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Abstract

Estimating and predicting the state of a chaotic dynamical system which evolves over time

from partial and indirect observations is a challenging problem. Also known as nonlinear

filtering or data assimilation in earth sciences, this problem is solved using sequential

algorithms which approximate the state and the associated uncertainty. Bayesian formalism

allows one to define the filtering distribution, the conditional distributions of the state

based on all available information. Since the state is unknown, the initial distribution for

any filtering algorithm starts with a choice for the initial distribution of the state. It is

crucial that the influence of the wrong initial condition on the filter estimated distributions

diminish over time, eventually converging to same distribution - a property known as filter

stability. Developing a method to understand and directly investigate this property across

various numerical filtering algorithms is of great utility.

The first problem of this thesis addresses the problem of nonlinear filter stability

numerically. Using ensemble Kalman filter, a widely utilized bayesian filtering algorithm,

we directly investigate nonlinear filter stability by performing data assimilation on chaotic

dynamical systems such as Lorenz-63 and Lorenz-96 as our choice for the testbed models.

With the help of Sinkhorn algorithm, we compute the distances between two different

filtering distributions starting from different initial conditions. The numerical approach

developed here for studying non-linear filter stability using a distance on the space of

probability distributions has been a novel contribution out of this thesis.

The second problem studied in the thesis is related to dynamical instability and their

computation for a dynamical system. We focus on the Lyapunov vectors such as backward

and covariant Lyapunov vectors which are strongly related to the growth of error and

uncertainty in state estimation problems. However, computing these vectors requires the

knowledge of the the dynamics and a true underlying trajectory which is unknwon in

the setting of data assimilation. We propose to first estimate the underlying trajectory

and then use Genelli’s algorithm to recover the Lyapunov vectors themselves. We also

investigate the sensitivity of these vectors themselves by systematically replacing the actual

trajectory with approximate trajectories. This allows us to understand the limitations of

the numerical algorithms for computing Lyapunov vectors from estimated trajectory.
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Chapter 1

Introduction

Weather prediction is one of the most important problems in the world. It is also a very

difficult task due to the sheer complexity of the governing set of equations itself combined

with the coupled dynamics of different components of the Earth system, such as the land,

atmosphere, the oceans [11, 34]. Based on fundamental physical theories and observed

empirical behavior, large and complex numerical models of the ocean and atmosphere

are built, which are then used to perform the task of predicting the future of the system

in numerical weather prediction or NWP. At any given time, the state of the ocean and

the atmosphere is typically described and governed by a set of state variables such as

temperature, pressure, humidity, and wind speed at different points in space and time.

Some of the aforementioned variables can be observed via sensors and measurement devices

contaminated by measurement noise. Other unknown external factors also contribute to

measurement noise distribution, making uncertainty their inherent attributes.

Real observations provide a direct link to the hidden state of the underlying system by

sampling it at different points in space and time. However, it is impossible to produce

estimates of all the state variables only from the observations that are limited in time

and space, i.e., they are sparse. Numerical models, on the other hand, are based on

theory, formulated in order to understand the spatiotemporal evolution of the underlying

system [53]. They are developed to numerically approximate the real dynamics of the

system, trading off complexity with accuracy. These models come to life with certain

simplifying assumptions, approximations, and discretization and are solved in time making

a specific choice of the numerical scheme. They also contain unavoidable modeling errors

that are attributed to a finite-scale representation and unknown and unresolved dynamics

that are present in the real system but absent in the numerical models[26, 41].

With a numerical model as the best representative of the system at large, the objective of

operational weather, ocean, and climate prediction centers around the world is to estimate

the current state and use their most accurate estimates to forecast future weather. The

typical models employed in numerical weather prediction are complex, high-dimensional,
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nonlinear set of equations where the system’s state at any time is represented by a large

state vector of the order of O(109) [36]. The problem of estimating the state is further

complicated by the highly nonlinear and chaotic nature of these systems, where small

errors in the initial conditions grow exponentially fast in time. Hence, even if we assume

that the models are perfect, ignoring the error due to numerical representation, the forward

integration of these models starting from the initial condition soon departs from reality.

The shortcomings of each of the two sources of information must be considered in order

to balance the quality of information coming from these two distinct sources. The problem

of inverting observations to estimate the underlying state is a poorly posed problem [7].

Data assimilation plays a key role in consistently combining information from different

sources of observations from various sources, such as satellites, radars, and ground-based

sensors, into numerical models to improve the accuracy of weather predictions. The goal

of data assimilation is to provide an estimate of the true state of the system [45] based

on a set of sparse and noisy observations. Data assimilation can often be referred to as

an interpolation method for dynamical systems, where numerical models play a crucial

role in the interpretation and interpolation of observations to estimate the full state of the

system [53, 36].

Data Assimilation research addresses two problems of inverse modeling, filtering, which

is to estimate the true state of the system, and prediction which aims to predict the

future of the system with uncertainty estimates. The two sources of information with

uncertainties at hand are dynamical models and observation data. The former captures

the underlying physics of the system and faithfully represents our best objective knowledge

of the system. On the other hand, the noisy and partial observations from the system

are incomplete to describe the full state of the system. Combined together, they produce

more accurate estimates of the state and also predict future observations, which is better

statistically than either just the model or the observations. The information coming from

real observations improves the model outcomes on which the next forecast cycle is then

based. This complete cycle is what constitutes a general assimilation cycle.

The history of data assimilation originates from the control theory perspective [42, 54],

which led to the development of variational data assimilation methods. The goal here is

to obtain a trajectory which minimizes a cost function collectively representing the misfit

with the observations while being consistent with the dynamical equations. Another recent

perspective stemming from the Bayesian approach is now well recognized and adopted in

data assimilation in geosciences [13, 4]. A few examples of sequential Bayesian filtering

algorithms, such as the ensemble Kalman filter and particle filter which attempt to represent

the posterior distribution via an ensemble approach and implement Bayesian posterior

approximations. The state-of-the-art algorithms for the variational data assimilation

include the 3DVAR and 4DVAR algorithms. In this thesis, we focus on the Bayesian
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filtering algorithms, specifically the ensemble Kalman filters which we apply to nonlinear

dynamical systems to study the research problems addressed in this thesis.

1.1 A general introduction to this thesis

In the context of data assimilation for deterministic dynamical systems, the focus of this

thesis is twofold: (1) to develop numerical methods to assess the stability of filtering

algorithms and (2) to develop data-based numerical methods to compute Lyapunov vectors

using filtering algorithms. Data assimilation or filtering is the method of combining

observations with dynamics in order to sequentially estimate the state of a dynamical

system [26, 13]. The associated uncertainties depend on the unstable directions along which

errors grow exponentially and are important for the goal of state estimation. Lyapunov

exponents and vectors are the fundamental tools used in the study of chaotic systems, which

describe the asymptotic behavior of infinitesimal errors [70]. For chaotic and dissipative

systems in high dimensions [80], these subspaces are much smaller compared to the size of

the system itself. Their information is crucial for analysis and predictability. We study

the sensitivity of the Lyapunov vectors in response to perturbations introduced into the

underlying trajectory. This allows us to understand the limitations on the accuracy of

such vectors computed from estimated trajectories obtained using a filtering algorithm.

In the same spirit that sensitivity to the initial conditions is important for chaotic

dynamical systems, we study the problem of filter stability [74, 75], which deals with the

sensitivity to the initial condition of a filtering algorithm. In practice, we often do not

know the initial distribution and use a different distribution to start the filtering algorithm.

A measure of the robustness of a filtering algorithm is reflected in understanding how the

posterior conditional distribution of the state becomes independent of the choice of the

initial distribution over time. In this thesis, we develop a method based on the Sinkhorn

algorithm to numerically study the stability of a nonlinear filtering algorithm. We illustrate

the proposed method using the ensemble Kalman filter, where we approximate the distance

between Monte Carlo samples representing different filtering distributions.

1.2 Understanding nonlinear filter stability numeri-

cally using Wasserstein distance

Bayesian filtering theory The Bayesian filtering problem is defined as the sequential

estimation of the conditional distribution of the state of a dynamical system given the

history of observations up to that time [26]. A filtering problem consists of a dynamical

equation governing the state and observations, which are the functions of the state. We
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assume that the system dynamics is Markovian and is observed indirectly through noisy

and incomplete observations over time. We state the filtering problem in a discrete-time

setting for state xk ∈ Rd and the observation yk ∈ Rm, given by,

xk = fk−1 (xk−1) ; yk = hk (xk) + ϵk (1.1)

where, fk−1 is the propagator from time tk−1 to tk, hk is the observation operator and ϵk

are i.i.d Gaussian errors in the observations with distribution N (0m, σ
2Im). Since the true

initial state x0 is unknown, the filtering starts with π(x0) as the initial distribution at time

t0. As observations yk arrive sequentially in time, the filter distribution π(xk|y0:k) at time

tk is computed using the likelihood of observation and the prior distribution π(xk|y0:k−1)

capturing the flow-dependent uncertainty via Bayes theorem [13]. Different numerical

filtering algorithms are used to obtain an estimate for the filtering distribution, denoted

by π̂k(µ), using different approximations involved in Bayesian posterior computation.

Kalman filter provides an iterative closed-form solution [77] to the Bayesian filtering

problem in the scenario when the dynamic and measurement operator is linear with

the observation noise being Gaussian. A simple approximation for the case of nonlinear

dynamics was introduced by G. Evensen [34] where an ensemble or collection of particles

are used to represent the distribution and operations of the standard Kalman filtering

are performed by using ensemble estimates of corresponding quantities. This ensemble

representation is powerful for dimension reduction, leading to computational feasibility

for systems in large dimensions. Additional ad-hoc procedures such as inflation and

localization [16], have made EnKF more applicable and popular in high-dimensional

operational data assimilation problems.

Numerical filter stability In this work, we introduce a practical way to assess filter

stability, an important property of filtering algorithms. Filter stability aims to understand

the effect of incorrect initialization of numerical filtering algorithms. In data assimilation

research, many studies have relied on these models as test models to understand and

demonstrate filtering algorithms and their intercomparison [7]. A numerical filtering

algorithm requires the initialization of the probability distribution π(x0), an arbitrary

choice that may be different from the truth distribution. The stability of the filter is a

property ascertaining that starting with different initial distributions, the filter converges

to the same posterior distribution asympotically [75] making the filtering robust to the

wrong choice of π(x0).

In our definition [64], a numerical filtering algorithm is stable if a numerical filter,

starting with two different initial distributions µ and ν, yields πn(µ) and πn(ν) as the

respective filtering distributions at time tn, then asymptotically, we have

lim
n→∞

E[D(π̂n(µ), π̂n(ν))] = 0 , (1.2)
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where D is a distance on P(Rd), the space of probability measures on Rd. By studying the

equation 1.2 for a numerical filter using an appropriate distance metric D, we can directly

study the problem of filter stability numerically by choosing different initial distributions

for the filter and how the distance between the corresponding filtering distributions varies

over time.

Figure 1.1: A schematic illustrating filter stability. The red and the blue trajectories
represent the two different filtering ensemble over time with initial distribution ν and µ.

Wasserstein distance and Sinkhorn divergence In this work, we have used

an approximation of the Wasserstein-p distance [6, 38], denoted as Wp, in the space of

probability distributions to numerically study filter stability. Sinkhorn divergence [37],

denoted by Sε, is computationally cheaper due to entropy regularization [35] and can be

solved by various iterative methods, making it useful to approximate Wp between two

probability distributions. We use Sinkhorn-divergence to approximate W2 in the limit of

ε→ 0 [35]

lim
ε→0

√
Sε = W2(µ, ν). (1.3)

We study the distance between filtering distributions, defined in equation (1.2), where

the two different filtering distributions are obtained using ensemble Kalman filter with

different initial distributions over time using Sε. In the following discussion, we refer to

Dε as the distance, which is the
√
Sε defined in equation (1.3).

Results with ensemble Kalman filter for Lorenz-96 We investigate the filter

stability using Lorenz-96 [60] for d = 10, forcing constant f=10 with observation gap g = 0.1

units of time. We use three different initial conditions and study E[Dε(π̂n(µi), π̂n(µj))], i ≠

j as a function of time n for initial conditions µi, with the expectation taken by averaging

over 10 observation realizations. We also fit an exponential curve of the following form
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between Sinkhorn divergence and time [83],

E[Dε(πn(µ0), πn(µb))] = a exp(−λt) + c (1.4)

where t = assimilation step × observation gap = ng and compute the rates of convergence

in different cases. With the recent development of the Sinkhorn algorithm, we propose

a method to study the stability of filtering algorithms. We demonstrate this method by

applying filtering to a partially observed dynamical system using EnKF. This allows us

to directly assess the stability by computing the expected value, averaged over multiple

observation realizations, of the distance between filtering distributions as a function of time.

We also studied extensively the dependence of stability properties on two main parameters,

the time between observations and the observational error covariance. Furthermore, we

find that the distance between two filters initialized with distinct initial conditions has an

empirically linear relationship with the l2-error of the filter mean.

