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Abstract

Finite-dimensional inviscid hydrodynamical equations have solutions that

eventually thermalize with a Gibbsian distribution and energy equilibrium across

Fourier modes. We examine the route to thermalization in the Galerkin-truncated

three-dimensional Euler equation and show how this phenomenon can be effectively

reduced to a one-dimensional problem. We also discuss strategies to prevent

thermalization, which are essential but elusive so far, to numerically obtain

dissipative (weak) solutions and discuss their importance for conjectures on the

blow-up problem. We then show how thermalized fluids are an ideal candidate to

study classical many-body chaos, and in particular, by using decorrelators, we show

that the Lyapunov exponent scales as the square root of the temperature, consistent

with recent studies and conjectures from other condensed matter systems.

In the end, we present a local multifractal characterization of turbulent

structures and a novel attempt to study the dynamo problem in the framework of

the EDQNM closure model.
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Chapter 1

Introduction

1.1 Preamble

Slow moving and highly viscous classical fluids move in a laminar and

orderly fashion. This is true, for example, when we look at the typical motion

of oil or honey. However, for fluids such as atmospheric winds which small enough

viscosities or high speeds leading to large enough Reynolds numbers, the flow quickly

becomes chaotic, out-of-equilibrium, irreversible and intermittent. In short, they are

turbulent. Indeed, most flows are turbulent [1].

These range from the astrophysical to the terrestrial scales and beyond.

In astrophysics, for example, turbulence is central to a diverse set of phenomena

such as the generation of large scale magnetic fields (the dynamo problem), the

formation of protoplanets and the dynamics of solar winds [2–4]. Going down in

scale, atmospheric flows are nearly always turbulent and their role in determining

how quickly rain droplets form in warm clouds or how ice crystals orient in cold

clouds has gained attention in recent years [5, 6]. At more terrestrial scales, turbulent

flows determine to a large extent how pollutants disperse or even the distribution of

volcanic ash in air [7]. Marine turbulence is just as ubiquitous and affect not just the
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1. Introduction

energy balance of our oceans but also a key component in nutrient mixing and the

motion of small and large organisms [8]. Beyond such natural settings, turbulence

remains a most vital component in several important applications. These range,

to name a few, from the boundary layers which form over the wings of aircrafts,

the laminar-to-turbulent transitions in pipe flows, or the complex motion whenever

there is flow past obstacles [9].

All of this suggests that while turbulence is often labelled as “the last great

unsolved problem of the classical physics” [1], in reality what one deals with is a large

set of different problems all of which pose significant challenges in various branches

of the natural sciences. Thus while the key questions for mathematicians may well

be in proofs of smoothness or not in solutions of the underlying equations of fluid

mechanics, for the fluid dynamicist the most interesting aspects could lie in questions

of instabilities and transition. Similarly the astrophysicist and plasma scientist may

worry primarily about questions of the fate of magnetic fields in highly turbulent

plasmas whereas the geophysicist and climate scientist are increasingly concerned

about how the fundamental properties of turbulence relate to the health and future

of our oceans and weather. An engineering perspective is often one which is pinned

to the issue of how turbulence can be characterized or controlled: This is as much

true for flows in channels as it is for aerodynamic stability of automobiles, trains

and aeroplanes.

While it is hard to have a precise definition of turbulence, it is fair to say

that turbulence is the solution of the Navier-Stokes equation (or flows in nature or

in the laboratory) in the limit of very large Reynolds numbers [10, 11]. Typically,

such flows remain in a non-equilibrium steady state where the energy injected is,

on average, balanced by the energy lost through viscous dissipation. In practice,

there are three essential ingredients which make flows turbulent. The first of these

is viscosity—akin to a frictional force between fluid elements resisting motion or

shear—and commonly understood as the thickness of the fluid which sets honey

apart from water. The viscous effects, as we shall see subsequently, are essentially

dominant at the small scales of a flow. The second ingredient is the drive or the

2



1. Introduction

energy injection which actually makes a fluid move by stirring it up. As in most,

especially three-dimensional flows, this is a large-scale effect and we inject energy

in fluids routinely when we stir a cup of tea or switch on a fan. Finally, boundaries

determine the precise finer details of a turbulent flow and indeed can even determine

whether a flow remains laminar or turbulent. Indeed the flow past a puckered

golf ball will have a different spatio-temporal structure than that past a smooth

cricket ball. Thus, some of the most important problems in engineering, especially

in efficient transportation, involves understanding the role of boundaries.

In this Thesis, our approach is primarily at the interface of statistical

physics and applied mathematics. The canonical setting for such questions is rooted

in the notion of statistically homogeneous, isotropic flows which, as we shall see,

in some cases, are not necessarily turbulent. Such flows are of course routinely

realised—for example, the flow at the center of a wind tunnel or indeed in the core

of a cloud—where the precise nature of surfaces become somewhat irrelevant and

the results more universal. What this essentially means is that the third ingredient,

namely the question of boundaries, no longer play a role by essentially assuming an

infinite domain of the fluid or, more precisely, periodic boundary conditions.

Historically, however, the primitive equations of motion for a fluid with

velocity u(x, t) at position x and time t was first given by Leonard Euler in the mid

18th century for an ideal fluid with no viscosity. Our starting point for this Thesis

is also the eponymous—and much celebrated—Euler equation and its variant.

1.2 The Euler Equation for Ideal Fluids

Three-dimensional flows (3D) ideal, incompressible fluids, with the scalar

pressure field P , satisfy the Euler equation,

∂u
∂t

+ u · ∇u = −∇P (1.1)

3



1. Introduction

augmented by the constraint ∇ · u = 0 and initial conditions u0.

Amongst the very instances of partial differential equations (PDEs), Euler

had presented this description of the motion of an ideal or non-viscous fluid to the

Berlin Academy in 1752 and eventually published in its memoires as “Principes

généraux du mouvement des fluides” in 1757 [12]. Today, even after 250 years this

equation stands as one of the most fundamental in both physics and mathematics [13,

14]. By assuming suitable “smoothness” and decay of the velocity field (sufficiently

rapidly) at infinity, it is possible to show that the 3D Euler equation has several

conserved quantities [15], globally in time, such as the total energy E = 1
2

∫
R3

|u|2,

helicity H =
∫
R3

u · ω, momentum M =
∫
R3

u, angular momentum C =
∫
R3

x × u,

and net vorticity Ω =
∫
R3

ω.

However, weak solutions of the 3D Euler equations need not conserve

energy [16] which makes such solutions particularly appealing for understanding

(dissipative) turbulence from the point of view of statistical physics. In fact,

Onsager’s pioneering work [17, 18] was a way to construct a mathematical framework

in which the limit of infinite Reynolds number (Re) turbulence may be the

manifestation of weak solutions of the inviscid Euler equation and hence the energy

dissipation in real turbulence may reach a non-vanishing limit as Re → ∞. This

conjecture, which has gained subsequent support from numerical simulations and

experimental measurements, is known as dissipative anomaly [19]. Briefly stated,

non-conservation of energy, in either the infinite Reynolds number limit of real

turbulence or in the sense of weak solutions of the inviscid Euler equations, is

guaranteed not through an explicit viscous dissipation but the lack of sufficient

smoothness of the velocity field itself. The latter is often defined by the Hölder

exponent h that satisfies:

⟨|u(x + r) − u(x)|⟩ ∼ rh (1.2)

Precisely formulated, weak solutions of the Euler equation admit

anomalous dissipation when the Hölder exponent h < 1/3 and remain energy
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1. Introduction

conserving for h ≥ 1/3. However the proof of this still remains one of the most

significant open questions in mathematics [20].

These ideas are of course intimately connected to the notion of whether

there is a finite-time blow-up in the solutions of the 3D Euler equation itself. In

other words, starting with sufficiently smooth initial data, could the solution to

the three-dimensional Euler equation develop singularities in a finite time? This

is recognised—along with its counterpart for the Navier-Stokes equation—as single

most fundamental question at the interface of fluid dynamics and analysis, while

providing a tantalising prospect of understanding the onset of turbulence as a

manifestation of the appearance of such singular solutions.

While the question remains an open one still, its analogue for the

analytically more tractable one-dimensional (1D) inviscid Burgers equation [21, 22]

∂u

∂t
+ u

∂u

∂x
= 0 (1.3)

is solved and provides a way to make sense of this question. By assuming the

initial data u(x, 0) = u0(x) to be analytic—such as trigonometric functions—with

the complex singularity sitting at infinity, it is possible to predict if and when the

solution to equation (1.3) would develop a singularity. The simplest approach to

this would be construct the Lagrangian map:

a 7→ x(a) = a+ tu0(a). (1.4)

The solution to the Burgers equation turns singular when the Jacobian

∂x/∂a of this map vanishes. Trivially, the corresponding time t∗ for a blow-up is

just

t∗ =
(

max
∣∣∣∣∣du0(x)

dx

∣∣∣∣∣
)−1

. (1.5)

For simplicity, for u0(x) = sin(x), then the time of blow-up t∗ = 1 is finite. Such

an approach also allows us to easily detect the position, in both Eulerian and

Lagrangian coordinates, of the position of the singularity. In fact, for 0 ⩽ t ⩽ t∗, we
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Figure 1.1: Tracing the imaginary part of the complex singularity position, δ(t),
as in Eq. (1.6), for the initial condition u0(x) = sin(x). Starting from δ(0) = −∞,
reaches the real axis in a finite time, δ(t∗ = 1) = 0.

can locate the position of the singularity (using equation (1.5)) as:

x∗(t) = ι̇
[
cosh−1

(1
t

)
− t sinh

(
cosh−1

(1
t

))]
(1.6)

If we denote the imaginary part of the singularity as Im{x∗(t)} = δ(t) =, then for

such an initial condition, the singularity at t = 0 is at infinity on the imaginary line,

and hits the real axis (δ = 0) at t∗ = 1, as shown in figure 1.1. However, since there

is a finite-time blow-up as we saw above, at time t ≲ t∗, the (pole) singularity ought

to be close to the real line. Hence, to leading order O(t∗ − t), the singularity closest

to the real line can be obtained by expanding sin(a) up to cubic order:

x = (t∗ − t)a+ a3

6 ; ∂x

∂a
= t∗ − t+ a2

2 . (1.7)

This inevitably leads to a∗(t) = ±ι̇
√

2(t∗ − t) and, in Eulerian coordinates,

x∗(t) = ±2
√

2
3 ι̇(t∗ −t)3/2. Physically, the finite-time singularities manifest themselves

as “shocks” in the solution of the 1D Burgers equation.

Unfortunately, such simple formulations do not exist for the 3D Euler

equation to definitively prove the existence of a finite t∗ for a blow-up. Nevertheless,

several mathematically rigorous criterion exist that can be used to rule out or rule
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1. Introduction

in finite-time singularities in the Euler equation. Perhaps the one which makes the

strongest contact with our physical intuition of turbulence owes itself to the work of

Beale, Kato and Majda [23, 24] (BKM theorem). The theorem states, if a smooth

solution of the three-dimensional Euler equation can be continued till t∗, and t∗ is

the first such time that the solution satisfies for the vorticity field ω = ∇× u,

∫ t∗

0
dt ∥ω(t)∥L∞ = ∞ (1.8)

then the solution becomes singular at t∗. While a detailed review of the many

important works on the regularity of the 3D Euler equation and its connections to

turbulence—beginning with seminal 1934 work of Leray [25, 26]—is well beyond

the scope of this Thesis, it is perhaps worth looking at one such approach in some

detail since it makes an obvious connection with spectral methods of simulations

on one hand and the fundamental limitations of the same in practice. This is the

so-called analyticity strip method [27] which, in principle, seems most compatible

with numerical simulations as a tool for probing regularity.

1.2.1 The Question of Finite-Time Blow-Up: Analyticity

Strip Method

Assuming analyticity of the velocity field (at least up to some time T )

guarantees that potential singularities are always in the imaginary domain. To

simplify our analysis, we assume at some time t ≤ T the velocity field u to have

one or more complex pole singularities at positions zi = xi + ι̇δi. The expansion of

complex function u(z) about a pole at z∗ is

u(z) = (z − z∗)µ
∞∑

s=0
cs(z − z∗)s, Re{µ} ⩾ 1 (1.9)

How does the Fourier transform of such a velocity field ûk =∫ ∞

−∞
dz eι̇ kz u(z) behave? The contribution from z∗, that has its imaginary part

δ = Im{z∗} closest to the real axis, is dominant to the integral. One can show it in
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the asymptotic limit [28]

≈ −2 sin(πµ)
kµ+1 exp

(
ι̇
[
kz∗ − π

2µ
]) ∞∑

s=0
k−scsΓ(µ+ s+ 1)

for k ≫ 1, ûk ∼ k−(µ+1)e−δk (1.10)

To summarize, the analyticity strip method suggests that an obvious way

to conjecture for or against a finite-time singularity is to numerically solve the Euler

equation and measure the width of the analyticity strip , that is δ, the distance

to the real domain of the nearest complex singularity. By assuming analyticity,

at least up to a hypothetical time of blow-up t∗, this procedure thus reduces to

measuring the Fourier modes of the velocity field ûk ∼ exp{[−δ(t)k]} (ignoring

vectors for convenience), for large wavenumbers k, and thence, δ as a function of

time t. Therefore, a numerically compelling proof for a finite-time blow-up is to

show δ(t) → 0 in a finite time.

Simple as it sounds, such an approach unfortunately runs into a severe

problem in its implementation. This is because spectral accuracy demands that

what we actually solve is the Galerkin-truncated Euler equation, with finite degrees

of freedom, and not quite the PDE (1.1). While this may seem a small detail, in

reality it leads to very different physics as we explain below.

1.2.2 The Galerkin-truncated Euler Equation: Absolute

Equilibria

The Galerkin-truncated three-dimensional Euler equation is written as

∂v(k, t)
∂t

= −PkG[v · ∇v + ∇P ], v(k) · k = 0 (1.11)

where PkG is a low-pass Galerkin projector which sets the velocity modes with

wavenumbers |k| ⩾ kG equal to 0, where kG is a positive (large) integer. Thus,

8
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for 2π periodic functions, the Galerkin-projection ensures

PkGv(x) =
∑

|k|⩽kG

eι̇ k·x v̂(k) (1.12)

This modification, while preserving the nonlinear structure of this equation, ensures

a strict conservation of energy and phase space as we will see below. Of course, the

initial conditions are projected likewise: v0 = PkGu0.

For what follows in this Thesis, its useful to actually write the

Galerkin-truncated (GT) equation (1.11) in Fourier space. Written in

component-form for the Fourier modes v̂α(k), this reduces to

∂v̂α(k)
∂t

= − ι̇

2Pαβγ

∑
q
v̂β(q)v̂γ(k − q) (1.13)

where the convolution (as well as the initial conditions) is projected on the Fourier

subspace defined by the truncation wavenumber kG, that is |k|, |q|, |k − q| ⩽ kG.

The additional coefficient P (k)
αβγ = kβP(k)

αγ + kγP(k)
αβ , where P(k)

αβ = δαβ − kαkβ/k
2

(with δαβ is the Kronecker delta) arises from the pressure gradient and ensures

incompressibility k · v(k) = 0.

The Fourier space version of the Galerkin-truncated Euler equation is

explicitly of the form of a finite-dimensional, non-dissipative, dynamical system [29,

30] defined as

dya

dt =
N∑

b,c=1
Aabcybyc (1.14)

where the constant coefficients Aabc have the properties,

Aabc = Aacb, Aaab = 0 and Aabc + Abca + Acab = 0 (1.15)

This implies the global energy conservation

d
dt

N∑
a=1

|ya|2 = 0 (1.16)

9
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and the incompressibility of the phase space flow with the generalized velocity field
dya

dt
:

∑
a

∂

∂ya

(
dya

dt

)
= 0 (1.17)

With a collection of systems with a prescribed density ρ(ya, t), the generalized

continuity equation is
∂ρ

∂t
+
∑

a

∂

∂y
(ρẏa) = 0 (1.18)

when combined with equation (1.17) gives

dρ
dt = ∂ρ

∂t
+
∑

a

ẏa
∂ρ

∂ya

= 0. (1.19)

This is the Liouville’s theorem for our dynamical system conserving the

phase-space density ρ along its trajectory. Hence from Liouville’s theorem [31],

the a priori probability of finding this system in any region of this phase space is

proportional to the volume of this region. By looking for equilibrium solutions to the

equation (1.19), that is ∂ρ
∂t

= 0, we use an analogy with statistical thermodynamics.

The conservation of energy allows the particular Boltzmann-Gibbs equilibrium [31]:

P(ya) = 1
Z

exp
(

−β
∑

a

y2
a

)
(1.20)

where Z is the partition function of the system. From this point of view of canonical

ensemble, we expect the system to reach this distribution, and the mean energy of

ya will be 〈
y2

a

〉
∼ 1
β

(1.21)

which is independent of ‘a’. Thus statistically every mode of the Fourier

components of velocity must be in energy equipartition, with a Gibbsian probability

distribution [29]. Therefore the energy spectrum, at suitably long times, behave in

three dimensions as

E(k) =


∼ k2 for k ⩽ kG

0 for k > kG

(1.22)
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Figure 1.2: Energy spectrum for the incompressible GT Euler equation,
taken from DNS with N3 = 256 grid points, illustrating the transient
stages—thermalization beginning from the largest (active) wavenumbers—with
a growing k2 spectrum at the tail of the spectrum.

The E(k) ∼ k2 (or in d−dimension, E(k) ∼ kd−1) is essentially a statement

of energy equipartition in a fluid which is thermalized or in absolute equilibrium.

A passing familiarity with turbulence would suggest that the emergent thermalized

flow of the Galerkin-truncated equation has little in common with turbulent flows or

indeed solutions of the Navier-Stokes equation for large enough Reynolds numbers.

For starters, the energy spectrum for turbulence E(k) ∼ k−5/3 is in stark contrast

to the equipartition spectrum. Nevertheless, it is worth recalling that theoretically

such approaches have been used historically, with varying successes, not only to

understand turbulence—the works of T. D. Lee, E. Hopf [32, 33] and somewhat

later by R. H. Kraichnan [34] to understand the dual cascade in two dimensions—but

also generalised more recently for models of decimated turbulence to investigate the

origins of intermittency and critical dimensions [35] where the Kolmogorov picture

coincided with the absolute equilibrium solution.

While the fact that Galerkin-truncated equation ought to thermalize is

obvious, it was only in 2005 that Cichowlas et al. [36] showed numerically the

existence of such thermalized solution and, in the process, the long-lived transients
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like in the Navier-Stokes equation. Indeed at intermediate times, it was shown that

a given wavenumber kth(t) seperates the two regimes:

E(k) ∼


k−5/3 for k ⩽ kth

k2 for k ⩾ kth

(1.23)

Discussing the decreasing behaviour of kth(t), starting from kth(0) = kG

as a form of effective dissipation of fluid, modes having |k| < kth, into the thermal

bath governed by modes |k| ⩾ kth. This transient regime is what was described

earlier, as the state of the ideal fluid model in the far-from-equilibrium regime, has

a k−5/3 spectrum for k < kth(t). Figure 1.2 shows the energy spectrum E(k) for

the Galerkin-truncated Euler equation at different times, starting with a large scale

initial condition, showing the emergence of k2 behaviour (grey line at t = 3). The

small-scale thermalized modes act as a fictitious microworld providing an effective

viscosity to the large-scale modes. Further, if the rate at which the thermalized

modes gain energy, equivalent to the dissipation of energy from the turbulent modes

(k < kth(t)), it agrees well with a typical case seen in a Navier-Stokes flow. This

depicts a relevance as atleast in the transient regime, the truncated Euler equation

has some form of turbulence, which needs further investigation. Such emergence was

also seen in an inviscid EDQNM model by Bos and Bertoglio [37]. In reference. [38],

Krstulovic and Brachet presented a phenomenological two-fluid model for what is

observed in a spectral-truncated three-dimensional Euler equation.

The underlying mechanisms which lead to absolute equilibria states in

three dimensions however remained unanswered and was only solved in 2011

for the one-dimensional Burgers equation [39]. The same prescription for

Galerkin-truncation of course extends mutatis mutandis to the Burgers equation

(with 2π periodic boundary conditions allowing for a simple Fourier expansion) in

one dimension, with a compact kG support in Fourier space:

∂v̂k

∂t
= − ι̇k

2
∑

q

v̂qv̂k−q, all |k|, |q|, |k − q| ⩽ kG (1.24)

In a nutshell, beginning with simple initial conditions (such as v0 = sin(x)),
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Figure 1.3: Illustrating onset of thermalization in the GT Burgers equation: For
the initial condition, u0(x) = −2 sin(x) (dashed black), solution at t ≳ t∗ = 0.5
(dark blue) shows oscillation (see Ref. [39]) appearing around the resonance point
x = π, contrasted with the Entropy solution (black circles). Inset showing a
zoomed in plot around x = π, showing the λG = 2π/kG-wavelength oscillations.
At later times (t ≈ 4.0), the GT solution (light blue) is seen fully thermalized.

the Galerkin-truncation results in, within a finite time, triggering of oscillations

in prescribed locations that onsets the thermalization in the system [39]. These

localized oscillations, with a wavelength λG = 2π/kG, being the manifestation of the

energy pumped into the shocks, soon grows rapidly in amplitude and with a positive

strain stretching them far in real space, interacts back with the system to spread

its extent of thermalization to nearby wavenumbers, eventually converging to the

solution with Gibbsian statistics [40–43].

Nevertheless, these Hamiltonian flows have other reasons for studying

them, mainly from the fact that when these solutions to the truncated Euler

equations are in the far-from-equilibrium regime then their equilibriating dynamics

should resemble that of the turbulent flows, after all the non-linear structure remains

essentially the same for both. To see it more clearly, consider the truncated Euler

equations with an initial condition having a finite but non-zero energy per unit mass

that has reached an energy spectrum as given by the equation (1.22). Now, if the

kG is modified, and taken to the limit of kG → ∞, it would take forever and a state
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of statistical equilibrium will never be attained as the velocity field evolves in time

according to the Euler equation. This inability to reach equilibrium in the ultraviolet

regime is one of the main characteristics of turbulence. This limit of kG → ∞ in the

Galerkin-truncated Euler equations cannot be interchanged with singular limit of

ν → 0 in the Navier-Stokes equation, because of the so-called dissipative anomaly

in the latter. But the key observation would be that, the net enstrophy will diverge

in the limit for the former, establishing the transfer of energy to smaller scales

(building higher velocity gradients) in the transient stages (in the equilibriation).

Interestingly, the Galerkin-truncation on the spectral space has other advantages

when equipped correctly.

In the last couple of decades or so, since the work of L’vov et al. [44], and

subsequently Frisch et al. [35], the generalization of the idea of Galerkin-truncation

to fine-tune triadic interactions has lead to a narrowing of the gap between

equilibrium statistical physics and turbulence. This, in particular, has been used

most importantly in deepening of our understanding of central questions in 3D

turbulence such as intermittency [35, 45–49] and the issue of bottlenecks [50–52] in

the energy spectrum.

Further such equilibrium classical and quantum many-body systems have

been used recently to address the question of relating the measure of chaos, such

as the Lyapunov exponent λ, butterfly speed vB [53, 54] to the thermodynamical

variables like the temperature T . In the context of a dynamical system displaying

chaos, if an initial disturbance δx0 grows to δx at time t, then the sensitivity to

the initial condition is commonly characterized by the leading Lyapunov exponent

of the system defined by

λ := lim
t→∞

1
t

lim
|δx0|→0

ln
(

|δx(t)|
|δx0|

)
(1.25)

The butterfly velocity vB is defined for spatially extended system [55]

as the velocity with which the perturbation propagates. Quantities such as

14



1. Introduction

cross-correlators and decorrelators are constructed in classical systems [55–57] to

quantify their sensitiviy to initial conditions (λ and vB) from their spatio-temporal

variation, while the out-of-time-ordered commutators (OTOC) [58] are the leading

diagnotic in studying the scrambling of information for the quantum systems [59, 60].

Thermalized fluids resulting from these Galerkin-truncated systems, such as the 1D

Burgers equation and the 3D Euler equation are remarkable many-body systems

that exhibits intrinsic chaos, with hydrodynamical nature of interactions. Thus

these are apt models to probe fundamental questions in statistical physics relating

thermalization, equilibriation and ergodicity [40, 61]. Most recently, the possibilities

of small-scale thermalization in real flows [62] have provided further impetus to

studying the interplay of equilibrium statistical physics and turbulence, often in

dimensions that are not necessarily integer [63, 64].

Fully-developed turbulence, of course, is dissipative. It took several decades

since Euler’s work on inviscid, ideal flows for Claude Navier and Gabriel Stokes

to (independently) construct the mathematical framework—the Navier-Stokes

equation—to understand real classical, Newtonian fluids by incorporating the effects

of (kinematic) viscosity.

1.3 Fully-developed Turbulence: The Navier-Stokes

equation

By using the same unit-density formulation as before, the three-dimensional

Navier-Stokes equation is

∂u
∂t

+ u · ∇u = −∇P + ν∇2u + f (1.26)

augmented, as before, by the constraint ∇ · u = 0 to ensure incompressibility,

and initial conditions u0(x). The crucial difference from the Euler equation are

the inclusion of the viscous dissipation term, with ν, the coefficient of kinematic
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viscosity, and an external force f (stochastic or deterministic) is often used to drive

the solution to a statistically steady state, where, on average, the energy injected

⟨f · u⟩ is balanced by the energy dissipated ϵ through viscosity. For any characteristic

scale L (and we later discuss a more specific and useful notion of what should be

the characteristic scale), the Reynolds number of the flow—which is a measure of

the inertial to viscous forces—is defined as Re ≡ UL/ν [65], where the velocity U is

the one associated with scale L. Flows are turbulent, when the Reynolds number is

very large.

While the mathematical questions related to the existence of smooth

and meaningful solutions of the Navier-Stokes equation remains an outstanding

question—it is in fact one of the remaining unsolved Millennium Problems of the

Clay Institute [66]—several aspects of fully-developed turbulence is now reasonably

well understood. While we cannot do justice in this short Chapter to all the many

building blocks in our understanding [9, 30, 67, 68], it is important to summarize

the central results which form the underpinnings of a statistical physics perspective

of full-developed turbulence.

Three-dimensional turbulence is sustained—non-equilibrium steady

states—by the effects of energy injection ϵinj =
∫

f · u at large length scales L

and viscous dissipation ϵ =
∫
ν(∇u)2 at small length scales η = ν3/4/ϵ1/4, and it

is reasonable to assume that the physics ought to be non-universal and involve the

details of the system at scales r ≳ L and r ≲ η.

An intuitive, but, instructive way to imagine the process by which

the injected energy from the large length scales are transferred to scales ∼ η

where viscous effects become dominant is the cascade picture due, originally, to

Richardson [69]. This assumes that the large energy containing eddies of scale L

(where the injection happens) break-up into subsequent sequences of daughter eddies

of a smaller scale which in turn break-up in to yet smaller daughter eddies while

retaining, in sum, the total energy input at the first generation. Given the structure

of the dissipative term, energy dissipation via viscosity is minimal as long as the
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Figure 1.4: Energy cascade picture in turbulent flows, according to
Richardson [69] and Kolmogorov [70]. Figure adapted from Ref. [71]

scales are large enough (or wavenumbers small enough). Eventually this forward

cascade of the energy flux, say Π, yields eddies of size η where viscous effects

are no longer negligible and energy dissipates at a rate ϵ. This phenomenogical

explanation is best visualized in figure 1.4, as illustrated in [67]. Thus this cascade

picture suggests that on average ϵinj = Π = ϵ with the so-called inertial range of

scales—where we have a constant energy flux Π—affected neither by the precise

forcing mechanism nor the kind of fluid ν being used. Within the framework of

homogeneous, isotropic turbulence, it is then reasonable to expect that the inertial

range of scales r (with L ≫ r ≫ η) should display some degree of universality in its

behaviour.

A more precise formulation of this can be seen in the scale-by-scale

energy budget analysis of the Navier-Stokes equation which we summarize here (see

Ref. [67] for details). Consider a low-pass filtering operator Pk : f(x) 7→ f<(x) =
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∑
|q|<k

f̂(q)eι̇ q·x , applying this to the Navier-Stokes equation:

∂u<

∂t
+ Pk(u< + u>) · (∇u< + u>) = −∇P< + f< + ν∇2u<

∇ · u< = 0 (1.27)

The cumulative kinetic energy upto scale k is defined as Ek = 1
2

〈
|u<|2

〉
=

1
2

∑
|q|⩽k

|û(q)|2. Now taking the scalar product of equation (1.27), and averaging over

the system domain, that is ⟨·⟩ =
∫

dx ·, to obtain the scale-by-scale energy budget

equation for the cumulative energy Ek

∂Ek

∂t
+ Πk = −2νΩk + Fk (1.28)

where Ωk = 1
2

〈
|ω<|2

〉
and Fk = ⟨f< · u<⟩ are cumulative enstrophy and energy

injection respectively. The energy flux Πk from scales larger than l ∼ k−1 to smaller

scales due to non-linear interactions is given by

Πk = ⟨u< · (u< · ∇u>)⟩ + ⟨u< · (u> · ∇u>)⟩ (1.29)

Turbulent flows are of course dissipative, out of equilibrium and the

equalities discussed above are only in the sense of averages. Indeed, a measurement

of, for example, the velocity field at a single point x in time, shows strong fluctuations

about a mean which makes a statistical approach to understanding the properties

of the velocity field all the more important. Furthermore, turbulence is chaotic

and intermittent [67, 72–74]. An example of the latter is most strikingly seen in a

time-series (or indeed a spatial distribution, as seen in Fig. 1.5a) the kinetic energy

dissipation rate ϵ(x) = 2ν(∂jui)2, which shows intermittent high spikes punctuated

by quiescent periods [67]. This spiky distribution of the mean energy dissipation

rate shows up as a log-normal distribution in ϵ(x) and, perhaps more crucially,

in the non-Gaussian, large tails of the probability distributions of almost every

observable such as velocity increments (in the inertial range), velocity gradients or

even acceleration (see Fig. 1.5b).
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(a) 3D contour surfaces (threshold C) of
normalized enstrophy (blue) and dissipation
(red) from a DNS with Taylor-scale Reynolds
number Rλ = 650 on a 81923 grid.

(b) PDF of enstrophy Ω normalized by the
Kolmogorov timescale τK , for various Rλ, inset
(zoomed in) shows the increase in probability
as Rλ increases

Figure 1.5: Extremity of events in a turbulent flow, studied
through DNS. Figure adapted from Buaria et al. [75]

A starting point in understanding the statistics of fully-developed

turbulence—at least from the point of view of universality—is of course the nature of

the two-point correlation functions [76]. These are most conveniently done in terms

of the correlation functions of the velocity increments over a scale r which lies in the

inertial range. These correlation functions, historically [77] called as longitudinal

structure functions and defined precisely via:

Sp(r) = ⟨|(u(x + r) − u(x) · r̂)|p⟩ (1.30)

It is assumed to have a scaling form,

Sp(r) ∼ rζp (1.31)

within the inertial range of scales. The angular brackets ⟨·⟩ in the definition imply

either a time average over the nonequilibrium statistical steady state (when the

turbulence is driven) or an average over ensembles of initial conditions.

The notorious quadratic non-linearity of the Navier-Stokes equation dispels
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chances of calculating the exponents ζp from a microscopic theory beginning with

the equations of motion except for the case of p = 3. Indeed ζ3 = 1 is perhaps the

only exact result in turbulence which is a direct consequence of the Navier-Stokes

equation.

S3(r) =
〈(

δu3
∥(r)

)〉
= −4

5ϵr + 6ν d
dr

〈(
δu∥(r)

)2
〉

(1.32)

The fact that ζ3 = 1 suggests, trivially, that a possible formula for the

equal-time scaling exponents should be ζp = p/3. We now know very well that such

simple scaling relations do not hold in turbulence. Nevertheless, the measured values

of the second-order structure function ζ2 ≈ 2/3 or indeed its Fourier counterpart,

the energy spectrum E(k) = 4πk2
〈
|ũ(k)|2

〉
∼ k−5/3 (where the tilde denotes the

Fourier transform, k = |k|, k is the wave vector) shows that for lower order statistics

the dimensional prediction is not grossly incorrect.

Despite the lack of validity of ζp = p/3, this result is a direct outcome of

perhaps the single most important phenomenological work in turbulence in the 20th

century which still forms the backbone of our understanding of this subject.

