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Abstract

This thesis is a study of measurement of simple quantum systems. The general frame-

work of projections (ideal measurements) on eigenspaces of an observable of a quantum

system is employed to study the evolution of an object system that is under continuous

monitoring. When these projections are on the subspaces of the object system, then the

measurement is direct. If the projections are on the subspaces of an ancilla (i.e. a probe)

coupled to the object system, then the measurement is indirect. When such measure-

ments (direct or indirect) are performed repeatedly at a high rate, then the object system

is said to be under continuous observation. The object systems and the measurement

protocols that are studied here are simple enough to admit a thorough analysis by use

of standard mathematical methods. For direct measurements, the findings of this thesis

include closed form expressions for distribution of first arrival times and its asymptotic

form. For indirect measurements, the jump events in a two state system are studied via

clicks observed in a readout process. We obtain closed form expressions for expected

number of such clicks.

1



CHAPTER 1

Introduction

Quantum mechanics has a special relationship with classical mechanics in that classi-

cal mechanics is realized as a certain limit of quantum theory, whereas the formulation of

quantum mechanics itself requires classical mechanics [LL77]. This is quite unlike the sit-

uation where a more general theory (such as relativistic mechanics) can be obtained from

its own set of principles independent of the theory it generalizes (Newtonian mechanics).

From the point of view of the experimenter, a given system in general has some interest-

ing properties whose quantitative description gives the experimenter an understanding of

the behaviour of the system. Such quantitative description of properties is made possible

by measurement of certain observables of the system under study. Quantum mechanics

provides a framework for calculating the probability distribution of the measured value

of an observable. In so far as the calculation of distributions is concerned, this frame-

work is fully deterministic. The Schrödinger’s equation describes the evolution of the

state of the system, and the probability distribution of an observable in a given state is

obtained from the Born rule. The verification of this distribution requires measurements

to be performed on an ensemble of identically prepared systems. Any measurement pro-

cedure [Bal98] establishes a correlation between the measured observable of the system

and a macroscopic indicator that can be directly observed. Such correlations inevitably

disrupt the Schrödinger evolution of the system proper and bring it in a new state. The

measurement procedure, whose description is not contained in the system’s Schrödinger

equation, verifies the distribution calculated using Schrödinger evolution and also changes

this distribution irreversibly.

1.1. Brief overview of quantum measurements

The most complete description of the state of a closed system S in quantum theory

is given by a normalized vector |ψ⟩ (a pure state) that lies in the system Hilbert space

H. The Hilbert space H is a complex vector space which includes the totality of all

the possible states of S. The energy of the closed system S is an important observable.

In quantum mechanics, this observable is a self-adjoint operator Ĥ that acts on H and

it generates the evolution of the system state |ψ⟩ in accordance with the Schrödinger’s

equation (setting ℏ = 1)

ı ∂t|ψ⟩ = Ĥ|ψ⟩. (1.1)

Any other observable associated with S is similarly represented by a self-adjoint oper-

ator M̂ acting on H. The spectrum Λ of M̂ consists of real values and the associated

2



1.1. BRIEF OVERVIEW OF QUANTUM MEASUREMENTS 3

orthonormal eigenstates |λ⟩ form a complete system. These facts are expressed by

M̂ |λ⟩ = λ|λ⟩, ⟨λ|µ⟩ = δλµ,

∫
λ∈Λ

|λ⟩⟨λ| dλ = 1,

where 1 stands for the identity operator on H. The integration should be interpreted as

a summation on part of the spectrum which is discrete. Suppose that Λ =
⋃
k≥1Ek of

mutually disjoint subsets Ek, then the projectors πk defined below are self-adjoint and

satisfy the completeness and orthogonality relations

πk :=

∫
λ∈Ek

|λ⟩⟨λ| dλ,
∑
k≥1

πk = 1, πjπk = δjkπk. (1.2)

Now consider a measurement procedure intended to decide if the measured value M of

M̂ for a given state |ψ⟩ of the system lies in Ek ⊂ Λ. The probabilities P|ψ⟩(M ∈ Ek)

that the value of M̂ lies in Ek when the system state is |ψ⟩, satisfy

P|ψ⟩(M ∈ Ek) = ⟨ψ|πk|ψ⟩,
∑
k≥1

P|ψ⟩(M ∈ Ek) = 1. (1.3)

It should be pointed here that the measurement procedure only decides in which of the

ranges Ek the value M lies, rather than the precise value M . The post measurement

state of the system is
πk|ψ⟩√
P|ψ⟩(Ek)

, (1.4)

if it is known that the measurement reveals the value of M to be in Ek. The EQs. (1.3

and 1.4) together constitute Lüders-von Neumann projection postulate. If the spectrum

Λ of M̂ is non-degenerate and discrete, then one can take Ek = {λk} and a precise

measurement of the value of M̂ is possible (Chapter III, [vN18]). In this case, EQs. (1.3

and 1.4) include the projection postulate of quantum mechanics, which is quoted below

from [Sha94] with a slight change of notation.

If the particle is in the state |ψ⟩, measurement of the observable M̂

will yield one of the eigenvalues λ with probability P (λ) ∝ |⟨λ|ψ⟩|2.
The state of the system will change from |ψ⟩ to |λ⟩ as a result of the

measurement.

It further follows from the above that if M̂ is immediately measured after the first mea-

surement, then one gets the same result for the measured value. This is a repeatability

condition on the measured value. The condition for repeatability of measurements of an

observable with discrete spectrum under the Lüders-von Neumann projection postulate

has been analysed in [BGL95]. It is further proposed there that repeatable measurements

of observables with continuous spectra are possible with more generalized measurements

as against the type of ideal measurements described above.

For observables with continuous spectra, von Neumann’s projection postulate admits

only approximate measurements. For example, if in the position measurement of a particle

in state |ψ⟩ in one dimension, it is found in the interval (−ϵ/2,+ϵ/2), then the post



4 1. INTRODUCTION

measurement state of the particle in coordinate representation is
ψ(x)√∫ ϵ/2

−ϵ/2 |ψ(x′)|2 dx′
−ϵ/2 < x < ϵ/2,

0 R \ (−ϵ/2, ϵ/2).

One can now define a new observable X̂ϵ which approximates the position operator X̂.

The eigenvalues of X̂ϵ are in the discrete set, {kϵ, k ∈ Z} and its spectral representation

in terms of orthogonal projections is given by

X̂ϵ =
∑
k∈Z

(kϵ)πk, πk =

∫ kϵ+ϵ/2

kϵ−ϵ/2
|x⟩⟨x| dx. (1.5)

Measurement of X̂ϵ corresponds to an approximate measurement of X̂. An exact mea-

surement of X̂ϵ is possible by what was stated above for observables with discrete spectra.

Successive measurements of X̂ϵ obey the projection postulate of quantum mechanics and

therefore verify the repeatability condition for the position operator X̂ with precision ϵ.

The projection postulate of quantum mechanics which is stated for all observables may

be regarded true for an observable with continuous spectrum when von Neumann mea-

surements of arbitrary precision for such an observable are possible. This idealisation

puts strong demands on the measuring device’s capabilities, such as the measurement

procedure does not disturb the value of the measured quantity at arbitrary precision.

Let us recollect the results for ideal measurement of an observable M̂ described above

and rewrite the expressions in terms of density matrices. An ideal measurement is per-

formed by a collection of orthogonal projections πk acting on the Hilbert space H. πk

project vectors in H onto mutually orthogonal subspaces Hk such that∑
k≥1

πk = 1, πjπk = δjkπk, H =
⊕
k≥1

Hk. (1.6)

If the state of the system is described by the density matrix ρ, then the probability

Pρ(M ∈ Ek) that the outcome of the measurement lies in Ek and the post measurement

state ρ̃ are given by

⟨M̂⟩ = tr[ρM̂ ], Pρ(M ∈ Ek) = tr[ρπk], ρ̃ =
πkρπk

Pρ(M ∈ Ek)
. (1.7)

In [GLE57], it was shown that every probability measure on mutually orthogonal closed

subspaces of a Hilbert space of dimension 3 or higher is of the form in the second EQ. (1.7)

for some density matrix ρ. This is the well known Gleason’s Theorem for projective

measurements.

Suppose M̂ ′ is another observable (i.e., a self-adjoint operator acting on H) of the

system S. Then Λ′, λ′, E ′
j, π

′
j and H′

j can be defined for M̂ ′ in the same manner as the

unprimed counterparts are defined for M̂ and EQs. (1.6, 1.7) can be written for M̂ ′ and

a given system state ρ. The individual probability distributions of M̂ and M̂ ′ in the

state ρ are known from Pρ(M ∈ Ek) and, Pρ(M
′ ∈ E ′

j) respectively. A joint probability
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distribution of M̂ and M̂ ′ in ρ specified by the probabilities Pρ(M ∈ Ek, M
′ ∈ E ′

j) can be

obtained in the case when M̂ and M̂ ′ commute, i.e., when [M̂, M̂ ′] = M̂M̂ ′ − M̂ ′M̂ = 0.

This is equivalent to commutability of the projections π′
j and πk and in fact

π′
jπk = πkπ

′
j = πH′

j∩Hk
,

Pρ(M ∈ Ek, M
′ ∈ E ′

j) = tr[ρ πH′
j∩Hk

].
(1.8)

The order in which the observables are measured is immaterial as the resulting state

ρ̃ post a measurement of M̂ followed by M̂ ′ is the same as post a measurement of M̂ ′

followed by M̂ . In this sense, the observables M̂ and M̂ ′ are simultaneously measurable.

However, when [M̂, M̂ ′] ̸= 0, the projectors may not commute. Then the products π′
jπk

are not even self-adjoint and therefore cannot represent a compound property of the

system (for necessary and sufficient conditions for commutability of projections, please

see [Reh80]). In this case, M̂ and M̂ ′ are said to be incompatible and a joint probability

distribution such as in EQ. (1.8) cannot be given. For canonically conjugate observables

such as the particle position X̂ and the particle momentum P̂ , one has the commutation

relation and the well known Heisenberg’s uncertainty relation[
X̂, P̂

]
= ı,

√
⟨(X̂ − ⟨X̂⟩)2⟩

√
⟨(P̂ − ⟨P̂ ⟩)2⟩ = σ(X̂)σ(P̂ ) ≥ 1

2
. (1.9)

In the standard proof of the uncertainty relation, the RMS deviations σ(X̂) and σ(P̂ )

in the given state are calculated from the individual distributions of X̂ and P̂ in the given

state, as against obtaining them as deviations in the marginals of a joint distribution.

Statistically, this amounts to considering two ensembles of systems, all prepared in the

same state and making ideal measurements of X̂ in one ensemble and that of P̂ in the

other. Then the RMS deviations in the two distributions obtained satisfy the uncertainty

relation. Since no joint distributions of conjugate variables can be obtained via the ideal

measurements described thus far, generalized measurements are used for this purpose.

Studies by Arthurs & Kelly [AKJ65] and by She & Heffner [SH66] address this problem.

In [AKJ65], the authors describe a joint measurement of X̂ and P̂ by coupling the

object system to two one dimensional meter systems, which interact with the object

system via an interaction Hamiltonian of the form

Ĥint = K
(
X̂ p̂x + P̂ p̂y

)
. (1.10)

Here (x̂, p̂x) and (ŷ, p̂y) are the conjugate pairs for the two meter systems and K is a

coupling constant which is large enough so that Ĥint primarily evolves the total system

during the measurement process via EQ. (1.1). For a proper choice of the initial states

of the meter systems, a simultaneous measurement of x̂ and ŷ (this is possible as they

commute) at t = 1/K leads to an indirect measurement of X̂ and P̂ respectively. From

the joint probability distribution P (x, y), it is possible to show that ⟨x̂⟩ and ⟨ŷ⟩ are

respectively equal to the expected values ⟨X̂⟩ and ⟨P̂ ⟩ of the object system in its pre-

measurement state. It is further shown that if the meter readings are x0 and y0, then the
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post measurement state of the object system turns out to be(
1

πb

) 1
4

exp

[
− 1

2b
(X − x0)

2 + ıy0X

]
, (1.11)

where b is a device parameter which encodes the relative precision with which x̂ and ŷ are

measured. Notice that x̂ and ŷ are measurements on two separate meters, and each can

be ideally measured with any desired accuracy in the context of quantum measurement

of a single observable with a continuous spectrum (see discussion following EQ. (1.5)).

Thus, the value of b is controlled by the experimenter. For the choice of b = σ(X̂)/σ(P̂ )

(the ratio in the pre-measurement state of the object system), it can be shown that the

uncertainty relation in this indirect simultaneous measurement is given by

σ(x̂)σ(ŷ) ≥ σ(X̂)σ(P̂ ) +
1

2
≥ 1

whose RHS is different from that of the standard uncertainty relation by a factor of

2. Unlike the case of ideal measurements, where the post measurement state of the

object system is an eigenstate of the measured observable, we notice that simultaneous

measurement of incompatible observables can leave the object system in a coherent state

such as the expression in (1.11). The increased lower bound of the uncertainty product

is due to the additional effect of the joint measurement bringing about a new state of

the object system. She & Heffner [SH66] treat simultaneous measurement of conjugate

observables as a single measurement of a non-Hermitian observable â whose eigenstates

|α⟩ are the coherent states.

â =
1√
2 b

(
X̂ + ıbP̂

)
, â|α⟩ = α|α⟩. (1.12)

If a measurement gives x0 for X̂ and y0 for P̂ , then the post measurement state of the

object system is the eigenstate in the expression (1.11). This state is an eigenstate of â

with eigenvalue α(x0, y0) = (x0 + ıby0)/
√
2 b. If the pre-measurement state of the object

system is |ψ⟩ then the joint probability distribution for the position (x) and the momen-

tum (y) in the indirect measurement is just P (x, y) = |⟨α(x, y)|ψ⟩|2. The states |α⟩ are
not orthogonal wrt to the inner product on the Hilbert space of square integrable func-

tions. If another simultaneous measurement is performed immediately after the first, then

P (x′, y′) = |⟨α(x′, y′)|α(x, y)⟩|2, which implies that these simultaneous measurements do

not have the repeatability property of ideal measurements. The states |α⟩ however do

satisfy the completeness relation

1

π

∫
α∈C

|α⟩⟨α| d2α = 1. (1.13)

It is interesting to note that the system of coherent states {|α⟩, α ∈ C} is in fact over-

complete, i.e., if a finite collection of states {|α1⟩, . . . , |αn⟩} are removed, then the system
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is again complete. In [Per71], it has been shown that states with

αm,n =

√
π

b
(m+ ı b n), m, n ∈ Z, (m,n) ̸= (0, 0),

form a minimal collection of coherent states which is complete.

Thus, we see that with non-ideal measurements, it is possible to give a joint probability

distribution P (x, y) for the simultaneously measured values of particle position X̂ and

particle momentum P̂ . This description of simultaneous measurement is true only about

those measurement procedures which lead the object system into minimum uncertainty

states. It is conceivable to have measurement procedures which leave the object system

in a mixed state. All such cases are covered in the theory of generalized measurements.

A generalized measurement is effected by a positive operator valued measure (POVM).

A POVM is a collection of operators {Πk} acting on the Hilbert space H of the object

system. {Πk} possess the following properties,∑
k

Πk = 1, ⟨ψ|Πk|ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H. (1.14)

The index k enumerates the measurement outcomes. We note that the decomposition

in EQ. (1.2) for projective measurements is a special case of EQ. (1.14) wherein the

orthogonality condition has been dropped for {Πk}. Further, the coherent state decom-

position in EQ. (1.13) is an example of a POVM in which the measurement outcomes

are continuously indexed by complex numbers α. It should be noted that while in the

case of EQ. (1.13), the operators Πα = |α⟩⟨α| are projections on coherent states, in the

general case of POVM, the operators Πk need not be projections. A generalization of

the Gleason’s Theorem for POVM is due to P. Busch [Bus03]. The probability of the

outcome k in measurement effected by {Πk} on the object system in state ρ is

Pk = tr[ρΠk]. (1.15)

The POVM {Πα}α∈C in the Arthurs-Kelly protocol is obtained by performing commut-

ing projective measurements on H ⊗ Hx ⊗ Hy (Hx, Hy being the Hilbert spaces of the

meter systems) and the post measurement states are the coherent states |α⟩ ∈ H. We

shall encounter a similar effect in continuous monitoring of a qubit, to be discussed in the

Chapter 3. In general, the knowledge of {Πk} is not sufficient to obtain the post measure-

ment state of the system, as it may be possible to obtain the same POVM by a different

extension to a larger Hilbert space. Thus, we see that the system dynamics may be

influenced in a desired way via measurements by an appropriate choice of system-device

interaction. Properly shaped system-device interactions can be employed for steering a

quantum system towards a target state via successive measurements [RCGG20].

1.2. Continuous time measurements and the Zeno effect

Single measurements on a quantum system were discussed in the previous section. In

the manner of their description, these measurements are instantaneous, i.e., the duration
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it takes to carry out the measurement is vanishingly small. It is maybe possible to model

more realistic measurements that require finite time within the scheme of generalized

measurements. The optimal POVM that gives an estimate of the measured quantity

would be the one which has a probability distribution on its outcomes peaked around the

true value of the measured quantity. The question of choosing the best estimator for the

quantity to be measured leads one to the very interesting field of quantum estimation

theory [Hel76]. Problems of this nature are not studied here, and it will be assumed that

the measurements are sharp. On the other hand, the case where the observed system is

continuously monitored is the main aspect of the problems we consider. This corresponds

to the situation where the measurement process is such that a readout is continuously

generated as the apparatus interacts with the object system over time.

Continuous monitoring via ideal measurements leads to the well known quantum Zeno

effect [MS77]. This effect can be illustrated for the simplest case quite readily. Consider

a sequence of ideal measurement of an observable M̂ with a simple discrete spectrum

{λk}k≥1. The spectral representation of M̂ is

M̂ =
∑
k≥1

λk |λk⟩⟨λk|.

The time interval between successive measurements is τ . During each such interval, the

system evolves via the Hamiltonian Ĥ. Continuous measurement of M̂ would correspond

to the case where τ → 0. Assume that at t = 0, the state of the system is |ψ(0)⟩ = |λm⟩.
Then, in accordance with Schrödinger’s equation one has

|ψ(τ)⟩ = exp
[
− ıτĤ

]
|λm⟩,

⇒ |ψ(τ)⟩ =

[
1+ (−ıτĤ) +

(−ıτĤ)2

2
+ . . .

]
|λm⟩.

(1.16)

Now, an an ideal measurement is performed on the system to determine if the state is

still |λm⟩, i.e., if the measured value lies in {λm}. The amplitude of this state in |ψ(τ)⟩ is

⟨λm|ψ(τ)⟩ = 1− ıτ⟨Ĥ⟩m − τ 2

2
⟨Ĥ2⟩m + . . .

where the subscript m indicates the expectation of the operator in the state |λm⟩. One is

interested in the probability pm(τ) that the measured value is in {λm}. This is given by

pm(τ) = |⟨λm|ψ(τ)⟩|2 = 1− τ 2 (⟨Ĥ2⟩m − ⟨Ĥ⟩2m)︸ ︷︷ ︸
(σ(Ĥ)m)2

+O(τ 4). (1.17)

Thus the short time behaviour of pm(τ) is quadratic in τ . In this regime, the following

approximation holds

pm(τ) ≈ exp(−τ 2σ(Ĥ)m)
2). (1.18)
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Figure 1. Plot of Survival probability as a function of time and measure-
ment strength λ.

If N successive measurements are performed at intervals of τ , then the probability that

every measurement result reveals the system to be in |λm⟩ is

pm(Nτ) = pm(τ)
N .

Fix a time t = Nτ . If N is made sufficiently large so that the approximation in EQ. (1.18)

is good, then one may write

pm(t) ≈
[
exp(−τ 2σ(Ĥ)m)

2)
]N

= exp(−t2σ(Ĥ)2m/N). (1.19)

Because N can be arbitrarily large, the above indicates that limN→∞ pm(t) = 1. There-

fore, in the limit of continuous measurements, the system stays in the initial state. [MS77]

cautions to not interpret lim pm(t) as the probability that the system would be found in

its initial state after time t. In fact, in the above derivation, pm(τ) is such a probability.

The freezing of evolution due to continuous ideal measurements is the standard def-

inition of the quantum Zeno effect. In [Wol01] chapter 3, authors have argued that a

more admissible definition maybe adopted in which the observations are not ideal. Of

relevance to the problems to be considered in this thesis, this broader definition would

include the slowdown in evolution of a system which is observed continuously via gen-

eralized measurements. In these problems, the measurements would be characterized by

a certain strength, whose value when increased, causes the state evolution of the object

system to either slowdown or even get restricted to a smaller part of the Hilbert space.

When the measurement strength is increased in an unrestricted manner, the slowdown

would be absolute, reminiscent of freezing of evolution in the purely theoretical case

of ideal measurements. The graph in Fig.(1) is a plot of expressions in EQ. (3.23) for
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various values of the measurement strength λ. The effect of increasing the strength of

measurement on state evolution is clearly seen.

In the continuous monitoring process, the object system is in a continual interaction

with the measuring apparatus and also possibly with an environment. A readout of the

apparatus is the observational record of a physical quantity of interest in the object sys-

tem. This record reveals to the experimenter the trajectory of the value of the measured

quantity and therefore provides partial information about the state evolution of the ob-

ject system for the duration of the experiment. Of interest to the current thesis are those

continuous measurements which involve counting of a certain type of events that occur

in the system. A typical example of such a continuous measurement is the direct detec-

tion of photons emitted by an atom which is driven by a resonant source [BP02]. This

example of resonance fluorescence also serves as motivation for the model considered in

chapter (3).

Consider a two state atom with Hamiltonian HS which is driven by a resonant laser

source. The interaction with the laser can be described by an effective Hamiltonian HL

acting on the atom’s Hilbert space. The Hamiltonians are

HS =
ω0

2
σz, HL = −γ0

2
σx.

γ0 is a positive frequency which depends upon the intensity of the light. The environment

of the atom consists of the electromagnetic field vacuum, whose Hamiltonian is given by

HE =
∑
j

ωj â
†
j âj.

Take the temperature to be 0 so that the only significant process between the atom and

the environment is the excitation of the field vacuum via emissions from the atom. The

driving laser causes Rabi oscillations in the atom at a frequency of γ0. The lowering and

the raising operators for the atomic states are respectively

σ− =

[
0 0

1 0

]
, σ+ =

[
0 1

0 0

]
.

If γ be the effective dissipation rate into the field vacuum then using the above jump op-

erators, a Lindblad master equation for the density matrix of the atom in the interaction

picture can be written as

d

d t
ρ = ı

γ0
2
[σx, ρ ] + γ

(
σ− ρ σ+ − {σ+ σ−, ρ}

2

)
. (1.20)

The emission spectrum from the atom would be that of a dipole radiation obtained by

coupling of the dipole operator of the atom to the reservoir modes. The experimenter

may perform a photon counting experiment by placing detectors at various orientations

and of various sensitivities (for light frequency). Such continuous monitoring in real time

generates a readout which allows for expressing the quantum state evolution of the atom

via a stochastic equation due to Barchielli & Belavkin [BB91].
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It is well known [Car99] in the theory of resonance fluorescence that at sufficiently

low laser intensity, i.e. γ0 ≪ γ, the emission spectrum is sharply peaked at the transition

frequency ω0. While there is always some incoherent component in the spectrum leading

to broadening, as a simplification, assume only coherent scattering of the laser occurs

when γ0 ≪ γ. Further assume that the photodetector is capable of detecting the scattered

ω0 photons with full efficiency in the whole 4π solid angle around the atom. A detection

event would consist of an absorption of a photon by the detector screen, thereby producing

a spike in the output signal of the apparatus. Thus, a continuous measurement record

consists of a sequence of spikes in the output signal with irregular time gaps between

consecutive spikes. If w(τ) represents the probability distribution of time gap between

successive detection events, then experiments have confirmed [Car99](and references

therein) that, even for low laser intensities, w(τ) goes rapidly to 0 as τ goes to 0. This is

regarded as evidence that detection of a photon is accompanied by a quantum jump to the

ground state of the atom. For then, it would take some time for the laser to sufficiently

energise the atom to make another photon emission. Therefore, if detection of the photons

is efficient, then the experimenter has a record of instances when the atom jumped to

its ground state. Between consecutive detection events, the atom evolves under null

measurements, i.e., under continuous measurement registering no photoemissions. Using

second order perturbation theory, it has been shown in [BP02] that for this detection

scheme, the two level atom evolves via the stochastic differential equation

d|ψ(t)⟩ = −ı
[
HL − ı

γ

2

(
σ+σ− − ||σ−|ψ(t)⟩||2

) ]
|ψ(t)⟩ dt +

[
σ−|ψ(t)⟩

||σ−|ψ(t)⟩||
− |ψ(t)⟩

]
dNt.

(1.21)

The operator in the first bracket of the RHS evolves the state under null measurements.

The term in the second bracket describes a jump to the ground state post detection of

a photon. The process Nt is a counting process which counts the number of photons

detected till time t from the start of the experiment. Thus, the above equation expresses

the state vector |ψ(t)⟩ as a stochastic process in the system Hilbert space. In chapter (3),

a similar equation would be obtained and solved for counting statistics of the process Nt

in the model considered there.

When the apparatus is imperfect, description of the system’s evolution as a stochastic

process in the Hilbert space is no longer possible. This would be an example of the case

when state reduction post measurement via a POVM does not lead to a pure state but

to a mixed state. The Belavkin equation in such a situation would describe a stochastic

process in the space of density matrices.

1.3. Related experiments

After the foregoing cursory account of the theory of quantum measurements, this

section provides a summary discussion of some experiments that demonstrate aspects of

quantum measurements stated above. This summary is limited to two foundational
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Figure 2. Three level electron shelving

experiments. There is an ever-growing body of literature on experiments related to

measurement theory, especially in the area of quantum optics, which has for long provided

a suitable avenue for formulation and performance of these experiments.

1.3.1. Electron shelving. The idea of electron shelving was proposed by HG Dehmelt

as a tool for spectroscopy in 1975 [LBMW03]. One considers a three level atom with

states {|g⟩, |r⟩, |b⟩} as shown in Fig. (2a). The state |r⟩ is metastable, i.e., its sponta-

neous decay rate is orders of magnitude smaller than that of the state |b⟩. In this sense,

the |g⟩ ↔ |b⟩ transitions are intense whereas the |g⟩ ↔ |r⟩ transitions are weak. Suppose
the atomic electron is initially in the ground state |g⟩. Now a blue laser causing |g⟩ ↔ |b⟩
transitions is switched on. Similarly, a second laser drives the |g⟩ ↔ |r⟩ transitions. In

accordance with the discussion of resonance fluorescence in the previous section, there

will be coherent scattering of blue light due to action of the blue laser. If there happens

a transition to the |r⟩ state, then the blue fluorescence stops. Then the electron remains

in the metastable shelf state |r⟩ for an extended time, after which it decays to |g⟩. Af-

ter the decay, the blue fluorescence restarts. In this manner, the experimenter observes

periods of brightness interspersed by periods of darkness in the blue fluorescent signal,

as seen in the Fig. (2b). It has been shown in [CTD86] that the mean duration of the

dark periods can be as large as half of the mean duration of the bright periods when the

|g⟩ ↔ |b⟩ is driven by a low intensity laser and the red laser is tuned perfectly to the

|g⟩ ↔ |r⟩ transition. In case of high intensity blue laser, this ratio can be as high as

1/4 for a certain amount of detuning of the red laser. While the mean duration of dark

periods should obviously depend upon the stimulated and spontaneous emission rates in

the |r⟩ state, one sees that the photon statistics in the fluorescent signal can be affected

by controlling the intensities of the driving lasers.

