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Abstract

This thesis tackles the challenge of reconstructing the unseen bottom topography of
ocean basins. Inspired by real-world applications, it focuses on estimating the imper-
meable boundary of an inviscid, incompressible, irrotational fluid within the framework
of dispersive shallow-water wave models. The emphasis on shallow water is driven by
prior research and the inherent difficulty of the reconstruction problem in deeper water.
The proposed algorithm reconstructs both the fluid velocities and the true bottom profile,
even with an inaccurate initial guess for the bottom depth. It achieves this by solving two
interconnected inverse problems: one using known velocities and surface displacement to
estimate the bottom, and another leveraging the observer framework to determine velo-
cities from surface data and an approximate bottom profile. Combining the two inverse
problems leads to our reconstruction algorithm. The thesis highlights the importance of
model selection in the algorithm design and the accuracy of the reconstructed bottom
topography.

13



14



Chapter 1

INTRODUCTION

The ocean, encompassing over 70% of Earth’s surface, remains a realm of mystery. Its
depth holds not only captivating beauty but also crucial information about our planet’s
history and its future. One key aspect of this hidden landscape is bathymetry, the
shape of the ocean floor. Understanding bathymetry is critical for numerous applications,
ranging from predicting the impact of tsunamis to ensuring safe submarine navigation and
designing effective coastal defences. Traditionally, bathymetry data has been collected
through ship-based surveys, a time-consuming and expensive process. However, water
waves themselves hold the potential to reveal the secrets of the ocean floor. In this thesis,
our focus is the inverse problem of detecting the bottom boundary of the ocean, given
measurements of the surface displacement, and a rough estimate of the bottom profile.
By addressing this inverse problem, we aim to enhance our understanding of the ocean
environment and its dynamics, leading to various practical applications.

Mapping the shape of the oceanic bottom boundary is a critical aspect of oceano-
graphy research. From abyssal plains stretching for thousands of kilometres to towering
seamounts, rugged canyons, and continental shelves, the underwater topography plays a
critical role in shaping our planet’s health [13]. This intricate dance floor of the deep sea
is a key driver of ocean circulation patterns and mixing processes [41]. These, in turn,
have a profound impact on global climate regulation and the rich tapestry of marine life
[40]. Understanding the shape of the ocean bottom is not just a scientific problem, but
one with far-reaching consequences for humanity.

Determining the exact topography of the ocean floor presents a formidable challenge
for oceanographers, both theoretically and practically. While echo sounders, which rely on
underwater acoustics, have been a traditional method for mapping the ocean floor [20, 55],
they come with significant drawbacks. These surveys are time-consuming and expensive,
requiring extensive effort and specialised equipment to cover large areas. Additionally,
they can be dangerous, especially in deep waters or challenging weather conditions. More
importantly, this technique has limitations in shallow continental margins, often leaving
these crucial areas under-surveyed.
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One promising approach utilises satellite-based gravity models [10]. These innovative
methods leverage the subtle deviations in Earth’s gravitational field caused by variations
in ocean floor topography. The principle is simple: the additional mass of a seamount
increases the local gravitational pull, causing a slight bulge in the water surface directly
above [51, 52]. While these satellite-based approaches have shown promising results, par-
ticularly for large-scale features, recent studies suggest limitations. Ship-based surveys,
with their higher resolution, remain more reliable for detecting sharp features, especially
those with characteristic length-scales less than 25km [59]. These surveys provide crucial
data for understanding complex coastal regions and other areas where high-resolution ba-
thymetry is essential. Ship-based surveys, therefore, remain a vital tool for high-resolution
bathymetry, particularly for applications like coastal management [30] and tsunami in-
undation prediction [45, 62]. Fluid dynamical methods also offer a way to survey large
parts of the coastlines and oceans using satellite imagery.

The fluid dynamics approach models the motion of an incompressible fluid with a
solid, impermeable surface as the boundary below. The increased availability and quality
of satellite imagery have made these fluid dynamical methods particularly attractive for
surveying vast coastal and ocean regions.

The simplest fluid-mechanical methods focus on analysing the dispersion relation of
shoaling waves [50]. The dispersion relation describes the relationship between wave
frequency and wavenumber, and it is influenced by water depth. By analysing variations
in the dispersion relation of waves as they propagate towards the shore (shoaling), one
can infer information about the underlying bathymetry (seabed shape). These methods
can be further refined by incorporating nonlinear corrections to the dispersion relation
[31]. Nonlinear effects become more significant for larger wave amplitudes, and including
these corrections can improve the accuracy of bathymetric estimates.

A fundamental concept underlying all fluid dynamical methods for ocean depth meas-
urement is the kinematic boundary condition at the free surface:

⌘t = w � ūs ·r⌘,

where w and ūs are the vertical and horizontal velocities evaluated at the free surface ⌘.
The key point is that the free surface elevation ⌘ and the surface velocities (w and ūs) are
not independent quantities. They are functionally dependent on the bottom boundary
profile (bathymetry) through the full equations of motion governing the fluid flow and
the associated boundary conditions.

In the context of fully non-hydrostatic irrotational flow, the kinematic boundary con-
dition may be rewritten in terms of a surface potential q:

⌘t = G(⌘, ⇣)q (1.1)
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where G is the Dirichlet-Neumann operator. In simpler terms (mathematically defined
in Chapter 2), it maps the tangential fluid-velocity at the free surface (horizontal move-
ment along the surface) to the normal fluid-velocity (vertical movement into or out of the
surface). Importantly, G(⌘, ⇣) is directly influenced by the shape of the bottom bound-
ary. The task of inferring the bottom boundary profile ⇣ from surface wave data has
been explored in previous works. In [48], Nicholls and Taber attempted to estimate the
operator G (and subsequently inferring ⇣) using the frequencies and profiles of standing
waves. Despite the inherent ill-posed nature of the problem, the authors demonstrate
successful reconstruction of the bottom profile using this method. Alternatively, Fontelos
et al. [29] considered that ⌘, ⌘t and q are known at a specific instant in time. Under
this assumption, the authors proved the existence of a unique solution for ⇣ satisfying
equation (1.1). They further introduced a minimisation problem that allows for bottom
profile recovery. However, they also acknowledge the ill-posed nature of the problem,
emphasising the sensitivity of the reconstruction procedure to noise in the input data.

A fundamental aspect of ocean depth measurement lies in the defining property of the
bottom boundary: the normal component of the fluid velocity vanishes at this surface
(i.e., no fluid flows perpendicularly into the seabed). In simpler terms, the fluid doesn’t
penetrate the bottom. Building upon this principle, Vasan and Deconinck [58] employed
harmonic continuation technique to derive a nonlinear, non-local equation which vanishes
exactly at the true bottom boundary. This equation offered a powerful tool for bottom
boundary reconstruction. However, a significant challenge arises: the dependence of this
equation on the surface velocities. While satellite measurements can indeed infer both
sea-surface displacements and, to some extent, sea-surface velocities, the accuracy of the
latter often relies on a good estimate of the bottom boundary profile itself [16, 37]. Thus
to successfully estimate the bottom boundary from surface displacement measurements,
we need to determine the surface velocities simultaneously.

A complete understanding of fluid motion necessitates incorporating the fluid mo-
mentum balance equation along with equation (1.1). In the context of inviscid, irrota-
tional, and incompressible flow, the momentum equation governs the time evolution of
the surface potential q. By incorporating this equation into the analysis, Vasan and
Deconinck [58] were able to deduce a system of two equations with two unknowns: the
bottom boundary profile and the surface velocities. A significant advantage of this ap-
proach is the ability to reconstruct the bottom boundary based solely on surface data
(⌘(x, t), measurements of the surface displacement). This eliminates the need for any
direct measurements (e.g., mean depth) of the bottom profile. The authors also noted
the ill-posed nature of the problem. The reconstruction was shown to be more reliable
in the shallow-water regime.

The Saint�Venant equations are a specific model for shallow-water waves widely
used in modelling inundation of coastal regions. Upon averaging the incompressibility

17



condition in the vertical and taking into account the kinematic boundary condition, one
obtains

⌘t +r · ((⌘ + h+ ⇣)ū) = 0,

where (⌘ + h + ⇣) represents the height of the fluid column and ū is the depth-averaged
horizontal velocity. The authors of [38] leverage the Saint�Venant equations as a hyper-
bolic partial differential equation for bathymetry detection. The method of [38] involves
scaling and time-averaging the equation, assuming knowledge of the mean water depth,
and utilising satellite data for surface displacement and velocities. However, it requires a
non-zero Coriolis parameter. This restricts its applicability in coastal regions where Cori-
olis effects are weak, which is a common occurrence. While existing methods primarily
focus on long-scale and inviscid flow models, bathymetry detection can extend beyond
these scenarios. Although the fluid dynamical models considered thus far all involved
long length-scales and inviscid flow, domain identification is not limited to such scen-
arios. Indeed one can pose the problem in the context of creeping flows [34].

This thesis builds upon existing bathymetry reconstruction methods using fluid dy-
namics [29, 58]. However, we introduce a crucial difference: we frame the problem
within the shallow-water regime. We derive simplified equations specifically applicable to
shallow-water flows, aiming to achieve two key goals. Firstly, we investigate whether re-
stricting the analysis to the shallow-water regime leads to more robust and well-behaved
reconstructions. This includes exploring the effectiveness of reconstruction over a wide
range of values for the shallowness parameter. Secondly, similar to [58], we aim to recover
the bottom profile solely from surface displacement measurements ⌘, eliminating the need
for direct velocity measurements which can be challenging to obtain. Our approach di-
verges from shallow-water reconstruction method of [38] by focusing on dispersive shallow-
water wave models. These models offer advantages in terms of mathematical properties
and solution regularity. Importantly, incorporating dispersion aligns with established
theoretical and experimental evidence highlighting its significance in shallow-water flows
with varying bottom topography [22, 24, 32, 14].

Another distinguishing facet of our work is the adoption of observers. Observer theory
provides a framework for designing mathematical constructs, called observers, that can
estimate the unmeasured state of a system based on available measurements and know-
ledge of the system’s dynamics. When partial knowledge of a system’s state y is available,
we can construct an observer system ỹt that closely mimics the full system yt = f(y).
This observer, driven by available measurements and an internal dynamics, aims to con-
verge to the actual state as time progresses i.e., ỹ ! y as t ! 1. The observer design
involves constructing the observer dynamics ỹt = f̃(ỹ, Oy) where f̃ is a modification of f
and O is an operator with a null-space representing the partial knowledge available of the
state y. Successful convergence allows us to infer the missing state information by simu-
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lating the observer problem [44, 53]. As mentioned previously, directly measuring surface
velocities can be challenging or even impractical. The observer framework is popular in
the geophysics community and is routinely used in data assimilation to recover the state
of a dynamical system from partial or sparse measurements [5, 9, 6, 4] and motivated us
to use the same for determining surface velocities for our shallow water models.

In this thesis, we have successfully accomplished the recovery of bottom profiles us-
ing surface displacement measurements ⌘(x, t) only. Concretely, we present an approach
to detect the bottom boundary in the context of two shallow-water models. We limit
ourselves to shallow-water models to reduce the ill-posed nature of the problem in the
deep-water regime. We use as observations, generic time-dependent surface displace-
ments. In principle, our work may be adapted to other shallow-water models.

Here is an outline of the key chapters in this thesis:
We begin by establishing a foundation in Chapter 2, discussing the governing equations

for water-waves and the associated Hamiltonian formulation. In Chapter 3, we focus on
shallow-water wave models and derive a class of bidirectional dispersive Boussinesq-type
shallow-water wave models with varying bottom-boundaries. We explore two specific
cases: one of which is known in the literature [36] and another which we have newly
introduced in . This chapter also delves into the conservation laws associated with these
models. Finally, we present analytical solutions for the linear parts of these shallow-water
wave models and numerical simulations for the full nonlinear systems.

The following chapters tackle two inverse problems. In Chapter 4, we address bathy-
metry reconstruction, where we aim to recover the bottom profile from surface data. We
introduce the reconstruction equation and showcase successful profile recovery through
numerical experiments. Chapter 5 investigates velocity estimation using an observer
model. Here, we employ the observer framework to determine fluid velocity based on
surface displacement data, assuming a known bottom profile. We also provide numerical
evidence supporting this approach.

Building upon these concepts, we combine the two inverse problems we explored earlier
in Chapter 6. We present an algorithm for reconstructing the bottom profile solely from
surface displacement measurements. Note that we do not need prior knowledge of mean
water depth. This approach allows for bottom profile reconstruction in deeper water
compared to [58], albeit remaining within the shallow-water regime. Finally, Chapter 7
summarises the key findings and methodologies developed, while also discussing potential
extensions and future research directions for this work.

The main results and findings of this work appeared as a published article:
Vishal Vasan, Manisha, and D Auroux, "Ocean-depth measurement using shallow-

water wave models", Studies in Applied Mathematics 147, 4 (2021), pp. 1481--1518.
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Chapter 2

GENERAL BACKGROUND AND
NOTATION

2.1 Governing Equation

Suppose a fluid motion is inviscid, irrotational and incompressible. Then the velocity
potential, denoted by �(x, y, z, t), satisfies the Laplace equation in the entire fluid domain.
The fluid domain is bounded by the free surface displacement ⌘(x, y, t) and the bottom
boundary profile ⇣(x, y). In other words,

�xx + �yy + �zz = 0, �h� ⇣(x, y) < z < ⌘(x, y, t), 0 < x < L, 0 < y < L. (2.1)

where L is the lateral extent of the fluid and h is the typical depth. Note that we don’t
assume the mean of ⇣ to be zero. In this context, h can be regarded as an estimate for
the bottom topography rather than the actual mean value of the bottom surface. We
assume the domain is periodic along the horizontal directions, namely the x and y axes,
with period L. The fluid velocity is given by (�x,�z). Here and throughout the thesis,
subscripts will denote partial derivatives. The gradient will always refer to the gradient
in the horizontal directions. Thus in 3D, r� = (�x,�y) whereas in 2D r� = �x. The
boundary conditions are as follows:

1. Kinematic boundary condition: The free-surface fluid-particles are constrained to
remain on the free surface, that is, the rate of displacement of the fluid surface
z = ⌘(x, y, t) is determined by the the velocity in the direction of the local normal.
Thus, we have

⌘t = �z �r� ·r⌘, z = ⌘(x, y, t). (2.2)

2. Solid-wall boundary condition: The bottom boundary is fixed in time and fluid
cannot penetrate through the solid boundary. This leads to the boundary condition
that the velocity of the fluid at the bottom boundary z = �h�⇣(x, y) in the normal
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direction vanishes:

�z +r� ·r⇣ = 0, z = �h� ⇣(x, y). (2.3)

3. Bernoulli equation: The pressure on the surface is the same as the atmospheric
pressure and using the conservation of momentum (in the absence of any fluid
above the free surface), we get the following dynamic boundary condition on the
free surface:

�t +
1

2

�
�2
x
+ �2

y
+ �2

z

�
+ g⌘ = 0, z = ⌘(x, y, t), (2.4)

where g is the acceleration due to gravity.

We have assumed zero surface tension in the equations described above. For the length
scales we have in mind for the problems addressed in this thesis, one may safely neglect
surface tension. A detailed derivation of the water wave equations (2.1-2.4) can be found
in the book by Cohen and Kundu [17]. In this thesis, we only work with periodic boundary
conditions, although it’s worth noting that other boundary conditions, such as decay at
infinity, are also possible. Subject to the derivation of appropriate models which capture
the effects of inflow/outflow, the main ideas in this thesis may be generalised to different
boundary conditions.

2.2 Hamiltonian Formulation

The set of water-wave equations described in the previous section can be formally re-
garded as a Hamiltonian system. Zakharov [64] was the first to provide a Hamiltonian
formulation of the water-wave equations. This Hamiltonian structure is established en-
tirely in terms of the surface variables, namely, ⌘(x, y, t), and a new variable

q(x, y, t) = �(x, y, z = ⌘, t),

representing the velocity potential at the free surface. This approach is reasonable be-
cause, even though the entire system exhibits time dependence, the time derivatives only
appear in the boundary conditions at the free surface. In other words, if at a specific
time t = t0, we know ⌘(x, y, t0) and q(x, y, t0), then the solution in the remaining fluid
domain is uniquely determined by the boundary conditions and Laplace’s equation. As a
result, the functions ⌘ and q are plausible conjugate variables for the Hamiltonian. The
Hamiltonian for the system (equations 2.1-2.4) is given by

H =
1

2

Z
L

0

Z
L

0

Z
⌘

�h�⇣

�
�2
x
+ �2

y
+ �2

z

�
dz + g⌘2

�
dy dx,
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and the corresponding Hamiltonian equations are

@⌘

@t
=
�H
�q

,
@q

@t
= ��H

�⌘
, (2.5)

where the right-hand sides are functional derivatives of the Hamiltonian H with respect to
the canonical variables ⌘(x, y, t) and q(x, y, t). That is, the temporal evolution is stated in
terms of these two quantities ⌘(x, y, t) and q(x, y, t) defined on the boundary. Craig and
Sulem [21] used Dirichlet-Neumann operator to write down the Hamiltonian in a simpler
form which is easy to approximate. One of the first simulations of the water-wave problem
to directly employ the Hamiltonian equations was also done by Craig and Sulem [21]. The
Dirichlet-Neumann operator (DNO) is defined via the following boundary-value problem
which specifies a function  uniquely.

 xx +  yy +  zz = 0, �h� ⇣(x, y) < z < ⌘(x, y, t), 0 < x < L, 0 < y < L,

 z +r ·r⇣ = 0, z = �h� ⇣(x, y),

 = q(x, y, t), z = ⌘(x, y, t).

The DNO G(⌘, ⇣) is then defined as the map from the Dirichlet condition q(x, y, t) to the
associated Neumann condition at z = ⌘(x, y, t). Thus

G(⌘, ⇣)q =  z �r ·r⌘, z = ⌘(x, y, t).

Thus DNO maps the Dirichlet data of a harmonic function along a surface to the associ-
ated normal derivative at that same surface. With the help of Green’s identity, one can
express the Hamiltonian in terms of canonical variables alone [64, 21] given by

H =
1

2

Z
L

0

Z
L

0

�
qG(⌘, q)q + g⌘2

�
dydx, (2.6)

and the Hamiltonian equations can be written as

@⌘

@t
= G(⌘, ⇣)q, (2.7)

@q

@t
= �g⌘ � 1

2
|rq|2 + (rq ·r⌘ +G(⌘, ⇣)q)2

2(1 + |r⌘|2) . (2.8)

The first equation can be derived either directly from the Hamiltonian or, more straight-
forwardly, by recognising that the right-hand side of equation (2.2) corresponds to the
Dirichlet-Neumann operator’s definition. The equation for the evolution of q can be
obtained from equation (2.4) and the relations

qx = �x + ⌘x�z, qy = �y + ⌘y�z,
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Figure 2.1: Domain in 2D for the water-wave problem

which are consequences of the definition of q and the chain rule. But for somewhat ab-
stract nature of the Dirichlet-Neumann operator, equations (2.7-2.8) offer a seemingly
straightforward set of equations for evolution of surface quantities. In equation (2.5) or
equations (2.7-2.8), it is evident that the dynamically relevant quantities reside on the
boundary: the shape of the free surface ⌘(x, t) and the value of the potential at the
surface q(x, t) = �(x, ⌘, t). Note that although these equations resemble typical par-
tial differential equations, G(⌘, ⇣) is not a local operator. However, it is known that
the Dirichlet-Neumann operator G(⌘, ⇣) is a self-adjoint operator and analytic in both its
parameter ⌘ and ⇣ [18, 35, 47]. Craig and Sulem [21], in their foundational work on numer-
ical water wave simulation, present an alternative characterisation of G, expressing it as
a Taylor series expansion in powers of ⌘. Truncating this series of the Dirichlet-Neumann
operator in powers of ⌘ yields an approximation to the overall operator, efficiently com-
putable using fast Fourier transforms for problems on periodic domains [21, 33, 46]. This
perspective elucidates one approach to constructing approximate models for water wave
equations. Another method, which we will employ in the next chapter, involves following
the technique put forward by Ablowitz et al. [1].
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2.3 2D formulation and Solution to the Linear System:

In this thesis, we primarily focus on the two-dimensional system, i.e., when there is
only one horizontal direction. However, it’s worth noting that the methods and findings
presented here can readily be extended to a three-dimensional system. Figure 2.1 is a
cartoon of a two-dimensional fluid. The complete water wave model in two dimensions
with periodic boundary condition (period L) along lateral dimension is expressed as
follows:

�xx + �zz = 0, � h� ⇣(x) < z < ⌘(x, t), 0 < x < L, (2.9)

�z + ⇣x�x = 0, z = �h� ⇣(x), (2.10)

⌘t = �z � ⌘x�x, z = ⌘(x, t), (2.11)

�t +
1

2

�
�2
x
+ �2

z

�
+ g⌘ = 0, z = ⌘(x, t). (2.12)

A fundamental problem in the theory of water waves is understanding how the fluid
evolves over time. Equations (2.9-2.12) are typically supplemented with initial conditions
for the velocity potential � and the surface elevation ⌘ at some initial time t = t0, and
the objective is to describe how the surface evolves over time, often referred to as the
“Forward Problem”. Equation (2.9) indicates that the velocity potential is a harmonic
function, while the other equations specify boundary conditions at both the free surface
and the bottom boundary.

