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7.1.3 Staggered (“Néel”) spin-octupolar insulator . . . . . . . . . . . . 83

7.1.4 Stripy spin-octupole density wave insulator . . . . . . . . . . . . . 85

7.1.5 Zig-zag spin-quadrupole density wave insulator . . . . . . . . . . . 86

7.1.6 Zig-zag spin-octupole density wave insulator . . . . . . . . . . . . 87

7.2 Density wave semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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Abstract

This thesis investigates the intricate interplay between microscopic and emergent sym-

metries in a spin-orbit coupled (SOC) Dirac semimetal. Dirac fermions emerge as low-

energy degrees of freedom in many condensed matter systems, and the associated phases

and phase transitions crucially depend on the emergent symmetries as well as the imple-

mentation of microscopic symmetries on these Dirac fermions. In this work, we study

this interplay in the context of an SU(8) symmetric Dirac semimetal, which arises from a

specific tight-binding model with spin-orbit coupled j = 3/2 electrons. This model serves

as an e↵ective low-energy description for the d1 honeycomb materials like ↵-ZrCl3 and

↵-TiCl3 in the limit of strong spin-orbit coupling. We explicitly find out the implemen-

tation of the microscopic symmetries on the low-energy Dirac fermions in this system.

This non-trivial embedding of the microscopic symmetries in the low energy is reflected

in the nature of phases proximate to the Dirac semimetal. Such phases can arise from

finite short-range electron-electron interactions. In particular, we identify 24 such phases

– divided into three classes – and their low energy properties are obtained by condensing

particle-number conserving fermion bilinears that break very di↵erent microscopic sym-

metries and/or are topologically protected by symmetries. The latter includes interesting

generalizations of quantum spin-Hall phases. Remarkably, some of the resultant phases

still support a sub-set of gap- less fermions– protected by a sub-group of SU(8) – result-

ing in interesting density wave semimetals. We also study some of the interesting phase

transitions among the phases.

Motivated by the intriguing suggestion of realizing an SU(8) Dirac semimetal, which

appears in the limit of strong spin-orbit coupling (SOC) and a restricted regime of the

hopping strengths, we provide a systematic study of the interplay between various hop-

ping pathways and atomic SOC for the low-energy electrons in candidate d1 transition

metal halides MX3 (M=Ti, Zr, Hf; X=F, Cl, Br). We find various compensated metallic

phases appearing in the phase diagram when the hopping strength and spin-orbit cou-

pling strength are varied. The resultant compensated metals have varied Fermi surface

topologies and are separated by Lifshitz phase transitions. We discuss the implications

of the proximate Lifshitz transition, which may be accessed via strain, in the context of

the relevant materials.
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Chapter 1

Introduction

Strongly correlated systems, characterized by electron-electron interaction strengths com-

parable to or exceeding the free-electron bandwidth, have garnered significant attention

following the Kondo problem’s elucidation of the logarithmic temperature dependence

of resistivity at low temperatures [1]. This paved the way for extensive investigations

into diverse strongly correlated materials, unveiling a rich tapestry of intriguing phases,

including heavy fermion superconductivity [2, 3], high temperature superconductors [4],

non-Fermi liquid states [5, 6, 7] etc.

Recent studies have revealed that electronic correlations, in conjunction with other

energy scales of the system such as the spin-orbit coupling strength, crystal field splitting,

etc., can engender phases with non-trivial entanglement pattern and topological charac-

ters [8, 9, 10, 11, 12]. These encompass short-range entangled states, such as symmetry-

protected topological (SPT) phases [13] like topological insulators, Chern insulators, and

topologically ordered phases like the fractional Chern insulators [14, 15] and quantum

spin liquids (QSLs) [16, 17]. Among the various energy scales, spin-orbit coupling (SOC)

plays a pivotal role in engineering these topological and entangled phases [9, 10, 11].

Developing a profound understanding of the symmetries underpinning these phases is

imperative for unraveling their intricate properties. In this context, we first discuss the

interplay between symmetry and entanglement in strongly correlated systems in Sec. 1.1

introductory chapter. Subsequently, we discuss various energy scales present in strongly

correlated materials and their implications, with a particular emphasis on the role of SOC

in realizing topological and entangled phases in Sec. 1.2 and Sec. 1.3.

Notably, a central focus of this thesis revolves around the fascinating concept of Dirac
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fermions in condensed matter systems, which lies at the heart of our investigations. These

massless relativistic quasiparticle appear as low-energy degrees of freedom in various

topological and strongly correlated phases. In Sec. 1.4 we review the very well known

case of grphene where the Dirac fermions arise as low-energy degrees of freedom. Finally,

in Sec. 1.5, we discuss the structure for the rest of the thesis.

1.1 Interplay of symmetry and entanglement in the

strongly correlated systems

The interplay of symmetry and entanglement plays a crucial role in understanding the

phases of matter. The conventional phases, e.g., conventional superconductors, density

waves, etc., are described by the spontaneous breaking of the microscopic symmetries.

This is possible because the underlying many-body state has a trivial entanglement signa-

ture and hence can be approximated by product states such that the local order parameter

quantifying the symmetry breaking gives a comprehensive picture.

Recent studies have shown that the interplay of entanglement and symmetry can give

rise to two new classes of phases which cannot be described just by symmetry break-

ing [8]. One class of phases has long-range entangled ground states and hence cannot be

described by local order parameters (e,g., QSL, FQHE). In these phases, the existence

of symmetries can lead to the fractionalization of the quantum numbers of the emergent

quasi-particles[16, 18]. Another class of phases is the symmetry protected topological

(SPT) phases[19], the prime example of which are the topological insulators[20]. The

ground states in SPT phases, although short-range entangled, have non-trivial topologi-

cal character, and the role of symmetries here is to protect the topological invariants.

In addition to the microscopic symmetries, new symmetries can emerge when we

describe the long-wavelength characteristics of a system using low-energy theories, which

are known as infrared (IR) symmetries. For example, in graphene, the low-energy theory

is described by Dirac fermions in (2+1)-dimensions where Lorentz symmetry emerges[21].

Additionally, the SU(2) spin rotation symmetry gets enhanced to a larger emergent SU(4)

symmetry group. Such symmetries can be important in relating long-distance behavior

of the correlations of di↵erent phases. The existence of such symmetries can even lead to

the realization of deconfined quantum phase transitions.
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In understanding the structure of the low-energy theory, it becomes important to

understand how the low-energy degrees of freedom transform under the action of the

microscopic symmetries. Di↵erent ways of implementing the symmetries give rise to the

realization of newer phases and phase transitions. For example, in QSL, di↵erent ways of

implementing the microscopic symmetries on the low-energy spinons give rise to di↵erent

types of QSL phases.

The realization of this rich variety of phases is heavily influenced by the interplay

of di↵erent energy scales in condensed matter systems. In the following sections, we

first discuss briefly the implications of these energy scales and specifically focus on the

interplay of spin-orbit coupling (SOC) and electron-electron interactions in Sec. 1.3.

1.2 Energy scales

Condensed matter systems exhibit a rich interplay between various energy scales, and

the competition among these scales gives rise to a diverse array of phenomena in these

materials. The most prominent energy scales that play a pivotal role include the elec-

tron hopping amplitude (t), the Hund’s coupling (JH) associated with the intra-atomic

exchange which lowers the energy cost of placing the electrons in di↵erent orbitals with

parallel spin as opposed to two electrons in the same orbital, the Coulomb repulsion (U)

between electrons, the spin-orbit coupling strength (�), and the crystal field splitting

energy (�) due to the local ionic environment. The delicate balance and hierarchical

ordering of these energy scales ultimately dictate the low-energy degrees of freedom that

govern the system’s behavior and the emergent phases it can host.

In the weakly correlated regime, where the hopping energy scale (t) dominates over

the Coulomb repulsion (U), the electrons are delocalized, and the system can be de-

scribed within the framework of band theory. This regime can give rise to various band

insulators and conventional metallic phases, depending on the band filling and other

material-specific details. On the other hand, in the strongly correlated regime, where the

Coulomb interactions (U) overwhelm the hopping (t), the electrons tend to localize, and

the system is better described by interacting spin degrees of freedom. Materials with tran-

sition metal ions are one of the most experimentally relevant platforms for strongly corre-

lated systems. This includes di↵erent iridium oxides in the Ruddlesden-Popper sequence
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perovskites[22, 23, 24, 25, 26, 27, 28, 29], hexagonal perovskites [30, 31, 32, 33, 34, 35],

pyrocholres [36, 37, 38], etc. In these materials, the partially filled d-orbitals have narrow

bandwidth which makes the e↵ect of the interactions pronounced [39]. This leads to

various Mott insulators and metal-insulator transitions.

Notably, the spin-orbit coupling (�) and the crystal field splitting (�) cooperate with

the electron-electron interactions, e↵ectively enhancing their impact. This is because the

spin-orbit coupling and crystal fields split the orbital degeneracies, narrowing the e↵ective

bandwidths and amplifying the relative strength of the Coulomb interactions. We discuss

the e↵ect of SOC in detail in the next section. The Hund’s coupling on the other hand

plays two roles. In a multi-orbital atom with half filling, it e↵ectively enhances the e↵ect of

interactions by reducing the critical interaction strength required for Mott transition [40,

41, 42, 43, 44], whereas for other fillings, it reduces the e↵ect [45, 46]. Interestingly, there

exists a competition between Hund’s coupling, which tends to distribute the electrons

across the available orbitals so as to minimize the e↵ect of Coulomb repulsion, and the

crystal field e↵ect, which favors occupying the lowest energy orbitals preferentially [46,

47, 48].

Thus, the intricate interplay between the various energy scales and their cooperative

or competing e↵ects ultimately give rise to a diverse array of phenomena in condensed

matter systems. In the following section, we discuss the e↵ect of the SOC and the

Coulomb interaction in detail.

1.3 SOC-U phase diagram

In this thesis, we delve into the intricate interplay of the UV and IR symmetries in

a spin-orbit coupled (SOC) system. Recent studies have shown that SOC is a useful

microscopic knob for engineering unconventional implementation of the UV symmetries

as well as competing microscopic interactions[9]. This makes SOC a crucial ingredient for

realizing the long-range entangled and SPT phases in addition to newer symmetry-broken

ones. Fig. 1.1 schematically shows the di↵erent phases one can obtain in the presence

of SOC and onsite Hubbard interaction. The materials with transition metal ions and

lanthanides are a rich playground for the interplay of SOC and electron correlations. For

example, the 3d transition metal ions have a narrow bandwidth which makes the electron
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correlation e↵ects stronger while the SOC is small in these materials. On the other hand,

in the 4d and 5d materials, the SOC becomes comparable to the interaction energy scale.

Thus, as one moves to di↵erent transition metal materials, di↵erent parts of the phase

diagram (Fig 1.1) become relevant.

Figure 1.1: Schematic phase diagram with varying strength of atomic SOC (�) and on-
site Coulomb interaction (U). Figure taken from Ref. [9].

In the weakly correlated regime, where electron-electron interactions are relatively

weak, the system can be described within the framework of independent and delocalized

electrons. In this limit, the spin-orbit coupling (SOC) plays a crucial role by entangling

the crystal momentum and spin degrees of freedom. This entanglement can lead to

non-trivial topological characters in the ground state, giving rise to various topological

insulator phases [20, 49, 50].

In the intermediate correlated regime, interactions open up possibilities for new kinds

of topological insulators. In this case, the system can develop magnetic orders but can

still be described in terms of weakly interacting quasi-particles and an e↵ective band

theory. However, in this regime, spontaneous symmetry breaking can occur, leading to

exotic phases such as Weyl semimetals [51, 52, 53], Chern insulators [54, 55], or axionic

insulators [56, 57]. For example, in Weyl semimetals, either inversion or time-reversal
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symmetry is spontaneously broken, resulting in non-degenerate bands. On the other

hand, in axionic insulators, time-reversal symmetry is spontaneously broken, but a new Z2

topological index emerges, which characterizes the topology of the ground state [58, 59].

In the strongly correlated regime, where the interaction strength is dominant, the

system is better described in terms of localized spins. For small values of SOC, the inter-

actions can give rise to various magnetically ordered phases, correlated metallic states,

unconventional superconductors [39], etc. However, as the SOC strength increases, it

can give rise to anisotropic exchange interactions, which ultimately leads to frustration

in the system. A well-known example of this scenario is found in pyrochlore mate-

rials with edge-sharing octahedral structures, which can e↵ectively realize the Kitaev

model as an e↵ective Hamiltonian. Such systems can host various quantum spin liquid

phases. Furthermore, the e↵ective spin degrees of freedom in the strongly correlated

regime are spin-orbit entangled. These e↵ective spin degrees of freedom can have higher

spin, such as j = 3/2, 2, etc [60, 61]. The multipolar couplings in these systems can lead

to various interesting phases such as quadrupolar heave Fermi-liquid, multipolar ordered

states [62, 63, 64, 65, 66, 67], etc.

1.4 Dirac fermions

After discussing the various aspects of the strongly correlated systems, we now turn to

discuss the Dirac Fermions. Massless Dirac fermions arise in a variety of condensed matter

systems [68, 69]. Perhaps the most well-known is the recently studied – both experimen-

tally and theoretically – example of monolayer graphene [70, 71, 72, 73, 74, 75, 76, 77, 78]

where such Dirac fermions arise as a low energy limit of electrons hopping on the honey-

comb lattice. More generally such Dirac fermions may arise in a variety of other two and

three dimensional lattices [68, 79, 80, 81] relevant for several materials including organic

semiconductors like ↵-(BEDT-TTF)2I3 [81, 82, 83], the dx2�y2-wave superconductor in

cuprates [84, 85, 86, 87, 88], Dirac and Weyl semimetals [51, 89] and surface of 3D topo-

logical insulators [20, 49, 90, 91, 92, 93]. These low-energy Dirac fermions have indelible

signatures in a plethora of low-energy experiments of these candidate materials, as is

evident in the integer quantum Hall e↵ect [72, 94] as well as other spectroscopic and

transport properties [76, 95, 96, 97, 98, 99] of monolayer graphene, surface transport of
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3D topological insulators [100] or spectroscopy of d-wave superconductors [84, 85].

Dirac fermions also arise in a somewhat di↵erent context as low energy theories of

certain quantum spin liquids (QSL). Indeed in U(1) Dirac QSLs, low energy fermionic

spinons– minimally coupled to an emergent U(1) gauge field– have free Dirac dispersion

with enhanced symmetries at low energies within parton mean-field theories [101]. While

in this case of QED3, the fluctuations of the gauge field ultimately lead to the destruction

of the quasi-particles [101, 101, 102, 103, 104, 105, 106, 107, 108], the proximate ordered

phases can be obtained by condensing appropriate spinon bilinears that gap out the Dirac

spinons. Also, such e↵ective Dirac theories, with or without dynamic gauge fields have

also been recently discussed in the context of (2+1) dimensional fermionic particle-vortex

dualities emanating out of conjectures of Dirac composite fermions in half-filled Landau

level in quantum Hall systems [109].

An equally important question pertains to the nature of the di↵erent phases ob-

tained [110] upon gapping out the Dirac fermions via short-ranged four-fermion inter-

actions/other bosonic fields or via external perturbations such as originating from sub-

strate e↵ects in graphene [111]. For the former, a typical e↵ect of such interactions is

to condense a fermion-bilinear that dynamically generates mass for the gapless Dirac

fermions for a finite strength of the interaction. The nature of the resultant gapped

phases 1 [21, 101, 110, 112, 113] as well as the theory of the associated phase transition

from the proximate Dirac semimetal via Gross-Neveu-Yukawa [110, 114, 115, 116, 117]

field theories have received considerable attention in a wide array of condensed mat-

ter settings and allow for systematic understanding of novel quantum phase transitions

including Landau forbidden deconfined quantum criticality [118, 119].

The nature of gapped phases in Dirac systems can be understood by analyzing how

mass terms, which open a gap in the initially gapless Dirac fermions, transform under

the ultraviolet (UV) symmetries. This approach enables a systematic classification of

all possible mass terms based on their symmetry properties. One well-known example

of such classification occurs in graphene [21], where di↵erent mass terms correspond to

conventional symmetry-broken phases such as charge density waves, spin density waves,

as well as topological phases like Chern insulators and Z2 symmetry-protected topological

(SPT) phases. We discuss the masses of graphene in detail in Sec. 1.4.1.

1This phase can have other gapless mode such as Goldstone boson if a continuous symmetry is broken.
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This classification methodology extends to other Dirac systems as well. For instance,

Ref. [120] presents a classification of mass terms for spinless fermions on a cubic lattice

with ⇡-flux through each plaquette. In this context, di↵erent mass terms correspond to

di↵erent density wave phases, bond-order phases, as well as chiral topological insulator

and topological superconducting phases.

Dirac theory can also emerge as the low-energy limit of certain spin Hamiltonians [101,

121]. In such cases, di↵erent mass terms allow for a systematic identification of all gapped

phases. For instance, in a square lattice, the spin Hamiltonian gives rise to an Nf = 4

Dirac fermion theory at low energies [101]. Gapping out these Dirac fermions leads to

the realization of spin density waves, bond density waves (where spin bilinears order on

the lattice bonds), as well as long-range ordered phases such as chiral spin liquid. The

classification of mass terms thus provides a comprehensive understanding of the possible

gapped phases in these spin systems as well.

A central aspect of the above diverse physics is the implementation of microscopic

symmetries on the low-energy Dirac fermions since they ultimately determine the trans-

formation properties of the masses terms. These ultraviolet (UV) symmetries typically

consist of lattice symmetries, time reversal as well as possible spin-rotation symmetries of

the electrons occupying the underlying atomic orbitals. Material-dependent microscopic

energetics allow for di↵erent implementations of these UV symmetries on the underlying

low energy Dirac fermions, opening up avenues to probe the Dirac semimetal [76] as well

as stabilize novel proximate phases. Below we discuss the symmetry implementation in

the case of graphene and compare it with the spin-orbit coupled Dirac fermions, which is

the central aspect of this thesis.

1.4.1 Dirac theory for graphene

In this section, we consider spinful electrons on a honeycomb lattice (Fig. 1.2). The

honeycomb lattice is a Bravais lattice with a two-point basis, consisting of the A and

B sublattices as shown in the figure. b1 and b2 shown in Fig. 1.2 are the two lattice

translation vectors. The Brillouin zone (BZ) is shown in Fig. 1.3. The nearest-neighbor

hopping Hamiltonian for this setting is given by [74, 117]

8



Figure 1.2: Honeycomb lattice with 2-point unit cell. The b1 and b2 are lattice translation
vectors.

Hgraphene = �t
X

R

⇣
c†�A(R)c�B(R) + c†�A(R+ b1)c�B(R) + c†�A(R+ b2)c�B(R) + h.c.

⌘

(1.1)

Here c†�A(B)
(R) are the electron creation operators at the A(B) sublattice of the unit

cell labeled by R, with spin � = (", #). In terms of the Fourier modes defined as

c̃�A(B)(k) =
X

R

eik·Rc�A(B)(R), (1.2)

the Hamiltonian can be written as

Hgraphene = �t
X

�

X

k

⇣
c̃†�A(k), c̃

†
�B(k)

⌘
0

@ 0 1 + e�ik·b1 + e�ik·b2

1 + eik·b1 + eik·b2 0

1

A

0

@c̃�A(k)

c̃�B(k)

1

A .(1.3)

The dispersion of this Hamiltonian is shown in Fig. 1.4.

This band structure exhibits Dirac cones at half-filling at the K and K0 points of the

BZ. Expanding this Hamiltonian near the Dirac cones, one gets the low-energy theory

for this system as
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Figure 1.3: Hexagonal Brillouin zone for graphene.

Figure 1.4: Band structure of the Hamiltonian in Eq. 1.1. The spectrum near one of the
Dirac cones is magnified.

Hlow = �3t

2

X

�

Z
d2x�graphene†

� (x)
�
↵(1)

g @x + ↵(2)

g @y
�
�graphene
� (x). (1.4)

Here, x represents the spatial position vector and �(x) is a four-component Dirac

spinor given by

�graphene
� =

0

@ �graphene
�K

�graphene
�K0

1

A . (1.5)
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The �K and �K0 are each 2-component Dirac spinors which correspond to the K and

the K0 valleys respectively and are defined as

�graphene
�K (x) =

X

q2HBZ

eiq·x

0

@c̃�A(K+ q)

c̃�B(K+ q)

1

A , (1.6)

�graphene
�K0 (x) =

X

q2HBZ

eiq·x

0

@c̃�A(K0 + q)

c̃�B(K0 + q)

1

A . (1.7)

Here, “HBZ” refers to half Brillouin zone. The ↵(1)

g and ↵(2)

g are the Dirac matrices

which have the following form:

↵(1)

g = �⌧0 ⌦ �2, (1.8)

↵(2)

g = ⌧3 ⌦ �1. (1.9)

Here, ⌧i and �i are the Pauli matrices. The ⌧i matrices act in the valley space, while the

�i matrices act in the sublattice space.

The Hamiltonian can be written in a more compact form using the 8-component

spinor

�graphene =

0

@�
graphene
"

�graphene
#

1

A (1.10)

as

Hlow = �3t

2

Z
d2x�graphene†(x)

�
µ0 ⌦ ↵(1)

g @x + µ0 ⌦ ↵(2)

g @y
�
�graphene(x). (1.11)

Here, µi are the Pauli matrices that act in the spin space of the spinors.

The Hamiltonian described here preserves all the microscopic symmetries, i.e., of the
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lattice space group, time reversal, sublattice, SU(2) spin-rotation and particle number

conservation. Additionally, new symmetries emerge at lower energies. Notably, the low-

energy Hamiltonian exhibits emergent Lorentz symmetry, emergent charge-conjugation,

parity, and time reversal symmetries, along with continuous translation symmetries.

Understanding how the low-energy spinor � transforms under the action of the mi-

croscopic symmetries is crucial. Here we discuss the actions of some of the symmetries

on the spinors. For example, under the action of the C6 rotation about the center of

a honeycomb plaquette, the K and K0 points of the Brillouin zone (BZ) transform into

each other, and similarly, the spinors �graphene
�K and �graphene

�K0 transform into each other.

Explicitly, under the action of the C6 symmetry transformation, the spinor transforms as

�graphene
� (x) !

✓
1

4

⇣
⌧1 ⌦ �1 + 3i⌧1 ⌦ �2 +

p
3 (⌧2 ⌦ �1 � i⌧2 ⌦ �2)

⌘◆
�graphene
� (C�1

6
x)

(1.12)

Similarly, under the action of reflection about a line bisecting two horizontal bonds

of the lattice shown in Fig .1.2, the spinor transforms as

�graphene
� (x) ! ⌧0 ⌦ �1 �

graphene
� (�x) (1.13)

Under time reversal, the transformation is

�graphene
� (x) ! i [µ2]��0 K �(x)graphene� (1.14)

Here, K represents complex conjugation.

These transformations influence the possible phases obtained by gapping out the Dirac

fermions which we now discuss

In the presence of short-range interactions, the Dirac fermions can dynamically acquire

a mass, thereby gapping out the spectrum. Here, we focus on the masses that do not

break the particle number conservation symmetry. There are 16 possible mass terms [21]

of this kind, which can be written as

mijk = �graphene† µi ⌦ ⌧j ⌦ �k �
graphene, (1.15)
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Here, i = 0, 1, 2, 3 and (j, k) can be (1, 1), (2, 1), (0, 3), or (3, 3). The transformation

properties of these masses can be deduced from the transformation properties of the

spinors.

For a particular value of i, the masses mi03 and mi33 transform as one-dimensional

representations of the lattice space group. Specifically

• The mi03 masses are invariant under the action of time reversal and odd under the

action of reflection. For i = 0, it represents a staggered charge density wave. For

other values of i, it represents a Néel spin density wave where the ith component

of the spin is ordered.

• The masses mi33 are odd under the action of reflection. These masses represent

di↵erent quantum Hall phases. For i = 0, the mass is odd under time reversal and

corresponds to the Chern insulator phase. For other values of i, the masses are

invariant under time reversal and represent quantum spin Hall phases where the

ith component of the spin is transported along the edges of the sample.

The masses mi11 and mi21 transform as a doublet under the action of lattice symme-

tries for each i. These masses represent Kekulé patterns. This analysis shows that the

transformation properties of the low-energy spinors directly dictate the properties of the

phases proximate to the Dirac semimetal in graphene.

In the case of the spin-orbit coupled Dirac fermions, which we talk about in detail in

this thesis, the Dirac points arise at the three M points and the � point of the hexagonal

BZ. Thus, under the action of lattice symmetries, the Dirac spinors corresponding to the �

valley do not mix with the spinors at the M valleys. Thus, the action of the microscopic

symmetries on the low-energy spinors is completely di↵erent in this case compared to

graphene. The central question we then ask in this thesis is– what, then, are the nature

of the gapped phases in this spin-orbit coupled two-dimensional Dirac system?

1.5 Thesis structure

In this thesis, we study a system where strong spin-orbit coupling (SOC) leads to an

unusually large SU(8) symmetric Dirac theory at low energy. This theory emerges as

the low-energy description of a hopping model with j = 3/2 electrons on a honeycomb
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lattice. These j = 3/2 electrons become the appropriate degrees of freedom in the strong

SOC limit, possessing a mixed orbital and spin character. Consequently, the j = 3/2

orbitals transform di↵erently under lattice symmetries compared to electrons with usual

s = 1/2 spins. This non-trivial transformation a↵ects the Dirac spinors and the gapped

phases that result from opening a gap in the Dirac spectrum.

In this thesis, we focus on the following two aspects of the system described above:

1. The phases obtained by gapping out the SU(8) Dirac fermions in the presence

of interactions. Among these phases, there are examples of both conventional

symmetry-broken phases and topological insulators (TI). We also discuss some of

the associated phase transitions. Due to the non-trivial transformation properties

of the Dirac spinors, the phases obtained in this case are di↵erent from the phases

obtained in the case of graphene.

2. The relevance of the above analysis for some candidate materials where such sym-

metries are approximately realized.

The aforementioned investigation is conducted for systems containing transition metal

ions (TMI) possessing a d1 electronic configuration and strong SOC, forming a honeycomb

lattice within an edge-sharing octahedral motif. Materials such as ↵-ZrCl3 and ↵-TiCl3

are examples of such settings. This setting is fairly common and has garnered much recent

attention in honeycomb iridates[30, 35], as well as in the potential quantum spin liquid

(QSL) candidate ↵-RuCl3[122, 123, 124], albeit with a distinct electronic configuration.

The rest of the chapter of the thesis is organized as follows. In Chapter 2, we start

with a brief discussion on the e↵ects of spin-orbit coupling (SOC) and crystal field e↵ects

on atomic orbitals. In the d1 materials under consideration, the crystal field e↵ect is

more dominant compared to SOC. In these d1 honeycomb materials, the crystal field

e↵ect splits the d-orbitals of each transition metal ion into two-fold degenerate eg orbitals

and three-fold degenerate t2g orbitals, with the t2g orbitals being lower in energy. We

discuss the nearest-neighbor hopping Hamiltonian within the t2g orbital sector.

The discussion then turns to the influence of SOC, which further lifts the six-fold

degeneracy (including spin) of the t2g orbitals, resulting in the spin-orbit coupled j = 3/2

orbitals emerging as the lowest energy states at each site. In the limit of strong SOC, the

chapter derives an e↵ective tight-binding Hamiltonian involving only the j = 3/2 orbitals
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by projecting the t2g Hamiltonian onto the j = 3/2 subspace. Notably, the chapter

explores an intriguing scenario where direct hopping pathways between the transition

metal ions are neglected, considering only a specific indirect hopping pathway. Under

this assumption, the projected hopping Hamiltonian exhibits a remarkable global SU(4)

symmetry. This symmetry becomes explicitly manifest upon performing a site-dependent

unitary transformation, which is also discussed in detail.

In Chapter 3, we delve into the low-energy limit of the SU(4) symmetric Hamiltonian.

At the appropriate chemical potential, this Hamiltonian features Dirac cones in the band

structure, making the low-energy theory described by a 2 + 1 dimensional free Dirac

Hamiltonian. We explore how the microscopic symmetries act on the low-energy degrees

of freedom, which, in this context, are the Dirac spinors. Additionally, we examine the

emergent symmetries of the low-energy Hamiltonian. Specifically, we find that this low-

energy theory has an emergent internal SU(8) symmetry.

In Chapter 4, we explore the e↵ect of short-range interactions on the free Dirac Hamil-

tonian. These interactions open a gap in the Dirac spectrum by condensing fermion

bilinears. At a mean-field level, the interactions induce mass terms for the free Dirac

Hamiltonian. We identify 64 such mass terms and analyze their transformations under

the action of microscopic symmetries. Specifically, we classify these masses into the ir-

reducible representations of the space group. This classification reveals all the gapped

phases proximate to the Dirac semimetal in the presence of short-range interactions.

Based on their physical properties, we categorize these masses into three groups. The

Group-1 masses, referred to as chiral masses, do not break the SU(4) symmetry. These

are discussed in Chapter 5 and include a stripy charge density wave and an integer Chern

insulator phase. In Chapter 6, we cover the Group-2 masses, which consist of various

types of generalized quantum Hall phases, such as octupolar and quadrupolar Hall phases.

These phases exhibit symmetry-protected edge modes that carry either quadrupolar or

octupolar currents, generalizing the spin quantum Hall phase.

The Group-3 masses represent density wave phases with various kinds of octupolar

and quadrupolar ordering. Among the intriguing phases in this group, we find density

wave semimetals where some fermionic modes remain gapless. The gapless fermionic

modes in these density wave semimetals are protected by symmetries. We discuss these

masses in Chapter 7.
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In Chapter 8, we explore several fascinating phase transitions between the phases

discussed in the earlier chapters. We examine three specific instances. The first is the

transition from an octupolar quantum Hall phase to a charge-4e superconducting phase.

In this case, the condensation of skyrmions from the octupolar quantum Hall phase leads

to the formation of the 4e superconductor. Next, we discuss the unnecessary quantum

critical points (UQCPs) found in some quantum Hall and density wave phases. The

UQCPs, although do not indicate a phase transition, emerge in the parameter space of

a specific phase where the system exhibits some extra symmetry. Finally, we cover the

transition from the SU(8) Dirac semimetal phase to a chiral stripy charge density wave

phase. Here, we demonstrate that the symmetry-allowed terms in the low-energy action

result in a weakly first-order phase transition.

In Chapter 9, we discuss some of the candidate materials where the aforementioned

theory is approximately realized. For this analysis, we draw inspiration from DFT studies

conducted on MX3 materials (M=Zr, Ti, Hf; X=Cl, Br, F). By examining the free band

structure of these materials under varying strengths of hopping parameters and SOC,

we evaluate the phase diagram as a function of hopping strength and SOC. This phase

diagram includes several metallic phases with di↵erent Fermi surfaces, as well as some of

the gapped phases discussed earlier. According to the parameter values estimated by the

DFT studies, the mentioned materials fall into the metallic part of the phase diagram.

Finally, in Chapter 10, we summarize all the discussions presented in this thesis.
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Chapter 2

Strong spin-orbit coupling and the

Microscopics Lattice Hamiltonian

In this chapter, we discuss the microscopic lattice Hamiltonian for d1 transition metal

ions in the presence of strong spin-orbit coupling (SOC). We begin by describing the

general e↵ect of SOC. Subsequently, we delve into the lattice structure and the e↵ect of

crystal field splitting, which lifts the degeneracy of the d-orbitals. Finally, we discuss the

most general Hopping Hamiltonian in this context and focus specifically on the case of

strong SOC, where j = 3/2 electrons emerge.

2.1 Microscopics of SOC

Spin-orbit coupling (SOC) emerges as a relativistic correction to the Schrodinger equa-

tion, causing the splitting of degenerate atomic orbitals by coupling the spin and orbital

angular momenta of electrons [125]. In this section, we initially explore the impact of

SOC on a single-electron system before extending our analysis to multi-electron systems.

For a single electron, the SOC Hamiltonian is expressed as1

Hsoc = �(r)l · s (2.1)

where l and s represent the orbital and spin angular momentum operators, respectively.

1The spin-orbit coupling (SOC) Hamiltonian presented in Eq. 2.1, while originating from relativistic
e↵ects, is not relativistically invariant. This lack of invariance stems from the omission of higher-order
relativistic corrections in its derivation.
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The coe�cient � depends on the radial coordinate r and is given by

�(r) =
1

2m2
ec

2

1

r

@V (r)

@r
. (2.2)

Here, V (r) denotes the Coulomb potential induced by the nucleus, me is the electron’s

mass, and c is the speed of light. In the absence of SOC, energy levels are labeled by the

radial quantum number n, azimuthal quantum number l, and magnetic quantum number

m, which we denote by |nlmi. For a particular n and l, the SOC introduces a splitting

among the previously degenerate 2(2l+1)-fold states (including spin degeneracy). These

states are now grouped by the total angular momentum j = l ± 1/2, resulting in an

energy di↵erence of h�i(l ± 1/2), where

h�i = 1

2m2
ec

2

⌧
nlm

����
1

r

@V (r)

@r

����nlm
�
. (2.3)

The energy ordering between the two groups with j = l ± 1/2 is determined by the sign

of h�i.

In multi-electron atoms or ions, the situation becomes more intricate due to the

presence of multiple electrons. The SOC Hamiltonian generalizes to

HSOC =
X

i

�ili · si. (2.4)

Here the summation over the index i accounts for the contribution of each individual

electron, with �i representing the spin-orbit coupling (SOC) strength associated with

that particular electron. Since there are many electrons in this case, the inter-electron

Coulomb repulsion also comes into the picture. Depending on the relative strength of the

SOC and the Coulomb repulsion, the e↵ect of the SOC is treated di↵erently.

Typically, the strength of the SOC Hamiltonian increases with the atomic num-

ber, with �i scaling roughly as Z4 (Z being the atomic number of the multi-electron

atom/ion) [125]. In the case of lighter elements, where the SOC is weaker than the

electron-electron repulsion, the SOC can be treated as a perturbation. The electronic

states of the Hamiltonian without the SOC term, which includes the nuclear potential

and electron-electron repulsion, are characterized by the total orbital angular momentum

L(=
P

i li) and the total spin angular momentum S(=
P

i si). The SOC then acts as a
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perturbation, splitting these levels. It can be shown using the Wigner-Eckart theorem

that the e↵ective SOC Hamiltonian in (Eq. 2.4) in this case can be written as:

HSOC = �̃L · S, (2.5)

where �̃ is the e↵ective SOC strength. In the case when the outermost subshell is partially

filled, the summation in Eq. 2.4 can be limited to the electrons in the outermost subshell

only. This applies to transition metal ions with d1 electronic configurations, which are the

focus of this thesis. The splitting by the SOC in this scenario, in the presence of additional

crystal field splitting, is discussed in Sec. 2.4. When there are multiple electrons in the

outermost subshell, the ground state is determined by Hund’s rules [125].

For heavier elements, where the spin-orbit coupling (SOC) strength dominates over

the electron-electron repulsion, a di↵erent approach is employed to determine the ground

state of the atom or ion. In this regime, the jj coupling scheme, as described in [125],

becomes the appropriate framework. In this framework, the dominant e↵ect of the SOC

is first treated by labeling the states of the individual electron by their total angular

momentum. The e↵ect of the electron-electron repulsion is then treated perturbatively,

which finally determines the total angular momentum of the system.

2.2 The lattice structure and microscopic symme-

tries

The focus of our work is crystalline systems on a honeycomb lattice formed out of edge-

sharing octahedra (Fig. 2.1) where the electronically active transition metal ions, with

strong atomic SOC, sit at the centres of such octahedra. Such structures are quite

common and occur in a several stacked SOC magnets of recent interest such as the

honeycomb Iridates A2IrO3 (A=Na, Li) [30, 31, 33], and ruthenates ↵-RuCl3 [35, 122,

123, 124].

In this geometry, the active atoms sit at the center of each octahedron and form

the honeycomb lattice. It is useful to consider the honeycomb lattice to lie in a plane

perpendicular to the Cartesian [111] direction (details in Appendix A.1.1) such that the

three nearest neighbor bonds are parallel to the three Cartesian planes shown in Fig. 2.1.
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Figure 2.1: Edge-sharing octahedra forming a honeycomb lattice. As elaborated in the
main text and in Appendix A.1.1, the honeycomb lattice lies in the [111] plane of the
Cartesian coordinate system whose projections are denoted by X, Y , and Z.

Figure 2.2: The filled circles are points of A sub-lattice and the hollow circles are of B
sub-lattice. The gray shaded area shows the two points of a single unit cell with b1 and
b2 being unit lattice vectors (see Eq. A.3).

Correspondingly, we denote these bonds as x, y, and z bonds if they are parallel to the

Y Z, ZX, and XY planes respectively, following the, by now popular nomenclature in

the context of the Kitaev spin model [126] on the honeycomb lattice [127].

