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Abstract

In this thesis, we study two key aspects of flat-space holography: celestial holography

and the flat-space limit of AdS/CFT.

In the first part of the thesis, we explore celestial amplitude corresponding to 2d bulk

S-matrix. We consider scalar particles with identical mass and show that the celestial

amplitude becomes the Fourier transform of the 2d S-matrix written in the rapidity

variable. We translate the crossing and unitarity conditions into the conditions on the

celestial amplitude. For the 2d Sinh-Gordon model, we calculate the celestial amplitude

perturbatively in coupling constant and and identify two distinct types: retarded and

advanced. These two types arise due to a pole at the origin of the complex rapidity plane.

This particular pole is very important in perturbation theory. We will go into detail on

how to deal with this pole within the perturbation theory framework. To do this, we will

introduce two celestial amplitudes that correspond to two different iϵ prescriptions. We

check that the crossing and unitarity conditions are satisfied for the celestial amplitude.

Imposing the crossing and unitarity conditions to the celestial amplitude, we want to

find amplitudes to the higher order in perturbation theory from the lower order i.e., to

provide a “proof of principle” to show we can apply the bootstrap idea to the celestial

amplitude. We also study the gravitational dressing condition of the S-matrix in terms

of the celestial amplitude and see that for the dressed celestial amplitude, the poles on

the right half-plane get erased for several ansatzes.

The infrared (IR) divergence in the S-matrix arises from the assumption of asymptotic

decoupling. This assumption treats the asymptotic Hamiltonian as free, suggesting that

the asymptotic states are Fock space states, and the fields behave as free fields in the

asymptotic region of flat spacetime. Relaxing this assumption allows for the introduction

of the Faddeev-Kulish state, resulting in an IR-finite S-matrix. The Faddeev-Kulish state

includes soft photon modes to dress the scattering state within the Fock space, thereby

addressing the long-range effects of the electromagnetic interaction. In the second part of

the thesis, we construct the AdS correction to the Faddeev-Kulish dressed state. A salient



ix

feature of AdS spacetime is that it serves as a built-in infrared regulator, and when we

take the flat-space limit, IR divergences will show up unless the asymptotic dynamics of

fields is examined appropriately. The guiding principle in studying AdS radius-corrected

Faddeev-Kulish dressing is the equivalence established between Wilson line dressing and

Faddeev-Kulish dressing. We construct modes for the massive scalar field dressed by the

Wilson line using bulk operator reconstruction. We establish a mapping between AdS

radius-corrected soft photon modes and CFT current operators. This mapping allows us

to express the AdS radius-corrected Faddeev-Kulish dressed state by utilizing it in the

Wilson line dressing.
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Chapter 1

Introduction

“The Pole. Yes, but under very

different circumstances from those

expected ... Great God! This is an

awful place and terrible enough for us

to have labored to it without the

reward of priority.”

–Robert Falcon Scott, Scott of the

Antarctic.

The holographic principle stands out as a highly effective tool for understanding quantum

gravity. It says that all information about a dynamic system with gravity is stored in

a lower-dimensional boundary of the system. This principle is initially proposed by ’t

Hooft [1] and later expanded upon in the context of string theory by Susskind [2]. A

striking manifestation of the holographic principle is exemplified by the entropy of black

holes. Counterintuitively, the entropy of a black hole, which encodes its microscopic

configuration details, is proportional to the area of its event horizon rather than its

volume [3, 4]. This connection between entropy and area highlights the holographic nature

of gravity, where the information content is holographically encoded on the boundary

1
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surface.

The precise realization of the holographic principle was formulated by Maldacena [14]

based on Type IIB string theory. The duality is between the Type IIB string theory in

the spacetime AdS5 × S5 and N = 4 super Yang-Mills theory (SYM) in four dimensions.

Subsequently, Gubser, Klebanov, and, Polyakov (GKP) [16], and Witten [15] introduced

the holographic dictionary for the Anti-de Sitter/Conformal Field Theory correspondence

(AdS/CFT), enabling precise computations of physical observables to test the correspon-

dence. More concrete examples can be derived from string and M theory, for instance,

AdS7/CFT6, and AdS4/CFT3 [7, 14]. These are top-down holographic models due to

their evident ultraviolet (UV) origin in string and M theory. Despite not explicitly invok-

ing a particular UV completion like string theory, AdS/CFT, also known as holography

or gauge/gravity (or sometimes gauge/string) duality, is broadly applicable. It says that

quantum gravity in AdS can be equally described by a CFT on the boundary.

Now, across various energy scales, from particle colliders to gravitational wave detectors,

the physics we observe can be effectively described by flat spacetime. Though we under-

stand the holographic principle in asymptotically AdS spacetime, flat-space holography

is still largely unexplored. Celestial holography is an approach to flat-space holography.

Celestial holography proposes that quantum gravity, or quantum field theory (QFT) in

asymptotically flat spacetime can be represented by a dual theory that lives on the co-

dimension 2 sphere at the boundary. The theory is referred to as the celestial conformal

field theory (CCFT) [5, 6]. In asymptotically flat spacetimes, the fundamental observ-

able is the S-matrix, which describes how particles scatter and interact with each other.

Remarkably, the S-matrix displays an inherent holographic structure, as it is defined

using on-shell momenta evaluated at the boundary of spacetime at infinity. This specifi-

cation of the S-matrix in terms of asymptotic data at the boundary hints at an intrinsic

holographic encoding of the scattering information onto a lower-dimensional surface.

Celestial holography introduces a novel reformulation of quantum field theory scattering
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processes by recasting the S-matrix into a celestial amplitude expressed in terms of boost

eigenstates. This transformation enables the S-matrix to be interpreted as a correlator

involving operators defined at specific points on the celestial sphere at the boundary

of spacetime. The key aspect of this approach involves considering conformal primary

wavefunctions that transform covariantly under the Lorentz group. By expressing the

S-matrix elements in this conformal primary basis, instead of the usual plane wave ba-

sis, the S-matrix itself transforms as a conformal correlator under the conformal group.

Effectively, celestial holography trades the conventional plane wave basis, typically used

to describe scattering processes, for a basis of conformal primary wavefunctions. This

basis transformation recasts the S-matrix into a celestial amplitude, allowing it to be

interpreted as a correlator of operators living on the celestial sphere at the boundary of

spacetime. This new way of looking at scattering amplitudes in celestial holography sug-

gests a deep connection between the fundamental observables of quantum field theory in

flat spacetime and the holographic encoding of this information onto the celestial sphere,

in line with the principles of holography.

The use of conformal representations to quantum field theory amplitudes, as employed

in the celestial holography approach, can be traced back to an early concept introduced

by Dirac [8]. He noted that the most suitable framework for the conformal group is

an embedding space, where the group is represented linearly. This embedding space

formalism aligns well with the techniques commonly utilized in the study of the conformal

bootstrap program in conformal field theories, see e.g., [13] and references therein.

Recent insights of celestial amplitude mainly come from a bottom-up approach, translat-

ing properties of scattering amplitude into properties of celestial amplitude. The analyses

so far involves taking perturbative scattering amplitude as input and producing celestial

amplitude. The analyses leave the non-perturbative defining properties of CCFT un-

known, lacking an intrinsic definition. Recent works [9–12] explores 4d models with

explicit CCFT duals. In the end, our goal is to develop a top-down stringy construction

of CCFT. Alternatively, it can be seen as a CFT-inspired approach to analyzing ampli-
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tudes. With an intrinsic description of consistent CCFT, we aim to utilize CFT-bootstrap

techniques for computing and constraining scattering.

Now, evaluating the celestial amplitude for a massive scalar in dimensions higher than

2d is technically challenging. In 2d, we have the integrable S-matrices, and it would

be interesting to compute the celestial amplitudes. In the second chapter of the thesis

chapter 2, we initiate the exploration of the celestial amplitude for the 2d bulk S-matrix.

As a first step towards bootstrapping celestial amplitude, we focus on 2d scattering. We

show that the celestial amplitude is essentially the Fourier transform of the 2d S-matrix in

terms of rapidity variables. Translating the crossing and unitarity conditions, we establish

their counterparts for the celestial amplitude. Perturbatively in the coupling constant for

the 2d Sinh-Gordon model, we verify that the celestial amplitude satisfies the crossing and

unitarity conditions. For Sinh-Gordon model, due to the presence of the pole in the origin

of the complex rapidity-plane there are two types of celestial amplitude, the retarded and

the advanced corresponding to ±iϵ prescriptions. We aim to apply the bootstrap idea,

utilizing the crossing and unitarity conditions, to derive higher-order celestial amplitudes

from lower-order ones. Also, we translate the gravitational dressing condition of the S-

matrix in terms of the celestial amplitude. Through various ansatzes, we observe the

elimination of poles on the right half-plane for the dressed celestial amplitude.

Now, we will move to the other aspect of flat-space holography. A key insight here is

that the flat-space limit of AdS provides a holographic representation of the flat-space

S-matrix through the correlator of a boundary CFT [45–50].

To understand the flat-space limit, we consider an observer situated deep within the cen-

tral region of an AdS spacetime, whose observations are limited to physics below the AdS

length scale. From this observer’s perspective, the geometry the observer perceive will

appear flat, even though the observer is residing within the full AdS spacetime. The key

point here is that flat spacetime is essentially a part of the AdS spacetime. Consequently,

the physics of flat spacetime must be encoded within the physics of the AdS spacetime.
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Given the AdS/CFT correspondence, which establishes a duality between physics in AdS

spacetime and a CFT living on its boundary, it follows that the physics of flat spacetime

must also be encoded within these boundary CFTs, albeit in one higher dimension. This

line of reasoning forms the general logic behind the flat-space limit of the AdS/CFT cor-

respondence. However, the challenge lies in understanding precisely how to decode and

extract the physics of flat spacetime from the boundary CFT description. The question

is: knowing that flat-space physics is encoded in the CFT, how can we explicitly calculate

and obtain the flat-space observables, such as the S-matrix, from the boundary theory?

Understanding flat-space holography means having a way to calculate flat-space S-matrix

in a lower-dimensional theory. Now, in a general theory of gravity, computing observables

is difficult due to the presence of diffeomorphism invariance. However, in the context of

AdS spacetime, we can circumvent this issue by considering boundary observables. This

is particularly simple in the AdS/CFT correspondence, where we have a well-defined

boundary on which we can place conformal operators and assemble correlation functions.

These correlation functions in the boundary CFT are the key observables, and their main

ingredients are the operators used to construct them, as well as the specific states of the

CFT in which these operators are evaluated. In the AdS, these correlators correspond to

insertions of operators at the boundary, which can be computed using bulk techniques like

Witten diagrams in the AdS interior, yielding equivalent results. However, it is crucial to

note that these boundary correlators are asymptotic constructs, meaning they are defined

at the boundary of spacetime. The only precise observable we can define in the flat-space

is the S-matrix, which represents the overlap between scattering states. In this context,

the main ingredients for constructing the S-matrix are the scattering states. To under-

stand the connection between the AdS/CFT description and flat-space physics, we need

to establish a relationship between the conformal operators in the boundary CFT and

the scattering states in the bulk. In other words, we need to understand how to construct

the scattering states by smearing or combining the conformal operators in a specific way.

Various approaches in the literature address the flat-space limit of AdS/CFT through

different representations of CFT: position space [54, 55, 58, 59], mellin space [50, 63, 65],
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and momentum space [56, 61]. See e.g., [54–62] for recent developments in the flat-space

limit of AdS/CFT.

This phenomenon of perceiving flat geometry deep within a curved spacetime bears an

intriguing parallel to our everyday experience on Earth. Despite the Earth’s surface being

globally spherical, we perceive it as essentially flat within our local environment and range

of activities. This apparent discrepancy arises because the scale of our daily experiences

and the distance to our observable horizon are minuscule compared to the vast radius of

the Earth itself. Just as an observer situated deep within the AdS geometry perceives

flatness due to being confined within a small region compared to the overall curvature

scale, our perception of flatness on the Earth’s surface mirrors this phenomenon, albeit

on a macroscopic scale. The curvature of the Earth’s spherical surface is negligible over

the relatively small distances we traverse, leading to our everyday experience of a flat

world.

Now, we will give a brief outline of how we construct the S-matrix utilizing techniques

from AdS/CFT. The goal of flat-space scattering theory is to compute the S-matrix,

which requires calculating the overlap between two different scattering states of the full

Hamiltonian. In interacting theories where the states of the full Hamiltonian are generally

intractable, we use approximation for the scattering states. The approximation is the

assumption of asymptotic decoupling, which says that the Hamiltonian at null infinity,

the asymptotic boundary of flat spacetime is effectively free. Now, the key question is:

how can we construct these Fock space scattering states, which are approximated by free

particle states at asymptotic infinity, using techniques from the AdS/CFT? The key tool

we use is the bulk operator reconstruction. We define the scattering state as an operator

acting on the vacuum state. We consider a local bulk operator deep within the AdS

spacetime. We can identify a specific scattering region deep inside the AdS geometry,

where the spacetime appears effectively flat. Within the AdS/CFT framework, we have

the bulk operator reconstruction, which allows us to represent any bulk operator as a

smearing of operator defined on the boundary of AdS spacetime. Applying this bulk
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reconstruction technique to the local operator within the flat scattering region, we can

express it in terms of boundary operators in the CFT. At this point, we invoke the

asymptotic decoupling approximation, which says that the field we are reconstructing in

the asymptotic region of flat-space is free. This allows us to decompose the field into

plane waves. Now, we extract the modes like the creation, and annihilation operators

through a Fourier transform, and then take a flat-space limit, and that will tell what the

map between creation, and annihilation operators in flat-space, is with CFT operators in

the boundary of AdS.

In the third chapter of the thesis chapter 3, we explore infrared flat-space physics from

the flat-space limit of AdS/CFT. The infrared (IR) divergence in the S-matrix is due

to the assumption of asymptotic decoupling. This assumption treats the asymptotic

Hamiltonian as free, implying that the asymptotic states are Fock space states and the

fields behave as free fields in the asymptotic region of flat spacetime. By relaxing this

assumption, Faddeev-Kulish state can be introduced, leading to an S-matrix that is IR

finite. Faddeev-Kulish state incorporates soft photon modes to dress the scattering state

in the Fock space. The intuition is that there are always some soft photons present in

the initial and final states due to the long-range nature of electromagnetic interactions.

To obtain infrared-finite observables, one must account for these soft photons and modify

the basis of asymptotic states to include them. The correct scattering states should be

the asymptotic dressed states, which incorporate the soft radiation associated with the

charged particles involved in the scattering processes. In the third chapter of the thesis

chapter 3, we construct the AdS correction to the Faddeev-Kulish dressed state. A salient

feature of AdS spacetime is that it serves as a built-in infrared regulator, and when we take

the flat-space limit, infrared divergences will show up unless the asymptotic dynamics of

fields is examined appropriately. The guiding principle in studying AdS radius-corrected

Faddeev-Kulish dressing is the equivalence established between Wilson line dressing and

Faddeev-Kulish dressing. We construct modes for the massive scalar field dressed by the

Wilson line using vanilla bulk operator reconstruction. We establish a mapping between

AdS radius-corrected soft photon modes and CFT current operators. This mapping
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allows us to express the AdS radius-corrected Faddeev-Kulish dressed state by inverting

and utilizing it in the Wilson line dressing.

Organization of the thesis.

Now, we give the organizations of the remaining chapters of the thesis. The chapters

2 and 3 are based on published papers [116, 117] (publications in Journal of High

Energy Physics). Each chapter begins with a broad introduction. To avoid repetition,

those introductions are not included in this current chapter. Finally, we conclude the

thesis by discussing conclusions, and open questions in the chapter 4.

1 Organization of the chapter 2.

The chapter 2 is organized as follows. First, in the section 2.2, we review the construction

of massive celestial amplitude. In the section 2.3, we define the celestial 4-point amplitude

for 2 → 2 scattering of massive scalar particles in 2d. The massive celestial amplitude

in 2d is given by the Fourier transform of the S-matrix written in the rapidity variable.

Subsequently, in the section 2.4, we evaluate the celestial amplitude in 2d Sinh-Gordon

model by perturbatively expanding the S-matrix. In the section 2.5, we translate the

crossing and unitarity conditions in celestial space and check the crossing and unitarity

conditions for the Sinh-Gordon model. Moving on to the section 2.6, we discuss about

reconstructing the higher-order correction to the 4-point celestial amplitude from the

lower-order amplitude using the crossing and unitarity conditions. In the section 2.7,

we translate the gravitational dressing condition of the 2d QFT amplitude into celestial

space, noting that this condition removes poles from the right half-plane, corresponding

to celestial amplitudes for functions with multiple poles on the right half-plane. In the

section 2.8, we summarize our main results.
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2 Organization of the chapter 3.