The water-wave equations represent a unique combination of linear and nonlinear
partial differential equations (PDEs). One of the unknowns, �, satisfies a linear PDE
within the bulk of the fluid. In contrast, the free surface ⌘ is governed by nonlinear
evolution equations at the boundary. At each moment in time, with a given boundary ⌘
and potential � at z = ⌘(x, t), we solve the Laplace equation, which, in turn, governs the
evolution of the surface and the potential through equations (2.9-2.12).

Assuming a bottom profile ⇣ = 0 and unidirectional wave propagation in the x-
direction with wavelength L, we consider small-amplitude waves, i.e., a/L and a/h are
much smaller than 1, where a represents the amplitude of the wave. Under these con-
ditions, the water-wave equations (2.9-2.12) can be linearised, resulting in the following
system:

�xx + �zz = 0, (2.13)

�z = 0, z = �h, (2.14)

�z = ⌘t, z = 0, (2.15)

�t = �g⌘, z = 0. (2.16)
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Note that the last two equations are on the surface z = 0 because for small-amplitude
waves, the terms �t and �z can be evaluated at z = 0 rather than at z = ⌘ to simplify
these conditions. For the details, we refer the reader to the book by Kundu and Cohen
[17]. Assuming the form for ⌘(x, t) in terms of sinusoidal component with wavenumber
k and frequency ! for which ⌘ = a cos(kx + !t), a solution to this linearised system is
given by:

� =
a!

k

cosh (k(z + h))

sinh(kh)
sin(kx+ !t) for each k =

2n⇡

L
, n = 0, 1, 2, . . . . (2.17)

Here, the dispersion relation is expressed as:

!(k) =
p
gk tanh(kh). (2.18)

We refer the reader to the book by Kundu and Cohen [17] for the above solution of
the linear equations and the dispersion relation. Also, for a discussion on the governing
equations of water-waves, their derivation, the different types of approximations and the
solutions associated with approximate models, we refer the reader to [2, 17, 23, 37, 43].
It’s important to note that general explicit closed-form solutions for this nonlinear, free-
boundary value problem do not exist. Nevertheless, equations (2.9-2.12) are known to
possess unique solutions that depend continuously on the initial data, as shown by Lannes
[42] and Wu [60].
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Chapter 3

SHALLOW WATER WAVE MODELS

In this thesis, our primary focus centres on solving the inverse problem of discerning the
ocean’s bottom boundary. This involves utilising measurements of surface displacement
and an initial estimate of the bottom profile. By delving into this inverse problem, our
objective is to deepen our comprehension of the oceanic environment and its dynamics,
offering insights into various practical applications. Our methodology aligns closely with
the approaches presented in the works of [58, 29], but we distinguish our work by look-
ing into shallow-water regime from the outset. Specifically we derive the shallow-water
analogue of the equations in [58, 29]. Now, let’s explore the reasons behind choosing
shallow-water modelling.

3.1 Causes of Ill-posedness

As noted in Vasan and Deconinck [58], the choice of the shallow-water model stems from
the inherent ill-posed nature of the problem, primarily attributed to two factors: 1) Deep
water conditions (characterised by a large ratio of depth, h, to wavelength, L), and 2)
Still water conditions (zero surface displacement and surface velocities).

Let’s look into the first reason: Solving the inverse problem of deducing the ocean
floor from surface wave measurements encounters a significant obstacle due to the rapid
decrease in the velocity field with depth. As an example, consider the linear model
equations (2.13-2.16) with a flat bottom boundary at z = �h. By differentiating the
solution given in equation (2.17), we get

�z(x, z = �h) = 0, �x(x, z = �h) =
a! cos(kx+ !t)

sinh(kh)
.

Note that �x decreases uniformly to zero as the depth h becomes larger. Thus there is
an exponential drop in the vertical direction in the gradient of velocity potential. Now,
when we aim to determine the ocean floor, which is essentially where the fluid velocity
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becomes zero, there’s a computational challenge. For a sufficiently deep fluid-flow, there
is a depth h0 and a number ✏ such that for all depths below h0, the magnitude of the
fluid velocity is smaller than ✏. As the depth of the fluid is made larger, ✏ can be taken
smaller. As a consequence, by considering sufficiently deep water, the change in the
surface velocities due to a change in the bottom boundary, is arbitrarily small. This
implies the inverse problem of bathymetry detection is ill-posed in the sense that the
reconstruction of the bottom profile is highly sensitive to the surface velocities. This
ill-posedness was recognised by Fontelos et al. [29] and Vasan and Deconinck [58]. Both
suggested that the reconstruction was more stable in shallower water. Note that this
ill-posedness is essentially the same that is associated with the Cauchy problem for the
Laplace equation. The Laplace equation in non-dimensional form is

µ2�xx + �zz = 0,

where µ = h/L is the aspect ratio defined in terms of a typical depth h and the horizontal
period L. In the shallow-water regime where µ⌧1, we see that the vertical derivatives of
� (and hence the vertical velocities) do not vary much from their free surface value. This
motivates us to look for water-wave models in the shallow-water regime rather than try
to work with the full water-wave equation.

Note that the shallow-water assumption does not remove the cause of ill-posedness due
to still water. Let’s look into this reason: Still water can conform to any bottom surface.
Intuitively, a quiescent water body, in equilibrium, adopts the shape of its container or the
confined bottom profile. [58] explicitly demonstrated the lack of uniqueness in inferring
the bottom profile when surface displacement is zero. Figure 3.1 from [58] presents bottom
profile reconstruction using localised free-surfaces, revealing better recovery in regions
with non-negligible free-surface displacement and poorer in the region where free-surface
displacement is close to zero. Figure 3.1 illustrates three positions of localised surface
displacement. The left column showcases the free surface (bold solid line), reconstructed
bottom surface (dashed line with dots), and true bottom surface (thin solid line). The
right column compares computed tangential velocity (dots) with true tangential velocity
(solid line). The right column of Figure 3.1 distinctly illustrates negligible velocities away
from the localised disturbance and on the left column, it’s obvious that the recovery is
much better in places where the surface is noticeably disturbed and gets worse as you
move away. So, in this thesis, we’ll assume that both the surface disturbance ⌘ and the
surface velocity ⌘t do not vanish identically in any open region of space or open interval
of time.

The problem of small surface velocities remains an issue despite shallow-water mod-
elling assumption. The way in which it arises in our work is discussed in Chapter 4 and
motivates the need for a regularisation scheme (also discussed in Chapter 4).
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20 V. Vasan and B. Deconinck

(a) True (thin solid line) and computed (dots)
bottom surface.

(b) True and computed tangential velocity at
surface.

(c) True (thin solid line) and computed (dots)
bottom surface.

(d) True and computed tangential velocity at
surface.

(e) True (thin solid line) and computed (dots)
bottom surface.

(f) True and computed tangential velocity at
surface.

Figure 13. Recovering the bottom surface using localized surface deviations. Each row presents
a reconstruction based on a di↵erent localized surface elevation profile (bold solid line in the
left column). The left column shows true and computed bottom surfaces and the right column
depicts the computed tangential velocity at the surface.

As a consequence of the arguments presented above, we do not expect the least-squares
routine to capture the true bottom surface when (⌘, ⌘t, ⌘tt) = (0, 0, 0). In practice, the
least-squares routine performs poorly when ⌘ is close to a constant and (⌘t, ⌘tt) are
near machine epsilon. Consider the example depicted in figure 13 where we attempt
to reconstruct the bottom surface using a localized free surface. Figure 13 shows three

Figure 3.1: Figure taken from Vasan and Deconinck [58]: Recovering the bottom surface
using localised surface displacements. Each row presents a reconstruction based on a
different localised surface elevation profile (bold solid line in the left column). The left
column shows true and computed bottom surfaces and the right column depicts the
computed tangential velocity at the surface.
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We will further assume that the free surface is consistently well-separated from the
bottom boundary. Specifically, we assert that the bottom boundary does not breach the
free-surface, expressed as ⌘(x, t) > �h � ⇣(x) for all time t. This criterion is sometimes
referred as the non-cavitation or no-island condition. Lannes [42] also uses similar condi-
tion in proving the well-posedness of the water-wave equations. Vasan and Deconinck [58]
and Fontelos et al. [29] needed a similar condition for their formulation to reconstruct
the bottom boundary.

3.2 Derivation of Models

When considering approximations, our initial tools often involve Taylor expansions or per-
turbation theory. Numerous models, such as KdV-type equations, nonlinear Schrödinger
models, KP equations, Boussinesq-type equations, among others, have been derived in
[2] from Euler’s water wave equations by employing Taylor expansions of the velocity
potential and free-surface, assuming small amplitudes in different asymptotic regimes.
From the Hamiltonian formulation of the water wave equations, it becomes evident that,
for any approximation, the focus should be on approximating the Dirichlet–Neumann
operator G(⌘, ⇣), as the complexity lies primarily in G(⌘, ⇣). Utilising the fact that DNO
is an analytic function of ⌘, proven by [19], a convergent Taylor expansion of G(⌘) is
employed in [21] to obtain different orders of approximation for the DNO. In [42], several
shallow water asymptotic models are derived using different orders of approximations of
the DNO.

In this work, we follow [1] to derive a non-local formulation for a varying bottom
(where "varying bottom" implies a dependence on x, not t). Let �(x, z) be the solution
of the Laplace equation (2.9), and  ±(x, z) = exp (ikx± kz). Note,  ± are particular
solutions to the Laplace equation for all k 2 C. Subsequently, using Green’s identity,

Z

D

�� ± = �
Z

D

r� ·r ± +

Z

@D

�
@ ±

@n
,

and Z

D

 ±�� = �
Z

D

r ± ·r�+

Z

@D

 ±@�

@n
,

where D = {(x, z) : �h� ⇣(x) < z < ⌘(x, t), 0 < x < L} is the domain and n represents
the outward unit normal of the surface element @D.

Subtracting the first equation from the second yields:
Z

@D

 ±@�

@n
�
Z

@D

�
@ ±

@n
= 0.

Assuming periodicity of � and  in x-direction with period L, choosing k = 2⇡n/L where
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n 2 Z \ {0}, and noting that @D is a boundary with four sides where two sides are along
the horizontal direction at z = ⌘ and z = �h � ⇣ and the other two sides are along
vertical direction at x = 0 and x = L, we need to compute the integration along all
four sides. However, it’s crucial to recognise that integrations along the vertical lines will
have identical values but with different signs, leading them to cancel each other out. As
a result, we are left with integration with respect to x only along horizontal direction,
simplifying the above expression to

Z
L

0

✓
 ±@�

@n
� �

@ ±

@n

◆ ���
z=⌘

dx+

Z
L

0

✓
 ±@�

@n
� �

@ ±

@n

◆ ���
z=�h�⇣

dx = 0.

Let’s denote n⌘ and d⌘ as the Neumann and Dirichlet conditions at the top surface z = ⌘

and n⇣ and d⇣ as the Neumann and Dirichlet conditions at the bottom z = �h�⇣. Then,
the above equation can be expressed as

Z
L

0

✓
 ±n⌘ � d⌘

@ ±

@n

◆ ���
z=⌘

dx+

Z
L

0

✓
 ±n⇣ � d⇣

@ ±

@n

◆ ���
z=�h�⇣

dx = 0. (3.1)

The directional derivative of  ± along the normal direction can be computed by dot
product between the gradient and the normal vector. Thus, we can express it as

@ ±

@n

���
z=⌘

= (ik ±,±k ±) · (�⌘x, 1) = (�ik⌘x ± k) ± = ⌥i@x
�
 ± (z = ⌘)

�
.

Similarly, normal component of  ± at the bottom surface is given by

@ ±

@n

���
z=�h�⇣

= (ik ±,±k ±) · (�⇣x,�1) = (�ik⇣x ⌥ k) ± = ±i@x
�
 ± (z = �h� ⇣)

�
.

Using these expression for normal derivatives, equation (3.1) can be written as

Z
L

0

�
 ±n⌘ ± id⌘@x 

±�
���
z=⌘

dx+

Z
L

0

�
 ±n⇣ ⌥ id⇣@x 

±�
���
z=�h�⇣

dx = 0.

Integrating by parts, we obtain

Z
L

0

�
 ±n⌘ ⌥ i@x (d⌘) 

±�
���
z=⌘

dx+

Z
L

0

�
 ±n⇣ ± i@x (d⇣) 

±�
���
z=�h�⇣

dx = 0.

Writing separate equations for  + and  � and substituting their values, the above equa-
tion can be expressed as

Z
L

0

�
eikx+k⌘ (n⌘ � i@x (d⌘)) + eikx+k(�h�⇣) (n⇣ + i@x (d⇣))

 
dx = 0,
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and Z
L

0

�
eikx�k⌘ (n⌘ + i@x (d⌘)) + eikx�k(�h�⇣) (n⇣ � i@x (d⇣))

 
dx = 0.

Factoring out the constant exp(�kh) and then taking the complex conjugate of these
equations, we obtain

Z
L

0

�
e�ikx+k(⌘+h) (n⌘ + i@x (d⌘)) + e�ikx�k⇣ (n⇣ � i@x (d⇣))

 
dx = 0,

Z
L

0

�
e�ikx�k(⌘+h) (n⌘ � i@x (d⌘)) + e�ikx+k⇣ (n⇣ + i@x (d⇣))

 
dx = 0.

Adding and subtracting these two equations, we get

Z
L

0

⇥
e�ikx {n⌘ cosh (k(⌘ + h)) + i@x(d⌘) sinh (k(⌘ + h))}+

e�ikx {n⇣ cosh (k⇣) + i@x(d⇣) sinh (k⇣)}
⇤
dx = 0, (3.2)

Z
L

0

⇥
e�ikx {n⌘ sinh (k(⌘ + h)) + i@x(d⌘) cosh (k(⌘ + h))}+

e�ikx {�n⇣ sinh (k⇣)� i@x(d⇣) cosh (k⇣)}
⇤
dx = 0. (3.3)

In the preceding steps, we introduced terms such as sinh (k(⌘ + h)) and cosh (k(⌘ + h))

into our equations, offering enhanced clarity and allowing for the truncation of their
Taylor series expansions when considering the shallow-water limit. Recalling that Di-
richlet conditions and Neumann conditions at the top and bottom can be expressed as
d⌘ = � (x, ⌘, t) = q(x, t), n⇣ = 0, and n⌘ = G(⌘, ⇣)q, let’s define the velocity tangential to
the fluid domain at the bottom z = �h�⇣ as Qx. Consequently, @x(d⇣) = Qx = �x�⇣x�z.
Substituting these expressions into equations (3.2) and (3.3), we obtain the following sim-
plified equations:

Z
L

0

e�ikx {cosh (k(⌘ + h))G(⌘, ⇣)q + iqx sinh (k(⌘ + h)) + iQx sinh (k⇣)} dx = 0, (3.4)

and
Z

L

0

e�ikx {sinh (k(⌘ + h))G(⌘, ⇣)q + iqx cosh (k(⌘ + h))� iQx cosh (k⇣)} dx = 0. (3.5)

These two equations, known as global relations, can be simultaneously solved for both
G(⌘, ⇣)q and Qx when qx is provided. The above global relations are also obtained in
[1]. Importantly, we don’t assume the mean of ⇣ to be zero. In this context, h can be
regarded as an estimate for the bottom topography rather than the actual mean value of
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the bottom surface.

Within the shallow-water regime, characterised by a small depth relative to the water
wavelength i.e., the aspect ratio µ = h/L is considered a small parameter. Also, we
will consider small amplitude waves only. Specifically, the ratio of infinity norm of the
free-surface to the depth and the ratio of infinity norm of the bottom profile to the depth
(k⌘k1/h and k⇣k1/h) is small and close to each other, let us denote it by ✏. We assume
a KdV balance, ✏ ⇠ µ2 [2]. This implies that both

k⌘k1
h

,
k⇣k1
h

⇠
✓
h

L

◆2

. (3.6)

In this setting, we obtain an O(µ4) accurate expansion for hyperbolic functions as follows:

cosh(k(⌘ + h)) = cosh(µk̃(✏⌘̃ + 1)) = 1 +
(µk̃)2

2
+ · · · = 1 +

(kh)2

2
+ · · · , (3.7)

sinh(k(⌘ + h)) = sinh(µk̃(✏⌘̃ + 1)) = µk̃ + µ✏k̃⌘̃ +

⇣
µk̃
⌘3

6
+ · · · = kh+ k⌘ +

k3h3

6
+ · · · ,

(3.8)

cosh(k⇣) = cosh
⇣
✏µk̃⇣̃

⌘
= 1 + · · · , (3.9)

sinh(k⇣) = sinh
⇣
✏µk̃⇣̃

⌘
= ✏µk̃⇣̃ + · · · = k⇣ + · · · , (3.10)

where ⌘̃ = ⌘/k⌘k1, ⇣̃ = ⇣/k⇣k1 and k̃ = kL are introduced solely for the expansion of
hyperbolic trigonometric functions. This representation makes it evident that all higher-
order terms in the expansions are of O(µ4). Using these expansions, the truncated forms
of the global relations in equations (3.4) and (3.5) become

Z
L

0

e�ikx

⇢✓
1 +

(kh)2

2

◆
G(⌘, ⇣)q + iqx

✓
kh+ k⌘ +

k3h3

6

◆
+ iQx (k⇣)

�
dx = h.o.t.’s,

(3.11)
Z

L

0

e�ikx

⇢✓
kh+ k⌘ +

k3h3

6

◆
G(⌘, ⇣)q + iqx

✓
1 +

(kh)2

2

◆
� iQx

�
dx = h.o.t.’s,

(3.12)

where h.o.t.’s is short form for higher order terms. The higher order terms in equations
(3.11) and (3.12) are of O(µ4) and higher. From equation (3.6), it follows that the term
k⇣ (multiplied with Qx) in the last part of equation (3.11) is of O(µ3), therefore to derive
a DNO expression to O(µ4), we must obtain an expression for Qx accurate O(1) only.
Considering equation (3.12) at O(1) order, we have:

R
L

0 e�ikx(qx � Qx) dx = 0 leading
to Qx = qx. This represents the expression for the tangential velocity of the fluid at the
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bottom in our shallow-water approximation. Then, equation (3.11) yields:

Z
L

0

e�ikx

⇢✓
1 +

(kh)2

2

◆
G(⌘, ⇣)q + iqx

✓
kh+ k⌘ +

k3h3

6

◆
+ iqx (k⇣)

�
dx = h.o.t.’s.

(3.13)
To express the DNO, we can rearrange this equation by placing the DNO term on the
left-hand side and moving all other terms to the right-hand side:

Z
L

0

e�ikx

✓
1 +

(kh)2

2

◆
G(⌘, ⇣)q dx =

Z
L

0

e�ikx

⇢
�iqx

✓
kh+ k⌘ +

k3h3

6

◆
� iqx (k⇣)

�
dx,

(3.14)
and returning from Fourier space to physical space (with k ! �i@x), we obtain the sub-
sequent expression for a model Dirichlet-Neumann operator (DNO) with a variable bot-
tom boundary:

✓
1� h2

2
@2
x

◆
GM(⌘, ⇣)q = �hqxx +

h3

6
qxxxx � @x[(⌘ + ⇣)qx]. (3.15)

We remind the reader that all functions of x are considered periodic with period 2⇡.
Solving for GM explicitly, we have

GM(⌘, ⇣)q = �
✓
1� h2

2
@2
x

◆�1✓
h� h3

6
@2
x

◆
qxx �

✓
1� h2

2
@2
x

◆�1

@x[(⌘ + ⇣)qx]. (3.16)

As mentioned in Section 2.2, DNO for the water-wave model is self-adjoint. However
the modelled DNO GM(⌘, ⇣)q provided above lacks self-adjointness. The primary reason
is the last term on the right-hand side. This issue can be addressed by considering the
following modified DNO:

GM(⌘, ⇣)q = �
✓
1� h2

2
@2
x

◆�1✓
h� h3

6
@2
x

◆
qxx�

✓
1� h2

2
@2
x

◆�1

@x

"
(⌘ + ⇣)

✓
1� h2

2
@2
x

◆�1

qx

#
.

(3.17)
The above modification has the same formal level of accuracy as the expression in equation
(3.16). Replacing the DNO in the Hamiltonian in equation (2.6) by GM leads to the
following model equations (which are also evidently Hamiltonian):

⌘t =
�HM

�q
=) ⌘t = �

✓
1� h2

2
@2
x

◆�1
"✓

h� h3

6
@2
x

◆
qxx � @x

 
(⌘ + ⇣)

✓
1� h2

2
@2
x

◆�1

qx

!#
,

(3.18)

qt = ��H
M

�⌘
=) qt = �g⌘ � 1

2

 ✓
1� h2

2
@2
x

◆�1

qx

!2

. (3.19)
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Corresponding Hamiltonian HM for this model is given by

HM =
1

2

Z �
qGM (⌘, ⇣) q + g⌘2

�
dx, (3.20)

where GM is defined in equation (3.17).

