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Abstract

In these works, we explore the unusual nature in which gravity localizes
information. We draw inspiration from older work on this subject and work
in a regime where effective field theory is valid. We show how it is possible for
observers to decode information by staying near the boundary of a Cauchy
slice in both AdS and flat spacetime. This is known as the principle of
holography of information. We construct explicit physical protocols by which
observers at the boundary of AdS and flat spacetime can interact with a
state, measure its energy, and then reconstruct the state using this data. We
emphasize the necessity of gravity in this entire procedure and argue why the
construction of such protocols is forbidden in other quantum field theories.
We also demonstrate how solutions of the gravitational constraint equations
satisfy the principle of holography of information. Although there are similar
constraints present in gauge theories, we show how they fail to give rise to a
similar structure.

In another part of the thesis, we studied the symmetries of non-linear gen-
eral relativity for flat spacetime in even dimensions near null infinity. This
analysis is necessary for understanding the phase space of general relativ-
ity near null infinity and also allows one to understand how things like the
memory effect etc. generalize to the non-linear theory. Although most of our
formulas are explicitly valid in six dimensions, they are easily extendable to
all even dimensions.
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Chapter 1

Introduction

Understanding the properties of quantum gravity has been an outstanding
problem in modern physics and is still not understood in its full glory. While
there have been several approaches in attacking the problem, most notably
string theory, there are still some corners that are ill-understood. With
the remarkable discovery of the gauge/gravity duality [1], also known as
the AdS/CFT correspondence or the holographic duality, our understanding
of the interplay between gravitational and gauge theories has been revolu-
tionized. The AdS/CFT correspondence states that gravitational theories
in higher-dimensional Anti-de Sitter (AdS) spacetime are dual to certain
strongly coupled conformal field theories (CFTs) living on the boundary of
AdS. This is a concrete example demonstrating the behavior of gauge theories
at strong coupling. An implication of this duality is known as the holographic
principle. This posits that the information available in the bulk of spacetime
can be encoded in its boundary. Via the AdS/CFT correspondence, we then
have the statement that the information stored in the bulk of AdS is also
available in the CFT living at its boundary. The duality, however, is more
powerful and it also maps the operators of quantum gravity in the bulk with
the operators of the boundary CFT. There is a dictionary relating the oper-
ators on both sides and using that one can compute and compare correlation
functions on both sides. This has several implications, such as allowing one to
study the properties of quantum gravity by using the tools of quantum field
theory. This has enabled one to understand several properties of quantum
gravity that were unknown before. These include the notion of entanglement
entropy, black hole physics, etc.

In this thesis, we explore the role of gravity in the holographic principle.
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In all known examples of the duality the theory of gravity on the quantum
side typically arises from a string theory and therefore it is natural to ask
if the holographic principle relies on string theory or if is a more general
property of quantum gravity. In particular, we find that one aspect of the
holographic principle, known as the principle of holography of information
only relies on the presence of gravity in the bulk and does not directly re-
quire any stringy properties [2]. This principle states that for any theory of
quantum gravity in AdS or flat spacetime, all information that is available
in the bulk of a Cauchy slice is also available at its boundary.

For theories of quantum gravity in AdS, this is a fairly well-understood
statement as it has been one of the central implications of the AdS/CFT
correspondence [1, 3]. A manifestation of this duality is the principle of
holography of information. The principle of holography of information is a
weaker statement by itself as compared to the AdS/CFT correspondence but
also relies on weaker assumptions and not on any specific UV completion of
gravity. However, it is still an implication of the fact that a theory of quantum
gravity in AdS is holographic [4]. This principle can be summarized in a
diagrammatic form as done in figure 1.1.

(a) Information on a Cauchy
slice in the bulk

(b) Holographic storage of the
information at the boundary of the
Cauchy slice.

Figure 1.1: The cartoon figure shows how all information present in the bulk
Cauchy slice (left) is also present at its boundary (right). On the left figure,
we have a disk whose profile takes the form of a rainbow and on the right, we
show how that rainbow gets smeared on the boundary of the Cauchy slice.

This version of holography also exists in flat spacetime where it was ar-
gued by Laddha, et. al in [5] that all information about massless excitations
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in flat spacetime is available near the past of future null infinity I+
− or the

future of past null infinity I−
+ . This means that in a theory of gravity, all

information that is available in the bulk of a Cauchy slice is also available at
the boundary of the slice (see figure 1.2).

Figure 1.2: Holographic nature of I+ .

This also has an interesting consequence for the black hole information
paradox in flat spacetime. The most common version of the information
paradox states that there is no way to recover the exact information present
inside a black hole1. This is because we know via Hawking [7] that a black
hole in flat spacetime will radiate energy in the form of Hawking radiation,
which is thermal in nature. Therefore all information about what fell into
the black hole disappears once the black hole has completely radiated which
would be in conflict with expectations about unitary evolution in quantum
mechanics. There have been several approaches that try to diagnose this
paradox in clever ways and we refer the reader to [2] for a discussion on
them. The paradox appears because of the incorrect assumption that the
Hilbert space in quantum gravity factorizes in the same way it does in an
ordinary QFT. However, as first argued in [5], by carefully analyzing states in
a theory of quantum gravity it is found that all information about a system
is already present at a cut near null infinity. Therefore, there is no notion of
information going into a black hole as it was already present at the boundary.
Hence the principle of holography of information provides a new resolution
to the black hole information paradox.

It is a natural question to ask whether such a principle also exists in the-
ories without gravity. As discussed in the literature [8], the presence of split

1For recent discussions related to this via the island approach in alternative theories of
gravity, we refer the reader to [6].
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states makes it impossible for other theories to be holographic. Physically,
the main obstruction to this principle is the presence of local gauge invari-
ant operators in theories without dynamical gravity. In particular, for gauge
theories, this is related to the presence of negative charges, which are absent
in gravity (since the only charge in gravity, energy, is positive in nature).

In both scalar and gauge theories in the absence of dynamical gravity,
it is possible to construct operators in the bulk of spacetime that commute
with every operator on the boundary. This implies that it is impossible for
a boundary observer at a time slice to distinguish between two states in the
bulk that differ by the action of a local unitary operator. Such obstructions
are not possible in a theory with dynamical gravity as it is not possible to
completely localize an operator. This is related to the uncertainty principle,
which states that in order to localize a state in position space, one needs
to delocalize it in momentum space. Since energy (which is the charge in
gravity) is a component of the momentum, it is therefore impossible to com-
pletely localize a state that has finite energy. Therefore, the absence of an
uncertainty principle for other charges (for example, the electrical charge in
QED) allows one to create localized excitations in a theory without dynam-
ical gravity.

In the works included in this thesis (see chapters 2, 3 and 4), we avoid
any reference to a particular choice of a theory of quantum gravity and build
our ideas in effective field theory. Thus, the regime we explore only allows
for perturbative excitations on a given state. We then show that there are
certain properties satisfied by quantum gravity at low energies that allow one
to decode a state by making measurements at the boundary of a time slice.
These properties are listed below,

1. Since any finite energy excitation in the bulk must leave an imprint at
the boundary due to the uncertainty principle, this implies that there
are no local gauge invariant operators in gravity.

2. The Hamiltonian of the theory is a boundary term and can be expressed
in terms of the metric fluctuations at the boundary.

3. In effective field theory we can explicitly compute the Hamiltonian and
show that it is a positive operator as it is quadratic in the degrees of
freedom [9].

In [9, 10, 11] we have mostly studied states which lie in the vacuum sector
of the theory, i.e., they are built by acting with low-energy operators on a
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vacuum state. For states in this sector, it can be shown that by performing
certain measurements at the boundary of a Cauchy slice, observers can obtain
complete information about the state in the bulk [10]. The observers measure
the energy of the state by measuring the gravitational flux at the boundary,
so the presence of gravity is crucial in this analysis. We can demonstrate this
process with some simple equations. To aid our discussion we refer to the
figure below to show the location of the observers

Figure 1.3: Location of observers in global AdS.

Physical Protocols for Decoding Information

As local descriptions of the bulk are not gauge invariant, it is often convenient
to describe the state in terms of observables located at the boundary. For
doing this we use the fact that any local operator in the bulk can be expressed
in terms of boundary operator using the HKLL prescription. This is done by
smearing the local operator in the bulk with a kernel having support in the
time interval [0, π] (which is the light crossing time in global AdS in units
where the AdS length is set to 1). This allows one to define a Hilbert space in
terms of gauge invariant boundary operators [4, 5]. Thus, any generic state
on the Cauchy slice can be expressed by the action of an operator on the
vacuum state smeared with a function at the boundary, f(t,Ω). Therefore,
one can express a generic state in terms of some convenient basis operators
smeared with such functions. A simple example of this is the construction of
a state by the action of a single trace operator O(t,Ω) on the vacuum state,

|ψ⟩ =
∫ π

0

dt

∫
dΩO(t,Ω)f(t,Ω) |0⟩ . (1.1)
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This is just a particular choice of labeling the state and many other choices
are possible. Another convenient choice for labeling the state is to use en-
ergy eigenstates as done in [10]. The role of the observers located in the
thin time band [0, ϵ] (described by the red region in figure 1.3) is to mea-
sure the function f(t,Ω) by performing physically motivated measurements2.
By physically motivated measurement we refer to actions performed by the
observers that do not violate unitarity and causality. More concretely the
observers are given two kinds of powers. One, to interact with the state
and act on it with unitaries (comprising of operators smeared in the thin
band [0, ϵ]) and the other, measuring the energy of the system3. In [10] we
have shown how given some prior about the state, which in general has a
more complicated structure than (1.1), these two powers are sufficient for
the observers to completely decode the state.

There exists a similar protocol for making measurements in flat spacetime
near null infinity. This procedure utilizes the description of the Hilbert space
in terms of asymptotic observables near null infinity as described in [5] and
the protocol in AdS described above [11]. Once again the observers have to be
given two kinds of powers to interact with the state and following very similar
prescriptions they can completely decode the information content of the state.
The crucial difference between the flat space example and the AdS example is
that one should be careful about the basis in which the state is parametrized.
In the AdS case, it is natural to choose the basis state as those of energy
eigenstates, as they provide a discrete basis for parametrizing fluctuations.
However, it is not possible to extend that directly to flat spacetime as energy
is not discrete. To circumvent this issue, we introduced a discrete basis, which
is similar to the usual Fock space basis, at null infinity and then described
how one can use physical protocols to decode the state completely. This
version of the protocol only works for massless particles in flat spacetime
and it is not yet clear how to extend this to massive particles [11].

2By relaxing this requirement, it is also possible to show that the function f(t,Ω)
can be measured by evaluating correlation functions of the form ⟨ψ|HO(t0,Ω)|ψ⟩ , with
t0 ∈ [0, ϵ] .

3Note that this measurement has to be performed in a quantum mechanical manner.
We emphasize that this is not a measurement that is possible in the current universe and
would require the presence of meta-observers who span over the boundary at a given time.
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Holography from Wheeler-DeWitt equation

In another project, we have demonstrated how the principle of holography is
applicable for any state that solves the Wheeler-DeWitt equation perturba-
tively in GN [9]. The Wheeler-DeWitt equation is a key equation in quantum
gravity that describes the quantum state of the universe as a whole, rather
than just the behavior of individual particles. Solving the Wheeler-DeWitt
equation is often viewed as a complementary approach to quantum gravity, in
which the gravitational excitations are not thought of as strings but as solu-
tions to a particular wave equation. This equation imposes the gravitational
constraints (often known as the Gauss law) as a quantum equation,

HΨ = 0 (1.2)

where Ψ is the wave functional of the system containing information about
the gravitational and matter degrees of freedom and H is the Hamiltonian
constraint (viewed as an operator). In our work, we have solved this equation
(along with the momentum constraint HiΨ = 0) perturbatively in GN . The
principle of holography of information in this context is the statement that
if two solutions of these equations are the same near the boundary of AdS,
then they must be the same everywhere. By two wave functionals being
the same near the boundary, we simply mean that all correlation functions
consisting of operators near the boundary (including the Energy operator)
should be equal. In our work we show how these solutions satisfy the principle
of holography of information in AdS, thereby resting the principle (for any
theory of quantum gravity) on a firmer footing.

Holography of Information and Asymptotic Symmetries

Having established the principle of information holography in flat space in
four dimensions [5], a natural question was on how this could be extended to
higher dimensions. This led us to study the phase space of general relativity
in flat spacetime in higher (even) dimensions in greater detail. This falls
under the study of asymptotic symmetries. These are symmetries typically
corresponding to two kinds of transformations, namely, supertranslations and
superrotations. We first review these and then state how our results are
connected.

Starting with the seminal work of Bondi-Metzner-Sachs (BMS) and van
der Burg in the 1960’s, we have learnt a great deal about the asymptotic
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structure of gravity in four dimensions [12, 13, 14, 15]. While originally stud-
ied because of its inherent importance in understanding the nature of gravity,
the study of asymptotic symmetries is crucial in formulating the principle of
holography of information in asymptotically flat spacetimes. In recent years,
the work by Strominger and collaborators [16, 17, 18] has been of central im-
portance for reviving the interest in the study of asymptotic symmetries, and
also for uncovering a remarkable connection between asymptotic symmetries,
soft theorems and the memory effect.

A new kind of symmetry that was obtained by analyzing the asymptotic
structure of gravity is known as Supertranslations. These are a type of sym-
metry transformation that acts at null infinity in flat spacetime. They were
first introduced Bondi, Metzner and Sachs in the 1960s as the BMS group.
The BMS group contains the usual boosts, rotation, and translations along
with an infinite-dimensional subgroup called supertanslation subgroup [13].
This describes the asymptotic symmetry group of flat spacetime in the far
field region of an isolated gravitating system.

Supertranslations are angle-dependent translations at null infinity and
can be seen as a generalization of ordinary translations. They can be thought
of as functions on the celestial sphere, which parametrizes null infinity4. They
can also be viewed as an extension of ordinary translations to the asymptotic
region of spacetime. They are transformations that shift the retarded time at
null infinity by a finite amount, and they are generated by a set of vector fields
that satisfy certain algebraic relations, known as supertranslation algebra.

They also have an important phenomenological relevance which was un-
covered via the work of Strominger, et. al [18]. They are connected with the
gravitational soft theorem, which relates the behavior of scattering ampli-
tudes in the limit of soft particle emissions to the asymptotic symmetries of
spacetime, including supertranslations. Hence they play an important role
in the study of gravitational radiation, as they can affect the scattering am-
plitudes of massless particles in the far-field region. Specifically, they are
related to soft radiation, which corresponds to particles that are emitted or
absorbed at null infinity with zero energy or momentum. It was found that
the S-matrix is invariant under supertranslations and that this symmetry
leads to a set of Ward identities that constrain the form of the S-matrix [18].

Along with supertranslations, there is another kind of extension allowed

4In the usual notation of the flat spacetime, the Celestial sphere represents the S2
sphere parameterized by (θ, ϕ) .
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for the BMS group at null infinity. While supertranslations can be viewed as
a generalization of the ordinary translations at null infinity, it is also possible
to generalize Lorentz transformations. These are known as superrotations.
Superrotations are a type of symmetry transformation that is similar to su-
pertranslations but involve rotations of the celestial sphere at null infinity in
addition to supertranslations [19]. Later, it was also shown that they were
connected to gravitational scattering amplitudes in four-dimensional space-
time, where they were found to be related to soft graviton emission [20, 21].

More specifically, superrotations are transformations that involve parametriz-
ing the null generators of null infinity, while preserving their intersection
angles. In other words, they involve rotating the directions in which null
rays are pointing at null infinity while keeping the overall structure of the
null cones fixed. Superrotations are characterized by an infinite number of
functions that parameterize the rotation angles at each point on the celestial
sphere. They allow for diffeomorphisms of the celestial sphere and can be
viewed as a generalization of the Lorentz transformation at null infinity. Su-
perrotations have been shown to be an infinite-dimensional symmetry group
of the S-matrix in gravitational scattering amplitudes, just like supertransla-
tions. They are related to the subleading soft graviton emission. The study
of superrotations has led to new insights into the structure of scattering am-
plitudes, as well as connections between gravitational scattering and other
areas of physics, such as conformal field theory and holography.

Analyzing the structure of the Hilbert space in the presence of super-
translations was played an important role in demonstrating the principle of
holography of information for massless particles in 4-dimensional flat space
[5]. Motivated by this, we wanted to understand how this result generalizes
to higher dimensions and this required a thorough analysis of the phase space
of non-linear general relativity in higher dimensions.

The first step towards this was taken in [22] where the authors analyzed
the symmetries of null infinity in higher even dimensions for linearized gen-
eral relativity. In our work [23, 24], we have studied symmetries of the full
non-linear theory in (even) dimensions greater than four near null infinity
and constructed the charges corresponding to supertranslations and superro-
tations. One of the central results of our work is that we identify the correct
variables to expand the gravitational fluctuations in the presence of super-
translations and superrotations and evaluate the corresponding conserved
charges.

In [23], we discuss supertranslations in (even) higher dimensions, specif-
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ically focusing on the six-dimensional case. We first specify the free data
of the theory, which are given by the first two subleading coefficients in the
large-r expansion of gab (the metric of the Celestial sphere). The graviton
is defined by a combination of this free data (which are the subleading and
sub-subleading components in r of gab, denoted by Cab and Dab), which is
denoted by D̃ab. This redefined field D̃ab contains the radiative data,

D̃ab = Dab −
1

4
Cc

aCbc −
1

16
qabCcdC

cd . (1.3)

This redefinition does not affect the News tensor (∂uDab), but is necessary
for the graviton to have the correct asymptotic fall-offs and further, for the
theory to admit a finite symplectic form in the full non-linear theory. This
redefinition is also required even if one is studying the linearized theory about
a non-trivial Minkowski background (Cab ̸= 0). In quantum theory, this
implies that the graviton gets redefined depending on the vacuum one is
working with.

We have also computed the supertranslation charge using the covariant
phase space formalism [23]. For this, we first evaluate the symplectic form of
the theory and find that the symplectic form uniquely splits into two parts:
one which is finite and characterizes the radiation of the system, and the
other, carrying information about the vacuum structure of the theory, which
is divergent (when integrated along I+). As the name suggests, the entire
radiation content of the theory is contained in the finite & radiative part.
The split is unambiguous and the ambiguity is fixed by noting that only the
radiative part leads to the correct Noether charge (as implied from the soft
theorems) and also from a spacetime variational analysis. In fact, upon try-
ing to construct the charge from the divergent piece, we notice that it cannot
be expressed as a total variation5. Therefore, the radiative symplectic form
at null infinity is uniquely defined and it also helps us understand the canoni-
cally conjugate variables in the theory. As we point out, the symplectic form
in the non-linear theory is a simple generalization of known results [26], and
therefore the Noether charge can be obtained by following similar steps. We
also compute the Bondi mass and evaluate the supertranslation charge using
that. We find an exact matching between the two expressions – the one via
the radiative symplectic form and the one via the Bondi mass. The Noether
charge in the full non-linear theory is a simple generalization of the result in

5Recent work in [25] has discussed this issue in greater detail.
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the linearized theory about Cab = 0. Upon combining with the results in [11]
it is easy to see that we end up getting the expected Ward identity and there-
fore, the same structure for the Weinberg Soft theorem. As a toy model, we
have also studied QED in higher dimensions and demonstrated how the grav-
itational case can be thought of as a generalization of those results. Given
the similarity between the structure of the phase space constructed out of
the correct variables, and that of the phase space in 4-dimensions, the entire
analysis of [5] can be trivially generalized to that of higher even dimensions
which naturally establishes the principle of holography of information in all
even dimensions.

In more recent work6, we explored the connections between the sublead-
ing soft theorems and asymptotic symmetries, enabling us to construct the
superrotation charge in higher dimensions [24]. This subject is also interest-
ing from the point of view of flat space holography, as it serves as a guiding
principle on the correct phase space variables one should be using in higher
dimensions. Like in the case of supertranslations, we find that for defining
superrotations in higher dimensions, we need a redefinition of the radiative
data, similar to the equation given in equation (1.3). In terms of the rede-
fined variables it is possible to construct the superrotation charge and also
relate this to the subleading soft theorem.

The thesis is organized as follows: In chapters 2 and 3, we demonstrate the
physical protocols for detecting states in AdS and flat space-time respectively.
In chapter 4 we show how the principle of holography of information follows
from the solutions of the Wheeler-DeWitt equation. In chapter 5 we shift
gears and analyze asymptotic symmetries in higher even dimensions. We add
some appendices that aid the analysis in the main chapters.

6The paper [24] is present in the thesis of my collaborator (Arpan Kundu) who is a
graduate student at IMSC, Chennai, at the time of writing this thesis and is not to be
taken into account for my thesis. Its details are only stated in the introduction in brevity
for completion.
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Chapter 2

Recovering Information in AdS

2.1 Introduction

A recent paper [5], which extended previous ideas [4, 27, 28, 29], argued
that a careful consideration of low-energy quantum gravity already suggests
that information about the interior of a spacetime can be obtained from
measurements near its boundary. This result holds both in asymptotically
AdS spacetimes and in asymptotically flat spacetimes. In this chapter, we
present a concrete physical protocol that allows observers near the boundary
of global AdS to extract information about the bulk, when the system is in
a low-energy state.

Consider a set of observers who live near the boundary of global AdS. The
observers are spread out all over the sphere near the boundary. However,
they are equipped with detectors that function only in the time-band [0, ϵ],
and so they cannot make any measurements beyond this time-interval. The
geometry of our setup is shown in Figure 2.1a. Restricting the observers to a
time-band near the boundary provides a precise version of a physically-similar
picture, shown in Figure 2.1b, where one allows the observers to explore the
spacetime on a single time-slice but not enter the bulk region for r < cot( ϵ

2
).

We explain the setup in more detail in section 2.2.
The observers live in a pure state of the theory that is well-described

by an excitation of quantum fields above the global AdS vacuum. We would
like to understand how much information such observers can glean about this
excited bulk state. We will follow the textbook framework used in discussions
of quantum information. We assume that the observers have access to a
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(a) (b)

Figure 2.1: On the left, we have the precise setup of this chapter. The
observers can make manipulations and measurements in a small time band
(shaded in red) near the boundary of AdS. This is physically similar to the
picture on the right, where the observers can explore an annular region near
the boundary of a Cauchy slice that runs through the bulk.

number of identically prepared systems. The observers can manipulate each
system by acting with local unitary operators, and make measurements of
Hermitian operators in their region of spacetime. They can also classically
communicate the results of their measurements to one-another.

In a local quantum field theory, it is clear that the observers cannot
determine much about the bulk state since a large part of the spacetime is
just inaccessible to them. It is commonly believed that leading gravitational
effects should not modify this conclusion significantly, i.e., a common belief is
that in the presence of weak gravity, unless the observers do something that
is extraordinarily complicated, they should still not be able to learn much
about the bulk state.

But, in this chapter, we would like to present a surprising conclusion.
When leading gravitational interactions are switched on, even if the observers
are allowed to act only with simple unitaries, and make only simple mea-
surements, it is possible to develop a protocol that allows the observers to
completely determine the state of bulk quantum fields.

For the impatient reader, we immediately explain the main technical idea.
First, consider the simplest example. Say that the observers are given the
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task of verifying whether the state in the bulk — which we denote by |g⟩ and
normalize using ⟨g|g⟩ = 1 — is the global AdS vacuum, which we denote by
|0⟩, or some other state. In a local quantum field theory, this task is impos-
sible: in a local QFT, the states |0⟩ and Ubulk|0⟩, where Ubulk is a unitary
operator localized near the middle of AdS on some time slice, are completely
indistinguishable if one is restricted to observations near the boundary on
the same time slice. But, in the presence of gravity, the observers can use
gravitational effects to measure the Hamiltonian H, which is just given by
integrating a particular component of the metric on the boundary sphere.
In global AdS, the possible answers for H are quantized. We assume that
the observers can measure H with sufficient accuracy to distinguish the first
excited state in global AdS from the vacuum. Since H is an operator in the
quantum theory, by the standard rules of quantum mechanics, the observers
can get different possible results for their measurement. For this task, all they
need to do is to determine the relative frequency with which their measure-
ment yields 0. By the Born rule, this is given by ⟨g|P0|g⟩ where P0 = |0⟩⟨0|
is the projector onto the vacuum. If this is 1, they know the global state is
the vacuum, and otherwise it is not.

The skeptic might feel that this is a special case since the vacuum is
uniquely identified by a conserved charge. So we now give the observers a
harder task. Let X be some simple Hermitian operator accessible to the
observers, and consider the state |X⟩ = X|0⟩. The observers are now given
the task of determining if the global state |g⟩ coincides with |X⟩. Once again,
in a local quantum field theory, this task is impossible. The observers cannot
distinguish between |X⟩ and Ubulk|X⟩. But this task can be accomplished
using gravitational effects.

For simplicity, let us assume that the observers determine, using the pro-
cedure above, that ⟨0|g⟩ = 0. Then they can complete their task using a two
step process.

1. First, they act on the state with a one-parameter family of unitary
operators, U = eiJX , for various values of J , near J = 0.

2. After this manipulation, they measure the energy, and determine the
relative-frequency with which they obtain 0, to second order in J .

A very simple calculation yields the expected answer. Expanding the unitary
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operator to second order in J ,

⟨g|e−iJXP0e
iJX |g⟩ = ⟨g|(1− iJX− 1

2
J2X2)P0(1+ iJX− 1

2
J2X2)|g⟩+O

(
J3

)
.

(2.1)
Using the fact that P0 = |0⟩⟨0| and that ⟨0|g⟩ = 0 and also that X|0⟩ = |X⟩
we see that

⟨g|e−iJXP0e
iJX |g⟩ = J2|⟨g|X⟩|2 +O

(
J3

)
. (2.2)

So the protocol used by the observers directly yields the magnitude of the
overlap of |g⟩ with |X⟩. If this is ⟨X|X⟩ 1

2 , the observers know the two states
are the same, and they differ otherwise.

The protocol that we outline in section 2.3 is just a souped-up version of
the two examples that we provided above. Due to the entanglement present
in the vacuum, it turns out that states of the form X|0⟩, where X is a
low-energy Hermitian operator, near the boundary generate a basis for the
entire low-energy Hilbert space. By repeating the procedure above for various
choices of the operator X, we show that the observers can unambiguously
identify the bulk state. The technical subtlety is simply that the Hilbert
space is a complex vector space, whereas Hermitian operators form a real
vector space; so, we need to do work to extract some phases from within the
state. We also address other special cases, including the case where ⟨g|0⟩ ≠ 0
in section 2.3.

We emphasize that even in a local quantum field theory, operators of the
form X|0⟩ form a basis. But this property of the vacuum (called cyclicity)
is of absolutely no use to near-boundary observers in their task of gleaning
bulk information without the operator P0, which they can access only in a
theory of gravity. In fact, in section 2.4, we explain that without gravity, the
near-boundary observers obtain exactly zero information about the state near
the center of AdS. Even in a non-gravitational gauge theory, the so-called
“split property” tells us that it is possible to arrange matters so that every
observation made by the near-boundary observers yields the same result that
it would have yielded in the vacuum state, even if the state near the center
of the AdS is completely different. Likewise, if one retains gravity but takes
the classical limit, the observers are again unable to discern details of the
bulk state. (See section 3.3 of [5] and also the discussion in [30].)

In this chapter, we do not explore the implications of our analysis for
black holes. But it appears to us that the effect above is closely tied to a key
conclusion that has emerged from studies of black hole evaporation: the idea
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that degrees of freedom in the interior of the black-hole have a dual descrip-
tion in the exterior. In the context of discussions of the black hole information
paradox a few years ago [31, 32], this point was emphasized in [33] and in
parallel work [34, 35]. Subsequently, a similar point was also made in the
ER=EPR proposal [36]. When one considers black holes in asymptotically
flat space, an extrapolation of these arguments suggests [5] that information
about the microstate can always be extracted by measurements outside the
black hole. On the other hand, a different setup has also been studied in a
number of recent papers [37, 38, 39, 40, 41] which consider black holes in AdS
that evaporate into baths without dynamical gravity. Even here, precisely
in line with previous expectations, the important physical point is that at
late times the black-hole interior is described by degrees of freedom in the
bath. Neglecting this identification leads to paradoxes, not only about black
holes but even about empty AdS [42]. The analysis in this chapter and in [4]
is relevant to this story because it provides a clear physical origin of these
effects that identify degrees of freedom in one region with those in another
region, in a Lorentzian setting, and without invoking any indirect arguments.

The results in this chapter also imply that when standard quantum infor-
mation measures are applied to the geometry shown in Figure 2.1b, then the
answers obtained after including the effects of dynamical gravity are very
different from the answers without dynamical gravity. In particular, since
information about the entire Cauchy slice is already present in the dark-red
“annular region” of Figure 2.1b, the von Neumann entropy of that region is
zero when the global state is pure. Similarly if one considers two different
states, then the relative entropy of the states with respect to the “algebra”
of the annular region is the same as the relative entropy with respect to the
“algebra” on the full Cauchy slice.

In [43], it was suggested that usual notions of quantum information-
localization could be recovered by considering only “simple operators”. This
was also the motivation behind the introduction of the “little Hilbert space”
[44] or “code-subspace” [45]. But the surprising aspect of the analysis here
is that it is performed entirely within the code subspace. Note that these
comments are not in contradiction with the results of [46, 47] since the annu-
lar region of Figure 2.1b is not the entanglement wedge of any region on the
boundary. We discuss this issue, and also some possible caveats in section
2.5.

The analysis presented here can be thought of as a perturbative check of
the idea that holography [1, 3, 48] is implicit in gravity, even from a low-
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energy perspective. We focus on AdS to avoid some of infrared intricacies
of flat space. But we will return to a consideration of flat space in the next
chapter.

An outline of this chapter is as follows. We frame the problem precisely
in section 2.2. Section 2.3 contains the central part of our analysis, and
we explain how bulk information can be extracted from manipulations and
measurements near the boundary. We explain in section 2.4 why this protocol
fails in theories without gravity, and conclude with a discussion of some
implications and subtleties in section 2.5. We are frequently asked whether
our protocol would work in the presence of global symmetries, and so we
include a special example showing how to deal with global symmetries in
section 2.3.

2.2 Setup

In this section, we clearly outline our physical setting, the task that the
near-boundary observers are given, and the precise powers that they have.

We will consider a spacetime that, asymptotically, tends to global AdSd+1.

ds2 −→
r→∞

−(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

d−1. (2.3)

In our setup, gravity is weak, but it is dynamical. The AdS radius sets
a natural energy scale and, in these units, the scale at which gravitational

effects become strong is denoted by N = G
−1

(d−1) , where G is the low-energy
Newton’s constant. The physical assumption in our analysis is that the low-
energy predictions obtained by straightforwardly quantizing gravity are not
affected by UV-effects.

There may be additional dynamical fields in the theory, including string-
theoretic excitations. We will assume for simplicity, as is standard in AdS/CFT
discussions, that there is no hierarchy of interactions and all tree-level interac-
tions are controlled by the parameter 1

N
, but this assumption can be relaxed

as explained in Appendix A. The detailed field-content of the theory will not
be important and, apart from the graviton, we will use massive scalars below
to discuss the effect of dynamical fields. If ϕ is such a field of mass m, then
we will consider normalizable excitations of this field with a boundary value

ϕ(t, r,Ω) −→
r→∞

1

r∆
O(t,Ω), (2.4)

26



where ∆ = d
2
+

√
(d
2
)2 +m2. The operators O(t,Ω) restricted to the time-

interval t ∈ [0, ϵ] are the natural observables in this setup.
The low-energy Hilbert space can be obtained by quantizing the dynam-

ical fields. A standard analysis tells us that this Hilbert space contains a
unique vacuum, |0⟩, that is separated from the lowest excited state by a gap
proportional to the AdS scale.

The global state that the observers are meant to probe is denoted by |g⟩
throughout this chapter. This is a pure state. It is also a low-energy state in
the following sense. We introduce a UV-scale Λ. This scale defines what we
mean by “low energy” whenever we use the term below. Λ is a user-defined
scale with the property that it is parametrically smaller than the Planck
scale: Λ ≪ N . Then we demand that

1− ∥PE<Λ|g⟩∥2 ≪ 1, (2.5)

where PE<Λ is the projector onto states with energy lower than Λ. Note that
the condition above allows the the state to have some small components of
high-energy. Such high-energy tails are invariably generated by the action of
local unitaries. But these tails will not be of interest to us.

2.2.1 Task of the observers

The observers have a simple task. They need to determine the global state
|g⟩ up to a given accuracy. More precisely, the observers are challenged with
identifying a state |gest⟩ such that

1− |⟨gest|g⟩|2 ≤ δ, (2.6)

where δ is a parameter with the property that δ ≪ 1 but δ ≫ 1
N
. This

means that we require the observers to determine the state to a high-level
of accuracy, but not such a high-level that the accuracy competes with the
ratio of the cosmological scale to the Planck scale.

Of course, if the observers are allowed to directly probe the bulk, this is a
straightforward task. But, as we describe below, the observers are restricted
to a near-boundary region and it is only by using uniquely gravitational
effects that they will be able to perform this task.
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2.2.2 Abilities and limitations of the observers

The observers are given access to a number of identically prepared systems,
all in the state |g⟩. They are allowed to conduct multiple experiments and
collate the results of these experiments in order to identify the close-enough
state |gest⟩. One way to envision the setup is to think of a larger spacetime, in
which local patches are well approximated by global AdS. These local patches
are then prepared in identical states. The observers make measurements in
each local patch, and then travel across the larger spacetime to collate the
measurements from different patches.

We emphasize that the need for identical copies is not special to our
protocol but is a very basic requirement in any quantum-information analysis.
Since measurements are probabilistic, a single copy of the system cannot be
used to determine its state. In particular, even bulk correlation functions,
which are expectation values of products of operators, can only be measured
by averaging the results of measurements in identical systems. Therefore
even if the observers were to explore the bulk to obtain information, and not
use our protocol at all, they would still require multiple identical copies in
order to be able to fix the bulk state.

The interesting restrictions arise in the sort of manipulations and mea-
surements that the observers are allowed to make, and we describe these in
turn below.

Allowed manipulations

In quantum mechanics, it is standard to allow observers to manipulate the
system by acting with unitary operators. Note that it is not permissible to
“act” on a state with arbitrary Hermitian operators. But Hermitian oper-
ators can be added to the Hamiltonian of the theory, and this results in a
unitary transformation of the state.

We want to remain within the realm of the low-energy theory. We will do
this by allowing the observers to modify the state through only low-energy
simple unitaries. The allowed unitaries depend on a parameter J and we
demand that

U = 1 + iJX +O
(
J2

)
, (2.7)

where X is a low-energy, Hermitian operator from the time band [0, ϵ] near
the boundary of AdS. The operator X must also be a simple operator which
means that when it is expressed as a polynomial in the elementary observables
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O(t,Ω) of (2.4) it does not involve any terms of degree higher than Λ. We
will only consider this unitary in the vicinity of J = 0. In (2.7) the reason
that we have not written the O(J2) term explicitly is that, as we show below,
it drops out of the analysis.

The response of the system under the action of the unitary above can be
written as a modification of the state, |g⟩ → |gmod⟩ where

|gmod⟩ = |g⟩+ iJX|g⟩+O
(
J2

)
. (2.8)

We pause to mention two points.

1. There are several physical ways of generating the unitary action (2.7),
and our protocol is insensitive to the method used. In the introduction,
to keep the notation simple, we simply used the unitary eiJX . But,
physically it may be more natural for the observers to turn on a source
near the boundary that deforms the Hamiltonian in the time-interval
[0, ϵ] by a term, −Jx(t), where

∫ ϵ

0
x(t)dt = X. The precise effect of

this deformation is an action by the unitary T
{
ei

∫
Jx(t)dt

}
where T is

the time-ordering symbol. But to first order this unitary also coincides
with (2.7), which is all that we require.

2. We will consider many different manipulations of the state below. But,
in order to avoid introducing a plethora of symbols, the relevant unitary
is always denoted by U and the the modified state is always represented
by |gmod⟩. So, the notation |gmod⟩ may refer to different states below,
but in each case it will appear immediately after we explain the ma-
nipulation that produces it.

Allowed measurements

The observers are allowed to perform measurements of low-energy operators
near the boundary that are localized in the time-band [0, ϵ]. We are partic-
ularly interested in a measurement of the energy through the metric. In a
gravitational theory in AdS, when Fefferman Graham gauge is chosen near
the boundary, the energy of the state is given by the subleading falloff of the
metric [49].

H =
d

16πG
lim
r→∞

rd−2

∫
h00(r, t,Ω)d

d−1Ω, (2.9)

where hµν is the deviation of the metric from the global AdS metric displayed
in (2.3). This is just a manifestation of the Gauss law. (A gauge-invariant
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expression for the energy can be found in [50].) We would like to make a few
comments.

1. Since the energy is a delocalized observable, it can be measured in two
ways. First, we may consider a team of observers spread out at very
large r and all points of the sphere. Each of these observers measures
the local value of the metric, and the observers then add their results to
obtain the expression for (2.9). Alternately, a single observer may use
multiple identically prepared systems, make measurements at different
points on the sphere in different systems, and then add up her results.

2. The energy is a quantum mechanical observable. This means that, ex-
cept in energy eigenstates, its measurement does not yield a definite
value. However, in global AdS, the possible values obtained upon mea-
suring the energy are quantized since energy eigenstates are separated
by a gap that is proportional to the inverse AdS length.1 Both the
quantum fluctuations, and the quantized nature of the energy will be
useful for us.

3. When the observers measure the energy, there is some probability that
they might obtain the answer 0. By the standard rules of quantum
mechanics, in the state |gmod⟩, this probability is given by

⟨gmod|P0|gmod⟩, (2.10)

where P0 = |0⟩⟨0|. We will be interested in this probability to obtain
0, not only in the original state, but also after we have manipulated
the state.

4. We do not require arbitrary accuracy in the measurements above. For
instance, as in any quantum mechanical system, to truly measure (2.10)
to arbitrary accuracy would require an infinite number of systems. Here
we will be satisfied if the observers can make measurements so that

|⟨gmod|P0|gmod⟩measured − ⟨gmod|P0|gmod⟩true| ≪ δ, (2.11)

where δ is the accuracy scale set in the task.
1This can be seen by straightforwardly quantizing fields about global AdS and ex-

amining the low-energy spectrum. From the perspective of AdS/CFT, we note that the
spectrum of energy levels in global AdS is dual to the spectrum of operator-dimensions in
the boundary theory, which is expected to be discrete.
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2.3 Protocol to extract information

We now describe how the observers near the boundary can complete the
task described in section 2.2, using the manipulations and measurements
described there. First we describe the main idea, and then describe a more
detailed algorithm that covers some subtleties and exceptional cases.

2.3.1 The main idea

In describing the main idea, we will make certain simplifying assumptions.
However, we emphasize that our procedure is completely general, and in the
next subsection we account for all possible special cases.

For simplicity, consider a state where ⟨0|g⟩ = 0, i.e. the state that the
observers are given has no overlap with the vacuum itself. If the state is not
of this form to start with, we explain below how the observers can perform a
simple preliminary manipulation to ensure this. Now consider the combined
effect of acting with a unitary (as displayed in (2.7)) followed by the mea-
surement of the energy and a determination of the relative frequency with
which this energy-measurement yields 0 as displayed in (2.10).

This relative frequency is easy to compute in perturbation theory. Using
equation (2.8), we see that the relative frequency with which the measure-
ment of the energy yields 0 is then given by

⟨gmod|P0|gmod⟩ = J2|⟨0|X|g⟩|2 +O
(
J3

)
= J2|⟨X|g⟩|2 +O

(
J3

)
. (2.12)

Note that the second order term above arises from combining two of the O(J)
terms displayed in Eqn. (2.8). Also, as advertised above, we note that we
were justified in neglecting the O(J2) term in Eqn. (2.8); that term does not
enter into the leading result above, since ⟨0|g⟩ = 0. We draw the reader’s
attention to the notation that we have used

|X⟩ = X|0⟩, (2.13)

since we will use the same notation multiple times below.
As described in Appendix A.1, if X varies over the set of low-energy Her-

mitian operators that are localized near the boundary, then the set of states
(2.13) already yields a complete basis for the low-energy Hilbert space. This
may sound like an unfamiliar statement, but this is simply related to the
state-operator map that is familiar from the study of quantum field theories.
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We emphasize that this is not just a formal property of the theory. In Ap-
pendix A.1 we show how to construct the operators dual to a particular state
explicitly.2

The upshot is that the simple physical process described above is already
sufficient to tell us the absolute value of the overlap of |g⟩ with a set of basis
vectors in the theory.

Now this process by itself is not sufficient to tell us the phase of this
overlap. But we can determine the phase as follows. Say that the observers
have two reference Hermitian operators, Xr and Xi. These operators have
the property that the matrix elements of these operators between the state
|g⟩ and the vacuum are both non-zero and purely real and purely imaginary
respectively.

⟨g|Xr⟩ = Re (⟨g|Xr⟩) ̸= 0; ⟨g|Xi⟩ = iIm (⟨g|Xi⟩) ̸= 0. (2.14)

Here, as above, we have used the notation |Xr⟩ = Xr|0⟩ and likewise for |Xi⟩.
We explain below how the observers can generate such reference operators
without much difficulty.

Then the phase of ⟨g|X⟩ can be fixed easily for all other operators. The
observers first act with the unitary

U = 1 + iJ(Xr +X) + O
(
J2

)
, (2.15)

and then by measuring the energy, as above, they determine the expectation
value of P0 in the modified state to second order in J .

