
Numerical Filter Stability,

Fokker-Planck Equations and Infinite

Dimensional Optimization with Deep

Learning

A Thesis

Submitted to the

Tata Institute of Fundamental Research, Mumbai

for the degree of Doctor of Philosophy

in Subject Board of Mathematics

by

Pinak Mandal

International Centre for Theoretical Sciences, Bengaluru

Tata Institute of Fundamental Research

January, 2024

[Final Version Submitted in April, 2024]

I would like to dedicate this thesis to my loving family and all the kind people I’ve

met so far.

Declaration

This thesis is a presentation of my original research work. Wherever contributions of

others are involved, every effort is made to indicate this clearly, with due reference to

the literature, and acknowledgment of collaborative research and discussions.

The work was done under the guidance of Professor Amit Apte at the Tata Insti-

tute of Fundamental Research, Mumbai.

[Candidate: Pinak Mandal]

In my capacity as the formal supervisor of record of the candidate’s thesis, I cer-

tify that the above statements are true to the best of my knowledge.

[Research Supervisor: Vishal Vasan]

Date: 30 April 2024

Acknowledgements

This work was supported by the Department of Atomic Energy, Government of India,

under project no. RTI4001, the Infosys-TIFR Leading Edge travel grant (2023) and

the International Research Connections Fund (2022). Special thanks to Zhisong Qu,

Matthew Hole and Robert Dewar for useful discussions on the topics of the last

chapter. Also special thanks to Shashank Kumar Roy for working with me on topics

of the first chapter.

I would like to thank all the amazing people I met at ICTS and NCBS, for being

friends and teachers. In their company I experienced things I never thought I would

and made memories for a lifetime. They are numerous and I offer them my sincerest

apologies for not mentioning them by name. I would like to thank Vishal Vasan and

Amit Apte for having faith in me and creating an environment where for better or

worse I started seeing them as friends rather than professors. I would also like to

thank Sreekar Vadlamani for always being encouraging.

List of figures

1.1 Average Dε(αd
m, βd

m) (over 20 realizations) where αd
m, βd

m are two differ-

ent sampling distributions with the same sample size m for the same

underlying d-dimensional Gaussian N (0d, λId) 19

1.2 Dε (averaged over 10 observation realizations) for BPF for 10-dimensional

L96 (row 1) and L63 (row 2) systems with observation covariance

σ2 = 0.1, for pairs of initial distributions in (1.13), with varying sample

size. The line for N = 2000 has a band showing one standard deviation.

The inset shows the drop in average Dε during the first few assimilation

steps. 21

1.3 Dε (averaged over 10 observation realizations) for BPF for 10-dimensional

L96 (row 1) and L63 (row 2) systems with observation covariance

σ2 = 1.0, for pairs of initial distributions in (1.13), with varying sample

size. The line for N = 2000 has a band showing one standard deviation.

The inset shows the drop in average Dε during the first few assimilation

steps. 22

1.4 Dε (averaged over 10 observation realizations, with one standard devi-

ation confidence band) for EnKF for 10-dimensional L96 with N = 50

with localization (left), N = 200 without localization (middle) for obser-

vation covariance σ2 = 0.1, and for 40-dimensional L96 with N = 50

with localization (right) with observation covariance σ2 = 1.0 for pairs

of initial distributions in 1.13. The inset shows the drop in Dε for the

first 50 assimilation steps. 23

vi | List of figures

1.5 Comparison between filters for 10-dimensional L96 and σ2 = 1.0. The

solid lines on the top show average Dε between EnKF without local-

ization with N = 200 and BPF with M = 2000. The dotted lines in

the middle show average Dε between BPF with N = 250 and BPF with

M = 2000. The dashed lines at the bottom show average Dε between

EnKF without localization with N = 200 and EnKF with localization

with M = 50. In each case, different colors are for different initial

conditions from (1.13). 24

1.6 The left and right panels show the results for PF and EnKF respec-

tively with fixed observational error variance σ2 = 0.4, and each

column contains the results for different time between observations

g = 0.01, 0.03, 0.07, 0.09. Row 1: Mean Dε versus time. The dots repre-

sent 10 different realisations. The solid line is the exponential best-fit

line for the mean Dε as in (1.16). Row 2: Mean scaled l2 error from (1.17)

versus time for the two initial distributions. Row 3: Mean uncertainty

from (1.18) versus time for the two initial distributions. The constant

dotted line in rows 2 and 3 shows the observational error variance σ2 for

reference. Row 4: RMSE versus mean Dε. Pearson correlation coefficient

between these two quantities is depicted alongside the goodness of fit

for the best-fit line. 29

1.7 Same as in figure 1.6 with the left and right panels showing the results

for PF and EnKF respectively, but with fixed time between observa-

tions g = 0.05, and each column containing the results for different

observational error variances of σ2 = 0.2, 0.4, 0.8, 1.6. 31

1.8 Change in mean Dε with ε. The smallest two ε values produce identical

mean lines. The filtering distributions are generated by particle filter

for observation gap = 0.05 and observation covariance = 0.4. 39

1.9 Mean Dε for 100 observations for PF (left panel) and EnKF (right panel)

with observation gap = 0.05 and observation covariance = 0.4. 40

2.1 Attractors for non-gradient examples . 48

2.2 Solution for the 2D ring system . 59

List of figures | vii

2.3 Comparison of absolute errors for deep learning and Monte Carlo

solutions for the 2D ring system . 59

2.4 Solutions for the 10D ring system. Both solutions have been normalized

such that
∫

R

∫
R

p(0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1 60

2.5 Absolute error in the learned solution for the 10D ring system 61

2.6 Solutions for the noisy Lorenz-63 system 62

2.7 Solutions for the noisy Thomas system 63

2.8 Left panel: Loss vs training iteration starting from iteration 100. Right

panel: time taken per training iteration vs dimension. 64

2.9 Left panel: Distance from truth vs training iteration every 100 iterations,

starting from iteration 5000 and ending at iteration 50000 for the 2D

ring system. Right panel: Scatter plot for loss vs distance from truth for

the 2D ring system. The inset shows that asymptotically loss and the

distance from the truth are linearly related. The inset depicts the data

from training iteration 10000 to 50000. 65

3.1 h-SDE trajectories for various systems. In both cases a pair of trajectories

start from the same point (depicted as a black dot) in D. While the

trajectories for the gradient system might leave D (smaller rectangle),

they do not leave Ω (larger rectangle). However, the same is not true

for the non-gradient system. 90

3.2 ξ(T,D, Ω) as a function of T for various systems. 91

3.3 Initial condition for the noisy Lorenz-63 system. 96

3.4 Solutions for the 10D time-dependent system at time t = 0.1. The

learned solution has been normalized such that
∫

R

∫
R

p(0.1, 0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 =

1. The right panel depicts the Monte-Carlo solution for the 2D Fokker-

Planck equation corresponding to the variables x4, x5. The learned and

Monte-Carlo solutions were computed using 105 (pointwise) and 107

trajectories respectively. 97

3.5 Solutions for the noisy Lorenz 63 system at time t=0.03. The learned

and Monte-Carlo solutions were computed using 200 (pointwise) and

107 trajectories respectively. 98

3.6 Solutions for the noisy Thomas system at time t=1. The learned and

Monte-Carlo solutions were computed using 50 (pointwise) and 107

trajectories respectively. 99

3.7 One step filtering density for the noisy Lorenz 63 system. The learned

and particle filter solutions were computed using 200 (pointwise) and

107 trajectories respectively. 100

4.1 Example behavior of the oscillating learning rate δ 116

4.2 Solutions to the minimal surface problem. Darker color implies higher

u value. 117

4.3 Errors and run times for the minimal surface problem as functions

of gradient descent steps. The errors have been plotted in a semilog

fashion. All quantities have been plotted every 100 steps. 118

4.4 Solutions to the geodesic problem. The distance between the black dots

is being minimized. 119

4.5 Errors and run times for the geodesic problem as functions of gradient

descent steps. The errors have been plotted in a semilog fashion. All

quantities have been plotted every 100 steps. 119

4.6 Solutions to the geodesic problem when the points (black dots) are

antipodal . 120

4.7 Solutions to the Grad-Shafranov equation. Darker color implies higher

u value. 120

4.8 Errors and run times for the Grad-Shafranov problem as functions

of gradient descent steps. The errors have been plotted in a semilog

fashion. All quantities have been plotted every 100 steps. 121

4.9 Solutions to the Beltrami field problem. The arrows-lengths have been

normalized for visual clarity. The colorbars depict the magnitude of the

vectors. 122

4.10 Errors and run times for the Beltrami field problem as functions of

gradient descent steps. The errors have been plotted in a semilog

fashion. All quantities have been plotted every 100 steps. 123

List of tables

1.1 Parameters of the best-fit for the mean Dε versus time as in (1.16) with

associated confidence intervals for fixed observation covariance σ2 = 0.4

and different observation gap g shown in the top row. 29

1.2 Parameters of the best-fit for the mean Dε versus time as in (1.16) with

associated confidence intervals for fixed observation gap g = 0.05 and

different observational error covariance σ2 shown in the top row. 32

4.1 Networks used in various experiments 126

4.2 Hyperparameters of the penalty factor for various experiments 126

4.3 Hyperparameters of the learning rate for various experiments 127

List of symbols

π̂n(µ) Approximate filtering distribution at assimilation time n starting with the initial

distribution µ

π̂EnKF
n (µ), π̂E

n(µ) Approximate filtering distribution computed with particle filter at

assimilation time n starting with the initial distribution µ

π̂PF
n (µ), π̂P

n(µ) Approximate filtering distribution computed with particle filter at

assimilation time n starting with the initial distribution µ

x | List of symbols

π̂X,∗
n (µ) Limit of π̂X,N

n (µ) as N ↑ ∞ assuming it exists

π̂X,N
n (µ) Approximate filtering distribution computed with algorithm X with N parti-

cles at assimilation time n starting with the initial distribution µ

P(Rd) Set of probability measures on Rd

U (D) Uniform distribution on D

πn(µ) True filtering distribution at assimilation time n starting with the initial distri-

bution µ

ξ(T,D, Ω) Average probability that a trajectory of the h-SDE stays inside Ω till time T

after starting in D

Ck Space of real-valued functions with k continuous derivatives

Ck
0 Space of real-valued functions vanishing at infinity with k continuous derivatives

Cb Space of real-valued bounded continuous functions

Dε(µ, ν) Square root of Sinkhorn divergence between probability measures µ, ν with

regularization parameter ε

en(µ) Scaled l2 error or RMSE of a filtering algorithm at assimilation time n starting

with the initial distribution µ with the algorithm identifier suppressed

L2 Space of square integrable functions

p∞ + FK Algorithm for computing time dependent solutions to Fokker-Planck equa-

tions using the unnormalized steady state and the Feynman-Kac formula

Sε(µ, ν) Sinkhorn divergence between probability measures µ, ν with regularization

parameter ε

sn(µ) Square root of the trace of the sample covariance or uncertainty of a filtering

algorithm at assimilation time n starting with the initial distribution µ with the

algorithm identifier suppressed

Wk,p Sobolev space of functions with k p-integrable weak derivatives

List of symbols | xi

Wk,p
loc Space of functions whose restrictions to compact sets are Sobolev

Wp The p-th Wasserstein metric

AL∞
∞ Augmented Lagrangian algorithm for infinite dimensional problems when the

output of the constraint function is a function itself

AL∞
F Augmented Lagrangian algorithm for infinite dimensional problems when the

output of the constraint function is finite dimensional

P∞ Penalty algorithm for infinite dimensional problems

Table of contents

List of figures v

List of tables ix

List of symbols ix

Abstract xvi

Introduction 1

1 Probing nonlinear filter stability 6

1.1 Introduction . 6

1.2 Problem statement . 8

1.2.1 The nonlinear filtering problem 8

1.2.2 Filter stability . 9

1.2.3 Ensemble Kalman Filters . 11

1.2.4 Particle Filters . 12

1.2.5 Choice of distance D . 14

1.2.6 Sinkhorn divergence . 14

1.3 Numerical Evidence for Filter Stability 16

1.3.1 Experimental Setup . 17

1.3.2 Data generation . 18

1.3.3 Zero of the Sinkhorn algorithm . 18

1.3.4 Stability of Particle Filter . 20

1.3.5 Stability of EnKF . 22

1.3.6 BPF vs EnKF . 23

1.4 Robustness of Filter Stability . 25

Table of contents | xiii

1.4.1 Experimental Setup . 26

1.4.2 Dependence on observation gap 28

1.4.3 Dependence on observation noise 31

1.5 Summary and Future Work . 32

1.6 Appendix . 34

1.6.1 Properties of Sinkhorn divergence 34

1.6.2 Definition 1.2.2 implies definition 1.2.1 35

1.6.3 Convergence in Dε and W2 . 38

1.6.4 Effect of varying the sample-size 40

2 Learning zeros of Fokker-Planck operators 42

2.1 Introduction . 42

2.2 Problem statement . 43

2.3 Examples . 45

2.3.1 Gradient systems . 45

2.3.2 Non-gradient Systems . 47

2.4 Previous works . 48

2.5 Overview of deep learning . 50

2.5.1 From PDE to optimization problem 50

2.5.2 From infinite-dimensional search space to finite-dimensional

search space . 51

2.5.3 From integrals to sums . 52

2.5.4 Finding the optimal parameters 52

2.5.5 Why deep learning . 52

2.6 The algorithm . 54

2.6.1 Unboundedness of the problem domain 54

2.6.2 Existence of the trivial solution . 54

2.6.3 The steady state algorithm . 55

2.6.4 Architecture . 55

2.6.5 Optimization . 57

2.7 Results . 58

2.7.1 2D ring system . 58

2.7.2 2nD ring system . 59

xiv | Table of contents

2.7.3 Noisy Lorenz-63 system . 60

2.7.4 Noisy Thomas system . 61

2.7.5 Dimension dependence . 62

2.7.6 Comparison of loss and distance from truth 64

2.8 Summary and Future Work . 65

2.9 Appendix . 66

2.9.1 Existence and uniqueness of solutions to example problems . . . 66

2.9.2 Monte Carlo steady state algorithm 70

2.9.3 Integration error for n-point Gauss-Legendre rule 71

3 Solving Fokker-Planck equations 74

3.1 Introduction . 74

3.2 Problem Statement . 75

3.2.1 Time-dependent FPEs . 75

3.2.2 One step filtering problem . 76

3.3 Examples . 77

3.3.1 Gradient systems . 77

3.3.2 Non-gradient Systems . 78

3.4 The p∞+FK algorithm . 80

3.4.1 Failure of the physics-informed way 80

3.4.2 The Feynman-Kac formula . 83

3.4.3 The algorithm . 87

3.4.4 Strengths and limitations . 88

3.5 Results . 95

3.5.1 10D ring system . 96

3.5.2 Noisy Lorenz-63 system . 97

3.5.3 Noisy Thomas system . 98

3.5.4 One step filter . 99

3.6 Summary and Future Work . 101

3.7 Appendix . 101

3.7.1 Existence and uniqueness of solutions to example problems . . . 101

3.7.2 Monte Carlo algorithm . 102

Table of contents | xv

4 Learning solutions to some toy constrained optimization problems 104

4.1 Introduction . 104

4.2 Problem Statement and examples . 105

4.2.1 The minimal surface problem . 106

4.2.2 Geodesics on a surface . 107

4.2.3 Grad-Shafranov equation . 108

4.2.4 Beltrami fields . 108

4.3 Methodology . 109

4.3.1 Constrained optimization algorithms in finite dimensions 109

4.3.2 Constrained optimization algorithms in infinite dimensions . . . 111

4.3.3 Deep learning variants for infinite dimensional algorithms . . . 111

4.4 Results . 113

4.4.1 The minimal surface problem . 117

4.4.2 Geodesics on a surface . 118

4.4.3 Grad-Shafranov equation . 120

4.4.4 Beltrami fields . 121

4.5 Summary and Future Work . 122

4.6 Appendix . 123

4.6.1 Architecture . 123

4.6.2 Penalty factor . 126

4.6.3 Learning rate . 127

Summary and Future Work 128

References 131

List of works 142

Abstract

We tackle three different problems. Each problem is connected to the previous one

in one or more ways, either directly or through the method of solution. Moreover,

all three topics are comfortably enveloped by the overarching theme of numerical

optimization. Our first problem is to evaluate stability of nonlinear filtering algorithms

when the underlying dynamics is deterministic. We demonstrate that popular filtering

algorithms are exponentially stable and discover a relationship between filter RMSE

and filter stability. Our second problem is to devise an algorithm to solve Fokker-

Planck equations in high dimensions. We use a deep learning algorithm to compute

the non-trivial zeros of the Fokker-Planck operator. We show that combining these

zeroes with an appropriate Feynman-Kac formula gives us the solution to the time-

dependent Fokker-Planck equation. Lastly, we discuss two deep learning algorithms

for solving constrained optimization problems in infinite dimensional Hilbert spaces.

We test these algorithms on some toy problems inspired by calculus of variations and

physics.

Introduction

One of the challenging problems in earth sciences is to incorporate the vast quantities

of data that are constantly being collected world-wide into dynamical models for these

systems, and is called the problem of data assimilation (DA). DA is a crucial ingredient

for making meaningful real time predictions such as weather forecasts, hurricane

tracking, and possibly even climate predictions. [7, 27] The Bayesian formulation of

DA naturally leads to the problem of nonlinear filtering, which studies the conditional

distribution, called the filter or the posterior distribution, of the state at any time

conditioned on observations up to that time. [3, 106, 148]

A natural question is about the stability of the filter with respect to the initial

condition, which is the probability distribution of the state at the initial time. This

question has been studied extensively, e.g., [15, 33], but mostly in the context of

stochastic systems. In many applications in the earth sciences, the models used are

deterministic and only a few results about filter stability are known, see [147, 146] and

the references therein. The main focus of the first part of this thesis is to illustrate

numerically the stability of two commonly used filtering algorithms, namely the

particle filter and the ensemble Kalman filter, in the case of deterministic dynamical

systems. But our methods are in no way limited to deterministic systems alone and

are readily applicable to stochastic systems as well. We also study the exponential

nature of filter stability along with its dependence on two main parameters of the

nonlinear filtering problem, the observation gap and the observation noise.

In order to investigate filter stability we need to compute distances between

probability measures. Due to its nice geometric properties we use the Wasserstein

metric as our choice of distance between probability measures. Computing the

Wasserstein metric requires one to solve an optimization problem and this unveils

2 | Introduction

the overarching theme of this thesis, namely numerical optimization. Even though

throughout the majority of this thesis we are interested in topics where optimization

is not the end goal, it serves as an important tool in solving the problems at hand.

Moreover, in the last chapter numerical optimization becomes the main subject matter.

In the Bayesian formulation, nonlinear filtering is usually done in two recursive

steps. In the first step called "prediction", we evolve our knowledge of the state

according to the underlying dynamical system. In the second step called "correction"

we correct our knowledge with an Bayesian update using the current observation. In

case the underlying dynamical system is stochastic, we can think of the prediction step

as solving an appropriately formulated Fokker-Planck equation which indicates that

algorithms for solving such equations can lead to new filtering algorithms. Other than

that Fokker-Planck equations naturally arise as descriptions of evolution of probability

densities everywhere [108], [93], [161] and are interesting in their own right. In 1996

Jordan et al showed that solutions to Fokker-Planck equations can be viewed as

minimizers of a regularized version of the squared Wasserstein metric [87]. Therefore,

these equations are intricately linked to the topics of the first chapter in more ways

than one . The second and the third chapters of this thesis deal with Fokker-Planck

equations. In particular, we are interested in ways to solve high dimensional Fokker-

Planck equations. Since deep learning methods can be implemented in mesh-free

ways they give us a viable paradigm for working with high dimensional problems.

In the second chapter we develop a deep learning algorithm for learning zeros of

high-dimensional Fokker-Planck operators. In the third chapter we use the Feynman-

Kac formula with the stationary solutions of Fokker-Planck equations to solve time

dependent Fokker-Planck equations.

The deep learning methods used in the second chapter to estimate zeros of Fokker-

Planck operators can be extended to solve some constrained optimization problems

which is the topic of the last chapter. Penalty and augmented Lagrangian are two

popular methods for solving constrained optimization problems in finite dimensions

[129]. And although their infinite dimensional analogues have been theoretically

studied [81], [91], their practical implementations are few and far between. The goal of

the last chapter of this thesis is to bridge this gap between theory and implementation.

We devise deep learning versions of the penalty and augmented Lagrangian algorithms

Outline of this thesis | 3

for constrained optimization problems in infinite dimensional Hilbert spaces. We

consider a few toy problems inspired by calculus of variations and physics to explore

this topic.

Optimization techniques are the central to this thesis as problem solving tools.

Even though they do not become the main topic of interest until chapter 4, they

appear in various subproblems that help us tackle the original problems in the first

two chapters. In chapter 1, in order to evaluate filter stability we need to compute

distances in the space of probability measures. The Wasserstein distance between

probability measures happens to be an ideal choice of distance for us which is defined

in terms of an optimization problem. Thus our route to assessing filter stability passes

through optimization as a subproblem. In chapter 2 our main objective is to compute

the zeros of Fokker-Planck operators which have deep connections to data assimilation

when the the underlying dynamical system is noisy. To do this we essentially recast

the problem as an unconstrained infinite dimensional optimization problem. The

method described in chapter 2 is also an integral part of the central algorithm in

chapter 3. Finally, in chapter 4 we investigate the more general scenario when infinite

dimensional optimization problems similar to the one in chapter 2 need to be solved

in presence of constraints.

Outline of this thesis

Below we provide a brief outline of this thesis along with the source materials and

necessary attributions of credit. The work appearing in the first three chapters was

done under the supervision of Amit Apte.

Probing nonlinear filter stability

In this chapter we explore filter stability by directly assessing it with Sinkhorn di-

vergence. The work in this chapter was done alongside Shashank Kumar Roy. The

Kalman filter experiments appearing in this chapter were done by Shashank while the

author was in charge of the particle filter experiments. The contents of this chapter

are taken from the following papers.

Outline of this thesis | 4

• Mandal, P., Roy, S. K., and Apte, A. (2021). Stability of nonlinear filters - numerical

explorations of particle and ensemble Kalman filters. In 2021 Seventh Indian

Control Conference (ICC), pages 307–312. IEEE

• Mandal, P., Roy, S. K., and Apte, A. (2023). Probing robustness of nonlinear filter

stability numerically using Sinkhorn divergence. Physica D: Nonlinear Phenomena,

451:133765

Learning zeros of Fokker-Planck operators

In this chapter we devise a deep learning algorithm to learn solutions to stationary

Fokker-Planck equations. The contents of this chapter are taken from the following

paper.

• Mandal, P. and Apte, A. (2023). Learning zeros of Fokker-Planck operators. arXiv

preprint arXiv:2306.07068

Solving Fokker-Planck equations

In this chapter we solve time-dependent Fokker-Planck equations using a hybrid

algorithm which uses the zeros of the Fokker-Planck operator and the Feynman-Kac

formula. The contents of this chapter are taken from the following paper.

• Mandal, P. and Apte, A. (2024). Solving Fokker-Planck equations using the

zeros of Fokker-Planck operators and the Feynman-Kac formula. arXiv preprint

arXiv:2401.01292

Learning solutions to some toy constrained optimization problems

In this chapter we explore the penalty and augmented Lagrangian algorithms for

infinite dimensional problems in a deep learning setting. The author is grateful to

Zhisong Qu, Matthew Hole and Robert Dewar for helpful discussions on the topics of

this chapter. The contents of this chapter are taken from the following paper.

• Mandal, P. (2024). Learning solutions to some toy constrained optimization

problems in infinite dimensional Hilbert spaces. arXiv preprint arXiv:2401.01306

Chapter 1

Particle filters and ensemble Kalman filters are widely used in data assimilation but in the case

of deterministic systems, which are quite commonly used in earth science applications, only a

few theoretical results for their stability are available. Current numerical literature explores

stability in terms of RMSE which, although practical, cannot represent the distance between

probability measures, convergence of which is what defines filter stability. In this study, we

explore the distance between filtering distributions starting from different initial distributions

as a function of time using Wasserstein metric, thus directly assessing the stability of these

filters. These experiments are conducted on the chaotic Lorenz-63 and Lorenz-96 models for

various initial distributions for particle and ensemble Kalman filters. We show that even in

cases when both these filters are stable, the filtering distributions given by each of them may

be distinct. We explore the exponential nature and robustness of filter stability by varying

two crucial parameters of the nonlinear filtering problem, namely the observation gap and the

observation noise. We also establish numerically a relation between filter stability and filter

convergence by showing that the Wasserstein distance between filters with two different initial

conditions is proportional to the bias or the RMSE of the filter before stabilizing.

Chapter 1

Probing nonlinear filter stability

1.1 Introduction

The problem of predicting the state of a complex dynamical system is ubiquitous

in many scientific and engineering fields. In the context of earth sciences, weather

prediction and reanalysis of past climate [39, 105] are major examples of such state

estimation problems, which have two main ingredients: (i) a dynamical model, usually

deterministic, of the system and (ii) partial, usually sparse, and needless to say, noisy,

observations. The process of combining these observations with the model to get an

“optimal” state estimate is commonly called data assimilation - a term introduced in

earth sciences [29, 57, 90].

The mathematical formulation of this problem in a Bayesian framework encapsu-

lates the information from the model in terms of a prior distribution, and the observa-

tional likelihood is used to obtain a posterior distribution for the model state [3, 106].

For dynamical systems, this is precisely the problem of nonlinear filtering, where the

posterior distribution itself changes with time and is conditioned on observations up

to that time. This posterior is called the filter or the filtering distribution [152, 168, 7].

A crucial characteristic of the atmospheric and oceanic dynamics is their chaotic

nature, manifested in the sensitivity to initial conditions. Thus a natural question

is whether the filter is also sensitive to the choice to the initial distribution. In

nonlinear filtering, this appears in the form of a question about the stability of the

filter [34, 33, 42]. A filter is stable if two different initial distributions lead to the same

filtering distribution asymptotically in time. This is a desirable property for a filter

1.1 Introduction | 7

since the choice of the initial distribution is arbitrary and we desire the filter to “forget”

about this arbitrary choice. Thus filter stability is an extensively studied topic, but

mainly in the context of stochastic dynamics with only limited results for deterministic

dynamical systems [146, 132, 147, 31].

In practice, nonlinear filters need to be implemented numerically and we will

focus on two of the most commonly used methods, namely, particle filters (PF) and

ensemble Kalman filters (EnKF). The stability of particle filters has been extensively

studied [35, 172] while very few theoretical results are known for the stability of

EnKF [48], though some results related to filter divergence (which is quite distinct

from an unstable filter) and accuracy for the EnKF are available [94, 107, 67]. We note

that the assumptions used to prove stability of PF are not satisfied by a deterministic

dynamical model and thus their stability in the context of data assimilation needs to

be explored numerically. This is the main aim of the present chapter.

In order to assess filter stability directly using the definition (see definition (1.2.2)),

we need to compute distances between probability distributions. This has been

a challenging task, but recently proposed Sinkhorn algorithm provides an efficient

method for this task [61, 62, 55, 5]. One of the novelties of this chapter is to demonstrate

the use of the Sinkhorn algorithm in the context of data assimilation for directly

studying stability. Even though we focus on deterministic dynamical systems here,

our methods are readily applicable to stochastic systems as well.

Numerical studies of filter divergence, especially in the context of twin experiments

where synthetic observations are generated using the model, have focused on assessing

whether the filter remains bounded or whether the ‘error’ or ‘bias’ of the filter

(commonly called RMSE, i.e. distance of the filter mean from the numerical trajectory

which is used to generate the synthetic observations) remains bounded in time [94, 107].

But this does not provide a direct indication of stability as defined in (1.2.2). In this

chapter, we demonstrate that there is a linear relationship between the filter error and

the distance between two filters started with two different initial distributions, the

latter giving a more appropriate measure of stability. This direct relation between filter

stability and filter RMSE for particle and ensemble Kalman filters for deterministic

dynamics is the other main contribution of this chapter.

8 | Probing nonlinear filter stability

The outline of this chapter is as follows. The next section introduces the mathe-

matical setting for the problem of filter stability. This is followed by a description of

the filtering algorithms (particle filter and ensemble Kalman filter), and the Sinkhorn

algorithm for computing distances between probability distributions. After that we

present our results in two parts. The first part looks at the numerical evidence for

stability of the filtering algorithms considered here. In the second part we investigate

the exponential nature and robustness of filter stability by varying two main parame-

ters in the filtering problem, namely the observation gap and observation noise. We

end this chapter with a summary of the main results along with some possible future

directions of research.

1.2 Problem statement

1.2.1 The nonlinear filtering problem

In this chapter we work with a dynamical model given by a deterministic and chaotic

ODE. Our model state is d-dimensional and the flow corresponding to the model is

denoted by ϕ : R×Rd → Rd. We observe the model every g units of time and call

g the observation gap. So the model state xk follows a discrete-time deterministic

dynamical system fg
def
= ϕ(g, ·) : Rd → Rd. The observations yk ∈ Rq is related to the

model state by the observation operator (a linear projection throughout this chapter)

H : Rd → Rq for k = 0, 1, . . . , as follows:

xk+1 = fg(xk), x0 ∼ µ , (1.1)

yk = Hxk + ηk , (1.2)

where µ is the initial distribution of the model state x0 at time 0, and ηk ∼ N (0q, σ2 Iq)

are iid Gaussian errors in the observation, and are assumed independent of µ. Given

observations y0, y1, · · · , yn, the goal of filtering is to estimate the conditional distri-

bution of the model state at time n conditioned on observations up to that time:

xn|y0:n ∼ πn(µ), where the dependence on the distribution µ of the initial condition

x0 is made explicit since our focus will be on filter stability.

1.2 Problem statement | 9

1.2.2 Filter stability

In practice we often do not know the initial distribution µ. In such a case, when a

different initial condition ν is chosen, one obtains a different filter, denoted by πn(ν),

by using the same set of observations and using the same algorithm. A measure

of robustness of a filtering algorithm is how well it is able to "forget" the initial

distribution, which motivates the following definitions.

There are two different kinds of randomness that one needs to deal with in the

setup above, the initial condition and the observation noise. Suppose x0 : Ω→ Rd is

our random initial condition. Consider x0(ω), a realization of this initial condition.

Now that we have fixed a realization of x0, πn(ν) and πn(µ) become random measures

whose randomness is determined only by the observation noise. For x0(ω) we can

compute the following expectation with respect to the observation noise

E

∣∣∣∣∫
Rd

h(x)πn(µ, dx)−
∫

Rd
h(x)πn(ν, dx)

∣∣∣∣ (1.3)

for a bounded, continuous function h. If this expectation approaches 0 as n→ ∞ for

any such h we can say that the filter is "pointwise" stable for the initial realization

x0(ω). And if the filter is "pointwise" stable for almost all realizations of x0, we call

the filter stable.

[146] explores the "true" filter stability for deterministic dynamics. Below we

adapt the definition for numerical filter stability. Below π̂ denotes the numerical

approximation of the true filter π.

Definition 1.2.1 (Stability-RA [146]) A numerical filter is stable if for any measure ν with

µ≪ ν we have,

lim
n→∞

E

∣∣∣∣∫
Rd

h(x) π̂n(µ, dx)−
∫

Rd
h(x) π̂n(ν, dx)

∣∣∣∣ = 0 , (1.4)

for any bounded and continuous h, µ-almost everywhere in the sense described above.