The experimental realisation of Dehmelt’s proposal was made by Nagourney et al.

[NSD86] by utilizing transitions in Ba+. In [Coo88], R.J.Cook proposed an experiment

to test the validity of the quantum Zeno effect by employing electron shelving. Consider

a two state atom coherently driven by a perfectly tuned laser. For the time dependent

Hamiltonian of the atom, the Schrödinger equation is exactly solvable [LL77](Chapter
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VI). If an energy measurement is made on the atom, then it will be found in one of the two

states. If the atom continues to evolve for a short time interval τ after the measurement,

then the probability p(τ) that it would transition to the other state is proportional to τ 2.

If τ is very small, and a transition does indeed happen, i.e. a second energy measurement

reveals this, then such a transition can be operationally called a quantum jump [Coo88].

From this discussion, it follows that the rate of quantum jumps (p(τ)/τ) in a frequently

monitored two level atom driven by a tuned laser is inversely proportional to the frequency

of the energy measurements. In Cook’s proposal, the |g⟩ ↔ |r⟩ system is the two state

system under observation and illuminating the |g⟩ ↔ |b⟩ system with a short pulse of a

resonant laser constitutes a measurement. If during a pulse, there is fluorescence, then

the electron is in the |g⟩ ↔ |b⟩ manifold (or equivalently in level |g⟩). If during a pulse,

there is no fluorescence, then the electron is shelved in |r⟩. To test the Zeno effect, start

with an electron in the state |g⟩. Then the |g⟩ ↔ |r⟩ transitions are driven for half a

cycle with a square pulse. If this perturbation was the only drive on the atom, then it

is easily seen that the electron would end in the state |r⟩ at the end of the half cycle.

However, during this half cycle, the |g⟩ ↔ |b⟩ transition is also driven by n equally spaced

short pulses of resonant laser. Observance of continued fluorescence for large n would be

validation of the Zeno effect. Itano et al. [IHBW90] confirmed the observation of Zeno

effect on an experimental setup similar to that of Cook’s proposal.

1.3.2. Progressive state collapse. In the discussion of electron shelving, the con-

cept of a quantum jump was important. These quantum jumps can be regarded as much

a property of the measuring process as they are of the system itself. There are other

measurements which affect the measured system’s state in a gradual manner than by

abrupt jumps. The important experiment by Haroche et al. [GBD+07] is one example

of such measurements. The objective of the experiment is to non-destructively measure

the photon number in the electromagnetic field stored in a cavity. The field in the cavity

is prepared in the coherent state

|α⟩ = e−|α|2/2
∑
n≥0

αn√
n!
|n⟩ =

∑
n≥0

cn|n⟩. (1.22)

It is of interest to note how such a field could in fact be prepared in the cavity [Car09].

For simplicity, neglect thermal fluctuations and assume a cavity of resonant frequency

ωC being pumped by a classical laser E0 exp (−ı ωCt). Let â and â† be the creation and

annihilation operators of the cavity mode. If κ is the dissipation rate for the cavity mode

and ρ its density matrix, then in the Schrödinger picture, the master equation is

d

d t
ρ =− ıωC

[
â†â, ρ

]
− ı
[
E0 exp (−ı ωCt) â† + E∗

0 exp (ı ωCt) â, ρ
]

+ κ
(
2âρâ† − â†âρ− ρâ†â

)
.

(1.23)
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If at t = 0, ρ = |0⟩⟨0| then the above operator equation can be solved for ρ(t) as a

coherent state in the form of EQ. (1.22) with

α = ı(E0/κ)e
−ıωCt(1− e−κt).

In the experiment [GBD+07], excited states with principal quantum numbers 50 and

51 of Rubidium atoms serve as a two level system. The atom can then be treated as

a spin-1/2 particle whose spin orientation rotates on the Bloch sphere. With the spin

properly oriented, the atom passes through the cavity field. The time of flight of the

atom through the cavity is a fixed time interval. Interaction between the atom and the

field is so tuned that a single photon would rotate the spin polarization by a certain

angle δ = π/q in a fixed plane, where q is a positive integer. Since the cavity field is in a

coherent state, at the end of the interaction between the atom and the cavity field, they

are in an entangled state
∑

n≥0 cn|δn⟩ ⊗ |n⟩. Here |δn⟩ represents the state of the atom

in which the polarization has rotated by an angle nδ. The value of n is therefore known

only modulo 2q. For this to be possible, the interaction HI between the atom and the

field would have to satisfy the non-demolition condition [â†â, HI ] = 0 [RBH01]. Unlike

the case of resonance fluorescence where photons were directly absorbed by the detector,

here the photons are preserved in the measurement process, and it is important that the

interaction Hamiltonian commute with the number operator if the interaction were to

leave the photon number unchanged. After the interaction, the polarization of the atom

is measured in a random direction (at an angle ϕ = kδ) from the original direction of

the spin in the fixed plane, and it is ascertained whether the atom is in the up state

(j = 0, corresponding to the spin aligning with the direction of axis ϕ) or in the down

state (j = 1, for the opposite direction of the axis)

Let us introduce some notation to ascertain the impact of the information gained

from the measurement of the spin state of the outgoing atom. P0(n) = |cn|2 is the

Poisson distribution for the number n of photons in the cavity before the measurement.

P (j, ϕ|n) = cos2
(
nπ

2q
+
jπ − ϕ

2

)
is the probability of the outcome of the measurement if

there were n photons in the cavity. P1(j, ϕ) =
∑

m P0(m)P (j, ϕ|m) is the total probability

of the outcome. P1(n) = P (n|j, ϕ) is the updated probability distribution of the photon

numbers after the measurement. Then an application of the Bayes’ theorem gives

P1(n) = P0(n)
P (j, ϕ|n)
P1(j, ϕ)

.

The updated probability distribution is conditioned on the information obtained from the

first measurement. Now one could send a sequence of probes and update the probability

distribution conditioned on the outcome of the measurement at each step. It follows

that after N probes have interacted with the cavity field, the probability distribution

of the photon numbers after these interactions, conditioned on the measurement record
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{ϕk, jk}Nk=1 is given by

PN(n) = PN−1(n)
P (jN , ϕN |n)∑

m PN−1(m)P (jN , ϕN |m)
= P0(n)

N∏
k=1

P (jk, ϕk|n)∑
m Pk−1(m)P (jk, ϕk|m)

(1.24)

It was observed in the experiment that as N increases, the distributions PN(n) become

more and more peaked at some value of an integer indicating convergence to this limit.

If the cavity is prepared in the same way many times over and a measurement record

generated each time, then the limits would be distributed according to the original Poisson

distribution of the coherent state in EQ. (1.22). Each measurement record signifies a

stochastic evolution of the cavity field, wherein the field starts in the coherent state and

through the sequence of iterated measurement, goes to a state with a definite number

of photons in it, i.e., a Fock state. It should be pointed out that in actual practise, the

Fock state will not be long-lived as dissipation eventually takes the cavity to the vacuum

state as noted in [GBD+07]. Recursively defined probability distributions of the type in

EQ. (1.24) has been considered in [BBB13,BBB12] and it is shown that the convergence

observed experimentally can in fact be proven to be in accordance with the Born rule.

This chapter has presented a short summary of quantum measurement theory, which

covers all the basic tools that will be necessary to state and solve the problems to be

considered in the next two chapters. Continuous measurements will be central to both

the problems. Counting processes in measurements has been emphasized through the

example of photo detection in case of resonance fluorescence. Some experiments that

have motivated us in modelling the measurement problems were described. Now we turn

to the details of these problems and their solution.



CHAPTER 2

Direct Measurements

This chapter presents the results in [DBD21] and the technical methods employed

to obtain these results. The principal quantity of interest is the distribution of time of

arrival of a quantum particle at a detector. The classical notion of the time of arrival

has several important experimental applications. The event of arrival in an experiment

is indicated by a certain change in the state of the detector, such as in the scintillation of

a fluorescent screen set up near a radioactive preparation [BBSR89]. Measurement of

time delay between arrival of ion pulses of a nearly mono-energetic beam of ions [CE48]

formed the basis for development of the important field of time of flight mass spectrometry

(TOFMS). In [YKH+09], time of flight measurements on ultra-cold atoms were employed

to measure their temperature towards development of optical lattice clocks. In these

experiments and possibly several other similar ones, motion of the detected particles is

ballistic and simple kinematic calculations give very good estimates.

The classical case of thermal motion leads to the well studied theory of Brownian

motion [KS88]. For a classical particle moving in a 1 dimensional noisy medium, starting

from x = 0, the distribution of times for first arrival at x = a is given by

Fc(t) =
|a|√
2πt3

exp

(
−a

2

2t

)
. (2.1)

If ta represents the time of first arrival at x = a and P [ta < t], the probability of the

event that the first arrival at a occurs at a time less than t from the start of the motion,

then one has

P [ta < t] = P [ta < t, xt > a] + P [ta < t, xt < a],

= 2P [ta < t, xt > a],

⇒ P [ta < t] =
1√
2πt

∫ ∞

a

e−x
2/2tdx.

The second equality in the above is a consequence of the strong Markov property of

the Brownian motion xt (with x0 = 0). P [ta ≥ t] can be interpreted as the survival

probability, i.e., the probability St that the particle survives detection at a in the time

interval [0, t). A differentiation of the above equation wrt to t gives the expression in

EQ. (2.1). We note this as a definition for the distribution of first arrival times

F (t) := −dSt
dt
. (2.2)

16
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The problem of first arrival to a particular state is meaningful only if the system is

continuously monitored. In classical mechanics, such monitoring presents no difficulty

in principle. In the quantum case however, the process of detection has irreversible

effects on the monitored system and must be considered in conjunction with the system’s

dynamics. The first important question is whether, in the standard framework of quantum

mechanics, there exists a physically observable time variable with a corresponding self-

adjoint operator T acting on the system Hilbert space, and which encodes the information

about the arrival of a particle at specific location? The answer to this was given in

the negative by Pauli, and the question has received considerable attention over time.

Allcock [All69a] has argued that under the assumption of time translation invariance,

the operator T cannot have mutually orthogonal eigenstates and hence cannot be self-

adjoint. On the other hand, if a self-adjoint T exists for a system with the Hamiltonian

H which is conjugate to T , then in canonical quantization one has

[H,T ] = ı, [H,T n] = ı n T n−1.

If |E⟩ is an eigenstate of H and ϵ a real, then an application of the above commutations

gives

H
[
eıϵT |E⟩

]
= (E − ϵ)

[
eıϵT |E⟩

]
.

It follows that the Hamiltonian is unbounded from below, which is physically unac-

ceptable. This was essentially Pauli’s argument as explicated by Delgado and Muga

in [DM97]. If no such self-adjoint T exists, then it is clear that the distribution of ar-

rival times can not be inferred in terms of probability amplitudes of eigenstates of T . A

number of workarounds have been proposed. For example, [DM97] defines a self-adjoint

T conjugate to an unbounded operator related to the system Hamiltonian. [ML00] pro-

vides a discussion of various other approaches to the problem.

Despite theoretical challenges in a proper definition of time of arrival for the quantum

case, experimental measurements of time of flight of atomic species in various settings have

been made. In view of this, one may adopt EQ. (2.2), which is true in the classical case, as

an operational definition of the distribution of times of first arrival even in the quantum

case. The evaluation of the survival probability S(t) would of course require the knowledge

of system dynamics and the measurement protocol employed for the purpose of detection.

Discrete time quantum walks [ABN+01,Kon02,Kem03] on finite or infinite lattices

serve as good starting point to study the problem of arrival times. In [icvcvJK08], a

related problem of recurrence of initial state in a quantum walk was studied without

monitoring of the system. In [GVWW13], monitoring was incorporated at every time

step using a renewal approach to show that recurrent states of a quantum walk have

finite expected recurrence time and that these times are quantized. Using this approach,

a number of interesting physical results on first passage in the lattice Schrödinger problem

have been obtained in [FKB16,FKB17,TBK18,TK20,TMKB20]. In particular, it

has been shown that the return probability on an infinite one-dimensional (1D) lattice
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is less than one, and we do not have the Polya recurrence of the 1D random walk. The

distribution of first detection times has been shown to scale as 1/t3. Different aspects of

the equivalence to the non-Hermitian Hamiltonian have been explored in [LD19,TK20,

TKB20].

The discrete time quantum walk models have generalization to the continuous time

quantum walks (CTQW) [Kem03]. Farhi and Gutmann [FG98] study the penetration

of a finite graph by a CTQW whose Hamiltonian is decided by the connectivity of the

graph. Measurements are not incorporated, say, at any specific node of the graph. In this

respect, the model is similar to the recurrence problem studied in [icvcvJK08] mentioned

above. One of the principal contributions of our work in [DBD21] was to incorporate

continuous measurement at a specific site to detect the arrival of the quantum particle

at the detector.

To model continuous measurement, consider a sequence of projective measurements

done on the system at regular intervals of time τ . τ → 0 corresponds to continuous

measurement but when this limit is taken in an unregulated fashion, then one runs into

the quantum Zeno effect. This problem can be avoided if the system-detector coupling

strength scales as ∼ 1/
√
τ . We employed this scaling to show the equivalence between the

repeated projection dynamics and an effective evolution via a non-Hermitian Hamiltonian.

Finally, for the lattice models we consider, we obtain the space continuum limit and show

that the evolution is described by a Schrödinger equation with complex Robin boundary

condition at the location of the detector.

2.1. Continuous projective measurements

To study the measurement problem in the context of detection of first arrival events, a

tight binding model for 1 dimensional lattice was employed. In the following, this model

is described in detail, and it is shown how a proper choice of scaling for detector-system

coupling leads to a non-Hermitian description.

2.1.1. A discrete time measurement model. Consider a quantum system whose

states belong to the Hilbert space H. We assume that H = S ⊕D can be written as the

sum of two orthogonal complementary subspaces, where S is a “system” subspace and D
a “detector” subspace. If P and Q are orthogonal projections on the subspaces D and S
respectively, then

P +Q = 1. (2.3)

Now consider an experiment where the initial state |ψ(0)⟩ belongs to S and evolves

unitarily for a time τ via the operator Uτ . At this instance, a direct measurement is

performed on the system to ascertain whether the system has arrived in the detector

subspace D. The probability S(τ) that the detection fails after time τ and the subsequent

normalized state post a failed detection are given by

S(τ) = |QUτ |ψ(0)⟩|2, ψ̃(τ) = QUτ |ψ(0)⟩/
√
S(τ).
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This procedure is repeated at every time step τ till a successful detection is made at which

point the experiment stops. Noting that Q|ψ(0)⟩ = |ψ(0)⟩ and applying the procedure

inductively, one obtains for n consecutive failed detection events

S(nτ) = |Ũn
τ |ψ(0)⟩|2, ψ̃(nτ) = Ũn

τ |ψ(0)⟩/
√
S(nτ), Ũτ = QUτQ. (2.4)

The above result is due to [DDDS15]. It may be noted that Ũτ is a norm reducing, i.e.

a contraction operator. The normalized state |ψ̃(nτ)⟩ evolves in a complicated manner

at every time step, but the difference equation for the un-normalized state |ψ(nτ)⟩ =

Ũn
τ |ψ(0)⟩ takes the simple form

|ψ(nτ + τ)⟩ − |ψ(nτ)⟩
τ

=

[
Ũτ − 1

τ

]
|ψ(nτ)⟩. (2.5)

Further note that in terms of the un-normalized state |ψ(nτ)⟩, the expression for the

survival probability is written as

S(nτ) = ⟨ψ(nτ)|ψ(nτ)⟩. (2.6)

2.1.2. Continuous measurement & effective non-Hermitian Hamiltonian.

In order to model a system under continuous measurement, the measurement interval τ

should be made arbitrarily small. We begin by describing the Hilbert space H along with

the proper choice of the Hamiltonian for which the limiting procedure works. Let {|i⟩}
and {|α⟩} form orthonormal bases for S and D respectively, so that the states {|i⟩ , |α⟩}
together form a complete orthonormal basis of H. Then one has

P =
∑
α

|α⟩ ⟨α| , Q =
∑
i

|i⟩ ⟨i| . (2.7)

The most general Hamiltonian (measured in units of ℏ) describing such a system is given

by

H = H(S) +H(D) +H(SD), (2.8)

H(S) =
∑
i,j

H
(S)
ij |i⟩ ⟨j|︸ ︷︷ ︸

System

, H(D) =
∑
α,β

H
(D)
αβ |α⟩ ⟨β|︸ ︷︷ ︸

Detector

, (2.9)

H(SD) =
∑
i,α

[
H

(SD)
iα |i⟩ ⟨α|+H

(SD)
αi |α⟩ ⟨i|

]
︸ ︷︷ ︸

System-Detector

. (2.10)

It was numerically demonstrated in [DDD15,DDDS15,LD19] that for the case where

the time between measurements τ is small (compared to typical time scales in the unitary

evolution), the above dynamics is accurately described by a continuous time evolution

with a non-Hermitian effective Hamiltonian. However, the limit τ → 0 leads to the Zeno

effect when the coupling coefficients (H
(SD)
iα and H

(SD)
αi ) are held constant. To obtain a
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limiting behaviour, one takes

H
(SD)
iα =

√
γiα
τ
, H

(SD)
αi =

√
γαi
τ
. (2.11)

Further, denoting H
(S)
ij = γij and H

(D)
αβ = γαβ we note the form of the Hamiltonian H

H =
∑
i,j

γij |i⟩ ⟨j|︸ ︷︷ ︸
HS

+
∑
α,β

γαβ |α⟩ ⟨β|︸ ︷︷ ︸
HD

+
∑
i,α

[√
γiα
τ

|i⟩ ⟨α|+
√
γαi
τ

|α⟩ ⟨i|
]

︸ ︷︷ ︸
HSD

. (2.12)

The γ coefficients (assumed positive) in the above expression have unit of frequency.

With the above definition of the Hamiltonian, the following commutation relations are

obtained.
QH(S)Q = H(S), QH(D)Q = QH(SD)Q = 0,

Q
[
H(S)]2Q =

[
H(S)]2 , Q

[
H(D)

]2
Q = 0,

Q
[
H(SD)

]2
Q =

1

τ

∑
i,j,α

|i⟩ ⟨j|√γiαγαj.
(2.13)

For the contraction operator Ũτ , a series expansion with the aid of above commutations

gives

Ũτ = Q exp
[
−ıτH

]
Q = 1− ıτHS − τV S +O(τ 2), (2.14)

where

V S
ij =

1

2

∑
α

√
γiαγαj. (2.15)

Taking the continuum limit τ → 0, n→ ∞ while keeping t = nτ finite in EQ. (2.5) gives

a new Schrödinger’s equation with an effective non-Hermitian Hamiltonian Heff

ı
∂ |ψ(t)⟩
∂t

= Heff |ψ(t)⟩ , Heff = HS − ıV S . (2.16)

Therefore, conditioned on non-detection, the un-normalized state evolves in S via a non-

Hermitian Hamiltonian. In this limit, EQ. (2.6) becomes

St = ⟨ψ(t)|ψ(t)⟩ (2.17)

and from EQs. (2.2, 2.16) one obtains the form of the first arrival distribution

F (t) = 2⟨ψ(t)|V S |ψ(t)⟩. (2.18)

One notes that V S has the form of a Gram matrix [HJ85] and is therefore non-negative.

It follows that the decay rate F (t) is non-negative, as expected physically.

2.2. Quantum particle on one dimensional lattice

The framework developed in the previous section will now be applied to physical cases.

It is assumed that a quantum particle hops on a 1 dimensional lattice containing a site |0⟩
where detection is performed. Thus, P = |0⟩⟨0| and |i⟩ are position eigenstates indexing
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Figure 3. In the graph on the left, the survival probability S(t) is plotted
for N = 15, ψi(0) = δi,15 and for different values of w. In the graph to the
right, the survival probability S(t) is plotted for lattice sizes N = 100 and
N = 200. In both cases ψi(0) = δi,20, w = 2. The dashed line is the value
of survival probability S∞ obtained from EQ. (2.41) for the N Lattice.

the remaining sites of the lattice. A constant potential exists across the lattice, except

at those sites which are in the immediate vicinity of the detector. The dimensionless

parameter β is used to encapsulate the deformation in the potential at such sites.

2.2.1. Finite lattice. Consider a lattice indexed by the states {|0⟩, |1⟩, . . . , |N⟩}
with N ≥ 2. Taking the Hamiltonian as

H = −γ0
N∑
n=2

[
|n⟩⟨n−1|+ |n−1⟩⟨n|−2|n⟩⟨n|

]
+(2+β)γ0|1⟩⟨1|−

√
2αγ0
τ

(|0⟩⟨1|+ |1⟩⟨0|)

(2.19)

and defining

HN :=
Heff

γ0
, (2.20)

a simple calculation with EQs. (2.15, 2.16) for H in EQ. (2.19) gives

HN = −
N∑
n=2

[
|n⟩⟨n− 1|+ |n− 1⟩⟨n| − 2|n⟩⟨n|

]
+ (2− ıw)|1⟩⟨1|

‘ ⇒ HN = −∆N − ıw|1⟩⟨1|.
(2.21)

where w = α + ıβ and ∆N is the discrete Laplacian of size N ×N . In the Schrödinger’s

equation for HN , time is dimensionless. In case of no measurement, i.e. w = 0, HN has

the well known spectrum ϵ(k) = −2(1− cos k) for k = sπ/(N + 1), s ∈ {1, 2, . . . , N}.
Before studying the spectral properties of HN for non-zero w, it is useful to see some

numerical results concerning the survival probability for motion that occurs under HN .

The numerical results are obtained by a direct solution of the non-Hermitian Schrödinger

equation. In Fig. 3 (left panel) we plot the decay of survival probability on a system for

which N = 15 for three different values of w. The survival probability cascades to 0 over

time. We observe a non-monotonic dependence with S(t) decaying slowly for both very
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small w = 0.1 as well large w = 5. The several plateaus in the survival probability can

be understood as arising from ballistic propagation of the particle with a group velocity

≈ 2, such that as the wave packet hits the detector, the survival probability plunges

considerably. The velocity 2 corresponds to the maximum group velocity dϵ(k)/dk.

Returning to spectral properties of HN for non-zero w, first observe that if λ is an

eigenvalue of −ıHN associated to some eigenvector, |ψ⟩ then one has that

λ⟨ψ|ψ⟩ = ı ⟨ψ|∆N |ψ⟩ − w |⟨1|ψ⟩|2.

Because the Laplacian is negative semi-definite, the first term in the RHS of above has

real part 0. The case ⟨1|ψ⟩ = 0 is excluded because then |ψ⟩ would be an eigenfunction

of −ıHN , but no eigenfunction of −ıHN has ⟨1|ψ⟩ = 0. Therefore, the real part of λ has

then the same sign at −α and one concludes that the spectrum of −ıH
N
is contained in

{z ∈ C ; ℜ(z) < 0}. By using the Jordan-Chevalley decomposition of −ıHN , it follows

that for any |ψ(0)⟩,
S(t) = ⟨ψ(t)|ψ(t)⟩ = O(e−µt)

for some real µ > 0. Hence, the survival probability S(t) goes to 0 as t→ ∞ exponentially

fast. This decay rate will be dependent on that eigenvalue of −ıH
N
which has real part

of minimum magnitude.

From EQ. (2.18), it follows that the first passage time distribution is given by F (t) =

2α|ψ1(t)|2, with the notation ψi = ⟨i|ψ⟩. One can write a formal solution for ψ1(t), by

using the information on the spectrum of the Hermitian part of the effective Hamiltonian,

which in this case is the lattice Laplacian. For the Schrödinger equation

ı
∂|ψ(t)⟩
∂t

= −∆N |ψ(t)⟩ − ı w ψ1(t)|1⟩,

taking the Laplace transform on both sides with the notation |ψ̃(s)⟩ =
∫∞
0
dte−st|ψ(t)⟩,

one obtains

−|ψ(0)⟩+ s|ψ̃(s)⟩ = ı∆N |ψ̃(s)⟩ − w ψ̃1(s)|1⟩.

Defining the Green’s function G(s) = [s − ı∆N ]
−1, the following formal solution is

achieved.

|ψ̃(s)⟩ = G(s)|ψ(0)⟩ − w ψ̃1(s)G(s)|1⟩. (2.22)

Assuming an initial wave function, |ψ(0)⟩ = |ℓ⟩, localized at a site ℓ, project the above

equation on the state |1⟩ to get the Laplace transform ψ̃1(s) of ψ1(t) in the form

ψ̃1(s) =
G1ℓ(s)

1 + wG11(s)
, (2.23)

where the matrix elements Gij(s) = ⟨i|G(s)|j⟩ can be written in terms of the eigenfunc-

tions ϕk(j) =
√
2/(N + 1) sin(kj) of the Laplacian ∆N , and corresponding eigenvalues

ϵk = −2(1− cos k) with k = sπ/(N + 1), s = 1, 2, . . . , N . One gets

Gij(s) =
∑
k

ϕk(i)ϕk(j)

s− ı ϵk
,
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and hence an explicit expression for the Laplace transform ψ̃1(s). By using an inverse

Laplace transform formula we can then get an explicit formula for the first passage time

distribution F (t), which remains however difficult to exploit, even qualitatively. Similar

expressions have recently been discussed in [TK20] who also point the analogy with the

renewal approach for the repeated measurement problem.

The case β = 0. It has been observed above that the closed form expression for the

eigenvalues of HN in case of general w are not obtainable. It should be pointed out that

in the simpler case w = α, further analysis is indeed possible. This is accomplished by

studying the root locus of the characteristic polynomial of the operator HN . This analysis

reveals interesting features of the spectrum of HN , such as the existence of critical value

αc for which the operator becomes non-diagonalizable and how the spectrum differs from

one side of αc to the other. A further advantage of this study is that it allows to pass to

the limit N → ∞ and obtain the spectrum for the semi-infinite lattice, a case that will

be examined in detail in the next subsection. Please see Appendix (A) for the study of

the root locus.

A notable feature of the analysis done so far for the finite lattice case is that the

survival probability cascades to 0 as t → ∞. This is not generally true, and the model

described in sec. (2.1.2) admits other possibilities. Consider a ring of lattice sites as

shown in the figure below.

0

1

2n - 2

n - 1

Figure 4. A ring of lat-
tice sites with nearest
neighbour hopping and
detection at site 0.