This measurement allows the observers to determine |⟨g|Xr⟩ + ⟨g|X⟩|2
through direct measurement. But note

Re (⟨g|X⟩) = |⟨g|Xr⟩+ ⟨g|X⟩|2 − ⟨g|Xr⟩2 − |⟨g|X⟩|2

2⟨g|Xr⟩
. (2.16)

2We have found that this point often causes confusion, and so we would like to repeat
that the set of states in (2.13) would form a basis for the Hilbert space even in a QFT with-
out gravity. But this property by itself would not enable the observers near the boundary
to obtain any information about the behaviour of the state |g⟩ in the bulk in a local QFT.
In gravity we are assisted by the fact that the process of measuring the energy, and deter-
mining the frequency with which the measurement yields 0, corresponds, mathematically,
to the insertion of a one-dimensional projector P0 in (2.12). In non-gravitational theories,
including gauge-theories, as we explain in section 2.4, the measurement of any operator
near the boundary always corresponds to an infinite-dimensional projector, and so the
near-boundary observers can obtain no information about the bulk.
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Since all terms on the right hand side are known, the observers can use this
to determine Re (⟨g|X⟩). This still leaves a sign ambiguity in Im (⟨g|X⟩).
This can be fixed by acting with the unitary

U = 1 + iJ(Xi +X) + O
(
J2

)
, (2.17)

and measuring P0 in the modified state. The observers use this to determine
|⟨g|Xi⟩+ ⟨g|X⟩|2 and then note that

Im (⟨g|X⟩) = |⟨g|Xi⟩+ ⟨g|X⟩|2 − |⟨g|Xi⟩|2 − |⟨g|X⟩|2

2Im (⟨g|Xi⟩)
. (2.18)

Note that the left hand sides of equations (2.16) and (2.18) are subject
to a strong consistency check: upon squaring and adding, they must yield
|⟨g|X⟩|2, which is known independently.

By using this procedure, the observers can determine the overlap of |g⟩
with any state of the form (2.13). Since such states form a basis, this com-
pletely determines |g⟩.

2.3.2 Details of the protocol

We now fill in some of the details that we omitted above, address various
possible exceptions, and explain how to generate the reference operators used
above. We start by explaining how the observers can perform an initial
manipulation on the state to remove its overlap with the vacuum.

Preliminary step: Determination of |⟨0|g⟩|2 and initial manipulation

First, the observers make a number of measurements of the energy on their
identically prepared systems, without performing any manipulation at all.
The probability that they obtain the answer 0 is given by

⟨g|P0|g⟩ = |⟨0|g⟩|2. (2.19)

By performing a sufficient number of measurements so that the relative fre-
quency tends to the probability, they are able to determine |⟨0|g⟩|2 to any
desired accuracy. If |⟨0|g⟩|2 = 0, the observers proceed to the next step.

Otherwise, the observers only need to perform a simple manipulation of
the state. They act with a simple local unitary that takes

|g⟩ → Uz|g⟩, (2.20)
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so that ⟨0|Uz|g⟩ = 0. The construction of this unitary is described in greater
detail in Appendix A.2. But the main idea is very simple: it is easy to
make two states in a large Hilbert space orthogonal by altering the state
of a single degree of freedom. Here, let O(t,Ω) be the boundary value of
a bulk propagating field as displayed in (2.4). By smearing this field with
two suitably chosen functions, f1, f2 which have limited support both in time
— so that they vanish outside t ∈ [0, ϵ] — and in space — so that they
vanish outside a small region on the sphere — we can find operators that
satisfy the Heisenberg algebra and thereby isolate a simple-harmonic degree
of freedom. The local unitary described in Appendix A.2 acts only on this
simple harmonic degree of freedom. This is already sufficient to make the
state Uz|g⟩ orthogonal to the vacuum. The unitary may inject some energy
into the state, but the state remains a low-energy state.

Note that if the observers can reconstruct the state Uz|g⟩, since they know
the unitary, Uz, they can back-calculate the state |g⟩. In the discussion below,
we will assume that this unitary operation has been performed. Rather than
introducing separate notation for the case where ⟨0|g⟩ = 0 from the start,
and for the case where the observes are required to act with an additional
unitary, we will simply assume that ⟨0|g⟩ = 0 in all equations below.

Determination of reference operators

We now show how the observers can find two operators that satisfy the
relations (2.14).

The operator Xr is particularly easy to find. By trial and error and
by using the protocol described above, the observers need to find only one
Hermitian operator with the property that |⟨g|Xr⟩|2 ̸= 0. Since the overall
phase of |g⟩ is physically meaningless, the observers can immediately choose
the convention that

⟨g|Xr⟩ = |⟨g|Xr⟩|, (2.21)

which satisfies the first part of (2.14).
The observers can now find the operator Xi as follows. Consider the set of

all states at a given energy. We denote these states by |E, {ℓ}⟩ where we have
separated the energy eigenvalue, E, from other possible quantum-numbers of
the state that we have clubbed into {ℓ}. Then, for each state at this energy,
it is always possible to find two Hermitian operators, XE,{ℓ} and YE,{ℓ} near

34



the boundary, which have the property that(
XE,{ℓ} + iYE,{ℓ}

)
|0⟩ = |E, {ℓ}⟩. (2.22)

Note that the operator on the left-hand side is not Hermitian due to the
factor of i that multiplies YE,{ℓ}.

We pause to mention an important physical point. The observers do not
need to find the exact operatorsXE,{ℓ} and YE,{ℓ} that satisfy equation (2.22).
It is acceptable for them to attain a level of accuracy that is controlled by
the error δ that appears as part of the task-specification in equation (2.6). In
particular, the explicit construction of such operators in Appendix A.1 does
not keep track of O

(
1
N

)
corrections, which is not a problem because δ ≫ 1

N
.

Now, by manipulating the state with various unitaries, as indicated in
the table below, the observers can obtain a number of physical quantities.

Unitary Manipulation Quantity Inferred

1 + iJXE,{ℓ} +O(J2)
∣∣⟨g|XE,{ℓ}⟩

∣∣2
1 + iJYE,{ℓ} +O(J2)

∣∣⟨g|YE,{ℓ}⟩
∣∣2

1 + iJ
(
XE,{ℓ} +Xr

)
+O(J2) Re

(
⟨g|XE,{ℓ}⟩

)
and

∣∣Im (
⟨g|XE,{ℓ}⟩

)∣∣
1 + iJ

(
YE,{ℓ} +Xr

)
+O(J2) Re

(
⟨g|YE,{ℓ}⟩

)
and

∣∣Im (
⟨g|YE,{ℓ}⟩

)∣∣
1 + iJ

(
XE,{ℓ} + YE,{ℓ}

)
+O(J2) Im

(
⟨g|XE,{ℓ}⟩

)
Im

(
⟨g|YE,{ℓ}⟩

)
(2.23)

In some cases, the quantity on the right column in the table above may be
related to the direct observable through some simple algebra. For instance,
in the last line above, we have

|⟨g|XE,{ℓ}⟩+ ⟨g|YE,{ℓ}⟩|2 = |⟨g|XE,{ℓ}⟩|2 + |⟨g|YE,{ℓ}⟩|2 + 2Re(⟨g|XE,{ℓ}⟩)Re(⟨g|YE,{ℓ}⟩)
+ 2Im(⟨g|XE,{ℓ}⟩)Im(⟨g|YE,{ℓ}⟩).

(2.24)

The observers can determine the product of the imaginary parts since they
know all other terms in the equation above: they obtain the left hand side of
the equation through direct measurement and know the other terms on the
right from previous measurements.

The table above leaves the observers with an ambiguity in the sign of the
imaginary part of the overlap of |g⟩ with the various basis vectors. This is
because, in each case they know the real part and only the magnitude of the
overlap. But since the last line in the table tells them about the product
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of the imaginary parts, this is a correlated ambiguity. Once they infer the
sign of the imaginary part of a single overlap, they can immediately infer the
signs of all the other imaginary parts.

This single sign can be fixed as follows. Through a measurement of the
energy, the observers can also determine

⟨g|PE|g⟩ =
∑
{ℓ}

|⟨g|E, {ℓ}⟩|2. (2.25)

where the sum runs over all states at that energy. The physical process
for determining this is simply to measure the energy in the state |g⟩ and
determine the relative frequency with which the result E is obtained. This
directly yields the left hand side. But we have∑

{ℓ}

|⟨g|E, {ℓ}⟩|2 =
∑
{ℓ}

|⟨g|XE,{ℓ}⟩|2 + |⟨g|YE,{ℓ}⟩|2 + 2CE, (2.26)

where we have defined

CE =
∑
ℓ

(
Re⟨g|YE,{ℓ}⟩Im⟨g|XE,{ℓ}⟩ − Re⟨g|XE,{ℓ}⟩Im⟨g|YE,{ℓ}⟩

)
. (2.27)

As we pointed out above, the signs of the all the imaginary parts are corre-
lated. Therefore simply from the measurements in (2.23), we already know
|CE|. From the measurement of ⟨g|PE|g⟩ we can fix the sign of CE and this
immediately fixes the sign of all the imaginary parts.

The reference operator Xi can then be generated using any operator with
a non-zero imaginary part in its matrix element between |g⟩ and the vacuum.
If XE,{ℓ} is such an operator,

Xi = XE,{ℓ} −
Re

(
⟨g|XE,{ℓ}⟩

)
⟨g|Xr⟩

Xr. (2.28)

Complete protocol

Once the observers have determined a set of reference operators, they can
then proceed to systematically determine the overlap of |g⟩ with any set of
basis states as explained in section 2.3.1.

For instance, they may choose to use the basis of energy eigenstates. For
each energy eigenstate, they find the operator dual to it so that it can be
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written in the form (2.22). They then perform the deformations of the Hamil-
tonian given in the Table in (2.23). In addition, they require a manipulation
by the following unitary

U = 1 + iJ(Xi +XE,{ℓ}) + O
(
J2

)
. (2.29)

A measurement of the energy following this unitary then immediately allows
the observers to read off Im (⟨g|XE,ℓ⟩) as explained near equation (2.18).

Together with the other physical quantities obtained by the deforma-
tions displayed in Equation (2.23), this allows the observers to completely
determine ⟨g|E, {ℓ}⟩ — both in magnitude and in phase. Proceeding in
this manner for each separate energy eigenstate, below the UV-cutoff Λ,
the observers completely determine the state |g⟩ to the desired accuracy. A
flowchart describing the entire process, including the verification described
in the next section is shown in Figure 2.2.

No

Yes

No
Repeat with greater

intermediate accuracy

Is Is
Yesevaluate ⟨g|E, {ℓ}⟩

Systematically

for each state with

E < Λ.

Find reference operators

Xr and Xi

|g⟩ → Uz|g⟩

⟨0|g⟩ = 0?

Redefine

STOP1− |⟨gest|g⟩|2 ≤ δ?

Figure 2.2: A flowchart describing the key steps in our protocol.

We would like to emphasize two obvious points.

1. There are various degeneracies in the energy-spectrum, but the ob-
servers can independently determine the overlap with each separate
energy eigenstate. Each eigenstate is associated with a unique set of
Hermitian operators XE,{ℓ} and YE,{ℓ}.

2. The observers can successfully perform their procedure, even if two
energy eigenstates are related by a global symmetry. Since the states
are distinct, the pair of Hermitian operators associated with the two
energy eigenstates by equation (2.22) are also distinct. We give an
explicit example in section 2.3.3.
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Verification

In principle, it is sufficient for the observers to determine the overlap of the
state with all energy eigenstates. However, since this involves a number of
operations, errors may accumulate in this process. So we now explain how
the observers can also verify that they have successfully completed the task,
in only a few steps.

At the end of the process above, the observers have the following estimate
of the state

|gest⟩ = (Xest + iYest) |0⟩, (2.30)

where

Xest =
∑
E,{ℓ}

Re (⟨E, {ℓ}|g⟩)XE,{ℓ} − Im (⟨E, {ℓ}|g⟩)YE,{ℓ}

Yest =
∑
E,{ℓ}

Im (⟨E, {ℓ}|g)⟩XE,{ℓ} +Re (⟨E, {ℓ}|g⟩)YE,{ℓ}
(2.31)

Now the observers act with a two-parameter deformation of the Hamiltonian

U = 1 + i (J1Xest + J2Yest) + O
(
J2
1

)
+O

(
J2
2

)
, (2.32)

followed by an energy measurement and a determination of the frequency
with which this yields 0. As explained above, by determining the O(J2

1 ) ,O(J2
2 ) ,O(J1J2)

terms in this observation, the observers obtain the values of

α = |⟨g|Xest⟩|2; β = |⟨g|Yest⟩|2; γ = Re (⟨g|Xest) Re (⟨g|Yest)+Im (⟨g|Xest) Im (⟨g|Yest) .
(2.33)

Now with α, β, γ defined as above

|⟨g|Xest⟩+ i⟨g|Yest⟩|2 = α + β ± 2
√
αβ − γ2. (2.34)

The observers can easily fix the sign of the square-root. The first check is
that with one of the two possible signs, the observers should obtain exactly
1 for the right hand side. This is already an extremely strong check on the
estimates of the observers. But the observers can additionally verify that this
is the correct sign by using the reference operators above to independently
determine the real and imaginary parts of the overlap between |g⟩ and |Xest⟩
and |Yest⟩.
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2.3.3 An example with global symmetries

In the discussion above, we have not assumed the absence of global sym-
metries. It may be, for other reasons [51, 52], that global symmetries do
not exist in a theory of quantum gravity. But this issue does not affect our
protocol. The main physical point is that our protocol involves not only
measurements of the energy but also of correlators of the Hamiltonian with
other dynamical fields. These correlators can break the degeneracy between
states related by global symmetries.

To demonstrate this, we now give an example of how the observers can
identify the state, in a situation where the bulk theory does have global
symmetries. In addition to the field of mass m dual to a boundary operator
as displayed in equation (2.4), say that we have another field ϕ̃ of exactly

the same mass, dual to a boundary operator Õ.
Then the low-energy theory contains two states of the same energy: d

2
+√

(d
2
)2 +m2. Denoting the normalized states by |∆⟩ and |∆̃⟩, we put the

system in a state
|g⟩ = a|∆⟩+ b|∆̃⟩, (2.35)

with |a|2 + |b|2 = 1. The task of the observers is to determine the complex
number b

a
. (The overall phase of the state is meaningless.)

Both energy eigenstates can be written as

|∆⟩ = (X∆ + iY∆) |0⟩, |∆̃⟩ =
(
X̃∆ + iỸ∆

)
|0⟩. (2.36)

It is possible to find explicit real functions fR(t,Ω) and fI(t,Ω), as explained
in Appendix A.1, that are supported on t ∈ [0, ϵ] and satisfy

X∆ =

∫
O(t,Ω)fR(t,Ω)dtd

d−1Ω; Y∆ =

∫
O(t,Ω)fI(t,Ω)dtd

d−1Ω

X̃∆ =

∫
Õ(t,Ω)fR(t,Ω)dtd

d−1Ω; Ỹ∆ =

∫
Õ(t,Ω)fI(t,Ω)dtd

d−1Ω.

(2.37)

Due to the global symmetry, the same functions fR and fI appear for both
states in the right hand side of the equation above, but notice that |∆⟩ is

produced by applying O to the vacuum, whereas |∆̃⟩ is produced by applying

Õ to the vacuum.

39



As a result of the global symmetry, the states generated by the operators
above satisfy

⟨X∆|Y∆⟩ = ⟨X̃∆|Ỹ∆⟩; ⟨X∆|X∆⟩ = ⟨X̃∆|X̃∆⟩; ⟨Y∆|Y∆⟩ = ⟨Ỹ∆|Ỹ∆⟩;
⟨X∆|X̃∆⟩ = ⟨X∆|Ỹ∆⟩ = ⟨Y∆|X̃∆⟩ = ⟨Y∆|Ỹ∆⟩ = 0.

(2.38)

Using the protocol above, the observers can first find the ratio of the magni-
tudes of the coefficients:

|b|
|a|

=
|⟨X̃∆|g⟩|
|⟨X∆|g⟩|

. (2.39)

Second, they choose the convention for the overall phase of |g⟩ so that
⟨X∆|g⟩ = |⟨X∆|g⟩|. This is equivalent to fixing

a =
|⟨X∆|g⟩|
⟨X∆|∆⟩

. (2.40)

The phase of b can also be found using the operator X∆, from (2.37), in the
role of the reference operator Xr. (The reference operator Xi will not be
required in this case.) Using the method above, the observers can determine
the values of

Re(⟨X̃∆|g⟩) = Re(b⟨X̃∆|∆̃⟩); Re(⟨Ỹ∆|g⟩) = Re(b⟨Ỹ∆|∆̃⟩). (2.41)

Since we already know the magnitude of b, the two equations above unam-
biguously tell us the phase of b, and therefore the complex number b

a
as

required.

2.4 Local quantum field theories

In section 2.3 we explained how, in a theory of gravity, the near-boundary
observers could identify the bulk state. In this section, we explain that in
a local quantum field theory in AdS, not only are the observers unable to
identify the bulk state, their ignorance about the state near the middle of
AdS is complete. This is a consequence of the so-called “split property” of
local quantum field theories that we review below. We start with a discussion
of QFTs without any gauge fields and then include gauge fields.
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2.4.1 Local QFTs without gauge fields

In a local QFT, our treatment can be a little more rigorous because we
no longer need to make any distinction between simple and complicated
operators. Let ϕi(t, r,Ω) be the set of local quantum fields with the boundary
conditions that

ϕi(t, r,Ω) −→
r→∞

1

r∆i
Oi(t,Ω). (2.42)

Then we define two algebras. The first is

A[0,ϵ] = span of{Oi1(t1,Ω1) . . . Oin(tn,Ωn)}, ti ∈ [0, ϵ], (2.43)

with no constraint on the coordinates Ωi and no limit on n. In a local QFT,
this algebra is precisely the same as the algebra of bulk fields on the time-
slice t = ϵ

2
with the radial coordinate in the range r ∈ [cot

(
ϵ
2

)
,∞). We can

also define an algebra of commuting operators

Abulk = span of{ϕi1(t =
ϵ

2
, r1,Ω1) . . . ϕin(t =

ϵ

2
, rn,Ωn)}, ri < cot(

ϵ

2
)−χ.
(2.44)

Here χ is a small parameter that separates the causal wedge of the time
band [0, ϵ] from the support of the operators that are elements of Abulk. The
support of the two algebras is shown in Figure 2.3.

Note that the support of the operators in Abulk is in a region that is space-
like to the time-band [0, ϵ] on the boundary. Therefore, by microcausality,
we have

[A1, A2] = 0, ∀ A1 ∈ A[0,ϵ], A2 ∈ Abulk. (2.45)

We give the near-boundary observers the same task as in section 2.2. Their
powers are that they are allowed to act with an arbitrary unitary from A[0,ϵ]

and make arbitrary projective measurements from the same algebra.
First, we note an obvious point. Let P1, U1 ∈ A[0,ϵ] be, respectively, an

arbitrary projector and arbitrary unitary from the algebra of the time band.
Let Ubulk ∈ Abulk be an arbitrary unitary from the commuting algebra. Then
we have

⟨g|U †
1P1U1|g⟩ = ⟨g|U †

bulkU
†
1P1U1Ubulk|g⟩. (2.46)

This is an exact relation by microcausality. So the observers cannot distin-
guish the state |g⟩ from Ubulk|g⟩ by any combination of possible manipulations
and measurements that they are allowed to make.
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Figure 2.3: In a local QFT, the algebra Abulk supported in the inner region
(green) exactly commutes with the algebra A[0,ϵ] supported in the outermost
region (red). The “split property” of local QFTs tells us that when the
regions are separated by a small “collar” (blue region), the wavefunctions of
the two regions can be prepared absolutely independently. The discussion of
section 2.3 tells us that in a theory with dynamical gravity, split states do
not exist for the configuration above.

The reader might wonder if the observers can get at least “some” infor-
mation about the bulk state. But even this turns out to be impossible by
virtue of the so-called split property [53]. The split property can be phrased
as follows. Let |Ψ1⟩ and |Ψ2⟩ be two arbitrary states in the Hilbert space.
Then the split property tells us that it is possible to find a state |g⟩, so that

⟨g|A1A2|g⟩ = ⟨Ψ1|A1|Ψ1⟩⟨Ψ2|A2|Ψ2⟩, ∀ A1 ∈ A[0,ϵ]; A2 ∈ Abulk. (2.47)

This tells us that it is possible to find a global state |g⟩ with the following
properties.

1. For all observations made near the boundary, |g⟩ looks exactly like |Ψ1⟩.

2. For all observations made in the bulk, |g⟩ looks exactly like |Ψ2⟩.

3. The results of observations made jointly near the boundary and in the
bulk are uncorrelated.

Split states can be constructed explicitly in local QFTS as described in [54].
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We briefly contrast these results with gravity. The analysis of section
2.3 implies that, for the geometrical configuration of Figure 2.1b — where
a region is completely surrounded by its complement — split states do not
exist in gravity, at least within the low-energy Hilbert space. This is closely
tied to the fact that there are no local gauge-invariant operators in gravity.
So, unlike local QFTs, it is simply not possible to find a local unitary Ubulk

that commutes with operators near the boundary and changes the state in
the interior of the spacetime.3

2.4.2 Non-gravitational gauge theories

We now turn to non-gravitational gauge theories. Very superficially, it might
appear that in such theories the near-boundary observers could obtain some
information about the bulk by taking advantage of the conserved charges
that are defined by boundary integrals. However, this turns out not to be
the case. In particular, the procedure of section 2.3 cannot be repeated at all
because there is no analogue of the “projector on the vacuum” which projects
onto a unique state. In contrast, the “projector onto states of zero charge”
in a non-gravitational theory projects onto an infinite-dimensional subspace
of states.

This is physically related to the fact that non-gravitational gauge theories
have exactly local gauge-invariant operators. For instance, consider a small
Wilson loop that is localized at time t = ϵ

2
and is confined in the radial

coordinate to r < cot( ϵ
2
) − χ as we discussed above. This Wilson loop

furnishes an example of a unitary operator Ubulk that commutes with all
physical manipulations and measurements that can be made in the near-
boundary region.

There is no unique way to identify the algebra associated with a region
in gauge theories. This point was discussed extensively in [55, 56, 57, 58].
Physically if one regulates the theory on a lattice, then the “link” variables
cut through the boundary of any region. So one has to decide whether to
count them as part of the region or not. The different possible choices lead
to different centers for the algebra of the region.

3We believe that even in gravity, it should be possible to find split states for geometrical
configurations where the region and its complement both include a part of the asymptotic
boundary. This is consistent with the fact that, in such configurations, it is possible to find
commuting algebras by dressing operators from the region and its complement to different
parts of the asymptotic boundary. But this topic is beyond the scope of this chapter.
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However, since we have a “collar region” that separates the algebra inside
from the algebra outside, the different choices of center should not affect the
validity of equation (2.47), even in gauge theories. This means that once
again, in the absence of gravity, the observers have no information about the
state near the center of AdS.

Note that the observers outside can determine the charge in the union of
the collar region and the interior region. This is the form in which the split
property for gauge theories is stated in [59]. But since the collar can hold
an arbitrary amount of charge, if one focuses attention only on the interior
region, then the near-boundary observers have no information just as in a
local QFT without gauge fields.

Special case: information with priors

We now discuss a special case where the observers are given strong priors
about the possible global state. In this special case, the observers can use
long-range gauge fields to obtain information about the interior. We caution
the reader that both the task given to the observers and the prior information
available to them in this problem is quite different from the discussion in the
rest of the chapter. So we urge the reader not to confuse the discussion in
this subsection with the general discussion in the rest of the chapter.

We again consider two bulk fields, ϕ and ϕ̃ with the same mass m and
boundary values O and Õ as in section 2.3.3. The difference is that we switch
off dynamical gravity but we gauge the global SO(2) symmetry. We also fix
a gauge so that it is meaningful to speak of the value of the fields at a bulk
point ϕ(t, r,Ω). When the symmetry is gauged, the charge, Q, is an element
of the algebra A[0,ϵ] with commutation relations

[Q, ϕ(t, r,Ω)] = iϕ̃(t, r,Ω); [Q, ϕ̃(t, r,Ω)] = −iϕ(t, r,Ω). (2.48)

We now consider the situation where the observers are told ahead of time
that the global state is of the form

|g⟩ = exp

[
iλ

∫ (
f(r,Ω)ϕ(t =

ϵ

2
, r,Ω) + f̃(r,Ω)ϕ̃(t =

ϵ

2
, r,Ω)

)
drdd−1Ω

]
|0⟩,

(2.49)

where f(r,Ω) and f̃(r,Ω) have support for r < cot ϵ
2
−χ. Moreover, we allow

the observers to explore this state for different values of λ near λ = 0. Note
that, by fiat, we have disallowed the action of additional bulk unitaries on
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the state. The observers are given the task of determining the real functions
f(r,Ω) and f̃(r,Ω).

The observers now act with a unitary

U = 1 + iJ

∫ [
O(t,Ω)h(t,Ω) + Õ(t,Ω)h̃(t,Ω)

]
dtdd−1Ω +O

(
J2

)
. (2.50)

In the modified state, the observers measure the global charge and compute
the expectation value of Q2 to first order in J and to first order in λ.

A simple calculation yields

⟨gmod|Q2|gmod⟩ = Jλ
(
⟨f, h⟩+ ⟨f̃ , h̃⟩

)
+ . . . (2.51)

where . . . denotes higher order terms and the inner-product ⟨, ⟩ is defined
through

⟨f, h⟩ ≡
∫

⟨0|{ϕ(t = ϵ

2
, r,Ω), O(t′,Ω′)}|0⟩f(r,Ω)h(t′,Ω′)dd−1Ωdd−1Ω′drdt′

= N∆

∫
f(r,Ω)h(t′,Ω′)

[
1√

1 + r2cos(t′ − ϵ
2
)− rΩ · Ω′

]∆

dd−1Ωdd−1Ω′drdt′.

(2.52)

In the second line above we have substituted the explicit form of the two-
point function, and N∆ is an unimportant numerical factor.

The reader will notice that something interesting has happened. On the
right hand side above, we have a convolution, using the bulk to boundary
propagator, of the function f with h and separately of the function f̃ with
h̃. Since the observers can choose any pair of functions h, h̃ with support in
the time-band t′ ∈ [0, ϵ], this is sufficient to completely reconstruct f .

We will show this by proving that that there is no non-zero function
f so that ⟨f, h⟩ = 0, for all functions h with support in t ∈ [0, ϵ]. This
inner-product is just the real part of the overlap of the bra

∫
⟨0|ϕ(t =

ϵ
2
, r,Ω)f(r)drdΩ with the ket

∫
O(t′,Ω′)h(t′,Ω′)dt′dΩ′|0⟩. In fact the overlap

has no imaginary part because the operators are spacelike separated.4 But,
by the arguments of Appendix A.1, it is impossible to choose f to make this
overlap vanish for all possible choices of h.

4While bulk operators like ϕ may fail to commute with boundary operators like O even
at spacelike separation due to the Wilson lines that stretch from ϕ to the boundary, this
effect appears only at the next order in perturbation theory in the two-point function.
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It is instructive to understand what is happening in this example. The
operators ϕ and ϕ̃ are not local operators since, in a gauge-invariant for-
malism, they would have Wilson lines stretching out to the boundary. The
procedure above took advantage of these Wilson-line “tails” to extract the
functions f and f̃ . The procedure was successful because the observers were
given the prior that the state was of the form (2.49). Without the prior,
the observers could have made no progress because, as explained above, in
a non-gravitational gauge theory, it is possible to hide information from the
near-boundary observers by acting with local gauge invariant operators in
the bulk.

However, in the gravitational setting, since there are no local gauge-
invariant operators, one cannot change the state in the interior without hav-
ing some effect that propagates out to the boundary. This is the essential
reason that in gravitational theories, the observers can determine the state
in the bulk even without a prior of the form (2.49).

2.5 Conclusion and discussion

Main result
Our main result is that in a theory of quantum gravity in global AdS,

observers near the boundary can extract information about the bulk through
a physical process. This result is closely tied to the arguments in [4, 5]. These
papers argued that in theories of gravity — with either asymptotically AdS
or asymptotically flat boundary conditions — operators that probe the bulk
have a dual representation as operators near the boundary. The innovation
in this chapter is that we have provided a physical protocol by means of
which bulk information can be extracted.

Our analysis assumed that observers near the boundary could perform the
standard operations that are allowed in quantum mechanics — manipulations
of the system through unitary operators and projective measurements. The
unitary operators that the observers use in our protocol are in one to one
correspondence with low-energy Hermitian operators in the near-boundary
region. The key part of our protocol is that, in a theory of gravity, the
observers can follow such a unitary with a measurement of the energy, and a
determination of the relative frequency with which this measurement yields
0. By the logic sketched in the introduction, and then explained in greater
detail in section 2.3, the observers can use this procedure to determine the
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state in the bulk.

Implications for quantum information measures
The von Neumann entropy, which is a commonly used quantum-information

measure, precisely measures the uncertainty in the state that remains after an
observer has extracted all possible information that can be obtained through
manipulations by local unitaries and local measurements. But what we have
shown here is that when the global state of the system is a low-energy state,
the near-boundary observers can identify the state precisely with no uncer-
tainty.

In a theory of gravity, since the spacetime can fluctuate, one must be
careful about what one means by the von Neumann entropy of a region. One
possibility is to define a region geometrically using a relational prescription
and then consider quantum-information measures defined with respect to a
set of simple operations confined to that region [43]. With this definition
in mind, consider the region defined by the set of points {r, t = ϵ

2
,Ω} with

r > r0 and Ω arbitrary. This is the shaded annular region shown in Figure
2.1b with r0 = cot( ϵ

2
). This can be defined relationally as the causal wedge

of the boundary time-band with t ∈ [0, ϵ]. Then our analysis suggests that
the von Neumann entropy of this region is 0. This is very different from the
same quantity, as computed in a local quantum field theory, where one might
expect an answer proportional to rd−1

0 after UV-regulation. This provides a
striking example of how the von Neumann entropy is not a perturbative
quantity. Turning on weak gravitational effects changes this quantity from
a finite value to 0. It would be interesting to understand the relationship of
this result with the results of [60].

A similar comment holds for the relative entropy, which quantifies how
well two states can be distinguished using observations in a region. We can
consider the relative entropy of the states on an annular region of the form
above as a function of r0. In a local quantum field theory, by the monotonicity
of relative entropy, we would expect this answer to increase as r0 decreases.
The result of our analysis is that since the information content does not
increase in a theory of gravity, the relative entropy is constant as a function
of r0.

It may be possible to find mathematical generalizations of the von Neu-
mann entropy or relative entropy in the presence of gravity by generalizing
the replica trick [61], or through some other method. But, if these generaliza-
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tions are to have the usual physical interpretation in terms of the information
available in a region then we believe that they should agree with the answers
indicated above.

Also note that our result is not in contradiction with the RT [62, 63]
or HRT formulas [64] or even their quantum corrected versions [46, 47]. In
these setups, one always considers a subregion on the boundary dual to an
entanglement wedge in the bulk. Our analysis is applicable to regions which
include an entire time-slice of the boundary, and so it does not apply to cases
where the region and its complement both include a part of the boundary.

Failure of the split property in gravity
A physical way to understand our result is that each bulk excitation leaves

a distinctive imprint on the wavefunction near the boundary. This imprint
can be read off by near-boundary observers using a set of physical manipu-
lations and measurements. This is quite different from a local quantum field
theory since it means that it is not possible to modify the wavefunction inside
a bounded region without also modifying the wavefunction outside it.

But this immediately means that the “split property” fails in gravity, at
least for the geometrical configuration where a region is surrounded by its
complement. It is sometimes incorrectly stated [65] that gravitational effects
allow one to read off the expectation value of the energy and other Poincare
charges, but do not yield information beyond this. But as the analysis in this
chapter shows, the constraints in gravity are far more powerful and allow one
to obtain complete information about the interior.

We expect that the split property will be recovered if we consider a differ-
ent kind of geometrical configuration, where the region and its complement
both include some part of the asymptotic boundary.

No superluminal communication
A question that is often asked is as follows: what if an observer enters

the bulk and sets off an “explosion” near the middle of AdS. Will the near-
boundary observers not know about this on the same time-slice, and does
this not lead to a protocol for superluminal communication? In fact, our
protocol does not lead to a protocol for superluminal communication and
this can be seen in two ways.

One obvious reason is that the near-boundary observers are spread out
over the entire sphere at large r. In order to determine that an explosion has
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taken place, they need to travel around the sphere to combine their results
and this itself takes at least as much time as the light-crossing time of AdS.
So they cannot extract information about the explosion “any faster” than
another set of observers who are allowed to enter the bulk and directly make
bulk measurements.

But the second deeper reason is as follows. In a local quantum field
theory, the precise way to check if an observer in the interior can send a
signal faster than the speed of light to observers in the exterior is as follows.
We consider two different wavefunctions of the theory so that at a given
time, they differ inside some bounded region but are the same outside. We
then allow the wavefunctions to evolve with time, and check if the region,
within which they differ, grows faster than the speed of light. However,
the failure of the split property alluded to above tells us that one cannot
set up this experiment in gravity at all: if two wavefunctions differ inside,
they will also differ outside. Said another way, the observer inside cannot
transmit information superluminally to the near-boundary observers because
the near-boundary region already contains a copy of all information from the
interior!

We emphasize that it is still possible to ask questions about asymptotic
causality. If we make a disturbance near the boundary at some point of time,
it is still important to check that this disturbance does not travel to another
part of the boundary through the bulk any faster than it can travel through
the boundary. This kind of check was performed in [66] (see [67] for recent
developments) and yields important constraints on bulk dynamics.

Implications for black holes
The analysis in this chapter has explicitly focused on low-energy states. In

the case of black holes, one can ask two kinds of questions. First, consider the
set of states in the vicinity of a given microstate. This is sometimes called the
“little Hilbert space” [44] and it includes excitations in the black hole interior
[68]. Then one can ask if the observers can extend the protocol described
here to uniquely identify the excitation. In effective field theory, the spectrum
of possible excitations about a black hole appears to be continuous because
the gaps between energy levels in the vicinity of a black-hole microstate are
too small to be seen perturbatively. Nevertheless, the analysis of [69, 70]
suggests that our protocol can be extended to black holes, as we will explore
in forthcoming work.
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However, a second kind of question is as follows: can the observers deter-
mine the microstate of the black hole itself from observations in the exterior?
It is clear that this question cannot be answered within the framework of
this chapter where the observers are restricted to acting with simple uni-
taries. But this is not surprising. Any protocol to decode the microstate
of the black hole — whether it involves making direct observations on the
Hawking radiation or indirect observations through gravitational effects as
described here — will necessarily require the observers to perform complex
manipulations and very accurate measurements.

But, with the caveat above, it is interesting that — although such an anal-
ysis requires some careful extrapolations as discussed in [5] — it is, in prin-
ciple, possible to extend this protocol all the way to black hole microstates.

Possible obstructions to the protocol
Our protocol leads to results that are in conflict with common intuitive

notions of locality. So it is important to ask if a more careful consideration of
the physics could reveal possible physical obstructions to the implementation
of this protocol. We now sketch some possibilities in this direction.

The standard framework used in discussions of quantum information relies
on a separation between the system and the observer. This is because both
unitary manipulations and measurements require the observers to deform the
Hamiltonian. We described in section 2.2 how our setup could be realized
by embedding multiple copies of global AdS within a larger spacetime. But
it may happen that this arrangement leads to subtleties. For instance, since
the system is gravitational, the observers cannot decouple exactly from the
system that they are observing.

We have also assumed that there is no obstruction to making measure-
ments of the energy at the AdS scale. But it is possible that such measure-
ments are difficult for some reason. Note that the specific issues discussed in
[71] are not directly relevant for our protocol. The paper [71] was written in
the context of flat space but even there, as described in Appendix B of [5], the
Hamiltonian can be measured accurately by making smeared measurements
over a region with large radial extent. This issue has not been studied in
AdS, but even if such a smearing is required, it can be performed within the
annular region of Figure 2.1b, which corresponds to an infinite range of the
radial coordinate. But we cannot rule out the possibility that other effects
in the “same universality class” are significant in our context.
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We do not have any evidence that effects of the kind above are important.
But it would be extremely interesting if they are, since this would teach us
that, in gravitational systems and in cosmological settings, one must be cau-
tious while using the standard rules for observables in quantum mechanics.
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Chapter 3

Recovering Information in Flat
Spacetimes

3.1 Differences with the AdS Protocol

As summarized in the previous chapter, in [10] we showed that a set of
observers living on a thin time band in global Anti-de Sitter space (AdS) can
determine a state in the bulk via a physical protocol in a theory of quantum
gravity. It has been shown [5] that the knowledge of all possible correlation
functions composed of operators near I+

− , in a particular state, allows one
to reconstruct the state itself. However in this chapter, like in the previous
one, we are restricting ourselves to measurements which can be performed by
observers localized at I+

− in a “physical experiment”. For this purpose, we
shall only consider a class of states |ψ⟩ which are built by exciting the vacuum
state |0⟩ by low energy operators. There are more general classes of states
as discussed in [72] but the examination of these and the construction of a
protocol to detect them from I+

− require more examination that is beyond
the scope of the thesis.

We now discuss the difficulties in constructing such a protocol in flat
spacetime as compared to AdS. Flat spacetime has an intricate IR structure
due to the presence of an infinite dimensional symmetry [17, 73, 18] which
leads to an infinitely degenerate vacuum state. Thus flat spacetime has
multiple vacua in contrast to the AdS spacetime that has a unique vacuum.

Another major difficulty in flat spacetime is the lack of a discrete energy
spectrum (as is the case for the AdS) and hence we have to modify the
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protocol described in the previous section. Since the energy is continuous in
flat spacetime it is not useful to decompose a state |ψ⟩ in terms of a basis
spanned by energy eigenstates. However, we can still exploit the fact that
there is a lower bound of the energy when measured from asymptotic infinity,
which we renormalize to zero. Subsequently, we introduce a more convenient
basis to decompose the states. This is called the normal-ordered basis, which
is very similar to the usual Fock basis (see eq. (3.14)). Throughout this
chapter we represent the matter fields with scalars but this restriction can
be relaxed and we can consider fields of any spin (or even stringy excitations).
By causality, any massless excitation can be expressed in terms of operators
smeared over I+ and therefore the basis is constructed out of fields living
at I+. A similar basis construction is also possible in AdS spacetime but in
that case it was more convenient to work with an energy eigen basis [10].

In this chapter we shall restrict to measuring the energy of states built
using hard operators (an operator with finite energy) on a particular vacuum
state denoted by |0⟩. Using the Born-rule, this reduces to computing expec-
tation values of a product of unitary operators and the projector onto the
vacuum state. We will show that this allows us to completely decode a state
of the kind shown in eq.(3.14).

As discussed in the previous chapter, such a protocol does not violate
causality. In flat spacetime, this is because, in order to measure the energy of
a state, the observers are forced to be spread over the whole Celestial sphere
since the energy is expressed as a surface integral of metric fluctuations over
the entire Celestial sphere (see equation (3.15)). Hence each observer only
measures a part of the metric fluctuation and in order to evaluate the energy,
they have to meet and sum their results. This process clearly takes more than
the light crossing time and therefore prevents any violation of causality.

We review the Hilbert space structure of flat spacetime in section 3.2,
then explain how the protocol gets modified in flat space in section 3.3 and
end with conclusions and discussions on various related ideas in section 3.4.

3.2 Hilbert Space of Flat Spacetime near Null

Infinity

In this section, we review the asymptotic structure of Minkowski spacetime
and how its information is encoded in data at null infinity [5, 14, 74]. More-

53



over, we will revisit how upon quantization these data give rise to the Hilbert
space of the low energy effective theory.

The metric for an asymptotically flat space time near I+ can be written
in the retarded Bondi coordinates [12, 13] as

ds2 = −du2−2dudr+r2γABdΩ
AdΩB+rCABdΩ

AdΩB+
2mB

r
du2+γACDCCABdudΩ

B+... ,

(3.1)
where the retarded time u = t−r with t being the time, r the radial direction
and Ω = (θ, ϕ) the coordinates on the unit sphere S2. The capital latin
letters A, · · · take values on the unit sphere and γAB is the metric of the unit
S2. CAB(u,Ω) is the shear field and it encodes the information about the
radiative degrees of freedom. In this gauge γABCAB = 0, thus the shear is
traceless. The radiative data are encoded at future null infinity I+ which
has the topology R×S2 and is parametrized by (u,Ω). The afforementioned
unit S2 is called the Celestial sphere. DA is the covariant derivative with
respect to the metric γAB and mB is the Bondi mass aspect.

Throughout this chapter we shall work with matter fields which are mass-
less scalar fields, however the results are easily generalizable to other massless
fields. The large−r fall-off of the scalar field is fixed by demanding the finite-
ness of its energy

lim
r→∞

ϕbulk(u, r,Ω) =
1

r
ϕ(u,Ω) +O

( 1

r2

)
, (3.2)

where ϕ(u,Ω) encodes the classical radiative data of the matter field.
At null infinity the gravitational and matter data are not independent as

they are related by the Hamiltonian constraint of General relativity. This
can be explicitly seen from the uu-component of the Einstein equation which
gives the evolution equation for the Bondi mass aspect

∂umB =
1

4
DADBNAB − 1

8
NABN

AB − 4πGT (0)
uu , (3.3)

where NAB = ∂uCAB is the Bondi News tensor and T
(0)
uu is the leading order

of the matter stress tensor, which for a scalar field is given by 1
2
(∂uϕ)

2. Thus
mB is a function of the radiative data and of an integration constant at
u = −∞ (the Bondi mass at I+

+ is zero since we do not consider massive
particles here).
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We move forward to introduce the phase space and the conserved charges.
The radiative phase space is characterized in terms of the News and the Shear
tensor. The Poisson brakets between the two was found to be [14, 74, 15]

{NAB(u,Ω), CMN(u
′,Ω′)} = −16π

√
γ
δ(u−u′)δ2(Ω−Ω′)

[
γA(MγN)B − 1

2
γABγMN

]
.

(3.4)
This will be later promoted to a commutator upon quantizataion.

In the absence of massive particles, the conserved charges of the theory
can be expressed in terms of the integration constant of mB at u → −∞.
These charges are known as the supertranslation charge

Ql,m =
1

4πGN

∫
√
γd2Ω Yl,m(Ω)mB(u = −∞,Ω) (3.5)

where Yl,m are the spherical harmonics on S2. Ql=0,m=0 is the familiar ADM
Hamiltonian. The supertranslation charges can be separated into a soft and
a hard part by using eq.(3.3). This decomposition can also be thought of as
a separation into terms involving linear and non-linear News

Qsoft
l,m = − 1

16πGN

∫ ∞

−∞
du d2Ω

√
γYlm(Ω)

(
DADBNAB

)
, (3.6a)

Qhard
l,m =

1

16πGN

∫ ∞

−∞
du d2Ω

√
γYlm(Ω)

(
1

2
NABN

AB + 16πGNT
M(0)
uu

)
.