The chapter 3 is organized as follows. In the section 3.2, we review various things to

make the chapter 3 self-contained. In the section 3.2.1, we discuss the flat-space limit.

We discuss how to extract the creation and annihilation operators for the free massive

scalar field in terms of the CFT operators in this flat-space limit. We use the equivalence

between the Faddeev-Kulish dressing and the Wilson line dressing as our main strategy

to construct the AdS correction to the Faddeev-Kulish dressed state. Moving on to the

section 3.2.2, we study the soft Wilson line dressed field in AdS and evaluate the CFT

operator corresponding to this dressed field. The soft Wilson line dressed scalar field

turns itself into the free field and thus can be reconstructed implementing the vanilla

bulk operator reconstruction. In the section 3.3, we study the CFT representation as

well as the mixed representation of the Faddeev-Kulish dressed state. In the section

3.4, we calculate the AdS corrected Faddeev-Kulish dressed state. We express the CFT

current operators in terms of AdS radius-corrected photon creation/annihilation operators

in the section 3.4.1, and 3.4.2. We express the dressed creation operator in terms of the

AdS radius-corrected creation/annihilation modes of the photon. The dressed creation

operator acting on the vacuum gives the AdS radius-corrected Faddeev-Kulish dressed

state. Finally, we save the section 3.5 for summarizing our conclusions.
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Chapter 2

Celestial amplitude for 2d theory

“If you look up at the sky on a clear

cloudless night, you appear to see a

hemispherical dome above you,

punctuated by myriads of stars.”

–Roger Penrose, The road to reality.

This chapter is based on the paper

• S. Duary, Celestial amplitude for 2d theory, JHEP 12 (2022) 060, [2209.02776].

2.1 Introduction

While evaluating Quantum field theory (QFT) scattering amplitudes, we generally ex-

press the asymptotic states in terms of asymptotic plane wave solutions to the free wave

equation which is energy-momentum eigenstates. This conventional plane wave basis

makes spacetime translation invariance manifest due to energy-momentum conservation

but obscures conformal invariance.

11

https://doi.org/10.1007/JHEP12(2022)060
https://arxiv.org/abs/hep-th/2209.02776
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The Lorentz group in R1,d−1 is the same as the Euclidean conformal group in (d −

2)-dimensions. This indicates that the d-dimensional S-matrix is related to (d − 2)-

dimensional conformal field theory correlation functions.

As opposed to the plane wave basis which is energy-momentum eigenstate, in [5, 6], a

new basis called the conformal primary basis which is the boost eigenstate is constructed

for both massive and massless particles. In this basis, free fields transform as conformal

primaries under the Lorentz group and the S-matrix elements transform manifestly as

conformal correlation functions on the celestial sphere i.e., the sphere at null infinity. The

scattering amplitude computed in this basis is known as celestial amplitude, and we can

express the bulk S-matrix in terms of a boundary correlation function of ‘celestial CFT’

that lives in the sky as in fig.2.1.

=

Holographic Duality

Bulk S-matrix Boundary Celestial CFT correlation function

Figure 2.1: Bulk S-matrix mapped to Boundary Celestial CFT correlation function

The motivation for seeking this conformal basis is to understand the holographic nature of

quantum gravity in asymptotically flat spacetimes. Realization of the holographic duality

[14–16] from the bottom up by finding the symmetries that both sides of the holographic

dual pair obey [24, 25] gives rise to the enhancement of the Lorentz symmetry to full

Virasoro [26] and the existence of a stress tensor in a 2d CFT obeying Ward identity

constructed from subleading soft-graviton mode in the bulk [27]. These observations

along with the equivalence between soft theorems and asymptotic symmetries i.e., soft

theorems recasted as conservation laws associated with large gauge symmetries lead to

the proposal that there exists a holographic duality between the theory of gravity in

four-dimensional asymptotically flat spacetimes and some sort of exotic CFT living on
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the two-dimensional celestial sphere at null infinity.

The flat-space holography is initiated by the work of de Boer and Solodukhin [29]. From

dS and AdS slicing of Minkowski space, they postulate that the flat-space in four dimen-

sions has some description in terms of a theory living on the boundary of these dS and

AdS slices which is identified with the celestial sphere.

In this celestial holography paradigm, we study the celestial amplitude for the 2d bulk

scattering. We construct the map to evaluate celestial amplitude from bulk S-matrix

which is implemented by the change of basis from energy-momentum eigenstates to boost

eigenstates. To summarize, for massive scalar particles the celestial amplitude is the

fourier transform of the 2d S-matrix written in the rapidity variable. We calculate the

perturbative celestial amplitude for the 2d Sinh-Gordon model. One subtle point here

is that in 2d, the perturbative expansion of the Sinh-Gordon S-matrix contains pole

at rapidity θ = 0. Therefore while evaluating the perturbative celestial amplitude, we

should implement iϵ prescription and as a consequence of it there are two types of celestial

amplitude which we indicate by the retarded and advanced celestial amplitude. In the

celestial space, we map the crossing and unitarity conditions to calculate the celestial

amplitude to the higher order in perturbation theory from the lower one by imposing

these constraints which we refer as “celestial bootstrap”. We check the crossing and

unitarity conditions for the Sinh-Gordon model.

In AdS, solving conformal crossing equation, the one-loop correction to the four point

amplitude is evaluated for scalar ϕ4 theory in [30]. To apply the CFT-bootstrap technique

in flat space to find the amplitude, we map the crossing and unitarity conditions in the

celestial space for 2d scattering. For massive scalar case, in higher than 2d, technically it

is a bit challenging to evaluate the celestial amplitude even at tree level say for massive

ϕ4 theory in 4d, for that as a stepping stone towards bootstrapping celestial amplitude

we restrict to 2d scattering. We also find that imposing the crossing and unitarity condi-

tions to the celestial amplitude is not enough to determine the higher-order perturbative
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celestial amplitude from the lower order. There is an extra term which cannot be fixed

by the crossing and unitarity conditions. We study the gravitational dressing condition

of the S-matrix in terms of the celestial amplitude. We see that the poles on the right

half-plane of the dressed celestial amplitude get erased for the functions having multiple

poles on the right half-plane.

Organization of the chapter.

The chapter is organized as follows. In the section 2.2, we review the construction of

massive celestial amplitude. In the section 2.3, we define the celestial 4-point amplitude

for 2 → 2 scattering of massive scalar particles in 2d. The massive celestial amplitude

in 2d is given by the Fourier transform of the S-matrix written in the rapidity variable.

In the section 2.4, we evaluate the celestial amplitude in 2d Sinh-Gordon model by per-

turbatively expanding the S-matrix. In the section 2.5, we translate the crossing and

unitarity conditions in celestial space and check the crossing and unitarity conditions for

the Sinh-Gordon model. In the section 2.6, we discuss about reconstructing the higher-

order correction to the 4-point celestial amplitude from the lower-order amplitude using

the crossing and unitarity conditions. In the section 2.7, we translate the gravitational

dressing condition of the 2d QFT amplitude in celestial space. We see that the gravita-

tional dressing condition translated to celestial space acts as a pole eraser from the right

half-plane corresponding to the celestial amplitude for the functions having multiple poles

on the right half-plane. In the section 2.8, we summarize our main results and discuss

future directions.

2.2 Massive Celestial amplitude

In this section, we review the construction of massive celestial amplitude described in

[6]. We define a massive scalar conformal primary wavefunction ϕ±
∆(Xµ; w⃗) as a solution

to the massive Klein-Gordon equation of mass m in R1,d−1 that under a Lorentz group

SO(1, d−1) transformation transforms covariantly as a scalar conformal primary operator
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in (d− 2)-dimensions. The massive scalar conformal primary wavefunction ϕ±
∆(Xµ; w⃗) in

R1,d−1 admits the Fourier expansion on the plane waves

ϕ±
∆(Xµ; w⃗) =

∫
Hd−1

[dp̂] G∆(p̂; w⃗) exp[± im p̂.X], (2.1)

where the on-shell momenta per mass, a unit timelike vector p̂(y, z⃗) satisfying p̂2 = −1

can be parametrized using the (d− 1)-dimensional hyperbolic space Hd−1 coordinates y

(y > 0) and z⃗ ∈ Rd−2 as

p̂(y, z⃗) =
1 + y2 + |z⃗|2

2y
,
z⃗

y
,
1− y2 − |z⃗|2

2y

. (2.2)

The Hd−1 metric is

ds2
Hd−1

= dy2 + dz⃗.dz⃗

y2 . (2.3)

Here, [dp̂] is the SO(1, d− 1) invariant measure on Hd−1

∫
Hd−1

[dp̂] ≡
∫ dd−1p̂i

p̂0

=
∫ ∞

0

dy

yd−1

∫
dd−2z⃗, i = 1, . . . , d− 1, p̂0 =

√
p̂ip̂i + 1.

(2.4)

Demanding the conformal covariance of ϕ±
∆(Xµ; w⃗) determines the Fourier coefficient, as

the scalar bulk-to-boundary propagator in Hd−1. The scalar bulk-to-boundary propaga-

tor, G∆(p̂; w⃗) in Hd−1 is given by [15]

G∆(p̂; w⃗) =
 y

y2 + |z⃗ − w⃗|2

∆

, (2.5)

where w⃗ ∈ Rd−2 lies on the boundary of Hd−1. The scalar bulk-to-boundary propagator

written in terms of p̂µ(y, z⃗) and null momentum qµ(w⃗) = (1 + |w⃗|2, 2w⃗, 1− |w⃗|2) in R1,d−1

is given by [13]

G∆(p̂; q) = 1
(−p̂.q)∆ . (2.6)
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Using the mapping from the plane wave to the conformal primary wavefunction given

by eq.(2.1), the S-matrix elements in the conformal prinary basis is given in terms of an

integral transform

Ã(∆i, w⃗i) =
n∏

k=1

∫
Hd−1

[dp̂k]G∆k
(p̂k; w⃗k)A(±mip̂

µ
i ), (2.7)

where ±mip̂
µ
i parametrization depends on whether the particle is incoming or outgoing.

In the r.h.s., A(±mip̂
µ
i ) is the momentum space amplitude along with the momentum

conserving delta function. We define Ã(∆i, w⃗i) by the massive celestial amplitude. Under

the conformal symmetry action the massive celestial amplitude transforms covariantly as

a (d− 2)-dimensional CFT n-point function of scalar primaries with dimension ∆i

Ã(∆i, w⃗′
i(w⃗i)) =

n∏
k=1

∣∣∣∣∣∣∂w⃗′
k

∂w⃗k

∣∣∣∣∣∣
−∆k
d−2

Ã(∆i, w⃗i). (2.8)

Here, eq.(2.1) represents the massive scalar conformal primary wavefunction ϕ±
∆(Xµ; w⃗)

in R1,d−1 as a Fourier expansion in plane waves. The celestial amplitude involves an

integral over the bulk coordinate X, and utilizing the Fourier expansion of the confor-

mal primary wavefunction allows us to evaluate these bulk integrals. This results in a

momentum-conserving delta function, which is incorporated into the definition in eq.(2.7)

as A(±mip̂
µ
i ), representing the momentum space amplitude alongside the momentum-

conserving delta function.

2.3 Massive Celestial amplitude for 2→ 2 scattering:

The Celestial point

In this section, we define the celestial 4-point amplitude for 2→ 2 scattering of massive

scalar particles in 2d. In 2d, the on-shell momenta of particles of mass m can be written
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in the rapidity parametrization θ

pµ = (p0 = E, p1 = p)

= m(cosh θ, sinh θ).
(2.9)

We consider the elastic scattering process of identical real scalar particles of mass m with

rapidities θ1 and θ2. Energy and momentum conservation for identical particles give

θ1 = θ4 , θ2 = θ3. (2.10)

The 2→ 2 S-matrix is given by

S2→2 = ⟨θ4, θ3 |θ1, θ2⟩ = 4p0
1p

0
2 × (2π)2δ(p1

1 − p1
4)δ(p1

2 − p1
3) + i(2π)2δ(2)(pµ

1 + pµ
2 − pµ

3 − pµ
4) T

= 4(2π)2δ(θ1 − θ4)δ(θ2 − θ3)
1 + i T (θ1 − θ2) csch(θ1 − θ2)

4m2

.

(2.11)

We define S-matrix which is dependent on the difference of rapidities as

S(θ1 − θ2) ≡ 1 + iT (θ1 − θ2) csch(θ1 − θ2)
4m2 .

The Mandelstem variables are

s = (p1 + p2)2 = 4m2 cosh2
(

θ

2

)
, t = 4m2 − s, u = 0.

s is the center of mass energy squared, t-channel gives θ → iπ − θ. In 2d, the celestial

4-point amplitude of the massive conformal primary wavefunction is

Ã =
 4∏

i=1

∫ dp̂1
i

p̂0
i

× 4∏
i=1

G∆i
(p̂i) S2→2, (2.12)
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where, p̂µ
i ≡ p̂µ(θi) = pµ

i

m
= (cosh θi, sinh θi) and G∆i

(p̂i) is the bulk-to-boundary propa-

gator in H1. The scalar bulk-to-boundary propagator in H1 is

G∆(p̂; q) = 1
(−p̂.q)∆ = 1

(cosh θ − sinh θ)∆

= e∆θ.

(2.13)

Here, q = (1, 1) since, conformal boundary of H1 are specified by 2 dimensional points

on the projective null cone

−(q0)2 + (q1)2 = 0 , q ∼ λq.

The massive scalar conformal primary wavefunctions in d dimensions are delta-function

normalizable when ∆ belongs to the principal continuous series of the irreducible unitary

SO(1, d− 1) representations,

∆ ∈ d− 2
2 + iR.

Therefore, for the 2d scattering, ∆ is pure imaginary. Now, we redefine i∆ as the con-

formal dimension of the conformal primary wavefunction in 2d. The H1 scalar bulk-

to-boundary propagator G∆(p̂) = ei∆θ. The normalization condition for the H1 scalar

bulk-to-boundary propagator is

∫ ∞

−∞
dθei∆iθei∆jθ = 2π δ(∆i + ∆j). (2.14)

Now, the integral measure is

4∏
i=1

∫ dp̂1
i

p̂0
i

=
4∏

i=1

∫ ∞

−∞
dθi.
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We can express celestial 4-point amplitude in eq.(2.12) as

Ã = 4(2π)2
4∏

i=1

∫ ∞

−∞
dθi ei∆iθiS(θ1 − θ2)δ(θ1 − θ4)δ(θ2 − θ3)

= 4(2π)2
∫ ∞

−∞

∫ ∞

−∞
dθ4 dθ3 S(θ4 − θ3) ei∆1θ4ei∆2θ3ei∆3θ3ei∆4θ4

= 4(2π)2 1
2

∫ ∞

−∞

∫ ∞

−∞
dθ+ dθ− S(θ−)e i

2 (∆1+∆4+∆2+∆3)θ+e
i
2 (∆1+∆4−∆2−∆3)θ−

= 16π3 δ(∆+) A(∆−).

(2.15)

where, we define light-cone coordinates θ± = θ4 ± θ3, ∆± = 1
2(∆1 + ∆4 ±∆2 ±∆3) and

A(∆−) ≡
∫ ∞

−∞
dθei∆−θ−S(θ−).

The delta function δ(∆+) from the integration over the collective repidity coordinates∑
i θi. This delta function δ(∆+) reflects the boost symmetry in the bulk. Now, we strip

off the overall delta function δ(∆+) and name the conjugate pair of θ− as ω ≡ ∆− =
1
2(∆1 +∆4−∆2−∆3) , the 2d celestial amplitude is the fourier transform of the S-matrix

with respect to rapidity.

A(ω) ≡
∫ ∞

−∞
dθeiωθS(θ). (2.16)

Physically, the rapidity θ shifts under the boost as θ → θ + c. Therefore, in order to

diagonalize the boost which is achieved by the conformal basis, we need to perform the

Fourier transform of the S-matrix S(θ) with respect to rapidity. Here, there is no celestial

coordinate and the dual theory is zero-dimensional which we refer as the “celestial point”.