1.3.1 The Kolmogorov Phenomenology

In 1941, A. N. Kolmogorov wrote three deeply profound papers [70, 78–80]

which forms the basis of the modern theory of fully developed turbulence. These

papers built around the following hypothesis (so-called as the K41 theory) that had

laid an universal characterization of fully-developed turbulence using theoretical and

phenomenalogical arguments [81, 82]:

1. The small-scale components are approximately in statistical equilibrium,

determined completely by the dissipation rate of the system ϵ = ν∥∇u∥2
2,

in the vanishing viscosity limit, ν → 0 (Re = ∞). The second order structure
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function would then scale as

〈
|δu(r)|2

〉
=
〈
|u(r + x) − u(r)|2

〉
∼ ϵ2/3r2/3 (1.33)

2. The small-scale flow is self-similar, with a unique scaling exponent ‘h’ in the

scaling of the structure function.

⟨δu(Γr)⟩ ≃ Γh ⟨δu(r)⟩ (1.34)

Using the universality (1.33) and the self-similarity (1.34) together,

naturally leads to h = 1/3, equivalently the Kolmogorov energy spectrum:

E(k) = CKϵ
2/3k−5/3 (1.35)

Data from various experiments and direct numerical simulations over

years for the kinetic energy spectrum of turbulent flows, shown in figure 1.6, agrees

well with K41 phenomenalogy, only later to be found with corrections due to the

intermittency [67].

1.3.2 Intermittency and the Multifractal Formalism

A key and central assumption that beholds the K41 theory is the

self-similarity of the velocity-field signals, as in equaation (1.34), at the inertial range

scales. Both experimental and numerical investigation of the structure function

of order p, suggested deviations from ζp = p/3 (as seen in Fig. 1.7, also see

Refs. [67, 74, 83]), the effect usually known as the “intermittency”, characterizing

the breakdown of self-similarity or global invariance assumed in K41 with one

unique scaling exponent h = 1/3. The heavy tails in the probability distribution

of the velocity gradients is an another indicator of presence of intermittency. With

no exact results on the intermittency, our understanding of intermittency is from

phenomenalogical and dynamic modeling of turbulence. Kolmogorov and Obhukov
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presented their log-normal model in 1962 [84], followed by She-Lévêque model [85],

random β-model [86], to include the intermittency corrections in the higher-order

structure functions, assuming a certain distribution for the energy dissipation.

Considerably a more general one was by Parisi and Frisch, known as the Multi-fractal

model of turbulence [87], where a local-scale invariance is assumed with a continuous

spectrum of exponents, each of which belonging to a given fractal set. In the inertial

range, δu(x, r) ∼ rh if x ∈ Sh, and Sh is a fractal set with dimension D(h) and

h ∈ (hmin, hmax). Here a probabilistic description of finding a exponent h at scale r

with a probability Pr(h) ∼ r3−D(h) is considered, predicting a structure function

Sp(r) = ⟨|δu(r)|p⟩ ∼
∫ hmax

hmin
dh rhpr3−D(h) ∼ rζp (1.36)

In the r ≪ L limit, a Legendre transformation between ζp and D(h) is

attained by the steepest descent estimation

ζp = minh{hp+ 3 −D(h)} (1.37)

Given that knowing D(h) or equivalently ζp from Navier-Stokes equation

is not possible, only experimental and numerical data can provide us with it.

The relevance and success of the multi-fractal model lies in its capability to test

and predict the non-trivial statistical features in fully-developed turbulent flows.

Figure 1.7 shows the ζp obtained from other models and from experiments.

1.3.3 Closure Models

The strong coupling between the wide range of scales arising from the

non-linear interactions presents the so-called closure problem in turbulence. For

example, if the velocity field u is decomposed into mean u and fluctuation u′ as

u(x, t) = u(x, t)+u′(x, t), called as Reynolds decomposition [93]. Then the Reynolds

averaged Navier-Stokes equation for the mean field u would contains a non-trivial

unknown term, the Reynolds stress u′
iu

′
j, in determining the evolution of the mean
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Figure 1.6: Compensated one-dimensional spectrum E11(k1)/
(
ϵν5)1/4, made

from data collected from Chapman [88] and Veeravalli [89]. Figure adapted
from Ref. [90]
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Figure 1.7: Structure function scaling exponent ζp (as in Eqs. (1.30)& (1.31))
taken from experimental data (symbols) from Refs. [74, 83] and prediction from
models (lines) presented in Refs. [67, 84–87, 91, 92]

field u.
∂ui

∂t
+ uj · ∂jui = −∂ip+ ν∂2

jjui − ∂ju′
iu

′
j (1.38)
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This closure problem stated in other words, translates to a infinite unclosed

set of statistical moment equations obtained from the Navier-Stokes equation. Every

nth order moment would have an unknown moment of order n + 1 in its evolution

equation, written symbolically as:

[
d
dt + 2νk2

]
⟨ûû⟩ = c1 ⟨ûûû⟩ ,[

d
dt + ν

(
k2 + q2 + p2

)]
⟨ûûû⟩ = c2 ⟨ûûûû⟩ ,

· · · = · · · (1.39)

where ⟨·⟩ is a statistical average. Consequently, in the absence of seperate

information to determine the additional statistics, statistical reparametrization or

stochastic modelling is often done to substitute for the unknown, to tackle the

closure problem. We discuss briefly a famous two-point closure model known as the

Eddy-Damped Quasi-Normal Markovian (EDQNM ) model, that has been widely

studied and used (see Refs. [10, 30, 94] for more details).

The EDQNM model has an underlying assumption that turbulence is

close to Gaussianity at higher order moments. Despite the strong departures from

Gaussianity, in terms of PDF’s of velocity gradient, it is not totally unphysical to

model turbulent flow using Brownian-type particles. In the hierarchy of evolution

equation (1.39), the first hypothesis, Quasi-Normal (QN), where the fourth-order

cumulant for the velocity field is assumed to be zero (⟨ûûûû⟩c = 0). The evolution

equation of the triple correlations then becomes:

[
d
dt + ν

(
k2 + q2 + p2

)]
⟨ûûû⟩ =

∑
⟨ûû⟩ ⟨ûû⟩ (1.40)

Further revisions were added to the QN model by Orszag, accounting

for the overcompensation of the gaussian assumption of the fourth-moment. The

QN model is added with an additional linear damping term µk (along with the

viscous damping:νk2) for the third-moment [95]. Frisch proposed the eddy-damping

timescale of the form:

µk = a

(∫ k

0
dq q2E(q, t)

)1/2

(1.41)
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Thus yielding an Eddy-Damped Quasi-Normal model where the closed set

of equations for the third and second moment now are

[
d
dt + ν(k2 + q2 + p2) + µkqp

]
⟨ûûû⟩ =

∑
⟨ûû⟩ ⟨ûû⟩ , µkqp = µk + µq + µp[

d
dt + 2νk2

]
⟨ûû⟩ =

∫ ∫
dq dp θkqp(t)

∑
⟨ûû⟩ ⟨ûû⟩

θkqp(t) =
∫ t

0
dτ exp

(
−
[
µkqp + ν

(
k2 + q2 + p2

)]
(t− τ)

)
(1.42)

The second hypothesis (Markovianization) is that the relaxation time of

the triple correlations is small compared with the relaxation time of the double

correlations. Hence an approximation:

θkqp = 1 − e(µkqp+ν(k2+q2+p2))t

(µkqp + ν(k2 + q2 + p2)) (1.43)

The final EDQNM equation for the energy spectrum E(k) for the

three-dimensional isotropic turbulence without helicity, is

[
d
dt + 2νk2

]
E(k, t) =

∫
∆k

dp dq θkqp
k

qp
bkqp

[
k2E(p, t) − p2E(k, t)

]
E(q, t) (1.44)

Here the integral
∫

∆k

dp dq involves points in the q − p plane that allows

the possibility of forming a triangle with sides k, q, p. The bkpq is a geometric

coefficient, that depends on the geometry of the triangle formed. In figure 1.8,

results from numerical simulation of equation (1.44) is presented, consistent with

K41 phenomenalogy.

Amongst several closure models (see Chap.7 in Ref [30] for a brief review),

for an isotropic turbulent flows, the EDQNM model is an excellent tool to predict the

energy transfers between various modes and the high Reynolds number behaviours,

at relatively low numerical cost compared with direct numerical simulations of the

Navier-Stokes equation. Nevertheless, the EDQNM model has its own limitations,

as it cannot model intermittent effects that are seen in real turbulent flows. With a

K41 energy spectrum E(k) ∼ k−5/3 (see Fig. 1.8a ), it shows a singular behaviour,

25



1. Introduction

10 1 100 101 102 103

 k
10 10

10 8

10 6

10 4

10 2

100

 E(k)

k−5/3

ν

5.0e-05

8.0e-05

1.0e-04

2.0e-04

(a) Energy spectrum of an EDQNM model
following the famous K41 power law: E(k) ∼
k−5/3.
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model, shown to be constant in the inertial
range.

Figure 1.8: Numerical results at a stationary steady state (obtained by forcing),
from simulation of Eq. (1.44), showing the features of a K41 theory. Results are
shown for different viscosities.

as the enstrophy blows up Z =
∫ ∞

0
dk k2E(k) → ∞ in the vanishing viscosity limit

(ν → 0).

The EDQNM closure phenomenalogy is adopted for other hydrodynamical

equations as well. Over the years, it has been explored in two-dimensional

turbulence [96, 97] to examine the inverse cascade, in passive scalar advection

in turbulent flows, helical turbulent flows [98] to address the double cascade,

thermalization of truncated inviscid equations [37], bottleneck effects in

turbulence [50] and magnetohydrodynamics (MHD).

It is computationally quite expensive—even seemingly impossible—to run

a DNS for the MHD equations to simulate astrophysical conditions. Hence, the

EDQNM model was extended naturally to the MHD equations [99] allowing one

to investigate both theoretically and numerically the various effects that are in

play [100–102] including the multifaceted dynamo problem [103, 104].
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1.4 An Overview of the Thesis

The question of thermalization of classical systems with many degrees of

freedom is a fundamentally important one in statistical physics. There are several

examples of such systems, with explicitly broken integrability, which thermalize.

While we often know that such systems ought to thermalize, the precise mechanisms

and time-scales at which they do still remain unresolved in many cases. As we have

discussed in an earlier Section, a slightly different class of such systems which are

even less understood are the finite-dimensional (Galerkin-truncated) equations of

ideal hydrodynamics. The long time solutions of these equations are expected to

thermalize by virtue of a phase-space and energy conservation; however, the precise

mechanisms, in physical space, which trigger such states has only been discovered

recently for the relatively simpler one-dimensional Burgers equation [39]. Thus

while the existence and importance of thermalized solutions—characterized by a

Gibbs distribution of the velocity field and kinetic energy equipartition amongst

its (finite) Fourier modes—of the truncated Euler equations have been known, how

such solutions are achieved remained an open question.

In Chapter 2, we show through detailed numerical simulations, the early

stage triggers for the inevitable thermalization in physical space. Furthermore, some

aspects of this process are shown to be reduced to an effective one-dimensional

problem, making comparisons with the more studied Burgers equation feasible.

Finally, we discuss how our understanding of the mechanism of thermalization can

be exploited to numerically obtain dissipative solutions of the Euler equations which,

through more systematic study, could pave the way for finding evidence for or against

finite-time blow-up in computer simulations.

As we have discussed before, one of a way to conjecture for or against a

finite-time singularity is to numerically solve the Euler equation and measure the

width of the analyticity strip δ, that is, the distance to the real domain of the nearest

complex singularity. By assuming analyticity, at least up to a hypothetical time of
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blow-up t∗, this procedure reduces to measuring the Fourier modes of the velocity

field ûk ∼ exp{[−δ(t)k]} (ignoring vectors for convenience), for large wavenumbers

k, and thence, δ as a function of time t. Therefore, a numerically compelling proof

for a finite-time blow-up is to show δ(t) → 0 in a finite time.

Simple as it sounds, such an approach unfortunately runs into a severe

problem in its implementation. To solve such equations on the computer, one

has to make them finite-dimensional through a Galerkin-truncation which of course

thermalize, beginning at small scales. Hence, asymptotically at large wavenumbers

the Fourier modes of the velocity field grow as a power law ûk ∼ kd−1 (energy

equipartition), where d is the spatial dimension, and not fall-off exponentially from

which the width of the analyticity strip can be extracted. Hence, the measurement

of δ(t) becomes unreliable soon enough to prevent us from making a reasonable

conjecture of if and when δ(t) might vanish. Therefore, in order to have a more

reliable measurement of δ(t) for times long enough to conjecture on whether there

is a finite-time blow-up of, example, the three-dimensional, incompressible, Euler

equation, it is vital to have a (numerical) prescription—without resorting to viscous

damping—which prevents the solutions from thermalizing. In Chapter 3, based

on the more tractable Burgers equation, we propose a novel method to prevent

thermalization in such systems without resorting to viscous damping. It thus allows

us to recover dissipative (weak) solutions as well as provide a fairly simple method

to conjecture (numerically) on the possibilities of finite-time blow-up in the Euler

equation.

While Chapters 2 and 3 deal with the onset and control of thermalization,

in Chapter 4, we make explicit use of thermalized fluids to address a very important

and contemporary question in statistical physics which rests on the notions of

thermalization and equilibration. These are facilitated by many-body chaos intrinsic

to such systems. However there are equally ubiquitous examples of many-body

systems—turbulent flows being one which first springs to mind—where the role of

chaos is anything but equilibrating. To use the analogy of the butterfly effect,

while the amplification of the wingbeat can lead to unpredictability in many
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driven-dissipative systems, the same amplification also also lead to a loss of memory

of initial conditions, resulting in ergodic behaviour and eventual thermalization or

equilibration, in Hamiltonian many-body systems.

In Chapter 4, we reconcile these two seemingly disparate roles and

radically different fallouts of chaos and show the universal nature of what

bridges ideas of many-body chaos with the foundational principles of statistical

physics. Our work is based on cross-correlators or out-of-time-ordered-correlators

(OTOCs) which provide a general framework to understand chaos in classical

and quantum many-body systems by linking equilibrium and dynamical aspects

through rigorous estimates of the temperature-dependence of the degree of chaos

(Lyapunov exponent). We use the chaotic and thermalized solutions of the 3D

Euler equation (Chapter 2) and the 1D Burgers equation (Chapter 3) to show,

through state-of-the-art simulations and analytical calculations, that the Lyapunov

exponent grows as the square root of temperature and linearly with the degrees

of freedom. This underlines the universal aspects of many-body chaos and its

fundamental connection to equilibrium properties (temperature). This emergent

universality, ranging from frustrated spin to glassy systems, strongly coupled

quantum field theories to black holes, is central to understanding the dynamics

of strongly coupled many-body systems without an apparent (weakly interacting)

quasi-particle description and hence a kinetic theory.

In Chapter 5, we turn to the problem of fully developed turbulence by

using the 3D Navier-Stokes equation and revisit the question of multifractality.

As we discussed before, the Frisch-Parisi multifractal formalism remains the most

compelling rationalisation for anomalous scaling in fully developed turbulence. We

now show that this formalism can be adapted locally to investigate the spatial

distribution of how multifractal the energy dissipation field is. In particular, we

show that most regions of the flow are close to being mono-fractal interspersed with

islands of multifractality corresponding to the most singular structures in the flow.

By defining a suitable measure of the degree of multifractality spatially, we show

that this grows logarithmically with the local strength of the energy dissipation.

29



1. Introduction

These results suggest ways to understand how singularities could arise in disparate

regions of a flow and provide new directions in understanding anomalous dissipation

and intermittency. We then employ the same technique to a non-intermittent, model

turbulent flow—so called “decimated” turbulence—to check the robustness of our

conclusions.

Finally, in Chapter 6 we construct and solve an Eddy-Damped

Quasi-Normal Markovian (EDQNM ) model for magnetohydrodynamic (MHD)

turbulence in arbitrary dimensions. In particular, our detailed numerical simulations

(for a given Prandtl number and magnetic Reynolds number) show the existence of

an upper dU and lower dL dimensions such that only for dL ≤ dU dynamo action

is possible. Curiously, the no-dynamo regime is shown to exist up to dimensions

dL ≳ 2—coincident with the critical dimension up to which an inverse cascade in

fluid turbulence persists [63]. This is of course slightly larger than d = 2.0 for

which the anti-dynamo theorems exist. We rationalise our phase diagram of the

dynamo–no-dynamo transition in terms of the competing effects of the effective

forcing, through non-linearities, and magnetic diffusion.
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Chapter 2

Genesis of Thermalization in the

3D Galerkin-truncated Euler

equation

We saw earlier in Chapter 1, that inviscid equations of hydrodynamics

which are constrained to have a finite number of Fourier modes leads to thermalized

flows which are distinctly different from our more accustomed viscous fluids. This

is because the projection of the inviscid equations on a finite set of Fourier modes

leads to a phase-space conserving dynamical system (Hamiltonian flow [105]), and

at long times reaches a stationary distribution, an inevitable thermalized, absolute

equilibrium Gibbs state [32, 96, 98, 106]. Consequently, this is accompanied by an

equipartition of kinetic energy across Fourier modes k [36, 38, 107], quite unlike

the celebrated Kolmogorov scaling ∼ k−5/3 associated with turbulence in three

dimensions (3D) or the k−2 scaling of the entropy solution in the one-dimensional

(1D) Burgers problem [108]. Therefore, such thermalized fluids are amenable to

well-established theories of equilibrium statistical physics while being intrinsically

chaotic.

From the more specific vantage point of turbulence and fluid dynamics,
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2. Genesis of Thermalization in the 3D Galerkin-truncated Euler equation

the relevance of such systems is more subtle and less immediately obvious. This

is particularly so for 3D turbulence where several fundamental questions remain

unanswered. Hence, in the absence of the many theoretical tools available for

studying the 1D Burgers equation [21] , it is tempting to exploit the advantages of a

3D Galerkin-truncated incompressible Euler equation to make sense of real turbulent

flows. Of course, superficially, such equilibrium solutions are in stark contrast

to those obtained in (driven-dissipative) turbulence or in numerical solutions of

the viscous Navier-Stokes equation. And yet the truncated equation retains the

same nonlinear triadic structure as the parent inviscid partial differential equations,

or indeed, in three dimensions, the viscous Navier-Stokes equation, which models

turbulent flow. Thus, in many ways, the 3D Galerkin-truncated incompressible Euler

equation is a compelling link between ideas of statistical physics for a Hamiltonian

system with conserved dynamics [29, 95] and those which describe the behavior of

out-of-equilibrium, driven-dissipative, viscous turbulent flows [67, 109, 110].

There is another important reason why the Galerkin-truncated equation

merits attention. One of the outstanding questions at the interface of physics

and mathematics is the existence of weak or dissipative solutions [17, 26, 111]

and the possibility of a finite-time blow-up for the 3D Euler equation [112–114].

While a review of this subject goes well beyond the scope of the present paper,

suffice to say that probing the blow-up problem numerically is a monumental

challenge [107, 115–139]. Indeed, conjectures remain speculative at best despite

well-formulated criteria [16, 23, 24, 140–144] which, in principle, should be easily

detectable in well-resolved direct numerical simulations (DNSs) [145]. The obstacle

to this, however, is that simulations are necessarily finite-dimensional: The

commonly used spectral simulations [146, 147] solve the Galerkin-truncated and

not the infinite-dimensional partial differential equations of inviscid flows. Hence,

in finite times, which may well precede the time of blow-up (as is the case for

the inviscid one-dimensional Burgers equation [39, 41]), the solutions thermalize

(starting with the smallest scales), making methods for singularity detection, such as

the analyticity strip approach [27], arduous [137, 148]. Hence, for finite resolutions,

in the absence of convergence of such truncated solutions (which thermalize) to the
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actual (weak) solutions of the Euler equations themselves, conjectures on blow-ups

from DNSs [23, 140, 144, 149] will remain unsettled until mechanisms to circumvent

Gibbs states in mathematically self-consistent ways are discovered. The discovery

of such methods is, of course, contingent on knowing how truncated equations

thermalize in the first place. It is useful to recall that such methods have been

discovered for the more academic 1D Burgers problem [43, 150–153] owing to our

thorough understanding of how the one-dimensional equation thermalizes.

Thus, the long-time chaotic Gibbs solutions [61] of the Galerkin-truncated

Euler equations play contrasting roles in studies of fundamental problems in

turbulence. On the one hand, they allow us to connect ideas from statistical

physics to turbulence, and on the other, they remain a stumbling block in numerical

methods for studying questions of blow-up and dissipative solutions. This makes

understanding how such 3D flows thermalize particularly essential. As a result,

in recent years, since the pioneering work of Cichowlas et al. [107], a reasonably

complete picture of how energy equipartition happens in Fourier space has emerged

[36–38, 154–156]. However, unlike the case of the 1D Burgers equation [39–41, 150],

not much is known of the origins of thermalization in physical space for the 3D

problem.

2.1 Thermalization for a Generic flow

With this in mind, we perform detailed DNSs of the unit-density,

three-dimensional, Galerkin-truncated, incompressible (∇ · u = 0) Euler equation

∂u
∂t

= −PkG[u · ∇u + ∇p]. (2.1)

The low-pass Galerkin projector PkG sets to zero all modes of the velocity

field with wavenumbers larger than the prescribed Galerkin-truncation wavenumber

kG, that is PkGu(x) = ∑
|k|≤kG

eı̇k·xûk.
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Figure 2.1: (a) Log-log plots of the kinetic energy spectrum at different times
from a DNS (N = 256) of the Galerkin-truncated Euler equation with generic,
large-scale initial conditions. (b) Pseudo-color plots of the strain field component
Syz (N = 512) in the XY plane at time t = 1.8, where thermalization is triggered
in the flow (inset at an earlier time t = 1.2). While oscillatory structures
are conspicuous by their absence for the former (inset), coherent streaks of
oscillations with wavelengths λG are clearly visible for the latter. See Ref.
[157] for an animation of the evolution of Syz from a non-thermalized to a fully
thermalized state.

Our DNSs use a pseudo-spectral method with a fourth-order Runge-Kutta

scheme for time integration on 2π periodic domains with N3 collocation points

(N = 256 and 512) and truncation wavenumber kG = N/3. We have checked

that our results and conclusions are consistent across simulations and choice of

collocation points. We choose initial conditions (also projected on the compact

Fourier domain) which has a energy spectrum of the form E(k) ∼ k2 exp
(
−k4/k4

I

)
to ensure that the initial energy is concentrated in the largest scales, that is

kI ∼ O(1). Galerkin-truncation ensures that the kinetic energy and phase space

remain conserved for all times, which, coupled with the finite-dimensionality imposed

by the cut-off wavenumber kG, eventually leads to a thermalized fluid with kinetic

energy equipartitioned across all Fourier modes.

Given the choice of initial conditions that confines kinetic energy at

large scales, the excitement of the largest wavenumbers requires some time. In

figure 2.1(a), we show the evolution of the kinetic energy spectrum, E(k) ≡
1
2
∑k+1/2

q=k−1/2 |û(q)|2, through representative log-log plots at various instances of time.
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Similar evolutions of the spectrum have been reported in the first study of this kind

by Cichowlas et al. [107].

While a long-time thermalized fluid, through Liouville’s theorem, with

Gibbs statistics [61] is obvious, the transition from a smooth initial condition

that behaves like a “viscous” fluid for finite times to one that is thermalized and

essentially devoid of structure is far from obvious. A clue may be found in plots

of the isosurfaces of the vorticity fields, as they evolve in time. In figure 2.2(a),

we show a plot of the vorticity (ω = ∇ × u) isosurface for σ ≤ |ω|2 − ∥ω∥2
2 ≤ 2σ,

where σ(t) is the standard deviation of the enstrophy field, at early times (t = 0.5)

when the largest available wavenumbers are still not fully excited. When seen

in the energy spectrum (figure 2.1(a)) at the same time, there is no sign of

thermalization. These enstrophy isosurfaces are smooth and indistinguishable—as

indeed the kinetic energy spectrum at such times—from what one would expect

from an extremely high Reynolds number Navier-Stokes simulations with similar

initial conditions and at similar times. At slightly later times, (t ⪆ 0.85) however,

isosurfaces show minute but detectable oscillatory structures (see Fig. 2.2(b))

with wavelengths λG = 2π/kG, reminiscent of what is seen for the corresponding

problem in the one-dimensional Burgers equation [39, 41, 42]. We recall that a

similar phenomenon was seen recently in simulations of the 3D, Galerkin-truncated

axisymmetric incompressible Euler equation [137]. These initially localized (in both

physical and Fourier space) oscillations rapidly spread through the domain, with

increasing amplitudes, whilst becoming non-monochromatic. A snapshot of these

fully thermalized states (figure 2.2(c)) looks noisy [153] and bears no resemblance to

the well-formed isosurfaces that characterize fully-developed turbulence or indeed

solutions of the truncated equation before the onset of thermalization (figure 2.2(a)).

Consequently, the energy spectrum at such times and beyond converges to an

equipartition [107] with E(k) ∼ k2 (figure 2.1(a)).

While the signatures of thermalization are fairly obvious in plots such

as those shown in figure 2.2, the incipient thermalized phase is best captured in

visualisations of the velocity gradient. In figure 2.1(b), we show two-dimensional
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(a) (b) (c)

Figure 2.2: Isosurfaces of the vorticity field from DNS (N = 256) for σ ⩽ |ω|2 −
∥ω∥2

2 ⩽ 2σ at (a) t = 0.5, (b) t = 0.85, and (c) t = 2.5. See Ref. [158] for an
animation of the evolution of these isosurfaces from a non-thermalized to a fully
thermalized state.

(XY plane) cuts of the strain field (Sij ≡ 0.5(∂jui + ∂iuj) that, at times when

the effects of truncation are felt, show clear, organized oscillatory structures (panel

(b)), which were absent at earlier times (inset in panel (a)). We recall that in the

one-dimensional (1D) inviscid Galerkin-truncated Burgers problem, the oscillatory

structures that trigger thermalization are initially localized at point(s) co-moving

with the shock(s) through a resonance effect [39]. The flow we study now is

fundamentally different: it is three-dimensional and incompressible. So how does

thermalization onsets (Figs. 2.2(b) and 2.1(b)) in the 3D Euler equations and is

there an analog of resonance points or do the oscillations appear out of the blue?

The answer to this is delicate and figure 2.1(b) is suggestive. Starting from

initial conditions (such as the ones we have) that concentrate energy at large scales,

the nonlinearity of the systems generates smaller and smaller scales in time and

generates structures ranging from vortex sheets to tubes. As smaller and smaller

scales get excited, many of these structures can sharpen (as thin sheets or tubes)

[129, 132, 159] with a characteristic length scale ∼ k−1
G . Such sharp structures,

analogous to pre-shocks in the 1D Burgers equation, act as a source of truncation

waves of wavelength λG—indeed the Fourier transform of the projection operator

has a wave with wavenumber kG—which travel along the directions in which such

structures are compressed. The oscillations, of course, ensure the conservation of

total kinetic energy that is a constraint in this Galerkin-truncated system. In the
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representative snapshot shown in figure 2.1(b), the oscillations of varying amplitudes

appear not all over but in specific regions of the flow with wave vectors that, for

this realization of the flow, are quite often, but not always, normal to the intense

structures seen in the domain. Of course, whether such oscillations amplify or

rapidly diminish in space and time is determined by the nature of the strain field

locally, as we illustrate below. For oscillations that do survive, the nonlinearity

allows other modes to get rapidly excited and the nonlocality of the incompressible

equation allows a rapid spread of these complex oscillations across the whole domain.

This eventually leads to a chaotic, thermalized fluid bereft of structure and an

equipartition of kinetic energy across Fourier modes, as illustrated in figure 2.2(c).

This phenomenological picture, though compelling, is difficult to prove in

numerical simulations with the generic initial conditions that we use: The complexity

of the spatial structures generated does not allow an easy way to test the different

ingredients that go into the argument constructed above. In order to substantiate

our theory on the genesis of oscillations in the first place, we resort to DNSs which

are controlled in a way to isolate the two different effects at play: The sharpening

of velocity gradients ∇u ∼ k−1
G and the consequent onset of thermalization along

specific directions relative to such intense structures.

2.2 The Onset of Thermalization: What Model

Flows Tell Us?

Among the many candidate flows—such as isolated vortex tubes and

sheets—we choose to work with an initial condition consisting of two separated,

opposite-signed vortex sheets (parallel to the YZ plane), located symmetrically at

x = x1 and x = −x1, in a periodic box [−π, π]3. Furthermore, these sheets have a

localized perturbing flow at their centers to disturb the sheet from equilibrium. Such
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a flow configuration is generated by the following initial condition: For 0 ⩽ x ⩽ π:

ux = P⊥

[
u0kβ(x− x1) exp

(
−1

2k2
β

(
(x− x1)2 + y2 + z2

))]
(2.2a)

uy =
√

2 tanh [γkG(x− x1)] (2.2b)

uz = P⊥

[
u0kβz exp

(
−1

2k2
β

(
(x− x1)2 + y2 + z2

))]
. (2.2c)

To ensure periodicity in uy (ux, uz are localized within k−1
β ), for −π ⩽

x ⩽ 0 the velocity field is chosen with the symmetry:

ui(x, y, z) = ui(−x, y,−z) (2.3)

To ensure incompressibility, the projection operator P⊥[f ] =[
1 −

(
∇−2

⊥

)
∇⊥(∇⊥ · f)

]
in the XZ plane (∇⊥ = {∂x, 0, ∂z}), is applied to the x

and z velocities. The disturbance (ux, uz) here is localized at x1 = (x1, 0, 0) and

−x1; consequently the vortex sheet uy is stretched for the former and compressed for

the latter. The parameter γ controls the intensity of the vortex sheet and is chosen

to be 1/4 to suppress any inherent Gibbs oscillations that arise as γ → 1. The vortex

sheet locations are chosen with x1 = π/2. We fine-tuned the extent of localization

of the perturbation through k−1
β

, which, for the results presented here, was set to

kβ = 4. Finally, the flow amplitude u0 = 5 sets the energy of the perturbation

field (∼ 10−3 relative to that of the vortex sheet) as well as the time-scale. This

perturbing flow field, with the large-scale background flow (which creates the sheet)

suppressed (for clarity), is illustrated in figure 2.3(a) with the two-dimensional

velocity vectors shown as green arrows superposed on the pseudo-color plot of ωz.

By using equations 2.2 (Fig. 2.3(a)) as initial condition, we solve the

Galerkin-truncated equation with kG = N/3 (N = 256). Given the specific

configuration that we chose, the center of the left sheet (at −x1) is compressed,

whereas the right sheet (at x1) is stretched (Fig. 2.3(b)): As the steepening velocity

gradient at −x1 becomes comparable to the inverse of the truncation wavenumber,

we expect it to trigger the truncation waves in the dynamics, and the stretching

at x1 should produce no such effect. Then the question is: how and where do the
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(b)

(a)(a)

(c)

(b)

(d)

(e)

Figure 2.3: Pseudo-color plots of two-dimensional XZ plane cuts of ωz for
the model flow (Eq. (2.2)) at (a) t = 0 and (c) t = 0.15 with their
one-dimensional (along z = 0) cuts (shown as black curves) in panels (b) and (e),
respectively. Shown in green are the (a) instantaneous velocity vectors (ux, uz),
(b) instantaneous velocity component ux, and (e) the velocity gradient ∂xux

fields. Panel (d) shows the line plot of ωz at t = 0.15 when the perturbations
are applied separately: Compression (red) at -x1 and stretching (blue) at x1.
The initial (t = 0) profiles (panels (a) and (b)) are devoid of the λG−wavelength
oscillations, which become conspicuous at later (t = 0.15) times, as seen either
(c) in the pseudocolor plots of the ωz field or (e) in its one-dimensional cut.
Naturally, these oscillations are seen just as well in (d) for the special case
of compressional perturbation applied only at -x1. (Clearly, the stretching
perturbation independently does not yield any oscillations as expected.). The
absence of oscillations in panel (e) near x1 is subtle and discussed in the text.
Ref. [160] has links to an animation of the evolution of this flow to show the
onset of thermalization.

truncation waves manifest themselves in the flow?

In the analogous 1D Burgers problem, these truncation waves emerge from

the region of the pre-shock and are constrained to travel along the one-dimensional

velocity field, and it is straightforward to identify the location of the oscillations [39].

But for the three-dimensional flows such as ours, there are infinitely many possible

directions along which these oscillations, which trigger thermalization, might emerge.

Indeed, if such directions are chosen randomly by the truncated dynamics, then the

problem of thermalization and, crucially, finding ways to circumvent it becomes

exceptionally hard. Fortunately, as we show below, the solution to this is perhaps
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simpler: assuming the evidence from such model flows holds for generic initial

conditions, the essential features can be mapped to an effective one-dimensional

problem.