During the derivation of this model, it becomes apparent that numerous models with
equivalent accuracy levels exist. For instance, the operator (1� h2@2

x
/2)�1 in right-hand

side of equation (3.16) is asymptotically interchangeable with and can be replaced by
1 up to the level of accuracy we are considering. Note that the first term in equation
(3.16) contains lower-order terms and higher order terms. This means when we replace
(1� h2@2

x
/2)�1 by its expansion we should retain the appropriate terms. In this scenario,

we arrive at a different model equation:

⌘t = �
✓
h+

h3

3
@2
x

◆
qxx � @x ((⌘ + ⇣)qx) , (3.21)

qt = �g⌘ � 1

2
q2
x
. (3.22)

A question arises: why did we not opt for this seemingly simpler model compared to
model equations (3.18-3.19)? To address this question, let’s apply the ansatz (⌘, q) ⇡
(A,B)eikx�i!t to the linear constant coefficient problem of this model. The resulting
dispersion relation is !2 = ghk2 (1� h2k2/3). Consequently, for large kh, exponential
growing solutions emerge. Thus, the model equation (3.21) is not linearly stable and
leads to ill-posed forward model. For this reason, we discard this model and choose
to work with the model provided in equations (3.18) and (3.19), where better analytic
properties for the forward problem are observed. The dispersion relation for the equations
(3.18-3.19) is given by

! =

s

ghk2

✓
1 + h2k2/6

1 + h2k2/2

◆
. (3.23)

Comparing it with the dispersion relation in equation (2.18) of full water-wave model, we
can see that the large kh behaviour of equation (3.23) is like the small kh behaviour of
equation (2.18), which reflects our choice to work in the shallow-water regime.

Another illustration of a model with the same level of asymptotic accuracy is when
the operator (1� h2@2

x
/2)�1 in the right-hand side of equation (3.16) is replaced by 1

only in the last term. This substitution results in the following self-adjoint DNO:

GM(⌘, ⇣)q = �
✓
1� h2

2
@2
x

◆�1✓
h� h3

6
@2
x

◆
qxx � @x[(⌘ + ⇣)qx]. (3.24)

By following this approach, the resulting Hamiltonian equations align with the Boussinesq-
type equation derived by [1], with the distinction of incorporating a non-trivial bottom
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boundary. We choose equation (3.17) over this alternative, as the model equations (3.18-
3.19) represent a regularised version of the Boussinesq-type equations obtained from equa-
tion (3.24). This regularisation is introduced by the operator (1� h2@2

x
/2)�1 multiplied

in the nonlinear term in equation (3.17). Notably, this convolution operator smoothens
out the function. For a detailed mathematical explanation, refer to Section 4.1 where we
have shown that this operator maps L2[0, 2⇡] functions to at-least H1[0, 2⇡] functions.

Non-dimensionalised form:

The horizontal span in our domain has been [0, L] so far. Let’s employ a horizontal length
scale of L/2⇡, ensuring that our Fourier modes k (wave numbers) become integers for
simplicity. Utilising the following scaling:

(⌘, ⇣) ! h(⌘̃, ⇣̃), qx !
p

ghq̃x, t ! L

2⇡

1p
gh

t̃,

and removing the tilde in the new equations for the sake of simplicity in notation, equa-
tions (3.18-3.19) appear as:

⌘t = !2(�i@x)q � P(�i@x)@x [(⌘ + ⇣)P(�i@x)qx] , (3.25)

qt = �⌘ � 1

2
(P(�i@x)qx)

2 , (3.26)

where we have defined the operator !2(�i@x) and P(�i@x) using their Fourier transforms,
along with the parameter µ as follows:

!2(k) =
1 + (µk)2

6

1 + (µk)2

2

k2, P(k) =
1

1 + (µk)2

2

, µ =
2⇡h

L
. (3.27)

The only non-dimensionalised parameter in this form is the aspect ratio µ. The equations
examined in [15] can be seen as a generalised version of equations (3.25-3.26), incorporat-
ing a boundary operator in place of bottom-profile ⇣. In other words, the shallow-water
wave equations presented here can also be considered as shallow-water approximations
to the boundary operator employed in [15]. The Hamiltonian corresponding to equations
(3.25-3.26) and DNO in terms of these operator are as follows:

H!,P =
1

2

Z 2⇡

0

�
q!2(�i@x)q + ⌘2 + (⌘ + ⇣) (Pqx)

2� dx, (3.28)

GM(⌘, ⇣)q = !2(�i@x)q � P(�i@x)@x [(⌘ + ⇣)P(�i@x)qx] . (3.29)

Note that we use the symbols !2(�i@x) and P(�i@x) when these pseudo-differential
operators act on functions of the real variable x, and !2(k) and P(k) for their Fourier
transforms (Fourier multiplier), respectively. Most of the time, we will omit the arguments
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of !2 and P to simplify our notations. It’s important to recognise that we interpret them
as operators when acting on functions of the real variable x and as Fourier multipliers
when acting on the Fourier transforms of functions.

As discussed earlier, there are various models that can be derived here. For instance,
by making a substitution !2 = k2+O(µ2) and P = 1+O(µ2) we arrive at an alternative
Hamiltonian which gives the hydrostatic shallow-water equations in one horizontal di-
mension. Different choices for the pseudo-differential operators !2 and P can lead to the
non-trivial bottom boundary versions of the ASMP model [3] or a Hamiltonian version
of the Hur-Pandey model [36]. All these models represent different types of bidirectional
Whitham equations. For a comparative analysis of such models, we refer to [26].

While looking at the literature to see if the model in equation (3.27) has been derived
before, we came across another model which is close to our model given by Hur and
Pandey [36]. Writing the Hamiltonian version of their model, we see that it follows the
same Hamiltonian as in equation (3.28) with Hamiltonian equations (3.25-3.26) with the
choices of the operator given by

!2(k) = k
tanh(µk)

µ
, P(k) =

tanh(µk)

µk
, µ =

2⇡h

L
, (3.30)

which we refer as regularised Boussinesq�Whitham model.
In this thesis, we will work with these two models given by equations (3.27) and (3.30),

we will call the former as regularised Boussinesq model and the latter one as regularised
Boussinesq�Whitham model. Here, we will write these models in the table format for
comparison and a quick look. The model equations are:

⌘t = !2q � P@x ((⌘ + ⇣)Pqx) ,

qt = �⌘ � 1

2
(Pqx)

2 .

The pseudo-differential operators for the two models are given by

Regularised Boussinesq Model Regularised Boussinesq�Whitham Model

!2(k) =
1 + (µk)2

6

1 + (µk)2

2

k2, P(k) =
1

1 + (µk)2

2

!2(k) = k
tanh(µk)

µ
, P(k) =

tanh(µk)

µk

The regularised Boussinesq�Whitham equations with trivial bottom boundary was
considered in [25] where they showed local and global wellposedness. Their equations are
slightly different from those given here. Indeed their equations are written in terms of a
new velocity variable. It suffices for our purposes, and makes our computer code more
modular, to consider equations in terms of velocity potential since only ! and P need
to be defined. Both regularised Boussinesq and regularised Boussinesq�Whitham have
equations where the nonlinearity is a bounded operator (on some suitable function space
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such as L2([0, 2⇡])⇥L2([0, 2⇡])). Indeed regularised Boussinesq has a smoothing nonlin-
earity. For this reason we expect regularised Boussinesq to possess a local wellposedness
theory for sufficiently smooth initial data.

3.3 Conservation Laws for Shallow Water Models

While not directly related to bathymetry detection, conserved quantities offer valuable
insights into water wave dynamics and can be used for numerical validation tests. The
full water-wave equations (2.1-2.4) possess several conserved quantities, as demonstrated
by Olver [49] and Benjamin and Olver [11]. These quantities provide benchmarks for the
accuracy of water wave models. This section delves into conserved quantities within the
context of our work. In contrast to the works [11, 49], we connect properties of the DNO
(or model DNO) to these conserved quantities. A function T is called a conserved density
and

R
T is called conserved quantity if

d

dt

Z
L

0

Tdx = 0.

Olver [49] established that the 2D water wave problem with infinite depth and surface
tension possesses eight independent conservation laws. Here, we will explore a few of
these for a general Hamiltonian system of the form:

H =
1

2

Z �
qG (⌘, ⇣) q + g⌘2

�
dx.

We will subsequently derive the conditions on the operator G(⌘, ⇣) under which specific
conservation laws from Olver’s work [49] hold true for the system of equations (3.25-3.26).

For the 2D water wave problem with a finite bottom and no surface tension, Benjamin
and Olver [11] demonstrated that only two quantities are conserved: energy and mass.
We will show at the end of this section that these two conserved quantities are indeed con-
served by both regularised Boussinesq model (3.27) and regularised Boussinesq�Whitham
model (3.30).

In Hamiltonian systems, the time evolution of a functional quantity T is related to
its Poisson bracket {T,H} with the Hamiltonian H by:

dT

dt
= {T,H}+ @T

@t
, (3.31)

where
{T,H} =

Z ✓
�T

�⌘

�H
�q

� �T

�q

�H
�⌘

◆
dx.

If T is independent of time explicitly i.e.,
@T

@t
= 0, then to prove that T is a conserved
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quantity, it is enough to show that its Poisson bracket with the Hamiltonian vanishes.

The functional derivative of Hamiltonian H w.r.t. ⌘ is given by:

Z
L

0

�H
�⌘
⇠ dx = lim

✏!0

Z
L

0

H(⌘ + ✏⇠, ⇣)�H(⌘, ⇣)

✏
dx

= lim
✏!0

Z
L

0

1

2

qG (⌘ + ✏⇠, ⇣) q + g(⌘ + ✏⇠)2 � qG (⌘, ⇣) q � g⌘2

✏
dx

=

Z
L

0

1

2
lim
✏!0

qG (⌘ + ✏⇠, ⇣) q � qG (⌘, ⇣) q

✏
+ g⌘⇠ dx

=

Z
L

0

✓
1

2
qD⌘G(⌘, ⇣)[q, ⇠] + g⌘⇠

◆
dx.

where D⌘G(⌘, ⇣) is Fréchet derivative of DNO w.r.t. ⌘. Fréchet derivative of DNO w.r.t.
⌘ is a bilinear function in q and ⇠ therefore we can write

Z
L

0

�H
�⌘
⇠ dx =

Z
L

0

✓
1

2
⇠B(⌘, ⇣) [q, q] + g⌘⇠

◆
dx,

where Z
⇠B(⌘, ⇣) [q, q] =

Z
qDG(⌘, ⇣) [⇠, q] , (3.32)

is true for every smooth function ⇠ that satisfies periodic boundary conditions. We have
dropped subscript ⌘ in DG for the sake of convenience. Substituting it in the above
equation and comparing both sides, we get

�H
�⌘

= g⌘ +
1

2
B(⌘, ⇣) [q, q] .

The functional derivative of Hamiltonian H w.r.t. q is:

�H
�q

=
G(⌘, ⇣) +G(⌘, ⇣)†

2
q.

For water wave models, we know equation (1.1) is true, therefore

�H
�q

= ⌘t = G(⌘, ⇣)q.

Thus, we can say that water wave models by definition demand self-adjoint approxima-
tions of the DNO. Therefore, Hamiltonian equations can be written as

⌘t =
�H
�q

= G(⌘, ⇣)q, (3.33)

qt = ��H
�⌘

= �
✓
g⌘ +

1

2
B(⌘, ⇣) [q, q]

◆
. (3.34)
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To understand equation (3.32), we can try it on a simple example. Suppose we consider
an example model DNO defined below as:

Ge(⌘, ⇣)q = �@x ((⌘ + ⇣)qx) ,

then the corresponding Hamiltonian is given by

H =
1

2

Z �
�q@x(⌘ + ⇣)qx + g⌘2

�
dx,

=)
Z
�H
�⌘
⇠ dx =

1

2

Z �
⇠q2

x
+ g⌘⇠

�
dx,

and therefore Hamiltonian equations in this case are

⌘t = �@x ((⌘ + ⇣)qx) ,

qt = �1

2

�
g⌘ + q2

x

�
.

Here, we have D⌘Ge(⌘, ⇣)[q, ⇠] = �@x(⇠qx), we can define B(⌘, ⇣) [q, q] = q2
x
, then

R
⇠B(⌘, ⇣) [q, q] =

R
⇠q2

x
= �

R
q@x(⇠qx) =

R
qDGe(⌘, ⇣) [⇠, q].

Conservation of Energy:

Hamiltonian in our case is not an explicit function of time, thus time derivative of H is
zero and thus from equation (3.31) it is obvious that it is conserved and it is, in fact, the
total energy of the system.

Conservation of Momentum:

Water wave models conserve the momentum P =
R
qx⌘ when ⇣ = 0. We can compute

the Poisson bracket:

{P,H} =

Z
�P

�⌘

�H
�q

� �P

�q

�H
�⌘

,

=

Z
qxG(⌘)q + ⌘x

✓
g⌘ +

1

2
B(⌘) [q, q]

◆
, (3.35)

where we used equations (3.33-3.34) in the last expression. Since for periodic boundary
conditions,

R
⌘⌘xdx =

R
@

@x

⇣
⌘
2

2

⌘
dx = 0, we have

{P,H} =

Z
qxG(⌘)q +

1

2

Z
⌘xB(⌘) [q, q] ,

=

Z
qxG(⌘)q +

1

2

Z
qDG [⌘x, q] . (3.36)

40



Note,
Z

qxG(⌘)q = �
Z

q@x (G(⌘)q) ,

= �
Z

qG(⌘)qx �
Z

qDG(⌘) [⌘x, q] ,

= �
Z

qxG(⌘)q �
Z

qDG(⌘) [⌘x, q] ,

=) 2

Z
qxG(⌘)q = �

Z
qDG [⌘x, q] ,

=)
Z

qxG(⌘)q = �1

2

Z
qDG [⌘x, q] .

Substituting this in equation (3.36), we get {P,H} = 0 and thus the momentum P is a
conserved quantity.

When ⇣ 6= 0, we can define

P⇣ =

Z
(⌘ + ⇣)qx dx,

and then following the same step of calculation as in the case for ⇣ = 0, we get

dP⇣

dt
=

Z
⇣x⌘ dx. (3.37)

Conservation of Mass:

The Poisson bracket of mass m =
R
⌘ with Hamiltonian is:

{m,H} =

Z
(1)

�H
�q

� 0,

=

Z
G(⌘, ⇣)q.

If model DNO G(⌘, ⇣) is such that its range is orthogonal to constant functions, then
mass is conserved. Since, our DNO G(⌘, ⇣) is self-adjoint, the statement for mass to
be conserved is equivalent to that the model DNO has only constant functions in its
null-space.

Conservation of Vertical Momentum:

The vertical momentum V =
R
q + gt⌘ is conserved when

(i) The Fréchet derivative of the model Neumann condition G(⌘, ⇣)q acting on constant
functions is identically zero i.e., DG(⌘)[1, q] = 0 for all q, ⌘, and

(ii) Range of DNO G(⌘, ⇣) is orthogonal to constant functions.
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To see the proof, let v =
R
q, then

dv

dt
= {v,H} = �

Z
�H
�⌘

= �
Z

g⌘ +
1

2
B(⌘, ⇣)[q, q].

From the assumption (i), we have
R
B(⌘, ⇣)[q, q] =

R
qDG(⌘, ⇣)[1, q] = 0, thus we have

dv

dt
= �

Z
g⌘.

Since
R
⌘ = mass is conserved under assumption (ii), we get

v = �t

Z
g⌘ + c,

=)
Z

q +

Z
tg⌘ = c,

=) V = c.

for some constant c.

Conservation of Center of Mass:

P is the momentum defined above, then the centre of mass CoM =
R
x⌘�tP is conserved

for the model water wave equations on the whole line
(i) if ⇣ = 0, (This is required for momentum P itself to be conserved.)
(ii) if the model DNO satisfies G(⌘)x = �⌘x (in a distributional sense).
Proof is simple as follows:

d

dt
CoM =

@

@t
CoM + {CoM,H} = �

Z
P + {x⌘, H}� t{P,H},

= �
Z

P +

Z
xG(⌘)q � 0 = �

Z
P �

Z
q⌘x = �

Z
P +

Z
qx⌘ = 0.

Conservation of Potential Energy:

Potential energy PE is given by

PE =

✓Z
1

2
⌘2
◆
� tV +

1

2
gt2m,

where V and m are vertical momentum and mass defined above respectively.
(i) The Fréchet derivative of the model DNO G(⌘, ⇣)q acting on constant functions is

identically zero i.e., DG(⌘)[1, q] = 0 for all q, ⌘,
(ii) Range of DNO G(⌘, ⇣) is orthogonal to constant functions, and
(iii) DNO acting on surface variable ⌘ is constant function 1 i.e., G(⌘, ⇣)⌘ = 1.
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To prove this, define s = 1
2

R
⌘2, then

ds

dt
=

@

@t
s+ {s,H} =

Z
⌘
�H
�q

=

Z
⌘G(⌘, ⇣)q =

Z
qG(⌘, ⇣)⌘ =

Z
q,

where the last second step is true because DNO is self-adjoint and we used the assumption
(iii) in last step. Note that V and m are conserved because of assumptions (i) and (ii),
therefore

d

dt
PE =

ds

dt
� V + gtm,

=

Z
q � V + gt

Z
⌘,

= 0.

Thus, PE is conserved under these assumptions.
Based on the conditions defined above on DNO for each of the conservation quantity,

we can see that both the models (3.27) and (3.30) satisfy conditions for conservation of
energy and conservation of mass. Moreover, when ⇣ = 0, then both the models conserve
momentum as well.
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3.4 Forward Problem

3.4.1 Discussion on Forward Model

In mathematical physics, inverse problems are commonly characterised as the "inverse"
of conventional, well-posed, "forward" problems [61]. In the context of our investigation,
the forward problem involves determining the evolution of the surface displacement and
velocity over time, given a set of initial conditions and a known bottom profile. In
this section, we present the analytical solution of the linear component of the forward
model equations, with a subsequent section presenting the numerical solution for the full
nonlinear forward problem. The numerical methods described in this chapter will also be
used for the observer problem discussed in Chapter 5.

The linear part of the model equations (3.25-3.26), with a trivial bottom-profile i.e.,
⇣ are expressed as follows:

⌘t = !2(�i@x)q, (3.38)

qt = �⌘, (3.39)

where !2 is defined by equation (3.27) for regularised Boussinesq model and equation
(3.30) for regularised Boussinesq�Whitham model. For readers reference we repeat the
models below:

Regularised Boussinesq Model Regularised Boussinesq�Whitham Model

!2(k) =
1 + (µk)2

6

1 + (µk)2

2

k2, P(k) =
1

1 + (µk)2

2

!2(k) = k
tanh(µk)

µ
, P(k) =

tanh(µk)

µk

Solution for the Linearised Model

The linear system (3.38-3.39) for both the models is:

⌘t = !2(�i@x)q, (3.40)

qt = �⌘. (3.41)

Differentiating equation (3.40) with respect to t and substituting qt from equation (3.41),
we obtain a single equation:

⌘tt � !2(�i@x)⌘ = 0.

Assuming a solution of the wave form type eikx±i!t for ⌘ in the above equation, we obtain
the following dispersion relation between ! and k (for all k 6= 0):
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Regularised Boussinesq Model Regularised Boussinesq�Whitham Model

!k = k

vuuut

⇣
1 + µ

2
k
2

6

⌘

⇣
1 + µ2k2

2

⌘ !k =

r
k
tanh(µk)

µ

Note !k is given by the symbol of the Fourier multiplier shown in the definition of the
model. The solution can thus be expressed as:

⌘ = c(0) +
k=1X

k=�1
k 6=0

eikx
⇣
c(1)
k

cos(!kt) + c(2)
k

sin(!kt)
⌘
, (3.42)

where c(0), c(1)
k
, c(2)

k
are constants. Using equation (3.40), the solution for q can be written

as:

q = �c(0)t+ c0 +
k=1X

k=�1
k 6=0

1

!k

eikx
⇣
�c(1)

k
sin(!kt) + c(2)

k
cos(!kt)

⌘
. (3.43)

To determine the constant coefficients, we use the initial conditions ⌘(x, 0) = ⌘0 and
q(x, 0) = q0. Let ⌘̂0

k
and q̂0

k
represent the Fourier coefficients of the initial conditions ⌘0

and q0. Then,
c(0) = ⌘̂00, c

0 = q̂00, c
(1)
k

= ⌘̂0
k
, c(2)

k
= !kq̂

0
k
,

Substituting these coefficients back into equations (3.42) and (3.43), the final solutions
for ⌘ and q are:

⌘(x, t) = ⌘̂00 +
k=1X

k=�1
k 6=0

eikx
�
⌘̂0
k
cos(!kt) + !kq̂

0
k
sin(!kt)

�
,

q(x, t) = q̂00 � ⌘̂00t+
k=1X

k=�1
k 6=0

eikx
✓
� 1

!k

⌘̂0
k
sin(!kt) + q̂0

k
cos(!kt)

◆
.

3.4.2 Numerical Solution for Time Evolution in Model Equations

We now discuss the temporal evolution of surface displacement ⌘(x, t) through numer-
ical simulations. Based on initial conditions for surface displacement ⌘(x, 0) and surface
velocity potential q(x, 0), along with the bottom profile ⇣, we aim to compute the dy-
namic behaviour of these quantities over time. Our numerical techniques and illustrative
examples are inspired by the methodologies outlined in [57].

Numerical Methodology:

• Non-dimensional parameter: The non-dimensional shallowness parameter here,
µ, is defined as 2⇡h/L, and for our experiments, we set µ = 1, corresponding to a
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fluid aspect ratio of h/L ⇠ 0.16.