The honeycomb net has a triangular Bravais lattice and a two-site unit cell with two

sub-lattices, s = A,B as shown in Fig. 2.2. Each point on the honeycomb lattice is

labeled by (u1,u2, s) where u1,u2 2 Z denote the position of the unit cell via

r = u1b1 + u2b2 (2.6)

with b1 and b2 are unit lattice vectors shown in Fig. 2.2.

To understand the lattice symmetries, we take the ideal honeycomb structure of ↵-
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r(u1,u2, s) ! r0(u0
1
,u0

2
, s0)  (r) !  0(r0)

T1 (u1,u2, s) ! (u1 + 1,u2, s)  ! UT1 
T2 (u1,u2, s) ! (u1,u2 + 1, s)  ! UT2 
C3 (u1,u2, s) ! (u2 � 1,�u1 � u2 + �s,A, s)  ! UC3 
S6 (u1,u2, s) ! (u1 + u2 � �s,A,�u1, s̄)  ! US6 
C0

2 (u1,u2, s) ! (u2 � 1,u1 + 1, s)  ! UC2 
�d (u1,u2, s) ! (�u2,�u1, s̄)  ! U�d

 
I (u1,u2, s) ! (�u1 � 1,�u2 + 1, s̄)  ! UI 

Table 2.1: This table shows the the action of the microscopic symmetries on lattice sites.
Note s̄ = B(A) for s = A(B). The transformation of the j = 3/2 orbitals ( ) which
appears in presence of strong SOC (discussed later in this chapter near Eq. 2.24) are also
shown. The US (S represents some lattice symmetry) are 4 ⇥ 4 unitary matrices which
are given in Appendix A.2 (Eqs A.16 - A.19).

ZrCl3 as a prototypical example, as it has all the representative symmetries. The point

group of the ↵-ZrCl3 lattice is D3d, which has 12 elements. Keeping in mind the geometry

of the edge-sharing ligand octahedra surrounding the active ion (Fig. 2.1), the generators

of the lattice symmetries of the system are as follows and their action on the lattice

coordinates are given in Table 2.1.

• T1,T2 : Two-dimensional lattice translations of the honeycomb lattice by b1 and

b2 respectively.

• C3 : Rotations by angle 2⇡
3
about the center of a honeycomb plaquette.

• S6 : Rotations about the center of a honeycomb plaquette by angle ⇡
3
followed by

a reflection about the honeycomb plane.

• C0
2 : Rotations by angle ⇡ about the axes lying on the honeycomb plane and passing

through two opposite vertices of a honeycomb plaquette. There are three of such

axes. One of the C0
2 axes is parallel to the z-bonds (see Fig. 2.2).

• �d : Reflections about planes which are perpendicular to the honeycomb plane and

bisect the angle between two consecutive C0
2 axes. There are three such planes.

One of the planes is the perpendicular bisector of one of the z-bonds in Fig 2.2.

• I : Inversion about the center of a honeycomb plaquette.

In addition, the system also has time reversal (TR) symmetry T, with

T2 = �1. (2.7)
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In appendix A.2, we provide the details of the transformation of the t2g and the j = 3/2

orbitals under the above symmetries.

2.2.1 Crystal field splitting

As mentioned before, the lattice is made out of edge-sharing networks of octahedra.

The transition metal (TM) ions at the center of each octahedron are surrounded by

six negatively charged ions which sit at the corners of the octahedron (see fig .2.3).

This octahedral arrangement breaks the spherical symmetry around each TM ion to the

octahedral group Oh. This causes the breaking of the degeneracy of the d-orbitals into

2� 3. The two-fold degenerate states with wave function

|dx2�y2i =
1p
2
(|2, 2i+ |2,�2i) (2.8)

|d3z2�r2i = |2, 0i (2.9)

transform in the eg representation of the Oh group while the three-fold degenerate states

given by

|dyzi =
ip
2
(|2, 1i+ |2,�1i) (2.10)

|dzxi =
1p
2
(|2,�1i � |2, 1i) (2.11)

|dxyi =
ip
3
(|2,�1i � |2,�2i) (2.12)

transform in the t2g representation. Here, |2,mi are the d-orbital wave functions.

The t2g orbitals possess a lower energy level compared to the eg orbitals due to

their specific orientation, which minimizes the repulsive forces exerted by the negatively

charged anions situated at the corners of the octahedron. This can be explicitly demon-

strated by considering the Coulomb potential due to the six anions at the corners of

the octahedron w.r.t. the TM ion. The electrostatic energy of an electron due to the

repulsion from these anions is given by

V (r) =
6X

i=1

e2

4⇡✏0|r�Ri|
, (2.13)
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Figure 2.3: Octahedral structure formed by the anions (shown by red balls) with the TM
ion (blue ball) at the center. X, Y, Z are the three crystallographic axes.

with Ri are the positions of the vertices of the octahedron. Expanding near r = 0 (i.e.,

near the TM ion), we have

V (r) =
e

4⇡✏0a

✓
�5x4 + 5y4 + 5z4

4a4
+

3r4

a4
+

2r2

a2
+ 6

◆
, (2.14)

where a represents the distance between a negative anion and the transition metal

ion. The potential V (r) acts as a perturbation on the electrons bound to the transition

metal ions, causing the splitting of the d-orbitals into t2g and eg states. The splitting can

be estimated from the expectation values of V (r) with respect to the t2g and eg orbitals,

which are given by:

h↵ |V (r) | �i = �↵�

✓
� 2

21
a4c1 + c2

◆
(2.15)

D
↵̃
���V (r)

��� �̃
E
= �↵̃�̃

✓
1

7
a4c1 + c2

◆
(2.16)

where ↵, � represent the t2g orbitals, and ↵̃, �̃ represent the eg states. The quantities c1

and c2 are positive real numbers defined as:

c1 =
⌦
r4
↵

(2.17)

c2 =

⌧✓
2r2

a2
+ 6

◆�
. (2.18)
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where the expectation value is evaluated w.r.t. any of the t2g or eg orbitals. Thus, the

t2g orbitals are lower in energy than the eg states.

2.3 General hopping model for d1 honeycomb mate-

rials

In this section, we discuss the tight-binding Hamiltonian for the d1 honeycomb materials

described in Sec. 2.2 in the presence of SOC. The single electron of the TM ions occupies

the six-fold degenerate t2g atomic orbitals (including spin-degeneracy) |dXY , �i, |dY Z , �i

and |dZX , �i with � =", # while the high energy eg orbitals remain empty and are pro-

jected out. One can now write down the first NN hopping model for the t2g orbitals

as [128]

Htb =
X

hr,s;r,si

X

↵,�

X

��0

 †
�↵(r, s)

h
hss0

rr0

i

↵�
���0

�
 �0�(r

0, s0) + h.c.. (2.19)

Here  �↵(r, s) annihilates electrons at the (r, s) site of the lattice with spin � (=", #),

in the orbital ↵ (= Y Z, ZX,XY ). The hss0
rr0 is a 3 ⇥ 3 Hermitian matrix at the bond

connecting the (r, s) and the (r0, s0) sites of the lattice.

Keeping in mind the di↵erent kinds of overlaps of the t2g orbitals, we can write the

hss0
rr0 matrix for the z-bond as

hAB
z =

0

BBB@

tdd⇡ tddm tddm0

tddm tdd⇡ tddm0

tddm0 tddm0 tdd�

1

CCCA

= tdd�h� + tdd⇡h⇡ + tddmhm + tddm0hm0 (2.20)

where tdd�, tdd⇡ and tddm, tddm0 are hopping due to direct and indirect overlaps of the t2g

orbitals respectively. Also, h�, h⇡, hm and hm0 are 3⇥ 3 matrices given by
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h� =

0

BBB@

0 0 0

0 0 0

0 0 1

1

CCCA
, h⇡ =

0

BBB@

1 0 0

0 1 0

0 0 0

1

CCCA
,

hm =

0

BBB@

0 1 0

1 0 0

0 0 0

1

CCCA
, hm0 =

0

BBB@

0 0 1

0 0 1

1 1 0

1

CCCA
. (2.21)

The form of the hopping of the x and y bonds can be obtained by exploiting the three-fold

rotation symmetry of the lattice.

The t2g orbitals e↵ectively behave as a l = 1 orbitals under the action of rotations[22,

129]. This is shown in appendix A.1.2 by projecting the l = 2 angular momentum

generators to the t2g orbitals. With this, the SOC Hamiltonian for the t2g manifold is

given by (Appendix A.1.2)

H
t2g
SOC

= �� l · s (2.22)

where the l are the three l = 1 angular momentum matrices and �(> 0) is the strength

of the SOC. Also, the s are the Pauli matrices denoting the electron spin-1/2 angular

momentum. It is noteworthy that the SOC Hamiltonian for the t2g orbitals carries an

additional negative sign, which arises as a result of the projection from the l = 2 orbitals

to the t2g states. With this, the low energy e↵ective tight-binding model can be obtained

by adding atomic SOC to Eq. 2.19 and is given by

H =
X

hr,s;r,si

X

↵,�

X

��0

 †
�↵(r, s)

h
hss0

rr0

i

↵�
���0 � �l↵� · s��0�rr0�ss0

�
 �0�(r

0, s0) + h.c., (2.23)

2.4 E↵ect of strong SOC

In SOC further breaks the t2g orbitals into j = 1/2 and j = 3/2 orbitals. In this case the

j = 3/2 orbitals are of low-energy because of the extra �ve sign appearing in Eq. 2.22 [22].

For the d1 configuration, the low energy physics in presence of strong SOC is therefore of

a 1/4th filled j = 3/2 orbitals (Fig. 2.4). We write the single electron creation operators
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for the j = 3/2 orbitals at the lattice site r by [129, 130]

 †(r) =
⇣
 †
1/2(r), 

†
�1/2(r), 

†
3/2(r), 

†
�3/2(r)

⌘
. (2.24)

The interplay of hopping and interaction of electrons occupying these four orbitals then

determine the low energy electronic properties of the system.

Figure 2.4: Splitting of the d-orbitals under the action of crystal field e↵ect and SOC.

2.5 The tight binding Hamiltonian for indirect hop-

ping

We now focus on the limit where the indirect hopping amplitude tddm is non-zero and all

the other hopping amplitudes are zero, i.e.,

tddm 6= 0, tdd� = tdd⇡ = tddm0 = 0. (2.25)

This particular limit was considered by Yamada et. al.[130] which shows that this limit

gives rise to a SU(4) symmetric Hubbard model on the Honeycomb lattice which we

discuss now.

The e↵ective Hamiltonian in the parameter regime mentioned above in presence of

strong SOC is obtained by projecting the t2g Hamiltonian (Eq. 2.23) to the j = 3/2

manifold using Eq. A.8. This minimal hopping Hamiltonian for the j = 3/2 orbitals

(Eq. 2.24) is given by

H = � tp
3

X

hr,s;r0,s0i

 †(r, s)U ss0

rr0 (r
0, s0) + h.c. (2.26)

where U ss0
rr0 are hopping amplitudes of overall strength t = tddm, on nearest neighbor bonds

26



(hence only between di↵erent sublattices) that are given by 4⇥4 Hermitian matrices which

depend on the type (x, y or z, see Fig. 2.2) of the hr, s; r0, s0i bond [130] given by

UAB
rr0 ⌘ Ux = �⌃1 , if hr, A; r0, Bi = x

⌘ Uy = �⌃2 , if hr, A; r0, Bi = y

⌘ Uz = �⌃3 , if hr, A; r0, Bi = z (2.27)

Here, ⌃i are sixteen 4⇥ 4 traceless Hermitian matrices with ⌃0 being the identity matrix

and the rest being generators of SU(4). They can be obtained by using j = 3/2 matrices

as shown in Appendix A.3.

The three U↵ (for ↵ = x, y, z) matrices square up to identity and mutually anti-

commute, i.e.,

U2

↵ = I4 ⌘ ⌃0, {U↵, U�} = 2�↵�⌃0 8 ↵, � = x, y, z. (2.28)

Before proceeding to diagonalize Eq. 2.26 to obtain the electron band structure, we

identify the generic nature of the electron dispersion.

The SU(4) Symmetry and ⇡-flux

As a first step, it is useful to consider the phase picked up by the electron on encircling

any closed loop of the lattice. Such loops are formed out of the honeycomb plaquette

consisting of six sites. The phase is given by the product of the U↵ matrices around a

honeycomb plaquette and is generically given by

Y

hr,s;r0,s0i27
U ss0

rr0 =
X

i

Wi ⌃i (2.29)

whereWi are the respective coe�cients that denote a generic direction in the SU(4) space.

In the above sum, i runs over the 16 indices of the ⌃i matrices defined in Appendix A.3.

Crucially, however, it was noticed in Ref. [130] that the explicit form of U -matrices

(Eq. 2.27) give

Y

hr,s;r0,s0i27
U ss0

rr0 = �⌃0 (2.30)
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Figure 2.5: Honeycomb lattice with ⇡-flux and the four-point magnetic unit-cell in the
gauge choice (Eq. 2.37): the dashed (continuous) bonds have ⌘(rrr S,rrr 0S0) = �1(+1) (see
Eq. 2.36).

such that no direction in SU(4) space is favoured and the system has an underlying

SU(4) symmetry. This SU(4) symmetry can be made manifest by suitable site-dependent

unitary rotations of the  fermions (see below, Eq. 2.34) [130].

An equally important feature is the negative sign in Eq. 2.30 which shows that such

SU(4) fermions experience a ⇡-flux through every hexagon. Thus the above problem of

d1 fermions is that of SU(4) symmetric fermions hopping on a honeycomb lattice with

⇡-flux per plaquette. The non-trivial e↵ect of ⇡-flux at 1/4-th filling is already apparent

by considering the simpler case of spinless fermions on honeycomb lattice with ⇡-flux at

quarter-filling. This, as we discuss below, leads to Dirac fermions at low energy whose

properties are quite di↵erent from those in graphene.

In the rest of this work, we uncover the interplay of SU(4) symmetry and the ⇡-

flux that, along with electron-electron interactions, leads to rich low-energy electronic

properties of d1 systems.

SU(4) diagonalization and the local basis

Following Ref. [130], the SU(4) symmetry of the hopping Hamiltonian in Eq. 2.26 can

be made manifest by performing site-dependent (local) unitary transformations on the

fermions.

To obtain this manifestly SU(4) invariant basis, and also due to the ⇡-flux, it is

useful to consider a four site magnetic unit cell as shown in Fig. 2.5. The four sites,

A1, A2, B1, B2, in the magnetic unit cell comprise two sites each of A and B sub-lattices
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of the underlying honeycomb net. The lattice translation vectors for this magnetic unit-

cell, as shown in Fig. 2.5, are given in terms of the underlying honeycomb lattice primitive

vectors as

R1 = b1 + b2; R2 = b1 � b2 (2.31)

such that the sites with reference to the enlarged unit cell are given by

rrr S = nxR1 + nyR2 + dS ⌘ rrr + dS. (2.32)

with S 2 {A1, A2, B1, B2} denotes the four sites in the magnetic unit-cell, dS are the

position vectors of the S-sublattice site w.r.t. the B2 site (see Fig. 2.5) of the same

magnetic unit cell, rrr labelled by integers nx and ny.

With this, we can now define new fermion annihilation operators given by

�(rrr S) = [�1(rrr S),�2(rrr S),�3(rrr S),�4(rrr S)]T (2.33)

as

�(rrr S) = G(rrr S)† (rrr S) (2.34)

where G(rrr S) are 4⇥ 4 unitary matrices whose explicit forms are given in Appendix A.4.

Any many-body operator can be expressed either in the � basis or  . In this article, we

use the terms “local basis” and “global basis”, respectively, to refer to these two ways.

The Hamiltonian (Eq. 2.26) written in the local basis is

H = � tp
3

X

hrrr S ,rrr 0S0 i
⌘(rrr S,rrr 0S0)�†(rrr S)�(rrr 0S0) + h.c. (2.35)

which is manifestly SU(4) invariant and ⌘(rrr S,rrr 0S0) = ±1 implementing the ⇡-flux con-

straint of Eq. 2.30, via

Y

hrrr S ,rrr 0S0 i27
⌘(rrr S,rrr 0S0) = �1. (2.36)
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Fig. 2.5 shows a choice for ⌘(rrr S,rrr 0S0) which is given by

⌘(rrr S,rrr 0S0) =

8
<

:
�1 if S = B1,S0 = A2 and rrr 0 = rrr +R2

+1 (otherwise)
(2.37)

Obviously, there are many other choices for ⌘(rrr S,rrr 0S0) which are related to each other

through gauge transformations which correspond to di↵erent signs of the G(rrr S) matrices

with respect to the ones introduced in Appendix A.4. An alternate choice for ⌘(rrr S,rrr 0S0)

and indeed the magnetic unit cell is shown in Fig. A.2. For the rest of our calculation in

the main text, we choose ⌘(rrr S,rrr 0S0) as given by Eq. 2.37.
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Chapter 3

Free Dirac Theory and it’s

symmetries

In this chapter, we derive the low-energy theory for d1 honeycomb materials at one-

quarter filling in the indirect hopping (tddm) dominant limit in the presence of strong

SOC. We start by analyzing the free band structure of the Hamiltonian presented in

Eq. 2.35, which displays linear band touching at the Dirac points. Thereafter, we derive

the Dirac theory, which serves as the low-energy theory for this system, and discuss

the emergent symmetries. Lastly, discuss how the microscopic symmetries act on the

low-energy degrees of freedom (i.e., the Dirac spinors).

3.1 The band structure

Eq. 2.35 represents four copies of nearest neighbour hopping models on the honeycomb

lattice in the presence of ⇡-flux. A single copy of such model at half filling was studied in

Ref. [21, 131]. However, we shall find that the underlying SU(4) symmetry in the present

case and the 1/4th filling for d1 materials (see below) along with SOC open up a new

regime of possibilities for the resultant system at low energies.

To disentangle the role of the SU(4) and the ⇡-flux, it is useful to consider a single

flavour “spinless” version of Eq. 2.35 with �(rrr S) being a single component fermion. This

is worked out in Appendices A.5 and A.11. The resultant band structure is shown in Fig.

3.1 and consists, for quarter filling, two linearly dispersing band-touching points–Dirac
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(a)

(b)

Figure 3.1: (a) Band structure for the Hamiltonian in Eq. 2.35 for the magnetic unit cell
consisting of four sites (Fig. 2.5). Each band is four-fold degenerate. For d1 system, the
lowest four bands are occupied with the chemical potential crossing the two Dirac points
as shown. (b) Position of the two Dirac points (Eq.3.1) in the chosen gauge (Fig. 2.5
and Eq. 2.37) in the magnetic Brillouin zone (in red). The primitive Brillouin zone of
the hexagonal lattice is also drawn in blue.
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cones– at

±Q = ±

⇡

6
,� ⇡

2
p
3

�
. (3.1)

We label the two Dirac points (valleys) by the Ising variable ⌧ = ±. Similar Dirac points

also occur at 3/4th filling by particle-hole symmetry of the microscopic problem. Also,

note that there are four Dirac points at half filling [131] as is shown in Fig. 3.1. In the

rest of the discussion, though, we shall consider exclusively the vicinity of quarter filling

and the nature of the low energy Dirac fermions at the two valleys at ±Q given by Eq.

3.1.

Turning back to the case of j = 3/2 orbitals in d1 configuration (Eq. 2.35), the band

structure is now four-fold degenerate due to the SU(4) symmetry such that the lower

four bands are completely filled with the chemical potential again at the two Dirac cones

given by Eq. 3.1. As remarked above, the similar Dirac cones are also present for three-

quarter filling and hence the rest of our discussion is also applicable to materials with d3

electronic configuration.1

At this point, we would like to take a small detour by discussing the above band

structure in the global basis (Eq. 2.24) which provides interesting complementary insights

into the results that follow in the rest of this thesis. This alternate insight arises from

the observation that while for a single flavour ⇡-flux problem we are forced to use the

magnetic unit cell (Fig. 2.5), for the four flavour version relevant to d1 or d3 systems, it

is possible to use the two-site primitive honeycomb unit-cell (Fig. 2.2) by diagonalizing

the Hamiltonian in Eq. 2.26. However, in this global basis neither the SU(4), nor the

⇡-flux is manifest but are mixed together non-trivially. As a result, while all the lattice

symmetries (Table 2.1), act in a linear fashion, i. e., they are non-projective2 despite the

fact that each hexagonal plaquette hosts a ⇡-flux as shown in Eq. (2.30). We use the local

basis for most of our discussion in the rest of the main-texts. Notwithstanding, the global

1In the strong spin-orbit coupling (SOC) regime, the analysis for a system with one electron in the
j = 3/2 quartet is analogous to that of a system with three electrons. This equivalence arises from the
microscopic particle-hole symmetry that relates these two scenarios.

2In the global basis, the local degrees of freedom at each site are the j = 3/2 orbitals ( ). Under
the action of the lattice symmetry operations (say, S), the orbitals at a lattice site r transform as
 (r) ! US (S�1r) (see Eq. A.15), with US being the transformation matrix. Notably, US is the same at
each site r. But, for the local basis, the local atomic orbitals (�) are defined by doing a site-dependent
unitary transformation (see Eq. 2.34). This makes the transformation of the orbitals in the local basis
(i.e., �(r)), site dependent (see Eq. A.50).
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basis is useful to understand certain structures in our calculations which we refer to at

relevant places throughout the rest of the thesis. The considerations in the global basis

are presented in Appendix A.10. Briefly, Bloch diagonalizing the Hamiltonian in global

basis (Eq. 2.26) obtains four bands arising from the four j = 3/2 orbitals (Eq. 2.24) and

each two-fold degenerate due to inversion symmetry. The first set of bands touches the

second set of bands at four distinct points with Dirac cone structure, see Fig. A.1. With

the quarter filling of the bands the chemical potential is tuned to the Dirac points at the

four Qg vectors, �, M1, M2, M3 termed as valleys, in the original honeycomb Brillouin

zone. This is to be contrasted with the local basis where one obtains two valleys due

to the doubling of the unit cell, and the concomitant folding of the bands. One of the

central insights of the global basis is that under lattice symmetries such as S6 (Table

2.1), only three of the Dirac cones sitting at the three M points (Fig. A.1) mix amongst

themselves while the Dirac cone at the BZ center, i.e. at �-point, remains isolated. This

naturally distinguishes the di↵erent valleys into two groups– one containing only the �

point cone and the other containing the other three at the three nonequivalent M points.

As we shall see later, the above grouping is a fallout of the fact that the microscopic

lattice symmetries get embedded in a larger low energy IR space group (see Sec. 4.2)

that allows up to three-dimensional representations such that the above grouping is a

block diagonalization of a reducible representation, i.e., 4 = 1� 3. This insight will be

important in understanding a subset of partially gapless masses discussed in Sec. 7.2.

3.2 Low-energy Dirac theory

Turning back to the local basis (Eq. 2.33 and Fig. 3.1), for 1/4th filling, the low energy

theory is obtained by expanding the lattice fermions, �(rrr S), in terms of the soft-modes,

around the two Dirac points, ±Q, as

�f (rrr S) ⇠ W
(+)

S� �f�+(rrr )eiQ·rrr +W
(�)

S� �f��(rrr )e�iQ·rrr (3.2)

where �f�⌧ (x) are the soft modes in the continuum evaluated at x = rrr with f = 1, · · · , 4

denote the SU(4) flavour index, � = 1, 2 is the particle or hole-like band index and ⌧ = ±

is the valley index coming from the two Dirac nodes at ±Q. W(±)

S� are two 4⇥ 2 matrices

(one at each valley, ⌧ = ±) in the (magnetic) unit-cell (S)-particle-hole (�) space. The
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details are given in Appendix A.5.

In terms of the soft modes, the low energy Hamiltonian takes the canonical Dirac

form in two spatial dimensions and is given by

HD = �ivF

4X

f=1

Z
d2x �†

f (x)(↵1@1 + ↵2@2)�f (x) (3.3)

where vF = tlp
2
is the fermi velocity, l is the length of each side of the hexagon and

@i = @/@xi (i = 1, 2), with

�f (x) = (�f1+,�f2+,�f1�,�f2�)
T (3.4)

a 4-component spinor, one for each SU(4) flavour f = 1, 2, 3, 4, which can be further

stacked up to form a 16-component spinor, and

↵1 = ⌧3�1, ↵2 = ⌧0�2 (3.5)

are the two Dirac Matrices. Here ⌧µ and �µ (µ = 0, 1, 2, 3) are Pauli matrices that act in

the valley space and band/particle-hole space respectively.

The corresponding Euclidean action is given by

S0 =

Z
d2xd⌧ L0 (3.6)

where, L0 is given by

L0 = vF

NfX

f=1

�̄f (x)(�i/@)�f (x), (3.7)

with NF = 4 and �̄f = i�†
f�0 and

�0 = ⌧3�3, �1 = ⌧0�2 �2 = �⌧3�1 (3.8)

such that ↵1 = i�0�1 and ↵1 = i�0�2. Here �0, �1 and �2 generate the Euclidean Cli↵ord

Algebra that satisfy {�µ, �⌫} = 2�µ⌫ with µ, ⌫ = 0, 1, 2 [132].

The above low-energy free Dirac theory has a much larger symmetry compared to the
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microscopic system. Firstly, Eq. 3.6 is invariant under SU(2) transformations on each

flavour of �f generated by

{⌧3�0/2, ⌧1�2/2, ⌧2�2/2} ⌘ {⇣1, ⇣2, ⇣3}/2. (3.9)

This denotes rotation in the valley and band space similar to Dirac fermions in

graphene [112] which we refer to as chiral symmetry [21]. This, along with the manifest

invariance under the SU(4) flavour symmetry generated by ⌃i (defined in Appendix. A.3),

nominally gives rise to an internal symmetry of SU(4) ⌦ SU(2). However, the emergent

internal symmetry is SU(8) which is generated by 63 traceless Hermitian matrices, Pb,

that are obtained as

Pb = ⌃i⇣j (3.10)

where on the LHS, b = 1, 2, · · · , 63 which are made up of the fifteen SU(4) generators,

⌃i, given in Appendix A.3 and three SU(2) generators, ⇣j, defined in Eq. 3.9 along with

the identities in the two spaces ⌃0 and ⇣0 respectively.

Under the SU(8) generated by the 16⇥16 traceless Hermitian matrices, Pb, the spinors

� transform as

�! exp(i⇠bPb)� (3.11)

where � = (�T
1
,�T

2
,�T

3
,�T

4
)T is the 16-component spinor with each �f (f = 1, 2, 3, 4)

given by Eq. 3.4. This leads to the conservation of the SU(8) flavour current

Jµ,b = �i�̄�µPb� (3.12)

i.e. @µJµ,b = 0 8 b = 1, · · · , 63. This is to be contrasted with SU(8) Dirac fermions

realised in the ⇡-flux phase on a square lattice [101] for fermionic spinons in a class of

quantum spin-liquids, where the resultant implementation of the symmetries on the low

energy fermions are very di↵erent. Crucially, in the present case, the non-trivial SOC of

the underlying orbitals results in the mixing of the spin and the real spaces, under various

lattice symmetries and time reversal which leads to important observable consequences

which are reflected in the nature of the phases proximate to the semimetal, as we show
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below. In addition, in the square lattice spin liquid problem, the spinons couple to an

emergent dynamic SU(2) gauge field which is absent in the present case.

In addition to the above internal SU(8), the free Dirac action of Eq. 3.6 has a usual

set of emergent space-time symmetries that include :

Emergent Lorentz symmetry generated by the three matrices

�µ⌫ = � i

4
[�µ, �⌫ ] (3.13)

along with simultaneous rotations of the Euclidean space-time coordinates. Under Lorentz

transformation, the spinors transform as � ! exp(i⌦µ⌫�µ⌫)�. Note that �µ = ✏µ⌫��⌫�

where µ, ⌫,� = 0, 1, 2.

Continuous spatial translation symmetry under which the soft modes at the two

valleys transform as

Tcont

x0
:

8
<

:
�+(x) ! �0

+
(x) = eiQ·x0 �+(x� x0)

��(x) ! �0
�(x) = e�iQ·x0 ��(x� x0)

(3.14)

where

�±(x) =
1

2
(1± ⇣1)�(x) (3.15)

are the two spinors associated with the two valleys respectively located at ±Q. Using

Eq. 3.15, we can re-write the free Dirac action (Eq. 3.6) as S0 = S+

0
+ S�

0
where

S±
0
= vF

R
d2xd⌧ �̄±(x)(�i/@)�±(x) are the actions at the two valleys.

Emergent CPT symmetries : The free Dirac action S0 is also invariant under emer-

gent charge conjugation(C), emergent parity(P) and emergent time reversal(T0) symme-

tries. These symmetries act on the spinors in the following way:

C : �(x, t) ! �i�2�0�̄
T (x, t), (3.16a)

P : �(x1, x2, t) ! �i�1�(�x1, x2, t), (3.16b)

T0 : �(x, t) ! �i�2K�(x,�t), (3.16c)
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with K being the complex conjugation operator. Here we denote the emergent time-

reversal by T0 to distinguish it from the microscopic time reversal operation defined in

Eq. 3.19 (which we denote with T in Eq. 2.7).

3.3 Microscopic symmetries in the low energy theory

The enhanced IR symmetries provide important insights into the low-energy physics

including the properties of the Dirac semimetal and associated quantum phase transitions

into proximate symmetry broken phases. The latter is determined by the underlying

UV/microscopic symmetries. These UV symmetries are embedded as a subgroup of the

emergent (larger) IR symmetry group and are implemented as a combination of the

IR symmetry transformations (see, for example, the discussion below Eq. 3.19 for the

time-reversal symmetry). This is particularly interesting in the present case where the

underlying SOC mixes the lattice and the j = 3/2 flavour space such that the embedding

of the microscopic symmetries in the IR symmetry group can be rather intricate. It is,

therefore, useful to list the symmetry transformation of the low energy Dirac fermions,

�, under various microscopic symmetries discussed above.

The total electronic charge is conserved in the microscopic system. This U(1) elec-

tronic charge conservation leads to the conservation of a current

J charge
µ = �i�̄�µ� (3.17)

in the low energy Dirac theory, i.e., @µJ charge
µ = 0.

On the other hand, the transformation of the low energy Dirac fermions, �, under

the discrete lattice symmetries (Table 2.1) as well as microscopic time reversal (Eq. 2.7)

have the generic form (see Appendix A.6 for details)

�(x)
S�! �0(x0) =

⇣
⌦f

S ⌦ ⌦c
S

⌘
�(S�1x) (3.18)

where S(= T1,T2,C3,S6,C0
2,�d, I) stands for the generators of the lattice symmetries

listed in Table 2.1 and ⌦f
S ,⌦

c
S both are 4⇥4 unitary matrices that act on the SU(4) flavor

space and the chiral space respectively. The explicit form of these matrices is given in

Appendix A.6.2. A central aspect of Eq. 3.18 is the fact that because of underlying SOC,
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both ⌦f
S and ⌦c

S are non-trivial matrices for all the lattice symmetries.

Finally, under the microscopic time-reversal symmetry (Eq. 2.7), we have

T : �(x, t) ! �0(x, t) = i�1 ⌃13⇣2 K �(x,�t) (3.19)

such that T2 = �I16 and thereby accounting for the Kramers’ degeneracy for the j = 3/2

orbitals. Notably, this transformation is proportional to a simultaneous emergent time

reversal, T0 (Eq. 3.16c) combined with a SU(8) rotation by ⌃13⇣2 and a Lorentz boost.
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Chapter 4

Symmetry implementation and three

groups of masses

Having described the free low energy theory for the electrons and its enhanced IR sym-

metries, we now discuss the e↵ect of interactions on them in this chapter. We consider

a generic form of 4-fermion interaction which can lead to the opening of a mass gap in

the Dirac spectrum. We explore all possible gap-opening instabilities arising from such

interactions and analyze their transformation properties under the action of both the

microscopic symmetries and the emergent SU(8) symmetries. Based on this analysis,

we identify all possible gapped phases proximate to the SU(8) Dirac semimetal. The

summary of these phases are presented in the tables 4.3, 4.4, 4.5, 4.6.

4.1 Short range Interactions

We consider a generic form of four-fermion interaction Hamiltonian obtained from an

underlying multi-orbital Hubbard-type model for the lattice fermions is given by

Hint =

Z
d2xd2x0 Vijkl(x� x0)�i(x)

†�j(x
0)†�k(x)�l(x

0) + · · · (4.1)

where Vijkl denotes potential (i, j, k, l collectively spans over the di↵erent indices) and · · ·

corresponds to more irrelevant higher fermion interactions. We assume that the interac-

tions are short-ranged in the sense Vijkl is only appreciable for x and x0 being proximate

with a suitable UV regulation. Further, we assume that the form of V is constrained
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enough that at low energy it has the full SU(8) symmetry. Long-ranged Coulomb inter-

actions as well as on-site Hubbard repulsion, for example, have such SU(8), symmetry.

This immediately means that even in the presence of these short-range interactions, all

the flavour currents Jµ,a (Eq. 3.12), in addition to the electronic current J charge
µ (Eq.

3.17) remain conserved unless spontaneously broken.

While short-range quartic interactions are perturbatively irrelevant at the free Dirac

fixed point [68, 117], on cranking them up they lead to phase transitions possibly gapping

out the fermions and associated spontaneous breaking of the symmetries of the free Dirac

theory. In the following chapters of this thesis, we provide an understanding of the

phases that are obtained by condensing various fermion bilinears which do not carry a

net electronic charge, i.e. invariant under the U(1) described in Eq. 3.17 and therefore

have the form

�a = �ih�̄Ma�i 6= 0 (4.2)

where Ma are 16 ⇥ 16 mass matrices such that �0Ma anti-commutes with both the

Dirac matrices– ↵1 and ↵2 – given by Eq. 3.5. . This leaves out another important

class of fermion bilinears symbolically of the form h� �i that describes di↵erent types of

superconductors which will be taken up elsewhere [133].

For such a U(1) invariant massive phase, the mean-field Hamiltonian is given by

SMF = S0 + Sm = �i

Z
d2rd⌧ �̄(r)

⇥
vF /@ ��aMa

⇤
�(r). (4.3)

There are 64 such linearly independent Ma matrices that can be broadly classified

into two classes according to their transformation properties under SU(8). The first class

contains a single SU(8) singlet given by

�i h�̄�i , (4.4)

while the second class corresponds to 63 SU(8) adjoint multiplet

�ih�̄Pa�i, a = 1 · · · , 63. (4.5)

and Pa being the SU(8) generators (Eq. 3.10).
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The microscopic operators that characterise the same broken symmetry – hence can

serve as valid order-parameters for appropriate symmetry broken phases– have the same

transformation properties as the bilinear and hence are proportional to each other. In

principle, the microscopic operators can also get contributions from the conserved currents

of the same symmetry, but usually, such currents decay faster than the bilinears, and

hence at long distances, the correlation function of the microscopic fields is determined

by that of the field theory bilinear (shown in Eq. 4.4 and 4.5) [101].

The correspondence between the microscopic operators and the low-energy fermion

bilinears is obtained by comparing their symmetry transformations. In particular, the

transformation of the low-energy fermion bilinears under microscopic symmetries can be

used to systematically uncover the nature of the phases proximate to the Dirac semimetal.

Bilinears that are related by microscopic symmetries together constitute a single phase.

This leads to the classification of the fermion masses in terms of broken microscopic

symmetries and/or anomalies. In the present case, we find that the 64 masses group

together to give rise to 24 phases which we now turn to understand in detail.

4.2 Classification of the fermionic bilinears : phases

and transitions

This task of classifying the bilinears according to their microscopic symmetries (and

hence identifying the phases) is much more involved compared to the same problem in

graphene [21] since the SOC mixes the j = 3/2 flavour and the real spaces in a non-trivial

way. As a result, the lattice translations, T1,T2 (Table 2.1) do not necessarily commute

with the point group symmetries such as C3,S6,C0
2,�d, I (Table 2.1) and microscopic

time reversal, T, (Eq. 2.7). This is clear by looking at the transformations of the Dirac

spinor, �, under the above lattice symmetries (Eq. 3.18 with the detailed forms given by

Eqs. A.70 - A.90). Hence we need to analyse the action of the entire set of transformations

generated by the space group and microscopic time reversal on � to understand the

transformation of the fermion bilinears in Eq. 4.2. The resultant symmetry group, we

dub as IR space group.
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IR Space group : To understand the structure of this IR space group, we note that the

j = 3/2 electron states transform under a double group representation of D3d, which has

24 elements. Since the translations do not commute with point group transformations,

corresponding to any element (say, S) of the double group of D3d, there are four elements

in the IR space group which can be constructed as (say) S,T1S, ST2 and T1ST2 by

composing it with translations, T1 and T2 (Table 2.1). So, the group of microscopic

symmetries that act on the spinors has 96 elements in total. These elements can be divided

into 20 conjugacy classes and hence there are 20 di↵erent irreducible representations of

the IR space group. Among these 20, only 10 has +ve character for 2⇡ rotation. Since

the fermion bilinears are always invariant under a 2⇡ rotation1, we consider only these

irreps for the classification of the masses.