(3.6b)
The action of the supertranslation generator on the radiative data at I+

is given by the following poisson brackets

{CMN(u,Ω),Qlm} = Ylm(Ω)∂uCMN(u,Ω)−2
(
DMDNYlm(Ω)−

1

2
γMND

2Ylm(Ω)
)
.

(3.7)
The radiative phase space of asymptotically flat spacetimes at future null

infinity is given by free fields even at the non-linear level and the quantization
of such a theory was developed by Ashetakar, et. al [14, 74, 15]. In the
quantum theory one derives the following commutation relations (obtained
by promoting the Poisson brackets above to commutators)

[NAB(u,Ω), NCD(u
′,Ω′)] = 16πiGN

1
√
γ
∂uδ(u−u′)δ2(Ω−Ω′)

(
γA(CγD)B − 1

2
γABγCD

)
,
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[CAB(u,Ω), NCD(u
′,Ω′)] = −8πiGN

1
√
γ
sign(u−u′)δ2(Ω−Ω′)

(
γA(CγD)B − 1

2
γABγCD

)
,

where the tensors CAB, NAB have been promoted to operators.

3.2.1 Hilbert Space

The naive Hilbert space construction leads to states with divergent norms
[74], but as we will present below (we refer the reader to section 2.3 of [5] for
an extensive discussion) this can be resolved by defining the Hilbert space
as a direct sum over Fock spaces. Each such Fock space is built on top of a
specific vacuum defined by the soft part of the supertranslation charges1.

The vacuum2 is specified by the eigenvalue of the supertranslation charge
with l > 0, i.e, the zero mode of the News

Qlm |{s}⟩ = slm |{s}⟩ (3.8)

where slm ∈ R are also the eigenvalue of the soft part of the super-translation
charge since the hard part annihilates the vacuum. Therefore in order to
completely specify a vacuum state we need to specify the value of {s} ≡
(s00, s1−1, s10, · · · ). This means the vacuum is infinitely degenerate with a
degeneracy of RZ.

We normalize the soft vacua by using a Dirac-delta normalization3

⟨{s}|{s′}⟩ = δ({s} − {s′}) ≡
∏
lm

δ(slm − s′lm) . (3.9)

By acting with the creation operators on each |{s}⟩, we construct the
Fock space H{s}. The total Hilbert space is given from the direct sum

H =
⊕
{s}

H{s} . (3.10)

1We thank Alok Laddha for explaining many issues about the IR structure of flat
spacetime.

2An equivalent construction of the vacuum state is by considering the eigenstates of
the shear mode. See [75] for a detailed discussion.

3Another convenient choice for normalizing the vacuum is to use the Kronecker delta
function.
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To summarize, the Hilbert space of massless states is given by the di-
rect sum of the Fock spaces built using excitations on all possible vacua by
acting with operators at I+. In [5] it was shown that one can reconstruct
the aforementioned Hilbert space by acting on all possible vacua with oper-
ators defined in a small cut near the past of future null infinity I+

− . These
operators form an algebra which we symbolize as A−∞,ϵ and comprise the
set of all functions of operators CAB(u,Ω), ϕ(u,Ω), mB(u,Ω) at I+ with
u ∈ (−∞,−1

ϵ
]. In this chapter we explain how – under certain assumptions

– observers with access to operators at a small cut near I+
− can reconstruct

states by performing specific physical measurements.

3.2.2 Projector onto Vacuum state

Having defined the Hilbert space of the theory we now define the vacuum
state |0⟩ of interest. Since the Hilbert space is a direct sum of the superse-
lection sectors (3.10), the vacuum |0⟩ can be expressed as a superposition of
the soft vacua |{s}⟩

|0⟩ =
∫ ∞

−∞

(∏
l,m

dsl,m

)
q{s} |{s}⟩ ≡

∫
Ds q{s} |{s}⟩ (3.11)

where the smearing functions q{s} are chosen such that |0⟩ is normalizable4.
The vacuum is normalized as ⟨0|0⟩ = 1 and this constrains the smearing
functions q{s} ∫

Ds|q{s}|2 = 1 . (3.12)

The explicit structure of q{s} is not required and we can chose any func-
tion which obeys the normalization above. By definition, the state |0⟩ is
annihilated by the annihilation operators in the Fock space and it is also
renormalized such that it has zero energy. In this chapter we shall restrict
to detecting states which are built by acting with hard operators on |0⟩.

It will also be useful to define the projector onto states with zero energy5.
Since the vacuum is the only state with zero energy in gravity, the projector

4Using a Kronecker-delta normalization in (3.9) would allow us to choose |0⟩ equal to
a particular value of |{s}⟩ instead of smearing over all of them.

5It is more physical to consider a projector onto a thin band of energies near zero and
it can be checked that such a projector (when appropriately normalized) tends to P0 when
the band size is close to zero.
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onto states with zero energy is equivalent to the projector onto the vacuum
state. The projector onto zero energy eigenstates can be expressed as [5]

P0 =

∫
Ds |{s}⟩ ⟨{s}| . (3.13)

Since energy is measured using the ADM Hamiltonian, this projector is an
element of the algebra of operators at I+

− .

3.3 Physical Protocol for detecting Massless

particles in Flat spacetime

In this section we extend the main result presented in [10] for the case of
quantum gravity coupled to massless fields in 3+1 dimensional flat space-
time6. As described in the previous section, the vacuum in flat spacetime is
infinitely degenerate which leads to additional complications as compared to
the AdS case. Therefore, to keep things simple we are going to study states
which are built acting on vacuum |0⟩ with hard operators. We shall discuss
the implications of our protocol for more general states towards the end of
the chapter.

The bulk state in general will be denoted by |ψ⟩. All measurements are
performed by observers who are located near I+

− . Like in the AdS case, the
observers are given two kinds of abilities:

1. They can modify the state by acting on it with a unitary operator
which has support on a small cut near I+

− .

2. They are allowed to measure the energy of the state or a state modified
by the action of a unitary7.

We will prove below that having these two abilities are enough for the ob-
servers to determine the state completely. This will help establish a physical
protocol via which one can, in principle, design experiments which demon-
strate the principle of holography of information.

Like in the AdS case, it is useful to work with a state that does not have
an overlap with the vacuum |0⟩. The same arguments of appendix A.2 can

6We will restrict to 3+ 1 dimensional spacetime but it should be possible to generalize
our results to any even dimensional spacetime.

7We assume that this measurement process does not induce a backreaction on the state.
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be trivially extended to flat space as well. Henceforth, we shall assume that
such a process has already been performed on a given state and |ψ⟩ will
denote states which do not have an overlap with the vacuum.

3.3.1 Basis used for construction

As emphasized before, one crucial difference between the construction in
AdS [10] and flat spacetime is the absence of discrete energy eigenstates
in the latter. This means that the energy eigenstates are a natural choice
of basis for the expansion of the state in AdS but not in flat spacetime,
as the energy is continuous. We therefore construct another basis called the
normal ordered basis which allows us to reconstruct the state using a physical
protocol8. It will be shown how this method allows us to follow similar steps
for reconstruction as those in the AdS case. For simplicity, we first explain
the protocol by working with a state which is built out of operators of a
single flavour. We later extend this to states built with multiple flavours.

Any state |ψ⟩ constructed out of a single flavoured field ϕ on top of the
vacuum |0⟩ can be expanded in the normal ordered basis as

|ψ⟩ =
∫ ∞∑

n=1

n∏
j=1

: ϕ(uj,Ωj) : gn(u⃗, Ω⃗)du⃗dΩ⃗ |0⟩ (3.14)

where gn(u⃗, Ω⃗) ≡ gn(u1,Ω1;u2,Ω2; · · · ;un,Ωn) are certain smooth smearing
functions. Here :: denotes normal ordering and it is defined by pushing all the
creation operators in the expansion to the left and the annihilation operators
to the right9. From the definition of the state |ψ⟩ in (3.14) we see that
⟨0|ψ⟩ = 0. We show in the following subsections how this choice of basis
allows us to compute the functions gn in a sieve procedure, which means that
gn can be evaluated only after obtaining gn−1.

The task of the observers is to determine the function gn(u⃗, Ω⃗) by per-
forming certain kinds of measurements around I+

− . For example, using the

8The normal ordered basis can also be used in the AdS construction but we find that
it is much more convenient to use the energy eigenstate basis in that case. It is important
to note that this basis is formed out of continuous functions and there are certain subtle
limitations in using this. These limitations are discussed in section 3.4.

9For example: : ϕ(u1,Ω1) · · ·ϕ(un,Ωn) : |0⟩ ∼∫
dω1 · · · dωne

iω1u1+···iωnuna†(ω1Ω1) · · · a†(ωnΩn) |0⟩. The expansion of the field ϕ(u,Ω)
at I+ is derived in appendix A.4.
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powers mentioned in section 3.3 . The observers are also allowed to manip-
ulate the state by acting on it with a unitary operator located near a small
cut at I+

− and also measure the energy of the state. An expression for the
energy in the Bondi gauge in 3 + 1 dimensional flat spacetime is given as10

(this is equal to Ql=0,m=0 as defined in (3.5))

E =
1

16πGN

∫
I+
−

√
γd2Ω mB(u = −∞,Ω) . (3.15)

Like in the AdS case, we shall assume that the Born rule is valid. Therefore,
energy will be measured in a quantum sense with the energy of the vacuum
state renormalized to 0. This means that the answer to “what is the frequency
with which we obtain 0 upon measuring the energy of the state |ψ⟩?” is given
as11

⟨ψ|P0|ψ⟩ (3.16)

where P0 is the projector onto the vacuum state |0⟩ as defined in (3.13).
For states of the form shown in eq.(3.14) we clearly have ⟨ψ|P0|ψ⟩ = 0.
Henceforth, when we write that we measure the energy of the state, we
always mean a measurement of the kind above. Notice that in order to
measure the energy of the state, the observers need to be spread across the
entire Celestial sphere as each of them only measures a part of the metric
fluctuation mB (which is suppressed by GN , see eq.(3.3)). This ensures that
there is no violation of causality (see section 3.4 for a discussion).

The observers are also allowed to modify the state by acting on it with
some unitary U , and then measure the energy of the modified state U |ψ⟩.
The unitaries that we will be using are of the form

Un = exp
[
i

∫ −1/ϵ

−∞
du⃗′dΩ⃗′

n∏
j=1

fn(u⃗
′, Ω⃗′)O(u′j,Ω

′
j)
]
. (3.17)

Here we denote the operators used by the observers with O(u′,Ω′) (although
they are still the same field ϕ) with fn(u

′,Ω′)’s being smearing functions

10A gauge invariant expression can be derived by following the procedure illustrated in
[9].

11In all our measurements, we will only be concerned with the frequency with which the
energy is zero. One can also consider projectors onto an energy band close to zero, but
as discussed in section 3.4, such modifications do not alter the result. This means that
as long as the energy of the state is within a range [0, δ], it will be assumed to be the
vacuum state. For non-zero energies away from δ, such a measurement does not yield a
useful result in flat spacetime as energy is continuous.
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that localize these operators near I+
− , i.e, u

′ ∈ (−∞,−1
ϵ
] . For these expec-

tation values to be simple analytic functions it is useful to choose O(u′,Ω′) ∼
u′π(u′,Ω′), i.e, proportional to the conjugate momenta of the scalar fields.
The factor of u′ is added for the sake of maintaining dimensions but can
always be absorbed by an appropriate choice of f .

We now show that a measurement of the form ⟨ψ|U †
nP0Un|ψ⟩ will allow

us to fix the functions gn up to a phase factor. For this we first expand the
unitaries up to the first order in f , i.e,

Un = 1 + i

∫
du⃗dΩ⃗

n∏
j=1

fn(u⃗
′,Ω′)O(u′j,Ω

′
j) +O(f 2) . (3.18)

Henceforth, unless necessary, we shall suppress the O(f 2) terms in the ex-
pressions below.

Let us consider the measurement where we compute the energy of the
state U1 |ψ⟩ and compute the frequency with which we get zero. By the Born-
rule, this is equivalent to computing ⟨ψ|U †

1P0U1|ψ⟩. This correlator is equal
to (we refer the reader to appendix A.3 for the details of this computation)

⟨ψ|U †
1P0U1|ψ⟩ =

∣∣∣ ∫ dudu′dΩ⃗dΩ⃗′ f1(u
′,Ω′)g1(u,Ω) ⟨0|ϕ(u,Ω)O(u′j,Ω′

j)|0⟩
∣∣∣2 .

(3.19)

The correlation function above allows us to determine the function g1(u,Ω)
up to a phase factor, which we denote by eiθ1∫
dudu′dΩ⃗dΩ⃗′ f1(u

′,Ω′)g1(u,Ω) ⟨0|ϕ(u,Ω)O(u′j,Ω′
j)|0⟩ =

√
⟨ψ|U †

1P0U1|ψ⟩eiθ1 .

In appendix A.5 we explain how the function g1 can be reconstructed from
such an integral equation. Since the overall phase of the state |ψ⟩ is not a
physically measurable quantity, we can choose it such that eiθ1 = 1. This
integral equation completely fixes the function g1 for us

12. We refer the reader
to appendix A.5 for further details.

In the following subsection 3.3.2 we explain how we obtain the functions
gn when n ̸= 1 using appropriate correlation functions. Subsequently in
subsections 3.3.3-3.3.5 we develop a physical protocol that a set of observers
near I+

− can use to recover the states.

12It is useful to contrast the operator U1 with the operator Xr defined in the previous
chapter.
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3.3.2 Information recovery using correlation functions

We demonstrate a simple use of the normal ordered basis (3.14) by allowing
ourselves to measure arbitrary expectation values. We show how one can
easily obtain all gn’s having determined g1, by measuring specific correlation
functions. We note that this procedure has to be performed in a sieve-like
manner, i.e, we can determine the value of gn once we know the value of gn−1.
Let us consider the following correlation function ⟨ψ|U †

1P0Un|ψ⟩ at O(f 2)

⟨ψ|U †
1P0Un|ψ⟩ =

∫
du⃗du⃗′dΩ⃗dΩ⃗′dudu′dΩdΩ′

n∑
j=1

f1(u
′,Ω′)fn(u⃗

′, Ω⃗′)g∗1(u,Ω)gj(u⃗, Ω⃗)

× ⟨0|ϕ(u,Ω)O(u′,Ω′)|0⟩ ⟨0|O1 · · ·On : ϕ1 · · ·ϕj : |0⟩
(3.20)

where we use the shorthand notation On ≡ O(u′1,Ω
′
1; · · · ;u′n,Ω′

n), ϕn ≡
ϕ(u1,Ω1; · · · ;un,Ωn) and gn(u⃗, Ω⃗) ≡ gn(u1,Ω1; · · · ;un,Ωn). Therefore upon
measuring ⟨ψ|U †

1P0Un|ψ⟩ for all n, starting with n = 2, we easily obtain the

value for all gn>1(u⃗, Ω⃗).
Such a measurement is not physically viable as the final answer is not real

in general. However, it demonstrates a simple use of the normal ordered basis
in order to extract information about the state in a sieve-like manner. It has
been argued in [5] that the measurement of all possible correlation functions
allows a complete reconstruction of the state and hence it was expected that
such a procedure should exist.

3.3.3 Physical Protocol

In the following section we explain how we can obtain the functions gn by
performing measurements that are physically viable.

As explained in the subsection 3.3.1, we can obtain the function g1 by
measuring ⟨ψ|U †

1P0U1|ψ⟩ and exploiting the freedom to choose the overall
phase of the state |ψ⟩. Since we can only fix the overall phase of the state
once, this procedure will still leave a phase ambiguity eiθn for all other gn>1.
To see this ambiguity explicitly, we first modify the state by acting on it
with a unitary Un, then measure its energy and see the frequency with which
we get 0. Using the Born-rule this is equivalent to measuring ⟨ψ|U †

nP0Un|ψ⟩.
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Upon expanding this to O(f 2) we get,

⟨ψ|U †
nP0Un|ψ⟩ =

∣∣∣ ⟨0|∫ du⃗′dΩ⃗′fn(u⃗
′, Ω⃗′)O1 · · ·On|ψ⟩

∣∣∣2 . (3.21)

By inverting this relation we obtain the correlation function which charac-
terizes the phase ambiguity eiθn

⟨0|
∫
du⃗′dΩ⃗′fn(u⃗

′, Ω⃗′)O1 · · ·On|ψ⟩ =
√
⟨ψ|U †

nP0Un|ψ⟩eiθn . (3.22)

The advantage of expanding |ψ⟩ in the normal ordered basis (3.14) becomes
obvious in this step; using such an expansion ensures that the only gi’s con-
tributing to the correlator on the LHS are for i ≤ n. Hence we have to
evaluate these correlators in a sieve-like procedure since only after one de-
termines the value of gn, one can determine gn+1.

We will now demonstrate how the phase ambiguities eiθn can be fixed
by making a two-step measurement. This requires the action of two unitary
operators on the state and then measuring its energy. This results in corre-
lation functions of the form ⟨ψ|U †

jU
†
i P0UiUj|ψ⟩. In the following subsections

we explain how this fixes the value of θn completely, by first determining
cos θn and then the value of sin θn.

3.3.4 Determining cos θn

As shown above, the phase of g1 is completely fixed by making a choice for
the overall phase of the state |ψ⟩. This will allow us to compute the value of
cos θn by performing a two-step measurement of the form ⟨ψ|U †

nU
†
1P0U1Un|ψ⟩

at O(f 2). A simple calculation shows

cos θn =
⟨ψ|U †

1U
†
nP0UnU1|ψ⟩ − ⟨ψ|U †

1P0U1|ψ⟩ − ⟨ψ|U †
nP0Un|ψ⟩

2
√

⟨g|U †
1P0U1|g⟩

√
⟨g|U †

nP0Un|g⟩
. (3.23)

However, this does not completely fix θn since determination of cos θn leaves
us with an ambiguity for the sign of sin θn. In the following subsection we
explain how we can fix the value of sin θn for all n.
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3.3.5 Determining sin θn

In order to fix sin θn we just need one gn whose phase eiθn is not purely real.
The fact that the phase of the function g1 was chosen to be purely real allowed
us to measure the value of cos θn. However in general we do not expect the
phases of all gn to be purely real. This can be checked by evaluating the value
of cos θn using eq.(3.23) and as long as for some n = n0, cos θn0 ̸= ±1, we can
perform an analogues two-step measurement involving Un0 to determine the
sign of sin θn. Such an n0 can be easily obtained by trial and error. Then,
we can perform a measurement of the form ⟨ψ|U †

n0
U †
nP0UnUn0 |ψ⟩ at O(f 2)

⟨ψ|U †
nU

†
n0
P0Un0Un|ψ⟩ = ⟨ψ|U †

nP0U
†
n|ψ⟩+ ⟨ψ|U †

n0
P0U

†
n0
|ψ⟩

+ 2

√
⟨ψ|U †

nP0Un|ψ⟩
√

⟨ψ|U †
n0P0Un0|ψ⟩

(
cos θncos θn0 + sin θnsin θn0

)
.

(3.24)

In this measurement, we end up with a correlated ambiguity in the phases
of gn and gn0 , which implies that upon knowing the value of sin θn0 ̸= 0 for
any given n0, we can easily determine the value of all other sin θn. We now
explain how we can fix the value of sin θn0 .

Determining the sign of sin θn0

As shown in the previous section, by performing certain simple measurements
up to O(f 2), we decode a lot of information about the state |ψ⟩. However, we
are left with one final sign ambiguity concerning sin θn0 . Since this is only
one sign ambiguity, we just need one measurement which can distinguish
between eiθn0 and e−iθn0 .

We shall work with the special case n0 = 2 to demonstrate the proce-
dure, but the method can be performed for a generic n0 as well. Consider a
measurement of the kind ⟨ψ|U †

1P0U1|ψ⟩, upon expanding it up to O(f 3) we
get

⟨ψ|U †
1P0U1|ψ⟩ =

∫
du′1du

′
2dΩ

′
1dΩ

′
2f1(u

′
1,Ω

′
1)f1(u

′
2,Ω

′
2) ⟨ψ|O(u′1,Ω′

1)P0O(u
′
2,Ω

′
2)|ψ⟩

+ i

∫
du⃗′dΩ⃗′f1(u

′
1,Ω

′
1)f1(u

′
2,Ω

′
2)f1(u

′
3,Ω

′
3)
[
⟨ψ|O1P0O2O3|ψ⟩ − ⟨ψ|O2O3P0O1|ψ⟩

]
(3.25)

where du⃗′dΩ⃗′ = du′1du
′
2du

′
3dΩ

′
1dΩ

′
2dΩ

′
3 and Oi = O(u′i,Ω

′
i). As explained

in the sections before, the terms at O(f 2) enable us to completely fix the
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function g1(u,Ω). Let us now focus on the term at O(f 3) and expand |ψ⟩
using (3.14),

i

∫
du⃗′dΩ⃗′f1(u

′
1,Ω

′
1)f1(u

′
2,Ω

′
2)f1(u

′
3,Ω

′
3)
[
⟨ψ|O1P0O2O3|ψ⟩ − ⟨ψ|O2O3P0O1|ψ⟩

]
= i

∫
du⃗′dΩ⃗′dudΩdu⃗dΩ⃗ f1(u

′
1,Ω

′
1)f1(u

′
2,Ω

′
2)f1(u

′
3,Ω

′
3)g1(u,Ω)

×
[
g2(u⃗, Ω⃗) ⟨0|ϕ(u,Ω)O1|0⟩⟨0|O2O3 : ϕ1ϕ2 : |0⟩ − g∗2(u⃗, Ω⃗) ⟨0| : ϕ1ϕ2 : O2O3|0⟩⟨0|O1ϕ(u,Ω)|0⟩

]
(3.26)

where we have used the notation ϕn = ϕ(un,Ωn). Such a measurement
does not allow us to reconstruct the full function g2 since the only localizing
functions appearing in this expression are dependent on f1(u

′,Ω′). However
it is still sensitive to the sign of sin θ2 since (see appendix A.4 for details on
evaluating such correlators)

⟨ψ|U †
1P0U1|ψ⟩ at O(f 3) ∼ (g2 − g∗2) ∼ sin θ2 . (3.27)

Upon determining the sign of sin θ2 we can determine all the other signs
using (3.24). Such a construction can be easily extended for any n0 ̸= 2 as
well. This allows us to determine the value of sin θn0 and therefore fix the
full wave function |ψ⟩.

Notice that for this proof we are assuming that we have access to both
even and odd gn’s, i.e, we need at least one of each godd and geven ̸= 0. This
excludes the two special cases when the only non-zero gn’s are either made
out of all even or all odd n. These cases can be dealt with in a similar manner
as above but with a slight difference and are presented in appendix A.6.

3.3.6 Multiple flavors

We now explain how the results of the previous section can be extended to
cases when we have multiple flavours13. To keep things simple, we illus-
trate the algorithm when we have two flavours only, but it can be trivially
generalized for multiple flavours.

13Although we write all explicit formulas for scalar fields, they all trivially generalize to
the fields with higher spins.
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Consider the following state

|ψ⟩ =
∫
du⃗dΩ⃗

[
− g00 +

∞∑
i=0

∞∑
j=0

gij : ϕ1 · · ·ϕi : : ϕ̃1 · · · ϕ̃j :
]
|0⟩ (3.28)

where the term−g00 ensures that ⟨0|ψ⟩ = 0 and ϕ, ϕ̃ are two different flavours
of scalar fields. We have omitted the dependence of gij and ϕ, ϕ̃ on (u,Ω) to
avoid a clutter of notation. In a manner similar to the previous sections, we
shall determine the values of all gij in a sieve-like procedure. The unitary
operator used to modify the state is denoted as,

Uij = exp
[
i

∫
du⃗′dΩ⃗′ fij(u⃗

′, Ω⃗′)O1 · · ·OiÕ1 · · · Õj

]
(3.29)

where O and Õ, describe the same fields as ϕ and ϕ̃, but they are localized
near I+

− (as ensured by fij).
We first explain how the functions gij are recovered using arbitrary cor-

relation functions and then go on to demonstrate the same using a physical
protocol. The steps performed are very similar to the ones in the case of a
single flavour.

Arbitrary correlators

Here we extend the procedure presented in section 3.3.2 to determine the
functions gn for multiple flavours. We first have to measure the value of g10
by measuring ⟨ψ|U †

10P0U10|ψ⟩ at O(f 2). This allows us to measure g10 up to
a phase eiθ10 . This phase θ10 can be set to zero by exploiting the fact that
the overall phase of the state |ψ⟩ is not a physically measurable quantity.

Upon determining g10 we can easily determine all the other gij’s in a
sieve-like manner by evaluating the following correlation function

⟨ψ|U †
10P0Uij|ψ⟩

=

∫
dV f10fijg10

i∑
m=0

j∑
n=0

gmn ⟨0|ϕ1O1|0⟩ ⟨0|O1 · · ·OiÕi · · · Õj : ϕ1 · · ·ϕm :: ϕ̃1 · · · ϕ̃n : |0⟩

(3.30)

with dV = du⃗du⃗′dΩdΩ′ and we use the same shorthand notation for ϕi, etc.
as defined earlier. Clearly this is not a physical protocol since the correlation
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functions in general are not real. However it demonstrates the use of the
normal ordered basis to decode generic states. In the following section we
explain how one can determine the value of the smearing functions by using
a physical protocol.

Physical Protocol

We now explain how the analysis in the previous section can be extended
to a physical protocol where the only kind of measurements allowed are the
ones which give real answers. For a single flavour this is explained in section
3.3.3. Due to the conceptual similarity between the single and the multiple
flavoured case it suffices to summarize the main steps without repeating the
details. We remind the reader that this entire procedure is performed in
a sieve-like manner, i.e, one should have measured the value of gmn before
determining gi>m,j>n.

1. We first fix the value of g10 by exploiting the fact that the overall phase
of the wave function is meaningless. This is exactly similar to fixing
the value of g1 in the single flavour case.

2. The general phase ambiguity in the function gij can be quantified by
the measurement at O(f 2) of

⟨s|
∫
fijO1 · · ·OiÕ1 · · · Õj|ψ⟩ =

√
⟨ψ|U †

ijP0Uij|ψ⟩eiθij . (3.31)

The only phase fixed till now is θ10 = 0.

3. By measuring ⟨ψ|U †
ijP0Uij|ψ⟩ we obtain the value of gij up to a phase

factor eiθij .

4. The value of cos θij can be fixed by measuring ⟨ψ|U †
ijU

†
10P0U10Uij|ψ⟩

at O(f 2). This uses the fact that we have fixed θ10 = 0. Fixing the
value of cos θij does not completely fix θij since it leaves us with a sign
ambiguity for sin θij ∀ i, j.

5. In order to fix the value of sin θij for all i, j, we first need to fix the
value of sin θij for some particular i, j. This can be done (for example)

for i = 2, j = 0 by measuring ⟨ψ|U †
10P0U10|ψ⟩ at O(f 3). Noting the

analogy with the single flavoured case, the value of other sin θij can be

fixed by measuring ⟨ψ|U †
20U

†
ijP0UijU20|ψ⟩ ∀ i, j.
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The special cases where we have all even or all odd g’s are similar to those
of the single flavoured case and are shown in appendix A.6.

3.4 Discussions

Main Result

We presented a physical protocol that observers localized on a cut near I+
− , in

a theory of quantum gravity coupled to massless matter in 3+1 dimensional
asymptotically flat spacetime, can use to detect bulk massless excitations on
a given vacuum state |0⟩. The protocol comprises the manipulation of the
state with unitary operators and the measurement of its overlap with the
vacuum. These measurements are performed in a manner which is quantum
mechanical in nature and utilizes the Born-rule. The protocol presented in
this chapter is an extension of a similar result for asymptotically AdS space-
times [10] presented in chapter 2. The crucial difference between the two is
of a technical nature. In the AdS case, we used the basis of energy eigen-
states to expand any given state and this step was crucial for developing the
protocol. Unlike AdS, the energy spectrum in flat spacetime is continuous,
thus the energy eigen basis (which can be thought of as a band of energy)
is not a convenient basis to expand the states. To overcome this difficulty,
we introduced a normal ordered basis (3.14) to expand the states. Then the
observers that are localized at a small cut near I+

− can extract information
in a sieve-like procedure.

Limitation of the Normal Ordered Basis

The state |ψ⟩ when expanded in the normal ordered basis (3.14) is defined us-

ing smearing functions gn(u⃗, Ω⃗) which are continuous. As shown in appendix
A.5, these functions are reconstructed from their moments. In principle, one
needs infinitely many moments to reconstruct a function exactly, however, in
any physical experiment we only have access to a finite number of moments.
This introduces a natural cut-off in the accuracy with which the smearing
functions can be reconstructed. For example, the protocol described in the
main text fails when the smearing functions are highly oscillatory, i.e, non-
smooth. This is because, it will not be possible for the observers to distinguish
between two smearing functions which differ beyond a certain moment.
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Effect of Noise

In all the measurements we assume that the energy of the vacuum state is a
known quantity and is renormalized to zero. Therefore in most measurements
that we perform, we end up with the projector onto the vacuum state P0.
However in general one can also consider projectors onto a small but finite
energy Pδ and ask if the results change as we take δ → 0. It is simple to see
that upon normalizing the projector correctly one does not end up getting
different results from the ones obtained by using P0. Thus, as long as the
energy of a state is in between [0, δ], the state is assumed to be the vacuum
state. Such projectors have also been considered in [76] in relation to the
monogamy paradox in flat spacetime.

Construction vs Reconstruction

By using the Reeh-Schlieder theorem [5, 53, 54] it is possible to show that
any state can be created by acting with hermitian operators, localized near
I+
− , on the vacuum |0⟩14. This is also possible in AdS [10, 4] where any

state can be created by acting with operators, localized on a thin time band
near the boundary, on the vacuum. Such a construction only requires the
positivity of energy as measured from asymptotic infinity and is valid for
non-gravitational QFTs as well.

However note that the process of detecting a state by being able to per-
form measurements only using operators localized at a small cut near the
boundary is a non-trivial process as compared to creating the state. Reeh-
Schlieder like constructions do not guarantee that the state can be recon-
structed by performing measurements near the boundary of spacetime (both
in flat spacetime and in AdS). One simple way to see this is by considering
the case of a local QFT in flat spacetime. Even in this case, it is possible to
construct any state of the QFT by acting with operators (near I+

− ) on the
vacuum. However, as argued in the main text, it is clearly not possible to
reconstruct this state exactly since there exists local operators in the bulk
which commute with observables at the boundary. Therefore, although it
is typically possible to construct any state in flat spacetime by acting with
operators near I+

− , reconstructing the state is only possible in a quantum
theory of gravity.

14More generally this construction works by acting with an operator on a state which is
cyclic and separating.
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Detection of Memory Effect & States Built on Multiple
Vacua

The protocol established in this chapter gives a procedure on how to deter-
mine hard excitations on a given vacuum state. However, it is possible to
consider states which are built on multiple vacuum states, for example,

|Ψ⟩ ≡
M∑

m=1

∞∑
n=1

n∏
j=1

∫
: ϕ(uj,Ωj) : g

(m)
n (u⃗, Ω⃗)du⃗dΩ⃗ |0(m)⟩ .

The main difficulty in decoding states of this kind is that the observers near
I+
− do not apriori know which vacuum states |0(m)⟩ are used to build |Ψ⟩.

If the observers are given priors about the particular |0(m)⟩’s that appear,
they can use certain special unitaries constructed out of the superrotation
charge [77] in order to bring the state |Ψ⟩ to the form of (3.14). Without
that information, it is not possible to detect the state using the protocol
illustrated in the main text. In order to detect these states in the absence of
priors, one would have to make use of the transition operators defined in [5].
However, it is not clear how one can measure such transition operators in a
physical process.

There is a similar restriction for detecting the Memory effect [73, 78] as it
concerns the transition from a given configuration of vacuum to another one.
Such transitions typically occur in scattering processes from I− to I+ but
it is not a priori clear how one can study them by performing measurement
only at I+ (or I−), we hope to address this in a future work.

Generalizations to Higher dimensions & Massive fields

Due to the similarities between supertranslations in four dimensions and
other higher even dimensions [26, 79, 23] our results should easily gener-
alize to higher even dimensions. However, generalizing this result to odd
dimensions has to be explored in greater detail. Additionally, it would be
interesting to extend such a protocol in the presence of massive fields and
establish the principle of holography of information in that context.
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Chapter 4

Holography From the WDW
Equation

4.1 Introduction

It has been argued in a series of papers that theories of gravity localize quan-
tum information very differently from local quantum field theories [5]. This
argument can be encapsulated in a principle of holography of information:
in a theory of quantum gravity, information that is available in the bulk of
a Cauchy slice is also available near its boundary [2]. This principle can
be made precise and proved in asymptotically AdS spacetimes and in four-
dimensional asymptotically flat spacetimes. In [10, 11], a physical protocol
was presented that exploited this effect to allow observers near the boundary
of AdS and flat spacetime to extract information about low-energy states
in the bulk without directly exploring the bulk. These protocols have been
reviewed in the previous two chapters.

In the presence of a negative cosmological constant, these effects may
be expected from the AdS/CFT conjecture [1, 48, 3]. But a study of how
quantum gravity localizes information sheds light on the physical origin of
holography for gravitational theories. It also indicates how holography should
be extended beyond asymptotically AdS spacetimes to asymptotically flat
spacetimes.

In this chapter, we present a direct perturbative analysis of the allowed
wavefunctionals in a theory of gravity coupled to matter in an asymptotically
AdS spacetime. We find that any two wavefunctionals that coincide at the
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boundary for an infinitesimal interval of time must also coincide in the bulk.
This is a uniquely gravitational effect; wavefunctionals in a local quantum
field theory do not have such a property1.

In gravity, the metric is one of the dynamical degrees of freedom. In the
Hamiltonian formalism, the degrees of freedom are divided into the metric on
a spatial slice and its conjugate momentum, which is related to the extrin-
sic curvature of the slice. We consider theories that might have additional
matter fields. The values of these fields on a spatial slice provide another
set of canonical variables whose conjugate momenta are related to the time
derivatives of these fields. A wavefunctional assigns a complex number to
any specification of the metric and other fields on a spatial slice.

Not every wavefunctional is a valid state in a theory of gravity. A valid
wavefunctional must take on the same value for configurations that can be
related by a diffeomorphism that vanishes asymptotically. This leads to a set
of constraints on the wavefunctional, of which the most important constraint
is called the Wheeler-DeWitt (WDW) equation [80].

In this chapter, we present a direct perturbative analysis of the WDW
equation. We build on an important old paper by Kuchar [81] who analyzed
the solutions of the WDW equation about flat space in the free limit. We
extend this analysis by expanding the constraints to leading nontrivial order
in perturbation theory in the gravitational interaction in the presence of a
negative cosmological constant. This analysis is already sufficient to reveal
the remarkable property of these solutions alluded to above.

The structure of the constraints that we find can roughly be described
as follows. The metric degrees of freedom can be divided into a longitudi-
nal component, a transverse-traceless component and, what we call, a “T-
component” that keeps track of the trace [82]. The transverse-traceless com-
ponent can be freely specified, just like another dynamical field. Invariance of
the wavefunctional under spatial diffeomorphisms fixes its dependence on the
longitudinal component of the metric. The so-called Hamiltonian constraint,
which imposes invariance of the state under diffeomorphisms that mix space
and time, fixes the dependence of the wavefunctional on the T-component.
We show that an important role is played by a specific integral of the Hamil-
tonian constraint on the entire Cauchy slice which relates the asymptotic
T-component of the metric to the total energy of the transverse-traceless
gravitons and matter-fields on the Cauchy slice.

1See appendix B.1 for a concrete example in QED
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We prove that these constraints are sufficient to disallow any deformations
of the wavefunctional which alters its form in the bulk without changing its
boundary values. The reason can be understood as follows. A bulk deforma-
tion that changes the energy must necessarily also change the T-component
of the metric near the boundary. So deformations that leave the asymptotic
T-component unchanged can only “move” energy from one part of space to
another and must have zero total energy. But the Heisenberg uncertainty
principle tells us that an operator that implements such a deformation must
be completely delocalized. Therefore, while such an operator may commute
with the asymptotic metric, it must fail to commute with some other dynam-
ical operator near the boundary. The final result is that correlators of the
T-component of the metric and of other dynamical operators at the boundary
of AdS for an infinitesimal amount of time completely fix the wavefunctional.

This result establishes, in the perturbative approximation, that one of
the central aspects of holography follows from the constraints of gravity. The
significance of this result can be illustrated by studying the contrast between
gravitational and non-gravitational quantum field theories in AdS. Even in
a non-gravitational theory, the specification of data on the entire timelike
boundary of AdS is sufficient to reconstruct physics in the bulk. See Figure
4.1a. This is just a property of the causal structure and is not indicative of
holography. What our result shows is that, in a gravitational theory, data
on an infinitesimal time band on the boundary of AdS is already sufficient
to reconstruct the state in the bulk. See Figure 4.1b.

We emphasize that in a non-gravitational theory, our final result could
not possibly be true. The action of a unitary operator in a bulk at the same
time would commute with all observations on this infinitesimal time band on
the boundary by microcausality. Therefore, in a non-gravitational theory, it
is impossible to distinguish a given state from the state obtained after the
action of such a unitary.

Relationship to previous work. As mentioned above, it has already
been argued previously [5, 2] that gravitational theories localize information
very differently from ordinary quantum field theories. These previous argu-
ments [5, 2], which built on [4, 83], relied on weak assumptions about the
structure of the Hilbert space, and the nature of the gravitational Hamilto-
nian to arrive at nonperturbative results.

Although the analysis in this chapter is perturbative, it is more explicit.
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(a) (b)

Figure 4.1: A common misunderstanding of “holography” is that it only tells
us that data on the timelike boundary of AdS can be used to reconstruct
physics at the bulk point P as shown in the left subfigure. But this statement
follows from the causal structure of AdS and does not require holography.
Gravitational theories are genuinely holographic. Here we show how, in
gravity, data on an infinitesimal time band (right subfigure) can be used
to reconstruct physics in the bulk.

We make no prior assumptions either about the Hilbert space or about the
gravitational Hamiltonian. Instead, we explicitly construct the low-energy
Hilbert space by studying solutions to the gravitational constraints and we
explicitly show that such solutions must have correlations between a com-
ponent of the asymptotic metric and the energy of the state. This analysis
also reveals how the unusual localization of quantum information in quantum
gravity is visible at the level of wavefunctionals.

The analysis in this chapter takes advantage of the infrared cutoff that
is provided by global AdS boundary conditions. (See comment 6 in section
4.6.) For this reason the analysis presented here reproduces Result 5 of [5] —
which pertains to asymptotically AdS spacetimes and was proved there using
operator-theoretic techniques — but cannot immediately be used to make
contact with Result 1 and Result 2 of [5], which apply to asymptotically-flat
spacetime. We expect that it should be possible to generalize the proof of the
holography of information presented here to address the infrared subtleties
present in flat space.
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The relationship between the bulk constraints and holography was also
explored previously in [27, 28] and more recently in [30] (see also the prescient
essay [84]) although the techniques used in this chapter are quite different. A
radial version of the WDW equation was studied in the context of AdS/CFT
[85], which was analyzed further in [86] and has proved to be useful in the
context of the study of TT deformations [87, 88, 89, 90, 91, 92, 93, 94,
95] and bulk reconstruction [96]. Here our analysis is different since we are
considering the conventional WDW equation that governs wavefunctionals
on a Cauchy slice.

The Wheeler-DeWitt equation has been studied in the mini-superspace
approximation — for which we found [97, 98, 99, 100, 101] useful — and
also in the context of two-dimensional models [102, 103, 104, 105, 106] and
in terms of the Ashtekar variables [107]. See [108, 109, 110] for a more
detailed list of references. However, there has been relatively little work on
a straightforward perturbative analysis of the equation in higher dimensions.
As already mentioned, Kuchar [81] studied this problem at zeroth order in the
gravitational constant, and here we will show that, even at leading order, the
structure of the constraints is interesting and leads to surprising properties
of the solutions.

The question of how the gravitational constraints affect the localization of
quantum information was also studied, from another perspective, in [65, 111].
(See also [112, 59].) However, these papers reached the opposite conclusion
from the one we will reach here: in [65, 111] it was claimed that it should
be possible to perturbatively construct states that differ inside a bounded
region but are asymptotically identical. It appears to us that this conclusion
was reached because [65, 111] focused on the asymptotic gravitational field
but failed to consider quantum correlators of the metric and the dynamical
scalar field that was included in the analysis there. As we will see in section
4.6 this latter class of correlators, involving both the metric and dynamical
fields, plays an important role and cannot be neglected.

As already stated, the results we derive here are valid for theories of
gravity and do not have an analogue in non-gravitational gauge theories.
To illustrate this difference, in Appendix B.1, we analyze the constraints
in electromagnetism. We show that they are significantly weaker than the
constraints in a theory of gravity. Consequently, QED and other nongravita-
tional gauge theories localize information much like ordinary local quantum
field theories and does not share the unusual constrained properties of grav-
itational wavefunctionals. Appendices B.2, B.3 and B.4 provide additional
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technical details.

4.2 Summary of this chapter

We now provide a concise summary of our results in this chapter. The
equations in this section are all linked to corresponding equations in later
sections, which provide a more detailed discussion of the physics.

When gravity is quantized using the canonical formalism, the physical
states of the theory are given by wavefunctionals of the metric gij on a spa-
tial slice, and the matter fields ϕ that obey the so-called Hamiltonian and
momentum constraints,

H(f)Ψ[g, ϕ] = 0, Hi(f)Ψ[g, ϕ] = 0 . (4.1)

These are the constraints displayed in equation (4.22) — where the conjugate
momenta for the metric and the matter fields are denoted πij = −i δ

δgij
and

π = −i δ
δϕ

— which have been smeared with a function f that vanishes at
the boundary. The momentum constraint is linear in momenta while the
Hamiltonian constraint is quadratic.

To study these constraints, we first expand the metric about a background
AdS metric as gij = γij + κhij where γij is the AdS metric and κ =

√
8πG.

We also introduce a corresponding momentum operator Πij = − i√
γ

δ
δhij

that

is more appropriate for understanding perturbation theory. We further de-
compose this metric fluctuation as

hij = hTT
ij + hLij + hTij, (4.2)

in terms of the transverse-traceless component, the longitudinal component,
and what we term the “T-component”. This decomposition was introduced
about flat space in [82], and we generalize it to AdS. The precise definition
of the three components is given in equation (4.40). Similarly, the conjugate
momentum can be decomposed as Πij = Πij

T +Πij
TT+Πij

L and we show below
equation (4.50) that each component is the canonical momentum associated
with the corresponding metric component.