• Grid and boundary conditions: A pseudospectral technique with an even-
numbered grid of N spatial points is implemented [12, 56]. Periodic boundary
conditions are applied along the spatial domain direction in the domain [0, 2⇡].
The spatial grid is defined as

xj = (j � 1)2⇡/N, j = 1, 2, . . . , N.

• Fourier series and derivatives:

G Surface quantities ⌘ and q are represented and truncated using Fourier series,
employing the Fast Fourier Transform (FFT) [56] across Fourier modes

�N

2
,�
✓
N

2
� 1

◆
,�
✓
N

2
� 2

◆
, . . . ,�1, 0, 1, . . . ,

✓
N

2
� 2

◆
,

✓
N

2
� 1

◆
.

G Derivatives of ⌘ and q are computed in Fourier space using Fourier multipliers.

G Nonlinear product terms are calculated in physical space on the discretised
grid, with zero padding employed to control aliasing errors [12, 56].

• Time integration: A fourth-order Runge-Kutta scheme is used for time integra-
tion of surface quantities. This is performed in Fourier space due to the computa-
tional efficiency offered for operators !2 and P .

• Accuracy and computational details: Given the quadratic nonlinearity in our
model equations, a total of 3N/2 Fourier modes are used to ensuring N modes of
accuracy.

Illustrative Examples: Two illustrative examples are presented, each showcasing the
temporal evolution of surface displacement using both the models (3.27-3.30). Both
examples utilise N = 256 grid points.

Conservation Laws: As discussed in 3.3, the conservation of the system’s Hamiltonian
and momentum is maintained when ⇣ is zero. In this case, the Hamiltonian can be
numerically evaluated by extracting the 0th Fourier mode from the Fourier series of the
integrand in equation (3.28). Similarly, momentum corresponds to the 0th Fourier mode
of the Fourier series of qx⌘ when ⇣ is zero. We set ⇣ = 0 for both examples presented
below.
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(a) Regularised Boussinesq Model (b) Regularised Boussinesq�Whitham Model

Figure 3.2: Evolution of unsteady wave

(a) Regularised Boussinesq Model (b) Regularised Boussinesq�Whitham Model

Figure 3.3: Absolute error in Hamiltonian(in green doted lines) and in momentum(in
blue doted lines) with time. Note that vertical axis is on the scale of 10�18 in left plot
and 10�19 in right plot.
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Unsteady wave

Let’s consider an example in which we will employ the following initial conditions for
surface displacement:

⌘0 = 0.01e�4(x�⇡)2 cos(4x), (3.44)

accompanied by a surface velocity potential of zero. The evolution of surface displacement
obtained from the numerical method is depicted in Figure 3.2. This experiment exhibits
a remarkable stability over extended time periods.

To gain a deeper understanding, let’s examine the three-dimensional surface plots
presented in Figure 3.2. Figures 3.2a and 3.2b illustrate the behaviour of the function
⌘(x, t) along the z-axis for both the regularised Boussinesq model and the regularised
Boussinesq�Whitham Model respectively. As expected from the definition of the re-
spective dispersion relations, both the models exhibit bidirectional behaviour.

In the regularised Boussinesq model 3.2a, the initial bump located at x = ⇡ splits
into two smaller, equally sized bumps, and these smaller bumps then propagate in op-
posite directions with identical velocities. As they approach the boundary condition,
they coalesce once more, change their sign, undergo splitting again, and persist in their
bidirectional journeys. This cyclic process continues if the simulation is extended. On
the other hand, in the regularised Boussinesq�Whitham model, a similar initial bump at
x = ⇡ also divides into two parts, and these parts proceed to travel in opposite directions
with the same speed. However, rather than simply traveling in two opposite directions,
they undergo further splitting, generating smaller bumps that also propagate in opposite
directions.

The behaviour described in the previous paragraph is likely due to the more dispersive
tendency of Boussinesq�Whitham. A crude measure of dispersion is whether the second
derivative of !(k) is a function of wave number. Note for large k, regularised Boussinesq
has a dispersion relation similar to the bidirectional wave equation which is non-dispersive
in 1-dimension. Regularised Boussinesq�Whitham, on the other hand, has the same
dispersion relation as the full water-wave equations. To gain a clearer understanding,
refer to Figure 3.4a, which illustrates the dispersion relations for both models. It is
evident that the dispersion relation for the regularised Boussinesq model is approximately
a straight line, while the dispersion relation for the regularised Boussinesq�Whitham
model exhibits some nonlinearity.

These observations are made with the spatial variable ranging from 0 to 2⇡ along the
x-axis and the temporal axis spanning from 0 to 10 along the y-axis. The simulations
remain stable and have the potential for further continuation with similar behaviour.
Importantly, both models demonstrate the conservation of their respective Hamiltonians
and momenta, as evidenced by the data presented in Figure 3.3.
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(a) Dispersion relation for N = 256 only for posit-
ive modes. Note we can extend for negative modes
simply because !(�k) = �!(k).

(b) Dispersion relation for first 5 modes

Figure 3.4: Dispersion relation for both the models (equations 3.27-3.30). Here,
in legends, RB denotes regularised Boussinesq model and RBW denotes regularised
Boussinesq�Whitham model.

Approximate traveling waves

Figure 3.5 illustrates the temporal evolution of the water’s free surface, where initial
conditions for surface displacement and surface velocity are set as follows

⌘0 = a cos(x) + (a/5) cos(2x)� 0.1, (3.45)

q0 = a sin(x) + (a/5) sin(2x), (3.46)

where a is set to 0.0525. These initial conditions are motivated by an approximate Stokes
expansion [54] to produce disturbances that propagate without much change in shape.
We emphasise these are not exact traveling wave solutions to the shallow water-wave
models. The time axis spans from t = 0 to t = 10, and the x-axis ranges from 0 to
2⇡. Figures 3.5a and 3.5b depict the function ⌘(x, t) along the z-axis for the regularised
Boussinesq model and the regularised Boussinesq�Whitham model, respectively.

Now, revisiting the dispersion relation, it’s noteworthy that as k approaches zero,
the dispersion relation is nearly identical for both models. Additionally, Figure 3.4b
shows that the values of ! for both models are very close for first 3 modes. Given that
the initial conditions (3.45-3.46) consist of only three modes (k = 0, 1, 2), both models
exhibit almost the same shape while evolving over time. Since the amplitude of the initial
condition is also taken to be small, the nonlinear effects are sub-dominant to the linear
evolution.
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(a) Regularised Boussinesq Model (b) Regularised Boussinesq�Whitham Model

Figure 3.5: Evolution of approximate traveling waves

In the case of a localised feature, such as a Gaussian, considered as the initial con-
dition for ⌘ in a previous example, it is well represented in Fourier space by a suitably
large number of modes. Therefore, the nonlinear effect on the dispersion relation in the
regularised Boussinesq�Whitham model becomes apparent in such scenarios. However,
for the initial conditions (3.45-3.46), where only first three modes (k = 0, 1, 2) are ini-
tially present, nonlinearity doesn’t have a significant impact on either model. Although
additional modes are generated over time, first three modes dominate, resulting in ap-
proximately traveling waves for both the models.

These simulations exhibit stability and have the potential for further continuation
with similar behaviour. Additionally, Figure 3.6 presents the absolute errors in Hamilto-
nian and momentum over time, demonstrating the conservation of both quantities. This
highlights the fundamental stability and consistency of our analysis across these models.
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(a) Regularised Boussinesq Model (b) Regularised Boussinesq�Whitham Model

Figure 3.6: Absolute error in Hamiltonian(in green doted lines) and in momentum(in
blue doted lines) with time. Note that vertical axis is on the scale of 10�15.
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Chapter 4

BATHYMETRY PROBLEM GIVEN
SURFACE DATA

In the previous chapter, we explored the forward problem of ocean wave dynamics: given
the bottom boundary profile ⇣(x) and initial conditions for surface displacement ⌘(x, t0)
and surface potential q(x, t0), we can determine their evolution over time. In this chapter,
we delve into the inverse problem: can we recover the bottom profile ⇣(x) from the ob-
served surface displacement ⌘(x, t) and surface velocity q(x, t) over a finite time interval?
This inverse problem, known as bathymetry reconstruction, is crucial for understand-
ing and predicting wave behaviour in various applications, including coastal engineering,
marine navigation, and tsunami warning systems. Successfully solving this problem al-
lows us to map the underwater landscape without need of direct bathymetric surveys,
which can be time-consuming and expensive. To be precise, the problem addressed in
this chapter is to reconstruct the bottom profile ⇣(x) assuming we are given

(a) The surface displacement ⌘ and the surface potential q as functions of x and
t,

(b) A model for water waves that describes the temporal evolution of ⌘ and q.

The model necessarily involves the bottom profile ⇣. Note that the profile is a function
of the horizontal variable alone and it is not time dependent.

This chapter outlines our method for tackling the inverse problem of reconstructing
the bottom profile from surface wave observations. We start by delving into the specific
techniques used to formulate the reconstruction equation and analyse the properties of
the associated operator. Notably, we demonstrate that the reconstruction operator is
ill-conditioned, mirroring the inherent ill-posedness of the bathymetry problem in full
water-wave equations. Subsequently, we investigate the causes for this ill-posed nature,
highlighting the role of the chosen water-wave model and the relation to the ill-posedness
of the inverse problem in the context of the full water-wave equations. In the next
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section we introduce the reconstruction operator and state some of its properties. Then
we discuss a physically motivated regularisation technique that reduces the ill-conditioned
nature of the problem. Finally we present some numerical results by applying our method
to simulated data. These results convincingly demonstrate the capability of our approach
to accurately recover the bottom profile based solely on surface observations.

4.1 The Reconstruction Operator

This thesis explores two distinct models for wave propagation: the regularised Boussinesq
Model and the regularised Boussinesq�Whitham Model. Both models are governed by a
system of evolution equations (3.25-3.26). For the reader’s convenience, we recall these
equations:

⌘t = !2q � P@x ((⌘ + ⇣)Pqx) ,

qt = �⌘ � 1

2
(Pqx)

2 .

The operators ! and P are defined by Fourier multipliers in equations (3.27) and (3.30) re-
spectively for the regularised Boussinesq Model and the regularised Boussinesq�Whitham
Model. For convenience, we recall the definitions of ! and P again:

Regularised Boussinesq Model Regularised Boussinesq�Whitham Model

!2(k) =
1 + (µk)2

6

1 + (µk)2

2

k2, P(k) =
1

1 + (µk)2

2

!2(k) = k
tanh(µk)

µ
, P(k) =

tanh(µk)

µk

In the governing equations for these models, it is evident that the operator P acts
on the bottom boundary function ⇣. Consequently, to determine ⇣, an inversion of the
operator P is necessary. Therefore, prior to introducing the reconstruction operator, we
first mention some properties of P in the context of either shallow-water model. All
properties are valid for both models.

Properties of the operator P:

1. Boundedness: Let f 2 L2([0, 2⇡]), where f̂ represents the sequence of Fourier
coefficients of f . The following inequalities hold:

kPfk22 =
Z

|Pf |2 dx =
1X

k=�1

|cPf |2 =
1X

k=�1

P(k)2|f̂(k)|2 
1X

k=�1

|f̂(k)|2 = kfk22.

(4.1)
In the calculations presented in equation (4.1), we initially utilise the definition
of the norm, followed by Parseval’s identity. Subsequently, we exploit the fact
that the Fourier coefficients of the operator P acting on a function f is equivalent
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to the multiplication of the symbol of P and the Fourier coefficients of f . The
subsequent inequality is evident because P(k)2  1 holds true for both models.
The last step uses the Parseval’s identity. Since f is in L2([0, 2⇡]), this implies that
Pf 2 L2([0, 2⇡]).
Hence, based on the equation (4.1), it follows that

kPfk2
kfk2

 1 for any f 2 L2([0, 2⇡]).

Utilising the definition of the operator norm

kPk2 = sup

⇢
kPfk2
kfk2

: f 6= 0, f 2 L2([0, 2⇡])

�
(4.2)

implies kPk2  1. Therefore, P is bounded operator on L2([0, 2⇡]) for both the
models.

2. The range of P is contained in H1([0, 2⇡]): The operator P not only is bounded
but also maps functions from L2([0, 2⇡]) into H1([0, 2⇡]). This follows directly from
the definition of the Hilbert space H1([0, 2⇡]) as the set of functions:

(
f 2 L2([0, 2⇡]) :

1X

k=�1

(1 + k2)|f̂(k)|2 < 1
)

(4.3)

The convergence of the series
1X

k=�1

(1 + k2)
��cPf

��2 < 1 is guaranteed as a result of

the specific form of the Fourier series for P(�i@x)f(x) in both the models as shown
below:
For regularised Boussinesq model (3.27), we have

1X

k=�1

(1 + k2)
��cPf

��2 =
1X

k=�1

(1 + k2)
⇣
1 + (µk)2

2

⌘2
��f̂(k)

��2,


1X

k=�1

1 + k2

1 + µ2k2

��f̂(k)
��2,



8
>>>><

>>>>:

1X

k=�1

1

µ2

��f̂(k)
��2 when µ  1

1X

k=�1

��f̂(k)
��2 when µ > 1

. (4.4)
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Similarly, for regularised Boussinesq�Whitham model (3.30), we have

1X

k=�1

(1 + k2)
��tanh(µk)

µk
f̂(k)

��2 
1X

k=�1

1

µ2

✓
1 +

tanh2(µk)

k2

◆ ��f̂(k)
��2 < 1. (4.5)

3. Self-adjoint: For any f(x) and g(x) in L2([0, 2⇡]), the inner product

hP(�i@x)f(x), g(x)i =
Z 2⇡

0

P(�i@x)f(x)g(x)dx = 2⇡
1X

k=�1

P(k)f̂(k)ĝ(k), (4.6)

utilising Parseval’s theorem in the last step. Since, P(k) is real for both the models,
the expression above is same as

2⇡
1X

k=�1

f̂(k)P(k)ĝ(k) =

Z 2⇡

0

f(x)P(�i@x)g(x)dx = hf(x),P(�i@x)g(x)i. (4.7)

In this final step, we once again apply Parseval’s theorem in the opposite direction.
Consequently, P is self-adjoint for both the models.

4. Boundedness of P@x: Let f 2 L2([0, 2⇡]). For regularised Boussinesq Model
(3.27), we have

kP@xfk22 =
1X

k=�1

k2

⇣
1 + µ2k2

2

⌘2 | bf |
2 

1X

k=�1

1

µ2

µ2k2

(1 + µ2k2)
| bf |2  1

µ2
kfk22.

For regularised Boussinesq�Whitham model (3.30), we have

kP@xfk22 =
1X

k=�1

|k tanh(µk)
µk

bf |2 
1X

k=�1

1

µ2
| bf |2  1

µ2
kfk22.

Thus, P@x is bounded operator from L2([0, 2⇡]) to L2([0, 2⇡]).

Remark. All the properties above hold true for any model where the symbol of the oper-
ator P satisfies the following

(a) P(k) is real.

(b) (1 + |k|)P(k)  C for some positive constant C.

Functional whose minimiser is the true bathymetry: The reconstruction ap-
proach in [29] defines the bottom boundary as the minimiser of the functional

F (⇣̃) =

Z 2⇡

0

⇣
⌘t �G(⌘, ⇣̃)q

⌘2
dx, (4.8)
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where ⌘, q and ⌘t are given functions. Recall that G(⌘, ⇣) is the Dirichlet-Neumann
Operator associated with the Laplace equation that maps the Dirichlet condition q at the
surface z = ⌘ to the corresponding Neumann condition. The quantity F essentially is
the mismatch between LHS and RHS in equation (2.7). In [29], the authors established
a theorem proving that this functional has a unique minimiser when given data for the
surface height function ⌘, its first derivative ⌘t, and the surface velocity potential q at
a specific time corresponding to the solutions of the complete water wave problem (2.9-
2.12). Furthermore the minimiser is the true bottom profile. For shallow water models,
the functional F can be suitably modified by replacing the full water-wave DNO with the
model DNO obtained via truncation (as discussed in Chapter 3). Consequently, we can
express the bottom surface for the shallow-water model as the minimiser of the functional

FM(⇣̃) =

Z 2⇡

0

⇣
⌘t �GM(⌘, ⇣̃)q

⌘2
dx, (4.9)

where GM is given by equation (3.29). The evolution equation for surface displacement in
both of our models is expressed by the equation ⌘t = GM(⌘, ⇣). Consequently, the function
FM(⇣̃) signifies the mean square difference between predicted values GM(⌘, ⇣̃) (for a given
bottom profile ⇣̃) and true values ⌘t of the surface normal velocity. Substituting the value
of GM from equation (3.29) leads to

⇣ = argmin
⇣⇤

Z �
⌘t � !2q + P@x ((⌘ + ⇣⇤)Pqx)

�2
dx. (4.10)

Remark. We remind the reader of the notation that the expression Pqx denotes a function.
When it appears in the definition of an operator, it signifies multiplication by the function
Pqx.

Suitable function space for the minimisation problem: Under the assumption
that the surface displacement ⌘ and its time derivative ⌘t reside in the function space
L2([0, 2⇡]), we need to guarantee that !2q also belongs to L2([0, 2⇡]). For both regularised
Boussinesq and regularised Boussinesq�Whitham models, this requirement is satisfied by
assuming qx 2 H1([0, 2⇡]). Consequently, the product Pqx lies in at least H1([0, 2⇡]) for
both models. Since any function in H1([0, 2⇡]) is continuous, and continuous functions
over a closed interval in R are bounded, we can conclude that Pqx is a bounded function
of x. Therefore, choosing ⇣⇤ 2 L2([0, 2⇡]) allows us to bound the term (⌘ + ⇣⇤)Pqx using
the Cauchy-Schwarz inequality:

k(⌘ + ⇣⇤)Pqxk2  kPqxk1k(⌘ + ⇣⇤)k2.
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This ensures (⌘ + ⇣⇤)Pqx remains in L2([0, 2⇡]). We have also shown above that P@x
is bounded operator from L2([0, 2⇡]) to L2([0, 2⇡]). Consequently, a reasonable function
space for the above minimisation problem is ⇣⇤ 2 L2([0, 2⇡]).

4.1.1 Properties of the Reconstruction Operator

To determine the true bottom profile, we shall minimise a functional using the Euler-
Lagrange equation. We define the functional as

FM(⇣̃) =

Z
L(⇣̃) dx,

where
L(⇣̃) =

⇣
⌘t � !2q + P@x

⇣
(⌘ + ⇣̃)Pqx

⌘⌘2
=
⇣
b+M⇣̃

⌘2
.

Here, b = ⌘t � !2q + P@x(⌘Pqx) depends on known quantities, and M⇣̃ = P@x
⇣
⇣̃Pqx

⌘

is a linear operator acting on ⇣̃. Our goal is to find the function ⇣ that minimises the
functional FM(⇣̃). For this, we proceed as follows:

Z
�L
�⇣̃
⇠(x) dx = lim

✏!0

Z
⇣
b+M(⇣̃ + ✏⇠)

⌘2
�
⇣
b+M⇣̃

⌘2

✏
dx,

= lim
✏!0

Z
✏2(M(⇠))2 + 2✏M(⇣̃)M(⇠) + 2✏bM(⇠)

✏
dx,

= 2

Z ⇣
M†M(⇣̃) +M†b

⌘
⇠(x) dx,

where ⇠(x) is an arbitrary test function in L2([0, 2⇡]), and M†f = �Pqx@x(Pf) is the
L2-adjoint of M. Consequently, we obtain

�L
�⇣̃

= 2
⇣
M†M(⇣̃) +M†b

⌘
.

Hence the equation for the minimiser of FM is given by

(Pqx)@
2
x
P2(⇣Pqx) = �(Pqx)@xP

�
⌘t � !2q + P@x(⌘Pqx)

�
. (4.11)

Since all terms on the right-hand side are known, solving for the function ⇣ requires
inverting the operator

B : f ! (Pqx)@
2
x
P2((Pqx)f). (4.12)

We refer to B as the reconstruction operator. Let’s analyse some properties of the
operator B:

1. Boundedness: The operator B is defined as the composition of three operations.
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Firstly, it involves multiplication by the function Pqx. Secondly, it includes the op-
erator P2@2

x
acting on a function in L2([0, 2⇡]). Thirdly, it involves multiplication by

the function Pqx once again. We have previously established that P@x is a bounded
operator, and therefore, the operator P2@2

x
is also bounded for both the models.

Regarding the first and third components, P maps L2([0, 2⇡]) functions to at least
H1([0, 2⇡]) functions. Additionally, H1([0, 2⇡]) ⇢ C0([0, 2⇡]). Consequently, Pqx is
continuous when qx 2 L2([0, 2⇡]) and since [0, 2⇡] is a bounded interval, Pqx is a
bounded continuous function of x. Multiplication by a bounded continuous real-
valued function results in a bounded operator on L2([0, 2⇡]), therefore we conclude
that B is indeed a bounded operator.

2. Self-adjoint: For any f1, f2 2 L2([0, 2⇡]),

hBf1, f2i =
Z 2⇡

0

(Pqx)@
2
x
P2((Pqx)f1)f2dx =

Z 2⇡

0

f1(Pqx)P2@2
x
((Pqx)f2) dx = hf1, Bf2i.