Given that these are three-dimensional flows, it is reasonable to conjecture

that since the oscillations source from these sharp structures, for short times they

must be constrained to be in the same direction along which the structure is

compressed. Thus, the problem of knowing where in the flow the first signs of

thermalization appear may well be reduced to an effective one-dimensional problem

along very specific flow lines that generate sharp structures. This conjecture is

easy to check for simpler flow geometries (such as the one in Fig 2.3(a) and its

one-dimensional cut along z = 0 shown in panel (b)), where the argument leads

to the inevitable conclusion that within a short time, oscillations of ωz, with wave

number kG appear along the z = 0 line (compressional direction) stemming only

from the perturbation at −x1.

In figure 2.3(c), we show the solution at time t = 0.15. Clearly and

consistent with our prediction ωz is oscillatory with wavelength λG along the z = 0

direction. Further, the perturbations at −x1 and x1 are applied independently, and

the resulting line-plots of ωz along z = 0 line are shown in figure 2.3(d) to stress the

necessity of a compressive eigendirection across the structure to give birth to the

truncation waves.

We now return to the solution of figure 2.3(c) where both perturbations

exist. By taking a one-dimensional cut along z = 0 in figure 2.3(c), we obtain ωz,

and the velocity gradient Sxx = ∂xux, both of which are shown in figure 2.3(e). A

careful reading of this figure brings to light the basic mechanism of the onset of

thermalization. The kG−wavenumber oscillations, born from the compression, at

−x1 (because of the reasons mentioned above), persist along the z = 0 direction

and are sustained away from −x1 as long as the velocity gradient at those points is

strictly non-negative. In the regions of the flow where the gradient is negative, the

oscillations are suppressed. This is illustrated, for example, in figure 2.3(e), where
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there is a region between 0 and x1 with a negative gradient where the oscillations are

nearly absent, in contrast with what is seen in figure 2.3(d) for the compressional

case since no such negative gradients exist there. This is because the squeezing

effect of the negative gradient causes the wavenumbers to go beyond the truncation

number kG, resulting in their elimination through the Galerkin projector. It is

important to note here that in the immediate vicinity of the source (near −x1 in

Fig. 2.3(e)), the negative gradient—an integral part of the compressive structure

itself—cannot suppress the oscillations. As is the case for the shock in the 1D

Burgers problem, the kG−wavenumber oscillations are born continuously at −x1

and are thus always present. It is worth reminding, en passe, that the sharp

structure at −x1 can also give rise to a Gibbs phenomenon—namely, the effect

of summing a finite Fourier series in a region of (quasi-) discontinuity—and hence

further oscillations. Lastly, even when the gradients become positive (in the narrow

layer around x1 in Fig. 2.3(e)), the relative suppression of oscillations is due to

the negative gradient on either side of this positive gradient layer, which eliminates

oscillations coming from the source.

In summary, figure 2.3 brings out the two key mechanisms responsible for

the onset of thermalization in the 3D Galerkin-truncated Euler equations. Firstly,

truncation waves emerge at sharply localized structures that have at least one

direction of compression which squeezes them further. These play the same role

as shocks do in the 1D Burgers problem [39]. Secondly, these oscillations, away

from their place of birth, are sustained only when the flow gradient is non-negative.

Crucially, the lack of a resonance effect ensures that (a) the oscillations are never

spatially localized — in contrast to the 1D Burgers problem — at special points

but proliferate everywhere, and (b) a relative suppression of oscillations in a

positive-gradient region that lies ensconced within a negative-gradient insulating

layer. A final, subtle point, also emerges from this figure. While imposing a negative

strain along their wavevector suppresses their growth (because of the truncation

constraint, see Fig. 2.3(e)), the strain from the other eigen directions can affect

them subdominantly. This can be seen in the bulge in the wavepacket between

x = −x1 and x = 0 (Figs. 2.3(d) and (e)) caused by squeezing action from the uz
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(a)

(c)

(d) (e)

(b)

Figure 2.4: Pseudo-color plots of two-dimensional XZ plane cuts of ωz for the
rotated model flow at (a) t = 0 (superimposed with the velocity vectors (ux, uz)),
(b) t = 0.12, and (c) t = 0.25. Along the compressional directions (dashed
red and blue lines in panels (a) and (b)), clear oscillations of ωz are seen at
times t > 0. This is shown in panel (b) as well as illustrated further by their
one-dimensional cuts, shown in panels (d) and (e). In panel (c), which is at
at later time, the surfacing of multiple truncation wave sources and lead to a
proliferated spread of oscillations in the domain. See Ref. [161] for an animation
of the evolution of this flow to show the onset of thermalization.

component.

In order to test the robustness of the claim and conclusions drawn above

from figure 2.3, we rotate the disturbance field in arbitrary directions to see if

the early-stage oscillations in ωz pick out these directions every time. We choose

an instance where the disturbance field ux, uz are rotated by θ = π/3 from the

normal of the sheet in the XZ plane for the right half of the domain 0 ⩽ x ⩽ π

and symmetrically (following Eq. (2.3)) θ = π/6 for the left half of the domain

−π ⩽ x ⩽ 0. For this new configuration, the perturbations lead to a squeezing of

the vortex sheet along the new compressional directions, which now are at an angle of

π/6 at −x1 and π/3 at x1 away from the horizontal (indicated in figure 2.4(a) by blue

and red dashed lines, respectively). We clearly see in figure 2.4(b), consistent with

our predictions, that ωz is oscillatory in the two directions of compression for the two

sheets. Thus, truncation waves are born along the compressional eigen-directions,

as conjectured before. Though the compressional eigenvalues at both sheets are
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the same in magnitude by construction, evidently the amplitudes are different,

as seen clearly from their one-dimensional cuts along the dashed lines shown in

figures 2.4(d) and (e). The reason is simply that the one-dimensional process sees a

thicker (smoother) structure at x1 than at −x1, or in other words, the component

of compressive strain across the normal direction of the sheet differs between the

two cases. While our effective one-dimensional simplified view of the thermalization

onset is true only for arbitrarily short times and from a single source, to illustrate

how multiple sources interact, we present the solution at a somewhat late time

(t = 0.25) in figure 2.4(c).

In the model flow discussed above, the parallel vortex sheets were subject

to imposed perturbations. However, to make the system a bit more realistic, we now

immerse the two parallel vortex sheets in a background Taylor-Green velocity field

[36], given by uTG
x = cosx sin y cos z, uTG

y = − sin x cos y cos z and evolve this system

in time by using the Galerkin-truncated Euler equation. Thus, the initial condition

(Fig. 2.5(a)) for a periodic domain of [−2π, 2π] × [−π, π]2, is of the form:

ux = εuTG
x (2.4a)

uy = εuTG
y + AuSH

y , uSH
y = 1 + tanh [γkG(sgn(x)x− x1)], x1 = π (2.4b)

uz = 0 (2.4c)

and the parameters are chosen to be γ = 0.4, x1 = 3π/2. The ratio of energy

between Taylor-Green flow and vortex sheet is taken to be 0.1. With total energy

set to unity, this fixes ε and A in equation (2.4).

Unlike the imposed localized perturbations before (see Fig. 2.3) that

compresses the sheet directly, in this case, the evolution of a large-scale background

Taylor-Green flow causes the sheets to bend initially, leading to thinning and

compression. This can be seen from the initial condition (Eq. (2.4)), where

Sxx = 0 along both sheets (x = ±x1) and for t ⩾ 0 the component ux starts

to bend the sheet, followed by the shear from the component uSH
y . Hence, this

compression leads to the development of sharper gradients and the eventual trigger
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(a)

(c)

(b)

(d)

Figure 2.5: Pseudo-color plots of the two-dimensional XY cut of ωz for a pair of
vortex sheets advected by a Taylor-Green flow (Eq. (2.4)) at (a) t = 0 (along with
the velocity vectors (ux, uz)), (b) t = 0.8, and (d) t = 1.5. show a proliferation of
oscillations in time. Shown in panel (c) is the strain component Sxx (at t = 0.8).
A correlation can be seen between positive strain Sxx > 0 (blue) and the sustained
oscillations in ωz by comparing panels (b) and (c). The link in Ref. [162] shows
the full evolution of this flow up to the onset of thermalization.

of λG−wavelength oscillations in the vorticity field ωz. In figure 2.5(b), we show

a representative snapshot of the ωz field at t = 0.8, where the bent sheets get

compressed and stretched in different regions. These compressed regions become

sources of truncation waves and produce streaks of oscillations in the ωz field.

The use of the background Taylor-Green flow validates our earlier

predictions and conclusions in a more general flow configuration. Figure 2.5(c)

shows the strain field Sxx at t = 0.8, and we observe that there is a clear correlation

between regions with Sxx ⩾ 0 (in blue) and regions with oscillations of ωz (see

Fig. 2.5(b)). A caveat: Although the oscillations in figure 2.5(b) seem to be not

oriented horizontally, our choice of the strain field Sxx for comparison is motivated

by the fact that initially almost all of the oscillations were along the x-axis.

Furthermore, the fact that the strain and vorticity fields are coupled through the

evolution equations leads to faint oscillations in Sxx as well. Finally, as seen in

figure 2.5(d), this correlation persists even for a later time (t = 1.5), when there is

further amplification of thermalization hotspots.
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(a)

(c)

(b)

(d)

Figure 2.6: Pseudo-color plots of ωz at t = 0 across (a) XY (b) XZ planes; the
green arrows indicate the velocity components ur and uz, respectively. Panel
(c) shows ωz at a later time t = 0.12 with radially spreading oscillations. In
panel (d), the asymmetry in the strength of the oscillations at different angles
is illustrated in the line-plots of ωz across θ = 0 (red), θ = π/6 (orange), and
θ = π/2 (blue); these directions were already indicated as dashed lines with the
same color in panel (a). See Ref. [163] for an animation of the evolution of this
flow to show the onset of thermalization.

As a final example featuring a different geometrical vortical structure, we

simulate a vortex filament (Fig. 2.6) under the Galerkin-truncated Euler equation

to illustrate the nature of the onset of thermalization in a one-dimensional intense

structure. The initial condition we chose to study is a stationary vortex filament

together with a locally radially compressing flow: in cylindrical coordinates

uθ(r) = γkGr exp
(

−1
2(γkGr)2

)
(2.5a)

ur(r, z, θ) = −u0kβr
(1

2 − 1
2(kβz)2

)
exp

(
−

k2
β

2
[
r2 + z2

])
cos2 θ (2.5b)

uz(r, z, θ) = u0kβz
(

1 − 1
2(kβr)2

)
exp

(
−

k2
β

2
[
r2 + z2

])
cos2 θ (2.5c)

Once again, this cylindrical vortex (uθ), whose thickness is determined by γ = 0.25,

is immersed in a large-scale background flow (ur, uz), that perturbs the filament

within a range of k−1
β

= π/4 and with an amplitude of u0 = 10. Note that the

presence of cos2 θ in equation (2.5) induces a generic three-dimensional perturbation

in an otherwise axi-symmetric flow. Hence, the radial velocity ur compresses the
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filament near z = 0, most along the θ = 0 direction (x−axis), gradually losing

strength all the way to zero for θ = π/2, as depicted in figure 2.6(a). Not surprising,

the evolution of this initial condition (Eq. (2.5)) with the truncated Euler equations

leads to oscillations that are radial with the filament at its core (Fig. 2.6(c)). The

difference in the compressive eigenvalue along different radial lines (shown by red,

orange, and blue lines in figure 2.6(a)) reflects in the corresponding strength of

oscillations seen in the line-plot of the vorticity ωz along those lines in figure 2.6(d).

Further, the oscillations are amplified for r ≳ π/2 because of the support from the

background flow.

2.3 The Phenomenological Picture

In all the model flows studied above, consistent with our hypothesis, the

intense structures become a source of truncation waves and sustain oscillations along

the compressional eigen direction. It is crucial that we emphasize two important

points in our findings:

1. The compressional eigen direction of the strain field near the extreme

structures need not be perpendicular to the structures themselves, but the

strength of the oscillations appearing is proportional to the component of

compressive strain along the normal (depicted in Figs. 2.4(d) and (e)).

2. The oscillations born along the compressional eigendirection grow in amplitude

when the strain along the direction is positive. Thus, while the fluid has

to be compressive (locally) only near the structure, along that compressive

eigendirection, far from the structure, the positive strain is essential to support

and sustain the growth of the oscillations and hence eventual thermalization.

Indeed, a negative strain here would lead to the damping of oscillations and

the suppression of the onset of thermalization.
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The corresponding problem for the 1D Burgers equation is actually a special case

of this phenomenon: In one-dimensional space, the flow is compressional, and hence

the oscillations, trivially seen in the velocity profile, accumulate at resonance points,

leading to (at early times) spatially localized structures christened tygers [39].

Therefore, we have now demonstrated, through numerical experiments with

such specialized initial conditions, that the onset of thermalization in a generic

three-dimensional truncated system can be seen as a superposition of processes that

are essentially one-dimensional: At very short times, monochromatic oscillations

arise along the compressional directions associated with fluid structures with critical

velocity gradients in regions supported by fluid strain. While this was implicit for

generic, large-scale initial conditions which are used to solve the Galerkin-truncated

Euler equation, the use of such special flows is essential to making this phenomenon

evident. In more generic flows, such extreme velocity-gradient structures proliferate

the flow and emerge at different times. Hence, each of these structures can act as

a sources of truncation waves. Although, as our extensive analysis of model flows

suggests, these are born individually from each source, before long they superpose,

amplify, generate other harmonics, and eventually lead to thermalization.

To summarize, the onset of thermalization requires the conspiracy of two

key ingredients. Firstly, sufficiently sharp fluid structures that are compressed lead

to truncation waves and hence oscillations of wavelength λG. This is perfectly

analogous to the role shocks play in the well-understood problem of the 1D Burgers

equation [39, 41]. Secondly, in the vicinity of these structures, the flow must have a

non-negative strain to sustain such oscillations. This is essential because a negative

strain would lead to squeezing and the generation of harmonics with wavenumbers in

excess of kG: Such higher harmonics would get expunged because of the truncation

constraint, that allows only modes with wavenumbers ≤ kG. While there are essential

points of similarity between the analogous 1D Burgers problem, there are also crucial

differences. Apart from the complexity of this phenomenon in three dimensions

relative to the 1D problem—and hence the need to resort to model flows—what

makes the present problem unique is the lack of resonance points where oscillations
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can accumulate and grow.
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Chapter 3

Dissipative solutions from

Galerkin-truncated Inviscid

Hydrodynamics

In the previous Chapter ( 2), we saw the phenomena—illustrating the

onset of thermalization—about how and where oscillations shows up in real space,

having its support on the positive strain region, for the Galerkin-truncated solutions

to the Euler equation. In this Chapter, we propose a recipe and show how the

Galerkin-truncated equation can be modified mildly to obtain solutions which do

not thermalize. This allows us to obtain numerically:

1. More reliable estimates of the widths of the analyticity strip.

2. Weak, but dissipative, solutions (henceforth called weak-dissipative, for

convenience) of inviscid equations.

The reasons which motivates this study are of course fundamentally

important for the 3D Euler equations and less so for the 1D Burgers equation.

However the process and mechanisms of thermalization was best understood by
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resorting to the 1D Burgers equation [39–41, 164], with an added merit that the 1D

problem is solved in terms of its singularity formation and the accompanying unique

weak solution.

This Chapter is organized as follows: In section 3.1, we present the weak

solution to the inviscid Burgers equation, contrasted with the solution to the

Galerkin-truncated equation. In section 3.2, we outline a novel numerical method

that suppressess the thermalization, and present the numerical results portraying the

success of the numerical recipe. Finally in section 3.3, we introduce a decomposition

for the thermalizing solutions that serves as a useful starting point to suppress the

oscillations in the 3D case.

3.1 Entropy vs Thermalizing solutions

In 1915, H. Bateman [165] introduced a partial differential equation for

the field u, for the spatio-temporal domain (x, t) ∈ [0, L] × [0, T ]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 (3.1)

with an initial condition u(x, 0) = u0(x) and generalized boundary conditions

u(0, t) = ζ1(t), u(L, t) = ζ2(t) for 0 ⩽ t ⩽ T . Later J. M. Burgers, a Dutch

scientist, used this as a one-dimensional model for pressure-less gas dynamics,

[166, 167]. The idea was that such simple model having much in common with the

Navier-Stokes, like the quadratic non-linearity, similar invariances and conservation

laws for the ideal cases, would help significantly to the study of fluid turbulence. To

honour the contributions of Burgers, this equation (3.1) is well known as Burgers

equation. Later Cole [168] and Hopf [108] showed that the Burgers equation (3.1)

can be integrated explicitly. Burgers equation is a fundamental partial differential

equation occuring in various areas such as fluid mechanics [21, 22], statistical

physics [169–171], cosmology [172] and traffic flow [173].
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Figure 3.1: showing (a) initial profile (b) characteristics (c) formation of shock
at t∗ = Tb, at x∗ (d) solution to viscous burgers, Image adapted from [147]

Here, we will focus on the nature of solutions to the inviscid case ν = 0,

starting with a smooth (atleast once differentiable, that is u0(x) ∈ C1(R)) initial

condition u0(x):

∂u

∂t
+ u

∂u

∂x
= 0 (3.2)

The characteristic method for this hyperbolic PDE gives the solution for

each particle at time t ⩾ 0 (starting at position x0) as a continuous mapping of

points:

x0 7→ x = x0 + u0(x0)t (3.3)

As we can see from equation (3.3), the characteristics are straight lines

with different slopes, the slope simply being the initial velocity at that point. Then

for u0(x) ̸= const, two particles with different velocities can cross each other1, which

is unphysical in reality and mathematically a singularity. We define breaking time

t∗ as the first time at which two neighbouring particles cross each other [147] ,

equivalent to the vanishing of the Jacobian J = ∂x(t)
∂x0

, that ceases the existence of

strong solutions, is given by:

t∗ = min
[

−1
u′

0(x0)

]
(3.4)

Analytical continuation into the complex domain, for time t < t∗, shows
1Definitely if we consider the periodic boundary conditions.
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a singularity in the complex domain z∗(t) ∈ C satisfying the equation:

1 + ∂u0(z)
∂z

∣∣∣∣∣
z∗
t = 0, t ⩽ t∗ (3.5)

Tracking the z∗ in the complex plane for the Burgers equation is illustrates

characteristics of the solution near the singularity [27]. For the sake of simplicity

and illustration, we shall use the initial condition u0(x) = − sin(x) with periodic

boundary conditions x sin[0, 2π] for the rest of this section, unless mentioned

otherwise.

The breaking time is (Eq. (3.4)) t∗ = 1 and the shock appears at x∗ = 0 ≡

2π. Thus for t ⩽ t∗, the initial position of singularity is at

z∗
0 = cos−1

(1
t

)
. (3.6)

Since t ⩽ t∗ = 1 with our initial condition, making z0 purely imaginary, that is

z∗
0 = ι̇δ∗

0 and δ∗
0 = cosh−1

(1
t

)
. (3.7)

The current (Eulerian) position of the complex singularity at t is at

δ∗(t) = cosh−1
(1
t

)
− t sinh

(
cosh−1

(1
t

))
. (3.8)

Thus the singularity travels along imaginary axis from ∞ to 0 (see Fig. 1.1

in Chap. 1). For t ≲ t∗, the Lagrangian z∗
0 and Eulerian z∗ locations of the singularity

nearest to the real domain is close to the origin and can be obtained by expanding

sin x to cubic order, neglecting higher order terms.

z∗
0 = ±ι̇

√
2(t∗ − t)

t∗
(3.9)

z∗ = ±2
√

2
3 ι̇(t∗ − t)

3
2 (3.10)

Similarly the velocity around the singularity points near its pre-shock

location can be shown to obey,
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• For δ ̸= 0,

u(x, t) ∼ (x− x∗)
1
2

ûk ∼ k− 3
2 e−δ(t)k, k ≫ 1 (3.11)

• For δ = 0, at t = t∗

u(x, t∗) ∼ (x− x∗)
1
3

ûk ∼ k− 4
3 , k ≫ 1 (3.12)

These scaling laws are true locally near the singularity arising from an

arbitrary initial condition. Now for t > t∗, the characteristic solution (Eq. (3.3)) is

multi-valued, thus not physically acceptable. The only way to establish a solution

after the breaking time t∗ is to allow for discontinuities in u (such discontinuities

are called “shock”) exist in a consistent manner. Such solutions are known as weak

solutions and u will satisfy the integral form of the conservation law. The basic idea

is to take the PDE , multiply by a smooth “test function” [147, 174], integrate and

use integration by parts to move derivatives to the smooth test function.

Assume the shock has formed at t∗ at x∗ and the velocity on either end of

the shock is u1 and u2, respectively, and the velocity of the shock is, say, c. The

following (Entropy) conditions has to be satisfied for the solution to be physically

realizable, and for its uniqueness.

c = 1
2(u1 + u2)

u1 > u2 (3.13)

By using the Cole-Hopf transformation [108], the viscous Burgers equation

can be analytically solved, and in the vanishing viscosity limit ν → 0, the Entropy

solutions can be obtained. The Cole-Hopf transformation from u(x, t) to a new
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variable ϕ(x, t) is defined as:

u(x) = −2ν ∂xϕ(x)
ϕ(x) (3.14)

Rewriting the Burgers equation (3.1) in terms of new variable ϕ, with a

bit of an algebra, we get

∂xϕ (∂tϕ− ν∂xxϕ) = ϕ∂x (∂tϕ− ν∂xxϕ)

⇒ ∂tϕ = ν∂xxϕ. (3.15)

Hence, solution to the Burgers equation (3.1) for the initial condition u0(x)

(⇒ ϕ0(x) = exp
(

−(2ν)−1
∫ x

0
dy u0(y)

)
) is

u(x, t) =

∫
dk

x− k

t
ϕ̂0(k) exp

{
−(x− k)2

4νt

}
∫
dk ϕ̂0(k) exp

{
−(x− k)2

4νt

} (3.16)

It is useful to introduce a velocity potential ψ(x, t) as

u(x, t) = −∂xψ(x, t), (3.17)

so the the solution in equation (3.16) in terms of ψ is

ψ(x, t) = 2ν ln
[

1√
4πνt

∫ 2π

0
dy exp

[
1
2ν

(
ψ0(x) − (x− y)2

2t

)]]
. (3.18)

Now in the vanishing viscosity case ν → 0, with a saddle point

approximation on the integral in equation (3.18) leads to the limiting solution:

ψ(x, t) = maxy

[
ψ(y, 0) − (x− y)2

2t

]
(3.19)

In the ψ − x plane, the Lagrangian manifold is carved out in time by the
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maps:

x(t) = a+ tu0(a) (3.20)

ψ(x, t) = ψ0(a) − t

2u
2
0(a) (3.21)

assuming that a is the location of the evaluated maximum. Note that this solution is

valid for all times, even with finite no of shocks existing throughout the domain. To

show the anomalous dissipation in the entropy solution, consider the initial condition

u0(x) = sin(x) x ∈ [−π, π], after the shock t ⩾ t∗ = 1, the solution becomes

u(x, t) = 1
t

(
x− π tanh

[
πx

2νt

])
, (3.22)

then as ν → 0, the solution (3.22) becomes (see Fig. 3.2)

u =


1
t
(x+ π) for x < 0

1
t
(x− π) for x > 0

(3.23)

which is just a ramp with decreasing kinetic energy E (as shown in Fig. 3.2) and

with a dissipation rate ϵ given by

E = 1
2
〈
u2
〉

= π2

6t2

ϵ = −dE
dt = −1

3
π2

t3
. (3.24)

The vanishing viscosity approach is way of obtaining weak solutions to

inviscid Burgers equation. Since the equation is elliptic in nature, singularities will

never form for ν ̸= 0, but for the limiting case it does.
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Figure 3.2: Showing the Entropy solution to the initial condition u0 = sin x at
different times (see legends). Inset showing the dissipation of energy after the
breaking time t∗ = 1.

3.1.1 Galerkin-truncated Burgers equation

Now we turn to the finite-dimensional inviscid Burgers equation that is obtained via

the Galerkin-truncation of the parent ODE (Eq. (3.2)) Since we work in the space

of 2π periodic solutions, we can expand the solution of equation (3.2) in a Fourier

series allowing us to define the Galerkin projector PkG as a low-pass filter which sets

all modes with wavenumbers |k| > kG, where kG is a positive (large) integer, to zero

via:

v(x) = PkGu(x) =
∑

|k|⩽kG

eι̇kx ûk (3.25)

These definitions allow us to write the Galerkin-truncated inviscid Burgers equation

for the v(x) as
∂v

∂t
+ PkG

1
2
∂v2

∂x
= 0 (3.26)

and augmented with the initial conditions v0 = PkGu0 that are similarly projected

onto the subspace spanned by kG.

In the last section, we saw that the solution to the inviscid Burgers

equation (3.2) show one or more shocks (determined by u0(x)), after an initial

condition dependent finite-time t∗. Theoretically, the strong solution to the
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Figure 3.3: Representative plots, for kG = 1000, of the Galerkin-truncated v
(blue) and entropy u (black) solutions of the Burgers equation at (a) t = 0.24 ≳ t∗
and (b) t = 5.0 ≫ t∗. For the Galerkin-truncated solution, panel (a) shows
signatures of impending thermalization through the birth of tygers while panel
(b) shows the fully thermalized solutions. (Refer to the youtube link [175] for a
movie of the time evolution of the Galerkin-truncated equation (and the entropy
solution) with a single-mode initial condition for clarity.)

equation (3.2) ceases at t∗, and for t ⩾ t∗, the unique weak solution (satisfying

the Entropy conditions) can be obtained by the vanishing viscosity method, that

preserves the finitely many shocks in its evolution and dissipates energy through

them.

In contrast, the Galerkin-truncated equation (3.26) conserves energy for all

times. For initial conditions with a finite number of non-vanishing Fourier harmonic,

the solution v mimics rather well that of the inviscid PDE up to time t ≲ t∗. Indeed,

for t ≪ t∗, the two solutions are essentially indistinguishable. However, when the

distance of the nearest (complex) singularity of the un-truncated equation (3.2) from

the real domain δ is within one Galerkin wavelength (∼ 2π/kG), at time t−t∗ ∼ k−1/3
G ,

the effect of truncation becomes important. Obviously at t = t∗, no such shock

profile is built in the GT solution, as the finite number of Fourier modes cannot

model a discontinuity. It was originally suggested by Kraichnan and Chen that

the truncated conservative can behave as dissipative ones when considering only

the spatial modes which have not thermalized. The idea behind this is that high

wave number thermalized modes can act as an energy sink for the low wave number

modes, which will behave as in a normal turbulent flow [36].
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For t > t∗, the solutions of the truncated-equation and the PDE are

dramatically different: Whereas the former stays smooth, conserves energy, and start

thermalizing (beginning at small scales) with an (equipartition) energy spectrum〈
|v̂k|2

〉
∼ k0 [40], the latter shows a monotonic decrease in its kinetic energy

(dissipated through the shock(s)) and an associated scaling
〈
|ûk|2

〉
∼ k−2. (The

angular brackets ⟨· · ·⟩ used denotes suitable ensemble averages.) Thus thermalized

solutions, inevitable in (numerical) solutions of the Galerkin-truncated inviscid

equations, are fundamentally different from—and hence do not converge to—the

un-truncated parent PDE.

We illustrate this phenomenon in figure 3.3 by showing the solutions of the

Galerkin-truncated equation v (in blue), with kG = 1000, and the entropy solution

u (in black) for (a) an early time t = 0.24 (≳ t∗) and (b) at a later time t = 5.0

(t ≫ t∗); the details of such numerical simulations are given later. As discussed

above, even at times very close to t∗ ≈ 0.23 (Fig. 3.3a), the two solutions show

a marked difference—tygers—at points which have the same velocity as the shock

(and a positive fluid velocity gradient). At even later times, (Fig. 3.3b) we see

clear signatures of thermalization in the truncated solution having no resemblance

to the entropy solution which, as a consequence of shocks merging in time, has a

saw-tooth structure with a single shock. Below we provide a brief explanation of

the origin and properties on the onset of thermalization. We refer the reader to

references [39–41, 148, 150, 164] for more details and the theory on the process of

thermalization.

3.1.2 Onset of Thermalization: Tygers

To portray a phenomenological explanation for the Tyger phenomenon, showing the

onset of thermalization, consider the projector PkG that makes equation (3.26) non

local in physical space. More precisely, in physical space the non-linear term PkG∂xv
2
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Figure 3.4: Figure showing the birth of Tygers, plot taken from [39]

involves a convolution with a GT delta function:

F
[
PkG

]
(x) =

kG∑
−kG

eι̇ kx =
sin

(
kG + 1

2

)
x

sin
(

x
2

) (3.27)

For kG ≫ 1, the GT delta function (Eq. (3.27)) is close to Dirac measure near the

source, and is mostly a plane wave with a wave number close to kG away from the

shock. From a lagrangian point of view, fluid particles just move with their velocity

unchanged. In the presence of truncation, those particles which happen to have a

velocity equal to the phase velocity of a truncation wave vshock can resonantly interact

with such waves. Further, at time τ from the pre-shock the resonant interactions

are confined to particles satisfying

τ |v − vshock| ≲ λkG = 2π
kG

(3.28)

and with positive strain ∂xvx produce oscillations, which are named as Tygers, as
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shown in figure 3.4 for the initial condition v0 = − sin x. Because, in the region

of negative strain a wave of wave number close to kG will be squeezed, making it

to acquire wave number greater than kG, thus disappearing beyond the truncation

horizon.

Now how does the highly organized and localized tyger structure evolve

into a totally random thermalized state? At first, very symmetrical bulges whose

amplitude grows in time [39], because truncation wave input has accumulated, while

their width decreases, as a consequence of phase mixing. This decrease in width

leads to collapse of the tyger and becomes assymmetrical in nature. It is because, the

Tyger’s kinetic energy is constantly increasing in terms of oscillations at the Galerkin

wavelength to compensate the loss of energy in the shocks. Now in (physical space

) scales large compared to λkG but small compared to the tyger width w (say), this

kinetic energy gives rise to tan x dependent Reynolds stress (due to presence of

positive velocity gradient), which distorts the tyger envelop. If the envelope has a

negative slope, then the tyger is pulled away from the axis and if it has positive

slope then it is pulled towards the axis.

With this phenomenalogical understanding of the birth of tygers—illustrating

the onset of thermalization—it is useful to derive scaling properties of these localized

oscillations that come in handy later on when we attempt to suppress them. We

have seen that tygers are born at suitable resonance points in the form of bulges

made of oscillations at the Galerkin wavelength with a very symmetrical envelope.

Consider a Tyger in its early onset stage with an amplitude a and width b.

As we saw in the section 3.1, when complex singularity reaches within the

analyticity strip of width δ at a birth time τ = t−t∗ ∼ O
(
k2/3

G

)
. With the ushock = 0,

the resonance is affected within the region having velocities

v ≲
2π

kGk
2
3
G

∼ k− 1
3

G . (3.29)

Since at such times, the velocity v of the truncated solution is expected to
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stay close to the velocity u of the untruncated solution which varies linearly with x

near the resonance point. Thus we have the width of the Tygers at t∗ is of the order

b ∼ k− 1
3

G . (3.30)

Since untruncated solution has a cubic root singularity near the pre shock location,

that is u(x) ∼ (x− x∗)1/3. Then the difference in energy (between the two solutions)

would scale as ∫ λG

0
dx x 2

3 ∼ k− 5
3

G . (3.31)

Further with the GT equation conserving energy, this packet of energy is stored in

the Tygers as a2b ∼ k−5/3
G . Hence the amplitude a of the Tygers is of order

a ∼ k− 2
3

G . (3.32)

These scaling laws found in equations (3.29),(3.30),(3.31), and (3.32) on the

truncation wavenumber kG are for the early Tygers. In the same spirit, under suitable

approximations, the discrepancy between the two solutions can be studied near t∗

as a linear algebra problem (see Ref. [39] for more details).

In fact, if u′
k = PkG[v̂k − ûk], then the study has shown that the solution to

u′ has a clear even-odd oscillations that has a scaling representation for k ∼ kG as:

u′
k = ι̇

kG

c1 exp
−c2

kG − k

k
1
3
G

, c1 = 0.448, c2 = 3.45 (3.33)

3.2 Suppressing Thermalization in the

Galerkin-truncated Burgers equation

We know that a strong solution to the Galerkin-truncated Burgers equation

exists for all times and conserves energy. On the other hand, the actual PDE only

has a weak (entropy) solution that dissipates energy through shocks. The striking
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difference that these two solutions show near the (first) shock formation are in the

shock formation and dissipation of energy from them.

All of this leads us to ask if we can, without resorting to viscous

dissipation, actually suppress thermalization setting in in such truncated equations

and obtain the entropy solution? The short answer is yes as we now report a novel

approach—tyger purging—which, through the selective removal of a narrow, Fourier

space, boundary layer near kG, at discrete time-intervals, resulting in the suppression

of thermalization. But we want the cascading energy to enter the modes near kG, so

we remove energy at regular intervals.