1.3 Computing Lyapunov vectors from filter approxi-

mated trajectory and their sensitivity

Characterizing the directions along with the errors grow rapidly is an important property

of a chaotic dynamical system. The associated uncertainties depend on the unstable

directions along which the errors grow exponentially and are important for the goal of

state estimation. Lyapunov exponents and vectors describe the asymptotic behavior

of infinitesimal errors [33]. The spectrum Lyapunov exponents summarize the effect of

all possible perturbations on the initial condition for the system, and the values of the

exponents describe the average growth rate of the respective perturbations over time. The

Lyapunov vectors, or LVs, are local objects spanning the tangent space for a specific point

in the phase space. The computation of LV requires the knowledge of the dynamics and

the underlying trajectory along which these vectors are obtained. We investigate the

computation of Lyapunov vectors for deterministic dynamical systems using partial and

noisy observations and data assimilation.

Lyapunov vectors and subspaces We consider an autonomous continuous-time

dynamical system in Rn together with the equation governing the evolution of infinitesimal

perturbations in tangent space, given by,

ẋt = f(xt) , Q̇t = J(xt)Qt , Jij(xt) =
∂fi(xt)

∂xt,j

(1.5)

where Q ∈ Rn×n satisfies the equation for the Fundamental matrix which contains the set

of perturbation vectors along the columns. Jij(xt) is the jacobian matrix evalated at xt,
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and fi and xt,j denote the ith and jth component of f(xt) and xt respectively.

If zk and zl denotes the infinitesimal perturbations at time tk and tk, the tangent linear

propagator from time tk to tl can be written as

Mk,l = QlQ
−1
k with the property that zl =Mk,lzk . (1.6)

Under suitable conditions, the Oseledec’s theorem implies the existence of the following

limits:

λ(z, tk) := lim
l→∞

1

|tl − tk|
log
∥Mk,lz∥
∥z∥

, and λ(z, tl) := lim
k→−∞

1

|tl − tk|
log
∥Mk,lz∥
∥z∥

,

(1.7)

A non-increasing tuple λ1 ≥ λ2 ≥ ... ≥ λn of Lyapunov exponents summarizes the global,

asymptotic rate of change of linear perturbations around a trajectory. The forward and

backward LVs are the eigenvectors of the forward and backward Oseledec matrices, denoted

by Φ+
l and Φ−

l respectively [88], which are defined as

Φ−
l = lim

k→−∞

1

|tl − tk|
log
[
MT

k,lMk,l

]
, Φ+

l = lim
k→∞

1

|tk − tl|
log
[
MT

k,lMk,l

]
. (1.8)

Using the intersection between the subspaces spanned by the FLVs and the BLVs, one

can define a norm-independent set of LVs called covariant Lyapunov vectors or CLVs [52].

These vectors have different features from their orthogonal counterparts and have been

computed with recent algorithms [39, 88] as can be seen in figure 1.2 where there is

additional information contained in their mutual angles.

Lyapunov vectors from partial and noisy observations We focus on computing

Lyapunov vectors for deterministic dynamical systems using partial and noisy observations

and data assimilation. When the initial condition for a given dynamical system is unknown

and the system is accessible only by partial and noisy observations, identification of the

underlying trajectory is a challenge. Filtering techniques can be used to compute an

approximate trajectory using the observations of the system and the numerical model. We

propose to obtain the vectors and their subspaces from the estimated trajectory obtained

from a data assimilation algorithm since it is close to the true trajectory. We take the

approach of using data assimilation to compute the LVs using Ginelli’s algorithm [39]

from a filter-estimated trajectory. We propose to use the state estimated from a numerical

filter as the best estimate of the unknown state xtk on the underlying trajectory and carry

out the computation of Lyapunov vectors and Oseledets subspaces. We use the ensemble

Kalman filter or EnKF [34, 7] as the filtering algorithm, which is described in section 2.5

in detail.

A trajectory estimated with DA using any filtering or smoothing algorithm does not

meet the requirements of being a dynamical trajectory and at any time tk, even the most
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Figure 1.2: The attractor of Lorenz-63 system where the color indicates the cosine of the
angle between the 1st and the 2nd CLV.

accurate estimate, denoted by xa
k, has minor discrepancies eak from the actual state xk,

which is expressed as eak = xa
k − xk. The amount of inaccuracy in the calculation of

LVs depends on the magnitude of the error eak. This naturally leads to the question of

the sensitivity of the Lyapunov vectors in response to perturbations introduced into the

underlying trajectory. We explore this problem using the notion of perturbed trajectory

where the perturbations follow some unknown error statistics, we break down our problem

into two sub-parts.

i. Firstly, we present a data-based algorithm for computing the LVs using the state

estimates obtained from a data assimilation method, namely the ensemble Kalman

filter (though any assimilation method may be used in place of EnKF). This algorithm

can be used to produce the full spectrum or a subset of LVs, either backward or

covariant. This data-based method does not, by itself, give any bounds on how close

these vectors may be to the true vectors associated with the trajectory that is being

observed. To understand this aspect, we are naturally led to the second aim of this

paper.

ii. We present the other main contribution, which is an extensive numerical exploration
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of the sensitivity of the LVs to perturbations of the underlying trajectory. We do

this by using the same algorithm mentioned above but with a noisy trajectory and

then comparing the true LVs with the approximate one obtained from the perturbed

trajectory. We used the principal subspace angles between the Oseledets spaces in

order to quantify this discrepancy.

We numerically computed LVs using Ginelli’s algorithm but with noise added to a

trajectory, and then compared the true LVs with the approximate one obtained from

the perturbed trajectory. We investigate the stability of the LVs from a more general

perspective by adding perturbations to a trajectory and recovering the vectors and the

subspaces from such perturbed trajectories. Using principal angles [43], we quantify the

discrepancy for the Oseledets subspaces. We find that this sensitivity is consistent with

and helps explain the errors in the approximate Lyapunov vectors from the estimated

trajectory of the filter. These results allow us to understand the limitations on the

accuracy of such vectors computed from estimated trajectories obtained using a filtering

algorithm. We have developed numerical methods for computing the Lyapunov vectors

from assimilated trajectories obtained using a filtering algorithm. It is important to

study the limitation on the accuracy of different Lyapunov vectors and their subspaces

recovered using the assimilated trajectory. We understand this by adding perturbations

to a dynamical trajectory and systematically studying the sensitivity of LVs and their

subspaces. We find that the errors in the approximated LVs implicitly depend on the

errors in the estimated trajectory. Our systematic study reveals that individual vectors

can be quite sensitive for dynamical systems with high dimensions as opposed to low

dimensions. We also find that the Oseledet subspaces defined by the LVs computed from

the approximate trajectory are less sensitive than the individual vectors. Our results

provide an understanding and limitations on the accuracy of such vectors computed from

estimated trajectories obtained using a filtering algorithm.

1.4 Structure of the thesis

The thesis is structured as follows: we first present an introduction to nonlinear filtering

for dynamical systems under the Bayesian formalism. We then state the problem of

sequential state estimation using partial and noisy observations for a linear dynamical

system. We present a derivation of the Kalman filtering equation, the optimal solution

to the problem of filtering for linear dynamical systems. We introduce EnKF, the Monte

Carlo approximation of the standard Kalman filtering and the ad-hoc approach which

make EnKF applicable in high-dimensional settings. In section 2.6, we introduce Lorenz-

63 and Lorenz-96, the two chaotic dynamical systems that we use for performing the

numerical experiments in the context of the problems addressed in the following chapters.
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We conclude chapter 2 by presenting some twin experiments in data assimilation using

standard EnKF on Lorenz-96 illustrating different ideas such as inflation and localization

together with well-known metrics of filtering algorithms.

In chapter 3 begins with an introduction to the problem of nonlinear filter stability in

data assimilation. In section 3.2, we present the mathematical definition of filter stability

using a distance on the space of probability distributions. We introduce the Wasserstein

distance, an optimal transport based distance, and present the algorithm to approximate

it via the Sinkhorn divergence. Using EnKF, we then demonstrate our numerical approach

for numerical filter stability by applying it to Lorenz-96. We present the results for two

important cases- where we study the filter stability for the case of fixed observation gap

and fixed observation noise. The first part of this work aims to study whether filtering

algorithms are affected by the wrong choice of initial distributions at the beginning.

In chapter 4, we discuss the problem of estimating Lyapunov vectors from an estimated

trajectory using data assimilation. To approximate the Lyapunov vectors using the

estimate of the underlying trajectory obtained from the filter mean. In section 4.2, we

describe the theory and the method of computing the vectors using Ginelli’s algorithm.

In section 4.3, we first present the results about the errors in the approximated LV

in subsection 4.3.1 when computed from the filter estimated trajectory for Lorenz-63

and Lorenz-96 systems. Following this, in subsection 4.3.2 and 4.3.3, we present an

extensive study of the sensitivity of these approximate LVs and the corresponding Oseledets’

subspaces to added perturbations of different strengths. Finally, in section 4.3.4 principal

angles, we demonstrate that the Oseledets’ subspaces defined by the LVs computed from

the approximate trajectory are less sensitive than the individual vectors.
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Chapter 2

Bayesian filtering for dynamical

systems using ensemble Kalman filter

We begin this chapter by introducing filtering theory in section 2.1 from a historical

perspective on the estimation of signals from noisy measurements in time. In section 2.2,

we set up the filtering problem for discrete-time dynamical systems. Under this setup, we

introduce the mathematical foundations of Bayesian filtering theory. In section 2.2, we

discuss the sequential filtering problem, followed by section 2.4, where we introduce Kalman

filtering for the linear dynamical system, which provides an optimal solution to the Bayesian

filtering problem under certain assumptions. We provide a derivation of the Kalman filtering

equations and gain matrices following the approach of. In the following section 2.5, we

present the ensemble Kalman filter (EnKF) which is motivated with simplifications of the

standard Kalman filter and explain its application to nonlinear dynamical systems. We

then discuss two practical approaches in the following subsections 2.5.2 and 2.5.3 that make

it possible for EnKF to work in high-dimensional systems. In section 2.6, we introduce

two dynamical systems, namely Lorenz-63 and Lorenz-96, which we use to perform twin

experiments and simulations in the rest of the thesis. We present the results of some twin

experiments in section 2.8, where we use EnKF to perform data assimilation with partial

and noisy observations performed on the Lorenz systems. We conclude this chapter with

an additional discussion of some of the introductory numerical results obtained from twin

experiments performed using EnKF.

The presentation of different topics in this chapter is based on the following books [14,

54, 7, 36], all of which are comprehensive in their treatment of this topic.

2.1 Nonlinear filtering for dynamical systems

Inspired by different fields of physics where understanding the non-linear behavior of a

system is required, the field of dynamical systems evolved as a mathematical formalism to
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study the instability properties of a system. Astronomy, astrophysics, systems biology,

fluid dynamics, and weather prediction are all research areas where the scientific quest

involves modeling systems and analyzing data originating from real-time experiments.

Dynamical systems are ubiquitous in engineering and natural sciences, where math-

ematical models are used to define how the system evolves over time. Modeling such

problems involves borrowing ideas from various physical theories and empirical experi-

mentation using mathematical tools such as differential equations and PDEs. The vast

area of numerical weather prediction and geosciences abound in creating and analyzing

such complex models. The underlying system evolves in time as the state evolves in phase

space. In the presence of uncertainty related to important parameters and variables in the

models, it is natural to introduce a probabilistic approach. Dynamical systems, together

with the probabilistic state-space approach, also lead to a dynamical system in the space

of probability distributions [54]. Similarly to how the dynamical equations describe how

the system evolves in the phase space, the corresponding probability distributions change

in time, and their evolution is captured by the corresponding Fokker-Planck equation,

which incorporates the knowledge of the original dynamical system. Depending on the

location in the phase space, the system has different dynamical correlations and hence is

not a stationary process. Hence, in these problems, methods that rely on the assumptions

of stationarity are out of scope for modeling the distribution in time.

The complexity of these models ranges from simple ones such as discrete maps, and

deterministic, continuous ordinary differential equation models, to highly complicated non-

linear and stochastic partial-differential continuous models, often in very high dimensions

with a large number of unknown parameters. To calibrate the parameters of the model

itself or to make certain predictions about the behavior of the system in the future, one

must produce estimates that are accurate and are able to capture the knowledge of the

model and the information coming from the observations at the same time. In general, both

the state and the parameters can be estimated together using filtering techniques. Using

joint distributions of the state and the parameter, we solve the new filtering problem by

simply extending the state vectors to include unknown parameters. However, in this thesis,

we only focus on the state estimation problem and hence assume the correct parameter

values.

The measurements obtained by observing these systems is low-dimensional compared

to the state of the system and typically contains errors of different kinds. Hence as the

data is both sparse and noisy, it is difficult to simply determine the full state of the system

from merely using the relationship between the two. To address this, filtering theory

provides a systematic way to remove the effects of measurement noise and extract useful

information about the state of the system. The goal is to estimate the true state of the

system using observations made on the system by running an algorithm called a filter.
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Filtering theory is a mathematical framework for estimating the state of a dynamical

system from a set of observations supplied with a set of governing equations [26, 36, 45]. The

approach is to use the flow-dependent uncertainty provided by the governing dynamical

equations of the system along with a model of observations which tells us how the

observations are related to the true state. This problem is also known as the state

estimation or filtering theory [26].

In 1949, Norbert Wiener, in his classical work on interpolation, extrapolation, and

smoothing on time-series data [87], addressed the problem of estimating and therefore

predicting the underlying signal where the observation data are corrupted by noise. He

developed the solution to the problem based on spectral decomposition based on the

assumption of second-order stationarity of the signal and additive noise. The continuous-

time formulation leads to what is now called the Wiener-Hopf integral equation, while

the discrete-time formulation is widely known as the Wiener filter [44]. In the following

discussion, we focus on the Wiener problem in discrete time, which is relevant to the

discrete-time filtering problem in the sections later in this chapter. Although we may have

the underlying process to be continuous, we can assume that some continuous-time system

is being sampled at a fixed interval of time δt for simplicity.