Thus, B is a self-adjoint operator. Note we have used the fact that the symbol of
(P@x)2 is real-valued. Hence it corresponds to a self-adjoint operator on L2([0, 2⇡]).

3. Compact operator for regularised Boussinesq model: For the regularised
Boussinesq model, we establish that P@x maps functions in L2([0, 2⇡]) to at least
H1([0, 2⇡]). We proceed as follows:

kP@xfk2H1 =
1X

k=�1

k2(1 + k2)
⇣
1 + µ2k2

2

⌘2 | bf |
2 

1X

k=�1

k2 + k4

(µ4k4/4 + µ2k2)
| bf |2,


1X

k=�1

4

µ4

µ4k2/4 + µ4k4/4

(µ4k4/4 + µ2k2)
| bf |2  4

µ4
kfk22.

Here, we utilise the fact that µ  1. Similarly, for µ > 1, we have

kP@xfk2H1 =
1X

k=�1

k2(1 + k2)
⇣
1 + µ2k2

2

⌘2 | bf |
2 

1X

k=�1

k2 + k4

(µ4k4/4 + µ2k2)
| bf |2,


1X

k=�1

k2 + k4

(k4/4 + k2)
| bf |2  4kfk22.

Consequently, P2@2
x

also maps functions in L2([0, 2⇡]) to at least H1([0, 2⇡]). Also
we have shown before that Pqx is at least in H1([0, 2⇡]) when qx 2 L2([0, 2⇡]).
The property of H1([0, 2⇡]) being an algebra ensures that B maps L2([0, 2⇡]) to
H1([0, 2⇡]). Since H1([0, 2⇡]) is compactly embedded in L2([0, 2⇡]) [28], we conclude
B is a compact operator for regularised Boussinesq model.

For the regularised Boussinesq�Whitham model, the reconstruction operator B is not
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compact as shown in the following theorem:

Theorem 1. Suppose qx 2 L2([0, 2⇡]) and Pqx is not identically zero, then for regularised

Boussinesq�Whitham model, B is not a compact operator.

Proof. We recall the definition of a compact operator. Let T : X ! Y be a linear map,
where X and Y are Banach spaces. The map T is compact if for any bounded sequence
(xn)n2N in X, the sequence (Txn)n2N contains a converging subsequence.

Focusing on B, we recognise that it comprises three components. Two involve simple
multiplication, while the third is the operator P2@2

x
acting on functions within L2([0, 2⇡]).

Our strategy lies in proving the non-compactness of P2@2
x

(in the case of regularised
Boussinesq�Whitham) and subsequently inheriting this property to B.

Non-compactness of @2
x
P2

: Consider the symbol of P2@2
x
, which has the form

� tanh2(µk)/µ2. As the absolute value of k goes to infinity, this multiplier doesn’t ap-
proach zero. This hints at the non-compact nature of the operator. To establish this
rigorously, we present a proof by considering an orthonormal sequence in L2([0, 2⇡])

defined as an = sin(nx)/
p
⇡, n = 1, 2, . . ., where kank = 1.

For any n,m 2 N where m 6= n, we have

k@2
x
P2(an � am)k22 =

Z 2⇡

0

���@2xP2 (an � am)
���
2

dx,

= 2⇡
1X

k=�1

tanh4(µk)

µ4

���F [an � am]k
���
2

,

=
1X

k=�1

tanh4(µk)

µ4

����(k � n)� �(k �m)
���
2

,

=
tanh4(µn)

µ4
+

tanh4(µm)

µ4
,

� 2
tanh4(µ)

µ4
,

where in the second line, Parseval’s identity was applied and F represents the Fourier
transform of the function. Moving to the third line, we explicitly expressed the Fourier
multipliers of an and am. Since �(k � n)�(k �m) = 0 when m 6= n, the forth line holds
and the last line is true because tanh is monotonically increasing function.
Thus, we have a bounded sequence an such that k@2

x
P2(an � am)k2 is bounded below by

a positive number for all n 6= m. This implies that the sequence @2
x
P2(an) can not have

any convergent subsequence, establishing that @2
x
P2 is not a compact operator.

We now aim to demonstrate that B is not a compact operator. Similar to our approach
for the operator P2@2

x
, we must find a bounded sequence (vn)n2N such that kB(vn�vm)k2

is bounded below by a positive number for all n and m. Therefore, it is imperative to
position ourselves sufficiently far from the null space of the operator @2

x
P2 and away from
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the zeros of the function Pqx.
Avoiding Zeros of Pqx: When qx is in L2, then Pqx is a continuous function. Let’s

define a set S 0 where Pqx is away from zero. S 0 is non-empty because Pqx is not identically
zero. Since Pqx is continuous, we can identify a non-empty connected component S of S 0.
Specifically, S is a non-empty connected component of the set {x 2 [0, 2⇡] : |Pqx| � c}
for some c > 0.

Orthogonality of Pqx with @2
x
P2(·): Consider Pqx restricted to S, denoted as

Pqx
���
S

, which is an element of L2(S). Let X be the orthogonal complement of span

of Pqx
���
S

in L2(S). An orthonormal sequence wn in X is constructed as follows: Take
an orthonormal sequence in L2(S), project it onto X and then apply Gram-Schmidt on
it. Remove any trivial elements in this process. Thus, sequence wn obtained now is
an orthonormal sequence in L2(S) which is also orthogonal to Pqx

���
S

. Finally, defining
vn = wn�S where �S is the indicator function on S we obtain a bounded sequence in vn

in L2([0, 2⇡]) whose image under B satisfies:

kBvn � Bvm)k22 =
Z 2⇡

0

⇣
(Pqx)@

2
x
P2 ((Pqx)(vn � vm))

⌘2
dx,

=

Z

S

(Pqx)
2
⇣
@2
x
P2 ((Pqx)(wn � wm))

⌘2
dx,

� c2
Z 2⇡

0

⇣
@2
x
P2 ((Pqx)(vn � vm))

⌘2
dx,

= 2⇡c2
1X

k=�1

tanh4(µk)

µ4

���F
⇣
(Pqx)(vn � vm)

⌘

k

���
2

,

� 2⇡c2
tanh4(µ)

µ4

1X

k=�1
k 6=0

���F
⇣
(Pqx)(vn � vm)

⌘

k

���
2

,

= c2
tanh4(µ)

µ4

Z 2⇡

0

((Pqx)(vn � vm))
2 dx,

� c4
tanh4(µ)

µ4

Z 2⇡

0

(vn � vm)
2 dx = 2c4

tanh4(µ)

µ4
.

Here, the second and third lines utilise the relation of vn and wn and hold true because
|Pqx| � c is true in S. For the fourth line, Parseval’s identity is applied. Recognising
that tanh is monotonic increasing and vanishes at k = 0, we can safely discard the zeroth
Fourier mode in the fifth line. The next line relies on the orthogonality between Pqx

and vn, ensuring F
⇣
(Pqx)(vn � vm)

⌘

k=0
= 0 and therefore Parseval’s identity in reverse

direction can be used then last line is obvious as |Pqx| � c.
Consequently, kBvn �Bvmk22 is bounded below by positive number and therefore, no

subsequence of Bvn can converge in L2([0, 2⇡]). Hence, B is not compact.

Remark. For the regularised Boussinesq�Whitham model, the function P(k) = tanh(µk)/µk >
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0 for all non-zero values of k. This implies that Pqx is identically zero if and only if qx
itself is identically zero. Therefore, we can equivalently state the theorem as follows:

Theorem. Suppose qx 2 L2([0, 2⇡]) and qx is not identically zero, then the operator B

is not compact for the regularised Boussinesq�Whitham model.

Requiring qx to be non-zero makes physical sense since it’s impossible to recover the
bottom boundary shape without any horizontal velocity at the top surface. As discussed
in Section 3.1, any bottom profile is possible when water is completely still. Since the
velocity potential is a harmonic function, the velocities in the bulk of the fluid domain
are zero if and only if the velocities on the free surface are zero.

4.1.2 The Spectrum of the Reconstruction Operator B:

As demonstrated below, the spectrum of operator B lies entirely on the negative real
axis: Z

fBf =

Z
f(Pqx)@

2
x
P2((Pqx)f) dx = �

Z
(P@x((Pqx)f))

2 dx  0.

Recall our initial objective was to invert the operator B, and now, recognising that it pos-
sesses eigenvalues on the negative real line and is compact for the regularised Boussinesq
model, we can infer that zero is a limit point of the eigenvalues of B and hence zero
belongs to the spectrum. Nevertheless, we establish that zero is not an eigenvalue of the
operator B for either of our models under appropriate conditions, as indicated in the
following theorem:

Theorem 2. Suppose q 2 H2([0, 2⇡]) and the function Pqx only vanishes on a set of

measure zero, then the operator B has no zero eigenvalue for either of the models given

in (3.27) and (3.30).

Proof. Let’s assume that zero is an eigenvalue of the operator B. This implies that there
exists a function f 2 L2([0, 2⇡]) such that

(Pqx)@
2
x
P2((Pqx)f) = 0. (4.13)

We now show that no such non-zero f in L2([0, 2⇡]) exists.
Assuming Pqx only vanishes on a set of measure zero, from the above equation, it

follows that @2
x
P2((Pqx)f) is zero almost everywhere. Since q 2 H2([0, 2⇡]), and P@x is

bounded operator on H2([0, 2⇡]), Pqx 2 H2([0, 2⇡]) and is thus a continuous function.
Consequently, @2

x
P2((Pqx)f) is not merely zero almost everywhere but is zero everywhere

i.e.,
@2
x
P2((Pqx)f) = 0. (4.14)
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For both of our models (3.27) and (3.30), Fk(@2xP2) = �k2P(k)2 < 0 for all k 6= 0. Thus,
for @2

x
P2((Pqx)f) to be zero, (Pqx)f must be a constant. Let’s denote this constant as

A:
(Pqx)f = A. (4.15)

Now, we’ll consider two cases: when A = 0 and A 6= 0 and show that f cannot be an
eigenfunction in L2([0, 2⇡]) in either case.

1. A = 0: We have (Pqx)f = 0. Since Pqx is zero only on a set of measure zero, this
implies f has to be zero almost everywhere. Thus, f can’t be an eigenfunction, and
therefore, zero is not an eigenvalue.

2. A 6= 0: Since Pqx is in H2([0, 2⇡]) and H2([0, 2⇡]) is embedded in C1, 12 [0, 2⇡] using
Sobolev embedding theorem [27] and therefore, Pqx 2 C1, 12 [0, 2⇡]. Moreover, Pqx

is continuous and since its Fourier coefficient at k = 0 vanishes, the mean value
theorem guarantees the presence of at least one point where Pqx vanishes within
the domain [0, 2⇡]. We can assume this zero occurs at x = 0 without loss of
generality. Employing the Taylor series with the Lagrange form of the remainder
around x = 0, we can express Pqx in a neighbourhood of x = 0:

Pqx = 0 + (x� 0)
dPqx
dx

�����
x=s

, for |x| sufficiently small (4.16)

where s lies between 0 and x. Adding and subtracting a term in the above equation,
we get

Pqx = x
dPqx
dx

�����
x=0

+ x

✓
dPqx
dx

���
x=s

� dPqx
dx

���
x=0

◆
. (4.17)

Since, Pqx 2 C1, 12 [0, 2⇡], the derivatives of Pqx are Hölder continuous with exponent
1/2 and thus there exist a nonnegative real constant c1 such that

�����
dPqx
dx

���
x=s

� dPqx
dx

���
x=0

�����  c1|s|1/2  c1|x|1/2. (4.18)

Moreover, a Hölder continuous function on bounded domain of R is bounded, and
thus, there exist nonnegative real constant c2 such that

�����
dPqx
dx

���
x=0

�����  c2. (4.19)

Using equations (4.18-4.19) in equation (4.17), we have

|Pqx|  |x|c2 + c1|x|3/2.
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Note that both c1 and c2 cannot be zero because that would imply Pqx is zero in
an open interval. Thus, for |x| < 1, we have

|Pqx|  |x|(c2 + c1).

Substituting this into equation (4.15), we get the eigenfunction f satisfies

|f | = |A|
|Pqx|

� |A|
|Pqx|

� |A|
|x|(c2 + c1)|

. (4.20)

This implies that f cannot be in L2([0, 2⇡]). Thus, f is not an eigenfunction.

While the previous proof guarantees that the operator B does not possess any zero
eigenvalues, the operator B still exhibits signs of ill-conditioning. This becomes particu-
larly evident in the regularised Boussinesq model, where the operator B is compact. A
key characteristic of compact operators is that zero is a limit point of its eigenvalues [39].
This implies that eigenvalues cluster around zero, making the inverse operator highly
sensitive to small perturbations in the input or noise.

Moreover, for either model, for q 2 H1([0, 2⇡]), the function Pqx is continuous and
has an average value of zero. This implies that there is at least one point x 2 [0, 2⇡] for
which Pqx is zero. Thus zero is an approximate eigenvalue of the operator B. To illustrate
this, let’s think about a sequence of smooth functions denoted as fn(x) converging to a
function f(x) defined as follows: The functions fn(x) possess compact support centred
around the zero of Pqx and serve as approximations to a Dirac delta distribution situated
at such a zero. Then we have

lim
n!1

hfn, B⇣i = 0, for any ⇣ 2 L2[0, 2⇡],

where the inner product hf, gi between two functions f and g is defined as the integral
of their product, i.e.,

R
fg dx. Consequently, we have h⇣, Bfni approaching zero, which

leads to the conclusion that Bfn ! 0, and thus Bf equals zero. As a result, B behaves
as if it possesses a zero eigenvalue, even though it doesn’t have zero eigenvalue in reality.
Thus, for both the models, regularisation of the operator is necessary.

4.2 Regularising the Reconstruction Operator

Equation (4.11) presents a deceptively simple framework for bottom boundary reconstruc-
tion. However, the ease of solving this equation is hindered by the ill-conditioned nature
of the operator B featured on the left-hand side. Despite zero not being an eigenvalue of
the operator B, it remains ill-posed primarily for two reasons:
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1. In the case of the regularised Boussinesq model (3.27), zero is as an accumulation
point for the eigenvalues of the compact operator B.

2. The function Pqx, present in B’s definition for both models, necessarily vanishes
at some point x. This effectively creates an approximate zero eigenvalue for B,
resulting in ill-conditioning.

Since the true bottom profile ⇣ is independent of time, we demand that it simultaneously
minimises the functional of (4.10) at multiple time instances. This leads to the following
minimisation problem:

⇣ = argmin
⇣⇤

MX

j=1

Z ⇣
⌘(j)t � !2q(j) + P@x

�
(⌘(j) + ⇣⇤)Pq(j)

x

�⌘2
dx, (4.21)

where the superscript j implies that the data (⌘, ⌘t, qx) is at time tj (j = 1, 2, . . . ,M).
The associated Euler-Lagrange equation for this problem is analogous to equation (4.11)
but involves a summation over times tj on both sides:

MX

j=1

⇥
Pq(j)

x
P2@2

x

�
Pq(j)

x
⇣⇤
�⇤

= �
MX

j=1

h
Pq(j)

x
P@x

⇣
⌘(j)t � !2q(j) + P@x

�
⌘(j) Pq(j)

x

�⌘i
.

(4.22)
This technique proves particularly effective when the zeros of the function Pqx vary
spatially across different time instances. Therefore, we choose initial conditions that
satisfy this condition. For ease of reference later, we define the operator

BM(⇣⇤) =
MX

j=1

⇥
Pq(j)

x
P2@2

x

�
Pq(j)

x
⇣⇤
�⇤

. (4.23)

Our aim is to address the ill-conditioning of the reconstruction operator B. Thus we are
motivated to investigate the eigenvalues of finite dimensional truncations of the operator
on the left hand side of equation (4.22).

4.2.1 Numerical Results

As mentioned earlier, the equation (4.11) falls short in providing an effective reconstruc-
tion procedure for the bottom-profile. Figure 4.1 visually demonstrates this. In the
Figure 4.1a, two zeros of the function Pqx are evident at x = 0 and x = ⇡. The recon-
structed bottom profile obtained by inverting (a finite-dimensional approximation of) the
operator B (dotted red line) displays a clear discontinuity at these points, significantly
diverging from the actual profile (green solid line). However, for the remaining points,
the two profiles exhibit relative closeness. The discontinuity observed near the end of
the grid can be attributed to the periodic boundary condition, and the zero at x = 0
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(a) (b)

Figure 4.1: Bottom profile reconstruction using equation (4.22) with data from one
(M = 1) and two (M = 2) time instances in Figures 4.1a and 4.1b respectively. The
true profile (solid green), reconstructed profile (dashed red), and values of Pqx (magenta)
are shown. When using data from one time instance shown in left, significant deviations
occur near zeros of Pqx. These deviations are reduced when using two data points (where
the zeros of Pqx do not coincide in space) as shown in right.

accounts for the encountered issue. Consequently, the zeros of the function Pqx pose a
challenge in the reconstruction process. It seems natural to want to impose continuity of
the reconstructed bottom profile at the zero of Pqx. At the same time we want to ensure
this continuity without affecting the quality of the reconstruction at all other points in
the domain. Here’s where equation (4.22) comes to the rescue! As Figure 4.1b show-
cases, using two data points significantly improves the reconstruction. Crucially, these
data points are chosen at different times so that the zeros of Pqx don’t coincide. This
clever strategy mitigates the disruptive impact of zeros, leading to a much closer match
between the reconstructed and actual profiles.

We know that the function Pqx has at least one zero in space. Hence to recover
the bottom-profile, the key lies in ensuring that the the time-dependence of the velocity
potential q is such that the location of the zeros of Pqx do not remain fixed in space for
all time. There are many choices of q for which the zeros of Pqx will vary in time. Here,
we show two examples of velocity potentials that satisfy our requirements. Note these
are not obtained from solving the shallow-water models but are chosen to highlight our
regularisation procedure. In Figure 4.2a, we have q(x, t) = 0.1 sin(x� t)+0.3 and we plot
q (different dashed green lines correspond to different time instance) and Pqx (different
solid blue lines correspond to different time instance) with a grid size of 256 and for
t = 2⇡j/15, j = 1, 2, . . . , 15. Here, we can see the zeros of q as well as zeros of Pqx are
not fixed in time. The constant offset 0.3 in q is added for the sake of distinguishing q and
Pqx in the Figure 4.2a. The second Figure 4.2b, we have q(x, t) = 0.1 sin(x�t) cos(x)+0.3
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(a) Zeros of q as well as zeros of Pqx vary in time
where q(x, t) = 0.1 sin(x � t) + 0.3.

(b) Zeros of q are fixed in time but zeros of Pqx

vary in time where q(x, t) = 0.1 sin(x� t) cos(x)+
0.3.

Figure 4.2: Some Examples where zeros of Pqx vary in time for regularised
Boussinesq�Whitham model.

with the same grid size and same values of t as in the previous example. Although the
zeros of q remains fixed in the time, zeros of Pqx vary in time. Examples shown here are
for regularised Boussinesq�Whitham model. They look similar for regularised Boussinesq
model.

To analyse the impact of M on the invertibility of the operator BM in equation (4.23),
let’s examine the eigenvalues of this operator across different values of M . Consider a
periodic traveling-wave profile for the velocity potential q(x, t) = 0.1 sin(x � t). We
discretised this function on a uniform grid in the x-variable with 256 points. We will
consider the values of t on a uniform grid of t = 2⇡j/M where j = 1, 2, . . . ,M . We follow
these steps for different values of M = 1, 2, 10, 100, 200:

1. For fixed t, compute the matrix representation of the operator Pqx P2@2
x
(Pqx ·)

using a pseudospectral method. Each matrix thus obtained will be a real symmetric
matrix of the size of our spatial grid, that is 256⇥ 256 in this case.

2. Sum the M symmetric matrices to obtain a matrix representation of BM .

3. Compute the eigenvalues of this operator.

The eigenvalues of the finite-dimensional approximation to BM operator are all negative
as expected (since it is the sum of M symmetric negative semi-definite matrices). Figure
4.3 depicts the sorted magnitudes of the eigenvalues for varying M values. As anticipated,
the scenario with M = 1 exhibits all eigenvalues clustered near zero, confirming the ill-
conditioned nature of the operator. Increasing M to 2 results in a modest upward shift of

67



(a) Regularised Boussinesq model (b) Regularised Boussinesq�Whitham model

Figure 4.3: Absolute values of sorted eigenvalues from the operator on the left-hand side
of equation (4.22) for both models. In this context, q(j) = 0.1 sin(x�tj), where x 2 [0, 2⇡]
and tj = 2⇡j/M with j = 1, 2, . . . ,M . The index of the sorted eigenvalue is represented
along the horizontal axis. Each curve represents total number of time instances (M)
used in the analysis, as indicated in the legend. Markers on the curves serve for visual
distinction and don’t imply specific data points. Both models depict 256 eigenvalues,
corresponding to 256 grid points in the x-axis.

the eigenvalues, but they remain critically close to zero. However, introducing more time
instances acts as a form of regularisation. Larger M values lead to a significant boost
in eigenvalue magnitudes, particularly evident in the regularised Boussinesq�Whitham
model, where the trend plateaus at certain M values. Notably, the regularised Boussinesq
model demonstrates a faster decay in eigenvalue magnitudes despite some improvement
with M > 1. This difference can be attributed to the inherent differences in the operators’
(sum of M compact operators in case of regularised Boussinesq model) compactness
properties.