We then expand the constraints in perturbation theory. It is convenient
to set the AdS scale, ℓ = 1 as done in the rest of the thesis, and treat κ as a
small dimensionless parameter that allows us to organize the perturbative ex-
pansion. The validity of perturbation theory then requires that any numbers

76



that emerge from the action of derivative operators on the wavefunctional
should not scale with 1

κ
and we ensure this below.

At leading order in κ, the momentum constraint implies that the wave-
functional Ψ[h, ϕ] is independent of hL. This is simply the statement that the
wavefunctional should be invariant under linearized spatial diffeomorphisms.
At next order, it gives (

−2∇jΠ
ij
L + κQi

)
Ψ[h, ϕ] = 0 , (4.3)

where Qi is quadratic in the canonical variables and is given in (4.61). We
have Πij

L = − i√
γ

δ
δhL

ij
so the second order momentum constraint determines

the dependence of Ψ in hLij.
At leading order in κ, the Hamiltonian constraint implies that the T-

component of the metric vanishes: hT = 0 + O(κ). At next order, the
Hamiltonian constraint fixes the T-component of the metric via(

−DijhTij + κQ
)
Ψ[h, ϕ] = 0 , (4.4)

where Dij is given in (4.131) and Q is given in (4.74). This sets hTij to a
non-trivial O(κ) value.

To analyze these constraints, we first integrate the Hamiltonian constraint
over a Cauchy slice Σ to obtain a simpler constraint, which takes the form(

−H∂ +

∫
Σ

ddx
√
γ NHbulk

)
Ψ[h, ϕ] = 0 , (4.5)

where

H∂ ≡ 1

2κ

∫
∂Σ

dd−1Ω J ini . (4.6)

Here the ADM current J i, which is integrated over the boundary ∂Σ after
contracting with the normal ni, is linear in the metric fluctuation and de-
fined in (4.39). It depends only on the T-component of the metric as shown in
(4.66) and gives the ADM energy H∂. In (4.5), N is the lapse function; Hbulk

is quadratic in the canonical variables and its precise definition is given in
equation (4.89). It can be viewed as the “bulk energy density” involving the
transverse-traceless gravitons and the matter. Thus, the integrated Hamil-
tonian constraint gives a quantum version of the familiar statement that the
energy is a boundary term in canonical gravity.
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Since the integrated Hamiltonian constraint is so simple, we can explicitly
obtain wavefunctionals that solve it. The solutions take the form of a “dressed”
Fock space that we construct as follows. First, we obtain wavefunctionals
of hTT and ϕ that form an ordinary free-field Fock space in AdS and are
eigenstates of the free-field Hamiltonian. We choose a basis for these wave-
functionals that we denote by

ψ
E,{a}
F [hTT, ϕ] .

The superscript E indicates the energy of the state in the Fock space, and
the superscript {a} is an additional label for degenerate energy eigenstates.

These Fock space wavefunctionals can be promoted to a solution of the
integrated constraint by additionally specifying that they are eigenstates of
the integral of the boundary metric that appears on the left of equation (4.5):

ψ
E,{a}
I [H∂, h

TT, ϕ] = ψ
E,{a}
F [hTT, ϕ]⊗ |H∂ = E⟩ . (4.7)

The constraints (4.4) and (4.3) constitute an infinite number of con-
straints — one at each point of the Cauchy slice. So the solution to the
integrated Hamiltonian constraint obtained above needs to be improved fur-
ther to obtain a solution to these constraints. We present an explicit leading
order solution to the pointwise constraints in section 4.5.2 and Appendix B.4.
In addition, we give a simple discussion of a procedure that makes it clear
that each solution of the integrated constraint (4.7) can be uniquely uplifted
to a solution of the pointwise constraint (4.1):

ψ
E,{a}
I [H∂, h

TT, ϕ] → ΨE,{a}[h, ϕ] . (4.8)

This argument is enough to ensure that once the dependence of the wavefunc-
tional on hTT and ϕ in the auxiliary Fock space is chosen, there is no further
freedom to specify its dependence on hT and hL. The integrated constraint
fixes the detailed form of hT at the boundary and, although the solution to
the pointwise constraints that we find is both new and interesting, we do not
require the explicit form of the dependence of the wavefunctional on hT and
hL in the bulk for obtaining our main result.

We then define a natural inner product on the space of solutions (see
section 4.5.3) and show that it is compatible with the structure of the con-
straints. This allows us to meaningfully compute correlation functions of
observables using these wavefunctionals.
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The above analysis of the constraints allows us to obtain a striking result.
We show that any two pure or mixed states in a theory of gravity that agree
on the boundary of AdS for an infinitesimal interval of time must agree
everywhere in the bulk. To demonstrate this result we consider a general
density matrix that depends on two metric perturbations, hij and h̃ij and
two matter perturbations, ϕ and ϕ̃. We write it in the form

ρ[h, ϕ, h̃, ϕ̃] =
∑

E,E′,{a},{a′}

c(E,E ′, {a}, {a′})ρE,E′,{a},{a′}[h, ϕ, h̃, ϕ̃] , (4.9)

where c(E,E ′, {a}, {a′}) is a list of coefficients and a basis of density matrices

ρE,E′,{a},{a′}[h, ϕ, h̃, ϕ̃] ≡ ΨE′,{a′}[h̃, ϕ̃]ΨE,{a}[h, ϕ]∗ , (4.10)

is obtained by combining the solutions to the constraints obtained above.
We consider a simple class of gauge invariant operators that are sup-

ported only on the boundary, and therefore automatically commute with
the constraints (4.1). One such operator is H∂ displayed in (4.6), whereas
other operators — which we denote byO(t,Ω) — correspond to the boundary
limit of fluctuations of the dynamical fields, including the transverse-traceless
graviton and matter fields. We first show that if two density matrices ρ1 and
ρ2 yield the same correlators of the following combination of such operators

⟨Hn
∂ O(t1,Ω1) . . .O(tq,Ωq)H

m
∂ ⟩ρ1 = ⟨Hn

∂ O(t1,Ω1) . . .O(tq,Ωq)H
m
∂ ⟩ρ2 ,

(4.11)
then the respective coefficients c1(E,E

′, {a}, {a′}) and c2(E,E
′, {a}, {a′})

must satisfy the following identity at each individual value of E and E ′∑
{a},{a′}

[
c1(E,E

′, {a}, {a′})−c2(E,E ′, {a}, {a′})
]
⟨O(t1,Ω1) . . .O(tq,Ωq)⟩ρE,E′,{a},{a′} = 0 .

(4.12)
We only demand that the equations above hold at O(1) and not at O(κ) so
that we can study them reliably within our perturbative setup. In particular,
this means that n,m, q are limited to O(1) integers as well and cannot scale
with an inverse power of κ and the passage from (4.11) to (4.12) can be
performed reliably provided that the energy of the state in (4.9) does not
scale with log 1

κ
in AdS units. We show that there is no non-trivial solution

to these equations if the ti above are allowed to range in the infinitesimal
interval [0, ϵ]. Therefore if two pure or mixed states agree on the boundary
for even an infinitesimal time interval then they must be the same.
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This last result that we obtain is central to the notion of holography since
it tells us that, in a theory of gravity, the state in the bulk is completely
determined by boundary data in an infinitesimal time interval. Here we see
that this surprising aspect of gravity follows directly from the constraints of
the theory.

4.3 Preliminaries

In this section, we set the stage for our analysis, establish some notation,
and review the constraints that must be satisfied by physical states in any
theory of gravity.

4.3.1 Action and boundary conditions

We will study gravity with a negative cosmological constant in d+ 1 dimen-
sions, as described by the action

S =
1

2κ2

∫
dtddx

√
−ĝ (R̂− 2Λ) + SGHY + Smatter, (4.13)

where κ =
√
8πG, R̂ is the d + 1-dimensional Ricci scalar, SGHY is the

Gibbons-Hawking-York boundary term and Λ is a cosmological constant. We
will use hats to differentiate spacetime quantities with Cauchy slice quanti-
ties. The specific details of the matter sector will not be important in the
subsequent analysis although we will use scalar fields as an example for il-
lustration.

We are interested in spacetimes that are asymptotically AdS. Note that
in both the classical and the quantum theory it is necessary to fix asymptotic
boundary conditions on the metric. The metric is then allowed to fluctuate
in the bulk. We introduce a coordinate r so that the conformal boundary is
attained as r → ∞. We then demand that near this boundary

ds2 −→
r→∞

ℓ2
(
−(1 + r2)dt2 +

dr2

1 + r2
+ r2dΩ2

d−1

)
(4.14)

where the AdS length ℓ = 1. Note that, in these units, κ is a dimensionless
number and we will assume that κ≪ 1 which is simply the assumption that
the Planck length is much smaller than the cosmological length.
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This means that we allow for the standard normalizable boundary condi-
tions for fluctuations of the metric and matter fields following [113, 114, 49],
demanding that the metric and matter fluctuations have appropriate falloffs
near the boundary.2

4.3.2 Canonical formalism

In the canonical formalism for gravity described by ADM [82], the line ele-
ment is written using a d+ 1 split

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) , (4.15)

where N is called the lapse function, and N i is called the shift vector. The
metric on a Cauchy slice Σ, at a fixed value of t, is gij where i, j, . . . run only
over the spatial coordinates.

We can rewrite the action as

S =
1

2κ2

∫
dtddxN

√
g
(
KijKklg

ikgjl −K2 +R− 2Λ
)
+ SGHY + Smatter ,

(4.16)
using the extrinsic curvature of the slice of constant t, given by

Kij =
1

2N
(−ġij +DjNi +DiNj) , (4.17)

where Di is the covariant derivative with respect to gij, K = gijKij and R is
the Ricci scalar on the slice.

The canonical momentum is defined as

πij =
δS

δġij
= − 1

2κ2
√
g
(
gilgjkKlk − gijK

)
. (4.18)

The conjugate momenta for the lapse and shift vanish identically leading to
the primary constraints [118]

πN =
δS

δṄ
= 0, πNi

=
δS

δṄi

= 0 . (4.19)

2It is of interest to consider other kinds of boundary conditions [115, 116]. However, if
the boundary conditions allow energy to escape from AdS, then one-loop effects generically
generate a mass for the graviton in the bulk [117] leading to a theory that might have
qualitatively different properties from standard theories of gravity.
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The Hamiltonian can be written in the form

H = H0 +H∂ , (4.20)

where

H0 =

∫
Σ

ddx
√
g (NH +N iHi) , (4.21)

and H and Hi are given by

H = 2κ2g−1

(
gikgjlπ

klπij − 1

d− 1
(gijπ

ij)2
)
− 1

2κ2
(R− 2Λ) +Hmatter ,(4.22)

Hi = −2gijDk
πjk

√
g
+Hmatter

i , (4.23)

where Hmatter is the matter Hamiltonian density, Hmatter
i is the matter mo-

mentum density and H∂ is a boundary contribution [119] whose explicit form
we give below in (4.38).

The matter Hamiltonian is obtained in a standard way using canonical
quantization. Let us illustrate this in the example of a scalar field of mass
m, described by the action

Smatter = −1

2

∫
dtddx

√
g N

(
(∂ϕ)2 +m2ϕ2

)
. (4.24)

the conjugate momentum is π =
√
gN−1(∂tϕ−N i∂iϕ) and the Hamiltonian

and momentum density are

Hmatter =
1

2
g−1π2+

1

2

(
gij∂iϕ∂jϕ+m2ϕ2

)
, Hmatter

i =
1
√
g
π ∂iϕ . (4.25)

We obtain secondary constraints by demanding that the primary con-
straints are preserved by time evolution. These secondary constraints are
nontrivial and are called the Hamiltonian and momentum constraints. They
can be described as follows. Let f be any function that dies off smoothly as
r → ∞ and let

H(f) ≡
∫
Σ

ddxHf, Hi(f) ≡
∫
Σ

ddxHif . (4.26)

Then the Hamiltonian and momentum constraints are

H(f) = 0, Hi(f) = 0 . (4.27)
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Note that (4.27) are equivalent to imposing H = 0 and Hi = 0 at all points
except for the conformal boundary.

The exclusion of the boundary can be understood using a simple physical
argument. The constraints (4.27) express the diffeomorphism invariance of
the theory. But, as is standard in gauge theories, only small diffeomorphisms
— those diffeomorphisms that vanish smoothly at the conformally boundary
— are redundancies in the description. Large diffeomorphisms — those dif-
feomorphisms that act nontrivially at the conformal boundary — generate
physical transformations and should not be viewed as trivial.

4.3.3 Quantum theory

So far our description has been classical. In the quantum theory, the states
are given by wavefunctionals

Ψ[g, ϕ] .

Note that, to lighten the notation, we do not display the indices on g and on
other tensors when they appear in an argument of the wavefunctional. Here,
ϕ is used as a collective variable for the matter fields in the theory. The
wavefunctional returns a complex number upon being given a configuration
of the metric and matter fields on the entire Cauchy slice.

The conjugate momenta act on these wavefunctionals via

πijΨ[g, ϕ] = −i δ

δgij
Ψ[g, ϕ], πΨ[g, ϕ] = −i δ

δϕ
Ψ[g, ϕ] . (4.28)

In the quantum theory, we demand that all valid wavefunctionals are annihi-
lated by the constraints. The primary constraints tell us that the wavefunc-
tional is independent of N and Ni since they imply that

δ

δN
Ψ[g, ϕ] = 0,

δ

δN i
Ψ[g, ϕ] = 0 . (4.29)

In the quantum theory, the information about how the d-geometries are glued
together into a spacetime geometry must be extracted from the canonical
momentum and not from the values of N or N i. If one takes the classical
limit in the quantum theory, then the expectation value of the momentum
operator can be related to the classical extrinsic curvature via (4.18).

Finally, the wavefunctional must be annihilated by the Hamiltonian and
momentum constraints

H(f)Ψ[g, ϕ] = 0, Hi(f)Ψ[g, ϕ] = 0 . (4.30)
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These constraints can be understood as imposing the gauge invariance of the
wavefunctional in the quantum theory. As usual, we do not impose invariance
under large gauge transformations which may act non-trivially on the state.
For mixed states, the corresponding condition is that the density matrix must
commute with the constraints.

A valid observable in the theory, denoted O, is a Hermitian operator that
commutes with the constraints

[O,H(f)] = 0, [O,Hi(f)] = 0 . (4.31)

A simple set of gauge-invariant observables are just given by the boundary
limits of bulk operators. Such observables manifestly satisfy (4.31) because
H(f) and Hi(f) vanish near the boundary. Such observables may depend on
the boundary coordinates including the boundary time and, in the discussion
below, we display this dependence as O(t,Ω). We discuss these observables
further in section 4.6.

4.4 Perturbative expansion

In this section, we will expand the constraints in the perturbative regime
about the AdS background. We start by introducing the perturbative vari-
ables and then proceed to the perturbative expansion. All the derivations
described in this section are checked using xAct [120] and xPert [121] in a
Mathematica notebook [122].

4.4.1 Perturbative setup

Metric fluctuation. In perturbation theory, we expand the metric as

gij = γij + κhij , (4.32)

where κ =
√
8πG and the background metric, γij, corresponds to the metric

on a constant time slice of global AdSd+1.

γijdx
idxj =

dr2

1 + r2
+ r2dΩ2

d−1 , (4.33)

Equation (4.32) should be taken as the definition of the perturbative variable
hij. Note that, for now, this equation is just an exact change of variables
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although below we will perform a perturbative expansion in κ. We will find
it convenient to represent states as wavefunctionals of this new variable using
the notation

Ψ[h, ϕ] .

Momentum operator. It is also convenient, in perturbation theory, to
work in terms of the momentum operator

Πij =
κ
√
γ
πij . (4.34)

In the wavefunctional representation, the action of this operator is just

Πij = − i
√
γ

δ

δhij
, (4.35)

and so this operator is canonically conjugate to hij up to a factor of 1√
γ
that

is included so that Πij transforms like a tensor field on the background.

Derivatives and indices. We will use ∇i to denote the covariant deriva-
tive associated to the background metric γij. This should be distinguished
from Di which is the covariant derivative associated to the full metric gij.
Furthermore, for the rest of this chapter, we will raise and lower indices us-
ing only the background metric γij. We remind the reader that indices are
summed only over the spatial coordinates and if time appears in a formula,
it is displayed separately.

Shift and lapse. The primary constraints imply that neither N nor N i

enter in any wavefunctional or observable. Nevertheless, in our analysis it
will be convenient to fix the background value of N to be

N2 = 1 + r2. (4.36)

Since N is not an observable, the reader can just take equation (4.36) to
specify a certain function of the coordinates that will be useful in the analysis.
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Background properties. In our computations, it will be useful to use the
following identities satisfied by the background quantities:

Rijkℓ = γiℓγjk − γikγjℓ, Rij = −(d− 1)γij ,

R = −d(d− 1), ∇i∇jN = γijN, (4.37)

and the cosmological constant is Λ = −d(d−1)/2. We are using conventions
where ℓAdS = 1.

Boundary Hamiltonian.

In terms of the notation introduced above, the boundary contribution to the
Hamiltonian in (4.20) takes on a simple form. This can be viewed as an AdS
version of the ADM energy. It is given as

H∂ =
1

2κ

∫
∂Σ

dd−1ΩniJ
i , (4.38)

where
Ji ≡ N∇j(hij − hγij)−∇jN(hij − hγij) (4.39)

will be called the ADM current. We show in Appendix B.3 that this agrees
with various prescriptions for the gravitational energy in AdS. Here dd−1Ω
denotes the appropriate measure for boundary integration and ni denotes the
normal to the boundary.3 Note that, in the coordinates (4.33) the area of a
sphere at large r grows like O

(
rd−1

)
which precisely compensates the large r

falloff of J i. Also note that as a consequence of (4.27), the bulk contribution
to the energy of any state vanishes. The nonzero contribution to the energy
comes only from the boundary term (4.38).

4.4.2 ADM decomposition

In order to better understand the Hamiltonian and momentum constraints
given in (4.22) and (4.23), it is convenient to use the ADM decomposition of
symmetric tensors [82]. ADM originally introduced this decomposition about
flat space, and here we present the generalization to an AdS background. We
refer the reader to [123] for related discussion.

3For concreteness, we can take dd−1Ω to be the volume form of the unit sphere and
ni = rd−1ni where ni is the unit normal to the boundary.
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We decompose the metric perturbation as

hij = hTT
ij + hTij + hLij , (4.40)

and the three terms in the sum are called the transverse-traceless component,
the T-component and the longitudinal component respectively. We will per-
form precisely analogous decompositions for other tensor fields below and, in
each case, the three components will be labeled by “TT”, “T” and “L” as
above.

The transverse-traceless component obeys

∇ihTT
ij = 0, γijhTT

ij = 0 . (4.41)

The T-component of the metric is also transverse

∇ihTij = 0 , (4.42)

but only captures information about the trace of the transverse part of the
decomposition. The longitudinal component is of the form

hLij = ∇iϵj +∇jϵi , (4.43)

in terms of an arbitrary vector field ϵi that vanishes at the conformal bound-
ary.

Given any tensor field hij, the decomposition (4.40) is unique and can
be obtained by solving a set of elliptic partial differential equations as we
now describe. The transversality conditions (4.42) and (4.41) imply that ϵi
is obtained as the solution to

∇i∇iϵj +∇i∇jϵi = ∇ihij , (4.44)

which has a unique solution for ϵi subject to our boundary conditions and
thereby yields hLij. Note that the Killing vectors of the background cannot
be added to a solution of the equation above to obtain another solution since
they do not vanish asymptotically.

We denote the trace of the transverse part of the metric by

hT = γij
(
hij − hLij

)
= γijhTij . (4.45)

We want the T-component of the metric to depend linearly on the metric,
correspond to a single degree of freedom, and vanish when hT vanishes. This
is achieved by introducing an auxiliary scalar field χ and writing

hTij =
1

d
hTγij −

1

d− 1

[
∇i∇j −

1

d
γij∆

]
χ , (4.46)
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where ∆ ≡ ∇i∇i. The condition (4.42) implies that χ must obey

(∆− d)χ = hT . (4.47)

Once the longitudinal and T-component have been determined as above, the
hTT component of the metric is what remains: hTT

ij = hij − hLij − hTij. Note
that, by construction, the conditions (4.41) are met.

It is also clear that the degrees of freedom on both sides of equation
(4.40) match. The propagating modes of the graviton are contained in hTT

ij

and represent (d + 1)(d − 2)/2 degrees of freedom. There are d degrees of
freedom in hLij corresponding to the components of ϵi and 1 degree of freedom
in hTij. This gives a total of d(d+1)/2 as appropriate for a symmetric tensor.

The terms in the decomposition (4.40) are orthogonal when contracted
and integrated over the Cauchy slice. For instance,∫

Σ

ddx
√
γ hTT,ijhLij = −2

∫
Σ

ddx
√
γ∇ih

TT,ijϵj = 0 , (4.48)

where we have integrated by parts and utilized (4.41). A similar argument
shows that the integral of a T-component with the longitudinal component
vanishes. We also find that∫

Σ

ddx
√
γ hTT,ijhTij =

1

1− d

∫
Σ

ddx
√
γ hTT,ij∇i∇jχ = 0 , (4.49)

where in the first step we used the fact that hTT,ij is traceless and in the
second step we integrated by parts and used the property (4.41).

We now turn to the canonical momenta. Note that (4.35) tells us that
Πij is an operator-valued field. Nevertheless we can perform a decomposition
similar to (4.40). We write

Πij = Πij
TT +Πij

T +Πij
L . (4.50)

The canonical generator [82] that induces an infinitesimal shift in the metric
fluctuation, hij → hij + ζij, is simply

G = i

∫
Σ

ddx
√
γ Πijζij . (4.51)

Using the orthogonality of the components demonstrated above, it is clear
that the canonical generator diagonalizes so that

G = i

∫
Σ

ddx
√
γ
(
Πij

TTζ
TT
ij +Πij

Tζ
T
ij +Πij

L ζ
L
ij

)
, (4.52)
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which implies that

Πij
TT = − i

√
γ

δ

δhTT
ij

, Πij
T = − i

√
γ

δ

δhTij
, Πij

L = − i
√
γ

δ

δhLij
. (4.53)

4.4.3 Expansion of the constraints

In this section, we present the perturbative expansion of the constraints. A
similar analysis was performed in [81] about Minkowski space.

Momentum constraint

Let us start by considering the momentum constraint (4.23). We consider
successive approximations to the constraint which we write as

√
gHi =

√
γH(n)

i +O
(
κn−1

)
, n = 0, 1, 2, . . . (4.54)

by which we mean that H(n)
i captures all terms in the expansion of the left

hand side up to terms of order κn−2.
The zeroth order term in the momentum constraint vanishes trivially,

H(0)
i = 0 . (4.55)

First order. At leading order, the momentum constraint takes the form

H(1)
i = −2

κ
γij∇kΠ

jk . (4.56)

The momentum constraint simply tells us that the wavefunctional is inde-
pendent of hLij to leading order. This can be seen as follows. Consider the
infinitesimal gauge transformation xi → xi + ξi. Then we see that

Ψ[hij +∇iϵj +∇jϵi, ϕ] = Ψ[h, ϕ] +

∫
Σ

ddx (∇iϵj +∇jϵi)(x)
δ

δhij(x)
Ψ[h, ϕ]

= Ψ[h, ϕ]− 2i

∫
Σ

ddx
√
γ ϵj(x)∇iΠ

ij(x)Ψ[h, ϕ] = Ψ[h, ϕ]

(4.57)

at leading order in ϵi, where we have used the leading-order momentum
constraint in the last equality.
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Alternately, this can also be seen from the decomposition (4.50). The
leading order momentum constraint tells us that

−2γij∇kΠ
jk
L Ψ[h, ϕ] = 0 + O(κ) . (4.58)

which is equivalent to Πjk
L Ψ[h, ϕ] = 0 + O(κ) .

Second order. At next order, we have

H(2)
i = (∇ihjk − 2∇khij)Π

jk − 2hij∇kΠ
jk − 2

κ
γij∇kΠ

jk +Hmatter
i . (4.59)

The first order constraint implies that hij∇kΠ
jk = O(κ) which is subleading.

We can then rewrite the constraint as

2

κ
γij∇kΠ

jk
L = Qi (4.60)

where we have defined

Qi ≡ (∇ihjk − 2∇khij)Π
jk +Hmatter

i , (4.61)

and Hmatter
i is the contribution of the matter to momentum constraint. For

a free scalar field, we have from (4.25)

Hmatter
i =

1
√
γ
π ∂iϕ . (4.62)

This shows that the second order momentum constraint determines the O(κ)
part of Πjk

L in terms of O(1) quantities.

Hamiltonian constraint

We now consider the perturbative expansion of the Hamiltonian constraint.
We consider successive approximations

√
gH =

√
γH(n) +O

(
κn−1

)
, (4.63)

by which we mean that H(n) includes all the terms from the Hamiltonian
constraint up to terms of order κn−2.

At zeroth order, we simply have

H(0) = − 1

2κ2
(R− 2Λ) . (4.64)

Plugging in the values from (4.37), we see that this term vanishes identically:
H(0) = 0.
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First order. At first order, we obtain

NH(1) = − 1

2κ
N

(
∇i∇jhij −∇i∇ih+ (d− 1)h

)
= − 1

2κ
∇iJi , (4.65)

which we have written as a total derivative in terms of the ADM current
(4.39). Note the factor of N that we have inserted on the LHS of (4.65). It
is only with this factor that the expression turns into a total derivative, and
this fact will play an important role in the analysis below.

In the decomposition (4.40), it can be seen that this expression (4.65)
involves only hTij and not hTT

ij or hLij. It is clear that h
TT
ij disappears because

of the transverse-traceless condition. The longitudinal component also dis-
appears from this expression. This can be checked explicitly from (4.43) by
evaluating H(1) on (4.43) and commuting the covariant derivatives and using
the background identities (4.37). This can also be understood from the fact
that, at first order, the longitudinal component corresponds to an infinitesi-
mal spatial diffeomorphism. Hence, it doesn’t change the Ricci scalar which
is constant according to (4.37). This implies that H(1) doesn’t depend on
hLij. The end result is that

NH(1) =
1

2κ
N

(
−∇i∇ihT + (d− 1)hT

)
. (4.66)

where we denote hT = γijhTij. Since h
T
ij has only one degree of freedom, which

can be taken to be hT, the first order Hamiltonian constraint implies that

hTij = 0 + O(κ) . (4.67)

In the sections below, we will work out aspects of the O(κ) correction to this
equation, which will play a central role in our analysis.

Second order. At second order, we have contributions from the term
quadratic in Πij and the matter stress tensor:

N
√
γH(2) = 2N

√
γ

(
ΠijΠij −

1

d− 1
Π2

)
−1

2
N [

√
g(R− 2Λ)](2)+N

√
γHmatter ,

(4.68)
and we should expand the term in the brackets to second order in κ. The
expansion is performed in the accompanying Mathematica script [122]. It
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leads to many terms which we can organize as

−N [
√
g(R− 2Λ)](2) =

1

4

√
γN

(
−hij(∆N + 2)hij + h(∆N − d)h

)
(4.69)

+
1

2

√
γN

(
2hij∇i∇khjk +∇ih

ij∇khjk + 2∇ih∇jh
ij + h∇i∇jh

ij
)

+
1

2

√
γ∇iL

i − 1

2κ
∇iJ

i ,

where we have introduced a Laplace-type operator

∆Nhij = N−1∇k(N∇khij) . (4.70)

The total derivative involves a current

Li ≡ −N∇jLij + Lij∇jN +
1

2
N

(
hjk∇ih

jk − h∇ih
)
, (4.71)

where we have defined

Lij ≡ 2hhij − hikh
k
j + γijhkℓh

kℓ − 1

2
γijh

2 . (4.72)

There is also a contribution from the ADM current J i evaluated on the O(κ)
part of hij, the order one part being zero by the first order constraint. Finally,
the second order Hamiltonian constraint takes the form

NH(2) = NQ− 1

2κ
∇iJ

i , (4.73)

where we have defined

Q ≡ 2

(
ΠijΠij −

1

d− 1
Π2

)
+

1

8

(
−hij(∆N + 2)hij + h(∆N − d)h

)
+

1

4
∇iL

i

+
1

4

(
2hij∇i∇khjk +∇ih

ij∇khjk + 2∇ih∇jh
ij + h∇i∇jh

ij
)
+NHmatter .

(4.74)

4.4.4 Integrated constraint

We will find it very useful to also consider the integrated second order Hamil-
tonian constraint

H
(2)
0 =

∫
Σ

ddx
√
γ NH(2) . (4.75)
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It is important to perform the integral with the measure that defines the
canonical Hamiltonian, i.e. with a factor of N as shown above. In this
section, we show that the complicated expression obtained in (4.73) and
(4.74) simplifies greatly upon integration.

To show this, we will use the ADM decomposition (4.40) and (4.50). We
will also use the fact that, as shown above, the first order constraints will set
hTij = O(κ) and Πij

L = O(κ). So we drop terms where hTij and Πij
L multiply

another O(1) quantity since this allows us to avoid writing a number of
unnecessary terms that will eventually not be relevant for our analysis.

First, the integrated constraint becomes independent of hLij = ∇iϵj +
∇jϵi. This is trivial at first order because h

L
ij corresponds to an infinitesimal

diffeomorphism. At second order, the cancellation is non-trivial and quite
remarkable4. It follows from the fact that we can write the constraint as

NH(2) = 2N

(
ΠijΠij −

1

d− 1
Π2

)
− 1

8
N hijTT(∆N + 2)hTT

ij +NHmatter

+
1

2
∇iM

i +
1

4
∇iL

i[hTT]− 1

2κ
∇iJ

i +O
(
hT

)
,

(4.77)

where the O
(
hT

)
term is subleading as explained above, and where the de-

4This can be understood as follows. The Ricci scalar is constant on the background,
so it is invariant under the diffeomorphism xi → xi + κϵi. As a result, the second order
Hamiltonian constraint is also invariant under that diffeomorphism, as the variation of

√
γ

and N can be ignored because we assume H(0) = H(1) = 0. This diffeomorphism modifies

the metric according to hij → hij + ∇iϵi + ∇jϵi + κh
(2)
ij + O(κ2). At linearized order,

this generates an arbitrary hLij and shows that the first order constraint is independent
of the longitudinal metric. At second order, we also generate a subleading term whose

explicit expression is h
(2)
ij = ∇iϵk∇jϵ

k − ϵiϵj + γijϵkϵ
k + Lϵh

TT
ij . By applying the above

diffeomorphism to the constraint at hL = 0, we obtain

NH(2)
∣∣∣
hL=0

= NH(2) − 1

2
∇iJ

i[h(2)] , (4.76)

where we used the fact that since H(2) captures terms up to O
(
κ0

)
the subleading term

h(2) can only affect it through those terms that have an explicit factor of κ−1. This shows
the dependence on hL in NH(2) is indeed captured by a total divergence.
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pendence in ϵi is fully captured by the divergence of the following current

M i = N
(
−∇jM

ij + hTT
jk ∇j∇kϵi − 2∇ihTT

jk ∇jϵk − hTT,ij∇j∇kϵ
k + 2dhTT,ijϵj

)
+∇jN

(
M ij + hTT,ij∇kϵ

k − hTT,ik∇kϵ
j + 2ϵk∇jhTT,ik

)
,

(4.78)

where we have defined

M ij ≡ ϵiϵj + ϵk∇j∇iϵk + γij
(
(d− 2)ϵkϵ

k − ϵk∆ϵ
k
)
. (4.79)

Above, the symbol Li[hTT] means that (4.71) is evaluated only on hTT
ij and

this evaluation reduces to

Li[hTT] = N hTT
jk ∇khijTT − 3

2
N hjkTT∇ih

TT
jk +∇iN hTT

jk h
jk
TT −∇jN hikTTh

TT
jk .

(4.80)
The validity of this rewriting is checked in the associated Mathematica note-
book [122].

From equation (4.77) it is clear that the integration of NH(2) over the
entire Cauchy slice leads to boundary terms that involve M i, Li[hTT] and J i.
The terms involving M i and Li[hTT] are quadratic in the metric fluctuation
and since we have imposed normalizable boundary conditions their decay at
large r is faster than the growth of the area of the sphere. Therefore the
boundary contribution from these terms vanishes. On the other hand, the
boundary term involving J i, upon integration over the boundary, gives the
ADM energy H∂.

Let’s now consider the kinetic piece

2

∫
Σ

ddx
√
γ N

(
ΠijΠij −

1

d− 1
Π2

)
. (4.81)

To analyze the term quadratic in Πij
T it is convenient to write the decompo-

sition of section 4.4.2 as

ΠT,ij =
1

d− 1
(γijΠT − αij) (4.82)

where
αij = N∇i∇jα +∇iN∇jα +∇jN∇iα (4.83)

in terms of a scalar operator-valued field α that satisfies the analogue of
(4.47) for ΠT:

(∆− d)(Nα) = ΠT . (4.84)
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From the expression (4.82), we see that the term quadratic in Πij
T in the

kinetic piece can be written∫
Σ

ddx
√
γ N

(
ΠT,ijΠ

ij
T − 1

d− 1
Π2

T

)
= − 1

d− 1

∫
Σ

ddx
√
γ NαijΠ

ij
T . (4.85)

Using (4.83), we can write

Nαij = ∇iαj +∇jαi, αi ≡
1

2
N2∇iα , (4.86)

and we finally obtain∫
Σ

ddx
√
γ N

(
Πij

TΠT,ij −
1

d− 1
Π2

T

)
= − 2

d− 1

∫
Σ

ddx
√
γ∇i

(
Πij

Tαj

)
,

(4.87)
which becomes a boundary term. Since ΠT vanishes at the boundary, the
boundary term vanishes.5 In a similar way, we can show that the cross
terms involving Πij

TT and Πij
T vanish. Recall that Πij

L does not appear since
it vanishes at O(1) in perturbation theory by the first order momentum
constraint. This shows that Πij

T disappears from the integrated constraint.
Finally, the integrated Hamiltonian constraint takes the form

H
(2)
0 = −H∂ +

∫
Σ

ddx
√
γ NHbulk (4.88)

where

Hbulk = 2ΠTT,ijΠ
ij
TT − 1

8
hTTij(∆N + 2)hTT

ij +Hmatter (4.89)

and the explicit expression of H∂ is given in (4.38). The constraint H
(2)
0 = 0

can be understood as the equality of the ADM energy H∂ with a bulk energy
defined as the second term of (4.88). Here we see that this relationship
follows naturally from the Hamiltonian constraint.

4.5 Solving the constraints

We now describe how the constraints discussed in the previous section can
be solved to reveal a remarkable structure of correlations in gravitational
wavefunctionals.

5More precisely, we only need ΠT < O
(
r(d−4)/2

)
for the boundary term to vanish.
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The analysis of section 4.4 immediately yields solutions to the first order
constraints. We find from the first order Hamiltonian constraint that

H(1)Ψ[h, ϕ] = 0 ⇒ hTΨ[h, ϕ] = 0 + O(κ) . (4.90)

This equation should be interpreted as telling us that the support of the
wavefunctional is negligible when the value of hT is parametrically larger
than O(κ). The first order momentum constraint tells us that

H(1)
i Ψ[h, ϕ] = 0 ⇒ δΨ[h, ϕ]

δhLij
= 0 + O(κ) . (4.91)

The interesting features in the solutions appear at the next order in pertur-
bation theory, and this is what we will focus on.

4.5.1 Integrated Hamiltonian constraint

We first describe how to solve the integrated Hamiltonian constraint (4.88).

Here we look for wavefunctionals ψ
E,{a}
I [H∂, h

TT, ϕ] with a specified depen-
dence on hTT, ϕ and H∂. The reason it is possible to restrict to only these
variables is that, as explained in section 4.4.4, the other degrees of freedom
all drop out of the integrated Hamiltonian constraint. Note that H∂ corre-
sponds to a single degree of freedom from hTij as can be seen from (4.66) and
(4.38). In section 4.5.2, we describe how the remaining dependence on hTij
and hLij can be fixed in the full wavefunctional.

We remind the reader that a factor of κ−1 is implicit in the definition
of H∂, which can be seen in (4.38). Therefore, in perturbation theory, it is

natural to think in terms of κH∂. The first order solutions toH
(2)
0 = 0 all have

a degenerate value of κH∂ = 0+O(κ) by virtue of equation (4.90). To work
out the solution at O(κ) is a standard problem in degenerate perturbation
theory. We need to look for solutions that diagonalize the “perturbation” in
(4.88), which is the bulk term.∫

Σ

ddx
√
γN Hbulk ψ

E,{a}
I [H∂, h

TT, ϕ] = E ψ
E,{a}
I [H∂, h

TT, ϕ] . (4.92)

Here the eigenvalue of the integrated bulk term is E and the superscript {a}
simply reminds us that the eigenvalues of the bulk Hamiltonian operator are
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degenerate and the wavefunctional is not completely specified by only a value
of E. Then, the integrated constraint implies that

H∂ ψ
E,{a}
I [H∂, h

TT, ϕ] = E ψ
E,{a}
I [H∂, h

TT, ϕ] . (4.93)

Since the integral Hbulk depends only on the propagating degrees of freedom
hTT
ij and ϕ, as explained in section 4.4.4, it is useful to introduce an auxiliary

Hilbert space of wavefunctionals that depend only on hTT
ij and ϕ. We will

see that these states form a Fock space.
In this auxiliary space, equation (4.92) simply becomes∫

Σ

ddx
√
γN Hbulk ψ

E,{a}
F [hTT, ϕ] = E ψ

E,{a}
F [hTT, ϕ] . (4.94)

The equation above is the same as (4.92) except that the wavefunctional has
no dependence of H∂.

We show below that this can be solved by taking a factorized basis of
wavefunctionals that depend, respectively, on only the transverse-traceless
metric fluctuation and the matter fluctuation.

ψ
E,{a}
F [hTT, ϕ] = ψg[h

TT]ψm[ϕ] , (4.95)

where∫
Σ

ddx
√
γN

[
2Πij

TTΠTT,ij −
1

8
hTTij(∆N + 2)hTT

ij

]
ψg[h

TT] = Eg ψg[h
TT] ,

(4.96)∫
Σ

ddx
√
γN Hmatterψm[ϕ] = Em ψm[ϕ] , (4.97)

with E = Eg + Em. Solutions to (4.96) and (4.97) are also degenerate al-
though we have suppressed additional labels on the right hand side of (4.95)
to lighten the notation.

In the subsections below, we describe, in some detail, the solutions to
(4.96) and (4.97). The eigenvalues E in (4.92) are obtained after introducing
a normal ordering prescription to regulate Hbulk. We specify this prescription
below.

Here we note that once these solutions are found, the solution to the
integrated Hamiltonian constraint is simply

ψ
E,{a}
I [H∂, h

TT, ϕ] = ψ
E,{a}
F [hTT, ϕ]⊗ |H∂ = E⟩. (4.98)
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Our choice of notation above emphasizes that the spectrum of H∂, which is
a single-degree of freedom, is discrete.

Any linear combination of solutions of the form (4.98) is also a solution.
The solution (4.98) will be very important for our analysis since it shows
how the Hamiltonian constraint, at second order, correlates the energy of
the dynamical degrees of freedom in the wavefunctional to the value of H∂,
which is given by an integrated component of the metric.

We will see later that the constraints fully determine the physical state
ΨE,{a}[h, ϕ]. The full wavefunctional is obtained by dressing the Fock state

ψ
E,{a}
F [hTT, ϕ] with the appropriate hTij and hLij dependence, as will be ex-

plained in section 4.5.2.

Graviton wavefunctionals

We will describe here the solutions of (4.96). From the integrand appearing
in equation (4.96), it is natural to consider a basis of transverse-traceless

eigenfunctions h
(n)
ij satisfying

−N2(∆N + 2)h
(n)
ij = ω2

nh
(n)
ij . (4.99)

As shown in Appendix B.2.1, this eigenvalue problem is equivalent to the
standard quantization of the graviton in global AdSd+1. We will take this
basis to be normalized with respect to the inner product

1

2

∫
Σ

ddx
√
γ N−1 h

(m)
ij h(n)ij = δmn . (4.100)

We then use the decomposition

hTT
ij =

∑
n

cnh
(n)
ij , (4.101)

and the variables cn can be written, using the orthogonality condition above
as

cn =
1

2

∫
Σ

ddx
√
γ N−1hTT

ij h
(n)ij . (4.102)

Using the chain rule we see that

Πij
TT ψg[h

TT] = − i
√
γ

δ

δhTT
ij

ψg[h
TT] = − i

2N

∑
n

∂ψg[h
TT]

∂cn
h(n)ij , (4.103)
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so that we have

2

∫
Σ

ddx
√
γN Πij

TTΠTT,ijψg[h
TT] = −1

2

∫
Σ

ddx
√
γN−1

∑
n,m

∂2ψg[h
TT]

∂cn∂cm
h(n)ijh

(m)
ij

= −
∑
n

∂2ψg[h
TT]

∂c2n
,

(4.104)

where we have again used the orthogonality relation (4.100).
Then equation (4.96) reduces to∑

n

(
− ∂2

∂c2n
+

1

4
c2nω

2
n

)
ψg[h

TT] = Eg ψg[h
TT] . (4.105)

We define the raising and lowering operators

A†
n =

1
√
ωn

(
∂

∂cn
− 1

2
ωncn

)
, An = − 1

√
ωn

(
∂

∂cn
+

1

2
ωncn

)
, [An, A

†
m] = δmn .

(4.106)
We also assume that Hbulk should be normal ordered so that all annihilation
operators, An are placed to the right of creation operators A†

n. With this
simplification the constraint becomes∑

n

ωnA
†
nAn ψg[h

TT] = Egrav ψg[h
TT] . (4.107)

Our normal ordering prescription ensures that the energy vanishes for the
vacuum, which is defined as

An ψ0[h
TT] = 0 , for all n . (4.108)

This is the vacuum wavefunctional for the transverse-traceless gravitons. It
has the expression

ψ0[h
TT] = N

∏
n

exp

(
−1

4
ωnc

2
n

)
= N exp

(
−1

8

∫
Σ

ddx
√
γ hTTij

√
−(∆N + 2)hTT

ij

)
(4.109)

up to a normalization constant N that we specify below. In the flat space
limit, this reproduces the results of [81] obtained using a similar method, or
in [124] from a Euclidean path integral.