For sake of concreteness, let n = 4 and the Hamiltonian for discrete time evolution

be given by

H = −γ0
[
|1⟩⟨2|+ |2⟩⟨1|+ |2⟩⟨3|+ |3⟩⟨2| − 2|1⟩⟨1| − 2|2⟩⟨2|−2|3⟩⟨3|

]
−
√

2αγ0
τ

[
|0⟩⟨1|+ |1⟩⟨0|+ |0⟩⟨3|+ |3⟩⟨0|

]
.

(2.24)

β has been taken to be 0 so that in the terminology of EQ. (2.21), w = α. The detector

site |0⟩ only interacts with positions |1⟩ and |3⟩ while the remote site |2⟩ has no direct

interaction with the detector. The first line in the RHS of the above equation is to be

regarded as HS where as the lower line is HSD. Following EQ. (2.15), the effective Hamil-

tonian that describes continuous non Hermitian evolution conditioned on non-detection
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is easily seen to be

H3(α) = γ0

 2− ıα −1 −ıα
−1 2 −1

−ıα −1 2− ıα

 . (2.25)

The eigenvalues of H3/γ0 are {2±
√
2− α2− ıα, 2}. Notice that, for α =

√
2, H3 becomes

non-diagonalizable. For α >
√
2, all the three eigenvalues have real part equal to 2. The

propagator matrix exp(−ıγ0tH3) can be easily calculated for general α.

The important difference that arises due to the presence of symmetry can be easily

seen for the non-diagonalizable case α =
√
2. In this case, H3 has the Jordan decompo-

sition  1 0 −1

−ı
√
2 −1 0

1 0 1


 2− ı

√
2 1 0

0 2− ı
√
2 0

0 0 2


 1 0 −1

−ı
√
2 −1 0

1 0 1


−1

,

from where the propagator is obtained to be

exp(−ıγ0tH3) =
e−(2ı+

√
2)γ0t

2

 1 + e
√
2γ0t −

√
2γ0t ı2γ0t 1− e

√
2γ0t −

√
2γ0t

ı2γ0t 2(1 +
√
2γ0t) ı2γ0t

1− e
√
2γ0t −

√
2γ0t ı2γ0t 1 + e

√
2γ0t −

√
2γ0t

 .
(2.26)

The normalized states

χ1 =
1

2

 1

−ı
√
2

1

 , χ2 =

 0

−1

0

 , χ3 =
1√
2

 −1

0

1

 , (2.27)

form a complete (though not orthogonal) system for H3(
√
2). If the general initial nor-

malized state ψ(0), supported in {|1⟩, |2⟩, |3⟩}, is expressed as

ψ(0) = c1χ1 + c2χ2 + c3χ3, (2.28)

and detection of strength α =
√
2 is done at |0⟩, then EQs. (2.16, 2.17 , 2.26) can be

employed to obtain a general form of the survival probability S(t). This general form is

somewhat tedious, and it is more useful to look at the cases as below

S(t) =


exp(−2

√
2γ0t) for c1 = 1, c2 = c3 = 0

exp(−2
√
2γ0t)

(
2γ20t

2 + (1 +
√
2γ0t)

2
)

for c2 = 1, c1 = c3 = 0

1 for c3 = 1, c1 = c2 = 0

. (2.29)

Thus one sees that the effect of symmetry in the considered topology is the existence of a

dark state [TMM+20] χ3 - a state in which, if the system is initialized, the particle would

never be detected with probability 1. This dark state exists also for the diagonalizable

cases when, α ̸=
√
2 and in every case corresponds to the real eigenvalue of 2 of H(α).

In [TMM+20], the dark states were investigated for their role in suboptimal detection

in quantum walk on finite graphs. The underlying symmetry of the Hamiltonian leads
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to existence of such states, and the detection probability (related to S(t) in our study)

was shown to be generically independent of the frequency with which detection was

performed. In our study, the measurement is continuous in time. The symmetry of the

effective Hamiltonian H3 leads to existence of dark state χ3 and for any generic state

such as in EQ. (2.28), one has

lim
t→∞

S(t) = |c3|2.

It may be noted that the state χ3 is completely antisymmetric wrt to inversion about |2⟩.
To elaborate this, consider the inversion operator Ĉ2 and its properties as below

Ĉ2 =

 0 0 −1

0 −1 0

−1 0 0

 , Ĉ2
2 = 1,

[
H3(α), Ĉ2

]
= 0, Ĉ2χ3 = χ3, Ĉ2χ1,2 = −χ1,2.

Thus, the effective Hamiltonian H3 has inversion symmetry, and it will evolve antisym-

metric states into antisymmetric states without effecting the norm. More general graphs

with other non-trivial symmetries could possibly be considered by an appropriate choice

of the γ−coefficients in EQ. (2.12).

2.2.2. N Lattice. This is the case of a semi-infinite lattice and differs from the finite

case in that N → ∞. The effective Hamiltonian therefore has the form

HN = −
∑
n≥2

[
|n⟩⟨n− 1|+ |n− 1⟩⟨n| − 2|n⟩⟨n|

]
.+ (2− ıw)|1⟩⟨1| (2.30)

With the notation ψn(t) = ⟨n|ψ(t)⟩ and by introducing the fictitious Dirichlet boundary

condition ψ0(t) = 0, the Schrödinger equation corresponding to the effective Hamiltonian

HN can be written as

ı
∂ψn
∂t

= 2ψn − ψn−1 − ψn+1 − ıwδn,1ψ1, n ≥ 1. (2.31)

Similar equation has been studied in [KLM14] and we follow their approach of solution.

If ψ̂(k, t) is the sine transform of ψn(t), then for k ∈ [0, π] one has that

ψn(t) =

√
2

π

∫ π

0

dk ψ̂(k, t) sin(n k), ψ̂(k, t) =

√
2

π

∞∑
n=1

ψn(t) sin(n k).

Observe that the Dirichlet boundary condition is automatically satisfied. Assume ψn(0) =

δn,n0 so that ψ̂(k, 0) =
√

2
π
sin (n0k). Then it follows from EQ. (2.31) that

ı
∂ψ̂

∂t
(k, t)− 2(1− cos (k))ψ̂(k, t) = −ıw

√
2

π
ψ1(t) sin (k) . (2.32)

The Laplace transforms of ψ̂(k, t) and ψ1(t) are by definition given by

ψ̃(k, s) = [Lψ̂(k, t)](s) =
∫ ∞

0

dt exp(−st)ψ̂(k, t), (2.33)



26 2. DIRECT MEASUREMENTS

Out[]=

n0=1

n0=2

n0=3

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

α

S
ℕ
(w

,n
0
)

w=α+ⅈ/2

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

β

S
ℕ
(w

,n
0
)

w=1/2+ⅈβ

Figure 5. Plots showing variation of SN (EQ. (2.41)) with w for various
starting positions n0. The left plot is for w = α+ ı/2 and the right plot for
w = 1/2 + ıβ.

[Lψ1](s) =

∫ ∞

0

dt exp(−st)ψ1(t)

=

√
2

π

∫ π

0

dk ψ̃(k, s) sin(k). (2.34)

Taking the Laplace Transform of EQ. (2.32) and by use of the above equations

ψ̃(k, s) = ı

√
2

π

sin (n0k)− w sin (k) [Lψ1] (s)

ıs− 2 (1− cos (k))
. (2.35)

The two relations, EQ. (2.34) and EQ. (2.35) between ψ̃(k, s) and [Lψ1](s) above give

[Lψ1] (s) = ı

2

π

∫ π

0

dk
sin (k) sin (n0k)

ıs− 2(1− cos(k))

1 + ı
2w

π

∫ π

0

dk
sin2 k

ıs− 2(1− cos(k))

. (2.36)

The integrals involved in EQ. (2.36) can be evaluated by means of contour integration

for any complex number s such that ℜ(s) > 0, see section B. We get then that

[Lψ1] (s) = −ı
ın0

[
−
(
s
2
+ ı
)
+
√(

s
2
+ ı
)2

+ 1

]n0

1 + w

[
−
(
s
2
+ ı
)
+
√(

s
2
+ ı
)2

+ 1

] (2.37)

where
√
z denotes the principal square root of z ∈ C\R∗

− (using the non-positive real axis

as a branch cut). We have hence obtained an explicit expression of the Fourier-Laplace

transform ψ̃ of the wave function ψ by plugging EQ. (2.37) into EQ. (2.35).
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Turning to computation of the survival probability, from EQ. (2.17), the survival

probability after time t is S(t) =
∑∞

n=1 |ψn(t)|
2. From EQ. (2.31), one has

ı
∂

∂t
|ψn|2 =

−2ıℜ(w) |ψ1|2 + 2ıℑ(ψ1ψ
∗
2), n = 1,

2ıℑ
(
−ψn−1ψ

∗
n + ψnψ

∗
n+1

)
, n ≥ 2.

Since ψn goes to 0 as n → ∞, the equations can be summed to obtain dS/dt =

−2ℜ(w) |ψ1|2 . Integrating, we get the survival probability

S∞ = lim
t→∞

S(t) = 1− 2ℜ(w)
∫ ∞

0

dt |ψ1(t)|2 . (2.38)

For square integrable function ψ1, one has [Hoc89]∫ ∞

0

dt |ψ1(t)|2 = lim
ϵ→0+

1

2πı

∫ ϵ+ı∞

ϵ−ı∞
ds |[Lψ1](s)|2 . (2.39)

For s = ϵ+ 2ı(x− 1) in the limit ϵ→ 0+, by EQ. (2.37)

|[Lψ1](s)|2 =



(
x+

√
x2 − 1

)2n0

1 + |w|2
(
x+

√
x2 − 1

)2
+ 2ℑ(w)

(
x+

√
x2 − 1

) , x < −1,

1

1 + |w|2 + 2
[
ℜ(w)

√
1− x2 + ℑ(w)x

] , −1 ≤ x ≤ 1,

(
x−

√
x2 − 1

)2n0

1 + |w|2
(
x−

√
x2 − 1

)2
+ 2ℑ(w)

(
x−

√
x2 − 1

) , x > 1.

(2.40)

Denote by SN(w, n0) the survival probability given by EQ. (2.38) corresponding to the

initial condition |ψ(0)⟩ = |n0⟩, where the detection parameter is α = ℜ(w) and the impu-

rity parameter is β = ℑ(w). From EQ. (2.38) and EQs. (2.39, 2.40), after simplification

one gets

SN(w, n0) = 1− ℜ(w)
π |w|

∫ π
2

−π
2

dθ
cos θ

1
2

(
|w|+ 1

|w|

)
+ cos (θ − φ)

−2ℜ(w)
π

∫ 1

0

du
u2n0−2(1− u2)(1 + |w|2 u2)
(1 + |w|2 u2)2 − (2ℑ(w)u)2

.

(2.41)

where φ = Arg(w). Figure (5) shows the variation of SN(w, n0) for some choices of w and

starting positions n0. In the left panel, we see that for n0 = 1, the survival probability

goes to 0 with increasing strength α of detection. For n0 > 1 the survival probability

attains a minimum. This can be compared with the results obtained in [KLM14] (Fig.

3). As noted earlier [see comment after EQ. (2.31)], [KLM14] solves the case with an

imaginary potential at the origin of a Z-lattice, and so the similarity of our result to

theirs is expected. In the right panel, we see that SN is symmetric in β for all starting



28 2. DIRECT MEASUREMENTS

N=100
Fup(t)

1 5 10 50 100

10-9

10-5

10-1

t

F
(t
)

ℕ-Latt.
Fup(t)

1 5 10 50 100

10-9

10-5

10-1

t

F
(t
)

Figure 6. The figure shows variation of F (t) with time for w = 1/2 and
initial position n0 = 5. The blue curve is obtained from simulation on a
finite lattice of size N = 100, also with n0 = 5. The first peak in F (t) is
around t = 2.5 and the jump in F (t) at t = 100 corresponds approximately
to the instance when the particle hits the detector a second time. The
orange line is the upper envelope obtained in equation (2.45) which is valid
for semi-infinite lattice.

positions n0 for a fixed α. For purely real w(= α), EQ. (2.41) simplifies to

SN(α, n0) =
2

π

[
2

(
α2 + 1

α2 − 1
arctan

α− 1

α + 1

)
− α

∫ 1

0

du u2n0−2 1− u2

1 + α2u2

]
. (2.42)

From the above expression one has

S(α, 1) =
2

π

[
2

(
α2 + 1

α2 − 1
arctan

α− 1

α + 1

)
+
α− (1 + α2) arctanα

α2

]
and it is easy to see from here that indeed limα→∞ SN(α, 1) = 0 as observed in the

Figure (5) left panel for the case n0 = 1.

It is now possible to obtain an explicit form for ψ1(t) and hence also for SN(t) =

1− 2ℜ(w)
∫ t
0
dt′ |ψ1(t

′)|2. The following form is obtained (as shown in section B)

ψ1(t) = −2ın0+1e−2ıt

∞∑
k=0

(k + n0)(−w)k
Jk+n0(2t)

2t
. (2.43)

The asymptotic form of Jk(2t) for large t give by

[Jk(2t)]t≫1 ≍
1√
πt

cos

(
2t− π

4
− kπ

2

)
=
eı(2t−

π
4
− kπ

2 ) + e−ı(2t−
π
4
− kπ

2 )

2
√
πt

.

Substituting this in the expression for ψ1(t), after some simplification

ψ1(t) ≍
(−ı)n0+1e−ı2t

2
√
πt3

[
eı(2t−

π
4
+

ın0π
2 )f(n0, w) + e−ı(2t−

π
4
+

ın0π
2 )f(n0, w

∗)∗
]

(2.44)
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where

f(n0, w) =
n0 − ı(n0 − 1)w

(1− ıw)2
.

For t≫ 1, an upper envelope for F (t) = 2ℜ(w)|ψ1(t)|2 can be obtained from above

0 ≤ F (t) ≤ 4γ0λ

π(γ0t)3
n2
0 + 4(n0 − 1)2λ2

(1 + 4λ2)2
= F up(t). (2.45)

Equation (2.45) shows 1/t3 behaviour in F (t) at large times. This however is not

universal as can be seen from the fact that if the system is prepared in the state |ψ(0)⟩ =
ηb, then F (t) falls off exponentially. It is conceivable that other initial state preparations

allow decay rates faster than 1/t3 and slower than exponential. This is shown to be the

case for detection on the semi axis in section (2.3.1).

It remains to consider the spectral properties of the operatorHN (defined in EQ. (2.30)).

From the study of root locus for HN in the previous section, some properties are already

known for the case when w = α. HN is non-diagonalizable for α = 1. For α ∈ [0, 1), the

eigenvalues of HN are the continuous set (0, 4). For α > 1, the spectrum consists of the

set (0, 2) ∪ (2, 4) and an isolated eigenvalue λp = 2 − ı(α − α−1). For the general case

of complex w, it is seen below that HN is non-diagonalizable for all points on the unit

semicircle in the right half of the w−plane.

If |ψE⟩ is an eigenfunction of HN with eigenvalue E (possibly complex), then let

ψn = ⟨n|ψE⟩, n ≥ 1 so that the eigenvalue equation reads

(2− ıw)ψ1 − ψ2 = Eψ1,

2ψn − ψn−1 − ψn+1 = Eψn, n > 1.
(2.46)

This is equivalent to solving the second equation for n ≥ 1 with the boundary condition

ψ0 + ξ(ψ1 − ψ0) = 0, ξ =
− ıw

1− ıw
. (2.47)

The most general scattering solutions are of the form ψn = Aeıkn+Be−ıkn. This satisfies

the second equation of EQ. (2.46) with Es(k) = 2(1 − cos(k)) = 4 sin2(k/2). Then the

boundary condition EQ. (2.47) above gives B = −A 1−ξ+ξeık
1−ξ+ξe−ık . This gives us all the

scattering solutions, and we define for each k ∈ (0, π) the eigenfunction ηk associated to

the eigenvalue 2(1− cos(k)) by

ηkn =
ı
[
(1− ξ + ξe−ık)eıkn − (1− ξ + ξeık)e−ıkn

]√
2π(1− ξ + ξeık)(1− ξ + ξe−ık)

, n ≥ 1. (2.48)

A bound state solution will have the form e−nk with ℜ(k) > 0. Then the eigenvalue is

2(1− cosh k) and the boundary condition gives e−k = 1− ξ−1 = 1/(ıw). Thus, the bound

state exists only when |w| > 1 for only then is ℜ(k) > 0. Thus for |w| > 1, the bound

state with isolated eigenvalue Eb = 2− ı(w − w−1) is given by

ηbn =
(1− ξ−1)n√
1− (1− ξ−1)2

, n ≥ 1. (2.49)
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Further notice that if w is on the unit circle in the right half of the w−plane, then for

some k ∈ (0, π) one has eık = ıw and for this k, the scattering state disappears since

the denominator in EQ. (2.48) vanishes. Thus |w| = 1,ℜ(w) > 0 are the exceptional

points [Hei04] of HN(w).

The orthonormality and completeness relations (whose verification requires contour

integration results in the Section B) are given by∑
n≥1

ηkn η
k′

n = δ(k − k′),
∑
n≥1

ηkn η
b
n = 0,

∑
n≥1

[
ηbn
]2

= 1,∫ π

0

ηkm η
k
n dk = δm,n for |w| < 1,

∫ π

0

ηkm η
k
n dk + ηbmη

b
n = δm,n for |w| > 1.

(2.50)

The operator HN being complex symmetric admits a diagonalization only by orthogonal

transformation [HJ85] in contrast to self-adjoint operators which admit diagonalization

by unitary transformation. Hence, the absence of conjugation in any of the above rela-

tions.

2.2.3. Z Lattice. In this example, motion occurs on the infinite lattice indexed by

integers, with detection at site 0. The Hamiltonian is taken to be

H = −γ0
∑

n∈Z\{0}

[
(1− δn,1)|n⟩⟨n− 1|+ (1− δn,−1)|n⟩⟨n+ 1| − 2|n⟩⟨n|

]

+
∑

n∈{±1}

[
−
√

2αγ0
τ

( |0⟩ ⟨n|+ |n⟩ ⟨0|) + βγ0 |n⟩ ⟨n|
]
.

(2.51)

The dimensionless effective Hamiltonian turns out

HZ = −
∑

n∈Z\{0}

[
(1−δn,1) |n⟩ ⟨n− 1|+(1−δn,−1) |n⟩ ⟨n+ 1|−2 |n⟩ ⟨n|

]
−ı w

∑
n,n′∈{−1,1}

|n⟩ ⟨n′|.

(2.52)

The calculations here are along the same lines as for the N Lattice case. For the

effective Hamiltonian HZ given by EQ. (2.52) the Schrödinger equation is equivalent to

ı
∂ψn

∂t
= 2ψn − ψn+1 − ψn−1 − ıw(δn,−1 + δn,1)(ψ−1 + ψ1), n ∈ Z\{0} (2.53)

with ψ0(t) = 0. Let us define

ψ̂±(k, t) =

√
2

π

∞∑
n=1

ψ±n(t) sin(n k)

⇒ ψ±n(t) =

√
2

π

∫ π

0

dk ψ̂±(k, t) sin(n k)

which both satisfy the same equation,

ı
∂ψ̂±

∂t
(k, t)− 2(1− cos (k))ψ̂±(k, t) = −ıw

√
2

π
[ψ1(t) + ψ−1(t)] sin (k) . (2.54)
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We assume that ψn(0) = δn,n0 with n0 ≥ 1 so that ψ̂+(k, 0) =

√
2

π
sin (n0k) and

ψ̂−(k, 0) = 0. The Laplace transforms of ψ̂±(k, t) and ψ±1(t) are by definition

ψ̃±(k, s) = [Lψ̂±(k, t)](s) =

∫ ∞

0

dt exp(−st)ψ̂±(k, t), (2.55)

[Lψ±1](s) =

∫ ∞

0

dt exp(−st)ψ±1(t)

⇒ [Lψ±1](s) =

√
2

π

∫ π

0

dk ψ̃±(k, s) sin(k). (2.56)

Taking the Laplace Transform of EQ. (2.54) and by use of the above equations

ψ̃+(k, s) = ı

√
2

π

sin (n0k)− w sin (k)L[ψ−1 + ψ1](s)

ıs− 2 (1− cos (k))
,

ψ̃−(k, s) = −ı
√

2

π

w sin (k)L[ψ−1 + ψ1](s)

ıs− 2 (1− cos (k))
.

(2.57)

Then we get

[L(ψ−1 + ψ1)] (s) = ı

2

π

∫ π

0

dk
sin (k) sin (n0k)

ıs− 2(1− cos(k))

1 + ı
4w

π

∫ π

0

dk
sin2 k

ıs− 2(1− cos(k))

(2.58)

from which follows the explicit expression for the Fourier-Laplace transform of the wave

function. This is the same expression as EQ. (2.36) where w has been replaced by 2w.

Proceeding as in the derivation of EQ. (2.38), in this case the expression for the survival

probability is

S∞ = lim
t→∞

S(t) = 1− 2ℜ(w)
∫ ∞

0

dt |ψ−1(t) + ψ1(t)|2 . (2.59)

If SZ(w, n0) denotes the survival probability S∞ corresponding to this initial condition

ψn(0) = δn,n0 we get that

SZ(w, n0) = SN(2w, n0). (2.60)

The spectral properties of HZ can be ascertained in the same way as was done for

HN. By introducing, ζ = −2ıw
1−2ıw

we deduce that the spectrum of HZ is composed of:

• Symmetric scattering states η̂k for each k ∈ (0, π) associated to the eigenvalue

2(1− cos(k)) and defined for |n| ≥ 1 by

η̂kn =
ı
[
(1− ζ + ζe−ık)eık|n| − (1− ζ + ζeık)e−ık|n|

]√
4π(1− ζ + ζeık)(1− ζ + ζe−ık)

. (2.61)

• Anti-symmetric scattering states σk for each k ∈ (0, π) associated to the eigen-

value 2(1− cos(k)) and defined for |n| ≥ 1 by

σkn =
1
√
π
sin(kn). (2.62)
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• A symmetric bound state η̂b associated to the eigenvalue Eb = 1 + ζ−1 if

|1− ζ−1| < 1 or equivalently |2w| > 1. It is defined by

η̂bn =
(1− ζ−1)|n|√

2(1− (1− ζ−1)2)
. (2.63)

The orthonormality and completeness relations are∑
n≥1

η̂kn η̂
k′

n =
∑
n≥1

σkn σ
k′

n = δ(k − k′),
∑
n≥1

[
η̂bn
]2

= 1,

∑
n≥1

η̂kn η̂
b
n =

∑
n≥1

η̂kn σ
k
n =

∑
n≥1

σkn η̂
b
n = 0,∫ π

0

[ηkm η
k
n + σkm σ

k
n] dk = δm,n for |w| < 1/2,∫ π

0

[ηkm η
k
n + σkm σ

k
n] dk + ηbmη

b
n = δm,n for |w| > 1/2.

(2.64)

|w| = 1/2,ℜ(w) > 0 are the exceptional points of HZ(w).

2.2.4. Green’s function approach. The closed form expressions of survival prob-

ability and detection time distribution for the N and Z lattices were obtained using a

Fourier-Laplace transform of the effective equations of motion. The knowledge of the

spectra of these operators provides a more direct method to obtain these results. As an

illustration of the idea, EQ. (2.43) for the case of N lattice is obtained below.

If |ψ(0)⟩ is the initial state, then the time evolution to |ψ(t)⟩ is given by

|ψ(t)⟩ = G(t)|ψ(0)⟩, (2.65)

where the infinite matrix G(t) is given by

Gnm =

∫ π

0

dk ηknη
k
m e

−ıEs(k)t + Θ(|w| − 1) ηbnη
b
m e

−ıEb(ξ)t. (2.66)

Θ denotes the Heaviside step function. In particular, starting with an initial condition,

|ψ(0)⟩ = |n0⟩ one has that ψ1(t) = G1,n0(t). By using the explicit forms of {ηk ; k ∈
(0, π)}, Es(k) in EQ. (2.48) and using that ξ/(1− ξ) = −ıw we get

ηk1η
k
n0
e−ıEs(k)t = −

ı

π
e−2ı(1−cos(k))t sin(k)×

[
eın0k

1− ıweık
−

e−ın0k

1− ıwe−ık

]
.

Assuming |w| < 1, transforming the previous expression in series since |ıwe±ık| < 1,

exchange the sum with the integrals, and by using symmetries one has∫ π

0

dk ηknη
k
m e

−ıEs(k)t = −
ıe−2ıt

π

∞∑
p=0

(ıw)pIn0+p

In =

∫ π

−π
dk e2ı cos(k)t sin(k)eınk.

(2.67)

But from the properties of Bessel functions of the first type, In = πıntnJn(2t)/t. Sub-

stituting this in the above, EQ. (2.43) is obtained immediately. For the case |w| > 1,
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one has to take into account the existence of a bound state but for the rest we proceed

similarly by rewriting for |z| = 1

1

1− ıwz
=

ı

wz

1

1 + ı
wz

=
ı

wz

∞∑
p=0

(−1)p
(
ı
wz

)p
.

Then we get the same expression as before EQ. (2.43) for ψ1(t). The expression for

|w| = 1 is obtained from the previous expression by a continuity extension.

2.3. Space continuum limit

We now seek to extend the results to the case of motion in continuous space in one

dimension by taking appropriate limits of the discrete models. This will be done by

taking lattice spacing ϵ→ 0.

2.3.1. Real semi-axis. Start with the Schrödinger equation for the N lattice.

ı
∂ψn

∂t
=

(2− ıw)ψ1 − ψ2, n = 1,

2ψn − ψn−1 − ψn+1, n ≥ 2.

Letting ψ0 = ı wψ1, the above system can be rewritten with a boundary condition as

ı
∂ψn

∂t
= 2ψn − ψn+1 − ψn−1, n ≥ 1; ψ0 −

ıw

1− ıw
(ψ1 − ψ0) = 0. (2.68)

Now define a lattice spacing parameter ϵ and the continuous wave function Ψ as

Ψ(x, t) = lim
ϵ→0

ϵ−1/2ψ[x/ϵ]

(
tϵ−2

)
. (2.69)

Consider the limit

ζ = lim
ϵ→0+

ϵ
ıw

ıw − 1
. (2.70)

For this limit to be non-zero, w should be regulated with ϵ so that for small ϵ, one has

ıw(ϵ) ≈ 1 + ϵ/ζ to leading order in ϵ. This implies that ℜ(w(ϵ)) ≈ −ϵℑ(ζ)/|ζ|2. In the

model of N lattice, ℜ(w) = α > 0 and therefore ℑ(ζ) < 0. With this assumption on w,

the discrete EQs. (2.68) in conjunction with EQ. (2.69), in the limit ϵ → 0+ take the

form

ı
∂Ψ

∂t
= −∂

2Ψ

∂x2
, with Robin b.c.