Our previous analysis focused on a fixed spatial resolution of 256 grid points. Let’s
investigate how modifying this resolution affects the eigenvalue spectrum. Figure 4.4
presents the absolute values of sorted eigenvalues for the regularised Boussinesq model
at various grid sizes (128, 256, 512, and 1024) while keeping M fixed at 200. For the
regularised Boussinesq model, increasing the resolution in x (while fixing M) leads to
smaller minimum eigenvalues (in term of absolute values). This observation implies that
if the resolution in x were increased, one may require higher values of M to achieve a
similar amount of regularisation for the regularised Boussinesq model. In other words,
the benefit of using a finer grid is offset by the need for more time instances to overcome
the persistent ill-conditioning.

However, this scenario is different for regularised Boussinesq�Whitham model. Here,
the operator is not compact, and the primary culprit of ill-posedness lies in the zeros
of Pqx. For this model, larger M values offer a powerful regularisation tool, especially
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(a) Grid size = 128 (b) Grid size = 256

(c) Grid size = 512 (d) Grid size = 1024

Figure 4.4: Eigenvalues for different values of grid size with fixed M = 200 for regularised
Boussinesq model. For larger grid size, eigenvalues are smaller so this value of M might
not be enough to invert the reconstruction operator. Thus, we might need higher values of
M if we are inverting the reconstruction operator if we are working with higher resolution.

when the zeros of Pqx are not fixed in time. Notably, this trend holds true even at higher
resolutions in x as shown in Figure 4.5, further highlighting the effectiveness of multi-
time data for the regularised Boussinesq�Whitham model. We emphasise that these
conclusions are contingent on the choice of velocity potential and are intended to give
some intuition about the choice of the parameter M as well as the grid size in x. For
more complicated velocity potentials, the underlying relationships between spectra and
M/(grid size) may be also be complicated.

The accuracy of bottom profile reconstruction is sensitive to the decay rate of the
eigenvalues of the associated operator. When eigenvalues decrease rapidly, the recon-
struction becomes increasingly susceptible to amplification of even minor discrepancies
in the provided data (⌘, ⌘t, q). This phenomenon arises due to the inherent sensitivity of
the reconstruction process (inverting the reconstruction operator) to noise in the data.
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(a) Grid size = 128 (b) Grid size = 256

(c) Grid size = 512 (d) Grid size = 1024

Figure 4.5: Eigenvalues for different values of grid size with fixed M = 200 for regularised
Boussinesq�Whitham model. Regardless of increasing spatial resolution, the eigenvalues
consistently stay away from zero for M = 200 in this case.
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(a) Regularised Boussinesq model (b) Regularised Boussinesq�Whitham model

(c) Regularised Boussinesq model (d) Regularised Boussinesq�Whitham model

Figure 4.6: Reconstruction of multi-sine wave profile (4.24) for both the models. Top-left
4.6a and top-right 4.6b compares the true (solid green) and computed (red dots) bottom
surfaces. Bottom-left 4.6c and bottom-right 4.6d depict mode by mode comparisons of
the amplitude in Fourier space of the true (solid red line) and reconstructed (blue dots)
solutions.

Therefore, the decay rate of the eigenvalues serves as a critical indicator of the data
quality (data to be consistent with the model equations) required for achieving accurate
bottom profile reconstructions.

Multi-sine wave profile : ⇣ = �0.12 sin(3x) cos(2x) sin(10x) + 0.05 sin(4x). (4.24)

To assess our bottom profile reconstruction method, we conducted controlled exper-
iments utilising simulated data extracted from forward simulations of the model equa-
tions (3.25-3.26). The bottom-profile, referred as "Multi-sine wave profile" is defined in
equation (4.24). Figures 4.6 depict the reconstruction results for both the regularised
Boussinesq and regularised Boussinesq�Whitham models. Comparison with the ground
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truth (solid green line) reveals highly accurate recoveries, represented by the red lines
with filled-circle markers in Figures 4.6a and 4.6b, for the regularised Boussinesq model
and the regularised Boussinesq�Whitham model respectively. Figures 4.6c and 4.6d delve
deeper into the accuracy comparison, where the absolute values of Fourier modes for both
the models demonstrate minimal discrepancies between the true profile (solid red line)
and the recovered profile (dashed blue line). The near-machine-precision errors achieved
underscore the effectiveness of our method under ideal conditions.

For this recovery process, the data for ⌘ and q was generated using the numerical
simulations of the forward problem (3.25-3.26). The initial condition used for the forward
problem simulation are specified by equations (3.45-3.46) and the shallow-water model is
solved numerically to obtain the solution (⌘, q). A critical step involved calculating the
time derivative ⌘t, where we employed a fourth-order five-point finite-difference stencil in
time for its inherent high accuracy. This choice ensures accuracy for ⌘t up to machine
precision, equivalent to computing the right-hand side of equation (3.25). Leveraging
data collected from 200 time points within the simulation (and thus M = 200 in the
definition of BM), we computed the left hand side and right hand side of the equation
(4.22) and then solved this linear equation to determine ⇣ numerically.

We assess the accuracy of our reconstructed bottom-profile using two relative error
metrics:

1. Overall depth error Eb: This measures the relative error in the total depth, including
the baseline of z = �1 calculated as

Eb =
k(1 + ⇣r)� (1 + ⇣)k2

k1 + ⇣k2
, (4.25)

where ⇣r is the reconstructed profile and ⇣ is the true profile.

2. Profile error Ep: This measures the relative error in the deviation from the baseline
z = �1 calculated as

Ep =
k⇣r � ⇣k2

k⇣k2
. (4.26)

When using data (⌘, ⌘t, qx) consistent with the respective model equations, we achieve
exceptional accuracy for the reconstructed bottom profile in Figure 4.6. The error values
for this recovery are as follows:

Regularised Boussinesq model: Eb ⇡ 10�12 and Ep ⇡ 10�10.
Regularised Boussinesq�Whitham model: Eb ⇡ 10�12 and Ep ⇡ 10�10.
These extremely low error values demonstrate the impressive accuracy of our method.

Utilising a second-order three-point stencil for calculating ⌘t also results in successful
recovery but has a higher Eb value (around 10�8) compared to the fourth-order stencil.

72



(a) Regularised Boussinesq model (b) Regularised Boussinesq�Whitham model

(c) Regularised Boussinesq model (d) Regularised Boussinesq�Whitham model

Figure 4.7: Reconstruction of localised bottom feature profile (4.27) for both the models.
Top-left 4.7a and top-right 4.7b compares the true (solid green) and computed (red dots)
bottom surfaces. Bottom-left 4.7c and bottom-right 4.7d depict mode by mode compar-
isons of the amplitude in Fourier space of the true (solid red line) and computed (blue
dots) solutions.
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(a) Regularised Boussinesq model (b) Regularised Boussinesq�Whitham model

(c) Regularised Boussinesq model (d) Regularised Boussinesq�Whitham model

Figure 4.8: Reconstruction for sandbar profile (4.27) for both the models. Top-left
4.8a and top-right 4.8b compares the true (solid green) and computed (red dots) bottom
surfaces. Bottom-left 4.8c and bottom-right 4.8d depict mode by mode comparisons of
the amplitude in Fourier space of the true (solid red line) and computed (blue dots)
solutions.
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Additionally, we present examples showcasing the recovery of two types of bottom profiles:

Localised bottom feature profile : ⇣ = �0.1e�100(x�x1)2 � 0.05e�2(x�x2)2 � 0.2e�100(x�x3)2 ,

(4.27)

x1 = 3⇡/4, x2 = 1.12x1, x3 = 5⇡/4.

Sandbar profile : ⇣ = �0.015 tanh(6(x� 0.6⇡)) + 0.015 tanh(6(x� 1.4⇡)), (4.28)

• Localised bottom feature profile: The profile, defined in equation (4.27), is
like a combination of two bumps on a flat surface. This profile was recovered with
impressive accuracy by both the models (green versus red lines in Figure 4.7). Even
individual elements in the frequency domain (bottom plots) closely match the true
profile, further confirming the accuracy. The relative errors Eb and Ep around 10�11

and 10�9 for both models support these observations.

• Sandbar profile: Now consider a wider, smoother underwater ridge given by
equation (4.28). Recovery for this profile is also impressive for both the models
as shown in top-left and top-right of Figure 4.8 for both the models. Also, it
shows that the regularised Boussinesq�Whitham model (bottom right) outperforms
the regularised Boussinesq model (bottom left) in recovering this profile. This
is because the reconstruction operator in case of regularised Boussinesq model is
less effective, potentially introducing numerical errors (due to it having smaller
eigenvalues). Nonetheless, both models achieve commendable accuracy, with Eb

values around 10�14 and 10�12, and Ep values around 10�12 and 10�10, for regularised
Boussinesq�Whitham model and regularised Boussinesq model respectively.

For both of these recoveries, we extract (⌘, q) data from numerical simulations of the
respective model equations, utilising initial conditions ⌘0 = 0.1 cos(x) and q0 = 0.1 sin(x).
In conclusion, our findings show that both the models can achieve successful recovery
when data from forward model is consistent with the model equations.

Sensitivity of Bottom-profile Reconstruction to qx Errors: Our investigations
show that even minor errors in the qx, as low as 1% relative L2-norm error, led to sub-
stantial errors in the reconstructed bottom-profile. This is illustrated by the yellow and
cyan dashed lines in Figures 4.9. Note that the method for introducing error into qx is
explained in Remark 6 in Section 6.1. The relative depth errors (Eb) associated with these
reconstructions ranged from 4% to 7% with even less than 1% L2−norm relative-error in
qx, indicating considerable deviation from the true profiles. Despite the implementation
of regularisation techniques, the method remains sensitive to the errors in qx. This high-
lights the challenges in fully mitigating error propagation through regularisation alone.
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(a) Regularised Boussinesq model (b) Regularised Boussinesq�Whitham model

Figure 4.9: Reconstruction of multi-sine wave profile (4.24) for both the models using
reconstruction equation (4.22) with an erroneous value for qx with relative error percent-
ages indicated in the legend. The construction of these inaccurate qx profiles is explained
in Section 6.1. Note even a small amount relative error can lead to inaccurate reconstruc-
tion. The error between the true profile (solid red line) and the reconstruction using the
true qx (dashed black line) is below machine precision.

For the regularised Boussinesq model, qx errors exceeding a few percent were excluded
from analysis due to the resulting reconstructions being too severely distorted to visualise
effectively on a single plot. The regularised Boussinesq�Whitham model demonstrated
greater robustness to qx errors compared to the regularised Boussinesq model. This en-
hanced resilience can be attributed to the slower decay in the magnitude of its eigenvalues,
suggesting better stability under perturbations.

Our exploration of a Tikhonov-based regularisation scheme was unsuccessful. These
methods needed considerable tuning of the regularisation parameter which was particular
to each bottom-profile and we were unable to find a systematic way to do so.
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Chapter 5

VELOCIMETRY— THE OBSERVER
MODEL

This chapter addresses the problem of inferring the surface velocity qx(x, t) for a dynam-
ical system given the measured surface displacement function ⌘(x, t) and pre-specified
bottom boundary profile ⇣(x). It is crucial to acknowledge that assuming a priori know-
ledge of ⇣ contradicts the ultimate goal of determining ⇣ itself of this thesis. This chapter
serves as an intermediate step, providing insights into qx retrieval with a known ⇣, while
Chapter 6 will explore techniques for determining ⇣ and qx simultaneously given only ⌘.

5.1 The Observer Model for Velocimetry

In our observer design, we introduce ⌘̃ and q̃ as the observer variables corresponding to
the true solution ⌘ and q of the problem (3.25-3.26). We propose the following observer
dynamics:

⌘̃t = !2q̃ � P@x
�
(⌘̃ + ⇣) (P q̃x)

�
� �(⌘̃ � ⌘), (5.1)

q̃t = �⌘̃ � 1

2
(P q̃x)

2 � ⌫(⌘̃ � ⌘), (5.2)

where �, ⌫ are the observer parameters and ⇣ represents the known bottom boundary
profile. Our goal is to recover the surface velocity qx(x, t). We aim to simulate equations
(5.1-5.2) starting from any arbitrary initial condition for ⌘̃, q̃ and our goal is that q̃x

converges to qx as t ! 1. Hence, we will determine suitable choices for � and ⌫ such
that q̃x ! qx as t ! 1.

We define the error functions associated with the surface displacement and surface
velocity potential as ⌘e = ⌘̃� ⌘ and qe = q̃� q respectively. Furthermore, let qe

x
= q̃x� qx

denote the error function in the surface velocity. Then subtracting the shallow-water
model equations (3.25-3.26) from the observer equations (5.1-5.2), we obtain the evolution
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equation for the error functions:

⌘e
t
= ��⌘e + !2qe � P@x

�
⇣Pqe

x

�
� P@x

�
(⌘̃P q̃x � ⌘Pqx)

�
, (5.3)

qe
t
= �(1 + ⌫)⌘e +

1

2

⇥
(Pqx)

2 � (P q̃x)
2
⇤
. (5.4)

We now show that the linear constant coefficient parts of the above error equations (5.3-
5.4) give rise to solutions that decay exponentially to zero as t tends to infinity when the
observer parameters � and µ are chosen appropriately.

Theorem 3. For any positive number d, there exist real numbers � and ⌫ such that the

solution to

⌘e
t
= ��⌘e + !2qe, (5.5)

qe
t
= �(1 + ⌫)⌘e, (5.6)

with periodic boundary conditions satisfies

k⌘ek2  Ce�dt, kqe
x
k2  Ce�dt,

where C is a constant that depends on the initial condition.

Proof. The equations (5.5-5.6) in Fourier space can be written as

d

dt

"
⌘e
k

qe
k

#
=

"
�� !2(k)

�(1 + ⌫) 0

#"
⌘e
k

qe
k

#
for all k.

Note that !2(k) is zero if and only if k = 0 for both of our models. Therefore, we will
solve for two cases differently: when k = 0 and when k 6= 0.

Case 1. k = 0 (zero wavenumber): The error system becomes:

d

dt

"
⌘e0
qe0

#
=

"
�� 0

�(1 + ⌫) 0

#"
⌘e0
qe0

#
.

The eigenvalues of the coefficient matrix are �� and 0. Solving the system
using eigenfunctions:

"
⌘e0
qe0

#
=

"
e��t �e��t

1 + ⌫
�
e��t � 1

�
/� 1

#"
⌘e0(0)

qe0(0)

#
.

Thus, ⌘e0 ! 0 exponentially as t ! 1 due to the negative exponential term,
whereas qe0 does not necessarily approach zero due to the constant term. How-
ever, this error remains bounded.
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Case 2. k 6= 0 (non-zero wavenumber): The error system is:

d

dt

"
⌘e
k

qe
k

#
=

"
�� !2

k

�(1 + ⌫) 0

#"
⌘e
k

qe
k

#
.

The characteristic equation of the coefficient matrix is:

x2 + �x+ !2
k
(1 + ⌫) = 0.

Then the eigenvalues are:

��±
p
�2 � 4!2

k
(1 + ⌫)

2
.

We desire exponential decay in the error functions. Ensuring a decay rate of
��/2 requires the term

p
�2 � 4!2

k
(1 + ⌫) to be a purely imaginary term. For

both of our models, !2
k
> 0 for k 6= 0, and it is increasing function of |k|.

Therefore, we need to ensure that:

�2 � 4!2
k
(1 + ⌫) < 0.

This can be achieved by choosing an appropriate value for the observer para-
meter ⌫ such that:

⌫ >

8
>><

>>:

�2

4

1 + µ2/2

1 + µ2/6
� 1 for regularised Boussinesq model (3.27)

�2

4

µ

tanh(µ)
� 1 for regularised Boussinesq�Whitham model (3.30)

(5.7)
Denoting the purely imaginary term

p
�2 � 4!2

k
(1 + ⌫)/2 by ick for simplicity

and setting d = �/2, we can rewrite the eigenvalues as �d+ ick and �d� ick.
Then, the solution of the error system in this case is given by:
"
⌘e
k

qe
k

#
= e�dt

"
cos(ckt)� (d/ck) sin(ckt) (d2 + c2

k
/ck(1 + ⌫)) sin(ckt)

� ((1 + ⌫)/ck) sin(ckt) cos(ckt) + (d/ck) sin(ckt)

#"
⌘e
k
(0)

qe
k
(0)

#
.

(5.8)

This demonstrates that we achieve a decay rate of d for all modes of ⌘e and all non-
zero modes of qe (and therefore all the modes of qe

x
has a decay date d). This implies

exponential decay of the surface displacement and surface velocity errors to zero.

Our analysis demonstrates that the chosen observer with appropriate parameters �
and ⌫ achieves an exponentially fast decay rate (denoted as d) in the errors associated with
surface displacement ⌘ and surface velocity qx for the linear constant-coefficient model
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(5.1-5.2). However, the analysis for k = 0 reveals that the error in velocity potential q
does not exhibit the same exponential decay. We also note this more directly from the
integral of equations (5.5-5.6):

@t

Z
⌘e = ��

Z
⌘e, @t

Z
qe = �(1 + ⌫)

Z
⌘e,

and observe that the mean mode of ⌘e vanishes exponentially, but the initial error in
qe is never eliminated. This implies that while the observer effectively recovers surface
displacement and velocity information, it does not retrieve the full velocity potential.

From a physical standpoint, this limitation aligns with the practical interest in surface
displacements and velocities rather than the velocity potential, the latter being a quantity
that cannot be directly measured. Indeed recovering surface dynamics is often the primary
goal in many applications.

5.2 Convergence of Linear Observer

In the previous section, we established exponential decay of errors for the constant-
coefficient linear portion of equations (5.1-5.2), disregarding the term P@x (⇣ Pqe

x
). While

this term isn’t constant-coefficient, it remains linear. We now demonstrate that the
achieved error decay extends to the full linear system encompassing this term.

Theorem 4. Let ⇣ 2 H1[0, 2⇡] and let (⌘e, qe) be a smooth solution to the linearised error

equation

⌘e
t
= !2qe � P@x (⇣ Pqe

x
)� �⌘e, (5.9)

qe
t
= �(1 + ⌫)⌘e, (5.10)

for the corresponding shallow-water model. If �, ⌫ are chosen so that the conclusion of

Theorem 3 holds, then there exists ✏ > 0 and m > 0 such that for all k⇣kH1  ✏ we have

k⌘e(t)k2 + kqe
x
(t)k2  Ce�mt, for all t � 0,

where the constant C depends on the initial conditions ⌘e(0), qe(0).

Proof. Since kqe
t
(t)k2 = (1 + ⌫)k⌘e(t)k2, to prove the theorem it suffices to show that

kqe
x
(t)k2  C1e

�mt , and kqe
t
(t)k2  C2e

�mt.

We first combine the equations for ⌘e and qe into a single equation for qe as follows:

qe
tt
+ �qe

t
+ (1 + ⌫)!2qe = (1 + ⌫)P@x(⇣Pqe

x
).
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Following the proof of Theorem 3 for a given � > 0 we can find ⌫ such that ⌦k :=p
4(1 + ⌫)!2

k
� �2 is a positive real number for all k = ±1,±2, . . .. Note that for either

shallow-water wave model, ⌦k is a monotonically increasing function of k and ⌦k ! 1
as k ! 1. It then follows that

qe(t) = e��t/2

1X0

k=�1

eikx
�
ei⌦kt↵k + e�i⌦kt�k

�
+ e��t/2↵0 + �0

+ (1 + ⌫)

Z
t

0

e��(t�s)/2

1X0

k=�1

eikx
sin(⌦k(t� s))

⌦k

Fk [P@x(⇣Pqe
x
(s))] ds, (5.11)

where ↵k, �k are complex numbers related to the Fourier coefficients of the initial condi-
tions. Differentiating the above expression in x and taking the L2-norm we obtain

kqe
x
(t)k2  e��t/2(k↵xk2 + k�xk2) +

1 + ⌫

⌦1

Z
t

0

e��(t�s)/2k@xP@x(⇣Pqe
x
(s))k2 ds. (5.12)

Recall that P maps L2 elements into H1. Hence if qx 2 L2 then ⇣Pqx 2 H1 by the
algebra property for functions in H1. Further recall that P : L2 ! L2 is a bounded
operator. Lastly, since P@x : L2 ! L2 is a bounded operator P@x : H1 ! H1 is also
bounded. Using these we have

k@xP@x(⇣Pqx(s))k2  kP@x(⇣Pqx(s))kH1  1

µj
k⇣PqxkH1  k⇣kH1

µj
kqxk2,

where j depends on the shallow-water model under consideration. Thus we obtain

kqe
x
(t)k2  e��t/2(k↵xk2 + k�xk2) +

(1 + ⌫)k⇣kH1

⌦1µj

Z
t

0

e��(t�s)/2kqx(s)k2 ds. (5.13)

Using Grönwall’s inequality for the quantity e�t/2kqe
x
(t)k2, we obtain

qe
x
(t)k2  (k↵xk2 + k�xk2)e�m1t, where m1 =

�

2
� (1 + ⌫)k⇣kH1

⌦1µj
,

and hence if k⇣kH1 is sufficiently small, m1 > 0 and kqe
x
(t)k2 decays exponentially in time.