The CFT correlation function “dual” to the bulk S-matrix would be a zero-dimensional

CFT correlation function or said differently, an operator algebra without coordinates.

We will now briefly explain the definition and significance of the rapidity variable in

the context of scattering. The on-shell two-momenta of particles with mass m can be

expressed in the rapidity parametrization θ, for example

pµ = m(cosh θ, sinh θ). (2.17)
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An important point to note is that boosts act very simply in terms of the rapidity θ. Under

a boost, the rapidity θ shifts as θ → θ + c. Rapidity is the variable that is conjugate

to boost. The eigenstates of boosts are essentially Fourier transforms with respect to

rapidity. Thus, physically to diagonalize the boost using the conformal primary basis,

and construct celestial amplitude, we must Fourier transform the S-matrix S(θ) with

respect to rapidity.

2.4 Celestial amplitude in 2d Sinh-Gordon model

In this section, we evaluate the celestial amplitude in 2d Sinh-Gordon model by per-

turbatively expanding the S-matrix of the Sinh-Gordon model. The Lagrangian of the

Sinh-Gordon model [18, 28] is

L = 1
2(∂ϕ)2 + m2

b2 (cosh(bϕ)− 1). (2.18)

The S-matrix for Sinh-Gordon model with the parameter α related to the coupling b is

S(θ) = sinh θ − i sin α

sinh θ + i sin α
, α = πb2

8π + b2 . (2.19)

For the exact S-matrix for the Sine-Gordon model see [17]. We can verify the S-matrix

by expanding the Lagrangian perturbatively in coupling b

L = 1
2(∂ϕ)2 + 1

2m2ϕ2 + m2b2

4! ϕ4 + m2b4

6! ϕ6 + · · · , (2.20)
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and calculate the perturbative expansion of the S-matrix to first few orders in b2. The

perturbative expansion of the S-matrix with respect to b2 is given by

S(0)(θ) = 1

S(1)(θ) = −1
4 ib2cschθ

S(2)(θ) = −b4cschθ(πcschθ − i)
32π

S(3)(θ) =
ib6cschθ

(
6π2csch2θ − 12iπcschθ + π2 − 6

)
1536π2

S(4)(θ) =
b8cschθ

(
6π3csch3θ − 18iπ2csch2θ + 2π

(
π2 − 9

)
cschθ − 3i

(
π2 − 2

))
12288π3

S(5)(θ) = −ib10 csch θ

×

(
120π4csch4θ − 480iπ3csch3θ + 60π2(π2 − 12)csch2θ − 160iπ(π2 − 3)cschθ + π4 − 120π2 + 120

)
1966080π4 .

(2.21)

Since, the perturbative expansion of the S-matrix S(θ) contains poles at θ = 0, we define

the celestial amplitude using iϵ prescription as

A±(ω) ≡
∫ ∞

−∞
dθeiωθS(θ ± iϵ)

where

A±(ω) = 2π
[
δ(ω) + b2f±

1 (ω) + b4f±
2 (ω) + · · ·

]
, (2.22)

f±
n (ω) = 1

2π(b2)n

∫ ∞

−∞
dθeiωθS(n)(θ ± iϵ). (2.23)

Here, we call A+(ω) as the retarded celestial amplitude and A−(ω) as the advanced

celestial amplitude. Here, eq.(2.22) can be understood as the perturbative expansion

of the retarded and advanced celestial amplitude and we call f+
n (ω) and f−

n (ω) as the

perturbative retarded and advanced celestial amplitude. Now, we evaluate the Fourier

transform by +iϵ prescription. We shift the pole at θ = 0 to θ = −iϵ and enclose the

contour in the upper half-plane. Evaluating the Fourier transform using +iϵ prescription,
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we get the perturbative retarded celestial amplitude

f+
1 (ω) = − 1

4(1 + eπω)

f+
2 (ω) = (πω + eπω(πω + 1)− 1) (coth(πω)− 1)

64π

f+
3 (ω) = −

e
πω
2 (coth(πω)− 1)

[
(π2 (6ω2 + 5) + 6) sinh

(
πω
2

)
+ 12πω cosh

(
πω
2

)]
1536π2

f+
4 (ω) = e

πω
2 (coth(πω)− 1)

12288π3

×
[
3
(
π2
(
6ω2 + 5

)
+ 2

)
sinh

(
πω

2

)
+ πω

(
π2
(
ω2 + 2

)
+ 18

)
cosh

(
πω

2

)]
f+

5 (ω) = −e
πω
2 (coth(πω)− 1)

1966080π4 × (120π2
(
6ω2 + 5

)
+ π4

(
5ω2

(
ω2 − 2

)
− 14

)
+ 120

)
sinh

(
πω

2

)

+ 80πω
(
π2
(
ω2 + 2

)
+ 6

)
cosh

(
πω

2

).

(2.24)

Next, we evaluate the integral by −iϵ prescription. We shift the pole at θ = 0 to θ = iϵ

and enclose the contour in the lower half-plane. Evaluating the Fourier transform using

−iϵ prescription, we get the perturbative advanced celestial amplitude

f−
1 (ω) = 1

4(e−πω + 1)

f−
2 (ω) = eπω (πω + eπω(πω − 1) + 1) (coth(πω)− 1)

64π

f−
3 (ω) = eπω(coth(πω)− 1) [eπω (π2 (3ω2 + 2)− 12πω + 6)− 3πω(πω + 4)− 2 (3 + π2)]

3072π2 .

(2.25)
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We move the formulas for f−
4 (ω), f−

5 (ω) to the next page due to space constraints on the

current page caused by the lengthy equation.

f−
4 (ω) = eπω(coth(πω)− 1)

24576π3

×
[
π(πω + 3)

(
π
(
ω2 + 2

)
+ 6ω

)
+ eπω

(
π(πω − 3)

(
π
(
ω2 + 2

)
− 6ω

)
− 6

)
+ 6

]
f−

5 (ω) = e
3πω

2 (coth(πω)− 1)
1966080π4

×
 (120π2

(
3ω2 + 2

)
+ π4

(
5
(
ω2 + 4

)
ω2 + 16

)
+ 120

)
sinh

(
πω

2

)

− 80πω
(
π2
(
ω2 + 2

)
+ 6

)
cosh

(
πω

2

).

(2.26)

In appendix 2.A, we give the details of the computation of the perturbative retarded and

advanced celestial amplitude.

2.5 Crossing and unitarity conditions in celestial space

In this section, our aim is to translate the crossing and unitarity conditions into the

conditions on the celestial amplitude. In terms of rapidity, θ we express the crossing and

the unitarity conditions as [18–20, 66]

S(θ) = S(iπ − θ)

|S(θ)|2 = 1,

(2.27)

where θ = θ1 − θ2 . The crossing condition physically implies the symmetry of the S-

matrix under the exchange of the s and t channels. Unitarity condition physically implies

the probablity of getting 2-particle final state given initial state should be less than or

equal to one, i.e., |S(θ)|2 ≤ 1. Assuming integrability condition, we have |S(θ)|2 = 1. The

crossing condition in celestial space is obtained by taking the Fourier transform of both

sides of the crossing condition in the rapidity variable. Since, the perturbative expansion

of the S-matrix S(θ) contains poles at θ = 0, therefore, perturbatively if we expand up to
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a given order we should take the Fourier transform of S(θ ± iϵ). The crossing condition

in celestial space is obtained by taking the Fourier transform of both sides

∫ ∞

−∞
dθeiωθS(θ + iϵ) =

∫ ∞

−∞
dθeiωθS(iπ − θ + iϵ)

= −
∫ iπ−∞

iπ+∞
dθ′eiω(iπ−θ′)S(θ′ + iϵ) (iπ − θ ≡ θ′)

=
∫ iπ+∞

iπ−∞
dθ′eiω(iπ−θ′)S(θ′ + iϵ)

= e−ωπ
∫ +∞

−∞
dθ′e−iωθ′

S(θ′ + iϵ)

= e−ωπA+(−ω)

=⇒ A+(ω) = e−ωπA+(−ω).

(2.28)

where, in the last step we use

∫ iπ+∞

iπ−∞
dθ′eiω(iπ−θ′)S(θ′) =

∫ +∞

−∞
dθ′eiω(iπ−θ′)S(θ′). (2.29)

which is valid when we have no poles in the physical strip 0 < Im(θ) < π. Similarly, the

crossing condition while taking the Fourier transform of

∫ ∞

−∞
dθeiωθS(θ − iϵ)

becomes

∫ ∞

−∞
dθeiωθS(θ − iϵ) =

∫ ∞

−∞
dθeiωθS(−iπ − θ − iϵ)

=⇒ A−(ω) = eωπA−(−ω).
(2.30)

The crossing condition relates the retarded (advanced) celestial amplitude of positive ω to

the retarded (advanced) celestial amplitude of negative ω and vice-versa. Perturbatively

expanding A±(ω) as

A±(ω) = 2π
[
δ(ω) + b2f±

1 (ω) + b4f±
2 (ω) + b6f±

2 (ω) + · · ·
]
,
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f±
n (ω) satisfy the crossing condition

f±
n (ω) = e∓ωπf±

n (−ω). (2.31)

The unitarity condition gives

S(θ + iϵ)S(θ + iϵ)∗ = 1

=⇒ S(θ + iϵ)S(−θ − iϵ) = 1.

(2.32)

Here, the unitarity condition |S(θ)|2 = 1 becomes S(θ + iϵ)S(−θ − iϵ). We combine the

original unitarity condition with the real analyticity of the S-matrix

S(θ + iϵ)∗ = S(−θ − iϵ).

The unitarity condition in celestial space is obtained by taking the Fourier transform of

both sides of

S(θ + iϵ)S(−θ − iϵ) = 1.

Now, the multiplication of functions S(θ+iϵ)S(−θ−iϵ) gets converted into the convolution

under the Fourier transform as follows

∫ ∞

−∞
dθeiωθS(θ + iϵ)S(−θ − iϵ) =

∫ ∞

−∞
dθeiωθS(θ + iϵ)

 1
2π

∫ ∞

−∞
dω′eiω′θA−(ω′)


= 1

2π

∫ ∞

−∞
dω′A−(ω′)

∫ ∞

−∞
S(θ + iϵ)ei(ω+ω′)θdθ

= 1
2π

∫ ∞

−∞
dω′A−(ω′)A+(ω + ω′).

(2.33)

Here,

A±(ω) ≡
∫ ∞

−∞
dθeiωθS(θ ± iϵ).

Here, A+(ω) is the retarded celestial amplitude which is the Fourier transform using

+iϵ prescription enclosing the contour in the upper half-plane in counterclockwise way

and A−(ω) is the advanced celestial amplitude which is the Fourier transform using −iϵ

prescription enclosing the contour in the lower half-plane in clockwise way. Therefore,
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the unitarity condition in celestial space becomes

1
2π

∫ ∞

−∞
dω′A+(ω + ω′)A−(ω′) = 2πδ(ω). (2.34)

Perturbatively expanding A±(ω) as

A±(ω) = 2π
[
δ(ω) + b2f±

1 (ω) + b4f±
2 (ω) + b6f±

2 (ω) + · · ·
]
,

f±
n (ω) = 1

2π(b2)n

∫ ∞

−∞
dθeiωθS(n)(θ ± iϵ), (2.35)

and then put it in eq.(2.34) we have the unitarity condition order by order in perturbation

theory

f+
1 (ω) + f−

1 (−ω) = 0,

f+
n (ω) + f−

n (−ω) +
n−1∑
j=1

∫ ∞

−∞
dω′f+

n−j(ω + ω′)f−
j (ω′) = 0 (n > 1). (2.36)

One important thing to note is that while translating the crossing and unitarity conditions

in celestial space the retarded and the advanced celestial amplitudes naturally appears.

Now, since

S(n)(θ + iϵ) + S(n)(−θ − iϵ) = 2 Re S(n)(θ + iϵ)

f+
n (ω) + f−

n (−ω) is related ro the fourier transform of the real part of S(n)(θ + iϵ)

f+
n (ω) + f−

n (−ω) = 2 1
2π(b2)n

∫ ∞

−∞
dθeiωθReS(n)(θ + iϵ). (2.37)

Therefore, we can say that the unitarity condition in perturbation theory translated

into celestial amplitude relates the Fourier transform of the real part of the perturbative

S-matrix at a given order to the convolution of the retarded and advanced celestial

amplitude of lower-orders. We illustrate the unitarity condition by the diagram 2.2.
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Higher order Unitarity

f+
n (ω) + f−

n (−ω)→ conv. of f+
n−j&f−

j

Lower order Lower order

Figure 2.2: Pictorial representation of the unitarity condition in celestial space

2.5.1 Checking the crossing & unitarity conditions in celestial

space for the 2d Sinh-Gordon model

We check the crossing and unitarity conditions for the 2d Sinh-model using celestial

amplitudes obtained in section 2.4. f±
n (ω) satisfy the crossing condition

f±
n (ω) = e∓ωπf±

n (−ω). (2.38)

The unitarity conditions are satisfied

f+
1 (ω) + f−

1 (−ω) = 0,

f+
2 (ω) + f−

2 (−ω) +
∫ ∞

−∞
dω′f+

1 (ω + ω′)f−
1 (ω′) = 0, (2.39)

where the integral is given by

∫ ∞

−∞
dω′f+

1 (ω + ω′)f−
1 (ω′) = ω

16(1− eπω) . (2.40)

In deriving the crossing and unitarity conditions in celestial space we should be ex-

tremely careful about the iϵ prescription. The convolution of the perturbative retarded

and retarded celestial amplitude and the perturbative advanced and advanced celestial

amplitude diverges ∫ ∞

−∞
dω′f±

1 (ω + ω′)f±
1 (ω′)→∞.
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The proper iϵ prescription involving the convolution of the retarded and advanced celestial

amplitude cures this divergence.

2.6 Bootstrapping Celestial amplitude

In this section, we see that using the crossing and unitarity conditions, how much we

can get for the higher order celestial amplitude from the lower order celestial amplitude.

Crossing condition translated in celestial space gives

f±
n (ω) = e∓πωf±

n (−ω). (2.41)

Unitarity condition translated in celestial space gives

f+
n (ω) + f−

n (−ω) +
n−1∑
j=1

∫ ∞

−∞
dω′f+

n−j(ω + ω′)f−
j (ω′) = 0. (2.42)

Now, the relation between f+
n (ω) and f−

n (ω) is

f+
n (ω)− f−

n (ω) + 1
2π(b2)n

2πi Res
[
eiωθS(n)(θ)

]
θ=0

= 0. (2.43)

×

×

×

××
R−R Re(θ)

Im(θ)

O

Cε1

ΓR

×

×

×

× R−R
Re(θ)

Im(θ)

O

Cε2

ΓR

Figure 2.3: Contours for perturbative retarded and advanced celestial amplitudes

From the fig.2.3, we see that the difference between f+
n (ω) and f−

n (ω) is same as the

negative of 1
2π(b2)n 2πi Res

[
eiωθS(n)(θ)

]
θ=0

. This is because when we enclose the contour

in the upper half-plane, the small semicircle Cε1 is in clockwise sense which adds to the
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Cε2 semicircle in clockwise sense after taking the difference of f+
n (ω) and f−

n (ω) and by

convention while calculating the residue at θ = 0 we enclose the semicircle in anticlock-

wise sense. As a consistency check we satisfy this equation by evaluating the residue of

eiωθS(n)(θ) at θ = 0 for n = 1, . . . , 5.

1
2πb2 2πi Res

[
eiωθS(1)(θ)

]
θ=0

= 1
4

1
2π(b2)2 2πi Res

[
eiωθS(2)(θ)

]
θ=0

= πω − 1
32π

1
2π(b2)3 2πi Res

[
eiωθS(3)(θ)

]
θ=0

= 3π2ω2 − 12πω + 2π2 + 6
1536π2

1
2π(b2)4 2πi Res

[
eiωθS(4)(θ)

]
θ=0

= π3ω3 − 9π2ω2 + 2π3ω + 18πω − 6π2 − 6
12288π3

(2.44)

1
2π(b2)5 2πi Res

[
eiωθS(5)(θ)

]
θ=0

= 5π4ω4 − 80π3ω3 + 20π4ω2 + 360π2ω2 − 160π3ω − 480πω + 16π4 + 240π2 + 120
1966080π4 .