[
Ψ+ ζ ∂Ψ

∂x

]
x=0

= 0, x ≥ 0, ℑ(ζ) < 0. (2.71)

The operator appearing in EQ. (2.71) has a bound eigenstate for ℜ[ζ] > 0 given by

ηb(x) =

√
2

ζ
e−x/ζ . (2.72)

Here
√
z denotes the principal square root of z ∈ C\R− using the non-positive real axis

as a branch cut. The scattering solutions are given by

ηk(x) =
ı
[
(1− ıkζ)eıkx − (1 + ıkζ)e−ıkx

]√
2π(1 + ζ2k2)

, k > 0. (2.73)
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w Plane ζ Plane

Figure 7. The admissible values of the measurement parameters, w (right
half plane) for the N lattice case and ζ (lower half plane) for the half line
case. See eq. (2.70) for a relation between the parameters in the two cases.

The states {ηk, ηb} satisfy the boundary condition at x = 0 and the orthonormality

conditions: ∫ ∞

0

dx [ηb(x)]2 = 1,

∫ ∞

0

dx ηk(x)ηb(x) = 0,∫ ∞

0

dx ηk(x)ηk
′
(x) = δ(k − k′).

(2.74)

This is easily proved using the identity
∫∞
0
dxeıkx = ıP (1/k) + πδ(k), where P denotes

the principal part. One also has the completeness relation:∫ ∞

0

dk ηk(x)ηk(x′) = δ(x− x′) for ℜ[ζ] < 0,∫ ∞

0

dk ηk(x)ηk(x′) + ηb(x)ηb(x′) = δ(x− x′) for ℜ[ζ] > 0.

(2.75)

To prove this, we note that∫ ∞

0

dk ηk(x)ηk(x′)

= − 1

2π

∫ ∞

0

dk
1

(1 + ζ2k2)

[
(1− ıkζ)eıkx − (1 + ıkζ)e−ıkx

] [
(1− ıkζ)eıkx

′ − (1 + ıkζ)e−ıkx
′
]

= δ(x− x′)− 1

2π

∫ ∞

0

dk

[
(1− ıkζ)2eık(x+x

′)

(1 + ζ2k2)
+

(1 + ıkζ)2e−ık(x+x
′)

(1 + ζ2k2)

]
= δ(x− x′)− 1

2π

∫ ∞

−∞
dk

(1− ıkζ)eık(x+x
′)

(1 + ikζ)
= δ(x− x′)− 1

π

∫ ∞

−∞
dk
eık(x+x

′)

1 + ikζ
,

where in the last step, we used the fact that
∫∞
−∞ dkeık(x+x

′) = 0, since x, x′ > 0. Per-

forming the final integration, we then get the completeness relations in EQ. (2.75).

The detection problem on the half line has been obtained as a limit of the problem

on the N lattice. Fig. (7) compares the admissible values of the measurement parameters

in both cases. The operator HN and the operator defined in EQ. (2.71) are both non-

Hermitian. In the measurement model under study, the parameter w takes values in the
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right half of the complex plane while ζ takes values in the lower half of the complex

plane. The unshaded regions in Fig. (7) for both cases correspond to those values of

the measurement parameters for which only scattering solutions exist while, for values in

the shaded region, there is in addition a bound state. The red unit semicircle and the

red negative imaginary axis are the values of the measurement parameters for which the

respective operators are non-diagonalizable.

If Ψ0(x), x ≥ 0 is some initial state, then its time development in accordance with

EQ‘. (2.71) can be completely specified in terms of the basis states described above. This

solution is given by

Ψ(x, t) =

∫ ∞

0

dk c(k)ηk(x)e−ık
2t + cbη

b(x)eıt/ζ
2

,

c(k) =

∫ ∞

0

dx Ψ0(x)η
k(x), cb =

∫ ∞

0

dx Ψ0(x)η
b(x).

(2.76)

The coefficients c(k) as well as the oscillating integrals above are well-defined for any

initial wave function Ψ0 which is sufficiently smooth, since then the c(k)’s have a fast

decay in k. If Ψ0 ∈ L2([0,∞)) is only square integrable, the previous formula has to be

understood by using an approximation of the initial condition by smooth initial condi-

tions. The approximation scheme propagates in time thanks to the decay EQ. (2.81) of

the L2-norm.

With the full solution of EQs. (2.71) known, one can obtain a saddle point approxi-

mation to Ψ(x, t) for large t (see sec. C ). This turns out to be

Ψ∞(x, t) = − 1√
2t
c
(
x
2t

) (1− ıζ x
2t

)√
1 + ζ2 x

2

4t2

exp
[
ı
(
x2

4t
− π

4

)]
. (2.77)

For x ≲
√
t we need the form of c(k) at k → 0. Using the explicit form of the wave

functions in EQ. (2.73) we find immediately that

c(k) ∼ 2ık√
2π
mΨ0 , where mΨ0 =

∫ ∞

0

dx (x− ζ)Ψ0(x).

Hence, we have for x ≲
√
t

Ψ∞(x, t) ≈ mΨ0

x√
4πt3

exp
[
ı
(
x2

4t
+ 3π

4

)]
, (2.78)

which has a universal structure apart from the factor mΨ0 .

As an explicit numerical example, we now consider the evolution of an initial wave

function of the form

Ψ0(x) = 1, for 1 < x < 2,

and zero elsewhere. In this case the basis expansion coefficients are given:

c(k) =
kζ cos(3k/2)− sin(3k/2)√

2π(1 + k2ζ2)

sin(k/2)

k/2
, cb =

√
2ζe−2/ζ(−1 + e1/ζ).
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Figure 8. Plot showing |Ψ(x, t)|2 at times t = 0, 0.1, 0.5, obtained from
the solution in eq. (2.76) with the square initial condition Ψ(x, 0) = 1 for
1 < x < 2 and zero elsewhere. The parameter value ζ = 0.2 − 0.5i was
taken.
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Figure 9. The first passage time distribution F (t) for the initial wave
packet and parameter values considered in Fig. (8). The inset shows the
decay F (t) ∼ t−3 at large times, with a pre-factor given by eq. (2.83).

We choose ζ = 0.2− 0.5ı. In Fig. (8) we show the evolution of the wave function at early

(a) and late times (inset of b). For the scaled wave function in Fig. 8b and we see an

excellent agreement with the analytic form in EQ. (2.77).

The survival probability S(t) is given by

S(t) =

∫ ∞

0

dx |Ψ(x, t)|2 (2.79)

and after some straightforward manipulations one can show, using EQ. (2.71) that

S(t) = 1 + 2
ℑ(ζ)
|ζ|2

∫ t

0

dt′ |Ψ(0, t′)|2 (2.80)
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which is the continuous counterpart of EQ. (2.38). For purely real ζ, i.e. α = 0 which

corresponds to non-measurement, the system EQ. (2.71) determines unitary evolution on

half line. We note that the first passage time distribution is given by

F (t) = −
dS(t)

dt
= −2

ℑ(ζ)
|ζ|2

|Ψ(0, t)|2 > 0. (2.81)

From the asymptotic scaling form in EQ. (2.77) we find that

S∞ = lim
t→∞

S(t) =

∫ ∞

0

dk

∣∣∣∣1− ıζk

1 + ıζk

∣∣∣∣ |c(k)|2 . (2.82)

We are not able to find more explicit forms for F (t) or S(t). However, we can obtain the

asymptotic long time form of F (t). We need the wave function at the origin, Ψ(0, t). This

can be obtained from the scaling solution in EQ. (2.78) by use of the boundary condition

Ψ(0, t) = −ζ
[
∂Ψ
∂x

]
x=0

. This gives us, for t → ∞, Ψ(0, t) = [mΨ0ζ/
√
4πt3]e−ı3π/4. Hence,

we get

lim
t→∞

t3F (t) = −ℑ(ζ)
2π

|mΨ0 |2. (2.83)

In Fig. (9) we plot F (t) for the same parameters and initial wave function used in Fig. (8).

At large times, we verify the above asymptotic form given in EQ. (2.83).

We observe that the RHS of EQ. (2.83) may vanish for some special initial condition

Ψ0. This means that the asymptotic decay of the first passage time distribution is not

universal. An exhaustive study can be performed showing that it is always possible to

start with a special initial wave function Ψ0 such that the asymptotic decay of the first

passage time distribution will be of order t−(2s+1) for some integer s ≥ 1. The detailed

study is performed in sec. (C).

2.3.2. Real axis. The Schrödinger EQ. (2.53) can be rewritten in the form

ı
∂ψn

∂t
= 2ψn − ψn+1 − ψn−1, n ∈ Z

ψ0 = ıw(ψ−1 + ψ1).

(2.84)

Assuming that ıw = 1
2
+ ϵ

ζ
where ζ is a complex number and defining the continuous

wave function Ψ as

Ψ(x, t) = lim
ϵ→0

ϵ−1/2ψ[x/ϵ]

(
tϵ−2

)
,

we get in the limit, ϵ → 0 the above equation reduces to the Schrödinger equation with

a complex Robin boundary condition at the origin

ı∂Ψ
∂t

= −∂2Ψ
∂x2

,

2Ψ|x=0 + ζ
[
∂Ψ
∂x
|x=0+ − ∂Ψ

∂x
|x=0−

]
= 0.

(2.85)

The solution of EQ. (2.85) can be obtained in the following way. Let us define

Ψs(x, t) = Ψ(x,t)+Ψ(−x,t)
2

, Ψa(x, t) = Ψ(x,t)−Ψ(−x,t)
2

,
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the symmetric and antisymmetric part of the wave function Ψ. Both functions are

uniquely determined by their restrictions to the half line [0,∞). EQ. (2.85) implies that

on [0,∞), Ψs is solution of the Schrödinger EQ. (2.71) with a complex Robin boundary

condition at the origin and that on [0,∞), Ψa is a solution of the Schrödinger equation

with the Dirichlet boundary condition Ψa(0, t) = 0. To solve the latter, we observe that

it is in fact sufficient to solve the free Schrödinger equation on the real line with the

initial antisymmetric wave function Ψa, since this property will be preserved by the free

propagator and in particular the solution will vanish on 0 at any time t > 0. It follows

that the solution of EQ. (2.85) is given by,

Ψ(x, t) =

∫ ∞

0

dk
[
ĉ(k)η̂k(x) + a(k)σk(x)

]
e−ık

2t + ĉbη̂
b(x) e

ı t
ζ2 , (2.86)

where

ĉ(k) =

∫ ∞

−∞
dxΨ0(x)η̂

k(x), a(k) =

∫ ∞

−∞
dxΨ0(x)σ

k(x), ĉb =

∫ ∞

−∞
dxΨ0(x)η̂

b(x).

(2.87)

η̂k, σk are the scattering states of the operator in EQ. (2.85) with explicit forms

η̂k(x) =
ı
[
(1− ıζk)eık|x| − (1 + ıζk)e−ık|x|

]
√

4π (1 + ζ2k2)
, σk(x) =

1√
π
sin (k x) , k > 0. (2.88)

The bound state η̂b(x) of the operator appears only when ℜ(ζ) > 0 and its form is

η̂b(x) =
1√
ζ
exp

(
−|x|
ζ

)
. (2.89)

Observe that, up to a multiplicative constant, η̂k and η̂b are respectively the symmetriza-

tion of ηk and ηb states of the semi-axis case. The eigenfunctions σk are odd while η̂k, η̂b

are even. All the functions η̂b, η̂k and σk satisfy the boundary condition in EQ. (2.85).

Actually σk satisfy the boundary condition somewhat trivially since they are smooth and

σk(0) = 0. All these eigenfunctions also satisfy the orthonormality conditions:∫ ∞

−∞
dx [η̂b]2 = 1,∫ ∞

−∞
dx η̂kη̂k

′
=

∫ ∞

−∞
dx σkσk

′
= δ(k − k′), k, k′ > 0,∫ ∞

−∞
dx σkη̂k

′
=

∫ ∞

−∞
dx σkη̂b =

∫ ∞

−∞
dx η̂kη̂b = 0

(2.90)

and the completeness relations:∫ ∞

0

dk [η̂k(x)η̂k(x′) + σk(x)σk
′
(x)] = δ(x− x′), for ℜ[ζ] < 0∫ ∞

0

dk [η̂k(x)η̂k(x′) + σk(x)σk
′
(x)] + η̂b(x)η̂b(x′) = δ(x− x′), for ℜ[ζ] > 0.

(2.91)
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The survival probability S(t) is given by

S(t) =

∫ ∞

−∞
dx |Ψ(x, t)|2 (2.92)

and after some straightforward manipulations one can show, using EQ. (2.85) that

S(t) = 1 + 4
ℑ(ζ)
|ζ|2

∫ t

0

dt′ |Ψ(0, t′)|2 . (2.93)

Since σk(0) = 0 and η̂k, η̂b are even, we conclude that the first passage time distribution

F = −∂S/∂t is up to a multiplicative constant the same as the one for the half-line, but

starting from the wave function Ψs
0 (instead of Ψ) restricted to the half-line. We observe

in particular that if we start with an antisymmetric wave function Ψ = Ψa, then the

particle is never detected.

2.4. Comparison of results

The previous sections of the current chapter offer a solution to the problem of contin-

uous monitoring of a quantum system to detect the arrival of a particle at the detector.

The object systems and the measurement protocol studied were simple enough to admit

a thorough analysis by use of standard complex-analytic methods. The distribution of

arrival times in each of the considered cases was obtained. Now, we shall briefly discuss

some works in relation to our results, especially for the half line case of sec. (2.3.1).

A model for arrival time observable was given by Werner in [Wer87]. For a closed

quantum system, the Hamiltonian, which is the generator of the system’s unitary evolu-

tion is Hermitian. Werner gives an idealized description of the evolution of a microsystem

(which can be taken to be a scalar particle on the half line) based on the existence of a

contraction semigroup, up until the time it is absorbed by a counter placed at the origin

x = 0. The instance of the absorption event is the arrival time of the particle. It is

further assumed that the interaction of the counter with the microsystem is minimal, in

the sense that pure states of the microsystem stay pure during the evolution. The de-

scription of continuous projective measurements in sec. (2.1) comports well with both the

assumptions of Werner. In the particular case of detection on the half line (sec. (2.3.1)),

the operator in EQ. (2.71) is a non-Hermitian extension of the one dimensional Laplacian

∂xx and serves as the generator of Werner’s semigroup, determining the evolution up to

the instance of absorption. Let us establish that this is indeed the case. An operator L

is dissipative (as defined in [Wer87]) if for all ψ in the domain of L ,

⟨ıLψ|ψ⟩+ ⟨ψ|ıLψ⟩ ≥ 0. (2.94)

For the operator defined in EQ. (2.71), the above condition reads

⟨−ı∂xxψ|ψ⟩+ ⟨ψ| − ı∂xxψ⟩ ≥ 0,
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which after partial integration and application of boundary condition in EQ. (2.71) gives

−2
|ψ(0)|2

|ζ|2
ℑ(ζ) ≥ 0.

Thus, the EQ. (2.94) is just the condition for positivity of the decay rate in EQ. (2.81).

Allcock [All69b] considers a different measurement scheme from the one used in our

study. It is assumed in [All69b] that the free motion of the particle occurs in the region

x < 0 (the incident channel) while in the region x > 0 (the measurement channel),

there exists a uniform complex potential −ıV where V is a positive constant. The wave

function ϕ(x, t) follows the equation

ı
∂ϕ

∂t
= −1

2

∂2ϕ

∂x2
− ıV ϕ

in the region x > 0. The rate at which probability enters the measurement channel from

the incident channel at the time t can be seen from the above equation to be

2V

∫ ∞

0

|ϕ(x, t)|2 dx.

It follows from the above that the dissipation rate of survival probability has a time

constant of T ∼ 1/(2V ). Therefore, any registration of a detection event in the region

x > 0 is known only to within an uncertainty of T . This is in contrast to our model,

where the detection events are instantaneous.

Tumulka has considered the more general case of quantummotion in a three-dimensional

domain Ω [Tum22c,Tum22b] with detectors placed everywhere on the boundary of the

domain. An absorbing rule (ABR) is imposed on the domain boundary ∂Ω in the form

n̂.∇ψ = ıκψ,

where n̂(r) is the outward normal to the boundary at the boundary point r. It is shown

that ABR defines a probability distribution by exhibiting a projection operator valued

measure on R+ × ∂Ω. It should be noted that Werner has shown that such projection

operator valued measure is guaranteed to exist for any contraction map generated by a

dissipative operator under the assumptions specified above EQ. (2.94). The measurement

model considered in sec. (2.1 - 2.3) is an example of hard detection, whereas Allcock’s

model is that of soft detection. [Tum22a] analyses this distinction in more detail and

obtains the hard detection model as a limit of the soft detection model in which the

potential strength V → ∞ and the width of the region of the complex potential l → 0

such that lV = κ up to a constant multiplier.



CHAPTER 3

Indirect Measurements

The measurement process discussed in the previous chapter involved a direct interac-

tion between the measuring device with the object system. Conditioned on non-detection,

the object system evolved through pure states in the model that was considered. In more

general cases, the randomness introduced by the measurement performed on the system

may not allow state evolution to remain pure. It may further be desirable that the evo-

lution continue post a successful detection. For this to occur, the measurement protocol

should preserve the system, unlike the case of detection via absorption at a screen.

Indirect measurements of a quantum system involve an interaction of the system

with a quantum probe followed by projective measurement on the probe. Braginsky,

Khalili & Thorne [BKT92] attribute this model of successive indirect measurements to

Mandelstam [Man71]. Quantum non-demolition measurements (a type of indirect mea-

surements) have proved useful in the important photon counting experiment of Haroche

et al. [GBD+07]. Other experiments [MWMS13,MMS+19,RSM+14] have looked at

the trajectory of quantum systems under repeated indirect measurements. It should be

further noted that in quantum measurement theory, instruments represent measurement

procedures [Bar93]. It is a known result [Oza84] that any instrument can be realized

via an indirect measurement scheme.

In this chapter, the results obtained in [DCD23] are presented. The object system

that is measured is a 2−state system. It is allowed to interact for a period τ with a

probe, which is also a two state system. The state of the probe is measured projectively

after the interaction. Depending upon the result of this measurement, one obtains partial

information about the state of the object system [Bar93]. If this process is repeated with

identically prepared probes, then the object system evolves stochastically. It has been

shown in [Bru02] for a two-state object system interacting with a sequence of identically

prepared probes (which are also two-state systems), that the state of the object system

evolves via a stochastic Schrödinger equation with jumps. Further, it has been shown

in [Bru02] that when the interaction strength between the object system and the probes

scales as, 1√
τ
then the reduced density matrix of the object system evolves via a Lindblad

equation.

The basis of our study is the model described in [SKR20]. In this work, the au-

thors have considered a measurement problem on a two-state system similar to the one

described in the last paragraph. Their principal conclusion is that upon variation of

the relative strength λ (defined below, see EQ.(3.10)) of measurement, the system ex-

hibits transitions which mark various stages in the onset of the quantum Zeno effect.

41
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Note that usual Zeno effect refers to the phenomena whereby a system’s dynamics gets

frozen as a result of continuous measurements on it. This Zeno effect is avoided with

the choice of interaction strength scaling as τ−1/2. But what [SKR20] finds for their

model is that in the limit of infinite measurement strength there is again a freezing of

the dynamics. Interestingly, signatures of this freezing appear even at large but finite

measurement strengths, with parts of the Hilbert space becoming inaccessible — this is

referred to as the Zeno effect appearing in stages. Following [SKR20], we model the

detector readout as a counting process and investigate the onset of the Zeno regime in

the counting statistics of the readout process. Similar investigations have been carried

out in [LRS14]. However, in the model we consider, the intensity of the counting process

is state dependent [Haw71].

The aforementioned stages in the onset of Zeno effect are essentially topological tran-

sitions observed when measurement strength is changed. Measurement induced entan-

glement transitions and topological phase transitions based on Zeno physics have gained

considerable attention, in particular we note the recent studies [LCF18,TBF+21,BS21,

NRSR21, IGG+21]. These transitions have been identified with the presence of excep-

tional points [GG21] in the spectrum of non-Hermitian Hamiltonian, which evolves the

quantum state under continuous measurement and post-selection. In [RTLG18], the

spectral approach is employed to investigate the properties of Markov processes that

are reset to a fixed state at times picked from an exponential distribution. [MMCN19,

MMC+20] consider exceptional points of non-Hermitian Hamiltonians as well Liouvil-

lians governing open system dynamics.

The results contained in this chapter are directly related to the problem of photo-

detection in experimental optics. In our study, we obtain expressions for survival prob-

ability (EQ. (3.23) below) which is well known in quantum optics. The review [PK98]

and the works [Car99,Car09] are extensive surveys that have motivated the following

study.

In the following pages, first a discrete model is developed in which the measurements

are performed at times intervals of τ . Then a continuous time limit is obtained in a

manner that the detector readout becomes a counting process. This counting process is

the main object of the study for the rest of the chapter, where we develop the statistical

functions associated with it. We adopt two complementary approaches. Firstly, the

stochastic differential equation is written and analysed. Then the master equation is

studies through the tools of spectral analysis.

3.1. Description of the measurement model

In this section, the basic measurement model is discussed first for the discrete time

measurements and then the appropriate equations for continuous measurement are ob-

tained.
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3.1.1. Discrete time measurement model. Consider a 2−state system S whose

Hilbert space HS is spanned by the vectors

|ψ0⟩ =

[
1

0

]
, |ψ1⟩ =

[
0

1

]
. (3.1)

The system evolves with the Hamiltonian

HS =

[
0 γ0

γ0 0

]
= γ0σx (3.2)

where γ0 is a positive frequency and σx, σy, σz represent the Pauli matrices. At any

instance t, the state of S is given by the normalized vector

|ψ(t)⟩ = a(t)|ψ0⟩+ b(t)|ψ1⟩ =

[
a(t)

b(t)

]
. (3.3)

At this instance, S is allowed to interact with another 2−level system D for a short

time interval τ . The Hilbert space HD is spanned by {|χ0⟩, |χ1⟩}, defined similarly as

in EQ. (3.1). At the start of the interaction, D is assumed to be in the state |χ0⟩. The

combined state of the system S and the detector D is the uncorrelated vector

|Ψ(t)⟩ = |ψ(t)⟩ ⊗ |χ0⟩ (3.4)

in the tensor product space H = HS ⊗ HD. We adopt the convention that for states

or operators in H, the first factor corresponds to S and the second factor to D in all

summands. The state |Ψ(t)⟩ evolves in the interval τ by the Hamiltonian

H = HS ⊗ I +

√
γ

τ
π1 ⊗ σy. (3.5)

The interaction part of the Hamiltonian is scaled as 1/
√
τ and γ is a non-negative coupling

frequency. In EQ. (3.5), the projector π1 = |ψ1⟩⟨ψ1| and I is the identity operator. It

follows that the combined state after the interval τ is given by

|Ψ(t+ τ)⟩ = exp [−ıτH] |Ψ(t)⟩

⇒ |Ψ(t+ τ)⟩ = |ψ(t)⟩ ⊗ |χ0⟩+ (−ıτ)
[ (
HS − ı

γ

2
π1

)
|ψ(t)⟩

]
⊗ |χ0⟩

−ı√γτ
[
π1|ψ(t)⟩

]
⊗
[
σy|χ0⟩

]
+O(τ

3
2 ).

(3.6)

The overall state |Ψ(t+τ)⟩ can be regarded as the a priori state, i.e. the state before the

result of the measurement is known. This result is known via a projective measurement

on the outgoing probe post interaction. The measurement basis (or the pointer states)

is taken to be {|χ0⟩, |χ1⟩}. Depending upon the result of the projective measurement on

the probe, the state of the object system can be inferred from the above form of |Ψ(t+τ)⟩
along with the probabilities of these outcomes.
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γ0

γ

|0⟩

|1⟩

|0⟩ |1⟩

Figure 10. The observed system is a qubit with an internal transition
frequency γ0. The probe is also a qubit with pointer states |0⟩ and |1⟩.
The probe is initially prepared in the state |0⟩. During the interaction with
the probe, the state |1⟩ of the observed system couples to the probe with
a rate proportional to

√
γ. A ’click’ happens when the post interaction

state of the probe is measured to be |1⟩. Upon a click, the observed system
collapses to the state |1⟩.

If the probe is found to be in the state |χ0⟩, then the un-normalized state |ψ̃(t+ τ)⟩
of the object system S up to first order in τ is given by

|ψ̃(t+ τ)⟩ ≈
[
I − ıτ

(
HS − ı

γ

2
π1

)]
|ψ(t)⟩. (3.7)

The probability of this event, i.e, of the readout to be |χ0⟩, up to first order in τ is given

by

p0 ≈ 1− γτ⟨ψ|π1|ψ⟩ = 1− γτ |b(t)|2. (3.8)

If the readout is |χ1⟩, then the un-normalized state and the probability of the readout

are

|ψ̃(t+ τ)⟩ ≈ √
γτπ1|ψ(t)⟩, p1 ≈ γτ⟨ψ|π1|ψ⟩ = γτ |b(t)|2. (3.9)

This completes the description of one measurement cycle. For the two possible read-

outs, |χ0⟩ corresponds to an incremental change in the state of the object system in

accordance with EQ. (3.7) whereas |χ1⟩ corresponds to a jump of the object system to

the state |ψ0⟩ in accordance with EQ. (3.9). This jump event can be regarded as a click

of the apparatus. Subsequently, the object system is coupled to another detector initial-

ized in |χ0⟩ and the process is repeated sequentially. A measurement record consists of a

sequence of clicks separated by arbitrary integral multiples of interaction time τ .

3.1.2. Limit to continuous measurements. The choice of the interaction part of

the Hamiltonian in EQ. (3.5) has already presented the EQ. (3.6) in a form for which

the limit of continuous measurements corresponding to τ → 0 is easily obtained. The

normalized a posteriori state after a jump is simply |ψ1⟩. For the case of incremental
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evolution via EQ. (3.7), one has up to first order in τ

p0 = ⟨ψ̃(t+ τ)|ψ̃(t+ τ)⟩ ≈ 1 + ıγ0τ⟨ψ(t)|H†
eff −Heff|ψ⟩

where we have used the fact ⟨ψ(t)|ψ(t)⟩ = 1 along with the definitions

Heff =
HS

γ0
− i

γ

2γ0
π1 =

[
0 1

1 −2ıλ

]
, λ =

γ

4γ0
. (3.10)

The parameter λ can be regarded as the strength of the measurement. An explicit

calculation with above gives EQ. (3.8). In the limit, τ = dt→ 0 the stochastic evolution

of the normalized state is thus given by,

|ψ(t+ dt)⟩ =

|ψ(t)⟩ − ıγ0dt
(
Heff + ı αt

2γ0

)
|ψ(t)⟩, with prob. p0 = 1− αtdt,

|ψ1⟩, with prob p1 = αtdt,
(3.11)

where

αt := γ⟨ψ(t)|π1|ψ(t)⟩ = γ|b(t)|2. (3.12)

EQ. (3.11) is the continuous measurement limit of the discrete time model described in

sec. (3.1.1). As in the discrete time case, the jump events can be regarded as clicks of

the measuring apparatus. The time interval between consecutive clicks is of course non-

deterministic. If Nt represents the number of clicks registered in time t from the start

of the monitoring, then Nt is a counting process similar to the standard Poisson process.