Note that the expectation above is taken with respect to the observation noise only.

Although (1.4) captures the notion of filter stability quite well, from a computational

perspective we can improve on it in the following aspects.

10 | Probing nonlinear filter stability

• Computing the expectation for every possible bounded and continuous function

is infeasible.

• In real world applications we might not have access to µ and therefore an

expectation independent of µ is preferable.

In order to overcome above difficulties and to assess filter stability numerically, we

devise the following definition which can be proven to be a stronger version of

definition 1.2.1 in an appropriate sense (see Theorem 1.6.7 in appendix).

Definition 1.2.2 (Stability-MRA [122]) A numerical filter is said to be stable if for any two

distributions ν1, ν2, the following holds,

lim
n→∞

E[D(π̂n(ν1), π̂n(ν2))] = 0 , (1.5)

µ-almost everywhere, where D is a distance on P(Rd), the space of probability measures on

Rd.

Note that even with the modifications, definition 1.2.2 remains hard to compute in

the following aspects.

• Computing the limit for every possible pair ν1, ν2 is infeasible.

• Computing the limit for every possible initial realization x0(ω) is infeasible.

The last two difficulties also arise in definition 1.2.1 and are unavoidable in some

sense in a complete definition of filter stability. But even with these difficulties

we can explore numerical filter stability in a meaningful albeit slightly limited way.

Although we demonstrate results for a single realization x0(ω) here, this realization

was generated randomly and different initial realizations yield qualitatively similar

results which are consistent with the stability definition 1.2.2 and hence are not

included in the chapter to avoid repetition.

The main aim of this chapter is to study the stability of two popular filtering

algorithms, namely the particle filter (PF) and the ensemble Kalman filter (EnKF) by

studying the limit in (1.5), where we choose the Wasserstein metric W2 as our distance

D on P(Rd). Thus we study E[D(π̂n(ν1), π̂n(ν2))] as a function of time n for PF and

EnKF algorithms. We also study the rate of convergence of the expectation in (1.5)

1.2 Problem statement | 11

and how it varies with respect to the time between the observations denoted by g and

the observational uncertainty or the error variance σ2. In the following discussion

we sometimes abuse the notation and use π to mean π̂PF or π̂EnKF with clear context.

We now describe these numerical filtering algorithms, followed in section 1.2.6 by a

description of the Sinkhorn algorithm for computing distances between probability

distributions.

1.2.3 Ensemble Kalman Filters

Kalman filters provide the closed form solutions to the Bayesian filtering equations in

the scenario when the dynamic and measurement models are linear Gaussian or if the

state equation (1.1) looks like

xk+1 = Akxk + αk , (1.6)

where αk ∼ N (0, Qk). The filtering distribution in this special case turns out to be

Gaussian. The mean and covariance of this distribution is computed recursively in

two steps, a prediction step where the effect of the hidden dynamics is captured and

p(xk|y1:k−1) is computed and an update step where the observation yk is taken into

account to give the filtering distribution p(xk|y1:k) using Baye’s rule and well-known

properties of the multivariate Gaussian distribution.

Ensemble Kalman filters can be thought of as an approximation of the original

Kalman filter where the filtering distribution is represented by a collection of particles,

as is the norm in Monte Carlo-based methods. The ensemble representation is akin to

dimension reduction which leads to computational feasibility for systems with large

state space dimension d [53]. Localization, which is the process of weeding out long

range spurious correlations, has made EnKF more applicable as well as wildly popular

in high-dimensional data assimilation problems for spatially extended systems. For a

discussion about localization see [27]. We use Gaspari-Cohn function as our choice of

localization function with radius set to 2. The details of the exact implementation that

we use can be found in algorithm 1.

12 | Probing nonlinear filter stability

Algorithm 1 EnKF with covariance localization in state-space. ◦ denotes Hadamard
product.

Initialize N particles {xi
0}N

i=1 according to the initial distribution and set xi,a
0 = xi

0
Set ρ as the Gaspari-Cohn localization matrix [27].
for k = 1, · · · , n do

for i = 1, · · · , N do
xi, f

k ← fg(xi,a
k−1)

end
m f

k ←
1
N ∑i xi, f

k

P f
k ← ρ ◦

∑i

(
xi, f

k −m f
k

)(
xi, f

k −m f
k

)⊤
N−1

K ← P f
k HT

[
HP f

k HT + Rk

]−1

for i = 1, · · · , N do
Sample ηi

k ∼ N (0q, σ2 Iq)

yi
k ← yk + ηi

k

xi,a
k ← xi, f

k + K
[
yi

k − Hxi, f
k

]
end
π̂k ← 1

N ∑N
i=1 δxi,a

k

end

1.2.4 Particle Filters

Particle-filters are also Monte Carlo-based filters that recursively compute importance

sampling approximations of the filtering distribution p(xk|y1:k). PFs also follow the

Bayesian paradigm of two-step recursion with prediction and update steps. The

filtering distribution is represented as a collection of weighted particles. In the

prediction step the particles are evolved in time according to (1.1) which gives us the

prior for the next Bayesian update step where the weights are adjusted appropriately

to account for the observation. For an excellent overview of the PF algorithm see

[50]. PFs do not rely on linearity or Gaussianity of dynamic of observation models

which make them powerful but unless the number of particles scale exponentially

with d, PFs experience weight degeneracy and provide poor estimates [11]. In order

to combat weight degeneracy, a resampling step is performed after the Bayesian

update where particles with negligible weights are replaced with particles with higher

weights. Many variants of the standard or the bootstrap PF have been proposed and

the interested reader can see [54] for a discussion. However, applying PFs on problems

with significantly high dimensions still remains a challenge.

1.2 Problem statement | 13

Algorithm 2 BPF with offspring-based resampling

Initialize N particles {xi
0}N

i=1 according to the initial distribution with equal weights{
wi

0 = 1
N

}N

i=1
. Set σ̃. Below S[i] denotes i-th element of S.

for k = 0, · · · , n do
if k > 0 then

for i = 1, · · · , N do
xi

k ← fg(S[i])
end

end

Sample u ∼ U
(

0, 1
N

)
for i = 1, · · · , N do

wi
k ← p(yk|xi

k)

Ui ← u + i−1
N

end
W ← ∑N

i=1 wi
k

for i = 1, · · · , N do
if |{Uj : ∑i−1

l=1 wl
k ≤WUj ≤ ∑i

l=1 wl
k}| > 0 then

tag xi
k as significant

end
end

Set S← {xi1
k , xi2

k , · · · , xim
k } as the set of significant particles and compute Nj ∝ w

ij
k :

∑m
j=1 Nj = N.

for j = 1, · · · , m do

S← S ∪ {Nj − 1 samples from N (x
ij
k , σ̃2 Id)}

end
π̂k ← 1

N ∑N
i=1 δS[i]

end

We use the bootstrap particle filter for our experiments with a stochastic resampling

step where we place a Gaussian distribution with a pre-determined, small covariance

σ̃2 around the best-performing particles and sample new particles according to the

weights. The details of the exact algorithm can be found in algorithm 2. In algorithm 2,

we use the convention that ∑0
l=1 wl

k = 0. It should be noted that larger values of σ̃ are

needed to prevent filter collapse when working with fewer number of particles. In our

experiments for Lorenz 63, σ̃2 = 0.1 and for Lorenz 96, σ̃2 = 0.5.

14 | Probing nonlinear filter stability

1.2.5 Choice of distance D

Although the stability definitions are independent of any kind of specific distance

and can be computed with other choices of D we choose D to be the 2nd Wasserstein

distance W2. We justify our choice with the reasons below.

• An efficient algorithm exists for approximating Wp which is described below.

• Wp metrizes the convergence in law unlike some other distances and distance-

substitutes e.g. the total variation distance and the KL-divergence, see Introduc-

tion and Appendix B.5 in [55] for a discussion. This makes Wp a more intuitive

distance to work with, see example 1 in section 2 of [5] for an illustration.

• Moreover, Wp does not require the notion of absolute continuity unlike KL-

divergence or Hellinger distance which is useful for comparing empirical distri-

butions.

For a comparison of these distances the interested reader may see [5] where example 1

(learning parallel lines) depicts how the output of Wp can often be intuitive because

Wasserstein distances lift the standard metrics on Rd to the probability space P(Rd)

unlike KL-divergence or total variation. Lastly, we use p = 2 for no reason other than

the familiarity of the 2-norm on Euclidean spaces.

1.2.6 Sinkhorn divergence

The p-th Wasserstein distance (Wp) between probability measures with p-th finite

moment on metric spaces have many desirable geometric features which stems form

the fact that its definition extends the distance function on the metric space to a

distance on the space of probability measures on the metric space. For a discussion

see [55, 5]. W1 or the earth mover’s distance has been used in various problems

e.g. comparing colour histograms, solving resource allocation problems etc. When

applied to two sampling distributions with both having sample size k, computing W1

is equivalent to solving a constrained linear programming problem in n = k2 variables.

Since LPPs take O(n3) time to solve a problem with n variables, computing W1 takes

O(k6) time which is prohibitively expensive.

1.2 Problem statement | 15

In recent years it has been noted that by regularizing the optimization problem that

defines the Wasserstein distance, one can attempt to solve the dual to the regularized

problem which is akin to solving a convex optimization problem. For a comprehensive

discussion see [61]. The dual problem can be solved using a variant of the Sinkhorn-

Knopp algorithm for finding a doubly-stochastic matrix given a square matrix with

positive entries. The solution to the regularized problem is known as the Sinkhorn

divergence since it fails to satisfy the triangle inequality and is not an exact distance

on the space of probability measures.

Here we focus on the case p = 2. For two probability measures µ and ν on Rd with

finite first and second moments, the Sinkhorn divergence Sε is defined as follows [55].

OTε(µ, ν)
def
= min

π∈S

[∫
∥x− y∥2

2 dπ(x, y) + εKL(π|µ⊗ ν)

]
, (1.7)

Sε(µ, ν)
def
= OTε(µ, ν)− 1

2
OTε(µ, µ)− 1

2
OTε(ν, ν) , (1.8)

where the minimisation is over the set S of distributions π with the first and second

marginals being µ and ν respectively and KL is the Kullback–Leibler divergence.

Moreover, it turns out [55] that

lim
ε→0

√
Sε(µ, ν) = W2(µ, ν) , (1.9)

and therefore for small enough ε we obtain a good approximation of W2. We use the

following notation for this approximation: Dε =
√

Sε.

In our experiments we compute Sε(µ, ν) for sampling distributions µ = ∑N
i=1 µiδxi

and ν = ∑M
j=1 νjδyj with ε = 0.01 where {xi}N

i=1 and {yj}M
j=1 are points in Rd. A

detailed justification of this choice of ε is in appendix 1.6.3. The Sinkhorn divergence

algorithm being a fixed point iteration is extremely fast. The exact procedure is given

in algorithm 3. The authors of [55] show that the algorithm is parallelizable with

respect to sample-size. The dimension dependence of the algorithm is only explicitly

apparent while calculating the distance matrix and consequently the algorithm itself

scales only linearly in d. But to accurately represent the underlying distribution with

increasing dimension one would require to compute Sε with increasing sample size.

16 | Probing nonlinear filter stability

Algorithm 3 Computation of Sε

Input: {µi}N
i=1, {xi}N

i=1, {νj}M
j=1, {yj}M

j=1

Output: Sε

(
∑N

i=1 µiδxi , ∑M
j=1 νjδyj

)
Note the definition, LSEL

k=1Vk
def
= log ∑L

k=1 exp(Vk).
Initialize ai ← 0 ∀ i = 1, · · · , N and bj ← 0, ∀ j = 1, · · · , M.
iteration← 0
while min{L1 relative errors in a and b} > 0.1% do

for i = 1, · · · , N do
ai ← −εLSEM

k=1

(
log νk +

1
ε bk − 1

ε ∥xi − yk∥2
2

)
end
for j = 1, · · · , M do

bj ← −εLSEN
k=1

(
log µk +

1
ε ak − 1

ε ∥xk − yj∥2
2

)
end
iteration← iteration + 1

end
OTµ,ν ← ∑N

i=1 µiai + ∑M
j=1 νjbj

Initialize ai ← 0 ∀ i = 1, · · · , N and bj ← 0, ∀ j = 1, · · · , M.
while L1 relative error in a > 0.1% do

for i = 1, · · · , N do
ai ← 1

2

[
ai − εLSEN

k=1

(
log µk +

1
ε ak − 1

ε ∥xi − xk∥2
2

)]
end

end
while L1 relative error in b > 0.1% do

for j = 1, · · · , M do
bj ← 1

2

[
bj − εLSEM

k=1

(
log νk +

1
ε bk − 1

ε ∥yj − yk∥2
2

)]
end

end
Sε ← OTµ,ν −∑N

i=1 µiai −∑M
j=1 νjbj

For a detailed discussion of sample complexity of the Sinkhorn divergence see chapter

3 of [61].

1.3 Numerical Evidence for Filter Stability

In this section we directly calculate the distances between filtering distributions to

assess the stability of particle filter and ensemble Kalman filter. We describe the

experimental setup and the results and also explore the zero of the Sinkhorn algorithm

since it is a fundamental part of the numerical evidence for filter stability presented

here.

1.3 Numerical Evidence for Filter Stability | 17

1.3.1 Experimental Setup

Models

Proposed first by Edward N. Lorenz, the Lorenz equations are sets of autonomous

equations said to be mimicking the circulation of the earth’s atmosphere in an over-

simplified manner. Although simple, they have had significant impact on the develop-

ment of the dynamical systems theory, especially because of their chaotic nature in

arbitrary dimensions. Since an important application of data assimilation is numerical

weather prediction, the Lorenz systems are a natural first choice for experiments. Since

their inception they have been extensively used in data assimilation literature. We

use two chaotic models in this section: (i) Lorenz-63 [72, Chapter 14] with parameters

ρ = 28, α = 10, β = 8
3 and (ii) 10 and 40-dimensional Lorenz-96 [114, 167] with forcing

constant F = 10 and F = 8 respectively. These ODE systems are defined in (1.10) and

(1.11) respectively. Note that, in (1.10) and (1.11) the subscripts denote coordinates

and the state x defined in (1.1) is a discretized version of these ODEs depending on

the observation gap.

dX1

dt
= α(X2 − X1)

dX2

dt
= X1(ρ− X3)− X2

dX3

dt
= X1X2 − βX3

(1.10)

dXj

dt
= (Xj+1 − Xj−2)Xj−1 − Xj + F, j = 1, 2, · · · , d (1.11)

We observe the system every 0.1 units of time which fixes the evolution function

fg. We observe alternate coordinates starting from the first coordinate, so

yk,j = xk,2j−1 + ηk,j (1.12)

for j = 1, 2, · · · , q =
⌈

d
2

⌉
and ηk,j ∼ N (0, σ2). Throughout this section, we choose

σ2 = 0.1 or σ2 = 1.0.

18 | Probing nonlinear filter stability

1.3.2 Data generation

Lorenz systems are known to have attracting sets. In this chapter, we focus on the

special case when the filtering distributions are expected to be supported on the

attractor. Not only does it mimic real world scenarios, it also lets us make use of the

theory optimal transport distances, outlined in [55], when the probability measures

are supported on a compact domain, since the Lorenz attractors are bounded sets.

So we begin by finding a point on the attractor by randomly generating an initial

point and evolving it according to fg for 105 iterations. Starting from this point xtrue
0

on the attractor, we generate a true trajectory according to (1.1) and then generate 10

different observation realizations for the same trajectory according to (1.14) in order

to compute the expectation over observational noise, as in (1.5). For a justification of

why 10 observation realizations suffice for our study, see appendix 1.6.4.

Initial distributions

We use three initial conditions:

µ1 = N (xtrue
0 , 0.1× Id) ,

µ2 = N (xtrue
0 + 2× 1d, 0.5× Id) ,

µ3 = N (xtrue
0 + 4× 1d, Id) , (1.13)

where 1d is a d-dimensional vector with all entries 1. With this notation xtrue
0 corre-

sponds to x0(ω) in subsection 1.2.2. Note that different realizations of x0 produce

similar results as shown here.

1.3.3 Zero of the Sinkhorn algorithm

In sections 1.3.4, 1.3.5 we discuss the stability of PF and EnKF by calculating

E[Dε(π̂n(µi), π̂n(µj))] (i ̸= j) as a function of time n for initial conditions µi from (1.13),

with the expectation taken by averaging over 10 observation realizations. For clarity,

this quantity is shown at every 4-th assimilation step in figures 1.2–1.5. In order to

understand the convergence to 0 of this expectation [see (1.5)], we first discuss how

close to zero Dε can approach numerically. In figure 1.1 we see the average Dε(αd
m, βd

m)

1.3 Numerical Evidence for Filter Stability | 19

Fig. 1.1 Average Dε(αd
m, βd

m) (over 20 realizations) where αd
m, βd

m are two different
sampling distributions with the same sample size m for the same underlying d-
dimensional Gaussian N (0d, λId)

where αd
m = 1

m ∑m
i=1 δxm,d

i
and βd

m = 1
m ∑m

i=1 δym,d
i

, with {xm,d
i } and {ym,d

i } both samples

from the same underlying d-dimensional Gaussian distribution N λ
d := N (0d, λId).

For "small" λ, we can expect Dε to behave in a similar fashion as if N λ
d were

supported on a compact set. With that in mind, we relate the numerical results shown

in figure 1.1 to the results 1.6.1–1.6.3 in the appendix 1.6.1 by noting the following key

points:

Drop with increase in sample size

Theorem 1.6.3 explains the monotone drop in average Dε for a fixed dimension while

increasing the sample size.

20 | Probing nonlinear filter stability

Rise with increase in dimension

As the dimension increases, larger sample sizes are required to accurately estimate

N λ
d . Consequently, Dε(αd

m, βd
m) grows with d for fixed m since αd

m, βd
m become poorer

estimators of N λ
d as d increases.

Drop with decrease in covariance

Decreasing the covariance λ has the opposite effect since, for fixed dimension d and

sample size m, smaller covariance leads to a better estimation of the underlying

distribution, i.e., αd
m, βd

m become better estimators of N λ
d as λ decreases.

Support of our distributions

Since the true trajectories for both systems (L63, L96) lie on bounded attractors, we can

assume that true filtering distributions are supported on a compact set. Consequently,

in the filtering experiments shown later, the zero of the Sinkhorn algorithm shows

qualitatively similar behavior (e.g., in figure 1.2) with respect to dimension as seen in

figure 1.1.

1.3.4 Stability of Particle Filter

Here we use the notation πP,N
n for π̂n obtained by alogithm 2 with N particles

(omitting N for brevity when value of N is clear from context). Figure 1.2 shows

E[Dε(π̂n(µi), π̂n(µj))], i ̸= j as a function of n. We note some important conclusions.

BPF quickly forgets the initial distribution

From the insets in figure 1.2 we can see that for every pair (µi, µj) of initial distributions,

E
[
Dε(πP

n (µi), πP
n (µj))

]
stabilizes in the first few assimilation steps. In fact, this

behavior is consistent with exponential stability of particle filters [34].

Dependence on the number of particles

E
[

Dε(π
P,N
n (µi), πP,N

n (µj))
]

for a fixed n decreases monotonically with increasing N

for both L63 and L96 and for both observation covariances for all pairs i ̸= j.

1.3 Numerical Evidence for Filter Stability | 21

Fig. 1.2 Dε (averaged over 10 observation realizations) for BPF for 10-dimensional L96
(row 1) and L63 (row 2) systems with observation covariance σ2 = 0.1, for pairs of
initial distributions in (1.13), with varying sample size. The line for N = 2000 has a
band showing one standard deviation. The inset shows the drop in average Dε during
the first few assimilation steps.

Stability

Suppose the best possible filtering distribution that can be computed by the particle

filter is πP,∗
n = limN→∞ πP,N

n . Figure 1.2 is consistent with the condition

lim
n→∞

lim inf
N→∞

E[Dε(π
P,N
n (µi), πP,N

n (µj))] = 0 ∀ i ̸= j

since fixing n and increasing N results in a steady drop in Dε averaged over observation

realizations. By Theorem 1.6.4 this condition is sufficient for concluding

lim
n→∞

E[Dε(π
P,∗
n (µi), πP,∗

n (µj))] = 0 ∀ i ̸= j

Dependence on observation covariance

All plots in figure 1.2 correspond to observation covariance σ2 = 0.1. The other case

σ2 = 1.0 mentioned in 1.3.1 can be seen in figure 1.3. As we can see figure 1.3 is

qualitatively similar to figure 1.2 and in our experiments, stability of particle filter

22 | Probing nonlinear filter stability

Fig. 1.3 Dε (averaged over 10 observation realizations) for BPF for 10-dimensional L96
(row 1) and L63 (row 2) systems with observation covariance σ2 = 1.0, for pairs of
initial distributions in (1.13), with varying sample size. The line for N = 2000 has a
band showing one standard deviation. The inset shows the drop in average Dε during
the first few assimilation steps.

was not seen to be affected by observation covariance but higher noise levels in

observations naturally causes the level where the Sinkhorn divergence stabilizes, to be

more noisy.

1.3.5 Stability of EnKF

Here we use the notation πE,N
n for π̂n obtained by alogithm 1 with ensemble size N.

We might omit N for brevity.

Drop in Dε over time

From figure 1.4, we see that for every pair (µi, µj) of initial distributions Dε(πE
n (µi), πE

n (µj))

decreases with time rapidly within the first 50 assimilation steps and beyond 100

assimilation steps, the observation average of Dε for filters with different pairs initial

distributions are similar and have very little variance.

1.3 Numerical Evidence for Filter Stability | 23

Fig. 1.4 Dε (averaged over 10 observation realizations, with one standard deviation
confidence band) for EnKF for 10-dimensional L96 with N = 50 with localization (left),
N = 200 without localization (middle) for observation covariance σ2 = 0.1, and for
40-dimensional L96 with N = 50 with localization (right) with observation covariance
σ2 = 1.0 for pairs of initial distributions in 1.13. The inset shows the drop in Dε for
the first 50 assimilation steps.

Variation with respect to observation realization

We see that the variation of Dε for different observation realizations (shown by the

shaded bands in left two panels in figure 1.4 and in top row in figure 1.2) is larger for

the case of EnKF when compared to the particle filter for initial times (e.g. n < 100 for

the 10-dimensional L96 model). On the other hand, for larger times (approx. n > 100),

the variation for EnKF is significantly smaller than the particle filter.

Effect of localization

EnKF with small ensemble size needs localization which, however, is an ad-hoc proce-

dure to prevent filter divergence and may not approximate the true filter. Figure 1.4 for

10-dimensional L96 (left panel) and for 40-dimensional L96 (right panel) shows that

for N = 50 with localization length 4, the EnKF is stable, whereas the middle panel

shows the stability (with the same configuration as the left panel) for 10-dimensional

L96 without localization, but with larger ensemble size N = 200. This indicates that

that localization does not affect EnKF’s stability properties.

1.3.6 BPF vs EnKF

We now compare the BPF and EnKF for the case of 10-dimensional L96 with σ2 =

1.0 with the same true trajectory and observation realizations. This is shown in

figure 1.5. In the following discussion we assume BPF with 2000 particles to be a

24 | Probing nonlinear filter stability

Fig. 1.5 Comparison between filters for 10-dimensional L96 and σ2 = 1.0. The solid
lines on the top show average Dε between EnKF without localization with N = 200
and BPF with M = 2000. The dotted lines in the middle show average Dε between BPF
with N = 250 and BPF with M = 2000. The dashed lines at the bottom show average
Dε between EnKF without localization with N = 200 and EnKF with localization with
M = 50. In each case, different colors are for different initial conditions from (1.13).

1.4 Robustness of Filter Stability | 25

decent approximation for the true filter and refer to them interchangably. We note a

few important points.

Poor approximation of the true filter by EnKF

The three lines towards the top show the distance between EnKF and BPF, for three

different initial conditions. We see that EnKF produces distributions that are signif-

icantly different from the true filter, for all the initial distributions. But recall that

for this setup, the EnKF is stable (as is the BPF too), i.e., the distance between EnKF

with different initial conditions is smaller (as seen in figures 1.2-1.4) than the distance

between the BPF and EnKF

BPF is closer to the true filter than is EnKF

The three lines in the middle show the distance between BPF with N = 250 and

N = 2000 (putatively true filter). We see that in comparison with EnKF with N = 200

particles, BPF with similar ensemble size (250 particles) is much closer to the true filter.

EnKF with different ensemble size are very similar

The bottom three lines in figure 1.5 show Dε between EnKF with different ensemble

size, which shows that the EnKF is quite stable with respect to changes in the ensemble

size, even though it is not very close to the true filter – thus EnKF is stable but biased,

whereas BPF is stable and unbiased. A more detailed study of the reasons for this

behaviour will be taken up in the future.

1.4 Robustness of Filter Stability

In this section we probe the robustness of filter stability by varying the observation

gap g and the observation noise standard deviation σ. We also explore the nature of

filter stability by fitting exponential curves to the expectation data. The numerical

difficulty in computing filter stability has led to the adoption of RMSE error of the

filter as a substitute for the expectation in (1.5) in practical settings. We, therefore, also

investigate the relationship between filter RMSE and filter stability. We first describe

26 | Probing nonlinear filter stability

experimental setup, then go through the results for varying observation gap while

keeping the observation noise constant and vice versa.

1.4.1 Experimental Setup

Model and Data generation

Here we use d = 10 dimensional Lorenz-96 [114, 167] with forcing constant F = 10,

described in (1.11). We observe alternate coordinates starting from the first coordinate,

so

yk,j = xk,2j−1 + ηk,j (1.14)

for j = 1, 2, · · · , q =
⌈

d
2

⌉
and ηk,j ∼ N (0, σ2). Throughout this section, we use

σ2 = 0.2, 0.4, 0.8, 1.6 and g = 0.01, 0.03, 0.05, 0.07, 0.09. The choice of the dimension

d = 10 makes sure that we get reasonable performances from both the EnKF and the

particle filter. We generate our data as we did in section 1.3.2.

Initial distributions

We use two Gaussian initial conditions. The first one µ0 is centered at the true state

with a small variance representing the case when our guess for the initial distribution

is unbiased and precise. Thus we expect the filter to continue to have those properties

upto some time. The second one µb is centered away from the true state with a

significantly larger variance representing the case when our guess for the initial

distribution is biased and imprecise. They are given by,

µ0 = N (xtrue
0 , 0.1× Id) ,

µb = N (xtrue
0 + 4× 1d, Id) , (1.15)

where 1d is a d-dimensional vector with all entries 1.

Metrics for probing filter stability

To probe filter stability directly using the definition 1.2.2, we study the Sinkhorn

divergence E[Dε(πn(µ0), πn(µb))] as a function of time. It has been well-known

1.4 Robustness of Filter Stability | 27

that in nonlinear filtering problems where the dynamic model is stochastic, under

suitable additional conditions, the filter is exponentially stable and from an incorrect

initial condition, it reaches stability in an exponential fashion (see, e.g., chapter 3

of [166]). Although such results are not available for the case of deterministic dynamics,

exponential decay is a natural or at least desirable behaviour for the temporal behaviour

of the distance between two filters starting from different initial distributions. To

explore this qualitatively, we fit a curve of the following form

E[Dε(πn(µ0), πn(µb))] = a exp(−λt) + c , (1.16)

where time t = assimilation step × observation gap = ng. One of the motivation is to

understand whether the exponent λ is related the dynamical quantities such as the

Lyapunov exponents of the chaotic dynamical system under consideration.

In addition to stability, we also explore its relationship to the convergence of the

filter mean toward the true signal as well as the uncertainty of the mean estimate.

Motivated by the results about bounds on the former of these two in [94, Theorem 4.4]

and [107, Theorem 4.6], we define the following two quantities.

The first quantity aims to capture the bias of the filter and is the scaled l2 error

denoted by en(ν).

en(ν)
def
=

1√
d

∥∥∥Eπ̂n(ν)[xn]− ϕ
(
ng, xtrue

0
)∥∥∥

2
,

=

1
d

d

∑
i=1

(
1
N

N

∑
α=1

xα,i
n − xtrue,i

n

)2
1/2

, (1.17)

where xα,i
n denotes the i-th coordinate of the α-th member of the ensemble representing

the filtering distribution at time n. Thus, en(ν) is the distance between the true state

and the filter mean divided by square root of the state space dimension d, with n

denoting the assimilation step and ν the initial distribution of the filter. Note that

from the results [94, Theorem 4.4] and [107, Theorem 4.6] mentioned earlier, we expect

E[e2
n(ν)] ∼ σ2 asymptotically in time.

28 | Probing nonlinear filter stability

The second quantity sn(ν) captures the uncertainty of the filter estimate.

sn(ν)
def
=

[
1
d

tr
[

Eπ̂n(ν)[
(

xn −Eπ̂n(ν)[xn]
) (

xn −Eπ̂n(ν)[xn]
)t
]1/2

]
,

=

1
d

d

∑
i=1

1
N − 1

N

∑
α=1

(
xα,i

n −
N

∑
β=1

xβ,i
n

)2
1/2

, (1.18)

Thus, sn(ν) is the square root of the trace of the sample covarianace of the filter. We

note that we are not aware of any theoretical results that give any indication about the

asymptotic in time limit of this quantity but it is reasonable to explore their relation

with the observational uncertainty.

We now present the numerical results on stability for PF and EnKF, as well as the

dependence of the exponential rates on the observation gap g and the observation

noise strength σ. In the following figures 1.6-1.7, in top row in each of the figures, the

dots represent distance Dε(πn(µ0), πn(µb)) between the posterior distributions at time

t = ng with the initial distribution µ0 and µb mentioned in (1.15) versus time for 10

realizations of the observational noise. We also plot the mean E[Dε] averaged over

these 10 observational realizations, and the best-fit curve (1.16) in the same figures.

Rows 2 and 3 contain, respectively, the expectation value of scaled l2 error E[e2
n] and

uncertainty E[s2
n] defined in (1.17) and (1.18) versus time. Row 4 contains scatter plot

of RMSE, defined as the square root of the expected value of e2
n, averaged over the 10

observational realizations, for the filter with biased initial distribution µb versus the

mean Dε between posteriors from the biased and the unbiased initial distributions.

1.4.2 Dependence on observation gap

We first discuss the results of assimilation with both PF and EnKF for a fixed observa-

tion covariance σ2 = 0.4I with varying observation gap. As shown in figure 1.6, the

mean Dε falls exponentially over time until reaching a stationary value for both the

filters. Table 1.1 shows the values of the coefficients of the best-fit of mean Dε versus

time, according to (1.16), for different observation gaps g.