Using crossing and unitarity conditions in eq.(2.41) and eq.(2.42) along with eq.(2.43) we

get

f+
n (ω) = 1

(1 + e−πω)

− e−πω

2π(b2)n
2πi Res

[
eiωθS(n)(θ)

]
θ=0︸ ︷︷ ︸

not fixed by crossing and unitarity conditions

−
n−1∑
j=1

∫ ∞

−∞
dω′f+

n−j(ω + ω′)f−
j (ω′)

︸ ︷︷ ︸
fixed by crossing and unitarity conditions

.

(2.45)

The second term in eq.(2.45) is fixed by the crossing and unitarity conditions while the

first term is not fixed by the crossing and unitarity conditions. Therefore, we can calculate

f+
2 , f+

3 and so on

f+
2 (ω) = 1

(1 + e−πω)

− e−πω

2π(b2)n
2πi Res

[
eiωθS(2)(θ)

]
θ=0
−
∫ ∞

−∞
dω′f+

1 (ω + ω′)f−
1 (ω′)


f+

3 (ω) = 1
(1 + e−πω)

− e−πω

2π(b2)n
2πi Res

[
eiωθS(3)(θ)

]
θ=0

−
∫ ∞

−∞
dω′

[
f+

1 (ω + ω′)f−
2 (ω′) + f+

2 (ω + ω′)f−
1 (ω′)

].

(2.46)
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We move the formulas for f−
4 (ω), f−

5 (ω) to the next page due to space constraints on the

current page caused by the lengthy equation.

f+
4 (ω) = 1

(1 + e−πω)

− e−πω

2π(b2)n
2πi Res

[
eiωθS(4)(θ)

]
θ=0

−
∫ ∞

−∞
dω′

[
f+

1 (ω + ω′)f−
3 (ω′) + f+

2 (ω + ω′)f−
2 (ω′)

+ f+
3 (ω + ω′)f−

1 (ω′)
]

f+
5 (ω) = 1

(1 + e−πω)

− e−πω

2π(b2)n
2πi Res

[
eiωθS(5)(θ)

]
θ=0

−
∫ ∞

−∞
dω′

[
f+

1 (ω + ω′)f−
4 (ω′) + f+

2 (ω + ω′)f−
3 (ω′)

+ f+
3 (ω + ω′)f−

2 (ω′) + f+
4 (ω + ω′)f−

1 (ω′)
].

(2.47)

It is crucial to note that the iϵ prescription introduces an additional term that cannot

be fixed by crossing and unitarity conditions. Here, f+
n (ω) represents the perturbative

retarded celestial amplitude, evaluated using a Fourier transform with a +iϵ prescription,

enclosing the contour in the upper half-plane counterclockwise. Conversely, f−
n (ω) is the

advanced celestial amplitude obtained via a Fourier transform with a −iϵ prescription,

enclosing the contour in the lower half-plane clockwise. Now, when the contour is enclosed

in the upper half-plane, the small semicircle is traversed clockwise, which, after taking

the difference between f+
n (ω) and f−

n (ω), contributes equally to the clockwise semicircle,

resulting in the residue at θ = 0.
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2.7 Gravitational dressing of the 2d QFT amplitude

in celestial space

For integrable field theories, in presence of irrelevant deformation T T̄ , the 2d QFT S-

matrix is modified by a pure phase [21]

Skl
ij (θ)→ Skl

ij (θ)eiδ
(t)
ij (θ), (2.48)

where, the diagonal phase shift δ
(t)
ij (θ) is given by deformation parameter t and difference

of rapidities θ = θi − θj

δ
(t)
ij (θ) = tmimj sinh θ. (2.49)

The deformation parameter t is related to the string length t = 2l2
s in effective string

theory. For same mass particles, we have

S(θ)→ S(θ)e2il2sm2 sinh θ. (2.50)

This factor is also discussed in the paper [66] as a solution to the crossing and unitarity

conditions i.e., S(θ) = S(iπ − θ) and S(θ)S(−θ) = 1 .

In terms of s-variable we have

S(s)→ S(s)eil2s
√

s(s−4m2), (2.51)

the dressing factor for massless particle reduces to eil2ss.

This dressing factor introduced in [22] in the context of gravitational scattering of rela-

tivistic point particles in trans-Planckian regime and large impact parameter is referred

to as the gravitational dressing factor.

In this section, we study the gravitational dressing of the 2d QFT amplitude in the

celestial space restricting to massless particles.
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The gravitational dressing of the 2d QFT amplitude for massless particles is given by

S(s)→ S(s)Sgrav(s), (2.52)

where, the gravitational dressing factor is

Sgrav(s) = eil2ss. (2.53)

The S-matrix is a function of mandelstem variable s which is center-of-mass energy

squared. In the celestial space we define the celestial amplitude A(ω) as

A(ω) ≡
∫ ∞

0
dssω−1S(s)

=⇒ S(s) = 1
2πi

∫ γ+i∞

γ−i∞
dωs−ωA(ω),

(2.54)

where, we trade the mandelstem variable s for a rindler energy or conformal dimension

ω diagonalizing boosts in the directions of the particles.

Now, Mellin transform of eil2ss is

∫ ∞

0
dssω−1eil2ss = (−il2

s)−ωΓ(ω). (2.55)

The gravitational dressing gives

∫ ∞

0
dssω−1 S(s)→

∫ ∞

0
dssω−1 S(s)eil2ss (2.56)

The gravitational dressing condition becomes

A(ω)→ 1
2πi

∫ γ+i∞

γ−i∞
dω′(−il2

s)−ω′Γ(ω′)A(ω − ω′). (2.57)

Now, we take several ansatzes for A(ω) that has a pole on the right half-plane of ω and

see what we get after the convolution.
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Ansatz for A(ω)

Ansatz 1

We take A(ω) as

A(ω) = csc πω. (2.58)

The function has poles at ω = n , n ∈ Z . Performing the convolution we get

1
2πi

∫ γ+i∞

γ−i∞
dω′(−il2

s)−ω′Γ(ω′) csc(π(ω − ω′))

= e−il2sΓ(ω)Γ(1− ω,−il2
s)

π
.

(2.59)

where we use the Mellin-Barnes integral representation of the upper incomplete gamma

function Γ(a, z)[Eq.(3.4.11) in [23], p. 113]

Γ(a, z) = − za−1e−z

Γ(1− a)
1

2πi

∫ γ+i∞

γ−i∞
ds Γ(s + 1− a)πz−s csc πs. (2.60)

we put s = ω′ − ω, a = 1− ω, z = −il2
s in eq.(2.60) to prove eq.(2.59). Now, the upper

incomplete gamma function Γ(a, z) is an entire function of a when z ̸= 0. Therefore,

for l2
s ̸= 0, Γ(1 − ω,−il2

s) is an entire function of 1 − ω. The function Γ(ω) has poles at

ω = n , n = Z− ∪ {0}. csc πω has poles at ω = n , n ∈ Z, after gravitational dressing

the function e−il2s Γ(ω)Γ(1−ω,−il2s)
π

has poles at ω = n , n = Z− ∪ {0}. We can see that after

gravitational dressing the poles on the right half-plane of ω are absent.

Ansatz 2

We take A(ω) as

A(ω) = 1
ω − C

, (2.61)
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where, C is located on the right half plane, i.e., Re(C) > 0. Performing the convolution

we get

1
2πi

∫ γ+i∞

γ−i∞
dω′(−il2

s)−ω′Γ(ω′) 1
ω − ω′ − C

.

= (−il2
s)C−ωγ(ω − C,−il2

s).
(2.62)

where we use the Mellin-Barnes integral representation of the lower incomplete gamma

function γ(a, z) [Eq.(3.4.10) in [23], p. 113]

γ(a, z) = 1
2πi

∫ γ+i∞

γ−i∞
ds

Γ(−s)
s + a

zs+ads. (2.63)

Now, the lower incomplete gamma function γ(ω − C,−il2
s) is meromorphic with simple

poles at

ω − C = −n, n = Z+ ∪ {0}

=⇒ ω = C− n.

(2.64)

For n = 0 , Re(C) > 0 therefore we have a pole at ω = C which lies on the right half-

plane. Now, if we impose Re(C − n) < 0 , n = Z+ then we say that there are no other

poles on the right half-plane but still there is a pole at ω = C, Re(C) > 0.

Ansatz 3

We take A(ω) as

A(ω) = Γ(−ω). (2.65)

The function has poles at ω = n , n = Z+ ∪ {0}. Performing the convolution we get

1
2πi

∫ γ+i∞

γ−i∞
dω′(−il2

s)−ω′Γ(ω′)Γ(−(ω − ω′))

= 2
(
−il2

s

)− ω
2 Kω

(
2
√
−il2

s

)
.

(2.66)
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where we use the Mellin-Barnes integral representation of the modified Bessel function

of the second kind Kν(z)[Eq.(3.4.18) in [23], p. 114]

Kν(z) =

(
1
2z
)ν

4πi

∫ γ+i∞

γ−i∞
ds Γ(s)Γ(s− ν)

(
z

2

)−2t

. (2.67)

Now, the modified Bessel function of the second kind Kν(z) has only one singular point

at ν =∞ for fixed z. Here, for fixed l2
s , Kω(2

√
−il2

s) has pole when ω →∞.

We can see that after gravitational dressing the poles on the right half-plane of ω are

absent.

From the gravitational dressed celestial amplitude, we observe that if the function initially

contains multiple poles, these poles are absent in the right half-plane after gravitational

dressing. This observation is based on selecting an ansatz that includes poles. In the

case of massless particles involved in a 2 → 2 process, the scattering amplitude can

be described using the Mandelstam invariant s, from which the celestial amplitude can

be constructed. For the sake of simplicity in calculations, we focused on the massless

case for the analysis of gravitational dressing. In a follow up work [112], the authors

explored gravitational dressing for massive particles and noted that dressing smooths

out specific singular aspects of the celestial amplitude. It is important to note that

the parametrization differs between massive and massless particles, preventing a direct

massless limit to map between massive and massless celestial amplitudes.

Therefore, from this analysis we see that the poles on the right half-plane are absent

after gravitational dressing if the function contains multiple poles. From the gravitational

dressed celestial amplitude, it is observed that if the function initially includes multiple

poles, these poles are no longer present in the right half-plane after gravitational dressing.

We can think the gravitational dressing condition in 2d as a constraint which gives some

constraint on the analytic structure of the celestial amplitude.
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2.8 Conclusions

In this chapter, we study celestial amplitude for 2d bulk S-matrix and show that for

massive scalar particles the celestial amplitude is just the Fourier transform of the S-

matrix written in the rapidity variable. For the Sinh-Gordon S-matrix we evaluate the

perturbative celestial amplitude and see that there should be two types of celestial am-

plitude, the retarded and the advanced due to the presence of the pole in the origin of

the complex rapidity-plane. Here, for the Sinh-Gordon model, the exact S-matrix has no

pole at rapidity, θ = 0, since α is real. The rapidity, θ = 0 pole is a perturbative mani-

festation, for this there are these two perturbative celestial amplitudes corresponding to

two iϵ prescriptions. The difference between these two perturbative amplitudes is related

to the residue of the pole at θ = 0.

In the celestial space, we translate the crossing and unitarity conditions and check these

conditions for the Sinh-Gordon model. From the celestial CFT perspective, we ask about

determining the higher order celestial amplitude from the lower order i.e., bootstrapping

celestial amplitude by imposing the crossing and unitarity conditions. Finally, we analyze

the gravitational dressing condition for the 2d QFT amplitude in celestial space restricted

to massless particles. We see that this condition manifests itself as eraser of poles from

the right half-plane in the celestial space. We will now discuss the massless limit of the

study.

In any dimension, for massive particles, the conformal primary wavefunction can be

expressed as a Fourier expansion in terms of plane waves, where the Fourier coefficients

correspond to the scalar bulk-to-boundary propagator in hyperbolic space. Specifically

for massive particles, this Fourier expansion takes the form of an integral over all possible

on-shell momenta, each associated with a hyperbolic space. We can take the massless limit

of the massive conformal primary wavefunction. The massless scalar conformal primary

wavefunction is then obtained as the Mellin transform of the plane wave. Consequently,

the transformation from momentum space amplitudes to celestial amplitudes for massless

particles is characterized by this Mellin transform with respect to all external energies

of the particles. Now in two dimensions, the on-shell momenta of massive particles can
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be expressed using rapidity parametrization. We have demonstrated that the celestial

amplitude corresponds to the Fourier transform of the 2d S-matrix formulated in terms of

rapidity variables. For massless particles in a 2→ 2 process, we can use the Mandelstam

invariant s to describe the scattering amplitude and construct the celestial amplitude

from it. Notably, the parametrization differs between massive and massless particles in

this context.

2.A Perturbative retarded and advanced celestial am-

plitude computation in 2d Sinh-Gordon model

In this appendix 2.A, we calculate the perturbative retarded and advanced celestial am-

plitude in 2d Sinh-Gordon model.

In the complex θ-plane, the perturbative S-matrices S(n)(θ) for n = 1, . . . , 5 contain poles

at θ = nπi, n ∈ Z.

While calculating the perturbative retarded celestial amplitude f+
n (ω), we choose the

contour in the upper half-plane as in fig.2.4 and enclose the poles as θ = nπi, n ∈ Z+.

×

×

×

××
R−R Re(θ)

Im(θ)

O

Cε

ΓR

Figure 2.4: Contour for evaluating perturbative retarded celestial amplitude

While calculating the perturbative advanced celestial amplitude f−
n (ω), we choose the

contour in the lower half-plane as in fig.2.5 and enclose the poles as θ = nπi, n ∈ Z−.
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×

×

×

× R−R
Re(θ)

Im(θ)

O

Cε

ΓR

Figure 2.5: Contour for evaluating perturbative advanced celestial amplitude

The residues of the functions appeared in the perturbative expansion of the S-matrix at

the poles as θ = nπi, n ∈ Z are given by

Res
[

csch θ eiωθ
]

θ=nπi
= (−1)ne−nπω

Res
[

csch2 θ eiωθ
]

θ=nπi
= iω e−nπω

Res
[

csch3 θ eiωθ
]

θ=nπi
= −1

2(−1)n(ω2 + 1)e−nπω

Res
[

csch4 θ eiωθ
]

θ=nπi
= −1

6iω(ω2 + 4)e−nπω

Res
[

csch5 θ eiωθ
]

θ=nπi
= 1

24(−1)n(ω2 + 1)(ω2 + 9)e−nπω.

(2.68)



Chapter 3

AdS correction to the

Faddeev-Kulish state

“From a drop of water, a logician

could infer the possibility of an

Atlantic or a Niagara without having

seen or heard of one or the other.”

–Arthur Conan Doyle, Sherlock

Holmes: A Study in Scarlet.

This chapter is based on the paper

• S. Duary, AdS correction to the Faddeev-Kulish state: migrating from the flat penin-

sula, JHEP 05 (2023) 079, [2212.09509].

3.1 Introduction

Scattering amplitudes in QED vanish in four spacetime dimensions in flat-space because

of IR divergences. The soft photon interchange between the external legs due to long-

range interactions causes IR divergences. In perturbation theory, to all loop orders,

39
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the scattering process suffers from IR divergences. The soft contribution of each of the

diagrams exponentiates after resumming the series [34]. Therefore, the non-perturbative

amplitude, A vanishes after taking the infrared regulator, Λreg
IR to zero

A → 0 , Λreg
IR → 0. (3.1)

This means the probability of scattering is essentially nil. This is a quantum mechanical

statement, but this is really just a reflection of a classical fact that the power or energy

radiated does not vanish for soft photons, basically soft photons are produced in order to

match the classical answer [35, 36]. The typical textbook solution to this IR divergence

problem is to consider inclusive cross sections [36, 37] by taking a trace over the soft

modes of the photons in the scattering states. This trace shifts the zero and yields a

finite quantity. Since the trace is determined by the detector resolution, this is typically

fine for phenomenological scenarios. Numerous soft photon modes evade detection and

are thus regarded as unobservable. Nevertheless, in order to explore fine-grained issues

regarding the unitarity of S-matrix while taking soft modes of photon into consideration,

S-matrix must be defined appropriately [44].