The important difference however is that the intensity αt of the process Nt is not constant,

but is in fact dependent upon the state of the monitored system via b(t) = ⟨ψ1|ψ(t)⟩.
The state |ψ(t)⟩ in turn depends upon the time elapsed since the last click via the first

case in EQ. (3.11).

The following assumptions, which are true for the standard Poisson process, are made

for the process Nt on physical grounds that one does not expect Nt to explode in finite

time.

dNt = Nt −Nt−, dNt dNt = dNt, dNt dt = 0, (3.13)

Here Nt− = limt′→t−Nt′ (the trajectories of Nt are right continuous with left limits). The

expected value of the Poisson increment, conditioned upon the fact that the state of the

system is |ψ(t)⟩ is equal to

E [dNt] = αtdt = γ|b(t)|2dt. (3.14)

The conditional EQ. (3.11) can now be written as a non-linear stochastic differential

equation,

d |ψ(t)⟩ = −ıγ0
(
Heff + ı

αt
2γ0

)
|ψ(t)⟩ dt+

(
√
γ
π1√
αt

− I

)
|ψ(t)⟩ dNt. (3.15)

Note that for the second outcome in EQ. (3.11) one should include a factor b(t)/|b(t)|.
However, rigorously, we should interpret the equation EQ. (3.15) for the corresponding
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one-point projector |ψ(t)⟩⟨ψ(t)|. More explicitly

d

(
a(t)

b(t)

)
=

[(
γ
2
|b(t)|2 −iγ0
−iγ0 −γ

2
+ γ

2
|b(t)|2

)
dt+

(
−1 0

0 −1 + 1
|b(t)|

)
dNt

](
a(t)

b(t)

)
.

(3.16)

Equations (3.15, 3.16) are sometimes called stochastic Schrödinger equations [WM09,

BB91] or quantum trajectory for pure state. This type of equation with Poisson noise

in this set-up has been discussed in [Dio86,DCM92]. Since then, different justifications

have been given for the fact that they model quantum systems which are subject to

continuous indirect measurements. The general case of quantum trajectories is for mixed

states and includes also Gaussian white noise [JS06,WM09,BP02].

Physically, two phenomena are in competition in EQ. (3.16) :

(1) Collapsing in basis {|ψ0⟩, |ψ1⟩} thanks to continuous measurement. More pre-

cisely, when γ0 → 0 (i.e. HS → 0), EQ. (3.16) models the continuous measure-

ment of π1. As π1 is a diagonal matrix in the basis {|ψ0⟩, |ψ1⟩}, this basis is said
to be of non-demolition form with respect to the measurement [WM09]. This

will lead at large time to [BB11,ABBH01] the collapse in the basis |ψ0⟩, |ψ1⟩
with the born law with respect to the initial state |ψ(0)⟩ , i.e. :

lim
t→∞

|ψ(t)⟩ =

|ψ0⟩ with probability |⟨ψ0| ψ(0)⟩|2

|ψ1⟩ with probability |⟨ψ1| ψ(0)⟩|2
. (3.17)

(2) Rabi (coherent) oscillation due to unitary evolution. More precisely, when γ = 0,

then from EQs. (3.13,3.37) one has dNt = 0 and the EQ. (3.16) is the free

(unitary) evolution with Rabi Hamiltonian, HS which leads to classical Rabi

oscillation [LB06].

In the general case with finite γ0 and γ, as the commutator [HS, π1] ̸= 0, the unitary evo-

lution comes to prevent the asymptotic collapse in EQ. (3.17). The asymptotic behaviour

will then be a smooth invariant density that will be obtained below. The competition be-

tween continuous non-demolition measurement and thermalization (instead of free unitary

evolution here) has recently been extensively studied in [BBT15a,BBT15b,BBC+21].

EQ. (3.15) describes the stochastic evolution of the state vector |ψ(t)⟩ under continu-
ous indirect measurements. Each measurement record of the state trajectory consists of

a sequence of times at which clicks are registered by the apparatus. In the absence of a

record, as in the case of blind measurements, one considers an overage over the outcomes

and the density matrix ρ(t) of the object system evolves as

∂tρ(t) = −i[HS, ρ(t)] +
γ

2
(2π1ρ(t)π1 − {π1, ρ(t)}) . (3.18)

This is a Lindblad equation [Lin76,GKS76] with only one Kraus operator π1 which is

moreover self-adjoint. For a derivation, see sec. (D).
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3.2. No click dynamics

From EQs. (3.7, 3.10) one sees that conditioned on no jump events during continuous

monitoring, the un-normalized state |ψ̃(t)⟩ evolves in accordance with This evolution

equation is

ı
∂|ψ̃⟩
∂t

= γ0Heff |ψ̃⟩. (3.19)

This effective evolution has the same form as was derived in sec. (2.1.2) for direct mea-

surements, and more specifically for the finite lattice case in sec. (2.2.1) with N = 2

and real w = 2λ. The survival probability S(t), i.e., the probability of no clicks in the

interval, [0, t) is then given by

S(t) = ⟨ψ̃(t)|ψ̃(t)⟩. (3.20)

3.2.1. Calculation of survival probability. Since Heff is of order 2×2, EQ. (3.19)

can be easily solved via matrix exponentiation. Suppose the object system S is prepared

in the state |ψ0⟩ at t = 0 when continuous monitoring starts. For simplifying the expres-

sions to be obtained below, introduce the notation β2 = −β′2 = 1 − λ2 , sinϕ = β and

sinhϕ′ = β′.

When 0 ≤ λ < 1, then Heff admits the orthogonal decomposition

1

2β

[
c c∗

−c∗ c

][
−(c∗)2 0

0 c2

][
c −c∗

c∗ c

]
where c = exp

[
ı(2ϕ−π

4
)
]
. From the above and the fact that c2 + (c∗)2 = 2β, one has

e−ıγ0tHeff =
1

2β

[
c c∗

−c∗ c

][
exp[ıγ0t(c

∗)2] 0

0 exp[−ıγ0tc2]

][
c −c∗

c∗ c

]
.

With the initial condition |ψ(0)⟩ = |ψ0⟩, from EQ. (3.19) one has

|ψ̃(t)⟩ = e−ıγ0tHeff|ψ0⟩ =
1

β

[
ℜ[c2 exp(ıγ0t(c∗)2)]
−ıℑ[exp(ıγ0t(c∗)2)]

]
. (3.21)

The calculations in the case λ > 1 are similar to those for 0 ≤ λ < 1.

For λ = 1, as noted earlier (see discussion below EQ. (A.6)) Heff is non-diagonalizable.

The Jordan decomposition of Heff is[
1 ı

0 1

][
−ı 0

1 −ı

][
1 −ı
0 1

]
.

Once again, matrix exponentiation gives

e−ıγ0tHeff = e−γ0t

[
1 + γ0t −ıγ0t
−ıγ0t 1− γ0t

]
.

With the same initial condition as before, one obtains

|ψ̃(t)⟩ = e−γt/4

[
1 + γ0t

−ıγ0t

]
. (3.22)
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With the form of |ψ̃(t)⟩ known, the survival probability can be obtained from EQ. (3.20).

We note the explicit form of the survival probability when |ψ(0)⟩ = |ψ0⟩

S(t, λ) =



e−
γ
2
t

β2

(
sin2 (βγ0t) + sin2 (βγ0t+ ϕ)

)
for 0 ≤ λ < 1

e−
γ
2
t

β′2

(
sinh2 (β′γ0t) + sinh2 (β′γ0t+ ϕ′)

)
for λ > 1

e−
γ
2
t
(
(γ0t)

2 + (1 + γ0t)
2
)

for λ = 1

(3.23)

Because β′ < λ, even for λ > 1 the survival probability is a decaying exponential. In all

cases [S(t, λ)]t→∞ = 0. The value λ = 1 is clearly a crossover point where the form of the

functional dependence of S(t) changes. Furthermore, for a fixed γ0 and λ ̸= 1 one has,

lim
t→∞

S(t, 1)

S(t, λ)
= 0. (3.24)

Thus the survival probability decays at the fastest rate for the critical value of λ = 1.

Noting that dNs = 0 for all s ∈ [0, t] when no clicks are observed, the equation for

the evolution of the normalized state |ψ(t)⟩ can be obtained from EQ. (3.15) by putting

dNt = 0. We note this non-linear equation below

ı∂t|ψ(t)⟩ = γ0Heff |ψ(t)⟩+ ı2λγ0 |⟨ψ1|ψ(t)⟩|2 |ψ(t)⟩. (3.25)

Alternatively, the normalized state |ψ(t)⟩ follows a non-linear equation when conditioned

to evolve via no clicks. Noting that |ψ(t)⟩ =
|̃ψ(t)⟩√
S(t, λ)

, after differentiation and use of

EQ. (3.19), one has

ı∂t|ψ(t)⟩ = γ0Heff |ψ(t)⟩ −
ı

2

(
d

dt
logS(t)

)
|ψ(t)⟩.

The fact that ⟨ψ(t)|ψ(t)⟩ = 1 and from the above equation it follows that

−ı d
dt

logS(t) = γ0⟨ψ(t)|
[
H†

eff −Heff

]
|ψ(t)⟩ = ı4λγ0|⟨ψ1|ψ(t)⟩|2.

Combining the above two results, one has the evolution equation EQ. (3.25).

3.2.2. Bloch sphere representation of no click dynamics. The pure state of a

qubit can be represented by a point on the surface of the Bloch sphere whose North Pole

is the state |ψ0⟩ and the South Pole is |ψ1⟩. For the particular choice of HS (EQ. (3.2))

and the starting initial conditions, |ψ(t = 0)⟩ = |ψ0⟩, |ψ(t = 0)⟩ = |ψ1⟩ or point on the

yz plane, the qubit state remains in a fixed plane at all times. In order to see this, we

begin by noting that the standard representation of a qubit’s state on the Bloch sphere

is given by

|ψ⟩ = cos
χ

2
|ψ0⟩+ eıξ sin

χ

2
|ψ1⟩ (3.26)

for 0 ≤ χ ≤ π and 0 ≤ ξ ≤ 2π. In the spherical polar coordinate system, χ is the polar

angle and ξ the azimuthal angle. In the yz plane, ξ = π/2 for y > 0 and ξ = 3π/2 for

y < 0. ξ is undefined on the z axis. Substituting the above in EQ. (3.25), the following
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Figure 11. The saddle node bifurcation occurs at λ = 1 for θc = −π/2.
For λ > 1, two fixed points θ± develop.

coupled system is obtained

sin
χ

2

[
ıχ̇+ 2γ0(ıλ sinχ+ eıξ)

]
= 0,

cos
χ

2

[
ıχ̇− 2γ0(−ıλ sinχ+ e−ıξ)

]
− 2ξ̇ sin

χ

2
= 0.

The trajectory of constant ξ is for cos ξ0 = 0 which corresponds to ξ0 = π/2 and ξ0 = 3π/2.

For ξ0 = π/2, χ evolves in accordance with

χ̇ = −2γ0(λ sinχ+ 1),

whereas for ξ0 = 3π/2, χ evolves in accordance with

χ̇ = −2γ0(λ sinχ− 1).

On the part of the evolution for ξ = π/2, define θ = χ and on the part of the evolution

for ξ = 3π/2, define θ = −χ. Then the state vector in EQ. (3.26) and its evolution can

be described by a single angle variable θ ∈ (−π, π] with π and −π identified. The general

state in EQ. (3.26) can in this representation be written as

|ψ(t)⟩ =

[
cos (θt/2)

ı sin (θt/2)

]
, (3.27)

and the evolution of θt under no click dynamics given by

θ̇ = Ω(θ) = −2γ0 [1 + λ sin θ] . (3.28)

This corresponds to the overdamped dynamics of a particle in a periodic tilted poten-

tial. For λ < 1 there are no fixed points and the particle keeps going round. At λ = 1,

there is a saddle-node bifurcation (Figure 11) and two fixed points develop, one of which

is stable (θ+) and the other unstable (θ−) and given by:

θ+ = − sin−1(1/λ), θ− = −π − θ+. (3.29)
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Figure 12. No click dynamics : Figure (a) compares the oscillations of
the probablity |a(t)|2 = cos2 (θt/2) with θ0 = 0 for no measurement (λ = 0)
and with measurement (λ = 1/2). The early half of the cycle is covered
faster than the later half for λ = 1/2. (b) is the plot of θt for λ in various
regimes. We chose initial condition θ0 = π but other choices would give
qualitatively the same results.

In the following, the flow notation θt(s, θ
′) will be used to indicate the solution θt of

the no-click dynamics dθt = Ω(θt) dt such that at the instance s, θs = θ′. Following are

the results of integration of EQ. (3.28) in the various regimes of λ.

• For λ < 1, θ0 = 0, the equation integrates to give

arctan
λ+ tan[θt(0, 0)/2]√

1− λ2
− arctan

λ√
1− λ2

= −βγ0t. (3.30)

If at t1, θt1 = π and evolution happens via no click from t1 to t then

arctan
λ+ tan[θt(t1, π)/2]√

1− λ2
− π

2
= −βγ0(t− t1). (3.31)

• For λ = 1 and θ(0) = 0, the equation integrates to give

tan

(
π

4
− θt(0, 0)

2

)
= 1 + 2γ0t. (3.32)

If at t1, θt1 = π and evolution happens via no click from t1 to t. The equation

integrates to give

tan

(
π

4
− θt(t1, π)

2

)
= −1 + 2γ0(t− t1). (3.33)

• For λ > 1 and θ(0) = 0, the equation integrates to give

tan
θt(0, 0)

2
= − sinh(β′γ0t)

sinh(β′γ0t+ ϕ′)
. (3.34)

If at t1, θt1 = π and evolution happens via no click from t1 to t then

tan
θt(t1, π)

2
= −sinh(β′γ0(t− t1)− ϕ′)

sinh(β′γ0(t− t1))
. (3.35)
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The above equations confirm the observations made in Figs. (11, 12). For 0 < λ < 1,

the probability |a(t)|2 = cos2 (θt(0, π)/2) shows oscillations similar to Rabi oscillations,

which happen for λ = 0. The frequency of these oscillations is proportional to β, whose

form is given in EQ. (3.30). Figure 12(a) compares the cases λ = 0 and λ = 1/2. Figure

12(b) shows the evolution of θt(0, π) obtained from the integration of EQ. (3.28) for

various values of λ. We observe that the oscillatory behaviour stops exactly at λ = 1 and

increasing values of λ ≫ 1 (collapsing regime of the previous section) cause rapid decay

to θ+ ≈ 0, which is consistent with the collapse EQ. (3.17) but conditioned on no click.

3.3. Stochastic dynamics

The continuous evolution of θ in accordance with EQ. (3.28) is interrupted whenever

a click occurs. In accordance with EQ. (3.9), the system collapses to ψ1 and hence the

value of θ jumps to π (the azimuthal angle ξ is undefined for this state). The stochastic

process Nt defined in EQs. (3.13, 3.14) counts the resets to the θ = π in the interval

[0, t]. By mapping the evolution of the state vector on the Bloch sphere, we have thus

expressed the dynamics of the object system to a classical stochastic process θt described

by

dθt = Ω(θt) dt+
(
π − θt−

)
dNt, (3.36)

where Ω(θ) is as given in EQ. (3.28). The rate function αt of Nt depends on θt in

accordance with (3.14)

E [dNt] = α(θt) dt = γ sin2 θt
2
dt. (3.37)

EQs. (3.36, 3.37) together define a resetting process. We note that resetting processes

have gained attention in recent works in the classical context [EM11b,EM11a,PKE16,

EMS20] as well as in a few studies in the quantum context [MSM18,YB23,TDFS22,

KM23]. Our study provides a simple example where stochastic resetting in a quantum

system appears naturally as a result of measurements.

If P (θ, t) represents the probability density of the stochastic variable θ at time t, then

it was shown in [SKR20] that P (θ, t) obeys the forward equation

∂P (θ, t)

∂t
= − ∂

∂θ
[Ω(θ)P (θ, t)]− γ sin2

(
θ

2

)
P (θ, t) + γδ(θ− π)

∫ 2π

0

sin2

(
θ′

2

)
P (θ′, t) dθ′.

(3.38)

A similar partial integro-differential equation (PIDE) has appeared in [WM93] in the

context of photo-detection. For an alternative derivation, please see sec. (D).

The steady state solution of EQ. (3.38) and some properties of the linear evolution

operator were obtained in [SKR20]. It was noted that the onset of Zeno dynamics occurs

in several stages, which are marked by specific values of the measurement parameter

λ ∈ {1, 2√
3
, 2}. In EQ. (3.24), one already notices that the transition value λ = 1 makes

itself apparent in the rate of decay of the survival probability. In the following, we wish

to investigate how these values of λ appear in the counting statistics of the process Nt.
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We also provide a complete solution of the time-evolution of P (θ, t) and a more detailed

characterization of the spectrum.

From the point of view of the theory of stochastic processes, the process (θt, Nt) is a

simple example of piecewise deterministic Markov processes [Dav84]. In the context of

quantum measurement theory, counting processes related to arrival events of quanta at a

counter were analysed in detail by E.B.Davies in [Dav69]. From [BB91] we learn that

these processes are completely described by a specification of their exclusive probability

densities (EPD). We now turn to the derivation of these EPDs for the process Nt and a

study of the counting statistics.

3.3.1. Counting statistics. The EPD are finite dimensional probability densities

in time, denoted as

P t
0[0|||ψ(0)⟩], pt0[t1, . . . , tn|||ψ(0)⟩]. (3.39)

P t
0[0|||ψ(0)⟩] is the probability of obtaining no clicks in the interval (0, t] when the mea-

sured system starts in the initial state |ψ(0)⟩. pt0 [t1, . . . , tn|||ψ(0)⟩] is the probability

density (in times t1, . . . , tn) of exactly n counts at instances 0 < t1 < · · · < tn ≤ t where

n ranges over positive integers.

One has for the non-autonomous counting process Nt [Bré81]

P t
0[0||ψ(0)] = exp

[
−
∫ t

0

α(θs(0, θ0)) ds

]
. (3.40)

For the 2−state system under consideration, |ψ(0)⟩ = |ψ0⟩ which corresponds to θ0 =

0 and P t
0[0|||ψ(0)⟩] is then nothing but the survival probability in EQ. (3.23). From

EQs. (3.28, 3.37) one obtains∫ t

0

α(θs(0, θ0)) ds =
γt

2
+ log

∣∣∣∣1 + λ sin θt(0, θ0)

1 + λ sin θ0

∣∣∣∣ . (3.41)

The survival probability can now be compactly written in the form

P t
0[0||θ0] =

Ω(θ0)

Ω(θt(0, θ0))
e−

γt
2 . (3.42)

From the above expression, all the expressions for survival probability in EQ. (3.23) can

be recovered. For example, taking θ0 = 0 for the case λ = 1, one finds from EQ. (3.32)

Ω(θt) = −2γ0(1 + sin θt), tan
θt
2
= − γ0t

1 + γ0t
,

⇒ Ω(θt) = − 2γ0
(1 + γ0t)2 + (γ0t)2

from where the form of S(t, 1) is clear.

Now consider the probability density in time pt0[t1||θ0 = 0] of exactly one click at the

instance t1 ∈ (0, t]. For this, there should be no click in (0, t1], a click in the interval
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(t1, t1 +∆t1] and no click from (t1 +∆t1, t]. Then, in the limit ∆t→ 0 one has,

pt0[t1||θ0 = 0] = e−
γt
2

Ω(0)

Ω(θt1−(0, 0))
× α(θt1−(0, 0))×

Ω(π)

Ω(θt(t1, π))
. (3.43)

Since θ0 = 0 in all further considerations, denote densities such as pt0[t1||θ0 = 0] simply

as pt0[t1] etc. For all n ≥ 1, the densities pt0[t1, . . . , tn] can be obtained similarly. For

different values of λ, one may note the form of pt0[t1, . . . , tn]

pt0[t1, . . . , tn] =



e−
γt
2

β2

(
γ

β2

)n
sin2 (βγ0∆t0)

∏n
k=1 sin

2 (βγ0∆tk − ϕ)

sin2(θt(tn, π)/2)
0 ≤ λ < 1

e−
γt
2

β′2

(
γ

β′2

)n
sinh2 (β′γ0∆t0)

∏n
k=1 sinh

2 (βγ0∆tk − ϕ′)

sin2(θt(tn, π)/2)
λ > 1

e−
γt
2 γn(γ0∆t0)

2

∏n
k=1(1− γ0∆tk)

2

sin2(θt(tn, π)/2)
λ = 1

(3.44)

In the above equation, we have ∆tk = tk+1− tk with t0 = 0 and tn+1 = t. The expressions

for sin2(θt(tn, π)/2) in the respective cases can be obtained from EQs. (3.31, 3.33, 3.35).

The probability of registering exactly n counts in the interval (0, t] is given by

P t
0[n] =

∫ t

0

dtn

∫ tn

0

dtn−1· · ·
∫ t2

0

dt1 p
t
0[t1, . . . , tn]. (3.45)

EQ. (3.45) allows for writing the moment generating function of Nt. Explicitly

E[e−sNt ] =
∑
n≥0

e−nsP t
0[n]. (3.46)

In Appendix (E) , it is shown that the Laplace transform with respect to time t of the

moment generating function is

(LE[e−sNt ])(σ, s) =
µ2 − γ

2
(1− 2e−s)µ+ 4γ20

µ (µ2 + 4β2γ20)− γe−s
(
µ2 − γ

2
µ+ 2γ20

) , (3.47)

where µ = σ + γ/2. The denominator in the above is a third order polynomial in σ and

has in general three (possibly complex) zeros σ1, σ2, σ3 which depend on s, γ, γ0. When

these are distinct, then the moment generating function has the form

E[e−sNt ] =
f(σ1)e

σ1t

(σ1 − σ2)(σ1 − σ3)
+

f(σ2)e
σ2t

(σ2 − σ3)(σ2 − σ1)
+

f(σ3)e
σ3t

(σ3 − σ1)(σ3 − σ2)
, (3.48)

where f(σi) is the numerator in EQ. (3.47) evaluated at the zero σi. In order to study

the zeros, notice that the denominator factors when s = 0 as

(µ− 2λγ0)(µ
2 − 2λγ0µ+ 4γ20). (3.49)

The zeros of the denominator in EQ. (3.47) evaluated at s = 0 are,

σ1(0) = 0, σ2(0) = γ0

[
−λ+

√
λ2 − 4

]
, σ3(0) = γ0

[
−λ−

√
λ2 − 4

]
. (3.50)
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Figure 13. Typical realizations of stochastic trajectories, θt, obtained by
solving eq. (3.36) for the initial condition θ0 = 0 and four different values of
λ. We can see deterministic drifts and the stochastic resets to θ = π. For
trajectories starting from θ0 = 0, the whole interval [−π, π] is accessible for
λ = 1/2, while for λ = 3/2 (more generally for all λ ≥ 1), only the interval
[θ+, π] is accessible. For the definition of θ+, see eq. (3.29).

The zeros are all real for λ > 2. For λ < 2, σ2(0) and σ3(0) are complex conjugate while

for λ = 2, there is a double root. When the expression in (3.49) is differentiated w.r.t. s

and equated to 0, then the following are obtained

dσ1
ds

∣∣∣∣
s=0

= −γ
2
,
dσ2
ds

∣∣∣∣
s=0

=
λ√

λ2 − 4
σ3(0),

dσ3
ds

∣∣∣∣
s=0

= − λ√
λ2 − 4

σ2(0). (3.51)

For E[Nt], one has

E[Nt] = − d

ds
E[e−sNt ]

∣∣∣∣
s=0

. (3.52)

A calculation using EQs. (3.48, 3.50, 3.51 3.52) then gives

E[Nt] =



2λγ0t+ λ2
[
−1 + e−λγ0t

sin(ωt+ φ)

sinφ

]
0 ≤ λ < 2,

2λγ0t+ λ2
[
−1 + e−λγ0t

sinh(ω′t+ φ′)

sinhφ′

]
λ > 2,

4
(
−1 + γ0t+ e−2γ0t(1 + γ0t)

)
λ = 2,

(3.53)

where ω2 = −ω′2 = γ20 (4− λ2), tanφ = λ
√
4−λ2

λ2−2
and tanhφ′ = λ

√
λ2−4

λ2−2
. Here again

one notices that λ = 2 is a crossover point where the form of functional dependence of

E[Nt] changes. Furthermore, for the value of λ =
√
2, the oscillatory function sin(ωt +
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φ)/ sin(φ) is of minimum amplitude. In [SKR20], it has been pointed that there exists

a transition for λ = 2/
√
3 characterised by a divergence in the steady state probability

density P∞(θ)(= limt→∞ P (θ, t)). Moreover, the mean value of the transition rate α given

by

αt =
d

dt
E[Nt] = γ

[
1

2
− γ0
ω
e−λγ0t

(
eıωt

ω/γ0 + ıλ
+

e−ıωt

ω/γ0 − ıλ

)]
(3.54)

has the signature of λ = 2 transition only.

It is important to note the limiting behaviour of expressions for S(t, λ) in EQ. (3.23)

and E[Nt] in EQ. (3.53). As defined, λ = γ
4γ0

and two possible ways for λ → ∞ are that

γ0 → 0 for fixed γ, and that γ → ∞ for fixed γ0. In either case, it is easy to see that,

lim
λ→∞

S(t, λ) = 1. (3.55)

As expected in the Zeno effect, for most trajectories the experimenter would detect no

clicks in a finite time under strong measurement. For E[Nt], the behaviour is quite

different, as we see in the following limits.

lim
λ→∞
γ fixed

E[Nt] = 0, lim
λ→∞
γ0 fixed

E[Nt] = 2γ20t
2, lim

λ→0
γ fixed

E[Nt] =
γt

2
. (3.56)

The last panel of fig. (13) shows that under strong measurements (λ≫ 1), for most tra-

jectories, the experimenter would detect no clicks in a finite time. This is the observation

of the Zeno effect. However, after waiting for a sufficiently long time, a click is bound to

occur (Since [S(t, λ)]t→∞ = 0). Immediately after the first click , θ = π and with a high

click rate, the experimenter is likely to observe a number of subsequent clicks. Thus, for

large γ, durations of no clicks (darkness) are punctuated by durations of a rapid increase

in the number of clicks (brightness) [CTD86]. In the limit of large γ, the second limit

in equation (3.56) is achievable despite the first. This can be related to the phenomenon

studied in the context of spiking and collapse in the large noise limit of stochastic dif-

ferential equations driven by Wiener processes [BCC+23]. The last limit in EQ. (3.56)

states that for extremely high Rabi frequency of the observed system, the clicks have the

statistics of a background Poisson noise of intensity γ/2.