For PF, we see that the rate λ decreases with increasing observation gap g but for

EnKF, the rates are not significantly affected by the change in g. The highest Lyapunov

1.4 Robustness of Filter Stability | 29

Particle filter EnKF

Fig. 1.6 The left and right panels show the results for PF and EnKF respectively with
fixed observational error variance σ2 = 0.4, and each column contains the results for
different time between observations g = 0.01, 0.03, 0.07, 0.09. Row 1: Mean Dε versus
time. The dots represent 10 different realisations. The solid line is the exponential
best-fit line for the mean Dε as in (1.16). Row 2: Mean scaled l2 error from (1.17) versus
time for the two initial distributions. Row 3: Mean uncertainty from (1.18) versus time
for the two initial distributions. The constant dotted line in rows 2 and 3 shows the
observational error variance σ2 for reference. Row 4: RMSE versus mean Dε. Pearson
correlation coefficient between these two quantities is depicted alongside the goodness
of fit for the best-fit line.

g 0.01 0.03 0.07 0.09

a PF 5.367 ± 0.080 7.077 ± 0.055 8.672 ± 0.084 9.54 ± 0.40
EnKF 9.28 ± 0.13 10.08 ± 0.27 11.11 ± 0.32 10.76 ± 0.37

λ
PF 10.73 ± 0.76 4.423 ± 0.058 2.203 ± 0.021 1.392 ± 0.052

EnKF 3.904 ± 0.085 3.56 ± 0.15 4.24 ± 0.21 2.95 ± 0.17

c PF 4.03425 ± 0.00083 2.7524 ± 0.0018 2.1362 ± 0.0093 1.69 ± 0.14
EnKF 0.258 ± 0.016 0.459 ± 0.036 0.711 ± 0.046 0.827 ± 0.064

Table 1.1 Parameters of the best-fit for the mean Dε versus time as in (1.16) with
associated confidence intervals for fixed observation covariance σ2 = 0.4 and different
observation gap g shown in the top row.

exponent for the model (with the chosen parameter value) is approximately λmax = 1.7

whereas the exponential rate λ for EnKF is seen to be in the range of (3.0, 4.2), close to

2λmax, indicating a possible close relation between the dynamics and the EnKF that

30 | Probing nonlinear filter stability

could be explored further. The exponential rate for the PF does not seem to show such

a relation.

Another difference between PF and EnKF may also be noted: with increasing

observation gap, the stationary value c for the PF decreases whereas it increases for

the EnKF. Also, the stationary values c of the Dε for EnKF are significantly lower

compared to corresponding values for PF. These asymptotic values of Dε over time

for both the filters can be explained by their mean posterior covariance using the

following argument.

A characteristic of the numerical distance Dε is that for two different i.i.d. samples

drawn from the same probability distribution, Dε has a nonzero positive value. Sta-

tistically, Dε between two empirical measures approach this value at which they are

essentially representing the same distribution and cannot be distinguished. For a fixed

dimension d and sample size N, this value increases with increasing covariance of the

distribution, see section 1.3.3 for an in-depth discussion.

The mean posterior covariance trace is directly proportional to the s2
n. With

increasing observation gap g, the mean uncertainty decreases for PF while it increases

for EnKF. Hence the asymptotic value of Dε decreases with increasing observation gap

for PF, while for the latter, it increases. We note that the previous paragraph explains

the asymptotic value of Dε, but the difference in the behaviour of the filter uncertainty

sn for PF and EnKF as a function of observation gap needs to be explored further.

The scaled l2 errors also reach an asymptotically constant value around the same

time the corresponding filters stabilize in Dε. The scatter plots for the RMSE against

the Dε shows strong correlation between them. This suggests that we can use the

RMSE over time as a good indicator for the time when the filter stabilizes. Note that

the methods in this chapter give us a direct way to check whether a numerical filter is

stable for a given dynamical and observational model, and the relation between the

filter stability and the l2 error or bias en implies that a stable filter may be expected to

be an accurate one.

We note that in the plots in the bottom row, the cluster at the bottom left corre-

sponds to the time after which both RMSE and the Dε have reached their stationary

values. Even for two different biased initial distributions for the filter, there is a finite

transient growth after which the Dε falls exponentially [122]. Although not shown

1.4 Robustness of Filter Stability | 31

Particle filter EnKF

Fig. 1.7 Same as in figure 1.6 with the left and right panels showing the results
for PF and EnKF respectively, but with fixed time between observations g = 0.05,
and each column containing the results for different observational error variances of
σ2 = 0.2, 0.4, 0.8, 1.6.

here, the linear regime is still present in the scatter plot of the RMSE of either one of

them versus the Dε in those cases.

1.4.3 Dependence on observation noise

We now discuss the results of numerical experiments with fixed observation gap

g = 0.05, with varying observation covariance σ2 = 0.2, 0.4, 0.8, 1.6. In figure 1.7,

we again note the exponential decrease of the distance Dε over time until it reaches

a stationary value c. The parameter values obtained for the best-fit for different

observation covariance are shown in table 1.2.

In contrast with the case of varying observational gap, the exponential rates for the

PF stability are not affected by the change in observational uncertainty. While the rates

for EnKF are again close to twice the Lyapunov exponent, the rates for PF are smaller.

The scaled l2 error and the Dε achieve their stationary value around the same time

as in the former case of fixed observation. As expected, this asymptotic value c as

32 | Probing nonlinear filter stability

σ2 0.2 0.4 0.8 1.6

a PF 7.842 ± 0.058 7.730 ± 0.046 8.153 ± 0.044 8.038 ± 0.048
EnKF 10.61 ± 0.32 10.84 ± 0.30 10.69 ± 0.23 8.75 ± 0.22

λ
PF 2.442 ± 0.016 2.858 ± 0.017 2.859 ± 0.015 2.416 ± 0.012

EnKF 3.34 ± 0.16 3.70 ± 0.16 3.86 ± 0.14 1.507 ± 0.062

c PF 2.4050 ± 0.0022 2.4144 ± 0.0015 2.5051 ± 0.0014 2.6554 ± 0.0019
EnKF 0.470 ± 0.039 0.579 ± 0.035 0.838 ± 0.027 1.148 ± 0.041

Table 1.2 Parameters of the best-fit for the mean Dε versus time as in (1.16) with
associated confidence intervals for fixed observation gap g = 0.05 and different
observational error covariance σ2 shown in the top row.

well as the asymptotic values of the uncertainty sn and the bias en all increase with

increasing σ2 for both PF and EnKF.

We also see near perfect correlation in the scatter plots for the RMSE versus mean

Dε as for both PF and EnKF, we get Pearson correlation coefficient very close to 1.

We remark that in our numerical experiments, either with varying observational time

gap or with varying observational covariance, we did not notice any relation between

stability and posterior uncertainty or precision, i.e., there did not seem to be any

relation between Dε and sn.

1.5 Summary and Future Work

The main focus of this chapter is the numerical study of nonlinear filter stability. For

this purpose, we use the recently developed Sinkhorn algorithm to calculate an approx-

imation of the Wasserstein distance between Monte Carlo samples from probability

distributions. This allows us to directly assess the stability by computing the expected

value, averaged over multiple observation realizations, of the distance between filter-

ing distributions as function of time. We also studied extensively the dependence of

stability properties on two main parameters, the time between observations and the

observational error covariance.

Our results provide strong numerical indication of exponential stability of PF

and EnKF for deterministic chaotic dynamical systems. For a fixed observational

covariance, as the gap between the observations increases, the exponential rate of

decay of the distance Dε between two filters decreases for the particle filter whereas

it remains approximately constant and close to twice the Lyapunov exponent for

1.5 Summary and Future Work | 33

the ensemble Kalman filter. Further exploration of relationships between the chaotic

properties of the system and the exponential stability is an interesting direction for

future work. Mathematical proofs of stability of these numerical algorithms is another

interesting open area of further research.

Further, with increasing observational gap, the filter uncertainty and bias decrease

for PF but increases for the EnKF. In general, the EnKF has significantly smaller

uncertainty and bias as compared to the PF. More extensive numerical explorations

and associated theoretical studies to understand the differences between these two

important numerical filters - the particle filter and the ensemble Kalman filter - is an

important direction for further investigations.

The other main focus was to establish a relation between the filter stability and filter

convergence. We show that for a wide variety of parameters, the distance between

two filters started with different initial conditions is directly proportional to the l2

error or the RMSE between the filter mean and the true underlying trajectory. The

significance of this result is that the techniques developed in this chapter provide

tools to check filter stability, with synthetic or real observations for a given dynamical

and observational model, even before starting to use a filter with actual observations,

while the results connecting stability with convergence of the l2 error can then be

used to give indication of whether the filter is also accurate. This is particularly

useful in real-world scenarios where one does not have access to the true trajectory

of the dynamical system under consideration and hence cannot compute the RMSE.

In these cases one can still perform assimilation with two different initial conditions

and compute the distance between the resulting filtering distributions and how this

distance changes in time can indicate how the accuracy of the filter changes with

time since these two quantities are strongly correlated. The mechanism behind this

correlation is an important direction for future research.

34 | Probing nonlinear filter stability

1.6 Appendix

1.6.1 Properties of Sinkhorn divergence

Lemma 1.6.1 If α, β, αm are probability measures on a compact set χ ⊂ Rd then

0 = Sε(β, β) ≤ Sε(α, β) (1.19)

α = β ⇐⇒ Sε(α, β) = 0 (1.20)

αm
weak*−→ α ⇐⇒ Sε(αm, α)→ 0 (1.21)

Proof. See Theorem 1 in [55].

Lemma 1.6.2 If αm, βm, α, β are probability measures supported on a compact set χ ⊂ Rd

such that αm
weak*−→ α and βm

weak*−→ β then limm→∞ Sε(αm, βm) = Sε(α, β).

Proof. Direct consequence of Proposition 13 in [55].

Theorem 1.6.3 If αm = 1
m ∑m

i=1 δxm
i

and βm = 1
m ∑m

i=1 δym
i

are sampling distributions for the

same underlying probability distribution µ which is supported on a compact set χ ⊂ Rd then

limm→∞ Sε(αm, βm) = 0.

Proof. Direct consequence of Lemmas 1.6.1 and 1.6.2.

Theorem 1.6.4 If αm,n, βm,n, αn, βn are random probability measures supported on a compact

set χ ⊂ Rd such that αm,n
weak*−→ αn and βm,n

weak*−→ βn as m→ ∞ and

lim
n→∞

lim inf
m→∞

E[Dε(αm,n, βm,n)] = 0

then, limn→∞ E[Dε(αn, βn)] = 0.

Proof.

lim
n→∞

E[Dε(αn, βn)]

= lim
n→∞

E[lim
m→∞

Dε(αm,n, βm,n)] by Lemma 1.6.2

≤ lim
n→∞

lim inf
m→∞

E[Dε(αm,n, βm,n)] = 0 by Fatou’s lemma

1.6 Appendix | 35

1.6.2 Definition 1.2.2 implies definition 1.2.1

We have introduced two different definitions of filter stability in section 1.2.2. Def-

inition 1.2.2 is used for the numerical computations in this chapter while the other

definition 1.2.1 is a commonly used definition using the notion of weak convergence.

In this appendix, we prove that 1.2.2 is stronger in the sense that it implies the other.

Theorem 1.6.5 Let (M, d) be a compact metric space and {αn}, {βn} be sequences of random

probability measures on M with finite first and second moments and

lim
n→∞

E[D(αn, βn)] = 0 , (1.22)

where D = W1 or W2. Then for all globally Lipschitz functions f : M→ R we have

lim
n→∞

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣] = 0 . (1.23)

Proof. Let S = { f : M → R : Lip(f) ≤ 1} be the set of Lipschitz functions with

Lipschitz constant not greater than 1. If f ∈ S, by Kantorovich-Rubinstein duality we

have,

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣] ≤ E

[
sup
g∈S

∣∣∣∣∫M
g dαn −

∫
M

g dβn

∣∣∣∣
]
= E[W1(αn, βn)] , (1.24)

which proves the assertion for the case D = W1 for f ∈ S. For D = W2, recall that for

two measures µ, ν on M with finite first and second moments,

Wp(µ, ν)p = inf
S

E[d(X, Y)p] , (1.25)

36 | Probing nonlinear filter stability

where S = {π : π is the joint distribution of X, Y with marginals µ, ν respectively}.

Therefore,

W1(µ, ν)2 =

(
inf

S
E[d(X, Y)]

)2

= inf
S

E[d(X, Y)]2 ≤ inf
S

E[d(X, Y)2], [by Jensen’s inequality]

(1.26)

≤W2(µ, ν)2, [by (1.25)] (1.27)

Combining (1.24) and (1.27), we immediately see that the assertion is true for the case

D = W2 for f ∈ S.

Now pick a function f̃ : M → R with Lip(f̃) ≤ K for some K > 0. Define f = f̃
K .

Clearly, f ∈ S and therefore,

lim
n→∞

E

[∣∣∣∣∫M
f̃ dαn −

∫
M

f̃ dβn

∣∣∣∣] = K lim
n→∞

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣] = 0 , (1.28)

Theorem 1.6.5 immediately yields the following stronger statement.

Corollary 1.6.6 Under identical conditions, (1.23) holds for any continuous f : M→ R.

Proof. Note that real-valued, continuous functions on M are uniform limits of locally

Lipschitz functions on M. Since M is compact and locally Lipschitz functions on

compact metric spaces are globally Lipschitz, real-valued, continuous functions on M

are uniform limits of globally Lipschitz functions on M.

Let αn − βn = γn for brevity and let f be a real-valued, continuous function on M.∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣ = ∣∣∣∣∫M
f dγn

∣∣∣∣ = ∣∣∣∣∫M
f+ dγ+

n +
∫

M
f− dγ−n −

∫
M

f− dγ+
n −

∫
M

f+ dγ−n

∣∣∣∣ ,

(1.29)

where +,− denote the positive and negative parts of f and γn. We now consider the

case when the last sum of four terms is positive. The other case when it is negative is

very similar.

1.6 Appendix | 37

Pick sequences of non-negative globally Lipschitz functions f+m ↑ f+ and f−m ↑ f−.

Then by using dominated convergence theorem and Fatou’s lemma, we see that

E

[∫
M

f+ dγ+
n

]
= E

[
lim

m→∞

∫
M

f+m dγ+
n

]
≤ E

[
lim inf

m→∞

∫
M

f+m dγ+
n

]
≤ lim inf

m→∞
E

[∫
M

f+m dγ+
n

]
.

(1.30)

Using very similar arguments for each of the four terms and adding the four inequali-

ties, we see that

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣] ≤ lim inf
m→∞

E

[∫
M

f+m dγ+
n

∫
M

f−m dγ−n −
∫

M
f−m dγ+

n −
∫

M
f+m dγ−n

]
.

(1.31)

Define, fm = f+m − f−m which is globally Lipschitz since sum of globally Lipschitz

functions are globally Lipschitz. Since the RHS of (1.31) is non-negative, it must be

equal to lim infm→∞ E
[∣∣∫

M fm dγn
∣∣]. Therefore,

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣] ≤ lim inf
m→∞

E

[∣∣∣∣∫M
fm dαn −

∫
M

fm dβn

∣∣∣∣] . (1.32)

Hence, given ε > 0, ∃m0 such that ∀m > m0,

E

[∣∣∣∣∫M
fm dαn −

∫
M

fm dβn

∣∣∣∣] > E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣]− ε . (1.33)

Using Theorem 1.6.5, we see that the limit n→ ∞ of LHS is 0 which gives

0 ≥ lim
n→∞

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣]− ε . (1.34)

Since ε can be chosen arbitrarily, we have

lim
n→∞

E

[∣∣∣∣∫M
f dαn −

∫
M

f dβn

∣∣∣∣] = 0 . (1.35)

Theorem 1.6.7 Assume the filtering distributions π̂n(µ), π̂n(ν) are supported on a compact

subset of Rd and D = W2 or W1. If (1.5) holds then so does (1.4).

38 | Probing nonlinear filter stability

Proof. Direct consequence of Corollary 1.6.6.

1.6.3 Convergence in Dε and W2

Theorem 1.6.8 Suppose ∃ a sequence pk : limk→∞ pk = 0 and akn := E[Dpk(αn, βn)] is

monotone decreasing in k or, akn ≥ ak+1,n ∀ k, n where {αn}, {βn} are sequences of random

measures. If for some j

lim sup
n→∞

E[Dpj(αn, βn)] ≤ δ, (1.36)

then

lim sup
n→∞

E[W2(αn, βn)] ≤ δ (1.37)

Proof. Recall that limk→∞ Dpk(αn, βn) = W2(αn, βn), see for example, Theorem 1 in

[62]. By Fatou’s lemma,

lim sup
n→∞

E[W2(αn, βn) ≤ lim sup
n→∞

lim inf
k→∞

E[Dpk(αn, βn))] ≤ lim sup
n→∞

E[Dpj(αn, βn))] ≤ δ

(1.38)

Theorem 1.6.8 is helpful in discussing the convergence of measures in Wasserstein

metric by looking at convergence in Dε for a fixed ε. The assumption about existence

of a monotone decreasing subsequence is consistent with numerical experiments as

shown in figure 1.8. Although Sinkhorn divergence is zero when we are comparing

two identical distributions, while comparing two different samples from the same

distribution we would expect a non-zero divergence which is why Theorem 1.6.8

is stated in terms of a non-zero bound δ. We note that a more detailed discussion

about the behaviour of this non-zero divergence can be found in section 1.3.3. With

increasing sample size this non-zero divergence approaches zero. For a detailed look

at the theoretical sample-complexity of Sinkhorn divergence see chapter 3 of [61].

1.6 Appendix | 39

Fig. 1.8 Change in mean Dε with ε. The smallest two ε values produce identical mean
lines. The filtering distributions are generated by particle filter for observation gap
= 0.05 and observation covariance = 0.4.

40 | Probing nonlinear filter stability

Fig. 1.9 Mean Dε for 100 observations for PF (left panel) and EnKF (right panel) with
observation gap = 0.05 and observation covariance = 0.4.

1.6.4 Effect of varying the sample-size

We find that averaging over 10 observation realizations (for the expectation in (1.5)) is

sufficient for this study. To illustrate this, we repeated a representative experiment

for a larger sample size of 100 and the resulting plots of the distance versus time for

observation gap g = 0.05 and σ2 = 0.4 for the two filters are shown in figure 1.9.

Comparing with the plots in first row, second column of the particle filter and EnKF

results in figure 1.7, we see that the results are qualitatively identical and quantitatively

near-identical. Thus the choice of averaging over 10 realizations suffices to capture the

statistical features of the quantities we are studying.

Chapter 2

Stochastic dynamical systems are intimately related to Fokker-Planck equations. The prediction

step in the filtering algorithm can be thought of as roughly solving a Fokker-Planck equation

when the underlying dynamics is noisy. These equations are therefore of great interest when

it comes to developing new filtering algorithms. Apart from filtering, their sheer ubiquity

makes studying them worthwhile. In this chapter we devise a deep learning algorithm to find

non-trivial zeros of Fokker-Planck operators when the drift is non-solenoidal. We demonstrate

the efficacy of our algorithm for problem dimensions ranging from 2 to 10. Our method

scales linearly with dimension in memory usage. We show that this method produces better

approximations compared to Monte Carlo methods, for the same overall sample sizes, even

in low dimensions. Unlike the Monte Carlo methods, our method gives a functional form of

the solution. We also demonstrate that the associated loss function is strongly correlated with

the distance from the true solution, thus providing a strong numerical justification for the

algorithm. Moreover, this relation seems to be linear asymptotically for small values of the loss

function.

Chapter 2

Learning zeros of Fokker-Planck

operators

2.1 Introduction

Many real world problems can be modelled as the response of nonlinear systems to

random excitations and such systems have been a topic of interest for a long time.

Stochastic differential equations (SDE) provide the natural language for describing

these systems. Although SDEs have their origins in the study of Brownian motion by

Einstein and Smoluchowski, it was Itô who first developed the mathematical theory.

Since then SDEs have extensively appeared in physics [108], [161], [82], biology [2],

mathematical finance [49], [93], and many other fields [131], [60]. The probability

density associated with an Itô SDE evolves in time according to a Fokker-Planck

equation (FPE) or Kolmogorov forward equation. A stationary FPE (SFPE) can be

solved analytically when the corresponding Itô SDE has a drift term that can be

represented as the gradient of some potential [149]. But the same is not true when the

drift is not of the aforementioned form. And the time-dependent FPE does not admit

a closed form solution in general even when the drift is integrable. Since the solution

of an FPE is a probability density, the boundary condition is replaced by an integral

condition which is extremely hard to implement in dimensions larger than 2.

In recent times deep learning has been successfully used to solve high-dimensional

PDEs [159], [70], [144]. Although universal approximation theorems [139], [115], [46],

[101] guarantee existence of neural networks that approximate the true solution well,

2.2 Problem statement | 43

due to the non-convex nature of loss functions one cannot guarantee convergence

of neural networks to the true solution during training in many instances [103], [9].

Moreover, these methods are almost always used for PDEs with simple boundary

conditions not containing integral terms which makes applying them for FPEs chal-

lenging. But even though deep learning solutions to PDEs is fraught with challenges,

it is a worthwhile paradigm to work in while dealing with high-dimensional PDEs for

the following reasons. Most deep learning methods are mesh-free [16] and can deal

with the curse of dimensionality much better than classical methods [37]. Moreover,

some of them focus on computing pointwise solutions to PDEs [70] which albeit

non-standard, might be the only practical and efficient approach in high dimensions.

The goal of this chapter is to devise a reliable, mesh-free deep learning algorithm to

find non-trivial zeros of high-dimensional Fokker-Planck operators. In a sequel we will

devise a method for solving high-dimensional time-dependent FPEs using these zeros.

Although our algorithm is capable of handling any non-solenoidal drift function, as

examples we focus on problems where the underlying ODE system possesses a global

attractor. These systems are often used to make simple models in the earth sciences

and provide ideal test cases for non-linear filtering algorithms [28]. We solve 2,3,4,6,8

and 10 dimensional problems with our method. We compare our method with Monte

Carlo for d = 2, investigate how the loss function and the distance from the true

solution are related to each other and explore how our method scales with dimension.

2.2 Problem statement

In this chapter we are interested in the stationary Fokker-Planck equation

Lp def
= −

d

∑
i=1

∂(µi p)
∂xi

+
d

∑
i=1

d

∑
j=1

∂(Dij p)
∂xi∂xj

= 0, x ∈ Rd

∫
Rd

p(x) dx = 1, p(x) ≥ 0 ∀ x ∈ Rd

(2.1)

Here D = 1
2 σσ⊤, µ ∈ C1(Rd; Rd) is a non-solenoidal vector field i.e. ∇ · µ ̸≡ 0 in Rd

and σ ∈ C(Rd; Rd×d) is a matrix-valued function such that D is positive-definite. The

operator L is known as the Fokker-Planck operator (FPO). The goal of this work is to

devise an algorithm to find a non-trivial zero of L in a mesh-free manner that works

44 | Learning zeros of Fokker-Planck operators

well in dimensions that are challenging for classical PDE-solvers. Note that when µ is

solenoidal The motivations behind choosing to find a non-trivial zero of L rather than

solving (2.1) are as follows.

• Numerical integration suffers from the curse of dimensionality [71] and conse-

quently the normalization constraint is extremely challenging to implement in

high dimensions.

• The end goal is to devise an algorithm to solve time-dependent FPEs with unique

solutions which we describe in the sequel. It turns out, knowing a non-trivial

zero of L, even if unnormalized, is enough to find the normalized solution to

the time-dependent FPE.

• When µ is solenoidal every constant function is a zero of L. In this special case

if the corresponding time-dependent FPE has a unique solution, we would not

require a non-trivial zero of L to calculate it, as we will see in the sequel.

• Lastly, rather than trying to force normalization during the computation of a

non-trivial zero, it is much more economical to integrate the zero at the end to

find the normalization constant at a one-time cost. Quasi Monte Carlo [109] or

deep learning methods like i-flow [59] can be used for this purpose.

Although our method is perfectly valid for any matrix-valued σ that gives rise to

a positive definite D, in the demonstrations we use the form σ = aId where a is a

positive constant and Id is the d× d identity matrix. This allows us to abuse notation

and use σ and D as scalar quantities. With this simplification our equation becomes,

Lp = −∇ · (µp) + D∆p = 0 (2.2)

where ∆ is the Laplacian operator.

Since we approximate a solution to (2.2) with a neural network, it is sensible

to consider strong solutions. We therefore restrict our search space of functions

to W1,2
loc (R

d) ∩ C2(Rd). Since the superscripts for Sobolev spaces have been used

interchangeably in literature, to avoid confusion we define W1,2(Rd) as

W1,2(Rd)
def
= { f ∈ L2(Rd) : ∥∇ f ∥2 ∈ L2(Rd)} (2.3)

2.3 Examples | 45

Sobolev spaces are frequently encountered while studying elliptic PDEs and therefore

are very well-studied [23], [96]. This choice of function space enables us to prove

uniqueness of solutions to the SFPEs that we will encounter in this chapter, see

appendix 2.9.1 for details. Moreover, density of arbitrary-size neural networks in the

space of continuous functions [139] and non-closedness of fixed-size neural networks

in Sobolev spaces [117] are good justifications for our algorithm, see section 2.5.2,

making W1,2
loc (R

d) ∩ C2(Rd) an ideal function space to work with.

2.3 Examples

From an algorithmist’s perspective it is important to have access to a class of equations

on which our algorithm can be validated easily. Since classical methods do not work

satisfactorily for our problem dimensions, the only other way is to use those equations,

for which the analytical solutions are known, as the validating examples.

2.3.1 Gradient systems

To that end a very convenient class of equations is where the drift µ can be written as

the gradient of a potential function,

µ = −∇V (2.4)

To see why this structure of µ leads to analytical solutions of SFPEs, note that if p = e f

is a solution to the SFPE then according to (2.2) we have

−∇ · (e f µ) + D∆e f = 0 (2.5)

=⇒ −∇ · µ− µ · ∇ f + D
(
∥∇ f ∥2

2 + ∆ f
)
= 0 (2.6)

=⇒ (∇+∇ f) · (D∇ f − µ) = 0 (2.7)

=⇒ (∇+∇ f) · (∇(D f + V)) = 0 (2.8)

46 | Learning zeros of Fokker-Planck operators

so we can find one solution by simply setting the second term in the RHS of (2.8) to

be zero which gives us

∇(D f + V) = 0 (2.9)

=⇒ f = ln c− V
D

(2.10)

=⇒ p = c exp
(
−V

D

)
(2.11)

where c is the normalizing constant. So a solution in this special case is already known

up to the normalizing constant. We refer to a system satisfying (2.4) as a gradient

system. In this chapter we use the following gradient systems to validate our algorithm

in high dimensions.

2D ring system

For d = 2, V = (x2 + y2 − 1)2 and µ = −∇V we get the following SFPE,

4(x2 + y2 − 1)
(

x
∂p
∂x

+ y
∂p
∂y

)
+ 8(2x2 + 2y2 − 1)p + D∆p = 0 (2.12)

This system possesses a unique solution concentrated on around the unit circle.

The proof of uniqueness using the method of Lyapunov functions is given in the

appendix 2.9.1. The corresponding ODE system has the unit circle as a global attractor.

This is a recurring theme in all of our example problems. Such systems with attractors

are of great interest in the study of dynamical systems [133] as well as filtering theory

[100]. We solve this system for D = 1.

2nD ring system

We can daisy-chain the previous system to build decoupled systems in higher dimen-

sions. In this case the potential is given by

V(x) =

d
2−1

∑
i=0

(x2
2i + x2

2i+1 − 1)2, d = 2n (2.13)

Since our algorithm does not differentiate between coupled and decoupled systems,

this example serves as a great high-dimensional test case. In a sequel we show

2.3 Examples | 47

how to solve the time-dependent FPEs which is intimately related to the method

presented here and being decoupled, this system presents a great way to verify

the time-dependent algorithm. This is important since analytical solutions for time-

dependent FPEs are not known in general even for gradient systems. Uniqueness of

solution for the 2nD ring system directly follows from the uniqueness of solution for

the 2D ring system, again thanks to its decoupled nature. Here we solve this system

for n = 1, 2, 3, 4, 5 and D = 1.

2.3.2 Non-gradient Systems

Not all µ’s can however be represented as the gradient of a potential. We call the

systems belonging to this complementary class, non-gradient systems. Analytic solutions

for these systems are not known in general.

Noisy Lorenz-63 system

One such example is the famous Lorenz-63 system, first proposed by Edward Lorenz

[113] as an oversimplified model for atmospheric convection. This system and its

variants like Lorenz-96 have since become staple test problems in the field of data

assimilation [28], [178]. We use the standard parameters to define the drift and solve

the system for D = 50. This exact system also appears as a test case in [32]. The famous

butterfly attractor associated with the corresponding ODE is shown in figure 2.1. This

problem has a unique solution, for a proof see appendix 2.9.1.

µ = [α(y− x), x(ρ− z)− y, xy− βz]⊤ (2.14)

α = 10 , β =
8
3

, ρ = 28 (2.15)

Noisy Thomas system

Another example of a non-gradient system that we study is one for which the deter-

ministic version was proposed by René Thomas [164]. It is a 3-dimensional system

with cyclical symmetry in x, y, z and the corresponding ODE system has a strange

attractor which is depicted in figure 2.1. We solve this system for D = 1. This problem

48 | Learning zeros of Fokker-Planck operators

also has a unique solution, for a proof see appendix 2.9.1.

µ = [sin y− bx, sin z− by, sin x− by]⊤ (2.16)

b = 0.2 (2.17)

Since analytic solutions for non-gradient systems are not known, we stick to d = 3

in this case. This is a dimension that can be reliably tackled with Monte Carlo

simulations for comparison at a low computation cost. See 2.9.2 for a description of

the Monte Carlo algorithm.

Fig. 2.1 Attractors for non-gradient examples

2.4 Previous works

An extensive amount of work has been done on the topic of numerically solving

Fokker-Planck equations. A large amount of these works are based on traditional PDE

solving techniques like finite difference [12], [173], [157] and finite element [128], [124]

methods. For a comparison of these traditional methods the reader can look at this

comparative study [138] by Pitcher et al where the methods have been applied to 2

and 3 dimensional examples.

In recent times efforts have been made to devise methods that are applicable in

dimensions higher than 3. Tensor decomposition methods [69], [99] are an important

toolkit while dealing with high-dimensional problems and they are proving to be

2.4 Previous works | 49

useful in designing numerical solvers for PDEs [8], [102]. For stationary Fokker-

Planck equations Sun and Kumar proposed a tensor decomposition and Chebyshev

spectral differentiation based method [163] in 2014. In this method drift functions

are approximated with a sum of functions that are separable in spatial variables,

an well-established paradigm for solving PDEs. The differential operator for the

stationary FPE is then discretized and finally a least sqaures problem is solved to find

the final solution. The normalization is enforced via addition of a penalty term in the

optimization problem. The high-dimensional integral for the normalization constraint

in this method is replaced with products of one dimensional integrals and therefore

becomes computable.

In 2017 Chen and Majda proposed another hybrid method [32] that utilizes both

kernel and sample based density approximation to solve FPEs that originate from a

specific type of SDE referred to as a conditional Gaussian model,

duI = [A0(t, uI) + A1(t, uI)uII] dt + ΣI(t, uI) dWI(t)

duII = [a0(t, uI) + a1(t, uI)uII] dt + ΣI I(t, uI) dWI I(t)
(2.18)

This special structure of the SDE allows one to approximate p(uII(t)) as a Gaussian

mixture with parameters that satisfy auxiliary SDEs. p(uI(t)) is approximated with a

non-parametric kernel based method. Finally the joint distribution p(uI(t), uII(t)) is

computed with a hybrid expression. Using this method Chen and Majda computed

the solution to a 6 dimensional conceptual model for turbulence. Note that, among

our examples only L63 falls under this special structure.