Among these 10 irreps of the IR space group, four are 1-dimensional (A1g,A2g,A1u,A2u),

two are 2-dimensional (Eg,Eu) and four irreps are 3-dimensional (T1g,T2g,T1u,T2u). Fol-

lowing conventional notation, the subscripts 1(2) and g(u) denote that the irrep is even

(odd) under rotation, C0
2 and inversion, I, respectively (Table. 2.1). Further, to incorpo-

rate microscopic time reversal, T (Eq. 2.7), we will add a superscript e(o) (e.g., Ae(o)
1u ) to

denote the particular irrep is even (odd) under time-reversal. The details of these irreps

are given in Appendix A.7.

The central question we now turn to investigate in the rest of this thesis are the

nature of the phases obtained by condensing the fermion bilinears h�̄Pa�i. Since this

is decided by the microscopic symmetries, we decompose the above bilinears in terms of

the irreducible representation of the microscopic symmetries [101]. We find that these

64 bilinears break up into 27 irreps of the space group among which there are six 1-

dimensional representations, five 2-dimensional representations and sixteen 3-dimensional

representations. This can be obtained as follows.

Starting with Eqs. 3.18 and 3.19, we can derive the action of the microscopic symme-

tries on the members of the 64 fermion bilinears, which leads to the following structure.

Under the action of a lattice symmetry transformation (say S, corresponding to Table 2.1

and Eq. 3.18), a fermion bilinear of the form �̄Pa� (with Pa given by Eq. 3.10) transforms

1Explicit calculations of the transformation of the fermion biliners show that they are invariant under
the action of a 2⇡ rotation.
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Irrep ⌃p T
Singlets Ae

1g ⌃0 = 14 even
Ao

2g ⌃45 odd
Doublet Ee

u {⌃4,⌃5} even
Triplets Te

1g {⌃3,⌃1,�⌃2} even
To
2g {⌃12,⌃23,⌃13} odd

To
1u {⌃35,

p
3⌃14
2

� ⌃15
2
,
p
3⌃24
2

+ ⌃25
2
} odd

To
2u {⌃34,�⌃14

2
�

p
3⌃15
2

, ⌃24
2

�
p
3⌃25
2

} odd

Table 4.1: Irreps of the matrices SU(4) flavour space.

as

�i�̄Pa� = �†�0⌃i⇣j�
S�! �†(⌦f†

S ⌃i⌦
f
S)⌦ (⌦c†

S �0⇣j⌦
c
S)� (4.6)

and under the action of microscopic time reversal (Eqs. 2.7 and 3.19), we get

�†�0⌃i⇣j�
T�! �†(⌃13⌃

⇤
i⌃13)⌦ (⌧1�0 �

⇤
0
⇣⇤j ⌧1�0)� (4.7)

The above structure shows that the action of each symmetry is implemented as a

product of the transformations in the flavour and chiral spaces, i.e., for lattice symmetries,

⌃i
S�! ⌦f†

S ⌃i⌦
f
S ; �0⇣j

S�! ⌦c†
S �0⇣j⌦

c
S (4.8)

and for time reversal

⌃i
T�! ⌃13⌃⇤

i⌃13; �0⇣j
T�! ⌧1�0 �

⇤
0
⇣⇤j ⌧1�0. (4.9)

However, due to the SOC, the real space transformations get non-trivially coupled to the

flavour space and this resultant inter-locking is reflected in the form of the transformation

matrices, particularly in Eq. 4.8 where the ⌦f
S reflects the degree of interlocking between

real and flavour spaces. In fact, it is this non-trivial structure that distinguishes the

spin-orbit coupled Dirac fermions– the topic of the present work– with multi-flavour

(larger NF ) generalisation of graphene where such SOC is usually neglected (except for

the spin-Hall e↵ect [134] and related phases where SOC is essential).

Due to the direct product structure of the above transformations, we can analyze

the action of the microscopic symmetries on the flavor and the chiral spaces separately
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Irrep �0⇣j T
Singlet Ao

2g �0 odd
Triplet Te

1g {�0⇣1, �0⇣2, �0⇣3} even

Table 4.2: Irreps for the matrices in the SU(2) chiral space.

and then use Clebsch-Gordon decomposition, e.g., if the matrix ⌃i transforms in some

irreducible representation (say, D1) and �0⇣j transforms in some other irrep (say, D2),

then the bilinear �̄⌃i⇣j� transforms in the product representation D1 ⌦D2. This direct

product representation is reducible in general which then is reduced into a direct sum

representation.

Table 4.1 shows the ⌃i matrices in the SU(4) flavour space and their irreducible repre-

sentations under the IR space-group transformations as well as TR. The transformations

of the �0⇣j (Eq. 3.9) matrices in the SU(2) chiral space are written in Table 4.2. Details

of their symmetry transformations are given in Appendix A.7.

The 64 fermion bilinears are subdivided into three groups depending on the partic-

ipation of the flavour, ⌃i and the chiral elements, ⇣j, in the fermion bilinear (Eq. 4.2)

which, in turn, dictate their transformation properties under the microscopic symmetries.

These are – (1) Group-1 : the chiral masses composed of flavour singlets, (2) Group-2 :

the flavour masses composed of chiral singlets, and, (3) Group-3 : the mixed masses which

are composed of non-trivial combinations of both the flavour and chiral sectors. Here we

list the masses in the groups mentioned above and briefly mention their properties in

tables 4.3-4.6. The later chapters contain a detailed discussion of their physics.

4.2.1 Group-1 : The chiral masses

There are four masses of the form �ih�̄�i and �ih�̄⇣i�i (i = 1, 2, 3) that are invariant

under the SU(4) flavour symmetry and charge conservation which are broken down by

the lattice symmetries and TR as 4 = 1� 3, i.e.,

⇥
Ae

1g

⇤⌃ ⌦
⇥
Ao

2g

⇤⇣
= Ao

2g (4.10a)
⇥
Ae

1g

⇤⌃ ⌦
⇥
Te
1g

⇤⇣
= Te

1g (4.10b)

where [· · · ]⌃ and [· · · ]⇣ denote the two irreducible representations taken from Tables 4.1

and 4.2 respectively.
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The singlet represents an Integer Chern insulator (ICI) phase, the triplet corresponds

to the three stripy charge density waves (CDW) (Fig. 5.2). Since the flavour index

plays no role, we can quantitatively compare the spinless version of the present problem

(Appendix A.11) with spinless electrons in graphene [21, 135]. In the case of graphene, the

irreducible representation splits up into 4 = 1 � 1 � 2 where the two singlets represent

the ICI phase[136, 137] and staggered (Néel) CDW, and the doublet corresponds to

the two Kekule patterns [21, 135]. This is very di↵erent from the present case and this

provides a startling example where the microscopic SOC changes the low energy symmetry

implementation. We discuss these masses in more detail in Chapter 5.

4.2.2 Group-2 : The flavour masses

There are 15 masses of the form ih�̄⌃j�i where ⌃j are the 15 generators of SU(4) as

given by Eq. A.26 in Appendix A.3. Under microscopic symmetries, they break up into

six di↵erent irreps, i.e., 15 = 1� 3� 3� 3� 2� 3 given by Eqs. 4.21, 4.22 and 4.23.

These correspond to six generalised spin-Hall phases that are summarised in Table 4.4

while the details are given in Chapter 6.

In order to explore the nature of the resultant phases, it is useful to understand

in detail the mathematical structure of the implementation of the various microscopic

symmetries that break up the 15 flavour masses further into di↵erent irreducible rep-

resentations. Starting with TR, ten of the flavour masses are TR even and are of the

form

�ih�̄⌃j�i, j = 12, 13, 14, 15, 23, 24, 25, 34, 35 and 45. (4.11)

These transform into each other under an adjoint representation of an SO(5) sub-group

(generated by themselves, Eq. 4.11) of the SU(4) flavour group.

The other five are TR odd and transform under a vector representation of the same

SO(5) and are given by

�ih�̄⌃j�i with j = 1, 2, 3, 4 and 5 (4.12)

Next, the lattice inversion (Table 2.1), I, breaks each of the above two sets further.
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Out of the 10 adjoint ones (Eq. 4.11), four

�ih�̄⌃j�i with j = 45, 12, 13 and 23 (4.13)

are even under inversion, I, while the other six

�ih�̄⌃j�i with j = 14, 15, 24, 25, 34 and 35 (4.14)

are odd under it. For the 5 vector masses (Eq. 4.12), two

�ih�̄⌃j�i with j = 4 and 5 (4.15)

are inversion odd, while three

�ih�̄⌃j�i with j = 1, 2 and 3 (4.16)

are even.

Each of the above four subsets (Eqs. 4.13-4.16) is individually closed under a U(1) ⌦

SU(2) sub-group of the SO(5) (eq. 4.11) that is generated respectively by

⌃45 (4.17)

and

{⌃12,⌃13,⌃23}. (4.18)

In particular, in the first subset (Eq. 4.13), the first mass is a U(1) ⌦ SU(2) singlet

while the rest are only U(1) singlets that transform as spin-1 under the SU(2). The three

masses in Eq. 4.16 are U(1) singlets and an SU(2) triplet, while the two masses in Eq. 4.15

are SU(2) singlets and transform into each other under the U(1). Finally the six masses

in Eq. 4.14, decompose into two SU(2) triplets :

{�ih�̄⌃14�i,�ih�̄⌃24�i,�ih�̄⌃34�i} (4.19)
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and

{�ih�̄⌃15�i,�ih�̄⌃25�i,�ih�̄⌃35�i}. (4.20)

The three components of the first triplet mix with their corresponding components of the

second triplet under the U(1) generated by Eq. 4.17.

Now, considering the other lattice symmetries the above four subsets (Eqs. 4.13-4.16)

break up further into the irreps of the microscopic symmetry group as follows.

The four masses in Eq. 4.13 break up into a singlet and a triplet as

⇥
Ao

2g

⇤⌃ ⌦
⇥
Ao

2g

⇤⇣
= Ae

1g (4.21a)
⇥
To
2g

⇤⌃ ⌦
⇥
Ao

2g

⇤⇣
= Te

1g (4.21b)

whose explicit forms are given in Eqs. 6.1 and 6.8 respectively and correspond to two

di↵erent kinds of quantum spin-octupole phases discussed in Sec. 6.1.1 and 6.1.2.

The six inversion-odd masses (Eq. 4.14), on the other hand, break up into two triplets

[To
1u]

⌃ ⌦
⇥
Ao

2g

⇤⇣
= Te

2u (4.22a)

[To
2u]

⌃ ⌦
⇥
Ao

2g

⇤⇣
= Te

1u. (4.22b)

given by a linear combination of the two triplets in Eq. 4.19 and 4.20 as given by Eqs.

6.12 and 6.13 respectively. These too correspond to spin-octupole Hall phases, albeit with

interesting fine-tuned gapless points for a special combination of the three components

of the triplets as discussed in Sec. 6.1.3.

The doublet and the triplets in Eqs. 4.15 and 4.16 remain intact and result in

[Ee
u]

⌃ ⌦
⇥
Ao

2g

⇤⇣
= Eo

u (4.23a)
⇥
Te
1g

⇤⌃ ⌦
⇥
Ao

2g

⇤⇣
= To

2g (4.23b)

with explicit forms being given by Eqs. 6.23 and 6.24 respectively. These phases break

time-reversal symmetry and describe quantum spin-quadrupole Hall phases as described

in Sec. 6.2.
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4.2.3 Group 3 : The mixed masses

Finally, the largest set of masses is obtained by taking the direct product of the flavour

multiplets and the chiral multiplets. There are 45 such masses of the form �ih�̄⌃i⇣j�i

where ⌃i are the fifteen generators of flavor SU(4) (see Appendix A.3) and j = 1, 2, 3.

Therefore these masses transform into each other under transformations of the SU(4)⌦ SU(2)

subgroup of SU(8) of the free Dirac theory. Their group decomposition to irreducible rep-

resentations under the microscopic symmetries is given by

⇥
Ao

2g

⇤⌃ ⌦
⇥
Te
1g

⇤⇣
= To

2g (4.24a)

[Ee
u]

⌃ ⌦
⇥
Te
1g

⇤⇣
= Te

1u �Te
2u (4.24b)

⇥
Te
1g

⇤⌃ ⌦
⇥
Te
1g

⇤⇣
= Te

1g �Te
2g � Ee

g �Ae
1g (4.24c)

⇥
To
2g

⇤⌃ ⌦
⇥
Te
1g

⇤⇣
= To

1g �To
2g � Eo

g �Ao
2g (4.24d)

[To
1u]

⌃ ⌦
⇥
Te
1g

⇤⇣
= To

1u �To
2u � Eo

u �Ao
1u (4.24e)

[To
2u]

⌃ ⌦
⇥
Te
1g

⇤⇣
= To

1u �To
2u � Eo

u �Ao
2u. (4.24f)

The dimension of the representation depends non-trivially on the details of the spin-

orbital locking, which, in turn, is reflected in the nature of di↵erent density wave phases

that these masses lead to. These density wave phases mainly come in two varieties. Out

of the total of 45 mixed masses, 18 (marked in black in Eq. 4.24) generically have at least

four gapless fermionic modes protected by a subgroup of SU(8), often in conjunction with

lattice symmetries. Thus they describe di↵erent kinds of density wave Dirac semimetal

(summarised in Table 4.6). The rest 27 (marked in red in Eq. 4.24) generically consists

of density wave-insulators (summarised in Table 4.5). Two of the insulators, both

singlets – Ae
1g and Ao

2g, have edge modes whose signature is evident from appropriate

Chern-Simons terms.

Before delving into the details of the resultant phases in this category in Chapter 7,

we summarise the general structure of these masses and their classification here under

various microscopic symmetries leading up to the decomposition in Eq. 4.24. To this

end, starting with microscopic TR, T (Eq. 2.7), the 45 bilinears are divided into two
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classes with 15 TR even given by

{�ih�̄⌃i⇣1�i,�ih�̄⌃i⇣2�i,�ih�̄⌃i⇣3�i} (4.25)

where i = 1, 2, 3, 4, 5 (same ⌃i content as in Eq. 4.12) and 30 TR odd given by

{�ih�̄⌃i⇣1�i,�ih�̄⌃i⇣2�i,�ih�̄⌃i⇣3�i} (4.26)

with the i indices being given in Eq. 4.11.

Each of these two sets, under lattice inversion, I (Table. 2.1), break up into two

subsets as odd and even under I. Out of the set of 15 in Eq. 4.25 the six odd ones are

given by

{�ih�̄⌃4⇣i�i,�ih�̄⌃5⇣i�i} (4.27)

while nine even ones are given by

{�ih�̄⌃1⇣i�i,�ih�̄⌃2⇣i�i,�ih�̄⌃3⇣i�i} (4.28)

where i = 1, 2, 3.

On the other hand, the set of 30 masses in Eq. 4.26 breaks up into two subsets. One

of the subsets contains twelve masses that are even under I and is given by

{�ih�̄⌃45⇣i�i,�ih�̄⌃12⇣i�i,�ih�̄⌃23⇣i�i,�ih�̄⌃13⇣i�i}. (4.29)

The other subset containing eighteen I odd masses is

{�ih�̄⌃14⇣i�i,�ih�̄⌃15⇣i�i,�ih�̄⌃24⇣i�i,

� ih�̄⌃25⇣i�i,�ih�̄⌃34⇣i�i,�ih�̄⌃35⇣i�i}. (4.30)

Further application of lattice symmetries (Appendix A.7) break these up into singlets,

doublets and triplets as follows. The TR even and inversion odd subset (Eq. 4.27) of

six decomposes into two triplets given by Eq. 4.24b which correspond to two di↵erent

zig-zag spin-quadrupolar density wave insulators given by Eq. 7.14. Similarly, the nine
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TR and inversion even masses break up into two triplets, one doublet and one singlet as

given by Eq. 4.24c. They represent spin-quadrupole density waves. While the singlet

corresponds to an insulator (Eq. 7.1) with quantized spin-octupole filtered edge modes,

the rest (Eqs. 7.55, 7.57 and 7.60) are partially gapless semimetals.

The subset of 12 TR odd and inversion even masses (Eq. 4.29) break up into three

triplets, one doublet and one singlet under the action of the lattice symmetries (Eqs. 4.24a,

4.24d). The singlet (an anomalous Hall insulator) and one of the triplets represent insulat-

ing ferro (uniform) (Eq. 7.4) and stripy (Eq. 7.11) density wave ordering of spin-octupoles

respectively. The doublet (Eq. 7.64) corresponds to ferro spin-octupole semimatal and

the other two triplets (Eqs. 7.47, 7.50) correspond to di↵erent stripy spin-octupole density

wave semimetals.

Finally, the 18 TR and inversion odd masses, break up under lattice symmetries into

four triplets, two doublets and two singlets given by Eqs. 4.24e and 4.24f. Out of them,

the two singlets (Eqs. 7.31 and 7.32) correspond to staggered (“Néel”) spin-octupole

density-wave semimetal. The two doublets (Eqs. 7.7 and 7.8) on the other hand, both

correspond to Néel spin-octupole density wave insulators. As discussed below Eq. 7.8,

they can be rotated into each other via a U(1) transformation generated by ⌃45 within

the flavour space. Given this fact and they break the same symmetries, the two doublets

correspond to the same phase and are not distinct from each other. Similar arguments

hold for the two sets of triplets, each of which represents zig-zag spin-octupole density

wave insulators. The two To
1u triplets (Eqs. 7.21 and 7.22) can be continuously connected

without change of symmetry and hence represent the same phase. Similarly the two To
2u

triplets (Eqs. 7.29 and 7.30) give the same phase.

4.3 Summary of the phases

In this section, we briefly mention the phases in the three groups. Table 4.3 and 4.4

discuss the phases in Group-1 (chiral masses) and Group-2 (flavor masses). Tables 4.5

and 4.6 discuss the phases obtained from the mixed masses.
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Table 4.3: The SU(4) invariant chiral phases. The microscopic symmetry elements men-
tioned in this and the subsequent tables are defined in Table 2.1. Also, the ⇣i are genera-
tors of the chiral SU(2) and ⌃i are generators of flavor SU(4) which are defined in Eq. 3.9
and Appendix A.3 respectively.

# The Phase Irrep Broken Fermion Comments
Microscopic Bilinear
symmetries

1. Integer Chern Ao
2g C0

2, �d, TR �ih�̄�i Fully gapped.
insulator (ICI). Charge Hall response

(Sec. 5.1) given by NF = 4
CS theory (Eq. 5.2)

2. Stripy Te
1g T1,T2, �ih�̄⇣1�i, Fully gapped.

charge density C3,S6,C0
2, �d �ih�̄⇣2�i, Stripy modulation

wave (StCDW). �ih�̄⇣3�i of electronic charge
(Sec. 5.2) density (Fig. 5.2)

Table 4.4: The flavor phases

# The Phase Irrep Broken Fermion Comments

Microscopic Bilinear

symmetries

3. Singlet Ae
1g None �ih�̄⌃45�i Fully Gapped.

Quantum Spin-octupole Hall re-

sponse in

spin-

octupole

presence of electric

field (Eq. 6.5) via

Hall insu-

lator.

spin-octupole filtered

edges

(Sec. 6.1.1) protected by U(1)o

ZTR
2

.

4. Triplet Te
1g T1,T2, �ih�̄⌃23�i, Fully gapped. Spin-

octupole

Quantum C3, S6, �ih�̄⌃13�i, filtered edge currents.

spin-

octupole

C0
2, �d �ih�̄⌃12�i The Skyrmion config-

urations of

Hall insu-

lator.

the triplet order pa-

rameter carry 4
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(Inversion

even)

units of electronic

charge. Such

(Sec. 6.1.2) skyrmion condensa-

tion leads

to a novel 4e super-

conductor.

5. Triplet Te
1u T1,T2, �ih�̄⌃34�i, Non-compatible

masses.

Quantum C3, S6, �ih�̄
⇣
�⌃14+

p
3⌃15

2

⌘
�i, Generally fully

gapped

spin-

octupole

C0
2, �d, I �ih�̄

⇣
⌃24�

p
3⌃25

2

⌘
�i. except for isolated

points

Hall insu-

lators.

protected by symme-

tries.

(Inversion

odd)

Spin-octupole

(Sec. 6.1.3) filtered edge.

6. Triplet Te
2u T1,T2, �ih�̄⌃35�i, Similar to entry No.5

Quantum C3, S6, �ih�̄
⇣p

3

2
⌃24 +

1

2
⌃25

⌘
�i, of this table but with

di↵erent

spin-

octupole

C0
2, �d, I �ih�̄

⇣p
3

2
⌃14 � 1

2
⌃15

⌘
�i. spin-octupole current

at the edges

Hall insu-

lator

protected by di↵erent

set of symmetries.

(Inversion

odd)

(Sec. 6.1.3)

7. Doublet Eo
u C0

2, I, �ih�̄⌃4�i,�ih�̄⌃5�i Fully gapped.

Quantum C3, S6, Vortices carry zero

spin-

quadrupole

Hall

�d, TR modes with charge

and

54



insulator. quadrupole quantum

numbers.

(Sec. 6.2)

8. Triplet To
2g T1,T2, �ih�̄⌃1�i, Fully gapped.

Quantum C3, S6, �ih�̄⌃2�i, Quadrupole filtered

edge

spin-

quadrupole

Hall

C0
2, �d, TR �ih�̄⌃3�i modes protected by

U(1)

insulator. symmetry. TR bro-

ken.

(Sec. 6.2)

Table 4.5: The mixed phases (insulators)

# The Phase Irrep Broken Fermion Comments

Microscopic Bilinear

symmetries

9. Singlet Ae
1g None �ih�̄(⌃3⇣1 � ⌃1⇣3 Fully gapped.

Spin-

quadrupolar

�⌃2⇣2)�i/
p
3 Octupole (⌃45)

ferro Hall filtered edge modes.

insulator.

(Sec. 7.1.1)

10. Singlet Ao
2g C0

2, �d,TR �ih�̄(⌃12⇣1 � ⌃23⇣3 Fully gapped.

Spin-

octupolar

+⌃13⇣2)�i/
p
3 Gapless edges carry
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Anomalous

ferro

qunatized charge cur-

rent

Hall Insu-

lator.

via CS term.

(Sec. 7.1.2)

11. Doublet Eo
u C0

2, �d, I,

C3, S6

See Eq. 7.7 Fully gapped.

Spin-

octupolar

(2

dou-

blets)

TR and Eq. 7.8 Both doublets corre-

spond

Néel insu-

lator.

to the same phase.

(Sec. 7.1.3) Vortices can carry

non-trivial quantum

number.

12. Triplet To
2g T1,T2, �i h�̄⌃45⇣1�i, Fully gapped.

Spin-

octupolar

C3, S6,

C0
2, �d,

�i h�̄⌃45⇣2�i,

stripy den-

sity wave

TR �i h�̄⌃45⇣3�i

(StDW)

insulator.

(Sec. 7.1.4)

13. Triplet Te
1u T1,T2, �i h�̄⌃5⇣1�i Fully gapped,

Spin-

quadrupolar

C3, S6,

C0
2, �d, I

�i
D
�̄(�

p
3⌃4+⌃5
2

)⇣3�
E
, Masses are

zig-zag

density

wave

�i
D
�̄(�

p
3⌃4�⌃5
2

)⇣2�
E

non-comaptible,

(ZDW) in-

sulator.

Gapless modes

(Sec. 7.1.5) for some special linear
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combinations.

14. Triplet Te
2u T1,T2, �i h�̄⌃4⇣1�i, Similar to entry No.13

Spin-

quadrupolar

C3, S6,

C0
2, �d, I

� i
2

⌦
�̄(
p
3⌃5 + ⌃4)⇣3�

↵
, in this table, but

ZDW insu-

lator

� i
2

⌦
�̄(
p
3⌃5 � ⌃4)⇣2�

↵
di↵erent quadrupole

(Sec. 7.1.5) operators are

ordered.

15. Triplet To
1u T1,T2, See Both triplets corre-

spond

Spin-

octupolar

(2

triplets)

C3, S6,

C0
2, �d, I,

Eq. 7.21, 7.22 to the same phase.

ZDW insu-

lator.

TR Fully gapped,

(Sec. 7.1.6) Masses are non-

compatible.

Gapless modes appear

for special linear

combinations.

16. Triplet To
2u T1,T2, See Similar to entry No.

15

Spin-

octupolar

(2

triplets)

C3, S6,

C0
2, �d, I,

Eq.7.29, 7.30 in this table, but

ZDW insu-

lator

TR di↵erent spin-octupole

(Sec. 7.1.6) operators are ordered.
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Table 4.6: The mixed phases (semimetals)

# The Phase Irrep Broken Fermion Comments

Microscopic Bilinear

symmetries

17. Singlet Ao
1u TR, I, �d See Eq. 7.31 Have semimetallic fea-

tures.

Spin-

octupolar

Can give rise to inte-

ger

Néel

semimetal.

QH phase which is dif-

ferent

(Reflection

odd)

from the ICI phase.

(Sec. 7.2.1)

18. Singlet Ao
2u TR, I, C0

2 See Eq. 7.32 Similar to entry No.17

Spin-

octupolar

in this table, but dif-

ferent

Néel

semimetal

spin-octupole opera-

tor is ordered.

(Reflection

even)

(Sec. 7.2.1)

19. Triplet To
1g T1,T2, �i

D
�̄
⇣

�⌃13⇣3�⌃23⇣2p
2

⌘
�
E
, Masses are non-

compatible,

Spin-

octupolar

C3, S6,

C0
2, �d,

�i
D
�̄
⇣

⌃12⇣2�⌃13⇣1p
2

⌘
�
E
, 8 fermionic modes are

StDW

semimetal

TR �i
D
�̄
⇣

⌃23⇣1+⌃12⇣3p
2

⌘
�
E

gapless, number of

(Sec. 7.2.2) gapless modes are

same for

all linear combina-

tions of
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the masses within a

given

triplet.

20. Triplet To
2g T1,T2, �i

D
�̄
⇣

⌃13⇣3�⌃23⇣2p
2

⌘
�
E

Masses are non-

compatible,

Spin-

octupolar

C3, S6,

C0
2, �d,

�i
D
�̄
⇣

�⌃12⇣2�⌃13⇣1p
2

⌘
�
E

4 fermionic modes are

always

StDW

semimetal

TR �i
D
�̄
⇣

�⌃23⇣1+⌃12⇣3p
2

⌘
�
E

gapless,

(Sec. 7.2.2) this number changes

depending

on the linear combina-

tions of

the masses.

21. Triplet Te
2g T1,T2, �i

D
�̄
⇣

�⌃1⇣2+⌃2⇣3p
2

⌘
�
E

Similar to entry No.19

Spin-

quadrupolar

C3, S6,

C0
2, �d,

�i
D
�̄
⇣

⌃3⇣2+⌃2⇣1p
2

⌘
�
E

in this table, but dif-

ferent

StDW

semimetal.

�i
D
�̄
⇣

⌃3⇣3+⌃1⇣1p
2

⌘
�
E

spin-quadrupole oper-

ators

(Sec. 7.2.3) are ordered.

22. Triplet Te
1g T1,T2, �i

D
�̄
⇣

�⌃1⇣2�⌃2⇣3p
2

⌘
�
E

Similar to entry No.20

Spin-

quadrupolar

C3, S6,

C0
2, �d

�i
D
�̄
⇣

�⌃3⇣2+⌃2⇣1p
2

⌘
�
E

in this table, but dif-

ferent

StDW

semimetal

�i
D
�̄
⇣

⌃3⇣3�⌃1⇣1p
2

⌘
�
E

spin-octupole opera-

tors are ordered.

(Sec. 7.2.3)

23. Doublet Ee
g C0

2, �d,

C3, S6

See Eq. 7.60 Some bands remain

gapless.

spin-

quadrupolar

Can give rise to inte-

ger QH
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ferro

semimetal.

phase di↵erent the ICI

phase

(Sec. 7.2.4)

24. Doublet Eo
g C0

2, �d,

C3, S6,

See Eq. 7.64 Some bands remain

gapless

Spin-

octupolar

TR

ferro

semimetal.

(Sec. 7.2.5)
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Chapter 5

Group-1 : Chiral masses

In this chapter, we discuss the four chiral masses which are given in Eqs. 4.10a and 4.10b.

These are divided into a singlet (Ao
2g) (TR and reflection odd) and a triplet (Te

1g) (TR

and inversion even) under the space-group symmetries while they are all singlets under

the flavor SU(4). The details of their transformations under the microscopic symmetries

are given in Appendix. A.7. Here we first discuss the details of the singlet mass and then

the triplet masses.

5.1 The SU(8) symmetric Integer Chern Insulator

The SU(8) singlet mass,

�ICI = �ih�̄�i, (5.1)

given by Eq. 4.10a is odd under the action of T, C0
2 and �d. This suggests that this mass

is the analog of the Chern mass for graphene [136, 137] which shows the integer quantum

Hall e↵ect and hence represents the ICI phase. Indeed, minimally coupling the electrons

in the massive Dirac action (Eq. 4.3) for the above Chern mass, �ICI to a U(1) probe

gauge field, Aµ, that couples to the electronic charge and integrating out the gapped

fermions, we get a U(1) Chern-Simons term with the (Euclidean) Lagrangian density :

LCS = i
NFSgn[�ICI]

4⇡
✏µ⌫�Aµ@⌫A� (5.2)
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Figure 5.1: The mean field hopping model for the Integer Chern insulator. The second
neighbour hoppings (in blue) are generated via the spontaneous symmetry breaking and
the hopping amplitudes along the directions of the arrows (in local basis) are i =

p
�1.

The same hopping pattern also holds for the singlet spin-octupole Hall mass leading to
the octupolar Hall e↵ect (Eq. 6.5), except in that case the hopping amplitude is given
by i⌃45.

where NF = 4 is the number of SU(4) flavors (i.e. number of four component Dirac

fermion fields). Thus, all the flavors contribute the same amount to the charge Hall

conductivity resulting in, �xy = NF
e2

2⇡ [138].

The nature of symmetry breaking can be analysed by considering the low energy

projection of the microscopic current operators on the lattice [136, 139]. In particular,

starting with the microscopic orbitals in the local basis, �(rrr S), given by Eq. 2.34, the

hopping operator on the next nearest neighbour (NNN) bonds– say the blue bond in Fig.

5.1 from site B2 to B1– is given by [136]

BB2B1 = �†(rrr B1)�(rrr B2) (5.3)

The form in the global basis (in terms of the j = 3/2 orbitals) can be easily obtained via

Eq. 2.34 and using the forms of G(rrr S) given in Appendix A.4.

In the low energy limit, Eq. 5.3 is equal to

BB2B1 =
1

2
p
3
�̄ �+ · · · (5.4)

where · · · represent higher order terms. Therefore, for �ICI 6= 0, we have an imaginary

second neighbour hopping whose sign structure is given by Fig. 5.1. This leads to finite

bond current such that the total gauge invariant loop current per hexagon is indeed zero

(mod 2⇡). The loop currents, therefore, form a Z2 order parameter proportional to the

mass, �ICI . Such Z2 order parameters allow domain walls as one-dimensional topological
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Figure 5.2: Stripy CDW for �i h�̄⇣1�i 6= 0. Here, red circles and blue dots represent
opposite charge densities at the honeycomb sites.

defects in two-dimensional systems across which the sign of the mass changes. As is

evident from Eq. 5.2, the edge modes have opposite chirality in the two cases and hence

the domain wall is associated with chiral gapless edge modes that are exponentially

localised along the domain wall [140].

5.2 The SU(4) symmetric stripy charge density wave

Insulator

The three other SU(4) flavour invariant masses given by Eq. 4.10b form a triplet (Te
1g)

which is even under TR symmetry, T as well as inversion, I, about the plaquette centre.

These are given by

{�ih�̄⇣1�i,�ih�̄⇣2�i,�ih�̄⇣3�i}. (5.5)

They transform into each other under various lattice rotations and reflections as a

triplet as shown in Appendix A.7. ⇣i (i = 1, 2, 3) of course generates an SU(2) (see Eq.

3.9) which is broken down by the lattice symmetries to a triplet for the space group.

The three bilinears have the same symmetry as that of the three stripy CDW order as

shown in Fig. 5.2 for �ih�̄⇣1�i. The other two can be obtained by C3 rotations. Indeed,

the analysis of the above three fermion bilinears in the global basis (Eq. 2.24) confirms the

symmetry analysis in identifying the above stripy CDW masses. In particular, starting

with the electron operators in the global basis i.e.,  (Eq. 2.24), the projected charge
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density operators on di↵erent sub-lattices have the following form :

:  †(rrr S) (rrr S) : =
8
><

>:

�i�̄⇠1� For S = B2, A2

i�̄⇠1� For S = A1, B1

(5.6)

where : O : denotes normal ordering. Integrating out the gapped fermions in the presence

of the mass does not lead to a finite charge Hall response.

The three matrices �0⇣i (i = 1, 2, 3) pairwise anti-commute with each other such that

the three stripy CDW masses are compatible1 in the sense that the fermion gap does

not close as the three masses are rotated into each other under the chiral SU(2) (see Eq.

3.9) transformations generated by ei✓n̂·⇣ . This would suggest that the order parameter

manifold is a unit sphere, S2, similar to collinear magnetic ordering (with one important

di↵erence that the present order parameter is even under TR unlike magnetic order). The

above SU(2) is, however, broken down by the lattice symmetries, which, in terms of the

order parameter, selects out symmetry-allowed points on the sphere, S2. In particular,

the leading order anisotropy of the form

Laniso ⇠ �w1�1�2�3 + w2

�
�4

1
+�4

2
+�4

3

�
(5.7)

is symmetry allowed (see Table A.4) in the e↵ective action with �i being the amplitude

for the three components of the CDW (Eq. 5.5). This reduces the order parameter

manifold to discrete points on the sphere. The details of the ordering depend on the

signs of the couplings w1 and w2. Due to the presence of the third-order invariant, the

transition out of the semimetal is expected to be first-order. We discuss the details of

this transition in Chapter 8.3.

We conclude the discussion of the chiral masses with two points. First, it is useful

to compare the four chiral masses with the case of spinless fermions on the honeycomb

lattice with ⇡-flux at one-quarter filling presented in appendix. A.11. The presence of

the ⇡-flux breaks up the chiral space as 4 = 1 � 3, as opposed to graphene where the

chiral space is decomposed as 4 = 1 � 1 � 2. In the present case where the ⇡-flux is

a consequence of SOC, the above SU(4) singlet masses can be thought of as four copies

1Two mass matrices are compatible if they anti-commute with each other. The three matrices �0⇣i
anti-commute with each other and hence are mutually compatible
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of the spinless case in Appendix A.11. Second, while the three triplet stripy masses are

compatible with each other, i.e., the respective mass matrices mutually anticommute,

all of them are incompatible with the singlet ICI mass since the corresponding matrices

(Table 4.2) pairwise commute. This ensures a phase transition [21] between the two

phases which is accompanied by the change in the nature of broken symmetry as well

as the Chern-Simons level (Eq.5.2) from NF = 4 (in the ICI) to NF = 0 (in the stripy

CDW).
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Chapter 6

Group-2 : The Flavor masses

In this chapter, we discuss the 15 flavour masses, which are of the form �ih�̄⌃i�i. These

are divided into six irreducible representations by microscopic symmetries that are given

by Eqs. 4.21, 4.22, and 4.23. Each of these 15 masses individually breaks the flavor SU(4)

down to U(1) ⌦ SO(4). However, linear combinations of them can reduce the symmetry

further as we discuss below in the case of each subgroup. A notable feature of these

residual sub-groups is that the generators depend on the particular direction of the mass

matrix and hence are locally defined in the space of the order parameters. This is exactly

like the case of a collinear ferromagnet/antiferromagnet where the particular generator

of the residual U(1) depends on the direction of the ordering of the magnetic moments in

the spin-space. We shall study the nature of these for each of the six phases separately,

including the action of the lattice symmetries– including the spontaneously broken ones–

as well as the nature of the residual symmetry group.

Out of the 15 masses, the ten TR even ones (Eq. 4.11) correspond to four di↵erent

types of spin-octupole Hall phases, while the five TR odd ones (Eq. 4.12) represent two

spin-quadrupole Hall phases. We explain their features in turn.
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6.1 Quantum spin-octupole Hall insulators

6.1.1 Ae
1g Singlet mass

For the singlet (Eq. 4.21a), the mass is given by the fermion bilinear

Ae
1g : � ih�̄⌃45�i (6.1)

which fully gaps out all the fermions. This breaks the SU(4) flavour symmetry down to

U(1) ⌦ SO(4) with the U(1) being generated by ⌃45 and SO(4) by six other ⌃i’s that

commute with ⌃45, i.e., {⌃1,⌃2,⌃3,⌃12,⌃23,⌃13}.