Further, consider the mean time τR between subsequent clicks. This is evidently given

in terms of survival probability P t
0[0||π] and intensity αt by the formula,

τR =

∫ ∞

0

t P t
0[0||π] γ sin2 θt(0, π)

2
dt. (3.57)

All the required quantities can be obtained from EQs. (3.30 - 3.35, 3.42) for various

regimes of λ. For example, if λ > 1, the expression simplifies to

τR =
γ

β′2

∫ ∞

0

t sinh2(β′γ0t− ϕ′) exp(−γt/2) dt,
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and similar reductions can be made for the cases λ ≤ 1. In all cases, the expression takes

the simple form

τR =
2

γ
. (3.58)

Before indicating the connection of the above equation with results in [TKB20], it would

help to consider another example which will further consolidate this connection. Take a

3-level system for which the system Hamiltonian HS is given by

HS = γ0

 0 1 1

1 0 1

1 1 0

 . (3.59)

Here γ0 and γ (employed below) have similar significance as in the main model studied

in this chapter, which was described in sec. (3.1). 2-level probes interact sequentially

with the site |1⟩, each interaction lasting a duration τ during which an incoming probe

Figure 14. A ring of lattice sites
with nearest neighbour hopping
and indirect detection at site 1.

  γ0

| 1⟩

| 2⟩| 3⟩

√(γ/τ)

entangles with the 3-level system and the two jointly evolve in accordance with

H = HS ⊗ 1+

√
γ

τ
π1 ⊗ σy, π1 = |1⟩⟨1|.

A time continuous limit can be obtained in much the same way as in sec. (3.1) and doing

so, one obtains

Heff = γ0H3 = γ0

 −ı2λ 1 1

1 0 1

1 1 0

 , λ =
γ

4γ0
, αt = γ|⟨1|ψ(t)⟩|2. (3.60)

The EQ. (3.58) for τR is generic, only that in this case the initial state is |1⟩ = [1 0 0]T .

The product of survival probability with |⟨1|ψ(t)⟩|2 is nothing but the squared modulus

of the un-normalized amplitude at |1⟩. Therefore, one obtains

τR = γ

∫ ∞

0

t |⟨1| exp(−ıγ0tH3)|1⟩|2 dt. (3.61)

Thanks to the symmetric structure of H3, the characteristic polynomial factorises as

(x+ 1)(x2 + (−1 + ı2λ)x− 2(1 + ıλ)) giving eigenvalues,

µ0 = −1, µ± =
1− ı2λ± ıζ(λ)

2
, ζ2 = 4λ2 − ı4λ− 9. (3.62)
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To obtain the square root in the above equation for ζ, the branch with positive imaginary

part is chosen. Further notice that, for real λ, H3 is always diagonalizable. Instead of

detailing the tedious steps of diagonalization, we just note the required matrix element

⟨1| exp(−ıγ0tH3)|1⟩ =
exp(− ıγ0t

2
)

ζ
e−λγ0t

[
ζ cosh

(
ζγ0t

2

)
+ (1− ı2λ) sinh

(
ζγ0t

2

)]
.

τR can now be evaluated by breaking up the integrand in several parts. For convergence

of the integral, it is necessary that |ℜζ| < 2λ for λ > 0. From the form of ζ in EQ. (3.62),

it is in fact true the 0 < ℜζ < 2λ and that ζ approaches 2λ asymptotically from below.

Collecting all the terms, one notes the form of τR arrived at after integration

τR =
γ

2γ20
M(ζ, λ),

where the radical

M(ζ, λ) =
|ζ|2 − 1− 4λ2

|ζ|2
4λ2 − [ℑζ]2

(4λ2 + [ℑζ]2)2
+

|ζ|2 + 1 + 4λ2

|ζ|2
4λ2 + [ℜζ]2

(4λ2 − [ℜζ]2)2

−2
ℜζ + 2λℑζ

|ζ|2
4λℑζ

(4λ2 + [ℑζ]2)2
− 2

2λℜζ −ℑζ
|ζ|2

4λℜζ
(4λ2 − [ℜζ]2)2

.

(3.63)

ζ(λ) defines the locus of the non-real eigenvalues of H3 in the complex plane. It is quite

surprising that M(ζ, λ), despite having a rather involved form, actually evaluates to a

very simple expression

M ≡ 1

4λ2
. (3.64)

While a formal proof of the above hasn’t been carried out, a numerical confirmation has

been obtained for all tested values of λ.

Substituting forM = 1/(4λ2) in the expression for τR, one gets the result in EQ. (3.58)

using the fact that λ = γ
4γ0

. Therefore, the mean recurrence time, for both H3 in

EQ. (3.60) and the effective Hamiltonian in EQ. (3.10), is 2/γ for given sampling rate γ.

This is related to the fact that the measurement does not affect the dark states. In the

2-state example, there are no dark states. In the 3-state example, the state [0 − 1 1]T

is a dark state of H3. Both these examples seem to confirm that τR has the general

form [TKB20]
Effective dimension of Hilbert space

Sampling rate
,

where the effective dimension is equal to the dimension of the object system Hilbert

space minus the number of linearly independent dark states. In [TKB20], the effective

dimension was shown to have a topological interpretation as a winding number around

the origin in the Laplace domain, of a function of a certain component of the resolvent

of the system Hamiltonian. This component corresponds to the state for which the re-

currence time is being calculated, and of course depends also on the form of the system

Hamiltonian. The analysis done for the two cases in EQs. (3.10) and (3.60) here are in

the direct space (time domain). For the example in EQ. (3.10), the effective Hamiltonian

has an exceptional point which leads to the λ = 1 transition in the system’s dynamics.
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For the example in EQ. (3.60), there are no exceptional points. Despite these differences

in the internal dynamics of the object system induced by measurements, we realize that

the mean recurrence time τR has the simple form in EQ. (3.58), indicating topological

protection in accordance with the conclusions in [TKB20]. Quantization of mean re-

currence time in discrete time quantum walks was established in [GVWW13]. The

models in EQs. (3.10) and (3.60) exhibit this quantization for systems under continuous

measurements in conjunction with [TKB20].

3.3.2. Solution of PIDE. EQ. (3.38) can be solved for P (θ, t) directly with aid of

the EPD obtained above. A given value of θ can be attained at time t after no reset,

after exactly 1 reset, after exactly 2 resets and so on. These are all mutually exclusive

events. Summing their contributions, one has

P (θ, t) = P t
0[0]δ(θ − θt(0, 0)) +

∑
n≥1

∫ t

0

· · ·
∫ t2

0

pt0[t1, . . . , tn]δ(θ − θt(0, 0))
n∏
k=1

dtk.

In the nth summand, suppose the last reset occurred at tn = t − τ . Then from the

property in EQ. (3.43), one has

pt0[t1, . . . , tn]δ(θ − θt(0, 0)) = pt−τ0 [t1, . . . , tn−1] γ sin
2

(
θ(t−τ)−(0, 0)

2

)
P t
t−τ [0||π] δ(θ − θt(t− τ, π))

= pt−τ0 [t1, . . . , tn−1] γ sin
2

(
θ(t−τ)−(0, 0)

2

)
︸ ︷︷ ︸

αt−τ

P τ
0 [0||π] δ(θ − θτ (0, π)).

(3.65)

After substitution, one arrives at the formal solution which is in the form

P (θ, t) = P t
0[0]δ(θ − θt(0, 0)) +

∫ t

0

αt−τP
τ
0 [0||π] δ(θ − θτ (0, π)) dτ, (3.66)

where αt−τ is the mean transition rate that has already been obtained in EQ. (3.54).

These type of renewal equations have been discussed in the context of stochastic resetting

in [PKE16,RG17]. In sec. (D), it is shown that the proposed solution above indeed

satisfies EQ. (3.38).

Alternatively, with the definition

αt =

∫ 2π

0

γ sin2

(
θ

2

)
P (θ, t) dθ, (3.67)

when EQ. (3.66) is multiplied throughout by sin2 θ/2, integrated w.r.t. θ and the Laplace

transform is taken, one obtains

[Lα](σ) =
γ

β2

ĝ0
1− γ

β2 ĝϕ
. (3.68)

in the notation of EQ. (E.2). Upon inversion, one recovers EQ. (3.54). One can now

obtain the explicit form for P (θ, t) from EQs. (3.54,3.66) in the various regimes of λ.
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3.3.3. Steady state. The evaluation of the steady state density P∞(θ) = limt→∞ P (θ, t)

is particularly simple. Since the time-dependent part of αt as well as the P
t
0[0]δ(θ−θt(0, 0))

contribution to P (θ, t) are exponentially suppressed, one has

P∞(θ) =
γ

2

∫ ∞

0

P τ
0 [0||π] δ(θ − θτ (0, π)) dτ. (3.69)

Consider the case λ < 1. For θ0 = π, the no-click evolution happens via

tan
θτ (0, π)

2
= −sin(βγ0τ − ϕ)

sin(βγ0τ)
, P τ

0 [0||π] =
e−

γτ
2

1 + λ sin θτ (0, π)
. (3.70)

The same value of θτ (0, π) = θ modulo 2π can be attained at the times {τn}n≥0 where

τn = τ0 +
nπ
βγ0

. The value of τ0 can be worked out to be

γτ0(θ)

2
=

2λ√
1− λ2

[π
2
− tan−1

(
λ+ tan θ

2√
1− λ2

)]
.

In this case one also has

δ(θ − θτ (0, π)) =
∑
n≥0

δ(τ − τn)

|Ω(θτn(0, π))|
=

1

2γ0(1 + λ sin θ)

∑
n≥0

δ(τ − τn).

Integrating EQ. (3.69) with the above information one obtains for measurement param-

eter λ < 1

P∞(θ) =
λ

(1 + λ sin θ)2
e−

γτ0
2

1− e
− 2πλ√

1−λ2

. (3.71)

The case λ ≥ 1, can be handled similarly. The main difference from λ < 1 case is that

there exists only 1 instance τ0 when a given value θ can be attained as long as θ does not

lie in the no-go region. For λ = 1, one has

γτ0(θ)

2
=

2

1 + tan θ
2

, P∞(θ) =
e−

γτ0
2

(1 + sin θ)2
1(−π

2
,π](θ). (3.72)

For λ > 1, one has

e−
γτ0(θ)

2 =

(
tan θ

2
− tan θ+

2

tan θ
2
− tan θ−

2

) λ√
λ2−1

, tan
θ±
2

= −λ±
√
λ2 − 1,

P∞(θ) =
λe−

γτ0
2

(1 + λ sin θ)2
1(θ+,π](θ).

(3.73)

The results contained in EQs. (3.71,3.72,3.73) agree with those obtained in Ref. [SKR20]

by directly finding the steady state solution of EQ. (3.38). With the resetting approach

and through use of the renewal equation, we are now able to obtain the explicit time de-

pendence of P (θ, t) in all cases. We remark that in the Zeno limit of strong measurement

λ ≫ 1 (coming from γ finite and γ0 → 0), θ+ → 0 and we expect the steady state to

converge towards a singular density concentrated near 0 and π.
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Figure 15. Time evolution of
P (θ, t) is shown for (a) for λ =
1/2, (b) for λ = 1 and (c) for
λ = 3/2. The black solid lines are
from the analytic solution from
eq. (3.74) in (a), eq. (3.75) in (b)
and EQ. 3.76 in (c). The points
were generated from simulations
of 105 trajectories. The dashed
black lines are the analytic results
for the steady state P∞(θ) from
eqs. (3.71,3.72,3.73). The spikes
correspond to the δ function prop-
agating with the no-click dynam-
ics, and the height of the peaks
equals the probability mass on the
δ function.

3.3.4. Time evolution. The following equations note the result of integration of

EQ. (3.66) for finite time. The integration can be carried out by use of EQs. (3.42,3.54)

and the flow EQs. (3.30-3.35) for the respective cases of λ.

For λ < 1, the formula is somewhat complicated because the indicator function

1(θt(0,π),π] has to wrap properly with the number of possible visits to θ in time t starting

from θ0 = π. For γ0t ≤ π/β, there is only one possible visit and the expression is simpler.

We give this expression:

P (θ, t) =P t
0[0||0]δ(θ − θt(0, 0)) +

λe−
γτ0
2

(1 + λ sin θ)2
1(θt(0,π),π](θ)

− 4λ√
4− λ2

1(θt(0,π),π](θ)

(1 + λ sin θ)2
ℜ

[
e(−λ+ı

√
4−λ2)γ0t e

−(λ+ı
√
4−λ2)γ0τ0

ω/γ0 + ıλ

]
.

(3.74)
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For λ = 1, we get for all times t > 0:

P (θ, t) = P t
0[0||0]δ(θ − θt(0, 0)) +

[
1− 2e−γ0(t−τ0)√

3
sin
(√

3γ0(t− τ0) +
π

3

)]

× e−
γτ0
2

(1 + sin θ)2
1(θt(0,π),π](θ),

(3.75)

while for λ > 1, we get (for all times t > 0):

P (θ, t) = P t
0[0]δ(θ − θt(0, 0))+

[
1− 2e−λγ0(t−τ0)√

4− λ2
sin

(
ω(t− τ0) + arctan

√
4

λ2
− 1

)]

× λe−
γτ0
2

(1 + λ sin θ)2
1(θt(0,π),π](θ).

(3.76)

The three graphs in Figure 15 show good agreement between simulation and the analytic

forms in EQs. (3.74,3.75 & 3.76).

3.3.5. General formulation and explicit time Laplace transform solution

for the transition probability. We consider here a more general set-up where the

transition probability Pt(θ|θ′), that the process pass from θ′ at time 0 to θ at time t,

solves the Kolmogorov equation

∂tPt(θ|θ′) = L (θ)Pt(θ|θ′)− γ(θ)Pt(θ|θ′) + µ(θ)

(∫ 2π

0

dθ′′γ(θ′′)Pt(θ
′′|θ′)

)
.

(3.77)

Here, L (θ) is a second (resp. first) order differential operator in θ, Markov generator,

coming from a diffusion (resp. deterministic) process, and we are considering that reset-

ting is not to a particular point but to a point θ chosen from the probability distribution

µ(θ) and the positive function γ(θ) is the jump rate for escape from state θ. The associ-

ated master equation for the probability density P (θ, t) is then

∂tP (θ, t) = L (θ)P (θ, t)− γ(θ)P (θ, t) + µ(θ)

(∫ 2π

0

dθ′′γ(θ′′)P (θ′′, t)

)
. (3.78)

Let us define the operators

L0 [f ] (θ) ≡ L (θ) [f ] (θ)− ⟨µ, 1⟩ γ(θ)f(θ), (3.79)

L1 [f ] (θ) ≡ µ(θ) ⟨γ, f⟩ , (3.80)

for any function f on [0, 2π] and where have used the following inner product definition:

⟨f, g⟩ =
∫ 2π

0

dθf(θ)g(θ).

The master equation (3.38), and more generally the set-up of the previous section, is a

particular case of this general theory when L (θ) [f ] = −∂θ[Ω (θ) f(θ)], γ (θ) = γ sin2
(
θ
2

)
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and µ (θ) = δ (θ − π) . With these definitions, we have the formal solution of the Kol-

mogorov equation Pt = exp (t (L0 + L1)) and the time Laplace transform is the resolvent

(LPt) (s) ≡
∫∞
0
dt exp (−st) exp (t (L0 + L1)) = (s− L0 − L1)

−1 (3.81)

= (s− L0)
−1 + (s− L0)

−1 L1 (s− L0 − L1)
−1 . (3.82)

We thus find the auto-consistency relation

(LPt) (s) =
(
LP

(0)
t

)
(s) +

(
LP

(0)
t

)
(s)L1 (LPt) (s),

where P
(0)
t = exp (tL0). By plugging in this relation the expression for L1 (3.80) we

obtain

(LPt) (s)(θ|θ′) =
(
LP

(0)
t

)
(s)(θ|θ′) +

〈(
LP

(0)
t

)
(s) (θ|.) , µ(.)

〉
⟨γ(.), (LPt) (s)(.|θ′)⟩ ,

(3.83)

where . indicates the inner product integration variable. Multiplying with γ(θ) and

integrating over θ solves for the unknown last term in the above equation,

⟨γ(.), (LPt) (s)(.|θ′)⟩ =
⟨γ(.), (LP 0

t ) (s)(.|θ′)⟩

1−
〈
γ(..),

〈(
LP

(0)
t

)
(s) (..|.) , µ(.)

〉〉 . (3.84)

Equations (3.83) and (3.84) provide a complete solution of the time evolution in the

Laplace domain. We have finally the exact relation

(LPt) (s)(θ|θ′) =
(
LP

(0)
t

)
(s)(θ|θ′) +

〈(
LP

(0)
t

)
(s) (θ|.) , µ(.)

〉
⟨γ(.), (LP 0

t ) (s)(.|θ′)⟩

1−
〈
γ(..),

〈(
LP

(0)
t

)
(s) (..|.) , µ(.)

〉〉 ,

(3.85)

which expresses (LPt) (s) in terms of
(
LP

(0)
t

)
(s). So, in the case where the second is

explicit, so is the first. It is instructive to write this equation in the time domain. To this

end, we denote by γ̄(t) the inverse Laplace transform of the LHS of EQ. (3.84), which is

simply,

γ̄t(θ
′) =

∫ 2π

0

dθ′′ γ(θ′′)Pt(θ
′′|θ′), (3.86)

which is just the average of transition rate γ(θt) conditioned by the initial condition

θ0 = θ′. Then EQ. 3.83 in the time domain is given by,

Pt(θ|θ′) = P 0
t (θ|θ′) +

∫ t

0

dτ⟨P 0
τ (θ|.), µ(.)⟩γ̄t−τ (θ′), (3.87)

which we see has the same structure as the renewal equation in EQ. (3.66). The EQ. (3.84)

gives the Laplace transform of γ̄t, and is then EQ. (3.68), and for our specific example

we were able to compute γ̄t ≡ ᾱt explicitly (from the inverse Laplace and also using a

renewal approach). In general, we would have an explicit solution for Pt from EQ. (3.83),

provided we are able to evaluate γ̄t explicitly from EQ. (3.84).
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3.4. Spectral analysis

The Fokker-Planck operator corresponding to EQ. (3.38) has interesting spectral prop-

erties, which were pointed out in [SKR20]. In this section those studies are extended

and in particular, for the case 0 < λ ≤ 1, some new results and some subtle features

observed. One seeks solutions to EQ. (3.38) in the form P (θ, t) = exp(2γ0 ν t) fν(θ). This

leads to the following eigenvalue problem for the operator L:

Lfν = (1 + λ sin θ)∂θfν + λ (2 cos θ − 1) fν + 2λδ(θ − π)

∫ 2π

0

sin2(θ′/2)fν(θ
′) dθ′ = ν fν .

(3.88)

Recall that π and −π are identified. Assuming that fν(θ) has no divergence at π, an

integration of the above equation over a small interval across π gives a discontinuity of

fν across π and leads to the following set of equations equivalent to the above:

Lfν = (1 + λ sin θ)∂θfν + λ (2 cos θ − 1) fν = ν fν , (3.89)

fν(π − 0)− fν(π + 0) = 2λ

∫ π

−π
sin2 (θ/2) fν(θ) dθ. (3.90)

Define an operator L0 which satisfies EQ. (3.89) with condition f(π − 0) = f(π + 0).

For square integrable functions f(θ), g(θ) defined on the unit circle, one has the

standard inner product defined as,

⟨g, f⟩ :=
∫ π

−π
g∗ f dθ, (3.91)

where g∗ is the complex conjugate of g. Then one has

⟨g,L0f⟩ =
∫ π

−π
g∗

[
(1 + λ sin θ)

d

dθ
f + 2λ

(
cos θ − 1

2

)
f

]
dθ

⇒ ⟨g,L0f⟩ = g∗(π)f(π)− g∗(−π)f(−π) +
∫ π

−π

[
− (1 + λ sin θ)

d

dθ
g∗ − 2λ sin2 θ

2
g∗

]
f dθ.

(3.92)

For f in the domain of L0, one has f(−π) = f(π). From the definition of the adjoint L†
0

given by

⟨g,L0f⟩ = ⟨L†
0g, f⟩,

it follows that the adjoint operator L†
0 acts on square integrable functions g(θ) as

L†
0g = − (1 + λ sin θ) ∂θg − 2λ sin2 (θ/2) g, g(π − 0) = g(π + 0). (3.93)

A simple calculation reveals that for f in the common domain of L0 and L†
0, the com-

mutator [L0,L†
0]f = −3λ sin θ (1 + λ sin θ) f . Thus L0 is not a normal operator and its

eigenfunctions do not form an orthonormal basis for the Hilbert space L2[−π, π].
For the operator L defined in EQs. (3.89, 3.90), the form of the adjoint L† is not

immediately obvious. While ⟨g,Lf⟩ still evaluates to the RHS of EQ. (3.92), the boundary

condition needs to be adjusted properly. The most direct way to do this is to employ
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EQ. (3.90) to write

g∗(π)f(π)− g∗(−π)f(−π) =
[
g∗(π)− g∗(−π)

]
f(−π) + 2λg∗(π)

∫ π

−π
sin2 (θ/2) fν(θ) dθ

since f is in the domain of L. Now one can write

⟨g,Lf⟩ =
[
g∗(π)−g∗(−π)

]
f(−π)+

∫ π

−π

[
−(1 + λ sin θ)

d

dθ
g∗−2λ sin2 θ

2
(g∗−g∗(π))

]
f dθ.

Once again, from the definition of adjoint, it follows from above that L† acts on square

integrable functions h(θ) as

L†h = − (1 + λ sin θ) ∂θh− 2λ sin2 (θ/2) (h− h(π)), h(π − 0) = h(π + 0). (3.94)

Like L0, L is also a non-normal operator. It will be seen below that the eigenfunctions

of L0 (resp. L ) and L†
0 (resp. L†) together form a bi-orthonormal basis.

For completeness, we note the definition of a bi-orthonormal system [RN12]. The

sequences {fn}, {gn} of vectors in a Hilbert space H form a bi-orthonormal system if

⟨fm, gn⟩ = 0 for m ̸= n, ⟨fn, gn⟩ = 1. (3.95)

The sequences {fn}, {gn} form a basis if each of {fn}, {gn} are complete in H. Then for

any f ∈ H, one has the bi-orthonormal developments

f =
∑
n≥1

⟨gn, f⟩fn, f =
∑
n≥1

⟨fn, f⟩gn. (3.96)

3.4.1. Measurement parameter 0 ≤ λ < 1. If f̄ν is an eigenfunction of L0 with

eigenvalue, ν then it is easily seen that

f̄ν(θ) =
Cν

(1 + λ sin θ)2
exp

[
ν + λ√
1− λ2

φ(θ, λ)

]
, φ(θ, λ) = 2 arctan

(
λ+ tan θ

2√
1− λ2

)
,

(3.97)

where Cν is a normalization constant chosen so that
∫ π
−π f̄ν(θ), dθ = 1. The value of φ(θ, λ)

are defined at the boundary by φ(±π, λ) = limθ→±π∓ φ(θ, λ) = ±π. On imposing the

boundary condition f̄νm(π) = f̄νm(−π+), the eigenvalues are obtained to be νm = −λ +

ım
√
1− λ2 where m ranges over the set of integers. Similar calculations for the operator

L†
0 gives its spectrum. The following equation gives a complete bi-orthonormal system,

of eigenfunctions and eigenvalues, for the pair L0, L†
0 with the property ⟨gνm , f̄νn⟩ = δmn.

f̄νm(θ) =

(
1− λ2

4π2

) 1
4 exp[ımφ(θ, λ)]

(1 + λ sin θ)2
, νm = −λ+ ım

√
1− λ2,m ∈ Z for L0,

gνm =

(
1− λ2

4π2

) 1
4

(1 + λ sin θ) exp[ımφ(θ, λ)], ν−m = −λ− ım
√
1− λ2,m ∈ Z for L†

0.

(3.98)
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One can write a canonical expansion for any function f ∈ L2[−π, π] in terms of the basis

fνm .

f =
∑
m∈Z

αm fνm , αm = ⟨gµm , f⟩ =
∫ π

−π
g∗µmf dθ. (3.99)

For the eigenvalue problem in EQ. (3.89), the functions in EQ. (3.97) still satisfy the

formal equation but the boundary condition in EQ. (3.90) leads to the condition

ν(ν2 + λν + 1)

(ν + λ)(ν2 + 2νλ+ 1)
sinh

[ ν + λ√
1− λ2

π
]
= 0. (3.100)

From above, we infer that the eigenvalues of L are {0, ν+, ν−, νm} for m ∈ Z \ {−1, 0, 1}
where

ν± = [−λ± ı
√
4− λ2]/2. (3.101)

The sinh function vanishes for ν = νm, ∀m ∈ Z, however the denominator itself is

(ν − ν0)(ν − ν1)(ν − ν−1). The limiting value of the ratio for these three choices of

ν is non-zero and therefore L does not have ν0, ν−1 and ν1 as eigenvalues. When the

eigenvalue problem for adjoint L† in EQ. (3.94) is solved, one obtains the same constraint

in EQ. (3.100). Thus, the operators L and L† have the same set of eigenvalues, just

like the operators L0 and L†
0. We further note that the integral boundary condition in

EQ. (3.90) displaces only three eigenvalues in the spectrum of the L0, L†
0 system — i.e.

fνm = f̄νm for m ̸= 0,±1, while for these three eigenvalues {0, ν+, ν−} we obtain three

different eigenstates:

f0(θ) =
λ

2 sinh
[

π(λ)√
1−λ2

] exp
[

λ√
1−λ2φ(θ, λ)

]
(1 + λ sin θ)2

, fν±(θ) =
ν∓

2 sinh
[

πν∓√
1−λ2

] exp
[
− ν∓√

1−λ2φ(θ, λ)
]

(1 + λ sin θ)2
.

(3.102)

We note that the ν = 0 eigenvector f0(θ) corresponds to the steady state solution P∞(θ).

For the eigenvalue problem in EQ.(3.94), with the convention L†hν∗ = νhν∗ , where ν
∗

denotes the complex conjugation, the differential equation can be rewritten as

∂

∂θ

[
hν∗(θ)− hν∗(π)

1 + λ sin θ
exp

[
λ+ ν√
1− λ2

φ(θ, λ)

]]
= − ν hν∗(π)

(1 + λ sin θ)2
exp

[
λ+ ν√
1− λ2

φ(θ, λ)

]
.

Integrating the above from π to θ, one obtains, after changing the integration variable

on the r.h.s θ → φ

hν∗(θ)− hν∗(π)

1 + λ sin θ
exp

[
λ+ ν√
1− λ2

φ(θ, λ)

]
= − νhν∗(π)

(1− λ2)3/2

×
∫ φ(θ)

π

dφ exp

[
λ+ ν√
1− λ2

φ

](
1− λ

2
ν−1e

ıφ − λ

2
ν1e

−ıφ
)
.

After performing the integration and applying the boundary condition in EQ. (3.94),

we obtain the eigenfunctions {h0, hν+ , hν− , hνm} (m ∈ Z \ {−1, 0, 1}) for L†. They are

indexed such that L†hν = ν∗hν . The bi-orthonormality condition ⟨ha, fb⟩ = δab can be
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verified from their explicit form:

h0 = 1, hν±(θ) = ∓ı
λ
[
cos θ − ν∓ sin θ

]
√
4− λ2

,

hνm(θ) = gνm(θ) +
(−1)mλ2

B−m

∑
k∈{−1,0,1}

m(m2 − 1)

(m− k)(k2 + 1)

gµk(θ)

Bk

,
(3.103)

where gµm is defined in EQ. (3.98). The coefficients B appearing in the above expressions

are

Bm = νm(νm − ν−)(νm − ν+).