In recent years machine learning has also been applied to solve SFPEs. In 2019

Xu et al solved 2 and 3 dimensional stationary FPEs with deep learning [176]. Their

method enforced normalization via a penalty term in the loss function that represented

a Monte-Carlo estimate of the solution integrated over Rd. Although simple and

effective in lower dimensions, this normalization strategy loses effectiveness in higher

dimensions. Zhai et al [180] have proposed a combination of deep learning and

Monte-Carlo method to solve stationary FPEs. The normalization constraint here

is replaced with a regularizing term in the loss function which tries to make sure

the final solution is close to a pre-computed Monte-Carlo solution. This strategy is

50 | Learning zeros of Fokker-Planck operators

more effective than having to approximate high-dimensional integrals and the authors

successfully apply their method on Chen and Majda’s 6 dimensional example.

2.5 Overview of deep learning

In this section we describe the general process of learning a solution to a partial

differential equation. The strategy described here will be an integral part of the final

algorithm. In what follows next, we see how to see solve a generic PDE independent of

time on a bounded domain with a Dirichlet boundary condition in a physics-informed

manner. The interested reader can see [144], [16], [159] for more discussions. In the

next few subsections we keep simplifying our PDE problem until it finally becomes

solvable on a computer.

2.5.1 From PDE to optimization problem

In the context of machine learning, learning refers to solving an optimization problem.

So to solve our PDE with deep learning we first transform it into an optimization

problem. Suppose our 2nd order PDE looks like,

L f (x) = 0, x ∈ Ω ,

f (x) = g(x), x ∈ ∂Ω ,
(2.19)

and just like before we are interested in finding a solution in W1,2
loc (Ω)∩C2(Ω). Instead

of trying to solve (2.19) a popular strategy is to try to solve the following problem (see

for example [159]),

arg inf
f∈W1,2

loc (Ω)∩C2(Ω)

[∫
Ω
(L f)2 +

∫
∂Ω

(f − g)2
]

(2.20)

The choice of function space ensures one-to-one correspondence between the solutions

of the PDE and the optimization problem.

2.5 Overview of deep learning | 51

2.5.2 From infinite-dimensional search space to finite-dimensional

search space

To solve a problem on a machine with finite resources we need to finitize the infinite

aspects of the problem. We then solve the finitized problem which preferably approxi-

mates the original problem well to get an approximate solution to the orginal problem.

For (2.20) our search space W1,2
loc (Ω) ∩ C2(Ω) is infinite dimensional which we need

to replace with a finite dimensional search space. In order to finitize the dimension

of the search space we appeal to universal approximation theorems that say neural

networks of even the simplest architectures are dense in continuous functions, see

for example Theorem 3.2 in [95] or Proposition 3.7 in [139]. Universal approximation

theorems typically allow networks to have either arbitrary depth or arbitrary width

in order to achieve density [139], [46]. But the sets of neural networks with arbitrary

depth or width are still infinite dimensional and therefore are infeasible to work with.

In practice, we fix an architecture A with a fixed number of layers and trainable

parameters and work with the following set instead.

SA
def
= {nAθ : θ ∈ RC} (2.21)

Here nAθ is a network with architecture A with trainable parameters θ and C is the total

number of trainable parameters or the size of θ. Since C is fixed, SA has a one-to-one

correspondence with RC and therefore is finite-dimensional. Even though we lose the

density argument while working with θ of fixed size, in recent times it has been shown

that sets like SA are not closed in W1,2(Ω) and nAθ can be used as a good function

approximator, see [117] for a detailed discussion. In the following discussion we

suppress the architecture and use nAθ and nθ interchangably for notational convenience.

After restricting our search space to (2.21), (2.20) becomes,

arg inf
θ∈RC

[∫
Ω
(Lnθ)

2 +
∫

∂Ω
(nθ − g)2

]
(2.22)

52 | Learning zeros of Fokker-Planck operators

2.5.3 From integrals to sums

The domain Ω in our examples will often be of such a dimension that will make

computing the integrals in (2.22) extremely challenging. To deal with this we will

replace the integrals in (2.22) with Monte-Carlo sums as follows,

arg inf
θ∈RC

[
1
N

N

∑
j=1

(Lnθ(xj))
2 +

1
M

M

∑
j=1

(nθ(yj)− g(yj))
2

]
(2.23)

where {xj}N
j=1, {yj}M

j=1 are uniform samples from Ω and ∂Ω respectively.

2.5.4 Finding the optimal parameters

We simply perform gradient descent with respect to θ to find the optimal network

for the problem (2.23). The Monte-Carlo sample sizes should be dictated by the

hardware available to the practitioner. In our experiments N = M = 1000. In higher

dimensions these choices are not enough to capture the original integrals entirely in

one go. In that case (2.23) can interpreted as trying to find a network that satisfies the

original problem (2.19) at the specified points {xj}N
j=1, {yj}M

j=1, which we can refer to

as collocation points. But in our experiments we try to the learn the solution on the

entire domain as thoroughly as possible and so we resample the domain every few

training iterations. So even though we are limited in sample-size by our hardware,

we can shift the burden on space or memory to time or number of training iterations

and adequately sample the entire domain. This principle of space-time trade-off is

ubiquitous in machine learning [25] and comes in many different flavours like mini-

batch gradient descent, stochastic gradient descent etc. Even though in this paradigm

we are not training our network with typical input-output pairs, our method can be

thought of as a variant of the mini-batch gradient descent.

2.5.5 Why deep learning

Deep learning in this context refers to learning an approximate solution to (2.19) with

the outlined method with an architecture A that is deep or has many hidden layers.

Deep networks are more efficient as approximators than shallow networks in the sense

2.5 Overview of deep learning | 53

that they require far fewer number of trainable parameters to achieve the same level

of approximation, for a discussion see section 5 of [73] or section 4 of [116]. Now that

we have described the general procedure of deep learning a solution to a PDE, we will

pause briefly to point out some benefits and demerits of this approach. Deep learning

has, like any other method some disadvantages.

• Deep learning is slower and less accurate for lower dimensional problems for

which standard solvers exist and have been in consistent development for many

decades.

• Most modern GPUs are optimized for computation with single-precision or

float32 numbers. This is efficient for rendering polygons or other image process-

ing tasks which are the primary reasons GPUs were invented [136] but float32

might be not accurate enough for scientific computing. Although not ideal, this

problem will most likely disappear in the future.

• The objective or loss function used in a typical problem might not be convex and

hence difficult to deal with [103], [9].

But even with these disadvantages, the benefits of deep learning make it a worthwhile

tool for solving PDEs.

• Since we don’t need to deal with meshes or grids in this method, we can mitigate

the curse of dimensionality in memory. It will be clear from our experiments

that the size of the network or C does not need to grow exponentially with the

dimensions. This method lets one compute the solution at collocation points

but if one wants to compute the solution over the entire domain, one needs to

sample the entire domain thoroughly which can be done in a sequential manner

without requiring more memory as discussed in 2.5.4.

• All derivatives are computed with automatic differentiation and therefore are

accurate upto floating point errors. Moreover, finite difference schemes do not

satisfy some fundamental properties of differentiation e.g. the product rule [145].

With automatic differentiation one does not have to deal with such problems.

• If one computes the solution over the entire domain, the solution is obtained in

a functional form which can be differentiated, integrated etc.

54 | Learning zeros of Fokker-Planck operators

• Other than a method for sampling no modifications are required for accommo-

dating different domains.

2.6 The algorithm

In this section we outline the algorithm for learning zeros of FPOs. But before that we

go through the primary challenges and ways to mitigate them.

2.6.1 Unboundedness of the problem domain

We can try the same procedure as outlined in section 2.5 to solve find a non-trivial

zero of L. But since computationally we can only deal with a bounded domain, we

focus on a compact domain which contains most of the mass of the solution to (2.1).

We refer to this domain as the domain of interest ΩI in the following discussion.

2.6.2 Existence of the trivial solution

L, being a linear operator, L0 = 0. Since we want to find a non-trivial zero of L, we

would like avoid the learning the zero function during the training of the network.

To deal with this problem [180] added a regularization term that required solving

(2.1) with Monte-Carlo first. Here we propose a method that does not require a priori

knowing an approximate solution. Consider the operator Llog instead.

Llog f def
= e− fLe f (2.24)

Recalling (2.6) we see that,

Llog f = −∇ · µ− µ · ∇ f + D
(
∥∇ f ∥2

2 + ∆ f
)

(2.25)

Since ∇ · µ ̸≡ 0, any constant function cannot be a zero of Llog. p is a zero of L iff

either p ≡ 0 or log p is a zero of Llog. So we can look for a zero of Llog to find a

non-trivial zero of L.

2.6 The algorithm | 55

2.6.3 The steady state algorithm

The procedure outlined in section 2.5 together with the modifications in sections 2.6.1,

2.6.2 immediately yields the following loss function.

Llog =
1
N

N

∑
i=1
Llog(nθ(xi))

2 (2.26)

where {xi}N
i=1 is a uniform sample from ΩI . Accordingly, the final procedure for

finding a non-trivial zero of L is given in algorithm 4. In the following sections we

Algorithm 4 The steady state algorithm
Sample {xi}N

i=1 from ΩI , the domain of interest.
Select the desired architecture for nθ.
Select resampling interval τ.
Select an adaptive learning rate δ(k) and the number of training iterations E.
for k = 1, 2 · · · , E do

Compute ∇θ Llog = 1
N ∑N

i=1∇θ(Llog(nθ(xi))
2)

where Llog f = −∇ · µ− µ · ∇ f + D
(
∥∇ f ∥2

2 + ∆ f
)

Update θ ← θ − δ(k)∇θ Llog
if k is divisible by τ then

Resample {xi}N
i=1 from ΩI

end
end
enθ(x) is a non-trivial zero of L.
Optional: Approximate Z ←

∫
Rd enθ(x) dx. 1

Z enθ(x) is the learned, normalized steady
state.

describe in detail the network architecture and optimizer used in our experiments.

Since the final solution is represented as enθ(x), we have automatically secured positivity

of the solution. Note that we can use other stopping criterion such as the norm of the

gradient of the loss function falling below a certain threshold but in this study we

simply stop the algorithm after a certain number of iterations.

2.6.4 Architecture

We choose the widely used LSTM [158], [169] architecture described below for our

experiments. This type of architecture rose to prominence in deep learning because

of their ability to deal with the vanishing gradient problem, see section IV of [158],

section 2.2 of [169]. A variant of this architecture has also been used to solve PDEs

56 | Learning zeros of Fokker-Planck operators

[159]. This kind of architectures have been shown to be universal approximators

[155]. We choose this architecture simply because of how expressive they are. By

expressivity of an architecture we imply its ability to approximate a wide range of

functions and experts have attempted to formalize this notion in different ways in

recent times [116], [142], [143]. There are architectures that are probability densities

by design i.e. the normalization constraint in (2.1) is automatically satisfied for them,

see for example [165], [135]. But our experiments suggest these architectures are

not expressive enough to learn solutions to PDEs efficiently since the normalization

constraint makes their structure too rigid. Other than the difficulty in implementing

the normalization constraint numerically, this is another reason why we choose to

focus on learning a non-trivial zero of L rather than solving (2.1). LSTM networks on

the other hand are expressive enough to solve all the problems listed in section 2.3.

Below we define the our architecture in detail. Here 0k implies a zero vector of

dimension k and ⊙ implies the Hadamard product.

i ∈ {1, 2, · · · , L} (2.27)

c0(x)
def
= 0m (2.28)

h0(x)
def
= 0d (2.29)

fi(x)
def
=A(W(i)f x + U(i)f hi−1(x) + b(i)f) (2.30)

gi(x)
def
=A(W(i)g x + U(i)g hi−1(x) + b(i)g) (2.31)

ri(x)
def
=A(W(i)r x + U(i)r hi−1(x) + b(i)r) (2.32)

si(x)
def
=A(W(i)s x + U(i)s hi−1(x) + b(i)s) (2.33)

ci(x)
def
=fi(x)⊙ ci−1(x) + gi(x)⊙ si(x) (2.34)

hi(x)
def
=ri(x)⊙ A(ci(x)) (2.35)

dL(y)
def
=W⊤y + b , y ∈ Rm (2.36)

nLSTM
θ

def
=dL ◦ hL (2.37)

Here {fi, gi, ri, si, ci, hi : i = 1, · · · , L} ∪ {dL} are the hidden layers and

θ = {W(i)f , U(i)f , b(i)f , W(i)g , U(i)g , b(i)g , W(i)r , U(i)r , b(i)r , W(i)s , U(i)s , b(i)s : i = 1, · · · , L} ∪ {W, b} (2.38)

2.6 The algorithm | 57

is the set of the trainable parameters. The dimensions of these parameters are given

below,

W(i)f , W(i)g , W(i)r , W(i)s ∈ Rm×d (2.39)

U(i)f , U(i)g , U(i)r , U(i)s ∈

Rm×d, if i = 1

Rm×m, otherwise
(2.40)

b(i)f , b(i)g , b(i)r , b(i)s ∈ Rm (2.41)

W ∈ Rm, b ∈ R (2.42)

which implies the size of the network or cardinality of θ is

C = 4m[d(L + 1) + m(L− 1)] + 5m + 1 (2.43)

Note that (2.43) implies the size of the network grows only linearly with dimension

which is an important factor for mitigating the curse of dimensionality. We use

elementwise tanh as our activation function,

A = tanh (2.44)

We use m = 50 and L = 3 for our experiments which implies our network has

6L + 1 = 19 hidden layers. We use the very popular Xavier or Glorot initialization

[63], [45] to initialize θ. With that, the description of our architecture is complete.

2.6.5 Optimization

In our experiments we use the ubiquitous Adam optimizer [97] which is often used

in the PDE solving literature [70], [180], [159]. We use a piece-wise linear decaying

58 | Learning zeros of Fokker-Planck operators

learning rate. Below k denotes the training iteration and δ(k) is the learning rate.

δ(k) =

5× 10−3, if k < 1000

1× 10−3, if 1000 ≤ k < 2000

5× 10−4, if 2000 ≤ k < 10000

1× 10−4, if k ≥ 10000

(2.45)

We stop training after reaching a certain number of iterations E which varies depending

on the problem. In all our experiments we use N = 1000 as the sample size and τ = 10

as the resampling interval for algorithm 4.

2.7 Results

We are now ready to describe the results of our experiments. Next few sections parallel

the examples in section 2.3 and contain problem-specific details about algorithm 4 e.g.

ΩI , E etc. All computations were done with float32 numbers.

2.7.1 2D ring system

Figure 2.2 shows the learned and true solutions for the 2D ring system. Note that

algorithm 4 produces an unnormalized zero of L but on the left panel the learned

solution has been normalized for easier visualization. In this case we use ΩI = [−2, 2]2

and E = 8× 105 iterations.

Comparison with Monte Carlo

Since the network was trained with domain resampling every 10 steps and a mini-batch

size of N = 1000, during the entire training procedure 8× 107 points were sampled

from the domain. We compute the steady state with Monte Carlo with 8 × 107

particles to compare errors produced by both methods. Here the SDE trajectories

were generated till time 10 with time-steps of 0.01. Since in this case we know the

analytic solution we can compute and compare absolute errors. As we can see in

2.7 Results | 59

Fig. 2.2 Solution for the 2D ring system

figure 2.3, for the same number of overall sampled points, Monte Carlo error is an

order of magnitude larger than deep learning error.

Fig. 2.3 Comparison of absolute errors for deep learning and Monte Carlo solutions
for the 2D ring system

2.7.2 2nD ring system

Although we solve this system for n = 1, 2, 3, 4, 5, in this section we only produce the

results for n = 5 or d = 10 to avoid repetition. Figure 2.4 shows the solutions for

60 | Learning zeros of Fokker-Planck operators

the 10D ring system for ΩI = [−2, 2]10 and E = 4.6× 106. In order to visualize the

solution we focus on the quantity p(0, 0, 0, 0, x4, x5, 0, 0, 0, 0). For a visual comparison

with the true solution normalization is desirable. But rather than trying to compute

a 10-dimensional integral which is a non-trivial problem in itself we can normalize

p(0, 0, 0, 0, x4, x5, 0, 0, 0, 0) which is much easier to do and due to the decoupled nature

of this problem we can expect an identical result as in figure 2.2 which is what we see

in figure 2.4. In both of the panels the solutions have been normalized in a way such

that, ∫
R

∫
R

p(0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1

Fig. 2.4 Solutions for the 10D ring system. Both solutions have been normalized such
that

∫
R

∫
R

p(0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1

The error in the learned solution can be seen in figure 2.5.

2.7.3 Noisy Lorenz-63 system

Figure 2.6 shows the results for the L63 system for ΩI = [−30, 30]× [−40, 40]× [0, 70]

and E = 106. For ease of visualization the solutions have been normalized and in each

row one of the dimensions has been integrated over the relevant interval to produce

2D marginals. In order to integrate out one dimension we use a composite Gauss-

Legendre quadrature rule. We subdivide the relevant interval into 240 subintervals

and use 10-point Gauss-Legendre rule to compute the integral over every subinterval.

Note that since nθ is a smooth function, our integrand is always a smooth function.

2.7 Results | 61

Fig. 2.5 Absolute error in the learned solution for the 10D ring system

The largest possible subinterval is of length 40−(−40)
240 = 1

3 so assuming absolute value

of the 20-th derivative of the integrand is upper-bounded by M everywhere, the

integration error on each subinterval is upper-bounded by 2M
20!

(
1
6

)20
≤ 2.25M× 10−34,

see appendix 2.9.3 for more details on this estimate. To produce the Monte Carlo

solution, SDE trajectories were generated till time 10 with time-steps of 10−2. Since

Monte Carlo produces lower-accuracy solutions even in lower dimensions as we saw

in section 2.7.1 and an analytic solution is unavailable in this case, we refrain from

producing error plots.

2.7.4 Noisy Thomas system

Figure 2.7 shows the results for the Thomas system for ΩI = [−10, 10]3 and E = 4× 105.

Due to the inherent symmetry of this problem it suffices to compute only the 2D

marginal p(x, y). To integrate out the z dimension we use 8-point composite Gauss-

Legendre quadrature rule with 165 subintervals. Assuming absolute value of the

16-th derivative of the integrand is upper-bounded by M everywhere, the integration

error on each subinterval is upper-bounded by 2M
16!

(
10

165

)16
≤ 3.17M × 10−33, see

appendix 2.9.3 for more details on this error estimate. To produce the Monte Carlo

solution, SDE trajectories were generated till time 10 with time-steps of 10−2. Even

though we have solved a lower dimensional problem here, Thomas system turns out

62 | Learning zeros of Fokker-Planck operators

Fig. 2.6 Solutions for the noisy Lorenz-63 system

to be the easiest i.e. algorithm 4 converges faster for this system compared to the other

ones as we will see in the next section.

2.7.5 Dimension dependence

In this section we explore the dimension dependence of algorithm 4. In the left panel

of figure 2.8 we have plotted the loss given by (2.26) against training iterations for all

the of the systems above in a semi-log manner starting from iteration 100. We often

encounter spikes in the loss curve for the following reasons

• the loss curves are single realizations of algorithm 4 instead of being an average

2.7 Results | 63

Fig. 2.7 Solutions for the noisy Thomas system

• we resample the domain every 10 iterations and if the new points belong to a

previously unexplored region in ΩI , the loss might increase.

But the general trend of loss diminishing with iterations is true for every system. We

also see that loss is system-dependent and the hardness of these problems or how

quickly algorithm 4 converges depends on the nature of µ as much as the dimension.

This is easily seen by noting that the two 3D systems sandwich the 2D and the 4D ring

systems in the left panel of figure 2.8. The loss for Thomas system drops very quickly

compared to the rest of the systems due to the simplicity and global Lipschitzness

of the corresponding drift function. We also see from the right panel of figure 2.8

that time taken per training iteration grows near-linearly with dimension. Since it

is hard to estimate the amount of iterations to run before the loss drops below a

pre-determined level, we refrain from plotting the total runtime of algorithm 4 against

dimension. But it’s interesting to note that the number of total training iterations E

varies from 4× 105 to 4.6× 106 across all the problems. Since the data shown in the

right panel of figure 2.8 is very much hardware dependent, at this point we disclose

that all of the experiments were done using the cloud service provided by Google

Colab. This service automatically assigns runtimes to different hardware depending

on availability at the time of computation which might explain why the 8D and 10D

ring systems take nearly the same amount of time per iteration in figure 2.8.

64 | Learning zeros of Fokker-Planck operators

Fig. 2.8 Left panel: Loss vs training iteration starting from iteration 100. Right panel:
time taken per training iteration vs dimension.

2.7.6 Comparison of loss and distance from truth

In this section we explore the relationship between the loss given by (2.26) and the

distance from truth. In spite of being structurally completely different, both are

measures of goodness for a computed solution. In most cases we only have access to

the loss and therefore it is an important question if going a decreasing loss implies

getting closer to the truth for algorithm 4. We define the distance of the learned zero

from the true solution as follows,

∥ϕ∥∗
def
= sup

x∈ΩI

|cϕ(x)− ptrue(x)|, c
∫

Rd
ϕ = 1 (2.46)

where ptrue is the true solution to (2.1). (2.46) is not easy to compute in arbitrary

dimensions but can be computed for the 2D ring system without too much effort since

ptrue is known and the problem is low-dimensional. Figure 2.9 shows the results for

the 2D ring system. The right panel of figure 2.9 shows that loss and distance from

truth are strongly correlated for algorithm 4. Moreover, asymptotically for small values

of the loss function they are linearly related with a Pearson correlation coefficient

R = 0.98 as can be seen from the inset in the right panel which depicts the data from

training iteration 10000 to 50000. The best-fit line is also shown in the inset. On the

left panel we see that the distance from truth monotonically decreases with training

2.8 Summary and Future Work | 65

iteration and is extremely well approximated by a curve of the form a0e−a1k + a2.

Both panels contain data from training iteration 5000 to 50000. We omit the first

few iterations to filter out the effects of the random initialization of the trainable

parameters. Figure 2.9 serves as a good justification for algorithm 4 since it shows that

minimizing the loss is akin to getting closer to a true non-trivial zero of L.

Fig. 2.9 Left panel: Distance from truth vs training iteration every 100 iterations,
starting from iteration 5000 and ending at iteration 50000 for the 2D ring system. Right
panel: Scatter plot for loss vs distance from truth for the 2D ring system. The inset
shows that asymptotically loss and the distance from the truth are linearly related.
The inset depicts the data from training iteration 10000 to 50000.

2.8 Summary and Future Work

In this work we devise a deep learning algorithm for finding non-trivial zeros of L

when the corresponding drift is non-solenoidal. We can summarize our results as

follows.

1. Our choice of architecture is capable of learning zeros of Fokker-Planck operators

across many different problems while scaling only linearly with dimension.

2. Time taken per training iteration grows near-linearly with problem dimension.

3. Apart from being able to produce solutions in a functional form which Monte

Carlo is incapable of, for the same overall sample-size algorithm 4 produces

more accurate solutions compared to Monte Carlo.

66 | Learning zeros of Fokker-Planck operators

4. How quickly algorithm 4 converges to a zero depends as much on the dimension

as it does on the nature of the problem or the structure of µ.

5. By minimizing the loss we also get closer to a true non-trivial zero of the Fokker-

Planck operator which justifies algorithm 4. The loss and the distance from a

true zero of the Fokker-Planck operator, even though structurally completely

different, are strongly correlated. Moreover, they can be asymptotically linearly

related for small values of the loss function.

In a sequel we will show how we can solve time-dependent FPEs by using the zeros

learned by algorithm 4. The landscape of the loss defined in (4) poses many interesting

geometric questions. For example, in case the nullspace of L is 1-dimensional do all

the minima of Llog lie on a connected manifold of dimension 1 or are they disconnected

from each other? Such questions provide possible avenues for future research.

2.9 Appendix

2.9.1 Existence and uniqueness of solutions to example problems

In this section we prove that the example problems used here have a unique weak

solution in W1,2
loc (R

d). We employ the method of Lyapunov function as described in

[76] to arrive at existence and uniqueness. First we begin with the prerequisites for

this approach.

Lyapunov functions

Definition 2.9.1 Let U ∈ C(U) be a non-negative function and denote ρM = supx∈U U(x),

called the essential upper bound of U. U is said to be a compact function in U if

i) U(x) < ρM, x ∈ U (2.47)

and

ii) lim
x→∂U

U(x) = ρM (2.48)

2.9 Appendix | 67

This definition of a compact function appears as definition 2.2 in [76].

Proposition 2.9.2 An unbounded, non-negative function U ∈ C(Rd) is compact iff

lim
∥x∥2→+∞

U(x) = +∞ (2.49)

This proposition appears as Proposition 2.1 in [76].

Definition 2.9.3 Let U be a compact function in C2(U) with essential upper bound ρM. U

is called a Lyapunov function in U with respect to L∗ is ∃ ρm ∈ (0, ρM) and a constant γ > 0

such that

L∗U(x) ≤ −γ, ∀x ∈ U \ {x ∈ U : U(x) < ρm} (2.50)

where L∗ is the adjoint Fokker-Planck operator given by

L∗ f = µ · ∇ f + D⊙∇2 f (2.51)

This definition appears as definition 2.4 in [76]. Now we are ready to state the main

theorem that will help us prove uniqueness for our example problems.

Theorem 2.9.4 If the components of µ are in L2
loc(U) and there exists a Lyapunov function

with respect to L∗ in C2(U) then (2.1) has a positive weak solution in the space W1,2
loc (U). If,

in addition, the Lyapunov function is unbounded, the solution is unique in U .

This theorem appears as Theorem A in [76]. Since the components of µ are locally

integrable for our example problems, all we need to do is find an unbounded Lyapunov

function U for proving existence and uniqueness in W1,2
loc (R

d).

68 | Learning zeros of Fokker-Planck operators

Existence and uniqueness of solution for 2D ring system

Setting

U = R2 (2.52)

U(x, y) = x2 + y2 (2.53)

ρm =
1
2
+
√

D + 1 (2.54)

γ = 4D + 6 (2.55)

(2.56)

we see that,

L∗U + γ = −8
(

x2 + y2 − 1
2

)2

+ 8(D + 1) (2.57)

and,

U \ {x ∈ U : U(x) < ρm} =
{
(x, y) ∈ R : x2 + y2 > ρm

}
(2.58)

In
{
(x, y) ∈ R : x2 + y2 > ρm

}
,

L∗U + γ ≤ 0 (2.59)

and therefore U is an unbounded Lyapunov function for the 2D ring system which

guarantees uniqueness of solution (2.11).

Existence and uniqueness of solution for L63 system

Setting,

U(x, y, z) = ρx2 + αy2 + α(z− 2ρ)2 (2.60)

2.9 Appendix | 69

we see that

L∗U = −2αρx2 − 2αy2 − 2αβz2 + 4αβρz + 2D(2α + ρ) (2.61)

= −2αρx2 − 2αy2 − αβz2 − αβ(z− 2ρ)2 + 4αβρ2 + 2D(2α + ρ) (2.62)

≤ −ρx2 − αy2 − α(z− 2ρ)2 + 4αβρ2 + 2D(2α + ρ) (2.63)

= −U(x, y, z) + 4αβρ2 + 2D(2α + ρ) (2.64)

(2.63) is a consequence of α, β, ρ > 1. Now setting,

γ = 1, (2.65)

ρm = 4αβρ2 + 2D(2α + ρ) + 1 (2.66)

we see that in {U > ρm},

L∗U + γ ≤ 0 (2.67)

So U is an unbounded Lyapunov function for this system and we have a unique

solution.

Existence and uniqueness of solution for Thomas system

Setting,

U(x, y, z) = x2 + y2 + z2 (2.68)

we see that

L∗U = x sin y + y sin z + z sin x− b(x2 + y2 + z2) + 6D (2.69)

≤
√

3U − bU + 6D (2.70)

= −b

(
√

U −
√

3
2b

)2

+
3
4b

+ 6D (2.71)

70 | Learning zeros of Fokker-Planck operators

(2.70) follows from Cauchy Schwarz inequality. Setting,

γ =
1
4b

, (2.72)

ρm =

(√
3

2b
+

√
1 + 6bD

b

)2

(2.73)

we see that in {U > ρm},

L∗U + γ ≤ 0 (2.74)

So U is an unbounded Lyapunov function for this system and we have a unique

solution.

2.9.2 Monte Carlo steady state algorithm

The time-dependent FPE given by

∂p(t, x)
∂t

= Lp(t, x), x ∈ Rd, t ≥ 0

p(0, x) = p0(x), x ∈ Rd∫
Rd

p(t, x) dx = 1, ∀ t ≥ 0

(2.75)

gives us the probability density of the random process Xt which is governed by

the SDE,
dXt = µ dt + σ dWt

X0 ∼ p0

(2.76)

where {Wt} is the standard Wiener process, see for example chapters 4, 5 of [60].

We can evolve (4) up to sufficiently long time using Euler-Maruyama method [98] to

approximate the steady state solution of (2.75) or the solution of (2.1) as follows. Here

N denotes the multivariate normal distribution. Note that in case of a unique solution

of (2.1), many choices of p0 can lead to the stationary solution. In all our examples, it

suffices to choose p0 to be the standard d-dimensional normal distribution.

2.9 Appendix | 71

Algorithm 5 Monte Carlo steady state algorithm

Sample {X(i)
0 }N

i=1 ∼ p0.
Set the time-step h.
Set the number of steps S.
for k = 1, 2 · · · , S do

Sample wi
k ∼ N (0d, hId) ∀ i

X(i)
k ← X(i)

k−1 + µ
(

X(i)
k−1

)
h + σwi

k ∀ i

end
Subdivide the domain of interest ΩI into d-dimensional boxes.
Count the number of X(i)

S that are in a box to estimate the stationary density at the
center of the box.

2.9.3 Integration error for n-point Gauss-Legendre rule

Suppose we are trying to integrate a smooth function f (x) over
[

a− h
2 , a + h

2

]
with

n-point Gauss-Legendre rule where h ∈ (0, 1]. Let us denote I[f] to be the Gauss-

Legendre approximation of
∫ a+ h

2
a− h

2
f (x) dx. Recalling that n-point Gauss-Legendre gives

us exact integrals for polynomial of degree ≤ 2n− 1 and using the Lagrange form of

Taylor remainder we see that,

∣∣∣∣∣I[f]−
∫ a+ h

2

a− h
2

f (x) dx

∣∣∣∣∣ ≤ MI
[
(x− a)2n

(2n)!

]
+ M

∫ a+ h
2

a− h
2

(x− a)2n

(2n)!
dx (2.77)

where | f (2n)(x)| ≤ M ∀ x ∈
[

a− h
2 , a + h

2

]
. To bound the first term on the RHS of

(2.77) we can use the fact that if

I[f] =
n

∑
i=1

wi f (xi) (2.78)

then,

I[1] =
∫ a+ h

2

a− h
2

1 dx = h (2.79)

=⇒
n

∑
i=1

wi = h ≤ 1 (2.80)

=⇒ I
[
(x− a)2n

(2n)!

]
≤ 1

(2n)!