In the microscopic j = 3/2 basis (the transformation of the ⌃ operators from the local

to global basis is given in Table A.1), the ⌃45 operator is given by

⌃45 = � 4

3
p
3

✓
JxJyJz + JyJzJx + JzJxJy �

15i

8

◆
(6.2)

where (Jx, Jy, Jz) are the j = 3/2 spin operators in the global basis (see Table A.1). Since

⌃45 is a product of three spin operators, we call it a spin-octupole operator.

Starting with the Euclidean Dirac action in the presence of the mass term (Eq. 4.3),

we can diagonalise the spinors � in terms of the eigenstates of ⌃45. The eigenstates consist

of two pairs of Kramers doublets. The two members of each doublet have opposite eigen-

values of ⌃45, i.e. ±1. Each of the modes contributes to finite Hall edge current, leading

to spin-octupole filtered Hall edge modes similar to the quantum spin-Hall e↵ect [134].

The two TR partners carry current in the opposite direction and backscattering within

each TR pair is disallowed by TR symmetry – again just like quantum spin Hall ef-

fect. However, the scattering between the oppositely moving edge modes belonging to

the two di↵erent Kramers doublets is not allowed because they necessarily have opposite

eigenvalues of ⌃45.

A more formal derivation of the resultant symmetry-protected CS action is obtained

by coupling probe charge and spin-octupolar gauge fields to Eq. 4.3, i.e., considering

S[Ac, Ao] = �i

Z
d2rd⌧ �̄(r)

⇥
vF /D �� ⌃45

⇤
�(r) (6.3)

68



where

/D = �µ (i@µ � Ac,µ � ⌃45Ao,µ) (6.4)

where Ac and Ao are charge and spin-octupole probe gauge fields respectively. Then

integrating out the fermions leads to the mutual CS term given by

Smutual
CS = i

NF

2⇡
sgn(�)

Z
d3x ✏µ⌫�Ac,µ@⌫Ao,� (6.5)

which characterises the quantum spin-octupolar Hall response.

The lattice version of this mass can be analyzed in a similar way as done for the ICI

mass. For that, we consider microscopic hopping operators on one of the NNN bonds

and project that to the low-energy sector. We again take the blue bond in Fig. 5.1 from

site B2 to B1 and write the following hopping operator

B
(45)

B2B1
= �†(rrr B1) ⌃45 �(rrr B2). (6.6)

In terms, of the low-energy spinors, this has the following form

B
(45)

B2B1
=

1

2
p
3
�̄ ⌃45�+ · · · . (6.7)

Thus the imaginary part of this hopping operator is proportional to the order parameter

in this phase. This shows that there are non-zero bond currents in this phase. The

hopping pattern on the other bonds are same as shown in Fig. 5.1 with the hopping

amplitudes being i⌃45 instead of i.

The lattice Hamiltonian can now be used to check for the edge modes by obtaining

the spectrum with open boundary conditions. The spectrum on a cylinder for the zig-zag

and armchair edges are shown in Fig. 6.1.

Not surprisingly, in Fig. 6.1, such edge modes are also observed for both 3/4th filling

as well as 1/2 filling. While the case of 3/4th filling is expected to result from the

microscopic particle-hole transformation that maps 1/4 $ 3/4, the physics of 1/2 filling

would be interesting to understand in future.

Similar to the ICI phase, the order parameter for the spin-octupole Hall phase is a

Z2 field and leads to gapless fermionic modes associated with the domain walls of the
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(a) Zig-zag edge

(b) Armchair edge

Figure 6.1: Spectrum for �i�̄⌃45� with zig-zag and armchair edges. Both of these plots
show gapless states at 1/4th filling (shown by black dashed line). To get this spectrum,
we consider a honeycomb lattice with cylindrical geometry where the edges of the cylinder
have zigzag or armchair-like boundaries. Here kx is lattice momentum along the periodic
direction. We take 32 magnetic unit cells along the length of the cylinder to perform this
numerical calculation.
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order parameter. Note, however, that such a field is TR even and is symmetric under all

lattice transformations. Thus, this mass is naturally allowed by the microscopics. This

is analogous to the Kane-Mele mass [134] for graphene, which is symmetry allowed but

is energetically suppressed due to the very small value of the SOC in that case.

6.1.2 The Te
1g triplet masses

The TR even triplet in Eq. 4.21b consists of three masses of the form

Te
1g :

8
>>><

>>>:

�i h�̄⌃12�i

�i h�̄⌃13�i

�i h�̄⌃23�i

(6.8)

which fully gaps out the Dirac fermions. In terms of the j = 3/2 operators, the three

mass matrices are given by :

⌃↵� =
7✏↵��

3

✓
J� �

4

7
J3

�

◆
(6.9)

where ↵, �, � = 1, 2, 3 with ↵ 6= � such that they are a mixture of dipole and spin-octupole

operators. Following Eq. 4.3, the generic mass term is given by

�i (�1�̄⌃23�+�2�̄⌃13�+�3�̄⌃12�) (6.10)

where�i (i = 1, 2, 3) are the weights for each of the three components. Hence such masses

lie on a 2-sphere with directional cosines given by cos ✓i = �i/
p
�2

1
+�2

2
+�2

3
where the

di↵erent points can be rotated into each other via the SU(2) symmetry generated by

Eq 4.18. With reference to Eq. 6.8, it is now clear that this SU(2) corresponds to the

continuous rotation amongst the three spin-octupoles.

At each point on this mass sphere, the residual symmetry is U(1) ⌦ SO(4). However,

the particular generators of this residual symmetry group depend on the location of the

point and are related to each other by the same SU(2) transformations (Eq. 4.18). For

example, the generators of the residual symmetry at the point [001] are given by

{⌃12,⌃3,⌃4,⌃5,⌃34,⌃35,⌃45} (6.11)
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where the first generator corresponds to the U(1) (which is left-over of the SU(2) (Eq.

4.18)) and the rest generate the SO(4). The residual groups at other points on the mass

sphere are obtained via SU(2) rotations generated by Eq. 4.18.

The phase breaks the spin-octupole SU(2) symmetry (Eq. 4.18) spontaneously and

results in quantum spin-octupole Hall e↵ect that is protected by U(1)o ZTR
2

and is sim-

ilar to the quantum Spin Hall phase obtained via spontaneously broken spin-rotation

symmetry discussed in Ref. [141] with interesting di↵erences (see below). The presence

of non-trivial spin-octupole filtered edge states is confirmed by calculating the mutual

Hall response similar to Eq. 6.3 for the singlet case above which leads to the mutual

Chern-Simons action similar to Eq. 6.5.

The presence of the gapless edge-modes can also be checked by going back to the mean-

field Lattice Hamiltonian in presence of the lattice version of the mass (not shown). The

lattice version of the Hamiltonian corresponding to the continuum bilinear �ih�̄⌃12�i

is the same as that for the quantum spin-octupolar Hall mass given in Eq. 6.6 with

the hopping matrix (i.e., ⌃45) replaced by ⌃12. An interesting fallout of the present

implementation of the symmetry is the fact that the three component spin-octupolar

order-parameter allows for Skyrmion configurations. In Chapter 8.1, we show that the

condensation of these skyrmions leads to realization of a novel charge-4e superconducting

phase.

6.1.3 The Te
1u and Te

2u triplet masses

The two inversion odd TR even triplets (Eq. 4.22) are given by

Te
1u :

8
>>><

>>>:

�i h�̄⌃34�i

�i h�̄⌃14+
p
3⌃15

2
�i

�i h�̄⌃24�
p
3⌃25

2
�i

(6.12)

Te
2u :

8
>>><

>>>:

�i h�̄⌃35�i

�i h�̄
p
3⌃14�⌃15

2
�i

�i h�̄
p
3⌃24+⌃25

2
�i

(6.13)

72



In terms of the j = 3/2 spin matrices, we have

⌃34 =
2

3

✓
J3

z � 13

4
Jz

◆
(6.14a)

�1

2
⌃14 �

p
3

2
⌃15 =

2

3

✓
J3

x � 13

4
Jx

◆
(6.14b)

�
p
3

2
⌃25 +

1

2
⌃24 = �2

3

✓
J3

y � 13

4
Jy

◆
(6.14c)

for the three Te
1u masses and

⌃35 =
2

3
p
3

⇥
(J2

xJz + JxJzJx + JzJ
2

x)

�(J2

yJz + JyJzJy + JzJ
2

y )
⇤

(6.15a)
p
3

2
⌃24 +

1

2
⌃25 =

2

3
p
3

⇥
(J2

xJy + JxJyJx + JyJ
2

x)

�(J2

zJy + JzJyJz + JyJ
2

z )
⇤

(6.15b)
p
3

2
⌃14 �

1

2
⌃15 =

2

3
p
3

⇥
(J2

yJx + JyJxJy + JxJ
2

y )

�(J2

zJx + JzJxJz + JxJ
2

z )
⇤
. (6.15c)

for the Te
2u triplet. Hence, these masses represent two di↵erent sets of spin-octupole

order. Note that while components of the two triplets can be rotated into each other by

a U(1) rotation generated by ⌃45, the two triplets represent di↵erent phases since they

have di↵erent transformations under lattice reflection, C0
2.

The three masses in each of the triplets are incompatible, i.e., the matrices (m1,m2,m3)

in Eq. 6.14 or 6.15 do not mutually pair-wise anticommute. This results in an interesting

structure for the residual symmetry in the resultant massive phases. For a generic linear

combination of the three masses, similar to Eq. 6.10, but now for the Te
1u and Te

2u triplets,

i.e.,

�i (�1�̄m1�+�2�̄m2�+�3�̄m3�) , (6.16)

where m1,m2,m3 are the three matrices in Eq. 6.14 or 6.15, the flavour SU(4) is broken

down to U(1) ⌦ U(1) ⌦ U(1). However, to get more insights, it is useful to diagonalise

the bilinear in Eq. 6.16 for a generic point on the unit sphere described by the directional
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cosines �i/
p
�2

1
+�2

2
+�2

3
(middle panel of Fig. 6.2) to obtain

��̄0D�0, (6.17)

where �0 are the fermions in the diagonalised basis and

D =

0

@a1�3 0

0 a2�3

1

A⌦ ⇣0, (6.18)

with a1, a2 are two real functions of �is, �3 is the third Pauli matrix, and ⇣0 is the

identity matrix that acts in the valley-band space of the spinors, i.e. in the chiral SU(2)

space (Eq. 3.9).

In this diagonalised basis, it is easy to see that there are three linearly independent

matrices (other than the identity matrix) that commute with the D matrix in Eq. 6.18.

These are this matrix, D, itself and

0

@�3 0

0 0

1

A⌦ ⇣0,

0

@0 0

0 �3

1

A⌦ ⇣0. (6.19)

The above three matrices generate the residual U(1) ⌦ U(1) ⌦ U(1) symmetry on

generic points on the sphere in the middle panel of Fig. 6.2 like C and D. The first U(1)

results in conserved flavour (spin-octupole) currents along the NNN bonds with a flow

pattern similar to that shown in Fig. 5.1. For such generic points, the fermions are fully

gapped, with each gapped band being 4-fold degenerate (spectrum (b) in the top panel

of Fig. 6.2). We can calculate the edge response, which is given by a mutual CS action

similar to Eq. 6.5. These spin-octupole filtered edge modes are again protected by the

U(1)o ZTR
2

as in the case of Te
1g mass discussed above.

Interestingly, on putting two of the �is to zero, such as the point A in Fig. 6.2 (middle

panel), while the above conclusions survive, the gapped bands have an enhanced 8-fold

degeneracy (as shown in (a) of the top panel of Fig. 6.2) due to enhanced residual flavour

symmetry of U(1) ⌦ SO(4). From the perspective of Eq. 6.18, the numbers a1 and a2

become equal at these points such that we can further basis transform D ! (�3⌦�0)⌦⇣0.

Now there are six generators in addition to D that commute with the mass which are
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Figure 6.2: Figure shows the energy spectrum of low-energy fermions along the kx = ky
line for di↵erent combinations of the masses in a triplet. Any linear combination of the
masses in a particular triplet can be represented on the surface of a unit sphere shown at
the center. The energy spectrum shown in the upper panel of this figure corresponds to
the Te

1u triplets in Eq. 6.12, 7.15 and the Te
2u triplets in Eq. 6.13, 7.17. The spectrum in

(a), (b) and (c) in the upper panel correspond to the spectrum at the points A, C and B
on the sphere. Similarly, the spectrum in the bottom panel corresponds to the To

1u and
To
2u triplets in Eq. 7.21, 7.22, 7.29, 7.30. Here again, the spectrum in (d), (e) and (f)

correspond to the spectrum at the points A, C, and B on the sphere.
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given by

0

@�i 0

0 �i

1

A⌦ ⇣0,

0

@�i 0

0 ��i

1

A⌦ ⇣0. (6.20)

with i = 1, 2, 3. This generates SU(2)⌦ SU(2) ⌘ SO(4) in addition to the U(1) generated

by D itself.

A much more interesting situation arises when one moves from point C (or D) to

point B (in the middle panel of Fig. 6.2) which is characterised by

|�1| = |�2| = |�3|, (6.21)

and is one of the eight isolated special points.

At these points, a2 in Eq. 6.18 becomes zero. We have assumed a1 > a2 without

any loss of generality. As a result, four flavours of fermions belonging to the a2 block

become gapless while four others belonging to the a1 block remain gapped. This leads to

a partially gapped state. The resultant spectrum is shown in (c) of the top panel in Fig.

6.2. It is clear that at these special points when a2 = 0, in addition to D and the two

matrices given by Eq. 6.19, two additional matrices

0

@0 0

0 �1

1

A⌦ ⇣0,

0

@0 0

0 �2

1

A⌦ ⇣0 (6.22)

also commute with the mass matrix at this special point. The above two matrices, along

with the last one of Eq. 6.19, generate a SU(2) such that at these isolated points the

symmetry is given by U(1)⌦U(1)⌦ SU(2) and it is this last SU(2) which protects a subset

of gapless Dirac fermions. On moving away from these special points infinitesimally, the

SU(2) is broken down to U(1) as a2 6= 0 and this gaps out the remaining fermions

(spectrum (b) in the top panel of Fig. 6.2). Such isolated gapless points in the parameter

space serve as examples of unnecessary quantum critical points which we discuss in detail

in Chapter 8.2.
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6.2 Quantum spin-quadrupole Hall insulators

Turning to the five TR odd masses that form the Eo
u doublet (Eq. 4.15) and To

2g triplet

(Eq. 4.16), the respective masses are given by

Eo
u :

8
<

:
�ih�̄⌃4�i

�ih�̄⌃5�i
(6.23)

and

To
2g :

8
>>><

>>>:

�i h�̄⌃1�i

�i h�̄⌃2�i

�i h�̄⌃3�i

(6.24)

While the doublet (Table A.3) is odd under inversion symmetry and does not break

lattice translation, the triplet (Table A.4) is even under inversion, but breaks lattice

translation. Transformation under other lattice symmetries is given in respective tables.

Further in terms of the IR symmetries, each of the two classes breaks SO(5) down to

U(1) ⌦ SU(2) as mentioned above (Eq. 4.17 and 4.18) – the doublet (triplet) is a U(1)

(SU(2)) singlet.

The two classes of masses fully gap out the fermionic spectrum and break the SU(4)

flavour symmetry. Notably, in terms of the spin operators we have

⌃4 =
1p
3
(J2

x � J2

y ) and ⌃5 = J2

z � 5

4
. (6.25)

for the doublet and

⌃1 = (JyJz + JzJy)/
p
3,

⌃2 = (JzJx + JxJz)/
p
3,

⌃3 = (JyJx + JxJy)/
p
3, (6.26)

for the triplet, all of which correspond to spin-quadrupoles. In fact, as we show below,

the two correspond to di↵erent spin-quadrupole Hall phase protected by U(1) symmetry.

Such a phase is an interesting generalisation of the QSH phase, as the quadrupole Hall
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phase is TR odd, unlike the QSH phase. This can be traced to the fact that unlike the

spin-dipole and the spin-octupole currents, the spin-quadrupole currents are odd under

TR.

The resultant non-zero Hall response can be obtained by performing a calculation

similar to Sec. 6.1.1. Sitting deep inside the gapped phase with h�i�̄⌃4�i 6= 0 (say), we

can introduce a spin-quadrupole probe gauge field Aq in addition to a probe charge field,

Ac, and integrating out the fermions results in a mutual CS action

Smutual
CS = i

NF

2⇡
sgn(�)

Z
d3x ✏µ⌫�Ac,µ@⌫Aq,�. (6.27)

Such that there is a spin-quadrupolar edge current (corresponding to ⌃4). As in the case

of the previously discussed spin-octupolar Hall phases, the presence of edge modes in

the case of this mass can be confirmed by taking a mean-field lattice Hamiltonian and

performing a band structure calculation on a finite-sized lattice. Similar results can be

obtained for the triplet.

Focusing on the Eo
u doublet, we note that it breaks the SU(4) flavour symmetry to

U(1) ⌦ SO(4). E.g., for �i h�̄⌃4�i 6= 0, the U(1) is generated by ⌃4 and the SO(4) is

by {⌃12,⌃13,⌃15,⌃23,⌃25,⌃35}. Since the two-component order parameter (Eq. 6.23)

lives on a circle, it supports point defects– vortices characterized by the winding number.

More precisely, consider the mass term

�i (�1�̄⌃4�+�2�̄⌃5�) , (6.28)

such that under the U(1) transformation generated by ⌃45 for an angle ✓,

� = �1 + i�2 ! �ei✓. (6.29)

At the core of such a vortex, the TRS is restored, and hence, for a fat vortex with a

sizeable core one expects quadrupole-filtered zero modes around the vortex core. Further

following each such unit vortex is expected to trap NF/2 quanta of electronic charge [21,

142]. The transition mediated by the proliferation and condensation of such vortices are

then expected to be novel [21, 143] and requires further understanding.
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6.3 Probing Multipolar Edge Modes

A key challenge lies in the experimental detection of these phases where the edge modes

carry spin-octupolar or quadrupolar moments. Among the spin-octupolar quantum Hall

phases discussed, one subset (e.g., the A1ge singlet) hosts edge modes that conduct

a purely octupolar current (Eq. 6.2). Another subset exhibits edge modes that carry a

combination of spin and octupolar currents (e.g., the T1ue phase). The latter category of

phases might be detectable using techniques analogous to those used for the conventional

spin Hall e↵ect, particularly the inverse spin Hall e↵ect (ISHE) [144, 145]. ISHE involves

transforming a spin current into a measurable electrical voltage signal. However, detecting

the quadrupolar Hall phases poses a more formidable challenge, as there are no known

experimental methods to probe or measure currents carrying quadrupolar moments.
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Chapter 7

Group-3 : The Mixed masses

We now turn to the structure of the mixed masses, which are obtained by nontrivial

contributions from both the flavour and chiral sectors. The complex structure of the mass

matrices and the intricate locking of the spin and real space symmetry transformations

result in the rich properties of the resultant phases, which we now discuss in detail. There

are 45 masses divided into 19 irreducible representations summarised in Eq. 4.24 and

they give rise to 16 di↵erent phases. These are generic density wave phases, which can

be divided into two sub-sets depending on whether the fermions are generically fully

gapped (insulators) or partially gapped (semimetals). Two of the insulators have edge

modes whose signature is evident from appropriate Chern-Simons terms. In most of the

insulators and semimetals, the components of some of the multiplets are incompatible,

and hence they lead to gapless sub-manifold as the components of the masses are tuned

(similar to the spin-octupole flavour triplet discussed in Sec. 6.1.3).

7.1 Density wave Insulators

There are 27 such mass terms divided into two singlets (Ae
1g,A

o
2g), two doublets (2E

o
u) and

seven triplets (To
2g,T

e
1u,T

e
2u, 2T

o
1u, 2T

o
2u). While the singlets and three triplets (To

2g,T
e
1u,T

e
2u)

give rise to five distinct phases, the two doublets and the other two triplets with a

multiplicity of two, i.e., (2To
1u, 2T

o
2u) only give rise to three distinct phases since members

of the same representation can be mixed without breaking any further symmetries. Thus

they give rise to a total of eight distinct flavour density wave insulating phases – two of

which have edge modes.
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7.1.1 Ising ferro spin-quadrupolar insulator

The TR even mass for the Ae
1g lattice singlet in Eq. 4.24c is given by

� = �i h�̄ (⌃3⇣1 � ⌃1⇣3 � ⌃2⇣2)�i /
p
3 (7.1)

While it is a lattice singlet, it breaks the flavour SU(4) down to U(1) (generated by ⌃45)

and the chiral SU(2) down to Z2.

This mass corresponds to a uniform ferro ordering in the spin-quadrupole density (in

the global basis)

⌃1 + ⌃2 + ⌃3 =
1p
3
({Jx, Jy}+ {Jy, Jz}+ {Jz, Jx}) , (7.2)

as can be explicitly checked starting with the underlying lattice fermion bilinear similar

to the case of CDW (Eq. 5.6). In addition, this singlet supports non-zero quantized

spin-octupolar Hall response somewhat similar to that of the Ae
1g mass in Eq. 6.1. To

understand this, we write an action similar to that in Eq. 6.3 and integrate out the

fermions. This produces a mutual CS action of the form

Smutual
CS = i

NF

2

1

2⇡
sgn(�)

Z
d3x✏µ⌫�Ac,µ@⌫Ao,�.

(7.3)

Here NF = 4 is the number of fermions flavors and Ac,µ, Ao,µ are respectively electro-

magnetic and spin-octupole probe gauge fields as used in Eq. 6.4. Thus, this mass too

produces quantum spin-octupolar Hall response, but the CS level is half compared to

that for the mass in Eq. 6.1. The resultant counter-propagating edge modes (not shown)

can be obtained for appropriate lattice models. These edge modes are protected by the

microscopic time-reversal symmetry (T). Hence this corresponds to a gapped Ising ferro

spin-quadrupolar phase with counter-propagating spin-octupole filtered edge modes.
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7.1.2 Ising ferro spin-octupolar insulator

Similarly, the TR odd mass for the Ao
2g lattice singlet in Eq. 4.24d given by

�̃ = �i h�̄ (⌃12⇣1 � ⌃23⇣3 + ⌃13⇣2)�i /
p
3 (7.4)

corresponds to uniform ordering for the spin-octupole density in

⌃12 � ⌃13 + ⌃23 =
7

3
(Jx + Jy + Jz)�

4

3

�
J3

x + J3

y + J3

z

�
(7.5)

However, unlike the above ferro spin-quadrupolar order, this breaks the flavour SU(4)

down to SU(2) (generated by {⌃4,⌃5,⌃45}) and is also odd under C0
2. The chiral SU(2),

on the other hand, is broken down to Z2, similar to the ferro spin-quadrupolar case.

The above singlet leads to non-zero quantum Hall response in the presence of an

external electromagnetic field. This can again be understood by writing an action of the

form as in Eq. 4.3 in the presence of an electromagnetic gauge field Ac,µ and integrating

out the fermions. This produces an e↵ective action given by

SCS = i
NF

2

1

4⇡
sgn(�̃)

Z
d3x✏µ⌫�Ac,µ@⌫Ac,�. (7.6)

The CS level of this action is half compared to that for the ICI mass (Eq. 5.2) and hence

represents a generalisation of an anomalous Hall insulator.

7.1.3 Staggered (“Néel”) spin-octupolar insulator

The four mixed masses that make up the two Eo
u doublets in Eqs. 4.24e and 4.24f are

respectively comprised of

� i

*
�̄
4⌃35⇣1 � (⌃15 �

p
3⌃14)⇣3 � (

p
3⌃24 + ⌃25)⇣2

2
p
6

�

+
,

� i

*
�̄
(⌃15 �

p
3⌃14)⇣3 � (⌃25 +

p
3⌃24)⇣2

2
p
2

�

+

(7.7)

and
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� i

*
�̄
4⌃34⇣1 � (⌃14 +

p
3⌃15)⇣3 + (

p
3⌃25 � ⌃24)⇣2

2
p
6

�

+
,

� i

*
�̄
�(⌃14 +

p
3⌃15)⇣3 + (⌃24 �

p
3⌃25)⇣2

2
p
2

�

+
.

(7.8)

The above four masses in the two doublets can be rotated into each other using a U(1)

symmetry generated by ⌃45. In particular, if m1(m0
1
) and m2(m0

2
) are the components

of Eq. 7.7 (7.8), then the linear combinations m±
1

= m1 ± im0
1
and m±

2
= m2 ± im0

2

transform as one-dimensional representations of the above U(1). Hence they describe the

same phase.

These masses describe a fully gapped two-sublattice staggered ordering (as shown in

Fig. 7.1) in the following spin-octupole operator respectively (whose representation in

terms of spin operators are readily obtained using Appendix A.3)

2⌃35 +
⌃15 �

p
3⌃14

2
+

p
3⌃24 + ⌃25

2
,

p
3⌃14 � ⌃15

2
+

p
3⌃24 + ⌃25

2
. (7.9)

and

2⌃34 +
⌃14 +

p
3⌃15

2
+
⌃24 �

p
3⌃25

2
,

⌃14 +
p
3⌃15

2
� ⌃24 �

p
3⌃25

2
. (7.10)

This can be checked starting with the appropriate lattice bilinears similar to Eq. 7.13.

A remarkable di↵erence of the above sub-lattice staggered spin-octupolar orderings

compared to Néel state in SU(2) spin-rotation invariant graphene is that the latter are

given one-dimensional representations, Ao
1u, [21] under lattice transformations, while

transform as a O(3) vector under spin rotations. In the present case, due to SOC, we

have doublets that transform non-trivially under both SU(4) and lattice symmetries. In

fact, this allows for non-trivial quantum numbers for the vortices of the resultant doublet

masses which forms an interesting avenue to explore in the future.
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Figure 7.1: Density pattern for the staggered spin-octupole density waves corresponding
to Eqs. 7.7 and 7.8. The red circles and blue dots here represent opposite densities in
the spin-octupole operators given by Eqs. 7.9, 7.10.

7.1.4 Stripy spin-octupole density wave insulator

The three masses that form the To
2g triplet (in Eq. 4.24a) are given by

�ih�̄⌃45⇣i�i 6= 0 (7.11)

with i = 1, 2, 3. Each mass in this triplet breaks down the flavor SU(4) to U(1) ⌦ SU(2)

and the chiral SU(2) to U(1).

The transformation properties of the triplet components (see Table A.4) under lattice

symmetries are completely determined by ⇣i as ⌃45 is a lattice singlet (see Table 4.1 and

4.2). Thus they are very similar to the triplet mass in group-1 (Eq. 5.5). However, unlike

the CDW, here the density modulation occurs in the spin-octupole moment, i.e.,

⌃45 = � 4

3
p
3

✓
JxJyJz + JyJzJx + JzJxJy �

15i

8

◆
.

(7.12)

Hence, they are nothing but stripy spin-octupole density wave, as shown in Fig. 5.2, with

the modulation being in the spin-octupole density. This can be seen explicitly by looking

at the low energy projection of the microscopic on-site spin-octupole density operator.

Similar to the CDW case (Eq. 5.6), here we have

:  †(rrr S)⌃45 (rrr S) : =
8
><

>:

�i�̄⌃45⇣1� For S = A2, B2

i�̄⌃45⇣1� For S = A1, B1

(7.13)
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The two other members of the triplet describe stripy order along the other two direc-

tions rotated by ±2⇡/3 with respect to Fig. 5.2.

7.1.5 Zig-zag spin-quadrupole density wave insulator

Eq. 4.24b consists of six masses of the form

{�i h�̄⌃4⇣i�i , �i h�̄⌃5⇣i�i}, (7.14)

for i = 1, 2, 3. Under the action of the lattice symmetries, these six masses form two

triplets with representations Te
1u and Te

2u, which leads to two di↵erent types of spin-

quadrupole density wave phases (Eq. 6.25), which we discuss below.

Te
1u masses : The Te

1u masses are given by

�i h�̄⌃5⇣1�i ,

� i

2

D
�̄(�

p
3⌃4 + ⌃5)⇣3�

E
, (7.15)

� i

2

D
�̄(�

p
3⌃4 � ⌃5)⇣2�

E
.

The relation between the first mass and the underlying j = 3/2 orbitals is given by

:  †(rrr S)⌃5 (rrr S) : =
8
><

>:

�i�̄⌃5⇣1� For S = A1, B2

i�̄⌃5⇣1� For S = B1, A2.

(7.16)

Notice the di↵erence in the sign for the di↵erent sub-lattices compared to Eq. 5.6 and

7.13. Unlike in these earlier cases, Eq. 7.16 represents zig-zag pattern of spin-quadrupolar

density wave as shown in Fig. 7.2 which corresponds to spin-quadrupole order in ⌃5. The

other two masses are also zig-zag density waves of the 1

2

�p
3⌃4 � ⌃5

�
, 1

2

�p
3⌃4 + ⌃5

�

operators whose patterns are rotated by ±2⇡/3 with respect to Fig. 7.2.
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Figure 7.2: Zig-zag Density wave pattern corresponding to the masses of Eqs. 7.15, 7.17,
7.21, 7.22, 7.29 and 7.30. The blue dots and the red circles represent opposite densities
of spin quadrupole operator ⌃5.

Te
2u masses : The masses in the Te

2u triplet are given by

�i h�̄⌃4⇣1�i ,

� i

2

D
�̄(⌃4 +

p
3⌃5)⇣3�

E
, (7.17)

� i

2

D
�̄(
p
3⌃5 � ⌃4)⇣2�

E

Similar to Te
1u triplet, these are also zig-zag density waves but of di↵erent spin-quadrupole

operators, namely

⌃4,
1

2

⇣p
3⌃5 + ⌃4

⌘
,
1

2

⇣p
3⌃5 � ⌃4

⌘
, (7.18)

respectively.

The members of both the above triplets are incompatible, and hence generically one

expects gapless points when tuning among di↵erent components of the masses similar

to the Te
1u and Te

2u masses in Eq. 6.12 and Eq. 6.13. In fact, similar to that case, we

can consider labeling the linear combination of the six masses in Eq. 7.14 as points on

a 5-dimensional sphere, S5. The points on this S5 are closed under the action of the

U(1) ⌦ SU(2) subgroup generated by {⌃45, ⇣1, ⇣2, ⇣3}. Then arguments similar to those

discussed for the Te
1u and Te

2u masses (in Sec. 6.1.3) hold in the present case. Also, these

phases also exhibit unnecessary quantum critical points, as discussed in Chapter. 8.2.

7.1.6 Zig-zag spin-octupole density wave insulator

The four triplets (two To
1u and two To

2u) in Eq. 4.24e and 4.24f correspond to two di↵erent

types of spin-octupolar density wave patterns (of the type given by Fig. 7.2). This can

be shown by an analysis similar to that in Eq. 7.16. Note that the two triplets in each
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of the representations break the same symmetries, and hence they are not counted as

distinct phases.

Notably, each triplet is made up of non-compatible members. Thus, while the generic

linear combination of the masses (Eq. 6.16) gap out all the fermions, there are special

linear combinations, similar to the zig-zag spin-quadrupole density waves (Eq. 7.14)

where fermions become gapless giving rise to unnecessary multi-critical points.

The To
1u triplets: Two such triplets given by Eqs. 4.24e and Eq. 4.24f correspond to

zig-zag ordering in

p
3⌃14 � ⌃15

2
�

p
3⌃24 + ⌃25

2
,

⌃35 �
p
3⌃24 + ⌃25

2
,

⌃35 +

p
3⌃14 � ⌃15

2
, (7.19)

and

p
3⌃15 + ⌃14

2
+

p
3⌃25 � ⌃24

2
,

⌃34 +
⌃24 �

p
3⌃25

2
,

⌃34 �
p
3⌃15 + ⌃14

2
(7.20)

respectively. The zig-zag patterns for the first mass of both the triplets are similar to the

one shown in Fig. 7.2 while that for the other two are obtained by rotating this pattern

by ±2⇡/3.

The fermion bilinear corresponding to the two triplets is given by

�i
D
�̄
⇣⇣
⌃15 �

p
3⌃14

⌘
⇣2 +

⇣p
3⌃24 + ⌃25

⌘
⇣3
⌘
�
E
/2
p
2,

�i
D
�̄
⇣
�
⇣p

3⌃24 + ⌃25

⌘
⇣1 � 2⌃35⇣2

⌘
�
E
/2
p
2,

�i
D
�̄
⇣⇣
⌃15 �

p
3⌃14

⌘
⇣1 + 2⌃35⇣3

⌘
�
E
/2
p
2 (7.21)
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for and

�i
D
�̄
⇣
(�⌃24 +

p
3⌃25)⇣3 + (⌃14 +

p
3⌃15)⇣2

⌘
�
E
/2
p
2,

�i
D
�̄
⇣
(�⌃24 +

p
3⌃25)⇣1 + 2⌃34⇣2

⌘
�
E
/2
p
2,

�i
D
�̄
⇣
�(⌃14 +

p
3⌃15)⇣1 + 2⌃34⇣3

⌘
�
E
/2
p
2. (7.22)

For a generic linear combination of the three masses (similar to Eq. 6.16) for each

of the two triplets, the degeneracy and the magnitude of the fermionic gap change for

di↵erent points on the sphere, S2 (middle panel of Fig. 6.2), as members of each triplet

are incompatible. The fermionic spectrum corresponding to the three points A,B, and

C on the sphere in Fig. 6.2 are shown in the bottom panel of the same figure. This

clearly shows the change in the degeneracy of each of the fermionic bands as well as the

change in the fermionic gap. For a general point on S2 (e.g., points C,D on the sphere

in Fig. 6.2), the fermionic spectrum has eight bands, each of which is 2-fold degenerate.

However, for the points on the great circles obtained by setting one of the �is to zero

(blue circles on the sphere in Fig 6.2 which includes the point A), the spectrum has four

bands and each of these is 4-fold degenerate. Finally, for the special eight isolated points

given by Eq. 6.21 (such as point B on the sphere in Fig. 6.2), the fermion gap closes

partially giving rise to four gapless fermionic modes while the rest of the bands remain

gapped and two-fold degenerate.

The above pattern is best understood by performing a basis transformation (similar in

spirit to Eq. 6.17) which allows useful insights into the breaking of the SU(8) symmetry

by the above masses. We explicitly discuss this for the first triplet given by Eq. 7.21.

This basis transformation is defined by

�00 = U 00�, (7.23)

where

U 00 = ⌃0 ⌦

0

@�0
i�2

1

A . (7.24)

The form of the Dirac Matrices in this new basis is �00
0
= ⌃0⌧0�3, �00

1
= ⌃0⌧0�2, �00

2
=
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�⌃0⌧0�1 such that the SU(8) generators (P in Eq. 3.10), that commute with the Dirac

matrices, in the transformed basis, must have the form :

P00 = ⌃a⌧��0. (7.25)

The six masses in Eqs. 7.21 and 7.22, in this new basis have the following form

�i�̄00 �00
0
(R ⌦ �3) �

00, (7.26)

where R are 8⇥ 8 Hermitian matrices.

The residual subgroup of the SU(8) in presence of these masses can be obtained

from the set of 8⇥ 8 linearly independent matrices that commute with R. As shown in

Appendix A.8, this yields the following :

• At generic points such as C,D on the sphere in Fig. 6.2, the SU(8) symmetry breaks

down to U(1)⌦ [U(1) ⌦ U(1) ⌦ U(1)]2 and there are no zero modes (Fig. 6.2(e)).

• For the points on the blue great circles (e.g., point A), the SU(8) symmetry breaks

down to U(1)⌦ [U(1) ⌦ SO(4)] ⌦ [U(1) ⌦ SO(4)] and there are no zero modes but

because of the larger residual symmetry, the gapped modes have a higher degeneracy

(Fig. 6.2(d)).

• Finally, at the special points where all the �i have equal magnitude (e.g., point B in

Fig. 6.2), the SU(8) symmetry is broken to U(1) ⌦ U(1) ⌦ U(1) ⌦ U(2) ⌦ SO(4).

Thus, the isolated gapless points have higher symmetry compared to it’s nearby

points. This high symmetry preserves a zero block in the R matrix (Eq. A.95) and

this protects the four gapless fermion modes (Fig. 6.2(f)).

The To
2u triplets: We now discuss the two To

2u triplets. The geometric order and the

SU(8) symmetry breaking of these masses are similar to the two To
1u triplets leading
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respectively to zig-zag ordering of

p
3⌃14 � ⌃15

2
+

p
3⌃24 + ⌃25

2
,

⌃35 +

p
3⌃24 + ⌃25

2
,

⌃35 �
p
3⌃14 � ⌃15

2
,

(7.27)

and

⌃14 +
p
3⌃15

2
+
⌃24 �

p
3⌃25

2
,

⌃34 +

p
3⌃25 � ⌃24

2
,

⌃34 �
p
3⌃15 + ⌃14

2
,

(7.28)

spin-octupole operators.