To summarize, the idea of the purging technique is as follows. Create a

boundary layer near the truncated wavenumber from kP ≲ kG to kG. Select an

appropriate purging time interval τ such that for t > t∗, at times t = nτ, n ∈ Z+,

modes in the boundary layer are set to zero, removing the energy

∆E =
kG∑
kP

|vk|2. (3.34)

The equation of motion for the purged solution w(x, t) is, of course, the

same as that of the Galerkin-truncated equation (Eq. (3.26) with the truncation

wavenumber kG)
∂w

∂t
+ PkG

1
2
∂w2

∂x
= 0, (3.35)

augmented by an additional constraint imposed at discrete times tp = t∗ + nτ (n =

0,1,2,3 ...):

ŵk = 0, ∀ kP ⩽ |k| ⩽ kG. (3.36)

We call this truncated equation, along with the additional purging constraint, as in

equation (3.36), as simply the purged equation. One could write them compactly in
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Fourier space as

dŵk

dt = − ι̇

2k
∑

q

ŵqŵk−q − Θ(kP − k)
∞∑

n=0,1,2
δ(t− t∗ − nτ), |k|, |q|, |k − q| ⩽ kG

(3.37)

We immediately note that without the additional constraint, by definition,

the solution w is the same as v obtained from the truncated equation and hence if

purging is done continuously, and not discretely, in time, we would end up solving

the Galerkin-truncated equation (3.26) but with a truncation wavenumber kP.

But how do we choose kP and τ in a consistent manner. We now make the

following ansätze about the inter-purging time τ and the purging wavenumber kP:

τ = k−α
G and kP = kG − kβ

G ; (3.38)

with real, positive exponents α and β and the immediate constraint that β < 1.

Before we engage in a detailed numerical analysis on the purged equation, let us

estimate, heuristically, optimal choices of α and β keeping in mind that the purged

solution w must converge to the entropy solution u as kG → ∞. For t > t∗,

the entropy solution, unlike the truncated solution, is dissipative: dE
dt

⩽ 0, where

E = 1
2

∞∑
k=0

|ûk|2 is the total energy. Indeed, for times t ∼ t∗, (when tygers are

just born), the Galerkin-truncated Burgers equation remains conservative by the

transfer—and subsequent accumulation—of kinetic energy ∝ k−5/3
G from the “shock”

to the tygers [39].

By construction, however, purging technique allows for a finite energy loss

∆EP ≡
kG∑

k=kP

|ŵk|2 at intervals of τ resulting in a rate of loss of energy

ϵP = dEP

dt , EP =
kG∑

k=1
|ŵk|2

≈ ∆EP

τ
, (3.39)
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where EP total energy of the purged system. The choice of α and β should ensure

that in the limit kG → ∞, this rate of energy loss should be kG-independent and

converge to the rate of energy loss of the entropy solution, i.e., lim
kG→∞

ϵP → ϵ.

It is hard to estimate ∆EP theoretically without making suitable

assumptions. Since in between two consecutive purges, equation (3.35) is identical

to the Galerkin-truncated equation, it is reasonable to assume that at the time of

purging the solution ŵk to be a combination of the one coming from the entropy

solution ûk and a contribution from the nascent tyger. For k ≲ kG, the empirical

form for the difference between entropy and GT solution û′
k = |ûk − v̂k|, for t ≈ t∗,

is stated in [39] and has an envelope of oscillations for k ≫ 1 (see Eq. (3.33)).

Assuming within the inter-purging time τ , the boundary layer modes (between kP

and kG) develops the similar form, then the spectral form ŵk for k ≲ kG can be

considered as

ŵk = c0

k
eι̇θ1 + c1

kG

eι̇θ2 exp
−c2(kG − k)

2k
1
3
G

. (3.40)

The energy in the boundary layer goes as:

∆EP =
kG∑
kP

 c2
0
k2 + c2

1
k2

G

exp
−c2(kG − k)

k
1
3
G

+ c0c1γ

kG

exp−c2(kG − k)
2k

1
3
G

, γ = Re
(
eι̇(θ1−θ2)

)
(3.41)

Now we are interested in the leading behaviour of ∆E on kG, β as kG → ∞,

and evaluating equation (3.41) for that will lead to

∆EP ∼ kβ−2
G . (3.42)

The rate at which the dissipation is done through purging (from equation (3.39)) is

ϵ = ∆EP

τ
(3.43)

∼ kα+β−2
G . (3.44)

The constraint derived above is useful but it still allows considerable freedom in

choosing α and β. However, since in between purgings the solution develops only
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nascent tygers, we can estimate β independently by asking if an optimal choice of

kP (thence, β) leads to an elimination of the boundary layer (and hence the energy

content δEP of the boundary layer) such that tygers are suppressed. In other words,

since Galerkin-truncation leads to a transfer of energy ∼ k−5/3
G from the shock to the

tygers resulting in an overall conservation of kinetic energy in the truncated problem,

a successful purging strategy must constraint δEP ≈ k−5/3
G thus precisely eliminating

the tygers which trigger thermalization and hence leading to dissipative solutions.

By using the functional form for the boundary layer for incipient tygers [39], it is

easy to show that

δEP ≡
kG∑

k=kP

|ŵk − ûk|2

≈
kG∑

k=kP

1
k2

G

exp
[
−kG − k

k1/3
G

]

≈


kβ−2

G for β < 1/3

k−5/3
G for β > 1/3.

(3.45)

Equation (3.45) leads to the inevitable conclusion that the optimal choice

of the purging wavenumber is one where β ∈ [1/3, 1) and the energy loss then is

actually independent of β and exactly the same as that which would have triggered

thermalization in the absence of purging as long as β ≥ 1/3. Thus, we obtain an

independent (theoretical) bound on β ∈ [1/3, 1) for a successful purging. Before

we turn to detailed numerical simulations to validate these ideas, we make one final

remark. In numerical simulations, δt is typically set by the resolution kG such that

δt ∼ O(k−1
G ). As we have noted before, purging if done too frequently would be akin

to solving the Galerkin-truncated Burgers equation with kG = kP. This implies that

τ/δt ≫ 1 which, trivially, leads to α < 1. Hence, with these insights for α and β,

we revise the constraint, estimated heuristically before, to α + β ≲ 2.

So how effective is purging in obtaining solutions w which resemble the

entropy solution u? We answer this by resorting to extensive and detailed numerical

simulation of the purged model (3.35) as well the Galerkin-truncated equation (3.26)

for comparison.
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Figure 3.5: Representative plots, for kG = 1000, of the Galerkin-truncated v
(blue), the entropy u (black) and the purged w (red) solutions of the Burgers
equation at t = 5.0 for (a) α = 0.6, β = 0.4 and (b) α = β = 0.8. In panel (b),
the purged and entropy solutions are quite close to being identical. (Refer to the
youtube link [176] for a movie of the full evolution in time of the solutions shown
in panel (b).)

For the truncated and purged equations, we perform extensive direct

numerical simulations, by using a standard pseudo-spectral method and a 4th order

Runge-Kutta scheme for time-marching, on a 2π-periodic line. We use two different

sets of collocation points, namely, N = 16384 and N = 65536 to obtain results

for kG = 500, 1000, 3000 and 5000 (for N = 16384) and kG = 8000, and 10000 (for

N = 65536). For the purged simulations, additionally, the theoretical estimates

obtained, lead us to a choice of β = 0.4, 0.6 and 0.8 and for each value of β, the

inter-purging time was obtained with α = 0.4, 0.6, 0.8, 0.9, and 1.2. (The simulations

with α = 0.9 and 1.2 were performed to confirm that too frequent purgings lead to

thermalized solutions once more with the effective truncation wavenumber kP.)

The choice of time-steps in such simulations require some delicacy. For the

truncated problem, since the maximum principle is violated, individual realisations

of the velocity field can have excursions which are large (see Fig. 3.3b). Hence for

the truncated simulations, as well as those where purging is ineffective in preventing

thermalization, the time-step δt has to be kept very small. However, for the cases

of successful purging, the maximum principle is no longer violated. Hence for these

cases we are able to choose δt = 10−5 (N = 16384) and δt = 10−6 (N = 65536); for

the analogous truncated problem (and the ones where the α-β combination fail to

prevent thermalization), δt was taken to be at least two orders of magnitude smaller.
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In numerical simulations, δt is typically set by the resolution kG such that

δt ∼ O(k−1
G ). As we have noted before, purging if done too frequently would be akin

to solving the Galerkin-truncated Burgers equation with kG = kP. This implies that

τ/δt ≫ 1 which, trivially, leads to α < 1. (We have confirmed these conjectures

through several, detailed numerical simulations.)

To obtain the entropy solution u, we use the Fast Legendre transform

as discussed in references [177, 178]) to solve the viscous Burgers equation in the

vanishing viscosity ν → 0 limit. In short, the fast Legendre transform uses the

regularities in the equation to speed up the algorithms for finding the entropy

solution. Here it is the non-decreasing nature of the Lagrangian map function x(t)

(as in Eq. (3.3)) for the particles. So two particles starting at a1 < a2 with velocities

u1 and u2, end up at time t at x1 and x2 obeying x1 ⩽ x2, with equality stating that

they ended in a same shock. By implementing the standard “divide and conquer”

methods, the fast Legendre transform can find the solution within N log2 N steps for

a grid size N . We solve the equation on a 2π line with periodic boundary conditions

and choose N = 16384 and N = 65536 collocation points (for easy comparison with

the truncated and purged solutions; see below). The velocity field is evolved keeping

in mind that the velocity potential ψ (related to the velocity field via u = −∂xψ,

see Eq. (3.17)) obeys a maximum principle, as in equation (3.19)

Finally, we have studied the problem for several different initial conditions

(all of which consist of linear combinations of trigonometric polynomials including

the simplest single-mode case sin(x)); we have checked that our results and

conclusions are consistent for all such initial conditions. In this Chapter, for brevity,

we present results only for the case:

w0 = v0 = u0 = sin(x) + sin(2x+ 0.9) + sin(3x) (3.46)

In figure 3.5 we show representative plots, at t = 5.0, of the Galerkin-truncated v

(in blue and thermalized), the entropy u (in black with a prominent shock) and the

purged solutions w (in red) for (a) α = 0.6, β = 0.4 and (b) α = 0.8, β = 0.8; we set
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the truncation wavenumber kG = 1000. We immediately see that for α = 0.6 and β =

0.4 (Fig 3.5a), the solution w approximates the entropy solution much better—in so

far as picking out the ramp structure and a jump near the shock—though far from

perfectly.

Remarkably, if we choose α = β = 0.8 (Fig 3.5b)—and hence much

closer to satisfying the heuristic estimate α + β ≲ 2—the agreement between the

purged and entropy solutions are near-perfect. Indeed the main point of departure

between the two solutions seems to be close to the shock because of the ubiquitous

Gibbs-type oscillations [179] associated with Fourier transforms of functions near

discontinuities. We have checked that for α ≳ 0.9, since τ/δt ∼ O(1), the purged

solutions thermalize once again as we conjectured. Hence, empirically, our extensive

numerical simulations show that within the range of α that we study, the optimal

choice is α = 0.8. Furthermore, we have confirmed that our results are largely

insensitive to the choice of β as long as its greater than 1/3. Purging method

can be considered as a system with scale and time dependent viscosity. For modes

k < kP, there is absolutely no viscosity, whereas for k ⩾ kP it becomes infinitely

viscous for a moment at purging intervals. Then how does this approach work?

Consider a finite dimensional solutions (with kG as truncation wavenumber)

to the viscous Burgers equation (3.1). At t = t∗(u0), a smooth shock like structure

appears (not a mathematical shock, but a sharp structure with a width of order

∼
√
νt) given kG is large enough, that is kG ≫ 1/

√
νt∗. For t > t∗, the modes beyond

1/
√
νt has its dissipation term (linear) dominant over the non-linear terms, and this

cutoff that seperates then decreases over time. In contrast, now consider the Entropy

solution, which is infinite dimensional (necessary to construct a discontinuity). Here

for t > t∗, ∀k ≫ 1, there is no cutoff wavenumber, and the cascade happens till

k → ∞.

Now the purged solution, being finite dimensional, has to mimic this

cascade, preserving the shock like structure for all times (unlike for a ν > 0 case) and

should not thermalize. So the boundary layer created between kP and kG effectively
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should act as a sink (kcutoff), but as a intermittent one. Since the cutoff wavenumber

is fixed, the shock will not get smoothened out. Now the purging operation has to

avoid thermalization which is triggered by tygers—owing to the conservation of

energy. Consider the system immediately after purging, which means the boundary

layer is empty. The energy from modes k < kP sees this empty boundary layer and

gushes energy into it. As the boundary layer is filled, the last mode k = kG will

saturate in some time. The purging has to happen before this, otherwise the flux

will see a hard wall at k = kG and bounce back non locally as tygers. So we have

a upper bound on the purging time τ (a lower bound on α). Suppose we purge

too frequently, which implies that we keep the boundary layer mostly empty. Then

effectively the flux sees a hard cutoff at k = kP itself thus it becomes a system which

is truncated at kP rather than kG. So the energy at k = kP −1 gets saturated and non

locally diffuse into tygers of oscillations λkP . So there exists a range of purging time

τ , in which the system will converge to entropy solution without thermalization.

As far as boundary layer is considered, there is no strict bounds on it as long as

1 < ∆k = kG − kP ≪ kG it will act as effective sink.

The ability of the purged solution to dissipate the correct amount of energy

for the right choice of α is illustrated in figure 3.6, where we plot the energy in the

boundary layer ∆EP (shown in red) against the dissipation rate of the entropy

solution for the same initial conditions.

The fact that the purged and entropy solutions seem to be in agreement,

visually, suggests that the purged solution is dissipative as was anticipated, by

construction, earlier. However, for this solution to actually converge to the entropy

solution, the rate of dissipation should be arbitrarily close to the dissipation rate
dE
dt

of the entropy solution. The most direct way to see this is to compare the total

energies of the entropy E and the purged EP solutions, as a function of time, for

different values of α and β: In figure 3.7(a) we show these results for kG = 1000. We

find, as was already suggested in figure 3.5, that for the optimal choice α = β = 0.8,

the behaviour of the total energy versus time for the purged solution is identical to

the one obtained from the entropy solution. The purged solutions for other α − β
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Figure 3.6: Figure showing the boundary layer energy (red) ∆E vs t against the
dissipation rate from the entropy solution (blue).

combinations are dissipative as well; however they dissipate energy at rates much

slower than the entropy solution. Moreover, shock-mergers, as indicated by the

vertical lines in the plot, and which lead to tiny kinks in the energy versus time

profile, are faithfully reproduced by purged solutions for α = β = 0.8.

A measure of how accurately the purged solution mimics the dissipation

of the entropy one, is the percentage relative error e = Ep−E
E

× 100 at t = 5.0. In

the inset of figure 3.7(a), we plot e as a function of kG for the most optimal purging

choice (α = β = 0.8). Remarkably, this error e decreases rapidly with kG and for

kG = 5000, e ≈ 0.01%.

All of this leads us inevitably to the important question: For α = β = 0.8,

does the purged solution indeed converge to the entropy one as kG → ∞? A precise

way to answer this is to measure the percentage relative error (or the L2 norm)

ϕ =


N∑

i=1
[u(xi) − w(xi)]2

N∑
i=1

u2(xi)


1/2

× 100 (3.47)
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Figure 3.7: (a) A plot of the total energy EP versus time, from our purged
solutions (3.35), for different combinations of α and β and kG = 1000. We
also show, in black, the energy versus time plot for the entropy solution for
comparison. The dashed vertical lines correspond to the times at which the
shocks, three in all because of the three-mode initial conditions, form. In the
inset, we plot the relative percentage error e (see text) between the purged and
entropy solution, for α = β = 0.8, at t = 5.0, as a function of kG. (b) A plot
of the L2 norm of the percentage relative error ϕ (see text) for α = β = 0.8 as
a function of kG; the dashed-line shows a power-law k−1

G scaling consistent with
the measured error.

of the discrepancies between the solutions u and w. Given that this is a point-wise

measure, unlike the global energy measurements shown in figure 3.7(a), a sharp

decrease in ϕ with kG should be clinching evidence of the efficacy of our scheme. In

figure 3.7(b), we show a log-log plot of ϕ as a function of kG and find a steep decrease

(ϕ ∼ k−1
G indicated by the dashed line) in the relative error as a function of kG. For

the large values of kG, the relative error ϕ < 1%, reaching a value of ϕ ≈ 0.5%

for kG = 10000. These results show that purging leads to weak-dissipative

solutions which converge to the entropy solution of the parent PDE as kG → ∞.

Importantly, the discrepancy between the two solutions is already minute for values

of kG which are easily accessible. From the point of view of numerical simulations,

the β ≥ 1/3 condition is extremely helpful because it allows us to choose values of β

small enough such that for a given kG, the loss in resolution kG −kP through purging,

is insignificantly small. As an example, for kG = 10000 and β = 0.4, fraction of

resolution lost is about 0.3%.

Through the study, the main aim is to understand a way to get weak

solutions in a truncated system for ideal fluid conservation laws. Here we studied

71



3. Dissipative solutions from Galerkin-truncated Inviscid Hydrodynamics

1D Burgers equation, because we can solve for the vanishing viscosity solution

analytically and check the validity of the obtained weak solutions. Obviously the

truncated weak solutions do not fall into the latter category. But with purging

method attached to the truncating scheme is able to produce solutions arbitrarily

close to the entropy solution based on selection of kG. From the results that we have

obtained through purging technique, we infer the following:

1. For the truncated system, adding a dissipation term (in spectral space) my

means of purging method results in a weak solution which obeys the entropy

condition and converges to the entropy solution for certain range of purging

parameters.

2. The result of the purging test solely depends on the selection of purging time τ .

The purging time corresponds to the transparency level of the dissipation sink

that matches behaviour with the entropy solution. Results have shown, for

any arbitrary initial condition with a trigonometric polynomial (in other words,

initial energy concentrated at low wavenumbers) with purging parameter α in

the range of 0.7 to 0.9 – the purged solution becomes a weak solution.

3. The working of purging truely corresponds to the fact that the solutions

• Neither have expanding dissipation range

• Nor have shrinking inertial range.

Because of this, the energy flux feels no truncated effect – rather a transparent

sink near the boundary layer and outpours itself into it.

It is important to note that the purging attempts in physical space—which consists of

smoothening out the tygers in physical space through averaging—does not result in

any significant suppression of thermalization. Furthermore, such procedures lack the

easy adaptability to different initial conditions, because it relies on the knowledge of

the location of the shocks and resonance locations in the physical space to implement

it.
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Our results, if seen in isolation for the Burgers equation, are admittedly

academic. This is because for the 1D Burgers equation, we have other ways to obtain

weak-dissipative solutions as well as the widths of the analyticity strip δ analytically

and numerically. Also, since for the Burgers equation the effects of truncation are felt

at times very close to t∗, the δ obtained for the Burgers equation with and without

purging, agree equally well with the theoretical estimate up to times very close to t∗.

This is pathological to the Burgers equation and it is reasonable to conjecture that

purging in the 3D Euler equation will yield more dividends. Furthermore, there is

no analogue of the Fast-Legendre method for the 3D Euler equations.

It is in the light of the 3D Euler equations that this approach assumes

special importance. To the best of our knowledge, till date there is no algorithm

which allows, numerically, to obtain weak-dissipative solutions of the 3D Euler

equation. This algorithm allows us to do exactly that. Numerically, our algorithm

is trivial to implement in codes which solve the 3D Galerkin-truncated Euler

equation. From earlier studies we know that the onset of thermalization in the

3D Galerkin-truncated Euler equation is formally similar to that in the Burgers

equation. Hence, the approach outlined in this paper, should allow us to implement

it for the 3D Euler equations and study, numerically, dissipative solutions as well as,

and possibly most importantly, take advantage of the suppression of thermalization

to finally have a firm, albeit numerical, answer for the celebrated blow-up problem.

While it is true that for the 3D Euler equation, we are handicapped by a much

poorer understanding of what the appropriate weak-dissipative solution ought to

be, there are indeed several candidates against which our purged solutions may

be benchmarked against, including the existing solutions of the incompressible

Navier-Stokes equation for the largest Reynolds numbers currently attainable. We

hope that our work will provide a stimulus for analogous (and important) studies

of the truncated Euler equation.

Given the potential usefulness of our approach to revisit the analyticity

strip method to numerically investigate the question of blow-up of the Euler

equation, it might be useful to comment on recent studies of this problem. In brief,
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although there is some evidence that the Euler equations could avoid singularities

through the formation of vortex sheets [180–182], other results [124, 138, 183]

suggests that this question is far from settled. Therefore, our work, although

demonstrated here for the Burgers equation, could play a role in revisiting this

issue from the point of view of the width of the analyticity strip. In this context, it

may be worth recalling that the one of the earliest demonstrations of the analyticity

strip method for the Galerkin-truncated inviscid hydrodynamics, was for the Burgers

equation [27].

Before we conclude, it is important to ask if thermalization can be

suppressed by other means (without resorting to viscosity). Purging attempts

in physical space—which consists in smoothening out the tygers in physical

space through local averaging—does not result in any significant suppression of

thermalization and lacks easy adaptability to different initial conditions and higher

dimensional equations. A second possibility is of course the use of a hyperviscous

term. This however has the drawback that we would end up solving not the inviscid

equation but its viscous form and for higher-orders of the hyperviscosity—which

is similar in spirit to the idea of purging—the solutions thermalize [50, 52, 184].

Another approach is due to Pereira, et al. [150] who showed that a wavelet-based

filtering technique also leads to a suppression of the resonances leading to tygers.

However, such an approach has the limitation, as mentioned by the authors

themselves, that the dual operations of filtering and truncation at every time

step do not commute. Hence the weak dissipation introduced in this approach

is somewhat uncontrolled. To this extent we feel that the prescription we present

here is most suited for generating weak-dissipative solutions and, importantly, more

easily adaptable to higher-dimensional systems such as the 3D Euler equations.
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3.3 Suppression of Oscillations in the

Galerkin-truncated Euler solution

This observation of the precise mechanism at the heart of thermalization

in 3D flows is particularly important to devise numerical strategies to

arrest thermalization for the reasons discussed before. Understanding how

finite-dimensional equations of hydrodynamics thermalize is one aspect of

this study—but perhaps the more important question relates to whether this

understanding can be exploited to devise more efficient algorithms for numerical

constructions of dissipative solutions of the Euler equations and indeed conjectures

for finite-time blow-up through methods such as the analyticity strip [27, 137, 148].

Operationally, this would involve suppressing the oscillations that

trigger the flow to thermalize—making analyticity strip approaches to singularity

detection [148] impractical—and ensuring conservation of energy and thus the lack

of dissipative solutions. From our DNSs, it seems that a useful starting point

would be a suitable filtering of the velocity gradient field to remove the oscillatory

structures.

We suggest an algorithm to be applied to the vorticity field ω, that

reconstructs a new vorticity field ω∗ in a self-consistent way that preserves the

small-scale intense structures while discarding the oscillations. We adapt the method

developed by Hamlington et al. [185] to decompose the strain field into local and

non-local (background) contributions. This is trivially done for the vorticity field in

Fourier space via

ω̂(NL)(k) = f(kR)ω̂(k) (3.48)

ω̂(L)(k) = ω̂(k) − ω̂(NL)(k) (3.49)

where the hat denotes the Fourier space (k = |k|), the subscripts L and NL stand
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(a)

(c)

(b)

(d)

Figure 3.8: (a) Pseudo-color plot of the two-dimensional XZ plane cut of the
reconstructed vorticity field ω∗

z for the model flow (Eq. (2.2)) at t = 0.15.
A comparison with the corresponding figure (Fig. 2.3(c)) for the truncated
simulation shows a significant suppression of the oscillations. This is quantified in
panel (c) through one-dimensional cuts (along z = 0) of ωz (same as in Fig. 2.3(e))
and ω∗

z , as a function of x. Panel (b) shows ωz at t = 1.5 extracted from the
Taylor-Green flow (Eq. (2.4)) along the XZ plane. This is contrasted with panel
(d) showing the reconstructed vorticity field ω∗

z from it, which retains the intense
structures while significantly suppressing the oscillations, which would lead to
thermalized solutions.

for the “local” and “non-local” contributions, respectively, and the filter

f(kR) = 3(sin(kR) − kR cos(kR))
(kR)3 (3.50)

is the Fourier transform of the three-dimensional complementary Heaviside function

in spherical coordinates. Such a filter, by definition, ensures that the function on

which it acts—namely the vorticity field in this case—is smoothed by averaging

out over a sphere of radius R = λG. Evidently, the local contribution ωL alone

contains all the oscillations, and hence the “reconstructed” field ω∗ ≡ ωNL with ωL

suppressed should be free of oscillations. Hence, such a dynamic filtering technique,

namely, solving the truncated 3D Euler by recovering ω∗ and using this field to

evolve at every time step, should yield a non-thermalizing, dissipative flow.

However, such an approach has the disadvantage, that along with the

oscillations, the small-scale, intense vortical structures are lost as well. We
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therefore adapt this idea of decomposing the field in a way that preserves the

small-scale structures as far as possible and yet suppresses the oscillatory triggers

of thermalization. Thus, we propose a reconstructed field as

ω∗(x) = ω(NL)(x) + Γ2m(x)ω(L)(x) (3.51)

Γ2m(x) : = erf
[

|ω|2m

∥ω∥2m
2m

]
. (3.52)

where the additional regularization parameter Γ2m allows us to capture the essential,

intense local vortical regions while still filtering out the oscillations in the flow. The

L2m norm used in the definition of Γ2m controls threshold level of that vortical

regions we want to retain in the reconstructed field.

While this method needs to be refined and rigorously examined in future

studies for generic flow fields, we provide results from preliminary tests conducted on

the model flow defined by equation (2.2). In figure 3.8(a), we show the reconstructed

vorticity field at t = 0.15 for m = 4, corresponding to the plot shown in figure 2.3(c).

Similarly, in figures 3.8(b) and (d), the vorticity field ωz (along the XZ plane) from

the solution to the Taylor-Green initial condition (Eq. (2.4)) and its repaired field

ω∗
z are shown.

A visual comparison of the two vorticity fields shows that our

reconstruction strategy indeed leads to a significant reduction in the oscillations

while still preserving the intense structures, namely the vortical sheets in this case.

This is quantified in figure 3.8(c) by comparing the z-component of the vorticity

along the x-axis (z = 0) in the middle of the domain for the truncated (ωz)

and reconstructed fields (ω∗
z). We clearly see that the oscillations responsible for

thermalization, seen in ωz more or less vanish on reconstruction, as seen in the plot.

Furthermore, our use of the regularization parameter Γ2m does fully preserve the

intense structure in the form of vortex sheets, as seen by the near overlap of ωz and

ω∗
z at −x1 and x1.

While figure 3.8(c) seems to underline the success of this strategy—at least
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for such a curated flow—the illustrative flow field shown in panels (a) and (d) still

retains some traces of the oscillations. There are at least two reasons why this is so:

1. In our tests, we have not filtered and reconstructed the field at every time

step, but, only as a proof of principle now, used this as a static filter and

reconstruction at t = 0.15 (for panel (a)) and at t = 1.5 (for panel (d)). A

dynamic filter, as discussed above, is essential, and perhaps the frequency—the

time intervals between successive filtering—with which the filter should be

applied needs further investigation. The latter may well be a delicate point as

shown in reference [152] for Fourier space purging in the 1D Burgers equation.

2. Our preliminary explorations with different sharpnesses of the regularization

parameter Γ2m show that this, not surprisingly, is critically important for more

effective suppression of thermalization hotspots, especially in the vicinity of

flow structures with intense gradients. This will become crucial when such

strategies are investigated systematically in a generic 3D flows.

Our preliminary results, albeit based on such a static filter for the model

flow, show encouraging signs that such approaches may well diminish the precursor

to small-scale thermalization and allow (a) dissipative solutions and (b) extending

the analyticity strip method for singularity detection to longer times than currently

possible. This approach thus complements other ongoing efforts, such as that

by Fehn et al. [186], who use a discontinuous Galerkin discretization to obtain

dissipative solutions from simulations of the finite-dimensional Euler equation.
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Chapter 4

Many-body Chaos in Thermalized

fluids

4.1 Fundamental Questions in Statistical Physics

Many-body chaos is the key mechanism to explain the fundamental

basis—thermalization and equilibration—of statistical physics. However, we know

of equally important examples in nature, such as the problem of turbulence,

where chaos plays a role that is seemingly opposite from the settling down

through thermalization and equilibration of several many-body systems. This

contrast becomes stark if we argue in terms of the celebrated butterfly effect

[54, 187–189]: While the amplification of the wingbeat results in complex dynamical

macroscopic structures in driven-dissipative systems such as a turbulent fluid, the

same amplification leads to a loss of memory of initial conditions, resulting in

ergodic behaviour and eventual thermalization or equilibriation, in Hamiltonian

many-body systems. How then do we reconcile these two apparently disparate roles

of many-body chaos?

An important piece of the answer lies in investigating the spatio-temporal
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aspects of many-body chaos (the Lyapunov exponent λ and butterfly speed vB) in

fluids to reveal its connection with macroscopic (thermodynamic) characterization

of the system. This provides for concrete comparisons of length and time-scales of

chaos and thermalization, on the one hand, and the non-linear dynamic structures

of the fluid-velocity field on the other.

Characterizations of chaos and its connection with transport and

hydrodynamics have been obtained recently in the context of both classical and

quantum many-body systems such as unfrustrated and frustrated [55–57, 190]

magnets, strongly correlated field theories [191–199]) and field theories of

black-holes [59, 200]. A common feature responsible for the unconventional

signatures of chaos in many of these systems seems to originate from a large set of

strongly coupled, dynamic, low energy modes arising from competing interactions.

This is not unlike the case of a turbulent fluid where the triadic interactions of

velocity (Fourier) modes across several decades lead to strong couplings resulting

in, example, scale-by-scale energy transfers [95, 201].

These studies have been facilitated by the development of quantum

out-of-time commutators (OTOCs) [55, 58, 60, 198, 202–204] and their classical

counterpart, the decorrelator [55, 56] for quantum and classical many-body chaotic

Hamiltonian system respectively, that measure the spatio-temporal decorrelation in

a system in the presence of a perturbation. For a elementary introduction, consider

a quantum many-body Hamiltonian H, and two local unitary operators V,W in

Heisenburg picture. Then the squared commutator between them is defined as the

OTOC:

C(t) =
〈
[W (t), V (0)]2

〉
= 2

(
1 − Re

{〈
W †(t)V †W (t)V

〉})
(4.1)

The average ⟨·⟩ is Tr [exp (−βH)·] with an inverse temperature β.

Typically, for short times C(t) grows exponentially with a exponent λL [205]. As

a physical picture, the operator W (t) corresponds to the growth and spread of

the local perturbation under time evolution. The commutator with other operator

V diagnoses the growth. By scrambling rate λL, it implies after time ∼ λ−1
L the

initial state cannot be recovered via local measurements [206]. Interestingly, just
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as Kolmogorov-Sinai entropy bridges dynamical instability and entropy in classical

systems, the λL is interpreted as information scrambling rate, which is of great

interest [207]. For a classical system, the state of a system (say ϕ(b)(x, t)) is perturbed

infinitisimaly to obtain a copy (ϕ(b)(x, t)) and the decorrelation between the two

systems (a) and (b)

∆(x, t) =
〈∥∥∥ϕ(a) − ϕ(b)

∥∥∥〉 (4.2)

measured with suitable norm ∥·∥ within a thermal ensemble are termed as the

decorrelators.

In particular, the classical decorrelators are an invaluable diagnostic

for understanding the butterfly effect [54, 187–189] in non-integrable, chaotic,

classical many-body systems through the measurement of λ and vB. Since by

construction, these OTOCs or decorrelators provide a unified framework to bridge

thermodynamic variables (e.g., temperature T ) with the butterfly effect, they are a

unique prescription to connect many-body chaos with the foundations of statistical

approaches in both classical and quantum many-body systems. The most striking

example of this is that while for quantum systems, λ ≤ T/ℏ, limiting the rate of

scrambling [60]), the analogous conjecture for classical systems is λ ∝
√
T at low

temperatures [60, 208].