(
h
2

)2n
(2.81)

72 | Learning zeros of Fokker-Planck operators

Therefore,∣∣∣∣∣I[f]−
∫ a+ h

2

a− h
2

f (x) dx

∣∣∣∣∣ ≤ M
(2n)!

(
h
2

)2n
+

2M
(2n + 1)!

(
h
2

)2n+1

≤ 2M
(2n)!

(
h
2

)2n
(2.82)

Chapter 3

In the last chapter we computed unnormalized solutions to the stationary Fokker-Planck

equation using deep learning. In this chapter we are interested in the time-dependent Fokker-

Planck equation. Even though deep learning seems to effective for elliptic partial differential

equations, the same is not true for parabolic partial differential equations. In this chapter first we

show that physics-informed neural networks are not suitable for a large class of parabolic partial

differential equations including the Fokker-Planck equation. Then we devise an algorithm to

compute solutions of the Fokker-Planck equation using the zeros of Fokker-Planck operator

and the Feynman-Kac formula. The resulting algorithm is mesh-free, highly parallelizable and

able to compute solutions pointwise, thus mitigating the curse of dimensionality in a practical

sense. We analyze various nuances of this algorithm that are determined by the drift term

in the Fokker-Planck equation. We work with problems ranging in dimensions from 2 to 10.

We demonstrate that this algorithm requires orders of magnitude fewer trajectories for each

point in space when compared to Monte-Carlo. We also prove that under suitable conditions

the error caused by letting some trajectories associated with the Feynman-Kac expectation,

escape our domain of knowledge is proportional to the fraction of trajectories that escape. As an

application we calculate the one step filtering density for a noisy dynamical system.

Chapter 3

Solving Fokker-Planck equations

3.1 Introduction

From the motion of a particle suspended in a fluid [92], enzyme kinetics [2] to dynamics

of a stock price [93], [49] evolving systems in the real worlds are often modelled as

systems of ordinary differential equations propagating under the influence of additive

noise. These models known as stochastic differential equations (SDE) [131], [60], [161]

are directly linked to Fokker-Planck equations (FPE) [149] or Kolmogorov forward

equations that describe the evolution of probability density of the state vector. In the

prequel we developed a deep learning algorithm to compute non-trivial zeros of high-

dimensional Fokker-Planck operators in a mesh-free manner. In this chapter we will

devise an algorithm to compute solutions of high-dimensional time-dependent FPEs

in a mesh-free manner. We will begin by noting an algorithm similar to the one used

in chapter 2 to solve stationary FPEs (SFPE) fails for time-dependent FPEs. A widely

adopted strategy for solving high-dimensional PDEs is to appeal to Feynman-Kac

type formulae [47], [84], since they allow pointwise calculation of solutions without

requiring a mesh thus mitigating at least one aspect of the curse of dimensionality.

For example, Kakutani’s solution of Dirichlet problem for the Laplace operator [88],

[89], Muller’s walk-on-spheres method for Dirichlet problems [127] and an analogous

method called walk-on-stars for Neumann problems [154], multi-level Picard iteration

method for solving semilinear heat equations [77] are all based on Feynman-Kac

type formulae. In recent times deep learning methods have been combined with

the Feynman-Kac formula to solve high-dimensional PDEs [70], [16]. Even though

3.2 Problem Statement | 75

FPEs are semilinear, parabolic PDEs whose solutions are probability densities and

Deep-BSDE method proposed in [70] deals with semilinear, parabolic PDEs, generic

FPEs pose many challenges that make them unapproachable for deep-BSDE. Non-

Lipschitzness of drift functions leading to blow-up of SDE trajectories [36], [111] and

unboundedness of the divergence of drift functions causing FPEs to dissatisfy one of

the requirements for the Feynman-Kac formula are foremost amongst these challenges.

In this chapter we apply the Feynman-Kac formula on an auxiliary equation and

combine the solution with the zero of the Fokker-Planck operator obtained through

the method described in chapter 2 to produce the normalized solution to the time-

dependent Fokker-Planck equation. We will apply our method for problem dimensions

ranging from 2 to 10 to verify its effectiveness in high dimensions.

As we have noted, real world systems are often modelled as SDEs and we often ob-

serve such systems partially due to limited resources and are tasked with determining

the distribution of the state vector at a certain time given all the observations up to

that time. This is known as the filtering problem in the field of data assimilation and

is useful for a variety of topics - global positioning system, target tracking, monitoring

infectious diseases, to name a few [153]. FPEs are naturally connected to data assimila-

tion when the underlying dynamics is stochastic. We will show how this method can

be used to to calculate the one-step filtering density in the nonlinear filtering problem.

To that end we will focus on systems with attractors since such systems are often used

as important test cases in the field of data assimilation [28].

3.2 Problem Statement

3.2.1 Time-dependent FPEs

Consider the Itô SDE with coefficients µ ∈ C1(Rd; Rd) and σ ∈ C(Rd; Rd×l) that are

independent of time,

dXt = µ(Xt) dt + σ(Xt) dWt

X0 ∼ p0

(3.1)

such that D = 1
2 σσ⊤ is a positive definite matrix for all inputs. Such an SDE is directly

related to the Fokker-Planck equation describing the evolution of the probability

76 | Solving Fokker-Planck equations

density of Xt [149], [18], [24],

∂p
∂t

= Lp def
= −∇ · (µp) + tr(D⊙∇2p) = 0, x ∈ Rd, t ∈ (0, T]

p(0, x) = p0(x), x ∈ Rd∫
Rd

p(t, x) dx = 1, t ∈ [0, T]

(3.2)

where ⊙ is the Hadamard product and ∇2 denotes Hessian. The operator L is known

as the Fokker-Planck operator (FPO). Our goal is to solve (3.2) in a mesh-free way

in high-dimensions. In our examples we stick to σ ≡ cId for some c > 0 which lets

us abuse notation and use σ and D as scalar quantities, note that however our final

method can be easily applied to problems where σ is indeed a function of space or

non-diagonal with minor modifications. With this simplification (3.2) becomes,

∂p
∂t

= −∇ · (µp) + D∆p = 0 (3.3)

where ∆ is the Laplacian operator. An extensive amount of work has been done to

find numerical solutions to FPEs over the years, for a brief overview the reader can

see section 2.4 of chapter 2.

3.2.2 One step filtering problem

Suppose we partially observe Xt at discrete times t = g, 2g, 3g, · · · with observation

gap g. These observations are given by,

yk = Hxk + ηk, k = 1, 2, · · · (3.4)

where xk = Xkg, H : Rd → Rq is a projection matrix and ηk ∼ N (0q, σ2
o Iq) are iid

Gaussian errors in observation. Given all the observations up to time t = gk, the

filtering problem asks us to compute the distribution of the state vector at that time

i.e. p(xk|y1:k). Here, as a simple application, we will calculate the one-step filtering

density p(x1|y1).

3.3 Examples | 77

3.3 Examples

All the examples here parallel the examples that appear in the last chapter where we

call a system a gradient system if the corresponding µ can be written as the gradient of

some potential function,

µ = −∇V (3.5)

and otherwise we call it non-gradient system. Gradient systems provided important

test cases in the last chapter while solving stationary FPEs since their steady states are

known in analytical form. But for time-dependent FPEs analytical solutions are not

known in general even if µ satisfies (3.5).

3.3.1 Gradient systems

We use the following gradient systems to verify the effectiveness of our algorithm in

high-dimensions. A corresponding non-trivial zero of the Fokker-Planck operator was

calculated in the last chapter for each case.

2D ring system

For V = (x2 + y2 − 1)2 and µ = −∇V we get the following FPE,

∂p
∂t

= 4(x2 + y2 − 1)
(

x
∂p
∂x

+ y
∂p
∂y

)
+ 8(2x2 + 2y2 − 1)p + D∆p (3.6)

The corresponding ODE system has the unit circle as a global attractor. We solve this

system for D = 1. As the initial condition we use an equal Gaussian mixture with the

components having centers at
(
−1

2 ,−1
2

)
and

(
1
2 , 1

2

)
with covariance matrix 1

4 I2.

p0(x, y) =
1
π

exp

(
−2
(

x +
1
2

)2

− 2
(

y +
1
2

)2
)
+

1
π

exp

(
−2
(

x− 1
2

)2

− 2
(

y− 1
2

)2
)

(3.7)

This system has a unique solution, for a proof see appendix 3.7.1.

78 | Solving Fokker-Planck equations

2nD ring system

We can daisy-chain the previous system to build decoupled systems in higher dimen-

sions. In this case the potential is given by

V(x) =

d
2−1

∑
i=0

(x2
2i + x2

2i+1 − 1)2, d = 2n (3.8)

We use the following initial condition which can be obtained by daisy-chaining the

initial condition in (3.7).

p0(x) =

d
2−1

∏
i=0

[
1
π

exp

(
−2
(

x2i +
1
2

)2

− 2
(

x2i+1 +
1
2

)2
)

+

1
π

exp

(
−2
(

x2i −
1
2

)2

− 2
(

x2i+1 −
1
2

)2
)] (3.9)

Since our algorithm does not differentiate between coupled and decoupled systems,

this example serves as a great high-dimensional test case. Although the analytical

solution for this problem is not known, the decoupled nature of this problem implies

that we can compare our solution to the 2nD ring system with the solution to the 2D

ring system which can be easily computed with other methods (e.g. Monte Carlo) that

are not efficient in higher dimensions. Here we solve this system for n = 1, 2, 3, 4, 5

and D = 1. This system has a unique solution which follows directly from the fact

that the 2D ring system has a unique solution.

3.3.2 Non-gradient Systems

Even though the analytic solution for the gradient case is not known for time-

dependent FPEs, the gradient structure of the drift makes solving time-dependent

FPEs much easier as we will see in section 3.4.4. Non-gradient systems on the other

hand pose a much harder challenge due to the blow-up of auxiliary SDEs, see sec-

tion 3.4.4 for more details. Here we deal with the following non-gradient systems. A

corresponding non-trivial zero of the Fokker-Planck operator was calculated in the

last chapter for each case.

3.3 Examples | 79

Noisy Lorenz-63 system

The Lorenz-63 system was first proposed by Edward Lorenz as an oversimplified

model for atmospheric convection [113]. The corresponding ODE possesses the famous

butterfly attractor. This system and its variants like Lorenz-96 are staple test problems

in the field of data assimilation [28], [178] which is why we also use this system for

the calculation of one-step filtering density. We use the standard parameters to define

the drift.
µ = [α(y− x), x(ρ− z)− y, xy− βz]⊤

α = 10 , β =
8
3

, ρ = 28
(3.10)

We solve this system for D = 50 with the following Gaussian mixture as the initial

condition,

p0(x) =
1

2
√
(2π)3

exp

(
−∥x + 2× 13∥2

2
2

)
+

1
2
√
(2π)3

exp

(
−∥x− 2× 13∥2

2
2

)
(3.11)

where 13 denotes the vector with all entries 1 with respect to the standard basis in R3.

This system has a unique solution, for a proof see appendix 3.7.1.

Noisy Thomas system

The deterministic or ODE version of this system was proposed by René Thomas [164].

This is a 3-dimensional system with cyclical symmetry in x, y, z and the corresponding

ODE system has a cyclically symmetric strange attractor.

µ = [sin y− bx, sin z− by, sin x− by]⊤

b = 0.2
(3.12)

We solve this system for D = 1 with the following Gaussian mixture as the initial

condition,

p0(x) =
1

2
√
(2π)3

exp

(
−∥x + 2× 13∥2

2
2

)
+

1
2
√
(2π)3

exp

(
−∥x− 2× 13∥2

2
2

)
(3.13)

80 | Solving Fokker-Planck equations

This system has a unique solution, for a proof see appendix 3.7.1.

To verify our method we will compare the solutions obtained by our method

with Monte Carlo simulations of 3.1, for details of the Monte Carlo algorithm see

appendix 3.7.2.

3.4 The p∞+FK algorithm

First, we will go through the main challenges for solving (3.2) in high dimensions.

These challenges and their solutions will naturally lead us to an algorithm for solving

high-dimensional FPEs. Lastly, we will discuss various nuances associated with this

algorithm.

3.4.1 Failure of the physics-informed way

Since we used deep learning to find zeros of the Fokker-Planck operator in the

prequel, the most natural question becomes does an analogous algorithm work for

time-dependent FPEs? For an overview of learning solutions to PDEs in a physics-

informed fashion see section 2.5 in chapter 2 or [144], [16], [159]. As noted in section 2.5

of the last chapter, the first step to learning the solution to a PDE is to convert it into

an optimization problem. For notational convenience let us first define the function

space F as follows,

F def
= { f : [0, T]×Rd → [0,+∞) :

∫
Rd

f (t, x) dx = 1 ∀ t ∈ [0, T]} (3.14)

Proceeding parallely to section 2.5 in chapter 2 or [159] we might be tempted to

solve the following optimization problem,

arg inf
f∈F

J (f) def
= arg inf

f∈F

[
1

MN

M

∑
i=1

N

∑
j=1

(
∂ f
∂t

(ti, xj)−L f (ti, xj)

)2

+
1
N

N

∑
j=1

(f (0, xj)− p0(xj))
2

]
(3.15)

where {xj}N
j=1 is a uniform sample from our compact domain of interest ΩI (see

section 2.6.1 in chapter 2) and {ti}M
i=1 is a sample from [0, T]. But it turns out problem

3.4 The p∞+FK algorithm | 81

(3.15) is not a well-behaved problem. The following proposition explains why this is the

case.

Proposition 3.4.1 Suppose (3.2) has a unique, strong solution p and

L f = 0 (3.16)

also has a unique, strong, probability solution p∞. Then there exists a sequence of functions

fk ∈ F independent of the samples {xj}N
j=1, {ti}M

i=1 such that

lim
k→+∞

J (fk) = 0 (3.17)

but

lim
k→+∞

fk ̸= p (3.18)

Proof. WLOG assume that {ti}M
i=1 is ordered and 0 = t1 < t2 < · · · < tM. Since we

have included t1 = 0 in our sample, while considering ∂
∂t at t = t1 = 0 we’ll only

consider the right derivative. For k ∈N define the sequence,

fk(t, x) =

 p(t, x), t ≤ 1
k

ϕk(t) p(t, x) + (1− ϕk(t)) p∞(x), t > 1
k

(3.19)

where,

ϕk(t) = e1−kt (3.20)

Since p, p∞ are probability densities, it is easy to see that fk ∈ F , ∀ k ∈N. The second

term or the initial condition term in J (fk) vanishes since fk(0, x) = p(0, x) = p0(x).

Moreover since p is a zero of ∂
∂t −L,

N

∑
j=1

(
∂ fk
∂t

(t1, xj)−L fk(t1, xj)

)2

= 0 (3.21)

82 | Solving Fokker-Planck equations

where as noted before we have only considered the right time-derivative at t = t1 = 0.

Now pick K > 0 : 1
K < t2. For k > K, using the fact that p, p∞ are both zeros of ∂

∂t −L

we see that,

J (fk) =
1

MN

M

∑
i=2

N

∑
j=1

(
dϕk
dt

(ti)(p∞(xj)− p(ti, xj))

)2

(3.22)

Due to continuity of p, p∞ and compactness of ΩI there exists B ≥ 0 :

sup
{

p(t, x)2, p∞(x)2 : t ∈ [0, T], x ∈ ΩI

}
= B (3.23)

which implies ∀ k > K,

J (fk) ≤
2B

MN

M

∑
i=2

N

∑
j=1

(
dϕk
dt

(ti)

)2

=
2Be2k2

MN

M

∑
i=2

N

∑
j=1

e−2kti < 2Be2k2e−2kt2 (3.24)

Since t2 > 0 we have

lim
k→+∞

J (fk) = 0 (3.25)

But clearly the pointwise limit of fk is given by

f (t, x) =

 p0(x), t = 0

p∞(x), t > 0
(3.26)

The proof assumes very little about the operator L and hence can be extended to

other partial differential equations of parabolic type. Only assumptions required

to prove Proposition 3.4.1 are the existence of strong, unique probability solutions

which are true for all of our example problems, see appendix 2.9.1 in chapter 2 and

appendix 3.7.1 in this chapter. Since we only have finite computational resources it is

sensible to investigate loss functions with finite sample-sizes and note that the proof of

Proposition 3.4.1 works for any choice of samples {ti}M
i=1, {xj}N

j=1 with arbitrary but

finite sample-sizes. Note that the pathological sequence we constructed is independent

of the samples {ti}M
i=1, {xj}N

j=1 which is an important component of the failure of

3.4 The p∞+FK algorithm | 83

the physics-informed way. In the case of stationary Fokker-Planck equations we can

also construct pathological functions that make the physics-informed loss (defined

in section 2.6.3 of chapter 2) vanish without converging to a solution by simply

interpolating a solution at the sample points with non-solutions at unsampled points.

But the physics-informed method still produces correct solutions in the stationary

case since these pathological functions are sample-dependent and as the sample-size

increases, they resemble a solution more and more closely. From the perspective of

training a neural network to optimize problem 3.15 the main difficulty is revealed by

the limit of the minimizing sequence given in (3.26). The network can behave like the

initial condition for a short amount of time and then mimic p∞ for all subsequent

times losing all variation in time. Moreover, one can construct many such sequences

with pathological behaviors, not to mention restricting neural networks to F and have

them be expressive is another challenge since normalization is an extremely difficult

condition to implement in high dimensions, see the discussion in sections 2.2 and 2.6.4

of chapter 2. Apart from these difficulties, for other explorations of failure modes of

physics-informed neural networks see [103], [9].

3.4.2 The Feynman-Kac formula

Due to the ineffectiveness of the physics informed method, we turn to another very

useful paradigm for solving high dimensional PDEs. The Feynman-Kac formula [137]

has been used very successfully in recent years to solve high-dimensional PDEs [77].

They have also been used alongside deep-learning to create algorithms for semilinear

parabolic PDEs [70]. Moreover, while verifying algorithms for very high dimensional

PDEs one often relies on the Feynman-Kac formula to get a reference solution, see

for example the examples given in sections 4, 5 of [159]. The pointwise nature of the

Feynman-Kac formula makes it very attractive for high-dimensional problems, since

it waives the requirement for a mesh. Below we briefly discuss a few versions of the

formula and the challenges associated with using it for (3.2).

The following version of the formula appears in [131] and it is one of the most

well-known versions.

84 | Solving Fokker-Planck equations

Theorem 3.4.2 (Feynman-Kac) Suppose f ∈ C2
0(R

d) and q ∈ C(Rd). If q is bounded

below then

v(t, x) = E

[
exp

(
−
∫ t

0
q(X̄s) ds

)
f (X̄t)

∣∣∣∣ X̄0 = x
]

(3.27)

is the unique solution of
∂u
∂t

= Au− qu

u(0, x) = f (x)
(3.28)

that’s bounded on K×Rd for every compact K ⊂ [0,+∞), where X̄t is a time-homogeneous

Itô process satisfying

dX̄t = µ̄(X̄t) dt + σ̄(X̄t) dWt (3.29)

with

|µ̄(x)− µ̄(y)|+ |σ̄(x)− σ̄(y)| ≤ C|x− y|, ∀ x, y ∈ Rd (3.30)

where C is a positive constant and A is the infinitesimal generator of X̄t given by

A f = µ̄ · ∇ f +
1
2

tr(σ̄σ̄⊤ ⊙∇2 f) (3.31)

Note the three requirements for Theorem 3.4.2 are global Lipschitzness of µ̄ and

σ̄, vanishing of the initial condition f at infinity and the lower-boundedness of q.

Lipschitzness of drift and diffusion coefficient ensures that SDE (3.29) has a unique,

non-exploding, strong solution [78]. Vanishing of the initial condition f and lower-

boundedness of q guarantee that the expectation in (3.27) is bounded.

If we try to apply formula (3.27) directly to the Fokker-Planck equation (3.3), we

have to identify the following quantities,

µ̄ = −µ

σ̄ = σ

q = −∇ · µ

(3.32)

3.4 The p∞+FK algorithm | 85

In our examples none of the three requirements for Theorem 3.4.2 are always

satisfied. Concretely, the 2D ring system (3.6) satisfies none of the requirements.

Lipschitzness of the drift is too restrictive a condition to model real world phenomena

and therefore attempts have been made to relax this condition. In [177] the Lipschitz

condition is replaced with Hölder condition for 1D SDEs, furthermore in [58], [112]

sufficient conditions for existence of pathwise unique solutions of 1D SDEs have

been discussed. [174] discusses the more general case when the SDEs are multi-

dimensional with non-Lipschitz drifts and gives us an identical Feynman-Kac formula

for (3.28) under the condition that (3.29) has a unique, weak solution. For the sake of

completeness, below we provide a special case of the more general result proved in

Theorem 7.5 of [174].

Theorem 3.4.3 (Feyman-Kac with non-Lipschitz drift) Assume the following.

1. (3.29) has a unique weak solution.

2. v(·, ·) : [0, T]×Rd → R lies in C1,2([0, T)×Rd) ∩ Cb([0, T]×Rd) and satisfies the

Cauchy problem (3.28).

3. f is uniformly bounded.

Then v is given by the formula (3.27).

The requirement that q be lower-bounded can be easily arranged while simultane-

ously simplifying (3.27) by looking at an auxiliary equation. To derive this auxiliary

equation we can write,

p(t, x) = h(t, x)p∞(x) (3.33)

where p∞ is a nonzero zero of the operator L. Substituting (3.33) into (3.3) and

recalling D = σ2

2 we get,

∂(p∞h)
∂t

= −∇ · (µp∞h) +
σ2

2
∆(p∞h) (3.34)

=⇒ p∞
∂h
∂t

= −h∇ · (µp∞)− p∞µ · ∇h +
σ2

2
(h∆p∞ + 2∇p∞ · ∇h + p∞∆h) (3.35)

=⇒ p∞
∂h
∂t

= h
[
−∇ · (µp∞) +

σ2

2
∆p∞

]
− p∞µ · ∇h +

σ2

2
(2∇p∞ · ∇h + p∞∆h)

(3.36)

86 | Solving Fokker-Planck equations

Since p∞ solves the stationary FPE, the first term in the RHS of (3.36) vanishes and

after rearranging terms we end up with,

p∞
∂h
∂t

= (σ2∇p∞ − p∞µ) · ∇h + p∞
σ2

2
∆h (3.37)

Therefore, h satisfies the following PDE,

∂h
∂t

= (σ2∇ log p∞ − µ) · ∇h +
σ2

2
∆h, x ∈ Rd, t ∈ (0, T]

h(0, x) =
p0(x)
p∞(x)

, x ∈ Rd
(3.38)

Note that L, being a linear operator, can have infinitely many distinct zeros and

each such p∞ will give rise to a different PDE for h. If we can compute p∞ then we

can compute p by computing h. In chapter 2 we provide a deep learning method to

compute positive zeros of L and thus for our purposes it suffices to compute h. To

compute h with the Feynman-Kac formula we identify the following quantities,

µ̄ = (σ2∇ log p∞ − µ)

σ̄ = σ

q = 0

(3.39)

In this construction q has automatically become lower-bounded. Moreover, the

formula (3.28) simplifies to

h(t, x) = E

[
p0(X̄t)

p∞(X̄t)

∣∣∣∣ X̄0 = x
]

(3.40)

where X̄t satisfies,

dX̄t = (σ2∇ log p∞ − µ) dt + σ dWt (3.41)

Finally, p(t, x) can be computed with the formula,

p(t, x) = E

[
p0(Xt)

p∞(Xt)

∣∣∣∣X0 = x
]

p∞(x) (3.42)

3.4 The p∞+FK algorithm | 87

Note that even if the computed p∞ is unnormalized since we both multiply and

divide by p∞ in (3.42), the normalization constant cancels out. Also, since µ̄ depends

on p∞ through ∇ log p∞, the normalization constant for p∞ is again eliminated and Xt

appearing in (3.42) is independent of the normalization constant. Therefore, we can

recover the correct p with (3.42), for any nonzero zero of L which can be computed

following the recipe laid out in chapter 2. For the sake of convenience, we will refer to

equations (3.38) and (3.41) as the h-equation and the h-SDE respectively.

We have only dealt with two of the three requirements of Theorem 3.4.2 so far

by appealing to the more general version of the Feynamn-Kac formula [174] and

transforming the original FPE into the h-equation. The remaining requirement of

Theorem 3.4.2 is f ∈ C2
0 or the initial condition vanishes at infinity. This can be

weakened to the condition that the initial condition is uniformly bounded if we

appeal to Theorem 3.4.3. This translates to p0
p∞

vanishing at infinity or being uniformly

bounded since p0
p∞

is the initial condition for the h-equation (3.38). This assumption

helps make sure that the expectation in (3.27) is bounded. Even though we do not

impose this restriction in our examples, in section 3.4.4 we see that this condition is

immaterial to our situation since we restrict the trajectories of the h-SDE (3.41) to a

finite domain and the expectation in (3.42) is therefore bounded.

3.4.3 The algorithm

Following the discussion in section 3.4.2 we propose the following hybrid algorithm 6

for solving (3.2) in high dimensions which uses the powers of both deep learning and

the Feynman-Kac formula. In order to generate trajectories of the h-SDE (3.29) we will

use some time-discretized scheme like Euler-Maruyama or Milstein [98]. Just as in

chapter 2, we will restrict ourselves to computing the solution on a finite domain D

where almost all the probability mass lies throughout t ∈ [0, T]. Besides the space-

time boundaries D, T, algorithm 6 has two other hyperparameters M, N describing

the time-discretization for Euler-Maruyama and the sample-size for estimating the

Feynman-Kac expectation respectively.

88 | Solving Fokker-Planck equations

Algorithm 6 The p∞+FK algorithm

1. Choose D, T, M, N according to the PDE and available computational resources.

2. Use a known analytic zero of L or compute p∞ according to algorithm 4 in
chapter 2.

3. Pick t ∈ [0, T] and x ∈ D. Generate N trajectories of the SDE given by,

dXτ = (σ2∇ log p∞ − µ) dτ + σ dWτ

starting from x and running till time t with Euler-Maruyama method. Suppose
the trajectories are computed at times 0 = τ0 < τ1 < · · · < τM = t. Let X(i)

j
denote the j-th point (in time) in the i-th trajectory.

4. Approximate p(τj, x) with the following quantity,

p∞(x)
N

N

∑
i=1

p0(X(i)
j)

p∞(X(i)
j)

3.4.4 Strengths and limitations

The main strength of algorithm 6 lies in the fact that we can focus on the solutions

pointwise without having to deal with global structures, thus somewhat mitigating the

curse of dimensionality. Also, generating trajectories for the Feynman-Kac expectation

with Euler-Maruyama lends itself to extreme parallelization, a must-have ingredient for

solving high dimensional problems. The nature of the algorithm makes it applicable

to a fairly large set of problems. Moreover, to compute solutions for the same problem

but different initial conditions one can just reuse the same trajectory data and once the

trajectory data are generated, solutions can be found for all of the time-points used to

generate the trajectory data.

The limitations of algorithm 6 closely related to the properties dynamical system

we are dealing with. In order to explore these, first, we need to explore the behavior

of the h-SDE (3.41) for different dynamical systems.

3.4 The p∞+FK algorithm | 89

Behavior of h-SDE trajectories and domain contraction

The stationary Fokker-Planck equation Lp∞ = 0 has analytical solution for gradient

systems. In this case, the solution can be expressed as

p∞ ∝ exp
(
−2V

σ2

)
(3.43)

=⇒ σ2∇ log p∞ = 2µ (3.44)

=⇒ µ̄ = µ (3.45)

where V is defined as in (3.5), for a derivation see for example, section 2.3.1 in chapter 2.

Consequently, the h-SDE for gradient systems can be written as

dX̄t = µ dt + σ dWt (3.46)

So for the gradient case, the h-SDE is identical to the original SDE (3.1) describing the

underlying dynamical system. Since the dynamical system possesses an attractor, the

trajectories of the h-SDE are attracted to this this attractor and we can safely avoid

blow-up even if the drift µ is non-Lipschitz.

But the same cannot be said for the non-gradient systems where the drift term µ̄

in the h-SDE might be dominated by −µ rather than being µ as in the original SDE,

thus losing its attracting properties. In such cases the solutions of the h-SDE might

experience finite or infinite time blow-up.

Our knowledge of µ̄ is determined by our knowledge of p∞. If we do not have

an analytic form for p∞ and have computed p∞ (up to the normalization constant)

only up to the domain Ω then we can only be sure of our knowledge of µ̄ up to the

domain Ω. Consequently, if we want to compute the solution on the domain D then

we must select D ⊂ Ω in a way such that the trajectories of h-SDE that start inside

D, do not leave Ω till time T with high probability. To quantify this notion, we can

choose a tolerance ε > 0 and select D, T such that,

ξ(T,D, Ω)
def
= Ex∼U(D)[P(X̄t ∈ Ω ∀ t ∈ [0, T]|X̄0 = x)] > 1− ε (3.47)

90 | Solving Fokker-Planck equations

Fig. 3.1 h-SDE trajectories for various systems. In both cases a pair of trajectories
start from the same point (depicted as a black dot) in D. While the trajectories for
the gradient system might leave D (smaller rectangle), they do not leave Ω (larger
rectangle). However, the same is not true for the non-gradient system.

ξ(T,D, Ω) denotes the average probability that a trajectory stays inside Ω till time

T given that it started inside D, U(D) denotes the uniform distribution on D in

(3.47). ξ helps us specify the space-time boundaries for the effective employment

of algorithm 6. While for a gradient system, choosing Ω such that it contains the

corresponding attractor, we can make sure that h-SDE trajectories originating from

D do not leave Ω with high probability, the same cannot be said for a non-gradient

system. Figure 3.1 shows the difference between h-SDE trajectories for typical gradient

and non-gradient systems. Since for gradient systems the h-SDE trajectories do not

leave Ω with high probability, ξ(T,D, Ω) ≈ 1 for any T. In fact, empirically it might

evaluate exactly to 1. But for non-gradient system ξ(T,D, Ω) is a decreasing function

of T as seen in figure 3.2 and in such cases we select the hyperparameter T for

algorithm 6 according to (3.47) using a pre-chosen tolerance ε.

We are only able to solve (3.2) on a subset D of where we solved its stationary

counterpart, namely Ω. We refer to this phenomenon as domain contraction. Even

though we have included gradient systems in the figures 3.1, 3.2 for expository

purposes, since we have perfect knowledge of p∞ (up to the normalization constant)

over entire Rd, domain contraction is a practical issue only for non-gradient systems

and T can be chosen arbitrarily large for gradient systems.

3.4 The p∞+FK algorithm | 91

Fig. 3.2 ξ(T,D, Ω) as a function of T for various systems.