In this bi-orthonormal system, one can now expand

δ(θ) = f0 + hν−(0) fν+ + hν+(0) fν− +
∑

m∈Z\{−1,0,1}

hν−m(0) fνm .

In the original problem, EQ. (3.38), P (θ, 0) = δ(θ). Then the time development of P (θ, t)

is given by

P (θ, t) =f0(θ) + ı
λ e2ν+γ0 t√
4− λ2

fν+(θ)− ı
λ e2ν−γ0 t√
4− λ2

fν−(θ) +

(
1− λ2

4π2

) 1
4 ∑
m∈Z\{−1,0,1}

(−1)mλ

Bm

fνm(θ) e
2νmγ0 t

+

(
1− λ2

4π2

) 1
2 e−2λγ0 t

(1 + λ sin θ)2

∑
m∈Z\{−1,0,1}

exp

[
ımΦ(θ, λ, t)

]
,

where Φ(θ, λ, t) = φ(θ, λ) − φ(0, λ) + 2γ0 t
√
1− λ2. We note that the first series in the

RHS is convergent as Bm ∼ m3. We write the last summation in the above equation as

2πδ[Φ(θ, λ, t)] −
∑

m∈{−1,0,1} exp
[
ımΦ(θ, λ, t)

]
. Then, using the fact that Φ(θ, λ, t) = 0

solves for θt(0, 0) (EQ. (3.30)), we obtain δ[Φ(θ, λ, t)] = δ(θ − θt(0, 0))/|Φ′(θ, λ, t)|. In

conjunction with EQ. (3.42), after some simplifications, we finally get

P (θ, t) =P t
0[0]δ(θ − θt(0, 0)) + Pf(θ, t), where

Pf(θ, t) =P∞(θ) + ı
λ e2ν+γ0 t√
4− λ2

fν+(θ)− ı
λ e2ν−γ0 t√
4− λ2

fν−(θ)

+

(
1− λ2

4π2

) 1
4 ∑
m∈Z\{−1,0,1}

(−1)mλ

Bm

fνm(θ) e
2νmγ0 t

−
(
1− λ2

4π2

) 1
2 e−2λγ0 t

(1 + λ sin θ)2
sin [3Φ(θ, λ, t)/2]

sin [Φ(θ, λ, t)/2]
.

(3.104)

Here Pf represents the finite part of the density which was also obtained in EQ. (3.74).

Fig. (16) shows agreement between EQ. (3.104), EQ. (3.74) and numerical simulation.

In Pf(θ, t), the smallest decay rate is for the terms corresponding to fν+ and fν− .

Therefore, the approach to P∞(θ) (the steady state) happens as,

ı
λ e2ν+γ0 t√
4− λ2

fν+(θ)− ı
λ e2ν−γ0 t√
4− λ2

fν−(θ) = ı
λ e−λγ0 t√
4− λ2

(
fν+(θ)e

ıγ0 t
√
4−λ2 − fν−(θ)e

−ıγ0 t
√
4−λ2

)
,

(3.105)
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Figure 16. A comparison of series solution in eq. (3.104)
(solid dots) truncated at N = 150, numerical simulation and the solution EQ. (3.74)

(continuous curve) at various times for measurement strength of λ = 1/2.

which has the form of a damped oscillator of natural frequency 2γ0. Note that the spectral

solution for P (θ, t) provides an easier result for the long time form than that obtained

from the renewal solution.

3.4.2. Measurement parameter λ = 1. For the operators L0 and L†
0 defined in

EQ. (3.93), the corresponding eigenfunctions and eigenvalues are,

fνk =
1√
2π

exp
[
ık −2

1+tan θ
2

]
(1 + sin θ)2

, νk = −1 + ık, k ∈ R for L0,

gµk =
1√
2π

(1 + sin θ) exp

[
ık

−2

1 + tan θ
2

]
, µk = −1− ık, k ∈ R for L†

0.

(3.106)

Note that fνk in EQ. (3.106) satisfies the condition fνk(π) = fνk(−π+) for any complex k.

Our choice of νk for k ∈ R is based on the fact that this set is the limit of the set {νm}m∈Z

(see EQ. (3.98)) as λ → 1−. One notices that the eigenvalues are no more discrete and

therefore the bi-orthonormality condition becomes ⟨gµk , fνk′ ⟩ = δ(k− k′) , which is easily

verified. While the functions fνk satisfy the condition fνk(−π) = fνk(π), they do not

belong to L2[−π, π]. With the substitution x = −2/(1 + tan θ
2
), one has,∫ π

−π
2 sin2 θ

2
fνk dθ =

1

2
√
2π

∫ ∞

−∞
(x+ 2)2 eıkx dx = 2

√
2π [δ(k)− ıδ′(k)− δ′′(k)/4] .

(3.107)
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We shall develop the solution P (θ, t) in the complete system of EQs.(3.106). For θ0 ̸=
−π/2, consider the integral∫ ∞

−∞
gµk(θ0)

∗ fνk(θ) dk =
1 + sin θ0
(1 + sin θ)2

1

2π

∫ ∞

−∞
exp

[
ık

(
2

1 + tan θ0
2

− 2

1 + tan θ
2

)]
dk

=

(
1 + sin θ0
1 + sin θ

)2

δ(θ − θ0).

Since the factor of δ(θ − θ0) is continuous at θ0, one has the following representations

δ(θ) =
1√
2π

∫ ∞

−∞
eı2k fνk dk, δ(θ − π) =

1√
2π

∫ ∞

−∞
fνk dk. (3.108)

The general function P (θ, t) can be expanded in the bi-orthonormal system of EQ. (3.106)

as

P (θ, t) =

∫ ∞

−∞
ck(t) e

2νkγ0t fνk dk, (3.109)

where the time development of ck can be ascertained after substituting the above in

EQ. (3.38). Doing so, using the EQs.(3.107,3.108) and the fact that L0fνk = νkfνk , one

has,

ċk = ċ0 e
−ı k2γ0t, ċ0 = 4γ0

[(
(1− γ0t) +

ı

2

∂

∂k

)2

ck

]
k=0

, ck(0) =
e2ık√
2π
. (3.110)

This is a self-consistent system which can be readily solved using Laplace transform (see

sec. (E)). We note the explicit solution

ck(t) =
1√
2π

[
eı2k + ı

exp[−ı2γ0t(k + ı)]− 1

k + ı
+
ν−√
3

exp[−ı2γ0t(k − ıν−)]− 1

k − ıν−

− ν+√
3

exp[−ı2γ0t(k − ıν+)]− 1

k − ıν+

]
, (3.111)

where ν± are as defined in EQ. (3.101) for λ = 1. Substituting for ck in EQ. (3.109) and

carrying out contour integration, P (θ, t) is obtained in the form of EQ. (3.75).

The point spectrum of L consists of the eigenvalues {0, ν+, ν−} with eigenfunctions,

f0(θ) =
exp

[
− 2

1+tan(θ/2)

]
(1 + sin θ)2

1[−π/2,π](θ), fν±(θ) = −ν∓
exp

[
2ν∓

1+tan(θ/2)

]
(1 + sin θ)2

1[−π/2,π](θ).

(3.112)

These functions properly belong to L2[−π, π] and satisfy the integral boundary condition

in EQ. (3.90). The continuous spectrum of L consists of improper eigenvalues νk with cor-

responding improper (i.e., non-normalizable) eigenfunction, fνk as defined in EQ. (3.106)

for k ∈ R \ {0}. These functions satisfy the boundary condition only up to principal

value, as is evident from EQ. (3.107).
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Now consider the operator L† defined in EQ. (3.94) for the case λ = 1. An integration

of the eigenvalue equation for eigenfunction hν∗ of eigenvalue ν leads to the expression

hν∗(θ)− hν∗(π)

1 + sin θ
exp

[
−(ν + 1)

2

1 + tan θ
2

]
=
νhν∗(π)

(ν + 1)3

[
1 + ν + ν2

−(2 + 2ν + ν2 + (1 + ν) cos θ + sin θ)

1 + sin θ
exp

[
−(ν + 1)

2

1 + tan θ
2

]]
. (3.113)

In case of ν = −1, the RHS of the above should be evaluated as a limit. This limit is

−hν∗(π)
2 sec2 (θ/2) (−3 sin θ + cos θ − 5)

3 (tan (θ/2) + 1)3
.

The discrete part of the spectrum of L† consists of {0, ν+, ν−} (same as for L) with

corresponding eigenfunctions given by {h0, hν− , hν+} of the same form as in EQ. (3.103).

For the continuous part of the spectrum, we take νk as given in EQ. (3.106). The following

gives the explicit form of hνk which are proper eigenfunctions of L† with eigenvalues

−1− ık, k ∈ R \ {0}.

hνk = gµk +
1√
2π

[
1

ν−k
− (ν−k + 1) cos θ + sin θ

ν2−k + ν−k + 1

]
, L†hνk = ν−khνk . (3.114)

The improper eigenfunction with improper eigenvalue −1 is give by

hν0 =
1√
2π

[
1 +

2

3

(
3 sin θ − cos θ + 5

1 + tan(θ/2)

)]
. (3.115)

In terms of the bi-orthonormal system for the pair L,L† described above, the full expan-

sion for P (θ, t) can be alternatively written as

P (θ, t) =f0(θ) + ı
e2ν+γ0 t√

3
fν+(θ)− ı

e2ν−γ0 t√
3

fν−(θ) +

∫ ∞

−∞
hν−k

(0) fνk(θ)e
2νkγ0 t dk. (3.116)

3.4.3. Measurement parameter λ > 1. It is now clear that for 0 ≤ λ < 1, the

spectrum is discrete, and a series expansion is sufficient for spectral decomposition where

as for λ = 1, the spectrum consists of discrete as well as continuous parts and the spectral

decomposition is rather intricate. The difficulty in the λ = 1 case is clearly associated

with the appearance of a singular point in the definition in EQ. (3.89) at θ = −π/2. For
λ > 1, there are two singular points at θ = θ+ and θ = θ− as defined in EQ. (3.29).

Furthermore, we notice that for λ = 2/
√
3, apart from the appearance of the singular

point at θ+ = −π/3, the coefficient (2 cos θ − 1) in EQ. (3.89) also vanishes at θ = θ+.

It has been noted in [SKR20] that λ = 2/
√
3 corresponds to a transition point where

the steady state density in EQ. (3.73) begins to show divergence at θ = θ+. These are

further interesting features of the problem at hand, however a full spectral decomposition

for λ > 1 was not achieved during the course of our study.

This concludes the discussion of indirect measurements. In this chapter, indirect

measurements were studied via the example of a counting measurement on a two state

system. The stochastic differential equation as well as the master equation for this process
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were solved through the use of standard probability theoretic means as well as through

spectral analysis.



Conclusion & Outlook

Quantum mechanics is a fascinating subject and in by itself serves as motivation

to conduct any study thereof. Measurement theory in quantum mechanics has been

a source of interesting and sometimes puzzling questions. It was quite natural to be

drawn to it and eventually make it the subject of this thesis. Thanks to the kind of

problems that were studied in this development, there has been a shift in the nature of my

interest in the subject. While the pursuit to understand it at a technical level continues,

there is added appreciation of the intimate connection quantum measurements have with

mathematical probability theory in their formulation and with quantum optics in their

applications. Both the models considered in the last two chapters are simple, and they

admit thorough analysis. There is a lot more ground to cover, and the subject becomes

more interesting every time. In the following paragraphs, both the models are once again

taken up to emphasize what was achieved in their study and what possible directions one

could proceed from them.

Regarding the problems considered in chapter (2), all the solutions were obtained for

one dimensional spatial lattices. However, our formulation of the problem is for a general

quantum system with a separable Hilbert space. In this formulation, it was shown that

repeated measurement protocol under null measurements is equivalently described by a

non-Hermitian Hamiltonian. For a quantum particle on a 1D lattice with a detector at

one site we then solved the corresponding Schrödinger equation with a complex potential

to obtain closed form analytic results for the survival probability and the distribution of

first detection time of a particle starting from an arbitrary initial lattice site. Various

asymptotic cases were discussed. We then studied the limit of lattice spacing going to

0 to obtain a formulation for the continuum case. For the semi-infinite lattice with a

detector at one end, we find that the effective description is in terms of free Schrödinger

evolution with complex Robin boundary conditions at the detector site. Again, in this

case, we provide analytic results for several objects of interest. The long time asymptotic

form of the surviving wave-function was obtained. We find that while the detection

time probability density generically decays as 1/t3, it is possible to construct special

initial states for which the decay is faster. A similar dependence of decay exponent

on initial states was observed in a lattice study [TKB18] and it will be interesting to

relate these results. Another problem that can be investigated is to precisely describe

the physical significance of the measurement parameter ζ in EQ. (2.70) in the half line

case. It is conceivable that ζ simultaneously measures the initial momentum/position

of the particle. In particular, if one starts with a coherent state with p0 = −ℜ(ζ) and

71
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x0 = −ℑ(ζ), one should get a single sharp peak in F (t) or consistent decay depending on

how the initial momentum is directed. Here one recalls how the spectrum changes when

ℜ(ζ) changes sign. Setting up coherent states on half line geometry in which the origin

is accessible to the particle is the main problem to solve.

In chapter (3), we studied the dynamics of a qubit that is continuously monitored via

measurements on a detector qubit with which it interacts strongly to avoid the Zeno limit.

For the special choice of system Hamiltonian and initial conditions that we considered

here, the qubit state remains confined at all times on the yz plane of the Bloch sphere so

that it can represented by a single angle variable. The state |ψ(t)⟩ follows a stochastic

dynamics with drift and jump terms. We obtained various results for this dynamics.

We pointed out that the stochastic wave function dynamics can be naturally interpreted

as a resetting process, with a resetting rate that depends on the instantaneous state.

The strength of the resetting rate λ quantifies the strength of measurements. We obtain

exact results on the number of resetting events, Nt, in a specified time t. We show

that the form of the time-dependence, of the mean number of events EQs. (3.53), has

a transition at λ = 2. Using two different approaches, a renewal approach and one

based on non-perturbative resolvent (or Green’s function) approach, we obtain the exact

form of the probability distribution P (θ, t) for the system to be in the quantum state,

|θ⟩ =

[
cos (θ/2)

ı sin (θ/2)

]
, at time t. At long times we recovered the steady state form known

from earlier studies. We showed that as for the steady state, the time evolution has three

different forms for the regimes 0 ≤ λ < 1, λ = 1 and λ > 1. For the cases 0 ≤ λ < 1 and

λ = 1 we evaluated the complete spectrum of the Fokker-Planck operator which forms a

bi-orthonormal set. This provides another solution for the time evolution of P (θ, t), that is

especially useful at long times. Despite a few attempts after publication of our result, the

problem of spectral resolution for the case λ > 1 remains unsolved. It may be possible

that a few simple things have been overlooked, but it seems more likely that spectral

resolution for this case may have to be done in the space of distributions. We note that

the average density matrix of the qubit is given by ρ̂(t) =
∫ 2π

0
dθP (θ, t)|θ⟩⟨θ|. We identify

this decomposition of the density matrix as the Glauber-Sudarshan P-representation in

terms of spin coherent states [Per12]. However, this density matrix contains much less

information about the system. For example, in the steady state we have ρ̂(t) → (1/2)Î,

while the distribution of states P∞(θ) is highly non-trivial. The mean number of detector

clicks and the complete distribution P (θ, t) is experimentally accessible using the methods

of quantum tomography, and our results could be experimentally verified.



APPENDIX A

Root locus study for finite lattice

Consider the effective Hamiltonian in EQ. (2.21) for the case w = α. The diagonal

entries of 2 only shift the spectrum by −2, therefore it is sufficient to consider the matrix

hN(α) =


−ıα −1

−1 0 −1

−1 0 −1
. . . −1

−1 0


N×N

.

With the definition pN(λ;α) = Det [λ1N − hN (α)], we first observe that

Det [λ1N − hN(α)] = 0 ⇔ Det [hN(α)− (−λ∗)1N ] = 0.

Therefore, if λ(α) is an eigenvalue of hN(α), then so is − [λ(α)]∗. Of course, these

coincide when λ is purely imaginary. For 2 ≤ N , and p1(λ;α) = λ+ ıα, the characteristic

polynomials satisfy the recursion

λpN(λ;α) = pN−1(λ;α) + pN+1(λ;α).

It follows from here that if λ is an eigenvalue of hN(α), then the right eigenvector corre-

sponding to λ is 
pN−1(λ; 0)

...

p2(λ; 0)

p1(λ; 0)

1

 , (λ+ ıα)pN−1(λ; 0) = pN−2(λ; 0). (A.1)

TheN solutions of the equation above {λj(α)}Nj=1 are the eigenvalues of hN(α). For α = 0,

one has λj(0) = 2 cos φNj where φNj =

(
jπ

N + 1

)
. Also pk (λj; 0) =

sin
[
(k + 1)φNj

]
sinφNj

. For

α ̸= 0, the eigenvalues λj(α) = 2 cos φNj (α) so that the phases φNj in general become

functions of α. The form of φNj (α) can be taken as

φNj (α) =

(
jπ

N + 1

)
+ rj (α) + ıfj (α) . (A.2)

Here rj (α) and fj (α) are real valued functions such that rj (0) = fj (0) = 0. From

equation (A.1) and the form of pk (λj; 0) one has,

cos
[
φNj (α)

]
= −ıα− cot

[
NφNj (α)

]
sin
[
φNj (α)

]
.
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Figure 17. Contour Plots of first equation (A.3) for N = 5 and N = 6.

Upon substituting φNj (α) from equation (A.2) in the above and separating the real and

imaginary parts, we obtain the equations satisfied by rj (α) and fj (α).

cosh (fj) cos [(2N + 1)xj]− cosh [(2N + 1) fj] cos (xj) = 0,

sinh (fj) sin [(2N + 1)xj]− sinh [(2N + 1) fj] sin (xj) =

α [cos (2Nxj)− cosh (2Nfj)]

(A.3)

where xj = rj + φNj (0). The curves defined by the above equations in (r, f) plane can

have multiple intersections for a given value of α. As α is continuously varied, these

intersection points move continuously, defining various branches of functions rj (α) and

fj (α). The branch of interest is the one for which rj (0) = fj (0) = 0. In this regard, we

notice that for α = 0; fj = 0 and rj = 0 i.e. (xj =
jπ
N+1

) is always a solution of equations

(A.3), so one knows such a branch exists.

Consider the first of equations (A.3). When N is odd, the line rj = 0 is a solution

of the equation for j = N+1
2

, as can be easily seen by substitution. For real parameter

t ∈ [0, 1], let rj(t) = t jπ
N(N+1)

. Then one has xj(t) = jπ
[
(1−t)
N+1

+ t
N

]
and the equation

takes the form

cosh (fj(t)) cos

[
jπ

(
−(1− t)

N + 1
+

t

N

)]
=

cosh [(2N + 1) fj(t)] cos

[
jπ

(
(1− t)

N + 1
+

t

N

)]
.

(A.4)

For j ∈ {1, . . . , N−1
2

}, fj(0) = fj(1) = 0 and there exist two solutions fj(t) (because

cosh is an even function) for each t ∈ (0, 1), both of same magnitude and opposite

signs. It follows that the contours (rj, fj) are closed curves coinciding at (0, 0). The

curves are in fact seen to be tangential at (0, 0) when one considers the ratio of cosines

appearing in the last equation. For j ∈ {N+3
2
, . . . , N},the same conclusion holds if one

takes rj(t) = −t N−j+1
N(N+1)

π. Figure 17 is a contour plot of the first of EQ. (A.3) for N = 5
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Figure 18. Intersection points of the system (A.3) for N = 6. The
curves corresponding to index j (blue curves) are for the first equation in
the system (A.3). Other curves indexed by α are for the second equation
in the system (A.3) for various values of α.

and shows the closed curves for j ∈ {1, 2, 4, 5}. The f−axis is the solution for j = 3.

Now let N be even. Then r = π
2(N+1)

and r = − π
2(N+1)

are solutions of the equation

but neither pass through (0, 0). For j ∈ {1, . . . N/2} and t ∈ [0, 1], rj(t) = t jπ
N(N+1)

gives

required solutions along with equation (A.4). For j ∈ {N/2 + 1, . . . , N} and t ∈ [0, 1],

rj(t) = −t N−j+1
N(N+1)

π gives the required solutions. All the contours are closed loops except

for j ∈ {N/2, N/2 + 1}. These contours come arbitrarily close to the lines r = π
2(N+1)

and r = − π
2(N+1)

respectively and in the limit t → 1, they approach (± π
2(N+1)

, fj) (See

Figure 17) with fj determined from equation (A.4) to be

cosh [(2N + 1) fj]

cosh (fj)
= 2N + 1, j ∈ {N/2, N/2 + 1}. (A.5)

Now consider the second of equations (A.3). The whole of r−axis in the (r, f) plane

satisfies the equation for α = 0. The point
(
jπ
N

− jπ
N+1

, 0
)
in the (r, f) plane satisfies the

equation for all α. This point also satisfies the first equation (A.3). Figure 18 shows the

intersection points of the System (A.3) for N = 6 and j = 2, 3 for various values of α.

In both cases one observes that at a certain value of α the curve corresponding to the

second equation in (A.3) self intersects. For j ∈ {N/2, N/2 + 1} (assuming N is even)

the value of α(= αc) for which this happens can be found from equation (A.3) using the

fact that xj = ±π
2
and that fj satisfies equation (A.5).

αc =
cosh [(N + 1) fj]

sinh [Nfj]
. (A.6)

As an example, consider the case N = 2 for which EQs. (A.5,A.6) read

cosh (5f)

cosh (f)
= 5, αc =

cosh (3f)

sinh (2f)
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whose solution gives αc = 2. It is easily checked that the matrix

h2(2) =

[
−ı2 −1

−1 0

]
.

is not diagonalizable.

Further notice that for j ∈ {1, . . . , N/2− 1, N/2+ 2, . . . , N}, fj increases with α to a

maximum value, after which it goes to 0 as α → ∞. For j ∈ {N/2, N/2+1}, fj increases
to a maximum value defined by equation (A.5) and for α > αc, rj(α) remains constant

(= Nπ
2(N+1)

) while fj is two-valued, with one value approaching 0 and the other escaping

to +∞. Similar statements remain true when N is odd, except that rN+1
2

= 0 for all α

and fN+1
2

goes to +∞.

The following picture emerges for the eigenvalue λj (α). Starting with an odd value

of N , −2 < λj (0) < 2 with λN+1
2

= 0. When α increases, the eigenvalues move in the

complex plane with λN+1
2
(α) remaining on the negative imaginary axis. Other eigen-

values acquire negative imaginary components. Each of the eigenvalues attains a min-

imum imaginary component after which it starts to move towards the real axis, how-

ever λN+1
2
(α) continues to go further down the imaginary axis. In the limit α → ∞,

λN+1
2
(α) has departed to −ı∞ while the rest have returned to the real axis, occupying

the eigenvalues corresponding to the hamiltonian hN−1(0). Starting with an even value

of N , similar trajectories are followed by the eigenvalues in the complex plane. However

λN
2
(αc) = λN

2
+1(αc), i.e. these eigenvalues merge and upon further increasing α, one

eigenvalue moves along the negative imaginary axis towards the origin and the other goes

to −ı∞. Eventually, the remaining eigenvalues have returned to the real axis, occupying

the eigenvalues corresponding to the hamiltonian hN−1(0). Figure 19 shows the spectrum

of HN for different values of α. In case of α = 2, we observe an isolated point of the

spectrum at around λp = −1.5ı for both N = 50 and N = 100.

The equations (A.3) can be also used to evaluate αc and the isolated part of the

spectrum observed in Figure 19 in the limit N → ∞. As one expects to observe the

same behaviour whether N goes to ∞ through odd or even values, it is simple to consider

equations (A.3) for odd N and j = N+1
2

. Here rN+1
2

(α) = 0 for which the first of equations

(A.3) is identically 0. Letting fN+1
2

be denoted simply by fN , the second equation takes

the form

tanh (fN) + tanh (NfN) = α sech (fN) .

For a given value of α, the solutions of the above equation define a decreasing sequence

fN where fN > 0 by construction. Thus, this sequence has a limit, i.e. limN→∞ fN = f∞

exists. For α ∈ [0, 1], f∞ = 0 for otherwise, the left hand side of the equation tends to a

quantity greater than 1 in the limit while the RHS approaches a value less than 1. Thus,

for α ∈ [0, 1], f∞ = 0 and limN→∞ tanh (NfN) = α. For α > 1, NfN → ∞ and in the

limit, the equation becomes

tanh (f∞) + 1 = α sech (f∞)
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Figure 19. Spectrum of HN(α). Red corresponds to N = 50 and Blue
corresponds to N = 100. (a) α = 1/2. (b) α = 1/2 with imaginary parts
of eigenvalues scaled by N . (c) α = 1. (d) α = 2.

⇒ 2 sinh (f∞) =
α2 − 1

α
.

Because λp(α) = 2 cos φNj (α) = −ı2 sinh (f∞), one concludes

αc = 1, λp = −ı
(
α− 1

α

)
. (A.7)



APPENDIX B

Computations to estimate survival probability

B.1. Calculation of integrals

We compute here the quantity

Z(w, n0) = ı

2

π

∫ π

0

dk
sin (k) sin (n0k)

ıs− 2(1− cos(k))

1 + ı
2w

π

∫ π

0

dk
sin2 k

ıs− 2(1− cos(k))

(B.1)

where w = α + ıβ. We will assume that s ∈ C satisfies ℑ(s) ̸= −2 and s /∈ ıR.
The integral above can be evaluated by means of contour integration. We first note

that ∫ π

0

dk
sin (k) sin (n0k)

ıs− 2(1− cos(k))
=
1

8

[
− In0+1(s) + In0−1(s)

+ I−n0+1(s)− I−n0−1(s)
]

where

In(s) =

∫ π

−π
dk

exp(ınk)

ıs− 2(1− cos(k))

= −ı
∫
C
dz

zn

z2 − (2− ıs)z + 1
.

The integration contour C in the second integral above is the unit circle. It is easily seen

that In(s) = I−n(s) so that we need only to compute In(s) for n ≥ 0. The poles of the

integrand are

z±(s) = ıθ±

(s
2
+ ı
)

where

θ±(z) = −z ±
√
z2 + 1. (B.2)

We need first to know the positions of these poles with respect to C.

These two functions are well-defined analytic functions in the subdomain Ω, defined

as the complex plane C where the imaginary axis has been removed apart from the

open segment of the imaginary axis between −ı and ı. We claim that |θ+(z)| < 1 and

|θ−(z)| > 1 for z ∈ Ω+ = Ω
⋂
{z ∈ C : ℜ(z) > 0} and |θ+(z)| > 1 and |θ−(z)| < 1 for

z ∈ Ω− = Ω
⋂
{z ∈ C : ℜ(z) < 0}. Since the proof of the two claims are similar, we only

prove the first one. Notice that θ± are analytic on the connected set Ω+ and satisfy

θ+(z) · θ−(z) = −1,
θ+(z) + θ−(z)

2
= −z.