For classical systems, our recent understanding of spatio-temporal chaos

through decorrelators stems primarily from spin systems [56, 57, 190] . However,

these ideas have not been applied for the most ubiquitous of chaotic, nonlinear,

many-body systems: Turbulent flows. This is because, unlike the spin-systems,

turbulent flows, governed by the viscous Navier-Stokes equation, are an example of

a driven-dissipative system without a Hamiltonian or a statistical physics description

in terms of thermodynamic variables. Therefore, we look for variations of the

Navier-Stokes equation which, whilst preserving the same non-linearity of the viscous

Navier-Stokes equation, nevertheless has a a Hamiltonian structure, resulting in a

chaotic, thermalized fluid.
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Such a prescription naturally leads us to the celebrated inviscid,

three-dimensional (3D) Euler and one-dimensional (1D) Burgers equations,

but retaining only a finite number of Fourier modes through a (Fourier)

Galerkin-truncation [36, 38–40]. Such a projection of the inviscid, partial differential

equations on to a finite-dimensional sub-space ensures not only a conservation of

momentum, energy and phase space, but it guarantees chaotic solutions for the flow

field which thermalize, as we saw in Chapter 1. Hence, this subtle, but significant,

modification to these equations, while preserving the essential non-linearity, allows

us to move away from the dissipative to thermalized solutions with an energy

equipartition and Gibbs distribution of the velocity field. With mean momentum

zero, and net kinetic energy as the only non-zero conserved quantity, these fully

thermalized fluids, in d−dimensions, are characterized by an energy equipartition

and velocity fields with a Gibbs distribution:

P [v] dv =
(
β

4π

)d/2

exp
(

−β|v|2

2

)
dv (4.3)

Refer to figure 4.2 for an illustration of the PDF . Here β is the inverse

temperature of the system, in the thermodynamic limit1, related to conserved energy

E as:

E = 1
V

∫
D

dx
1
2 |v(x)|2 (4.4)

= 1
2
〈
|u|2

〉
= d

2β (4.5)

Hence, different thermalized configurations are realizations from a

thermodynamical canonical ensemble with a prescribed temperature T . Thus for

an ideal Galerkin-truncated hydrodynamical system in the asymptotic thermalized

state, the energy spectrum will behave as:

E(k) =
∑

k−1/2⩽|k|<k+1/2

|v(k)|2 ∼ kd−1 (4.6)

In the thermalized state, there is no clear cascade of energy, hence, no

inertial range, unlike the driven-dissipative turbulent flows. The dynamics in a
1Pertaining to large, but, finite degrees of freedom in the thermalized fluid
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thermalized fluid hardly resembles anything to actual hydro-dynamical behaviour.

The Galerkin-truncated system cannot characterize any structure smaller than

the size ∼ 1/kG in real space. Nevertheless, the dynamics shares similarity with

the governing PDE . Furthermore, the equilibrium statistics of such systems are

well-known, and as a dynamical system with large degrees of freedom, the thermal

dependence of the largest Lyapunov exponent is what we are after in this study.

Consider the 3D case, in a completely thermalized state, the statistics

(taken over ensemble of such systems) becomes stationary in time that is d ⟨·⟩/dt =

0. In addition, the statistics is homogeneous and isotropic allowing the two-point

correlation Dij (x, r) = ⟨ui(x) · uj(x + r)⟩ to be written as:

Dij(r) =
∑

k
eι̇ k·r ⟨vi(−k)vj(k)⟩ (4.7)

In a thermalized system, all the degrees of freedom {vi(k)} are

uncorrelated in the statistical sense.

⟨vi(−k)vj(k)⟩ = 1
2Pij(k)

〈
|v(k)|2

〉
(4.8)

By means of equipartition, every degree of freedom |v(k)|2 has a variance

independent of k. In the thermodynamic limit of N → ∞,

Dij(r) = 1
2
∑

k
eι̇ k·r Pij(k)

〈
|v(k)|2

〉
(4.9)

= 1
3N

3
Gδijδ(r)

〈
|v(k)|2

〉
= 2E

3 δijδ(r) (4.10)

where N3
G is the total no of Fourier modes in the summation, hence degrees of

freedom. Thus even the neighbouring points are uncorelated and the system

becomes delta corelated (in this sense) in space in the thermodynamic limit of

a fully thermalized regime, and hence termed to have no structure in it. So a

thermalized fluid is thus not dissimilar to that of correlated many-body condensed

matter systems (e.g., frustrated magnets) where the microscopic memory does not

dictate the dynamical correlations.
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In this Chapter, by using this fascinatingly rich model of thermalized

fluids, we derive λ ∝
√
T and demonstrate a possible universality of the

nature of many-body chaos without an apparent (weakly interacting) quasi-particle

description, and hence a Kinetic Theory. Equally interestingly, we show how

decorrelators sense the emergent dynamical structures of the fluid velocity field

which provides an elegant way to bridge the ideas of many-body chaos with the

foundational principles of statistical physics: Thermalization, equilibration and

ergodicity.

Now we formally define the thermalized fluids used in this study. Within

the space of 2π periodic solutions to the Euler equations, an expansion of the

solution in an infinite Fourier series allows us to define the Galerkin projection

as a low-pass filter PkG which sets all modes with wave vectors |k| > kG, where kG

is a positive (large) integer, to zero via PkGu(x) =
∑

|k|⩽kG

eι̇ k·x v(k). The truncation

wavenumber kG sets the number of Fourier modes ∼ N3
G kept and is a measure of the

effective number of degree of freedom as well as providing a microscopic (ultraviolet)

cut-off for the system. These definitions, without the loss of incompressibility, lead

to the Galerkin-truncated Euler equation for the truncated field, written, most

conveniently, component-wise in Fourier space:

3D: dvi(k, t)
dt = ι̇klPkG

Pij(k)
∑

p+q=k
vl(q, t)vj(p, t)

 (4.11)

Equation (4.11) is naturally are augmented with the initial conditions u(x, 0) =

u0,∇ · u0 = 0 and the truncation constraints |q|, |p|, |k| ⩽ kG.

The same definitions of Galerkin-truncation can be extended mutatis

mutandis to one dimension, without the additional constraints of incompressibility or

pressure gradients, to similarly project the 1D inviscid, 2π-periodic Burgers equation

onto the subspace spanned by kG:

1D: dv(k, t)
dt = ι̇kPkG

 ∑
p+q=k

v(q, t)v(p, t)
 (4.12)
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With initial conditions u(x, 0) = u0(x), the Galerkin-truncated Burgers equation

also imposes the constraint |q|, |p|, |k| ⩽ kG from the truncation.
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Figure 4.1: Velocity plots of the Galerkin-truncated Burgers equation (blue)
and the entropy solution u (black) at time t = 10.0 for an initial condition
(red). (Upper Inset) Log-log plots of energy spectrum for the truncated (blue
circles) and un-truncated (black squares) equations showing E(k) ∼ k0 and k−2

scaling respectively. (Lower Inset) The kinetic energy spectrum of a partially (A)
and fully (B) thermalized 3D fluid obtained from the Galerkin-truncated Euler
equation, with the k2 scaling is indicative of energy equipartition.

4.2 Decorrelators in Thermalized fluid

We perform direct numerical simulations (DNSs) of these Galerkin-truncated

3D Euler and the 1D Burgers equations by using a standard pseudo-spectral method

with a fourth order Runga-Kutta algorithm for time marching. These equations

are solved on a 2π periodic domain with N3 (for the 3D) and N resolution points

(for the 1D), with a truncation wavenumber kG which results in NG
3 < N3 (or,

in 1D, NG < N) number of degrees of freedom. In our numerical simulations, we

have explicitly checked that the kinetic energy is conserved and within a finite time

energy equipartition is reached.
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Figure 4.2: Probability distribution functions of the x-component of the
thermalized velocity field, obtained from simulations of the Galerkin-truncated
3D Euler equation, and (inset) the 1D Burgers equation for different energies.
The dashed lines denote a fit to the corresponding Gibbs distribution.

The inviscid Euler equation in 3D, with any prototypical large scale initial

condition depicting actual fluid will allow cascade of energy to smaller and smaller

scales, corespondingly to higher wavenumbers in spectral space. In a truncated

system, the cascade is soon interrupted by the absence of higher wavenumbers than

kG. Heuristically, this leads to accomodation of energy near the boundary |k| ≲ kG,

creating a fictitious batch. Acting like a two-fluid model [38], partially thermalized

modes near kG and fluid-like modes interacts, resulting in a net transfer of energy

from the latter to the former [36]. In the limit of t → ∞, the whole system is

thermalized.

Although the exact form of initial condition doesn’t play any role in our

study. Nevertheless, the direct numerical experiments on the thermalized states

described in this Chapter are generated from an exponentially decaying initial

condition in spectral space, having a energy spectrum of the form,

E(k) = A0 k
sexp

[
−k2

ks
0

]
(4.13)

with s = 2 or 4. Changing the numerical value of the factor A0 allows us to
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generate thermalized fluid with different energies E and hence different temperatures

T in the range 0.125 ≤ T ≤ 4. In our simulations, we use different resolutions

N3 = 963, 1283, 1603, 1963, 2243 and 2563 to generate different values of the NG. Our

time-step for integration, depending on kG and E, varies as ∆t ≲
√

3
2E

2π
N

with a CFL

(Courant-Friedrichs-Levy) number 2 greater than 10 and the truncated equations

were integrated up to a time t ≈ 10 to generate fully thermalized solution vth which

provides the starting point to generate systems a and b used in our calculations of

the decorrelator Φ(t).

A fully thermalized solution would imply that the energy spectrum to

behave as E(k) ∼ k2. Although it takes infinite time to obtain such a fully

thermalized state, it is sufficient if most of the modes are thermalized for carrying

out the numerical studies with it. The large scale structures (small modes),

has large turn-over time scales and so they tend to be more stable in the time

scale of thermalized modes. This can be associated with the permanence of large

eddies.. These small unthermalized modes, superimpose a large scale flow over

the thermalized noise. A degree of thermalization can be quantified by defining

γ = Eth/E ≪ 1, where Eth is the energy is the thermalized modes, and in the

limit of γ ≃ 1 the system can be considered to be fairly thermalized. The study

of many-body chaos is done in systems with such thermalized initial conditions

obtained in this method, below shown in figure 4.1 is one instance.

For the 1D truncated Burgers problem, we choose an initial condition v0 =

A0[sin x+sin(2x− 0.2)+sin(5x− 0.4)+sin(7x− 0.5)]; the precise functional form of

the initial conditions is immaterial with the total conserved momentum
∫ 2π

0 v0 dx =

0. Further (as in the 3D problem), changing the numerical constant A0, allows us to

change the energy E = 1
2π

∫ 2π
0 v2

0dx = 2A2
0 of our system and thence the temperature

2 ≤ T ≤ 18. Given the lower computational cost for solving the 1D system, we were

able use a much larger number of collocation points N = 214 to generate systems

with larger values of kG = 1000 (δt = 10−5) and 5000 (δt = 10−6) leading to values

of NG much larger than those accessible to 3D simulations.
2CFL number is the ratio of numerical time step and time required for a particle to cross a

computational grid.
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These thermalized fluids sets the platform for addressing the primary

question of the growth of perturbations in a classical, chaotic system. To do this,

an arbitrary realisation of the thermalized solution va
0 = vth is taken and a second

copy is generated added with a perturbation in velocity field. For the 3D case,

the perturbation is chosen as

vb
0(x) = va

0(x) + δv0(x) (4.14)

v0(x) = ∇× A, Ai = ϵ
√
Er0 exp

(
− r2

2r2
0

)
êi (4.15)

characterized with ϵ ≪ 1 and centered at the origin, that falls off rapidly with

distance r (within the reference scale r0 ≪ 2π) making it spatially localized. To

underline the universality of our results, the perturbation is seeded entirely in Fourier

space for the 1D Burgers case. As before, from the thermalized solution (in Fourier

space) v̂th, defining a control field v̂a
0 = v̂th and a perturbed field,

v̂b
0 = v̂a

0 (1 + ϵ δk,kp) (4.16)

with large values of the perturbation wave-number kp to generate de-localized

small-scale perturbations in the systems. It is important to stress that given the seed

perturbation is localized in Fourier space in 1D (and hence de-localized in physical

space), the spatial spread of perturbations, which is relevant and studied for 3D

fluids in this Chapter, remains outside the scope of analysis here.

To perturb the system a, we introduce, for the 3D fluid, a perturbation of

strength ϵ = 10−6; in the 1D problem, we use ϵ = 10−5 and 10−4. Furthermore, since

the perturbation, for the 1D problem, is introduced at wavenumber kp in the Fourier

space, we choose different values of kp = 500, 900, 2500 and 4000 to demonstrate

the insensitivity of our results to the precise (small) scales of perturbation (and

ϵ). Now we have to quantify the decorrelators for both 3D and 1D systems,

from which the Lyapunov exponents can be extracted and studied. Evolving the

Galerkin-truncated Euler equation (4.11), independently for the two copies, with

initial conditions va
0 and vb

0 to obtain (thermalized) solutions va(x, t) and vb(x, t)
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Figure 4.3: Representative plots of the difference field |δv(x, t)|2, along the
z = 0 plane of a 3D thermalized fluid (with energy E = 2.0 and a perturbation
amplitude ϵ = 10−6 at (a) early (t = 0.4) and (b) later (t = 0.7) times. The
inset of panel (a) shows the same early time data, with a magnified scale,
to reveal a somewhat self-similar spatial structure that arises from non-local
interactions [209].

and thence obtaining the difference field

δv(x, t) = vb(x, t) − va(x, t) (4.17)

Since initially this difference field δv(x, 0) ≡ δv0 was spatially localized and

vanishingly small, its subsequent spatio-temporal evolution reflects how the butterfly

effect manifests itself in such nonlinear, many-body chaotic systems. Fundamentally,

this is of course a question of how systems a and b decorrelate and one that is

intimately connected with questions of ergodicity and thermalization. A rigorous

assessment would be to construct the spatially resolved decorrelator of the form

∆2(x, t) =
〈1

2 |δv(x, t)|2
〉

(4.18)

where ⟨·⟩ would denote averaging over the configurations taken from the thermalized

ensemble and the point x measured from the origin where the perturbation is seeded

at t = 0. In figure 4.3 we show the spatial profile (in the z = 0 plane) of |δv(x, t)|2

for a particular initial realisation of systems a and b at two different instants of

time. While at very early times t = 0+, in panel (a), |δv(x, t)|2 remains small but

diffuses instantly and arbitrarily, a more striking behaviour is seen at later times
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(panel (b)) when the spatial spread is controlled by the strain in the velocity field as

we shall see below. It is likely that that the initial, instantenous spread is a result

of the non-locality (in space) of the 3D fluid because of the pressure term; however

since the Galerkin-truncation also introduces an additional non-locality, the precise

mechanism for the initial spread is hard to pin down.

Furthermore before proceeding further, performing an ensemble average

over several realization is a exceptionally difficult task for a three-dimensional

system owing to the limited computational power available to us. But, since the

thermalized fluid is statistically isotropic, the decorrelator ∆(x, t) remains a function

of r = |x|. Hence exploiting this to our advantage, we construct a more tractable

angular-averaged decorrelator

ϕ(r, t) = 1
4πr2

∫
|x|=r

dx |δv(x, t)|2 (4.19)

It is vital to note that given the non-locality of the 3D Euler equation owing from

the pressure, these systems differ crucially from spin systems in the absence of pilot

waves and a distinct velocity scale vB akin to a butterfly speed [55, 56]. The lack of

a sharp wave-front and self-similarity is evident from figure 4.3. Therefore to track

the temporal evolution of the decorrelator we find it convenient to introduce the

space-averaged global decorrelator

Φ(t) = 1
V

∫
dx |δv(x, t)|2 (4.20)

which then serve as an excellent diagnostic to focus purely on the temporal aspects

of this problem. For the case of 1D Burgers equation, similar to the 3D case, the

two systems, v̂a
k and v̂b

k , are evolved independently and the relevant Fourier space

decorrelator
∣∣∣∆̂k

∣∣∣2 is defined as

∣∣∣∆̂k

∣∣∣2 =
〈∣∣∣v̂a

k − v̂b
k

∣∣∣2〉 (4.21)

measuring the mode-by-mode spread of the perturbation as a function of time.
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4.3 Thermal Bound of Lyapunov exponents

Although we are dealing with non-linear equations for hydrodynamics

which do not yield easily to an analytical treatment, it is tempting to theoretically

estimate the functional dependence of λ on T and NG. In order to do so, it is essential

to study the the growth of these decorrelators, given that we know the statistics of

the thermalized solutions. Starting with the 3D case, since solutions a and b both

satisfy the Galerkin-truncated, three-dimensional (3D) Euler equation. Therefore

the evolution equation for the difference field δv(x, t) = vb − va, component-wise

is given by:

∂tδvi (x, t) = −∂j

[
va

i δvj + va
j δvi + δviδvj

]
+ ∂3

ijl

∫
D
dx′ G(x,x′)

[
va

j δvl + va
l δvj + δvjδvl

]′
;

(4.22)

with an initial conditions δv(x, 0) = δv0 and a Green’s function satisfying

∇2G(x,x′) = δ(x−x′). The non-local and convective terms in this equation clearly

suggest that a localized, initial difference δv(x, 0) = δv0, introduced through the

perturbation in b : vb
0 = va

0 + δv0 will de-localize with a spatio-temporal spreading.

However, given the nonlinear nature of this equation, estimating how this happens,

or more specifically, the temporal growth of the decorrelator Φ(t) and thence the

Lyapunov exponent, is a challenge. Since the main question which concerns us has to

do with the short time growth of these decorrelators, when nonlinear terms O(δv2)

can be ignored, a reasonable assumption which can be validated against the data

from our Direct Numerical Simulations (DNSs), we linearize the equation (4.22):

∂δvlin
i

∂t
≈ −va

j

∂δvlin
i

∂xj

− δvlin
j

∂va
i

∂xj

+ ∂T

∂xi

; (4.23)

where, T = 2δ2
ij

∫
dyG(|x − y|)δvlin

j (y)v(a)
k (x) is the non-local (linear) contribution

from the pressure term. It is worth stressing that although we linearize the equation,

it still allows for the spatio-temporal spread of the difference field because of its

non-local nature. The error between the linearized solution δvlin and δv is quantified
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by defining a global relative error:

Γ(t) =
1
V

∫
D
dx

1
2 |δv − δvlin|2

Φ(t) (4.24)

where D is the domain and V the volume of space. The error function Γ(t) will

eventually become O(1) at large times, when the |δv| ∼ |v|. Nevertheless, starting

with the equation (4.22) and taking dot products with δv(x, t) followed by a spatial

integration, we eventually obtain:

Φ̇(t) = − ⟨δviSijδvj⟩ + ⟨∂jWj⟩ (4.25)

Wj = −1
2v

b
j |δv|2 + δvj∂

2
il

∫
D
dx′ (va

i δvl + δviv
b
l )′Gx,x′ (4.26)

and Sij the familiar rate-of-strain tensor 2Sij = ∂iv
a
j +∂jv

a
i for the thermalized fluid.

The second, divergence term in equation (4.26) vanishes however because of periodic

boundary conditions leading to a compact form:

Φ̇(t) = − ⟨δv · S · δv⟩ (4.27)

At the early times, expecting an exponential growth of the Φ(t),

equation (4.28) should lead us to a Lyapunov exponent λS:

λS(t) = − ⟨δv · S · δv⟩ /Φ(t) (4.28)

Further, since the rate-of-strain tensor is diagonalisable in its eigenbasis

with eigenvalues {γi} (satisfying the incompressibility constraint
∑

i

γi = 0 with

extensional γ1 > 0 and compressional γ3 < 0 eigen-directions) we decompose δv in

the eigenbasis of S with (undetermined) components αi along each eigenvector and

re-write the equation (4.27) as

Φ̇(t) = −
3∑

i=1

〈
α2

i γi

〉

= −
3∑

i=1

〈
α̂2

i γi|δv|2
〉
, (4.29)
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where the {α̂i} are the direction cosines of δv along the three eigen-directions.

Equation (4.29), which formally resembles the enstrophy production term for the

Euler equation [210, 211], is an important result that connects the decorrelator with

the dynamical structures of the velocity field. Keeping in mind that the thermalized

fluid is incompressible, with γ3 < 0 always, and Φ̇(t) being positive at short times, it

seems likely that there must be a preferential alignment of δv with the compressional

eigenvector. This allows us to simplify the equation of motion of the decorrelator,

upto scaling constants

Φ̇(t) ∼ −
〈
α2

3γ3
〉

∼ −γ3Φ (4.30)

with γ3 the average (negative) eigenvalue along the compressional direction. The

linear theory developed above is not just as useful to predict the nature of

decorrelators at early times, but they are indispensable to estimate the Lyapunov

exponents and their dependence on both temperature T and degrees of freedom of

the system NG.

For the 3D thermalized fluid, the linearized theory as summarized in

equation (4.30) leads to the following bound on the growth of the decorrelator:

〈
−

3∑
i=1

γiα
2
i

〉
⩽
〈
−γ2α

2
2

〉
+
〈
−γ3α

2
3

〉
<
〈
−γ3

(
α2

2 + α2
3

)〉
, as − γ2 < −γ3

<
〈
−γ3|δv|2

〉
< −2γ3Φ (4.31)

Hence the Lyapunov exponent is bound from above by λ < −2γ3. In

order to uncover the exact dependence of λ on T and NG, we exploit the fact that

the linear theory helps us to associate the Lyapunov exponent with the eigenvalues

of the strain tensor. Hence, the statistics of this tensor, which depends only on the

properties of the velocity field of the thermalized fluid, determines the functional

form of λ. The average γ3 can be computed if the joint probability distribution

of {γi} is known. Since Tr [S] = 0, the second invariant would be Tr [S2] hence
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γ3 ∼
√

⟨Tr [S2]⟩.

〈
Tr
[
S2
]〉

= ⟨SijSij⟩

≈
∑
k,k′

−kik
′
j ⟨v̂i(k)v̂j(k′)⟩

≈ E

N3
G

∑
k
k2 ≈ EN2

G (4.32)

leading to λ ∼ NG

√
T . Given the relative analytical simplicity of the 1D system,

we construct the equation of motion of |∆̂k|2 and derive an exponential growth of the

decorrelator associated with a Lyapunov exponent λ. The theoretical calculations

for the 1D model are not only consistent with the more complex 3D system but also

provide, as we see below, a more rigorous insight into how the Lypunov exponent

scales with the thermodynamic variable of temperature T and the degrees of freedom

NG of our system. Since both fields a and b satisfy the Galerkin-truncated Burgers

equation, we can write down the evolution equation:

∂∆
∂t

+ PkG

[
∂∆vth

∂x
+ 1

2
∂∆2

∂x

]
= 0; (4.33)

with initial conditions, most conveniently defined in Fourier space, as ∆̂k(t = 0) =

ϵ0v̂
th
0 δk,kp and the projector PkG constraining the dynamics on a finite dimensional

subspace with a maximum wavenumber kG and NG degrees of freedom. At short

times, we linearize (for the same reasons as outlined for the 3D thermalized fluid)

by dropping the quadratic non-linearity of ∆ and obtain estimates, made precise in

the next section, of an exponential, k-independent growth of |∆̂k|2 consistent with

our findings for the Euler equation. For the 1D problem, a similar estimate for the

Lyapunov exponent on the energy and degrees of freedom NG is obtained by simpler

manipulations of the linearized evolution equation for the decorrelator |∆̂k|2:

∂|∆̂k|2

∂t
−

√
T

NG

NG∑
q=1

q
[
∆̂q∆̂−k + ∆̂−k∆̂−k−q

]
= 0. (4.34)

Assuming that at short times ∆̂q∆̂k remains spectrally flat (later confirmed

numerically), i.e., ∆̂q∆̂k ∝ |∆k|2, up to some undetermined numerical constant.

Hence, and by using the identity ∑NG
q=1 q ≈ N2

G (for large NG), we obtain (where C
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Figure 4.4: Semi-log plots of the decorrelators ϕ(r, t) (for E = 1.0)) and (lower
inset)

∣∣∣∆̂k

∣∣∣2 (for E = 2.0) for a 3D and (lower inset) 1D thermalized fluid,
respectively showing an initial exponential growth and eventual saturation. The
dashed lines, which do not saturate, are from the linearized theory are in excellent
agreement with data from our DNSs at early times. (Upper inset) Semi-log (left
y-axis) plot of the averaged decorrelator Φ(t) (for the 3D thermalized fluid) along
with results from our linearized theory (dashed line). The Lyapunov exponent
λ, extracted from Φ(t), shown as dash-dot horizontal line, agrees well with the
one λS predicted from our linearized theory (right y-axis).

is a numerical constant) |∆k|2 ∝ eCNG
√

T t and thus, just like for the 3D thermalized

fluid, λ ∼ NG

√
T . With these theoretical insights presented in the

above section for both the 1D and 3D systems, we test them against the results

from our numerical simulations. In the figure 4.4 we show representative

results for the decorrelators ϕ(r, t) (and Φ in the upper inset) in 3D Euler and

|∆̂k|2 for the 1D Burgers (lower inset) as a function of time on a semi-log scale.

The symbols (for different values of r and k) are results from the full nonlinear

DNSs while the dashed lines correspond to the decorrelators obtained from the

effective linearized equations for the difference fields. Consistent with our theoretical

estimates described above, the decorrelators from the full, nonlinear DNSs (shown

by symbols) grow exponentially, signifying a positive Lyapunov exponent, before
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eventually saturating (as the two systems decorrelate) to a value set by the energy

of the system. In the figure 4.4 (inset) shows plots of the decorrelator obtained

from our linearized model (Eqs. (4.23) and (4.34)), shown as dashed lines; the

agreement in the exponential growth phase with the decorrelator obtained from the

full DNSs at the early-time is remarkable. However the approximations which go

into the linear theory—dropping of the quadratic term—fails at later times. Hence,

while the actual decorrelator measured from simulations of the full nonlinear system

saturates, with the Φ and |∆̂k|2 to a value equal to 2E and 2E/NG respectively, the

one obtained from the linear theory continue to grow exponentially, as they are

insensitive to the role of non-linearities in the system. The error in the linearized

decorrelator, for the 3D case, defined in the equation (4.24) is shown in the figure 4.6,

the exponential growth regime Γ ∼ 10−4 and reaches O(1) at times when the Φ(t)

(or ϕ(r, t)) obtained from DNSs start to saturate. The linear theory of course fails

in this saturation region as the approximations leading upto it no longer holds as

⟨va · vb⟩ = 0 and |δv| is of the same order as the root-main-squared velocity ∼
√
E

of the thermalized fluid. We will soon return to the question of time-scales which

determine this saturation.

Our direct numerical simulations (DNSs) of the truncated 3D Euler

equation show strong evidence that the difference fields preferentially grow, at short

times, along the compressional eigen-direction (i = 3) of the thermalized fluid,

establishing a validity of the simplification in equation (4.30). Theoretically, this

claim of preferential alignment is hard to prove exactly. However, we are able

to construct from our numerical data the probability distributions of the αi, and

shown in the figure 4.5 for all three eigen-directions and find that the conjectured

preferential alignment, namely that the sum in the right hand side of equation (4.28)

is dominated by γ3 < 0 leading to Φ̇ > 0, holds.

Finally, we confirm the validity of the equation (4.27) by showing in

the upper inset of figure 4.4, where the agreement between λS(t) (defined in

equation (4.28)) and the Lyapunov exponent λ extracted from the exponential

growth of decorrelator Φ(t) measured. The agreement between the two is almost
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Figure 4.5: The probability distribution of the components α̂2
i for the three

eigen-directions, clearly suggests the preferential alignment along the direction
of compression.
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Figure 4.6: Error between the non-linear decorrelator and the linearized
decorrelator for the 3D thermalized fluid.

perfect at short times before λS(t) decays to zero as the decorrelator saturates.

This inevitably leads us to central question of this work: How fast do perturbations

grow in a classical, chaotic system and how does it depend on the temperature T as

well as the number of modes, NG? Furthermore is the scaling behaviour of λ really
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universal?

Although we are dealing with non-linear equations for hydrodynamics

which do not yield easily to an analytical treatment, an extensive analysis of the

linearized equations (4.23) and (4.34) for both sets of the decorrelators—Φ(t) and

|∆̂k|2—show that under very reasonable approximations, the Lyapunov exponents

λ ∝ NG

√
T . Whereas for the Euler fluid this scaling is a direct result of the statistics

of the strain-rate-tensor which determines the behaviour of Φ(t), the analogous result

for the 1D system is arrived at by straightforward algebraic manipulations, factoring

in the statistical fluctuations, of the equation governing the evolution of |∆̂k|2.

This theoretical prediction is easily tested from measurements of the

Lyapunov exponent from DNSs of the full non-linear 3D Euler and 1D Burgers

equations. From plots such as those shown in figure 4.4 we extract the mean

Lyapunov exponent λ and its (statistical) error-bar, and examine its dependence

on temperature T (and NG) by changing the magnitude of the initial conditions

and hence the initial energy or temperature. Surprisingly, λ measured through such

decorrelators are independent of r or k, as was already suggested in figure 4.4.

In figure 4.7, we show a unified, with data from 3D Euler and 1D Burgers

simulations, log-log plot of all the rescaled Lyapunov exponent λ/NG measured—for

different strengths and scales of perturbations and resolutions NG—as a function

of temperature T . The collapse of the data on the dotted lines, denoting a
√
T

scaling, shows, beyond any doubt, that the many-body chaos of such thermalized

fluids is characterized by the behaviour λ ∝ NG

√
T . It is worth stressing that these

DNS results for the 3D Euler equations makes the theoretical bound sharp. Also

in the figure 4.10 (inset), results from our DNSs confirming the bound derived in

equation (4.31) and the scaling relation in equation (4.30), as we find λ ≈ −0.62γ3.

This concretely connects the straining of the flow-field with the Lyapunov exponent.

While we do understand why and at what time scales tsat the decorrelators of

thermalized fluids saturate, as in figure 4.4, it still remains to be understood how

they approach the saturated value. To understand this for the 3D thermalized fluid,

for simplicity, we define a normalized decorrelator Φ(t) = Φ(t)
2E

. Given that the only
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Figure 4.7: Log-log plot of the rescaled Lyapunov exponents λ/NG versus the
temperature T for the 3D (axes in red) and 1D (axes in blue) thermalized fluids
corresponding to different values of ϵ, NG and, for the 1D fluid, kp. The dashed
line with a

√
T scaling confirms our theoretical prediction.

time scale in the problem is the inverse of the Lyapunov exponent, we construct the

following empirical form for Φ

Φemp(t) = (1 + exp[−λ(t− tsat)])−1 (4.35)

with a saturation time-scale tsat ∼ 1/λ, but found more precisely by fitting the

data from our simulations. In figure. 4.8 we show a representative plot illustrating

how the empirical form approximately fits the data. While the functional form of

the decorrelator Φ(t) defined above is purely heuristic it does serve to underline

the fact that the nature of many-body chaos is determined solely by the Lyapunov

exponent. Non-locality is inherent in 3D thermalized flows due to the pressure term

as well as Galerkin-truncation. Hence it allows the perturbation seeded locally at

t = 0 to affect the evolution of thermalized velocity everywhere. This is already seen

in equation (4.22) which shows that at t = 0+, at spatial points far from the center

of perturbation, the growth of δv(x) is essentially triggered by the non-local integral
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Figure 4.8: A representative plot of the decorrelator Φ(t) for a 3D thermalized
flow (E = 1) and the empirical form Φemp(t) illustrating the approximate
agreement between the two.

term. The subsequent growth of the difference field is then through its coupling with

the rate-of-strain tensor.

All of this suggest that the spatially resolved decorrelator ϕ(r, t) will not

have a wavefront which propagates (radially) with a finite butterfly speed. On the

contrary, as was also suggested in the inset of the figure 4.3(a), one should expect a

self-similar spatial profile for decorrelator, i.e., ϕ(r, t) ∼ r−α.

In figure 4.9, we see clear evidence of ϕ(r, t) ∼ r−α, with α ≊ 4, for in

the range 0 ≪ r ≪ π (where π is half the system size since the perturbation is

seeded in the middle of a 2π3 cubic box). A further consequence of this (as seen

in Fig. 4.9, inset) is that the isocontours of the decorrelator (measured through a

suitable threshold value ϕ0) are spread in space-time as t ∼ ln r. While we do not

have a way of obtaining the exponent α ≊ 4 analytically, the constraint that Φ(t) =∫ L

0
drr2ϕ(r, t) must be bounded (from above) suggests that α > 3 which is consistent

with what we measure in our data. This, to the best of our knowledge, is the first

reported result, and confirmation of what has been conjectured earlier [60, 208]

and demonstrated for classical spin systems [56], that λ ∝
√
T in a chaotic and
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Figure 4.9: The compensated decorrelator ϕ(r, t) exp(−λt) for different values
of t (E = 1); the grey dashed line shows a scaling r−4 is an illustration of the
self-similar nature of the spatial spread of the decorrelations. This is confirmed
(inset) in the space-time plot of the isocontours of the decorrelator which suggests
a spread of the form t ∼ ln r.

non-linear, many-body classical system obeying the equations of hydrodynamics.