99



The space of solutions is then a Fock space spanned by states of the form

ψg[h
TT] =

1∏
i

√
di!

(A†
n1
)d1(A†

n2
)d2 . . . ψ0[h

TT] , (4.110)

with energy

Eg =
∑
i

di ωni
. (4.111)

We have written the wavefunctionals that appear in equation (4.110) in terms
of the action of operators on the vacuum wavefunctionals. But they can also
be written, as usual, in terms of Hermite polynomials. Note that the validity
of perturbation theory requires that, in the Fock space, (4.110) we restrict
attention to states where ωni

≪ 1
κ
.

The natural measure on this space of wavefunctionals is simply

DhTT =
∏
n

dcn , (4.112)

and we choose the normalization constant N so that with respect to this
measure the wavefunctionals that appear in (4.110) are unit normalized

(ψg, ψg) ≡
∫
DhTTψg[h

TT]ψg[h
TT]∗ = 1 . (4.113)

Of course, wavefunctionals that differ by even a single value of di in equation
(4.110) are orthogonal.

Matter wavefunctionals

The matter part of the wavefunctional can be obtained in a similar way as
for the transverse-traceless gravitons. To illustrate this, we will consider
a minimally coupled massive scalar field. From (4.25), it follows that the
canonical Hamiltonian is

Hmatter =
1

2

∫
Σ

ddx
√
γN

(
γ−1π2 − ϕ(∆N −m2)ϕ

)
,

where we have imposed a normalizable boundary condition at infinity for the
scalar field to remove a boundary term. The operator ∆N appearing here is
the same as in (4.70).
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We consider eigenfunctions ϕ(n) satisfying

−N2(∆N −m2)ϕ(n) = ω̃2
nϕ

(n) , (4.114)

normalized so that ∫
Σ

ddx
√
γN−1 ϕ(m)ϕ(n) = δmn . (4.115)

Using that

π(x) = −i δ

δϕ(x)
, (4.116)

we can perform the same analysis as for the graviton. We obtain a Fock
space constructed from the frequencies ω̃n.

We can check that the Wheeler-DeWitt analysis reproduces the correct
frequencies by considering the equation of motion in the full spacetime

(□̂−m2)ϕ = 0 , (4.117)

which becomes on the Cauchy slice,

−N−2∂2t ϕ+ (∆N −m2)ϕ = 0 . (4.118)

In the same manner as for the graviton, this shows that ω̃n as defined in
(4.114) are indeed the frequencies obtained from (4.117).

In global AdSd+1 with normalizable boundary conditions, the resulting
spectrum is [125]

ω̃n = ∆+ ℓ+ 2n, n ∈ Z≥0 . (4.119)

where ℓ labels a spherical harmonic of Sd−1 with eigenvalue ℓ(ℓ+ d− 2) and
the conformal dimension is

∆ =
1

2
(d+

√
d2 + 4m2) . (4.120)

In precise analogy with the analysis above, we expand the matter field as

ϕ =
∑
n

c̃nϕ
(n). (4.121)

The equation (4.97) then reduces to

1

2

∑
n

(
− ∂2

∂c̃2n
+ c̃2nω

2
n

)
ψm[ϕ] = Emψm[ϕ] . (4.122)
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We then define

Ã†
n =

1√
2ω̃n

(
∂

∂c̃n
− ω̃nc̃n

)
, Ãn = − 1√

2ω̃n

(
∂

∂c̃n
+ ω̃nc̃n

)
, [Ãn, Ã

†
m] = δmn ,

(4.123)
and the vacuum wavefunctional, which is annihilated by all the Ãn operators
is given by

ψ0[ϕ] = Ñ
∏
n

exp

(
−1

2
ω̃nc̃

2
n

)
= Ñ exp

(
−1

2

∫
Σ

ddx
√
γ ϕ

√
−(∆N −m2)ϕ

)
,

(4.124)

where Ñ is a normalization constant. Once again, excited states can be
obtained by acting with creation operators:

ψm[ϕ] =
1∏√
di!

(A†
n1
)d1(A†

n2
)d2 . . . ψ0[ϕ] . (4.125)

As above, we normal order the matter contribution to Hbulk so that the
annihilation operators An are placed to the right of the creation operators
A†

n. With this convention, the energy is given by

Em =
∑
i

di ω̃ni
. (4.126)

We remind the reader that, as in the case of graviton wavefunctionals, within
perturbation theory, we are restricted to states of the form (4.124) where
ω̃ni

≪ 1
κ
. The natural measure on this space of wavefunctionals is simply

Dϕ =
∏
n

dc̃n , (4.127)

and we choose the normalization constant so that the wavefunctionals are
unit normalized

(ψm, ψm) ≡
∫
Dϕψm[ϕ]ψm[ϕ]

∗ = 1 . (4.128)

As above, wavefunctionals that differ by even a single value of di in the
expression (4.124) are orthogonal.

The analysis of matter wavefunctionals completes our analysis of the
auxiliary Fock space. These wavefunctionals can be combined with the
transverse-traceless graviton wavefunctionals obtained above as displayed in
(4.95). The resulting wavefunctional enters the solution of the integrated
Hamiltonian constraint displayed in (4.98).
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4.5.2 Pointwise constraints

In the previous section, we have described how to solve the integrated Hamil-
tonian constraint. However, the Hamiltonian and momentum constraints,
displayed in (4.27), actually comprise an infinite set of constraints — one
for each spacetime point. In this section we will present the leading order
solution to these pointwise constraints. We will also describe a procedure to
obtain higher order solutions.

We show in section 4.6 that the main result of this chapter — which
is that wavefunctionals that coincide near the boundary must also coincide
in the bulk — does not require the detailed form of the dependence of the
wavefunctionals on hL and hT in the bulk. For us, it is only important
that the pointwise constraints can be used to uniquely lift a solution of the
integrated Hamiltonian constraint displayed in (4.98) to a solution of the full
constraints (4.27). So, in the bulk of this section, we focus on a procedure that
makes it evident that the pointwise constraints can be used to perturbatively
fix the dependence of the wavefunctional on the pointwise values of hTij and
hLij. In the solution (4.98), it was only the dependence on H∂ — which is the
integral of a particular component of hTij — that was fixed. Therefore our
procedure leads to the following uplift.

ψ
E,{a}
I [H∂, h

TT, ϕ]
pointwise constraints−−−−−−−−−−−→ ΨE,{a}[h, ϕ] . (4.129)

In section 4.5.2 we then provide an indirect argument that leads to the same
conclusion: namely that the uplift (4.129) can be performed uniquely. The
details, and checks of the explicit solution itself are presented in Appendix
B.4.

Rewriting the pointwise constraints

We start by putting the pointwise Hamiltonian and momentum constraint
in a convenient form. In this section, we often display the dependence of the
wavefunctional on the individual components of the ADM decomposition of
the metric fluctuation and momenta using notation like Ψ[hTT, hT, hL, ϕ].

Hamiltonian constraint. First, consider the second order Hamiltonian
constraint. From expression (4.73) the Hamiltonian constraint is equivalent
to

Dijhij(x)Ψ[hTT, hT, hL, ϕ] = κQ(x)Ψ[hTT, hT, hL, ϕ] , (4.130)
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where we have defined the differential operator

Dij ≡ 1

2

(
∇i∇j − γij∇k∇k + (d− 1)γij

)
(4.131)

and Q is defined in (4.74).
As explained near (4.66), the LHS of (4.130) only depends on hT since

the operator Dij annihilates the longitudinal and the transverse-traceless
components. So we can also write the equation above as

DijhTij(x)Ψ[hTT, hT, hL, ϕ] = κQ(x)Ψ[hTT, hT, hL, ϕ] , (4.132)

which can be rewritten as

hTij(x)Ψ[hTT, hT, hL, ϕ] = κ

∫
Σ

ddx′
√
γ′Gij(x, x

′)Q(x′)Ψ[hTT, hT, hL, ϕ] ,

(4.133)
where the Green’s functionGij satisfiesDijGij(x, x

′) = 1√
γ
δ(x, x′) with bound-

ary conditions that it vanishes as x′ approaches the boundary. We emphasize
that (4.133) is just an exact rewriting of (4.132) and not really a solution.

The equation (4.133) may seem complicated. However, we can develop
a perturbative procedure to solve (4.133) as follows. The idea, as indicated
originally by ADM [82] and then elaborated in [126, 81, 127] is to think of
the momentum Πij

T as a notion of “local” time. Therefore we can think of the
pointwise constraint (4.132) as telling us how initial data on a slice “evolve”
as we change time locally but keep the endpoints of the Cauchy slice fixed.

Thus, we must view Πij
T to be the “position” variable while hTij is the

conjugate momentum. This idea can be implemented by performing a partial
Fourier transform of the wavefunctional

Ψ[hTT,ΠT, h
L, ϕ] =

∫
DhT e−i

∫
Σ ddx

√
γΠij

ThT
ijΨ[hTT, hT, hL, ϕ] (4.134)

and we will slightly abuse notation by also denoting this wavefunctional by
Ψ. This allows us to rewrite the constraint (4.133) as

i
√
γ

δ

δΠij
T(x)

Ψ[hTT,ΠT, h
L, ϕ] = κ

∫
Σ

ddx′
√
γ′Gij(x, x

′)Q(x′)Ψ[hTT,ΠT, h
L, ϕ] .

(4.135)
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Momentum constraint. We now rewrite the momentum constraint us-
ing a similar procedure. We do not display all intermediate steps since the
procedure used is almost identical to the procedure used above.

We start with the form of the constraint as shown in equation (4.60).
Then we note that it can be written in the form

− i
√
γ

δ

δhLij(x)
Ψ[hTT,ΠT, h

L, ϕ] =
κ

2

∫
Σ

ddx′
√
γ′G̃ijk(x, x′)Qk(x

′)Ψ[hTT,ΠT, h
L, ϕ] .

(4.136)

Here the Green’s function G̃i is the solution to

∇iG̃
ijk(x, x′) =

1
√
γ′
δd(x, x′)γjk (4.137)

with boundary conditions so that G̃ijk(x, x′) vanishes as x is taken to the
boundary.

Note that in (4.135) the operator Q still involves both Πij
T and also hTij

which should be interpreted as i√
γ

δ

δΠij
T

while acting on Ψ. Similarly in (4.136),

the right hand side Qk still involves hLij. So it may appear that we have not
achieved much by recasting the pointwise constraints in the form (4.135) and
(4.136). Nevertheless we can take advantage of the factor of κ that appears
in (4.135) to develop an iterative procedure to solve this equation.

Leading order solutions

We start by considering the wavefunctionals described in section 4.4 that have
a specified dependence on hTT

ij and the matter field ϕ and are eigenfunctions
of the energy with eigenvalue E. We then specify that for the constant
function Πij

T(x) = 0 and hLij(x) = 0 we have

Ψ[hTT,ΠT, h
L, ϕ]

∣∣
Πij

T=0,hL
ij=0

= ψ
E,{a}
F [hTT, ϕ] . (4.138)

We then truncate (4.135) and (4.136) by dropping occurrences of hTij and Πij
L

Q(0)(x) ≡ Q(x)
∣∣∣
hT
ij=0,Πij

L =0
; Q

(0)
i (x) ≡ Qi(x)

∣∣∣
hT
ij=0,Πij

L =0
. (4.139)

As hTij and Πij
L are O(κ) by the first order constraints, this corresponds to

restricting to the leading order.
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Then the leading order wavefunctional solution satisfies

i
√
γ

δ

δΠij
T(x)

Ψ[hTT,ΠT, h
L, ϕ] = κ

∫
Σ

ddx′
√
γ′Gij(x, x

′)Q(0)(x′)Ψ[hTT,ΠT, h
L, ϕ],

− i
√
γ

δ

δhLij(x)
Ψ[hTT,ΠT, h

L, ϕ] =
κ

2

∫
Σ

ddx′
√
γ′ G̃ijk(x, x′)Q

(0)
k (x′)Ψ[hTT,ΠT, h

L, ϕ] .

(4.140)

Note that, for consistency, we must adopt the same normal ordering pre-
scription for Q(0) and Q

(0)
k that was adopted in section 4.5.1. This normal

ordering prescription leads to the subtraction of a position-dependent con-
stant in (4.140).

These leading order equations can be solved by performing a change of
variable for ΠT

ij and hLij. It proves convenient to define a “time” variable t
by the equation

ΠT
ij = Dijt . (4.141)

This is the generalization to AdS of the time variable used for example in
[82, 81]. Note that this is related to the variable α appearing in (4.84) by
t = − 2

d−1
Nα.

Differentiating with respect to t instead of ΠT simplifies the Hamiltonian
constraint to[

− i
√
γ

δ

δt(x)
− κQ(0)(x)

]
Ψ[hTT,ΠT, h

L, ϕ] = 0 . (4.142)

Similarly, using ϵi instead of hLij allows to write the momentum constraint as[
− i
√
γ

δ

δϵi(x)
− κQ

(0)
i (x)

]
Ψ[hTT,ΠT, h

L, ϕ] = 0 . (4.143)

These equations are derived in Appendix B.4. We can look for a solution of
the form

Ψ[hTT,ΠT, h
L, ϕ] = exp(iκS)ψE,{a}

F [hTT, ϕ] + O
(
κ2
)
, (4.144)

where the exponent S must satisfy

1
√
γ

δS
δt(x)

= Q(0)(x),
1
√
γ

δS
δϵi(x)

= −Q(0)
i (x) . (4.145)

106



Remarkably, the solution can be found as it takes the simple form

S =

∫
ddx

√
γ

(
−2

3
t

(
Πij

TΠ
T
ij −

1

d− 1
Π2

T

)
+ 2 tΠij

TTΠ
ij
T +Q

(0)
0 t− ϵiHmatter

i

)
.

(4.146)
It is proven in Appendix B.4 that this is indeed the solution. This relies on
a non-trivial permutation symmetry in the terms of S that are cubic and
quadratic in t. We can confirm that the approximation used in (4.139) is
valid since we can explicitly check on the solution that hTΨ, (hT)2Ψ,ΠLΨ
and (ΠL)

2Ψ are all subleading in κ.
By inverting the Fourier transform (4.134) we can also obtain wavefunc-

tionals in the original metric representation

ΨE,{a}[h, ϕ] =

∫
DΠT e

i
∫
ddx

√
γΠij

ThT
ijΨ[hTT,ΠT, h

L, ϕ] . (4.147)

We can see that the dependence on hTij is captured by an integral that is
qualitatively similar to the Airy function.

An iterative solution algorithm

We can obtain solutions to the pointwise constraints at higher order by using
an iterative procedure. At O(κ2) one must also account for the terms that
involve hTij = i√

γ
δ

δΠij
T

and Πij
L = − i√

γ
δ

δhL
ij

on the right hand side of (4.135)

and (4.136). But it is clear that to obtain the solution to O(κ2) one only
needs to account for the action of these terms on the O(κ) solution obtained
through (4.140). In fact if one expands the wavefunctional in a power series
in κ then this pattern continues at higher order in perturbation theory: at
each order in perturbation theory, these operators act on the lower-order
terms and produce a “source term” on the right hand side of the first order
differential equation (4.135) and (4.136).

Note that at higher orders it is not enough to keep only the terms involving
hT in Q but it is also necessary to include the other higher-order terms from
the expansion of the Hamiltonian constraint (4.63). But provided this is
done, the procedure above can be extended to higher order.

It is clear that to leading order in κ the dependence on Πij
T as one ap-

proaches the boundary continuously goes over to the dependence obtained
in the solutions of 4.4.4. However, the solutions obtained there were very
simple because Πij

T drops out from the integrated constraint as described in
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(4.87). At a general bulk point this does not happen and therefore (4.135)
leads in general to a complicated set of coupled differential equations.

An indirect argument implying a bijection between solutions to the
pointwise and integrated constraints

The subsection above proposed an iterative algorithm to uniquely uplift a
solution of the integrated constraint to a solution of the full pointwise con-
straints and an explicit solution to leading order. However, it is possible
to argue indirectly, even without the help of the explicit solution or the
algorithm above, that there is a one-to-one map between solutions of the
integrated constraint and solutions of the full pointwise constraints.

This is because it is possible to obtain a description of the low-energy
Hilbert space of gravity coupled to matter by other means. One common
procedure adopted is simply to fix the gauge, which allows an identification
of the independent degrees of freedom. As expected, these degrees of free-
dom correspond to the transverse-traceless graviton and the matter fields.
Another equivalent procedure is to examine the set of all classical solutions
of the theory and then quantize them. Both procedures can be seen to
lead to precisely the Fock space described in section 4.5.1. The solutions
that we have described here are also in one-to-one correspondence with this
Fock space. This implies that there are no additional solutions that we have
missed, and nor does our procedure yield any spurious solutions.

4.5.3 Inner product

To complete the definition of the canonical theory, we need to give the defi-
nition of the inner product. The inner product has been the subject of some
discussion in the literature [80]. Here we will propose a specific definition of
the inner product at leading order in perturbation theory and demonstrate
its consistency.

Consider two solutions of the constraints that we denote by Ψ1 and Ψ2.
We propose that the inner product between these two solutions obtained
above is defined as

(Ψ2,Ψ1) =

∫
DhTTDϕΨ1[h

TT,ΠT, h
L, ϕ] Ψ2[h

TT,ΠT, h
L, ϕ]∗ , (4.148)

where ∗ refers to complex conjugation. Note that the integral is only over the
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propagating degrees of freedom hTT and ϕ and is performed at fixed values
of Πij

T and hLij.
To see that this definition makes sense, we must show that the inner prod-

uct doesn’t depend on the value of hLij and Πij
T at which the wavefunctionals

are evaluated. At leading order in κ this follows directly from the “evolution”
equations obeyed by the wavefunctionals in these variables. In particular, by
conjugating equation (4.140), we find that

− i
√
γ

δ

δΠij
T(x)

Ψ2[h
TT,ΠT, h

L, ϕ]∗ = κ

∫
Σ

ddx′
√
γ′Gij(x, x

′)Q(0)∗(x′)Ψ2[h
TT,ΠT, h

L, ϕ]∗ .

(4.149)
Note that in the basis used above, Q(0)(x) is not a real operator due to
the presence of cross terms in its definition that mix, for instance, Πij

TT and
Πij

T . But since Πij
T is realized, in the basis used above, as −i δ

δΠij
TT

complex

conjugation of this operator introduces a negative sign. Nevertheless, by
integrating by parts, and using the identities∫

DhTTDϕΨ1

( δ

δhTT
ij

Ψ∗
2

)
= −

∫
DhTTDϕ

( δ

δhTT
ij

Ψ1

)
Ψ∗

2 ,∫
DhTTDϕΨ1

( δ2

δhTT
ij δh

TT
kl

Ψ∗
2

)
=

∫
DhTTDϕ

( δ2

δhTT
ij δh

TT
kl

Ψ1

)
Ψ∗

2 ,

(4.150)

we find that∫
DhTTDϕΨ1Q

(0)∗(x′)Ψ∗
2 =

∫
DhTTDϕ

(
Q(0)(x′)Ψ1

)
Ψ∗

2 . (4.151)

In the sequence of equations above, we have suppressed the arguments of the
wavefunctionals for clarity.

Now, using the evolution equation we find that

i
√
γ

δ

δΠij
T(x)

(Ψ2,Ψ1)

=

∫
Σ

ddx′
∫
DhTTDϕ

(
Q(0)(x′)Gij(x, x

′)Ψ1Ψ
∗
2 −Ψ1Gij(x, x

′)Q(0)∗(x′)Ψ∗
2

)
= 0 .

(4.152)

Similarly, the second order momentum constraint (4.60) equates − i√
γ

δ
δhL

ij

with a self-adjoint operator, which ensures that

− i
√
γ

δ

δhLij
(Ψ1,Ψ2) = 0 , (4.153)
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and the inner product is independent of hLij.
This inner product reproduces the Fock space inner product if we use the

natural measure

DhTT =
∏
n

dcn, Dϕ =
∏
n

dc̃n . (4.154)

Then, using the above normalization, we find the simple result(
ΨE,{a},ΨE′,{a′}

)
= δE,E′δ{a},{a′} . (4.155)

4.6 Holography of information

In previous sections we have analyzed the form of the Hamiltonian and mo-
mentum constraints. We have shown that these constraints force a certain
component of the metric fluctuation to have specific correlations with the
excitations of the matter fields and transverse-traceless gravitons. We will
now show that these correlations are sufficient to completely identify a state
in the bulk from boundary correlators.

More precisely, we will establish the result.

Result. If two pure or mixed states of the theory coincide at the boundary of
AdS for an infinitesimal interval of time then they must coincide everywhere
in the bulk.

An intuitive way to think of our strategy to establish this result is as
follows. At the boundary, we have available to us the boundary values of
the metric and other matter fields. Let us first consider pure states. Then
the correlations that we have analyzed at length in section 4.5 allow us to
determine the energy of a state from the measurement of a certain component
of the metric at the boundary. The value of this component is suppressed
by a factor of κ but our analysis is already sufficient to reveal its nontrivial
value.

A determination of the energy is not sufficient to determine the state.
Since a pure state must be a superposition of energy eigenstates, the deter-
mination of the energy still leaves us with an ambiguity of relative phases
between different energy eigenstates and also an ambiguity associated with
degeneracies in energy eigenstates.
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To resolve this ambiguity, we exploit the fact that energy eigenstates are
necessarily delocalized states. This is true just by virtue of the Heisenberg
uncertainty principle. We demonstrate that the ambiguity associated with
degeneracy and the ambiguity associated with the phases of eigenstates can
be resolved by additional measurements of the metric and matter fields near
the boundary in an infinitesimal time interval. These latter measurements are
not suppressed by κ and involve just the O(1) fluctuations of the transverse-
traceless metric component and the matter fields. The end result is that
correlations of the energy and other observables near the boundary suffice to
completely fix the form of the bulk state.

The extension of our result to mixed states is straightforward. A ba-
sis of density matrices is obtained by combining a wavefunctional corre-
sponding to one energy eigenstate with the conjugate of a wavefunctional
corresponding to another energy eigenstate. Let us denote such a basis by
ρE,E′,{a},{a′}[h, ϕ, h̃, ϕ̃] where E,E ′ are the energy eigenvalues of the wavefunc-
tionals and {a}, {a′} are additional labels necessary since energy eigenstates
can be degenerate and, as usual, the density matrix has double the arguments
of the wavefunctional. Any density matrix can be written as a linear com-
bination of such elementary density matrices with certain coefficients. Two
density matrices can only yield the same values for all moments of the energy
if these coefficients satisfy certain strong constraints. As in the case of pure
states, measurements of the energy are insufficient to fix these coefficients.
However, we show that correlators of additional dynamical fields uniquely fix
these coefficients.

We now present a precise mathematical argument that realizes the in-
tuition above. In preparation for this argument, we first discuss the set of
boundary observables and also the set of valid mixed states in the theory
before turning to the proof in section 4.6.3

4.6.1 Boundary observables

Let us briefly recapitulate the set of boundary observables. Recall that,
as explained below equation (4.27) boundary observables are automatically
gauge invariant. The constraints only impose the invariance of observables
under small gauge transformations, and since such transformations die off
near the boundary, the constraints commute with boundary observables.

One special boundary observable that will be required is the ADM Hamil-
tonian, H∂, given in equation (4.38). In addition, we will require the bound-
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ary values of the metric and also the matter fields in the theory. In order to
adopt a compact notation, we denote such local boundary operators collec-
tively by

O(t,Ω); Ω ∈ Sd−1.

Note that these observables are naturally defined by a value of the boundary
time, t, and also a position on the boundary sphere.

For instance, consider the scalar field that we have discussed above with
mass m. Then a gauge-invariant boundary observable is obtained through

O(t,Ω) = lim
r→∞

r∆ϕ(r, t,Ω) , (4.156)

where we are using the coordinate system in (4.14) and ∆ is defined in
(4.120). In our notation, we assume that unlike H∂ (defined in equation
(4.38)), no explicit factors of 1

κ
are inserted while taking the boundary limits

of bulk operators. The reader should keep this distinction between H∂ and
the observables O(t,Ω) in mind for the analysis below.

We pause to address a subtlety associated with the limit described in
equation (4.156). In order to take the limit, the operator on the right hand
side of equation (4.156), which is a bulk operator, must be first made gauge
invariant in the sense of equation (4.31). It can be seen that there is no
unique way to dress the bulk operator in order to make it gauge invariant.

A simple way to understand this lack of uniqueness is as follows. Until
now, we have not invoked a specific gauge. But another way of obtaining
approximately local bulk operator is simply to choose a gauge. To every
such gauge-fixed operator, there exists a gauge-invariant representation of
the operator that satisfies the constraints (4.31). But different choices of
gauge lead to different operators. This is why the symbol ϕ(r, t,Ω) does not
have a unique meaning unless its precise dressing is specified.

This lack of uniqueness changes some correlators at O(κ) [128]. Never-
theless, this issue is not important for our analysis because we will use the
operators shown in (4.156) only within specific correlators. We will only
need the fact that when we take the limit to the boundary, the final operator
commutes with the constraints and its correlators with other local boundary
operators at O(1) are independent of how the operators was dressed in the
intermediate step. The precise property used is stated precisely in equation
(4.164) below and also holds for gauge-fixed operators.

We have displayed a scalar field in (4.156) but a similar limit can be taken
for observables that contain the metric or other dynamical fields in the theory.
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In the case of observables that depend on the metric, the only element of the
ADM decomposition that is relevant at O(1) in such an observable is hTT.
It is easiest to see this in the mixed representation of (4.134), which can also
be used for observables. Then the first order Hamiltonian and momentum
constraints tell us that such an observable must be independent of hL and
ΠT at O(1). Therefore, at O(1) such observables can only depend on hTT

and ΠTT. To lighten the notation, in the analysis below, O(t,Ω) can stand
for an insertion of either the metric or the insertion of a matter field.

4.6.2 Mixed states

In the previous sections, we have focused on pure states in the theory. It is
a short step to generalize this discussion to mixed states, and we do so now.

In section 4.5 we have obtained wavefunctionals that are annihilated by
the constraints. A basis of density matrices is obtained by combining them:

ρE,E′,{a},{a′}[h, ϕ, h̃, ϕ̃] = Ψ
(a′)
E′ [hij, ϕ]Ψ

(a)
E [h̃ij, ϕ̃]

∗ , (4.157)

where the wavefunctionals are normalized with respect to the inner product
(4.148). Note that the density matrix depends on two metric configurations,

which we have denoted above by hij and h̃ij, and two matter-field configura-
tions, denoted above by ϕ and ϕ̃.

A general density matrix is a linear combination of elements of (4.157):

ρ[h, ϕ, h̃, ϕ̃] =
∑

E,E′,{a},{a′}

c(E,E ′, {a}, {a′})ρE,E′,{a},{a′}[h, ϕ, h̃, ϕ̃] .

As usual, these density matrices satisfy the constraints that

c(E ′, E, {a′}, {a}) = c(E,E ′, {a}, {a′})∗ . (4.158)

Moreover, the eigenvalues of the density matrix must be positive and we
additionally have ∑

E,{a}

c(E,E, {a}, {a}) = 1 . (4.159)

We denote expectation values of an operator A in a density matrix using the
notation ⟨A⟩ρ. These expectation values are computed through

⟨A⟩ρ =
∑

E,E′,{a},{a′}

c(E,E ′, {a}, {a′})
(
ΨE′,{a′}, AΨE,{a}

)
(4.160)

where the inner product is as defined in (4.148).
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4.6.3 Proof of the main result

We are now in a position to prove the result above.
Let ρ1 and ρ2 be two density matrices of the form (4.157) with coefficients

c1(E,E
′, {a}, {a′}) and c2(E,E

′, {a}, {a′}) respectively. We will now show
that if the we have equality of the expectation values

⟨Hn
∂ O(t1,Ω1) . . .O(tq,Ωq)H

m
∂ ⟩ρ1 = ⟨Hn

∂ O(t1,Ω1) . . .O(tq,Ωq)H
m
∂ ⟩ρ2
(4.161)

for arbitrary values of n,m, q and and for any ti ∈ [0, ϵ], we then have ρ1 = ρ2.
First note that equation (4.161) implies that∑

E,E′

{a},{a′}

[
c1(E,E

′, {a}, {a′})− c2(E,E
′, {a}, {a′})

]
EnE ′m ⟨O(t1,Ω1) . . .O(tq,Ωq)⟩ρE,E′,{a},{a′} = 0 .

(4.162)
Since this is true for arbitrary values of n,m it must be true that for each
individual value of E,E ′∑
{a},{a′}

[
c1(E,E

′, {a}, {a′})−c2(E,E ′, {a}, {a′})
]
⟨O(t1,Ω1) . . .O(tq,Ωq)⟩ρE,E′,{a},{a′} = 0 ,

(4.163)
where the important difference with the previous equation is that (4.163)
does not involve any sum over E,E ′.

We now note that the correlators that appear in (4.163) can be evaluated
in the auxiliary Fock space introduced in section 4.5.1. That is,

⟨O(t1,Ω1) . . .O(tq,Ωq)⟩ρE,E′,{a},{a′} =
(
ψ

E′,{a′}
F ,O(t1,Ω1) . . .O(tq,Ωq)ψ

E,{a}
F

)
+O(κ) .

(4.164)
Note that the correlator on the left hand side does not include H∂ and it only
includes operators of the form (4.156). The equation above then follows from
the discussion of section 4.6.1. Computing an ordinary matter correlator with
the full wavefunctional is the same at O(1) as computing the same correlator
in the Fock space.

To complete the proof, we will use the analytic properties of the corre-
lators that appear on the RHS of (4.164). By inserting a complete set of
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energy eigenstates in the auxiliary Fock space, we find that(
ψ

E′,{a′}
F ,O(t1,Ω1) . . .O(tq,Ωq)ψ

E,{a}
F

)
= ei(E

′t1−Etq)
∑

Ej ,{aj}

ei
∑q−1

i=1 Ei(ti+1−ti)

×
(
ψ

E′,{a′}
F ,O(0,Ω1)ψ

E1,{a1}
F

)(
ψ

E1,{a1}
F ,O(0,Ω2)ψ

E2,{a2}
F

)(
ψ

E2,{a2}
F ,O(0,Ω2)ψ

E3,{a3}
F

)
× . . .×

(
ψ

Eq−1,{aq−1}
F ,O(0,Ωq)ψ

E,{a}
F

)
.

(4.165)

We emphasize that the entire identity above is simply in the auxiliary Fock
space, and we have used completeness and the transformation properties of
the operators under time translations only in the Fock space. This correlator
is clearly analytic when the variables

z1 = t1; z2 = t2 − t1; . . . ; zq = tq − tq−1 (4.166)

are continued in the upper half plane. This follows just from the positivity
of energy in the auxiliary Fock space. Note that in the correlator above the
term in the exponent involving E ′t1 − Etq is outside the sum over energies
and when the variables zi are extended in the upper half plane each term in
the exponential inside the sum picks up a factor that decays exponentially
with energy. Hence, if the correlator vanishes when ti ∈ [0, ϵ] it must also
vanish for ti ∈ [0, π] by the edge of the wedge theorem [129, 53].

But, in the Fock space, the individual creation and annihilation operators
can be obtained by integrating O(ti) in a band of size π. This follows from
the discrete frequencies for the excitations found in section 4.5.1 and 4.5.1.
So the algebra of operators for all ti ∈ [0, π] provides a complete basis for
the algebra of all operators in the Fock space. Therefore the correlator in
equation (4.163) vanishes for all ti ∈ [0, π] if and only if c1 = c2.

This proves our assertion.

Comments on the proof
We would like to comment on some subtle aspects of the proof above.

1. Note that the correlator (4.161) involves high powers of H∂. Neverthe-
less, our perturbative solution can be used to reliably compute these
correlators. This can be seen by rewriting the expression for the inte-
grated constraint after Fourier transforming the wavefunctional as was
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done in section 4.5.2. The constraint then takes the form

i

2κ

∫
∂Σ

dd−1Ωni(N∇j −∇jN)(δki δ
ℓ
j − γkℓγij)

1
√
γ

δ

δΠkℓ
T

Ψ[hTT,ΠT, h
L, ϕ]

=

∫
Σ

ddx
√
γN HbulkΨ[hTT,ΠT, h

L, ϕ] + O
(
hTij

)
+O(κ)

(4.167)

where we have explicitly also displayed the O
(
hTij

)
and higher-order

terms that were dropped in the analysis of section 4.4.4. Now one of
the key simplifications that we found in section 4.4.4 was that Πij

T drops
out of the integrated expression for Hbulk. Consequently we were able
to examine wavefunctionals that satisfied∫

Σ

ddx
√
γN HbulkΨ[hTT,ΠT, h

L, ϕ] = EΨ[hTT,ΠT, h
L, ϕ] . (4.168)

We can then move to new variables

Π̃ij
T = κΠij

T , h̃Tij =
i

√
γ

δ

δΠ̃ij
T

=
1

κ
hTij , (4.169)

so that the equation above takes the form

i

2

∫
∂Σ

dd−1Ωni(N∇j −∇jN)(δki δ
ℓ
j − γkℓγij)

1
√
γ

δ

δΠ̃kℓ
T

Ψ[hTT, Π̃T, h
L, ϕ]

= EΨ[hTT, Π̃T, h
L, ϕ] + κO

(
h̃Tij

)
+O(κ) .

(4.170)

Note that the factor of κ has disappeared on the LHS above, and an
additional factor of κ has appeared in front of the functional derivatives
with respect to Π̃ij

T on the second line of the RHS. This entire equation
clearly has a smooth limit as κ→ 0 and this allows us to conclude that
repeated applications of H∂ produce a simple result:[ i
2

∫
∂Σ

dd−1Ωni(N∇j −∇jN)(δki δ
ℓ
j − γkℓγij)

1
√
γ

δ

δΠ̃kℓ
T

]n
Ψ[hTT, Π̃T, h

L, ϕ]

= En Ψ[hTT, Π̃T, h
L, ϕ] + O(κ) .

(4.171)

This is precisely what we have used above.
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2. Our perturbative analysis in section 4.4 and section 4.5 assumes that
the states under consideration do not have energies that scale para-
metrically with O

(
1
κ

)
so that there are no factors of κ that we need

to keep track of except for the ones that appear explicitly in pertur-
bation theory. But the proof above requires somewhat more stringent
conditions on the energies. This can be seen by examining the passage
from equation (4.162) to equation (4.163). If we denote the number of
energy levels below a given energy E by D(E) then this passage is valid
provided we can take n,m in (4.161) to satisfy n,m > D(E). Since
we are limited to using n,m < O

(
1
κ

)
, the proof above holds provided

the states that enter (4.161) satisfy D(E) < O
(
1
κ

)
in AdS units. We

remind the reader that log(D(E)) can grow no faster than E on ther-
modynamic grounds and the linear bound is saturated by the Hagedorn
behaviour of string-theory.

This limitation should not be surprising. When D(E) = O
(
1
κ

)
, the

expected difference in the value of any observable between two typical
state is suppressed by a factor of O(

√
κ). (See [130] or section 2.4 of [2])

Therefore even if one were to consider all correlators, including bulk
correlators, it would still be necessary to measure these correlators to
highers order in κ in order to differentiate two typical states.

We emphasize that this limitation does not mean that the result above
fails to hold for high-energy states. The arguments of [5] arrive at the
same result with no such limitation. So our observation simply implies
that we need to refine our proof for high-energy states.

3. We note that the proof above can also be rewritten using the projector
on the vacuum as was done in [5] or by replacing powers of H∂ with
projectors onto eigenstates of H∂. Indeed, from a physical perspec-
tive, projective measurements are more natural than correlators as was
explained in [10]. We have provided a proof using the correlators of
(4.161) only to keep our argument simple and explicit.

4. In the proof above we have utilized a small time band in order to
make the assertion below (4.166) rigorous. We expect that it should
be possible to trade this infinitesimal time band for an infinitesimal
“thickness” in the bulk. If so, the result above can also be stated as
“if two states coincide near the boundary at a single instant of time,
they must coincide everywhere in the bulk.” However, to make this
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rigorous requires some delicate analysis since, in an intermediate step,
it will be necessary to construct bulk operators that commute with the
constraints.

5. The products of operators that appear in (4.161) are not necessarily
Hermitian. However, the expectation value we need can always be
obtained by combining the expectation values of Hermitian observables.
We first write each product of operators, A in (4.161) as A = X + iY
where X and Y are Hermitian. We then have ⟨A⟩ = ⟨X⟩ + i⟨Y ⟩.
For further discussion of a “physical protocol” that can be used to
extract information about the state, by combining a boundary unitary
operation with a measurement of the energy, we refer the reader to [10].

6. The proof above takes advantage of the infrared cutoff provided by
global AdS. Since the spectrum of energies is discrete, a finite set of
powers of H∂ in (4.161) are sufficient to make the passage to (4.163).
This means that the method of proof presented here must be refined
before it can be applied to asymptotically flat space where there is no
infrared cutoff.

We note that the result one should aim for in asymptotically flat space
is clear. In [5] it was shown, using operator-theoretic techniques, that
two states of massless particles that coincide in a small retarded-time
band near the past boundary of I+ (or a small advanced-time band
near the future boundary of I−) must be identical. We expect that a
refinement of the techniques developed here, to account for the infrared
subtleties of flat space, will lead to the same result.

4.7 Discussion

Summary of results. In this chapter, we have explicitly shown that a
careful analysis of the solutions of the gravitational constraints leads to a
perturbative proof of the principle of holography of information: any wave-
functional that satisfies the gravitational constraints in AdS is determined
uniquely by its boundary values over an infinitesimal interval of time. As we
reviewed in section 4.3, these constraints can be obtained from the straight-
forward canonical quantization of gravity. In the canonical formalism, states
of the theory are represented as wavefunctionals of the metric and matter
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degrees of freedom. The requirement that these wavefunctionals yield the
same amplitude for configurations that are related by diffeomorphisms of a
spatial slice leads to the momentum constraint; requiring the same ampli-
tude for configurations related by diffeomorphisms that move points in time
leads to the Hamiltonian constraint, which is also called the Wheeler-DeWitt
equation. The precise form of these constraints can be found in equations
(4.22) and (4.23).

In section 4.4, we expanded these constraints up to second order in the
metric fluctuation. An important tool introduced in section 4.4 was the ADM
decomposition presented in equation (4.40). This decomposition has previ-
ously been used in flat space; our results show that when suitably generalized
it is also a very useful decomposition in curved space.

In section 4.5, we analyzed solutions to the perturbative Hamiltonian
constraint. We first considered the equation obtained by integrating the
Hamiltonian constraint over an entire Cauchy slice. This procedure greatly
simplifies the constraint. We were able to obtain explicit solutions to the
integrated constraint: these solutions are just dressed versions of wavefunc-
tionals in an auxiliary Fock space that describe the matter excitations and
the transverse-traceless metric excitations. We also showed how the point-
wise Hamiltonian constraint can be solved through an iterative procedure.

In section 4.6, we showed that these wavefunctionals obey the remarkable
property that their boundary values for an infinitesimal interval of time de-
termine their behavior everywhere in the bulk. This result follows from the
solutions that we obtained in sections 4.4 and 4.5. It sheds light, in a precise
and explicit setting, on how and why gravitational theories are holographic.

Natural extensions. It is instructive to see what our analysis gives in the
case of AdS3. There are no nontrivial propagating gravitons in AdS3 but it
is still meaningful to define a boundary Hamiltonian that measures the total
energy of the state. So we see that the present formalism can be applied to
AdS3. It would be interesting to go further and recast the Brown-Henneaux
analysis [131] in the language of wavefunctionals.

This work was focused on global AdSd+1 but the analysis can also be
performed for subregions of AdS. In particular, it appears straightforward to
extend our analysis to the the Rindler wedge of a spherical region [132] and
also perhaps to more general entanglement wedges. This promises to shed
light on subregion duality and entanglement wedge reconstruction and we

119



hope to return to this problem in the near future6.

Future work. The analysis in this chapter and the later ones are perturba-
tive in nature. In [5], it was shown that with weak assumptions on the Hilbert
space and the nature of boundary observables, theories of gravity must be
holographic even nonperturbatively. The analysis of [5] used operator alge-
bra techniques. It would be very interesting if the perturbative analysis of
this chapter could be generalized to show that, even nonperturbatively, so-
lutions of the WDW equation that coincide on the boundary must coincide
everywhere in the bulk. Although the nonperturbative WDW equation may
seem formidable, the results of [5] suggest that obtaining such a result might
be possible.

In this chapter, we have been agnostic to the matter content of the theory
and its interactions. However, it is well known, from the AdS/CFT literature,
that not all low-energy effective theories can be consistently extended to
obtain a UV-complete theory of quantum gravity in AdS. It would be very
interesting to understand whether and how these constraints enter possible
extensions of our analysis.

The results of our work again illustrate the dramatic difference between
the storage of quantum information in quantum gravity compared to quan-
tum field theories. In ordinary quantum field theories, it is possible to find
states that differ inside a bounded region but are identical outside that region;
such states localize information in the interior of some region. The existence
of such states corresponds to the “split property” of ordinary quantum field
theories where the Hilbert space factorizes into a factor associated with the
interior of the region and another factor associated with the exterior. In clas-
sical theories of gravity, configurations that differ inside a ball but coincide
outside it can be constructed. For this reason, it has often been assumed
that split states should also exist in quantum gravity. But our results show
that this seemingly innocuous assumption is false.

It is described in [2] how this incorrect assumption plays a key role, both
in Hawking’s formulation of the information paradox and also in its various
refinements (see also [76, 42]). More interestingly, the idea that black hole
radiation should obey a “Page curve” also relies implicitly on the same in-
correct assumption of factorization. By focusing on this assumption, it was

6There has been recent work on using the WDW equation for analyzing the Hilbert
space and the holography of information in dS spacetime [133, 134].
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recently shown in [135] that the paradigm of “islands” [6] that has been used
to derive this Page curve is applicable only to theories of massive gravity and
does not apply to standard theories with long-range gravity.