78
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Consider z ∈ Ω+. If θ+(z) or θ−(z) belonged to C, then both would be because of the

first relation above. It would then follow that z = −ı sin [arg(θ+(z))] which is excluded

since z ∈ Ω+. A similar ad-absurdio argument shows that θ−(z) and θ+(z) do not belong

to the imaginary axis. Since θ± are analytic on the connected set Ω+, so is θ±(Ω+).

The imaginary axis being excluded from θ±(Ω+), the domains θ±(Ω+) are included into

{z ∈ C;ℜ(z) > 0} or into {z ∈ C;ℜ(z) < 0}. Since θ+(1) =
√
2 − 1 > 0 and θ−(1) =

−
√
2 − 1 < 0 we get θ+(Ω+) ⊂ {z ∈ C;ℜ(z) > 0} and θ−(Ω+) ⊂ {z ∈ C;ℜ(z) < 0}.

Similarly, since θ±(Ω+)
⋂

C = ∅ the domains θ±(Ω+) are included into the interior of

the unit disc or into the exterior of the unit disc. The values above of θ±(1) imply that

θ+(Ω+) is included in the interior of unit disc and θ−(Ω+) is included in the exterior of

unit disc. Hence, we have that that if ℜ(s) > 0, the pole inside the unit disc is z+(s).

It follows by the Residues Theorem that

In(s) = −ıπ [z+(s)]
n√(

s
2
+ ı
)2

+ 1
, ℜ(s) > 0. (B.3)

This gives ∫ π

0

dk
sin (k) sin (n0k)

ıs− 2(1− cos k)
= −π

2
[z+(s)]

n0 , ℜ(s) > 0. (B.4)

From EQ. (B.1) and EQ. (B.4)

Z(w, n0) = −ı [z+(s)]
n0

1− ıw[z+(s)]
, ℜ(s) > 0. (B.5)

B.2. Expression of ψ1 in terms of Bessel functions of first kind

The Laplace transform for ψ1 can be expressed as

[Lψ1](s) = −ın0+1χ
(s
2
+ ı
)

where

χ(z) =
[θ+(z)]

n0

1 + wθ+(z)

with the function θ± defined in EQ. (B.2). We recall that this function is analytic in

the subdomain Ω, defined as the complex plane C where the imaginary axis has been

removed apart from the open segment of the imaginary axis between −ı and ı. Moreover,

we have seen that

ℜ(z) > 0 implies |θ+(z)| < 1, |θ−(z)| > 1.

Let us first identify χ(z) as the Laplace transform [Lf ](z) of some explicit function

f . It is known that if z ∈ C satisfies ℜ(z) > 0, then∫ ∞

0

dte−zt
Jk(t)

t
=

(θ+(z))
k

k
.
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Assuming that z is such that |wθ+(z)| < 1 we have then that

χ(z) =
∞∑
k=0

(−w)k[θ+(z)]n0+k

=
∞∑
k=0

(k + n0)(−w)k
∫ ∞

0

dt e−zt
Jk+n0(t)

t

=

∫ ∞

0

dt e−ztf(t)dt = [Lf ](z)

with

f(t) =
∞∑
k=0

(k + n0)(−w)k
Jk+n0(t)

t
.

The interchange of the sum and the integral is justified, since Jk(2t) ∼ (2πk)−1/2(et/k)k

for large k. It follows that for any time t ≥ 0

ψ1(t) = −2ın0+1e−2ıt

∞∑
k=0

(k + n0)(−w)k
Jk+n0(2t)

2t

since the functions above have their Laplace transform coinciding on {s ∈ C ; ℜ(s) > σ}
for some σ > 0 sufficiently large.



APPENDIX C

Computations related to half line

This appendix details some of the calculations necessary for the results in sec. (2.3.1)

C.1. Asymptotic form of the wave function on the half line

We seek the saddle point approximation of

Ψ(x, t) =

∫ ∞

0

dk c(k) ηk(x) exp(−ı k2t)

=
ı√
2π

[∫ ∞

0

dk c(k)
(1− ıζk)eıkx−ık

2t√
1 + ζ2k2

−
∫ ∞

0

dk c(k)
(1 + ıζk)e−ıkx−ık

2t√
1 + ζ2k2

]

=
ı√
2π

∫ ∞

−∞
dk c(k)

(1− ıζk)√
1 + ζ2k2

eıt(k
x
t
−k2),

where we used the fact that c(−k) = −c(k). We now use the following result [Mil06]:

Let g(k) be complex valued, I(k) be real valued functions of the real variable k. Let t > 0

and define the integral

F (t) =

∫ ∞

−∞
dk g(k) eıt I(k).

If k0 is a stationary point of I(k) such that
[dI(k)

dk

]
k=k0

= I ′(k0) = 0 and
[d2I(k)

dk2

]
k=k0

=

I ′′(k0) ̸= 0 then for large t, the contribution to F (t) from k0 is[
2π

t |I ′′(k0)|

]1/2
g(k0)e

ıt I(k0)+ı
sign(I′′(k0))π

4 + o(t−1/2).

In the current case,

g(k) = c(k)
(1− ıζk)√
1 + ζ2k2

& I(k) = k
x

t
− k2.

We get a unique saddle point at k0 = x/(2t) and this then gives

[Ψ(x, t)]t≫1 ≍
ı√
2t
c
( x
2t

)√1− ıζ x
2t

1 + ıζ x
2t

e
ı
(

x2

4t
−π

4

)
. (C.1)

C.2. First passage time distribution on the half line

Recall EQ. (2.76) giving the expression of the solution of the Schrödinger equation

on the half-line with complex Robin boundary condition and initial condition Ψ0(x) =

Ψ(x, 0). To simplify, we assume that Ψ0 has compact support and has a bounded de-

rivative defined almost everywhere. In particular, all the moments of Ψ0 and ∂Ψ0

∂x
are

81
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well-defined. After a change of variables, we can write Ψ(0, t) as

Ψ(0, t) =

√
2

π

ζ

t

∫ ∞

0

dy
y√

1 + ζ2

t
y2
c
(

y√
t

)
exp

(
−ıy2

)
+

√
2

ζ
cb exp

(
ı
t

ζ2

)
,

where

c(k) = −

√
2

π(1 + ζ2k2)
k H(k),

H(k) =

∫ ∞

0

dx

[
Ψ0(x) + ζ

∂Ψ0

∂x
(x)

]
︸ ︷︷ ︸

Φ(x)

sin (k x)

k
.

Up to factors, H(k) is the sine transform of Φ(x). If H(k) were to vanish identically,

then Φ(x) ≡ 0 and Ψ0(x) would correspond to the bound state. In this situation Ψ(0, t)

evolves solely by the second term and the first passage time distribution F (t) defined by

EQ. (2.81) has exponential decay for ζ lying in the fourth quadrant.

Assume H(k) is not identically 0. Substituting for c(k) one has

Ψ(0, t) ≈ − 2

π

ζ

t
3
2

∫ ∞

0

dy
y2

1 + ζ2

t
y2
H

(
y√
t

)
exp

(
−ıy2

)
where the exponentially decaying term is neglected. By expanding sin (k x), and switching
1 the summation and integration for Φ(x) one can obtain an absolutely convergent series

expansion for H
(

y√
t

)
. We get that

H

(
y√
t

)
=

∞∑
s=0

(−1)s

ts
y2s

(2s+ 1)!

∫ ∞

0

dx x2s+1Φ(x)

=
∞∑
s=0

(−1)s

ts
y2s

(2s+ 1)!
[M2s+1 − (2s+ 1)ζM2s]

(C.2)

where Ms =
∫∞
0
xsΨ0(x) dx the sth moment of Ψ0. In the second line, we perform an

integration by parts. This allows us to finally write down the series

Ψ(0, t) ≈ − 2

π

ζ

t
3
2

[
∞∑
s=0

(−1)s

(2s+ 1)! ts
M2s+1

(
1− ζ

ζs

)
Is

(
ζ√
t

)]
(C.3)

where

Is(z) =

∫ ∞

0

dy
y2s+2

1 + z2y2
exp(−ıy2) (C.4)

and

ζs =
1

2s+ 1

M2s+1

M2s

(C.5)

1The switching is justified since Ψ0 has compact support so that the moments of Φ grow at most
geometrically.
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with the convention that ζs = ∞ if M2s = 0. Noting that

lim
z→0

I0(z) = −
√
π

4
e

ıπ
4 and lim

z→0
I1(z) = −3

√
π

8
e−

ıπ
4

one has then for large t,

Ψ(0, t) =
1

2
√
π

ζ

t
3
2

[(
1− ζ

ζ0

)
M1e

ıπ
4 −

(
1− ζ

ζ1

)M3

4t
e−

ıπ
4

]
+O(t−5/2).

(C.6)

This proves EQ. (2.83).

Consider the state

Ψ0(x) =Θ(x− 2)− Θ(x− 1) + Θ(x− 3)

2

+ ı
Θ(x− 1)−Θ(x− 3)

2

(C.7)

where Θ(x) is the Heaviside step function. Then

M1 =
1

2
+ 2ı, ζ0 = 2− ı

2

M3 =
25

4
+ 10ı, ζ1 =

67

82
− 17i

164
.

The numerical evaluation of the integral in EQ. (2.76) can be performed to obtain

Ψ(0, t). We choose the range t ∈ (200, 750) which is sufficient to suppress the bound

state contribution in EQ. (2.76). To begin with, let ζ = 1− ı . Then ζ is at a sufficient

distance from ζ0 and the first term in the expansion EQ. (C.6) dominates. Therefore, one

has as t→ ∞ that

F3(t) = −2
ℑ(ζ)
|ζ|2

|Ψ(0, t)|2 ∼ 5

8πt3
.

We use this analytic estimate to compare with the numerical evaluation via EQ. (2.76)

in Fig (20). This shows that the analytic estimate is quite good and indeed F (t) ∼ 1
t3
.

Now choose ζ = ζ0. Doing so causes the first term in the expansion EQ. (C.6) to drop

out. The estimate for F (t) is obtained from EQ. (C.6) which gives

F5(t) ≍ −ℑ(ζ0)
32πt5

∣∣∣∣M3

(
1− ζ0

ζ1

)∣∣∣∣2 = 5105

1024

1

πt5
.

The figure (20) shows good agreement of the above estimate with numerical values.

We could now claim that if Ψ0(x) was so constructed that

ζ0 = ζ1 = · · · = ζs−1 ̸= ζs(̸= 0)

then one has

F (t; ζ = ζ0) ∼
1

t3+2s
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Figure 20. Plot comparing numerical estimates of F (t) with F3(t) (resp.
F5(t)) for ζ = 1−ı (resp. ζ(= ζ0) = 2−ı/2). The discrete points correspond
to numerical values evaluated from EQ. (2.76)

.

while for other choices of ζ one has,

F (t, ζ ̸= ζ0) ∼
1

t3
.

This is under the assumption that the moments
∫∞
0
xkΨ0(x) dx do not vanish up until

k = 2s+ 1. Lastly, we note that for the normalized state

Ψ0(x) =

√
1

ζ0
+

1

ζ∗0
exp

(
− x

ζ0

)
with ζ0 in the fourth quadrant, ζs = ζ0 for all s follows from EQ. (C.5). For the mea-

surement parameter ζ = ζ0, the estimate in EQ. (C.3) is identically 0 and F (t) falls

exponentially, as has already been noted.



APPENDIX D

Master equations for indirect measurements

D.1. Lindblad equation for blind measurements

EQ. (3.18) will be derived by taking the limit τ → 0 for the evolution equation for

the density matrix in the discrete time model described in sec. (3.1.1). Suppose the state

density matrix for S at the time t is ρ(t). The system is now coupled to the probe

whose density matrix is σ(= |χ0⟩⟨χ0|). The density matrix of the entire system is the

uncorrelated matrix

R(t) := ρ(t)⊗ σ.

Post interaction via the Hamiltonian in EQ. (3.5), the state becomes

R(t+ τ) = exp
[
− ıτH

]
R(t) exp

[
ıτH

]
.

The density matrix of S is recovered from the above as

ρ(t+ τ) = trD R(t+ τ) = ⟨χ0|R(t+ τ)|χ0⟩+ ⟨χ1|R(t+ τ)|χ1⟩.

From the form of H, the following relations can be inferred.

⟨χ0|R(t+ τ)|χ0⟩ = ρ(t)− ı τ
[
HS , ρ(t)

]
− γ τ

2

{
ρ(t), π1

}
+O(τ 2),

⟨χ1|R(t+ τ)|χ1⟩ = γ τπ1 ρ(t) π1 +O(τ 3/2).
(D.1)

It follows from the above that

ρ(t+ τ)− ρ(t)

τ
= −ı

[
HS , ρ(t)

]
+ γπ1 ρ(t)π1 −

γ

2

{
ρ(t), π1

}
+O(τ 1/2).

Taking the limit τ → 0 for the case of continuous measurement, one obtains EQ. (3.18).

D.2. Derivation of the forward PIDE

The probability density P (θ, t) satisfies a generalized Fokker-Planck equation, stated

in EQ. (3.38). In order to derive this, suppose f(θ) is a real-valued 2π periodic function.

θt is a stochastic process governed by the SDE EQ. (3.36). If Nt has no jumps in the

time interval [t, t+ dt], then dθt = Ω(θt)dt and

df = Ω(θt)

(
∂f

∂θ

)
t

dt.

If Nt has a jump at t, then dθt = π − θt−. It follows that

df = f(θt− + (π − θt−))− f(θt−)

⇒ df = f(π)− f(θt−).
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Thus, the Ito formula for the differential can be written compactly as

df = Ω(θt)

(
∂f

∂θ

)
t

dt+ [f(π)− f(θt−)] dNt.

We rewrite the Ito formula as,

df =

[
Ω(θt)

(
∂f

∂θ

)
t

+ [f(π)− f(θt−)] γ sin
2 θt
2

]
dt+ [f(π)− f(θt−)]

[
dNt − γ sin2 θt

2
dt

]
(D.2)

which has the advantage that the second summand in the r.h.s. has as a factor the

differential of a compensated martingale [Bjö21,Bré81]. Integrating the above equation,

taking expectation w.r.t. P (θ, t) and changing the order of integration in the r.h.s, one

obtains

∫ 2π

0

f(θ)P (θ, t)dθ−f(θ0) =
∫ t

0

(∫ 2π

0

[
Ω(θ)

(
∂f

∂θ

)
+ [f(π)− f(θ)] γ sin2 θ

2

]
P (θ, s)dθ

)
ds.

EQ. (3.38) follows after differentiating the above equation w.r.t. t and integrating by

parts in the first integral on the r.h.s.

D.3. Verification of solution for the PIDE

For the PIDE (3.38), noted here

∂P (θ, t)

∂t
= − ∂

∂θ
[Ω(θ)P (θ, t)]− γ sin2

(
θ

2

)
P (θ, t) + γδ(θ− π)

∫ 2π

0

sin2

(
θ′

2

)
P (θ′, t) dθ′,

the solution proposed in EQ. (3.66) is

P (θ, t) = P t
0[0||0]δ(θ − θt(0, 0)) +

∫ t

0

αt−τP
τ
0 [0||π] δ(θ − θτ (0, π)) dτ. (D.3)

For reference, also note

P t
0[0||θ0] =

Ω(θ0)

Ω(θt(0, θ0))
e−

γt
2 ,

∂

∂t
P t
0[0||θ0] = −γ sin2 θt(0, θ0)

2
P t
0[0||θ0]. (D.4)

Denote αt−τ = α(t, τ), so that one has (from EQ. (3.54)) ∂
∂t
α(t, τ) = − ∂

∂τ
α(t, τ). Also

notice, α(t, t) = 0. From the Leibniz rule, one obtains

∂P (θ, t)

∂t
=

∂

∂t

[
P t
0[0||0] δ(θ − θt(0, 0))

]
−
∫ t

0

∂α(t, τ)

∂τ
P τ
0 [0||π] δ(θ − θτ (0, π)) dτ.

Integrating by parts in the RHS, one has

∂P (θ, t)

∂t
=
∂

∂t

[
P t
0[0||0] δ(θ − θt(0, 0))

]
+

∫ t

0

α(t, τ)
∂

∂τ

[
P τ
0 [0||π] δ(θ − θτ (0, π))

]
dτ

+ γδ(θ − π)

∫ 2π

0

sin2 φ

2
P (φ, t) dφ
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Upon carrying out the differentiation in the RHS of the above, using EQ. (D.4) one can

express
∂P (θ, t)

∂t
= F1(θ, t)− F2(θ, t) + γδ(θ − π)

∫ 2π

0

sin2 φ

2
P (φ, t) dφ,

where the distributions

F1(θ, t) =P
t
0[0||0]

∂

∂t
δ(θ − θt(0, 0)) +

∫ t

0

α(t, τ)P τ
0 [0||π]

∂

∂τ
δ(θ − θτ (0, π)) dτ,

F2(θ, t) =γ sin
2 θt(0, 0)

2
P t
0[0||0] δ(θ − θt(0, 0))

+

∫ t

0

α(t, τ) γ sin2 θτ (0, π)

2
P τ
0 [0||π] δ(θ − θτ (0, π)) dτ.

In the sense of distributions, the following equivalence holds in view of EQ. (D.3)

F2(θ, t) ≡ γ sin2 θ

2
P (θ, t).

The proof will be complete if one shows the following equivalence

F1(θ, t) ≡ − ∂

∂θ
[Ω(θ)P (θ, t)].

To show this, consider a 2π periodic differentiable function f(θ). Then one has

−
∫ 2π

0

f(θ)
∂

∂θ
[Ω(θ)P (θ, t)]dθ =

∫ 2π

0

[
Ω(θ)

∂f(θ)

∂θ

]
P (θ, t) dθ = E[Ωf ′](t).

Further, one has

∂

∂t
δ(θ − θt) = Ω(θt)

∂

∂θt
δ(θ − θt) = Ω(θt) δ(θ − θt)

∂

∂θ
.

From the above property, it follows that∫ 2π

0

F1(θ, t) f(θ) dθ =

∫ 2π

0

(
Ω(θt(0, 0))P

t
0[0||0] δ(θ − θt(0, 0))

∂ f(θ)

∂ θ

+

∫ t

0

α(t, τ) Ω(θτ (0, π))P
τ
0 [0||π] δ(θ − θτ (0, π))

∂f(θ)

∂θ
dτ
)
dθ

= E[Ωf ′](t).

This shows the required equivalence and the proof is complete.

Furthermore, P (θ, t) should satisfy the normalization condition
∫ 2π

0
P (θ, t) dθ = 1∀t ≥

0. For P (θ, t) given by EQ. (D.3), this amounts to showing

P t
0[0||0] +

∫ t

0

αt−τP
τ
0 [0||π] dτ = 1. (D.5)

For various values of the measurement strength λ, the above can be shown using EQs. (D.3,

3.54) by a simple integration.



APPENDIX E

Computations for indirect measurements

E.1. Laplace transform of the MGF

Consider the case λ < 1. Define the function

g(t, ϕ) = sin2(βγ0t− ϕ)

so that from EQs. (3.44 , 3.30, 3.31 and 3.45), one has

P t
0[0] =

e−
γt
2

β2
[g(t, 0) + g(t,−ϕ)] ,

P t
0[n] =

γne−
γt
2

β2n+2

∫ t

0

dtn [g(t− tn, 0) + g(t− tn, ϕ)]

[
1∏

k=n−1

∫ tk+1

0

dtk g(tk+1 − tk, ϕ)

]
g(t1, 0).

(E.1)

P t
0[n] has been expressed as a convolution. For the function g(t, ϕ), the Laplace transform

is

ĝϕ(σ) =

∫ ∞

0

e−(σ+
γ
2 )tg(t, ϕ)dt

=
1

2

[
1

σ + γ
2

−
(σ + γ

2
) cos(2ϕ) + 2βγ0 sin(2ϕ)

(σ + γ
2
)2 + 4β2γ20

]
. (E.2)

From EQs. (3.46, E.1) and standard properties of Laplace transform, one has

(LE[e−sNt ])(σ, s) =

∫ ∞

0

e−σt

(∑
n≥0

e−nsP t
0[n]

)
dt (E.3)

=
1

β2

[
ĝ−ϕ + ĝ0 +

γe−s

β2

ĝ0[ĝ0 + ĝϕ]

1− γe−s

β2 ĝϕ

]
. (E.4)

From EQ. (E.2) and the above, EQ. (3.47) follows after simplification. The calculations

for λ = 1 and λ > 1 are similar and lead to the same EQ. (3.47).

E.2. Solution for expansion coefficients

For reference, we note the EQs. (3.110) below

ċk = ċ0 e
−ı k2γ0t, ċ0 = 4γ0

[(
(1− γ0t) +

ı

2

∂

∂k

)2

ck

]
k=0

, ck(0) =
e2ık√
2π
. (E.5)

An integration for ck(t) in the first equation gives

ck(t) = [ck(0)− c0(0)] + c0(t)e
−ık2γ0t + ık2γ0

∫ t

0

c0(s)e
−ık2γ0s ds.
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From the above, one has[
∂

∂k
ck(t)

]
k=0

=
ı2√
2π

− ı2γ0t c0(t) + ı2γ0

∫ t

0

c0(s) ds,[
∂2

∂k2
ck(t)

]
k=0

=
(ı2)2√
2π

+ (ı2γ0t)
2 c0(t)− 2(ı2γ0)

2

∫ t

0

s c0(s) ds.

With the above evaluations, after substitution the middle EQ. (E.5) reads

ċ0(t) = 4γ0

[
(1− γ0t)

2c0(t) + ı(1− γ0t)

[
∂

∂k
ck(t)

]
k=0

− 1

4

[
∂2

∂k2
ck(t)

]
k=0

]
,

⇒ ċ0(t) = 4γ0

[
− 1√

2π
+ γ0 t

√
2

π
+ c0(t) + 2γ0

∫ t

0

[γ0(t− s)− 1] c0(s) ds

]
.

With the Laplace transform defined as

[Lc0] (σ) =
∫ ∞

0

e−σ t c0(t) dt,

one has

[Lc0] (σ) =
1√
2π

σ2 − 4γ0σ + 8γ20
(σ − 2γ0)(σ2 − 2γ0σ + 4γ20)

.

Inverting the transform, the solution for c0(t) is obtained as

c0(t) =
1√
2π

[
e2γ0 t − 2√

3
sin
(√

3γ0 t
)
eγ0 t
]
. (E.6)

From the first and third equations in (E.5), it is easy to obtain the final result in

EQ. (3.111).
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[BS21] Alberto Biella and Marco Schiró. Many-body quantum zeno effect and measurement-induced

subradiance transition. Quantum, 5:528, 2021.

[Bus03] P. Busch. Quantum states and generalized observables: A simple proof of gleason’s theorem.

Phys. Rev. Lett., 91:120403, Sep 2003.

[Car99] H. Carmichael. Statistical Methods in Quantum Optics 1: Master Equations and Fokker-

Planck Equations. Physics and astronomy online library. Springer, 1999.

[Car09] H.J. Carmichael. Statistical Methods in Quantum Optics 2: Non-Classical Fields. Theoret-

ical and Mathematical Physics. Springer Berlin Heidelberg, 2009.

[CE48] A. E. Cameron and Jr. Eggers, D. F. An Ion “Velocitron”. Review of Scientific Instruments,

19(9):605–607, September 1948.

[Coo88] Richard J Cook. What are quantum jumps? Physica Scripta, 1988(T21):49, jan 1988.

[CTD86] C. Cohen-Tannoudji and J. Dalibard. Single-atom laser spectroscopy. looking for dark pe-

riods in fluorescence light. Europhysics Letters, 1(9):441, may 1986.

[Dav69] E. B. Davies. Quantum stochastic processes. Communications in Mathematical Physics,

15(4):277–304, Jan 1969.

[Dav84] M. H. A. Davis. Piecewise-deterministic markov processes: A general class of non-diffusion

stochastic models. Journal of the Royal Statistical Society. Series B (Methodological),

46(3):353–388, 1984.

[DCM92] Jean Dalibard, Yvan Castin, and Klaus Mølmer. Wave-function approach to dissipative

processes in quantum optics. Phys. Rev. Lett., 68:580–583, Feb 1992.

[DDD15] S. Dhar, S. Dasgupta, and A. Dhar. Quantum time of arrival distribution in a simple lattice

model. J. Phys. A: Math. Theor., 48(11):115304, feb 2015.

[DDDS15] S. Dhar, S. Dasgupta, A. Dhar, and D. Sen. Detection of a quantum particle on a lattice

under repeated projective measurements. Phys. Rev. A, 91:062115, Jun 2015.

[Dio86] L. Diosi. Stochastic pure state representation for open quantum systems. Physics Letters

A, 114(8):451–454, 1986.

[DM97] V. Delgado and J. G. Muga. Arrival time in quantum mechanics. Phys. Rev. A, 56:3425–

3435, Nov 1997.

[EM11a] Martin R Evans and Satya NMajumdar. Diffusion with optimal resetting. Journal of Physics

A: Mathematical and Theoretical, 44(43):435001, 2011.

[EM11b] Martin R Evans and Satya N Majumdar. Diffusion with stochastic resetting. Physical review

letters, 106(16):160601, 2011.

[EMS20] Martin R Evans, Satya N Majumdar, and Grégory Schehr. Stochastic resetting and appli-

cations. Journal of Physics A: Mathematical and Theoretical, 53(19):193001, 2020.



92 BIBLIOGRAPHY

[FG98] Edward Farhi and Sam Gutmann. Quantum computation and decision trees. Phys. Rev. A,

58:915–928, Aug 1998.

[FKB16] H Friedman, D A Kessler, and E Barkai. Quantum renewal equation for the first detection

time of a quantum walk. Journal of Physics A: Mathematical and Theoretical, 50(4):04LT01,

dec 2016.

[FKB17] H. Friedman, D. A. Kessler, and E. Barkai. Quantum walks: The first detected passage

time problem. Phys. Rev. E, 95:032141, Mar 2017.

[GBD+07] Christine Guerlin, Julien Bernu, Samuel Deleglise, Clement Sayrin, Sebastien Gleyzes, Ste-

fan Kuhr, Michel Brune, Jean-Michel Raimond, and Serge Haroche. Progressive field-state

collapse and quantum non-demolition photon counting. Nature, 448(7156):889–893, 2007.

[GG21] Sarang Gopalakrishnan and Michael J. Gullans. Entanglement and purification transitions

in non-hermitian quantum mechanics. Phys. Rev. Lett., 126:170503, Apr 2021.

[GKS76] Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. Com-

pletely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics,

17(5):821–825, 1976.

[GLE57] ANDREW M. GLEASON. Measures on the closed subspaces of a hilbert space. Journal of

Mathematics and Mechanics, 6(6):885–893, 1957.
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