Wiener’s filtering problem in discrete time is as follows: Suppose that we have received a

sequence of observations in time {y0, y1, y2, ..., yn}, where yi = xi+ηi are the measurements

that corrupted the signal xi by additive noise ηi. The goal is to determine the sequence

{x0, x1, x2, ..., xn} of the underlying states of the given the observations accompanied by

certain prior assumptions. The phrase filtering the signal means separating the underlying

process signal from the noisy observations by modeling the dynamics of the process. A

simple linear model in which the future xk+1 is the desired result and the input consists of

the last p previous time steps xk is

xk+1 =

p∑
0

aixi (2.1)

where, the set of coefficients {ai} need to be determined. Obtaining a solution to this

problem using the least squares method seeks to minimize the mismatch between the

filter output and the desired signal, which determines the coefficients of the Wiener filter.

However, this linear filter assumes that both the signal and the noise are stationary and

their statistics are known. Its performance is also sensitive to the parameters for these

statistics. These assumptions are often not satisfied for real observations, which makes

them unsuitable for many applications.

Overcoming the drawbacks of Wiener’s problem, Kalman, in his seminal paper [44],

described his optimal solution to Wiener’s problem in a discrete-time linear setting,

extending it to include the non-stationary process and multivariate signals. He modeled
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the underlying signal using a higher-dimensional linear dynamical system of dimension d,

with d > p. Using ideas from the dynamical systems and conditional expectations of the

distribution of the state, he approached the problem of modeling the underlying dynamical

system via a state transition matrix and an observation operator. Since the algorithms

were trying to filter out the true signal from the measurements, the algorithms are now

known as filtering algorithms.

Any general filtering algorithm, often referred to simply as a filter, describes a way

of combining the observed data with a mathematical model of the system to produce an

estimate of the true state of the system at each time step. These algorithms account for

the error in the measurements and also rely on the statistical properties of the system to

provide the best possible estimate of the true state of the system. In this chapter, our

focus is on Bayesian filtering theory and the filters which are based on approximating the

Bayesian posterior computations using some observation likelihood for dynamical systems.

Before we dive into our discussion of sequential state estimation and Bayesian filtering,

we briefly describe the variational data assimilation formalism; the other approach to

DA. Variational data assimilation algorithms are routinely used in operational centers for

ocean and weather prediction. This is based on the least-squares formulation of DA that

relies on an objective or loss function, a quantity that represents the mismatch between

observations over time and a given background state of the system. Sasaki introduced

the variational approach in one of his seminar papers and the different formalisms for

applying tools from numerical variational analysis to the problem of numerical weather

prediction [78, 27].

The 4D-Var approach includes a time component in its objective function. The solution

at the initial time determines a best-fit trajectory over an observation window, where we

have a sequence of observations. The methods to solve 4D-Var data assimilation draw

heavily on optimization theory and use adjoint-based gradient optimization methods [36].

The optimal solution is an initial condition which, when propagated forward in time,

generates a model trajectory. The two types of formalism included the weak and the

strong constraint 4D-Var, with the former being formulated for a perfect model scenario

and the latter relaxed this assumption thus accounting for model errors. Some examples

are NCEP, ECMWF, and UKMet Office which use some version of 4D-Var for global

numerical weather prediction [3, 36].

In the following section, we introduce a discrete-time dynamical system model and then

formally define the filtering problem with all the mathematical details. We then proceed

to describe the state estimation problem of determining the probability distributions on

the sequence of states and given the observation sequence up to a certain time k.
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2.2 The state estimation problem for a discrete-time

dynamical systems

We now introduce the filtering problem for the most common scenario where we have

sequential observations arriving in time. A general discrete-time dynamical system can

be used to model both processes that occur in discrete-time steps and continuous-time

processes where measurements are sampled at certain fixed intervals.

Assume that we have a linear dynamical system where the evolution of the hidden

state of the system xk over time. What we observe indirectly through measurements is a

sequence of observations {y0,y1, ..yk} at time t0, t1, ..., tk. The state-space formulation of

this problem can be written in terms of a discrete-time propagator, which is a matrix that

maps the state from time tk−1 to tk with a linear observation operator that specifies the

relationship between the measurement yk with the state xk at any time tk.

xk+1 = Fk (xk) + ηk (2.2)

yk = H (xk) + ϵk (2.3)

where,

xk ∈ Rd: state of the system.

Fk ∈ Rd×d : discrete propagator from tk−1 to tk.

ηk ∈ Rd: model error with distribution N (0,Qk).

H ∈ Rp×d: the observation operator of the model.

yk ∈ Rp: the observation obtained at time tk with p < d.

ϵk ∈ Rp: observation error with distribution N (0,Rk).

The general state estimation problem for the setup described by equations (2.2)-(2.3)

is as follows: determine the sequence of states {x0,x1, ..., xk} given {y0,y1, ..., yk}. Inverse
problems of this nature where the state lies in a high-dimensional space, while observations

are low-dimensional and noisy, are poorly posed in the Hadamard sense [7, Ch. 2, p 34] as

one cannot simply invert the observations to estimate the state. But from a probabilistic

view, multiple states are probable, and hence it is possible to quantify a distribution on

the state space and quantify all the possible states under certain conditions.

From a probabilistic perspective, {xk,yk} are random variables with a joint distribution.

The given set of observed values yk are realizations of a random variable; it is possible

to determine the probability of the simultaneous occurrence of various values xk if there
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is some statistical or dynamic relationship. We can determine the probability of the

occurrence of a particular observed value yk given some fixed value of the underlying state

xk and the information of the noise distribution.

Our goal is to estimate the probability distribution of the sequence of states x0:k given

the sequence of observations {y0:k}. This estimation problem can be restructured and

categorized into three different but related problems: (i) filtering, (ii) smoothing and (iii)

prediction. Filtering corresponds to the use of past records up to the present time tk

to estimate the distribution π(xk|y0:k). This is a relevant problem in practical scenarios

where only information history is available to us and we want to estimate/predict the

present in the best possible way. The problem of smoothing takes into account future

observations in order to determine the state estimate of the past i.e. π(xj|y0:k) for j < k.

Smoothing results in more accurate estimates, as they contain information from future

observations as well. The prediction step aims to find the distribution of the future state

based on the history of observations π(xj|y0:k) with j > k.

2.3 Background: Bayesian filtering theory

In this section, we now discuss Bayesian filtering theory, which closely follows the discussion

in [77, Ch.4, p.54]. We note that we use π(x) and ρ(x) to represent the probability

distribution and its associated probability density function, respectively.

If we place a prior distribution on the states π(x0:k) with the corresponding density

given by ρ(x0:k), then using the observation likelihood ρ(y0:k|x0:k) obtained under a given

observation model, then using Bayes theorem, the joint posterior density of the states x0:k,

given by

ρ(x0:k|y0:k) =
1

Z
ρ(y0:k|x0:k)ρ(x0:k) (2.4)

where Z is the normalization factor given by

Z =

∫
ρ(y1:k|x0:k)ρ(x0:k)dx0:k (2.5)

When the set of observations {yk} arrives serially in time, then in long time, as

k → ∞, the computation of the posterior in (2.4) distributions becomes intractable.

A simple trade-off is that when the joint posterior of the whole state sequence is not

required, one can find specific conditional distributions of interest as follows. Under

the assumption that the hidden states xk follow Markovian dynamics, i.e., given xk−1,

π(xk|x0:k−1) = π(xk|xk−1) together with conditional independence of the observation yk

given the state xk i.e. , the distribution of the observations is independent of all the past

and future states π(yk|x0:k,y1,k) = π(yk|xk), the joint estimation problem can be broken

into a sequential estimation of conditional state distribution, also known as the Bayesian
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Figure 2.1: The schematic diagram representing the two steps of Bayesian filtering
algorithm.

filtering problem.

Under an assumed model of the dynamics and likelihood of the observations, Bayesian

filtering deals with the sequential estimation of the distribution of the state of the system

conditioned on the sequence of observations y0:k up to certain time tk, known as the

filtering or the analysis distribution [26]. This is followed by prediction, where the goal is

to predict the future distribution, known as the forecast distribution of the state based on

the system dynamics by accounting for possible sources of error at the future time tk+1.

Bayesian filtering starts with an initial distribution π(x0) with ρ(x0) as the density

function for the state at t0. At time tk, we represent the filtering or analysis distribution

by π (xk|y0:k), the distribution of the state conditioned on the history of observations up

to time tk. This is then propagated in time by solving the fokker-planck equation [42] to

obtain the prior or forecast distribution at time tk+1, which is the probability distribution

of the state conditioned on observations only upto time tk. At time tk+1, the the forecast or

the predictive distribution and is given by π (xk+1|y0:k), Using the Chapman-Kolmogorov

equation [26], the corresponding forecast distribution density at time tk+1 is given by

ρ (xk+1|y0:k+1) =

∫
ρ (xk+1|xk) ρ (xk|y0:k) dxk (2.6)

When the observation arrives at time tk+1, one computes the posterior distribution

π (xk+1|y0:k+1) and it’s density represented by ρ (xk+1|y0:k+1)using Bayes theorem.

ρ (xk+1|y0:k+1) =
ρ (yk+1|xk+1,y0:k) ρ (xk+1|y0:k)

ρ (yk+1|y0:k)
(2.7)
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Assuming that given xk+1, the observation yk+1 is conditionally independent of all

previous observations and states, we have π(yk|x0:k,y1,k) = π(yk|xk), which results in a

simplified expression for the observation likelihood. Using the observation model and the

measurement noise distribution, one can obtain the observation likelihood at time tk+1

given by π (yk+1|xk+1) and equation (2.7) simplifies into

ρ (xk+1|y0:k+1) =
ρ (yk+1|xk+1) ρ (xk+1|y0:k)

ρ (yk+1|y0:k)
(2.8)

Figure 2.1 represents the schematic picture of the two steps involved in Bayesian filtering

depicting the density updates in time. In practice, any Bayesian filtering algorithm tries

to numerically approximate equation (2.6) and (2.8) under different assumptions and

approximations in order to solve a sequential estimation problem.

2.4 Background: The Kalman Filter – a recursive

solution to filtering of linear dynamical systems

We now present the optimal solution of the Bayesian filtering problem for the case of a

linear dynamical system which was introduced earlier in section 2.2. These set of equations

were developed by Kalman in his seminal work [44], and are now widely known as Kalman

filter equations. They represent a set of update equations used to obtain the filtering

and the predictive distributions in equation (2.8) and (2.6) respectively, as a closed-form

recursive solution. We later present a complete derivation of Kalman filter equations

using the best linear unbiased estimator, also known as BLUE, the statistical approach to

obtaining the Kalman filter equations. Another approach using the Bayesian formulation

to arrive at the Kalman filter equations involves products of Gaussian distributions and

integration of the normalization terms, for which we refer to [77, Ch. 4 ,p. 56].

For the case of a linear dynamical system with linear observation operator and Gaussian

measurement noise as introduced in section 2.2, when we start with initial distribution as

Gaussian, all the resulting filtering and predictive distributions at any time tk are Gaussian.

Since we can completely specify a Gaussian distribution by its mean and covariance, we

find that we can obtain equations (2.8) and (2.6) in terms of updating the mean and

covariance sequentially over time. The updated mean and covariance at time tk+1 are

related to the mean and covariance of the predictive distribution at the same time. These

updates are computed recursively in two steps, starting with a prediction step from time

tk, where we use π(xk|y1:k) and the hidden dynamics to obtain the predictive distribution

π(xk+1|y1:k). When the observation yk+1 at time tk+1 is available, we update the mean

and covariance again to obtain the filtering distribution π(xk+1|y1:k+1) using Bayesian

principles.
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We now define a notation for our convenience in the case of the Gaussian probability

density function. For a d-dimensional Gaussian distribution N (m,P) in which is parame-

terised by m and P, let the associated probability density be represented by ρN (x;m,P),

the expression for which is given by

ρN (x;m,P) =
1

d
√

2π det(P)
exp

(
−1

2
(x−m)TP−1(x−m)

)
. (2.9)

We assume that the prior distribution of the state x0 at time t0 is a Gaussian distribution,

that is, x0 ∼ N (m0,P0) where m0 and P0 denote the mean and covariance of the Gaussian

distribution. Starting at time tk, the dynamics of the systems completely specify the future

distribution at time tk+1. Using the Markovian assumption, which follows from the linear

dynamics, the conditional distribution of the state xk given the state xk−1 is given by

π (xk+1|xk) = N (Fkxk,Qk) , (2.10)

where Qk is the covariance of the process noise or model error. When the process noise

or model error is zero, i.e. they have deterministic dynamics since the previous state xk

completely determines the next state xk+1. In this case we obtain a dirac-delta distribution

function δ(xk+1 − Fkxk) which is centered on Fkxk.

At time tk+1, we assume that the forecast or the prior distribution π(xk+1|y0:k) is

represented byN (mf
k+1,P

f
k+1). To find the mean and covariance of this prior distribution at

time tk+1, a simple approach is to find the mean and covariance using E[xk+1|y0:k] = Fkm
a
k

and E[(xk+1 −mf
k+1)(xk+1 −mf

k+1)
T ] = FkP

a
kF

T
k .