This chapter shows how the impossibility of localizing information in a
bounded region in gravity is directly related to the structure of valid wave-
functionals in the theory. We hope that a study of the solutions that we have
found will help to shed further light on this remarkable property of quantum
gravity.
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Chapter 5

Asymptotic Symmetries in
Higher Dimensional Flat Space

5.1 Introduction

In this chapter we investigate the symmetries of asymptotically flat space-
times near Null Infinity1. Ever since the work of BMS, it has been known that
the asymptotic symmetry group of flat spacetime in four dimensions is larger
than the Poincare group and is known as the BMS group. This contains addi-
tional symmetries known as supertranslations2 along with the usual Poincare
transformations. These asymptotic symmetries have been extensively studied
in four dimensions [18, 140] and there has been some progress in understand-
ing them in the linearized gravitational theory in higher even dimensions as
well [22, 26]3. However, there are crucial differences between the situations
in four and higher dimensions. In four dimensions, supertranslations and ra-
diative degrees of freedom are described by the same field which constitutes
the free data. In higher dimensions, these are accounted for by two different
fields, occuring at two different fallofs in the asymptotic expansion. While

1The interested reader can refer to [21, 136, 137, 138, 139] for a discussion of asymptotic
symmetries near timelike and spacelike infinities.

2Supertranslations are “angle dependent translations”, where the angle is defined with
respect to the sphere at null infinity (also known as the Celestial sphere). We will define
this concretely in the main text.

3The behaviour of solutions in odd dimensions differs greatly from that of even di-
mensions and shows non-integer fall offs. In this work we only consider even dimensional
spacetimes.
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in four dimensions the theory is effectively free as one goes to null infinity
and therefore a linearized analysis is often sufficient, in higher dimensions,
certain non-linearities persist at null infinity4. This leads to a tension with
the boundary conditions needed for defining the symplectic stucture. As we
discuss in the main text, this tension also exists while studying the linearized
theory about a non-trivial background.

In this work, we resolve this issue by first redefining the fields that con-
tain the radiative data. This redefinition does not affect the News tensor
characterizing the radiation. Using this redefinition we find the Symplectic
structure of the resulting phase space and impose boundary conditions that
are consistent with the action of supertranslations. This allows us to com-
pute the Noether charge corresponding to supertranslations. We also find
this charge by an explicit evaluation of the equations of motion of the full
non-linear theory after first expressing it as an integral of the Bondi mass.
We show that these two expressions for the Noether charge agree with each
other.

The Noether charge corresponding to supertranslation symmetry gives a
description of the classically conserved quantities. In the quantum regime,
these classical conservation laws manifest as the Ward identities, which help
us understand the Weinberg soft theorems. The connections between asymp-
totic symmetries and soft theorems are well established in the literature for
four dimensions and in higher dimensional linearized theory [18, 22, 26]. In
this chapter, we show that this connection persists in the non-linear theory by
demonstrating that it retains the same structure as in the linearized theory
when described in the redefined variables.

Along with soft theorems, asymptotic symmetries have also been im-
portant for understanding the memory effect. Such a connection has been
well understood in four dimensions and in the linearized theory in higher-
dimensions [18, 73, 141, 78]. Together, asymptotic symmetries, soft theo-
rems and the memory effect complete the Infrared Triangle. The triangle
represents a set of mathematical operations which relate the three seemingly
different concepts. In this chapter we explain how one can derive the memory
effect in the non-linear theory which then leads us to a generalization of the
Infrared triangle in higher-dimensions. This provides the first example of the
Infrared triangle in the full non-linear theory in higher-dimensions.

4The non-linear action of the supertranslations on the free data was also pointed out
in [26].
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We end with some comments on the implication of our results in the
quantum theory in section 5.5.1.

5.2 Supertranslations in higher dimensions

5.2.1 Metric Conventions and Gauge Choice

Although our main aim is to analyze the implications of allowing super-
translations in higher dimensional gravity, for concreteness we work in six
dimensions. However, many of the qualitative features should not change
for higher even dimensions. In contrast to earlier works [22, 26] we work in
the full non-linear theory. As we go along, we highlight the key differences
between asymptotic symmetries in linearized gravity and our results. We de-
note the retarded Bondi cooridnates by (u, r, za) with the small Latin indices
denoting the coordinates on the Celestial sphere S4 and the Greek indices
denote the spacetime coordinates, µ ∈ (u, r, za). Although our analysis is
restricted to six spacetime dimensions, several results are independent of the
dimensionality and we will highlight them explicitly. We work in the unit of
c = ℏ = 8πGN = 1 which is the same as [26].

In the Bondi gauge the (asymptotically) flat metric can be written as [12,
13]5,

ds2 = e2βMdu2 − 2e2βdudr + gab(dz
a − Uadu)(dzb − U bdu). (5.1)

All quantities in the metric can be a function of (u, r, z). The indices of Ua

are raised and lowered using gab, i.e, Ua = gabU
b and U2 = gabUaUb, where

the inverse gab is defined as gacgcb = δab . The inverse metric is then written
in the following form,

gµν =

 Me2β + U2 −e2β −Ua

−e2β 0 0
−Ub 0 gab

 , gµν =

 0 −e−2β 0
−e−2β −Me−2β −Uae−2β

0 −U be−2β gab

 .

(5.2)
The Bondi gauge condition also places a constraint on the determinant of
the metric gab,

det
(gab
r2

)
= det(γab) (5.3)

5Note the difference in notation from chapter 3 .
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where γab is the metric on the 4-sphere. As shown in appendix C.1, the
determinant condition helps us fix the traces of g

(n)
ab . As we are interested

in the analysis near null infinity, we will be mostly interested in the large−r
limit of the metric components. Depending on how the large−r limit is taken
we can either end up near I+ or I− (the future/past null infinity) but the
basic construction remains the same in either case, and therefore we shall
stick to working near I+.

We will need the fall off conditions near I+ which are given as,

β =
∞∑
n=2

β(n)(u, z)

rn
, M =

∞∑
n=0

M (n)(u, z)

rn
, Ua =

∞∑
n=0

U
(n)
a (u, z)

rn
,

gab = r2γab +
∞∑

n=−1

g
(n)
ab

rn
.

(5.4)

These fall off conditions have been motivated in the literature, see eg. [22,
26, 18]. Further, these conditions imply that the components of the Ricci
tensor fall off as

Ruu = O(r−4), Rur = O(r−5), Rua = O(r−4),

Rrr = O(r−6), Rra = O(r−5), Rab = O(r−4).
(5.5)

The fall off conditions are chosen to ensure the finiteness of energy flux and
other physical observables when we couple matter fields with gravity. Note
that without including external matter fields we do not need to specify any
fall off condition for the Ricci Tensor (as they become zero to arbitrary orders
in r when evaluated on-shell), however the addition of matter fields necessi-
tates the fall off conditions mentioned above and therefore also constrain the
fall off conditions of the matter stress tensor which are equivalent to the fall
off for Rµν .

For convenience we denote some of the important components of gab(u, z)
(n)

using the following notations

g
(−1)
ab ≡ Cab, g

(0)
ab ≡ Dab, g

(1)
ab ≡ Eab, g

(2)
ab ≡ Fab. (5.6)

The indices of U
(n)
a and g

(n)
ab are lowered and raised using the metric γab. The
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determinant condition eq.(5.3) fixes the traces of g
(n)
ab , for example,

Ca
a = 0 , (5.7a)

Da
a =

1

2
CabCab , (5.7b)

Ea
a = C ·D − 1

3
C3 , (5.7c)

F a
a = CabEab +

1

2
DabDab − CamCbmD

b
a +

1

4
Ca

bC
b
cC

c
dC

d
a . (5.7d)

A detailed derivation of this is given in appendix C.1. It is easily seen that
in the linearized limit (which means that non-linear terms involving g

(n≥−1)
ab

are neglected), the traces of Dab, Eab, Fab just become 0. In fact in the

linearized limit, the trace of every g
(n)
ab = 0 ∀ n ≥ −1 as shown in [26]. One

can repeat the above anlaysis at I−. The interested reader is encouraged to
look at [22] for more details.

For the sake of convenience, we decompactify the celestial sphere. Thus
γab is simply the flat Euclidean metric δab. As the leading order termM (0) in
the expansion of guu is related to the curvature scalar of γab, it vanishes in the
case of celestial plane, i.e,M (0) = 0 when γab = δab. We will often be referring
to γab = δab as the flat sphere. This choice of coordinates has been adopted
in many papers including [142, 143, 144, 145] and the explicit coordinate
transformation from the round sphere to the flat sphere is provided in the
references above. The simplification will not alter any of the results, as at
the end of the computation we could always “covariantize” the result and
revert back to γab as the sphere metric6.

5.2.2 Free data

In the previous section we parametrized the space of asymptotically flat
spacetimes in the Bondi gauge. In this section we analyze the radiative phase
space of the theory at future null infinity. In D = 4, the radiative phase space

6We note that the flat metric on the celestial sphere has already been used in [142]
to compute the conserved charges in electromagnetism in higher dimensions, which we
independently reproduce from a calculation using the symplectic form in appendix C.4.
This has also been used in the context of gravity in [145] and we refer the reader to that
paper for further details on these coordinates. It can also be seen from our computations
that we get the expected results in linearized gravity by working with the flat sphere
metric.
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of General Relativity is coordinatized by the shear C
(4D)
ab (u, z). It is a linear

space of the unconstrained free data such that the sub-leading components
of the metric (in the 1/r expansion) can be determined in terms of C

(4D)
ab

and the boundary conditions at I+
− . As we show below, in D = 6, the free

data for Einstein’s equations at I+ is parametrized by Cab and Dab. All the
fields appearing in eq.(5.1) except forM (3) can be written in terms of Cab and
Dab (see appendix C.2). As we shall see later, M (3) will be identified as the
analgoue of the Bondi mass (see sec.5.3.3) and its u-derivative is determined
by the constraint equation. The differences between the D = 4 and D = 6
radiative data are summarized in table 5.1.

From the leading order non-trivial equation for Rab, i.e, at O(r
0) we get,

∂uCab = 0. (5.8)

This implies that Cab(z) is u-independent and hence has no radiative infor-
mation. In six dimensions the radiative degree comes with a 1/r2 fall off and
hence is expected to be contained in Dab. The subsequent equations explic-
itly show that Dab(u, z) is unconstrained. Thus Dab is analogous to the shear
field in four dimensions and the corresponding News tensor ∂uDab captures
radiative content.

We note that as ∂uCab = 0, a field redefinition of Dab → Dab + func(Cab)
does not change the News tensor. The freedom in defining Dab will play a
central role in our analysis. However, as we prove in section 5.2.3, this free-
dom is fixed and func has a specific form such that certain fall-off conditions
are well defined (these fall-offs refer to the behavior of the radiative field near
I+
− and are discussed in section 5.2.3).
We also note that the radiative degrees of freedom parametrized by (trace-

free) Dab are exactly equal to nine, which is the number of graviton polar-
izations in D = 6.

We finally note that in four dimensions, if we restrict ourselves to the so-
called Christoudoulou-Klainermann (CK) spacetimes then the leading com-
ponent of the magnetic part of the Weyl tensor vanishes at I± [146]. In the
present case, the vanishing magnetic charge condition takes the form

∂aU
(0)
b − ∂bU

(0)
a = 0. (5.9)

It can be checked that this condition sets the leading order term in the
magnetic part of the Weyl tensor to zero7. As H1(S4,R) = 0, U

(0)
a is an

7The relationship between the above constraint and the magnetic part of the Weyl
tensor can be found in [147], also see [148].
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exact form on S4 if the magnetic charge vanishes (a similar argument also
holds in R4). Using (C.13), we thus see that Cab is parametrized in terms of
a single scalar potential8.

Cab = −2
(
∂a∂bψ

)tf ≡ −2
(
∂a∂bψ − 1

4
δab∂

2ψ
)
. (5.10)

Here Xtf denotes the tracefree part of X defined as Xtf
ab = Xab − 1

4
δabTr(X);

and ∂2 ≡ ∂a∂a. Here the factor of −2 in the equation for the potential is
chosen for convenience and will be explained in section 5.2.3. We note that
the magnetic constraint in (5.9) can be trivially satisfied by choosing Cab = 0,
but as was shown in the linearized case [26], this condition is not preserved
under supertranslations (see eq.(5.14)).

5.2.3 Supertranslation Generators

In this section, we analyze the symmetries that preserve the space of all
D = 6 (and in general all even) dimensional asymptotically flat geometries9.
If we restrict the analysis to linearized gravity around flat spacetime, then
it has been shown in [22, 26] that the asymptotic symmetries include infi-
nite dimensional supertranslations. The complete group of such symmetries
is a Cartesian product of BMS group on I+, I−. The diagonal subgroup
obtained by the anti-podal identification of supertranslation generators at
I+ and I− and is conjectured to be the symmetry group of tree-level S-
matrix with massless external particles (which are not gravitons) such that
the corresponding Ward identity is equivalent to the Weinberg soft graviton
theorem.

Although this is a promising data point for showing existence of an IR
triangle in higher (even) dimensions, there is a caveat which has not been
analysed in the literature so far10. As seen in the literature [22, 26] and also
discussed previously, the action of supertranslation even in linearized gravity
generates an infinity of flat spacetimes parametrized by Cab ̸= 0. Hence in
order to show that supertranslations at I± preserve the space of linearized

8This counting can even be done in the linearized theory and was mentioned in [26],
but we find the reasoning below (5.9) to be more robust than the one in [26]. We would
like to thank Ankit Aggarwal for discussions about this issue.

9We thank Prahar Mitra for several discussions regarding this.
10Henceforth, we shall always mean higher even dimensions, whenever we refer to any

results in higher dimensions.
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asymptotically flat geometries, we need to include linearisation around flat
space-times for which Cab ̸= 0. To the best of our understanding, analysis of
supertranslation symmetries and the subsequent conservation laws have not
been studied previously and we fill this gap in our work.

We start by reviewing the derivation of BMS asymptotic symmetries as
given in [22, 26]. They are generated by vector fields which are asymptotically
Killing. I.e, ξα is an asymptotic symmetry if,

Lξgrr = 0, Lξgra = 0, gabLξgab = 0. (5.11)

We note that this definition of asymptotic symmetry is agnostic to the dimen-
sion of spacetime. These equations tell us that the gauge conditions should
be preserved under a diffeomorphism. They can be solved exactly and the
solutions for ξµ is given as [22],

ξu = f, ξa = −∂bf
∫ ∞

r

e2βgabdr′, ξr =
r

4

(
Ua∂af − ∂aξ

a
)
, (5.12)

which can be summarized as,

ξµ = f∂u +
r

4

(
Ua∂af − ∂aξ

a
)
∂r − ∂bf

∫ ∞

r

e2βgabdr′∂a. (5.13)

These are the well known BMS vector fields which include supertranslations
parametrized by an arbitrary function f(za)11. We now derive the action of
the supertranslations on the radiative data at I+. By evaluating Lξgab (which
we shall often denote as δfgab when we are referring to supertranslations) to
O(r−1) we can see that,

lim
r→∞

rLξgab = δfCab = −2
(
∂a∂bf − 1

4
δab∂

2f
)
. (5.14)

where ξ is the ST vector field defined in (5.13). It can be verified immediately
that the transformation of the potential ψ in (5.10) is as follows12

δfψ = f (5.15)

11If we relax the boundary conditions and demand that the asymptotic symmetries
are generated by vector fields which are volume preserving as opposed to asymptotically
Killing, then we will be led to the generalisation of the so-called Generalised BMS group
which is the semi-direct product ST⊗Diff(S4). We expect the conservation laws associated
to Diff(S4) to be equivalent to sub-leading soft graviton theorem. However the detailed
analysis of this question is outside the scope of this chapter.

12This explains our reason for introducing -2 in the definition of the scalar potential in
(5.10). Without which we would have to rescale ψ in an appropriate manner.
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We can now compute the action of ST on Dab,

lim
r→∞

r2Lξgab = δfDab = f∂uDab +
1

4
δab

[
−4

3
∂cC

cd∂df − Ccd∂c∂df

]
+

1

4
Cab∂

2f − ∂cCab∂
cf − 1

2

(
Cbc∂a∂

cf + Cac∂b∂
cf
)

+
1

2

[
∂aCbc∂

cf + ∂bCac∂
cf
]
+

1

6

[
∂cCbc∂af + ∂cCac∂bf

]
.

(5.16)

This result is completely general and is valid in the non-linear theory. From
the perspective of linearized gravity, it is an extension of the result in [26]
when the background spacetime has non-zero Cab

13.
We thus note that the action of ST on Dab(u, z) (Graviton mode) gen-

erates a constant (u-independent) term even in linearized gravity around a
flat metric with non-zero Cab

14. However, both the saddle point analysis in
appendix C.6 and the finiteness of symplectic structure (see section 5.3.1) at
I+ impose stronger fall off conditions on the Graviton mode. The finiteness
of the symplectic structure implies that as |u| → ∞

lim
|u|→±∞

Graviton(u, z) = O
( 1

|u|1+0+

)
(5.17)

This fall-off condition appears to be in tension with (5.16). We now show
that it is possible to redefine Dab to D̃ab such that (1) the corresponding
News tensor ∂uDab remains unchanged and (2) action of ST preserves the
fall-off condition of D̃ab. Let us define D̃ab as,

D̃ab = Dab −
1

4
Cc

aCbc −
1

16
δabC

cdCcd. (5.18)

Under ST it transforms as,

δfD̃ab = f∂uD̃ab. (5.19)

It can also be verified that D̃ab is trace-free, i.e, D̃
a
a = 0. Implications of this

field redefinition in linearized gravity are now clear. When combined with the

13From the perspective of soft theorems, our analysis can be understood as a derivation
of the leading order multi-soft graviton theorem from supertranslation Ward identity in
linearized gravity.

14An analysis about a flat metric with non-zero Cab means that the background is
r2δab + rCab instead of just r2δab
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results of [22], we see that the Gravitational scattering in the background of
any flat spacetime has ST symmetries whose associated conservation laws are
equivalent to classical and quantum soft graviton theorem [149]. The com-
plete implications of this field redefinition in non-linear theory will emerge
in the following sections. For now, we have the following statement. In the
non-linear theory, supertranslations map an asymptotically flat spacetime to
a distinct asymptotically flat spacetime via the following action,

δfCab = −2
(
∂a∂bf − 1

4
δab∂

2f
)
, (5.20a)

δfD̃ab = f∂uD̃ab. (5.20b)

Having described the generators of ST, we move onto computing the
charge corresponding to this symmetry in the next section.

5.3 Supertranslation Charge

In this section, we evaluate the Noether charge corresponding to supertrans-
lations. We first compute the symplectic form of the theory at I+ and then
compute the Noether charge using that. Finally, we also compute the Bondi
mass and explain how we obtain the same Noether charge as computed be-
fore.

5.3.1 Symplectic Form

In order to compute the Noether charge we use the covariant phase formalism
and first analyze the symplectic form of the theory15. This will also help us
in the identification of the canonically conjugate variables of the theory.

The Symplectic form can be constructed on any Cauchy slice but since
our interest lies in the theory at future null infinity, we will perform our
analysis on I+ ∪ i+. The advantage of doing this is that most interaction
terms die off near that region. Since we are working with massless fields, we
can neglect the contribution from i+ and just work by defining the data on
the null slice I+.

15For a detailed discussion of this formalism, we refer the reader to [150, 151, 152]. This
was first analyzed near null infinity in [15, 14].
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We have already established in the previous sections that Cab and D̃ab

constitute the free data and it would therefore make sense to construct the
symplectic form with these two variables.

The symplectic form in higher dimensions at I+ has been evaluated in
the linearized limit about Cab = 0 in [26]. We follow the same strategy
and evaluate this in the non-linear theory for the Einstein-Hilbert action at
I+. In order to do this we first construct the symplectic current and later,
integrate over the current to obtain the symplectic form. Following [151], the
symplectic current for the Einstein-Hilbert action is given as16,

Jα =
1

2
δΓα

µν ∧
[
δgµν +

1

2
gµνδ log g

]
− 1

2
δΓν

µν ∧
[
δgαµ +

1

2
gαµδ log g

]
(5.21)

Here δ represents the exterior derivative on phase space and ∧ denotes the
wedge product. The basic idea of computing this symplectic form at I+

follows a similar strategy as QED (see appendix C.4) or the linearized grav-
itational case, which is already done in [26]. We explain the technicalities of
evaluating this in the non-linear gravitational case in full detail in appendix
C.5 and summarize the conceptual points here.

The symplectic form is defined as an integral over the symplectic current,

Ω ≡
∫
dΣαJ

α (5.22)

with dΣα denoting the measure of integration on the chosen Cauchy slice. For
us, this is evaluated on I+. In order to reach I+, we first choose a constant-t
cauchy slice and then take the limit t → ∞ by holding u = constant. Note
that in our notations t = u + r. Since we start with a constant-t Cauchy
slice, the component of the current that contributes to the symplectic form
is J t = Ju + Jr,

Ωt = lim
r→∞

∫
I+

r4dud4z J t = lim
r→∞

∫
I+

r4dud4z (Ju + Jr). (5.23)

It is simpler to evaluate Ju first and that is given as (refer to (C.49) for more
details),

−Ju =
1

4r4
δCab ∧ δ(Dab − Ca

cC
bc) (5.24)

16A detailed derivation of this expression can be found in section 4.2 of [153]. There is
an improved version of this result given in [154] which takes care of boundary terms on a
spatial slice.
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For Jr, we get a leading order term at O(r−3) which we call Jr
div. This term

can potentially diverge since the measure of the integral in (5.23) at I+ is
r4 and we are working in the large-r limit. However, as shown in (C.5.2),
it ends up giving a finite contribution to the symplectic form17. Thus the
contribution from Jr is given as,

Jr = Jr
div + Jr

fin (5.25)

with

−2Jr
div = − 1

2r4
∂u

[
(t− u)δCab ∧ δDab

]
− 1

2r4
δCab ∧ δDab , (5.26a)

−2Jr
fin = −1

2
δDab ∧ δ∂uDab −

1

2
δCab ∧ δ∂uEab

− 1

2
δCab ∧ δ

[
2∂aU

(1)
b − U (0)c

(
2∂aCbc − ∂cCab

)
− 1

3
∂b
[
U (1)
a + Cc

aU
(0)
c

]
+

1

3
∂m∂a(D

m
b − Cm

c C
c
b )

]
.

(5.26b)

The equations can be simplified further by expressing it in terms of the free
data Cab and D̃ab (see appendix C.5 for details). We then combine Jr and Ju

to obtain J t which we integrate to get the symplectic form (5.23). In order
to ensure a finite contribution from the first term in (5.26a) to the symplectic
form (in the large−r limit), we see that the fall off condition on D̃ab with
large−u should be18

lim
u→±∞

D̃ab = O
( 1

|u|1+0+

)
. (5.27)

For further details we refer the reader to the appendix C.5.2. We also note
that the same fall-off is expected from the saddle point analysis, as explained
in appendix C.6.

Leaving the details to appendix C.5.5, we state the final result for the the
symplectic form here. We find that the symplectic form Ωt can be uniquely
spit into two different terms

17We emphasize that this apparent large-r divergence is also seen in QED (C.26) and
in the linearized limit as well [26]. As shown here, this divergence disappears upon appro-
priately choosing the boundary conditions.

18A similar analysis also motivates the fall off in the linearized theory, as shown in [26],
and can also be seen in QED (C.28).
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1. Finite and Integrable piece: This is the term that leads to the
correct Noether charge and also defines the radiative phase space at
I+,

Ωrad =

∫
I+

dud4zJ t
I = −1

2

∫
I+

d4zdu
[
−1

2
δD̃ab∧δ∂uD̃ab+

1

2
δCab∧δ∂uEab+

1

9
δCab∧δ∂a∂cD̃bc

]
.

(5.28)
It contains the radiative degree of freedom D̃ab and defines its Poisson
brackets near I+. We thus obtain a generalization of the Ashtekar-
Streubel symplectic structure at I+ [15] in the higher dimensional non-
linear theory. We also note that the expression above can be obtained
from [26] by replacing Dab with D̃ab, which is the radiative data in
the non-linear theory. Therefore upon using the EOM for Eab (see
eq.(5.44)), the canonically conjugate variable of D̃ab can be identified
using this structure. As shown in section 5.3.2, we obtain the Noether
charge of supertranslation using Ωrad. Later (in section 5.3.3), we also
compare it with the expression obtained from the Bondi mass. The di-
vergent piece as discussed below does not affect the charge as it cannot
be expressed as a total variation.

2. Divergent and Non-Integrable piece: The other piece of Ωt is
given as

Ωdiv =
1

2

∫
I+

dud4zJ t
NI

= −
∫
I+

dud4z δCab ∧ δ
[
− 1

2
Cc

aCbc −
1

9
∂a

(
Ccd∂cCbd +

4

3
Cc

b∂
dCcd −

1

16
Ccd∂bCcd

)
+

1

3
∂cCcd∂aC

d
b −

1

6
∂cCab∂

dCcd

]
.

(5.29)

Note that this contains no radiative degree of freedom D̃ab, and as
∂uCab = 0, the integrand is independent of u. Therefore, this gives a
divergent term when integrated with u. However, this does not make
the symplectic structure ambiguous at I+. The ambiguity is settled by
noting that this term will not contribute to the Noether charge, as it
does not lead to a total variation. As seen from the computation in [26],
such a term does not arise while computing the symplectic form in the
linearized theory about the Cab = 0 background. It will be interesting

134



to see the implication of such a term and we leave that for a future
work.

5.3.2 Noether Charge

The Noether charge19 can be computed using

δQf ≡ Ωrad(δf , δ) (5.30)

Here δf represents the ST variations20. The following calculation is almost
similar to that of [26] with Dab replaced by D̃ab. However in addition to the
soft charge we also obtain the hard charge as shown below.

We first work out the soft charge (the term linear in D̃). Using the
formula (5.30), the soft charge obtained from the symplectic form becomes,

Qsoft
f =

1

12

∫
I+

d4zdu f∂2∂abD̃ab +

∫
I+

d4zdu f(∂ab − 1

4
δab∂2)∂uEab (5.31)

where ∂abc··· ≡ ∂a∂b∂c · · · . From the equation of motion of Eab (see eq.(5.44))
it is easy to see that the term containing ∂uEab does not contribute,(

∂ab − 1

4
δab∂2

)
∂uEab = ∂ab

(
Cc

(a∂uD̃b)c

)
− 1

4
∂2
(
Cca∂uD̃ca

)
(5.32)

Using this and the fall condition (5.27), it is clear that such a term does not
contribute to the charge, as upon integrating (5.32) w.r.t u, we get zero. The
other term in (5.31) is similar to the expression obtained in [26], with the
identification Dab → D̃ab. The only other difference is that we are working
with the flat sphere δab, and hence we do not see the contribution from the
curvature term of S4 that arose in [26]. Therefore, the soft charge reduces to

Qsoft
f =

1

12

∫
I+

dud4z f(z)∂2∂abD̃ab. (5.33)

The total charge is obtained by adding this to the contribution from the
matter and hard gravitons (also known as the hard charge), which is given
as,

Qf = Qsoft
f +Qhard

f = Qsoft
f +

∫
I+

dud4z f(z)
(
TM(4)
uu +

1

4
NabN

ab
)

(5.34)

19Charges corresponding to gauge symmetries require a study of the generalized Noether
theorem, which is reviewed in [150].

20For a computation of the charge in QED, refer to appendix C.4.3 and also [155, 156].
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where we explicitly state the contribution from the matter and the graviton
part. The graviton hard charge is obtained from the following term in the
symplectic form (5.28) and by using the variation (5.19)∫

d4zdu δD̃ab ∧ δ∂uD̃ab.

We can also obtain the same expression for the charge by using the Bondi
mass, as shown in the next subsection (see section 5.3.3). We see that our
final result (5.34) is a neat generalization of [22, 26] to the non-linear theory
with Dab replaced by D̃ab.

In the following section we demonstrate how we get the total charge (5.34)
using the Bondi mass.

5.3.3 Bondi Mass

We first give a brief idea of the Bondi mass in the six dimensional non-linear
theory, explain the notations, and then demonstrate how it generates the
expression for the supertranslation charge (5.34).

The Bondi mass aspect, M (3)(u, z) is denoted by the notation mB(u, z).
At I+ this gives us a definition of the angular density of energy. For Kerr-like
spacetimes the Bondi mass aspect is proportional to the mass of the object
in the bulk. We obtain the total Bondi mass by integrating the Bondi mass
aspect over the Celestial sphere (or plane). And further, the total Bondi
mass in the limit u → −∞ gives us the ADM mass, which is identified as
the Hamiltonian of the theory.

We can study the evolution of the Bondi mass aspect along I+ using the
uu−component of the Einstein equation (we use the same conventions as
that of [26]),

− 2∂umB − 1

4
∂uD

a
b∂uD

b
a − ∂u∂aU

(2)a + ∂a
(
Cab∂uU

(1)
b

)
− 3U (0)a∂uU

(1)
a

= TM(4)
uu +

1

2
∂2(U (0)2 +M (2))

(5.35)

Here we have also included a matter source term as denoted by T
M(4)
uu . Using

the EOM forM (2) and Ua’s (as given in appendix C.2), we can express ∂umB

entirely in terms of the free data Cab and D̃ab. Further, it is simple to see that
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in the linearized limit, equation (5.35) reduces to the results in [22, 26]. In
order to get the total Bondi mass, we need to integrate ∂umB over za. Since
we are not considering massive particles in our system, there is no non-trivial
information at u → +∞ and hence mB(+∞, z) = 0. Using this information
and eq.(5.35), the total Bondi mass is given as,∫

d4z mB(u, z) =
1

2

∫ ∞

u

dud4z TM(4)
uu +

1

4
∂uD̃

ab∂uD̃ab. (5.36)

The ADM mass can be obtained by taking the u→ −∞ limit in the equation
above,

lim
u→−∞

∫
d4z mB(u, z) =

1

2

∫ ∞

−∞
dud4z TM(4)

uu +
1

4
∂uD̃

ab∂uD̃ab. (5.37)

Having explained the basic properties of mB(u, z), we now describe its
relevance as a candidate for the supertranslation charge. This is motivated
as a valid candidate through the results in the linearized theory [22, 26], and
is given as

Qf ≡ lim
u→−∞

2

∫
f(z)mB(u, z)d

4z (5.38)

where we have an extra factor of 2 since we set 8πGN = 121 and f(z) is the
function parametrizing supertranslations (see section 5.2). We can recover
the ADM mass (5.37) by setting f(z) = constant.

Substituting the constraint equation (5.35) in (5.38) and after integrating
by parts, we obtain Qf in terms of the radiative data, which is expressed as
a summation of two separate pieces. Comparing with equation (5.34), these
are identified as the soft and hard piece

Qf = Qsoft
f +Qhard

f (5.39)

where,

Qsoft
f =

1

12

∫
I+

d4zdu f(z)∂2∂abD̃ab (5.40a)

21The expression without working with 8πGN = 1 is given as [22]

Qf ≡ lim
u→−∞

1

4πGN

∫
f(z)mB(u, z)d

4z
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Qhard
f =

∫
I+

d4zdu f(z)T (4)
uu . (5.40b)

The hard charge contains the stress tensor of matter and hard gravitons,
which is given as

T (4)
uu = TM(4)

uu +
1

4
∂uD̃

ab∂uD̃ab. (5.41)

Therefore we see that the expression derived in (5.39) and the one derived
using the symplectic form (see eq.(5.34)) are the same. As noted before, the
charge derived in this section, generalizes the results in [22, 26] to the non-
linear theory (and also to the linearized theory about a Cab ̸= 0 background).
From the discussion above, we see that it is possible to formally obtain the
result for the charge in the non-linear theory by using the results in [22, 26]
and replacing Dab with D̃ab. This is another way of deriving the redefined
Graviton mode D̃ab. Therefore, combining with the results of [22], we expect
to get a similar structure for the Ward identity and correspondingly, the
leading soft-theorem in the non-linear theory. We elaborate on this point
and discuss some more implications of the Ward identity in section 5.5.

We note that in the linearized theory about Cab = 0, the total charge Qf

has also been derived from the electric part of Weyl tensor in [26] and it will
be interesting to compute the same in the non-linear theory and verify that
we get the same result as (5.39), which we leave for a future work.

This completes our analysis of the Supertranslation charge and it also
sheds light on the phase space of the theory. Along with the description
of asymptotic symmetries and soft theorems, there is another important in-
gredient alluding to the infrared properties of the theory. This is known
as the memory effect and together with the soft theorems and asymptotic
symmetries, it completes the IR triangle. The triangle represents a set of
mathematical operations which connects the three corners. We now move
onto the analysis of the memory effect and describe how it is generalized
from the linearized results and also, how it is related with the discussions in
the sections above.

5.4 Memory and IR Triangle

In [79], the authors have defined the linearized memory in (even) higher
dimensions. In 6-dimensions, it is proportional to Dab(u, z). The existence
of memory follows directly from the equation of motion and has been proved
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in [157]. The fact that memory only depends on the scattering data and
not on details of the interaction is the statement of classical soft graviton
theorem. However the results of [157] are valid for linear as well as non-
linear memory (also known as null memory [158]). In this section, we will
show that the non-linear memory can be obtained directly from D̃ab (defined
in (5.18)) such that in the linearized theory around Minkowski vacuum, it
reduces to the linear memory derived in [79].

A definition of the memory effect convenient for our purpose is the follow-
ing. Memory effect is a measure of how the distance between two detectors
near I+ changes upon the passage of gravitational radiation. These detectors
move in a time like trajectory with the tangent vector k = ∂u. The relative
separation of the detectors is usually computed using the Geodesic deviation
equation,

d2sa

du2
= Ra

uubs
b (5.42)

where sa is the relative transverse displacement between the two detectors
and Ra

uub is the Riemann curvature. This equation gives us sa as a function
of u and we will solve this equation perturbatively in GN , i.e, assume that the
sb on the RHS of (5.42) is at a fixed value u and then study the separation
by recursively solving (5.42). For our purpose, the leading order solution to
this recursion equation will suffice. We note that the detectors can make a
measurement between retarded times ui and uf and therefore, the memory
is defined as sa(uf )− sa(ui) ≡ ∆sa. This represents the change in separation
between the detectors in the retarded time interval uf−ui ≡ ∆u. To account
for gravitational radiation at late and early times, memory is usually defined
in the limit ui → −∞ and uf → +∞.

In order to study ∆sa via (5.42), we first compute the Riemann tensor
Ra

uub. Note that the indices of R
a
uub are raised and lowered using gµν but the

indices of Cab, D̃ab and Eab are raised and lowered using δab. In the large-r
limit Ra

uub is given as,

Ra
uub =

1

2r2
∂2uD̃

a
b+

1

2r3

(
∂2uE

a
b−

2

3
∂u∂

(a
c D̃

c
b)−Cac∂2uD̃bc+

1

6
δab∂u∂

cdD̃cd

)
+O(r−4).

(5.43)
This can be expressed in terms of the radiative data by using the EOM for
Eab,

∂uEab = Cc
(a∂uD̃b)c +

2

3
∂c(bD̃a)c −

1

2
∂2D̃ab −

1

6
δab∂

cdD̃cd. (5.44)
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Using this we find,

Ra
uub =

1

2r2
∂2uD̃

a
b −

1

4r3

(
∂2∂uD̃

a
b + Cca∂2uD̃bc − Cc

b∂
2
uD̃

a
c

)
+O(r−4) (5.45)

Integrating this twice with u gives us the memory ∆sa (see (5.42)) to leading
order in r,

∆sa = − 1

4r3

∫ ∞

−∞
du ∂2D̃a

b s
b
i (5.46)

where we have used the boundary condition D̃ab(u→ ±∞) → 0 (see (5.27))
and sbi ≡ sb(ui) with ui → −∞. The boundary condition sets the term at
O(1/r2) and the non-linear term at O(1/r3) to zero.

This generalizes the definition of the linear memory to the non-linear
theory in six dimensions. Thus we get a contribution of the six dimensional
memory at the Coulombic order, in contrast with the four dimensional case
(see table 5.1 for a summary the differences between the important physical
quantities in four and six dimensions). In appendix C.3, we show how one
can recover a similar form of the answer from the computation in [79] in the
linearized regime.

From (5.46) we see that the memory in the non-linear theory is measured
via an integration over the radiative degree of freedom D̃ab. This is the
precisely the same quantity which appears in the soft charge (see (5.40a)) and
eventually, in the soft theorems as well (we expand upon how one gets to the
soft theorems using the conservation laws in section 5.5). Upon comparing
with the results in the linearized theory [22, 26, 79], we see how our results
are generalized to the non-linear theory via the replacement of Dab → D̃ab.
This establishes the connection between the three corners of the IR in the
full non-linear theory. Therefore, we see how the IR triangle is generalized
to the full non-linear theory of gravity in higher-dimensions.

5.5 Discussion and summary

We summarize our main results and state some important implications for
the quantum theory in this section.

5.5.1 Possible Implications for the Quantum theory

As discussed in section 5.2, the free data of the theory is constituted by Cab

and D̃ab, where the mode Cab is u-independent and D̃ab is identified as the
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shear. The u-independent mode labels the vacuum of the theory. It has
been well known [18] that for a theory having an infinite dimensional BMS
symmetry, there are multiple vacuua states possible. As given in equation
(5.14), the generators of supertranslations modify the value of Cab so it is
identified as the Goldstone mode and since the theory has infinite dimensional
BMS symmetry it has multiple vacuua.

A table summarizing the comparison with 4D is given in table 5.1.

Quantity 4D 6D
Goldstone
Mode

∫
N

(4D)
ab du Cab

Radiative
Mode

C
(4D)
ab D̃ab

Memory C
(4D)
ab D̃ab

Soft
Mode

∫
N

(4D)
ab du

∫
D̃abdu

Table 5.1: Here we summarize the importance of the components in the r-
expansion of gab and show how they contrast with the 4D counterpart. Note
that the quantities given are only up to a proportionality, and focuses on the
u-dependence.

We quote our first main result in this language: The true graviton degree
of freedom gets redefined upon working about a specific vacuum (labeled by
Cab). From the structure of (5.18) we see that it is specifically the zero-mode
of Dab which gets redefined.

We now describe an important application of our results in the context
of the S-matrix22. As described above, there exists multiple soft vacuua
in flat space and thus the initial and the final states in a generic S-matrix
can be built on different soft vacuua. Therefore, there is a possibility of a
vacuum-vacuum transition in a generic scattering process. There is a detailed
calculation demonstrating this effect in a four dimensional scattering process
[159]. The main reason behind this transition is the Ward Identity, which,
for a scattering process would imply that the total supertranslation charge

22We would end up with a similar implication even for the QED S-matrix in higher
dimensions.
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(see eq.(5.39)) is conserved during scattering,

⟨out|[Q̂f , S]|in⟩ = ⟨out|[Q̂hard
f + Q̂soft

f , S]|in⟩ = 0

=⇒ (Qsoft
f,+ −Qsoft

f,− ) ⟨out|S|in⟩ = −(Qhard
f,+ −Qhard

f,− ) ⟨out|S|in⟩
(5.47)

where we use the notation Q̂|out⟩ = Q+|out⟩ and Q̂|in⟩ = Q−|in⟩. We
can consider an |in⟩ state built on an eigenstate of Q̂soft

f with eigen charge

Qsoft
f,− . For any general scattering with a non-zero S-matrix, ⟨out|S|in⟩ ≠ 0

we have Qhard
f,+ ̸= Qhard

f,− . Therefore for a scattering process which conserves

the supertranslation charge (satisfies (5.47)), we must have Qsoft
f,+ ̸= Qsoft

f,− .
This indicates that there is a vacuum to vacuum transition in any general
scattering which conserves the supertranslation charge.

It is well known that the S-matrix in a theory of gravity in 4-dimensions
suffers from IR-divergences [160]. However the physical S-matrix (which is
free of IR divergences) can be obtained by dressing the original S-matrix using
the KF (Kulish-Faddeev) prescription [161]. Therefore, the IR finite S-matrix
in 4-dimensions is given by the KF dressed S-matrix. This leaves us with
a puzzle in higher dimensions. As the bare S-matrix in higher dimensions
is already IR finite, it is not apriori clear from this perspective whether one
should be dressing the S-matrix or not. However the need for dressing can
arises from an attempt to define gauge invariant observables in gravity [128].
It is proven in four dimensional spacetimes [159, 162] that the S-matrix which
conserves the supertranslation charge is the KF dressed S-matrix and it is
reasonable to expect that a similar proof should hold in higher dimensions.

5.5.2 Summary

In this chapter we discuss supertranslations in (even) higher dimensions,
specifically focusing on the six-dimensional case. We first specify the free
data of the theory, which are given by the first two subleading coefficients in
the large−r expansion of gab. The graviton is defined by a combination of this
free data (Cab and Dab), which we call D̃ab. This redefined field D̃ab contains
the radiative data. The redefinition does not effect the News tensor (∂uD̃ab),
but is necessary for the graviton to have the correct asymptotic fall offs and
further, a finite symplectic form in the full non-linear theory. We emphasize
that the redefinition is also required even if one is studying the linearized
theory about a non-trivial Minkowski background (Cab ̸= 0). In the quantum
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theory, this implies that the graviton gets redefined depending on the vacuum
one is working with. We discuss the symmetries of supertranslations in terms
of the redefined variable D̃ab.

We compute the supertranslation charge using the covariant phase space
formalism. For this, we first evaluate the Symplectic form of the theory. We
find that the symplectic form is uniquely split into two parts: one which
is finite and characterizes the radiation of the system, and the other which
is divergent (when integrated along I+). As the name suggests, the entire
radiation content of the theory is contained in the finite & radiative part.
The split is unambiguous and the ambiguity is fixed by noting that only the
radiative part leads to the correct Noether charge. In fact, upon trying to
construct the charge from the divergent piece, we notice that it cannot be
expressed as a total variation. Therefore, the radiative symplectic form at I+

is uniquely defined and it also helps us understand the canonically conjugate
variables in the theory. As we point out, the symplectic form in the non-
linear theory is a simple generalization of the result in [26], and therefore the
Noether charge can be obtained by following similar steps. We also compute
the Bondi mass and evaluate the supertranslation charge using that. We find
an exact matching between the two expressions – the one via the radiative
symplectic form and the one via the Bondi mass. The Noether charge in the
full non-linear theory is a simple generalization of the result in the linearized
theory about Cab = 0. Upon combining with the results in [22] it is easy to
see that we end up getting a similar Ward identity and therefore, the same
structure for the Weinberg Soft theorem. In appendix C.4, we show how the
gravitational case generalizes from the electromagnetic case which helps us
understand these issues better.