The corresponding masses are given by

(*
�i�̄

�(⌃25 +
p
3⌃24)⇣3 + (⌃15 �

p
3⌃14)⇣2

2
p
2

�

+
,

*
�i�̄

�(⌃25 +
p
3⌃24)⇣1 + 2⌃35⇣2
2
p
2

�

+
,

*
�i�̄

(
p
3⌃14 � ⌃15)⇣1 + 2⌃35⇣3

2
p
2

�

+)
6= 0, (7.29)

for the To
2u triplet in Eq. 4.24e and

(*
�i�̄

(⌃24 �
p
3⌃25)⇣3 + (⌃14 +

p
3⌃15)⇣2

2
p
2

�

+
,

*
�i�̄

(�⌃24 +
p
3⌃25)⇣1 � 2⌃34⇣2
2
p
2

�

+
,

*
�i�̄

(⌃14 +
p
3⌃15)⇣1 + 2⌃34⇣3
2
p
2

�

+)
6= 0. (7.30)
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for the To
2u triplet is given by Eq. 4.24f.

Similar to the To
1u triplets discussed above, the SU(8) symmetry breaking for these

two triplets depend on the position on the sphere described by the �is in Eq. 6.16. In

fact, the SU(8) symmetry breaking for these two triplets is the same as that of the To
1u

masses discussed before. The To
1u and the To

2u masses presented in this section also exhibit

unnecessary quantum critical points which we discuss in Chapter. 8.2.

7.2 Density wave semimetals

There are 18 density wave semimetals divided into four triplets (Te
1g,T

o
1g,T

e
2g,T

o
2g), two

doublets (Ee
g,E

o
g) and two singlets (Ao

1u,A
o
2u). The analogs of these semimetals are absent

in graphene [21]. These 18 density wave semimetals can be divided up into two categories

depending on the number of gapless fermionic modes which, for the first set is at least

four and the second set is always eight. Insights into these two sets are best obtained by

using the global basis (Eq. 2.24) as discussed in Appendix A.10. As noted in Chapter 3,

in the global basis, there are four doubly degenerate Dirac nodes at �, M1, M2, M3

points in the Brillouin zone as shown in Fig. A.1. To reiterate the crucial aspect, the

IR space group does not mix the Dirac spinor at � point with the other three at the

M points, in other words, the former behaves as a “singlet” and the latter behaves as a

“triplet” as mentioned before. As far as the irreducible masses go, this feature throws

up the two categories mentioned above : (1) Irreducible masses that vanish on for the

spinor at the �-point and leave the Dirac cone at � ungapped – these are dubbed �-

Dirac Semimetals (�-DSM) guaranteeing at least four gapless Dirac modes which do not

depend on the mass parameters, and, (2) the masses that couple the Dirac spinors at

each Mi(i = 1, . . . , 3) to that at the �-point but the Dirac spinors at the M-points do not

directly couple to each other and this guarantees the existence of eight zero modes– phases

thus realized are dubbed M-Dirac Semimetals (M-DSM). Six masses that makeup two

triplets (Te
2g,T

o
1g) correspond to M-DSM that give rise to the stripy spin-quadrupole and

spin-octupole density waves. The rest of the 12 masses are of �-DSM type. These consist

of two singlets, two doublets and two triplets. The two singlets (Ao
1u,A

o
2u) give rise to

staggered spin-octupole density waves, the two doublets (Ee
g,E

o
g) make up, respectively,

ferro spin-quadrupole and spin-octupole density waves. The two triplets (To
2g,T

e
1g) form
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stripy spin-octupole and spin-quadrupole density waves respectively. Finally, the number

of gapless Dirac nodes for the �-DSM can be greater than four for a specific linear

combination of masses as discussed below. In Appendix A.9.1, we note an interesting

structure of the above 18 masses with respect to their transformation under SU(8).

7.2.1 Staggered (“Néel”) spin-octupole density wave semimetal

The two TR odd masses that form the Ao
1u and Ao

2u singlet masses in Eqs. 4.24e and

4.24f respectively are given by

� i

*
�̄

 
⌃35⇣1p

3
� (

p
3⌃14 � ⌃15)⇣3

2
p
3

+
(
p
3⌃24 + ⌃25)⇣2

2
p
3

!
�

+
(7.31)

and

� i

*
�̄

 
⌃34⇣1p

3
+

(⌃14 +
p
3⌃15)⇣3

2
p
3

+
(⌃24 �

p
3⌃25)⇣2

2
p
3

!
�

+
. (7.32)

These represent spin-octupole ordering in

⌃35 +

p
3⌃14 � ⌃15

2
�

p
3⌃24 � ⌃25

2
=

2

3
p
3
[(JzJxJx + c.p) + (JyJzJz + c.p) + (JxJyJy + c.p)

�(JzJyJy + c.p)� (JyJxJx + c.p)� (JxJzJz + c.p)] (7.33)

and

⌃34 �
⌃14 +

p
3⌃15

2
� ⌃24 �

p
3⌃25

2
=

2

3
(J3

x + J3

y + J3

z )�
13

6
(Jx + Jy + Jz) (7.34)

respectively where “c.p” in Eq. 7.33 refers to all possible cyclic permutations of the

operators. The main di↵erence between the two spin-octupolar orders is the fact that the

former is odd under reflection, �d (see Table A.2) while the latter is even under it. Both,

however, are odd under inversion.

In either case, the fermionic dispersion is given by Fig. 7.3 with twelve of the fermionic

modes are gapped while the other four are gapless which can be understood from Eq. 7.41

discussed below. Hence they represent two-sublattice staggered spin-octupolar density
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Figure 7.3: Energy spectrum for the fermions along the kx = ky line in presence of either
of the singlet masses written in Eq. 7.31, 7.32. Each of the gapless bands is two-fold
degenerate. So there are four gapless fermion.

wave semimetals of �-DSM type, where the symmetry breaking pattern is given by

Fig. 7.1.

The gapless fermionic modes are protected by TI⇥ SU(2)IR, where T(I) is the micro-

scopic time reversal (inversion) as given by Table 2.1 and SU(2)IR is a subgroup of the

emergent SU(8), which is best understood via a basis transformation for the spinors as

�̃ = U�, (7.35)

where U is a 16⇥ 16 unitary matrix given by Eq. A.96 of Appendix A.9. This transfor-

mation relates the low energy Dirac fermions in the local basis (Eq. 2.33) with those in

the global basis (Eq. 2.24 and Appendix A.10).

The free Dirac Hamiltonian (Eq. 3.3) in this new basis is given by

HD = vF

Z
d2x �̃†

⇣
iµ0⌃̃23@x � iµ0⌃̃24@y

⌘
�̃. (7.36)

where we have introduced two new set of 4 ⇥ 4 matrices, µi and ⌃̃i which mixes the

flavour and chiral spaces non-trivially. While the form of the ⌃̃i matrices is the same as

the ⌃i matrices defined in Appendix A.3, unlike the latter, they do not exclusively act

on the flavour space. The µi (for i = 1, · · · , 15) matrices, on the other hand, are SU(4)

Gell-Mann matrices which are defined in Ref. [146] with µ0 = I4. The combination of

µi⌃̃j then gives a new set of 256 linearly independent 16⇥ 16 matrices. Such a combined

basis is essential to capture the essence of the mixed masses that we are dealing with,

which, in turn, stems from the underlying SOC. Equivalently, the free Dirac Lagrangian
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in this new basis has the same form as Eq. 3.7 with

�̃0 = �µ0⌃̃34, �̃1 = �µ0⌃̃24, �̃2 = µ0⌃̃23. (7.37)

being the new Dirac matrices.

In this new basis, the mass terms can be written as �ih ¯̃�m̃�̃i, where m̃ is a 16 ⇥ 16

Hermitian matrix. More explicitly, the Ao
1u (Eq. 7.31) and Ao

2u (Eq. 7.32) masses in this

new basis are given by

�i

*
¯̃�

 
µ8 �

p
2µ15p
3

⌃̃5 �
µ0 +

p
6µ15 � 2µ3

2
p
3

⌃̃15

!
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+
,

(7.38)

and

�i

*
¯̃�

 
�
�p

2µ15 �
p
3µ3 + 2µ8
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3
⌃̃5 +

�
�
p
3µ0 +

p
2µ15 + 2µ8

�

2
p
3

⌃̃15

!
�̃

+
.

(7.39)

The advantage of the new mixed basis is the fact that when we decompose the 16-

component spinor, �̃, into a stack of four 4-component ones as

�̃ =
�
�̃T
1
, �̃T

2
, , �̃T

3
, �̃T

4

�T
, (7.40)

both the mass matrices in Eqs. 7.38 and 7.39 take the generic form

m̃ =

0

BBBBBB@

04⇥4 04⇥12

012⇥4 #12⇥12

1

CCCCCCA
, (7.41)

where, 0m⇥n are m⇥ n null matrices and #12⇥12 is some 12⇥ 12 dimensional Hermitian

matrix.

It is then clear that the mass matrix m̃ has a decoupled four-dimensional zero block

belonging to �̃1 which gives rise to the gapless modes. In fact, the Dirac action for the
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�̃1 sector is given by

S�̃1 = vF

Z
d⌧d2x ¯̃�1

⇣
i⌃̃34@t + i⌃̃24@x � i⌃̃23@y

⌘
�̃1,

(7.42)

which is similar to that of spinless graphene [21] and hence there is an emergent chiral

SU(2) which we call SU(2)IR. This SU(2)IR is generated by

{⌃̃1, ⌃̃5, ⌃̃15}/2. (7.43)

which is actually a projection of the SU(2) generated by {⌃4/2, ⌃5/2, ⌃45/2} into the

�̃1 sector. This SU(2)IR along with T and I keeps the �̃1 sector gapless.

It is interesting to consider the four fermion bilinear masses that can open up a gap

in this sector. They are given by

�i ¯̃�1�̃1, �i ¯̃�1⌃̃15�̃1, �i ¯̃�1⌃̃5�̃1, �i ¯̃�1⌃̃1�̃1.

(7.44)

The first one is actually a SU(2)IR scalar, but, is odd under TI and is actually a

projection of a group-1, chiral mass, namely the ICI bilinear, �i�̄� (Eq. 5.1) to the �̃1

subspace and hence itself transforms under a Ao
2g singlet under the microscopic symme-

tries. Hence this mass breaks the TI symmetry (or alternatively C0
2 symmetry for the

A0

1u singlet) in the �̃1 sector. The resultant massive bands for the �̃1 fermions have

a non-zero Chern number while the already gapped �̃2, �̃3 and �̃4 remain topologically

trivial. This is unlike the ICI phase, where all the bands have a non-zero Chern number

as is required in that case due to the fact that the ICI mass, (unlike in the present case)

is a SU(4) singlet. Indeed, �ih ¯̃�1�̃1i 6= 0 leads to a NF = 1 CS term of the form in Eq.

5.2 leading to a single gapless edge mode carrying electronic charge instead of four as in

the case of ICI and hence represents a di↵erent phase more akin to an anomalous Hall

phase.

The last three masses in Eq. 7.44 are TI singlets but transform as a triplet under

SU(2)IR and break it down to U(1) subgroup. These masses are best thought of as

projections of the group-2 and group-3 masses into the �̃1 sector that are invariant under
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TI that are simultaneously odd or even under both T and I. In particular, both the

Ae
1g masses in Eq. 6.1 and Eq. 7.1 project to the fourth mass term in Eq. 7.44. Also,

each of the three Eo
u doublets in Eq. 6.23, 7.7, 7.8 project to the second and the third

masses of Eq. 7.44. It is important to note that while it may appear that the resultant

phases may have edge modes since they are obtained as a projection of a mass, which

in unprojected form lead to symmetry-protected topological phase, this is not the case,

because the respective symmetries are broken by Eq. 7.31 or 7.32.

7.2.2 Stripy spin-octupole density wave semimetal

There are two stripy spin-octupole phases, both TR odd triplets with distinct lattice

symmetries, which di↵er in the nature of the spin-octupolar densities. These are given

by To
1g and To

2g irreps in Eq. 4.24d which are respectively even and odd under C0
2. They

correspond to stripy pattern (similar to Fig. 5.2) in the spin-octupole densities of

1p
2
(⌃13 + ⌃23),

1p
2
(⌃12 + ⌃13) and

1p
2
(⌃12 � ⌃23) (7.45)

for the To
1g and

1p
2
(⌃13 � ⌃23),

1p
2
(⌃12 � ⌃13) and

1p
2
(⌃12 + ⌃23) (7.46)

for To
2g.

For all the masses of these two triplets, a certain number of fermionic modes are always

gapless. However, due to the di↵erence in the symmetry representation, the number,

structure and stability of the remnant gapless fermions are di↵erent. While a generic

linear combination like Eq. 6.16 for the To
1g mass always lead to eight gapless fermions,

the number of gapless modes for To
2g triplet varies. In this latter case, generically there are

four gapless modes. However, for special linear combinations, this number increases to

eight. Thus, the To
1g and the To

2g masses represent M-DSM and �-DSM types of semimetals

respectively. Since the structure of the remnant gapless fermions a↵ects the fate of the

low energy theory and the nature of possible phase transitions, we discuss it in some more

detail for the two cases separately.

In both cases, however, the structure and the symmetry protection of the fermions

that remain gapless are best understood in the basis of �̃ spinors introduced in Eq. 7.35.
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The To
1g triplet : The three masses that form this triplet are

� i h�̄ (�⌃13⇣3 � ⌃23⇣2)�i /
p
2,

� i h�̄ (⌃12⇣2 � ⌃13⇣1)�i /
p
2,

� i h�̄ (⌃23⇣1 + ⌃12⇣3)�i /
p
2. (7.47)

which, in the �̃ basis (Eq. 7.35), become

i
p
2
D
¯̃�µ2⌃̃5�̃

E
,�i

p
2
D
¯̃�µ5⌃̃0�̃

E
,�i

p
2
D
¯̃�µ9⌃̃5�̃

E
. (7.48)

such that the mass matrices have the generic form

m̃ =

0

BBBBBB@

04⇥4 #4⇥12

#†
4⇥12

012⇥12

1

CCCCCCA
(7.49)

This generic structure should be contrasted with Eq. 7.41 which gave rise to four

gapless modes from the �̃1 sector. In the present case, Eq. 7.49 however gives rise to

eight gapless modes. This is because any matrix of the form given in Eq. 7.49 always

has eight zero eigenvalues. These gapless modes are protected by C0
2⇥SO(4) symmetry,

where the SO(4) is a subgroup of the SU(8) which acts non-trivially only on the gapless

fermions.

One can now consider gapping out these fermions. This can be done by doing a

similar analysis as done for the masses in Eq. 7.31 and 7.32. As an example, for the first

mass in this triplet, the �̃3 and �̃4 fermions are gapless. One can show that there are 16

independent fermion bi-linears that can gap out the �̃3 and �̃4 fermions in this case and

the fate of the resultant phases can be analysed.
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The To
2g Triplet : The three masses in this triplet are

h�i�̄ (⌃13⇣3 � ⌃23⇣2)�i /
p
2,

h�i�̄ (�⌃13⇣1 � ⌃12⇣2)�i /
p
2,

h�i�̄ (�⌃23⇣1 + ⌃12⇣3)�i /
p
2. (7.50)

which, in term of the �̃ spinors (Eq. 7.35), are given by

�i
p
2
D
¯̃�µ14⌃̃5�̃

E
, i
p
2
D
¯̃�µ12⌃̃0�̃

E
,�i

p
2
D
¯̃�µ6⌃̃5�̃

E
.

(7.51)

such that a generic linear combination of the form in Eq. 6.16, but in �̃ basis, is given

by �i ¯̃�m̃�̃ where the mass matrix has the generic form given by Eq. 7.41. Hence

the �̃1 sector gives rise to four gapless fermion modes similar to the Néel spin-octupole

density wave semimetal (see the discussion following Eq. 7.41). The rest of the discussion

proceeds similarly to that of Néel spin-octupole density wave semimetal. However, here

the C0
2 is already broken and the ICI mass term is generically allowed by symmetry.

In the present case, however, the #12⇥12 block has a further rich structure that is

immediately evident from writing the mass matrix, m̃, explicitly

m̃ =

0

BBBBBB@

0 0 0 0

0 0 ��3⌃̃15 �i�2

0 ��3⌃̃15 0 �i�1⌃̃5

0 i�2 i�1⌃̃5 0

1

CCCCCCA
(7.52)

It is clear that if one or two of the �i in Eq. 7.52 are zero, then m̃ has extra four

zero eigenvalues and hence total eight fermionic modes are gapless in this case. This is

shown in Fig. 7.4, where we represent the linear combination of the masses on the sphere

as before. For the three great circles (in Fig. 7.4) that lie in the three coordinate planes,

there are eight gapless modes present. For any other point, the number of gapless modes

is four.
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Figure 7.4: Gapless manifold for the triplet �-DSMs : Linear combinations of the form
given in Eq. 6.16 for the triplet �-DSMs is represented on the surface of a unit sphere.
The three great circles shown here are obtained by setting one of the �is to zero in
Eq.6.16. For the triplet �-DSMs in Eqs. 7.50 and 7.57, on these great circles, the number
of gapless modes is eight as opposed to only four at other points on the sphere.

7.2.3 Stripy spin-quadrupole density wave semimetal

There are two distinct stripy spin-quadrupolar density wave semimetal phases both of

which are TR even but have distinct lattice symmetries. These are the two triplets given

by Te
1g and Te

2g irreps in Eq. 4.24c. While the first triplet is even under C0
2 and corresponds

to the stripy pattern (similar to Fig. 5.2) in the spin-quadrupoles

1p
2
(⌃1 � ⌃2),

1p
2
(⌃2 � ⌃3) and

1p
2
(⌃1 � ⌃3), (7.53)

the second is inversion even and gives rise to stripy pattern in a di↵erent set of spin-

quadrupoles given by

1p
2
(⌃1 + ⌃2),

1p
2
(⌃2 + ⌃3) and

1p
2
(⌃1 + ⌃3). (7.54)

Each of these masses breaks the flavour SU(4) to SU(2). E.g., the residual SU(2) for

the first mass in both the triplets is generated by {⌃34,⌃35,⌃45}.

In spite of the opposite behavior under time reversal, T, the structure of these masses

is very similar to the two triplets in Eq. 7.47, 7.50 discussed above that represent stripy
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spin-octupoalr density wave semimetals. The analysis of the remnant gapless modes

proceeds in the same way except for the fact that now the Te
2g triplet always has eight

gapless fermionic modes and is a M-DSM type semimetal while the Te
1g triplet is a �-DSM

type semimetal which generically has four gapless modes except at special combination of

the mass as shown in Fig. 7.4. Here we briefly summarise this structure for completeness.

The Te
2g triplet : The three components of the Te

2g triplet are given by

� i h�̄ (�⌃1⇣2 + ⌃2⇣3)�i /
p
2,

� i h�̄ (⌃3⇣2 + ⌃2⇣1)�i /
p
2,

� i h�̄ (⌃3⇣3 + ⌃1⇣1)�i /
p
2. (7.55)

which in the �̃ basis (Eq. 7.35)is given by

�i
p
2
D
¯̃�µ1⌃̃15�̃

E
, i
p
2
D
¯̃�µ5⌃̃1�̃

E
,�i

p
2
D
¯̃�µ10⌃̃15�̃

E
. (7.56)

These masses have the same form as in Eq. 7.49 and hence these give rise to eight gapless

fermions. The gaplessness of these modes is similarly protected via lattice symmetries

and various subgroups of SU(8).

The Te
1g triplet : The three masses of the the Te

1g triplet are given by

h�i�̄ (�⌃1⇣2 � ⌃2⇣3)�i /
p
2,

h�i�̄ (�⌃3⇣2 + ⌃2⇣1)�i /
p
2,

h�i�̄ (⌃3⇣3 � ⌃1⇣1)�i /
p
2. (7.57)

In �̃ basis, these masses have the form

i
p
2
D
¯̃�µ13⌃̃15�̃

E
, i
p
2
D
¯̃�µ11⌃̃1�̃

E
, i
p
2
D
¯̃�µ7⌃̃15�̃

E
.

(7.58)

Any linear combination (Eq. 6.16) of these masses can be written as �i ¯̃�m̃�̃ where again
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m̃ has the structure given by Eq. 7.41, albeit with di↵erent entries, i.e.,

m̃ =

0

BBBBBB@

0 0 0 0

0 0 �i�3⌃̃15 �2⌃̃1

0 i�3⌃̃15 0 �1⌃̃15

0 �2⌃̃1 �1⌃̃15 0

1

CCCCCCA
. (7.59)

Therefore, it gives rise to four gapless Dirac fermions except for the three great circles

where there are four additional gapless modes due to additional zeros in the #12⇥12 sector

similar to Eq. 7.52.

7.2.4 Ferro spin-quadrupole semimetal

The Ee
g doublet in Eq. 4.24c corresponds to uniform (ferro) ordering of the spin-quadrupole

densities in (⌃1 � ⌃2)/
p
2 and (2⌃3 � ⌃1 � ⌃2)/

p
6. The corresponding two masses are

given by :

h�i�̄(�⌃1⇣3 + ⌃2⇣2�i)/
p
2,

h�i�̄(⌃1⇣3 + ⌃2⇣2 + ⌃3⇣1)�i /
p
6. (7.60)

These two masses do not fully gap out the fermions and hence represent ferro spin-

quadrupolar density wave semimetals. Moreover, depending on the linear combination of

these two masses, the number of gapless modes change due to the change in the residual

symmetry– similar to the case described above by Eq. 7.52, but now on a circle, i.e. S1.

This is a fallout of the fact that the two masses are non-compatible. Consider a generic

linear combination of the two masses of the form akin to Eq. 6.16, but now on a circle,

i.e., �i�̄m(#)�, where

m(#) = cos# m1 + sin# m2, (7.61)

and {m1,m2} represent the two mass matrices in Eq. 7.60 and # 2 (0, 2⇡]. For a generic

value of #, there are four gapless modes in the spectrum and thus, this doublet is a �-DSM

type semimetal. The flavour SU(4) is broken down to U(1) at these points. However, for

special isolated values of # = n⇡
3

(with n = 0, 1, · · · , 5), there are eight gapless modes
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since the flavour SU(4) is only broken down to SU(2). Thus, the residual symmetry is

larger for the case where there are extra gapless modes.

The appearance of the gapless modes for these masses are better understood in the �̃

basis introduced in Eq. 7.35. In this basis, the masses in Eq. 7.60 are given by

D
�i ¯̃�

⇣
�
p
3µ0 + µ15 +

p
2µ8

⌘
⌃̃1�̃

E
/
p
3,

D
�i ¯̃�(µ0 +

p
3µ15 �

p
2µ3)⌃̃1�̃

E
/
p
3. (7.62)

such that the generic mass matrix in Eq. 7.61 is �i ¯̃�m̃(#)�̃ where

m̃(#) =

p
2

0

BBBBBB@

0 0 0 0

0 2 sin#p
3

0 0

0 0 sin#p
3
� cos# 0

0 0 0 � cos#� sin#p
3

1

CCCCCCA
⌦ ⌃̃1.

(7.63)

Thus, the �̃1 spinors defined in Eq. 7.40 are always gapless, accounting for the four gapless

fermions for generic #. Also, for the special values of # specified before, either the �̃2, �̃3

or the �̃4 spinors also become gapless.

The gaplessness of the �̃1 modes for generic values of # is protected by TR symmetry

and the SU(2)IR subgroup of the SU(8). For the special values of # where there are extra

gapless modes, the residual symmetry also becomes large compared to that for other

values of #. This is evident because, as mentioned before, the flavour SU(4) breaks down

to U(1) at generic values of #. But for the special values noted above, it only breaks

down to SU(2).

7.2.5 Ferro spin-octupole semimetal

The Eo
g doublet in Eq. 4.24d represent uniform (ferro) ordering in the spin-octupoles

given by (⌃13 + ⌃23) /
p
6 and (2⌃12 + ⌃13 � ⌃23) /3

p
2 respectively. These masses are
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given by :

h�i�̄(⌃13⇣2 + ⌃23⇣3)�i /
p
2,

h�i�̄(2⌃12⇣1 � ⌃13⇣2 + ⌃23⇣3)�i /
p
6. (7.64)

Any linear combination of these masses of the form in Eq. 7.61 breaks down the flavour

SU(4) to SU(2) generated by {⌃4,⌃5,⌃45}.

Similar to the ferro spin-quadrupole doublet in Eq. 7.60, there are at least four gapless

modes present for the masses in this doublet. Thus, this doublet is also a �-DSM type

semimetal. The number of these gapless modes again depends on their linear combination

because of the non-compatibility of these masses and are best analysed in the �̃ basis

(Eq. 7.35). In this basis, the two masses in Eq. 7.64 are given by

D
�i ¯̃�

⇣
2µ15 �

p
2µ8

⌘
⌃̃0�̃

E
/
p
3,

D
�i ¯̃�

⇣
�2µ15 +

p
6µ3 � 2

p
2µ8

⌘
⌃̃0�̃

E
/3. (7.65)

such that the mass matrices have the generic form given by Eq. 7.41. Hence the �̃1

modes are always gapless. In addition, considering linear combinations as in Eq. 7.61,

for some special values of # given by # = (2n+ 1)⇡
6
with n = 0, 1, · · · , 5, there are extra

gapless modes whose existence can be understood via an analysis similar to the ferro

spin-quadrupolar doublet in Eq. 7.60 discussed before. However, unlike this previous

case, this doublet breaks TR symmetry. So, for generic values of #, the �̃1 spinors can

be gapped out by turning on the ICI mass which does not break any further symmetries.

Hence the leftover gapless modes are less robust and can easily give way to a NF = 1 ICI

phase.

7.3 Experimental Probes for Multipolar Orders

The detection of multipolar orders in materials is an active research frontier, with most

studies leveraging the coupling between these multipolar moments and the system’s

phonons [66, 67, 147]. Direct probing via neutron scattering techniques, which are com-

monly used for detecting magnetic order, faces challenges due to the weak scattering

cross-section of multipolar orders.
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Recent proposals have suggested that the coupling between the Goldstone modes

associated with quadrupolar order and the lattice phonons can lead to a renormalization

of the sound velocity in the material [147]. Crucially, the temperature dependence of this

sound velocity renormalization exhibits a distinct behavior compared to other phases,

providing a characteristic signature for the detection of quadrupolar density waves, such

as those discussed in this chapter.

Furthermore, Raman scattering experiments have been employed to detect octupolar

moments by exploiting their e↵ect on the magnetostriction coe�cient [66], which can also

be utilized to probe the octupolar density waves discussed in this chapter.
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Chapter 8

Phase transitions

Having described all the possible phases proximate to the SU(8) Dirac semi-metal, we now

discuss some of the interesting phase transitions in this chapter. In Sec. 8.1, we discuss

the transition from a octupolar quantum Hall phase to a novel 4e-superconducting phase.

Then we discuss about unnecessary quantum critical points in Sec. 8.2. Finally, we discuss

the transition from the SU(8) DSM to the stripy CDW phase in Sec. 8.3.

8.1 Transition from octupolar quantum Hall phase

to a 4e superconductor

In this section, we discuss a novel mechanism for realizing superconductivity by con-

densing topological defects that carry non-zero electric charge. Similar mechanism can

be realized in both single-layer and bilayer graphene systems [141, 148]. In the case of

single-layer graphene, the skyrmions of the quantum spin-Hall phase carry 2e electronic

charge, and condensation of these produces a s-wave superconductor. In this section, we

discuss a similar mechanism where the skyrmions of the Te
1g phase (Chapter 6.1.2) carry

4e electric charge and condensation of these produce a charge-4e superconductor.

The three masses in the Te
1g triplet are given by (Eq. 6.8)

�i h�̄⌃12�i , �i h�̄⌃23�i , �i h�̄⌃13�i . (8.1)

All these masses fully gap out the fermions. Also, since these masses are compatible with
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each other, the spectrum remains gapped for a general linear combination

�i� h�̄ ( n1⌃12 + n2⌃23 + n3⌃13 )�i , (8.2)

of the masses. Here, � is a positive real number and ~n = {n1, n2, n3} are is a unit vector

such that

n2

1
+ n2

2
+ n3

3
= 1. (8.3)

One can now produce a skyrmion configuration with this order parameter by keeping

� fixed, but varying ~n slowly over space such that the skyrmion number W given by:

W =

Z
d2x

1

8⇡
✏µ⌫� ~n · @⌫~n⇥ @�~n,

is non-zero. These skyrmions are topological defects of the ~n field. The physical signif-

icance of a non-zero W lies in the fact that the vector field ~n(x) wraps around the unit

sphere W times as one traces the spatial coordinates x. This topological winding is quan-

tified by the skyrmion number W, which serves as a topological invariant characterizing

the field configuration.

In the presence of such a skyrmion configuration, the low-energy action is given by:

S =

Z
d2x d⌧

�
vF �̄

�
�i/@ + e /A

�
�+ i��̄(n1⌃12 + n2⌃23 + n3⌃13)�

�

Here, Aµ is the vector potential for the external electromagnetic field, and e is the charge

of an electron. Integrating out the fermions, we get the e↵ective action in the presence

of the spatially varying ~n as [149]

Seff =

Z
d3x

✓
iAµJ

top
µ +

�

8⇡vF
(@µ~n)

2

◆
+ i⇡Nf⇥[~n]. (8.4)

Here, J top
µ is the topological current density given by

J top
µ =

eNf

8⇡
✏µ⌫� ~n · @⌫~n⇥ @�~n. (8.5)

where Nf (= 4) is the number of fermion flavors. The last term in the action is called the
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✓-term and is given by

⇥[~n] =
✏µ⌫�
24⇡2

Z
d3x tr

⇥ �
U�1@µU

� �
U�1@⌫U

� �
U�1@�U

� ⇤
(8.6)

where U(x) is a unitary matrix such that

U�1⌃12U = n1⌃12 + n2⌃23 + n3⌃13. (8.7)

The details about the derivation of the ✓-term is given in Ref [150].

In the presence of a skyrmion configuration, the total electric charge of the system is

given by

Q =

Z
d2x J top

0

= eNf

Z
d2x

1

8⇡
✏µ⌫� ~n · @⌫~n⇥ @�~n

= eNfW. (8.8)

Thus, the total charge of a skyrmion configuration depends on the skyrmion number W.

Therefore, a skyrmion with W = 1 carries a 4e electronic charge (since Nf = 4 in our

case). On the other hand, the statistics of the skyrmions is determined by the ✓-term.

It is shown in Ref. [149] that the geometric phase obtained by the ground state wave

function upon interchanging two skyrmions is ⇡Nf . Thus, in this case, the skymions

acquire 4⇡ phase implying that they obey bosonic statistics. Hence, condensation of

such Skyrmions within a framework discussed in Ref. [141] would lead to a novel 4e

superconductor with single electron excitations being gapped and the magnetic flux is

quantized in units of hc/4e [151]. This is tantamount to the fractionalization [152] of the

elementary BCS hc/2e-vortex. The above mechanism to obtain a 4e superconductor is

rather novel and di↵ers from the usual mechanism of BCS superconductivity, where such a

4e superconductor is obtained by forming a 4-electron bound state and condensing them.

The novel superconductor here seems to be a natural consequence of the SOC-mediated

symmetry implementation in quarter-filled j = 3/2 honeycomb lattices that allow binding

of 4e charges to the topological texture of the spin-octupole order parameter.
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8.2 Unnecessary quantum critical points

In this section, we delve into phases belonging to the Group-2 and Group-3 categories

that exhibit unnecessary quantum critical points (UQCPs). UQCPs denote continuous

phase transitions occurring within the same phase, a concept first proposed by Bi and

Senthil in Ref. [153]. Conventionally, quantum phase transitions occur between distinct

phases when a relevant coupling parameter reaches a critical value. However, Bi and

Senthil demonstrated that such transitions can also occur within the same phase. These

UQCPs manifest as high symmetry points in the parameter space, enabling any two

points within the same phase to be connected while circumventing the high symmetry

point. Additional instances of UQCPs are discussed in Refs. [154, 155].

Among the phases discussed in previous chapters, some feature a discrete set of special

points in the order parameter space where the fermionic gap closes, while remaining

gapped at adjacent points. This occurs due to the non-compatibility of mass matrices

within these triplets and leads to the unnecessary quantum critical points. In this section,

we o↵er insights into these special points, elucidating how they arise from the projection

of a critical hyper-surface from a higher-dimensional parameter space onto the triplet

parameter space. To illustrate this, we take the Te
1u and Te

2u triplets (Chapter 6.1.3) as an

example. As discussed before, a generic linear combination of the masses in a particular

triplet,

�i (�1 h�̄m1�i+�2 h�̄m2�i+�3 h�̄m3�i) (8.9)

can be represented on the surface of a 2-sphere (as shown in Fig. 8.1). With this, there

are eight points on the S2 with

|�1| = |�2| = |�3|, (8.10)

where the fermionic spectrum becomes gapless (e.g., point B in Fig. 8.1).

The existence of such isolated gapless points is surprising and di↵erent from the usual

incompatible masses such as the chiral masses [21]. In the case of chiral masses (Chap-

ter 5), in moving from the CDW masses to the ICI mass, one encounters an unavoidable

line of bulk gap closing corresponding to a phase transition, across which the level of
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Chern-Simons term change. However, in the case of the Te
1u and Te

2u triplets under dis-

cussion, one can conceive two di↵erent classes of lines on the sphere joining the same two

gapped end-points (C and D) as shown on the sphere in the middle panel of Fig. 8.1, one

not passing through the special point (the black path) and the other passing through the

special point, B (the red path).

For the second path, one would naively conclude that the system goes through a phase

transition via a critical point with higher symmetry. The situation can be understood

by going back to the six inversion odd masses in Eq. 4.14 and reminding ourselves that

the six masses in Te
1u and Te

2u are mutually incompatible and together form a reducible

representation (Eqs. 4.19 and 4.20) of a U(1)⌦ SU(2) subgroup of SO(5). A generic linear

combination of the six masses in this case can be represented as points on the surface

of a 5-dimensional sphere, S5, by extending Eq. 6.16 to all the six masses. On this S5

due to the incompatibility, there are extended lower dimensional regions of parameter

space where the fermions are partially gapless that separates the fully gapped regions as

schematically depicted in Fig. 8.1. Projection of the gapless regions from S5 to S2 for

the above two triplets results in the isolated special points. This is most easily seen by

sitting at one of the special partially gapless points on the S2 for a particular triplet (say

Te
1u) and performing the U(1) ⌦ SU(2) transformation generated by Eq. 4.17 and 4.18 as

discussed above. The resultant mass necessarily involves the other triplet, Te
2u and hence

does not lie on the S2 anymore but on the gapless manifold of S5. This is schematically

shown in Fig. 8.1. Thus the special point B is the projected image of the gapless manifold

on S5 to S2 and the two classes of paths between C and D mentioned above have a natural

interpretation on S5 where the black (red) path avoiding (touching) the special isolated

point corresponds to paths on S5 that lie within a single gapped phase but avoid (touche)

the gapless manifold. Very importantly, the special point is mandated to exist under the

microscopic symmetries such that a system tuned to pass through the special point B

undergoes an unnecessary phase transition [153]. In this sense, the special points can

be thought of as examples of symmetry enforced unnecessary multi-critical points. The

multiciritical points in the case of the Te
1u and Te

2u phases (Chapter 7.1.5) can also be

understood in a similar way as a projection of a critical hypersurface on S5 to S2.

Such special points are also present in the To
1u and To

2u phases (Chapter 7.1.6) which

represent zig-zag spin-quadrupolar density waves. Here, however, we have to consider
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Figure 8.1: The six masses in Eq. 4.14 are mutually incompatible. A generic linear
combination of such masses (similar to Eq. 6.16 extended to the six masses) can be
represented on a five-dimensional sphere, S5, as shown in the left-hand figure which
has extended gapless critical hyper-lines (in magenta) separating two di↵erent phases
described by the two triplets Te

1u and Te
2u (Eqs. 4.19 and 4.20). The pink line on S5

represents a hypersurface on which the fermionic spectrum is gapless (Fig. 6.2(c,f)).
This hypersurface projects to the point B on S2 as shown by the dotted lines. The
images of the two paths from C to D are also shown in S5.

a 17-dimensional sphere, S17 arising from considering an 18-dimensional incompatible

vector mass comprised of the masses given by Eqs. 4.24e and 4.24f. This is made up

of the four zig-zag triplets along with two Eo
u doublets, the Ao

1u and Ao
2u singlets. Then,

on projecting back to the S2 spheres spanned by each zig-zag triplet, the isolated points

are obtained as a projection of the gapless parts on S17.