Thus, the forecast distribution π(xk+1|y0:k) = N (mf
k+1,P

f
k+1)) where,

mf
k+1 = Fkm

a
k (2.11)

Pf
k+1 = FkP

a
kF

T
k

We also assume that the measurement error ϵk+1 in the observation is assumed to be

distributed normally, i.e. ϵk+1 ∼ N (0,Rk+1) with the fact that yk+1 = Hxk+1 + ϵk+1, the

likelihood of observing yk given the state xk is given by,

π (yk+1|xk+1) = N (Hxk+1,Rk+1) .

The distribution π (yk | y0:k−1) = N
(
Hmf

k ,HPf
kH

T +Rk

)
is the normalization dis-

tribution which appears in the denominator in equation.

We now have all the essential ingredients in order to solve the sequential filtering problem.

Let us denote the filtering distribution at time tk+1 by π (xk+1|y0:k+1) = N
(
ma

k+1,P
a
k+1

)
.
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Using the bayes threom in equation (2.8) and substituting all the Gaussian density functions

defined in equation (2.9), we obtain

ρN
(
xk+1;m

a
k+1,P

a
k+1

)
=

ρN (yk+1;Hxk+1,Rk+1) ρN
(
xk+1;m

f
k+1,P

f
k+1

)
ρN
(
yk+1;Hmf

k+1,HPf
k+1H

T +Rk+1

) . (2.12)

where ρN
(
xk+1;m

a
k+1,P

a
k+1

)
denotes the resulting density for the filtering distribution

N
(
ma

k+1,P
a
k+1

)
.

The mean and covariance ma
k+1 and Pa

k+1 of the filtering distribution at time tk+1 can

be expressed in terms of the mean and covariance of the predictive distribution mf
k+1 and

Pf
k+1 and are given by,

ma
k+1 = mf

k+1 +Kk+1

[
yk+1 −Hmf

k+1

]
(2.13)

Pa
k+1 = (I−Kk+1H)Pf

k+1

(2.14)

where, the matrix Kk+1 is called the Kalman gain matrix given by

Kk+1 = Pf
k+1H

T
[
HPf

k+1H
T +Rk+1

]−1

(2.15)

.

This recursive solution is an online solution, i.e., with more observation over time, it

computes the best state estimate and its distributions in closed-form only using the update

equations (2.11) and (2.13) for mean and covariance.

We now present a derivation of the Kalman gain matrix in (2.15) which closely follows

the notation in [14]. Let us define the state estimate at time k before observation, which is

denoted by x̂f
k and the observation as x̂k, where we use the ”hat” to denote the estimate.

Note that these state estimates are random vectors and are characterized by their relative

distributions.

We start at time tk+1, where the distribution of our state is N (mf
k+1,P

f
k+1)). Let us

denote the error in our estimate by εk, given by

εfk+1 = xk+1 − x̂f
k+1 (2.16)

Pf
k+1 = E

[
εfk+1(ε

f
k+1)

T
]

(2.17)

Our goal is to improve our state estimate using the information from the observation

yk. The difference between true and predicted observations at any time tk+1 is called

innovation, which is denoted by Ik+1 = yk+1 −Hxk+1. This is the correction, which is
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weighted and added to the the initial state estimate at time tk+1 before the observation

yk+1 was assimilated. Our goal is to determine a matrix Kk+1 such that, it produces a

correction in the previous state estimate xf
k+1 of the following form,

xa
k+1 = xf

k+1 +Kk+1

(
yk+1 −Hxf

k+1

)
. (2.18)

We now establish the criteria to determine the optimal combination of xf
k+1 and

yk+1−Hxf
k+1 which is determined by Kk+1. We first compute the expected error covariance

matrix corresponding to our new estimate xa
k+1 which is given by,

εak+1 = xk+1 − xa
k+1

= xk+1 −
(
xf
k+1 +Kk+1 (yk+1 −Hxk+1)

)
= xk+1 − xf

k+1 −Kk+1 (Hxk+1 + ϵk+1 −Hxk+1)

= xk+1 − xf
k+1 −Kk+1H

(
xk+1 − xf

k+1

)
−Kk+1ϵk+1

= εfk+1 −Kk+1Hεfk+1 −Kk+1ϵk+1

= (I−Kk+1H) εfk+1 −Kk+1ϵk+1 (2.19)

Since error in the state estimate εfk+1 and the measurement error ϵk+1 are uncorrelated,

E
[
εfk+1(ϵk+1)

T
]
= 0, the posterior covariance is given by,

Pa
k+1 = E

[
εak+1(ε

a
k+1)

T
]

= (I−Kk+1H)E
[
εfk+1(ε

f
k+1)

T
]
(I−Kk+1H)T +Kk+1E

[
εk+1ϵ

T
k+1

]
Kk+1

= (I−Kk+1H)Pf
k+1 (I−Kk+1H)T +Kk+1Rk+1K

T
k+1.

(2.20)

The optimal criterion to determine the gain matrix Kk+1 in equation (2.18) is such

that the expected error covariance is minimized. Since the trace of a covariance matrix

represents the total error variance summed over the individual components, we set the

trace of Pa
k+1,

dtr(Pa
k+1)

dKk+1

= 0 (2.21)

which involves derivative of a scaler with respect to a matrix.

We first expand the expression of analysis covariance, given by,

Pa
k+1 = Pf

k+1 −Kk+1HPf
k+1 −Pf

k+1H
TKT

k+1 +Kk+1

(
HPf

k+1H
T +Rk+1

)
KT

k+1. (2.22)
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Using matrix differentiation rules, the derivative of the equation (2.22) results in the

following,

dTrace
(
Pa

k+1

)
dKk+1

= −2
(
HPf

k+1

)T
+ 2Kk+1

(
HPf

k+1H
T +Rk+1

)
(2.23)

From equation (2.21) and (2.23), we get

Kk+1 = Pf
k+1H

T
(
HPf

k+1H
T +Rk+1

)−1

. (2.24)

Not only does the optimal combination generated by the Kalman gain minimize the

mean-square estimation error, but it also simplifies the expression in equation (2.22) in an

even simpler form, given by,

Pa
k+1 = (I−Kk+1H)Pf

k+1 (2.25)

Let us now understand the role of the Kalman gain matrix and its interpretation

in two different cases as follows. When observations tend to be perfect, Rk → 0, and

limRk→0 Kk = H†, the observations are heavily trusted. In the limit limPf
k→0 Kk = 0, the

filter relies heavily on the model estimates, ignoring the measurements.

2.5 Ensemble Kalman filter: extending Kalman filters

to nonlinear dynamical systems with monte-carlo

approach

From the above discussion, we know that Kalman filters provide closed-form solutions to

the Bayesian filtering equations in the case where both the dynamics and measurement

models are linear with Gaussian measurement error distribution. In this section, we

discuss the ensemble Kalman filter or EnKF, a Monte Carlo approximation of the original

Kalman filter, which was introduced by G. Evensen in [34]. Since its introduction, there

has been a lot of research and development on improving the standard version of EnKF.

But all the different formulations of EnKF are built on these basic sets of ideas; for a

more comprehensive discussion of EnKF and its variants, we refer to [7, Ch.6, p.153].

However, the above Kalman filter equations are true only for linear dynamical systems

where the Gaussian distribution is preserved by linearity. Thus, it is not applicable in

general to nonlinear systems and is difficult to handle for very high-dimensional systems.

For nonlinear problems, linearisation can be done around the best present filter estimate,

which can be used to propagate the covariance matrices, which leads to the formulation

of an extended Kalman filter [77, ch.5, p.69]. But in the presence of nonlinearity in the
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dynamics, there is no restriction on why the evolution of the distribution of states should

be Gaussian.

EnKF uses the Monte Carlo approach to implement the Kalman filter equations (2.11)

and (2.13). Since a probability distribution can also be represented by an ensemble of

states, EnKF represents the probability distributions via their ensemble, each of size N ,

which is sampled at the beginning at t0 from the initial distribution. In the case of Gaussian

distributions, the ensemble can be easily generated using the mean and covariance matrix.

In between the observations, each member of the ensemble is integrated forward in time

using the dynamics, hence propagating the probability distribution from one time step

to the other until the next observation arrives. At any time, the spread of the ensemble

is a measure of uncertainty in the mean of the ensemble. To determine the ensemble

representing the filtering distribution, the mean and covariance required in equations (2.11)

and (2.13) are then estimated from the ensemble. Each of the individual members of

the ensemble is then updated via a rule inspired by the original Kalman filter equations.

In order to account for the observation error statistics, we generate N realizations of

the observation by adding randomly generated noise using the knowledge of the noise

distribution. This scheme is also known as perturbed observation EnKF [34].

We generally choose the size of the ensemble so that the estimated covariance matrix

of the ensemble is close to the true covariance. Definitely, as we increase the number of

members in the group, the more accurately it represents the pdf of the initial and forecast

and will represent the exact distribution in the limit N →∞. However, as we increase the

ensemble size, we often see a saturation in RMSE beyond a particular number N . Using

this information, we can choose a cutoff on the size of the ensemble since a further increase

in ensemble size is insignificant to the errors.

Despite its advantages, the EnKF without further improvements suffers from important

limitations. EnKF assumes that the errors in the observations and the model are indepen-

dent and identically distributed (i.i.d.), which may not be the case in practice. Additionally,

the EnKF suffers from sampling errors, especially in high-dimensional systems. An artifact

of using a small ensemble size in covariance estimation for EnKF leads to long-range

correlations and an underestimation of the covariance. Localization is the procedure of

eliminating such spurious correlations. To deal with the underestimation of covariance

matrices, we artificially inflate the covariance matrix before updating the ensemble with

the latest observation and this is referred to as Inflation. Together, they play an important

role in making the EnKF highly applicable and wildly popular for high-dimensional data

assimilation problems in spatially extended systems. Now we discuss these two diagnostic

procedures that help overcome the shortcomings of EnKF and make it a practical data

assimilation algorithm. For a detailed account of EnKF, we refer to (Chapter Ensemble

Kalman Filter: Current Status and Potential) [53]. For a nice historical account of the
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Algorithm 1: EnKF with covariance localization in state-space. ◦ denotes
Hadamard product.

Initialize N particles {xi
0}Ni=1 according to the initial distribution and set xi,a

0 = xi
0

Set ρ as the Gaspari-Cohn localization matrix [16].
for k = 1, · · · , n do

for i = 1, · · · , N do

xi,f
k ← fg(x

i,a
k−1)

mf
k ← 1

N

∑
i x

i,f
k

P f
k ← ρ ◦

∑
i(x

i,f
k −mf

k)(x
i,f
k −mf

k)
⊤

N−1

K ← P f
k H

T
[
HP f

k H
T +Rk

]−1

for i = 1, · · · , N do
Sample ηik ∼ N (0q, σ

2Iq)
yik ← yk + ηik
xi,a
k ← xi,f

k +K
[
yik −Hxi,f

k

]
π̂k ← 1

N

∑N
i=1 δxi,a

k

ensemble forecasting in numerical weather prediction, see [23, 72].

2.5.1 Curse of dimensionality in EnKF

Finite ensemble representation of probability distributions in higher dimensions suffer

from what is known as the ‘Curse of dimensionality’ [8] that makes many computations

numerically intractable in higher dimensions. This arises simply due to the fact that

in high dimensions, as the volume expands exponentially, we need exponential increase

in the sample size to represent the distributions. Simple EnKF fails without additional

procedures and assumptions. The failure of EnKF can be understood considering the fact

that the distance between two random sample points drawn from a distribution scales

with the dimension. Distant observables are weakly correlated for short time scales. The

low number of samples introduces long-distance spurious correlations in covariance. As

a result, the ensemble updates degrade and result in a failure to estimate the trajectory

over time. Obtaining accurate background covariance requires a large number of ensemble

members. Increasing the ensemble size increases the demand for computational resources.

We illustrate this issue numerically by drawing three samples of size N = 15, 70, and

300. from a standard multivariate normal distribution. In figure 2.2, we plot the empirical

covariance computed from the samples, with presence of non-zero off-diagonal entries.
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Figure 2.2: Long-distance spurious correlations due to finite sample-size N . The original
covariance is Id, the identity matrix.

2.5.2 Inflation

Ensemble Kalman filter with a small number of ensemble members for a high-dimensional

system encounters the issue of underestimating the forecast error covariance. This leads

to overconfident forecasts and, as a result, the observations are given lower weights in the

analysis or the update step. An ad hoc way to resolve this issue is to pre-multiply the

forecast ensembles before updating by a factor α such that the entire covariance matrix is

multiplied by α2.

Pf
k → α2Pf

k (2.26)

This small modification has been shown to improve forecasts and analysis. However,

choosing the “right” value of α is often ad hoc. The right value of α is chosen based on

empirical methods using trial and error and is tuned according to the performance of the

filter.

2.5.3 Localization

As discussed earlier, estimating the covariance using a small ensemble size leads to spurious

correlations among points which are far in physical space. A simple approach to address

this issue is an ad hoc method called localization. The idea behind this heuristic approach

is the locality hypothesis: Two points that are far apart are independent or uncorrelated

at small time scales. Hence, the correlations between any two points must decay with

distance eventually decaying to zero. Since the empirical ensemble covariance is only

an estimator of the true covariance, we can pre-process the covariance so that it does

not have spurious correlations beyond a certain length scale. Physically, this means that

only observations within a certain distance from a grid point actually contribute to the

modification of the value of the ensemble members at the respective point. For a more

comprehensive discussion about localization, see [16].