Finally, we move onto a discussion of the memory effect and the IR trian-
gle in the six dimensional non-linear theory. We find that the generalization
works in a similar way as that of the Noether charge, where we simply have
to replace Dab (in the linearized answers) with D̃ab, to get the result in the
non-linear theory. Therefore, this gives a very neat generalization of the IR
triangle in higher-dimensions in the non-linear theory. As per our knowledge,
this is the first example of the IR triangle in the non-linear theory in higher
dimensions. In appendix C.3 we also compare the final form of our answer
with [79] in the linearized limit and show that it is gauge invariant. Finally,
in section 5.5.1 we mention the important implications of our analysis in the
quantum theory.
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5.5.3 Future Directions

One of the major motivations for this analysis was to understand the prin-
ciple of holography of information [83, 5, 10, 2, 9] in higher dimensional
flat spacetime. This would be a direct extension of [5] and would require
a proper understanding of the Hilbert space in higher dimensions. In this
chapter, we have taken the first step of identifying the right phase space. By
following the arguments in the previous chapter we can see that the principle
of holography of information can be easily generalized to 6-dimensions.

The main focus of this chapter has been the study of supertranslations
in higher dimensions. A similar study for superrotations in higher dimen-
sions has been done in the paper [24]. Our analysis has been restricted to
even dimensional spacetimes and we would like to explore the case of odd
dimensions [163] in the future.
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Chapter 6

Conclusion

One of our main results is that in a theory of quantum gravity in flat space-
time or global AdS, observers located near the boundary are able to extract
information about the bulk via a physical protocol. This result builds on
older work [4, 5]. We assumed that observers near the boundary could mea-
sure the energy of the state and modify the state by acting with a unitary
operators. These operators that the observers use in the protocol are ob-
tained via low energy Hermitian operators near the boundary region. Using
these tools and assuming the validity of the Born rule, we show how the
observers can determine the bulk state.

In chapter 4 of this thesis we show that perturbative solutions of the
gravitational constraints leads to a proof of the principle of holography of
information. In the wavefunctional language it states that for any wavefunc-
tional that satisfies the constraint equations in gravity (in AdS) are uniquely
determined by their boundary values over an infinitesimal interval of time.

In the final chapter of the thesis we analyze the symmetries of non-linear
general relativity in six dimensional spacetime and identify the correct vari-
ables that capture the radiative data. These then allow us to construct the
symplectic form, the supertranslation charge and also make a connection
with the memory effect in non-linear general relativity. Although we have
explicitly worked in six-dimensional flat spacetime, all our results can be
extended to higher even dimensions.

We refer the interested reader to delve into the final sections of each
chapter for a detailed summary.
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Future Directions

While some aspects of the principle of holography of information have been
explored there are still many interesting properties that are left to uncover.
For example, it was only recently shown how the principle of holography of
information generalizes to dS spacetime and also sheds light on the Hilbert
space at late times [134, 133]. It would be interesting to study the conse-
quences of the states found in this Hilbert space for cosmology and other
phenomenological implications. It is still not understood how massive parti-
cles are to be taken into account for establishing the principle of holography
of information in flat spacetime and that needs more investigation. Similarly,
it would be interesting to understand how one can generalize the story in flat
spacetime to all dimensions, including the odd-dimensional case. For this
one needs a proper understanding of the phase space of general relativity
near null infinity in odd dimensions.
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Appendix A

Details on Constructing the
Protocol in AdS and Flat Space

A.1 State-operator map

In this appendix, we would like to describe, in some more detail, how states
of the form

|X⟩ = X|0⟩, (A.1)

form a basis for the entire Hilbert space. Here X is a simple Hermitian
operator near the boundary. We first review two quick formal arguments —
one purely from a bulk perspective, and another assuming AdS/CFT. Then
we describe this construction in more detail and explain how at large N , the
low-energy Fock space can be generated explicitly in the form above.

Formal arguments
From a bulk perspective, we have a number of weakly interacting fields at

low-energies. These fields include the low-energy gravitons but may also in-
clude stringy excitations. At low-energies, it is possible to frame all dynamics
with the Hilbert space formed by

H = span of{X(τ)|0⟩}, (A.2)

where the X(τ) are simple Hermitian operators at an arbitrary point of time
i.e. τ can range from (−∞,∞). This is true since time-evolution manifestly
evolves this set back to itself. But then standard analyticity arguments (see
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Appendix A of [5]) tell us that Hermitian operators from a smaller time-band
[0, ϵ] generate a space of states that is dense in the Hilbert space above.

A second argument, which assumes AdS/CFT, is as follows. The set of
bulk operators near the boundary are dual to boundary operators by the
extrapolate dictionary [164]. Now, it is clear, from the state-operator map
in the conformal field theory that the set of states obtained by applying
boundary Hermitian operators on a time-slice to the vacuum form a com-
plete basis for the Hilbert space. If we restrict to simple Hermitian operators
— boundary generalized free-fields and low-order polynomials in these gen-
eralized free-fields — we obtain the low-energy Hilbert space in the bulk. We
use a time-band in this thesis, rather than a time-slice, which removes the
need for using operators with time-derivatives in the state-operator map.

Explicit constructions
We now demonstrate how this construction works explicitly in low-energy

bulk effective field theory. Consider a weakly interacting bulk field of dimen-
sion ∆, which we denoted by ϕ in the text, with boundary value O. In global
AdS, this operator can be expanded as

O(t,Ω) =
∑
n,ℓ

√
Gn,ℓan,ℓe

−i(∆+2n+ℓ)tYℓ(Ω) + h.c, (A.3)

where the operators obey [an,ℓ, a
†
n′,ℓ′ ] = δnn′δℓℓ′ and the function Gn,ℓ is ex-

plicitly given by

Gn,ℓ =
4πdΓ (∆ + n+ ℓ) Γ (∆ + n+ 1− d/2)

Γ (d/2) Γ (n+ 1)Γ (∆)Γ (∆ + 1− d/2) Γ (d/2 + n+ ℓ)
. (A.4)

The normalized low-energy single-particle states are simply created by

|n, ℓ⟩ = a†n,ℓ|0⟩. (A.5)

Now, it is obvious that one way to create such states through a Hermitian
operator localized near the boundary is to consider

|n, ℓ⟩ = 1√
Gn,ℓ

∫ π

0

O(t,Ω)e−i(∆+2n+ℓ)tY ∗
ℓ (Ω)d

d−1Ω
dt

π
|0⟩, (A.6)

but this is not what our observers need since it involves an integral over the
light-crossing time of AdS. The claim above is that we can also generate the
state by smearing the bulk field in the time-band [0, ϵ].
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A simple algorithm to numerically approximate the state is as follows.
Consider the window function

w(t) = θ(t)θ(ϵ− t)e
1

t(t−ϵ) , (A.7)

which is a real function that vanishes smoothly at the end-points of [0, ϵ].
Now, consider the states

|hm⟩ =
∫ ϵ

0

[
O(t,Ω)Y ∗

ℓ (Ω)e
imtw(t)dd−1Ωdt

]
|0⟩ =

∞∑
n=0

hn,m
√
Gn,ℓ|n, ℓ⟩,

(A.8)
where

hn,m =

∫ ϵ

0

ei(∆+2n+m+ℓ)tw(t)dt. (A.9)

We take states from the basis above with values ofm ranging between −mmax

to mmax and look for coefficients, cm, that minimize

∆mmax =

∣∣∣∣∣|n, ℓ⟩ −
mmax∑

m=−mmax

cm|hm⟩

∣∣∣∣∣
2

.

The arguments above tell us that this error term converges to 0 as the value
of mmax is increased. The original state is thus approximated better and
better by a sum of states dual to operators in a small time band.

An extremely simple Mathematica code to generate a numerical approx-
imation to the state |n, ℓ⟩ can be found at [165] . Note that, in this code,
apart from putting a cutoff on mmax, it is also necessary to truncate the sum
over n in (A.8) to some finite value Ncut. Figure A.1 shows a plot of ∆mmax

vs mmax for two possible choices of n, ℓ for a massless bulk field in d = 4,
with Ncut = 100. As is evident, this error term consistently tends to 0.

Once we have constructed single-particle states, multi-particle states are
easy to construct. In the weakly coupled limit, the structure of the Hilbert
space is that of a Fock space. So multi-particle states can be constructed just
by multiplying operators of the form above, and then acting on the vacuum
after smearing them appropriately.

The careful reader may notice a subtlety. In the analysis above, we have
used the back-reaction of bulk excitations on the metric, which appears only
during interactions, and yet we are content with using the Fock space ap-
proximation here. The reason is that any effect of interactions is only at
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Figure A.1: The figure displays the error ∆mmax in approximating a state as
a function of mmax for two low-energy states. It is evident that this declines
monotonically as mmax is increased and becomes very small.

subleading order in 1
N
, and therefore it does not affect the observers ability

to distinguish the bulk state at leading order at all. In particular, say that
the observers wish to find the operator dual to a state |X⟩ and they use an
approximation so that

Xapprox|0⟩ = |X⟩+ 1

N
|Xerr⟩ (A.10)

The reader can check by examining the procedure described in section 2.3
that this error makes only a 1

N
difference in all measurements conducted by

the observer. Since the accuracy of the task set for the observers is set by
δ ≫ 1

N
this error is unimportant.

For this reason, one can also use the free boundary-bulk smearing function
given in [4]; map the boundary operators above to bulk fields on the slice
t = ϵ

2
, and with radial coordinate r ∈ [cot ϵ

2
,∞) and use these smeared bulk

fields to generate the state.
In this chapter, for simplicity, we have considered the case where all

interactions are controlled by 1
N
. But, our protocol would work even if there

was a hierarchy of interactions. If interactions between quantum fields were
controlled by a parameter λ ≫ 1

N
but with λ ≪ 1, then we would need to

correct the operators above perturbatively in λ. This calculation can still be
done reliably within the framework of QFT in curved spacetime.

A.2 Orthogonalizing unitaries

In section 2.3, we explained that if the observers encountered a state with
|⟨0|g⟩|2 ̸= 0, they could act with a preliminary unitary Uz with the property
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that ⟨0|Uz|g⟩ = 0. They could then apply the protocol of section 2.3 to Uz|g⟩,
and back-calculate |g⟩. We now explain how to construct the unitary Uz.

Although, we present the construction slightly formally below, the basic
idea behind the construction of this unitary is quite simple. Using a single
propagating field, and by smearing the field and the conjugate momentum
over a small region of spacetime, the observers can construct one simple-
harmonic degree of freedom. The unitary they need to find acts only on
this simple-harmonic degree of freedom. By rotating the states of this de-
gree of freedom appropriately, it is always possible to make the state Uz|g⟩
orthogonal to |0⟩.

Let O(t,Ω) be the boundary value of a bulk field as defined in Appendix
A.1. Then by a suitable choice of two functions it is possible to define oper-
ators

X =

∫
dtdd−1ΩO(t,Ω)f1(t,Ω); P =

∫
dtdd−1ΩO(t,Ω)f2(t,Ω), (A.11)

so that these operators obey the Heisenberg algebra

[X ,P ] = i. (A.12)

Here the functions f1, f2 have limited support in the time band t ∈ [0, ϵ]
and also on the boundary sphere. There is no unique choice of f1 and f2
and so we do not write down their forms explicitly. The relation above is
valid in the large-N approximation where the commutator of a bulk field
with itself is well-approximated by a c-number. By the same reasoning as in
Appendix A.1, it is acceptable to use this approximation while constructing
the orthogonalizing unitary.

We can also define the operators

A =
1√
2
(X + iP); A† =

1√
2
(X − iP). (A.13)

The Hilbert space of the full theory furnishes a representation of the algebra
corresponding to this simple harmonic degrees of freedom i.e. the algebra
that can be expanded in terms of the X and P operators. One of the use-
ful elements of this algebra is the projector onto the zero-eigenspace of the
number operator

Psho
0 =

∫ 2π

0

eiθ(A
†A) dθ

2π
. (A.14)
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Note that this projector projects onto an infinite dimensional subspace in the
full theory. Using this projector we can also construct projectors onto other
number eigenspaces.

Psho
n =

1

n!
(A†)n

∫ 2π

0

eiθ(A
†A) dθ

2π
(A)n. (A.15)

These operators furnish a partition of the identity so that
∑

Psho
n = 1. One

can also construct more general “transition operators”

T sho
m,n =

1√
m!n!

(A†)m
∫ 2π

0

eiθ(A
†A) dθ

2π
(A)n. (A.16)

Note that Psho
n = T sho

n,n , and also that the operators T sho
m,n furnish a complete

basis for all elements of the algebra.
Now consider a unitary Uz that is within this algebra. Since the transition

operators form a basis, we can expand

Uz =
∞∑

n,m=0

unmT sho
n,m, (A.17)

where unm is just a matrix of c-numbers. The condition that Uz is unitary is
the same as the condition that the c-number matrix unm is unitary. So we
have

⟨0|Uz|g⟩ =
∞∑

n,m=0

umn⟨0|T sho
n,m|g⟩, (A.18)

Once again tnm = ⟨0|T sho
n,m|g⟩ is just some matrix of c-numbers. So the ob-

servers need to find a unitary matrix that satisfies a single linear constraint.

∞∑
n,m=0

umntnm = 0. (A.19)

The problem (A.19) is a linear-algebra problem of finding a unitary matrix
with the property that when multiplied with another matrix and traced, it
yields zero. It is not difficult to see that such a unitary matrix can always be
found for any choice of tnm. But for the sake of completeness, we now give a
proof.

We will give a proof in steps. First consider the two-dimensional version
of this problem, where we are given an arbitrary 2×2 matrix tnm and need to
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find a 2× 2 unitary matrix, unm, so that Tr(ut) = 0. We express the unitary
matrix in terms of a unit-vector on the sphere, n̂, and an angle θ as unm =
cos( θ

2
)δnm + i(σ⃗ · n̂)nmsin( θ2). Then we first choose n̂ to be orthogonal to the

vector Re (Tr(σ⃗t)). Then we are left with the single equation Tr(t)cos( θ
2
) −

Im (Tr((σ⃗ · n̂) t)) sin( θ
2
) which can be solved by choosing θ appropriately.

Now, consider the D-dimensional problem. If we collect the columns of
t into a set of vectors t⃗1 . . . t⃗D we need to find a set of orthonormal basis
vectors v⃗1, . . . v⃗D that satisfy

∑
⟨v⃗i, t⃗i⟩ = 0, with the usual conjugate-bilinear

inner-product. The unitary matrix is then obtained by taking v⃗i to be the
columns of u†.

Such an orthonormal basis can be found as follows. We choose v⃗D to be
orthogonal to t⃗D. Then we choose v⃗D−1 to be orthogonal to v⃗D and t⃗D−1.
We similarly choose v⃗P to be orthogonal to t⃗P and v⃗P+1, v⃗P+2 . . . v⃗D for all
vectors until P = 3. Then v⃗1 and v⃗2 are confined to a two-dimensional space,
since they must be orthogonal to v⃗3 . . . v⃗D, and further they must satisfy
⟨v⃗1, t⃗1⟩ + ⟨v⃗2, t⃗2⟩ = 0. But this is just the two-dimensional problem that we
solved above.

We now turn to the infinite dimensional case (A.19). On physical grounds,
we expect that ⟨0|T sho

n,m|g⟩ ≪ 1 when n,m are much larger than the “occu-
pancy” in the two states i.e. when n,m≫ ⟨0|A†A|0⟩ and n,m≫ ⟨g|A†A|g⟩.
So we consider a unitary that does not act on states with occupancy beyond
someD i.e. uij = δij for i, j ≥ D and uij = 0 if i ≥ D, j < D or i < D, j ≥ D.
Then we just need to deform the finite dimensional solution above so that∑D−1

n,m=0 umntnm = −
∑

i≥D tii. This can clearly be done provided the right
hand side is small enough, which can be achieved by taking D to be large
enough.

A.3 Soft Structure of Vacuua

The correlation functions that we measure are of the form ⟨ψ|U †
i P0Uj|ψ⟩

where P0 is defined in eq.(3.13), the states |ψ⟩ are generically of the form
eq.(3.14) and the unitaries U are of the form eq.(3.17). The following dis-
cussion only refers to states built out of a single flavoured field and the ex-
tension to multiple flavours is similar. Since the states and the unitaries are
constructed out of hard operators only (i.e, do not include operators like the
zero mode of the shear), we show that the soft structure of the vacuum and
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the projector become unimportant1. From the decomposition of the vacuum
and the projector as given in (3.11) and (3.13), a generic correlation function
of interest takes the form

⟨ψ|U †
i P0Uj|ψ⟩ = ⟨0|Z†U †

i P0UjZ|0⟩ =
∫
DsDs′Ds′′g{s}g{s′′} ⟨{s}|Z†U †

i |{s′}⟩ ⟨{s′}|UjZ|{s′′}⟩
(A.20)

with Z representing the operators on the RHS in the definition of the state
(3.14) and Ds ≡

∏
lm dslm. To avoid cluttering of notation we suppress the

l,m indices but it is trivial to reinstate them. We now use the fact that [75]

⟨{s}|O|{s′}⟩ = ⟨0|O|0⟩ δ({s} − {s′}) (A.21)

for any hard operator O. This can be intuitively understood by noting that
the operator O, a hard operator, does not induce a vacuum transition as it
does not contain the zero mode of the shear. The above result can be also
proven explicitly by using the condition ⟨0|0⟩ = 1. Using this result we can
simplify (A.20) to get

⟨ψ|U †
i P0Uj|ψ⟩ =

∫
DsDs′Ds′′g∗{s}g{s′′} ⟨0|Z†U †

i |0⟩ ⟨0|UjZ|0⟩ δ({s} − {s′})δ({s′} − {s′′})

= ⟨0|Z†U †
i |0⟩ ⟨0|UjZ|0⟩

∫
|g{s}|2Ds = ⟨ψ|U †

i |0⟩ ⟨0|Uj|ψ⟩

(A.22)

This is an expected identity when there is no vacuum degeneracy. For this
identity to hold in the presence of a degeneracy it is necessary that we are
not considering expectation values of soft operators (like the zero mode of
the shear).

A.4 Saddle point approximation for scalar field

In this appendix we work out the 2-point Wightman function for a free mass-
less scalar field at null infinity in (d + 2)-dimensional Minkowski spacetime.
The free field correlation functions suffice at leading order in large−r as the
interaction terms do not survive at this order. A similar derivation can be
performed for gauge and gravitational fields as well [18].

1We thank Tuneer Chakraborty and Priyadarshi Paul for several useful discussions on
this and clarifying many doubts.
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The mode expansion for the scalar field in the bulk is given as

ϕ(t, r,Ω) =

∫
dd+1q

(2π)d+1

1

2ωq

[
aqe

iq·x + a†qe
−iq·x]. (A.23)

The mode expansion at null infinity can be obtained by taking the large−r
limit of this expression. It it convenient to decompose eiq·x = e−iωue−iωr(1−cosθ),
where we use |q⃗| = q0 = ω and θ denotes the angle between q⃗ and r⃗. In the
limit r → ∞ the only saddle that contributes is θ = 0 (the saddle at 2π is
prevented by the Riemann-Lebesgue lemma). This allows us to approximate
1− cosθ ≈ θ2

2
and therefore limr→∞ eiq·x = e−iωue−iωrθ2/2.

Using this we perform the
∫
dd+1q integral (where the integral over the

remaining (d− 1) variables is denoted by Sd−1.),∫
dd+1q

2ωq

aqe
iq·x = −Sd−1i

2r

∫
dωωd−2a(ωΩ̂)e−iωu (A.24)

Thus the expansion of the scalar field at I+ using the saddle point approxi-
mation becomes

ϕ(u,Ω) = − iSd−1

2(2π)d+1

∫ ∞

−∞
dωωd−2

[
a(ωΩ̂)e−iωu − a†(ωΩ̂)eiωu

]
(A.25)

For computing the 2-point Wightman function of the fields ⟨s|ϕ(u,Ω)ϕ(u′,Ω′)|s⟩,
it is necessary to compute the expectation values of the ladder operators a, a†.
This can be obtained by computing the commutator of the ladder operators

[a(ωΩ̂), a†(ω′Ω̂′)] =
2

ωd−1
(2π)dδ(ω − ω′)δd(Ω,Ω′). (A.26)

Since a |0⟩ = 0 a simple computation then gives us the 2-point Wightman
function of the scalar field

⟨0|ϕ(u,Ω)ϕ(u′,Ω′)|0⟩ =
S2
d−1i

2−dΓ(d− 2)

(2π)2d+2
× δd(Ω,Ω′)

(u− u′ − iϵ)d−2
, (A.27)

where we have introduced a factor of iϵ, with ϵ > 0, for the integral to
converge. In d = 2 this gives a Logarithmic dependence and it is therefore
more convenient to evaluate ⟨0|π(u,Ω)ϕ(u′,Ω′)|0⟩ = ⟨0|∂uϕ(u,Ω)ϕ(u′,Ω′)|0⟩,

⟨0|π(u,Ω)ϕ(u′,Ω′)|0⟩d=2 = −iδ
2(Ω,Ω′)

4π

∫ ∞

−∞
dωe−iω(u−u′−iϵ) = − 1

4π

δ2(Ω,Ω′)

u− u′ − iϵ
(A.28)

where we use S1 = 2π.
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A.5 Explicit reconstruction of gn’s

In this appendix we explain how one can explicitly reconstruct the functions
gn’s. The kind of correlation functions that we encounter lead to equations
of the following kind for gn(u⃗, Ω⃗)∫

du⃗dΩ⃗du⃗′dΩ⃗′ fn(u⃗
′, Ω⃗′)gn(u⃗, Ω⃗)

δ(Ω1,Ω
′
1)

u1 − u′1 − iϵ
· · · δ(Ωn,Ω

′
n)

un − u′n − iϵ
= Cn. (A.29)

Here fn(u⃗, Ω⃗
′) is a smearing function localized near I+

− which is up to the
observers to tune and Cn is the result of the measurement they perform. The
structures δ(Ω,Ω′)

u−u′−iϵ
arise from the 2-point functions computed in appendix C.6.

The integration of the delta functions gives∫
du⃗dΩ⃗du⃗′ fn(u⃗

′, Ω⃗)gn(u⃗, Ω⃗)
1

u1 − u′1 − iϵ
· · · 1

un − u′n − iϵ
= Cn . (A.30)

From this equation we see that the spherical dependence of gn’s is fixed as
the functions fn’s can be tuned arbitrarily by the observers. In order to fix
the u dependence, let us consider the integrand of u⃗′ on the LHS

I ≡
∫
du⃗gn(u⃗, Ω⃗)

1

u1 − u′1 − iϵ
· · · 1

un − u′n − iϵ
(A.31)

and expand the integrands as u′i → −∞ (since these arise from fields that
are localized near I+

− ) which gives

I =
∞∑

n1,··· ,nn=0

(−1)nmod2

u′n1+1
1 · · ·u′nn+1

n

∫
gn(u⃗, Ω⃗)u

n1
1 · · ·unn

n du⃗ . (A.32)

Plugging this integrand back into Cn we obtain∫
du⃗′dΩf(u⃗′, Ω⃗)

∞∑
n1,··· ,nn=0

(−1)nmod2

u′n1+1
1 · · ·u′nn+1

n

∫
gn(u⃗, Ω⃗)u

n1
1 · · ·unn

n du⃗ = Cn .

(A.33)

Since the observers are allowed to tune the function fn(u⃗
′, Ω⃗) arbitrarily, they

can obtain all possible moments of the distribution gn(u⃗, Ω⃗) and therefore re-

construct the function gn(u⃗, Ω⃗) completely. We have included a mathematica
notebook with this submission that demonstrates how this works in a numer-
ical example for a 1-dimensional function.
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A.6 Special cases of states

In this appendix we explain how we can determine the state when we have
only even or only odd excitations. The states we consider are of the form

|ψeven⟩ =
∞∑
n=1

2n∏
j=1

∫
: ϕ(uj,Ωj) : g2n(u⃗, Ω⃗)du⃗dΩ⃗ |0⟩ (A.34a)

|ψodd⟩ =
∞∑
n=1

2n−1∏
j=1

∫
: ϕ(uj,Ωj) : g2n−1(u⃗, Ω⃗)du⃗dΩ⃗ |0⟩ . (A.34b)

The main reason why these cases are special is because we cannot determine
the value of sinθj (defined in eq.(3.22)) in the same way as we did in section
3.3.5. This is because that method requires the presence of both even and
odd n. We demonstrate below how that can be extended to include these
special cases.

The multiple flavoured case works in a similar way as to that of the single
flavour case and therefore we shall only demonstrate the former.

A.6.1 All even

Consider a state of the form in eq.(A.34a). In this case, the first non-zero
gn = g2. Therefore we first measure the value of ⟨ψ|U †

2P0U2|ψ⟩, which allows
us to determine the value of g2 up to a phase. However, since the overall
phase of the state |ψ⟩ is meaningless, we can fix the phase of g2 to be θ2 = 0.

This completely fixes the value of g2. Using this it is simple to de-
termine the value of cosθ2j for all j. This can be performed in a similar
manner as in eq.(3.23), where we now have U2 instead of U1, i.e, measure
⟨ψ|U †

2U
†
2jP0U2jU2|ψ⟩ at O(f 2), which gives

cosθ2j =
⟨ψ|U †

2jU
†
2P0U2U2j|ψ⟩ − ⟨ψ|U †

2P0U2|ψ⟩ − ⟨ψ|U †
2jP0U2j|ψ⟩

2
√

⟨ψ|U †
2P0U2|ψ⟩

√
⟨ψ|U †

2jP0U2j|ψ⟩
. (A.35)

We have therefore determined the value of cosθ2j for all j. In this mea-

surement we also encounter the value of ⟨ψ|U †
2jP0U2j|ψ⟩ which allows us to

measure the value of g2j+2 after knowing the value of g2j.
Thus the only thing that we are now left with is to find the value of sinθ2j,

where we only need to fix its sign. This is something that can be done in
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two steps. We first need the value of any sinθ2j other than j = 1 (which is
already fixed to be 0). By trial and error we can easily find some 2j0 for
which sinθ2j0 ̸= 0 (since we can measure cosθ2j0). Then using the procedure
as described around eq.(3.3.5), we fix the value of sinθ2j0 and then go on to
fix the other signs using an analogous equation to eq.(3.24).

We explain how to carry this out for j0 = 2 but in case sinθ4 = 0, we
can easily extend this for any other j0. For j0 = 2, we just need to measure
⟨ψ|U †

2P0U2|ψ⟩ to O(f 3). This fixes the sign of sinθ4, although it is not enough
to determine the value of g4. However, since we can measure ⟨ψ|U †

4P0U4|ψ⟩,
we can determine g4.

Once we have fixed sinθ4, we can measure ⟨ψ|U †
4U

†
2jP0U2jU4|ψ⟩ at O(f 2)

in order to determine the value of sinθ2j completely. Therefore we have
demonstrated how one can fix the functions g2j including the phase factors
θ2j completely, in a sieve-like manner.

A.6.2 All odd

This is very similar to the previous case, therefore we only list the important
steps.

1. We first fix the value of g1 by measuring ⟨ψ|U †
1P0U1|ψ⟩ and then using

the fact that the overall phase of the state |ψ⟩ is meaningless, we fix
θ1 = 0.

2. Then we measure the value of ⟨ψ|U †
1U

†
2j−1P0U2j−1U1|ψ⟩ at O(f 2) to fix

the value of cosθ2j−1.

3. Measuring ⟨ψ|U †
2j−1P0U2j−1|ψ⟩ at O(f 2) yields the value of g2j−1 up to

the phase factor eiθ2j−1 . This step has to be performed in a sieve-like
procedure; the value of cosθ2j−1 is fixed from the previous step and
therefore we are left with fixing the sign of sinθ2j−1 only.

4. In order to fix the signs of all sinθ2j−1 we first fix the value of any
particular sinθ2j−1 ̸= 0 and then performing a measurement of the kind
in eq.(3.24), allows to fix everything else. For the case when sinθ3 ̸= 0
(which is an example, that can be extended to any 2j − 1) we have to
measure ⟨ψ|U †

2U
†
1P0U1U2|ψ⟩ at O(f 3) in order to fix the sign of sinθ3.

5. By measuring ⟨ψ|U †
3U

†
2j−1P0U2j−1U3|ψ⟩ we can fix the signs of all sinθ2j−1.
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Appendix B

Split States in QED,
Gravitational Energy, and
Point-Wise Constraints

B.1 Split states in QED

In this appendix, we show that ordinary gauge theories localize information
much like ordinary quantum field theories, and very differently from gravity.
To illustrate this, we will solve the constraint of a U(1) gauge theory coupled
to matter and construct explicit wavefunctionals that are identical outside a
bounded region but differ inside. Such states are called “split states” and the
argument provided in the main text of the paper shows that split states do
not exist in theories of quantum gravity. A useful reference for the analysis
of wavefunctionals in QED and ordinary quantum field theories is [166]. An
analysis of the canonical quantization of QED can also be found in Appendix
B of [44]. We caution the reader that some of the conventions below differ
from those of [44] by terms involving N and the determinant of the spatial
metric.

B.1.1 Action and constraints

We work about the fixed global AdS background

ds2 = −N2dt2 +N−2dr2 + r2dΩ2
d−1 , (B.1)
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where N is the same as (4.36). We emphasize that in this Appendix, we are
not considering a theory with dynamical gravity and so the metric (B.1) is
exact. We continue to use the d + 1 notation of the main text for covariant
derivatives.

The action of QED takes the form,

S = −1

4

∫
dtddx

√
γN F̂µνF̂

µν + Smatter . (B.2)

Note that we have included the interactions of the gauge field and the matter
in the term denoted as Smatter above. The details of this action will not be
important except for a few features that we mention below. But for the
purpose of illustration, we consider a charged scalar field with the action,

Smatter = −1

2

∫
dd+1x

√
γN (Dµϕ)

∗Dµϕ , (B.3)

where Dµ = ∂µ + iAµ is the gauge covariant derivative with the coupling
constant set to 1.

As there is no kinetic term for the A0 field, we immediately obtain a
primary constraint

Πt
em = 0 , (B.4)

whereas the canonical momentum for the spatial part of the gauge field is

Πi
em =

1
√
γ

δS

δȦi

= −NF̂ ti (B.5)

which is just the electric field. This is similar to the primary constraints (4.19)
in gravity. Imposing that this constraint is preserved under time evolution
leads to a secondary constraint. This is the pointwise Gauss law

∇iΠ
i
em = ρ , (B.6)

where ρ is the charge density of the matter. The left hand side of (B.6) is
reminiscent of the momentum constraint in gravity since it is linear in the
canonical momentum. However, the momentum constraint in gravity couples
the metric and its canonical momentum whereas we see that (B.6) has no
such nonlinear terms. This will allow us to present a general solution to this
constraint.
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For the action (B.3), the momentum conjugate to the scalar field is

Πϕ =
1
√
γ

δS

δϕ̇
=

1

2N
(ϕ̇∗−iAtϕ

∗); Πϕ∗ =
1
√
γ

δS

δϕ̇∗
=

1

2N
(ϕ̇+iAtϕ) , (B.7)

and in terms of the canonical variables, we have

ρ = i(ϕΠϕ − ϕ∗Πϕ∗) . (B.8)

But the details of the matter sector will be unimportant in the analysis
below and we will only use the fact that, in the classical canonical theory,
the Poisson bracket between the charge density at two distinct points, x and
x′, on the same spatial slice vanishes:

{ρ(x), ρ(x′)}PB = 0 . (B.9)

In the quantum theory, the states of the theory are described by wave-
functionals of the gauge field and matter fields. The primary constraint
(B.4) tells us that wavefunctionals, and observables that commute with the
constraints, are independent of A0. Therefore these wavefunctionals ψ[A, ϕ]
depend on only the spatial components of the gauge field. The momentum
operator is realized as

Πi
em = − i

√
γ

δ

δAi

, (B.10)

The secondary constraint then implies that[
∇iΠ

i
em − ρ

]
ψ[A, ϕ] = 0 . (B.11)

Since we will exclusively consider wavefunctionals that satisfy the con-
straints the Poisson brackets (B.9) are directly promoted to commutators in
the quantum theory. Therefore we have

[ρ(x), ρ(x′)] = 0 , (B.12)

at any two points x, x′ on the same spatial slice. This property will be utilized
below.

161



B.1.2 Solution to the constraints

Since the constraints in electromagnetism are simple, it is possible to write
down an exact solution to the constraints. As in the main text, it is con-
venient to decompose the gauge field into a longitudinal and a transverse
part

Ai = AL
i + AT

i (B.13)

which satisfy
∇iAT

i = 0, AL
i = ∇iχ . (B.14)

for some χ that vanishes asymptotically. The momentum can be similarly
decomposed as

Πi
em = Πi

em,T +Πi
em,L (B.15)

and by a simple extension of the argument near equation (4.53) we find that

Πi
em,T = − i

√
γ

δ

δAT
i

; Πi
em,L = − i

√
γ

δ

δAL
i

. (B.16)

The constraint (B.11) correlates the part of the wavefunctional that depends
on AL with the part that depends on the charge density, leaving the part
that depends on AT unconstrained. A solution to the constraints is given by

ψ[A, ϕ] = exp

[
i

∫
Σ

ddx
√
γ

∫
Σ

ddx′
√
γ′AL

i (x)∇iG(x, x′)ρ(x′)

]
ψA[A

T]ψϕ[ϕ]

(B.17)
where ψϕ and ψA are arbitrary functionals and the Green’s function G(x, x′)
satisfies

∇i∇iG(x, x′) =
1
√
γ
δ(d)(x, x′) . (B.18)

Since the spatial slice is just Euclidean AdSd, the Green’s function can be
written as [167, 168]

G(x, x′) =
2−∆̃

∆̃

Γ(∆̃)

π
∆̃
2 Γ( ∆̃

2
)
ξ∆̃ 2F1

(
∆̃
2
, ∆̃
2
+ 1; ∆̃

2
+ 1; ξ2

)
(B.19)

where ∆̃ = d− 1 and ξ(x, x′) = (cosh d(x, x′))−1 and d(x, x′) is the geodesic
distance between x and x′. In our coordinates, we have explicitly

ξ(x, x′) =
√
1 + r2

√
1 + (r′)2 + rr′ e · e′ , (B.20)

162



where e, e′ are unit vectors in Rd parameterizing Sd−1.
Note that (B.17) is not a factorized solution since the ρ in the exponent

of the right hand side acts as an operator on ψϕ and this forces correlations
between the matter fields and the longitudinal part of the gauge field.

B.1.3 Split states in QED

Although the solution obtained above is not factorized, it is still possible to
find split states. A simple example is obtained by taking two wavefunctionals
ψ

(1)
ϕ [ϕ] and ψ

(2)
ϕ [ϕ] that are both eigenfunctions of the charge operator ρ:

ρψ
(1)
ϕ [ϕ] = ρ1ψ

(1)
ϕ [ϕ], ρ ψ

(2)
ϕ [ϕ] = ρ2ψ

(2)
ϕ [ϕ] . (B.21)

Consider the case where the eigenfunctions ρ1 and ρ2 are both spherically
symmetric, vanish outside a ball of finite radius BR centered at r = 0 but
differ inside the ball. The fact that states of the form (B.21) exist relies
crucially on the fact that the charge density can be specified independently
at each point in space by (B.12) and also on the fact that for ordinary matter
fields it is possible to construct split wavefunctionals that agree outside a
bounded region but differ inside [53].

If we impose the condition that∫
BR

ddx
√
γ ρ1 =

∫
BR

ddx
√
γ ρ2 , (B.22)

then we see that the wavefunctionals

ψ(1)[A, ϕ] = exp

[
i

∫
Σ

ddx
√
γ

∫
Σ

ddx′
√
γ′AL

i (x)∇iG(x, x′)ρ(x′)

]
ψA[A

T]ψ
(1)
ϕ [ϕ]

(B.23)
and

ψ(2)[A, ϕ] = exp

[
i

∫
Σ

ddx
√
γ

∫
Σ

ddx′
√
γ′AL

i (x)∇iG(x, x′)ρ(x′)

]
ψA[A

T]ψ
(2)
ϕ [ϕ]

(B.24)
solve the constraints for an arbitrary choice of ψA[A

T], are identical outside
BR but differ inside. Note that we have used the fact that the electric field
produced by ρ1 and ρ2, which enters in the exponents above, agrees outside
BR by spherical symmetry and equality of the total charge but differs inside.
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Another example of a split state is obtained by simply taking two wave-
functionals ψ(1)[AL, AT] and ψ(2)[AL, AT] that are eigenstates of Πem,L with
different eigenvalues

∇iΠ
i
em,L ψ

(1)[AL, AT] = ρ1 ψ
(1)[AL, AT]; ∇iΠ

i
em,L ψ

(2)[AL, AT] = ρ2 ψ
(2)[AL, AT] .

(B.25)
Unlike the example above, ρ1 and ρ2 do not need to be spherically symmetric
in this case but we again demand that they differ inside a ball BR but agree
outside. We can then simply choose two matter wavefunctionals that satisfy
(B.21) and we see that the wavefunctionals

ψ(1)[AL, AT]ψ(1)[ϕ] and ψ(2)[AL, AT]ψ(2)[ϕ] (B.26)

differ inside BR but agree outside.

B.1.4 Difference between QED and gravity

From a technical perspective what allows us to construct split states in QED
is the relation (B.12). Unlike the charge density, the energy density cannot
be independently specified at each spacetime point. This is because the
commutator of the stress tensor with itself leads to the so-called Schwinger
terms [169]. For example, in a lattice regularization, the stress tensor at
one lattice point does not commute with the stress tensor at adjacent lattice
points.

The significance of this difference can be seen by considering the global
AdS vacuum. Here the specification of the total energy completely fixes
the state in the bulk and so it is clear that once the integral of the stress
tensor has been specified and set to vanish, there is no freedom to specify it
arbitrarily in different parts of space. In contrast, specifying the integral of
the charge density leaves an infinite ambiguity in the local charge density.

There is a more physical way to understand the difference between gravity
and nongravitational gauge theories. In gravity, the “charge” is the energy
but, by the Heisenberg uncertainty principle, an excitation with a fixed total
energy must be delocalized. There is no similar principle for excitations of
the electric charges or other gauge charges. This is why it is possible to
find split states in ordinary gauge theories, which localize information much
like other local quantum field theories, but impossible to find split states in
gravity.
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B.2 Graviton modes in global AdS

We verify here that the eigenvalue problem (4.99) coming from the Wheeler-
DeWitt equation corresponds to graviton modes in AdSd+1. We then provide
an explicit solution and compute the frequencies ωn in global AdS4.

B.2.1 Graviton eigenvalue problem

To relate graviton modes to the analysis of section 4.5.1, we should write
the linearized Einstein equation in global AdSd+1 in terms of d-dimensional
quantities on the slice Σ. We use hats for spacetime quantities to distinguish
them from slice quantities. The background metric is taken to be

ds2 = γ̂µνdx
µdxν = −N2dt2 + γijdx

idxj (B.27)

and the perturbation is

ĥµνdx
µdxν = ĥttdt

2 + 2ĥtidtdx
i + hijdx

idxj , (B.28)

which we take to be transverse and traceless

∇̂µĥ
µν = 0 , ĥ µ

µ = 0 . (B.29)

This is known as the generalized de Donder gauge.
The linearized equation of motion can be obtained by expanding the

Einstein-Hilbert action to quadratic order [170]

S =
1

16πG

∫
dtddx

√
−ĝ (R̂− 2Λ) . (B.30)

This leads to the linearized equation

(□̂+ 2)ĥµν = 0 . (B.31)

To write this in terms of slice quantities, we use that the non-zero Christoffel
symbols of the background are

Γ̂i
tt = N∂iN, Γ̂t

it = N−1∂iN, Γ̂k
ij = Γk

ij , (B.32)

and a tedious but straightforward computation gives

(□̂+ 2)ĥij = −N−2∂2t hij + (∆N + 2)hij , (B.33)
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where the Laplace-type operator ∆N defined in (4.70) appears. The equations
(□̂+2)ĥti = 0 can be used to fix the components ĥti and one can check that
(□̂+ 2)ĥtt = 0 is then automatically satisfied.

The frequencies ωn of the graviton modes can be defined by the eigenvalue
equation i∂th

(n)
ij = ωnh

(n)
ij , and we see that (B.33) indeed reduces to (4.99).

B.2.2 Graviton spectrum in AdS4

For completeness, we give here a derivation of the graviton frequencies ωn in
the case of global AdS4. The background metric is

ds2 = gµνdx
µdxν = −(1 + r2)dt2 +

dr2

1 + r2
+ r2(dθ2 + sin2θ dϕ2) . (B.34)

An efficient method to obtain the graviton spectrum in AdS4 is to make use
of the Teukolsky equation [171]. We start by defining a Newman-Penrose
tetrad [172] which here takes the form

l =
1

1 + r2
∂t + ∂r , n =

1

2
(∂t − (1 + r2)∂r) , (B.35)

m =
1√
2r

(
∂θ +

i

sin θ
∂ϕ

)
, m̄ =

1√
2r

(
∂θ −

i

sin θ
∂ϕ

)
, (B.36)

and satisfies
gµν = −lµnν − lνnµ +mµm̄ν + m̄µmν . (B.37)

It consists of null vectors which are all orthogonal to each other except for
l · n = −1 and m · m̄ = 1.