8.3 Weakly 1st order phase transition from the SU(8)

DSM to the stripy CDW phase

In this section, we discuss the phase transition from the SU(8) Dirac semi-metal to the

stripy CDW phase. For this, we first consider the Landau-Ginzburg action allowed by

the microscopic symmetries

S =

Z
d3x (Lf +Lb +Lbf ) (8.11)
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where Lf is the Lagrangian for the fermions given by Eq. 3.7. Lb is the Lagrangian for

the CDW order parameter field ~� and is given by

Lb = Nf


1

2
|@µ~�|2 + r

2
|~�|2 � u�1�2�3 +

w1

4
|~�|4 + w2

�
�2

1
�2

2
+�2

2
�2

3
+�2

3
�2

1

��
,(8.12)

and the coupling of the fermions to the CDW order parameter is

Lbf = ig~� · �̄~⇣� (8.13)

Here, r, u, w1, w2, g are phenomenological coupling constants. We have kept the Nf (num-

ber of fermion flavors) factor in front of the action for later convenience. Ultimately, we

want to get the phase diagram in the Nf ! 1 limit. Since the part of the bosonic action

that comes from integrating out the fermions is already of the order of Nf , we also put

the extra factor of Nf in front of the bosonic action.

It is important to note the microscopic symmetries allow for the third order term

(�u�1�2�3) in the bosonic action. This term ultimately leads to an interesting phase

diagram as we discuss in this section using mean-filed approximation. For this purpose,

we generalize the theory from Nf = 4 flavors of fermions to Nf = N flavors of fermions

with N being an arbitrary positive integer. The e↵ective action after integrating out the

fermions (from the action in Eq. 8.11) in the N ! 1 approximation and also with mean

field approximation (see Appendix A.13 for details) is given by

Seff = NV


r

2
|~�|2 + w1

4
|~�|4 � u�1�2�3 + w2(�

2

1
�2

2
+ · · · )� g2

⇡2
|�|2⇤+

g3

3⇡
|�|3

�

= N⇤3V


r̃

2
| ~̃�|2 + w̃1

4
| ~̃�|4 � u�̃1�̃2�̃3 + w̃2(�̃

2

1
�̃2

2
+ · · · )� g̃2

⇡2
|�̃|2 + g̃3

3⇡
|�̃|3

�

(8.14)

Here, ⇤ is the ultraviolet momentum cuto↵ and V is the total volume of the space-

113



time. Also, r̃, g̃, w̃1, w̃2, ũ, �̃1 etc. are dimensionless variables with

~� = ~̃�⇤1/2

g = g̃⇤1/2

r = r̃⇤2

w1 = w̃1⇤

w2 = w̃2⇤

u = ũ⇤3/2. (8.15)

Now to get the phase diagram of this theory, we minimize Seff w.r.t., ~̃�. Below we

present the results for various parameter regimes.

Phase diagram for ũ = w̃2 = 0

We first discuss the phase diagram for ũ = w̃2 = 0. In this limit, the e↵ective action

has a SO(3) symmetry which corresponds to the orthogonal rotation among the three

components of the CDW order parameter. The e↵ective action in this case is given by

Seff = N⇤3V


1

2

✓
r̃ � 2g̃2

⇡2

◆
| ~̃�|2 + w̃1

4
| ~̃�|4 + g̃3

3⇡
|�̃|3

�
(8.16)

Figure 8.2: Phase diagram for ũ = w̃2 = 0. The red horizontal line shows the phase
boundary between the disordered and the ordered phases.

For r̃ � 2g̃2

⇡2 > 0, the minima of the action is for ~̃� = 0. For r̃ � 2g̃2

⇡2 < 0, the minima
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occurs at

| ~̃�| = 1

2w̃1

2

4 � g̃3

⇡
+

s✓
g̃3

⇡

◆2

� 4w̃1

✓
r̃ � 2

g̃2

⇡2

◆ 3

5 (8.17)

The transition from the disordered to the ordered phase happens continuously. This is

pictorially shown in the phase diagram in Fig. 8.2.

Phase diagram for ũ, w̃2 6= 0

We now consider the e↵ects of including the third-order term in the e↵ective action.

Without loss of generality, we take the parameter ũ to be positive, as the solutions for

negative ũ are simply related by an inversion of the order parameter vector ~� ! �~�.

The full e↵ective action in this case is given by:

Seff = N⇤3V


1

2

✓
r̃ � 2g̃2

⇡2

◆
| ~̃�|2 + w̃1

4
| ~̃�|4 � u�̃1�̃2�̃3 + w̃2

�
�2

1
�2

2
+ · · ·

�
+

g̃3

3⇡
|�̃|3

�
.

(8.18)

Figure 8.3: Phase diagram for ũ 6= 0, w̃2 6= 0. The red line indicates a continuous
transition, whereas the dashed blue and dashed green lines represent first-order phase
transitions.

The mean-field phase diagram including this cubic term is shown in Fig. 1. There are

two distinct regimes in the mean-field phase diagram obtained in this case (Fig 8.3). For

g̃3

⇡ < ũp
3
, there is a first order phase transition from ~� = 0 to ~� = {�0,�0,�0} where

�0 > 0. This is shown by the blue dotted line in Fig. 8.3. Along this first-order line
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given by

r̃ � 2
g̃2

⇡2
=

2

9w̃1 + 12w̃2

✓
� g̃3

⇡
+

ũp
3

◆2

(8.19)

the magnitude of the discontinuous jump in �̃0 is given by:

��0 =
2

3w̃1 + 4w̃2

✓
� g̃3

⇡
+

ũp
3

◆
(8.20)

At the special point Q where g̃3

⇡ = ũp
3
, the first-order line terminates. Beyond Q, for

g̃3

⇡ > ũp
3
, the transition becomes a continuous one. Thus, the third order term makes the

transition first order for small values of the Yukawa coupling g̃. But, for larger values

of g̃, the first-order transition becomes weaker which eventually becomes a continuous

transition.

Another first order transition happens from ~̃� = {�0,�0,�0} to ~̃� = {�0, 0, 0} along

the green dotted line shown in the Fig .8.3. Notably, the position of this green first-order

line is governed by the relative strengths of the parameters ũ and w̃2. For a fixed value of

ũ, as w̃2 approaches zero, the green first-order line progressively shifts downward in the

phase diagram. In the limit of w̃2 = 0, this first-order line completely disappears from the

phase diagram. Conversely, for a fixed value of w̃2, as the parameter ũ approaches zero,

the points P and R move closer to the point O along the vertical axis, while the point

Q moves closer to O along the horizontal axis. Ultimately, when ũ becomes exactly zero,

the points P,Q, and R all converge at the point O. In this limiting case of ũ = 0, the

phase diagram recovers the structure observed in Fig. 8.2, where the ũ term was absent

from the e↵ective action. This highlights the crucial role played by the ũ parameter in

shaping the phase diagram and governing the existence of the weakly first-order phase

transition.
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Chapter 9

Modeling materials

In the previous chapters, we have discussed the the fate of the low-energy theory of the

Hamiltonian (Eq. 2.23)

H =
X

hr,s;r,si

X

↵,�

X

��0

 †
�↵(r, s)

h
hss0

rr0

i

↵�
���0 � �l↵� · s��0�rr0�ss0

�
 �0�(r

0, s0) + h.c., (9.1)

with the hopping matrix hss0
rr0 on the z-bond (see Fig. 2.2) being

hAB
z =

0

BBB@

tdd⇡ tddm tddm0

tddm tdd⇡ tddm0

tddm0 tddm0 tdd�

1

CCCA

= tdd�h� + tdd⇡h⇡ + tddmhm + tddm0hm0 , (9.2)

in presence of strong SOC and taking the indirect hopping amplitude tddm to be the

dominant. In this chapter, we provide a controlled understanding of the e↵ect of the

other hopping pathways as well as finite SOC.

The DFT estimates1 [128] for the hopping amplitudes tdd�, tddm, etc., (see Eq. 2.20) for

di↵erent materials are given in Table 9.1. The generic hierarchy of the relative strengths

of the hopping parameters are found to be as follows

|tdd�| > |tdd⇡| � |tddm| � |tddm0 |. (9.3)

1The DFT studies were performed by M. Gupta and T. S. Dasgupta [128] and the details of it forms
a part of the PhD thesis of M. Gupta (unpublished).
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0.040
0.030

0.043
0.043

0.060
0.152

0.152
�
/td

d
�

-0.089
-0.127

-0.244
-0.055

-0.076
-0.090

-0.085
-0.228

-0.267
�
=
E
e
g -E

A
1
g

-0.030
0.050

0.039
-0.178

0.057
0.077

-0.212
0.065

0.088
�
/td

d
�

0.180
-0.227

-0.236
0.325

-0.103
-0.161

0.300
-0.097

-0.154

Table 9.1: DFT estimated hopping terms defined for hAB
z matrix (Eq. 9.2) and SOC

strength(�). The last two rows show energy splitting in t2g level due to trigonal distortion.
Apart from ratios, all the numbers quoted are in unit of eV. The DFT studies were
performed by M. Gupta and T. S. Dasgupta [128] and the details of it forms a part of
the PhD thesis of M. Gupta (unpublished). This table is taken from Ref. [128].
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For understanding of generic structure of the non-interacting phase diagram in context

of the di↵erent compounds and possibly others, it is useful to scale out an overall energy-

scale, E = |tdd�| + |tddm|, and study the rescaled Hamiltonian in terms of dimensionless

coupling constants. To this end, it is useful to re-write Eq. 9.1 as

H = E
X

hr,s;r,si

X

↵,�

X

��0

 †
�↵(r, s)

h
Hss0

rr0

i

↵�
���0 � �̃l↵� · s��0�rr0�ss0

�
 �0�(r

0, s0) + h.c.,

(9.4)

such that Hss0
rr0 can be obtained by re-scaling hss0

rr0 and in particular its form on the z bond

is obtained by re-scaling Eq. 9.2 as

HAB
z = �(1� ⌧m)h� + ⇢⌧mhm + r(1� ⌧m)h⇡ + ⌧ 0mhm0 (9.5)

with

tdd� = �E(1� ⌧m); tdd⇡ = r tdd�; tddm = ⇢E⌧m;

tddm0 = E⌧ 0m; � = E�̃. (9.6)

and the parameter, ⇢ = ±1 additionally indicates that the indirect hopping amplitude

tddm can be of either sign.

In particular ZrF3 and HfF3 have ⇢ = �1 (see Table 9.1), making the situation

markedly di↵erent from that of chlorides/bromides. This distinct di↵erence of the flu-

orides arises from the following characteristic features of F – (1) much smaller ionic

radius (147 pm), and (2) much higher electronegativity (3.98); compared to chlorine and

bromine with ionic radii (electronegativities) of 175 pm (3.16) and 185 pm (2.96) respec-

tively. None of the fluoride compounds have been so far synthesized and hence for the

rest of this thesis, we discuss the ⇢ = +1 case in detail and discuss the case for fluorides

towards briefly the end in Sec. 9.2.

9.1 Single electron phase diagram in the ⌧m� �̃ plane

The Hamiltonian in Eq. 9.4 leads to a rich set of possibilities even at the non-interacting

level which crucially decides the fate of electron-electron interactions and the low energy
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Figure 9.1: (a) Phase diagram in ⌧m � �̃ plane for r = 0, ⌧ 0m = 0, ⇢ = +1. The
two gapped phases are shown with di↵erent colors (gray and cyan). The vertical axis is
plotted between �̃ 2 [0, 2.0]. For larger values, no new phases appear and this feature for
very large �̃(! 1) is shown through extrapolation as shown by the break lines on the
vertical axis. The band structures, plotted along the �, K and the M points of the BZ.
at di↵erent points on the phase diagram are shown as insets. The blue horizontal lines in
the insets II, V and V I show the position of the Fermi level. In the inset II, both the
bands are six-fold degenerate as explained in the text. The insets V and V I are for very
large value of �̃ and hence the only the four lower energy j = 3/2 bands are shown. (b)
Band structure in the topological gapped phase (for ⌧m = 0.9, �̃ = 1, r = 0, ⌧ 0m = 0) in
cylindrical geometry. The edge modes at the Fermi-energy are shown by the blue solid
line, with Fermi level marked in dashed line. (c) A single hexagon showing the origin of
molecular orbitals at point P2 of the phase diagram in Fig 9.1(a). Di↵erent colored dots
represent three t2g orbitals. The six sites of the hexagon are labeled with numbers from
1 to 6. The symmetric linear combination of the orbitals connected by the green dotted
line form the lowest energy band. Other orbitals are localized on singles bonds of the
hexagon are shown by black dotted lines. See text for details.

phases. While in actual materials all the parameters are present, we unfold the story

in steps, by following the hierarchy of di↵erent energy scales, and introducing them one

by one. This provides understanding at the model level, the influence of each distinct

hopping terms in the resulting phases.

The first principle calculations [128] show that the major deviation from the indirect

hopping model discussed in Ref. [156, 157] is the direct hopping given by tdd�. The

simplest model, therefore consists of tdd�, tddm and �, setting the other subleading terms,

tdd⇡ and tddm0 zero. This gives rise to a phase diagram in the ⌧m � �̃ plane, such that the

⌧m = 0(1) corresponds to the purely direct (indirect) hopping limits at di↵erent values

of SOC with r = ⌧ 0m = 0. Having discussed this phase-diagram of the minimal possible
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model, capturing the interplay of direct and indirect hopping, we next sequentially turn

on tdd⇡ and tddm0 , and examine the ⌧m� �̃ phase diagram by first setting r=-0.3, and then

setting ⌧ 0m = -⌧m. We note that the importance of direct metal-metal interaction, over the

conventional description of ligand-mediated interaction in description of phenomenology

of transition metal compounds, has been acknowledged in recent time, in context of

cobaltates [158].

9.1.1 ⌧m � �̃ phase diagram with r = ⌧ 0m = 0

The phase diagram in the ⌧m � �̃ plane is shown in Fig. 9.1(a). The top right corner,

P3(⌘ (⌧m = 1, �̃ = 1) corresponds to infinite SOC in the purely indirect hopping limit.

This, for d1 gives rise to SU(8) Dirac semi-metal (DSM) as discussed in Ref. [156]. At P3,

the six t2g orbitals (including spin degeneracy) split up into four j = 3/2 and two j = 1/2

orbitals as already discussed in Chapter 2.4. The j = 3/2 and the j = 1/2 states are

separated by infinite energy gap (/ �̃) with the j = 3/2 orbitals being of lower energy.

Hence at this point we obtain the 1/4th filled j = 3/2 orbitals whose band structure is

shown in inset (V ) of Fig. 9.1(a). As already discussed in Chapter 3, the lowest band

linearly touches the upper band at the � and the M points of the BZ giving rise to four

4-component Dirac fermions sitting at four valleys – the three M points of the BZ and

one at the � point that constitutes the SU(8) DSM [156]. Remarkably, almost the entire

phase diagram, except the pink and green shaded parts along the ⌧m = 0 and �̃ = 0 axis,

can be understood from this SU(8) limit as we now discuss.

On moving away from the SU(8) point, all the Dirac fermions get gapped out, gener-

ically giving rise to band insulators. However the nature of these two band insulators

obtained in the two extreme limits of changing ⌧m or �̃ away from P3, are di↵erent. One

of them – that obtained by varying only ⌧m – is a free fermion symmetry protected topo-

logical phase (SPT) [13], as is evident from the gapless edge modes plotted in Fig. 9.1(b).

These edge modes are protected by time reversal symmetry. Indeed, out of the 24 distinct

ways of gapping out the SU(8) Dirac fermions discussed in Ref. [156], there are precisely

two di↵erent time reversal invariant lattice (Ae
1g) singlet masses where we have used the

notations of Ref. [156] for ready reference. The above two band insulators correspond

to these two singlets as detailed in Appendix A.15. The two insulating phases are sepa-

rated by a phase transition denoted by the magenta curve connecting the points P3 and
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P1 ⌘ (⌧m = 0.67, �̃ = 0). On this line, only the Dirac fermions at the � point become

gapless while those at the three M -points remain gapped across the transition as shown

in the band-structure (V I) in Fig. 9.1(a). The resultant theory has an enhanced SU(2)

symmetry as detailed in Appendix A.15.

In Fig. 9.1(a), diametrically opposite to P3 is the point O ⌘ (⌧m = 0, �̃ = 0) which

describes the purely direct hopping model via tdd� without SOC. Here, the hopping

Hamiltonian (Eq. 9.4) reduces to a particularly simple form, given by

H = �E
X

�="#

0

@
X

hr,s;r0,s0i2z-bonds

 †
�,XY (r, s) �,XY (r

0, s0)+

X

hr,s;r0,s0i2x-bonds

 †
�,Y Z(r, s) �,Y Z(r

0, s0) +
X

hr,s;r0,s0i2y-bonds

 †
�,ZX(r, s) �,ZX(r

0, s0)

1

A+ h.c.

(9.7)

such that on the z/x/y-bonds (See Fig. 2.1) respectively only the XY/Y Z/ZX-orbitals

hop. Since each set of bonds forms a disconnected network of dimers that rotate into

itself under C3, we get bonding and anti-bonding orbitals of the respective types on each

of the three bonds resulting in two sets of 6-fold (including spin � =", #) degenerate flat

band as shown in inset (III) of Fig. 9.1(a). This kind of separation of the energy bands

into two groups of three bands is also seen in the DFT band structures for ZrCl3 [128]

where the direct overlap tdd� dominates (as given in Table 9.1).

The fact that the entire OP1 segment on the �̃ = 0 line is gapless is expected on very

general grounds and is in fact dictated by the general structure of the phase diagram

starting from the SU(8) symmetric point, P3. This can be rationalized based on that

fact on this line there is an enhanced SU(2) spin rotation symmetry such that this line

cannot be a part of the free fermion SPT lying above it for finite �̃– as predicted by the

SU(8) theory. The trivial insulating phase (shown in cyan in Fig. 9.1(a)) of course can be

connected to the spin-rotation symmetric segment P1P2 continuously. Finally at the point

P2 ⌘ (⌧m = 1, �̃ = 0), the bands become flat again with a degeneracy of 2-4-4-2 (inset

(V II) of Fig. 9.1(a)). At this point (P2), the lowest band is made up of spin-degenerate

molecular orbitals of the type shown in Fig. 9.1(c) at each hexagon. On deviating from

this point, these orbitals acquire dispersion. Hence the entire gapped trivial insulator

(shown in cyan in Fig. 9.1(a)) can be understood in terms of these e↵ective eigenmodes.
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Figure 9.2: (a) Phase diagram for ⇢ = +1 ,r = �0.3, ⌧ 0m = 0. Two gapped phases shown
in gray and cyan shading. The di↵erent metallic phases are shown with di↵erent colors
and labeled as F1, . . ., F11. (b) Fermi surfaces corresponding to di↵erent metallic phases.
The hole-like Fermi surfaces are shown with blue dashed lines and the electron-like FS are
shown with solid violet lines. The hexagonal BZ is shown with red solid lines. The F1

0

Fermi surface corresponds to the O point of the phase diagram shown in panel (a). The
un-dotted and dotted region of F1 di↵er by the fact for the Fermi surface corresponding
to the dotted region, one of the Fermi pockets around the K points is electron-like and
the other is hole-like, while both are electron-like for the un-dotted region.
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On increasing the SOC (�̃) along the ⌧m = 0 line in Fig. 9.1(a), the six-fold symmetry

is independently lifted in the bonding and anti-bonding sectors without intermixing for

small �̃ as shown in inset (V III) of the figure. The band structure (inset (V III)) is very

similar to that of monolayer Kagome band structure [159] – for both the bonding and anti-

bonding sectors– with the lower dispersing band touching the flat band quadratically at

the �-point of the BZ. As one increases the SOC, the band-width of each of the two sectors

increases while retaining their overall shape such that at the point P4 ⌘ (⌧m = 0, �̃ = 1.35)

the bands touch at the � point leading to a spin-1 Dirac dispersion [160] at the touching

of the two sectors (inset (IV ) of Fig. 9.1(a)). On increasing SOC further, remarkably the

second flat band – previously associated with the anti-bonding sector – detaches from

it and becomes a part of the bonding sector leading to a division of four lower bands

and two higher bands (inset (I) of Fig. 9.1(a))– as expected from the j = 1/2 and

j = 3/2 splitting of the atomic orbitals at large SOC. For d1 materials, however, the

above change of band structure is not important as only the lowest flat band is filled such

that the chemical potential lie at the lowest quadratic band touching points leading to

a very unstable (to interactions) quadratic band-touching semimetal with one of the flat

bands having divergent e↵ective mass.

The above structure of the phase diagram gives a good starting point to connect to

the DFT band structure by incorporating the sub-leading interactions as we now turn

to discuss. Two such important sub-leading parameters are tdd⇡ and tddm0 representing

the sub-leading direct and indirect hopping respectively (see Eqs. 2.20 and 9.6 as well as

Table. 9.1). We study their e↵ects as a build up to the material phase diagram.

9.1.2 E↵ect of tdd⇡

The first sub-leading hopping that is relevant across all the compounds is the direct hop-

ping via the ⇡-overlap denoted by tdd⇡ and incorporated via the parameter r = tdd⇡/tdd�

in our e↵ective tight-binding Hamiltonian (Eq. 9.4) as shown in Eq. 9.6. However, in-

stead of scanning the entire phase diagram as a function of r, we shall confine ourselves

to r = �0.3– a value which is roughly consistent for the di↵erent materials. The resultant

phase diagram is shown in Fig. 9.2.

The P2P3 line of Fig. 9.2(a) is exactly equivalent to that of Fig. 9.1(a) and hence

the description of the entire trivial gapped band insulator in cyan region remains same
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apart from the quantitative renormalization of the band structure away from the ⌧m = 1

line. Similarly, the physics of the �̃ = 1 for ⌧m < 1 holds until the point P7 giving rise

to the Z2 free fermion SPT (gray region) with gapless edge modes, exactly in the case

of tdd⇡ = 0 in Fig. 9.1(a). The intermediate line, P3P6, hence is associated with a Dirac

band-touching at the �-point of the BZ giving rise to a SU(2) DSM. However, the e↵ect

of tdd⇡ = r|tdd�| / (1� ⌧m) drastically rearranges the band structure for lower ⌧m, as we

discuss now.

The tdd⇡ lifts the threefold degeneracy of the flat bands at the point O = (⌧m =

0, �̃ = 0) leading to dispersive bands that cross the chemical potential giving rise to a

compensated band metal such that the net Luttinger volume is zero. The relevant Fermi

surface is named F10 and is shown in Fig. 9.2(b). However, this is highly unstable due

to the touching of the hole and particle Fermi pockets and on increasing both ⌧m and

�̃, the resultant Fermi surface undergoes topological changes giving rise to a plethora of

compensated band metals denoted by F1� F11 in Fig. 9.2(a). The intervening Lifshitz

transitions [161, 162] include cases where both separate sheets of Fermi surfaces merge,

e.g. F4 to F5 via van-Hove singular necks, as well as, instances where individual sheets

of Fermi surfaces disappear, e.g. F1 to F4. This generic appearance of the compensated

band metals with diverse Fermi-surface topology is particularly relevant to the materials

under consideration as we discuss in the next section in detail along with the relevant

Lifshitz transitions.

We would like to end this discussion about the e↵ect of tdd⇡ by commenting on the

metals F1� F11 (Fig. 9.2(a)) that occupy the region that was erstwhile (Fig. 9.1(a)) a

part of the topological insulator. Interestingly for F8, the electron bands evolve contin-

uously from the free fermion SPT and hence it inherits a non-trivial Z2 invariant for the

bands crossing the chemical potential. In fact, except on the �̃ = 0 line, we find that for

all the metals in the phase diagram under consideration, one of the bands crossing the

chemical potential has non-trivial Z2 index, calculated following the method discussed in

Ref. [163]. The method is applicable for systems with inversion symmetry, as is in the

present case.
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Figure 9.3: Phase diagram for r = 0, ⌧ 0m = �⌧m, ⇢ = +1. Inset I shows a prototypical
band structure for a point on the OP9 line where the lowest band touches the next band
linearly at the K points, while the inset II shows the band structure at the P3 point.
Since �̃ = 1 at P3, only four bands (J = 3/2 bands) are shown in inset II. As in
Fig.9.2(a), metallic phases with di↵erent Fermi surface topology, are labeled and colored.
In addition to F8, F9 and F10, introduced in Fig.9.2(a), three new phases, labeled as
F2, F3 and F12 appear. The Fermi surface topology for F2, F3 and F12 phases are
shown by the side.

9.1.3 E↵ect of tddm0

We now turn to the e↵ect of the indirect hopping mediated by tddm0 on the minimal

model with phase diagram in Fig. 9.1(a). Again we choose a representative value of

tddm0 = �tddm– in the regime relevant to the materials – to indicate its e↵ect. Unlike tdd⇡,

this indirect hopping now drastically reorganizes the ⌧m ⇡ 1 region of the phase diagram–

apparent by contrasting Fig. 9.1(a) with Figs. 9.2(a) and 9.3.

In particular, the line ⌧m = 0 remains unaltered with respect to the minimal model

(Fig. 9.1). Also, the free fermion SPT (in gray in Fig. 9.3) is stable to finite tddm0 , albeit

it does not extend all the way to the point P3. In fact, the SU(8) Dirac point (P3) now

develops into a compensated band metal as the Dirac cones, at the erstwhile P3 point,

moves away from the chemical potential in opposite direction– the Dirac node at the �

point moves above it and those at the M points move below it – giving rise to Fermi

pockets around these points. The band structure at the P3 point is shown in inset II of

the phase diagram in Fig. 9.3. The resultant Fermi surface around this point is of F8

type given in Fig. 9.2(b).

As we move away from the P3 point along the �̃ = 1 line by decreasing ⌧m (thus

increasing tdd�), the F8 Fermi surface continues to exist, although a finite gap at the
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M and the � opens up (away from the chemical potential) between the lowest and the

second lowest band. This gap opening due to the e↵ect of tdd� gives a non-trivial Z2

number to the lowest band and hence the F8 metal in the phase diagram in Fig. 9.3 is

a topological metal. On moving further away from the P3 point along the �̃ = 1 line,

the size of the Fermi pockets of the F8 metal continuously shrink and eventually vanish

at the P10 point after which the system enters into a gapped phase. Since this transition

from the F8 metal to the gapped phase does not happen through a band touching, the

Z2 invariant of the lower band remains unchanged across this transition and hence the

gapped phase is also topological insulator– the same free fermion SPT as in Fig. 9.1.

Turning to low SOC, the P2 point no longer has flat bands but now gains a dispersion

due to ⌧ 0m leading to a compensated metal of Fermi surface type F2 as shown in Fig. 9.3.

On moving from the point away from the P2 point along the ⌧m = 1 line, the F2 Fermi

surface transforms into a F8 type Fermi surface, which is then connected to the P3 point.

This F8 � F2 transition does not involve any band touching, but just a change of the

chemical potential and hence the F2 region of the phase diagram is also a topological

metal. On reducing the values of ⌧m from the point P2, the system encounters various

other metallic phases which have di↵erent Fermi surfaces (F9, F1, F12, F3 etc.). We find

that for all these phases, the bands crossing the Fermi energy always have a nontrivial

Z2 index. Thus, all the metals in this phase diagram are also topological metals.

Finally, on the line OP8, ⌧m = ⌧ 0m = 0 and hence the description of this line is the

same as in the phase diagram in Fig. 9.1. On the other hand, along the OP9 line (for

which �̃ = 0), the lowest band touches the upper band linearly at the K points. The

e↵ect of finite �̃ opens up gap at the K points and the system enters into the topological

gapped (gray shaded region).

9.1.4 The material phase diagram

Having discussed the minimal tight-binding model and the e↵ect of the sub-leading hop-

ping terms resulting in a rich single-particle phase diagram, we now turn to the regime

that may be most suited to the material parameters, except for the fluorides. To this end

we choose the representative hyperplane given by ⇢ = +1, r = 0.3, ⌧ 0m = �⌧m and vary

⌧m 2 (0, 1) and �̃ 2 (0,1).

The phase diagram in this parameter regime is shown in Fig. 9.4. Due to the comple-
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mentary e↵ects of the secondary direct and indirect hopping – tdd⇡ and tddm0 respectively

– the resultant phase diagram is in a way superposition of Figs. 9.3 and 9.2(a) such that

all the phases appearing in this case are gapless, perfectly compensated and have Fermi

surfaces with at least one partially filled band having non-trivial Z2 invariant.

Based on which particular band(s) carry non-trivial Z2, the phase diagram can be

demarcated by red, magenta and blue lines (see Fig. 9.4). The Z2 index for the lowest

band is non-zero for the region of the phase diagram which is in the right hand side of

the red solid line. On the other hand, the second lowest band has nontrivial Z2 index

for the regions of the phase diagram which are either left to the red solid line or right to

the magenta solid line. On the red line, the lowest and the second lowest bands touch

at the M point and the Z2 character of the two bands switch. On the magenta line, the

second lowest band touches the third lowest band and thus encounters another change

in Z2 character. The third lowest band, which crosses the Fermi energy only at the F1

region which is near the origin O, has non-trivial Z2 index for the region which is left to

the blue solid line in the phase diagram. On this blue line, the third lowest band touches

the fourth lowest band and encounters a change in Z2 character.

The positioning of the materials ZrX3, TiX3 and the HfX3 (X = Cl, Br) in the phase

diagram, based on the estimated parameters given in Table 9.1 is shown in zoomed plots

given in Fig. 9.4. Due to weaker SOC compared to the strength of leading hopping

interactions, the studied compounds are all placed towards the bottom of the phase dia-

gram. Given the fact, that tdd� (tddm) is significantly larger (smaller) in Zr/Hf compounds

compared to Ti compounds, as expected, Zr and Hf compounds are placed left to Ti com-

pounds. Given the similarity in electronic structure of Zr and Hf compounds (see Fig

.3), it is not surprising that they belong to the same F4 class, with Hf compounds lying

higher in position compared to Zr, due to stronger SOC. On the other hand, Ti com-

pounds belong to distinctly di↵erent F5 class. Systematically, bromine compounds lie

higher and right to chlorine compounds, due to stronger SOC and weaker direct hopping

strength, respectively.

The detailed Fermi surface(FS)s of the compensated, topological metallic phases of

the six compounds are shown in Fig. 9.5. The F4 type FS of ZrX3 and HfX3 compounds

is characterized by three disjoint Fermi pockets– two electron-like pocket around the two

K points and one hole-like pocket around the � point. On the other hand, the TiX3
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Figure 9.4: Phase diagram for ⇢ = +1, r = �0.3, ⌧ 0m = �⌧m with 0  ⌧m  1 and 0 
�̃  2.0. For �̃ > 2.0, the F8 phase continues to exist. The six di↵erent chloride/bromide
compounds are placed in this phase diagram, according to the estimated parameter values
of the low energy Hamiltonian (cf. Table 9.1), shown in the insets I, II and III. The
phase diagram is demarcated by the red, blue and magenta lines, according to the Z2

characters of the bands. See text for details.

compounds having F5-type FS, have two Fermi pockets, one electron-like and one hole-

like around the � point.

9.1.5 Nesting and Lifshitz transitions

A characteristic feature of some of the FSs in Fig. 9.5 are the flattish almost nested

sections – involving both intra and inter-pockets. This makes them particularly suscep-

tible to nesting instabilities in presence of electron-electron interactions at appropriate

wave-vectors. Our preliminary results indeed indicate enhanced susceptibilities in the

charge-density-wave channel due to such nesting. The detailed characterization of such

instabilities though require more accurate study particularly due to the intricate structure

of the FS’s involved.

Another feature of the phase diagram is the presence of plethora of Lifshitz phase

transitions [161, 162] between the variety of compensated metals (Fig. 9.4). These phase

transitions involving a change in the Fermi surface topology can be classified into two

broad categories [161, 164] – (1) pocket vanishing type associated with disappearance

of new segments of Fermi surface e.g., between F1 and F4 where the Fermi pockets

centered around the BZ corners appear– possibly relevant for Zr(Hf)Cl3 and Zr(Hf)Br3,

and, (2) neck collapsing type associated with merging of two segments of Fermi surfaces

e.g., the transition between F4 and F5 where two particle-like Fermi pockets develop a
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Figure 9.5: Fermi surfaces for (a) TiCl3, (b) TiBr3, (c) ZrCl3, (d) ZrBr3, (e) HfCl3,
(f) HfBr3. The (a) and (b) are F5-type Fermi surface while the rest are F4 type. The
blue dotted lines show hole-like Fermi surface and the solid indigo colored lines show
electron-like Fermi surface. The red line shows the boundary of the hexagonal BZ.
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neck that meets at the M points possibly relevant for TiCl3 and TiBr3. These transitions,

accessed, in the present case, by tuning the band parameters at a particular filling, occur

due to the change of the band-structure at the chemical potential. While the former

leads to a step function in the single-particle density of states, ⇢(✏� ✏F ) ⇠ ✓(✏� ✏F ), the

latter has a logarithmic singularity, i.e., ⇢(✏ � ✏F ) ⇠ � ln |✏ � ✏F | and hence has a van

Hove singularity arising from the vanishing Fermi velocity for the electrons on the Fermi

surface. This singular behavior can be reflected in thermodynamic measurements such

as magnetic susceptibility [164] as well as scaling of bipartite entanglement entropy [165].

Interestingly, the tuning of the band parameters can be achieved through bi-axial straining

which should be achievable considering the layered structure of the materials similar

to SrRuO4[166]. Considering about 2% compressive strain on ZrCl3, the direct dd�

hopping is found to enhance by about 20% while the indirect hopping is found to be

heavily suppressed, thereby conducive to triggering a F4 ! F1 transition. This may

be even easier for Hf compounds, which are even closer to the F4-F1 boundary. DFT

calculated FS for 1% strained Hf compound, indeed shows a F1 type [128]. Straining on

Ti compounds shows similar e↵ect, although the percentage change is found to be much

smaller. Therefore. such straining may be of interest in investigating the physics of the

Lifshitz transition.

9.2 ⇢ = -1 : Implication for Fluorides

Having discussed the situation with the chlorides and the bromides, we now turn to

fluorides, which as indicated above (cf Table 9.1) show markedly di↵erent electronic

structure. Furthermore, unlike chlorides and bromides, the tight-binding parameters for

fluorides show diverse behavior even among the 3d, 4d and 5d transition metals, the

parameters for Ti being rather di↵erent from that of Zr/Hf. This hinders providing

a universal framework to describe the three fluoride compounds, captured through a

common phase diagram, as was possible for chlorides and bromides. We thus concentrate

on the most striking di↵erence between Zr/Hf chlorides and bromides, and Zr/Hf fluorides,

namely the change in sign of the indirect hopping, tddm, captured by the parameter ⇢ in

Eq. 9.6. This a↵ects some of the basic conclusions stemming from the structure of the

minimal phase diagram, presented in Fig. 9.1. In the following, we thus confine ourselves
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Figure 9.6: ⌧m � �̃ phase diagram with ⇢ = �1, r = 0, ⌧ 0m = 0. The two gapped phases,
shaded as gray and cyan, as well as pink coloured lines in the phase diagram are identical
to those in Fig 9.1(a). The band structures on a typical point on the OP11 line is shown
in inset II. The inset I shows the band structure on the transition line between the
two gapped phases. Note that inset I shows only four bands since it is drawn for a
large value of �̃ where the four lower energy J = 3/2 orbitals are separated from the
higher energy J = 1/2 orbitals by a large energy separation. As opposed to Fig 9.1(a),
this phase diagram hosts two topological metallic phases, marked in lime-green and dark
green shades. The Fermi surfaces for the two metallic regions are shown by insets III
and IV .

to the ⌧m��̃ phase diagram, which determines the nature of the low energy single-particle

starting point for these materials, without delving into the complexity of the sub-leading

hopping like tdd⇡ and tddm. The obtained results are shown in Fig. 9.6, which should be

contrasted with Fig. 9.1(a).

First of all, we notice a similarity of the phase diagrams in Fig. 9.6 and Fig. 9.1(a),

especially for large �̃. This apparent similarity, however, hides an important contrast

that can be best understood as follows. Starting from the SU(8) limit, P3 in the present

case is a particle-hole inverted version of Fig. 9.1(a) due to the change in sign of tddm.

Thus, while the P3 still gives a SU(8) DSM with four 4-component Dirac points at � and

three M points, the associated spinors are not necessarily the same as in the previous

case, but are related to it via a microscopic particle-hole transformation. In fact, this

theory is therefore a particle-hole conjugate version of the SU(8) metal discussed in Ref.

[156] and hence the same mass analysis can be applied to the present case. It is for

this reason, we still have the same two gapped phases– the free fermion topological and

trivial band insulators on deviating away from the SU(8) semi-metal– resulting from the

two lattice singlet masses [156]. However, the di↵erence in the eigen modes due to the

132



change in sign becomes apparent at the transition between the two insulators, which now

is brought about by closing of the gap at the three M points on the line P3P14 while that

at the � point remains gapped– unlike in case for P3P1 line in Fig. 9.1(a). This leads to

an enlarged SU(6) internal symmetry for the NF = 3 free Dirac fermions on the P3P14

line (see Appendix A.10).