An upshot of the resolution of the IR divergence alternative to employing inclusive cross

sections is to use “dressed states” as physical scattering states. While computing the

S-matrix, the “in” and “out” scattering states we choose reside in a Fock space. This

choice of approximation is a nice one since while looking at timelike infinity (for massive

particles) or at null infinity (for massless particles), particles are so far apart from one

other that they barely interact and therefore are free. Nevertheless, in this scenario, the

states corresponding to the Fock space basis is the “sick basis”, leading the S-matrix to

become IR divergent. In order to construct an IR finite S-matrix, the basis of scattering

states has to be modified to incorporate the soft modes of the photons. The intuition

is that because electro-magnetic interactions are long-range interactions, soft modes of

photons in the “in” and “out” scattering states are always present. These dressed states by

soft modes of the photons is referred as Faddeev-Kulish dressed state [38]. The Faddeev-

Kulish state is such that it precisely cancels the IR divergences in the S-matrix, resulting
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in an IR finite S-matrix [39–43]. Recently, it was observed that the Faddeev-Kulish state

arises as a consequence of asymptotic symmetries [90–94], which indicates the existence

of selection sectors [95–98]. For discussion of Faddeev-Kulish dressing in celestial space

which is achieved with dressing by edge modes, see e.g., [99–101]. For a more recent

discussion of Faddeev-Kulish state, see e.g., [102]. In this chapter, our goal is to explore

the AdS radius correction to the Faddeev-Kulish state. We construct the Faddeev-Kulish

dressing in AdS/CFT from the standpoint of the Wilson line dressing. The equivalence

of the Faddeev-Kulish dressing and the Wilson line dressing involving the soft modes of

photons or gravitons has been studied in [82–85]. In flat spacetime, the Wilson line path

is time-like geodesic for massive scattering states and for this geodesic, the Wilson line

dressing describes the Faddeev-Kulish dressing [82–85]. We now turn to discussion on

motivation and physical significance of the work.

Motivation.

In this chapter, we construct the AdS correction to the Faddeev-Kulish state which can be

thought of as a perturbation of the flat spacetime result. If we consider some scattering

process which involves photons, then the leading AdS correction to the process will also

suffer from an IR divergence. The IR divergence coming from the leading AdS correction

to the S-matrix is cancelled by the AdS corrected Faddeev-Kulish state. Therefore, the

AdS corrected Faddeev-Kulish dressed state serves as an useful tool to understand the

leading AdS correction to the IR structure of the flat-space S-matrix. The subtle point

to note here is that the leading AdS correction to the S-matrix will not be IR finite, the

resummation of all AdS corrections will give an IR finite result for scattering process.

Physical significance.

The physical significance of constructing the AdS correction to the Faddeev-Kulish state

is as follows. We assume that there is a place deep inside the AdS spacetime where a

bulk observer is conducting scattering experiments. If the bulk observer could only have

access to the physics below the AdS length scale, then all that the bulk observer would
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observe is flat spacetime. In the flat spacetime, the observer can calculate S-matrix and

its AdS radius correction suffers from an IR divergence. The IR divergence in the AdS

corrected S-matrix will be cancelled by the AdS corrected Faddeev-Kulish state.

The important point here is that the boundary observables in AdS are IR finite be-

cause the boundary observables have access to the entire AdS length scale. Scattering

amplitudes involving photons in flat spacetime and AdS corrections to the scattering

amplitudes are IR divergent. As a result, if we limit ourselves to bulk observables deep

inside the AdS spacetime that can probe physics below the AdS length scale, we should

be concerned about IR divergence.

Another essential point to note here is that the presence of an asymptotic null boundary

allows us to define the S-matrix constructed from the “in” and “out” scattering states.

We define the scattering states in the flat spacetime region around the center of AdS

spacetime. Therefore, the Faddeev-Kulish state we construct can be realized as the

AdS radius correction which is a perturbative correction of the flat spacetime. If we

want to understand the AdS correction to the soft theorem, the IR divergence in the

AdS corrected S-matrix will arise due to the soft photon exchange between the external

legs. The AdS corrected Faddeev-Kulish state will cancel the IR divergence in the AdS

corrected S-matrix.

We now talk about observables connected to the scattering process in the AdS/CFT

and how it relates to observables in flat spacetime. The boundary observables in the

AdS, thanks to the AdS/CFT correspondence are CFT correlation functions. The CFT

correlation functions can be computed using the Witten diagrams in the bulk of AdS

spacetime. Due to the absence of boundaries, the flat spacetime observables is defined

asymptotically. The particular observable for scattering amplitude in flat spacetime is

the S-matrix. Zooming in around the center of the AdS spacetime, AdS spacetime man-

ifests itself into flat spacetime. In this flat-space limit, the S-matrix can be obtained

from the CFT correlation functions using (i) position space, (ii) mellin space, and (iii)

momentum space representations of the CFT correlation functions, see e.g., [45–53] for

earlier developments, see e.g., [54–61] for recent developments. Different CFT represen-
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tations like position space [54, 55, 58, 59], mellin space [50, 63, 65], and momentum space

[56, 61] elucidate different roadmap to reach to the flat space S-matrix. In recent years,

the flat-space limit of position space CFT correlation function using bulk reconstruction

has been studied in [88, 89] to realize IR sector physics in flat spacetime from techniques

in AdS/CFT. This is essentially a statement of deciphering the physics of flat spacetime

that is already stored in AdS/CFT. In AdS spacetime, causality is attributed to analytic-

ity and unitarity of CFT correlation functions [72–81]. These conditions in the flat space

S-matrix have spawned intriguing implementations in the “S-matrix Bootstrap program”

from tools in “CFT Bootstrap program” [63–70]. In a very recent paper [71], focusing

bound from ANEC for the CFT correlation function and it’s connection to the flat-space

S-matrix is studied.

Now, we turn to the discussion on Faddeev-Kulish dressing. In this chapter, we explore

the AdS radius corrections to the Faddeev-Kulish dressed state which captures the out-

come of cosmological constant on the flat spacetime state. We know the fact of life that

the AdS radius acts as an IR regulator. In the flat-space limit, the scattering amplitudes

will have IR divergences. If we consider the scattering states dressed by the soft modes

of the photons (Faddeev-Kulish dressed state), then we can get rid of the IR divergences.

With these dressed states, we need to understand how the S-matrix becomes the IR finite

one from AdS/CFT. To understand this, first we need to understand how IR divergences

manifest themselves after taking the flat-space limit from the CFT correlation function

using the Fock-space scattering states. The AdS radius corrections to this Faddeev-Kulish

dressed state will provide new insight into an IR finite S-matrix.

Now, we discuss the strategy to construct the AdS radius correction to the Faddeev-Kulish

dressed state. We choose the Wilson line dressing as our guiding principle to arrive at the

Faddeev-Kulish dressing in AdS/CFT. We are interested in the kinematic regime in which

the scalar field is dressed by the soft modes of the photons. The dressed scalar field are

free fields and the modes of the field can be reconstructed simply implementing the vanilla

bulk operator reconstruction. Upon taking the flat-space limit, the creation/annihilation

modes of the dressed field can be expressed in terms of the CFT operator corresponding
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to the undressed field which is dressed by the boundary-to-boundary Wilson line, which is

the CFT representation. We can study the flat-space representation taking into account

AdS radius corrections as well by reexpressing the CFT operator corresponding to the

undressed field in terms of the undressed mode of the scalar field. In order to have a fully

fledged flat-space representation, we must also express the Wilson line operator having

CFT current operator in terms of photon creation/annihilation modes. In this chapter,

we explore AdS radius correction to the Faddeev-Kulish dressed state. To accomplish so,

we have to invert the map between the soft modes of the photon as a smearing of the

CFT current operators which shows up in the Wilson line operator.

The creation mode of the soft Wilson line dressed massive scalar field is constructed

implementing vanilla bulk operator reconstruction since the dressed field is simply free

field. The result we highlight in eq.(3.2) is the expression for the dressed creation mode

expressed in terms of the undressed creation mode with smearing over frequency and

global time coordinate. The dressed mode dressed by the soft modes of photon acting on

the vacuum state |0⟩ is the Faddeev-Kulish state. The expression is the following

√
2ωp⃗ ã†

ωp⃗
= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)]

×
∫

dτ e−iLτ(ωp⃗−∆p⃗) e
iq
∫

Γ(τ,p̂) jadxa √
2∆p⃗

a†
∆p⃗

C .

(3.2)

Now, this expression of eq.(3.2) is written in terms of creation mode of the scalar field

but the Wilson line which is expressed in terms of the CFT current operator. Therefore,

this is in the “mixed representation” (mixed between the “CFT representation” and the

“flat-space representation”). To write this dressed creation mode in the full fledged flat-

space representation, we have to express the CFT current operators in the Wilson line

in terms of creation/annihilation operators of photon. We express the Wilson line for

a particular path where global time coordinate varies from 0 to τ keeping the angular

direction fixed

e
iq
∫

Γ(τ,p̂) jadxa

= eiq
∫ τ

0 (j+
τ ′ +j−

τ ′)dτ ′
, (3.3)
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where, j+
τ ′ and j−

τ ′ corresponds to the positive and negative frequency modes of the photon

when mapped to the photon modes. We evaluate the CFT current operators in terms of

AdS corrected photon creation/annihilation modes. After that, we find the inverse map-

ping. That means we express the CFT current operators in terms of the AdS corrected

modes of the photon. Now, choosing a particular path we evaluate the Wilson line and

for that we express the global time component of the CFT current operator in terms of

the photon creation/annihilation modes. Finally, we express the dressed creation mode of

the scalar field in terms of the AdS corrected creation/annihilation modes of the photon.

The dressed creation operator acting on the vacuum state gives the AdS radius-corrected

Faddeev-Kulish dressed state. The roadmap is summerized in the flowchart fig.3.1.

Figure 3.1: Flowchart: Roadmap of the AdS correction to the Faddeev-Kulish (FK) state

In [89, 114], the flat-space limit of bulk operator reconstruction techniques is utilized

to derive the Weinberg’s soft photon theorems and their AdS corrections through the

application of Ward identities involving conserved CFT current. Using the flat-space

limit of bulk operator reconstruction techniques, we construct asymptotic states for fields

interacting with soft photon modes in AdS, utilizing Wilson line dressing.
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Organization of the chapter.

The chapter is organized as follows. In the section 3.2 we review various things to make

the chapter self-contained. In the section 3.2.1, we discuss the flat-space limit. We

discuss how to extract the creation and annihilation operators for the free massive scalar

field in terms of the CFT operators in this flat-space limit. We use the equivalence

between the Faddeev-Kulish dressing and the Wilson line dressing as our main strategy

to construct the AdS correction to the Faddeev-Kulish dressed state. In the section

3.2.2, we study the soft Wilson line dressed field in AdS and evaluate the CFT operator

corresponding to this dressed field. The soft Wilson line dressed scalar field turns itself

into the free field and thus can be reconstructed implementing the vanilla bulk operator

reconstruction. In the section 3.3, we study the CFT representation as well as the mixed

representation of the Faddeev-Kulish dressed state. In the section 3.4, we calculate the

AdS corrected Faddeev-Kulish dressed state. We express the CFT current operators in

terms of AdS radius-corrected photon creation/annihilation operators in the section 3.4.1.

Next, we express the global time component of the CFT current operator in terms of the

photon creation/annihilation modes in the section 3.4.2. Then, we express the dressed

creation operator in terms of the AdS radius-corrected creation/annihilation modes of

the photon. The dressed creation operator acting on the vacuum gives the AdS radius-

corrected Faddeev-Kulish dressed state. Finally, we save the section 3.5 for summarizing

our conclusions.

3.2 Preliminaries

In this section, we revisit some known things in order to make the chapter self-contained.

3.2.1 Flat Peninsula inside AdS Lake: The flat-space limit

In this section, we review the flat-space limit of AdS/CFT and how to extract the creation

and annihilation operators for the massive scalar scalar field in terms of the CFT operator

in this limit using the vanilla bulk operator reconstruction described in [89]. At the level
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of geometry, we take the large AdS radius limit such that the global AdS4 metric becomes

that of flat spacetime. The AdS4 lorentzian metric in global coordinates is given by

ds2 = L2

cos2 ρ
(−dτ 2 + dρ2 + sin2 ρ dΩ2

2) , (3.4)

where its boundary CFT is located at ρ = π
2 . The CFT is described by coordinates

{τ, Ω2}, with L representing the radius of AdS. The coordinate replacement

τ = t

L
and tan ρ = r

L
,

develops the AdS4 metric into that of flat spacetime metric upon taking the limit L→∞

ds2 −−−→
L→∞

−dt2 + dr2 + r2dΩ2
2. (3.5)

Essentially, the flat peninsula can be thought of as being inside the AdS lake, and this

operation can be thought of as flat-space limit.

Massive scalar field modes in the flat-space limit of AdS/CFT

Having discussed the flat-space limit at the level of the geometry, we now turn to a

discussion on fields. The creation and annihilation modes for a free massive scalar field

in flat spacetime can be constructed in terms of the CFT operator in the flat-space limit of

AdS/CFT. For normalizable modes of the bulk AdS scalar field, the bulk AdS scalar field

ϕ(ρ, x) is related to the dual boundary CFT operator O(x) through the fall-off condition

ϕ(ρ, x) −−−→
ρ→ π

2

(cos ρ)∆O(x). (3.6)

We have

m2L2 = ∆(∆− 3)

=⇒ ∆ = 3
2 + mL +O(L)−1.

(3.7)
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To extract the creation and annihilation modes in flat spacetime in terms of CFT oper-

ators, first we reconstruct bulk operators as operators in the CFT using the vanilla bulk

operator reconstruction prescription. We can extract the creation/annhilation modes of

the scalar field from the position space field operator of the scalar field. The approach

we follow is the following. First, we construct the free local bulk operators in the CFT

using the free bulk operator reconstruction. Next, we extract the creation/annhilation

modes using Fourier transform and then we take a large AdS radius limit which is the

flat-space limit. The flat-space outgoing creation operator for the free massive scalar field

ϕ is given by [89]

√
2ωp⃗ a†

ωp⃗
= C

∫
dτ e

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)]
O (τ, p̂) , (3.8)

where

C = 1
2π

mL

π3

 1
4
2m

i|p⃗|

mL+ 1
2

L. (3.9)

In the formula of eq.(3.8), the exponential part in the integrand is highly oscillatory as

we take the flat-space limit, L → ∞, therefore the insertion points of the operators are

in windows of size O(1/L) at the complex points

Re(τ) = π

2 , and Im(τ) = 1
2 log

(
ωp⃗ + m

ωp⃗ −m

)
. (3.10)

Now, depending on the outgoing, and incoming particles, we have the insertion points

τ = ±π
2 + iτ̃ , where

τ̃ = 1
2 log

(
ωp⃗ + m

ωp⃗ −m

)
(for outgoing modes)

τ̃ = −1
2 log

(
ωp⃗ + m

ωp⃗ −m

)
(for incoming modes).

(3.11)

Here, in eq.(3.11) τ̃ is a coordinate in the Euclidean half-sphere. To ensure the analyticity

of scattering amplitudes, it is useful to shift the τ contour in the complex plane. This is
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done by shifting to ±π
2 + iτ̃ . Specifically, for positive ωp⃗ (outgoing modes), the shift is

τ̃ = 1
2 log

(
ωp⃗ + m

ωp⃗ −m

)
,

and for negative ωp⃗ (incoming modes), the shift is

τ̃ = −1
2 log

(
ωp⃗ + m

ωp⃗ −m

)
.

In fig.3.2, we illustrate the correspondence between asymptotic regions in flat-space and

the boundary of AdS.

Re τ = π
2

Re τ = − π
2

Im τ direction

: Massive scattering state

: Massless scattering state

Ĩ+

Ĩ−

∂M+

∂M−

Figure 3.2: A schematic picture linking the boundary of AdS and the asymptotic regions of flat spacetime.
The euclidean domes ∂M±, which play the roles of future/past timelike infinity i±, are analytic continuations
of the boundary CFT in the imaginary global time direction. Regions around, real part of global time at ±π

2 ,
Re τ = ±π

2 in an O(1/L) window, play the role of null infinity Ĩ±.

In fig.3.2, the outgoing massive scattering state is depicted by the green arrow, piercing

the boundary at a complex point in global time. Similarly, the outgoing massless scatter-

ing state is represented by the blue arrow, piercing the boundary when Re(τ) = π
2 . Con-
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sequently, two regions in the CFT play pivotal roles: the regions surrounding ±π
2 , termed

null infinity, and the euclidean domes, denoting future/past timelike infinity. The fig.3.2

on the boundary of AdS provides a holographic perspective of flat-space, particularly

relevant in terms of particle propagation. Massless particles propagate along light-like

geodesics, piercing the boundary of AdS at global time π
2 (outgoing particle). In contrast,

massive particles follow time-like geodesics, therefore never pierce the boundary, or, to

put it another way, they pierce the boundary at a complex point.