Interpretation of finite time viability for non-gradient systems via Feynman-Kac on

finite domains

Since we are dealing with finite domains, we can also look at the h-SDE through

the lens of the Feynman-Kac formula on finite domains. In order to apply the finite

domain version of the Feynman-Kac formula one requires perfect knowledge of

the solution at the boundary at all times. In our case we need to know h(t, x) on

([0, T) × ∂Ω) ∪ ({0} × Ω̄). For the ease of discussion let us define the following

quantity,

h(t, x) =

 Ψ(T, x), ∀ x ∈ Ω̄, t = 0

Ψ(T − t, x) ∀ (t, x) ∈ [0, T)× ∂Ω
(3.48)

Assuming we know Ψ, the Feynman-Kac formula for h becomes,

h(t, x) = E [Ψ(τ ∧ T, X̄τ∧T)| X̄0 = x] (3.49)

where τ denotes the first exit-time of X̄ for Ω or,

τ(x) def
= inf{s > 0 : X̄s ̸∈ Ω} (3.50)

92 | Solving Fokker-Planck equations

For derivations of such formulae the interested reader can refer to Theorem 4.4.5 in

[64] orTheorem 4.2 in chapter 7 of [179] and its preceding section. Since in reality

we only know h(t, x) at t = 0 and therefore have no knowledge of Ψ(T − t, x) at any

point other than t = 0, we can hope to effectively use (3.49) only if the trajectories

of h-SDE do not exit Ω till time T with high probability. In such a scenario τ ∧ T

becomes equal to T and we are not forced to evaluate Ψ at any point where we have

no knowledge of Ψ. Using the finite domain version of Feynman-Kac therefore leads

us to similar conclusions as in the previous section, namely, algorithm 6 can be used

to solve gradient and non-gradient systems up to arbitrarily large and finite times

respectively.

Effect allowing h-SDE trajectories to leave Ω in case of perfect knowledge of p∞ in

Ω

Since p∞ is not computed by algorithm 6 but rather is an input to it, a scenario of

interest is when we have perfect (rather than approximate) knowledge of p∞ on Ω. In

such a scenario we would like the algorithm to produce reasonably good approximate

solutions even when we are willing tolerate ξ(T,D, Ω) ̸= 1 or some h-SDE trajectories

leaving Ω within our chosen T. To analyze this scenario let us define our knowledge

of p∞ as,

p̂∞(x) =

 p∞(x), x ∈ Ω

p♯∞(x), x ∈ Ωc
(3.51)

where p♯∞ ̸= p∞ represents imperfect knowledge of p∞ outside Ω. Similarly we can

define a modified h-SDE as,

dX̂t = (σ2∇ log p̂∞ − µ) dt + σ dWt (3.52)

and the corresponding solution generated by algorithm 6 as,

ĥ(t, x) = E

[
p0(X̂t)

p̂∞(X̂t)

∣∣∣∣ X̂0 = x
]

(3.53)

p̂(t, x) = ĥ(t, x) p̂∞(x) (3.54)

3.4 The p∞+FK algorithm | 93

Now we are ready to analyze the pointwise error incurred when we allow h-SDE

trajectories to escape Ω within time T with probability less than ε or ξ(T,D, Ω) > 1− ε.

Proposition 3.4.4 Let Ē, Ê be the events1 that X̄, X̂ stay inside Ω till time t after starting at

x ∈ D ⊂ Ω respectively. Assume the following,

1. ξ(T,D, Ω) > 1− ε

2. ∃ a constant K > 0 such that,

p∞(x)E[h0(X̄t)|X̄0 = x, Ēc], p̂∞(x)E[ĥ0(X̂t)|X̂0 = x, Êc] < K ∀ (t, x) ∈ [0, T]×D

(3.55)

where,

h0
def
=

p0

p∞
(3.56)

ĥ0
def
=

p0

p̂∞
(3.57)

Then,

Ex∼U(D)[| p̂(t, x)− p(t, x)|] < 2Kε ∀ t ∈ [0, T] (3.58)

Proof. Let x ∈ D and ∆h = h0 − ĥ0.

| p̂(t, x)− p(t, x)| = |∆1 + ∆2| (3.59)

where

∆1 = p∞(x)E

[
p0(X̄t)

p∞(X̄t)

∣∣∣∣ X̄0 = x
]
− p̂∞(x)E

[
p0(X̄t)

p̂∞(X̄t)

∣∣∣∣ X̄0 = x
]

(3.60)

and,

∆2 = p̂∞(x)E

[
p0(X̄t)

p̂∞(X̄t)

∣∣∣∣ X̄0 = x
]
− p̂∞(x)E

[
p0(X̂t)

p̂∞(X̂t)

∣∣∣∣ X̂0 = x
]

(3.61)

1Note that Ē, Ê are events dependent on t, x but to avoid notational cluttering we do not make this
dependence explicit.

94 | Solving Fokker-Planck equations

Now note that,

∆1 =p∞(x)E[h0(X̄t)|X̄0 = x, Ē] P(Ē) + p∞(x)E[h0(X̄t)|X̄0 = x, Ēc] (1− P(Ē))

− p̂∞(x)E[ĥ0(X̄t)|X̄0 = x, Ē] P(Ē)− p̂∞(x)E[ĥ0(X̄t)|X̄0 = x, Ēc] (1− P(Ē))
(3.62)

Recalling that we have perfect knowledge of p∞ inside Ω we get,

∆1 =p∞(x) [E[∆h(X̄t)|X̄0 = x, Ē] P(Ē) + E[∆h(X̄t)|X̄0 = x, Ēc] (1− P(Ē))] (3.63)

=p∞(x)E[∆h(X̄t)|X̄0 = x, Ēc] (1− P(Ē)) (3.64)

where we arrive at the last equality by noticing that ∆h = 0 in the event of Ē. And,

∆2 = p̂∞(x) [E[ĥ0(X̄t)|X̄0 = x, Ē] P(Ē) + E[ĥ0(X̄t)|X̄0 = x, Ēc] (1− P(Ē))]

− p̂∞(x) [E[ĥ0(X̂t)|X̂0 = x, Ê] P(Ê) + E[ĥ0(X̂t)|X̂0 = x, Êc] (1− P(Ê))]
(3.65)

Since X̄, X̂ follow identical dynamics inside Ω, P(Ē) = P(Ê) and we have,

∆2 = p̂∞(x) [E[ĥ0(X̄t)|X̄0 = x, Ēc]−E[ĥ0(X̂t)|X̂0 = x, Êc]] (1− P(Ê)) (3.66)

Again noting p̂∞(x) = p∞(x) and P(Ē) = P(Ê) we get,

∆1 + ∆2 = [p∞(x)E[h0(X̄t)|X̄0 = x, Ēc]− p̂∞(x)E[ĥ0(X̂t)|X̂0 = x, Êc]] (1− P(Ê))

(3.67)

=⇒ |∆1 + ∆2| < 2K (1− P(Ê)) (3.68)

Since ξ is a monotone decreasing function of its first argument, the first assumption is

equivalent to,

ξ(t,D, Ω) > 1− ε ∀ t ∈ [0, T] (3.69)

Therefore, according to the definition of ξ,

Ex∼U(D)[P(Ē)] > 1− ε ∀ t ∈ [0, T] (3.70)

3.5 Results | 95

which implies,

Ex∼U(D)[1− P(Ê)] < ε ∀ t ∈ [0, T] (3.71)

=⇒ Ex∼U(D)[|∆1 + ∆2|] < 2Kε (3.72)

which completes our proof.

The second assumption in Proposition 3.4.4 makes sure if we compute the proba-

bility densities using only the trajectories that exit Ω before time t, we get bounded

quantities independent of ε. Proposition 3.4.4 tells us, under suitable circumstances, the

average error that is caused by allowing some h-SDE trajectories to leave Ω is proportional to

the fraction of trajectories that leave Ω. If we modify the first assumption to require that

the inequality holds pointwise for every x ∈ D instead, we can bound the supremum

norm of the error over D instead of the average error.

3.5 Results

In this section we describe the results in a manner that parallels the examples in

section 3.3 with additional problem-specific details. We refer to the solutions obtained

via algorithm 6 as the learned solutions in the figures below. We use the Monte-

Carlo method as detailed in algorithm 7 to produce reference solutions in 2 and 3

dimensions. But in the absence of analytical solutions, we refrain from calculating the

difference between the reference solution and the solution produced by algorithm 6

since Monte-Carlo solutions can be significantly erroneous, sometimes by more than

an order of magnitude compared to its counterpart, even for simple problems, as

evidenced by figure 2.3 in chapter 2. When dealing with high-dimensional PDEs, one

widely accepted paradigm is to construct solutions that are statistically accurate or

have the correct coarse-grained structures, especially for particle-based methods in

geophysics [21], [32] and financial modelling [43]. We present our results in the same

spirit. For each system we use a bimodal initial condition as described in section 3.3.

Figure 3.3 shows the initial condition for the noisy Lorenz-63 system defined in (3.11).

For ease of visualization we have integrated out the last coordinate. The symmetry

of the initial condition implies the other 2D marginals are identical. The other initial

96 | Solving Fokker-Planck equations

conditions described in section 3.3 are either identical or qualitatively similar. In order

to produce 2D marginal densities we use Gauss-Legendre quadrature the details of

which can be found in appendix 2.9.3.

Fig. 3.3 Initial condition for the noisy Lorenz-63 system.

3.5.1 10D ring system

Figure 3.4 shows the computed solution for the 2nD ring system presented in sec-

tion 3.3.1 for n = 5, at time t = 0.1. More specifically, the left panel of figure 3.4

depicts the probability density when all but the variables x4, x5 are set to 0. For better

visualization and comparison with a reference solution, the learned solution has been

normalized in a way such that,

∫
R

∫
R

p(0.1, 0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1

Here we have used M = 10, N = 105 and D = [−2, 2]10 for algorithm 6.

There are no analytical solutions for this problem and classical methods are unsuit-

able due to the curse of dimensionality. Therefore, in order to compute a reference

solution we use the careful design of the problem itself. The system described by (3.8)

and the initial condition (3.9) is essentially n identical, decoupled 2D systems and we

can approximately solve this 2D system with Monte-Carlo method which is depicted

3.5 Results | 97

in the right panel of figure 3.4. We use 107 trajectories to generate the Monte-Carlo

solution. Note that, to compute the learned solution in figure 3.4 we use a neural

network approximation of p∞ obtained via the method described in chapter 2 rather

than using the analytical version of p∞. This demonstrates the viability of algorithm 6

in conjunction with algorithm 4 in chapter 2 for high dimensional problems.

Fig. 3.4 Solutions for the 10D time-dependent system at time t = 0.1. The learned
solution has been normalized such that

∫
R

∫
R

p(0.1, 0, 0, 0, 0, x4, x5, 0, 0, 0, 0) dx4 dx5 = 1.
The right panel depicts the Monte-Carlo solution for the 2D Fokker-Planck equation
corresponding to the variables x4, x5. The learned and Monte-Carlo solutions were
computed using 105 (pointwise) and 107 trajectories respectively.

3.5.2 Noisy Lorenz-63 system

Figure 3.5 shows the solutions for the noisy Lorenz system defined by (3.10) at time

t = 0.03 with D = [−10, 10]× [−15, 15]× [7, 28], Ω = [−30, 30]× [−40, 40]× [0, 70]. As

seen in figure 3.2, ξ(t,D, Ω) ≈ 1. For easier visualization we present the 2D marginals

p(t, x, y), p(t, y, z), p(t, z, x). To compute p∞ in a functional form for this problem we

use algorithm 4 in chapter 2. We use M = 3 and N = 200 for the learned solution

and 107 trajectories to generate the corresponding Monte-Carlo solution. This shows

that we can produce solutions with algorithm 6 that are comparable to Monte-Carlo

method using several orders of magnitude fewer trajectories for each point. Both

methods use 0.01 as the step length for Euler-Maruyama.

98 | Solving Fokker-Planck equations

Fig. 3.5 Solutions for the noisy Lorenz 63 system at time t=0.03. The learned and
Monte-Carlo solutions were computed using 200 (pointwise) and 107 trajectories
respectively.

3.5.3 Noisy Thomas system

Figure 3.6 shows the solutions for the noisy Thomas system defined by (3.12) at

time t = 1.0 with D = [−8, 8]3 and Ω = [−10, 10]3. We only present p(t, x, y),

noting that the symmetry of the problem renders demonstrations of the other 2D

marginals redundant. We use algorithm 4 in chapter 2 for computing p∞. We use

M = 10, N = 50 for the learned solution and the Monte-Carlo counterpart is computed

using 107 trajectories which reinstates our intuition that computing the Feynman-Kac

3.5 Results | 99

expectation requires far fewer trajectories compared to Monte-Carlo for a similar

level of accuracy. Both methods use 0.1 as the step length for Euler-Maruyama. In

figure 3.2 we see that ξ(t,D, Ω) ≈ 0.916. So even after letting nearly 8.4% of the h-SDE

trajectories escape Ω, we achieve a reasonable approximation.

Fig. 3.6 Solutions for the noisy Thomas system at time t=1. The learned and Monte-
Carlo solutions were computed using 50 (pointwise) and 107 trajectories respectively.

3.5.4 One step filter

Suppose in the filtering problem described in section 3.2.2 we only observe x, z coordi-

nates of the noisy Lorenz 63 system and our observation noise standard deviation is

σo = 5. The one-step filtering density can be written as

p(x1|y1) ∝ p(x1|x0)p(y1|x1) (3.73)

For a derivation see chapter 6 of [153] or [50]. p(x1|x0) can be thought of as the solution

to the corresponding Fokker-Planck equation at time t = g = 0.03 (the observation

gap) with the initial condition being equal to the density of x0,. We can calculate the

likelihood p(y1|x1) using σo which lets us estimate the 2D marginals of the one-step

filtering density for this problem. We calculate the solution to the Fokker-Planck

equation with algorithm 6 and Monte-Carlo. The final one-step filtering densities are

shown in figure 3.7. Computing the filtering density with Monte-Carlo in this way is

100 | Solving Fokker-Planck equations

akin to using the bootstrap particle filter, a popular nonlinear filtering algorithm, see

chapter 11 of [153] or [50] for more discussion on particle filters. Therefore, we refer

to the Monte-Carlo estimate for the filtering density as the particle filter estimate in

figure 3.7. We use the same M, N and the same number of trajectories for Monte-Carlo

as we did in section 3.5.2. It is interesting to note that the solution in figure 3.5 is

bimodal whereas in the filtering density in figure 3.7 one of the mode collapses after

we make an observation.

Fig. 3.7 One step filtering density for the noisy Lorenz 63 system. The learned and
particle filter solutions were computed using 200 (pointwise) and 107 trajectories
respectively.

3.6 Summary and Future Work | 101

3.6 Summary and Future Work

Physics-informed neural networks are unsuitable for a large class of partial differential

equations of parabolic type. But algorithm 6 in conjunction with algorithm 4 in

chapter 2 gives us a viable method for computing solutions to Fokker-Planck equations

in high dimensions. The ability to focus on the solution pointwise lets us avoid the

curse of dimensionality in a practical sense. To compute the Feynman-Kac expectaion

we can compute the Euler-Maruyama trajectories in a highly parallel way and the

same trajectories can be used to calculate solutions for different initial conditions. We

are able to compute solutions for gradient systems up to arbitrarily long times. But

for non-gradient system we encounter domain contraction, a phenomenon where we

are able to calculate the solution on a subset of where know the stationary solution.

Due to blow-up of the h-SDE for non-gradient systems we can compute solutions only

up to a finite time. In case we have perfect knowledge of p∞, under ideal conditions

the error that is introduced by letting some trajectories of h-SDE escape the region

where we know the stationary solution is proportional to the fraction of trajectories

that escape. Even after allowing a significant portion of trajectories to escape, we can

achieve decent approximations. Moreover, algorithm 6 can achieve solutions that are

comparable to Monte-Carlo solutions using orders of magnitude fewer trajectories for

each point. The connection between the Fokker-Planck equation and the stochastic

filtering problem suggests that modifications/extensions of algorithm 6 can be useful

for devising new filtering algorithms.

3.7 Appendix

3.7.1 Existence and uniqueness of solutions to example problems

Since appropriately scaling t, µ we can change (3.3) to have unit diffusion, according

to section 1 of [17] and Theorem 9.4.6 and example 9.4.7 of [18] it suffices to prove that

∃C > 0 such that

µ · x ≤ C + C∥x∥2
2 , ∀ x ∈ Rd (3.74)

102 | Solving Fokker-Planck equations

in order to confirm the existence of a unique solution to (3.2).

It is easy to check that the above condition is satisfied for the drift terms for each

of the examples discussed in section 3.3. For the 2D ring system in (3.6), we note that

µ · x = −4r2(r2 − 1) ≤ 1, using the fact that the function f (x) = x(1− x) achieves

global maximum at x = 1
2 , so we can choose C = 1. For the noisy L63 system defined

by (3.10) we have µ · x = −αx2 − y2 − βz2 + (α + ρ)xy ≤ (α + ρ)r2 so it suffices to

set C = (α + ρ). Lastly, for the noisy Thomas system defined by (3.12) we have

µ · x = −br2 + x sin y + y sin z + z sin x ≤ 3r ≤ 3 + 3r2, therefore C = 3 is a suitable

choice.

3.7.2 Monte Carlo algorithm

The relationship between (3.1) and (3.2) [149], [18] gives us the following way of

estimating solutions of Fokker-Planck equations. We can evolve multiple particles

according to (3.1) up to time t using Euler-Maruyama method [98], subdivide the

domain D into d-dimensional boxes and count the how many particles lie inside each

box to compute the probability density at the centers of these boxes. Here N denotes

the multivariate normal distribution.

Algorithm 7 Monte Carlo algorithm

Sample {X(i)
0 }N

i=1 ∼ p0.
Set the time-step h = t

M .
for j = 1, 2 · · · , M do

Sample wi
k ∼ N (0d, hId) ∀ i

X(i)
k ← X(i)

k−1 + µ
(

X(i)
k−1

)
h + σwi

k ∀ i

end
Subdivide the domain of interest D into d-dimensional boxes.
Count the number of X(i)

S that are in a box to estimate the probability density at the
center of the box.

Chapter 4

In this work we present deep learning implementations of two popular theoretical con-

strained optimization algorithms in infinite dimensional Hilbert spaces, namely, the penalty

and the augmented Lagrangian methods. We test these algorithms on some toy problems

originating in either calculus of variations or physics. We demonstrate that both methods are

able to produce decent approximations for the test problems and are comparable in terms of

different errors produced. Leveraging the common occurrence of the Lagrange multiplier update

rule being computationally less expensive than solving subproblems in the penalty method,

we achieve significant speedups in cases when the output of the constraint function is itself a

function.

Chapter 4

Learning solutions to some toy

constrained optimization problems

4.1 Introduction

In chapter 2 we solved an infinite dimensional optimization problem in a mesh-free

manner in order to find the zeros of high dimensional Fokker-Planck operators. We

composed this problem as an unconstrained problem since it gave us an efficient

algorithm for computing the zeros. This was also sufficient for further analysis and

derivation of a new algorithm for calculating solutions to time dependent Fokker-

Planck equations in chapter 3. A natural question of interest is, how can one solve

such infinite dimensional optimization problems in a mesh-free manner in presence of

constraints? We explore this question in this final chapter.

Pierre de Fermat authored many important works on his method of maxima and

minima, out of which the last two were titled The analysis of refractions and The synthesis

of refractions. These contained derivations of the law of refraction now commonly

known as Snell’s law. In these papers Fermat states his intuition about the nature

of physical laws as, "nature operates by means and ways that are easiest and fastest" [65].

Even though the ancient Greeks had considered some classic problems in calculus

of variations such as isoperimetric problems [1], Fermat’s proclamations are one

of the first instances where we encounter the notion that the laws of physics can

often be stated in terms of optimization problems. This notion takes its final form

as the principle of stationary action in modern physics appearing in nearly every

4.2 Problem Statement and examples | 105

subfield from classical mechanics, thermodynamics, relativity, quantum mechanics,

string theory and everything in between [40], [150]. Since Fermat’s time calculus of

variations in general has found applications in most fields dealing with mathematical

models, be it chemistry [141] or economics [68] and its stochastic counterpart is useful

in economics [130] and mathematical finance [118].

Calculus of variations deals with finding functions as optimizer of functionals

under constraints. Due to recent technical advancements in automatic differentiation

and machine learning, it has become a popular paradigm to cast many engineering

or basic science problems such as finding language models for Shakespearean text

[85], learning generative models for natural images [74], solving partial differential

equations [16] etc as optimization problems and then solve them using well-established

optimization algorithms like stochastic gradient descent [151], [22]. This pattern very

naturally yields itself to the function-finding problems of calculus of variations. In

finite dimensions, constrained optimization problems are routinely handled with

penalty method, augmented Lagrangian method and their many variants [129], [20], [13].

In infinite dimensions or for function finding problems analogues of these algorithms

have been discussed extensively in terms of theory [81], [91], [51], [56]. But numerical

implementation of these algorithms remain few and far between. This work aims to

bridge the gap between the theory of infinite dimensional constrained optimization

algorithms and their practical implementations using deep learning. Recently varia-

tional problems with essential boundary conditions have been explored by Huang et

al [75]. In this work we explore more general problems. Our goal is to evaluate our

algorithms, rather than solving the specific problems we list here. We, therefore, apply

them on some simple toy problems with known solutions. Our problems are either

taken from the classics in calculus of variations or inspired by physics.

4.2 Problem Statement and examples

In this work, we are interested in problems of the following form.

arginf
u∈X

f (u)

subject to g(u) = 0
(4.1)

106 | Learning solutions to some toy constrained optimization problems

where f : X → R and g : X → W and X, W are real Hilbert spaces. X, in particular,

is an infinite dimensional Hilbert space whereas W can be either finite or infinite

dimensional. This ensures that problem (4.1) is indeed an infinite-dimensional opti-

mization problem. This setup allows us to encompass a fairly large class of problems

with one or multiple constraints or even unconstrained problems if we set g to be the

zero function. To better familiarize ourselves with this setup let us first look at a few

examples.

4.2.1 The minimal surface problem

During the later half of the eighteenth century Lagrange in his correspondence with

Euler delineated the foundations of calculus of variations and derived the famous

Euler-Lagrange formula [65]. One of the problems he considered during this time asks

to find the surface of least area stretched across a given contour. Although Lagrange

did not find any solutions other than the plane, Euler and Jean Baptiste Meusnier

later showed that helicoid and catenoid are also valid solutions to the minimal surface

problem [126]. Since then the theory of minimal surfaces has seen multiple revivals

with Schwarz’s solution to the Björling problem [44], the discovery of Costa’s surface

[41] and has even found its way into mathematical physics through topics like positive

energy theorem [156]. The rich theory behind minimal surfaces allows them to be

expressed in many different ways [38]. Here we will work with a definition that

closely resembles Lagrange’s original formulation. Rather than describing the minimal

surface problem in its full generality, we describe the specific problem we will solve

below. We define X to be an appropriate Sobolev space, f to be an area functional and

g to be the boundary condition.

Ω = (0, 1)× (−2π, 2π), X = W1,2(Ω; R), W = L2((−2π, 2π); R)

f (u) =
∫ 2π

−2π

∫ 1

0

√√√√[1 +
(

∂u
∂r

)2
]

r2 +

(
∂u
∂θ

)2

dr dθ

g(u) : θ 7→ u(1, θ)− θ

(4.2)

Here Wk,p denotes the Sobolev space of function with k p-integrable weak derivatives.

Our question thus becomes, what is the surface of minimal area given it has a unit

4.2 Problem Statement and examples | 107

helix as its boundary? The solution u∗ gives us the minimal surface (r, θ, u∗(r, θ)).

Note that even though we have used the standard area integral in polar coordinates,

we are working beyond the standard domain of θ which is [0, 2π). Therefore, when

we visualize the solution to this problem using standard polar to Cartesian conversion

we get a multivalued function or a helicoid with two full twists rather than just one,

as seen in section 4.4.1.

4.2.2 Geodesics on a surface

Johann Bernoulli was interested in several problems in calculus of variations and

investigated both curves of shortest length and time between two points [162], [65].

The former type of curves are known as geodesics while the latter are known as

brachistochrones. After having found the solution to the brachistochrone problem

Bernoulli had challenged his contemporaries to come up with their own solutions (a

practice that was not uncommon in the era) to which Newton (anonymously), Jacob

Bernoulli, Leibniz and de L’Hôpital had responded with their own solutions. The

aftermath of this challenge would eventually lead to the infamous calculus controversy

between Leibniz and Newton [134], [65]. Even though the brachistochrone problem is

one of the oldest problems to be posed in calculus of variations with a rich history of

mathematical rivalry associated with it, the geodesic problem would go on to outpace

it in terms of importance with the development of differential geometry. Eventually

geodesics would become an essential part in our understanding of motion under

gravity with the advent of general relativity [171]. Here we look at the simple problem

of finding the shortest path on unit a sphere given two points (1, θ0, ϕ0), (1, θ1, ϕ1) (in

spherical polar coordinates) on it by setting,

Ω = [θ0, θ1], X = W1,2(Ω; [0, 2π)), W = R

f (u) =
∫ θ1

θ0

√
1 +

(
sin θ

du
dθ

)2

dθ

g(u) =
√
(u(θ0)− ϕ0)2 + (u(θ1)− ϕ1)2

(4.3)

If u∗ is the solution then (1, θ, u∗(θ)) gives us a parametrization for the geodesic curve.

108 | Learning solutions to some toy constrained optimization problems

4.2.3 Grad-Shafranov equation

Grad-Shafranov equation is an elliptic partial differential equation describing the

poloidal flux under ideal magnetohydrodynamics for a 2D plasma [Smitha and Hattorib].

Modelling the plasma equilibrium is an important aspect of designing magnetic con-

finement devices like tokamaks in the field of nuclear fusion. Although originally used

for axis-symmetric tokamaks, the Grad-Shafranov equation has been analyzed for

non-axis symmetric magnetohydrodynamic equilibrium as well [26]. In 1968 Solov’ev

derived a family of analytic solutions for the Grad-Shafranov equation under the

assumption that there is distributed toroidal current filling all space [175] and since

then these Solev’ev solutions have become an import benchmarking tool for plasma

equilibrium codes [86]. Below we describe the Grad-Shafranov equation, this specific

version can also be found in [175].

∂2u
∂z2 + r

∂

∂r

(
1
r

∂u
∂r

)
= ar2 + bR2, (r, z) ∈ Ω = [0.9R, 1.1R]× [−0.1R, 0.1R]

u(r, z) =
1
2
(b + c0)R2z2 + c0Rζz2 +

1
2
(a− c0)R2ζ2, (r, z) ∈ ∂Ω

where ζ =
r2 − R2

2R
, R = 1.0, a = 1.2, b = −1.0, c0 = 1.1

(4.4)

In order to cast this problem into the format of (4.1), we set

X = W1,2(Ω; R), W = L2(∂Ω; R)

f (u) =
∫ 0.1R

−0.1R

∫ 1.1R

0.9R

(
∂2u
∂z2 + r

∂

∂r

(
1
r

∂u
∂r

)
− ar2 − bR2

)2

dr dz

g(u) : (r, z) 7→ 1
2
(b + c0)R2z2 + c0Rζz2 +

1
2
(a− c0)R2ζ2 − u(r, z)

(4.5)

4.2.4 Beltrami fields

Beltrami fields are special vector fields that are eigenfunctions of the curl operator.

They play an important role in fluid dynamics as steady solutions to the Euler equation

[4]. In this problem we ask, given Beltrami boundary data, what is the magnetic field

of least energy in a 3D volume? Gauss’s law [83] dictates that we have to take

the nondivergence of magnetic fields into account which can be done in multiple

ways while formulating our question, either as a part of the Hilbert space X (since

divergence is a linear operator) or as an addition to the boundary condition g. Here

4.3 Methodology | 109

we choose to impose Gauss’s law as a part of the Hilbert space X.

Ω =

[
−1

2
,

1
2

]3

, X = {u ∈W1,2(Ω; R3) : ∇ · u = 0}, W = L2(∂Ω; R3)

f (u) =
1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

|u(x, y, z)|2 dx dy dz

g(u) : (x, y, z) 7→ u(x, y, z)−

sin(z) + cos(y)

sin(x) + cos(z)

sin(y) + cos(x)

(4.6)

Unlike the other problems stated here, this problem is manufactured and has no direct

practical applications but nevertheless serves as an interesting toy problem.

4.3 Methodology

Before discussing our algorithm for solving the problems stated in section 4.2, we

briefly look at constrained optimization algorithms for finite dimensional problems

and their infinite dimensional analogues since they illustrate the guiding principles

that will help us devise our own algorithm.

4.3.1 Constrained optimization algorithms in finite dimensions

Unconstrained optimization problems are typically easier to solve than constrained

optimization problems and they are often solved using variants of gradient descent

or Newton’s method [20], [129]. Therefore, in order to solve constrained problems

we often transform them into unconstrained problems first. When X, W are finite

dimensional, in order to solve problem (4.1) we can convert it from a constrained

optimization problem to a sequence of unconstrained subproblems as follows,

uk = arginf
u∈X

L(u, µk)
def
= f (u) +

µk
2
|g(u)|2W , k = 1, 2, · · · (4.7)

where | · |W and denotes the canonical norm on W and {µk}∞
k=1 is a positive increasing

sequence such that µk ↑ ∞ and uk is the exact global solution to the k-th subproblem. It

can be shown that every limit point of {uk}∞
k=1 is a solution to the original constrained

110 | Learning solutions to some toy constrained optimization problems

problem, for a proof see Theorem 17.1 in [129] or for a local version of the statement

see Theorem 1 in [140]. The strategy of using subproblems (4.7) to solve (4.1) is known

as the quadratic penalty method. In case we have access to only approximate solutions to

the subproblems then limit points of these approximate solutions might be infeasible or

they might only satisfy the first order KKT condition [104], [66], [19] rather than being

global minimizers. Moreover, the Hessian of the unconstrained objective function L

becomes ill-conditioned as µk ↑ ∞. If we attempt to find an approximate solution to

(4.7) by trying to satisfy the first order condition using Newton’s method, we quickly

run into significant numerical errors when µk is large. For an excellent discussion of

the nuances associated with the penalty method see chapter 17 in [129]. Typically the

convergence rate of the quadratic penalty method is O(k−
1
2) but for strongly convex

problems it increases to O(k−1) [110], [140].

In order to avoid ill-conditioning we can modify our subproblems as follows,

uk = arginf
u∈X

LA(u, µk, λk)
def
= f (u) +

µk
2
|g(u)|2W + ⟨λk, g(u)⟩W , k = 1, 2, · · · (4.8)

where ⟨·⟩W is the canonical inner product on W, {µk}∞
k=1 is a positive, nondecreasing

sequence but not necessarily unbounded and λk follows the update rule,

λk+1 = λk + µkg(uk) (4.9)

This update rule is the consequence of an attempt to satisfy the first order condition for

optimality. In this setting, µk and λk play the roles of the penalty factor for deviating

from the constraint and the Lagrange multiplier respectively. This method is known as

the augmented Lagrangian method. It can be shown that, under suitable conditions, if λk

converges to λ∗ then ∃ µ∗ > 0 such that for µ ≥ µ∗, any local solution to the original

constrained problem is a local minimizer of LA(·, µ, λ∗), see Theorem 17.5 in [129] or

for a global version of this statement see Theorem 5.2 in [14]. This gives the augmented

Lagrangian method a strong theoretical foundation but in practice we might only have

approximate knowledge of λ∗. In such a case i.e. when λk is close to λ∗, it can be

shown that a local minimizer of LA(·, µ, λk) solves the original constrained problem

for large enough µ, see Theorem 17.6 in [129] or Proposition 4.2.3 in [13]. These results

show that the augmented Lagrangian method can approximately solve (4.1) when

4.3 Methodology | 111

either the penalty µ is large or we have good knowledge of the optimal Lagrange

multiplier λ∗. The appeal of the augmented Lagrangian method therefore lies in the

possibility that we can replace the requirement that µk ↑ ∞ with the convergence of

the Lagrange multiplier λk thus avoiding the ill-conditioning of the Hessian and all

the numerical difficulties that arise because of it.