Another consequence of the above change in the nature of the spinors is the appearance

of additional compensated semi metals for lower values of �̃ around tdd� ⇠ tddm. The

corresponding Fermi surfaces are shown in insets III and IV . The lowest bands of these

metals have non-zero Z2 index on the closed region P11P12P14, while the upper band is

Z2-trivial. On the line P12P14, the lowest band touches the upper band at the M points

and the Z2 indices of these two bands switch. Thus, one of the bands of these metals

always has non-zero Z2 index and these are topological metals. On the P13P14 line, Fermi

pockets of the metals shrink to zero and the system enters the trivial insulating phase.

Hence, the change of sign of the indirect hopping makes the situation more favorable to

the topological metallic phase, which may be stabilized even without inclusion of sub-

leading hopping terms.
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Chapter 10

Summary

This doctoral thesis conducts a comprehensive investigation into the low-energy physics

of the d1 honeycomb materials in the presence of spin-orbit coupling (SOC). The first

part of the thesis focuses on the regime where the indirect hopping term tddm dominates

and the SOC strength is strong. In this limit, the low-energy theory is described by a

(2+1)-dimensional Dirac theory endowed with an enhanced SU(8) symmetry.

A key aspect of this theory is the non-trivial implementation of the microscopic sym-

metries on the low-energy spinor degrees of freedom arising because of strong SOC. In

the presence of short-range interactions, we identify 64 distinct gap-opening instabilities

of the Dirac theory. These instabilities are systematically classified according to their

transformation properties under the microscopic symmetries, resulting in the identifica-

tion of 24 distinct phases. The non-triviality of the symmetry implementation is reflected

in the nature of the phases obtained in this process.

These 24 phases are organized into three broad categories based on how they break

the SU(8) symmetry. Group-1 consists of two phases that break the chiral SU(2) symme-

try while preserving the flavor SU(4) symmetry. Group-2 encompasses all the generalized

quantum Hall phases which spontaneously break the flavor SU(4) symmetry while pre-

serving the chiral SU(2) symmetry. Group-3 comprises phases that break both the flavor

SU(4) and chiral SU(2) symmetries. The phases in this group include density waves, some

of which exhibit non-trivial topological properties. Remarkably, the non-trivial symme-

try implementation on the low-energy degrees of freedom gives rise to intriguing density

wave semi-metallic phases group-3, where certain fermionic bands remain gapless while

others acquire a gap, highlighting the profound consequences of the intricate symmetry
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realizations in these systems.

The thesis further explores several intriguing phase transitions. One finding is the

proposal that the condensation of skyrmions from the Te
1g octupolar quantum Hall phase

can lead to the realization of an unconventional charge-4e superconductor. Additionally,

the work unveils phases exhibiting unnecessary quantum critical points in the parameter

space, a phenomenon arising from the incompatibility of the mass matrices, which eventu-

ally comes about because of the non-trivial symmetry implementation. Furthermore, the

phase transition from the SU(8) symmetric Dirac semi-metal to the chiral stripy charge-

density wave phase is investigated within the mean-field approximation, which shows a

weakly first-order transition.

The second part of the thesis investigates the nearest-neighbor hopping model for d1

honeycomb materials in a generalized regime, considering the e↵ects of various hopping

parameters and spin-orbit coupling (SOC) strengths. The analysis adopts a system-

atic approach, gradually incorporating the di↵erent hopping terms one by one into the

Hamiltonian, enabling a comprehensive understanding of their individual and collective

impacts. While certain hopping parameters drive the system towards the gapped phases

identified in the first part of the study, the introduction of the additional hoppings and

the finite strength of SOC unveils a multitude of distinct metallic phases which are dis-

tinguished based on the topology of their Fermi surfaces. Using the DFT estimates for

some of the candidate materials, we also predict their position on the phase diagram.
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A.1 The microscopic details

A.1.1 The lattice

Similar to Kitaev materials [127], it is useful to consider the honeycomb lattice to lie

in the plane perpendicular to the [111] direction of the global Cartesian coordinates

(X, Y, Z) (see Fig. 2.1). Therefore the two orthogonal directions in the honeycomb plane

are spanned by

x̂ =
1p
2
(�X̂ + Ŷ ), ŷ =

1p
6
(2Ẑ � X̂ � Ŷ ) (A.1)

while

ẑ =
1p
3
(X̂ + Ŷ + Ẑ) (A.2)

is normal to the honeycomb plane. In this new coordinate system, the x, y, and z bonds

in these new coordinates are shown in Fig. 2.2.

The lattice vectors (with reference to Fig. 2.2) are

b1 =
3l

2
x̂+

p
3l

2
ŷ, b2 =

3l

2
x̂�

p
3l

2
ŷ (A.3)

A.1.2 E↵ective angular momentum of the t2g orbitals

The SOC Hamiltonian for an electron in the d-orbitals is given by

H(l=2)

soc = �l(2) · s, (A.4)

where �(> 0) is the strength of the SOC, l(2) are the l = 2 angular momentum matrices

and s are the spin angular momentum matrices. Projecting Hsoc to the t2g orbitals, we

have the e↵ective SOC Hamiltonian in the t2g sector given by

Hsoc = ��l · s, (A.5)

where the l are the l = 1 angular momentum generator matrices. The extra �ve sign

appears as a result of the projection. Thus, the t2g orbitals e↵ectively behave as l = 1
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states under rotations with

|lZ = 0i = |dXY i, |lZ = ±1i = � 1p
2
(i|dXZi± |dY Zi). (A.6)

Here, |dXY i , |dY Zi , |dZXi are the three t2g orbitals.

A.1.3 The j = 3/2 orbitals

In the presence of SOC, these six degenerate (including spin degeneracy) states split into

four with total angular momentum j = 3/2 and the other two with j = 1/2. The j = 3/2

states in terms of the t2g states are given by

|3/2i = 1p
2
(�|dY Z , "i � i|dZX , "i)

|1/2i = 1p
6
(�|dY Z , #i � i|dZX , #i+ 2|dXY , "i)

|� 1/2i = 1p
6
(|dY Z , "i � i|dZX , "i+ 2|dXY , #i)

|� 3/2i = 1p
2
(|dY Z , #i � i|dZX , #i) (A.7)

In terms of the second quantized operators, the inverse relations, when projected to

the j = 3/2 orbitals are

 †
�,x(r, s) =

�p
6

⇣
 †
"�̄(r, s)�

p
3 †

#�(r, s)
⌘

 †
�,y(r, s) =

ip
6

⇣
 †
"�̄(r, s) +

p
3 †

#�(r, s)
⌘

 †
�,z(r, s) =

r
2

3
 †
"�(r, s), (A.8a)

where on the LHS,  †
�,x(r, s), 

†
�,y(r, s), 

†
�,z(r, s) stand for the creation operators for the

|dY Z,�i, |dZX , �i, |dXY , �i orbitals respectively at the lattice sub-lattice site s of the unit

cell at r and � =", # are spin indices. The  †
"� and  †

#� in the RHS refer to the creations

operators in the j = 3/2 orbitals as [130]

( †
"", 

†
"#, 

†
#", 

†
##) = ( †

1/2, 
†
�1/2, 

†
3/2, 

†
�3/2). (A.9)

where �̄ =# (") for � =" (#).
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A.2 The Microscopic symmetries

The transformation of the t2g orbitals under lattice translation and TR are straightforward

and are given by

T1(2) :  �,↵(r, s) !  �,↵(r0, s0)

T :  �,↵(r, s) ! (◆�y
��0) �0,↵(r, s)

(A.10)

8 ↵ = x, y, z and � =", #, where r0 = T1(2) [r] as discussed in the main text.

For the point group symmetries listed in Table 2.1, the transformation of the t2g

orbitals have a generic form of

S :  †
�,↵(r, s) !  0†

�,↵(r, s) = [RS]�↵ 
†
�,�(r

0, s0). (A.11)

where S are the point group symmetry generators listed in Table 2.1 that takes (r0, s0) !

(r, s) on the honeycomb lattice. The form of the 3⇥3 matrices, RS for di↵erent symmetries

are :

RC3 =

0

BBB@

0 0 1

1 0 0

0 1 0

1

CCCA
,RS6 =

0

BBB@

0 1 0

0 0 1

1 0 0

1

CCCA
,RC0

2
=

0

BBB@

0 1 0

1 0 0

0 0 1

1

CCCA
, (A.12)

while

RI = I3, R�d
= RC0

2
. (A.13)

The transformation of the j = 3/2 orbitals (Eq. 2.24) under the action of the micro-

scopic symmetries can be obtained from the above relations. For TR, we have

 (r, s) ! i⌃13 K  (r, s). (A.14)

For the lattice symmetries (Table 2.1), similar to Eq. A.11, the transformation of

 (r, s) have the following generic form

S :  †
i (r, s) !  0†

i (r, s) = [US]ji  
†
j(r

0, s0). (A.15)
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The US are 4⇥ 4 unitary matrices which for di↵erent symmetries are

UT1 = UT2 = UI = I4, (A.16)

UC3 =
1

4

0

BBBBBB@

�1 + i �1� i �1�ip
3

�1+ip
3

1� i �1� i �1�ip
3

1�ip
3

�1+ip
3

1+ip
3

�1� i 1� i

1�ip
3

1+ip
3

�1� i �1 + i

1

CCCCCCA
,

(A.17)

US6 =
1

4

0

BBBBBB@

1 + i �1� i 1+ip
3

�1�ip
3

1� i 1� i �1+ip
3

�1+ip
3

1�ip
3

1�ip
3

1� i 1� i

1+ip
3

�1�ip
3

�1� i 1 + i

1

CCCCCCA
,

(A.18)

UC0
2
=

1p
2

0

BBBBBB@

0 �1 + i 0 0

1 + i 0 0 0

0 0 0 �1� i

0 0 1� i 0

1

CCCCCCA
, (A.19)

U�d
= UC0

2
. (A.20)

A.3 Relation between the j = 3/2 matrices and the ⌃

matrices generating SU(4)

Following reference [167], we define a basis for the set of 4-dimensional Hermitian matrices

using the SU(2) generators for spin-3/2. The three spin-3/2 matrices written in the Jz
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eigenbasis are the following:

Jx =

0

BBBBBB@

0 1
p
3

2
0

1 0 0
p
3

2
p
3

2
0 0 0

0
p
3

2
0 0

1

CCCCCCA
, (A.21)

Jy =

0

BBBBBB@

0 �i i
p
3

2
0

i 0 0 � i
p
3

2

� i
p
3

2
0 0 0

0 i
p
3

2
0 0

1

CCCCCCA
, (A.22)

Jz =

0

BBBBBB@

1

2
0 0 0

0 �1

2
0 0

0 0 3

2
0

0 0 0 �3

2

1

CCCCCCA
. (A.23)

Note that, instead of the standard practice, we have used a di↵erent ordering of the

Jz eigen-basis (see Eq. 2.24) to write these matrices which is evident from the form of

the Jz matrix in Eq. A.23. In our choice of basis, the hopping matrices of the lattice

Hamiltonian in Eq. 2.26 have a simpler form.

With the above matrices, one can define the following five Hermitian matrices:

⌃1 =
1p
3
{Jy, Jz}, (A.24a)

⌃2 =
1p
3
{Jz, Jx}, (A.24b)

⌃3 =
1p
3
{Jx, Jy}, (A.24c)

⌃4 =
1p
3
(J2

x � J2

y ), (A.24d)

⌃5 = J2

z � 5

4
I4, (A.24e)

with �⌃1⌃2⌃3⌃4⌃5 = I4 ⌘ ⌃0. The above five matrices satisfy

{⌃↵,⌃�} = 2�↵� (A.25)
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0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

rrr = even rrr = odd
S = B2 S = A1 S = B1 S = A2 S = B2 S = A1 S = B1 S = A2

⇢0(rrr S) +1 +1 +1 +1 +1 +1 +1 +1
⇢1(rrr S) +1 �1 +1 +1 �1 +1 �1 �1
⇢2(rrr S) +1 +1 �1 +1 �1 �1 +1 �1
⇢3(rrr S) +1 �1 �1 +1 +1 �1 �1 +1
⇢4(rrr S) +1 �1 +1 �1 +1 �1 +1 �1
⇢5(rrr S) +1 �1 +1 �1 +1 �1 1 �1
⇢12(rrr S) +1 �1 �1 +1 +1 �1 �1 +1
⇢13(rrr S) +1 +1 �1 +1 �1 �1 +1 �1
⇢14(rrr S) +1 +1 +1 �1 �1 �1 �1 +1
⇢15(rrr S) +1 +1 +1 �1 �1 �1 �1 +1
⇢23(rrr S) +1 �1 +1 +1 �1 +1 �1 �1
⇢24(rrr S) +1 �1 �1 �1 �1 +1 +1 +1
⇢25(rrr S) +1 �1 �1 �1 �1 +1 +1 +1
⇢34(rrr S) +1 +1 �1 �1 +1 +1 �1 �1
⇢35(rrr S) +1 +1 �1 �1 +1 +1 �1 �1
⇢45(rrr S) +1 +1 +1 +1 +1 +1 +1 +1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Table A.1: The values of ⇢i(rrr S) = ±1 defined in Eq. A.33 are written in this table.

and therefore generate a (Euclidean) Cli↵ord algebra [167]. The following 10 operators

⌃↵� =
1

2ı
[⌃↵,⌃�] (A.26)

then generate SO(5) rotations. Eq. A.24 and Eq. A.26 together define a basis for the

4-dimensional Hermitian matrices that generate SU(4).

The spin matrices can be written in terms of these ⌃i as

Jx =

p
3

2
⌃15 �

1

2
(⌃23 � ⌃14); (A.27)

Jy = �
p
3

2
⌃25 +

1

2
(⌃13 + ⌃24); (A.28)

Jz = �⌃34 �
1

2
⌃12 (A.29)

which generates an SU(2) subgroup of SU(4) with commutation relation

[Ji, Jj] = i✏ijkJk. (A.30)
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We now consider two kinds of lattice operators defined below

Oglobal
i (rrr S) =  †(rrr S)⌃i (rrr S), (A.31)

and

Olocal
i (rrr S) = �†(rrr S)⌃i�(rrr S), (A.32)

Using the relation between the  and the � operators given in Eq. 2.34, we find that

Olocal
i (rrr S) = ⇢i(rrr S)Oglobal

i (rrr S) (A.33)

where ⇢i(rrr S) = ±1. In table A.1, we write what ⇢i(rrr S) are for di↵erent S and rrr . In this

table, we assume the form of rrr as given in Eq. 2.32 which is

rrr = nxR1 + nyR2. (A.34)

We say rrr = even (odd) if (nx + ny) is even (odd).

A.4 The G(rrr S) matrices of transformation to mani-

festly SU(4) invariant local basis

The set of G(rrr S) matrices that lead to the form of ⌘(rrr S,rrr 0S0) is given in Eq. 2.37 is

written below. Here we again take rrr to be of the form as in Eq. A.34.

For (nx + ny) =even :

G(rrr B2) = (�1)
nx�ny

2

G(rrr A1) = (�1)
nx�ny

2 Uy

G(rrr B1) = (�1)
nx�ny

2 UzUy

G(rrr A2) = (�1)
nx�ny

2 UxUzUy (A.35)
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And for (nx + ny) =odd :

G(rrr B2) = (�1)
nx�ny+1

2 UxUy

G(rrr A1) = (�1)
nx�ny+1

2 (�Ux)

G(rrr B1) = (�1)
nx�ny+1

2 (�UzUx)

G(rrr A2) = (�1)
nx�ny+1

2 Uz (A.36)

Although we will be using this particular form, there are other choices for the G(rrr S)
matrices which lead to same form for the ⌘(rrr S,rrr 0S0).
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A.5 Low-energy Hamiltonian

A.5.1 Band structure

To diagonalize the Hamiltonian given by Eq. 2.35, we define Fourier space operators

�f (k,S) =
1p
N

X

rrr
eik·rrr�f (rrr S) (A.37)

where N is the total number of magnetic unit-cells, f = 1, 2, 3, 4 are the four SU(4)

flavours and k runs over the magnetic Brillouin zone (Fig. 3.1).

In terms of these Fourier space operators, the Hamiltonian in Eq. 2.35 can now be

written as

H = � tp
3

4X

f=1

X

k

X

S,S0

�f (k,S) [h(k)]SS0 �f (k,S
0)

(A.38)

where

h(k) =

0

BBBBBB@

0 1 + e�ik·R2 0 e�ik·R1

1 + eik·R2 0 1 0

0 1 0 1� eik·R2

eik·R1 0 1� e�ik·R2 0

1

CCCCCCA

(A.39)

Diagonalizing the h(k) matrix, we get the band structure shown in Fig. 3.1.

A.5.2 The low energy Dirac Hamiltonian

At 1/4th filling, the valence band touches the conduction band at two Dirac points in

the BZ given by Eq. 3.1. To get the low-energy Hamiltonian, we first write the �(rrr S)
operators in terms of the soft modes �fS⌧ as

�f (rrr S) = p
A
X

⌧=±1

ei⌧Q·rrr�fS⌧ (rrr ). (A.40)
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Here, rrr (defined in Eq. 2.32) denotes position of a particular magnetic unit cell and A is

the area of a single magnetic unit cell. The �fS⌧ (rrr ) operators are defined for each valley

(⌧ = ±1 labels the valleys) as

�fS⌧ (rrr ) = 1p
A

X

q

eiq·rrr�f (⌧Q+ q,S). (A.41)

In the above summation, q runs over half of the magnetic Brillouin zone for each ⌧ such

that the Dirac point ⌧Q is contained in that half. These �fS⌧ fields vary slowly over the

magnetic unit cells.

Now to get the low-energy Hamiltonian, we use the form of �(rrr S) as in Eq. A.40 to

rewrite the Hamiltonian in Eq. 2.35 in terms of the �fS⌧ (rrr ) operators. We also use the

following expansion for �fS⌧ :

�fS⌧ (rrr + ~�) = �fS⌧ (rrr ) + ~� ·r�fS⌧ (rrr ) +O(�2). (A.42)

Here, ~� can be some magnetic translation vector (R1 or R2). The soft-mode continuum

Hamiltonian is then obtained by rewriting the Hamiltonian in Eq. 2.35 using the above

expression and keeping terms that are linear in the derivative. The final form of the

Hamiltonian is given below in Eq. A.43.

H =
4X

f=1

X

⌧=±1

X

S,S0=A1,A2,B1,B2

Z
d2x �†

fS⌧ (x)
h
h(⌧)
0

� i⌧hx@x � i⌧hy@y
i

SS0
�fS0⌧ (x) .

(A.43)

where,

h(⌧)
0

= � tlp
3

0

BBBBBB@

0 1 + i⌧ 0 �i⌧

1� i⌧ 0 1 0

0 1 0 1 + i⌧

i⌧ 0 1� i⌧ 0

1

CCCCCCA
, hx =

tlp
3

0

BBBBBB@

0 0 0 3

0 0 0 0

0 0 0 0

3 0 0 0

1

CCCCCCA
,

hy =
tlp
3

0

BBBBBB@

0 �
p
3 0 0

�
p
3 0 0 0

0 0 0
p
3

0 0
p
3 0

1

CCCCCCA
, (A.44a)
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where l is the length of each side of a hexagon of the honeycomb lattice.

As because the system is at 1/4th filling, we need to further project this Hamiltonian

into the lowest two bands to get the low energy theory. For this, we take the eigenvectors

corresponding to the lowest two eigenvalues of h(⌧)
0

and project hx, hy into the subspace

of these two eigenvectors. This way of projecting the Hamiltonian is correct up to linear

order in derivatives, which is su�cient in this case since the Hamiltonian A.43 is also

linear in derivatives.

With this, the final form of the low-energy Dirac Hamiltonian is the following

HD = vF

4X

f=1

X

⌧=±1

Z
d2x

2X

↵,�=1

�†
f↵⌧ (x) [�i⌧�x@x � i�y@y]↵� �f�⌧ (x)

(A.45)

Here, vF = tlp
2
and �x, �y, �z are the three Pauli matrices. Also the operators �f↵⌧ (x) are

defined as

�f↵⌧ (x) =
X

S=A1,A2,B1,B2

W
(⌧)†
S↵ �fS⌧ (x). (A.46)

which is the inverse of Eq. 3.2 of the main text.

In the above equation,

W
(⌧)†
S↵ =

2X

�=1

[W⌧ ]↵�[T⌧ ]�S. (A.47)

Here,

T⌧ =

0

@
i⌧p
2

�1�i⌧p
6

0 1p
6

0 1p
6

1p
2

1+i⌧p
6

1

A (A.48)

projects the annihilation operators to the lowest two bands. The matrices

W⌧ =
h
exp

⇣
�i⌧✓

�x
2

⌘
exp

⇣
�i⌧

⇡

4

�z
2

⌘i
(A.49)

with ✓ = cos�1( 1p
3
) are used to perform some extra unitary rotations on the spinors to

bring the Dirac Hamiltonian in its canonical form.
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A.6 Symmetry transformation of the soft modes

A.6.1 Action of lattice symmetry transformations on �(rrr S) op-
erators

The transformation properties of the soft modes �(x) under the action of lattice symme-

tries can be determined from that of the original j = 3/2 operators  (r, s) as given in

Eq. A.14-A.19. Using these, the transformations of the �(rrr S) operators are obtained as

follows

S : �†
f (rrr S) ! �0†

f (rrr S) = ⇥G(rrr S)† US G(rrr 0S0)
⇤
f 0f
�†
f 0(rrr 0S0). (A.50)

Here, the site at rrr 0S0 goes to rrr S under the action of the lattice symmetry S.

Using this, one can now derive the transformations of the soft modes �(x) which are

defined in terms of the Fourier transforms of the �(rrr S) operators(Eq. A.46). Below we

provide some details of the transformations of both the �(rrr S) and the �(x) operators un-

der the action of various lattice symmetries. For �(rrr S), we write down how the operators

in a particular magnetic unit cell at rrr transform where

rrr = nxR1 + nyR2. (A.51)

with nx, ny being integers.

Transformation under translations T1 and T2: Under the action of T1,

�(rrr B2) ! (�1)(nx+ny)

h
⌦f

T1

i
�( (rrr �R1 �R2)B1 ),

�(rrr A1) ! (�1)(nx+ny+1)

h
⌦f

T1

i
�((rrr �R1)A2),

�(rrr B1) ! (�1)(nx+ny+1)

h
⌦f

T1

i
�(rrr B2),

�(rrr A2) ! (�1)(nx+ny+1)

h
⌦f

T1

i
�((rrr �R2)A1),

(A.52)
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where,

⌦f
T1

= �i⌃23. (A.53)

Similarly, under the action of T2,

�(rrr B2) ! (�1)(nx+ny)

h
⌦f

T2

i
�((rrr �R1)B1)

�(rrr A1) ! (�1)(nx+ny+1)

h
⌦f

T2

i
�((rrr �R1 +R2)A2)

�(rrr B1) ! (�1)(nx+ny+1)

h
⌦f

T2

i
�((rrr +R2)B2)

�(rrr A2) ! (�1)(nx+ny+1)

h
⌦f

T2

i
�(rrr A1). (A.54)

where

⌦f
T2

= i⌃13. (A.55)

Transformation under C0
2: Under a C0

2 rotation,

�(rrr B2) ! (�1)nx

h
⌦f

C0
2

i
�(rrr 0B2

)

�(rrr A1) ! (�1)nx

h
⌦f

C0
2

i
�((rrr 0 �R2)A1)

�(rrr B1) ! (�1)nx

h
⌦f

C0
2

i
�((rrr 0 �R2)B1)

�(rrr A2) ! (�1)nx+1

h
⌦f

C0
2

i
�(rrr 0A2

) (A.56)

Here,

rrr 0 = nxR1 � nyR2, (A.57)

and

⌦f
C0

2
=

ip
2
(⌃14 � ⌃24) . (A.58)

Transformation under C3: Under the action of C3 rotation, transformation of the

�(rrr ) operators are given below.
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Sublattice (nx + ny) = even (nx + ny) = odd

�(rrr B2) ! (�1)nx [⌦f
C3

] � ( (C3[rrr ])B1 ) (�1)nx [⌦f
C3

] � ( (C3[rrr ])B2 )

�(rrr A1) ! (�1)nx [⌦f
C3

] � ( (C3[rrr ])A2 ) (�1)nx [⌦f
C3

] � ( (C3[rrr ]�R2)A1 )

�(rrr B1) ! (�1)nx+1[⌦f
C3

] � ( (C3[rrr ]�R2)B1 ) (�1)nx [⌦f
C3

] � ( (C3[rrr ]�R2)B2 )

�(rrr A2) ! (�1)nx+1[⌦f
C3

] � ( (C3[rrr ]�R2)A1 ) (�1)nx [⌦f
C3

] � ( (C3[rrr ]�R1 �R2)A2 )

Here

C3[rrr ] =
8
><

>:

�nx+ny

2
R1 � 3nx+ny

2
R2 if nx + ny = even

�nx+ny+1

2
R1 � 3nx+ny�1

2
R2 if nx + ny = odd

(A.59)

and

⌦f
C3

=
1

4

⇣
⌃0 �

p
3⌃1 �

p
3⌃2 +

p
3⌃3 � i⌃12 � i⌃13 + i⌃23 + i

p
3⌃45

⌘
. (A.60)

Transformation under S6: Transformation of �(rrr S) operators under the action of S6

are as follows

(nx + ny) = even (nx + ny) = odd

�(rrr B2) ! (�1)
nx+ny

2 [⌦f
S6
] � ( (S6[rrr ])A1 ) (�1)

nx+ny+1
2 [⌦f

S6
] � ( (S6[rrr ])A2 )

�(rrr A1)! (�1)
nx+ny

2 [⌦f
S6
] � ( (S6[rrr ])B1 ) (�1)

nx+ny+1
2 [⌦f

S6
] � ( (S6[rrr ] +R1)B2 )

�(rrr B1)! (�1)
nx+ny

2 [⌦f
S6
] � ( (S6[rrr ])A2 ) (�1)

nx+ny+1
2 [⌦f

S6
] � ( (S6[rrr ] +R1 �R2)A1 )

�(rrr A2)! (�1)
nx+ny

2 +1[⌦f
S6
] � ( (S6[rrr ]�R2)B1 ) (�1)

nx+ny+1
2 [⌦f

S6
] � ( (S6[rrr ] +R1 �R2)B2 )

(A.61)

Here,

S6[rrr ] =
8
><

>:

nx+ny

2
R1 � 3nx�ny

2
R2 if nx + ny = even

nx+ny�1

2
R1 � 3nx�ny�1

2
R2 if nx + ny = odd

(A.62)
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and

⌦f
S6

= �1

4

⇣p
3⌃0 + ⌃1 + ⌃2 � ⌃3 + i

p
3⌃12

+i
p
3⌃13 � i

p
3⌃23 + i⌃45

⌘
(A.63)

Transformation under I : Under inversion,

�(rrr B2) ! (�1)nx+ny+1

h
⌦f

I

i
� ( (I[rrr ])A2 )

�(rrr A1) ! (�1)nx+ny

h
⌦f

I

i
� ( (I[rrr ]�R2)B1 )

�(rrr B1) ! (�1)nx+ny

h
⌦f

I

i
� ( (I[rrr ]�R2)A1 )

�(rrr A2) ! (�1)nx+ny

h
⌦f

I

i
� ( (I[rrr ])B2 ) (A.64)

where

I[rrr ] = �nxR1 � nyR2, (A.65)

and

⌦f
I = i⌃45. (A.66)

Transformation under �d: Under the action of reflection,

�(rrr B2) ! (�1)ny
⇥
⌦f

�d

⇤
� ( (�d[rrr ])A2 )

�(rrr A1) ! (�1)ny
⇥
⌦f

�d

⇤
� ( (�d[rrr ])B1 )

�(rrr B1) ! (�1)ny
⇥
⌦f

�d

⇤
� ( (�d[rrr ])A1 )

�(rrr A2) ! (�1)ny
⇥
⌦f

�d

⇤
� ( (�d[rrr ])B2 ) (A.67)

where

�d[rrr ] = �nxR1 + nyR2, (A.68)
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and

⌦f
�d

=
ip
2
(⌃15 � ⌃25) . (A.69)

A.6.2 Transformation of the �(x) operators under lattice sym-

metries

Under the microscopic time-reversal, we have

T : �(x) !
⇣
⌦f

T ⌦ ⌦c
T

⌘
K �(x), (A.70)

where

⌦f
T = i⌃13, (A.71)

⌦c
T = �1⇣2. (A.72)

and K represents complex conjugation.

Under the action of T1(2),

T1(2) : �(x) !
⇣
⌦f

T1(2)
⌦ ⌦c

T1(2)

⌘
�(x). (A.73)

where,

⌦f
T1

= �i⌃23. (A.74)

⌦c
T1

= �i⇣3. (A.75)

and

⌦f
T2

= i⌃13, (A.76)

⌦c
T2

= �i⇣2 (A.77)

The superscripts f and c in ⌦f
T1
,⌦c

T1
stand for “flavor” and “chiral” respectively since

these matrices act on the SU(4) flavor space and the chiral space.
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Under the action of C0
2,

C0
2 : �(x) !

⇣
⌦f

C0
2
⌦ ⌦c

C0
2

⌘
�(C2

0�1x).

(A.78)

where,

⌦f
C0

2
=

ip
2
(⌃14 � ⌃24) (A.79)

⌦c
C0

2
=

1p
2
�2(⇣3 � ⇣2). (A.80)

Under the action of C3, the soft modes transform in the following way:

C3 : �(x) !
⇣
⌦f

C3
⌦ ⌦c

C3

⌘
�(C3

�1x). (A.81)

Here,

⌦f
C3

=
1

4

⇣
⌃0 �

p
3⌃1 �

p
3⌃2 +

p
3⌃3 � i⌃12

�i⌃13 + i⌃23 + i
p
3⌃45

⌘
, (A.82)

and

⌦c
C3

=
1

4

⇣
�I4 + i

p
3�0
⌘
(I4 + i⇣1 + i⇣2 + i⇣3) (A.83)

Under S6, the soft modes transform in the following way:

S6 : �(x) !
⇣
⌦f

S6
⌦ ⌦c

S6

⌘
�(S6

�1x). (A.84)

Here,

⌦f
S6

= �1

4

⇣p
3⌃0 + ⌃1 + ⌃2 � ⌃3 + i

p
3⌃12

+i
p
3⌃13 � i

p
3⌃23 + i⌃45

⌘
(A.85)
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and

⌦c
S6

=
1

4

⇣p
3I4 � i�0

⌘
(I4 � i⇣1 � i⇣2 � i⇣3) (A.86)

Under the action of inversion,

I : �(x) !
⇣
⌦f

I ⌦ ⌦c
I

⌘
�(�x). (A.87)

where,

⌦f
I = i⌃45, (A.88)

⌦c
I = i�0 (A.89)

Under the action of �d,

�d : �(x) !
�
⌦f

�d
⌦ ⌦c

�d

�
�(�d

�1x).

(A.90)

where,

⌦f
�d

=
ip
2
(⌃15 � ⌃25) (A.91)

⌦c
�d

=
1p
2
�1(⇣2 � ⇣3). (A.92)

A.7 Irreducible representations of the IR space group

As mentioned in the main text, the IR space group has total 96 elements and these can

be divided into 20 conjugacy classes. So, there are 20 irreducible representations of the

IR space group. Among these, 10 have +ve trace for 2⇡ rotations. In the tables A.2, A.3,

A.4, we write down these irreducible representations by showing how fermions bilinears

in Eq. 4.2 (which we symbolically denote as X1, X2, X3 etc) transform.
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Irrep mass T1 T2 I C3 S6 C0
2 �d

A1g X ! X X X X X X X
A2g X ! X X X X X �X �X
A1u X ! X X �X X �X X �X
A2u X ! X X �X X �X �X X

Table A.2: List of 1-dimensional irreps of the IR space group

Irrep mass T1 T2 I C3 S6 C0
2 �d

Eg X1 ! X1 X1 X1 �X1
2
+

p
3X2
2

�X1
2
�

p
3X2
2

�X1 �X1

X2 ! X2 X2 X2 �
p
3X1
2

� X2
2

p
3X1
2

� X2
2

X2 X2

Eu X1 ! X1 X1 �X1 �X1
2
+

p
3X2
2

X1
2
+

p
3X2
2

�X1 X1

X2 ! X2 X2 �X2 �
p
3X1
2

� X2
2

�
p
3X1
2

+ X2
2

X2 �X2

Table A.3: List of 2-dimensional irreps of the IR space group

Irrep mass T1 T2 I C3 S6 C0
2 �d

T1g X1 ! �X1 �X1 X1 X3 �X2 X1 X1

X2 ! X2 �X2 X2 �X1 �X3 �X3 �X3

X3 ! �X3 X3 X3 �X2 X1 �X2 �X2

T2g X1 ! �X1 �X1 X1 X3 �X2 �X1 �X1

X2 ! X2 �X2 X2 �X1 �X3 X3 X3

X3 ! �X3 X3 X3 �X2 X1 X2 X2

T1u X1 ! �X1 �X1 �X1 X3 X2 X1 �X1

X2 ! X2 �X2 �X2 �X1 X3 �X3 X3

X3 ! �X3 X3 �X3 �X2 �X1 �X2 X2

T2u X1 ! �X1 �X1 �X1 X3 X2 �X1 X1

X2 ! X2 �X2 �X2 �X1 X3 X3 �X3

X3 ! �X3 X3 �X3 �X2 �X1 X2 �X2

Table A.4: List of 3-dimensional irreps of the IR space group

A.8 Determination of broken symmetry group

For the first To
1u triplet given by Eq. 7.21 in the main text, at a generic point on the

sphere in Fig. 6.2 such as C or D, the corresponding R matrix (introduced in Eq. 7.26),

when diagonalised, has the form

R =

0

BBBBBB@

a1�3

a2�3

a3�3

a4�3

1

CCCCCCA
. (A.93)
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Here a1, · · · , a4 are four real numbers which are not equal to each other. There are seven

linearly independent matrices that commute with R in the above equation. These are

0

BBBBBB@

�0

��0
�0

��0

1

CCCCCCA
,

0

BBBBBB@

�0

��0
0

0

1

CCCCCCA
,

0

BBBBBB@

0

0

�0

��0

1

CCCCCCA
,

0

BBBBBB@

0

�3

0

0

1

CCCCCCA
,

0

BBBBBB@

�3

0

0

0

1

CCCCCCA
,

0

BBBBBB@

0

0

�3

0

1

CCCCCCA
,

0

BBBBBB@

0

0

0

�3

1

CCCCCCA

All these matrices commute with each other and hence these generate a subgroup of

SU(8) which contains seven mutually commuting U(1) groups. Thus, the SU(8) at a

general point on the sphere is broken down to [U(1)]7.

For the points on the three great circles obtained by setting one of the �i to zero, the

corresponding R matrix for the masses look like

R =

0

BBBBBB@

a1�3

a1�3

a3�3

a3�3

1

CCCCCCA
. (A.94)

There are 15 linearly independent matrices that commute with this R which form a U(1)

⌦ [U(1) ⌦ SO(4)]2 of the SU(8).

Finally, at the special eight points where all the �is have equal magnitude such as

point B on the sphere in Fig. 6.2, the R matrix has the following form

R =

0

BBBBBB@

a1�3

a1�3

a3�3

0

1

CCCCCCA
. (A.95)
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The SU(8) symmetry group at these points breaks down to U(1) ⌦ SO(4) ⌦ U(1) ⌦ U(1)

⌦ U(2).

A.9 Basis transformation for the density wave semimet-

als

In Eq. 7.35, the 16⇥ 16 matrix U is given by Eq. A.96.

U =
1p
2

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 �i i 0 0 0
0 0 0 0 0 0 0 0 0 0 i 0 0 i 0 0
�i 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0
0 �i 0 0 0 0 �i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0
0 0 0 0 0 0 0 0 0 0 �i 0 0 i 0 0
i 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0
0 i 0 0 0 0 �i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 �i 0 0 0 0 0 0 i
0 0 0 0 0 0 0 0 0 �i 0 0 0 0 �i 0
0 0 0 �i i 0 0 0 0 0 0 0 0 0 0 0
0 0 i 0 0 i 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 i
0 0 0 0 0 0 0 0 0 i 0 0 0 0 �i 0
0 0 0 i i 0 0 0 0 0 0 0 0 0 0 0
0 0 �i 0 0 i 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

. (A.96)

A.9.1 The structure of the density wave semimetal masses

In terms of internal symmetry transformations, the 18 density wave semimetals can be

divided up into two categories depending on whether the number of gapless fermionic

modes changes depending on the particular linear combination of the mass term

X

i

�i�̄mi�, (A.97)

where i sums over the appropriate number of components depending on the dimension of

the irreducible representation. The first class where the number of gapless modes remains

unchanged for all values of �i consists of eight masses belonging to the two singlets (of

�-DSM type) and two triplets (of M-DSM type). They respectively make up :
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• A0

1u andAo
2u (Eqs. 7.31 and 7.32) : Staggered spin-octupole density wave semimetal.