3.2.2 Soft Wilson line dressed scalar field in AdS and dual CFT

operator

In this section, we review the set up of the Faddeev-Kulish dressed state in the flat-space

limit of AdS/CFT from the paper [113].

First, we explain the soft Wilson line dressed scalar field in AdS and evaluate the CFT

operator corresponding to this soft Wilson line dressed field. The bulk massive scalar

field dressed by the bulk-to-boundary Wilson line UB∂(y, x) is given by

ϕ̃(y) = UB∂(y, x)ϕ(y) , (3.12)

where the bulk-to-boundary Wilson line is

UB∂(y, x) = P
eiq

∫
Γ dxM AM


= P

e
iq
∫ x

y
dxM AM

.

(3.13)

Here, Γ is the path in AdS that joins bulk point point y to boundary point x, y → x.

Now, considering scalar electrodynamics with action

S =
∫

d4x
√−g

(
−DMϕ†DMϕ− 1

4FMNF MN −m2ϕ†ϕ
)

, (3.14)



3.2. PRELIMINARIES 51

where DM = ∂M − iqAM . Now, the Wilson line dressed field ϕ̃ satisfies [103]

(
□−m2

)
ϕ̃ = −iqϕ̃∇M

∫
Γ

FMP dyP − 2iq∇M ϕ̃

∫
Γ

FMP dyP + q2ϕ̃ gMN
∫

Γ
FMP dyP

∫
Γ

FNQdyQ.

(3.15)

We choose the Wilson line dressing in such a way that the field strength FMN becomes

O
(

1
L

)
. We dress the scalar field with soft modes of the photon in the Wilson line and

in AdS, the minimum frequency of photon is of O
(

1
L

)
. This dressed scalar field we refer

as soft Wilson line dressed scalar field. As a consequence of this dressing, the field ϕ̃

is free field.1 Using this simplification, ϕ̃ can be obtained using vanilla bulk operator

reconstruction. The boundary CFT operator dual to the Wilson line dressed field ϕ̃ we

denote by Õ and the operator Õ is non-local since it involves boundary-to-boundary

Wilson line. The Wilson line dressed scalar field ϕ̃ is given by

ϕ̃(y) = P
e

iq
∫ x

y
AM dxM

ϕ(y). (3.16)

The fall-off conditions of the photon field and the scalar bulk fields are

Aa (ρ, x) −−−→
ρ→ π

2

ja(x) cos ρ

ϕ (ρ, x) −−−→
ρ→ π

2

(cos ρ)∆O(x)

ϕ̃ (ρ, x) −−−→
ρ→ π

2

(cos ρ)∆Õ(x).

(3.17)

Therefore, the CFT operator at the boundary corresponding to the soft Wilson line

dressed field is given by

Õ(x′) = U∂∂(x′, x)O(x′). (3.18)

The boundary-to-boundary Wilson line U∂∂ is given by

U∂∂(x′, x) = P
eiq

∫ x

x′ dxaja

. (3.19)

1There is an alternative way to get the Faddeev-Kulish dressed state by considering a ‘Soft-collinear
effective theory(SCET)’ lagrangian [87] to construct an asymptotic Hamiltonian. While constructing
Faddeev-Kulish states we consider the soft part only, and put a hard cutoff on the photon energy. See
ref. [86] for the construction of Faddeev-Kulish states within the framework of SCET.
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y

x

x′

Figure 3.3: Wilson line dressing: Bulk-to-bulk and bulk-to-boundary Wilson lines are represented by violet
and orange wiggly lines respectively.

3.3 CFT and Mixed representations of the Faddeev-

Kulish dressed state

3.3.1 CFT representation

In this section, we express the Faddeev-Kulish dressed state in CFT representation. As

discussed in the previous section, considering the field strength FMN = O
(

1
L

)
, the Wilson

line dressed scalar field ϕ̃ is a free field and can be obtained using vanilla bulk operator

reconstruction. The creation mode for the free massive scalar field ϕ̃ was constructed in

[89] and it is given by

√
2ωp⃗ ã†

ωp⃗
= c̃

∫
dτe

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)]
Õ (τ, p̂) . (3.20)

where

c̃ = 1
2π

mL

π3

 1
4
2m

i|p⃗|

mL+ 1
2

L. (3.21)

Now, the CFT operator of the dressed scalar field Õ (τ, p̂) is related to the CFT operator

O (τ, p̂) as

Õ (τ, p̂) = e
iq
∫

Γ(τ,p̂) jadxa

O (τ, p̂) . (3.22)
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Using eq.(3.22), we get the creation mode of the dressed massive scalar field in terms of

O (τ, p̂) √
2ωp⃗ ã†

ωp⃗
= c̃

∫
dτe

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)]
e

iq
∫

Γ(τ,p̂) jadxa

O (τ, p̂) . (3.23)

The Wilson line dressed creation mode ã†
ωp⃗

acting on the vacuum |0⟩ is the CFT repre-

sentation of the Faddeev-Kulish dressed state.

Now, in the expression of the CFT current operator in the Wilson line we implement

FMN → 0 limit and the Wilson line does not depend on path as a consequence of this

limit. Therefore, this enables us to choose a particular path for the Wilson line Γ(τ, p̂)

which connects the two points in the boundary to evaluate e
iq
∫

Γ(τ,p̂) jadxa

. We choose the

path to be global time coordinate varies from 0 to τ while keeping the coordinates of the

angular direction fixed. Now, we evaluate the global time integral. Denoting the global

time component of the CFT current operator as

jτ (τ ′, p̂) =
∑
m

eiωmτ ′
χ̂m(p̂) , (3.24)

where χ̂m involves spherical harmonics Y m
l (Ω̂). Here, we denote the sum over modes by

m. Integrating over global time yields

∫ τ

0
jτ (τ ′, p̂)dτ ′ =

∑
m

1
iωm

(eiωmτ − 1)χ̂m(p̂). (3.25)

We expand the Wilson line operator eiq
∫ τ

0 jτ (τ ′, p̂) dτ ′ in series to O(q)

eiq
∫ τ

0 jτ (τ ′, p̂) dτ ′ = 1 + q
∑
m

1
ωm

(eiωmτ − 1)χ̂m(p̂) +O(q2) , (3.26)

where, we use the expansion

eiq
∫ τ

0 jτ (τ ′, p̂) dτ ′ = 1 + iq
∫ τ

0
jτ (τ ′, p̂)dτ ′ +O(q2). (3.27)
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Scalar/vector soft modes have frequency ωm =


1

2

 + l + 2κ, κ ∈ Z+.2 Now, there are

two different alternatives of the soft modes in the flat-space limit. One is that κ ∼ O(1),

and the frequency ωm/L→ 0. The mode is given by

ωm ∼ O(1) ,
ωm

L
→ 0. (3.28)

Another alternative is to denote ωm = kL and take the flat-space limit, L → ∞, and

then to take soft limit with k → 0. The mode is given by

ωm = Lk ,
ωm

L
= k → 0. (3.29)

In fig.3.4, we draw a frequency scale to denote two different alternatives of the soft modes

in the flat-space limit.

ωm v O (1)

ωm = L k

ωm

Figure 3.4: Frequency scale ωm: ωm ∼ O(1) and ωm = Lk.

2We refer the reader to the paper [89] (the section “Reconstruction of U(1) gauge fields in global
AdS4”) for details regarding the scalar/vector modes.
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Now, ωm ∼ 2κ = Lk dominates the sum over modes, and therefore

∑
κ

→ L

2

∫
dk. (3.30)

The Wilson line dressed creation mode of the massive scalar field at O(q) is given by

√
2ωp⃗ ã†

ωp⃗
= q

2 c̃
∫

dτ
∫ dk

k
e

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)] (
eiLkτ − 1

)
χ̂k(p̂) O (τ, p̂) . (3.31)

This expression for the dressed creation mode acting on the vacuum state |0⟩ gives the

“CFT representation” of the Faddeev-Kulish dressed state.

3.3.2 Mixed representation

We express the creation mode for the Wilson line dressed massive scalar field with the

soft modes of the photon in terms of undressed mode. To accomplish so, we insert a delta

function δ(τ − τ ′) and express the delta function in terms of integral over frequency, ∆p⃗

which is the corresponding frequency of the undressed mode of the massive scalar field

∫
dτ ′δ(τ ′ − τ) =

∫
dτ ′

∫
d∆p⃗

L

2π
e−i∆p⃗L(τ ′−τ). (3.32)
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Therefore, the creation mode of the soft Wilson line dressed massive scalar field is ex-

pressed as

√
2ωp⃗ ã†

ωp⃗
= c̃

∫
dτe

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)]
e

iq
∫

Γ(τ,p̂) jadxa

O (τ, p̂)

= c̃
∫

dτ
∫

dτ ′
∫

d∆p⃗
L

2π
e−i∆p⃗L(τ ′−τ) e

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)]

× e
iq
∫

Γ(τ,p̂) jadxa

O (τ ′, p̂)

= C̃L
∫

d∆p⃗ e
−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)] ∫
dτe

−iωp⃗L

[
τ− π

2 − i
2 log

(
ωp⃗+m

ωp⃗−m

)]
ei∆p⃗Lτ

× e
iq
∫

Γ(τ,p̂) jadxa
∫

dτ ′ e
−i∆p⃗L

[
τ ′− π

2 − i
2 log

(
∆p⃗+m

∆p⃗−m

)]
O (τ ′, p̂) ,

(3.33)

where, in the last step we use

e−i∆p⃗L(τ ′−τ) = e
−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
ei∆p⃗Lτ e

−i∆p⃗L

[
τ ′− π

2 − i
2 log

(
∆p⃗+m

∆p⃗−m

)]
. (3.34)

where,

c̃ = 1
2π

mL

π3

 1
4
2m

i|p⃗|

mL+ 1
2

L

C̃ = c̃

2π
.

(3.35)

Now, using the expression for the creation mode a†
∆p⃗

corresponing to frequency of the

undressed mode, ∆p⃗ in terms of the boundary CFT operator O (τ ′, p̂)

√
2∆p⃗ a†

∆p⃗
= C

∫
dτ ′ e

−i∆p⃗L

[
τ ′− π

2 − i
2 log

(
∆p⃗+m

∆p⃗−m

)]
O (τ ′, p̂) , (3.36)
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eq.(3.33) is expressed as

√
2ωp⃗ ã†

ωp⃗
= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)]

×
∫

dτ e−iLτ(ωp⃗−∆p⃗) e
iq
∫

Γ(τ,p̂) jadxa √
2∆p⃗

a†
∆p⃗

C .

(3.37)

In eq.(3.37), we express the creation mode of the soft Wilson line dressed massive scalar

field in terms of the undressed creation mode. We choose a particular path for the Wilson

line Γ(τ, p̂) as in the previous section 3.3.1. We mode expand the τ component of the

CFT current operator as

jτ (τ ′, p̂) =
∑
m

eiωmτ ′
χ̂m(p̂). (3.38)

Now, we perform the τ integral and get

∫
dτ e−iLτ(ωp⃗−∆p⃗) eiq

∫ τ

0 jτ (τ ′, p̂) dτ ′

=
∫

dτ e−iLτ(ωp⃗−∆p⃗)

1 + q
∑
m

1
ωm

(eiωmτ − 1)χ̂m(p̂) +O(q2)


= 2π

L
δ(ωp⃗ −∆p⃗) + 2π

L

∑
m

q χ̂m

ωm

δ
[
(ωp⃗ −∆p⃗) + ωm

L

]
− δ(ωp⃗ −∆p⃗)

+O(q2).

(3.39)

Scalar/vector soft modes have frequency ωm =


1

2

 + l + 2κ, κ ∈ Z+. In the flat-space

limit, ωm ∼ 2κ = Lk dominates the sum over modes, and therefore

∑
κ

→ L

2

∫
dk. (3.40)
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We write eq.(3.37) by substituting ωm = kL and replacing sum over modes by integration

over k at O(q)

√
2ωp⃗ ã†

ωp⃗
= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)
2π

L

∑
m

q χ̂m

ωm

δ
[
(ωp⃗ −∆p⃗) + ωm

L

]
− δ(ωp⃗ −∆p⃗)

√2∆p⃗

a†
∆p⃗

C

= C̃ L
2πq

L

L

2

∫ ∞

0
dk

1
L k

∫ ∞

−∞
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)]

×
δ
[
(ωp⃗ −∆p⃗) + k

]
− δ(ωp⃗ −∆p⃗)

χ̂k

√
2∆p⃗

a†
∆p⃗

C .

(3.41)

Now, we can perform the ∆p⃗ integral to simplify the expression and finally the dreesed

creation mode is given by

√
2ωp⃗ ã†

ωp⃗
= C̃ π q

∫ ∞

0
dk

1
k

e
−i(ωp⃗+k)L

[
π
2 + i

2 log

(
ωp⃗+k+m

ωp⃗+k−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)]

χ̂k

√
2(ωp⃗ + k)

a†
ωp⃗+k

C −
√

2ωp⃗ χ̂k

a†
ωp⃗

C

.

(3.42)

The dressed creation mode acting on the vacuum |0⟩ is the Faddeev-Kulish dressed state.

In this way of writing the expression, the frequency of the creation mode of the scalar

field will get shifted from ωp⃗ to ωp⃗ + k. The external leg of the scalar field will get

dressed due to the soft Wilson line and this has a nice pictorial representation in terms

of the frequency of the scalar field mode, see fig.3.5. After further reexpressing the CFT

operator in terms of the scalar field mode and perform the frequency integral ∆p⃗, we get

this representation. We refer eq.(3.42) as “mixed representation” (mixed between the

“CFT representation” and the “flat-space representation”) since the Wilson line operator

still contain the CFT current operator. For understanding the soft modes of photon in

a pictorial way, it is better to express the expression in the mixed representation like in

eq.(3.42). In terms of CFT operators, the soft modes will correspond to the CFT current
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operator dual to the gauge field.

ω~p

ω~p + k

k

Figure 3.5: Dressing with soft modes of Wilson line: The frequency of the creation mode of the scalar field
will get shifted from ωp⃗ to ωp⃗ + k as a consequence of the dressing.

3.4 AdS correction to the Faddeev-Kulish dressed

state

In this section, we will explore AdS radius correction to the Faddeev-Kulish dressed state.

From the previous subsection 3.3.2 (ref.eq.(3.37)), we note the expression for the dressed

creation mode written in terms of the undressed mode

√
2ωp⃗ ã†

ωp⃗
= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)]

×
∫

dτ e−iLτ(ωp⃗−∆p⃗) e
iq
∫

Γ(τ,p̂) jadxa √
2∆p⃗

a†
∆p⃗

C .

(3.43)

Now, in this expression the CFT current operator appears in the Wilson line which makes

the formula to be in the mixed representation. We map the CFT current operators to

creation/annhilation modes of the photon to express our AdS correction to the Faddeev-

Kulish dressed state. Now, we have to write the CFT current operator that appears in

the expression for the Wilson line

eiq
∫ τ

0 jτ ′ dτ ′ = eiq
∫ τ

0 (j+
τ ′ +j−

τ ′)dτ ′
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in terms of the photon creation/annihilation operatos. In the expression of jτ ′ , we use

j+
τ ′ and j−

τ ′ to denote the positive and negative frequency modes of the photon. Here,

we choose a particular path for the Wilson line. The path is such that the global time

coordinate varies from 0 to τ and the angular direction remains unchanged. To emphasize,

we can do this simplification since we are interested in the soft Wilson line dressing to

dress the field and in that soft limit the Wilson line is independent of the path because

the field strength term can be ignored. Now, in next section 3.4.1, we explore the AdS

corrected modes of the photon in terms of CFT current operators. Then, we invert this

mapping in the next to next section 3.4.2, to express the CFT current operators to AdS

corrected modes of the photon.

3.4.1 AdS corrected photon modes in terms of CFT current

operators

Free photon fields in flat spacetime can be mode expanded as

Aµ(x) =
∫ d3q⃗

(2π)3
1√2ωq⃗

∑
λ=±

(
ε(λ)

µ â
(λ)
q⃗ eiq·x + ε(λ)∗

µ â
(λ)†
q⃗ e−iq·x

)
, (3.44)

where, ε(λ)
µ are polarization vectors. The creation/annihilation modes of the photon are

given by

√
2ωq⃗ a(λ)†

q⃗ =− i
∫

d3x⃗ ε(λ),µeiq·x←→∂0 Aµ(x)√
2ωq⃗ a(λ)

q⃗ = i
∫

d3x⃗ (ε(λ),µ)∗e−iq·x←→∂0 Aµ(x) .