41



A simple way to achieve this is to modify the Kalman gain matrix by pre-multiplying the

forecast covariance matrix by another positive semi-definite matrix ρ called a localization

matrix. This localization matrix can be constructed using any function that is symmetric

and zero outside the localization length scale. The type of localization function and its

respective length scale, denoted by ℓ, decide the number of points in the grid beyond

which we assume the correlations to be spurious in nature. We use the modified forecast

covariance matrix in the Kalman filtering equations where the modified forecast covariance

is obtained by the Schur of the forecast covariance Pf
k with a localization matrix ρ

Pf
k → ρ ◦Pf

k , (2.27)

where ◦ denotes the pointwise multiplication of the two matrices. In principle, the

localization functions used on the basis of how correlations of nearby variables depend

on each other depend on the dynamics and are local in phase space. We will revisit

some localization functions and their matrices in subsection 2.8.4, where we conduct twin

experiments to analyze their impact on filtering performance.

2.6 Chaotic dynamical systems used in this thesis

Modern computers have opened a new paradigm in which we can study and understand

the behavior of complex systems by simulating them according to our needs. The set of

equations which govern or approximate the dynamics is then used to produce solutions

using numerical methods [62]. Different equations and models can be defined that attempt

to emulate the physical system, giving new ways to understand them. Surprisingly, chaotic

dynamical systems pose a more difficult problem in this respect, where starting from two

similar states, the behavior of the system leads to totally distinct states in the future.

This defining feature of deterministic chaos is the sensitivity of the flow of the system

to errors in the initial condition, leading to exponential departure of the initially nearby

trajectories.

Simple models help to understand complex phenomena, where we only retain some

of the features while still being able to reproduce desired behavior. Dynamical systems

that replicate rich dynamics and behaviors have been used periodically to study and

investigate predictability, a fundamental question [58]. Toy models serve as a simple and

safe playground for testing and developing ideas for a larger goal, such as numerical weather

prediction. Since their introduction to the data assimilation community, Lorenz models

have been one of the well-established and widely used toy models in the research community

to perform numerical experiments using different assimilation algorithms [62, 53, 16]. We

now discuss the two Lorenz models, both of which are chaotic, dissipative, and have global
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Figure 2.3: The butterfly shaped attractor of Lorenz-63 system for the specific parameter
values (σ, ρ, β) = (10, 28, 8/3).

attractor sets. We will refer to these dynamical systems for experiments in chapter 3

for results on nonlinear filter stability and for the computation of Lyapunov vectors in

chapter 4.

2.6.1 Lorenz 63: A 3-dimensional chaotic ODE

Proposed by Edward Lorenz in the year 1963 [59] as a simplistic model for understanding

atmospheric convection; the Lorenz-63 model is a three-dimensional continuous-time

dynamical system. As a simple model, it has contributed to various insights into the

theory and computation of non-linear and chaotic systems. The coupled nonlinear ODE is
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given by,

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = −βz + xy

with the parameters (σ, ρ, β) = (10, 28, 8/3) for which the system exhibits rich chaotic

behavior and has the well-known butterfly-shaped attractor which has a fractal dimension

less than 3. In figure 2.3, we visualize this attractor by plotting a trajectory obtained after

long integration in time.

2.6.2 Lorenz 96: A 40-dimensional chaotic ODE

In an attempt to devise a small set of d-dimensional dissipative and chaotic differential

equations, Lorenz proposed another model in 1995, now popularly known as the Lorenz-96

ODE [61]. It is a phenomenological model that is deterministic and chaotic in nature

and has been extensively studied and used to test and model chaotic systems and their

predictability. It is a system of coupled ordinary differential equations that are continuous

in time and discrete in a space-periodic lattice with d gird points, indexed by Xi, ..,Xd, is

given by the following set of equations;

Ẋi = −Xi −Xi−1 (Xi−2 −Xi+1) + F (2.28)

where, Xi denotes the variable at the lattice point i with periodic boundary conditions

Xk+d = Xk and F denotes a constant external forcing. For increasing values of F, the

behavior of the system changes from stable to weakly and strongly chaotic. For a detailed

exposition on the behavior of this model under different regimes of forcing and dimensions,

we refer to [62, 49, 84]. For the specific value of forcing F = 8 in dimension d = 40,

it is a hyperchaotic system with 13 positive Lyapunov exponents and its Kalpan-Yorke

dimension is close to 28.4. Due to its rich dynamical properties, it has served as a

computationally tractable model for evaluation and analysis of different data assimilation

algorithms to benchmark their performance(see, e.g., [17]) before being applied to very

large-scale atmospheric models. Figure 2.4 shows a contour plot of a typical trajectory of

the system.

Using non-linear, dissipative, and external forcing terms, this autonomous equation is

said to mimic the circulation of the earth’s atmosphere in an over-simplified manner [62].

Despite their simplicity, these models have had a major effect on the advancement of the

theory of dynamical systems, particularly because of their chaotic nature in any number

of dimensions.
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Figure 2.4: The state trajectory as a contour plot for Lorenz-96 system for d = 40 obtained
using Runge-Kutta scheme with time step= 0.1 and forcing F = 8

2.7 Some performance metric for numerical filtering

algorithms

Assessing the quality of any general filtering algorithm asks the following question: How

good is the given filter at extracting information about the underlying signal? This is

necessary because evaluating the performance of filtering algorithms is essential, as it helps

drive the selection of the best one for specific tasks [54].

We now turn to discuss some of the important metrics in DA which are used to evaluate

different filtering algorithms. We describe three well-known metrics methods that are used

for this purpose.

2.7.1 Accuracy

To quantify the quality of the state reconstruction from noisy observations, the natural

question that arises is as follows. What is the error between the reconstructed state and

the true underlying state? We compare the trajectory estimated by the filtering algorithm

with the actual trajectory to answer this question. The quality of this reconstruction is

calculated by the quantity called room mean-square error or simply RMSE, which is given

by,

RMSE =

√√√√ 1

n

n∑
k=0

(xtrue
k − x̂k)2 (2.29)

where xtrue
k is the best state estimate and n is the number of assimilation steps.
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2.7.2 Reliability

Rank histograms are a method to analyze the quality of any ensemble forecasting algorithm.

The reliability of an ensemble forecast implies that the probability distribution represented

by the ensemble adequately captures the uncertainty about the mean of the forecast.

Real observations should be seen as a statistically independent draw from the forecast

distribution at any time. This implies that the actual observation obtained at time tk

should be a random sample drawn from the observation distribution corresponding to this

forecast ensemble [2].

The idea behind estimating the reliability of the forecast ensembles produced by a

model uses the notion of ranking the ensemble members. In general, we can use rank

histograms to study specific components or any scalar quantity which is a function of

the state which can be used to determine the ranks. We represent a forecast ensemble

at some time by {xi,f}Ni=1, and the true state by xtrue, where we omit the time index for

simplifying the notation. The ordered ensemble is represented by {x(i),f}Ni=1 where the

ordered ensemble can be ranked to generate a bin based on the ranks after sorting in

increasing order of their respective values. At any time tk, we expect the observed state

xk is equally likely to be in any of the bins generated by the rank partitioning of the N

members of the forecast ensemble at the same time tk. Mathematically, we can write,

P (x(i),f ≤ xtrue < x(i+1),f ) =
1

N + 1
. (2.30)

Because the observations are irregularly sampled and sparse in space and time for

most of the real physical systems of interest, what is observed is the true state mapped

to the observation space. Therefore, we map the forecast ensembles from the state space

to the observation space with added observation noise given by yi,f = Hxi,f + ϵi, where

ϵi are drawn using the observation noise distribution. We represent the corresponding

ordered observation ensemble as {y(i),f}Ni=1 where the members of the forecast observation

ensemble are sorted in an increasing order of their values. Since we have N members of

the ensemble, we have N points that partition the real line into N + 1 bins. Now, if the

recorded observation is denoted by yo, the observation is equally likely to lie in any of

these bins,

P
(
y(i),f ≤ yo < y(i+1),f

)
=

1

N + 1
(2.31)

To study the reliability of the ensemble forecast, we plot a histogram of different

components of the state vectors using the counts per bin of the observation over a

large number of forecast steps. For a reliable ensemble forecast, the histogram obtained

corresponds to a uniform distribution. We will use this idea to discuss some of the results

in the context of twin experiments using EnKF in section 2.8.5.
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2.7.3 Stability

In previous sections, we introduced the notion of Bayesian filtering where we start with a

guess distribution π(x0) at t0. In reality, the true distribution used in the beginning by

any filtering algorithm is based on some ideas of climatology and is far from the actual

distribution. Hence it is important that whatever initial distribution we initialize our filter

with, the filtering distribution π(xn|y0:k) must eventually be independent of the choice of

π(x0). Thus, a filtering algorithm is stable if the filtering distributions converge to each

other over time. We discuss filter stability and how to numerically study stability of a

filtering algorithm in general, and EnKF in particular, which is the main objective of

chapter 3. Using EnKF algorithm and the chaotic models introduced in this chapter, we

will address the filter stability problem numerically, which is the main content of the next

chapter.

2.8 Twin experiments and results

In the previous section, we introduced some of the important ways to measure the

performance of a filtering algorithm. In reality, assessing the quality of the reconstruction

of the underlying signal is difficult; in weather prediction problems, it is impossible to

know the infinite-dimensional true underlying state of a real system such as the ocean

or atmosphere, and what is generally given to us is their manifestation through the real

observations, which are themselves noisy and sparse. Twin experiments allow us to build

confidence in different algorithms and benchmark them in terms of their reconstruction

quality before finally deploying the algorithms in practice; see [16] for an overview in

the context of geosciences. They serve as practical tools for benchmarking various data

assimilation algorithms by assimilating artificially generated observations from an artificial

truth obtained by integrating the model itself. To use our desired filtering algorithms on a

numerical model in twin experiments, we first generate a model trajectory that serves as

the true underlying trajectory of the system. Synthetic observations are then generated

from this trajectory using the observation operator, mimicking the sequential arrival of

the observations. Using filtering techniques on these observations, we reconstruct the state

of the system over time and obtain a filter-estimated trajectory. The observations are

assimilated to the model to obtain forecast and analysis states which can then be used to

compare with the artificial true state using an appropriate metric. For a comprehensive

overview of twin experiments in the context of EnKF, where all components of the state

are observed, we refer to [7, Ch. 6, p. 172].
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2.8.1 A brief overview of the experimental setup

In this section, we give a brief overview of the twin experiments which were performed using

EnKF and partial observations from the full state. We describe in detail the different steps

involved in the implementation of the experiments and study the performance of EnKF

from the perspective of two important metrics such as RMSE and the rank histograms

introduced earlier in section 2.7.

We start the assimilation experiment with the generation of an ensemble of states which

are sampled from a Gaussian distribution. The first member is chosen to represent the true

initial state and serves as the initial condition for the model to generate the true trajectory.

On this true trajectory, we generate 10 observation realizations using the observation

operator and the observation error covariance. The assimilation experiment consists of a

cycle of two steps repeated over time: the forecast step and the update step. The forecast

at some time tk is performed by forward integrating the initial ensemble forward in time

from time tk−1. This gives us the ensemble representing the forecast distribution or the

prior distribution at time tk in the Bayesian sense. For the L96-40 dimensional system,

the Lyapunov time scale is 0.5. Observations are assimilated at every 0.1 interval of time.

The update step follows the perturbed observation EnKF algorithm, which generates an

ensemble of observations from the real observation yk using the noise statistics. As discussed

in sub-section 2.5.3 and 2.5.2, we use EnKF with localization and inflation procedures, and

their parameters are specified at the start of the assimilation experiments. A multiplicative

inflation factor α is used to inflate the covariance matrix by pre-multiplying the forecast

covariance matrix by α2 before assimilation of the observations. When inflation is not

implemented, α is set to 1. We run the experiments for 800 assimilation steps, with a time

gap of 0.1 at which the observations are used. We now discuss the numerical results of

applying EnKF to perform twin experiments using the Lorenz-96 ODE that was introduced

earlier in section 2.6.2.

2.8.2 Ensemble size versus Time of divergence

We start our discussion of twin experiments focusing on the issue of filter divergence. A filter

is said to diverge from the true trajectory if the information coming from the measurements

is ignored by the filter over time. Filtering distributions become overconfident and ignore

observation corrections over time. This leads to gradual departure of the filter trajectory

from the true underlying trajectory, eventually to a completely different trajectory.

In figure 2.5 above, what is observed is that the filter starts to depart from the true-state

trajectory after some time, gradually ignoring all the observations, and diverging from the

actual trajectory. In general, the time at which the trajectory diverges from the truth may

be different for the different components of the state. In our discussion here, we denote
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Figure 2.5: A particular component diverging from the true trajectory after finite assimi-
lation steps using EnKF on Lorenz-96.

the average time over the components as a filter divergence time. For the same component

plotted in figure 2.5, we plot the absolute error over time below in figure 2.6.

Figure 2.6: Absolute error over time for the same component when the filter divergence
occurs. The X-axis shows the number of assimilation steps.