The proof for exponential decay of kqe
t
(t)k2 is similar. We first rewrite the expression

for qe(t) in the following equivalent way

qe(t) = e��t/2

1X0

k=�1

eikx
�
ei⌦kt↵k + e�i⌦kt�k

�
+ e��t/2↵0 + �0

+ (1 + ⌫)

Z
t

0

e��s/2

1X0

k=�1

eikx
sin(⌦ks)

⌦k

Fk [P@x(⇣Pqe
x
(t� s))] ds. (5.14)
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This follows from the convolution identity

Z
t

0

g(t� s)h(s)ds =

Z
t

0

g(s)h(t� s)ds for all sufficiently nice functions g, h. (5.15)

Differentiating in t leads to

qe
t
(t) = e��t/2

1X0

k=�1

eikx
✓
ei⌦kt

✓
��
2
+ i⌦k

◆
↵k + e�i⌦kt

✓
��
2
� i⌦k

◆
�k

◆

� �

2
e��t/2↵0 + (1 + ⌫)e��t/2

1X0

k=�1

eikx
sin(⌦kt)

⌦k

Fk [P@x(⇣Pqe
x
(0))]

+ (1 + ⌫)

Z
t

0

e��s/2

1X0

k=�1

eikx
sin(⌦ks)

⌦k

Fk [P@x(⇣P@xqet (t� s))] ds. (5.16)

Using the convolution identity in reverse for the last line leads to

qe
t
(t) = e��t/2

1X0

k=�1

eikx
✓
ei⌦kt

✓
��
2
+ i⌦k

◆
↵k + e�i⌦kt

✓
��
2
� i⌦k

◆
�k

◆

� �

2
e��t/2↵0 + (1 + ⌫)e��t/2

1X0

k=�1

eikx
sin(⌦kt)

⌦k

Fk [P@x(⇣Pqe
x
(0))]

+ (1 + ⌫)

Z
t

0

e��(t�s)/2

1X0

k=�1

eikx
sin(⌦k(t� s))

⌦k

Fk [P@x(⇣P@xqet (s))] ds. (5.17)

Estimating the L2-norm we find

kqe
t
(t)k2  e��t/2

✓
C̃ +

(1 + ⌫)k⇣k1
⌦1µj

kqe
x
(0)k2

◆
+

(1 + ⌫)k⇣k1
⌦1µ2j

Z
t

0

e��(t�s)/2kqe
t
(s)k2 ds.

(5.18)

where C̃ is a constant depending on the initial conditions. Once again we appeal to
Grönwall’s inequality to deduce

kqe
t
(t)k2  C2e

�m2t, where m2 =
�

2
� (1 + ⌫)k⇣k1

⌦1µ2j
,

where C2 depends on initial conditions (and also on other parameters in the problem).
Since k⇣k1  k⇣kH1 , then for sufficiently small k⇣kH1 we have m2 > 0 and hence obtain
the exponential decay of kqe

t
(t)k2. Hence the conclusion of the theorem follows.

For the sake of completeness we also present below a proof of Grönwall’s inequality.
The version below is slightly more general than the usual one and allows for a ‘forcing
term’ so that the solution need not decay to zero. This more general version is attributed
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to Zadiraka [63] in the literature and will be of particular use in Chapter 6.

Lemma 5. (A simplified version of Zadiraka theorem [63]) Let u(t) be a continuous

function that satisfies

|u(t)|  |u(0)|e�↵t +

Z
t

0

e�↵(t�s)(c|u(s)|+ b) ds, (5.19)

where a, b, c are all positive constants then

|u(t)|  |u(0)|e�(↵�c)t +
b

↵� c
(1� e�(↵�c)t). (5.20)

Proof. Let’s define R(t) as follows:

R(t) = |u(0)|e�↵t +

Z
t

0

e�↵(t�s)(c|u(s)|+ b) ds. (5.21)

Notice R(0) = |u(0)|. Differentiating R(t) and using the inequality |u(t)|  R(t), we get

R0(t)  (c� ↵)R(t) + b.

Multiplying both sides by e(↵�c)t:

e(↵�c)tR0(t)  (c� ↵)e(↵�c)tR(t) + be(↵�c)t.

Combining the left-hand side term with the first term on right-hand side, we obtain

d

dt

�
e(↵�c)tR(t)

�
 be(↵�c)t,

which can also be written as

d

dt

✓
e(↵�c)t

✓
R(t)� b

↵� c

◆◆
 0.

Integrating from 0 to t and using fundamental theorem of calculus:

e(↵�c)t

✓
R(t)� b

↵� c

◆
�R(0) +

b

↵� c
 0.

Using R(0) = |u(0)| and simplifying, we obtain

R(t) 
✓
|u(0)|� b

↵� c

◆
e�(↵�c)t +

b

↵� c
.

Since |u(t)|  R(t), the above inequality gives us the required inequality in equation
(5.20).
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Remark. We acknowledge that the cited result from Zadiraka’s work [63] typically includes
the term |u(0)|e�↵t in the literature instead of |u(0)|e�(↵�c)t. Despite extensive efforts,
we were unable to locate the original reference for this variation or independently prove
it. Therefore, for the purposes of this thesis, we have opted to utilise a simplified version
of the theorem that we successfully proved in the Lemma 5 above. This simplified result,
while not directly matching the quoted Zadiraka reference, allows us to proceed with the
decay rate analysis within the current context as well as in Chapter 6.

Theorems 3 and 4 imply the observer parameters can be chosen such that the solu-
tion to the linear version of the error equations (5.1-5.2) converges exponentially to zero.
Thus one can recover the surface velocity given surface displacement observations (and
the bottom profile) using the linear observer equations (5.9-5.10). Interestingly, our nu-
merical simulations based on the nonlinear observer equations (5.1-5.2) suggest that the
error in the horizontal surface velocity qe

x
does vanish asymptotically in time and hence

velocimetry seems possible using the full nonlinear observer model. This warrants fur-
ther investigation, potentially through analytical techniques or more elaborate numerical
experiments. Although we have not worked on proving the convergence rigorously in this
thesis, we have shown the results from numerical experiments in Section 5.4.

5.3 Choosing the Observer Parameters

In the preceding section, we established exponential decay in the error terms ⌘e and qe
x

for certain values of � and ⌫ (for the linear error equation). In doing so, we assumed
that the H1 norm of the bottom profile was available. Moreover a large H1 norm for the
bottom profile required the observer parameter � to be proportionately larger. Recall
our remark from earlier (when the shallow-water models were derived) that the bottom
profile ⇣ need not have zero-average. In other words, when attempting to reconstruct the
bottom profile, we may not even know the average location of the bottom. As a result,
H1 norm of zeta may be large merely due to a large average depth. Thus to choose the
observer parameters, we assume we are given some initial estimate of the bottom profile
⇣init so that |⇣ � ⇣init|H1 is not too large while still ensuring the exponential decay we
desire. Since ⇣init is for us to choose as per our convenience, we always take it to be a
constant function of x.

Assuming a constant bottom surface ⇣ = ⇣c, we can rewrite the linear observer system
(5.9-5.10) in terms of ⌘e, resulting in a second-order partial differential equation as follows:

⌘e
tt
+ �⌘e

t
+ (1 + ⌫)(!2⌘e � P@x

�
⇣c (P⌘ex)

�
= 0.

We seek solutions of the form eikx+pt, where p represents a parameter. This p must satisfy
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the characteristic equation:

p2 + �p+ (1 + ⌫)(!(k)2 + k2P(k)2⇣c) = 0.

Solving for p using the quadratic formula, we obtain two values:

p = ��
2
±

s
�2

4
� k2(1 + ⌫)

✓
!(k)2

k2
+ ⇣cP(k)2

◆
.

For both models, the term k2 (!(k)2/k2 + ⇣cP(k)2) increases with k. To ensure an ex-
ponential decay, we want the term under the square root to be negative for all k, which
simplifies to proving that the term under the square root is negative for k = 1. If ⇣c > 0,
the parameter choice for ⌫ in equation (5.7) from Theorem 3 will suffice. Therefore, for
a general surface bottom profile ⇣, we should set the constant ⇣c = min(0,min(⇣)). As
demonstrated in the previous section, we will have the decay rate of ��/2 if we choose

(1 + ⌫) >
�2

4(!(k)2 + ⇣cP(k)2)

����
k=1

, where ⇣c = min(0,min(⇣)). (5.22)

In the next section, we will use numerical simulations to verify that this parameter selec-
tion leads to an effective decay rate for the full nonlinear problem as well.

5.4 Simulation Results

To investigate the time evolution of the observer model (5.1-5.2), we perform numer-
ical simulations by coupling it with the original shallow-water model equations (3.25-
3.26). This allows us to obtain the solution for surface displacement ⌘(x, t) needed by
the observer. Note that we are using periodic boundary conditions. We utilise periodic
boundary conditions throughout the simulation.

Simulation Details:

1. Function Representation: All relevant functions ⌘, q, ⌘̃, q̃, and bottom boundary
are expressed by Fourier series with 256 grid points in the x-direction.

2. Numerical Method: A pseudospectral method with 2/3-method de-aliasing is
employed to simulate the system of four equations.

3. Time Integration Schemes:

• Shallow-Water Model: A standard explicit fourth-order Runge-Kutta (RK4)
scheme with a time step of �t = 10�3 (non-dimensional units) is used. The solution
for ⌘ is recorded at each step.
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• Observer Model: An RK4 scheme is used, but with a time step of �t = 2⇥10�3.
This accounts for the fixed rate 10�3 at which the ⌘ solution is provided to the
observer. Since RK4 requires values at intermediate time steps, the larger time
step (as compare to shallow-water model time-step) is necessary.

Recall we defined errors in velocity potential qe and surface displacement ⌘e as the
difference between the observer’s solution (⌘̃ and q̃) and the solution from our shallow-
water model (⌘ and q). Figure 5.1 summarises the L2 norms of these errors over time
for both the regularised Boussinesq and regularised Boussinesq�Whitham models. In
particular,

• Figures 5.1a and 5.1b show results for a multi-sine wave bottom profile defined by
equation (4.24).

• Figures 5.1c and 5.1d present results for a localised feature bottom profile defined
by equation (4.27).

These plots also include the error in velocity, qe
x
= q̃x � qx, and the predicted decay rate

�/2 based on our observer design.
In all experiments for this section, we used � = 6 and ⌫ = 14, in alignment with

the design suggested in equation (5.22). Remarkably, the errors in the full nonlinear
observer problem closely align with the predicted decay rate. We speculate the chosen �
effectively counteracts potential error growth arising from nonlinearity. Consistent with
expectations, the error in velocity potential qe does not converge to zero.

The choice of bottom profile did not significantly affect the rate of error decay. How-
ever, the errors in surface displacement ⌘ and surface velocity qx do not reach the ma-
chine precision level. The saturation value they always reach depends on how often data
(⌘(x, t)) is recorded from the original model. Lower recording intervals (smaller �t) lead
to lower final errors, as shown in Figure 5.2.

For the simulations, we chose a time step of �t = 10�3 (non-dimensional units) for the
shallow-water model equations. The observer model used a doubled time step 2 ⇥ 10�3

to account for the fixed-rate data supply from the original model and the RK4 scheme’s
intermediate time-step requirements. We also tested recording the original model solution
less frequently (every m time steps), effectively giving the observer model a larger time
step 2m�t. As shown in Figure 5.3, varying m had no significant qualitative impact.
To ensure a fair comparison in the plots, we fixed the observer time step at 0.002 and
adjusted the forward model’s time step accordingly.

These simulations solidify a key finding: with a known bottom boundary ⇣, recov-
ering fluid velocity in shallow-water models from surface displacement measurements is
achievable. Moreover, the accuracy of this recovered velocity depends on the frequency
of measurements taken.
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(a) Regularised Boussinesq model corresponding
to multi-sine wave profile (4.24)

(b) Regularised Boussinesq�Whitham model cor-
responding to multi-sine wave profile (4.24)

(c) Regularised Boussinesq model corresponding
to localised bottom feature profile (4.27)

(d) Regularised Boussinesq�Whitham model cor-
responding to localised bottom feature profile
(4.27)

Figure 5.1: Decay of error in solution for the observer model is illustrated for the multi-
sine wave profile (4.24) in Figures 5.1a-5.1b and for the localised bottom feature profile
(4.27) in Figures 5.1c-5.1d. Observer parameters are set to � = 6 and ⌫ = 14, leading to
a linear decay rate of �/2 = 3, depicted as a dotted red line. The error in ⌘ (dash-dot
cyan line) and qx (solid blue line) within the full nonlinear observer problem closely aligns
with the anticipated linear decay rate. Meanwhile, the error in q, shown as a dark green
dashed line, stabilises at a nonzero value as expected.
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(a) time step �t = 0.01 (b) time step �t = 0.005

(c) time step �t = 0.001 (d) time step �t = 0.0001

Figure 5.2: Decay of error in solution for the observer model for the sandbar profile
(4.28) in regularised Boussinesq�Whitham model with different value of �t (frequent
measurements of ⌘ data from original model). The final asymptotic-in-time errors for ⌘
and qx is smaller when we take �t smaller.
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(a) m = 1 (b) m = 2

(c) m = 4 (d) m = 5

Figure 5.3: Decay of error in solution for the observer model for the sandbar profile
(4.28) in regularised Boussinesq�Whitham model with the time step 2m�t = 0.002 for
the observer model where �t represent time step for forward model where m = 1, 2, 4, 5.
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Chapter 6

SIMULTANEOUS RECOVERY OF
VELOCITY AND BATHYMETRY

Building upon the concepts from Chapters 4 and 5, we can estimate both the fluid velocity
qx and bottom boundary ⇣ using surface measurements ⌘(x, t). To be precise, we assume
we have access to the surface displacement ⌘ at each spatial location x and at particular
discrete times tj.

In the next section, we introduce our proposed algorithm for bottom profile recon-
struction and then in Section 6.2, we present numerical evidence that the method works
as desired.

6.1 The Reconstruction Algorithm

Here is a breakdown of the algorithm steps:

1. Input and Initial Guess:

(a) Assume that the input is true surface displacement data ⌘(x, t)

(b) Make a reasonable initial guess for the bottom boundary ⇣̃, which is assumed
to be a constant value, i.e., ⇣̃(x) = ⇣c.

2. Observer Model Simulation:

(a) Pick a small number ✏ such that ✏ ⌧ µ2 where µ = 2⇡h/L is the shallowness
parameter. Based on the error analysis from the previous section, select the
observer parameters � and ⌫ that satisfy the following conditions:

1 + ⌫

�
= ✏, and (1 + ⌫) >

�2

4(!(k)
2

k2
+ ⇣cP(k)2)

�����
k=1

.
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Note the second condition above ensures the error in the observer model decays
which we have demonstrated in equation (5.22). The motivation for the first
condition is given in the Section 6.3.

(b) Time evolve the observer model

⌘̃t = !2q̃ � P@x
�
(⌘̃ + ⇣) (P q̃x)

�
� �(⌘̃ � ⌘),

q̃t = �⌘̃ � 1

2
(P q̃x)

2 � ⌫(⌘̃ � ⌘),

with these parameters (using any reasonable initial condition; we employ trivial
initial conditions) untill the predicted error e��t/2 is sufficiently small.

3. Data Collection:

(a) Record the estimated velocity q̃x at various points in time (for a large number
of time instances say 200).

(b) Simultaneously compute and record the values of ⌘t (say using finite differences
in time) at these points.

4. Reconstruction Step: Use the collected data ⌘, ⌘t and q̃x at various times in the
reconstruction equation

MX

j=1

⇥
Pq(j)

x
P2@2

x

�
Pq(j)

x
⇣⇤
�⇤

= �
MX

j=1

h
Pq(j)

x
P@x

⇣
⌘(j)t � !2q(j) + P@x

�
⌘(j) Pq(j)

x

�⌘i
,

to recover the bottom boundary.

Our proposed method reconstruct the underwater bottom profile from surface measure-
ments in a single step. We emphasise: we do not iterate the above steps. This is crucial
because iterative approaches, which involve repeated refinement of the estimate, can lead
to inaccuracies. Inverting the matrix in left hand of equation (4.22) is ill-conditioned,
meaning small errors can snowball during the process. This causes both the estimated
water velocity and the reconstructed bottom profile to become increasingly inaccurate.
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Remark 6. To ensure accurate reconstruction, the estimated velocity from the observer
problem needs to be reliable. This is why choosing the parameters � and ⌫ in the
observer model is critical. The requirements on � and ⌫ imply that � cannot be too
large. Indeed, � is typically less than or equal to ✏. Hence, despite the fact that we were
free to choose almost any � in the observer problem, when attempting to reconstruct
the bottom profile, we cannot impose too large a decay rate on the error; the surface
displacement must be assimilated slowly into the observer equations so that the resulting
velocity is accurate.

Recall Section 4.2.1 presents an example (Figure 4.9) where the bottom boundary recon-
struction was shown from erroneous qx values. In this case, the velocity values q̃x used
were obtained from an observer problem (with an estimated ⇣̃) using “large” values of
�, violating the conditions discussed above. These large � values introduced significant
errors into the estimated velocity, and therefore resulting in poor reconstruction of the
bottom boundary profile.

6.2 Example Reconstruction

In Figures 6.1, 6.2, and 6.3, we present the outcomes of applying our algorithm to recover
the bottom profiles (4.24) ,(4.28), and (4.27) respectively. To achieve this, we utilise
surface displacement data obtained from simulations of the model shallow-water equations
(3.25-3.26) for both the regularised Boussinesq and regularised Boussinesq�Whitham
models. In both cases, we set the shallowness parameter µ = 1, corresponding to a fluid
aspect ratio of h/L ⇠ 0.16. Subsequently, we employe the solution ⌘(x, t) from these
shallow-water models to simulate the respective observer model equations (5.1-5.2) for
both the models. The details for the numerical simulation of the observer model are the
same as those discussed in Section 5.4. The observer parameters for all the examples in
this section are � = 1/100, ⌫ = �1 + �2, ensuring a linear decay rate of � = �/2. These
observer parameters satisfy the conditions outlined in the algorithm presented in Section
6.1.

In the process of reconstructing the profiles (4.24) and (4.28), as shown in Figures
6.1 and 6.2, we initiate the shallow-water model with the initial condition defined by
equations (3.45-3.46) using a value of a = 0.0525. For the observer model, the initial
condition for the surface displacement is the same as the one in equation 3.45, but we set
the initial velocity potential to zero. Initial guess considered for the bottom boundary for
all the examples in this section is 1+ ⇣init(x) = �0.75, corresponding to ⇣c = �0.25. The
relative error Eb, calculated using equation (4.25), in this initial estimate of the bottom
boundary is approximately 25% or 24% for the bottom profiles given in equation (4.24)
and equation (4.28) respectively. If we calculate in terms of Ep as defined in equation
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Regularised Boussinesq model Regularised Boussinesq�Whitham

model

(a) Error decay in observer model with guessed
bottom � = 1/100, ⌫ = �1 + �2

(b) Error decay in observer model with guessed
bottom � = 1/100, ⌫ = �1 + �2

(c) Reconstruction profile (d) Reconstruction profile

(e) Comparison of Fourier amplitudes |⇣̂k| of true
profile
and reconstruction profile.

(f) Comparison of Fourier amplitudes |⇣̂k| of true
profile
and reconstruction profile.

Figure 6.1: Final reconstruction for wavy bottom profile (equation 4.24). Figures on left
hand side are for regularised Boussinesq model and Figures on right hand side are for
regularised Boussinesq�Whitham model.

94



Regularised Boussinesq model Regularised Boussinesq�Whitham

model

(a) Error decay in observer model with guessed
bottom � = 1/100, ⌫ = �1 + �2

(b) Error decay in observer model with guessed
bottom � = 1/100, ⌫ = �1 + �2

(c) Reconstruction profile (d) Reconstruction profile

(e) Comparison of Fourier amplitudes |⇣̂k| of true
profile
and reconstruction profile

(f) Comparison of Fourier amplitudes |⇣̂k| of true
profile
and reconstruction profile

Figure 6.2: Final reconstruction for sandbar bottom profile (equation 4.28). Figures on
left hand side are for regularised Boussinesq model and Figures on right hand side are
for regularised Boussinesq�Whitham model.
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Regularised Boussinesq model Regularised Boussinesq�Whitham

model

(a) Error decay in observer model with guessed
bottom � = 1/100, ⌫ = �1 + �2

(b) Error decay in observer model with guessed
bottom � = 1/100, ⌫ = �1 + �2

(c) Reconstruction profile (d) Reconstruction profile

(e) Comparison of Fourier amplitudes |⇣̂k| of true
profile
and reconstruction profile

(f) Comparison of Fourier amplitudes |⇣̂k| of true
profile
and reconstruction profile

Figure 6.3: Final reconstruction for localised feature bottom profile (equation 4.27).
Figures on left hand side are for regularised Boussinesq model and Figures on right hand
side are for regularised Boussinesq�Whitham model.
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(4.25, this translates to an error of over 460% and 1300% for multi-sine wave profile (4.24)
and sandbar profile (4.28) respectively. However, despite these seemingly significant errors
in the initial bottom-profile estimates, the relative error in the reconstructed bottom
boundary values for both profiles converged to around 10�4 for regularised Boussinesq
and order of 10�5 for regularised Boussinesq�Whitham. In terms of Ep, these correspond
to highly accurate reconstructions of 99.5% and 99.9% for multi-sine wave profile (4.24)
and 99% and 99.8% for sandbar profile (4.28), for regularised Boussinesq and regularised
Boussinesq�Whitham model respectively. Interestingly, we observe that the error in the
initial guess for the bottom-profile does not significantly impact the recovery process, as
long as we could sufficiently reduce the error in the estimated velocity q̃x. In all our
examples, a relative error of 10�4 in the estimated velocity (measured using the L2-norm)
proved adequate for achieving accurate results.