4.3.2 Constrained optimization algorithms in infinite dimensions

When X is infinite dimensional and f (·), ⟨g(·), g(·)⟩W are lower-semicontinuous func-

tionals, limit points of the exact global solutions to the subproblems are solutions to the

original constrained problem, for a proof see Theorem 1 in [51] and for a treatment of

the penalty method on general topological spaces see [56]. The augmented Lagrangian

method has also been extended in many different scenarios where X is an infinite

dimensional Hilbert space by Ito and Kunisch [80], [79], [81]. More recently the case

when X is an infinite dimensional Banach space has been considered by Kanzow et

al [91]. If we assume that problem (4.1) has a solution, f , g are twice continuously

Fréchet differentiable near the solution, derivative of g at the solution is surjective, a

Lagrange multiplier exists for this solution, f is weakly lower-semicontinuous and

g maps weakly convergent sequences to weakly convergent sequences then we can

prove that the augmented Lagrangian subproblems have local solutions, the Lagrange

multiplier λk converges to λ∗ and these local solutions converge to a local solution of

(4.1). For an in-depth look at the technical details, we refer the reader to chapter 3 of

[81].

4.3.3 Deep learning variants for infinite dimensional algorithms

The first challenge in implementing these algorithms is representing elements of

X and W when they are infinite dimensional. A direct approach to do this would

be to represent an element of X as a neural network uAη and in case W is infinite

dimensional, we can represent the Lagrange multiplier as another network λBξ where

η, ξ represent the trainable parameters of the networks and A,B represent the structure

or architecture of the networks. Universal approximation theorems [139], [46] imply

that with appropriately chosen A,B we might be able to sufficiently approximate

112 | Learning solutions to some toy constrained optimization problems

the solutions to the subproblems. Suppose the dimensions of η, ξ or the number

of trainable parameters are a, b respectively. Then the subproblems in the penalty

algorithm can be rewritten as,

ηk = arginf
η∈Ra

L(uAη , µk) = f (uAη) +
µk
2
|g(uAη)|2W , k = 1, 2, · · · (4.10)

Similarly, the subproblems in the augmented Lagrangian algorithm can be rewritten

as,

ηk = arginf
η∈Ra

LA(uAη , µk, λBξk
) = f (uAη) +

µk
2
|g(uAη)|2W + ⟨λBξk

, g(uAη)⟩W , k = 1, 2, · · ·

(4.11)

When W is infinite dimensional, the Lagrange multiplier update rule can be rewritten

as,

λBξk+1
= λBξk

+ µkg(uAηk
) (4.12)

Note that, with this rewriting our infinite-dimensional subproblems have become finite

dimensional since a is finite. The update rule (4.12) cannot be implemented directly

since the Lagrange multipliers are functions rather than finite dimensional vectors in

this scenario. Therefore, we try to find the optimal ξk+1 that makes the left hand side

of (4.12) functionally or in an L2 sense, equal to the right hand side by solving the

following optimization problem,

ξk+1 = arginf
ξ∈Rb

∣∣∣λBξ − λBξk
− µkg(uAηk

)
∣∣∣2
W

(4.13)

If we solve K subproblems then we approximate our final solution as uηK . In order to

solve each subproblem in (4.10) and (4.11) we use our solution to the last subproblem

as an initial guess and perform gradient descent. In order to solve (4.13) we use ξk as

an initial guess since we expect the sequence λBξk
to converge. The selection of µk is an

important part of the algorithm but no general purpose techniques for this selection

are available in the literature. Larger µk results in better theoretical convergence rates

while deteriorating the numerical estimates at same time, see section 3.3 in [81] for

4.4 Results | 113

comments on this topic. The update rule in (4.9) can be modified in different ways

to achieve better estimates when one has some extra information about the problem

(4.1), see the ALM algorithm in [81] for example. But in practice such information is

nearly impossible to come by and therefore we will stick to the simple update rule

in (4.9). The deep learning variants of the penalty method, augmented Lagrangian

method when W is finite dimensional and augmented Lagrangian method when W is

infinite dimensional can found in algorithms 8 (P∞), 9 (AL∞
F), 10 (AL∞

∞) respectively.

Algorithm 8 P∞: Infinite dimensional penalty algorithm

1: Choose architecture A, penalty factor sequence {µk}∞
k=1, adaptive learning rate

{δk,j}∞
k,j=1 and stopping criteria {Pk}∞

k=1, {Qk,j}∞
k,j=1

2: k← 0
3: while stopping criterion Pk is not met do
4: k← k + 1
5: if k = 1 then
6: Initialize η randomly
7: else
8: Initialize η ← ηk−1
9: end if

10: j← 1
11: while stopping criterion Qk,j is not met do
12: L← f (uAη) +

µk
2 |g(uAη)|2W

13: η ← η − δk,j∇η L
14: j← j + 1
15: end while
16: ηk ← η
17: end while
18: uAηk

is our approximate solution to (4.1)

4.4 Results

In this section we describe the results along with the specific details of the algorithms

used for each problem. We solve every problem with both penalty and augmented

Lagrangian methods.

• Architecture: We use two different types of architecture in our experiments, see

appendix 4.6.1 for a description of these types and refer to table 4.1 for details

of A,B used in the experiments. We use the same architecture to represent the

approximate solutions of penalty and augmented Lagrangian algorithms.

114 | Learning solutions to some toy constrained optimization problems

Algorithm 9 AL∞
F : Infinite dimensional augmented Lagrangian algorithm when W is

finite dimensional
1: Choose architectures A, penalty factor sequence {µk}∞

k=1, adaptive learning rate
{δk,j}∞

k,j=1 and stopping criteria {Pk}∞
k=1, {Qk,j}∞

k,j=1
2: k← 0
3: while stopping criterion Pk is not met do
4: k← k + 1
5: if k = 1 then
6: Initialize η randomly
7: else
8: Initialize η ← ηk−1
9: end if

10: j← 1
11: while stopping criterion Qk,j is not met do
12: L← f (uAη) +

µk
2 |g(uAη)|2W + ⟨λBξk

, g(uAη)⟩W
13: η ← η − δk,j∇η L
14: j← j + 1
15: end while
16: ηk ← η
17: ξk+1 ← ξk + g(uAηk

)
18: end while
19: uAηk

is our approximate solution to (4.1)

• Stopping criteria: Although sophisticated stopping criteria such as the norm

of the gradient of the objective function in the subproblem falling below a pre-

selected threshold, can be used for algorithms 8, 9, 10, here we stop the loops

after a pre-selected number of iterations is reached.

• Number of gradient descent steps: We denote this number of iterations with P

for the outer loops in algorithms 8, 9, 10, Q for the inner loops in algorithms 8, 9

and QA, QB for the first and second inner loops in the algorithm 10 respectively.

We define E to be the total number of gradient descent steps used. Therefore,

E = PQ for algorithms 8 and 9 and E = P(QA + QB) for algorithm 10. For each

problem we use the same total gradient descent steps E for both the penalty

and the augmented Lagrangian algorithms. To facilitate this, when W is finite

dimensional we use the same Q for algorithms 8 and 9 and when W is infinite

dimensional we set QA = QB = Q/2. We use the popular Adam optimizer [97]

to perform the gradient descent steps.

4.4 Results | 115

Algorithm 10 AL∞
∞: Infinite dimensional augmented Lagrangian algorithm when W is

infinite dimensional
1: Choose architectures A, B, penalty factor sequence {µk}∞

k=1, adaptive learning
rates {δA

k,j}∞
k,j=1, {δB

k,j}∞
k,j=1 and stopping criteria {Pk}∞

k=1, {QA
k,j}∞

k,j=1, {QB
k,j}∞

k,j=1
2: k← 0
3: while stopping criterion Pk is not met do
4: k← k + 1
5: if k = 1 then
6: Initialize η randomly
7: Initialize ξ randomly
8: else
9: Initialize η ← ηk−1

10: end if
11: j← 1
12: while stopping criterion QA

k,j is not met do
13: L← f (uAη) +

µk
2 |g(uAη)|2W + ⟨λBξk

, g(uAη)⟩W
14: η ← η − δA

k,j∇η L
15: j← j + 1
16: end while
17: ηk ← η
18: j← 1
19: while stopping criterion QB

k,j is not met do

20: Lλ ←
∣∣∣λBξ − λBξk

− µkg(uAηk
)
∣∣∣2
W

21: ξ ← ξ − δB
k,j∇ξ Lλ

22: j← j + 1
23: end while
24: ξk+1 ← ξ
25: end while
26: uAηk

is our approximate solution to (4.1)

• Learning rate: We use an initially oscillating and finally decaying learning rate

δ that depends on 7 distinct hyperparameters. The oscillatory nature of δ as

seen in figure 4.1, is employed to essentially rejuvenate the previously decaying

learning rate every time we start an inner loop in the algorithms. For details of

this learning rate δ, see appendix 4.6.3. While using algorithms 8 and 9 we set,

δk,j = δ((k− 1)Q + j) (4.14)

116 | Learning solutions to some toy constrained optimization problems

Fig. 4.1 Example behavior of the oscillating learning rate δ

and while using algorithm 10 we use,

δA
k,j = δ((k− 1)QA + j) (4.15)

δB
k,j = δ((k− 1)QB + j) (4.16)

• The penalty factors: We use a stopped geometric sequence as our µk,

µk = min{µ1rk−1, µmax} (4.17)

The exact values of µ1, µmax, r for various problems can be found in table 4.2.

• Computation of functionals: To compute the functional f and when W is infinite

dimensional, the functional | · |W , we use either Gauss-Legendre quadrature (in

1 or 2 dimensions) or a Monte Carlo estimate (in 3 dimensions).

• Errors: We evaluate our algorithms using three different kinds of errors produced.

If û is the solution produced by an algorithm and utrue is the true solution of the

problem, we define the absolute error to be an weighted L2-norm of û− utrue,

absolute error =

√∫
Ω(û− utrue)2 dV∫

Ω dV
(4.18)

4.4 Results | 117

where dV denotes a volume element in Ω. We define the relative objective error

to be the relative error in the value of the objective function,

relative objective error =
∣∣∣∣ f (û)− f (utrue)

f (utrue)

∣∣∣∣ (4.19)

Lastly, we define the constraint error to be how closely û satisfies the constraint,

constraint error =
|g(û)|W

Z
(4.20)

We set Z = 1 for the geodesic problem (4.3) and Z =
√
|∂Ω| for all the other problems.

The use of normalization constants in (4.18), (4.20) results in errors that are akin to

RMSE. With these definitions we are now ready to present the results.

4.4.1 The minimal surface problem

Figure 4.2 shows the true and approximate solutions to the minimal surface problem

in Cartesian coordinates. The true solution for this problem is a helicoid. We use

Fig. 4.2 Solutions to the minimal surface problem. Darker color implies higher u value.

E = 20000 total gradient steps and P = 1000 subproblems for this problem. This

setup implies to calculate solutions to the subproblems, we use Q = 20 gradient

descent steps for the penalty algorithm (P∞) and QA = QB = 10 gradient steps for the

augmented Lagrangian algorithm (AL∞
∞). Figure 4.3 shows various errors as functions

of gradient descent steps for this problem. In terms of algorithms 8, 9, 10, iteration

in figure 4.3 can be understood as (k − 1)E/P + j. The errors and run times have

been plotted every 100 steps. Both methods are able to produce good approximations

118 | Learning solutions to some toy constrained optimization problems

Fig. 4.3 Errors and run times for the minimal surface problem as functions of gradient
descent steps. The errors have been plotted in a semilog fashion. All quantities have
been plotted every 100 steps.

but the penalty method fluctuates more during training compared to its counterpart

for this problem. Looking at table 4.1 we see that sizes of the networks representing

the solution and the Lagrange multiplier a, b are close to each other. But solving the

problem (4.13) is computationally much cheaper than solving the problem (4.11). This

is a typical scenario and is reflected in the run times of the algorithms in figure 4.3

where the augmented Lagrangian is 3.016 times faster than its counterpart.

4.4.2 Geodesics on a surface

Figure 4.4 shows the approximate solutions to the geodesic problem. The true solution

to this problem is the arc between the given points that lies on the great circle

connecting them. We use E = 50000 and P = 2500 for this problem which implies

the number of gradient steps used to solve subproblems for the both the penalty (P∞)

and the augmented Lagrangian (AL∞
F) algorithms is Q = 20. Figure 4.5 shows the

errors and run times for this problem as a function of gradient steps. Although the

absolute error decreases without significant fluctuations, AL∞
F shows considerably

more fluctuations in other errors compared to its counterpart during training. Since

(4.11) is computationally more expensive to solve than (4.10) and we use the same

number of gradient descent steps to solve both of them, the augmented Lagrangian

algorithm is slower in this case as seen in figure 4.5.

In figure 4.4 the points on the sphere are chosen to be nonantipodal, leading to a

unique solution to the geodesic problem. In case these points are antipodal there are

infinitely many great circles that connect them, leading to infinitely many solutions.

The solution set in this degenerate case is homeomorphic to a connected 1D manifold.

4.4 Results | 119

Fig. 4.4 Solutions to the geodesic problem. The distance between the black dots is
being minimized.

Fig. 4.5 Errors and run times for the geodesic problem as functions of gradient descent
steps. The errors have been plotted in a semilog fashion. All quantities have been
plotted every 100 steps.

Figure 4.6 shows the geodesics learned with the penalty method for such a degenerate

problem. As can be seen, the solution produced by the penalty algorithm (P∞) quite

surprisingly does not hop from one great circle to another but rather stays on a single

great circle with more and more gradient descent steps. Even though the true minima

of the original problem lie on a connected manifold, the discretized version of the

problem where we look for η ∈ Ra, might have a different distribution of minima,

where possibly each minimum can be separated from any other minimum by open

sets. The geometry of the loss landscape in the subproblems is an interesting topic

and requires further investigation.

120 | Learning solutions to some toy constrained optimization problems

Fig. 4.6 Solutions to the geodesic problem when the points (black dots) are antipodal

4.4.3 Grad-Shafranov equation

Figure 4.7 shows the approximate and true solutions for the Grad-Shafranov equation.

We use E = 50000 and P = 2500 for this problem which implies that we use Q = 20

Fig. 4.7 Solutions to the Grad-Shafranov equation. Darker color implies higher u value.

gradient descent steps to solve the subproblems in penalty method (P∞) and QA =

QB = 10 gradient descent steps to solve the subproblems in augmented Lagrangian

method (AL∞
∞). Figure 4.8 shows the various errors and run times for this problem.

Both methods produce qualitatively similar error curves. The Lagrange multiplier in

this case can be thought of as a function of a single variable since it is a member of

W1,2(∂Ω; R) and ∂Ω is homeomorphic to a closed curve in R2. But for a convenient

implementation we represent it as a function of two variables (or on Ω) as seen in

4.4 Results | 121

table 4.1. This does not cause any practical issues since we never encounter the

multiplier anywhere expect ∂Ω during the run time of AL∞
∞ i.e. we only optimize

the multiplier on ∂Ω. According to table 4.1 the size of the multiplier network b is

significantly smaller than the size of the solution network a in this case. These choices

reflect the fact that inherently the solution and the multiplier are functions of two

and one variables respectively. Even though on a machine, (4.11) is more expensive

to solve than (4.10), since (4.13) is much cheaper to solve than (4.10), the augmented

Lagrangian is ultimately much faster than its counterpart in this case as is seen in

figure 4.8.

Fig. 4.8 Errors and run times for the Grad-Shafranov problem as functions of gradient
descent steps. The errors have been plotted in a semilog fashion. All quantities have
been plotted every 100 steps.

4.4.4 Beltrami fields

Figure 4.9 shows the approximate and true solutions for the Beltrami field problem.

We use E = 50000 and P = 2500 for this problem which implies that we use Q = 20

gradient descent steps to solve the subproblems in penalty method (P∞) and QA =

QB = 10 gradient descent steps to solve the subproblems in augmented Lagrangian

method (AL∞
∞). Figure 4.10 shows the various errors and run times for this problem.

In order to enforce Gauss’s law we represent the solution magnetic field û as the curl

of a vector potential and we represent this vector potential as a neural network HAη ,

û = ∇× HAη (4.21)

This clearly allows many such vector potentials to generate solutions to our problem

but we do not concern ourselves with gauge-fixing since we are only interested in

122 | Learning solutions to some toy constrained optimization problems

Fig. 4.9 Solutions to the Beltrami field problem. The arrows-lengths have been normal-
ized for visual clarity. The colorbars depict the magnitude of the vectors.

the magnetic field ∇× HAη rather than the potential HAη itself. According to table 4.1

the vector potential network is much larger than the Lagrange multiplier network

in this case. These choices reflect the fact that the solution is a function defined on

a volume while the Lagrange multiplier is a function defined on a surface. Just like

the previous problem we implement the multiplier as a function of 3 variables while

optimizing its values only the boundary ∂Ω without causing any practical issues. The

functional f in this problem requires integration on a 3D volume. To do so we use a

Monte-Carlo estimate with only 103 points to maintain a relatively low computational

budget. We do achieve qualitatively decent approximations as seen in figure 4.9

but our computational parsimony along with the use of the curl operator leading to

more floating point operations and errors result in higher absolute and constraint

errors compared to the other problems discussed here. The relative computational

ease of solving (4.13) when compared to (4.10) results in a faster performance for the

augmented Lagrangian algorithm.

4.5 Summary and Future Work

In this work we present some practical implementations of popular constrained

optimization algorithms in infinite dimensional Hilbert spaces. Both penalty and

augmented Lagrangian methods produce decent, comparable solutions for our toy

problems in terms of various metrics. Dimension of the Hilbert space W is an important

factor when it comes to the difference in the run times of penalty and augmented

4.6 Appendix | 123

Fig. 4.10 Errors and run times for the Beltrami field problem as functions of gradient
descent steps. The errors have been plotted in a semilog fashion. All quantities have
been plotted every 100 steps.

Lagrangian algorithms. When W is infinite dimensional we might be able to achieve

considerably lower run times for the augmented Lagrangian algorithm compared to

the penalty method since updating the multiplier is generally less expensive than

solving the subproblem in the penalty method. Some constraints like Gauss’s law can

be implemented reasonably well through architecture. Different update rules for the

Lagrange multiplier lead to different variants of algorithm 10 exploring which is a

worthwhile topic for future research. The geometry of the objective function in the

subproblems and the distribution of their optima also deserve further exploration.

Acknowledgements

This work was supported by the Department of Atomic Energy, Government of India,

under project no. RTI4001 and the Infosys-TIFR Leading Edge travel grant. The

author would like to thank Zhisong Qu, Matthew Hole and Robert Dewar for useful

discussions on these topics.

4.6 Appendix

4.6.1 Architecture

We use two different architectures here which we refer to as LSTM (long short-term

memory) and FF (feed-forward). LSTM type networks have been employed to solve

partial differential equations (see [159] or chapter 2 of this thesis) and are useful for

avoiding vanishing gradients in deep networks [158], [169]. We use the same LSTM

124 | Learning solutions to some toy constrained optimization problems

architecture that appears in chapter 2. For the sake of completeness we describe

this architecture in detail below. Here 0k implies a zero vector of dimension k, ⊙

implies the Hadamard product, dI , dO denote the input and output dimensions and θ

represents the ordered set of training parameters. The architecture has two numeric

hyperparameters m, L describing the size of individual layers and the number of

LSTM blocks respectively. Activation A is the elementwise tanh function and finally,

nLSTM(m,L,dI ,dO)
θ represents the complete network.

i ∈ {1, 2, · · · , L} (4.22)

c0(x)
def
= 0m (4.23)

h0(x)
def
= 0dI (4.24)

fi(x)
def
=A(W(i)f x + U(i)f hi−1(x) + b(i)f) (4.25)

gi(x)
def
=A(W(i)g x + U(i)g hi−1(x) + b(i)g) (4.26)

ri(x)
def
=A(W(i)r x + U(i)r hi−1(x) + b(i)r) (4.27)

si(x)
def
=A(W(i)s x + U(i)s hi−1(x) + b(i)s) (4.28)

ci(x)
def
=fi(x)⊙ ci−1(x) + gi(x)⊙ si(x) (4.29)

hi(x)
def
=ri(x)⊙ A(ci(x)) (4.30)

dL(y)
def
=W⊤y + b , y ∈ Rm (4.31)

nLSTM(m,L,dI ,dO)
θ

def
=dL ◦ hL (4.32)

Here {fi, gi, ri, si, ci, hi : i = 1, · · · , L} ∪ {dL} are the hidden layers and

θ = {W(i)f , U(i)f , b(i)f , W(i)g , U(i)g , b(i)g , W(i)r , U(i)r , b(i)r , W(i)s , U(i)s , b(i)s : i = 1, · · · , L} ∪ {W, b} (4.33)

4.6 Appendix | 125

is the set of the trainable parameters. The dimensions of these parameters are given

below,

W(i)f , W(i)g , W(i)r , W(i)s ∈ Rm×dI (4.34)

U(i)f , U(i)g , U(i)r , U(i)s ∈

Rm×dI , if i = 1

Rm×m, otherwise
(4.35)

b(i)f , b(i)g , b(i)r , b(i)s ∈ Rm (4.36)

W ∈ RdO×m, b ∈ RdO (4.37)

which implies the size of the network or cardinality of θ is 4m[dI(L + 1) + m(L− 1) +

1] + dO(m + 1).

We use nFF(m,L,dI ,dO)
ϕ to represent a simple feed-forward network without any skip

connections with ϕ being the set of trainable parameters. In this case the hyperpa-

rameters m, L denote the size of an individual layer and the number of hidden layers

respectively.

i ∈ {1, · · · , L− 1} (4.38)

f0(x)
def
=A(W(0)f x + b(0)f) (4.39)

fi(x)
def
=A(W(i)f fi−1(x) + b(i)f) (4.40)

dL(y)
def
=W⊤y + b , y ∈ Rm (4.41)

nFF(m,L,dI ,dO)
ϕ

def
=dL ◦ fL (4.42)

So ϕ is given by,

ϕ = {Wi
f , bi

f : i = 0, 1, · · · L− 1} ∪ {W, b} (4.43)

126 | Learning solutions to some toy constrained optimization problems

and the dimensions of these trainable parameters are given below,

W(i)f ∈

 Rm×dI , if i = 0

Rm×m, otherwise
(4.44)

b(i)f ∈ Rm (4.45)

W ∈ RdO×m, b ∈ RdO (4.46)

The size of nFF(m,L,dI ,dO)
ϕ is therefore m[dI + (L + 1) + m(L− 1)] + (dO − 1)(m + 1). We

list the network architectures and sizes used in our experiments in table 4.1.

Problem Algorithm A a B b
Minimal surface P∞ FF(50, 3, 2, 1) 5300 - -
Minimal surface AL∞

∞ FF(50, 3, 2, 1) 5300 FF(50, 3, 1, 1) 5250
Geodesic P∞ LSTM(50, 3, 1, 1) 21051 - -
Geodesic AL∞

F LSTM(50, 3, 1, 1) 21051 scalar 1
Grad-Shafranov P∞ LSTM(50, 3, 2, 1) 21851 - -
Grad-Shafranov AL∞

∞ LSTM(50, 3, 2, 1) 21851 FF(50, 3, 2, 1) 5300
Beltrami field P∞ LSTM(50, 3, 3, 3) 22753 - -
Beltrami field AL∞

∞ LSTM(50, 3, 3, 3) 22753 FF(50, 3, 3, 3) 5452
Table 4.1 Networks used in various experiments

4.6.2 Penalty factor

Recall that we use a stopped geometric sequence as our µk (4.17). We list the hyperpa-

rameters that determine µk in table 4.2.

Problem Algorithm µ1 µmax r
Minimal surface P∞ 100 5000 1.01
Minimal surface AL∞

∞ 100 5000 1.01
Geodesic P∞ 100 500 1.01
Geodesic AL∞

F 100 500 1.01
Grad-Shafranov P∞ 100 1000 1.01
Grad-Shafranov AL∞

∞ 100 1000 1.01
Beltrami field P∞ 100 5000 1.01
Beltrami field AL∞

∞ 100 5000 1.01
Table 4.2 Hyperparameters of the penalty factor for various experiments

4.6 Appendix | 127

4.6.3 Learning rate

The learning rate δ depends on 7 hyperparameters which are the initial learning rate

(L0), initial decay rate (D0), initial decay steps (S0), tipping point (T), final learning

rate (L1), final decay rate (D1), final decay steps (S1). We define δ as,

δ(t) =

L0D
t mod S0

S0
0 , t < T

L1D
t−T
S1

1 , t ≥ T
(4.47)

We list these parameters for our experiments in table 4.3. We use,

S0 =
2E
P

(4.48)

T =

⌊
2E(µmax − µ1)

Pr

⌋
(4.49)

S1 = E− T (4.50)

For definitions of E, P see section 4.6. In case T > E, we never reach the tipping point

and hence do not list L1, D1.

Problem Algorithm L0 D0 L1 D1
Minimal surface P∞ 10−4 10−1 - -
Minimal surface AL∞

∞ 10−4 2× 10−1 - -
Geodesic P∞ 10−3 10−1 10−4 10−2

Geodesic AL∞
F 10−3 10−1 10−4 10−2

Grad-Shafranov P∞ 10−4 10−1 10−6 10−2

Grad-Shafranov AL∞
∞ 10−4 10−1 10−6 10−2

Beltrami field P∞ 10−4 10−1 - -
Beltrami field AL∞

∞ 10−4 10−1 - -
Table 4.3 Hyperparameters of the learning rate for various experiments

Summary and Future Work

In the first chapter we explore the topic of filter stability in data assimilation from a

numerical standpoint. We devise a new definition for practical computations of filter

stability and show that this definition is a stronger version of an existing definition

in a meaningful way. We show that both particle filter and EnKF achieve stability

exponentially fast in the test cases. For particle filters we see that as the number of

particles increase we get closer to the true definition numerical filter stability. Before

reaching stability the filter RMSE and the Wasserstein distance are linearly related at

least in the test cases. This somewhat surprisingly indicates that RMSE can be used to

determine stability of a numerical filter in a practical sense. The mechanism behind

this linear relationship is an important topic for further exploration.

In the second chapter we see that deep learning can be efficiently employed to

compute zeros of high-dimensional Fokker-Planck operators in a functional form.

For the same sample size deep learning seems to produce more accurate solutions

compared to Monte Carlo even in low dimensions which is expected since deep

learning has direct access to derivatives of the solution or higher order information

while Monte Carlo does not. For small values of the loss function, it is linearly related

to the distance from truth which justifies algorithm 4. Learning fine-grained structures

in the solutions and the geometry or optima of the loss function are important topics

for future research.

In the third chapter we show that physics informed networks are not suitable for a

class of parabolic PDEs. But a combination of the zeros calculated with algorithm 4

and the Feynman-Kac formula can be used to solve time-dependent Fokker-Planck

equations. The main benefit of this method is the ability to solve equations in a

pointwise fashion which is immensely useful in fighting the curse of dimensionality.

Summary and Future Work | 129

This method can be used solve gradient systems up to arbitrary times. For non-gradient

systems, due to the blow-up of the auxiliary h-SDE we can solve the corresponding

Fokker-Planck equation only up to a finite time. We also prove that if we have perfect

knowledge of the stationary solution up to a normalization constant, the error incurred

due to letting some trajectories of the h-SDE escape our domain of knowledge, is

proportional to the fraction of trajectories that escape. Investigation of the behavior

of algorithm 6 for pathological solutions such as heavy-tailed distributions is an

interesting topic for future exploration.

In the last chapter we examine penalty and augmented Lagrangian algorithms for

infinite-dimensional problems. We devise deep learning versions of these algorithms

and successfully estimate solutions to a few toy problems. We observe that both

methods produce qualitatively and quantitatively similar errors in the test cases.

When the output of the constraint is a function, the augmented Lagrangian algorithm

can run significantly faster than the penalty method for the same number of iterations

since the Lagrange multiplier update rule is typically computationally cheaper than

solving the penalty subproblem. Additionally, in most cases we can use a smaller

multiplier network (compared to the solution network) to achieve faster run times

for the augmented Lagrangian algorithm. Understanding the structure of the set of

minima of the loss function for degenerate problems, application of our algorithms

in more complex scenarios and investigation of potential failure modes of these

algorithms are some worthwhile future research directions.

We end our discussion with some potential applications of the different original

and adapted methods presented in this thesis. The Sinkhorn algorithm gives us a

practical way to evaluate the stability of data assimilation algorithms. Online versions

of this algorithm [125] can be used to deal with large empirical distributions efficiently.

The omnipresence of Fokker-Planck equations makes the methods described here or

their modifications applicable for a variety of problems such as wind turbine modelling

[170], analysis of open quantum systems [52], design of new data assimilation algo-

rithms [10] etc. Note that, these examples are high-dimensional in nature and hence

are ideal for capitalizing on the mesh-free methods described here. The constrained

optimization problem considered in the final chapter is fairly generic. Therefore, even

though our treatment of the topic was not application-oriented, it is easy to imagine

Summary and Future Work | 130

possible applications in a wide array of problems, such as shape optimization, optimal

control of discrete systems, financial optimization, variational image processing [30]

and ill-posed inverse problems [6] to name a few.

References

[1] (Alexandrinus.), P. and Ver Eecke, P. (1933). Pappus d’Alexandrie: La collection
mathématique. Blanchard.

[2] Allen, L. J. (2010). An introduction to stochastic processes with applications to biology.
CRC press.

[3] Apte, A., Hairer, M., Stuart, A., and Voss, J. (2007). Sampling the posterior: an
approach to non-Gaussian data assimilation. Physica D, 230:50–64.

[4] Aris, R. (2012). Vectors, tensors and the basic equations of fluid mechanics. Courier
Corporation.

[5] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR.

[6] Arridge, Simon and Maass, Peter and Öktem, Ozan and Schönlieb, Carola-Bibiane
(2019). Solving inverse problems using data-driven models. Acta Numerica, 28:1–174.

[7] Asch, M., Bocquet, M., and Nodet, M. (2016). Data Assimilation: Methods, Algorithms,
and Applications. SIAM.

[8] Ballani, J. and Grasedyck, L. (2013). A projection method to solve linear systems in
tensor format. Numerical linear algebra with applications, 20(1):27–43.

[9] Basir, S. (2022). Investigating and mitigating failure modes in physics-informed
neural networks (pinns). arXiv preprint arXiv:2209.09988.

[10] Belyaev, K., Meyers, S., and O’Brien, J. (2000). Application of the Fokker-Planck
equation to data assimilation into hydrodynamical models. Journal of Mathematical
Sciences, 99:1393–1402.

[11] Bengtsson, L., Ghil, M., and Källén, E. (1981). Dynamic meteorology: data assimilation
methods, volume 36. Springer.

[12] Berezin, Y. A., Khudick, V., and Pekker, M. (1987). Conservative finite-difference
schemes for the Fokker-Planck equation not violating the law of an increasing
entropy. Journal of Computational Physics, 69(1):163–174.

[13] Bertsekas, D. P. (1995). Athena scientific. Nonlinear programming, 4.

[14] Birgin, E. G. and Martínez, J. M. (2014). Practical augmented Lagrangian methods for
constrained optimization. SIAM.