Remarkably, we also find strong evidence that the Lyapunov exponent scales linearly

with the degrees of freedom NG in such extended systems and is truly independent

of both the spatial dimension and compressibility of the flow.

Given the association of many-body chaos with issues of ergodicity and

equilibration in classical statistical physics, how well do these measurements of λ

relate to the (inverse) time-scales associated with the loss of memory? The simplest

measure of how fast a system forgets is to define the ensemble-averaged normalized

autocorrelation function:

C(t) = 1
2E

〈
vth(t) · vth

〉
(4.36)

Analytically for short times t≪ 1, by Taylor expansion upto O(t2)

C(t) =
(

1 + 1
⟨v2⟩

d
dt
〈
v2
〉

+ 1
2t

2 ⟨v(0) · ∂2
t v⟩

⟨v2⟩

)

= 1 − t2

2τ 2 , τ 2 =

〈
(∂tv)2

〉
⟨v2⟩

(4.37)
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Figure 4.10: A representative plot of the autocorrelation function for a (A) nearly
and (B) completely thermalized 3D fluid along with the theoretical Gaussian
prediction. (Lower inset) A magnified view of the same shows that for a fluid
which is not completely thermalized, C(t) falls off to zero much more slowly.
(Upper inset) Representative plots of the decorrelation time τ and the average
(negative) eigen-value corresponding to the compressional direction versus λ.

to extract a autocorrelation time τ . Since the velocity can be considered as a time

signal with a power spectral density of a white noise with a ultravioilet cutoff τ−1

in the frequency domain, then by Wiener-Khincin theorem, the auto-correlation

function becomes a Gaussian with a timescale τ .

C(t) = exp
(

− t2

2τ 2

)
(4.38)

The linear relation τ ∼ 1/λ is clearly shown from our measurements in

the upper inset of figure 4.10. This association of the time scales of the dynamic

correlator with the Lyapunov exponent provides a firm foundation to interpret the

salient features of classical many-body chaos in terms of principles of statistical

physics: Ergodicity and thermalization.
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The relative generality of the OTOCs and cross-correlators naturally lead

to questions of connecting the macroscopic variables with the scales of chaos in

the most canonical of chaotic systems: Those described by non-linear equations of

hydrodynamics. Here we provide the first evidence of the temperature dependence of

the Lyapunov exponent in (continuum) classical non-linear hydrodynamic systems

and show its robustness with respect to spatial dimensions and compressibility

effects. It is important to underline that the many-body chaos and the estimate

λ ∼ NG

√
T is really an emergent feature of a fluid which is thermalized. We checked

this explicitly by measuring the decorrelators in the flow before it thermalizes and

found, despite the conservation laws still holding, no associated exponential growth

and spread of the difference field. It is also worth stressing that the λ that we

measure should be identified with the largest Lyapunov exponent of the system and

that the time scales at which the decorrelators saturate is a useful estimate of the

time taken to thermalize and equilibration.

Before we conclude, we note that that the temperature-dependence of λ is

consistent with recent results for classical spin liquids without quasi-particles [56,

57, 190, 212] as well as more general dimensional arguments based on phase-space

dynamics [208] of classical many-body systems. In this regard we note that in

classical spin-systems [57], the existence of low energy quasi-particles seems to

reduce the chaotic behaviour of the system (λ ∝ T a, a > 0.5). While more

detailed and theoretical investigation of these features, as well as, how far these

ideas are relevant for the more spontaneously stochastic Navier-Stokes turbulence

are naturally interesting future directions, this behaviour of a butterfly effect for

classical, non-linear, hydrodynamic systems seems to be a robust and generic feature.

While it is probably true that the exact nature of the dependence of

the Lyapunov exponent on the temperature (or the energy density) and number

of degrees of freedom should vary from system to system, the concrete evidence

we provide of their inter-dependence opens new avenues and questions for the

community. In particular, these studies serve to demonstrate the dependence of

signatures of spatio-temporal chaos on the thermodynamic variables as well its
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relation with the transport properties.
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Chapter 5

Local Nature of Multifractality in

Turbulence

A central scaffold for interpreting and describing out-of-equilibrium

pattern forming processes [213–216], multifractality has inevitably woven itself

into turbulence theory [91, 217, 218], phenomenology [219] and data analysis [220].

The Frisch-Parisi multifractal model [67, 221] indeed remains the most powerful

theoretical justification for the statistical properties of turbulence like the

anomalous scaling of correlation functions of velocity differences [67, 222–226],

strongly non-Gaussian distributions of velocity gradients [227–229] and fluid

accelerations [230]. Constructed on the premise of an intermittent, infinite Reynolds

number flow with a form of local scale-invariance under the transformations r → λr,

u → λhu and t → λ1−ht [231], it provides corrections to the Kolmogorov mean

field theory in a way which is consistent with measurements made in experiments

and direct numerical simulations (DNSs). The key ingredient in the construction of

such theories is the assumption that intermittency effects lead to a range of Hölder

exponents h ∈ [hmin, hmax] for the (turbulent) velocity field u(x). The simplest

interpretation for these exponents relate to the (inertial range) scale-invariance in

turbulence of the longitudinal velocity difference δur ≡ ⟨u(x + r) − u(x)⟩ ∼ rh [67].
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These ideas, when applied to the intermittent energy dissipation field ϵ(x),

leads to the remarkable result that the total dissipation in d-dimensional “boxes”

of size r, denoted Er, scales as a fractal power-law with a variable scaling exponent

α as Er ∼ rα−1+d [67, 232–234]. This is a direct consequence of the multifractal

interpretation that despite the three-dimensional embedding dimension, the energy

dissipation—which is a culmination of the energy cascading process—accumulates

in different, entangled fractal subsets with unique dimensions. It is then possible to

associate the fractal dimension fα of these subsets with exponents lying between α

and α + dα yielding the well-known singularity or multifractal spectrum fα − α.

The framework of these ideas are a powerful tool bridging the conceptual

picture of the energy cascade with intermittency of the dissipation field. Indeed, it

is easy to show that α = 3h is exactly the same (arbitrary) scaling exponent which

leaves the Navier-Stokes equations invariant under its rescaling transformations [67].

Furthermore, within the Kolmogorov non-intermittent phenomenology, there is a

single exponent h = 1/3 (i.e. α = 1) [86, 231] which leads to the familiar 2/3 and 5/3

laws of turbulence. However, obtaining the measured exponents and the corrections

to the Kolmogorov prediction from the Navier-Stokes equation still remains elusive.

This singularity spectrum though remains a central pillar in modern

statistical theories of fully developed turbulence. Beginning with the earliest

measurements of Meneveau and Sreenivasan [232–234], the robustness of the

multifractal nature of the kinetic energy dissipation field has never been in question.

And yet, all these measurements pertain to the statistics of the entire field (or signal).

This is somewhat surprising because implicit in the ideas of multifractality is the

spatial fluctuation of the scaling exponents over the flow field.

We arrive here at an impasse. The global analysis tends to suppress an

unremarked symptom of its construction: Even if a measure is multifractal only

in small localized patches, one is bound to find a broad fα curve representing the

entire data. In Appendix A.1 we give a brief discussion on how local multifractal

nature dominates the global results. Is it possible then to actually probe the
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Figure 5.1: Pseudo-color plot of dissipation ϵ at a representative cross-section
from the Johns Hopkins isotropic 40963 data. Superimposed on this is a
regular tiling as a pictorial guide to show how the local multifractal properties
are calculated (made with Processing [239, 240]). (Insets) (A) Generalized
dimensions Dq and (B) the singularity spectrum fα − α calculated over the
full 2D cross-section shows the essential multifractal nature of the dissipation
field, consistent with earlier measurements.

multifractal nature of turbulence in a local way, that is, to have estimates of the

spatial dependence of the generalized dimensions Dq(x), the singularity spectrum

fα(x) − α(x) and thence of course the distribution of the Hölder exponents h(x)?

The closest, so far, have been recent attempts [235–238] using wavelet techniques

and local energy transfer concepts to characterize fields similar to the intractable

h(x). While characterizing Hölder exponents point-wise may indeed be difficult, a

local multifractal analysis, keeping the robustness of the Frisch-Parisi formalism,

opens up a way to reveal the crucial underlying variation in multifractality, which

has so far remained uncharted.

5.1 Coarse-grained Local Measurement

In this Chapter, we show how a locally adapted construction of multifractal

measures of turbulence dissipation fields throws up surprises. In particular, we find

that most of the flow is essentially monofractal with an almost delta function for

107



5. Local Nature of Multifractality in Turbulence

fα at α ≈ 1 which corresponds to the Kolmogorov mean field exponent h = 1/3.

The few patches of multifractal behaviour (with broad fα(x) .vs. α(x) curves) are

directly correlated with spatial regions of enhanced dissipation and, by extension,

intermittency. Indeed, a more accurate description of fully developed turbulence

would be intermittent, multifractal islands on a vast and calm Kolmogorovean sea.

Our analysis is based on kinetic energy dissipation fields ϵ(x) ≡ 2νSijSij,

where Sij is the symmetric part of the velocity gradient tensor, obtained

from 3 different direct numerical simulations, with very different (Taylor-scale

based) Reynolds numbers Reλ, of the three-dimensional (3D), triply-periodic,

incompressible Navier-Stokes equation. For the smallest Reλ ≈ 200, we use our

own fully de-aliased pseudospectral code with N = 5123 collocation points and a

constant energy-injection rate on the first 2 shells. For higher Reynolds numbers,

we use publicly available data from the Johns Hopkins Turbulence Database

(JHTD) [241–243] with N = 10243 (Reλ ≈ 433) and 40963 (Reλ ≈ 610). Our

results are consistent across this wide range of Reynolds numbers and independent

of simulations; in what follows, we present converged results, using a 40962 × 192

subset of the 40963 dataset.

Let us first recall how the classical multifractal spectrum for a

d-dimensional dissipation field is constructed. Denoting the average dissipation

on a scale r by ϵr, we construct Nr number of (space-filling) d-dimensional boxes of

size r in the full domain. This allows us to estimate the total dissipation Er ∼ ϵrr
d ∼

rα−1+d within each box. By taking the q−th moment of this and summing over all

Nr boxes one obtains the partition function Zq ≡ ∑
Nr

Eq
r ∼ r(q−1)Dq , where Dq is the

generalized dimension and the following relation holds: ∑
Nr
r(α−1+d)q ∼ r(q−1)Dq .

Further analysis [67, 232] yields the exact relations for the singularity spectrum:

α = d
dq [(q − 1)(Dq − d+ 1)] (5.1)

fα = αq − (q − 1)(Dq − d+ 1) + d− 1 (5.2)

Clearly, within the mean field, monofractal Kolmogorov ideas for 3D turbulence,
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Dq = d = 3 leading to α = 1 (h = 1/3) and fα = d = 3 and thence a δ-function like

fα − α curve.

In figure 5.1, we show a representative plot of a 2D (d = 2) slice of the ϵ field

constructed from the 40963 JHTD data; the insets show the generalized dimensions

Dq and the singularity spectrum fα −α for this slice of data, which is consistent with

results reported earlier [67, 232]: The broad fα curve is the most precise indicator

that turbulence admits a range of scaling exponents and not just the mean field

Kolmogorov exponent α = 1.

However, as is well known—and illustrated in figure 5.1—the dissipation

field is strongly intermittent. It is not immediately obvious, therefore, whether the

fractal sets on which ϵ(x) is distributed are themselves uniform in space. There

might, in fact, be an equally strong variation in multifractality over x, which would

be revealed if it were possible to measure the generalized dimensions Dq(x) and

fα(x) − α(x) locally. These variations would not only help connect the ideas of the

cascade with multifractality but also provide important insights in the detection of

(possible) singular h ⩽ 1/3 regions with anomalous dissipation [17, 244]. Important

and enticing as this question is, the very nature of the multifractal calculation

precludes any possibility of a single point x measurement of such quantities. This

is because at a practical level the partition function Zq(x) must be measured over a

range of scales to extract the generalized dimensions Dq(x) from which follows the

(local) singularity spectrum and scaling exponents.

To circumvent this problem, we develop a tiling approach to allow us to

self-consistently measure the spatial variation in the multifractality of the field.

This is illustrated in figure 5.1 where a (exaggerated) white grid is superimposed on

the 2D slice of the dissipation field, leading to square data-tiles with egde LT (or

cubical divisions used for 3D analysis). We then treat each of these tiles, centered

at x, independently and calculate the multifractal measures in them as one would

ordinarily for the full domain. The size of these tiles was tested in the range between

2η < LT < 16η, where η is the Kolmogorov dissipation scale. Larger tiles, which
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Figure 5.2: (A) Loglog plots of the partition function Zq(x) vs r for q =
−25.5 (solid lines) and q = 25.5 (dashed lines), vertically shifted for clarity,
calculated in randomly chosen spatial locations in data-tiles of size ≈ 10η. (B)
Cumulative distribution function of the Peason correlation coefficient ρ for the
linear-regression fits used to obtain Dq, for q = −25.5 and q = 25.5, over all tiles.

are still smaller than the inertial range, give a wider range of r values over which

to construct Zq(x) while, for an ideal local measure, we would like the tiles to be

as small as possible. However, the lower end of LT is dictated by the constraint

that we need enough points to measure the scaling of Zq(x) unambiguously. At an

operational level, this is not obvious since, unlike the full domain, we have fewer

points within individual tiles on which the measurement can be made.

Calculating the local variation of Dq(x) with q, requires obtaining a clean

scaling of the partition function Zq(x) now measured within the tiles. Thus, in

figure 5.2(A), we begin by showing representative plots of the partition function for

q = −25.5 (solid lines) and q = 25.5 (dashed lines), calculated in three-dimensional

tiles with LT ≈ 10η, at randomly chosen x locations. While this plot already

suggests that a Zq vs r scaling can be realiably obtained, we test the overall accuracy

of doing so in figure 5.2(B) by calculating the cumulative distribution of the Pearson

correlation coefficient ρ for linear-regression fits used to obtain Dq, over all tiles. The

distribution shows a high degree of confidence, with more than 99.98% of tiles with

ρ > 0.98, for both q values.

Clearly, these plots show that a local Dq(x) can be meaningfully extracted

by using the prescription we propose. We found our results to be insensitive to the
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Figure 5.3: We show a cross-section of the D2 field, also known as the correlation
dimension. Our analysis coarsens a 4096 × 4096 × 8 data-slice to 512 × 512
tiles. This reveals a stark variation in D2 over space, which remained hitherto
unseen. Coherent patches of similarly valued regions of D2 are found nestling in
a fluctuating (and non-random) field.

chosen LT , indicating the consistency and convergence of our approach. In what

follows, we report results from a tiling of LT ≈ 10η and carry out the analysis in three

dimensions. Before stepping into spatially varying multifractal spectra, we pause to

look at the special case of Dq for q = 2, also known as the correlation dimension,

that provides a measure of inhomogeneity in a fractal set [92, 245], or simply D2.

Figure 5.3 shows a planar cross-section of the D2(x) field, starkly varying in space,

with sizeable pockets of coherent regions of similarly valued correlation dimensions.

This also shows that the field is far from random, and at some level this is reflective

of the structures in the dissipation field. We wish to underline that our method

allows, perhaps for the first time, to visualize this field, which further opens up

directions to study the structure of these intrinsic, and as yet elusive, features of

turbulence.

The dissipation field of course varies within these tiles, and we find it

useful to keep track, for each tile, of the maximum ϵmax(x), the minimum ϵmin(x)

and mean ϵ(x) dissipation as well as use ∆ϵ(x) ≡ ϵmax(x) − ϵmin(x) as a measure

of the fluctuation of the field; while all these values are presented as multiples of

the global mean dissipation ⟨ϵ⟩. We are now equipped to calculate local measures of
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multifractality—Dq(x) and fα(x) −α(x)—and estimate conclusively how uniformly

(or not) multifractal turbulence really is. We construct a precise estimate of this

through Φ(x) ≡ std(α(x)) =
√

⟨α2⟩ − ⟨α⟩2, where ⟨..⟩ denotes an average over all

values of α. This provides a quantitative measure, using the spread of singularity

strengths, of the degree of local multifractality in the flow. We know that these

multifractal measures, even locally, should satisfy bounds such as α ⩾ αmin = −2,

fα ⩽ α + 2, and fα ⩾ 0 (see Ref. [218]). If the fα spectrum has a peak f ⋆
α

corresponding to some α = α⋆, then we have f ⋆
α ≲ 3 (where α⋆ = 1 and f ⋆

α = 3 in

the Kolmogorov framework). While there is no bound for αmax, it is reasonable to

assume αmax ≈ 3 for a region with no singular structures. Such monofractal regions

can be expected to show Φ ≈ 0. However, the largest values of Φ, corresponding

to highly multifractal regions, is estimated as Φ ≈
√

⟨α2⟩ − ⟨α⟩2 ≈ 1.7 ∼ O(1) for

α uniformly ranging from −2 to 3. Hence, on such theoretical grounds we expect

0 ≲ Φ(x) ≲ 1.7, with the lower and upper bound corresponding to mono and

multifractal statistics, respectively.

5.2 Correlation with Dissipation

In figure 5.4(A), we show Dq(x) vs q curves measured at different spatial positions,

corresponding to different values of ϵ. Clearly, while the shape of each curve is

similar to the global statistics (Fig. 5.1, Inset A), a very strong spatial dependence

on where we measure the generalized dimensions is unmissable. Furthermore, the

spread in Dq(x) is not trivially related to the mean dissipation around x; the secret

to this variation, as we shall demonstrate, lies in how locally fluctuating (within

each tile) the dissipation field is.

The measurement of the generalized dimension Dq(x) allows us now to

calculate local singularity spectra. In figure 5.4(B), we show representative plots

of fα(x) − α(x) for the same locations (see legend in panel A) for which the

generalized dimensions were calculated. Quite clearly—and contrary to what one
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Figure 5.4: (A) Generalized dimensions Dq vs q, calculated locally for randomly
sampled tiles, together with (B) the corresponding fα − α spectra of singularity
strengths, show a strong variation in the multifractal properties between different
spatial regions. (C) The resultant Φ field shows large regions of the flow are
actually almost monofractal with Φ ≈ 0, with pockets of Φ ∼ O(1) with its
pdf [(D)(inset)] shifting towards higher Φ when sampled in regions of higher
∆ϵ = ϵmax − ϵmin. (D) The mean value of Φ is shown to grow as the logarithm
of ∆ϵ. (E) The full joint-distribution of Φ and the mean dissipation ϵ in each
tile. While lower ϵ corresponds most likely to low values of Φ, an increase in
ϵ makes larger Φ equally likely, while also increasing the smallest admissible Φ
value. (F) A volume-rendering of ϵ ≥ 1 is superimposed with the Φ ≤ 0.5 field,
which being spatially-exclusive, gives a clear message that the most monofractal
flow regions are coincident with mild dissipation.

sees in the conventional global measurements of the singularity spectrum (see

Refs. [67, 232] and Fig. 5.1, inset)—there are several regions where the flow is

essentially monofractal (the fα spectrum being very narrow) and fully consistent

with the ideas of Kolmogorov, while other highly multifractal regions lead to broad

fα curves. These results already hint that multifractality can be considered as a

local property of the field.
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In figure 5.4(C), we show a pseudo-color plot of Φ. Quite remarkably, much

of the flow is Kolmogorov-like with Φ ≪ 1; the highly multifractal regions—Φ(x) ∼

O(1)—are isolated patches which, as we shall see, correlate completely with the

extreme (singular) regions of energy dissipation. This result is remarkable. It

illustrates that, surprisingly, turbulent flows are not uniformly multifractal; indeed

on the contrary, much of the turbulent flow seems to respect, locally, Kolmogorov’s

ideas of an exact, self-similar cascade. We also note that the range of Φ(x) is well

bounded by the theoretical range that we have discussed above.

What determines the magnitude and variation of Φ(x)? Measurements

of the generalized dimensions and singularity spectra suggest that the strength of

the local dissipation ϵ is not where the answer lies. We find that the probability

distribution function (pdf) of Φ, conditioned on ∆ϵ(x), is revealing. In the inset of

figure 5.4 (D) we show this pdf for three different values of ∆ϵ. Clearly, as evident

from the previous measurements, the distribution is sharply peaked at values of

Φ ≳ 0 with an (likely) exponential tail for Φ ∼ O(1). We also find that the

probability of having a higher degree of multifractality increases, albeit marginally,

when there is a greater variation of ϵ(x) within a tile. The mean value Φ, for a given

∆ϵ (sampled in windows of ∆ϵ± 0.25), in fact grows logarithmically, as seen clearly

in figure 5.4(D).

What then is the role of the average dissipation ϵ(x) in determining the

spatial non-uniformity of multifractality Φ(x)? A joint-distribution (Fig. 5.4 (E))

shows that the answer is fairly non-trivial. Clearly, for low values of ϵ(x) it is

far more likely to have Φ(x) ≪ 1; although, surprisingly, the less-likely extreme

values of Φ(x) also coincide with regions of low ϵ(x). This reflects that it is not

the mean disspation in a region, but the variation of dissipation, that manifests

multifractality (as shown in Fig. 5.4 (D)). At higher ϵ(x), the smallest values of

Φ(x) admissible slightly increases with ϵ(x), while the largest values of Φ(x) also

dip. While this result might appear contrary to our notion that extreme dissipation

alone begets multifractality, it finds parallel in an equally intriguing finding from a

recent study showing local Hölder exponents, measured by proxy, also do not trivially

114



5. Local Nature of Multifractality in Turbulence

Figure 5.5: Local multifractal statistics from decimated flow simulations. The
inset shows that increasing decimation leds to a significant narrowing of the
tails of the ϵ pdfs. This is accompanied by the pdf of Φ itself shifting to lower
values, reflecting reduced local multifractality corresponding to a reduction in
intermittency.

correlate with inertial dissipation [237]. In fact, experiments have shown that the

most dissipative structures locally resemble Burgers vortices [246]. While these

intense spots make the entire field highly intermittent and contribute to broadening

the global multifractal spectrum, the local multifractal picture can be different.

We finally cement these results with a visual illustration of where

the Kolmogorov-like regions are embedded. We look at a snapshot (with

volume-rendering) in figure 5.4 (F) of the 3D dissipation field, restricted to large

values of ϵ(x) ≥ 1. Superimposed on this is the local measure of Φ(x) ≤ 0.5.

Unlike the sparsely populated high ϵ(x) regions, the more frequent low ϵ(x) regions

(hidden from view here) remain largely occupied by low Φ(x) (these regions are also

coincident with mild to low kinetic energy). Clearly, then, the regions of monofractal

flow are strongly correlated to the more populous regions of mild dissipation, showing

that the Kolmogorov-like regions locally dissipate less than the multifractal regions.

We have, so far, shown compelling evidence which suggests that

multifractality in turbulent flow is not as spatially uniform as one might have

suspected. In the absence of a robust theory to explain this singular feature of

turbulence, we make a final test of these ideas in a Navier-Stokes-like flow which
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is guaranteed to be non-intermittent. An obvious choice for this is the so-called

decimated turbulence model which was introduced by Frisch et al. [35]. The basic

principle lies in (numerically) solving the Navier-Stokes equation on a Fourier lattice

with a quenched disorder—namely the absence of a pre-chosen set of modes either

randomly or fractally—by ensuring both the initial conditions and the non-linearity

are projected on this sub-set of remaining Fourier modes. Subsequent to the

introduction of this model, we now know [45, 47–49, 164, 247] that such surgical

removal of modes lead to a turbulence which is non-intermittent.

We take advantage of such a flow to repeat the local multifractal analysis

performed on regular turbulence. A confirmation of the conclusions drawn from

our results would mean that the decimated flow ought to show lower values of

Φ(x) than what is measured in fully developed turbulence. Indeed, this is what

we find in figure 5.5, showing measurements of the pdf of Φ(x) for several different

levels of fractal decimation (which leads to decreasing intermittency as seen from

the pdfs of ϵ in the inset). The Φ distributions consistently shift toward lower

values. Joint-distributions of Φ and ϵ were also found to show a simultaneous

reduction in their spreads. This confirms a strong link between intermittency and

local multifractality.

In conclusion, we wish to highlight two equally important contributions

of this Chapter. First is the finding that turbulence fields are not uniformly

multifractal, but instead manifest strong multifractality in localized pockets of

intermittency in a quiescent Kolmogorovean background of mild dissipation. This

paints over a lacuna in our understanding of turbulence where, owing to the very

construction of the classical multifractal analysis, the notion of a spatially varying

multifractality remained inconcievable. Secondly, our local analysis framework opens

up a completely novel avenue for studying both the structure and dynamics of flow

singularities and generalized dimension fields, in tandem with turbulence structures

like intense vorticity worms [248–250], non-locally induced velocity jets [251], or

precursors to singular dissipation [236, 246]. This projects multifractality out of

its role of simply being a statistically reductive tool unrevealing of spatio-temporal
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minutiae, as noted before [252], to possible applications in prediction and diagnostics

of flows. Moreover, this localized analysis begs to be applied to data from across

disciplines, where multifractality has been found emergent including in the areas

of physics and chemistry [213], medicine [253], geophysics [254], climate [255] and

finance [256], and is likely to be revealing, as we demonstrate for the long standing

picture of turbulence, in unpredictable ways.
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Chapter 6

Dynamo Problem in the EDQNM

-MHD Closure Model

6.1 Introduction to the Dynamo Problem

Large magnetic fields are at the heart of almost every observation in

astrophysics [103, 104, 257–260]. Indeed, they play a pivotal role in, as well as

shape the consequence of, the dynamics of phenomena ranging from star formation,

the interstellar medium to the underpinnings of the solar wind [261, 262]. And yet

questions remain how such sustained magnetic fields arise—the dynamo problem—in

the first place. Since astrophysical flows are also, typically, notoriously turbulent,

it is natural to look for answers to such questions within the framework of

magnetohydrodynamic (MHD) turbulence [2, 258, 259, 263].

While a theory for the dynamo problem rooted in the full set of equations

for MHD is desirable, there are formidable challenges to this for reasons somewhat

similar to the situation in fluid turbulence. Even, from the point of view direct

numerical simulations (DNSs) of such systems, the parameter space accessible to

modern simulations are quite far from what is realisable in either astrophysical
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systems or liquid-metal experiments [264]. For example, the Prandtl number, defined

as the ratio of the kinetic viscosity to the magnetic diffusivity Pm ≡ ν/ξ, range

from values as large as 1014 (interstellar medium) to those as small as 10−5 (liquid

sodium experiments). Such a range of numbers are prohibitively expensive for DNSs;

thus more often than not, theoretical approaches based on reasonable assumptions

provide additional insights and a fresh perspective in understanding the nuances of

the dynamo problem.

An excellent example of such theoretical approaches, and the deep insights

they provide, is the Kazantsev model [265] (see also Refs. [103, 104, 260, 266]). In

this stochastic model, the velocity field is Gaussian and statistically homogenous,

isotropic, and parity invariant. In addition, the correlation time is assumed to be

zero—probably the strongest simplification in this model. By varying the features

of the spatial correlations of the velocity field, it is possible to study the magnetic

growth as function of the degree of compressibility of the flow, its spatial regularity,

the space dimension, as well as the Prandtl and magnetic Reynolds numbers. In

particular, the Kazantsev model has provided the first evidence of the existence

of a maximum critical dimension for the dynamo effect beyond which the random

flow becomes unable to amplify a magnetic field [267, 268]. The range of dimensions

where there is dynamo shrinks as the velocity becomes less and less regular in space,

until it vanishes when the Hölder exponent of the velocity falls below 1/2 [269].

Compressibility, however, has the effect of widening the range of dimensions over

which the dynamo is possible [270]. Interestingly, dimension three is the one where

the least flow regularity is required for the dynamo effect to take place, independently

of the degree of compressibility.

While it is easy to appreciate why theoretical models with variable

roughness (of the velocity field) and compressibility have a direct bearing on

understanding real dynamos, the role of dimensions d (beyond the obvious d = 2

no-dynamo theorem) in the dynamo—no-dynamo transition has been completely

ignored. This is somewhat surprising because several aspects of MHD turbulence,

and the dynamo problem in particular, have parallels with critical phenomena

119



6. Dynamo Problem in the EDQNM -MHD Closure Model

and phase transitions. Taking this point of view and recalling the fundamental

discoveries—such as dimensional regularization or the 4 − ϵ expansion [271]—made

possible by going beyond the physically obvious d = 2 or 3 dimensions, it is not

unreasonable to ask if there is an analogue of a lower and upper critical dimension

below and beyond which, respectively, dynamo action ceases to be. Indeed, such a

point of view, of going beyond physically realisable integer dimensions of two and

three, has been exploited to investigate fundamental questions of intermittency and

energy cascades in classical fluid turbulence [35, 44, 49, 63, 64]. In this Chapter,

we simply ask if there are lower dL and upper dU critical dimension within which

dynamo action is confined?

While desirable, it is difficult to answer this question directly by using DNSs

in arbitrary dimension d. Hence, as we show below, we construct and use a closure

model—the well-known Eddy-Damped Quasi-Normal Markovian (EDQNM) [29, 63,

95, 96, 272] approach—for the MHD equations. The problem is approached in

d−dimensions and final model obtained is used to test the dynamo effect in various

spatial dimensions, including non-integer ones. In particular, we find that for a

given magnetic and kinetic Reynolds number (Rm and Re), the dynamo action

is constrained between dL and dU, that is dynamo action occurs for dL ⩽ d ⩽

dU. Surprisingly, dL is slightly larger than the two dimensional constraint from the

no-dynamo theorems and there exists a finite upper dimension dU < ∞, beyond

which dynamo fails to a different reason.

Theoretically, the full magnetohydrodynamic (MHD) equations suffer from

the same closure problems— and hence analytical progress—as the Navier-Stokes

equation for fluid turbulence [30]. We recall that in fluid turbulence theoretical

progress in understanding the two-point correlation function stems first from a

Quasi-Normal approximation which allows a rewriting of fourth-order moments as

sums of products of different second-order moments and then successive use of an

(phenomenological) eddy-damping rate and Markovianization leads to a closed form

equation for the kinetic energy spectrum Eu(k) in the EDQNM model. See Fig. 6.1

for multiple interconnected routes leading to various closure models.
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Navier-Stokes equation

Hierarchy of moment 
equations Diagram Expansion

Q.N E.D.Q.N

Q.N.M
E.D.Q.N.M

Stochastic Models - Random 
phases

R.G

F.R.G

D.I.A

L.H.D.I.A

R.C.M

M.R.C.M

Figure 6.1: Showing various closure models stemming from the
parent—Navier-Stokes equation—and the interconnecting routes. Figure
adapted from an illustration in Ref. [30].

6.2 EDQNM-MHD Closure model

In this section, we outline the Eddy-Damped Quasi-Normal Markovian closure

procedure and extend the approach to develop a generalized d−dimensional closure

model for the magnetohydrodynamic turbulence. The governing MHD equations for

the incompressible velocity U and magnetic B fields, for the unit density fluid, are

(see Refs. [103, 104] for derivation)

∂tU(x, t) = −∇P − (U · ∇)U + (B · ∇)B + ν∇2U, ∇ · U = 0 (6.1a)

∂tB(x, t) = ∇× (U × B) + ξ∇2B, ∇ · B = 0 (6.1b)

In this study, the kinetic helicity hk = U · ω, magnetic helicity h = A · B

(A is the magnetic potential, B = ∇×A) and cross helicity hc = U·B are assumed

to be zero for all times.
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In Fourier space, equations (6.1) can be written component-wise 1 as:

[
d
dt + νk2

]
uα(k, t) = P (k)

αργ

∫
dq

∫
dp [uρ(q)uγ(p) − bρ(q)bγ(p)]δ(p + q − k)

(6.2a)[
d
dt + ξk2

]
bα(k, t) = C(k)

αργ

∫
dq

∫
dp [bρ(q)uγ(p) + bρ(p)uγ(q)]δ(p + q − k)

(6.2b)

Note that for the magnetic field b, the equation (6.2b) is deliberately

expressed symmetrically between the modes p and q, for convenience. The

incompressibility condition implies in spectral space, k · u(k) = 0 & k · b(k) = 0

respectively, and if the initial condition satisfies it, the evolution equations (6.2)

retains it for all times. The projection P (k) and transport C(k) tensors defined in

equations (6.2) are

P (k)
αργ = − ι

2
(
P(k)

αρ kγ + P(k)
αγ kρ

)
, P(k)

αβ = δαβ − kαkβ

k2 (6.3a)

C(k)
αργ = − ι

2(δαρkγ − δαγkρ) (6.3b)

For homogeneous systems, the generalized nth order spectral moment will

be a function of n− 1 wavevectors:

SX(1)X(2)···X(n)

α1α2···αn
(k1, k2, · · · , kn−1) =

〈
X(1)

α1 (k1)X(2)
α2 (k2) ·X(n−1)

αn−1 (kn−1)X(n)
αn

(
−

n−1∑
i=1

ki

)〉

(6.4)

where the field X(i)(k) can be u(k) or b(k). For example, one of the third moment

can be written as Subb
αργ(k,−q) = ⟨uα(k)bρ(−q)bγ(−p)⟩ with p = k − q.