Filter divergence is a common issue for EnKF when the ensemble size is quite small

compared to the dimension of the state space [7]. When the ensemble collapses, the

diagonal elements of the forecast ensemble covariance Pf
k approaches 0. This leads to

the Kalman gain matrix Kk adding no correction to the ensemble, and hence the filter
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Figure 2.7: Time of divergence versus ensemble size. The error bars represent the confidence
interval corresponding to the 10 observation realizations, which illustrates the variability.

estimates depart from the true state over time.

Using this set of experiments, we demonstrate the issue of filter divergence, and our

objective is to highlight the behavior of EnKF before any additional procedures, such

as localization and inflation. The detailed procedure of this experiment and the choice

of parameters are as follows. We plot the average departure time over the different

components which is here termed the time of divergence Td. To see how this time of

divergence depends on the number of ensembles, we plot this time versus the ensemble

number. We perform assimilations with one and the same trajectory but with 10 different

observation realizations. We gradually increase the size of the ensemble in steps 10. Since

there is no localization or inflation, we can capture the significant effect of increasing the

size of the ensemble N on the divergence of the filters.

2.8.3 The effect of localization and inflation on filter divergence

We now discuss an experiment similar to subsection 2.8.2 where we want to show how

filter divergence is affected by the introduction of localization and inflation. Figure 2.8.

This time, we set our localization function to be concave with the radius set to 3 and plot

the filter divergence time Td for different ensemble sizes N .

To investigate the effect of inflation on the time of filter divergence, we now add inflation

to our localization experiments. In this experiment, we only choose small ensemble sizes

where the role of inflation is evident. For this experiment, we fix the localization type to

concave and the radius to 3. We gradually increase the inflation factor α from 1.00 to 1.30

in steps of 0.02 and calculate the time of filter divergence averaged over 10 observation
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realizations, with the confidence interval 95%, In figure 2.9, we plot the filter divergence

time versus the inflation factor α for ensemble size 10, 15 and 20, respectively.

2.8.4 Localization scale versus RMSE for different localization

functions

We now implement localization in our assimilation experiments. Both the localization

function used and the corresponding scale are important. Here, we use the following three

types of localization functions, which can be used to define the elements of the localization

matrix ρ for a chosen localization function as follows:

[ρ]ij =


0, for |i− j| ≥ ℓ
2exp(− |i−j|

ℓ )
exp(|i−j|)+1

, for convex
ℓ2−|i−j|2

ℓ2
, for concave

ℓ−|i−j|
ℓ

, for linear

 (2.32)

To study the best localization function for the system and the corresponding length

scale, we can use RMSE. Since using large numbers of ensembles is computationally

expensive, we vary the ensemble numbers from 10 to 20 in steps 5. For each localization

function, we vary the localization scale in steps of 1. We then repeat it for the convex,

concave, and linear localization functions, respectively. Averaging the RMSE over the

observation realizations, we plot the figure 2.11 below.

Figure 2.8: Plot of time of divergence versus ensemble size
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Figure 2.9: Averaged time of divergence over 10 observation realizations for different values
of inflation factor. The localization is fixed at radius 3 for the concave type function.

2.8.5 Effect of model error in data assimilation

In this section, we focus on scenarios where we have a model error, which is closer to real

applications. Different numerical approximations and parameterizations for unresolved

processes that are unknown or are computationally very expensive to solve, are neglected

in order to make data assimilation computationally feasible. Thus, real data assimilation

always works with an approximate model and accounts for the model error for the additional

uncertainty in the model forecasts in an appropriate way. Collectively, it can be understood

as the presence of model error in the data assimilation arising under different conditions,

and the model still has skills in estimating the state, but with additional uncertainties.

The experiments and results presented in this section focus on understanding and trying

to mitigate the effect of unaccounted model error present in the assimilation.

We assume that the true model for the physical system is the Lorenz II level system,

which has two different variables, a grid of fast-scale variables Y and a grid of slow-scale

variables X. The model that we use for assimilation is the Lorenz-I level system, introduced

earlier in section 2.6.2, and that we only observe the slow-scale variables X from the system.

The situation here corresponds to the scenarios where the unresolved scale dynamics of Y

affect the dynamics of the resolved scale dynamics of X via some coupling, but they are

not part of the dynamical model in our data assimilation.
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Figure 2.10: We plot the three different types of localization function introduced in
equation (2.32). The x-axis indicates i, which is the index for the distance on a discrete
grid assuming the origin is fixed at 0.

The Lorenz II level system is given by the following coupled ODE,

dXk

dt
= Xk−1 (Xk−2 −Xk+1)−Xk + F− hc

b

∑
j Yk,j (2.33)

dYk,j

dt
= cbYk,j+1 (Yk,j+2 −Yk,j−1)− cYk,j +

hc
b
Xk (2.34)

where, Xk are slow-scale variables, Yk,j are fast-scale variables interacting with Xk.

The parameters c and b are the temporal scale and the spatial scale ratio of the variables

of the fast and slow scales with h being a coupling constant. F is a constant forcing as is

present in the original Lorenz-96 model.

To set up the experiment, we fix the parameters as follows: dim(X) = 20, dim(Y) =

10, c = 10, b = 10, h = 1,F = 15. We first generate the trajectory from the true system,

i.e. the Lorenz II level system. We then generate observations using only the X slow-scale

variables. To perform data assimilation with the observations, we consider the Lorenz I level

system, as a truncated model to the full model that has only the slow-scale dynamics and

observe 10 alternate components. We use 20 ensemble members with concave localization

with ℓ = 3 without any inflation.

Since observations come from slow-scale variables Xk, which are part of a coupled

to a larger system, our goal is to see the effect of using an observation error covariance

different from that used to generate them. We consider the uncertainty of the observations

to be enhanced because of the presence of the model error. We plot the RMSE of both

the observed and unobserved components versus µu, where the assumed observation error
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Figure 2.11: Effect of localization radius on RMSE for different ensemble size N. The
three different colors represent different types of localization functions introduced in
subsection 2.5.3.

covariance is of the form µuId. Averaging the different observation realizations, the RMSE

versus µu plot is shown in figure 2.12. The asymptotic RMSE of the observed part is
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Figure 2.12: RMSE versus µu, the assumed observation covariance used in assimilating
the observations. The true observation covariance is 0.5I10

clearly less than the unobserved part of the state vector and their values are close to the

observation error.

We also plot the bias-variance trade-off for different inflation factors. We quantify

this by computing the ratio of the absolute error to the spread of the ensemble, averaged

over the components. We calculate the absolute error in each component averaged over

time and the 10 observation realizations. Figure 2.13 shows the plots for these quantities.

Similarly, it is calculated for the ensemble spread for each component. The rank histogram,

already introduced in subsection 2.7.2, is another important tool for understanding the

reliability of the forecasts[Hamill, 2001]. Figure 2.14 shows the rank histogram of both

an observed and an unobserved component, respectively, for different µu. The expected

shape of the histogram is flat when any member of the ensemble is equally likely to

be a possible true state. For an unreliable ensemble, a U-shaped curve appears for

µu = 0.5 (overconfident ensemble), while an inverted U-shaped curve appears for µu = 2.0

(underconfident ensemble).

For a reliable ensemble, the distance between the mean of the ensemble and the

observation should be close to the ensemble spread. When this is not true, it is possible

that the spread of the ensemble overestimates the uncertainty or underestimates the

uncertainty when it is systematically smaller in the mean predictions. If the observations

consistently lie outside the spread defined by the ensemble, the ensemble forecast is said to

be under-dispersive. Similarly, When the observations are consistently within the spread

defined by the ensemble, the ensemble forecast is said to be over-dispersive. In the presence

of model errors, we must account for their overall effect on the forecasts. If ignored, the
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forecasts tend to become overconfident, making them unreliable.

2.9 Summary

In this chapter, we introduced the Bayesian approach to nonlinear filtering and data

assimilation for dynamical systems. We presented the toy dynamical systems used in this

thesis and the filtering algorithm- ensemble Kalman filter (EnKF), the approximation of

the original Kalman filter for nonlinear systems. The Bayesian filtering theory provides a

recursive solution to estimate the posterior distribution of the state given the history of

observations. The chapter then presents the Kalman filter, which is the optimal solution

for the filtering problem when the dynamic and measurement models are linear and the

observation noise is Gaussian. We also derive the Kalman filter equations using the best

linear unbiased estimator (BLUE) approach and explain the role of the Kalman gain

matrix in minimizing the trace of the estimated posterior covariance matrix. We then

discuss the EnKF, which extends the Kalman filter to nonlinear dynamical systems by

using an ensemble of particles to represent the distribution and perform the operations

of the standard Kalman filter. We discuss the practical methods such as inflation, and

localization that make EnKF applicable in high-dimensional operational data assimilation

scenarios. This chapter also introduces the two chaotic dynamical systems, the Lorenz-63

and the Lorenz-96 models, that are used as standard test-bed chaotic dynamical systems for

the numerical experiments related to data assimilation. Performance metrics for filtering

algorithms, such as accuracy, reliability, and stability, explains how to measure them using

RMSE and rank histograms.

We then discuss the utility of twin experiments in data assimilation research in order

to systematically test and compare different data assimilation algorithms using synthetic

observations from a known true trajectory. The chapter concludes with some twin

experiments and results using EnKF and partial observations from the Lorenz-96 model.

We presented results for different important parameters chapter illustrates the effects of

ensemble size, localization function radius, inflation factor, observation error covariance,

and model error on the filter divergence time using RMSE and rank histograms. The

chapter also demonstrates the effectiveness of localization and inflation for improving the

quality and reliability of the EnKF forecasts.
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Figure 2.13: Average absolute error, average spread and their ratio versus assumed
covariance µu fo
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Figure 2.14: Rank histograms for an observed and an unobserved component for different
values of µu assumed in EnKF data assimilation.The U-shape appears for under-dispersive
ensemble (1st row) and the inverted U-shape (4th row) for over-dispersive ensemble.
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Chapter 3

Numerical filter stability of EnKF

using Sinkhorn divergence

In chapter 2, we studied the Bayesian filtering problem where the goal is to estimate the

conditional distribution of the state based on the history of the observations. The focus

of this chapter is to study the problem of stability of such filtering algorithms. Filter

stability is the property that the conditional posterior distribution computed sequentially

over a long time is robust to the choice of the distribution made when initializing the filter.

Specifically, we study nonlinear filter stability for a specific sequential filtering algorithm-

the ensemble Kalman filters, which was introduced in section 2.5. Using EnKF for filtering

the Lorenz-96 system, we study the stability numerically by directly using the notion

of distances on the space of probability distributions. These numerical experiments are

performed for deterministic dynamical systems using the recently developed Sinkhorn

algorithm [29] to approximate the distance between probability distributions represented

by Monte Carlo samples. Through twin experiments performed using Lorenz systems,

we study the numerical convergence of the distance between the corresponding filtering

distributions starting from different initial distributions. We show that the ensemble

Kalman filter is stable for two different parameters that directly affect the numerical filters,

namely, the observation gap and observation covariance. We also find that the Wasserstein

distance between filters with two different initial conditions is proportional to the filter’s

bias or RMSE, an empirical relationship between filter stability and filter convergence.

In section 3.1 we give a brief introduction to the problem of nonlinear filter stability

from the perspective of data assimilation. We then define the problem of filter stability

mathematically and introduce our definition in section 3.2. In section 3.3, we start by

discussing the ideas of optimal transport-based Wassertsein distance and its approximation

by Sinkhorn divergence. In subsection 3.3.3, we describe the Sinkhorn-knopp algorithm and

develop our approach to study filter stability numerically based on the Sinkhorn algorithm.

In section 3.4, we describe the computational aspects of the Sinkhorn algorithm relevant
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to our method and discuss the results obtained using EnKF on the Lorenz-96 system. By

approximating the distance between Monte Carlo samples representing different filtering

distributions, our study allows us to address the problem of filter stability directly using

numerical experiments. We are successful in demonstrating evidence for the exponential

filter stability of our commonly used nonlinear filtering algorithms, namely the ensemble

Kalman filters and the particle filter. In this thesis, we restrict our discussion to EnKF and

refer to results in the context of particle filters which are present in our joint work [64, 65]

when necessary.

3.1 An introduction to nonlinear filter stability

Data assimilation in Earth science has benefited from various numerical studies of filter

algorithms and their performance. These studies focus on understanding algorithms’

drawbacks and devising methods to improve them. These are important from the point of

view of practical implementations and calibration before being used in real applications.

To understand and evaluate different filtering algorithms, the data assimilation literature

comprises of numerous such numerical studies. Twin experiments are regularly used to

generate synthetic observations, and then data assimilation is performed by incorporating

these observations into the numerical models to understand their efficacy under differ-

ent conditions. However, most numerical studies have studied other measures of filter

performance, such as the accuracy of filter mean and filter reliability tests using rank

histograms [2].

In practice, a filtering algorithm is implemented numerically where they compute the

conditional distribution of the state in the phase space using their own assumptions and

approximation. Filtering algorithms are initialized with a certain choice of the distribution

at the beginning, and the question of what is a good choice is difficult as the true state is

unknown. A plausible choice used in operational forecasts is the climatological distribution

of the variable, which has been generated using observation statistics for some components.

A Bayesian filtering algorithm aims to approximately represent the conditional distri-

bution of the state based on the observation history. As the observations arrive serially,

more information is available over time which results in improvement of the state esti-

mates. Consequently the quality of the distribution of the state estimated by a filtering

distribution must improve, overcoming the limitations due to the wrong choice at the time

of initialization.