(3.45)

Now, we express the creation/annihilation modes of the photon in terms of the CFT

current operators. We consider the magnetic boundary condition which implies the the

gauge field is related to a the bundary CFT current as

Aµ(ρ, x) −−−→
ρ→ π

2

cos ρ jµ(x) . (3.46)
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Now, implementing bulk operator reconstruction, we get the free photon felds in AdS

expressed in terms of the CFT current operator. The expression of the AdS correction to

the annihilation operator of an outgoing photon with negative helicity is given by [114]

√
2ωq⃗ aAdS(−)

q⃗

= 1
32πω2

q⃗L2
1 + zqz̄q√

2ωq⃗

∫
dτ ′ e−iωq⃗L(π

2 −τ ′)
∫

d2z′
∫

d2zw

(1 + z′z̄′)2(1 + zwz̄w)2

(z̄w − z̄′)2(zq − zw)3


× ∂z′j−

z̄′ (τ ′, z′, z̄′) .

(3.47)

The 1/L2 corrected mode is expressed in terms of a CFT current operator smeared over

the boundary S2 and we denote by aAdS(−)
q⃗ .

3.4.2 Inverse mapping: CFT current operators mapped to AdS

corrected photon modes

In this section, we evaluate the inverse mapping. That means, we express the CFT current

operators in terms of the AdS corrected creation/annihilation modes of the photon. From

the previous section, we note that the annihilation operator of an outgoing photon of

negative helicity is given by

√
2ωq⃗ aAdS(−)

q⃗

= 1
32πω2

q⃗L2
1 + zqz̄q√

2ωq⃗

∫
dτ ′ e−iωq⃗L(π

2 −τ ′)
∫

d2z′
∫

d2zw

(1 + z′z̄′)2(1 + zwz̄w)2

(z̄w − z̄′)2(zq − zw)3


× ∂z′j−

z̄′ (τ ′, z′, z̄′) .

(3.48)

Acting with a ∂z̄q on both sides of the eq.(3.48) we have

∂z̄q

64πω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 =
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

∫
d2z′

∫
d2zw ∂z̄q

(1 + z′z̄′)2(1 + zwz̄w)2

(z̄w − z̄′)2(zq − zw)3


× ∂z′j−

z̄′ (τ ′, z′, z̄′) .

(3.49)
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Now, using the identity

∂z̄q

1
(zq − zw)3 = (2π)(−1)2

2! ∂2
zq

δ(2)(zq, zw)

= (2π)(−1)2

2! ∂2
zw

δ(2)(zq, zw) ,

(3.50)

we have

∂z̄q

64πω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 =
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

∫
d2z′

∫
d2zw π ∂2

zw
δ(2)(zq, zw)

×
(1 + z′z̄′)2(1 + zwz̄w)2

(z̄w − z̄′)2

∂z′j−
z̄′ (τ ′, z′, z̄′) .

(3.51)

After performing the d2zw integral using the delta function δ(2)(zq, zw) to simplify the

expression a bit. The steps of the detailed calculation we save in the appendix 3.A,

section 3.A.1. After simplification the expression we get is

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 =
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

∫
d2z′ (1 + z′z̄′)2 2z̄2

q

(z̄q − z̄′)2 ∂z′j−
z̄′ (τ ′, z′, z̄′) .

(3.52)

Now, further acting ∂zq on the simplified expression eq.(3.52) we finally get

∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 = −
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

(
8πzq(1 + zqz̄q)2

)
∂zqj−

z̄q
(τ ′, zq, z̄q) .

(3.53)

The details is saved in the appendix 3.A, section 3.A.1. The inverse mapping of the

CFT current operator for the negative frequency in terms of the AdS corrected photon

annihilation mode is given by

∂zq j−
z̄q

(
τ ′, zq, z̄q

)
= − L

(2π)2

∫
dωq⃗ e−iωq⃗L(τ ′− π

2 ) 1
4zq(1 + zq z̄q)2

× ∂zq

[
∂z̄q

(
64ω

7/2
q⃗ L2

1 + zq z̄q
aAdS(−)

q⃗

)]
.

(3.54)
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Now, we multiply both sides by 1
z̄q−z̄′ and integrate with respect to d2zq and obtain

j−
z̄′ (τ ′, z′, z̄′) = L

(2π)3

∫
dωq⃗ e−iωq⃗L(τ ′− π

2 )
∫

d2zq
1

z̄q − z̄′
1

4zq(1 + zq z̄q)2

× ∂zq

[
∂z̄q

(
64ω

7/2
q⃗ L2

1 + zq z̄q
aAdS(−)

q⃗

)]
.

(3.55)

Now, we can express eq.(3.54) in terms of the coordinates z′ and z̄′

∂z′j−
z̄′
(
τ ′, z′, z̄′) = − L

(2π)2

∫
dωq⃗ e−iωq⃗L(τ ′− π

2 ) 1
4z′(1 + z′z̄′)2

× ∂zq

[
∂z̄q

(
64ω

7/2
q⃗ L2

1 + zq z̄q
aAdS(−)

q⃗

)]∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)

.

(3.56)

For the creation mode of the photon we have CFT current operators j+
z̄′ and j+

z′ . Here,

the + in the superscript of j’s denotes the positive frequency mode of the photon. We

have the following expressions for the CFT current operators

∂z′j+
z̄′ (τ ′, z′, z̄′)

= − L

(2π)2

∫
dωq⃗ eiωq⃗L(τ ′− π

2 ) 1
4z′(1 + z′z̄′)2 ∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(−)
q⃗

∣∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)

j+
z̄′ (τ ′, z′, z̄′)

= L

(2π)3

∫
dωq⃗ eiωq⃗L(τ ′− π

2 )
∫

d2zq
1

z̄q − z̄′
1

4zq(1 + zqz̄q)2 ∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(−)
q⃗


∂z̄′j+

z′ (τ ′, z′, z̄′)

= − L

(2π)2

∫
dωq⃗ eiωq⃗L(τ ′− π

2 ) 1
4z̄′(1 + z′z̄′)2 ∂z̄q

∂zq

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(+)
q⃗

∣∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)

j+
z′ (τ ′, z′, z̄′)

= L

(2π)3

∫
dωq⃗ eiωq⃗L(τ ′− π

2 )
∫

d2zq
1

zq − z′
1

4z̄q(1 + zqz̄q)2 ∂z̄q

∂zq

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(+)
q⃗

.

(3.57)

3.4.3 Global time component of the CFT current operator mapped

to photon modes

In this section, we evaluate the global time component of the CFT current operator in

terms of the photon creation/annihilation modes. The path for Wilson line we choose in
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such a way that the global time coordinate varies from 0 to τ and the angular direction

remains unchanged. The CFT current operator in the Wilson line operator

eiq
∫ τ

0 jτ ′ dτ ′ = eiq
∫ τ

0 (j+
τ ′ +j−

τ ′)dτ ′
, (3.58)

can be expressed in terms of the photon creation/annihilation modes. We use the current

conservation equation in the boundary CFT ∂aja = 0 to relate the global time component

of the CFT current operator jτ in terms of z and z̄ components, jz and jz̄. Using the

current conservation equation we get,

∂τ jτ + ∂zjz + ∂z̄j z̄ = 0

=⇒ − ∂τ jτ + ∂z(gzz̄jz̄) + ∂z̄(gz̄zjz) = 0

=⇒ ∂τ jτ = 1
2(1 + zz̄)2(∂zjz̄ + ∂z̄jz) + z̄(1 + zz̄)jz̄ + z(1 + zz̄)jz.

(3.59)

Here, the S2 part of the boundary metric is ds2 = 4
(1+zz̄)2 dzdz̄ which gives gzz̄ = gz̄z =

2
(1+zz̄)2 & gzz̄ = gz̄z = 1

2(1 + zz̄)2. Using the current conservation equation, global time

component of the CFT current operators corresponding to positive and negative frequency

modes j+
τ and j−

τ are given by

j+
τ =

∫ τ

0
dτ ′

1
2(1 + z′z̄′)2(∂z′j+

z̄′ + ∂z̄′j+
z′ ) + z̄′(1 + z′z̄′)j+

z̄′ + z′(1 + z′z̄′)j+
z′


j−

τ =
∫ τ

0
dτ ′

1
2(1 + z′z̄′)2(∂z′j−

z̄′ + ∂z̄′j−
z′ ) + z̄′(1 + z′z̄′)j−

z̄′ + z′(1 + z′z̄′)j−
z′

.

(3.60)

3.4.4 Faddeev-Kulish dressed state

Now, we express the dressed creation mode for the massive scalar field in terms of the

photon creation/annihilation modes and creation mode of the undressed scalar operator.

We substitute the expression for CFT current operators, j±
τ as

e
iq
∫

Γ(τ,p̂) jadxa

= eiq
∫ τ

0 (j+
τ ′ +j−

τ ′)dτ ′
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in the expression of the dressed creation mode of the massive scalar field

√
2ωp⃗ ã†

ωp⃗
= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log

(
∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log

(
ωp⃗+m

ωp⃗−m

)]

×
∫

dτ e−iLτ(ωp⃗−∆p⃗) e
iq
∫

Γ(τ,p̂) jadxa √
2∆p⃗

a†
∆p⃗

C ,

(3.61)

and express the AdS radius-corrected dressed operator at O(q). The AdS corrected

dressed creation operator at O(q) is given by
√

2ωp⃗ ã†
ωp⃗

= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log
(

∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log
(

ωp⃗+m

ωp⃗−m

)]

×
∫

dτ e−iLτ(ωp⃗−∆p⃗) iq

(∫ τ

0
j+

τ (τ ′, p̂)dτ ′ +
∫ τ

0
j−

τ (τ ′, p̂)dτ ′
)√

2∆p⃗

a†
∆p⃗

C

= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log
(

∆p⃗+m

∆p⃗−m

)]
e

iωp⃗L

[
π
2 + i

2 log
(

ωp⃗+m

ωp⃗−m

)] ∫
dτ e−iLτ(ωp⃗−∆p⃗)

× iq

[{
− 1

2(1 + z′z̄′)2

×
[

1
(2π)2

∫
dωq⃗ I(τ, ωq) 1

4z′(1 + z′z̄′)2 ∂zq

[
∂z̄q

(
64ω

7/2
q⃗ L2

1 + zq z̄q
a†AdS(−)

q⃗

)]∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)

+ 1
(2π)2

∫
dωq⃗ I(τ, ωq) 1

4z̄′(1 + z′z̄′)2 ∂z̄q

[
∂zq

(
64ω

7/2
q⃗ L2

1 + zq z̄q
a†AdS(+)

q⃗

)]∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)

]}

+ z̄′(1 + z′z̄′)[
1

(2π)3

∫
dωq⃗ I(τ, ωq)

∫
d2zq

1
z̄q − z̄′

1
4zq(1 + zq z̄q)2 ∂zq

[
∂z̄q

(
64ω

7/2
q⃗ L2

1 + zq z̄q
a†AdS(−)

q⃗

)]]

+ z′(1 + z′z̄′)[
1

(2π)3

∫
dωq⃗ I(τ, ωq)

∫
d2zq

1
zq − z′

1
4z̄q(1 + zq z̄q)2 ∂z̄q

[
∂zq

(
64ω

7/2
q⃗ L2

1 + zq z̄q
a†AdS(+)

q⃗

)]]]

×
√

2∆p⃗

a†
∆p⃗

C ,

(3.62)

where, I(τ, ωq) is given by

I(τ, ωq) = 1
iωq⃗

e− 1
2 iπLωq⃗

( 1
iLωq⃗

(eiLτωq⃗ − 1)− τ
)

. (3.63)

The dressed creation operator ã†
ωp⃗

acting on the vacuum |0⟩ gives the AdS corrected

Faddeev-Kulish dressed state.
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In appendix 3.A, in eq.(3.64) we have written the expression by dropping the terms for

the negative frequency mode involving annihilation modes of photon aAdS(±)
q⃗ . We can

further perform the global time, τ integral to simplify the expression. After performing

the global time, τ integral the integral evaluates to delta function, using which we can

further perform frequency, ∆p⃗ integral. We have shifted the final expression to appendix

3.A. After performing the frequency, ∆p⃗ integral we have the AdS corrected dressed

creation operator in eq.(3.66) of appendix 3.A.

3.5 Conclusions

In this chapter, we construct the AdS radius correction to the Faddeev-Kulish dressed

state. We follow the philosophy of Wilson line dressing in the context of AdS/CFT

to arrive at the Faddeev-Kulish dressed state. We study the CFT representation and

the mixed representation of the Faddeev-Kulish dressed state. We use bulk operator

reconstruction prescription to construct the soft photon modes in terms of the CFT

current operators. Then, after expressing the 1/L2 correction to the soft photon modes,

we implement AdS radius correction to the Wilson line dressing. We invert the mapping

of the AdS radius-corrected soft photon modes in terms of CFT current operators, that

means we evaluate the CFT current operators in terms of the AdS radius-corrected modes

of the photon. In the Wilson line dressing, we use this inverse mapping between the CFT

current operators and soft photon modes to construct the AdS radius-corrected creation

mode of the Wilson line dressed scalar field. The dressed mode acting on the vacuum

is the desired Faddeev-Kulish dressed state, which takes into account the AdS radius

correction.

Now, we discuss some aspects of the AdS correction to the Faddeev-Kulish dressed state.

In AdS spacetime, we do not have scattering states because everything is confined by

the AdS potential. However, we can consider various states that resemble flat scattering

wavepackets in a sufficiently small region in both space and time. In an appropriate limit,

the evolution of such states will be determined by flat spacetime physics to leading order.
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In any real scattering process, the scattering state is a wavepacket with some finite spatial

extent (a superposition of plane waves), and we can certainly construct such states on

the flat spacetime region around the center of the AdS spacetime, with the effect of the

small AdS potential treated perturbatively.

It does not make sense to talk about “the S-matrix” in full AdS spacetime, because the

wave packet arrives at the asymptotic boundary and bounces back in finite time. But

it is unambiguous to talk about a correlation function, and with well-chosen kinematics

the correlation function might be determined by the flat spacetime S-matrix in the flat

space limit. And, since the correlation function is defined unambiguously, we can con-

sider corrections to this result; subleading terms for the correlation function in the flat

spacetime.

In this chapter, we study a particular choice of states which is very natural from the

perspective of CFT, since the states are created by local operator insertions. The outcome

is a CFT correlation function that is determined by a flat-space scattering amplitude to

leading order in the flat limit. The CFT operator dual to dressed field is written in terms

of the boundary-to-boundary Wilson line and the CFT operator dual to the undressed

field at the boundary.

Once we have made this choice, the states and correlation function have an unambiguous

definition beyond the flat-space limit. So in that context it makes sense to ask about the

AdS corrections to the correlation function in the flat space limit. We have expressed

the 1/L2 corrected soft photon modes in terms of the CFT current operators, the soft

photon modes will receive corrections via photon kernels while accounting for the small

AdS potential. In section 3.4.2, we express the CFT current operators in terms of the

AdS corrected modes of the photon. The primary intent of the result is to determine

the inverse mapping which is a novel result of the chapter. To create the AdS radius-

corrected Faddeev-Kulish state, we employ this inverse mapping between the CFT current

operators and soft photon modes.

The issues of IR divergences and AdS as an IR cutoff are as follows. If we want to talk

about bulk observables in a small enough region where flat spacetime physics applies,
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then of course there is no effect from being in AdS; the physics of the IR divergence is no

different from being in flat spacetime. On the other hand, if we want to talk about CFT

quantities like a correlation function, the IR divergence will change the precise nature

of the flat spacetime limit, but the correlation function will still be finite. Since, we are

around the flat spacetime region, we can as well think of the physical observable as the

AdS correction to the S-matrix. We continue to examine the scattering process around

the flat spacetime region even after implementing the correction. The scattering process

will not be moved beyond the region of flat spacetime by the soft modes in which we are

concerned. The IR divergence in the AdS corrected S-matrix will result from the soft

photon exchange between the external legs, which is required in order to understand the

AdS correction to the soft theorem. The IR divergence in the AdS corrected S-matrix

will be cancelled by the AdS corrected Faddeev-Kulish state.

