌫̄)A2(⌫, µ̄)
Lm(µ, ⌫̄)Lm(⌫, µ̄)
Lm(µ, µ̄)Lm(⌫, ⌫̄)

Lm(⌫, ⌫̄)e−m�̃(⌫,⌫̄)dV (⌫)

= c(m)�
U0

(Â1 ⌫)(µ)(Â2 µ)(⌫)
 µ(µ) ⌫(⌫)

�d⌫ ∧ d⌫̄�
(1 + �⌫�2)d+1

= c(m)
 µ(µ) �U0

�
��P,Q

BQ
P Q(µ) P (⌫)

�
�
�
��I,J

CJ
I  I(µ) J(⌫)

�
�
e−m�FS(⌫,⌫̄) �d⌫ ∧ d⌫̄�

(1 + �⌫�2)d+1

= 1

 µ(µ)
�
��P,Q

BQ
P Q(µ)

�
�
�
��I,J

CJ
I  I(µ)

�
�
�PJ

= 1

 µ(µ)
�
� �J,Q,I

BQ
J C

J
I  Q(µ) I(µ)

�
�

= 1

 µ(µ)
�
� �J,K,I

BK
J CJ

I  K(µ) I(µ)
�
�

= Ã(µ, µ̄).
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Appendix B

The integral

Let 0 ≤ p ≤ m, p is an integer. Let pi be integers such that p1 + ... + pn = p. Let
Ip = Ip1,..,pn;p.

Let IIp = ∫Cn
�µ�2Ip �dµ∧dµ̄�(1+�µ�2)m+n+1 = ∫Cn

�µ1�2p1 ...�µn�2pn �dµ∧dµ̄�(1+�µ�2)m+n+1
Writing µj = rjei✓j , �dµ∧dµ̄� = ⇧n

j=1rjdrjd✓j and letting uj = r2j we get after perform-
ing the ✓j integrals,

IIp = (2⇡)
n

2n ∫
∞
0 ... ∫

∞
0

u
p1
1 ...upn

n du1...dun(1+u1+...+un)m+n+1 .
We will use the integral

�
∞

0
e−axxkdx = k!

ak+1 (B.0.1)

as follows.

We take a = (1 + u1 + ... + un) in the above integral and write

1

(1 + u1 + ... + un)m+n+1 =
1

(m + n)! �
∞

0
e−axxm+ndx.

Then inserting the the auxiliary variable x-integral inside IIp , we get

IIp = ⇡n

(m + n)! �
∞

0
...�

∞
0

up11 ...upnn e−(1+u1+...+un)xxm+ndu1...dundx

= ⇡n

(m + n)! �
∞

0
up11 e−u1xup22 e−u2x...upnn e−unxe−xxm+ndu1...dundx
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We will perform the x-integral last. Again using equation (B.0.1) we get

�
∞

0
u
pj
j e−ujxduj =

pj !

xpj+1 .

Then using �(z) = ∫
∞
0 tz−1e−tdt we get

IIp =
⇡n

(m + n)!
p1!...pn!�

∞
0

e−xxm−pdx = ⇡n

(m + n)!
p1!...pn!(m − p)!.

There is another integral of importance as follows.

(c(m))−1 = Ip=0 = ⇡n

(m + n)!
m!

where p1 = p2 = ... = pn = 0.
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Appendix C

Removing sets of measure zero

Proposition C.0.1. Let � be a polydisc in C
n. There exists a set of measure zero,

namely, �0 ⊂ � such that � � �0 is biholomorphic to C
n � N0 where N0 is a set of

measure zero.

Proof. There is a biholomorphism from 1-dimensional disc D � {0} to C � [−1,1] given
by w(z) = 1

2(z +
1
z ), the Joukowski map. We claim that there is a set �0 of lower

dimension such that � ��0 = (D � {0})d. We know that � = D ×D × .... ×D. �0 is
then union of sets of the type D ×D × .... × {0} × ... ×D. This can be seen as follows.
x = (x1, ..., xd) ∈ (D � {0})d iff x ∈� such that none of the xi are zero, for i = 1, ..., d. In
other words, �0 is the measure zero set characterized by the set such that at least one
of the xi = 0.

Thus we have ���0 is biholomorphic to (C� [−1,1])d. But (C� [−1,1])d = Cd�N0

where N0 is the union of sets of the type C ×C × .. × [−1,1] × ... ×C.
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Appendix D

Modular Forms

Poincaré upper half plane

Poincaré upper half plane H = {z ∈ C�Im(z) ≥ 0}, which is a complex manifold of
dimension 1 on which we can talk of holomorphic functions.

The group SL(2,R) acts on H by linear fractional transformations:

g(z) ∶= az+b
cz+d , g =

������

a b

c d

������
∈ SL(2,R).

Modular forms

The subgroup of SL(2,R) consisting of matrices with integer coefficients is by defi-
nition SL(2,Z). It is called the “Full modular group”.

A modular form f ∶ H �→ C of weight k for SL(2,Z) is a function on H with the
following properties:

1. f ∶ H�→ C is a holomorphic function (meromorphic function in case of a modular
function).