In the process of reconstructing the localised bottom feature profile (4.27), as depicted
in Figure 6.3, we initiate the shallow-water model with the following initial conditions:
⌘ = 0.1 cos(x) and q = 0.1 sin(x). For the observer model, we set the initial condition
for the surface displacement as ⌘ = 0.1 cos(x), while initialising the velocity potential to
zero. Our initial assumption for the bottom boundary led to a relative error Eb and Ep, as
computed using equation (4.25), of approximately 23% and 580% respectively. However,
despite the seemingly significant initial error in the bottom boundary estimate for the
localised bottom feature profile (4.27), the relative error in the reconstructed bottom
boundary values converge to an order of 10�4 for both the regularised Boussinesq and
regularised Boussinesq�Whitham models. In terms of Ep, these correspond to highly
accurate reconstructions of 99.2% and 99.7%, respectively, for this reconstruction.

As depicted in Figures 6.1a, 6.1b, 6.2a, 6.2b, 6.3a, and 6.3b, the error in the velo-
city consistently follows the expected linear rate of decay. In contrast, the error in the
surface displacement stabilises at a level around 10�2. It’s worth noting that the surface
displacement in the observer model is not a crucial component for the reconstruction
algorithm because we can use the data given for surface displacement in the reconstruc-
tion algorithm. Consequently, the relatively higher level of error in this aspect is not
a cause for concern. The observer model runs until reaching a non-dimensional time of
2000 units.

Turning our attention to Figures 6.1c, 6.1d, 6.2c, 6.2d, 6.3c, and 6.3d, it becomes
evident that the reconstructed profile aligns so closely with the true profile that visual
differentiation is virtually impossible. In Figures 6.1e, 6.1f, 6.2e, 6.2f, 6.3e, and 6.3f, we
observe the absolute values of Fourier modes for the reconstruction profile represented
by blue dots, and the Fourier modes for the true bottom profile denoted by red crosses.
In cases where red dots are not visible for any value of k, the corresponding Fourier
mode for the true profile is effectively zero. This visualisation demonstrates our ability
to accurately recover all the high-frequency modes.
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In summary, our proposed algorithm effectively reconstructs the bottom boundary for
both shallow-water wave models and various bottom profiles, even when initiated from a
relatively inaccurate initial estimate.

6.3 Error Estimates

This section tackles the two-step reconstruction method for estimating both fluid velocity
qx and bottom boundary ⇣ using surface measurements ⌘(x, t) and an initial guess for the
bottom boundary ⇣c. Our main goal is to motivate the choices made in the reconstruction
algorithm, specifically those pertaining to the observer parameters. We delve into error
analysis in three parts. First, we derive an error estimate specific to the reconstruction
step. Then, we repeat this process for the observer problem. Finally, by combining these
individual error estimates, we arrive at suitable choices for the observer model parameters
(� and ⌫) that ensure the effectiveness of the two-step reconstruction method. The entire
discussion here is limited to the linear error equation for velocimetry. However as the
numerical results indicate, the reconstruction algorithm works for the full nonlinear case
as well.

Error Estimate in Reconstruction Step

Let’s denote the true values of surface displacement, surface potential, and bottom bound-
ary as ⌘, q, and ⇣ respectively. We use ⌘̃, q̃, and ⇣⇤ to represent the current estimates
of these functions. The errors in these estimates are defined as ⌘e = ⌘̃ � ⌘, (surface dis-
placement error), qe = q̃� q (velocity potential error), and ⇣e = ⇣⇤� ⇣ (bottom boundary
error). According to the discussion in Chapter 4, we could determine ⇣ if we had the true
values for ⌘, ⌘t, and q. However, in reality, during reconstruction, we typically have the
true ⌘ and ⌘t, but only an estimated q (obtained from the observer problem with some
amount of error). Therefore, we write down equation (4.11) while incorporating the true
values for ⌘ and ⌘t but employing the current estimate (q̃) for velocity potential:

(P q̃x)@
2
x
P2(⇣̃P q̃x) = �(P q̃x)@xP

�
⌘t � !2q̃ + P@x(⌘P q̃x)

�
. (6.1)

Here, ⇣̃ represents our best estimate for the bottom boundary, not the true value. Sub-
stituting the true dynamical equation (3.25) for ⌘ into equation (6.1) and manipulating
terms, we arrive at the equation:

(P q̃x)@
2
x
P2(⇣̃P q̃x) = �(P q̃x)@xP

�
!2q � P@x ((⌘ + ⇣)Pqx)� !2q̃ + P@x(⌘P q̃x)

�
.
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Adding and subtracting ⇣true in the last term on right-hand side, we get

(P q̃x)@
2
x
P2(⇣̃P q̃x) = �(P q̃x)@xP

�
!2q � P@x ((⌘ + ⇣)Pqx)� !2q̃ + P@x((⌘ + ⇣ � ⇣)P q̃x)

�
,

= (P q̃x)@xP
�
!2qe + P@x ((⌘ + ⇣)Pqe

x
) + P@x (⇣P q̃x)

�
.

Rearranging terms, we have

(P q̃x) P2@2
x

�
(P q̃x) ⇣

e
�
= (P q̃x) P@x

�
!2qe � P@x ((Pqe

x
) (⌘ + ⇣))

�
. (6.2)

This equation relates the error in our bottom boundary estimate ⇣e to the error in the
estimated velocity potential qe. Notably, the equation’s coefficients (and the reconstruc-
tion operator B) depend on our current estimate for velocity potential q̃. Here ⌘ is the
true surface displacement.

However, as discussed in Chapter 5, the error in velocity potential qe typically does
not decay to zero during the observer problem simulation. Only the error in the velocity
qe
x

exhibits decay. Therefore, we can treat the right-hand side operator in the equation
(6.2) as an operator acting on qe

x
. The next step is to analyse the right-hand side of the

equation for both the models.

For regularised Boussinesq model (3.27), we have

kP@x
�
!2qe � P@x ((Pqe

x
) (⌘ + ⇣))

�
k2  kP@x!2qek2 + kP2@2

x

�
(⌘ + ⇣) (Pqe

x
)
�
k2,


����

k2

1 + µ2k2/2

✓
1 + µ2k2/6

1 + µ2k2/2

◆
kq̂e
����
2

+

����
k2

(1 + µ2k2/2)2
F [(⌘ + ⇣)(Pqe

x
)]

����
2

,

 1

µ2
(2 + k⌘ + ⇣k1) kqe

x
k2. (6.3)

Here, we leverage the definitions of P and !2 in Fourier space from equation (3.27) and
the inequality 1/(1 + µ2k2/2)  1. Furthermore, we have assumed that the infinite norm
of both the true surface displacement ⌘ and the true bottom boundary ⇣ are bounded.
This justifies our use of k⌘ + ⇣k1  1.

Similarly, for the regularised Boussinesq�Whitham model (3.30), we have

kP@x
�
!2qe � P@x ((Pqe

x
) (⌘ + ⇣))

�
k2  kP@x!2qek2 + kP2@2

x

�
(⌘ + ⇣) (Pqe

x
)
�
k2,

 kP@x!2qek2 + k⌘ + ⇣k1kP2@2
x

�
(Pqe

x
)
�
k2, (6.4)

 1

µ2
kk tanh(µk)q̂ek2 +

1

µ2
k⌘ + ⇣k1kqe

x
k2,

 1

µ2
(1 + k⌘ + ⇣k1) kqe

x
k2. (6.5)
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Similar to the previous case, we use the definitions of P and !2 specific to this model
(3.30) and the fact that k tanh(µk)k2  1.

Interestingly, both the models lead to a similar bound with a factor of 1/µ2 in right-
hand side. While it might seem like increasing µ would improve reconstruction by re-
ducing the error bound, this is not entirely true. The operator on the left-hand side of
the equation (6.2) also have the same factor of 1/µ2. As discussed in Chapter 4, the
reconstruction operator can be inverted stably only when eigenvalues are well separated
from the origin. However, increasing µ significantly (µ � 1) makes the eigenvalues of
the left-hand side operator smaller. Therefore, while a larger µ reduces the bound on
the right-hand side, it simultaneously makes the left-hand side operator less invertible.
This ultimately hinders the reconstruction process. In conclusion, there’s a trade-off
when choosing the value of µ. Additionally, the solutions to the shallow-water models
approximate those of the full water-wave equations only when µ is small.

Fortunately, due to the shallow-water approximation and the no-island condition, we
can assume bounded values for k⌘k1 and k⇣k1 (both less than or equal to 1). This limits
the quantity 2 + k⌘ + ⇣k1 in both cases to a maximum of 4.

The specific form of the operator P plays a crucial role in achieving boundedness. In
the case of the regularised Boussinesq model (3.27), the chosen form of P allows us to
treat the combined operator P@x!2 as bounded on qx. This highlights the importance
of selecting models with compatible forms of !2 and P for effective error analysis and
reconstruction. For more details, look at the remark given below.

Our current analysis focuses on error bounds for a single time instance. Extending
this analysis to the minimisation problem given by equation (4.21 requires obtaining time-
uniform estimates. This translates to ensuring that the observer-model velocity estimate
q̃x is sufficiently accurate over a period of time, given the true surface displacement ⌘ and
its time derivative ⌘t. Here, sufficiently accurate refers to the levels of accuracy required
in the examples discussed in Section 4.2.1. While we haven’t provided rigorous bounds
on this required accuracy, it would likely involve analysing the spectrum of the operator
on the left-hand side of equation (6.1) as a function of q̃x.

Remark. Note that for regularised Boussinesq model (3.27),

!2(k) =
1 + (µk)2

6

1 + (µk)2

2

k2,

is an unbounded operator on q. Since P in this case is 1/ (1 + (µk)2/2) which makes
P@x!2 a bounded operator on qx. This form of P helps us to make it a bounded operator
on qx. If it was of different form, we might have not been able to get the bound. Also, if
we considered a linear dispersion relation that included surface tension effects, we would
require even greater smoothing from P . Thus the selection of the model is important in
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reconstruction of the bottom boundary problem. The compatibility of the forms of the
!2 and P is crucial.

Error Estimate in Velocimetry Step

We recall the initial guess for the bottom boundary is a constant profile (⇣̃(x) = ⇣c),
leading to an initial error given by ⇣e = ⇣c � ⇣. We consider the linear shallow-water
model satisfied by ⌘ and q:

⌘t = !2q � P@x
�
⇣Pqx

�
, (6.6)

qt = �⌘. (6.7)

The corresponding observer linear equations satisfied by the current estimates ⌘̃ and q̃

with the bottom profile ⇣̃ = ⇣c is given by

⌘̃t = !2q̃ � P@x
�
⇣cP q̃x

�
� �(⌘̃ � ⌘), (6.8)

q̃t = �⌘̃ � ⌫(⌘̃ � ⌘). (6.9)

We now derive the equation satisfied by the errors in surface displacement and surface
velocity. This linear error equation depends on the error in the bottom profile ⇣e:

⌘e
t
= !2qe � �⌘e � P@x

�
(⇣e + ⇣)P q̃x

�
+ P@x

�
⇣Pqx

�
,

qe
t
= �(1 + ⌫)⌘e.

To further simplify the equation, we can add and subtract the term P@x
�
⇣ePqx

�
from

the first equation, leading to the error equations of the form:

⌘e
t
= !2qe � �⌘e � P@x

�
(Pqe

x
) (⇣ + ⇣e)

�
� P@x

�
(Pqx) ⇣

e
�
, (6.10)

qe
t
= �(1 + ⌫)⌘e. (6.11)

The observer problem aims to minimise the errors ⌘e and qe
x
. However, achieving complete

error elimination is not possible due to the presence of a forcing term P@x
�
(Pqx)⇣e

�
in the

error equation (6.10). Note that the strength of the forcing term is directly proportional
to the error in ⇣.

By taking the time derivative of equation (6.11) and substituting the value of ⌘e
t

from
equation (6.10), we obtain a single equation describing the error dynamics:

qe
tt
+ �qe

t
+ (1 + ⌫)

�
!2qe � P@x

�
(Pqe

x
) (⇣ + ⇣e)

��
= (1 + ⌫)P@x ((Pqx) ⇣

e) , (6.12)

where ⇣ + ⇣e = ⇣c is a constant. For the homogeneous part of the equation, we can
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consider solutions of the form eikx+pt where p satisfies the quadratic equation:

p2 + �p+ (1 + ⌫)(!(k)2 + ⇣c k
2P(k)2) = 0.

Two solutions of this equation are

� �

2
± 1

2

p
�2 � 4(1 + ⌫)(!2 + ⇣ck2P2). (6.13)

As established in Theorem 3, achieving an appropriate decay rate for the error necessitates
a negative term under the square root in the solution given by equation (6.13) of the
homogeneous part of the error equation. This translates to the following condition:

(1 + ⌫) >
�2

4(!(k)2 + ⇣c k2P(k)2)

����
k=1

. (6.14)

With this condition satisfied, the solution for p in the homogeneous part can be written
as:

p± = ��/2± i⌦k,

where ⌦k is a non-zero real number for all non-zero wavenumbers (i.e., |k| > 0). Using
Duhamel’s principle, we can express the general solution for the non-homogeneous error
equation (6.12) incorporating the solution for the homogeneous part:

qe = e�
�
2 t

1X0

k=�1

eikx
�
ei⌦kt↵k + e�i⌦kt�k

�
+ e��t↵0 + �0

+

Z
t

0

(1 + ⌫)e�
�
2 (t�s)

 1X0

k=�1

eikx
sin(⌦k(t� s))

⌦k

Fk

⇥
P@x

�
(Pqx) ⇣

e
�⇤

k

!
ds.

Here, the values of ↵k, �k depend on the Fourier coefficients of the initial data, and the
prime on the summation indicates that the term with k = 0 is excluded.

We recall that the error in q is influenced by the forcing term, which is proportional
to ⇣e (the error in the bottom boundary estimate). Since we are interested in qe

x
, we can

estimate it by taking the derivative in x of the above equation and then estimating the
2-norm:

kqe
x
k2  e�

�
2 t(k↵xk2 + k�xk2) +

✓
sup
t

kP@2
x

�
(Pqx) ⇣

e
�
k2
◆Z

t

0

(1 + ⌫)e�
�
2 (t�s)ds.

Employing a version of Zadiraka’s Theorem 5 with c = 0, we obtain the following expres-
sion for the long-time error on qx:

kqe
x
k2 ⇠ 2

1 + ⌫

�
sup
t

kP@2
x

�
(Pqx) ⇣

e
�
k2. (6.15)
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We can analyse the long-time behaviour based on the specific model. If qx 2 L2 for all
times, then sup

t

kPqxk1 is bounded due to the regularising nature of the operator P . As
t ! 1, we get:

kqe
x
k2 

4(1 + ⌫)

�µ2
k⇣ek2 sup

t

kPqxk1. (6.16)

For regularised Boussinesq�Whitham model, we can not do exactly the same way because
P@x is not smooth in this case. However, if we impose additional regularity on ⇣e, the
long-time error bound in qx is given by

kqe
x
k2 ⇠ 2

1 + ⌫

µ�
sup
t

k@x
�
(Pqx) ⇣

e
�
k2. (6.17)

Both the models exhibit similar scaling with respect to the observer parameters � and
⌫. Intuitively, increasing � might seem beneficial for reducing the long-term error in qe

x
.

However, we must consider the relationship between � and ⌫ given in equation (6.14).
This equation indicates that 1 + ⌫ is directly proportional to � . From the expressions
above in equations (6.16-6.17), the error in qe

x
is also directly proportional to 1 + ⌫.

Therefore, while increasing � might lead to a lower error bound initially, it also increases
the value of ⌫, which counteracts the initial gain and ultimately impacts the error qe

x
. To

ensure a sufficiently small kqe
x
k, we need to minimise the value of (1 + ⌫)/�.

The long-time behaviour of the qe
x

error has been estimated for the linear equations
(6.10-6.11). These estimates depend on the regularity of the initial data and the regularity
of the error term ⇣e.

We anticipate a similar error estimate to hold for the nonlinear equations (5.1-5.2) as
long as � is sufficiently large. This ensures it can overcome any potential growth in the
solution. The nonlinear terms in these equations are Lipschitz functions for ⌘ and qx in
L2. Our numerical solutions further support this notion by demonstrating the decay rate
of the error in qx for nonlinear models as well.

Combining both the estimates

In order to reconstruct the bottom boundary, it is crucial to improve the error estimates
of the final bottom-profile. Here, we denote the initial guess for the bottom-profile by
⇣c, therefore the initial error in bottom profile is given by ⇣e

init
= ⇣c � ⇣ and the the final

reconstructed profile is denoted by ⇣⇤ and thus the final error is calculated as ⇣e
final

=

⇣⇤� ⇣. Our objective is to ensure that final error ⇣e
final

smaller than the initial error ⇣e
init

.
For the regularised Boussinesq model: using equations (6.2) and (6.3), we have

k(P q̃x)@
2
x
P2(⇣̃P q̃x)k2 

1

µ2
(2 + k⌘ + ⇣k1) kP q̃xk1kqe

x
k2.
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Now using equation (6.16) and the fact that k2 + ⌘ + ⇣k1  4, we get

k(P q̃x)@
2
x
P2(⇣̃P q̃x)k2 

16

µ4

(1 + ⌫)

�
k⇣e

init
k2 kP q̃xk1 sup

t

kPqxk1. (6.18)

Due to our non-dimensional scaling and the the type of initial conditions we are using for
our simulations, |q̃x| and |qx| are typically less than 1. Thus, the inequality (6.18) shows
that to ensure the small error in the final estimated bottom profile, we need to make sure
that the coefficient of k⇣e

init
k2 is as small as possible and we have to choose � and ⌫ in

such a way that we can minimise the term (1 + ⌫)/�.
While the proof for the regularised Boussinesq model is straightforward, the regular-

ised Boussinesq�Whitham model presents a challenge. As discussed earlier, the technical
difficulty lies in the term P@x, which is only bounded and not smooth. So we cannot
obtain the same estimate without requiring additional regularity on the true bottom pro-
file ⇣. Nevertheless, our simulations show that a similar estimates holds for regularised
Boussinesq�Whitham as well.
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Chapter 7

CONCLUSIONS

This work establishes the feasibility of simultaneously recovering the bottom boundary
profile and velocities in the context of dispersive shallow-water models using solely surface
wave elevation measurements (⌘). Notably, the aspect ratios (h/L) for which accurate
bathymetric reconstruction is achieved are an order of magnitude larger compared to
prior studies [58]. This is a significant improvement over the method of [58].

Furthermore, the research demonstrates the efficacy of velocimetry, the estimation
of velocities, in Boussinesq-type shallow-water models. Accurate velocity estimates are
achievable with a known bottom boundary profile. Interestingly, the observer framework
employed here provides reasonable velocity estimates even when the bottom profile is
unknown.

It is crucial to note that the ability to recover both the bottom boundary and velocity
is not contingent upon a specific shallow-water model. The results suggest the possibility
of extending this approach to a broader class of models based on the properties of the
pseudo-differential operators !2 and P . While our work demonstrates promising results,
ocean depth measurement remains a sensitive process. Carefully selecting parameters
within the observer framework is critical.

Note that all our simulations were conducted for a single spatial dimension. The
shallow-water model can easily be generalised to two spatial dimensions and so does then
the whole approach put forward in this thesis. Additionally, the time-reversibility of
the model allows for back and forth nudging technique [8, 7] with limited data records
of ⌘(x, t). However, adapting the reconstruction algorithm for real-world applications
involving non-periodic data poses a challenge. Non-periodic boundaries introduce mass
flux across the lateral boundaries, requiring reformulation of the associated DNO and the
Hamiltonian framework. Addressing these issues to handle non-periodic data remains an
important area for future work.

We conclude by emphasising the crucial, yet implicit, role of model selection in the
entire reconstruction process. While the regularised Boussinesq model offered advantages
for estimating key quantities, it did not possess the rapid decay of eigenvalues of the linear
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operator in equation 4.22. The regularised Boussinesq�Whitham model, on the other
hand, had this rapid decay, but presented challenges in verifying certain estimates and
necessitated stricter assumptions about the bottom-profile regularity.

The reduction to the shallow-water regime played a significant role in simplifying
the design of the observer and reconstruction algorithm. Ultimately, the choice of model
hinges on our understanding and interpretation of the data, coupled with our assumptions
regarding the true bottom boundary profile. However, as noted in [43], for a shallow-water
model to accurately represent the full water-wave equations, these two factors might not
be entirely independent.

Our work highlights the interdependence between the mathematical properties of
these equations, particularly the interplay between the dispersion relation (!2) and the
regularisation term (P). This interdependence suggests that certain models might be
inherently better suited for accurate reconstruction compared to others.

We hope that the combination of clear estimates and the numerical simulations presen-
ted in this thesis have provided the valuable insights into the complexities of this chal-
lenging inverse problem.
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