3.A AdS corrected Faddeev-Kulish dressed state: some

simplifications

In this appendix 3.A, we express the AdS corrected Faddeev-Kulish dressed state.
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The AdS corrected dressed creation operator at O(q) is given by

√
2ωp⃗ ã†

ωp⃗
= C̃ L

∫
d∆p⃗ e

−i∆p⃗L

[
π
2 + i

2 log
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∆p⃗+m

∆p⃗−m

)]
e
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ωp⃗+m

ωp⃗−m

)] ∫
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× iq
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×
 1

(2π)2

∫
dωq⃗ I(τ, ωq)

1
4z′(1 + z′z̄′)2 ∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(−)
q⃗

∣∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)

+ 1
(2π)2

∫
dωq⃗ I(τ, ωq)

1
4z̄′(1 + z′z̄′)2 ∂z̄q

∂zq

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(+)
q⃗

∣∣∣∣∣∣
(zq ,z̄q)=(z′,z̄′)


+ z̄′(1 + z′z̄′) 1
(2π)3

∫
dωq⃗ I(τ, ωq)

∫
d2zq

1
z̄q − z̄′

1
4zq(1 + zqz̄q)2 ∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

a†AdS(−)
q⃗


+ z′(1 + z′z̄′) 1
(2π)3
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dωq⃗ I(τ, ωq)

∫
d2zq

1
zq − z′

1
4z̄q(1 + zqz̄q)2 ∂z̄q

∂zq
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1 + zqz̄q
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
×
√

2∆p⃗

a†
∆p⃗

C ,

(3.64)

where, I(τ, ωq) is given by

I(τ, ωq) = 1
iωq⃗

e− 1
2 iπLωq⃗

( 1
iLωq⃗

(eiLτωq⃗ − 1)− τ
)

. (3.65)

After performing the frequency, ∆p⃗ integral we have the AdS corrected dressed creation

operator
√

2ωp⃗ ã†
ωp⃗

= 2πC̃

C

[
− iq

{
1
2(1 + z′z̄′)2t1 − z̄′(1 + z′z̄′)t2 − z′(1 + z′z̄′)t3

}]
|0⟩ . (3.66)

Here,

t1 =
∫

dωq⃗ tω ×
1

(2π)2
1

iωq⃗
e− 1

2 iπLωq⃗
1
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[
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(
64ω
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q⃗

)]∣∣∣∣∣
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−
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1
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1
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2 iπLωq⃗
1
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(
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)]∣∣∣∣∣
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,

(3.67)



70 CHAPTER 3. ADS CORRECTION TO THE FADDEEV-KULISH STATE

tω = 1
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(3.68)

t2 =
∫

dωq⃗ tω × tu, (3.69)

t3 =
∫

dωq⃗ tω × tv, (3.70)

tu = 1
(2π)3

1
iωq⃗

e− 1
2 iπLωq⃗

∫
d2zq

1
z̄q − z̄′

1
4zq(1 + zq z̄q)2 ∂zq

[
∂z̄q

(
64ω

7/2
q⃗ L2

1 + zq z̄q
a†AdS(+)

q⃗

)]
, (3.71)

tv = 1
(2π)3

1
iωq⃗

e− 1
2 iπLωq⃗

∫
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1
zq − z′

1
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[
∂zq

(
64ω

7/2
q⃗ L2

1 + zq z̄q
a†AdS(+)

q⃗

)]
. (3.72)

3.A.1 More detailed steps of the derivation of the inverse map-

ping

In this section 3.A.1, we provide the detailed steps to derive the inverse mapping between

the CFT current operators and the photon modes.

The annihilation operator of an outgoing photon of negative helicity is expressed in terms

of an integrated expression of the boundary CFT current operator

√
2ωq⃗ aAdS(−)

q⃗

= 1
32πω2

q⃗L2
1 + zqz̄q√

2ωq⃗

∫
dτ ′ e−iωq⃗L(π

2 −τ ′)
∫

d2z′
∫

d2zw

(1 + z′z̄′)2(1 + zwz̄w)2

(z̄w − z̄′)2(zq − zw)3


× ∂z′j−

z̄′ (τ ′, z′, z̄′) .

(3.73)

Now, we act with a ∂z̄q on both sides of the eq.(3.73) and get

∂z̄q

64πω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 =
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

∫
d2z′

∫
d2zw ∂z̄q

(1 + z′z̄′)2(1 + zwz̄w)2

(z̄w − z̄′)2(zq − zw)3


× ∂z′j−

z̄′ (τ ′, z′, z̄′) .

(3.74)
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Now, using the identity

∂z̄q

1
(zq − zw)3 = (2π)(−1)2

2! ∂2
zq

δ(2)(zq, zw)

= (2π)(−1)2

2! ∂2
zw

δ(2)(zq, zw) ,

(3.75)

we simplify the expression and get

∂z̄q

64πω
7/2
q⃗ L2

1 + zqz̄q
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dτ ′ e−iωq⃗L(π
2 −τ ′)

∫
d2z′
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z̄′ (τ ′, z′, z̄′) .

(3.76)

Now, we perform the d2zw integral using the delta function δ(2)(zq, zw) to simplify the

expression a bit

∫
d2zw ∂2

zw
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(1 + zwz̄w)2

(z̄w − z̄′)2


=

2z̄2
q

(z̄q − z̄′)2 ,

(3.77)

where, in the intermediate steps of eq.(3.77) we use the product rule for double differen-

tiation and expand each term by the following way
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(z̄w − z̄′)2 − 2π(1 + zwz̄w)2 ∂zw∂z̄wδ(2)(zw, z′)

− 4πz̄w(1 + zwz̄w) ∂z̄wδ(2)(zw, z′).

(3.78)

After simplification the expression becomes

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 =
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

∫
d2z′ (1 + z′z̄′)2 2z̄2

q

(z̄q − z̄′)2 ∂z′j−
z̄′ (τ ′, z′, z̄′) .

(3.79)
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Now, further acting ∂zq on the simplified expression eq.(3.79) and using the identity

∂zq

1
(z̄q − z̄′)2 = 2π(−1)∂z̄qδ(2)(zq, z′) , (3.80)

we get

∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

 = −
∫

dτ ′ e−iωq⃗L(π
2 −τ ′)

(
8πzq(1 + zqz̄q)2

)
∂zqj−

z̄q
(τ ′, zq, z̄q) .

(3.81)

Now, we get the inverse mapping of the CFT current operator for the negative frequency

in terms of the AdS corrected photon annihilation mode

∂zqj−
z̄q

(τ ′, zq, z̄q) = − L

(2π)2

∫
dωq⃗ e−iωq⃗L(τ ′− π

2 ) 1
4zq(1 + zqz̄q)2 ∂zq

∂z̄q

64ω
7/2
q⃗ L2

1 + zqz̄q

aAdS(−)
q⃗

.

(3.82)

The useful identities used to derive the inverse mapping, we list in appendix, section

3.A.2.
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3.A.2 Useful identities used to derive the inverse mapping

Here, we list the useful identities used to derive the inverse mapping

∂n
z δ(z) = (−1)nn!

zn
δ(z)

∂zδ(z, w) = −∂wδ(z, w)∫
∂n

z δ(z, w)f(z)dz = (−1)n∂n
z f(z)

∣∣∣∣
z=w

∂zδ(z, w)f(w, w̄) = ∂z

[
δ(z, w)f(w, w̄)

]
= ∂z

[
δ(z, w)f(z, z̄)

]
= ∂zδ(z, w)f(z, z̄) + δ(z, w)∂zf(z, z̄)

∂2
z δ(z, w)f(w, w̄) = ∂2

z

[
δ(z, w)f(w, w̄)

]
= ∂2

z

[
δ(z, w)f(z, z̄)

]
= ∂2

z δ(z, w)f(z, z̄) + δ(z, w)∂2
z f(z, z̄) + 2∂zδ(z, w)∂zf(z, z̄)

∂z̄
1

(z − w)n+1 = (2π)(−1)n

n! ∂n
z δ(z, w) ,

(3.83)

where, the delta function δ(z, w) in the last equation is a complex plane delta function.
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Chapter 4

Conclusions & Open Questions

“The end is where we start from.”

–T. S. Eliot.

In this thesis, we explore two key aspects of flat-space holography. First, we study the

celestial amplitude, which takes a bottom-up approach. We consider conformal primary

wavefunctions that transform as conformal primaries under the Lorentz group. Conse-

quently, the resulting S-matrix transforms covariantly as conformal correlators, trading

the plane wave basis with a basis of conformal primary wavefunction. We study celestial

holography ideas in 2d. This setting serves as an excellent testing ground, as we have

exact S-matrices to play with in 2d and try to learn lessons from. Second, we study the

flat-space limit of the AdS/CFT. We consider a scenario where we have a AdS geometry,

and within this geometry, there is an observer who can only examine physical phenom-

ena occurring at length scales smaller than the characteristic AdS length scale. From

the perspective of this observer, confined to probing only these smaller length scales, the

geometry they perceive and experience would appear to be flat, rather than the true

underlying AdS geometry. In other words, if an observer is limited to studying physics

within a certain distance scale in a AdS geometry, their observations and measurements
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would be indistinguishable from those made in a flat-space, as the curvature effects of the

AdS geometry would be negligible at those small distance scales. The key idea is that

flat spacetime is essentially a part of AdS spacetime. Consequently, the physics of flat

spacetime must be encoded within the framework of AdS spacetime. Since the physics

in AdS spacetime is known to be dual to CFTs via the AdS/CFT correspondence, it

follows that CFTs must also encode the physics of flat spacetime. This reasoning forms

the general logic behind the concept of flat-space limit of AdS/CFT, which establishes

a connection between flat spacetime physics and CFTs through the intermediate step of

flat-space limit of AdS spacetime.

In chapter 2, we study the celestial amplitude associated with the 2d bulk S-matrix. We

show that, in the case of massive scalar particles, the celestial amplitude is essentially

the Fourier transform of the S-matrix expressed in terms of rapidity. Considering the

Sinh-Gordon S-matrix, we compute the perturbative celestial amplitude, identifying the

existence of two distinct types: the retarded and the advanced, attributed to a pole at

the origin of the complex rapidity-plane. This pole holds significant importance within

perturbation theory, and we elaborate extensively on how to address it within the frame-

work of perturbation theory by introducing two celestial amplitudes that correspond to

two different iϵ prescriptions. By translating the crossing and unitarity conditions, we

establish their equivalents for the celestial amplitude. Through perturbative analysis of

the coupling constant in the 2d Sinh-Gordon model, we verify that the celestial ampli-

tude satisfies the crossing and unitarity conditions. We employ the bootstrap idea to

derive higher-order celestial amplitudes based on lower-order ones. Finally, we translate

the gravitational dressing condition of the S-matrix in terms of the celestial amplitude.

We note, through various ansatzes, the removal of poles from the right half-plane for the

dressed celestial amplitude.

In chapter 3, we construct the AdS radius correction to the Faddeev-Kulish dressed

state. The infrared (IR) divergence in the S-matrix arises due to the assumption of

asymptotic decoupling. This assumption considers the asymptotic Hamiltonian as free,
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implying that the asymptotic states are described by Fock space states, and the fields

behave like free fields in the asymptotic region of flat spacetime. By relaxing this as-

sumption, the Faddeev-Kulish state can be introduced, leading to an IR-finite S-matrix.

The Faddeev-Kulish state incorporates soft photon modes that dress the scattering state

within the Fock space, thereby accounting for the long-range effects of the electromag-

netic interaction. Using the bulk operator reconstruction, we establish modes for the

massive scalar field dressed by the Wilson line and examine both the CFT representa-

tion and the mixed representation of the Faddeev-Kulish dressed state. Using the bulk

operator reconstruction, we create soft photon modes in terms of CFT current operators.

Then, after incorporating the AdS correction into the soft photon modes, we apply AdS

radius correction to the Wilson line dressing. We invert the mapping of the AdS radius-

corrected soft photon modes in terms of CFT current operators, essentially evaluating

the CFT current operators in relation to the AdS radius-corrected photon modes. In the

Wilson line dressing, we utilize this inverse mapping between the CFT current operators

and soft photon modes to construct the AdS radius-corrected creation mode of the Wilson

line dressed scalar field. The resulting dressed mode, acting on the vacuum, represents

the desired Faddeev-Kulish dressed state, incorporating the AdS radius correction.

We end by outlining several open questions.

• Connecting the flat-space limit of AdS amplitude with the celestial am-

plitude. It would be nice to connect the celestial amplitude to the flat-space limit

of AdS amplitude. For this, we can utilize the dictionary that relates the positions

of operators at the AdS boundary to the momenta of particles in the flat-space

limit of AdS [54]. The celestial amplitude, expressed in the conformal primary ba-

sis, serves as an integral transform of the flat-space amplitude in momentum space

[6], and by translating this celestial amplitude, we can interpret it as an integral

transform of the positions of operators at the AdS boundary. This opens up pos-

sibilities to understand the interpretation of the integral transform in terms of a

CFT residing on the boundary. In this line of thought, we can explore the confor-
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mal block expansion for the celestial amplitude. In AdS, this involves convoluting

the conformal block expansion of the boundary four-point function with an integral

transform, allowing us to observe how the block is altered. By exclusively working

in flat-space and utilizing the partial wave expansion of the four-point amplitude

with Gegenbauer polynomials as a basis [31], we can perform the integral trans-

form. The main question is whether, after the integral transform, the transformed

object demonstrates a well-defined structure in terms of conformal block decompo-

sition, thereby establishing a connection with the conformal block expansion in the

celestial CFT of [33].

An alternative approach can also be considered. By utilizing the mapping between

the creation/annihilation operators and the CFT operators in the boundary of AdS

of [89], we have the means to construct the S-matrix based on CFT correlator.

Next, we can convolute it with the bulk-to-boundary propagators to obtain the

massive celestial amplitude. The combination of these two mappings allows for the

computation of the celestial amplitude from AdS amplitude. It would be nice to

connect with the recent works [109–111].

• Asymptotic charges and states from AdS/CFT. The asymptotic symmetries

lead to the Faddeev-Kulish dressed state since the amplitudes that preserve the

asymtotic charge are IR finite. The presence of the selection sectors can be inferred

from the presence of asymptotic symmetries, as in [96], the explicit construction of

Faddeev-Kulish state is shown in [98]. Now, the study of generalizations of asymp-

totic symmetries known as Λ-BMS4 in AdS is done using leaky boundary condition

instead of standard dirichlet boundary condition in works of [104]. It would be

fascinating to have the states from AdS/CFT and incorporate AdS corrections into

them. This approach would offer an alternative pathway of the work in chapter 3.

• Faddeev-Kulish state involving soft graviton modes from AdS/CFT. As an

extension of the work in chapter 3, it would be interesting to construct the Faddeev-

Kulish state involving soft graviton modes in the flat-space limit of AdS/CFT and
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examine its AdS corrections. This involves creating flat-space graviton scatter-

ing states using CFT3 stress tensor operators. By applying Wilson line dressing, it

would be nice to construct the Faddeev-Kulish state and by establishing the connec-

tion between flat-space graviton scattering states and CFT stress tensor operators

allows for the derivation of the soft graviton theorem and the AdS correction to the

soft graviton theorem from the CFT3 stress tensor Ward identities.

• Integrable bootstrap from the flat-space limit of AdS/CFT. It would be

nice to study whether integrability persists in some manner when exactly solvable

models are placed in AdS2. One can wonder if the subleading corrections to the flat-

space S-matrix retain their integrable properties. Furthermore, it would be nice to

calculate non-perturbative boundary correlators in AdS2 for integrable S-matrices

in flat-space. In [115], we analyze the flat-space limit of scalar scattering in AdS2

using bulk-operator reconstruction in AdS/CFT. By mapping CFT operators on

the AdS boundary to scattering states in flat-space, we compute the S-matrix. We

establish the tree-level factorization of the n → n S-matrix for integrable models

in the flat-space limit. Exploring the relationship between celestial CFT0 (CCFT0)

amplitudes, as in [116], and the flat-space limit of CFT1 correlators is an interesting

avenue.

The ultimate aim is to understand quantum gravity in flat-space, either through the flat-

space limit of the AdS/CFT framework or via celestial holography. There is still a long

way to go ahead in this regard, and I really hope that my thesis will make a meaningful

contribution. I would like to conclude my thesis by the quote

“The larger the island of knowledge, the longer the shoreline of wonder.”

–Ralph W. Sockman.
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