2. f(az+bcz+d) = (cz + d)k f(z), ∀z ∈ H,
������

a b

c d

������
∈ SL(2,Z)

Note: For T =
������

1 1

0 1

������
∈ SL(2,Z) we have f(z + 1) = f(z). Hence these functions

will have a Fourier expansion:

f(z) =
∞
�

n=−∞ane
2⇡◆nz (D.0.1)
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3. an = 0, ∀n < 0, i.e., f(z) = ∑∞n=0 ane2⇡◆nz = ∑∞n=0 anqn, q = e2⇡◆z

Note: If a0 = 0, then f is called a cusp form.

Remark:

Condition 3 is equivalent to say that f remains bounded at ◆∞, i.e. limt→∞f(◆t) <∞,
and the cuspidality condition is equivalent to say that f(◆∞) = 0.

Remarks:

1. z → e2⇡◆z = q gives rise to the identification: H�Z ≅D∗ = {q��q� < 1, q ≠ 0}.
2. If f is a modular form, f considered as a function on D� can be extended to a

holomorphic function on D. It is a cusp form if it extends to D holomorphically and
vanishes at q = 0.

3. Since SL(2,Z) = �S,T �, where S =
������

0 1

−1 0

������
and T =

������

1 1

0 1

������
, for modularity of a

function f on H, we have to check f(z + 1) = f(z) and f(−1�z) = zkf(z).

4.Modular forms are an interplay between continuous and discrete as they are con-
tinuous functions with discrete symmetries.

5. The set of all modular forms of weight k for SL(2,Z) is a finite dimensional
vector space, and is denoted by Mk(SL(2,Z)). Similarly, the set of all cusp forms of
weight k for SL(2,Z) is also a vector space, and is denoted by Sk(SL(2,Z)).
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Appendix E

Plücker embedding

Here we mention a well known result, see for example [19], page 11.

Proposition E.0.1. (Plücker) The Grassmannian manifolds Gr,n(C) are projective al-
gebraic manifolds.

The proof is given considering the following map: F̃ ∶ Mr,n(C) �→ ∧k(Cn) � {0}
defined by

F̃ (A) = F̃ (

�����������

a1

a2

⋮
ar

�����������

) = a1 ∧ ... ∧ ar (E.0.1)

We embed the Grassmannian Gr,n(C) in P (∧rCn) by completing the following dia-
gram.

Mr,n(C) ∧rCn � {0}

Grr,n(C) P (∧rCn)

F̃

⇡G ⇡P

F

where ⇡G, ⇡P are the usual projections. We can show that F is well defined. In fact
⇡G(A) = ⇡G(B) implies that A = gB for g ∈ GL(r,C), ⇡P (a1 ∧ ...∧ ar) = ⇡P (det(g)(b1 ∧
... ∧ br)) = ⇡P(b1 ∧ ... ∧ br), and so the map F is well defined. One can show it is an
embedding. This is called the Plücker embedding.
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Appendix F

Symmetric Product

Let X be a topological space (or manifold), then the n-th symmetric product of X is
the space denoted by Symn(X), defined as Symn(X) =Xn�Sn, that is, the orbit space
given by the quotient of the n-fold Cartesian product of X by the natural action of the
symmetric group Sn that permutes the entries of an element.

The n-th symmetric product of X consists of unordered n-tuples of points on X, not
necessarily distinct.

If X is a compact Riemann surfaces, Symd(X) is d-dimensional complex manifold.
For a proof see [14].

Example: Symn(CP 1) is biholomorphic to CPn

We present a known proof of a well known result that Symn(S2) is homeomorphic to
CPn, [15]. Regard S2 as the complex projective line CP 1. The Cartesian product (S2)n

represents ordered n-tuples of complex homogeneous parameters �1,�2, ...,�n. The ho-
mogeneous polynomial of degree n having these as roots determines, by its coefficients,
a point in n-dimensional complex projective space, CPn. This gives a continuous map
(S2)n �→ CPn. Permuting the roots �1,�2, ...,�n does not alter the polynomial, so this
map factors through the n-th symmetric product of S2. The map from symmetric prod-
uct Symn(S2) to CPn is certainly one-to-one, and since every such complex polynomial
has n complex roots, it is onto as well. Since (S2)n is compact, hence Symn(S2) is
compact (as a quotient space of a compact space is compact ) and CPn is Hausdorff,
the symmetric product Symn(S2) is homeomorphic to CPn.

Note: Here we think of S2 = C∪{∞} as the Riemann sphere CP 1. The identification
sends a point in CPn (thought of as the coefficients of a homogeneous polynomial of
degree n), to the roots of this polynomial. If the degree of the polynomial is k < n,
then there are only k complex roots and the remaining entries will be assigned the
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point at ∞. Thus the correspondence CPn �→ Symn(S2) is [ak ∶ ... ∶ a1 ∶ a0] �→<
⇠1, ⇠2, ..., ⇠k,∞, ...,∞ >, where ⇠i’s are the roots of akXk + ... + a1X + a0 is well-defined
and bijective, hence a homeomorphism.

In fact it is a well known fact that Symn(CP 1) is also a Kähler manifold and is thus
biholomorphic to CPn by the following thereom, [9], [21].

Theorem F.0.1 (Hirzebruch, Kodaira, Yau). If a Kähler manifold M is homeomorphic
to CPn then M is biholomorphic to it.
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