• To
1g (Eq. 7.47) : Stripy spin-octupole density wave semimetal

• Te
2g (Eq. 7.55) : Stripy spin-quadrupole density wave semimetal.

The second class involves the rest of the 10 masses (of �-DSM type) whose number

of gapless modes changes as one tunes �i. These consist of two doublets and two triplets

given by

• To
2g (Eq. 7.50) : Stripy spin-octupolar density wave semimetal.

• Te
1g (Eq. 7.57) : Stripy spin-quadrupolar density wave semimetal.

• Ee
g (Eq. 7.60) : Ferro spin-quadrupole density wave semimetal.

• Eo
g (Eq. 7.64) : Ferro spin-octupole density wave semimetal.

For the first class, leaving out the two singlets the six masses in the To
1g and Te

2g repre-

sentations form a reducible representation of a SO(4) subgroup of the low-energy SU(8).

This SO(4)(⌘ SU(2)⌦ SU(2)) subgroup is generated by the following six generators:

g+

1
=

1

2

⇣
µ6⌃̃15 � µ7⌃̃5

⌘
(A.98a)

g+

2
=

1

2

⇣
µ14⌃̃15 � µ13⌃̃5

⌘
(A.98b)

g+

3
=

1

2
µ11

⇣
⌃̃1 � ⌃̃0

⌘
(A.98c)

g�
1
=

1

2

⇣
�µ6⌃̃15 � µ7⌃̃5

⌘
(A.98d)

g�
2
=

1

2

⇣
�µ14⌃̃15 � µ13⌃̃5

⌘
(A.98e)

g�
3
=

1

2
µ11

⇣
⌃̃1 + ⌃̃0

⌘
(A.98f)

The g+

i and g�
i separately satisfy su(2) algebra which we call as su(2)+ and su(2)�

respectively. Also, these two su(2)s commute with each other, i.e., [g+

i , g
�
j ] = 0 8i, j.

Now we form the following linear combinations of the masses in the To
1g and Te

2g triplets

:

m+

i = (Te
2g)i � (To

1g)i (A.99a)

m�
i = (Te

2g)i + (To
1g)i, (A.99b)
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for i = 1, 2, 3. Here (To
1g)i, (T

e
2g)i are the masses in the triplets To

1g and Te
2g. The m+

i

(m�
i ) masses transform in spin-1 (spin-0) representation under the action of su(2)+ and

in spin-0 (spin-1) representation under su(2)�. Thus, the six masses in the two triplets

transform in (1, 1) representation under the action of the SO(4).

It is interesting to note that the m+

i masses go to m�
i under the action of the micro-

scopic time-reversal (TR). Thus, TR symmetry enforces the two representations of SO(4)

to mix resulting in the two triplets resulting in the TR even and odd spin-quadrupole

and spin-octupole phases respectively.

For the second group, the ten masses making up the two doublets (Ee
g,E

o
g) and two

triplets (Te
1g,T

o
2g) mix among themselves and actually form a (2, 2) representation of the

SO(4) in Eq. A.98a. This is easy to see by writing the 10 masses in two sub-groups each

consisting of five masses as

m̃+

i = (Te
1g)i � (To

2g)i 8 i = 1, 2, 3, (A.100a)

m̃+

4
= (Ee

g)1 � (Eo
g)1 (A.100b)

m̃+

5
= (Ee

g)2 � (Eo
g)2 (A.100c)

and

m̃�
i = (Te

1g)i + (To
2g)i 8 i = 1, 2, 3, (A.101a)

m̃�
4
= (Ee

g)1 + (Eo
g)1 (A.101b)

m̃�
5
= (Ee

g)2 + (Eo
g)2 (A.101c)

The first (second) sub-group of masses, m̃+

i (m̃
�
i ) transforms as a spin-2(0) represen-

tation under su(2)+ and in spin-0 (spin-2) representation under su(2)�.

A.10 Analysis in the global basis

As mentioned in the main text, Bloch diagonalizing the Hamiltonian in global basis (Eq.

2.26) obtains four bands arising from the four j = 3/2 orbitals (Eq. 2.24) and each

two-fold degenerate due to inversion symmetry. The first set of bands touches the second

set of bands at four distinct points with a Dirac cone structure, see Fig. A.1. With 1/4th
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filling of the bands, the chemical potential is tuned to the Dirac points at the four Qg

vectors, �, M1, M2, M3 termed as valleys, in the original honeycomb lattice Brillouin

zone.

Following an approach similar to that adopted in the main text, the IR physics can

be obtained by expanding in terms of the four Dirac modes at quarter filling; one obtains

four flavours of two component Dirac fermions �g;⌫(x) where ⌫(= �,M1,M2,M3) refers to

the four valleys (Fig. A.1). Combining them together, we get the 16-component Dirac

spinor

�g((x)) = (�T
g�(x), �T

gM1
(x), �T

gM2
(x), �T

gM3
(x))T (A.102)

in the global basis. This should be contrasted with the 16-component spinor in the local

basis obtained by stacking the four 4-component spinors in Eq. 3.4. The low-energy

action in the global basis reads

Lg = vF �̄g(�i/@)�g (A.103)

repeated are summed over the spatial directions. The gamma matrices in the global basis

are

�0g = M0003, �
1

g = M0002, �
2

g = �M0001 (A.104)

with

Mµ⌫⇢⌧ = �µ�⌫�⇢�⌧ , µ, ⌫, ⇢, ⌧ 2 {0, 1, 2, 3} (A.105)

where �µ are the Pauli matrices �0 = 12⇥2, �1 = �x, �2 = �y and �3 = �z. The Dirac

action obtained from Eq. (A.103) has an emergent global SU(8) symmetry, much like

in the local basis. However, the crucial point is that the SU(4) symmetry of the trans-

formed microscopic Hamiltonian in the local basis does not directly manifest in the Dirac

lagrangian Eq. (A.103). This is the reason why we choose to represent the relevant ma-

trices Mµ⌫�⌧ using the products of Pauli matrices as in Eq. (A.105), as there is no natural

choice of flavor and chiral spaces in the global basis. Despite the burden of this additional

notation, we will see that the global formulation provides key insights, particularly the

semimetallic phases obtained in the main text.

The Dirac action obtained from Eq. (A.103) is invariant under the space group sym-

metry operations S, the global basis spinors transform as �g(x) ! ⌦S�g(S�1x). The
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matrices matrices ⌦S are obtained as (analogous to that discussed in appendix A.6.2 )

⌦C3
=

1

16

⇣
�M0000 � i

p
3M0003 + i

p
3M0010 � 3M0013 +

p
3M0120 + 3iM0123 +M0130 + i

p
3M0133

+ i
p
3M0220 � 3M0223 + iM0230 �

p
3M0233 �M0300 � i

p
3M0303 + i

p
3M0310 � 3M0313

+
p
3M1020 + 3iM1023 �M1030 � i

p
3M1033 +M1100 + i

p
3M1103 + i

p
3M1110 � 3M1113

� iM1200 +
p
3M1203 +

p
3M1210 + 3iM1213 �

p
3M1320 � 3iM1323 +M1330 + i

p
3M1333

� i
p
3M2020 + 3M2023 + iM2030 �

p
3M2033 + iM2100 �

p
3M2103 �

p
3M2110 � 3iM2113

+M2200 + i
p
3M2203 + i

p
3M2210 � 3M2213 + i

p
3M2320 � 3M2323 � iM2330 +

p
3M2333

�M3000 � i
p
3M3003 + i

p
3M3010 � 3M3013 �

p
3M3120 � 3iM3123 �M3130 � i

p
3M3133

� i
p
3M3220 +3M3223 � iM3230 +

p
3M3233 �M3300 � i

p
3M3303 + i

p
3M3310 � 3M3313

⌘

⌦�d =�1

2
i (M0322 �M1122 �M2222 +M3022), ⌦C0

2

=
1

2
i (M0331 +M1131 +M2231 +M3031),

⌦I =�M3313,

⌦S6
=

1

16

⇣
3M0000 � i

p
3M0003 + i

p
3M0010 +M0013 +

p
3M0120 � iM0123 � 3M0130 + i

p
3M0133

+ i
p
3M0220 +M0223 � 3iM0230 �

p
3M0233 + 3M0300 � i

p
3M0303 + i

p
3M0310 +M0313

+
p
3M1020 � iM1023 + 3M1030 � i

p
3M1033 � 3M1100 + i

p
3M1103 + i

p
3M1110 +M1113

+ 3iM1200 +
p
3M1203 +

p
3M1210 � iM1213 �

p
3M1320 + iM1323 � 3M1330 + i

p
3M1333

� i
p
3M2020 �M2023 � 3iM2030 �

p
3M2033 � 3iM2100 �

p
3M2103 �

p
3M2110 + iM2113

� 3M2200 + i
p
3M2203 + i

p
3M2210 +M2213 + i

p
3M2320 +M2323 + 3iM2330 +

p
3M2333

+ 3M3000 � i
p
3M3003 + i

p
3M3010 +M3013 �

p
3M3120 + iM3123 + 3M3130 � i

p
3M3133

� i
p
3M3220 �M3223 + 3iM3230 +

p
3M3233 + 3M3300 � i

p
3M3303 + i

p
3M3310 +M3313

⌘
,

⌦T1
= M0300, ⌦T2

= M3000, ⌦T = iM0032.

(A.106)

An important feature here is that �g transforms under the action of S such that the space

of spinors �g� is an invariant subspace, i. e., symmetry transformations do not mix �g�

with any other �g⌫ , ⌫ 2 {M1,M2,M3}.

We now see that any fermion bilinear of the form

�i�̄g�
0

gMµ⌫⇢3�g (A.107)
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•M2
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Figure A.1: Brillouin zone and band structure in the global basis. Each of the four bands
indicated in a di↵erent color are twofold degenerate. At quarter filling, distinct Dirac
cones appear at four points (valleys) �, M1, M2, M3. The light blue plane indicates the
chemical potential at quarter-filling.

described by a mass matrix Mµ⌫⇢3, µ, ⌫, ⇢ 2 {0, 1, 2, 3} which anticommutes with �1g and

�2g , gaps out the Dirac fermions. The 64 masses can be classified by the irreducible rep-

resentations of the space group using the fact that the masses Mµ⌫⇢3 transform adjointly

under the action of the operations Eq. (A.106). On carrying out the classification of mass

terms according to the irreducible representations of the space group, the analysis based

on the global basis produces identical results as those in tables. 4.3 to 4.6.

The global basis o↵ers illuminating insights into understanding the phases, particu-

larly the semimetallic ones. Central to this is the fact that symmetry operations S do not

mix �g� with any other �g⌫ , ⌫ 2 {M1,M2,M3}. Thus, a spinor can be decomposed into

�g = P��g| {z }
�g�

+(1� P�)�g| {z }
�gM

(A.108)

where the operator P� projects a general spinor to the valley �. The space of spinors �g�

carries some irreps Da (in the fundamental representation) of the space group labeled by

index a. Similarly, the space of spinors �gM (spinors belonging to valleys M1,M1,M1) may

be decomposed into space group irreps Db labelled by b. Also, the adjoint representation

on the space of masses is decomposed into irreps Dc labeled by c. We can now study
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the structure of the masses in one of the representations Dc, by exploring which product

representations DP⇤ ⌦ Dc ⌦ DQ where P,Q 2 {a, b} contain a singlet representation.

Several interesting possibilities arise, of which two are crucially important:

1. An irreducible mass matrix M c (c labels the irrep Dc in the adjoint representation)

is such that there is no identity representation in the decomposable tensor product

representation Da0⇤⌦Dc⌦Da for all a, a0 representations carried by the �g�-space.

Further, there is atleast one identity representation in Db0⇤⌦Dc⌦Db, where b, b0 are

irreps of the �gM -space. In such a scenario, the mass M c acts like a “zero matrix”

on spinors �g�, and has the following structure,

M c
�-DSM

=

0

BBBBBB@

� M1 M2 M2

� 04⇥4 04⇥4 04⇥4 04⇥4

M1 04⇥4 ⌅ ⌅ ⌅
M2 04⇥4 ⌅ ⌅ ⌅
M3 04⇥4 ⌅ ⌅ ⌅

1

CCCCCCA
, (A.109)

where ⌅ ⌘ non-zero entry. This guarantees that the Dirac cones at � are un-

gapped, leading to a semimetallic phase, and we dub such a phase as “Gamma-

Dirac semimetal (�-DSM)”. Examples of such semimetals are entries No. 17, 18,

20, 22, 23 and 24 in Table 4.6. As discussed in the main text, additional gapless

modes may be possible if such masses arise in a doublet or triplet representation

when the coe�cients of the mass matrices satisfy special criteria (see, for example,

7.52).

2. The second interesting possibility for the mass M c is such that while there is no

identity representation in Da0⇤ ⌦ Dc ⌦ Da (a, a0 are representations in �g�-space)

or Db0⇤ ⌦Dc ⌦Db (b, b0 are representations in �gM -space), but there is at least one

identity representation in Da0⇤ ⌦ Dc ⌦ Db. This implies that the mass M c mixes

�g� with �gM , but since mixing between spinors at � is forbidden as is the mixing

between spinors between the M valleys, the remaining possibility is that of mixing
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between spinors at � with those of M leading to the mass matrix structured as

M c
M-DSM

=

0

BBBBBB@

� M1 M2 M2

� 04⇥4 ⌅ ⌅ ⌅
M1 ⌅ 04⇥4 04⇥4 04⇥4

M2 ⌅ 04⇥4 04⇥4 04⇥4

M3 ⌅ 04⇥4 04⇥4 04⇥4

1

CCCCCCA
, (A.110)

This type of mass matrix has an emergent sub-lattice symmetry where

U †
SLM

c
M-DSM

USL = �M c
M-DSM

(A.111)

with

USL =

0

BBBBBB@

� M1 M2 M2

� 14⇥4 04⇥4 04⇥4 04⇥4

M1 04⇥4 �14⇥4 04⇥4 04⇥4

M2 04⇥4 04⇥4 �14⇥4 04⇥4

M3 04⇥4 04⇥4 04⇥4 �14⇥4

1

CCCCCCA
(A.112)

which guarantees that there are at least 8 zero eigenvalues leading to (at least) 8

gapless modes for any such mass. Note that the gapless modes will be a linear

combination of spinors from all the valleys and, in particular will depend on the

non-zero entries denoted by ⌅. Such semimetals are dubbed ”M-Dirac semimetals

(M-DSM)”. In Table 4.6, the entries 19 and 21 are of this type.

A.11 Spinless fermions on a honeycomb lattice with

⇡-flux at 1/4-th filling

In this section, we revisit the physics of spinless fermions hopping on a honeycomb lattice

with a ⇡-flux through each of the honeycomb plaquettes. We adopt the unit cell shown

in Fig. A.2, and choose a more convenient gauge for obtaining the ⇡-flux (this enables an

e�cient implementation of lattice symmetries). We obtain four bands, each of which is

two-fold degenerate. At quarter filling, we obtain two Dirac cones located at the � point

of the hexagonal Brillouin zone as shown in Fig. A.1. The low energy physics is described
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2a1

2a2

Figure A.2: Honeycomb lattice with ⇡-flux. (Left) Unit cell consisting of 8 sites adopted
for the analysis. Fermions hop to nearest neighbors where red links shown have a hopping
amplitude with a negative sign. (Right) Band structure showing four bands, each of which
is two-fold degenerate. The light blue plane shows the quarter-filled chemical potential.

by a four-component spinor �⇡ with a Lagrangian density similar to Eq. (A.103) with,

�0⇡ = M03, �
1

⇡ = �M02, �
2

⇡ = M01 (A.113)

where

Mµ⌫ = �µ�⌫ . (A.114)

where �µ are Pauli matrices defined just below Eq. (A.105). The system has an emergent

global SU(2) symmetry generated by Mi0, i 2 {1, 2, 3} which is the analog of the chiral

symmetry discussed near Eq. (3.9).

A fermion bilinear of the form

�i�̄⇡�
0

⇡Mµ3�⇡ (A.115)

described by a mass matrix Mµ3, µ 2 {0, 1, 2, 3} which anticommutes with �1⇡ and �2⇡,

gaps out the Dirac fermions. The space of these mass matrices can be reduced in the

irreps of the space group, resulting the phases described below.
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A.11.1 Integer Chern insulator

This mass transforms as a one-dimensional irrep, breaking time reversal and reflection

symmetries of the lattice while preserving all the proper rotational symmetries of the

hexagonal lattice

A2g
o

1 M03

resulting in a mass term

�ICI = �ih�̄⇡�⇡i. (A.116)

It is clear that the SU(4) symmetric ICI found in Eq. (5.1) is a “larger dimensional”

realization of such a phase with a larger value of the Chern-Simons level.

A.11.2 Stripy density waves

The remainder of the three masses organize as a triplet under the space group sym-

metries, preserving time reversal but breaking rotational and translational symmetries.

T1g
e

1 1p
2
M13 +

1p
6
M23 � 1p

3
M33

2 � 1p
2
M13 +

1p
6
M23 � 1p

3
M33

3
q

2

3
M23 +

1p
3
M33

The three components of the masses correspond to the fermion bilinears

�ih�̄⇡

✓
1p
2
M10 +

1p
6
M20 �

1p
3
M30

◆
�⇡i,

�ih�̄⇡

✓
� 1p

2
M10 +

1p
6
M20 �

1p
3
M30

◆
�⇡i,

�ih�̄⇡

 r
2

3
M20 +

1p
3
M30

!
�⇡i

(A.117)

any one of which produces a stripy density wave similar to that shown in Fig. 5.2. The

mass matrices that appear here are orthogonal linear combinations of the chiral symmetry

generators discussed just below Eq. (A.113). Indeed, it is evident that the chiral masses

shown in Eq. (5.5) correspond to this case.
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A.12 A model with j = 1/2 spins

In this section, we construct a model on a honeycomb lattice where the spin-orbit coupling

is realized in a j = 1/2 system, i. e., as a system with spin-1/2 degrees of freedom.

Although this model is not directly motivated by a material system, it is nevertheless

useful to study, in a simpler setting, the conceptual underpinnings of how spin-orbit

coupling produces interesting new phenomena. The model is defined using Fig. 2.2 where

each lattice site has two j = 1/2 orbitals. The hopping Hamiltonian is same as that in

Eq. (2.26), with the key di↵erence that Urr0 = {⌧x, ⌧y, ⌧z} (⌧i here are the Pauli matrices

acting on the j-1/2 space) respectively when rr0 is the x, y, z type link shown in Fig. 2.2.

This system has the following microscopic symmetries among those listed in table. 2.1

and time reversal,

1. Lattice translations as in T1 and T2

2. C3 rotations

3. �d dihedral reflection

4. Time reversal T, with T2 = �1

The interesting aspect of this model is that by carrying out transformations similar to

those discussed in appendix A.4, one can arrive at a system with a ⇡-flux through each

honeycomb plaquette, and a global SU(2) flavor symmetry. In other words, this model is

the “SU(2) version” of the SU(4) model discussed in the main text.

We continue to discuss this model in the global basis. The band structure of this

model is identical to that shown in Fig. A.1, the di↵erence being that each band is non-

degenerate. At quarter filling, the physics can be described by four Dirac cones, one each

located at �,M1,M2,M3. We get a Dirac action similar to Eq. (A.103), with �g as in

Eq. (A.102) where �g⌫ , ⌫ 2 {�,M1,M2,M3} are 2-component spinors. The Dirac gamma

matrices are

�0g = M003, �
1

g = M002, �
2

g = �M001 (A.118)

and

Mµ⌫⇢ = �µ�⌫�⌧ (A.119)

where Pauli matrices �µ are described just below Eq. (A.105)
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The symmetry transformations are described by

⌦C3 =
1

8

⇣
M000 + i

p
3M003 �M010 � i

p
3M013

+ iM020 �
p
3M023 +M030 + i

p
3M033 �M100

� i
p
3M103 +M110 + i

p
3M113 + iM120

�
p
3M123 +M130 + i

p
3M133 � iM200

+
p
3M203 � iM210 +

p
3M213 +M220

+ i
p
3M223 + iM230 �

p
3M233 +M300

+ i
p
3M303 +M310 + i

p
3M313 � iM320

+
p
3M323 +M330 + i

p
3M333

⌘

⌦�d
=
1

2
(�M032 +M112 +M222 �M302)

⌦T1 =M300

⌦T2 =M030

⌦T =iM002

(A.120)

Again, we see that the spinors �g� (see Eq. (A.108)) form an invariant subspace under the

action of the symmetries above. One, therefore, expects to obtain semimetallic phases

when the mass matrices of the type Mµ⌫3, µ, ⌫ 2 {0, 1, 2, 3} that gap out (see Eq. (A.107))

the Dirac Lagrangian Eq. (A.103) defined by Eq. (A.118) are resolved into irreducible

components. Below we briefly describe seven irreducible masses and the resulting phases

obtained by such an analysis.

A.12.1 Chiral masses

Integer Chern insulator

C3 �d T1 T2 T

3 7 3 3 7

Ao

1 M003

This mass is SU(2) symmetric and produces a fully gapped state. Viewed on the lattice,

it produces spin-independent second neighbour hoppings akin to the Haldane honeycomb

model as in Fig. 5.1 with an e↵ective Chern-Simons action described by Eq. (5.2).
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Stripy Density Wave Phase

C3 �d T1 T2 T

7 7 7 7 3

Te

1 M123

2 �M203

3 �M323

This is again an SU(2) invariant mass that results in a stripy density wave similar to the

SU(4) invariant case found in Eq. (5.5).

The two cases described above exhaust the chiral masses.

A.12.2 SU(2) Flavor masses

Quantum dipolar Hall mass

C3 �d T1 T2 T

7 7 7 7 3

Te

1 M213

2 �M233

3 �M023

This mass produces spin-dependent second neighbour hopping that produces a uniform

SU(2) flux in a second-neighbor triangle, gapping out the system. The phase with this

mass is described by a mutual Chern-Simons theory like Eq. (6.5) resulting in dipole-

filtered edge states and is analogous to the phase discussed in Sec. 6.1.2.

A.12.3 Mixed masses

Ferromagnetic insulator

C3 �d T1 T2 T

3 7 3 3 7

Ao

1 M033p
3

+ M303p
3

+ M333p
3

This mass manifests as a uniform magnetic field in the direction perpendicular to the

honeycomb and fully gap out the Dirac fermions. The analogous state correponding to

this in the SU(4) case is discussed in Sec. 7.1.2.
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Ferromagnetic semimetal – �-Dirac Semimetal

C3 �d T1 T2 T

7 7 3 3 7

Eo

1 M033p
2

� M333p
2

2 M033p
6

�
q

2

3
M303 +

M333p
6

The doublet mass produces a local magnetic field in the plane of the honeycomb lat-

tice and the components rotate into each other under lattice symmetries; this phase is

analogous to the ferro spin-octupolar semimetallic phase discussed in Sec. 7.2.5. For any

generic linear combination of the masses, the Dirac cone at the � point remains ungapped,

while for special linear combinations of the two masses, there is one additional gapless

mode as discussed in Sec. 7.2.5. This is a semimetallic phase of �-DSM type.

Stripy spin density wave semimetal (M-Dirac Semimetal)

C3 �d T1 T2 T

7 7 7 7 7

To

1 M113p
2

� M223p
2

2 �M103p
2

� M133p
2

3 �M013p
2

� M313p
2

This mass produces a spin density wave of the stripy kind similar to that discussed in

Eq. (7.47). Interestingly, this produces a semimetallic phase of the M-DSM kind, precisely

as discussed for the SU(4) case in Eq. (7.47).

Stripy spin density wave semimetal – (�-Dirac Semimetal)

C3 �d T1 T2 T

7 7 7 7 7

Tu
o

1 M113p
2

+ M223p
2

2 M133p
2

� M103p
2

3 M313p
2

� M013p
2

This is a triplet mass that produces a stripy magnetic field; the key di↵erence between

the one just discussed above, is that this possesses an isolated Dirac cone, where a single

Dirac cone at � is always left ungapped. This is similar to the SU(4) case discussed in
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Eq. (7.50) that produces a stripy spin-octupolar density wave. For the SU(2) case one

has a stripy density wave. Again, just as in the case discussed in Eq. (7.50), there are

special linear combinations of the masses that obtain additional gapless modes.
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A.13 Derivation of the e↵ective action for the CDW

order parameter

With the action for the CDW order parameter coupled to the fermions given by Eq. 8.11,

the partition function is

Z =

Z
D~�D�̄D� exp(�S[~�, �̄,�]) (A.121)

Now, integrating out the fermions, we get

Z =

Z
D~� exp(�Seff [~�]), (A.122)

where Seff [~�] is the e↵ective action for the CDW order parameter field and is given by

Seff [~�] = �Nf tr ln
⇣
�i/@ � ig~� · ~⇣

⌘
+

Z
d3xLb. (A.123)

Thus, Seff is proportional to Nf and in the Nf ! 1 limit, the partition function

is dominated by the saddle point value of Seff . In the following, We first evaluate Seff

with mean field approximation till order 1/Nf .

To evaluate Seff , we first calculate the fermionic determinant. For this, we first

perform the following transformation on the spinors �

�! U �, (A.124)

such that

~� · �̄~⇣� = |~�|�̄⇣1� (A.125)
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Then, the determinant is

= �tr ln
⇥
�i/@ � ig�1⇣1

⇤

= �tr(log(�i/@))� tr ln

✓
1 +

1

i/@
ig|~�|⇣1

◆

= �
1X

n=1

✓
� V

2n

◆
tr

Z
d3k

(2⇡)3
(ig|~�|⇣1)2n

(k2)n
+O (1/Nf ) (V = volume of space-time)

=
1X

n=1

✓
V

2n

◆
4

Z
d3k

(2⇡)3
(�1)n

(g2|~�|2)n

(k2)n
+O (1/Nf )

= (�1)4
V

2

Z
d3k

(2⇡)3
log

 
1 +

g2|~�|2

k2

!
+O (1/Nf )

= �2V
4⇡

(2⇡)3
1

3

h
3g2�2

1
⇤� 2g3|~�|3⇡

2

i
+O (1/Nf )

= V


� g2

⇡2
|�|2⇤+

g3

3⇡
|�|3

�
+O (1/Nf ) (A.126)

Here, ⇤ is the ultraviolet momentum cuto↵. With this, the e↵ective action for the CDW

order parameter is

Seff [~�] = V


Lb +� g2

⇡2
|�|2⇤+

g3

3⇡
|�|3

�
(A.127)
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A.14 Evolution of the Band structures in ⌧m-�̃ Phase

Diagram

The �̃ = 0 line

Fig A.3 shows the band structures at di↵erent points on the � = 0 line of the ⌧m-�̃ phase

diagram in Fig. 6a of the main text. At ⌧m = 0 on this line, there are two flat bands, each

of which are six-fold degenerate. As ⌧m is increased, six 2-fold degenerate bands appear.

Finally at ⌧m = 1, there are four bands with the lowest and the top bands being 2-fold

and the rest being 4-fold degenerate.

The ⌧m = 0 line

The energy spectrum along the ⌧m = 0 line is shown in Fig. A.4. The band structure for

�̃ = 0 is (cf. the �̃ = 0, ⌧m = 0 line in Fig. A.3) has two six-fold degenerate bands. As �̃

is increased, six 2-fold degenerate bands appear, two of them being completely flat.

The ⌧m = 1 line

The evolution of energy spectrum along the ⌧m = 1 line is shown in Fig. A.5. The band

structure for �̃ = 0 on this line is has four bands (cf. �̃ = 0, ⌧m = 1 in Fig. A.3). For

large values of �̃, the J = 3/2 and the J = 1/2 bands are separated. For �̃ = 20, ⌧m = 1,

only the lowest J = 3/2 bands are shown.

A.15 Properties of gapped phases

SU(8) Dirac theory at the P3 point

At P3 point of the phase diagram in Fig. 9.1 and Fig. 9.6 of the main text, the low-energy

e↵ective theory is described by massless Dirac fermions with internal SU(8) symmetry.

Below we sketch the derivation of the Dirac theory. The details can be found in Ref. [156].

At the P3 point, the form of the Hamiltonian in Eq. 9.4 of the main text, when
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Figure A.3: Evolution of band structure along the �̃ = 0 line of the phase diagram in
Fig. 6 of the main text.

projected to the low-energy j = 3/2 orbitals, is given by

HP3 = � Ep
3

0

@
X

hr,s;r0,s0i2X�bonds

 †(r, s)UX (r
0, s0) +

X

hr,s;r0,s0i2Y�bonds

 †(r, s)UY  (r
0, s0)

+
X

hr,s;r0,s0i2Z�bonds

 †(r, s)UZ (r
0, s0)

1

A+ h.c..

(A.128)

Here,  i is a 4-component annihilation operator corresponding to the four j = 3/2
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Figure A.4: Evolution of band structure along the ⌧m = 0 line of the phase diagram in
Fig. 6 of the main text.

orbitals at the site i. The UX , UY , UZ are 4⇥ 4 Hermitian matrices, which are given by

UX = �⇢⌃1 (A.129)

UY = �⇢⌃2 (A.130)

UZ = �⇢⌃3. (A.131)

Here, ⇢ = +1 for the phase diagram in Fig. 9.1(a) and ⇢ = �1 for Fig. 9.6.

Projecting this Hamiltonian in Eq A.128 to the two lowest two bands which touch

linearly at the Fermi energy, we get the SU(8) symmetric Dirac Hamiltonian given by

HDirac = ⇢vF

Z
d2r �†(r) (�i↵1@1 � i↵2@2)�(r), (A.132)
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Figure A.5: Band structures along the ⌧m = 1 line of the phase diagram in Fig. 6 of the
main text. All the bands are 2-fold degenerate. For �̃ = 20, only four bands are shown
leaving out higher energy J = 1/2 orbitals.

with

↵1 = ⌃0 ⌦ ⌧3 ⌦ �1 (A.133)

↵2 = ⌃0 ⌦ ⌧0 ⌦ �2. (A.134)

Here, vF is the Fermi velocity, which is related to the gradient of the linearly dispersing

bands at the Dirac points. �(r) is the 16-component Dirac spinor at the position r. Both

⌧i and �i (for i = 1, 2, 3) are the Pauli matrices with ⌧0 and �0 being the 2 ⇥ 2 identity

matrix. The generators of the SU(8) symmetry are the set of 63 matrices given by

{⌃0,⌃i}⌦ {⌧3�0, ⌧1�2, ⌧2�2}, ⌃i ⌦ ⌧0�0 (A.135)

for i = 1, · · · 15.
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The topological gapped phase

On moving left from the P3 point along the �̃ = 1 line by reducing the value of ⌧m from

1, the e↵ective hopping Hamiltonian in the j = 3/2 sector is given by

Htop = � Ep
3

X

hr,s;r0,s0i

 †(r, s)H̃ss0

rr0 (r
0, s0), (A.136)

with

H̃X = UX + (1� ⌧m)


1

3
⌃0 +

1

6

⇣
�
p
3⌃4 + ⌃5

⌘�

H̃Y = UY + (1� ⌧m)


1

3
⌃0 +

1

6

⇣p
3⌃4 + ⌃5

⌘�

H̃Z = UZ + (1� ⌧m)


1

3
⌃0 �

1

3
⌃5)

�
. (A.137)

On projecting this Hamiltonian to the lowest two bands, we get the following e↵ective

low-energy Hamiltonian

Htop = HDirac + (1� ⌧m)H
(1)

m + (1� ⌧m)H
0. (A.138)

Here, HDirac is given by Eq. A.132. The H
(1)

m and H0 are given by

H(1)

m =

Z
d2r �† (⌃1⌧1�0 � ⌃2⌧2�1 + ⌃3⌧0�3)�, (A.139)

and

H0 = �† (�i@x�↵x � i@y�↵y)�, (A.140)

with

�↵x =� ⌃3⌧3�1 +
1p
3
⌃35⌧0�0 +

p
3p
2
⌃35⌧0�3 (A.141)
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Figure A.6: A single hexagon of a honeycomb lattice showing the three kinds of next
nearest neighbour bonds (green bonds). The six sites are labelled with integers from 1 to
6.

and

�↵y =
1p
6
(⌃1⌧1�2 � ⌃2⌧2�2) +

p
3

2
p
2
(⌃14⌧1�1 � ⌃24⌧2�1)�

1

2
(⌃14⌧2�3 � ⌃24⌧1�3)

� 1

2
p
2
(⌃15⌧1�1 + ⌃25⌧2�1) +

1

2
p
3
(⌃15⌧2�3 + ⌃25⌧1�3) (A.142)

The term H
(1)

m is the ferro-quadrupolar quantum Hall mass listed in Ref.[156] whose edge

modes are protected by the time reversal (TR) symmetry. Thus, the phase obtained by

moving left from the P3 point in the phase diagram in Fig. 9.1(a) is a Z2 topological

insulator. The presence of H0 does not change the topological character of this phase

since this term does not break the TR symmetry and can be tuned to zero without closing

the fermionic energy gap.

The non-topological phase

On moving down vertically from the P3 point along the ⌧m = 1 line, we encounter the

non-topological gapped phase. This can be understood by doing a similar analysis as

done for the previous gapped phase. For very large values of �̃ and ⌧m = 1, the e↵ective

Hamiltonian is given by

Hnon�top = �E

0

@
X

hr,s;r0,s0i

 †(r, s)U ss0

rr0 (r
0, s0) +

1

�

X

hhr,s;r0,s0ii

 †(r, s) ˜̃Hss0

rr0 (r
0, s0) + h.c.

1

A

(A.143)

Where the U ss0
rr0 are the matrices defined in Eq. A.129 and ˜̃Hss0

rr0 are the hopping matrices

on the next-nearest(NNN) bonds of the lattice. On the three kinds of NNN bonds shown
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in Fig A.6, the ˜̃Hij matrices are given by

˜̃H13 =� 1

2
p
3
⌃1 +

i

6

⇣
�⌃14 �

p
3⌃15 � ⌃23

⌘

˜̃H35 =� 1

2
p
3
⌃2 +

i

6

⇣
⌃13 � ⌃24 +

p
3⌃25

⌘

˜̃H51 =� 1

2
p
3
⌃3 +

i

6
(�⌃12 + 2⌃34) (A.144)

On projecting this Hamiltonian to the lowest two bands near the Dirac points, we get

the following low-energy theory

Hnon�top = HDirac +
1

�
H(2)

m +
1

�
H00. (A.145)

Here, HDirac is the SU(8) symmetric Dirac Hamiltonian. The H
(2)

m is given by

H(2)

m =

Z
d2x �† ⌃45⌧3�3� (A.146)

The H
(2)

m is one of the topological masses proximate to the SU(8) Dirac semi-metal.

The edge modes of this topological symmetry is protected by a U(1) symmetry which is

generated by ⌃45. But the term H00 breaks this U(1) symmetry and destroys the edge

modes. This explains the existence of the non-topological phase in the phase diagram.

Phase transition lines in ⌧m-�̃ plane with ⇢ = ± 1

On the phase transition line, the P1P3 line, between the two gapped phases shown in

Fig. 6a of the main text, the lowest two bands touch each other linearly at the � point as

shown in inset V I of the same figure. One can find the low-energy theory for this point

of the phase diagram by projecting the Hamiltonian to the two lowest band that touch

at the � point. The resultant theory is given by

H� = �ivF

Z
d2x �†

�
(⌧3�1@1 + ⌧0�2@2)��. (A.147)

Here, �� is a 4-component spinor which comes from the two-fold degenerate Dirac cone

at the � point. This Hamiltonian has an emergent SU(2) symmetry which is generated

by {⌧3�0, ⌧1�2, ⌧2�2}/2.
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Similarly, on the P3P14 line of the phase of Fig. 11, the lower two bands touch each

other linearly at the three M points. The low-energy theory at any point on this line is

given by

HM = i

Z
d2x �†

M (vxI3⇥3 ⌦ ⌧3�1@1 + vyI3⇥3 ⌦ ⌧0�2@2)�M . (A.148)

Here, �M is a 12-component spinor that comes from the three two-fold degenerate

Dirac cones at the three M points. vx and vy are the Fermi velocities along the two

Cartesian directions. The values of these two numbers depend on the position on the

phase transition line. I3⇥3 is the three dimensional identity matrix that acts on the space

of the three M valleys. This Hamiltonian has an internal SU(6) symmetry which are

generated by the set of Hermitian matrices given by

{I3⇥3,⇤i}⌦ {⌧3�0, ⌧1�2, ⌧2�2}, ⇤i ⌦ ⌧0�0 (A.149)

where the ⇤i are the eight 3⇥ 3 Gell-Mann matrices that generate an SU(3).
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