Previous works in the literature have studied the problem of filter stability in terms

of RMSE where the effect of incorrect initial conditions on filtering algorithms has been

studied to understand the behavior of errors over time. In reality, since the true state

is not available, they have been studied using twin experiments for various filtering
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algorithms. However, RMSE is not representative of the distance between probability

distributions. Hence, convergence of quantities other than the distributions themselves

cannot be used otherwise to define and illustrate filter stability. Other major numerical

studies have focused on important quantities that can be studied numerically, such as the

rank histogram, the statistics of innovation vectors for Bayesian filtering algorithms [2].

The problem of sensitivities to the initial distribution of a nonlinear filter has been

studied in [25, 24, 28] as a question of the stability of the filter. A filter is said to be

stable if, for any choice of initial distribution, the resulting filtering distribution in time

is asymptotically the same. This is indeed a desirable property for any filter, since the

initial distribution of the state is unknown in the beginning. Satisfying the property

mentioned above, a reliable filter will soon “forget” about the arbitrary choice of the initial

distribution [83]. Thus, filter stability is an extensively studied topic, but has mainly

received attention in the context of stochastic dynamical systems [74, 68, 75, 21].

There are a few theoretical results on the stability of EnKF, such as in [30]. The other

important results in the context of twin experiments are on bias and if the errors in the

filter mean remain bounded in time [54, 55] for different systems. However, these studies

do not provide any direct evidence of stability in the context of a filter. Therefore, our goal

is to assess filter stability directly by using the filtering distributions in time used with

the definition (3.2) provided in section 3.2, which we can test directly for any numerical

filtering algorithm. We study the numerical stability of the filter by applying EnKF, which

has been one of the foundations for different ensemble-based filtering techniques [13, 7, 45].

For EnKF which was introduced in section 2.5, we can use the ensemble representations of

the filtering distributions directly in order to approximate the distance between filtering

distributions obtained using different initialisations.

Another class of filters that solve the Bayesian filtering problem without imposing any

assumption on the underlying distribution are particle filters. The Bayesian posterior

calculations for partial filters are performed by weighted sampling, where the weights of

the particles are modified based on the likelihood of observation, see [31] for an overview

of particle filtering algorithms.

3.2 Mathematical definition of filter stability

In chapter 2, we defined the notation for different conditional distrbutions which arise

in nonlinear filtering. We now specifically focus on the filtering distribution π(xn|y0:n)

which is the conditional distribution of the state xn given all observations upto time

tn. Since any numerical filtering algorithm starts with the probability distribution π(x0)

of the state at t0. The chosen distribution is often arbitrary and wrong since there are

both unobserved components in the state whose climatology is unknown. Thus, the true
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filtering distribution is unknown and unavailable for use in filter initialization, and the

choice of π(x0) is made arbitrary. The actual distribution may be very different from

π(x0), a drawback that all numerical filtering algorithms share that must be overcome

to allow the assimilation system to operate. In the same spirit that sensitivity to the

initial conditions is important for chaotic dynamical systems, we study the sensitivity to

initial condition of a filtering algorithm. It is critical that the conditional distribution of

the state π(xn|y0:n) at time tn is independent of the original choice used to initialize the

filter so that quantities estimated using the posterior are finally independent of our initial

distribution π(x0). To simplify notation, we represent the filtering distribution obtained

at time tn as πn(µ), where µ represents the initial distribution choice. A good filtering

algorithm will forget the choice of initial condition over time, and how fast a given filter

achieves stability is determined by a quantity called the filter stability rate [83].

In the setting of the filtering problem for a dynamical system introduced in the earlier

chapter 2 in section 2.2, having discussed the notion of filter stability, we now describe the

filter stability definition in [74], which explores the “true” filter stability for deterministic

dynamics. We adapt their definition to numerical filter stability by denoting the numerical

approximation of the true filter π as π̂.

Definition[Stability-RA [74]] A numerical filter is stable if, for any measure ν w.r.t

which the true initial measure µ is absolutely continuous i.e., µ≪ ν, we have,

lim
n→∞

E
[∫

Rd

h(x) π̂n(µ, dx)−
∫
Rd

h(x) π̂n(ν, dx)

]
= 0 , (3.1)

for any bounded and continuous function h, where the above expectation is taken over

the observation noise.

Although (3.1) accurately conveys the concept of filter stability, it can be improved

from a computational point of view in the following ways. First, we note that computing

the expectation for all bounded and continuous functions is not possible. From a practical

point of view, it may not be possible to obtain µ, so a definition where the expectation

does not depend on µ is preferable. We need a definition that can be computed and

verified numerically in order to study the stability of the numerical filter, and hence, we

propose the following definition in [65] which does not involve the true measure µ.

A numerical filtering algorithm is stable if the filter, starting with two different initial

distributions µ and ν has πn(µ) and πn(ν) as the corresponding filtering distribution at

time n, then the following holds

lim
n→∞

E[D(π̂n(ν1), π̂n(ν2))] = 0, (3.2)

where D is the distance on P(Rd), the space of probability measures on Rd and the

expectation is taken with respect to observation noise. By studying the equation 3.2 using
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an appropriate distance metric D, we can directly study the numerical stability of the

filter by choosing different initial distributions for the filter and how the distance between

the corresponding filtering distributions vary over time. Definition (3.2) is quite general

and is a stronger version of definition 3.1, see the Appendix in [65] for details.

Figure 3.1: The filtering distributions for a single component are represented by an
ensembles of trajectories over time. µ1 and µ2 are two biased distribution used to start
the algorithm. The green dots are the observations and the state is the actual trajectory
of one out of 40 components. The ensemble of trajectories are obtained using EnKF.

Figure 3.1 shows an experiment using EnKF on Lorenz-96 system assimilation experi-

ment, how two different initial distributions evolve over time for a given set of observations.

From a numerical perspective, definition (3.2) offer some difficulty in the sense that for

practical purposes, we can only study the stability of a filter numerically using finite

pairs of different initial distributions. However, this limitation does not prevent us from

exploring the filter stability numerically, as the initial distributions we decide for the filter

are generic. The randomness in x0 ∼ µ is also present; however, we can address this by

fixing the initial state x0(ω) as a realization, and then, the only randomness which is

present in π̂ is attributed to the observations error distribution.

We now discuss the details of the distance and the related computational aspects.

Using definition (3.2), we now turn to the choice of the distance D which we can use to

compute the distance between filtering distrbutions over time.
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3.3 Background: Wasserstein distance on the space

of probability distributions

In general, we may be tempted to use any distance metric on P(Rd), to investigate stability

numerically such as Total variation distance or other popular pseudo-distance metric such

as KL-divergence. However, in our study, we have used the Wasserstein metric, denoted

by Wp, as our choice for the distance D. Wassertein distance has some suitable properties,

which makes it relevant for our approach. The Wassertein distance formulation allows

using well-known distances defined in the Euclidean space where the samples live, which

are also used in defining the cost function.

A cost function is said to lift the distance from the feature space X to the general

family of measures M+(X ) if for all dirac masses δx and δy, we have

D(δx, δy) = ||x− y||, (3.3)

the cost function between two points x and y in the ambient space is their geometric

distance. Wasserstein distances lift the standard metrics on Rd to the space of probability

distributions P(Rd) unlike KL-divergence or total variation distance. This gives them

a geometrical interpretation that is not present in other distances on P(Rd). For our

purpose of computing distances, we use p = 2 for no reason other than the familiarity of

the 2-norm on Euclidean spaces. For a comparison of these distances the interested reader

may see [6] where example 1 (learning parallel lines) depicts how the output of Wp can

often be intuitive.

Another property of the Wasserstein distance is that it metrizes convergence in the space

of probability distribution. A distance metric D on the space of probability distribution

is said to metrize the convergence if for a sequence of distributions {αn} converges to α,

then following holds,

αn → α⇐⇒ D(αn, α)→ 0. (3.4)

The sequence {αn} can represent the discrete measure obtained by sampling α which is a

continuous distribution. This is important from the point of view of numerical filtering

algorithms such as in EnKF where we represent the filtering distributions using an ensemble

representation. In the following section, we discuss the theory of optimal transport using

which one can define a distance on the space of probability distributions such as the

Wassertein distance.
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Figure 3.2: Schematic showing two distributions α and β. c(x, y) is the cost of moving a
unit mass from point x to y.

3.3.1 The optimal transport problem and Wasserstein distance

Optimal transport is defined as the minimum cost of morphing one probability distribution

into another where the transport of mass comes with an associated cost defined on the

ground metric. When the cost function is a distance on the ground metric, the optimal

transport plan which minimizes the cost, this minimum cost defines a distance between

two probability distributions.

Problems which involve learning probability distribution have focused on such distances

and led to efficient algorithms for their computation. However, the origin of optimal

transport dates back to 1781 when Gaspard Monge [86] was interested in finding the

solution to the logistic problem of the most efficient way of transporting material from

one region A to another region B. Monge’s sought a deterministic transport map as the

solution for this assignment which would determine the transport plan to move material

from a set of points xi in the source region to a point yi in the target region B to minimize

the total transportation cost [73]. This formulation however didn’t allow for mass-splitting

and existence and uniqueness of the solution didn’t hold in general.

Leonoid Kantorovich, in 1942, revisited the assignment problem via optimization for

resource allocation problems in economics. His relaxation to the original formulation of

Monge’s transport problem, now known as the Kantorovich formulation [37], which was

formulated and generalized for probability distributions. Kantorovich solved the optimal

transport transport by introducing duality theory and linear programming [46, 48, 47].

We now turn to Kantorovich’s formulation of optimal transport where the problem is
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Figure 3.3: The joint distribution with the marginal distributions being α and β respec-
tively.

posed as finding the optimal transport plan which minimizes the cost of mass transporta-

tion [37] between two probability distributions under a well-defined transportation cost

for each such movement between two points.

Consider two probability distributions α , β ∈MX , whereMX represents the space of

probability distribution on X . Let c(x, y) be a function that defines the cost of transporting

a unit mass from point x to point y, taking into account the geometry of the sample space.

It may also be chosen as a function of the distance defined in the sample space. The cost

of minimizing the transporation plan between two different distributions is equivalent to

morphing from α to β. This is obtained by solving the following optimization problem

OTc(α, β)
def
= min

π∈Π

∫
X×X

c(x, y)dπ(x, y), (3.5)

where, π is a joint distribution which minimizes equation (3.5) and lies in the space of

joint distributions over the product space(X ,X ). This space is denoted by Π, where,

Π = {π|π ∈M+
X×X ,

∫
X
dπ(x, .) = α,

∫
X
dπ(., y) = β},

the space of all joint probability distributions over X × X with two marginal distribution

being α and β over X .
Kantorovich also introduced a distance, known as the Kantorovich-Rubinstein [86]

distance between probability measures according to which the distance between two
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measures should be the optimal transport cost from one to the other, if the cost is chosen

as the distance function.

When the cost of transporting a unit mass from point x to point y is of the form

c(x, y) = d(x, y)p where d(x, y) is a distance between two points x and y, equation 3.5

defines a distance on the space of probability distribution called the Wasserstein-p distance,

given by,

Wp
def
= [OTc]

1
p =

[
min
π∈Π

∫
X×X

d(x, y)pdπ(x, y)

]1/p
(3.6)

Wasserstein-p defines a distance only when the cost function is chosen in the above manner,

since the conditions for satisfying triangle inequality are not satisfied otherwise [86].

Recently, optimal transport has received a tremendous amount of attention both from

theoretical and computational perspectives in the field of machine learning, economics,

and finance. Chief examples of success in deep learning endeavor are adversarial generative

networks that have seen tremendous growth in the last few years [51, 76, 57]. Owing to the

vast literature on this topic, we refer to [86, 73] for their comprehensive treatment of the

theoretical and computational perspectives on optimal transport. Solving the Wassetstein

distance for two discrete measures leads to a computationally expensive linear program

that as must be solved in order to obtain the coupling between the two distributions α

and β in order to find their distance. When applied to two sampling distributions with

both having sample size k, computing W1 is equivalent to solving a constrained linear

programming problem(LPP) in n = k2 variables. Since LPPs take O(n3) time to solve a

problem with n variables, computing W1 takes O(k6) time which is prohibitively expensive.

3.3.2 Entropy-regularized optimal transport and Sinkhorn diver-

gence

The solution to second Wasserstein distance W2, is obtained by computing the minimizer

of equation (3.6) with c(x, y) = ∥x− y∥22 for p=2. As mentioned above, solving the above

optimization problem becomes computationally expensive in high dimension owing to the

curse of dimensionality [8, 12]. Cuturi in [29] introduced an entropy regularization to

equation (3.5) which facilitates a smoother solution and easier computational handling.

The resulting dual optimization problem turns into a concave optimization problem, which

can be solved by various iterative methods. Using parameters ε, which is the regularization

coefficient, we now define the regularized optimal entropy transport [38] with the relative

entropy as the regularization term in the following equation:

OTε(α, β)
def
= min

π∈Π

[∫
X×X
∥x− y∥22 dπ(x, y) + εKL(π|α⊗ β)

]
. (3.7)
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Here, KL(π|α ⊗ β)) denotes the KL-divergence, computing the relative-entropy of the

coupling or joint distribution π with respect to the product measure α ⊗ β on X × X ,
given by,

KL(π|α⊗ β) =

∫
X×X

log

(
dπ(x, y)

dα(x)dβ(y)
− 1

)
dπ(x, y) + 1. (3.8)

Entropy-regularized optimal transport can be used to approximate the Wasserstein distance

between two probability measures. For a recent account of analytical results using entropy-

regularized optimal transport for Gaussian distributions, see [79].