[15] Bishop, A. N. and Del Moral, P. (2017). On the Stability of Kalman–Bucy Diffusion
Processes. SIAM Journal on Control and Optimization, 55(6):4015–4047.

132 | References

[16] Blechschmidt, J. and Ernst, O. G. (2021). Three ways to solve partial differential
equations with neural networks—a review. GAMM-Mitteilungen, 44(2):e202100006.

[17] Bogachev, V. I., Krasovitskii, T. I., and Shaposhnikov, S. V. (2021). On unique-
ness of probability solutions of the Fokker-Planck-Kolmogorov equation. Sbornik:
Mathematics, 212(6):745.

[18] Bogachev, V. I., Krylov, N. V., Röckner, M., and Shaposhnikov, S. V. (2022). Fokker–
Planck–Kolmogorov Equations, volume 207. American Mathematical Society.

[19] Boltyanski, V., Martini, H., and Soltan, V. (1998). Geometric methods and optimization
problems, volume 4. Springer Science & Business Media.

[20] Bonnans, J.-F., Gilbert, J. C., Lemaréchal, C., and Sagastizábal, C. A. (2006).
Numerical optimization: theoretical and practical aspects. Springer Science & Business
Media.

[21] Bosler, P. A. (2013). Particle methods for geophysical flow on the sphere. PhD thesis,
University of Michigan.

[22] Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. Advances
in neural information processing systems, 20.

[23] Brezis, H. and Brézis, H. (2011). Functional analysis, Sobolev spaces and partial
differential equations, volume 2. Springer.

[24] Bris, C. L. and Lions, P.-L. (2008). Existence and uniqueness of solutions to
fokker–planck type equations with irregular coefficients. Communications in Partial
Differential Equations, 33(7):1272–1317.

[25] Buduma, N., Buduma, N., and Papa, J. (2022). Fundamentals of deep learning. "
O’Reilly Media, Inc.".

[26] Burby, J. W., Kallinikos, N., and MacKay, R. S. (2020). Generalized Grad–Shafranov
equation for non-axisymmetric MHD equilibria. Physics of Plasmas, 27(10).

[27] Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G. (2018). Data assimilation
in the geosciences: An overview of methods, issues, and perspectives. Wiley
Interdisciplinary Reviews: Climate Change, 9(5):e535.

[28] Carrassi, A., Bocquet, M., Demaeyer, J., Grudzien, C., Raanes, P., and Vannitsem,
S. (2022). Data assimilation for chaotic dynamics. Data Assimilation for Atmospheric,
Oceanic and Hydrologic Applications (Vol. IV), pages 1–42.

[29] Carrassi, A., Trevisan, A., Descamps, L., Talagrand, O., and Uboldi, F. (2008).
Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable
subspace: a comparison with the EnKF. Nonlinear Process. Geophys., 15:503–521.

[30] Cassel, K. W. (2013). Variational methods with applications in science and engineering.
Cambridge University Press.

[31] Cérou, F. (2000). Long time behavior for some dynamical noise free nonlinear
filtering problems. SIAM J. Control. Optim., 38:1086–1101.

[32] Chen, N. and Majda, A. J. (2018). Efficient statistically accurate algorithms for
the Fokker–Planck equation in large dimensions. Journal of Computational Physics,
354:242–268.

References | 133

[33] Chigansky, P. (2006). Stability of nonlinear filters: A survey. Lecture notes,
Petropolis, Brazil.

[34] Chigansky, P., Liptser, R., and Van Handel, R. (2009). Intrinsic methods in filter
stability. Handbook of Nonlinear Filtering.

[35] Chopin, N. and Papaspiliopoulos, O. (2020). Convergence and Stability of Particle
Filters, pages 167–188. Springer International Publishing, Cham.

[36] Chow, P.-L. and Khasminskii, R. (2014). Almost sure explosion of solutions to
stochastic differential equations. Stochastic Processes and their Applications, 124(1):639–
645.

[37] Cioica-Licht, P. A., Hutzenthaler, M., and Werner, P. T. (2022). Deep neural
networks overcome the curse of dimensionality in the numerical approximation of
semilinear partial differential equations. arXiv preprint arXiv:2205.14398.

[38] Colding, T. H. and Minicozzi, W. P. (2011). A course in minimal surfaces, volume
121. American Mathematical Soc.

[39] Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin,
X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., et al. (2011). The
twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological
Society, 137(654):1–28.

[40] Coopersmith, J. (2017). The lazy universe: An introduction to the principle of least
action. Oxford University Press.

[41] Costa, C. J. (1984). Example of a complete minimal immersion in ir 3 of
genus one and three-embedded ends. Boletim da Sociedade Brasileira de Matemática-
Bulletin/Brazilian Mathematical Society, 15:47–54.

[42] Crisan, D. and Rozovskii, B. (2011). The Oxford handbook of nonlinear filtering.
Oxford University Press.

[43] Cui, S., Kurganov, A., and Medovikov, A. (2015). Particle methods for PDEs
arising in financial modeling. Applied Numerical Mathematics, 93:123–139.

[44] Darboux, G. (1896). Leçons sur la théorie générale des surfaces et les applications
géométriques du calcul infinitésimal: ptie. Déformation infiniment petite et réprésentation
sphérique. Notes et additions: I. Sur les méthodes d’approximations successives dans la
théorie des équations différentielles, par E. Picard. II. Sur les géodésiques à intégrales
quadratiques, par G. Koenigs. III. Sur la théorie des équations aux dérivées partielles du
second ordre, par E. Cosserat. IV-XI. Par l’auteur. 1896. Gauthier-Villars.

[45] Datta, L. (2020). A survey on activation functions and their relation with Xavier
and He normal initialization. arXiv preprint arXiv:2004.06632.

[46] De Ryck, T., Lanthaler, S., and Mishra, S. (2021). On the approximation of
functions by tanh neural networks. Neural Networks, 143:732–750.

[47] Del Moral, P. and Del Moral, P. (2004). Feynman-Kac formulae. Springer.

[48] Del Moral, P. and Tugaut, J. (2018). On the stability and the uniform propagation
of chaos properties of ensemble Kalman–Bucy filters. The Annals of Applied Probability,
28(2):790–850.

134 | References

[49] Delong, Ł. (2013). Backward stochastic differential equations with jumps and their
actuarial and financial applications. Springer.

[50] Doucet, A., Johansen, A. M., et al. (2009). A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3.

[51] Dussault, J. P., Shen, H., and Bandrauk, A. (2007). Penalty algorithms in Hilbert
spaces. Acta Mathematica Sinica, English Series, 23:229–236.

[52] Elliott, M. and Ginossar, E. (2016). Applications of the Fokker-Planck equation in
circuit quantum electrodynamics. Physical Review A, 94(4):043840.

[53] Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and
practical implementation. Ocean Dynamics, 53:343–367.

[54] Farchi, A. and Bocquet, M. (2018). Comparison of local particle filters and new
implementations. Nonlinear Processes in Geophysics, 25(4):765–807.

[55] Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S.-i., Trouvé, A., and Peyré, G. (2019).
Interpolating between optimal transport and MMD using Sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages
2681–2690. PMLR.

[56] Fiacco, A. V. and Jones, A. P. (1969). Generalized penalty methods in topological
spaces. SIAM Journal on Applied Mathematics, 17(5):996–1000.

[57] Fletcher, S. (2017). Data Assimilation for the Geosciences: From Theory to Application.
Elsevier.

[58] Fu, Z. and Li, Z. (2010). Stochastic equations of non-negative processes with
jumps. Stochastic Processes and their Applications, 120(3):306–330.

[59] Gao, C., Isaacson, J., and Krause, C. (2020). i-flow: High-dimensional integration
and sampling with normalizing flows. Machine Learning: Science and Technology,
1(4):045023.

[60] Gardiner, C. (2009). Stochastic methods, volume 4. Springer Berlin.

[61] Genevay, A. (2019). Entropy-regularized optimal transport for machine learning. PhD
thesis, Paris Sciences et Lettres.

[62] Genevay, A., Peyré, G., and Cuturi, M. (2018). Learning generative models with
Sinkhorn divergences. In International Conference on Artificial Intelligence and Statistics,
pages 1608–1617. PMLR.

[63] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings.

[64] Gobet, E. (2016). Monte-Carlo methods and stochastic processes: from linear to non-
linear. CRC Press.

[65] Goldstine, H. H. (2012). A History of the Calculus of Variations from the 17th through
the 19th Century, volume 5. Springer Science & Business Media.

[66] Gordon, G. and Tibshirani, R. (2012). Karush-Kuhn-Tucker conditions. Optimiza-
tion, 10(725/36):725.

References | 135

[67] Gottwald, G. A. and Majda, A. J. (2013). A mechanism for catastrophic filter
divergence in data assimilation for sparse observation networks. Nonlinear Processes
in Geophysics, 20(5):705–712.

[68] Guzowska, M., Malinowska, A. B., and Sidi Ammi, M. R. (2015). Calculus of
variations on time scales: applications to economic models. Advances in Difference
Equations, 2015(1):1–15.

[69] Hackbusch, W., Khoromskij, B. N., and Tyrtyshnikov, E. E. (2005). Hierarchical
Kronecker tensor-product approximations. In J. Num. Math.

[70] Han, J., Jentzen, A., and E, W. (2018). Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences,
115(34):8505–8510.

[71] Hinrichs, A., Novak, E., Ullrich, M., and Woźniakowski, H. (2014). The curse
of dimensionality for numerical integration of smooth functions. Mathematics of
Computation, 83(290):2853–2863.

[72] Hirsch, M. W., Smale, S., and Devaney, R. L. (2012). Differential equations, dynamical
systems, and an introduction to chaos. Academic press.

[73] Holstermann, J. (2023). On the expressive power of neural networks.

[74] Huang, H., Yu, P. S., and Wang, C. (2018). An introduction to image synthesis
with generative adversarial nets. arXiv preprint arXiv:1803.04469.

[75] Huang, J., Wang, H., and Zhou, T. (2021). An augmented Lagrangian deep
learning method for variational problems with essential boundary conditions. arXiv
preprint arXiv:2106.14348.

[76] Huang, W., Ji, M., Liu, Z., and Yi, Y. (2015). Steady states of Fokker–Planck
equations: I. existence. Journal of Dynamics and Differential Equations, 27:721–742.

[77] Hutzenthaler, M., Jentzen, A., Kruse, T., et al. (2021). Multilevel Picard iterations
for solving smooth semilinear parabolic heat equations. Partial Differential Equations
and Applications, 2(6):1–31.

[78] Ikeda, N. and Watanabe, S. (2014). Stochastic differential equations and diffusion
processes. Elsevier.

[79] Ito, K. and Kunisch, K. (1990a). An augmented Lagrangian technique for varia-
tional inequalities. Applied Mathematics and Optimization, 21(1):223–241.

[80] Ito, K. and Kunisch, K. (1990b). The augmented Lagrangian method for equality
and inequality constraints in Hilbert spaces. Mathematical programming, 46(1-3):341–
360.

[81] Ito, K. and Kunisch, K. (2008). Lagrange multiplier approach to variational problems
and applications. SIAM.

[82] Ivanov, M. and Shvets, V. (1980). Method of stochastic differential equations for
calculating the kinetics of a collision plasma. Zhurnal Vychislitelnoi Matematiki i
Matematicheskoi Fiziki, 20:682–690.

[83] Jackson, J. D. (1999). Classical electrodynamics 3rd ed john wiley & sons. Inc.,
NewYork, NY, page 5.

136 | References

[84] Jefferies, B. (2013). Evolution processes and the Feynman-Kac formula, volume 353.
Springer Science & Business Media.

[85] Jhamtani, H., Gangal, V., Hovy, E., and Nyberg, E. (2017). Shakespearizing
modern language using copy-enriched sequence-to-sequence models. arXiv preprint
arXiv:1707.01161.

[86] Johnson, J. L., Dalhed, H., Greene, J., Grimm, R., Hsieh, Y., Jardin, S., Manickam,
J., Okabayashi, M., Storer, R., Todd, A., et al. (1979). Numerical determination of
axisymmetric toroidal magnetohydrodynamic equilibria. Journal of Computational
Physics, 32(2):212–234.

[87] Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of
the Fokker–Planck equation. SIAM journal on mathematical analysis, 29(1):1–17.

[88] Kakutani, S. (1944a). 131. On Brownian Motions in n-Space. Proceedings of the
Imperial Academy, 20(9):648–652.

[89] Kakutani, S. (1944b). 143. Two-dimensional Brownian Motion and Harmonic
Functions. Proceedings of the Imperial Academy, 20(10):706–714.

[90] Kalnay, E. (2003). Atmospheric modeling, data assimilation, and predictability. Cam-
bridge University Press.

[91] Kanzow, C., Steck, D., and Wachsmuth, D. (2018). An augmented Lagrangian
method for optimization problems in Banach spaces. SIAM Journal on Control and
Optimization, 56(1):272–291.

[92] Karatzas, I., Karatzas, I., Shreve, S., and Shreve, S. E. (1991). Brownian motion and
stochastic calculus, volume 113. Springer Science & Business Media.

[93] KARoUI, N. E. and Quenez, M. (1997). Non-linear pricing theory and backward
stochastic differential equations. Financial mathematics, pages 191–246.

[94] Kelly, D., Law, K., and Stuart, A. (2014). Well-posedness and accuracy of the
ensemble Kalman filter In discrete and continuous time. Nonlinearity, 27:2579–2603.

[95] Kidger, P. and Lyons, T. (2020). Universal approximation with deep narrow
networks. In Conference on learning theory, pages 2306–2327. PMLR.

[96] Kilpeläinen, T. (1994). Weighted sobolev spaces and capacity. Ann. Acad. Sci. Fenn.
Ser. AI Math, 19(1):95–113.

[97] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[98] Kloeden, P. E., Platen, E., Kloeden, P. E., and Platen, E. (1992). Stochastic differential
equations. Springer.

[99] Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications.
SIAM review, 51(3):455–500.

[100] Kontorovich, V. and Lovtchikova, Z. (2009). Non linear filtering algorithms for
chaotic signals: A comparative study. In 2009 2nd International Workshop on Nonlinear
Dynamics and Synchronization, pages 221–227. IEEE.

References | 137

[101] Kovachki, N., Lanthaler, S., and Mishra, S. (2021). On universal approximation
and error bounds for Fourier neural operators. The Journal of Machine Learning
Research, 22(1):13237–13312.

[102] Kressner, D. and Tobler, C. (2010). Krylov subspace methods for linear systems
with tensor product structure. SIAM journal on matrix analysis and applications,
31(4):1688–1714.

[103] Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. (2021).
Characterizing possible failure modes in physics-informed neural networks. Ad-
vances in Neural Information Processing Systems, 34:26548–26560.

[104] Kuhn, H. W. and Tucker, A. W. (2013). Nonlinear programming. In Traces and
emergence of nonlinear programming, pages 247–258. Springer.

[105] Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K., and Janssen, P. (2016). A
coupled data assimilation system for climate reanalysis. Quarterly Journal of the
Royal Meteorological Society, 142(694):65–78.

[106] Law, K., Stuart, A., and Zygalakis, K. (2015). Data Assimilation. Springer.

[107] Law, K. J., Sanz-Alonso, D., Shukla, A., and Stuart, A. (2016). Filter accuracy
for the Lorenz 96 model: Fixed versus adaptive observation operators. Physica D:
Nonlinear Phenomena, 325:1–13.

[108] Lelievre, T. and Stoltz, G. (2016). Partial differential equations and stochastic
methods in molecular dynamics. Acta Numerica, 25:681–880.

[109] Leobacher, G. and Pillichshammer, F. (2014). Introduction to quasi-Monte Carlo
integration and applications. Springer.

[110] Li, H., Fang, C., and Lin, Z. (2017). Convergence rates analysis of the quadratic
penalty method and its applications to decentralized distributed optimization. arXiv
preprint arXiv:1711.10802.

[111] Li, X.-M. and Scheutzow, M. (2011). Lack of strong completeness for stochastic
flows.

[112] Li, Z. and Mytnik, L. (2011). Strong solutions for stochastic differential equations
with jumps. In Annales de l’IHP Probabilités et statistiques, volume 47, pages 1055–
1067.

[113] Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric
sciences, 20(2):130–141.

[114] Lorenz, E. N. (1995). Predictability: a problem partly solved. In Seminar on
Predictability I, pages 1–18. ECMWF, Reading UK.

[115] Lu, Y. and Lu, J. (2020). A universal approximation theorem of deep neural
networks for expressing probability distributions. Advances in neural information
processing systems, 33:3094–3105.

[116] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of
neural networks: A view from the width. Advances in neural information processing
systems, 30.

[117] Mahan, S., King, E. J., and Cloninger, A. (2021). Nonclosedness of sets of neural
networks in Sobolev spaces. Neural Networks, 137:85–96.

138 | References

[118] Malliavin, P. (2006). Stochastic calculus of variations in mathematical finance.
Springer.

[119] Mandal, P. (2024). Learning solutions to some toy constrained optimization
problems in infinite dimensional Hilbert spaces. arXiv preprint arXiv:2401.01306.

[120] Mandal, P. and Apte, A. (2023). Learning zeros of Fokker-Planck operators.
arXiv preprint arXiv:2306.07068.

[121] Mandal, P. and Apte, A. (2024). Solving Fokker-Planck equations using the
zeros of Fokker-Planck operators and the Feynman-Kac formula. arXiv preprint
arXiv:2401.01292.

[122] Mandal, P., Roy, S. K., and Apte, A. (2021). Stability of nonlinear filters -
numerical explorations of particle and ensemble Kalman filters. In 2021 Seventh
Indian Control Conference (ICC), pages 307–312. IEEE.

[123] Mandal, P., Roy, S. K., and Apte, A. (2023). Probing robustness of nonlinear filter
stability numerically using Sinkhorn divergence. Physica D: Nonlinear Phenomena,
451:133765.

[124] Masud, A. and Bergman, L. A. (2005). Application of multi-scale finite element
methods to the solution of the Fokker–Planck equation. Computer Methods in Applied
Mechanics and Engineering, 194(12-16):1513–1526.

[125] Mensch, Arthur and Peyré, Gabriel (2020). Online sinkhorn: Optimal transport
distances from sample streams. Advances in Neural Information Processing Systems,
33:1657–1667.

[126] Meusnier, J. B. (1785). Mémoire sur la courbure des surfaces. Mem des savan
etrangers, 10(1776):477–510.

[127] Muller, M. E. (1956). Some continuous Monte Carlo methods for the Dirichlet
problem. The Annals of Mathematical Statistics, pages 569–589.

[128] Náprstek, J. and Král, R. (2014). Finite element method analysis of Fokker–
Planck equation in stationary and evolutionary versions. Advances in Engineering
Software, 72:28–38.

[129] Nocedal, J. and Wright, S. J. (2006). Numerical optimization. Springer.

[130] Øksendal, B. (1997). An introduction to Malliavin calculus with applications to
economics.

[131] Øksendal, B. and Øksendal, B. (2003). Stochastic differential equations. Springer.

[132] Oljača, L., Kuna, T., and Bröcker, J. (2021). Exponential stability and asymptotic
properties of the optimal filter for signals with deterministic hyperbolic dynamics.
arXiv preprint arXiv:2103.01190.

[133] Ott, E. (1981). Strange attractors and chaotic motions of dynamical systems.
Reviews of Modern Physics, 53(4):655.

[134] Palomo, M. (2021). New insight into the origins of the calculus war. Annals of
Science, 78(1):22–40.

[135] Papamakarios, G. (2019). Neural density estimation and likelihood-free inference.
arXiv preprint arXiv:1910.13233.

References | 139

[136] Peddie, J. (2023). The History of the GPU-New Developments. Springer Nature.

[137] Pham, H. (2015). Feynman-Kac representation of fully nonlinear PDEs and
applications. Acta Mathematica Vietnamica, 40:255–269.

[138] Pichler, L., Masud, A., and Bergman, L. A. (2013). Numerical solution of
the Fokker–Planck equation by finite difference and finite element methods—a
comparative study. In Computational Methods in Stochastic Dynamics, pages 69–85.
Springer.

[139] Pinkus, A. (1999). Approximation theory of the mlp model in neural networks.
Acta numerica, 8:143–195.

[140] Polyak, B. T. (1971). The convergence rate of the penalty function method. USSR
Computational Mathematics and Mathematical Physics, 11(1):1–12.

[141] Quapp, W. (2008). Chemical reaction paths and calculus of variations. Theoretical
Chemistry Accounts, 121:227–237.

[142] Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2016).
Survey of expressivity in deep neural networks. arXiv preprint arXiv:1611.08083.

[143] Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2017). On
the expressive power of deep neural networks. In international conference on machine
learning, pages 2847–2854. PMLR.

[144] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707.

[145] Ranocha, H. (2019). Mimetic properties of difference operators: product and
chain rules as for functions of bounded variation and entropy stability of second
derivatives. BIT Numerical Mathematics, 59(2):547–563.

[146] Reddy, A. S. and Apte, A. (2021). Stability of non-linear filter for deterministic
dynamics. Foundations of Data Science, 3(3):647–675.

[147] Reddy, A. S., Apte, A., and Vadlamani, S. (2020). Asymptotic properties of linear
filter for noise free dynamical system. Systems & Control Letters, 139:104676.

[148] Reich, S. and Cotter, C. (2015). Probabilistic forecasting and Bayesian data assimilation.
Cambridge University Press.

[149] Risken, H. and Risken, H. (1996). Fokker-planck equation. Springer.

[150] Rojo, A. and Bloch, A. (2018). The principle of least action: History and physics.
Cambridge University Press.

[151] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

[152] Särkkä, S. (2013). Bayesian filtering and smoothing, volume 3. Cambridge University
Press.

[153] Särkkä, S. and Svensson, L. (2023). Bayesian filtering and smoothing, volume 17.
Cambridge university press.

140 | References

[154] Sawhney, R., Miller, B., Gkioulekas, I., and Crane, K. (2023). Walk on stars: A
grid-free monte carlo method for pdes with neumann boundary conditions. arXiv
preprint arXiv:2302.11815.

[155] Schäfer, A. M. and Zimmermann, H. G. (2006). Recurrent neural networks are
universal approximators. In Artificial Neural Networks–ICANN 2006: 16th International
Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part I 16, pages 632–640.
Springer.

[156] Schoen, R. and Yau, S.-T. (1979). On the proof of the positive mass conjecture in
general relativity. Communications in Mathematical Physics, 65:45–76.

[157] Sepehrian, B. and Radpoor, M. K. (2015). Numerical solution of non-linear
Fokker–Planck equation using finite differences method and the cubic spline func-
tions. Applied mathematics and computation, 262:187–190.

[158] Sherstinsky, A. (2020). Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306.

[159] Sirignano, J. and Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for
solving partial differential equations. Journal of computational physics, 375:1339–1364.

[Smitha and Hattorib] Smitha, S. G. L. and Hattorib, Y. Axisymmetric magnetic
vortices with swirl.

[161] Strauss, R. and Effenberger, F. (2017). A hitch-hiker’s guide to stochastic differ-
ential equations. Space Science Reviews, 212(1):151–192.

[162] Struik, D. J. (1961). Lectures on classical differential geometry. Courier Corporation.

[163] Sun, Y. and Kumar, M. (2014). Numerical solution of high dimensional station-
ary Fokker–Planck equations via tensor decomposition and Chebyshev spectral
differentiation. Computers & Mathematics with Applications, 67(10):1960–1977.

[164] Thomas, R. (1999). Deterministic chaos seen in terms of feedback circuits:
Analysis, synthesis," labyrinth chaos". International Journal of Bifurcation and Chaos,
9(10):1889–1905.

[165] Uria, B., Murray, I., and Larochelle, H. (2013). Rnade: The real-valued neural
autoregressive density-estimator. Advances in Neural Information Processing Systems,
26.

[166] van Handel, R. (2008). Hidden Markov models. Unpublished lecture notes.

[167] van Kekem, D. (2018). Dynamics of the Lorenz-96 model: Bifurcations, symmetries
and waves. PhD thesis, University of Groningen.

[168] Van Leeuwen, P. J., Cheng, Y., and Reich, S. (2015). Nonlinear data assimilation.
Springer.

[169] Vennerød, C. B., Kjærran, A., and Bugge, E. S. (2021). Long short-term memory
RNN. arXiv preprint arXiv:2105.06756.

[170] Wang, Keyou and Crow, Mariesa L (2012). Fokker-Planck equation application
to analysis of a simplified wind turbine model. In 2012 North American Power
Symposium (NAPS), pages 1–5. IEEE.

References | 141

[171] Weinberg, S. (1972). Gravitation and cosmology: principles and applications of
the general theory of relativity.

[172] Whiteley, N. (2013). Stability properties of some particle filters. The Annals of
Applied Probability, 23(6):2500–2537.

[173] Whitney, J. C. (1970). Finite difference methods for the Fokker-Planck equation.
Journal of Computational Physics, 6(3):483–509.

[174] Xi, F. and Zhu, C. (2019). Jump type stochastic differential equations with
non-Lipschitz coefficients: non-confluence, Feller and strong Feller properties, and
exponential ergodicity. Journal of Differential Equations, 266(8):4668–4711.

[175] Xu, T. and Fitzpatrick, R. (2019). Vacuum solution for Solov’ev’s equilibrium
configuration in tokamaks. Nuclear Fusion, 59(6):064002.

[176] Xu, Y., Zhang, H., Li, Y., Zhou, K., Liu, Q., and Kurths, J. (2020). Solving
Fokker-Planck equation using deep learning. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 30(1):013133.

[177] Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic
differential equations. Journal of Mathematics of Kyoto University, 11(1):155–167.

[178] Yeong, H. C., Beeson, R. T., Namachchivaya, N., and Perkowski, N. (2020).
Particle filters with nudging in multiscale chaotic systems: With application to the
Lorenz’96 atmospheric model. Journal of Nonlinear Science, 30(4):1519–1552.

[179] Yong, J. and Zhou, X. Y. (1999). Stochastic controls: Hamiltonian systems and HJB
equations, volume 43. Springer Science & Business Media.

[180] Zhai, J., Dobson, M., and Li, Y. (2022). A deep learning method for solving
Fokker-Planck equations. In Mathematical and Scientific Machine Learning, pages
568–597. PMLR.

142 | List of works

List of works

1. Mandal, P., Roy, S. K., and Apte, A. (2021). Stability of nonlinear filters - numerical

explorations of particle and ensemble Kalman filters. In 2021 Seventh Indian

Control Conference (ICC), pages 307–312. IEEE

2. Mandal, P., Roy, S. K., and Apte, A. (2023). Probing robustness of nonlinear filter

stability numerically using Sinkhorn divergence. Physica D: Nonlinear Phenomena,

451:133765

3. Mandal, P. and Apte, A. (2023). Learning zeros of Fokker-Planck operators. arXiv

preprint arXiv:2306.07068

4. Mandal, P. and Apte, A. (2024). Solving Fokker-Planck equations using the

zeros of Fokker-Planck operators and the Feynman-Kac formula. arXiv preprint

arXiv:2401.01292

5. Mandal, P. (2024). Learning solutions to some toy constrained optimization

problems in infinite dimensional Hilbert spaces. arXiv preprint arXiv:2401.01306

	List of figures
	List of tables
	List of symbols
	Table of contents
	Abstract
	Introduction
	1 Probing nonlinear filter stability
	1.1 Introduction
	1.2 Problem statement
	1.2.1 The nonlinear filtering problem
	1.2.2 Filter stability
	1.2.3 Ensemble Kalman Filters
	1.2.4 Particle Filters
	1.2.5 Choice of distance D
	1.2.6 Sinkhorn divergence

	1.3 Numerical Evidence for Filter Stability
	1.3.1 Experimental Setup
	1.3.2 Data generation
	1.3.3 Zero of the Sinkhorn algorithm
	1.3.4 Stability of Particle Filter
	1.3.5 Stability of EnKF
	1.3.6 BPF vs EnKF

	1.4 Robustness of Filter Stability
	1.4.1 Experimental Setup
	1.4.2 Dependence on observation gap
	1.4.3 Dependence on observation noise

	1.5 Summary and Future Work
	1.6 Appendix
	1.6.1 Properties of Sinkhorn divergence
	1.6.2 Definition 1.2.2 implies definition 1.2.1
	1.6.3 Convergence in Sinkhorn divergence and Wasserstein metric
	1.6.4 Effect of varying the sample-size

	2 Learning zeros of Fokker-Planck operators
	2.1 Introduction
	2.2 Problem statement
	2.3 Examples
	2.3.1 Gradient systems
	2.3.2 Non-gradient Systems

	2.4 Previous works
	2.5 Overview of deep learning
	2.5.1 From PDE to optimization problem
	2.5.2 From infinite-dimensional search space to finite-dimensional search space
	2.5.3 From integrals to sums
	2.5.4 Finding the optimal parameters
	2.5.5 Why deep learning

	2.6 The algorithm
	2.6.1 Unboundedness of the problem domain
	2.6.2 Existence of the trivial solution
	2.6.3 The steady state algorithm
	2.6.4 Architecture
	2.6.5 Optimization

	2.7 Results
	2.7.1 2D ring system
	2.7.2 2nD ring system
	2.7.3 Noisy Lorenz-63 system
	2.7.4 Noisy Thomas system
	2.7.5 Dimension dependence
	2.7.6 Comparison of loss and distance from truth

	2.8 Summary and Future Work
	2.9 Appendix
	2.9.1 Existence and uniqueness of solutions to example problems
	2.9.2 Monte Carlo steady state algorithm
	2.9.3 Integration error for n-point Gauss-Legendre rule

	3 Solving Fokker-Planck equations
	3.1 Introduction
	3.2 Problem Statement
	3.2.1 Time-dependent FPEs
	3.2.2 One step filtering problem

	3.3 Examples
	3.3.1 Gradient systems
	3.3.2 Non-gradient Systems

	3.4 The hybrid algorithm
	3.4.1 Failure of the physics-informed way
	3.4.2 The Feynman-Kac formula
	3.4.3 The algorithm
	3.4.4 Strengths and limitations

	3.5 Results
	3.5.1 10D ring system
	3.5.2 Noisy Lorenz-63 system
	3.5.3 Noisy Thomas system
	3.5.4 One step filter

	3.6 Summary and Future Work
	3.7 Appendix
	3.7.1 Existence and uniqueness of solutions to example problems
	3.7.2 Monte Carlo algorithm

	4 Learning solutions to some toy constrained optimization problems
	4.1 Introduction
	4.2 Problem Statement and examples
	4.2.1 The minimal surface problem
	4.2.2 Geodesics on a surface
	4.2.3 Grad-Shafranov equation
	4.2.4 Beltrami fields

	4.3 Methodology
	4.3.1 Constrained optimization algorithms in finite dimensions
	4.3.2 Constrained optimization algorithms in infinite dimensions
	4.3.3 Deep learning variants for infinite dimensional algorithms

	4.4 Results
	4.4.1 The minimal surface problem
	4.4.2 Geodesics on a surface
	4.4.3 Grad-Shafranov equation
	4.4.4 Beltrami fields

	4.5 Summary and Future Work
	4.6 Appendix
	4.6.1 Architecture
	4.6.2 Penalty factor
	4.6.3 Learning rate

	Summary and Future Work
	References
	List of works