The Teukolsky equation can be written for any type D spacetime using
the Newman-Penrose formalism. For global AdS4, it takes the form

0 =
r2

1 + r2
∂2tΨη − r2(1 + r2)∂2rΨη − 2(1 + 2η)∂rΨη + η

4r

1 + r2
∂tΨη −

1

sin2θ
∂2ϕΨη

− 1

sin θ
∂θ(sin θ ∂θΨη)− 4iη

cos θ

sin2θ
∂ϕΨη − 2

(
3r2(3 + 2η) + 2 + η − 2

sin2θ

)
Ψη

(B.38)

where η = ±1 corresponds to the two polarizations.1

1This equation can also be obtained by taking the M = a = 0 limit of the Kerr-AdS
analysis of [173].
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We can consider a separated ansatz

Ψη(t, r, θ, ϕ) = e−iωt+imϕRη(r)Sη(θ) , (B.39)

and the master equation reduces to two coupled ODEs. The equation for
S(θ) can be written using the variable x = cos θ as

∂x((1− x2)∂xS) +

(
λ+ s− (m+ sx)2

1− x2

)
S = 0 (B.40)

and corresponds to spin-weighted spherical harmonics of spin s [174, 175]. It
is well-known that the corresponding eigenvalues are

λ = ℓ(ℓ+ 1)− s(s+ 1) , ℓ = |s|, |s|+ 1, |s|+ 2, . . . (B.41)

with azimuthal number degeneracies m = −ℓ,−ℓ+1, . . . , ℓ−1, ℓ. The eigen-
value λ enters in the radial equation which takes the form

0 = R′′(r) +
2(1 + 2η)(1 + 2r2)

r(1 + r2)
R′(r) (B.42)

+
1

r2(1 + r2)2
(
(1 + r2)(4 + 2η + 6r2(3 + 2η)− ℓ(ℓ+ 1)) + ω2r2 + 4iηωr

)
R(r) .

For each polarization η = ±1, the solutions are given in terms of hyperge-
ometric functions. Imposing regularity at the origin r = 0 selects one of
the two solutions. Imposing normalizability at r = ∞ makes the spectrum
discrete, with frequencies

ωℓ,n = ℓ+ n+ 1 , n ∈ Z≥0 , (B.43)

for each polarization. For fixed ℓ and n, the degeneracy of ωℓ,n is 2(2ℓ + 1)
coming from the two polarizations and the 2ℓ + 1 values of the azimuthal
quantum number m.

B.3 Gravitational energy in AdS

In this appendix, we compare the boundary Hamiltonian (4.38) with various
expressions for the gravitational energy in AdS.
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B.3.1 Hawking-Horowitz prescription

A formula of the gravitational energy in AdS was obtained in [176]. For
linearized perturbation, this takes the form

HHH
∂ =

1

2κ

∫
∂Σ

dd−1ΩNni∇j(hij − hγij) . (B.44)

This was derived assuming in the gauge hij|∂Σ = 0. It is easy to see that
(4.38) reduces to (B.44) under this gauge condition.

B.3.2 Holographic energy

In the context of AdS/CFT, a notion of holographic energy was defined in
[49]. To compare, we will write (4.38) in Fefferman-Graham (FG) gauge. We
define a new radial coordinate ρ in which the global AdSd+1 metric (B.34)
takes the form

γ̂µνdx
µdxν = −(4ρ2 + 1)2

16ρ2
dt2 +

dρ2

ρ2
+

(4ρ2 − 1)2

16ρ2
dΩd−1 (B.45)

and we assume that the perturbation satisfies ĥρµ = 0. The prescription of

[49] was written in terms of ĥ00 but [49] also showed that the trace of the
perturbation γ̂µν ĥµν was fixed in terms of a dimension-dependent number.
Therefore, in order to compare our expression with [49] it is permissible to
replace γijhij with ĥ00 up to a constant that only shifts the zero-point of the
energy.

With this substitution, the expression (4.38) for the energy gives

H∂ =
1

2κ
lim
ρ→∞

ρd−2

∫
dd−1Ω (−ρ ∂ρĥ00 + 2ĥ00). (B.46)

In a large ρ expansion, a normalizable perturbation behaves as

ĥ00(t, ρ,Ω) = ρ2−dĥ
(d−2)
00 (t,Ω) + . . . (B.47)

up to subleading terms. This gives

H∂ =
d

2κ

∫
dd−1Ωh

(d−2)
00 , (B.48)

which matches the holographic energy of [49].
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B.3.3 Iyer-Wald energy

In the covariant phase space formalism [177], the energy is given by the
boundary integral of the (d− 1)-form

χξ(ĥ) =
1

2κ
εµν

(
ĥµρ∇̂ρξ

ν − 1

2
ĥ ρ
ρ ∇̂µξν + ξρ∇̂ν ĥµρ − ξν∇̂ρĥ

µρ + ξν∇̂µĥ ρ
ρ

)
,

(B.49)
where ξ = ∂t and using the notation of [178]. Evaluating this on the slice Σ
gives

χξ(ĥ) =
1

2κ
εit

(
ĥiρ∇̂ρξ

t − ĥtρ∇̂ρξ
i − 1

2
ĥ ρ
ρ (∇̂iξt − ∇̂tξi) + ∇̂tĥi t − ∇̂iĥtt − ∇̂ρĥ

iρ + ∇̂iĥ ρ
ρ

)
,

(B.50)
This can be simplified using

∇̂tξ
t = Γ̂t

tt = 0, ∇̂iξ
i = Γ̂i

it = 0, (B.51)

∇̂tξ
i = Γ̂i

tt =
1

2
γij∂j(N

2), ∇̂iξ
t = Γ̂t

it =
1

2N2
∂i(N

2) , (B.52)

and we obtain

χξ(ĥ) =
1

2κ
εi
(
∇jN(hij − hγij)−N∇j(h

ij − hγij)
)
, (B.53)

using the relation between the volume forms ε̂it = Nεi. This shows that the
Iyer-Wald energy matches (4.38):

H∂ =

∫
∂Σ

χξ(ĥ) . (B.54)

In fact, the integrated Hamiltonian constraint (4.88) can be viewed as the
quantization of a classical equation which can be expressed in this formalism.
For linearized AdS spacetimes, this was detailed in [178, 179]. The result is
that the tt component of Einstein’s equation gives an identity∫

∂Σ

χξ(h) =

∫
Σ

(ωgrav(h,Lξh) + ωϕ(ϕ,Lξϕ)) , (B.55)

for linearized on-shell perturbations. The LHS is the the energy H∂ as shown
above. The RHS involves the symplectic forms ωgrav and ωϕ associated
to gravity and matter and corresponds to a “bulk energy” known as the
Hollands-Wald canonical energy [180].
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B.4 Leading order solutions

We derive here the leading order solutions to the pointwise Hamiltonian and
momentum constraints presented in equation (4.144) and equation (4.146).

B.4.1 Hamiltonian constraint

As explained in section 4.5.2, the second order Hamiltonian constraint takes
the form

DijhTij = κQ(0), (B.56)

where Dij is defined in (4.131) and Q(0) is the truncation to leading order of
Q which can be written

Q(0) = 2

(
Πij

TΠ
T
ij −

1

d− 1
Π2

T

)
+ 4ΠTT

ij Πij
T +Q

(0)
0 (B.57)

where we have isolated the part with no ΠT:

Q
(0)
0 = 2Πij

TTΠ
TT
ij − 1

8
hij(∆N + 2)hij +

1

4

(
2hij∇i∇khjk +∇ih

ij∇khjk
)

+
1

4
N−1∇iL

i +Hmatter .

(B.58)

It is convenient to define the time variable t by the equation

ΠT
ij = Dijt , (B.59)

which is explicitly

ΠT
ij =

1

2

(
∇i∇jt− γij∇k∇kt+ (d− 1)γijt

)
. (B.60)

This is the generalization to AdS of the time variable used in [82, 81]. Taking
the trace we see that

γijΠT
ij =

d− 1

2
(−∆+ d)t , (B.61)

so the relation with α in (4.84) is:

t = − 2

d− 1
Nα . (B.62)
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An identity that will prove important is

Nαij = ∇iαj +∇jαi (B.63)

where we have

αi =
1

2
N2∇iα = − 1

(d− 1)
(N∇it−∇iNt) . (B.64)

This allows us to solve the Hamiltonian constraint at leading order. We have

δΨ =

∫
ddx

δΨ

δΠij
T(x)

δΠij
T(x)

= i

∫
ddx

√
γDijhTijΨ δt

(B.65)

using (B.59) and integration by parts. Hence,

− i
√
γ

δΨ

δt
= DijhTij , (B.66)

and the constraint can be written(
− i
√
γ

δ

δt
− κQ(0)

)
Ψ = 0 . (B.67)

We can write the solution in the form

Ψ[t, hTT, hL, ϕ] = exp (iκP)Ψ0[h
TT, hL, ϕ] + O

(
κ2
)
, (B.68)

where P needs to satisfy

1
√
γ

δP
δt(x)

= Q(0) . (B.69)

The solution can be found and takes a remarkably simple form:

P =

∫
ddx

√
γ

(
−2

3
t

(
Πij

TΠ
T
ij −

1

d− 1
Π2

T

)
+ 2 tΠij

TTΠ
ij
T + tQ

(0)
0

)
. (B.70)

The first term is cubic in t and the second term is quadratic in t. We will
now check that differentiating these terms with respect to t gives (B.57).
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Cubic term. Let’s consider the cubic term, allowing each entries to be
different:

P(3)[t1, t2, t3] =
2

3

∫
ddx

√
γ t1

(
Πij

T [t2]Π
T
ij[t3]−

1

d− 1
ΠT[t2]ΠT[t3]

)
,

(B.71)
We want to show that

1
√
γ

δ

δt
P(3)[t, t, t] = 2

(
Πij

TΠ
T
ij −

1

d− 1
Π2

T

)
. (B.72)

Since the derivative with respect to t1 gives one third of the RHS, we just
need P(3)[t1, t2, t3] to be invariant under permutation of its arguments. As
P(3)[t1, t2, t3] is manifestly invariant under t2 ↔ t3, we just need to show
that it’s also invariant under t1 ↔ t3.

First, we note that the combination gives

Πij
TΠ

T
ij −

1

d− 1
Π2

T = − 1

d− 1
ΠT

ijα
ij , (B.73)

so that we have

P(3)[t1, t2, t3] = − 2

3(d− 1)

∫
ddx

√
γ t1Π

ij
T [t2]αij[t3] . (B.74)

We now use the identity (B.63) and integration by parts:

P(3)[t1, t2, t3] = − 4

3(d− 1)

∫
ddx

√
γ N−1 t1Π

ij
T [t2]∇iαj[t3]

=
4

3(d− 1)2

∫
ddx

√
γ N−1 t1Π

ij
T [t2]∇i(N∇jt3 −∇jNt3)

=
4

3(d− 1)2

∫
ddx

√
γ Πij

T [t2] (−∇it1∇jt3 − γijt1t3) .

(B.75)

This is manifestly symmetric under t1 ↔ t3. Hence, P(3)[t1, t2, t3] is invari-
ant under permutation of its arguments and (B.72) is satisfied.

Quadratic term. Similarly, we introduce the quantity

P(2)[t1, t2] = 2

∫
ddx

√
γ t1Π

ij
TTΠ

ij
T [t2] . (B.76)
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We want to show that

1
√
γ

δ

δt
P(2)[t, t] = 4Πij

TTΠ
T
ij . (B.77)

This would follow if P(2)[t1, t2] is invariant under t1 ↔ t2. We can write

P(2)[t1, t2] = 2

∫
ddx

√
γ t1Π

ij
TTDijt2,

= −
∫
ddx

√
γ Πij

TT(∇
i t1∇jt2 − γij∇k t1∇kt2) ,

(B.78)

which is manifestly invariant under t1 ↔ t2.
This shows that (B.70) is indeed the solution.

B.4.2 Momentum constraint

The leading order constraint is

2

κ
γij∇kΠ

jk
L = Q

(0)
i . (B.79)

What plays the role of t here is the vector ϵi defined as

hLij = ∇iϵj +∇jϵi . (B.80)

We then have

δΨ =

∫
ddx

δΨ

δhLij(x)
δhLij(x)

= −2i

∫
ddx

√
γ∇iΠ

ij
LΨ δϵj ,

(B.81)

which allows to write the momentum constraint as(
− i
√
γ

δ

δϵi
− κQ

(0)
i

)
Ψ[h, ϕ] = 0 , (B.82)

where Q
(0)
i is the leading order truncation of Qi which takes the form

Q
(0)
i = (∇ihjk − 2∇khij)(Π

jk
T +Πjk

TT) +Hmatter
i . (B.83)
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This can be written in terms of ϵi as

Q
(0)
i =

(
2(Rkℓijϵ

ℓ −∇k∇jϵi) +∇ih
TT
jk − 2∇kh

TT
ij

)
(Πjk

T +Πjk
TT) +Hmatter

i .
(B.84)

To properly define this operator, we should adopt the same normal ordering
prescription as in section 4.5.1.

As above, we can write the solution as

Ψ[hTT, hT, hL, ϕ] = exp (iκR)Ψ0[h
TT, hT, ϕ] + O

(
κ2
)
, (B.85)

where Ψ0 is an arbitrary functional. We need to have

1
√
γ

δ

δϵi
R = −Q

(0)
i . (B.86)

The solution can be found explicitly to be

R = −
∫
ddx

√
γ
(
Rijkℓϵ

iϵℓ − ϵi∇k∇jϵi + ϵi∇ih
TT
jk − 2ϵi∇kh

TT
ij )(Πjk

T +Πjk
TT) + ϵiHmatter

i

)
.

(B.87)
As above, we can prove that this is a solution by showing that the term
quadratic in ϵi is symmetric in its two entries. This follows from integration
by parts.

B.4.3 Solutions to both constraints

We have presented above general perturbative solutions of the Hamiltonian
and momentum constraint independently. Here, we will give solutions to
both constraints.

The solutions found above must be compatible with each other. This
implies that the “interaction” part of P and R, involving products of t and
ϵi must be exactly the same. We will use below the subscript “int” to denote
this part. It is a rather non-trivial consistency check to verify this.

From the solution of the Hamiltonian constraint, we have

Pint =
1

2

∫
ddx

√
γ∇iM

it (B.88)

using the results of section 4.4.4. In particular, M i is defined in (4.78). From
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the momentum constraint, this term is

Rint = −
∫
ddx

√
γ
(
2(Rkℓijϵ

ℓ −∇k∇jϵi) +∇ih
TT
jk − 2∇kh

TT
ij

)
Πjk

T

=

∫
ddx

√
γ Djk

(
2(Rkℓijϵ

ℓ −∇k∇jϵi) +∇ih
TT
jk − 2∇kh

TT
ij

)
t

(B.89)

using integration by parts. Consistency of our solutions then requires that
Pint = Rint which is explicitly

Djk
(
Rijkℓϵ

iϵℓ +∇kϵ
i∇jϵi + ϵi∇ih

TT
jk − 2ϵi∇kh

TT
ij

)
=

1

2
∇iM

i . (B.90)

This is a rather non-trivial identity since the LHS comes from the expansion
of the momentum constraint while the RHS comes from the expansion of the
Hamiltonian constraint. We have checked that this identity indeed holds, see
the associated Mathematica notebook [122].

Finally, we can write the leading order solution to both constraints as

Ψ[ΠT, hTT, hL, ϕ] = exp(iκS)ψ[hTT, ϕ] + O
(
κ2
)
, (B.91)

where ψ is an arbitrary functional and

S =

∫
ddx

√
γ

(
−2

3
t

(
Πij

TΠ
T
ij −

1

d− 1
Π2

T

)
+ 2 tΠij

TTΠ
ij
T +Q

(0)
0 t− ϵiHmatter

i

)
,

(B.92)

with Q
(0)
0 given in (B.58).
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Appendix C

Derivations of physical
quantities at null infinity in
6-dimensions

C.1 Metric Inverse and Traces

In this appendix we expand upon the computation of the metric inverse and
the trace of various components in the metric. In the linearized theory this
computation is fairly trivial but in the non-linear theory, it becomes slightly
convoluted. The inverse metric gab corresponding to the metric (5.2), is given
as

gabgbc = δac . (C.1)

We will expand the LHS order by order in r and then evaluate the r-expansion
of the metric gab. Since gbc’s leading order term is r2, we expect that the
leading order term of gab will be 1/r2. Therefore, let us take the expansion
of gab as,

gab =
∞∑
n=2

g(n)ab

rn
(C.2)

and contract this with

gbc = r2δbc + rCbc +Dbc +
Ebc

r
+
Fbc

r2
+ · · · (C.3)
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Noting that the indices of g
(n)
ab are lowered and raised with γab we get the

values of g
(n)
ab

g(2)ab = δab, (C.4)

g(3)ab = −Cab, (C.5)

g(4)ab = Ca
cC

bc −Dab, (C.6)

g(5)ab = CacDb
c +DacCb

c − Ca
mC

mnCb
n − Eab, (C.7)

g(6)ab = −F ab + CacEb
c + CbcEa

c +DacDb
c + Ca

mC
mnCc

nC
b
c (C.8)

− (Db
cC

a
mC

cm +Dc
mC

amCb
c +Da

cC
b
mC

cm).

Trace of g
(n)
ab

We will now demonstrate how the Bondi gauge condition (5.3) fixes the traces

of g
(n)
ab . The condition we have is det(gAB

r2
) = det(δab). This condition results

in,

det
(gab
r2

)
= det

(
δab +

Cab

r
+
Dab

r2
+
Eab

r3
+
Fab

r4

)
= det(δab)× expTr log

(
δcb +

Cc
b

r
+
Dc

b

r2
+
Ec

b

r3
+
F c
b

r3

) (C.9)

From the gauge condition (5.3) we see that we need,

Tr log
(
δcb +

Cc
b

r
+
Dc

b

r2
+
Ec

b

r3
+
F c
b

r3

)
= 0. (C.10)

In order to simplify the term inside the Tr we note that,

log
(
δcb +

Cc
b

r
+
Dc

b

r2
+
Ec

b

r3
+
F c
b

r4

)
=
Cc

b

r
+
Dc

b − 1
2
Cm

b C
c
m

r2
+
Ec

b − Cm
b D

c
m + 1

3
Cm

b C
n
mC

c
n

r3

+
F c
b − CabEab − 1

2
DabDab + CamCbmD

b
a − 1

4
Ca

bC
b
cC

c
dC

d
a

r4
+O(1/r5)

(C.11)

Taking the trace of this equation and using (C.10) then gives us (5.7). Al-

though here we have shown how we can fix the traces of g
(n)
ab for n ≤ 2, this

procedure is applicable ∀ n.
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C.2 Equations of motion

We eventually want to express everything in terms of free data, which, as
argued in sec. 5.2 are Cab and D̃ab. Therefore, using the Einstein equations
we represent everything else in terms of those variables. We solve the Einstein
equations in flat spacetime Rµν = 0 (where the specific fall off conditions are
mentioned in (5.5)) and determine the components of the metric in terms of
the free data. The ones which are important for us in this analysis are Rrr,
Rra, Rur, Rab, Ruu. We solve them order by order in r in the large−r limit.

From the component Rur we have the following:

M (1) = 0, (C.12a)

−M (2) =
1

2
∂aU (1)

a + ∂2β(2) + U (0)2 . (C.12b)

The next order equation does not yield us any non-trivial equation forM (3).
For that one, we will have to work with the Ruu equation which is like the
Hamiltonian constraint.

From the Rra component we obtain,

U (0)
a = −1

6
∂bCab, (C.13a)

3U (1)
a = −∂bDb

a+CabU
(0)b+

1

2
∂b(C

bmCam)+6∂aβ
(2)+

1

8
∂a(C

bcCbc). (C.13b)

We can also explicitly write down the value of U (2)a but we will not be
needing that for any specific calculation. All we need is the basic structure
of ∂uU

(2)a for the computation of the Bondi mass evolution equation and we
shall quote that here

2∂uU
(2)a = −3

2
∂u∂bE

ab + ∂uU(C,D) (C.14)

where U(C,D) is a bi-linear in Cab and Dab. Using the fall off condition
(5.27) and the equation of motion for Eab (see equation (5.44)), it is simple
to see that

∫∞
−∞ du ∂u∂aU

(2)a = 0 and hence this does not contribute to the
integrals in (5.38).
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From the Rrr equation we obtain,

β(2) = − 1

64
CabCab,

β(3) =
1

48
(CabCbcC

c
a − 2CabDab),

β(4) =
1

64

[
5Ca

bC
m
a D

b
m − 2Ca

bC
b
cC

c
dC

d
a − 3CabEab −DabDab

]
.

(C.15a)

In the linearized theory about Cab = 0 it is clear that β = 0 [22, 26].
The equation of motion for Rab and Ruu are discussed in the main text. To
summarize them, the leading order non-trivial equation for Rab implies that
∂uCab = 0 and the next non-trivial equation (at O(1/r2)) gives us the value
of ∂uEab (see equation (5.44)). There does not exist an equation of motion
for ∂uDab implying that is the free data of the theory. The leading non-trivial
EOM for Ruu gives the time evolution of the Bondi mass (see (5.35)).

C.3 Memory in linearized gravity

We can derive the memory in the linearized theory by using the formulas in
[79]. Even though the results in there are derived in the Harmonic gauge,
the final answer is shown to match with ours (in the linearized limit), which
reflects the fact that memory is gauge invariant (refer to section 5.4). Note
that the results in [79] are derived on the compact celestial sphere S4, whose
curvature contributes to the final answer. To avoid a confusion with nota-
tions, we use the γAB

S and DS to denote the metric and the derivative on the
compact sphere. The notations for the important metric fluctuations in [79]
are related to ours as,

h
(0)
AB ≡ Dab, h

(1)
AB ≡ Eab

and the relative transverse displacement in the linearized case is denoted as
slin. Therefore, using equation 3.4 and 3.5 [79] of we get,

∆sAlin =
γAC
S
2r3

∆h
(1)
CBs

B
lin,i (C.16)

Next we consider their equation 4.17 which gives (here the factor of −4
appears due to the curvature of the sphere),

∂uh
(1)
BC = −1

2
(D2

S − 4)h
(0)
BC (C.17)
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Substituting this in (C.16), we get,

∆sAlin = − 1

4r3
(D2

S − 4)

∫
du h

(0)A
B sBlin,i (C.18)

Since h(0)AB ≡ Dab this expression can be obtained from (5.46) in the lin-
earized limit and upon taking care of the curvature of the sphere.

C.4 Lessons from QED Symplectic Form

We demonstrate a detailed computation of the symplectic form in source-free
QED as a toy model, and also describe how there are similar issues which
crop up in gravity. Note that the behavior of linearized gravity is exactly
similar to QED and hence we should expect the QED analysis to behave
similarly to the linearized GR analysis done in [26], with the small difference
that we are working with γab = δab. We encourage the reader to look at [155,
156] for a more mathematically robust treatment of the symplectic form in
QED.

Before going to the computation of the symplectic form, let us mention
the quantities that parametrize the phase space. The free data here is A

(0)
i

and A
(1)
i and these are similar to Cab and Dab in gravity, as discussed in

section 5.2. This can be shown by analyzing the Maxwell Equations. The
notation for the fields in the large r expansion here is the same as the one in
gravity,

Aµ(u, r, z) =
∑
n

A
(n)
µ (u, z)

rn
. (C.19)

We shall be working the radial gauge Ar = 0, which is analogous to the Bondi
gauge in gravity [181]. The other subsidiary conditions in this gauge choice

are A
(0)
u = A

(1)
u = 0.

From the equations of motion we can show that

∂uA
(0)
i = 0 (C.20)

which is analogous to (5.8). There does not exist an equation of motion

for A
(1)
i and that in general can be u-dependent, hence along with it being

the free data, it is used to parametrize electromagnetic radiation. This is
analogous to D̃ab in gravity.
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We now proceed with the computation of the symplectic form. To do this,
we first evaluate the symplectic current (whose general expression is given in
[151]). Like we did for the case of gravity, the component of the symplectic
form that we are interested in J t (where t = u+ r)

J t = J u + J r = −(Jr + Ju). (C.21)

The general form of Jα is given as [151],

Jα = gµνδAν ∧ δFµα. (C.22)

Thus we have to now compute the value of Jr and Ju, which are given as,

Jr = gµνδAν ∧ δFµr =
δij

r4
δA

(0)
j ∧ δA(1)

i . (C.23)

and

Ju = gµνδAν ∧ δFµu =
1

r2
δAi ∧ δFiu

= − 1

r3
δA(0)i ∧ δ∂uA(1)

i +
1

r4

[
− δA(1)i ∧ δ∂uA(1)

i + δA(0)i ∧ δF (2)
iu

]
(C.24)

Where to get the 1/r4 term we have used A
(0)
u = A

(1)
u = ∂uA

(0)
i = 0. The first

two are part of the gauge condition and the last one follows from an equation
of motion (C.20). The currents can be simplified using the equation of motion
which are given below. We specifically need the ∇µF

µr = 0 equation, and
that is given as,

∂uFru +
1

r2
∂iFiu = 0 =⇒ ∂iF

(2)
iu = ∂uF

(4)
ur . (C.25)

Where the second equation is one of the terms in the r-expansion of the first
one.

C.4.1 Understanding J t
div

Next, we look at the 1/r3 term appearing in Ju. This is analogous to the
term Jr

div appearing in gravity (see (C.42)). Naively this would lead to a
divergent term in the expression for the symplectic form as the volume of
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spacetime comes with a determinant factor of
√
−g = r4 which in the r → ∞

limit will give a divergence with this. Therefore, we need to be a bit careful
in order to handle this. This term in the current is labeled as J t

div ≡ J u
div

and is given as,

J div
u = − 1

r3
δA(0)i ∧ δ∂uA(1)

i (C.26)

In order to simplify this we use the fact that we are working with constant
t-slices and we define u = t − r. By using this, we interpret the 1/r3 in
the expression as r/r4 and the r on the numerator here will be written as
r = t− u, where we hold u constant as we take r → ∞1. Therefore,

J div
u = − 1

r3
δA(0)i ∧ δ∂uA(1)

i =
u− t

r4
δA(0)i ∧ δ∂uA(1)

i

=
1

r4
∂u

[
(u− t)δA(0)i ∧ δA(1)

i

]
− 1

r4
δA(0)i ∧ δA(1)

i .
(C.27)

Notice that while computing the symplectic form we are eventually interested
in

∫∞
−∞ J div

u and with the fall off

lim
u→±∞

A
(1)
i ∼ O(

1

|u|2+0+
) (C.28)

we see that the first term in equation (C.27) vanishes (by repeating a similar
analysis as that of appendix C.6 we also get this fall off using the saddle
point approximation in QED). Therefore, we get,∫ ∞

−∞
du J div

u = − 1

r4

∫ ∞

−∞
du δA(0)i ∧ δA(1)

i (C.29)

With this in place, we simplify the full symplectic form, i.e, the combination
of (C.23) and (C.24).

C.4.2 Simplifying J t

From the computation above, we see that upon combining (C.23) and (C.29)
we get, ∫ ∞

−∞
du J div

u + Jr = 0. (C.30)

1These limits are in general hard to make sense of, and we do not provide a rigorous
mathematical argument to prove this here. For a more robust mathematical discussion of
the symplectic form in QED, we refer the reader to [155].
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In order to further simplify, we shall assume that we have no magnetic charges
present (where the analogous statement in gravity is (5.9)) and therefore the

curl of A
(0)
i is zero. Which means that ϵijk∂jA

(0)
k = 0 and this leads to the

condition,
A

(0)
i = ∂iΦ (C.31)

where Φ(z) is some function on R4 and is like the “potential for the vector
potential Ai”. Like in the case of gravity, there is a freedom of adding
a constant term in this expression, but that is not going to affect any of
our analysis and hence we set that to zero. Therefore, in terms of Φ, the
symplectic form becomes,

Ωt
QED(δ, δ

′) =

∫ ∞

−∞
dur4Ju =

∫ ∞

−∞
du− δA(1)i ∧ δ′∂uA(1)

i − δΦ ∧ δ′∂u∂iF (4)
ur .

(C.32)

Where we have used the EOM in (C.25) to get the second term. From this
equation we can read of the poisson brackets of the free theory, and these
are stated in [181]. The first term in this like the kinetic term for the degree

of freedom capturing radiation A
(1)
i . The second term gives us the conjugate

to the soft mode. This is in contrast with the 4D case, as in there both of
these come from the gauge field component at the same order A

(0)(4D)
i .

C.4.3 Charge

The charge is constructed using the variation under large gauge transforma-
tion. By working in the radial gauge we have the following variations,

δϵA
(0)
i = ∂iϵ, δϵA

(1)
i = 0. (C.33)

And therefore the charge is going to become,

δQϵ = Ωt(δϵ, δ) =⇒ Qϵ =

∫
d4z ϵ(z)F (4)

ur

∣∣
I−
+

(C.34)

where we are neglecting the contribution at I+
+ due to the absence of massive

particles. This is the same expression for the charge in QED as given in
equation 3.2 of [142].
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C.5 Details of the Gravity Symplectic form

In this section we give a detailed description of the derivation of the symplec-
tic form in gravity. Our starting point will be the Witten-Crnkovic current
as given in (5.21). As stated before, from the determinant condition of the
Bondi gauge (5.3) we have δg = 0 and hence the equation for the symplectic
current simplifies to,

Jα =
1

2
δΓα

µν ∧ δgµν −
1

2
δΓν

µν ∧ δgαµ (C.35)

The components of interest in here will be J t, which in turn just reduces
to Jr + Ju. Therefore, we proceed onto evaluating these two. Since we are
in 6-dimensions, the symplectic form constructed out of the current J t is
integrated with the measure r4

√
γ = r4 (when γab = δab). Therefore we shall

expand J t in inverse powers of r and ignore the terms which are O(1/r5) and
higher orders.

C.5.1 Jr

This is given as,
2Jr = δΓr

µν ∧ δgµν − δΓν
µν ∧ δgrµ (C.36)

By directly expanding this we get,

−2Jr = δgru ∧ (2Γr
ur − Γµ

uµ) + δgrr ∧ δ(Γr
rr − Γµ

µr)

+ δgra ∧ δ(2Γr
ra − Γµ

µa) + δgab ∧ δΓr
ab

(C.37)

We see that the terms in the first line are of higher order, i.e,

δgru ∧ (2Γr
ur − Γµ

uµ) + δgrr ∧ δ(Γr
rr − Γµ

µr) = O(1/r5) (C.38)

And thus, for getting the terms at the required order we have,

−2Jr = δgra ∧ δ(2Γr
ra − Γµ

µa) + δgab ∧ δΓr
ab (C.39)

These terms are simple to compute and we list the final forms of the
individual terms in here,

1.

δgra ∧ δ(2Γr
ra − Γµ

µa) =
1

r4

[
2δ(U (1)a − CabU

(0)
b ) ∧ δU (0)

a + δU (0)
a ∧ δ(3U (1)

a − CacU
(0)c)

]
(C.40)
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2.

δgab ∧ δΓr
ab = − 1

r3
δCab ∧ δΓr(0)

ab +
1

r4

[
− δCab ∧ δΓ(1)r

ab + δ(Ca
cC

bc −Dab) ∧ δΓ(0)r
ab

]
(C.41)

Here Γ
(n)r
ab denotes the coefficient of 1/rn of Γr

ab. Therefore we see that
the terms in Jr contain terms at O(1/r3) and O(1/r4). As we had mentioned
before, in order to get the symplectic form, we need to integrate this with
the measure which contains r4 and therefore the term in Jr containing 1/r3

has to be handled with caution. We shall treat these two separately below.
This is treatment is analogous to the treatment of EM in C.4.1. We will call
the 1/r3 term Jr

div and the 1/r4 term as Jr
fin.

C.5.2 Jrdiv

Here we have,

−2Jr
div = − 1

r3
δCab∧δΓr(0)

ab = − 1

r3

[
δCab∧δ∂aU (0)

b +
1

2
δCab∧δ∂uDab

]
. (C.42)

The first term in this is actually zero when we look at its contribution in
the symplectic form. And this can be seen by integrating on the flat sphere
(γab = δab) and using the equation of motion for U

(0)
a (C.13),∫

d4z δCab ∧ δ∂aU (0)
b ∼

∫
d4z δCab ∧ δ∂a∂cCbc

=

∫
d4z ∂a

[
δCab ∧ δ∂cCbc

]
−
∫
d4z δ∂aC

ab ∧ δ∂cCbc = 0.

(C.43)

Here the first term is a total derivative on the flat sphere and hence is zero,
and the second term is a wedge product of the same object and hence zero
as well.

Let us look at the other term in (C.42). This term is similar to that of
(C.26) and thus can be handled in the same way. We shall also be using
(5.18) and (5.8) to write ∂uDab = ∂uD̃ab. This replacement is done because,
as motivated before, D̃ab is the radiative data in the full non-linear theory.
It will be demonstrated below as to how this is also necessary for defining a
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finite symplectic form and is also implied by the Saddle point approximation
(see appendix C.6). Therefore, the final form of (C.42) becomes,

−2Jr
div = − 1

2r3
δCab ∧ δ∂uD̃ab (C.44)

Like we did in the case of QED, we would like to think of the 1/r3 term as
r/r4 which is further thought of as (t− u)/r4 where we would like to hold t
fixed as we take r → ∞. Thus we get,

−2Jr
div = − 1

2r4
∂u

[
(t− u)δCab ∧ δD̃ab

]
− 1

2r4
δCab ∧ δD̃ab. (C.45)

We will describe how the finiteness of the symplectic form as computed from
this expression fixes the fall off for D̃ab.

C.5.3 Jrfin

We now study the other part of Jr, which we had called Jr
fin. That is read

off from (C.39)-(C.41),

2Jr
fin =

1

r4

[
2δ(U (1)a − CabU

(0)
b ) ∧ δU (0)

a + δU (0)
a ∧ δ(3U (1)

a − CacU
(0)c)

− δCab ∧ δΓ(1)r
ab + δ(Ca

cC
bc −Dab) ∧ δΓ(0)r

ab

]
.

(C.46)

With a bit of work and integrating out total derivatives on the flat sphere,
this becomes,

−2Jr
fin = −1

2
δDab ∧ δ∂uDab −

1

2
δCab ∧ δ∂uEab

− 1

2
δCab ∧ δ

[
2∂aU

(1)
b − U (0)c

(
2∂aCbc − ∂cCab

)
− 1

3
∂b
[
U (1)
a + Cc

aU
(0)
c

]
+

1

3
∂m∂a(D

m
b − Cm

c C
c
b )

]
.

(C.47)

This equation can be simplified further and everything can be expressed in
terms of Cab alone, which we will do after combining the results of Ju and
Jr
div.
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C.5.4 Ju

From the general equation for the symplectic current in (5.21) we have,

2Ju = δΓu
µν ∧ δgµν − δΓν

µν ∧ δguµ. (C.48)

This is relatively easy to compute and can be written as,

2Ju =
1

2r4
δCab ∧ δ(Ca

cC
bc −Dab) = − 1

2r4
δCab ∧ δD̃ab +

3

8r4
δCab ∧ δ(Ca

cC
bc)

(C.49)
Where we have used Ca

a = 0.

C.5.5 J t

From the definition t = u+ r, J t is given as Ju+Jr and therefore combining
(C.45), (C.47) and (C.49), we have,

2J t = − 1

2r4
δDab ∧ δ∂uDab −

1

2r4
δCab ∧ δ∂uEab −

1

2r4
∂u

[
(t− u)δCab ∧ D̃ab

]
− 1

2
δCab ∧ δ

[
2∂aU

(1)
b − U (0)c

(
2∂aCbc − ∂cCab

)
− 1

3
∂b
[
U (1)
a + Cc

aU
(0)
c

]
+

1

3
∂m∂a(D

m
b − Cm

c C
c
b ) +

1

4
Cc

aCbc

]
.

(C.50)

From the equations of motion we have in sec.(C.2) we can write J t completely
in terms of Cab and D̃ab. And after doing that, we will find three kinds of
terms in the expansion. One of which is a remnant of Jr

div and in the equation

above that appears with a ∂u

[
· · ·

]
. And in the other two terms, one of them

contains the terms dependent on D̃ab and the other is independent of D̃ab.
These three parts are called J t

div, J
t
fin and J t

NI respectively. Here J
t
NI stands

for “non-integrable” and we will explain the meaning of that in more detail
in the upcoming section.

J t
div

Here,

−2J t
div = − 1

2r4
∂u

[
(t− u)δCab ∧ δD̃ab

]
(C.51)
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This term will give a contribution to the symplectic form which looks like,

Ωt
div ∼

∫
du ∂u

[
(t−u)δCab∧δD̃ab

]
=

[
(t−u)δCab∧δD̃ab

]
u→∞

−
[
(t−u)δCab∧δD̃ab

]
u→−∞

.

(C.52)
The way in which we regulate this is to choose the fall off for D̃ab as,

lim
u→±∞

D̃ab ∼ O
( 1

|u|2+0+

)
, (C.53)

which is exactly similar to the way in which A
(1)
i falls off in EM which is

discussed around (C.28), and is the same fall-off as derived using the saddle
point approximation in appendix C.6. With this in place, we see that the
contribution to

Ωt
div = 0. (C.54)

Henceforth we shall be making the following replacement in the symplec-
tic current, as it does not contribute to the form as motivated by the falloff
(C.53),

1

r4
δCab ∧ δ∂uDab =

1

r4
δCab ∧ δ∂uD̃ab → 0. (C.55)

J t
I

After substituting the EOM in (C.50) we collect the terms dependent on D̃ab

and that is equal to,

−2J t
I = −1

2
δD̃ab ∧ δ∂uD̃ab +

1

2
δCab ∧ δ∂uEab +

1

9
δCab ∧ δ∂a∂cD̃bc. (C.56)

In order to get this we have used the fall off (C.53) to replace,

δDab ∧ δ∂uDab = δD̃ab ∧ δ∂uD̃ab (C.57)

which is possible because of the replacement (C.55). We are also including
the ∂uEab term as it is a function of D̃ab (see (5.44)). It is interesting to note
that the contribution to the symplectic form due to this term is the same as
the linearized case (about C = 0 vacuum as in [26]), but with Dab replaced
by D̃ab.

Therefore, the integrable part of the symplectic form becomes,

Ωt
I =

∫
I+

d4zduJ t
I = −1

2

∫
I+

d4zdu−1

2
δD̃ab∧δ∂uD̃ab+

1

2
δCab∧δ∂uEab+

1

9
δCab∧δ∂a∂cD̃bc.

(C.58)
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It has been shown in section 5.3.1 that this leads to the correct soft charge,
which is obtained by convoluting mB with a function f(z) (see (5.38)).

J t
NI

Let us consider the final piece of the symplectic current (C.50) now, which
solely depends on Cab. Given the form of (C.50), a tedious but straightfor-
ward computation leads us to,

−2J t
NI = δCab∧δ

[
− 1

2
Cc

aCbc −
1

9
∂a

(
Ccd∂cCbd +

4

3
Cc

b∂
dCcd −

1

16
Ccd∂bCcd

)
+

1

3
∂cCcd∂aC

d
b −

1

6
∂cCab∂

dCcd

]
.

(C.59)

C.6 Saddle Point analysis

We perform the saddle point approximation for the Graviton to get an idea of
the fall-off of the field at I+

± . Since we are only interested in the fall-offs, we
will be cavalier about the numerical constants as they will not be necessary
for the final answer. We will follow the treatment in [18]2.

The mode expansion of the Gravitational perturbation in Cartesian co-
ordinates is given as

hµν(u, r⃗) =
∑
α

∫
d5q

(2π)52|q⃗|

[
ϵ(α)µν aα(|q⃗|, q̂)eiq·x + h.c.

]
(C.60)

Here α is the polarization index, ϵ
(α)
µν represents the polarization vector and

aα represents the mode functions. The factor eiq·x is given as,

eiq·x = e−iqt+iq⃗·x⃗ = e−iqu−iqr(1−cosθ), (C.61)

where θ is the angle between x⃗ and q⃗ and we often use |q⃗| ≡ q when there is
no conflict of notation. With this expansion in place, we evaluate the integral
in the r → ∞ limit. Along with the eiq·x term there is another contribution of
θ that comes from the measure of the integral, which is proportional to sin3θ

2Exercise 4 in [18] treats the 4D electromagnetic case, but the formalism is very similar.
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(since it is a Five Dimensional integral). Thus the necessary contribution of
the integral becomes,

hµν(u, r⃗) ∼
∑
α

∫
dqdθ q3sin3θ

[
ϵ(α)µν aαe

−iqu−iqr(1−cosθ) + h.c.
]

(C.62)

Now we consider the saddle point approximation of the integral in the r → ∞
limit. Here the saddle we pick is θ = 0, where the other one is forbidden by
the Riemann-Lebesgue lemma. The leading order saddle point answer will
give us a 0, hence we have to go the subleading order, which means that we
consider the following expansions,

lim
r→∞

sin3θe−iqr(1−cosθ) ≈ lim
r→∞

θ3e−
iqrθ2

2 (C.63)

After which the integral is proportional to,

lim
r→∞

hµν ∼
∑
α

∫
dqdθ θ3q3

[
ϵ(α)µν aαe

−iqu− iqrθ2

2 + h.c.
]

(C.64)

Since we only want the r and q dependence of the θ integral we get,

lim
r→∞

hµν ∼ 1

r2

∑
α

∫
dq
q3

q2

[
ϵ(α)µν aαe

−iquk1+h.c.
]
=

1

r2

∑
α

∫
dqq

[
ϵ(α)µν aαe

−iquk1+h.c.
]
.

(C.65)
where k1 is an unimportant constant used to represent the numerical value for
the integral over θ. In order to get the behavior of the Graviton field at I+

± we
now need to take the limit |u| → ∞. Again, via saddle point approximation,
this will now enforce the limit q → 0 on the integrand of RHS. Using the
normalization of the soft factor as given in [149] (see equations 2.10 and 2.29
of the reference mentioned) we get the behavior of the mode functions at
q → 0 in six Dimensions

lim
q→0

ϵ(α)µν aα(q, q̂) ∝ q0k2(q̂) (C.66)

where k2(q̂) is an unimportant function depending on the direction of q̂. This
leads us to the asymptotic fall off at I+

±of hµν

lim
u→±∞

lim
r→∞

hµν ∼ 1

r2
lim
q→0

∫
dqqeiquk1k2(q̂) =

1

r2
×O

( 1

u2

)
(C.67)

190



where the final step can be seen by performing a simple change of variable
qu = l for example. Since the physical Graviton mode is given as D̃ab (see
eq. (5.18)) we can relate hµν to Dab by a simple coordinate transformation

D̃ab = lim
r→∞

∂xµ

∂xa
∂xν

∂xb
hµν ∝ lim

r→∞
r2hµν (C.68)

and thus we arrive at the fall-off for the graviton field near I+
± (see (5.27))

lim
u→±∞

D̃ab = O
( 1

u2

)
. (C.69)

A similar analysis can also be performed for the Photon in six dimensions
and we end up with a similar fall-off condition for the radiative mode in
QED.
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