Using equation (6.2), we can obtain the evolution equations for the second
1Einstein summation convention is opted, and all indices are written in Greek to avoid confusion

from Latin.
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moments Suu and S bb as follows: 2

[
d
dt + 2νk2

]
Suu

αβ(k) =
∫
∆k

P (−k)
βργ

[
Suuu

αργ(k,−q) − Subb
αργ(k,−q)

]
+ c · c

∣∣∣∣
α↔β

(6.5a)[
d
dt + 2ξk2

]
S bb

αβ(k) =
∫
∆k

C(−k)
βργ

[
S bbu

αργ(k,−q) + S bbu
αργ(k,−p)

]
+ c · c

∣∣∣∣
α↔β

(6.5b)

Similarly, for the third moments, the evolution equations for

Suuu,Subb, and S bbu are as follows:

[
d
dt + ν

(
k2 + q2 + p2

)]
Suuu

αργ(k,−q) =
∫

dr P (k)
αµσ

[
Suuuu

ργµσ(−q,−p, r) − Suubb
ργµσ(−q,−p, r)

]
+
∫

dr P (−q)
ρµσ

[
Suuuu

αγµσ(k,−p, r) − Suubb
αγµσ(k,−p, r)

]
+
∫

dr P (−p)
γµσ

[
Suuuu

αρµσ(k,−q, r) − Suubb
αρµσ(k,−q, r)

]
(6.6a)[

d
dt + νk2 + ξ

(
q2 + p2

)]
Subb

αργ(k,−q) =
∫

dr P (k)
αµσ

[
S bbuu

ργµσ(−q,−p, r) − S bbbb
ργµσ(−q,−p, r)

]
+ 2

∫
dr
[
C(−q)

ρµσ S bbuu
γµασ(−p, r, k) + C(−p)

γµσ S bbuu
ρµασ(−q, r, k)

]
(6.6b)[

d
dt + νp2 + ξ

(
k2 + q2

)]
S bbu

αργ(k,−q) =
∫

dr P (−p)
γµσ

[
S bbuu

αρµσ(k,−q, r) − S bbbb
αρµσ(k,−q, r)

]
+ 2

∫
dr
[
C(k)

αµσS bbuu
ρµγσ(−q, r,−p) + C(−q)

ρµσ S bbuu
αµγσ(k, r,−p)

]
(6.6c)[

d
dt + νq2 + ξ

(
k2 + p2

)]
S bbu

αργ(k,−p) =
∫

dr P (−q)
γµσ

[
S bbuu

αρµσ(k,−p, r) − S bbbb
αρµσ(k,−p, r)

]
+ 2

∫
dr
[
C(k)

αµσS bbuu
ρµγσ(−p, r,−q) + C(−p)

ρµσ S bbuu
αµγσ(k, r,−q)

]
(6.6d)

The second moments depend on the third moments (Eq.(6.5)), the

2Here
∫
∆k

≡
∫

dq
∫

dq δ(q + p − k) and c · c means complex conjugate and α ↔ β implies

the exchange of indices.
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evolution of a third order moment depends on a fourth order moment (Eq.(6.6)). The

nth moment will depend on the (n+ 1)th moment and there is an infinite hierarchy.

This is the closure problem originating in the MHD equations. In general, to tackle

it, at certain level some physically acceptable assumptions have to be included in

these set of equations and close down the hierarchy.

6.2.1 Quasi-Normality

The Quasi-Normal (QN) assumption is that the fourth order moment of

the field is Gaussian in nature, or to say the fourth cumulant of the velocity moment

vanishes. This would close the hierarchy of equations at the fourth moment. So the

fourth-order moment in the QN approximation would bread down as:

SX(1)X(2)X(3)X(4)

αβργ (k1, k2, k3) = SX(1)X(2)

αβ (k1)SX(3)X(4)

ργ (k3)δ(k1 + k2) + SX(1)X(3)

αρ (k1)SX(2)X(4)

βγ (k2)δ(k1 + k3)

+ SX(1)X(4)

αγ (k1)SX(2)X(3)

βρ (k2)δ(k2 + k3) (6.7)

Note that, in this closure model the cross-correlated second moment

between velocity and magnetic field is assumed to be zero:

⟨uα(k1)bβ(k2)⟩ = 0, ∀k1, k2 (6.8)
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Using the QN approximation, equations (6.6) reduce to:

[
d
dt + ν

(
k2 + p2 + q2

)]
Suuu

αργ(k,−q) = 2
[
P (k)

αµσSuu
ρµ(−q)Suu

γσ(−p) + P (−q)
ρµσ Suu

ασ(k)Suu
γµ(−p)

+ P (−p)
γµσ Suu

αµ(k)Suu
ρσ(−q)

]
(6.9a)[

d
dt + νk2 + ξ

(
q2 + p2

)]
Subb

αργ(k,−q) = 2
[
C(−q)

ρµσ S bb
γµ(−p)Suu

ασ(k) + C(−p)
γµσ S bb

ρµ(−q)Suu
ασ(k)

− P (k)
αµσS bb

ρµ(−q)S bb
γσ(−p)

]
(6.9b)[

d
dt + νp2 + ξ

(
k2 + q2

)]
S bbu

αργ(k,−q) = 2
[
C(k)

αµσS bb
ρµ(−q)Suu

γσ(−p) + C(−q)
ρµσ S bb

αµ(k)Suu
γσ(−p)

−P (−p)
γµσ S bb

αµ(k)S bb
ρσ(−q)

]
(6.9c)[

d
dt + νq2 + ξ

(
k2 + p2

)]
S bbu

αργ(k,−p) = 2
[
C(k)

αµσS bb
ρµ(−p)Suu

γσ(−q) + C(−p)
ρµσ S bb

αµ(k)Suu
γσ(−q)

− P (−q)
γµσ S bb

αµ(k)S bb
ρσ(−p)

]
(6.9d)

Let us define the inverse of the linear operator:

[
d
dt + ω

]−1

= θ̂(ω)· =
∫ t

0
ds · e−(t−s)ω (6.10)

Now inverting the equations (6.9) and substituting it into equations (6.5)

yields a closed equations for the second moment.

[
d
dt + 2νk2

]
Suu

αβ(k) =
∫
∆k

2θ̂
(
ωu

kpq

)
P (−k)

βργ

[
P (k)

αµσSuu
ρµ(−q)Suu

γσ(−p) + P (−q)
ρµσ Suu

ασ(k)Suu
γµ(−p)

+P (−p)
γµσ Suu

αµ(k)Suu
ρσ(−q)

]
+ c · c

∣∣∣∣
α↔β

−
∫
∆k

2θ̂
(
ωb

kpq

)
P (−k)

βργ

[
C(−q)

ρµσ Suu
ασ(k)S bb

γµ(−p) + C(−p)
γµσ Suu

ασ(k)S bb
ρµ(−q)

−P (k)
αµσS bb

ρµ(−q)S bb
γσ(−p)

]
+ c · c

∣∣∣∣
α↔β

(6.11a)[
d
dt + 2ξk2

]
S bb

αβ(k) =
∫
∆k

2θ̂
(
ωb

pkq

)
C(−k)

βργ

[
C(k)

αµσS bb
ρµ(−q)Suu

γσ(−p) + C(−q)
ρµσ S bb

αµ(k)Suu
γσ(−p)

−P (−p)
γµσ S bb

αµ(k)S bb
ρσ(−q)

]
+
∫
∆k

2θ̂
(
ωb

qkp

)
C(−k)

βργ

[
C(k)

αµσS bb
ρµ(−p)Suu

γσ(−q) + C(−p)
ρµσ S bb

αµ(k)Suu
γσ(−q)

−P (−q)
γµσ S bb

αµ(k)S bb
ρσ(−p)

]
+ c · c

∣∣∣∣
α↔β

(6.11b)
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The frequencies defined in the operators θ̂ in equations (6.11) are:

ωu
kpq = ωu

k + ωu
p + ωu

q , ωu
k = νk2

ωb
kpq = ωu

k + ωb
p + ωb

q, ωb
k = ξk2 (6.12)

Equations (6.11) are the closure equations for the second moments

Suu,S bb obtained from the QN approximation. Under the assumption of isotropy,

the second moment SXX(k) becomes directly proportional to the energy of the the

mode UX(k) = ⟨X(k)X(−k)⟩

SXX
αβ (k) = 1

(d− 1)P
(k)
αβUX(k) (6.13)

The Quasi-Normal closure equations (6.11) under isotropy, in terms of

UX(k) can be written as (Refer to Appendix B.1 for detailed derivation)

[
d
dt + 2νk2

]
Uu(k) = 4

(d− 1)2

∫
∆k

θ̂
(
ωu

kpq

)
P (k)

αργ

[
−P (k)

αµσP(q)
ρµP(p)

γσ Uu(q)Uu(p)

+P (q)
ρµσP(k)

ασP(p)
γµUu(k)Uu(p) + P (p)

γµσP(k)
αµP(q)

ρσ Uu(k)Uu(q)
]

− 4
(d− 1)2

∫
∆k

θ̂
(
ωb

kpq

)
P (k)

αργ

[
P (k)

αµσP(q)
ρµP(p)

γσ U b(q)U b(p)

+C(q)
ρµσP(k)

ασP(p)
γµUu(k)U b(p) + C(p)

γµσP(k)
αµP(q)

ρσ Uu(k)U b(q)
]

(6.14a)[
d
dt + 2ξk2

]
U b(k) = 4

(d− 1)2

∫
∆k

θ̂
(
ωb

pqk

)
C(k)

αργ

[
−P (p)

γµσP(k)
αµP(q)

ρσ U b(k)U b(q)

−C(k)
αµσP(q)

ρµP(p)
γσ U b(q)Uu(p) + C(q)

ρµσP(k)
αµP(p)

γσ U b(k)Uu(p)
]

+ 4
(d− 1)2

∫
∆k

θ̂
(
ωb

qkp

)
C(k)

αργ

[
−P (q)

γµσP(k)
αµP(p)

ρσ U b(k)U b(p)

−C(k)
αµσP(p)

ρµP(q)
γσU b(p)Uu(q) + C(p)

ρµσP(k)
αµP(q)

γσU b(k)Uu(q)
]

(6.14b)

Now this tedious expression in the equations (6.14) can be simplified by
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defining geometric coefficients:

akqp = akpq = − 1
k2 P (k)

αργP (k)
αµσP(q)

ρµP(p)
γσ (6.15a)

bkpq = − 2
k2 P (k)

µργP (p)
γµσP(q)

ρσ (6.15b)

ckpq = 2
k2 P (k)

µργC(p)
γµσP(q)

ρσ (6.15c)

gkqp = gkpq = − 2
k2 C(k)

αργC(k)
αµσP(q)

ρµP(p)
γσ (6.15d)

hkpq = − 2
k2 C(k)

µργC(p)
ρµσP(q)

γσ (6.15e)

With the use of the geometric coefficients defined above in

equations (6.15), we can write express the equations (6.14) as:

[
d
dt + 2νk2

]
Uu(k) = 2k2

(d− 1)2

∫
∆k

(
θ̂
(
ωu

kpq

)[
2akpqUu(p)Uu(q) −

(
bkqpUu(p) + bkpqUu(q)

)
Uu(k)

]
+θ̂

(
ωb

kpq

)[
2akpqU b(p)U b(q) −

(
ckqpU b(p) + ckpqU b(q)

)
Uu(k)

])
(6.16a)[

d
dt + 2ξk2

]
U b(k) = 2k2

(d− 1)2

∫
∆k

(
θ̂
(
ωb

pqk

)[
−p2

k2 cpkqU b(k)U b(q) +
(
gkqpU b(q) − hkqpU b(k)

)
Uu(p)

]

+θ̂
(
ωb

qkp

)[
− q2

k2 cqkpU b(k)U b(p) +
(
gkpqU b(p) − hkpqU b(k)

)
Uu(q)

])
(6.16b)

These geometric coefficients purely depend on the angle of triangle formed

by k,p,q, and can be expressed in terms of the cosines of angles formed in the

triangle. The notation we follow is same as in [99, 101, 272]. For the triangle

formed by the sides of length k, p, q the angles opposite to their sides are α, β, γ and
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their cosines are x, y, z respectively.

x2 + y2 + z2 = 1 − 2xyz

akpq = 1
2

(
1 − 2y2z2 − xyz + (d− 3)

2
[
2 − y2 − z2

])
(6.17a)

bkpq = p

k

(
z3 + xy + (d− 3)

2 [z + xy]
)

(6.17b)

ckpq = p

k

(
z
[
1 − y2

]
+ (d− 3)

2 [z + xy]
)

(6.17c)

gkpq = 1 + xyz + (d− 3)
2

[
2 − y2 − z2

]
(6.17d)

hkpq = p

2k ((d− 1)[z + xy]) (6.17e)

Denoting the evolution equation (6.16) for spectral energies as

[
d
dt + 2νk2

]
UX =

∫
∆k

T X(∆k) (6.18)

where T X(∆k) is the transfer integrand for the field X arising from a particular

triad k,p,q. The constructed integrand depends only the geometry of the triad,

neither the absolute position nor its orientation, hence allowing us to integrate out

all the extra degrees of freedom in such integral
∫
∆k

(Refer to Appendix B.2 for a

detailed derivation).

[
d
dt + 2νk2

]
UX = Sd−2

∫
∆k

dq dp
(
pq

k

)d−2(
1 − x2

) (d−3)
2 T X(∆k) (6.19)

Here Sd is the solid angle of a d−dimensional sphere. Now we have to integrate

equation (6.19) over the p − q plane that can form a triangle with a side of length

k = |k|. By Triangle inequality, the region would involve p + q < k < |p− q|, as

shown in figure 6.2, for every k. Isotropy implies that the energy spectrum and

spectral energy are related by

UX(k) = 2EX(k)
kd−1Sd−1

(6.20)

Now equation (6.16) in terms of Eu(k),Eb(k) using the reduced integral in
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Figure 6.2: Showing the area of integration in the p − q plane, for a given k,
that satisfies the triangle inequality for the sides k, p, q, hence contributing to
the integral in the transfer term T X

equation (6.19) becomes

[
d
dt + 2νk2

]
Eu(k) = 8Kd

∫
∆k

dq dp
[
T uu

u (∆k) + T bb
u (∆k) + T ub

u (∆k)
]
Wd(∆k)

(6.21a)

T uu
u (∆k) = θ̂

(
ωu

kpq

) k
pq

[
akpqk

d−1Eu(p)Eu(q) − 1
2
(
bkpqp

d−1Eu(q) + bkqpq
d−1Eu(p)

)
Eu(k)

]
(6.21b)

T bb
u (∆k) = θ̂

(
ωb

kpq

) k
pq

akpqk
d−1Eb(p)Eb(q) (6.21c)

T ub
u (∆k) = −1

2 θ̂
(
ωb

kpq

) k
pq

(
ckpqp

d−1Eb(q) + ckqpq
d−1Eb(p)

)
Eu(k)]

(6.21d)
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[
d
dt + 2ξk2

]
Eb(k) = 8Kd

∫
∆k

dq dp
[
T ub

b (∆k) + T bb
b (∆k)

]
Wd(∆k) (6.22a)

T ub
b (∆k) = 1

2 θ̂
(
ωb

pqk

) k
pq

[
gkqpk

d−1Eb(q) − hkqpq
d−1Eb(k)

]
Eu(p)

+ 1
2 θ̂
(
ωb

qkp

) k
pq

[
gkpqk

d−1Eb(p) − hkpqp
d−1Eb(k)

]
Eu(q) (6.22b)

T bb
b (∆k) = −1

2
k

pq

[
θ̂
(
ωb

pqk

)p2

k2 cpkqp
d−1Eb(k)Eb(q) + θ̂

(
ωb

qkp

) q2

k2 cqkpq
d−1Eb(k)Eb(p)

]
(6.22c)

The dimensional pre-factor Kd, and the triad weightage term Wd(∆k) in

equations (6.21) & (6.22) are,

Kd = 1
(d− 1)2

Sd−2

Sd−1
, Sd−1 = 2πd/2

Γ(d− 1) (6.23a)

Wd(∆k) =
(

(1 − x2)
k2

)(d−3)/2

=
(

sin2 x

k2

)(d−3)/2

(6.23b)

All the coefficients are not independent of each other, the following

identities are trivial to prove.

2akpq = bkpq + bkqp (6.24a)

2akpq = ckpq + ckqp (6.24b)

k2bkpq = p2bpkq (6.24c)

k2hkpq = p2hpkq (6.24d)

gkpq = hkpq + q2

k2 cqkp (6.24e)

q4c(3)
qkp = k4c(3)

kqp (6.24f)(
p2ckqp + q2ckpq

)
=
(
p2hkqp + q2hkpq

)(d− 2)
(d− 1) (6.24g)

k2a(2)
kpq = p2b(2)

kpq + q2b(2)
kqp (6.24h)

k2c(2)
kqp = q2

(
h

(2)
pqk − h

(2)
qpk

)
(6.24i)

Here the superscripts (2), (3) denote the particular dimension. Using the

relations in equations (6.24), we can rewrite akpq and gkpq in the transfer integrands

130



6. Dynamo Problem in the EDQNM -MHD Closure Model

in equation (6.21) and (6.22) in terms of bkpq, ckpq & hkpq. Further the transfer

integrands for the triad ∆k can then be shown with the symmetry between the

contributions from p and q.

T uu
u (∆k) = 1

2 θ̂
(
ωu

kpq

) k
pq

bkpq

[
kd−1Eu(p) − pd−1Eu(k)

]
Eu(q) + p ↔ q

T bb
u (∆k) = 1

2 θ̂
(
ωb

kpq

) k
pq

ckpqk
d−1Eb(p)Eb(q) + p ↔ q

T ub
u (∆k) = −1

2 θ̂
(
ωb

kpq

) k
pq

ckpqp
d−1Eu(k)Eb(q) + p ↔ q

T ub
b (∆k) = 1

2 θ̂
(
ωb

qkp

) k
pq

hkpq

[
kd−1Eb(p) − pd−1Eb(k)

]
Eu(q)

+ 1
2 θ̂
(
ωb

pqk

) p
kq

cpkqk
d−1Eu(p)Eb(q) + p ↔ q

T bb
b (∆k) = −1

2 θ̂
(
ωb

pqk

) p
kq

cpkqp
d−1Eb(k)Eb(q) + p ↔ q (6.25)

In equations (6.25), the p ↔ q implies a repetition of the previous

expression with the exchange of the p and q in the arguments. If we denote

the triad ∆k as k, p, q and ∆k
(c) as k, q, p the complementary triad, then clearly

T X2X3
X1

(∆k) = T X2X3
X1

(
∆k

(c)
)
. Hence, we can define an assymmetric transfer

integrand TX2X3
X1

(k, p, q) that satisfies

T X2X3
X1

(∆k) = 1
2TX2X3

X1
(k, p, q) + 1

2TX2X3
X1

(k, q, p) (6.26)

and replace the transfer integrand as TX2X3
X1

(k, p, q) in equations (6.25). The

d−dimensional Quasi-Normal closure model for the magnetohydrodynamics
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equations are

[
d
dt + 2νk2

]
Eu(k, t) = 8Kd

∫
∆k

dq dp
[
Tuu

u (k, p, q) + Tbb
u (k, p, q) + Tub

u (k, p, q)
]
Wd(∆k)

(6.27a)[
d
dt + 2ξk2

]
Eb(k, t) = 8Kd

∫
∆k

dq dp
[
Tub

b (k, p, q) + Tbb
b (k, p, q)

]
Wd(∆k) (6.27b)

Tuu
u (k, p, q) = θ̂

(
ωu

kpq

) k
pq

bkpq

[
kd−1Eu(p) − pd−1Eu(k)

]
Eu(q) (6.27c)

Tbb
u (k, p, q) = θ̂

(
ωb

kpq

) k
pq

ckpqk
d−1Eb(p)Eb(q) (6.27d)

Tub
u (k, p, q) = −θ̂

(
ωb

kpq

) k
pq

ckpqp
d−1Eu(k)Eb(q) (6.27e)

Tub
b (k, p, q) = θ̂

(
ωb

qkp

) k
pq

hkpq

[
kd−1Eb(p) − pd−1Eb(k)

]
Eu(q)

+ θ̂
(
ωb

pqk

) p
kq

cpkqk
d−1Eu(p)Eb(q) (6.27f)

Tbb
b (k, p, q) = −θ̂

(
ωb

pqk

) p
kq

cpkqp
d−1Eb(k)Eb(q) (6.27g)

This is a closed set of integro-differential equations, that can be solved

numerically. Note that the operators θ̂
(
ωu

kpq

)
, θ̂
(
ωb

kpq

)
involve time integrals, as

defined in equation (6.10). This QN model (Eqs.(6.27)) respects the conservation

laws that the original PDE has. The sum of kinetic and magnetic energy is conserved

for the ideal fluid, that is ν = ξ = 0. Particularly, in two-dimensions, the net

magnetic potential is conserved and for a pure kinetic model (B = 0) the enstrophy

remains conserved. Refer Appendix B.3 for the detailed proof.

6.2.2 Eddy-Damping

In this subsection, we would describe two further approximations that were

made in the original EDQNM model [10, 30, 94, 95] called addition of a damping

time-scale for the third moment–eddy damping rate and the Markovianization of

the third-order moments. Later, we would extend it to the MHD formulation

as well. Although the Quasi-Normal closure model is an approximated version

of the Navier-Stokes equation, assuming Gaussian moments at the fourth order,
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it fails to capture the turbulent behaviour for the spectrum obeying K41 theory.

Rather earlier numerical simulations suggested the possibility of negative energy

spectra, which is physically unrealizable. Orszag identified that the reason for

this anamolous behaviour of the Quasi-Normal model is the high build-up for the

third-order moments. To rectify it, a damping action is to be given to saturate the

behaviour of the third-order moments.

Defining a inverse time-scale µkpq for the triad k, p, q for the third moments:

[
d
dt + ν

(
k2 + p2 + q2

)
+ µkpq

]
⟨uuu⟩ = ⟨uu⟩ ⟨uu⟩

µkpq = µk + µp + µq (6.28)

The damping time-scale must originate purely from the spectrum, thus from

dimensional grounds we can formulate:

µk ≈
[
k3Eu(k)

] 1
2 (6.29)

But this definition provides a decreasing function of k, thus for high

wavenumbers there is essentially no-damping. Later Frisch and Pouquet [97]

suggested the modification as follows,

µk = αd

[∫ k

0
dp p2Eu(p)

] 1
2

(6.30)

which is an increasing function of k and represents the average deformation rate of

eddies of size k−1 by larger eddies. There is a free parameter αd in this definition

of the eddy-damping rate µk, which is can be fixed to get the correct Kolmogorov

constant Cd, in d−dimensions, for the kinetic energy spectrum E(k) = Cdk
−5/3ϵ2/3.

In the same spirit, for the EDQNM-MHD model, one can define an

eddy-damping timescale from the magnetic spectrum

µk = αd

[∫ k

0
dp p2Eb(p)

] 1
2

(6.31)
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While damping rates given in equations (6.30) and (6.31) models for the

nonlinear scrambling of the flow. The magnetic field equations have an additional

timescale originating from the Alfvén waves [263]. Hence, introducing another term

for the magnetic eddy-damping timescale to include the effect of Alfvén waves,

results in

µk = αd

[∫ k

0
dp p2Eb(p)

] 1
2

+
√

2
3

(∫ k

0
dpEb(p)

) 1
2

(6.32)

The coefficient
√

2/3 in equation (6.32) comes from an explicit calculation

of Alfvén timescale for the Gaussian large-scale magnetic fields [99]. It is checked

that the omission of the Alfvén wave term would affect the model dynamics severely.

So, the final timescales that act linearly on the third order moments for

the kinetic and magnetic cases, for the wavenumber k are:

ωu
k = νk2 + αd

[∫ k

0
dp p2EV (p)

] 1
2

ωb
k = ξk2 + αd

[∫ k

0
dp p2Eb(p)

] 1
2

+
√

2
3

(∫ k

0
dpEb(p)

) 1
2

(6.33)

6.2.3 Markovianization

Even after adding this eddy-damping timescale to the third order moment,

the system of EDQN equations does not guarantee a positive energy spectrum

always. Orszag suggested a further modification [95], called the Markovianization,

which assumes that the third-order moments to be slowly varying as compared to

the timescale in θ̂
(
ωu

kpq

)
. This allows the time integral in θ̂

(
ωu

kpq

)
to be computed

explicitly, leading to the simplification:

θ̂
(
ωu

kpq

)
=
∫ t

0
ds exp

(
−ωu

kpq(t− s)
)

=
1 − exp

(
−ωu

kpqt
)

ωu
kpq

(6.34)

Further in the large t limit, it becomes θ̂
(
ωu

kpq

)
= 1/ωu

kpq ≡ θu
kpq and θ̂

(
ωb

kpq

)
=

1/ωb
kpq ≡ θb

kpq. This establishes an instantaneous relationship between third and
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second order moments, by forgetting the history, hence Markovian.

Now the final set of equations for out EDQNM-MHD model are given

below. Since the entire evolution equation is large and tedious, we present it in parts,

with sub-sequent definitions for more clarity. The evolution of the energy spectrum

(both kinetic and magnetic case) depends on a linear damping term (determined by

the viscosity ν and diffusivity ξ respectively) and a non-linear transfer term.

d
dtE

u(k, t) = Tu(k, t) − 2νk2Eu(k, t) (6.35a)
d
dtE

b(k, t) = Tb(k, t) − 2ξk2Eb(k, t) (6.35b)

It is extremely useful to study how the kinetic energy and magnetic

energy spectrum interacts in the transfer terms. In order to do that, divide the

contributions to the transfer terms as self and coupled.

Tu(k) = Tu
(s)(k) + Tu

(c)(k) (6.36a)

Tb(k) = Tb
(s)(k) + Tb

(c)(k) (6.36b)

Here the subscripts (s) and (c) stands for self and coupled. The self and coupling

transfer terms are defined as:

Tu
(s)(k) = 8Kd

∫
∆k

dq dpWd(∆k)θu
kpq

k

pq
bkpq

[
kd−1Eu(p) − pd−1Eu(k)

]
Eu(q)

(6.37a)

Tu
(c)(k) = 8Kd

∫
∆k

dq dpWd(∆k)θb
kpq

k

pq
ckpq

[
kd−1Eb(p) − pd−1Eu(k)

]
Eb(q) (6.37b)

Tb
(s)(k) = 8Kd

∫
∆k

dq dpWd(∆k)θb
qkp

k

pq
hkpq

[
kd−1Eb(p) − pd−1Eb(k)

]
Eu(q) (6.37c)

Tb
(c)(k) = 8Kd

∫
∆k

dq dpWd(∆k)θb
pqk

p

kq
cpkq

[
kd−1Eu(p) − pd−1Eb(k)

]
Eb(q) (6.37d)

Basically, the Tu
(s)(k) exchanges kinetic energy from other wavenumbers

into k, and in net it keeps the total kinetic energy constant, that is
∫ ∞

0
dkTu

(s)(k) =

0. Similarly, self transfer term for the magnetic spectrum exchanges magnetic

energy between various modes obeying
∫ ∞

0
dkTb

(s)(k) = 0. But it has a weight
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from the kinetic spectrum, with Eu = 0, this self transfer would vanish. These

follows directly from the properties in equations (6.24c) and (6.24d) of the geometric

coefficients b and h respectively. The coupling terms Tb
(c),Tu

(c) transfer energy

between the kinetic and magnetic spectrum, but keeping the net energy constant,

that is
∫ ∞

0
dk
(
Tu

(c) + Tb
(c)

)
= 0.

In the context of the dynamo problem, we can further divide the magnetic

interaction terms into linear and non-linear terms as follows,

Tb
(c)(k) = Tb

(c,NL)(k) + Tb
(c,L)(k)

Tb
(c,NL)(k) = −8Kd

∫
∆k

dq dpWd(∆k)θb
pqk

p

kq
cpkqp

d−1Eb(k)Eb(q) (6.38a)

Tb
(c,L)(k) = 8Kd

∫
∆k

dq dpWd(∆k)θb
pqk

p

kq
cpkqk

d−1Eu(p)Eb(q) (6.38b)

so that at the initial time of studying the dynamo effect where Eb(k) ≪ Eu(k)

the non-linear (quadratic) term can be neglected.

Coming to the other terms defined in the equation (6.37). The transfer

terms are associated with the set of timescales θu
kpq, θ

b
kpq, for every triad (k, p, q),

emerging from the eddy-damping approximation and Markovian assumption. The

timescales are inverse of sum of frequencies from each wavenumber in the triad:

θu
kpq = 1

ωu
k (k) + ωu

p (p) + ωu
q (q) (6.39a)

θb
kpq = 1

ωu
k (k) + ωb

p(p) + ωb
q(q)

(6.39b)

The ωu
k and ωb

k are defined in the equation (6.33). As for the free parameter

αd defined in them is considered, it affects the triadic interactions quantitatively not

qualitatively. In d = 3 dimensions, if the pure EDQNM spectrum must match with

results from the direct numerical simulations or experiments, then to get the same

Kolmogorov constant, that is C3 = 1.72, we have to choose a value of α3 = 0.49.

One can show that C3 ≈ 2.75α2/3
3 , or even a general result for d−dimensions. From

the study of d−dimensional EDQNM model in the reference. [272], the constant
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Cd values and the αd(Cd) relations for different dimensions are provided. Finally,

the dimensional prefactor Kd, and the triad weightage term Wd(∆k) are given in

equation (6.23).

6.2.4 Special cases

In the d = 3 case, the EDQNM-MHD model described above reduces to the

ones studied in the references [101]. Note the special symmetry in equation (6.24)

for d = 3 along with K3 = 1/8 and W3 = 1 that simplifies the equation. Similarly,

for d = 2 case, which was modeled and studied in reference [100] agrees with our

general case on substituting d = 2. To obtain the pure kinetic EDQNM model in

d−dimensions, as presented in the reference [272], one has to substitute Eb(k) =

0, ∀k in our model. Although in references [99–101] (where d = 2, 3 are studied), the

eddy-damping time scale is chosen uniformly for both kinetic and magnetic case:

ωu
k = ωb

k = (ν + ξ)k2+α
[∫ k

0
dp p2

(
Eu(p) +Eb(p)

)] 1
2

+
√

2
3

(∫ k

0
dpEb(p)

) 1
2

(6.40)

6.3 Dynamo Problem in the EDQNM-MHD

Framework

Since the dynamo problem corresponds to the question of excitation and

sustainment of magnetic field in an electrically conducting fluids in turbulence. In

the EDQNM-MHD framework, the dynamo action can be considered as the stable

growth of the net magnetic energy of the system, injected arbitrarily small initially,

and ability to maintain it steadily with the aid from the kinetic energy.
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Denoting the net kinetic and magnetic energy is denoted as:

Eu =
∫ ∞

0
dkEu(k) (6.41)

Eb =
∫ ∞

0
dkEb(k) (6.42)

Theoretically one can define the growth rate of the net magnetic energy,

for initial times (in the Eb ≪ Eu limit), from the coupling interaction from the

kinetic energy as

dEb

dt ≈
∫ ∞

0
dkTb

(c,L)(k) − 2ξ
∫ ∞

0
dk k2Eb(k)

=
∫ ∞

0
dk
(
λ(k) − 2ξk2

)
Eb(k)

λ(k) = 8Kd

∫
∆k

dq dpWd(∆k)θpkq
p

kq
cpqkq

d−1Eu(p) (6.43)

where we have neglected the non-linear contribution from quadratic terms O
(
EbEb

)
in the Tb

(c,NL) (see Eq. (6.38)) in the early times. The spectral dynamo timescale

λ(k) depends only on the kinetic spectrum and the dimension of the system.

If the net growth of the magnetic energy of the system follows an

exponential behaviour Eb(t) ∼ exp
(
λt
)
, then the growth exponent λ(t) is given

by

λ(t) =

∫ ∞

0
dk
(
λ(k) − 2ξk2

)
Eb(k)∫ ∞

0
dkEb(k)

(6.44)

For a system that supports the dynamo growth, the λ will be non-zero for

all times. Whereas, for the system where the dynamo is not possible, it might be

positive for a finite time, before eventually becoming negative at long times.

In the case of ideal magnetic fluid ν = ξ = 0, in the truncated

EDQNM-MHD model, global equipartition is expected as the fixed point for the

system, that is Eu(k) = Eb(k) ∼ kd−1. Consider two separately equipartitioned
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6. Dynamo Problem in the EDQNM -MHD Closure Model

fields, Eu(k) = Auk
d−1 and EB(k) = Abk

d−1. This would imply that the

self-transfer terms Tb
(s),Tu

(s) are zero. But for Au ≪ Ab, there will be a non-zero

interaction term driving the system. For such a state, the eddy-damping time scale

can be approximated as:

µk = αd

(
Au

kd+2

d+ 2

)1/2

(6.45)

Since we assumed that Ab ≪ Au, allowing to calculate the rate of change of net

magnetic energy, for initial times as

dEb

dt ≈ 8Kd
AuAb

α

√
d+ 2
AV

∫
dq dp dkWd(∆k)p

(d−2)
2 kd−2qd−2cpkq (6.46)

Upto a cut-off wavenumber, say kG, the integral in equation (6.46) can computed

directly, say in Mathematica.

Here, d = 2 is a special case, the conservation of magnetic potential

d
dtA = d

dt

∫ ∞

0
dk E

b(k)
k2 = 0 (6.47)

strictly disallows the model to reach a global equipartition. We have numerically

verified that for all dimensions d > 2, the growth rate is different based on the

dimension, but the system reaches the global fixed point. So, for example, with

Eu(0) = 0.99, Eb(0) = 0.01, asymptotically it becomes Eb = Eu = 0.5. For d = 2,

the conservation of magnetic potential retains the system in Eb ≪ Eu state, for all

times.

For the real case, with ν, ξ ̸= 0, the no-dynamo scenario can arise if the

non-zero magnetic diffusion overcomes the pumping of energy from the kinetic case.

From the anti-dynamo theorems [103, 273], for d = 2 there will be no dynamo effect

in either case. This is a necessary condition that the EDQNM-MHD model should

satisfy.
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6. Dynamo Problem in the EDQNM -MHD Closure Model

Figure 6.3: A space-time color plot of the fraction R(t) of magnetic to fluid
energy. The dynamo phase (with colors ranging from light green to dark blue at
large times) are indicated by thick, black vertical lines suggesting lower dL ≈ 2.03
and upper dU ≈ 6.0 critical dimensions for dynamo action, for the ν = 5 × 10−4

case.

6.3.1 Numerical study

We perform detailed numerical simulation of the MHD-EDQNM model

(Eqs. (6.35)–(6.37)) in dimensions 2 ≤ d ≤ 12 with ν = ξ = 5 × 10−4, corresponding

to Prandtl number Pr unity, a well-resolved inertial range with the minimum and

maximum wavenumbers kmin = 2−3 and kmax = 210, respectively and time-stepping

δt = 2 × 10−5. See Appendix B.4 for details of discrete wavenumbers used in this

numerical study.

In order to study the dynamo problem, first, we develop a stationary steady

state for the pure kinetic EDQNM model with forcing at large scales (small k).
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6. Dynamo Problem in the EDQNM -MHD Closure Model

Figure 6.4: A plot of R(t) vs t for several dimensions; clearly the magnetic
energy and thence dynamo action is sustained for dL ≲ d ≲ dU (red plots). For
dimensions outside this range (blue and green plots), the magnetic energy, after
a peaking, decays showing the unsustainable growth of the magnetic field and
hence the no-dynamo phase.

Forcing term is included in the evolution of the kinetic spectrum as:

d
dtE

u(k, t) = Tu
(s)(k) − 2νk2Eu(k) + F (k) (6.48)

Forcing spectrum F (k) is chosen to be concentrated at large scales, F (k) ∼

k2 exp(−k2/2k2
I ). The injection of energy through forcing is matched with the net

viscous dissipation rate

∫ ∞

0
dk F (k) = ϵu =

∫ ∞

0
dk 2νk2Eu(k) (6.49)

keeping the net kinetic energy constant, at Eu = 1.0.

Once a steady state is reached dEu(k)
/

dt = 0, with a robust Kolmogorov

spectrum Eu(k) ∼ k−5/3 (albeit with an ever-pronounced bottleneck effect as the

dimension exceeds d = 3 [272]), the magnetic spectrum interaction is switched on

with a initial seed of magnetic energy with Eb = 10−2. With the interaction on, the
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6. Dynamo Problem in the EDQNM -MHD Closure Model

Figure 6.5: Plots of the combined transfer terms T
(s)
b (k) + T

(c)
b (k) (symbols) and

the effective magnetic diffusive term 2ξk2Eb (dashed lines) for (a) dL ≳ d = 2.0
(b) dL ≲ d = 4.0 ≲ dU and (c) dU ≲ d = 8.0 at short t = 5 (inset) and long
t = 30 times.

forcing is adjusted to match the net dissipation rate:

∫ ∞

0
dk F (k) = ϵu + ϵb (6.50)

Allowing the coupled set of equations in the full EDQNM-MHD model to

evolve with this initial seed of magnetic energy, the characteristic growth of the

magnetic energy determines the dynamo or no-dynamo. We choose this as the t = 0

state in what follows.

Dynamo action in the subsequent dynamics of the model can be simply

defined as follows. Let us define the ratio of the magnetic and kinetic energy as

R(t) = Eb(t)
Eu(t) (6.51)

which of course evolves in time. By choosing the initial ratio R(0) = 10−2 to be

small, a dynamo (or no dynamo) happens if R(t) → 1 (or R(t) → 0) at large times.

In figure 6.4 we show representative plots of R vs t, for a few spatial dimensions

d. As a consistency check, clearly for d = 2 there is no dynamo whereas for three

dimensions R → 0.5 indicating a robust dynamo with energy equipartition between

the magnetic and fluid fields. However, surprisingly and as already anticipated in

figure 6.3, the no-dynamo phase boundary extends beyond d = 2.0 upto dL = 2.03.
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6. Dynamo Problem in the EDQNM -MHD Closure Model

Figure 6.6: The transfer terms (in symbols) and the magnetic diffusion term (in
dashed) line for different dimensions at time t = 100. In this dynamo phase where
the magnetic energy saturates to a finite value there is an exact compensation
of the two contributions as discussed in the text.

Equally interestingly, the dynamo phase disappears at higher dimension d > dU ≈ 7

(Fig. 6.3).

Is it possible to have a theoretical explanation, starting from the equations

of motion, which suggests such a phase diagram? While the short answer is,

unfortunately, no, a scrutiny of the EDQNM-MHD model suggests that in the

coupled set of equations, dynamo action is likely to happen when the interaction

terms are such that the energy transfer is predominantly from u → b. Thus,

the T b(c)(k) acts, effectively, like a forcing on the magnetic field. Thus it seems

reasonable to assume that for dL ⩽ d ⩽ dU, this preferential transfer of energy

(at scales larger than those where the diffusive damping becomes strong) from the

fluid to the magnetic field would lead an increasing magnetic energy Eb with an

eventual saturation which is a consequence of both the nonlinearities (neglible at

short times) and damping. A similar line of argument would also suggest that for

d < dL or d > dU the energy transfer at large scales (where the damping term

is neglible) ought to be, preferentially, from b → u even if there is a net u → b
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6. Dynamo Problem in the EDQNM -MHD Closure Model

transfer at smaller scales. This is because at small scales the dissipate term acts as

a counter to the net pumping from the fluid field.

While the argument outlined above stems from the observation in figure. 6.3

it is admittedly heuristic. To make this somewhat concrete, we must analyse the

spectral properties of the interaction terms in equation (6.37). In figure 6.5 we

plot Tb
(s)(k) + Tb

(c)(k) in Fourier space superimposed with the magnetic diffusion

term 2ξk2Eb at (inset) short (t = 5) and long (t = 30) times for d = 2.03 <

dL, dL ⩽ d = 4.0 ⩽ dU and d = 10 > dU. As conjectured, at short times the

transfer terms are strictly forcing for all d and, being consistenly above the damping

term 2ξk2Eb, dominates leading to an initial growth of the total magnetic enegy

(Fig. 6.4). However at long times while for dL ⩽ d ⩽ dU the next transfer is strictly

positive—hence the dynamo action—for other dimensions at small wavenumbers

the net transfer is strictly from b → u, at small wavenumbers (where the diffusive

damping term is small), indicating an effective depletion of the magnetic energy at

these scales. At larger wavenumbers—reason is quite different—there is however

an effective u → b transfer; however, as seen in figure 6.5 these wavenumbers are

typically much higher than those for dL ⩽ d ⩽ dU and consequently damped out by

the magnetic diffusivity. Therefore the term-by-term analysis clearly indicates that

a no-dynamo phase not only for dimensions around 2 but also for higher dimensions

d > dU.

For dimensions dL ⩽ d ⩽ dU, the relatively small scales of the pumping

prevents compensation by the diffusion term which allows dynamo action to take

place. Indeed, in such dimensions at long times there is a miraculous cancellation

of the pumping and damping, when integrated over all wavenumbers leading to the

saturation of magnetic energies with a finite R and thence the dynamo action. An

example of this effect is shown in figure 6.6 for d = 4.0. We note that the critical

dimensions dL and dU are, hence, strictly dependent on the diffusive scales present

in the system.

Further evidence of this is implicit in the nature of the magnetic energy
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Figure 6.7: Log-log plots of the magnetic energy spectrum Eb vs k for different
dimensions. The forcing scale from the fluid-magnetic interactions show up at
intermediate scales which become larger for d ≳ dU. The scaling exponent
exponent switches from -3 (d ≲ dL) to -5/3 (d ≳ dL) as indicated by the dashed
lines indicating power-laws as a guide to the eye.

spectrum for different dimensions. In figure 6.7 we show log-log plots of the magnetic

spectrum for several dimensions, both in the dynamo and no-dynamo phase. We

measure the spectra at time t ≳ t∗, where t∗ is the peak in R(t). We find a transition

in the spectral exponent on either side of the lower critical dimension: For d ≲ dL,

Eb ∼ k−3 and for d ≳ dL,Eb ∼ k−5/3. While this is related to the inverse cascade etc

etc Furthermore, the peak in the spectrum corresponds to wavenumbers where the

pumping via the transfer terms peak lending further evidence of the interpretation

of the dynamo—no-dynamo phase transition outlined above.

In this Chapter, we have focussed on showing the existence of a

dynamo—no-dynamo phase boundary, for a given point in the magnetic

Reynolds number and Prandl number landscape, by using the remarkably robust

d-dimensional MHD-EDQNM model (Eqs. (6.35) – (6.37)). However, this model

can be used to further investigate effects of compressibility and a wide range of

Prandtl and magnetic Reynolds numbers which are currently difficult in full MHD

direct numerical simulation. We hope that this model will trigger further interest

in tackling the important questions of dynamo from a firmer theoretical standpoint.
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Chapter 7

Conclusion

This Thesis is an intensive, analytically-assisted numerical exploration

of some of the fundamental problems in turbulence and statistical physics.

The topic of the thermalization of classical systems with many degrees of

freedom is a profoundly important one in statistical physics. There are various

instances of such systems, with intentionally broken integrability, that thermalize.

This Thesis primarily focuses on the finite-dimensional (Galerkin-truncated)

equations of ideal hydrodynamics. Although their long-term solutions being

thermalized can be understood by virtue of them being a many-body chaotic

Hamiltonian system—conserving phase space and energy—the precise mechanisms

that genesis the thermalization for the three-dimensional Euler equations are still

not completely understood and have remained an open question. Numerical spectral

simulations of inviscid equations of hydrodynamics are practically always solving

the Galerkin-truncated problem by definition. There are two key consequences of

this. Firstly, a numerical strategy to anticipate the finite-time blow-up of the Euler

equation fails as the small scales thermalize. Secondly, weak (dissipative) solutions

of the Euler equation are diligently hard to realize numerically.

By uncovering the mechanisms at the heart of the thermalization in

the Galerkin-truncated three-dimensional Euler equations in Chapter 2, the study
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showed how certain types of fluid structures, which are nearly always present, lead

to hotspots of small-scale thermalization, which eventually trigger a global Gibbs

distribution in the velocity field. Further, it describes the phenomenon reduced to

the point of view of a one-dimensional problem, thus rendering comparisons with

the well-researched Burger’s equation [39] viable. The work sheds light on various

elements of the genesis of thermalization, such as its non-local character, dependency

on compressional eigenvectors near critically evolved structures, and conditions that

proliferate the process.

Consequently, this understanding paved the way for constructing numerical

prescriptions (as in Chap. 3) that may well avoid thermalization without resorting

to viscous damping, thereby opening up the prospect of developing weak solutions to

the Euler equation. We contemplate that, in the future, with additional refinement

from others with expertise in the area, a sub-grid-size model might be built that

would considerably solve the longstanding difficulties of the Euler equation. Our

work on Tyger purging serves as a hope and witness to the formulation of such

numerical formulas that reliably prevent thermalization at the early stages. The

only catch is the absence of an equivalent entropy solution for the former.

If studies of the truncated system with the goal of understanding the origins

of, and then suppressing, thermalized solutions are fundamental questions in the area

of turbulence, then the application of such thermalized solutions for investigating

other statistical and condensed matter problems is also vital to address. This is due

to the fact that statistical physics is based on the concepts of thermalization and

equilibration, which are facilitated by the many-body chaos inherent in such systems.

We reconciled these two seemingly disparate roles and radically different fallouts of

chaos in Chapter 4 by studying the decorrelators in the non-linear equations of

hydrodynamics such as the 1D Burgers and the 3D Euler equations, which result in

chaotic but thermalized flows. With the use of numerical simulations and analytical

calculations, the chapter shows that the Lyapunov exponent grows as the square

root of temperature and linearly with the degrees of freedom. This calculation

underlined the universal aspects of many-body chaos and its fundamental connection
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to equilibrium properties of the system.

While these three chapters in the Thesis above dealt with the instance

of inviscid hydrodynamics, Chapter 5 deals with an intriguing inquiry connected

to the multifractal rationalization of the fully formed turbulence. Statistics and

measures are produced on the entire dissipation field of the flow to provide a

global multifractal measure, without any local fluctuations accounting for. It is

evident that there are patches with very little activity and areas with abnormally

large dissipation. Given such variance, it appears obvious what one needs is a

measure of local, space-dependent multifractality to understand turbulence better

and not the global statistics that we were accustomed to. This Thesis highlights

progress by creating a local measure Φ(x) of the local multifractality in the flow such

that Φ(x) ≪ 1 indicates local monofractality and Φ(x) ∼ O(1) indicates highly

multifractal. In addition, we provide a map of the turbulence field showing the

areas that are and are not monofractal. This highlights the notion that turbulence

may be characterized as intermittent, multifractal islands on the vast and calm

Kolmogorov Sea. One may now make the connection between the two fundamental

phenomenological foundations of turbulence—the problem of energy cascades and

its ultimate culmination in dissipative structures—thanks to this innovative and new

approach to local multifractal statistics.

The final part of the Thesis, Chapter 6 focuses on the Eddy-Damped

Quasi-Normal Markovian (EDQNM) Closure Model used to comprehend the

dynamo problem associated with magnetohydrodynamic (MHD) turbulence in

arbitrarily high dimensions. We have calculated a ‘d’-dimensional EDQNM-MHD

equation for the first time and demonstrated the presence of critical dimensions

beyond which the dynamo ceases to exist, partially compatible with findings from

other prior models [265]. Most crucially, this platform supports the compatibility of

other essential effects in the image, such as the compressibility, smoothness of the

turbulent field, Prandtl and magnetic Reynolds numbers, and lets to investigate and

quantify the dynamo effect.
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Appendix A

Multifractal analysis of Curdling

model

A.1 Localized Multifractality Dominating the

Global Analysis

A caveat of the multifractal analysis, that has gone largely unremarked

and hence unaccounted, is that the global analysis gets biased in favour of a

broad singularity spectrum (reflecting a high degree of multifractality) even if the

underlying measure field is only multifractal (fluctuating) in localized patches. We

demonstrate this using a simple measure conserving curdling (multiplicative cascade)

model [233, 234, 274]. It is easiest to spell out the construction algorithmically. We

start with a unit initial measure ρ(0) ≡ {ρ0} ≡ {1}, over a length 1. In the

first generation, the measure is split into two parts, generating ρ(1) ≡ {ρ1, ρ2} ≡

{ρ0f0, ρ0(1 − f0)} over lengths 1/2 each, with fi a random variable drawn uniformly

from the interval [0.5 − σ, 0.5 + σ] and 0 ≤ σ < 0.5. In the second generation, the

same process is repeated on ρ1 and ρ2 independently, with new realizations of the

random variable fi for each splitting, hence for instance ρ1 is split into {ρ11, ρ12} ≡
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A. Multifractal analysis of Curdling model

{ρ1f1, ρ1(1 − f1)} and ρ2 is split into {ρ21, ρ22} ≡ {ρ2f2, ρ2(1 − f2)}. This gives

the second generation measure ρ(2) ≡ {ρ11, ρ12, ρ21, ρ22}, over lengths 1/4 each.

Intuitively, after n−generations, we have a measure ρ(n) consisting of 2n parts, each

of length 1/2n, hence preserving the integral of the original measure to 1. The choice

of σ allows controlling the degree of multifractality, with σ ≈ 0 giving a uniform,

monofractal measure (i.e. with a single scaling exponent) and σ ≈ 0.5 giving a

highly fluctuating, multifractal measure (with multiscaling).

Figure A.1: (A) A multifractal and a monofractal measure, constructed using
a random curdling model over 12 generations (4096 divisions) using σ = 0.3
(strongly multifractal) and σ = 0.01 (essentially monofractal, with a single
scaling exponent). A third “mixed” measure is created identical everywhere
to the monofractal measure, except in five localized regions (of ∆n = 100 points
each) where it is identical to multifractal measure. (B) Dq vs q and (C) fα

vs α for all three measures shows that the multifractal measure yields a broad
singularity spectrum (multiscaling behaviour), while the monofractal measure is
essentially a Dirac-delta as expected for a single scaling exponent. Crucially,
the “mixed" measure, despite being ≈ 90% monofractal, yields an equally broad
singularity spectrum as the uniformly multifractal measure, showing how even
small regions of local multifractality (fluctuations) can completely dominate the
global analysis.

Figure A.1(A) shows a multifractal measure (with σ = 0.3 and n = 12)

and an essentially monofractal measure (with σ = 0.01 and n = 12), where the

final measure ρ(n) has been normalized by the mean of ρ(n), for both cases (the

normalization helps prevent numerical issues that arise when calculating higher

moments of the partition function, for measures created with higher values of σ).

Figure A.1(B) shows the Dq vs q curves, where the monofractal measure has a
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flat profile while the multifractal measure has a broad Dq distribution, leading

in figure A.1(C) to the Dirac-delta and broad singularity spectra, respectively,

as is readily expected. We then construct a third, “mixed" measure, which is

identical to the monofractal measure everywhere, except at five localized regions

of ∆n = 100, where it is identical to the multifractal measure. Therefore, this

measure is ≈ 90% monofractal, with only 10% of the regions having multifractal

fluctuations (mimicking the qualitative behaviour of turbulent dissipation). The

global multifractal analysis, unfortunately, gets completely dominated by these

localized multifractal spots, and the mixed measure yields Dq vs q and fα vs α

that are as broad as those for the uniformly multifractal measure.

This shows the need for reconsidering multifractality as a local flow

property, which can be used to distinguish multifractal and monofractal regions

of a given measure field. This would allow separating local spatial regions with

multiscaling and intermittency from the more quiescent and calm regions.
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Appendix B

EDQNM-MHD model

B.1 Isotropic Quasi-Normal equations

The only rotationally invariant second rank tensors are δαβ and k̂α, k̂β.

Thus writing the second-moment in terms of these tensors:

SXX
αβ (k) =

(
c1δαβ + c2k̂αk̂β

)
UX(k) (B.1)

Since SXX
αα (k) = UX(k), kαSXX

αβ (k) = 0, (from incompressibility) which yields c1 =
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1
d−1 = −c2, and thus equation (6.13).

1
(d− 1)P

(k)
αβ

[
d
dt + 2νk2

]
Uu(k) = 1

(d− 1)2

∫
∆k

2θ̂(ω0)P (k)
βργ

[
−P (k)

αµσP(q)
ρµP(p)

γσ Uu(q)Uu(p)

+P (q)
ρµσP(k)

ασP(p)
γµUu(k)Uu(p)

+P (p)
γµσP(k)

αµP(q)
ρσ Uu(k)Uu(q)

]
+ c · c

∣∣∣∣
α↔β

− 1
(d− 1)2

∫
∆k

2θ̂(ωk)P (k)
βργ

[
C(q)

ρµσP(k)
ασP(p)

γµUu(k)U b(p)

+C(p)
γµσP(k)

ασP(q)
ρµ Uu(k)U b(q)

+P (k)
αµσP(q)

ρµP(p)
γσ U b(q)U b(p)

]
+ c · c

∣∣∣∣
α↔β

(B.2)

1
(d− 1)P

(k)
αβ

[
d
dt + 2ζk2

]
U k(k) = 1

(d− 1)2

∫
∆k

2θ̂(ωp)C(k)
βργ

[
−C(k)

αµσP(q)
ρµP(p)

γσ U b(q)Uu(p)

+C(q)
ρµσP(k)

αµP(p)
γσ U b(k)Uu(p)

−P (p)
γµσP(k)

αµP(q)
ρσ U b(k)U b(q)

]
+ 1

(d− 1)2

∫
∆k

2θ̂(ωq)C(k)
βργ

[
−C(k)

αµσP(p)
ρµP(q)

γσU b(p)Uu(q)

+C(p)
ρµσP(k)

αµP(q)
γσU b(k)Uu(q)

−P (q)
γµσP(k)

αµP(p)
ρσ U b(k)U b(p)

]
+ c · c

∣∣∣∣
α↔β

(B.3)

Substituting the form of equation (6.13) in equation (6.11), noting that

SXX(k) becomes real and SXX(−k) = SXX(k) in the isotropic field. In that every

term on the R.H.S of the equations (B.2), (B.3) becomes real after this substitution

of (6.13). Thus the complex conjugate is the same as the first term adding a net

factor to each term. Useful properties of our tensors:

P(k)
αβP(k)

αρ = P(k)
βρ ; P(k)

αβP(k)
αβ = d− 1

P (k)
αργ = P (k)

αγρ ; C(k)
αργ = −C(k)

αγρ

P(k)
αβP (k)

βργ = P (k)
αργ ; P(k)

αβC(k)
βργ = C(k)

αργ (B.4)
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B. EDQNM-MHD model

Then multiplying the equations (B.2), (B.3) by P(k)
αβ using the identity in

(B.4) results in equations (6.14a), and (6.14b).
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B.2 d−dimensional Integral

For a given k and q, only the angle between them and the magnitudes of

them are relevant in the transfer term. Thus we can pull off a factor by integrating

the remaining angles in d−dimensions. In d−dimensional spherical co-ordinates, the

cartesian co-ordinates are related to the spherical angles ϕ1, ϕ2, · · · , ϕn−1 and radius

r by

x1 = r cos(ϕ1)

x2 = r sin(ϕ1) cos(ϕ2)
... ...

xn−1 = r sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1)

xn = r sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1) (B.5)

By orienting the axis such that k is along x1 direction, then q subtends an angle of

ϕ1 = β from the figure. Thus we can integrate the remaining angles ϕ2, · · · , ϕn−1

which form a d− 2 dimensional sphere .

dd−1Ω = sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2 · · · dϕd−1∫
dd−1Ω = Sd−1 = 2πd/2

Γ(d
2)

(B.6)

Denoting the evolution equations (6.16a), and (6.16b) for spectral energies
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as

[
d
dt + 2νk2

]
UX =

∫
∆k

T X(∆k)

=
∫

dq dp δ(p + q − k)T X(∆k)

=
∫

ddq T X(∆k) =
∫

dq qd−1 dd−1Ω T X(∆k)

=
∫ ∞

q=0
dq qd−1

∫ π

β=0
dβ sind−2(β)T X(∆k)

∫
dd−2Ω

=
∫ ∞

q=0
dq qd−1

∫ y=1

y=−1
dy sind−3(β)T X(∆k)Sd−2 (B.7)

To further simplify (B.7), we use sine law of triangle and change of variables.

sin(α)
k

= sin(β)
p∫ ∞

0
dq

∫ 1

0
dy = J

[
∂(q(q, p), y(q, p))

∂(q, p)

] ∫ ∞

0
dq

∫ |k+q|

|k−q|
dp

=
(
p

kq

)∫
∆k

dq dp (B.8)

where J
[
∂(q(q, p), y(q, p))

∂(q, p)

]
is the Jacobian for change of variables, and

∫
∆k

dq dp =∫ ∞

0
dq

∫ |k+q|

|k−q|
dp. Using the relation (B.8) in equation (B.7) finally gives the

equation (6.19).

B.3 Conserved quantities in the Quasi-Normal

model

To see that this model respects the trivial conserved quantities in the ideal

case ν = 0, ξ = 0; the sum of net kinetic and magnetic energy has to be constant.

To show this for a finite dimensional variant, consider any arbitrary triad, k, p, q,

the net transfer of energy (both kinetic and magnetic) between the modes has to be

zero. Then the net energy is conserved for any finite number of triads. Let E be the
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net energy of the system consisting of one triad.

dE
dt = d

dt
[
Eu(k, t) +Eu(p, t) +Eu(q, t) +Eb(k, t) +Eb(p, t) +Eb(q, t)

]
=

∑
s=k,p,q

[
T uu

u (∆s) + T bb
u (∆s) + T ub

u (∆s) + T ub
b (∆s) + T bb

b (∆s)
]

(B.9)

In equation (B.9) on substituting the transfer integrands as in

equation (6.25) it is easy to note that there are 3 types of spectral terms, quadratic

in nature, for every pair of wavenumbers. Since energy conservation has to be

independent of the current state of the system, each of these three coefficients must

vanish simulataneously and does so as shown below,

1. For terms of type Eu(p)Eu(q):

= θ̂
(
ωu

kpq

)
kd−1

[
k

pq
bkpq + k

pq
bkqp − p

kq
bpkq − q

kp
bqkp

]

= θ̂
(
ωu

kpq

)
kd−1 k

pq

[
bkpq − p2

k2 bpkq + bkqp − q2

k2 bqkp

]

= 0 (B.10)

which vanishes on the identity (6.24c). This is exchange of energy between

kinetic spectrum Eu(k), implying the conservation of kinetic energy in the

non-magnetic case

2. For terms of type Eb(p)Eb(q):

= θ̂
(
ωb

kpq

) k
pq
kd−1[ckpq + ckqp − ckpq − ckqp]

= 0 (B.11)

which vanishes trivialy (since we have used certain identities already). These

terms represent a non-linear transfer term between kinetic and magnetic

spectrum composed only from magnetic spectrum.

3. For terms of type Eb(p)Eu(k): The contribution from the coefficients ckpq

from Tub
u (∆k|p) and Tub

b (∆p|k) directly cancels each other. For the terms with
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the coefficient h,

= θ̂
(
ωb

pqk

)
kd−1

[
k

pq
hkqp − q

kp
hkqp

]

= θ̂
(
ωb

pqk

)
kd−1 k

pq

[
hkqp − q2

k2 hqkp

]

= 0 (B.12)

which vanishes on the identity (6.24d). These terms represent a linear transfer

term between kinetic and magnetic spectrum.

Hence, the conservation of net energy is valid, in any dimension. For the

special case of d = 2, we have additional conserved quantities. The MHD equations

in two-dimensions can be written in terms of two scalars, the z−component of the

vorticity field ω = ∂xUy − ∂yUx and the magnetic potential B = ∇× Aêz.

∂ω

∂t
= −U · ∇ω + B · ∇(∇× B) + ν∇2ω (B.13a)

∂A

∂t
= −U · ∇A+ ξ∇2A (B.13b)

In the ideal, pure kinetic EDQNM model (ν = 0,B = 0), the net

enstrophy
∫

dx |ω|2 is conserved. The equivalent in the QN spectral model is∑
k

k2Eu(k). For a single triad (k, p, q) the conservation of enstrophy implies,

d
dt
(
k2Eu(k, t) + p2Eu(p, t) + q2Eu(q, t)

)
= 0

=
∑

s=k,p,q

s2T uu
u (∆s) (B.14)

Similar to the above proof, the coefficient of terms of type Eu(p)Eu(q) is

= θ̂
(
ωu

kpq

)[k4

pq

(
b

(2)
kpq + b

(2)
kqp

)
− p3

q
b

(2)
pkq − q3

p
b

(2)
qkp

]

= θ̂
(
ωu

kpq

)k2

pq

[
k2a(2)

kpq − p2b(2)
kpq − q2b(2)

kqp

]
= 0 (B.15)
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which vanishes on the identity (6.24h). Now for the ideal magnetic fluid in

two-dimensions, the net magnetic potential
∫

dx |A|2 is conserved. In the presence

of a non-zero resistivity ξ > 0, the net magnetic potential can only decay, hence its

derivative, the magnetic energy cannot be contained stably forever and has to start

decrease. This is the main argument of Zeldovich in the reference [273]. Again in

the QN spectral model, this corresponds to
∑

k

Eb(k)
k2 . For a single traid (k, p, q)

the conservation of magnetic potential implies

d
dt

(
Eb(k, t)
k2 + Eb(p, t)

p2 + Eb(q, t)
q2

)
= 0

=
∑

s=k,p,q

1
s2

(
T ub

b (∆s) + T bb
b (∆s)

)
(B.16)

1. For terms of type Eb(p)Eb(q), the coefficient is

= −θ̂
(
ωb

kpq

)( 1
q2

k

qp
c

(2)
kqpk + 1

p2
k

pq
c

(2)
kpqk

)

= −θ̂
(
ωb

kpq

) k2

q3p3

(
p2c(2)

kqp + q2c(2)
kpq

)
= 0 (B.17)

which vanishes on the identity (6.24g) with d = 2.

2. For terms of type Eb(p)Eu(k), the coefficient is

= θ̂
(
ωb

kpq

)( 1
q2

k

qp
qc(2)

kqp − 1
p2

p

kq
qh(2)

pqk + 1
q2

q

kp
qh(2)

qpk

)

= θ̂
(
ωb

kpq

) 1
pq2k

(
k2c(2)

kqp − q2
(
h

(2)
pqk − h

(2)
qpk

))
(B.18)

which vanishes on the identity (6.24i).

B.4 Numerical Simulation of EDQNM-MHD

The original EDQNM-MHD equations given has infinite degrees of
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freedom, to numerically study them we have to discretise the wavenumber space, say

D. Since we are expecting a power law behaviour for energy spectrum in the inertial

range, and want to achieve high Reynolds number (both kinetic and magnetic) in

the simulation, it is easier if we discretise the N wavenumbers {ki} in a geometric

sequence as follows:

D ≡ {ki = k1λ
i−1}, i = 1, 2, · · · , N (B.19)

The wavenumber bands are chosen as ∆ki = ki ln λ. Suppose we denote

the upper k+
i and lower k−

i limits of the ith band by

k+
i = ki + ∆k+

i (B.20a)

k−
i = ki − ∆k−

i (B.20b)

∆k+
i + ∆k−

i = ∆ki (B.20c)

Since we wish to cover the whole of wavenumber space till kN without any

gaps or over lap, for this to happen the lower limit of i + 1th band should coincide

with the upper limit of ith band.

ki + ∆k+
i = ki+1 − ∆k−

i+1 (B.21a)

∆k−
i+1 = ∆k−

i + ki+1

(
1 − 1

λ
− ln λ

λ

)
(B.21b)

= ∆k−
i + k1

(
1 − 1

λ
− ln λ

λ

)
λi − λ

λ− 1 (B.21c)

k+
i = ∆ki

λ− 1 + k1

λ− 1 (λ− 1 − ln λ) − ∆k−
1 (B.21d)

k−
i = ∆ki−1

λ− 1 + k1

λ− 1 (λ− 1 − ln λ) − ∆k−
1 (B.21e)

Now without loss of generality, choose ∆k−
1 = k1

(λ− 1 − ln λ)
λ− 1 :

k−
i = ∆ki

λ− 1 (B.22a)

k+
i = ∆ki+1

λ− 1 (B.22b)

In this frame work of discrete wavenumber bands, the integral in the
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transfer terms becomes:,

∫
∆k

dq dp
∣∣∣∣
k=ki

≡
N∑

j=1

lmax∑
l=lmin

(B.23a)

lmin(i, j) = [Logλ (|ki − kj|)]> + 1 (B.23b)

lmax(i, j) = Max
{
N, [Logλ (ki + kj)]< + 1

}
(B.23c)

The integration limits are chosen such that ki, kj, kl ∈ D can form a

triangle. [x]<, [x]> corresponds to lowest and greatest integer function.
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