However, the minimizer of the equation (3.7) does not satisfy the properties of a

distance and is also not zero for α = β i.e. OTε(α, α) ̸= 0. A simple way around this

problem was to redefine a quantity which is overcomes this issue. by defining Sinkhorn-

divergence, which is denoted as Sε. For a fixed ε, the Sinkhorn divergence between two

distributions α and β fis defined as

Sε(α, β)
def
= OTε(α, β)−

1

2
(OTε(α, α) +OTε(β, β)) (3.9)

which satisfies Sε(α, α) = 0. Sinkhorn divergence satisfies the following properties:

• Sε(β, α) = Sε(α, β) ≥ Sε(α, α) = 0

• Sε(α, β) = 0 ⇐⇒ α = β

• For a sequence {αn} → α ⇐⇒ Sε(αn, α)→ 0.

Additionally, in the limit that ϵ→ 0, we have [35]

lim
ε→0

√
Sε(α, β) = W2(α, β) (3.10)

which allows us to compute Sε for small enough ε in order to approximate W2 between

two distributions.

3.3.3 Sinkhorn-Knopp algorithm

The dual optimization problem in equation (3.7) can be obtained via Lagrangian dual

approach [37], and the resulting dual problem is given by

OTε(α, β) = max
f,g∈C(X )

[∫
X
fdα+

∫
X
gdβ − ε

∫
X 2

(exp

(
f ⊕ g − c

ε

)
− 1)d(α⊗ β)

]
(3.11)

where f and g represent the dual potential function corresponding to the distribution α and

β respectively and c(x, y) = ∥x− y∥22, the l2-distance function on X . In real applications
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and from the point of view of numerical filters, we know the distribution via their ensemble

representations. We consider the above formulation of regularized optimal transport in

equation (3.7) in a discrete setting where we work with probability measures instead of

distributions. Since the filtering distributions can be represented using empirical measures,

this helps us define the algorithm for any numerical filter and specifically to EnKF whose

filter stability is studied in section 3.4.

For two empirical measures α̂ and β̂ given by α̂ =
∑N

i=1 αiδxi
, β̂ =

∑M
j=1 βjδyj

represented by using two i.i.d. samples (x1, ...xN) and (y1, ...yM) of size N and M which

are drawn from their corresponding distribution α and β respectively, equation (3.11)

becomes

OTε(α̂, β̂) = max
f,g∈C(X )

N∑
i=1

αifi +
M∑
j=1

βjgj − ε
∑
i,j

αiβj exp

(
fi + gj − cij

ϵ

)
+ ε, (3.12)

where fi = f(xi), gj = g(yj) and cij = ∥xi − yj∥22 is the cost matrix. To show that

this problem is a concave optimization problem, we first write down the first-order and

second-order derivatives of OTε. For simplifying the notations, we represent OTε(α̂, β̂)

by D and differentiate it w.r.t fi and gj to get

∂D

∂fi
= αi − αi

1

ϵ

∑
j

βj exp

(
fi + gj − cij

ϵ

)
(3.13)

∂D

∂gj
= βj − βj

1

ϵ

∑
i

αi exp

(
fi + gj − cij

ϵ

)
(3.14)

∂2D

∂fi∂fj
= −1

ϵ

∑
j

βj exp

(
fi + gj − cij

ϵ

)
(3.15)

∂2D

∂gi∂gj
= −1

ϵ

∑
i

αj exp

(
fi + gj − cij

ϵ

)
(3.16)

From the first order optimality conditions, we know that the first derivative in (3.13)

and (3.14) become zero ∀i, j, and we get

fi = −εlog

[
M∑
j=1

βje
gj−cij

ε

]
and gj = −εlog

[
N∑
i=1

αie
fi−cij

ε

]
. (3.17)

From the second order optimality conditions, we clearly see that this is a concave

optimization problem since both equation (3.15) and (3.16) are always negative. Thus,

the solution to this optimization problem can be found by initializing fi, gj = 0 ∀i, j and

iterating equation (3.17) until convergence. This allows us to compute the regularized

optimal transport problem and the Sinkhorn divergence in equation (3.9). We describe

the complete algorithm for computing Sε in details in algorithm 2.
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Algorithm 2: Computation of Sε

Input: {αi}Ni=1, {xi}Ni=1, {βj}Mj=1, {yj}Mj=1

Output: Sε

(∑N
i=1 αiδxi

,
∑M

j=1 βjδyj

)
Initialize fi ← 0 ∀ i = 1, · · · , N and gj ← 0, ∀ j = 1, · · · ,M .
iteration ← 0
while min{L1 relative errors in f and g} > 0.1% do

for i = 1, · · · , N do

fi ← −ε log
(∑M

k=1 βk exp
(
1
ε
gk − 1

ε
∥xi − yk∥22

))
for j = 1, · · · ,M do

gj ← −ε log
(∑N

k=1 αk exp
(
1
ε
fk − 1

ε
∥xk − yj∥22

))
iteration ← iteration + 1

OTα,β ←
∑N

i=1 αifi +
∑M

j=1 βjgj
Initialize fi ← 0 ∀ i = 1, · · · , N and gj ← 0, ∀ j = 1, · · · ,M .
while L1 relative error in f > 0.1% do

for i = 1, · · · , N do

fi ← 1
2

[
fi − ε log

(∑N
k=1 αk exp

(
1
ε
fk − 1

ε
∥xi − xk∥22

))]
while L1 relative error in g > 0.1% do

for j = 1, · · · ,M do

gj ← 1
2

[
gj − ε log

(∑M
k=1 βk exp

(
1
ε
gk − 1

ε
∥yj − yk∥22

))]
Sε ← OTα,β −

∑N
i=1 αifi −

∑M
j=1 βjgj

3.3.4 Important metric for filter stability

We focus mainly on studying E [Dε(πn(µ0), πn(µb))] and how it changes over time as

more and more information arrives with the observations sequentially. For a nonlinear

stochastic filtering problem under additional assumptions [83], it is proved that the filter

is exponentially stable. We do not expect those assumptions to hold for the deterministic

case, but this leads us to fit a curve that has exponential behaviour in time of the following

form,

E[Dε(πn(µ0), πn(µb))] = a exp(−λt) + c , (3.18)

where t, is the assimilation time multiplied by the observation gap and c is a constant to

which the distance saturates asymptotically, what one can expect from using finite sample

size, as motivated in the above subsection 3.4.1.

We then study the convergence of the filter mean to the true trajectory over time. We

70



define the following quantity called scaled l2 error,

en(ν)
def
=

1√
d

∥∥Eπ̂n(ν)[xn]− xtrue
n

∥∥
2
,

=

1
d

d∑
i=1

(
1

N

N∑
α=1

xα,i
n − xtrue,i

n

)2
1/2

, (3.19)

where d is the dimension of the system, N is the ensemble size, superscript α and i

denote the index for the ensemble member and the component respectively, and n is the

assimilation step. We expect that for a reliable filter, E [e2n(ν)] ∼ σ2 [55].

Another quantity that we plot is sn(ν) which captures the uncertainty in the best

estimate of the state obtained by the filter, defined as

sn(ν)
def
=

[
1

d
tr
[
Eπ̂n(ν)[

(
xn − Eπ̂n(ν)[xn]

) (
xn − Eπ̂n(ν)[xn]

)t]1/2]
,

=

1
d

d∑
i=1

1

N − 1

N∑
α=1

(
xα,i
n −

N∑
β=1

xβ,i
n

)2
1/2

(3.20)

It is the square root of the trace of the sample covariance of EnKF filtered ensemble at

the corresponding assimilation step n. This quantity is often understood as a measure

of reliability by comparing it with the L2 error. We note that we are unaware of any

theoretical results on the asymptotic nature of this quantity.

3.4 Results and discussion

3.4.1 Understanding numerical properties of Sinkhorn diver-

gence

In this section, we explore the effect of finite sample size in the numerical computation of

Sinkhorn divergence. Our goal is to understand the effect of using empirical distributions

for computing and interpreting the numerical results obtained. We first ask how the

Sinkhorn distance Sϵ obtained using empirical distributions obtained by sampling one and

the same distribution approaches zero with increasing sample size N . For this purpose, we

use the Gaussian distribution as the true distribution from which we generate the sample

since ensemble Kalman filters use the empirical mean and covariance while performing the

posterior approximations of the filter.

We draw two samples αd
m = 1

m

∑m
i=1 δxm,d

i
and βd

m = 1
m

∑m
i=1 δym,d

i
, where {xm,d

i } and
{ym,d

i } are two i.i.d. samples drawn from N λ
d = N (0d, λId). We choose λ = 0.1, 1.0.

We then perform the computation of Sinkhorn divergence using the two samples from
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plots

Figure 3.4: Average Dε(α
d
m, β

d
m) (over 20 realizations) where αd

m, β
d
m are two different

sampling distributions with the same sample size m for the same underlying d-dimensional
Gaussian N (0d, λId)

the above for Gaussian distribution, for which the exact Wasserstein distance W2 has a

well-known analytical form, given by,

W2(µ1, µ2)
2 = ∥m1 −m2∥22 + trace

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2)
, (3.21)

where µ1 ∼ N (m1, C1) and µ2 ∼ N (m2, C2) are the two multivariate Gaussian distribu-

tions.

To understand the convergence of W2 between two filtering distributions to zero, for

our definition of filter stability in equation (3.2), we will first numerically explore how

close Dε can get to zero using samples. In figure 3.4 we plot the average Dε(α
d
m, β

d
m) where

αd
m = 1

m

∑m
i=1 δxm,d

i
and βd

m = 1
m

∑m
i=1 δym,d

i
, where {xm,d

i } and {y
m,d
i } are both samples of

the same underlying d-dimensional Gaussian distribution N λ
d := N (0d, λId). For small λ,

we expect Dε to behave in a similar fashion to that of N λ
d supported on a compact set.

• Drop with increase in sample size Theorem VI.3 in [64] explains the monotonic drop

in average Dε for a fixed dimension while increasing the sample size which results in

the distance between empirical distributions approach the distance between the true

distributions.

• Rise with increase in dimension We note that Dε(α
d
m, β

d
m) increases with increasing

dimension d. This can be understood from the fact that as we go higher in dimension,

larger sample sizes are required to accurately represent N λ
d . This results in αd

m, β
d
m

becoming poorer estimators of the underlying distribution N λ
d , resulting in the

increase in d.

• Drop with decrease in covariance We note that decreasing the covariance parameter λ

has the opposite effect since, for fixed dimension d and sample size m, a distribution

with smaller covariance is better estimated by the sample. Thus, the resulting
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empirical distributions αd
m and βd

m become better estimators of N λ
d as λ decreases,

leading to a decrease in distance between them.

• Support of our distributions Since Lorenz systems are known to contain bounded

attractors, the trajectories for both systems were obatined by integrating after a

long transient period. Hence, we assume that true filtering distributions in this case

are supported on a compact set. Consequently, in the filtering experiments shown

later, the zero of the Sinkhorn algorithm shows qualitatively similar behavior (e.g.,

in figure 3.5) with respect to dimension as seen in figure 3.4.

3.4.2 Results for Lorenz-96 system

We now study the problem of numerical filter stability discussed above in the context of the

ensemble Kalman filter. We now present the numerical explorations of the filter stability

for EnKF. To obtain the initial condition for the attractor, we start from a random initial

condition and integrate the ode for a long time consisting of 105 iterations. The terminal

point is then used as x0, the initial condition for generating the true underlying trajectory.

To perform twin experiments in data assimilation, one generates synthetic observations

based on this trajectory by adding random noise drawn from a given distribution of the

measurement noise, which we assume to be the multivariate Gaussian distribution for

simplicity. We generate 10 observation realizations for the same trajectory by adding noise

at each time step.

First, we present the results related to Lorenz-96 in 10 and 40 dimensions in order to

illustrate the stability of EnKF as a filtering algorithm. In both the cases, we observe half

of the total components, i.e. for 40 dimensional case, we observe 20 alternate even indexed

components and assimilate observations every 0.1 units of time. We use observation

covariance R = 0.1I5 and 1.0I20 respectively. In L96-10, we use ensemble sizes N = 50

with localization and N=200 without localization. This was done to see if the localization

has an effect on filter stability. For L96-40, we perform assimilation with localization for

N = 50.

We use three different initial distributions for this case, denoted by µ1, µ2, µ3, where

µ1 = N (xtrue
0 , 0.1× Id),

µ2 = N (xtrue
0 + 2× 1d, 0.5× Id),

µ3 = N (xtrue
0 + 4× 1d, 1.0× Id). (3.22)

We perform 500 assimilation steps using EnKF with 10 different observation realizations.

For each observation realization, we use different initial distributions in (3.22) for initializing
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Figure 3.5: Dε (averaged over 10 observation realizations, with one standard deviation
confidence band) for EnKF for 10-dimensional L96 with N = 50 with localization (left),
N = 200 without localization for observation covariance σ2 = 0.1 for pairs of initial
distributions in equation 3.22. The inset shows the drop in Dε for the first 50 assimilation
steps.

EnKF. Since we have three different initial conditions, we have three corresponding pairs of

distances. For each of the pairs (µ1, µ2) , (µ2, µ3) and (µ2, µ3) and for a given observation

realization, we compute the Sinkhorn divergence between the resulting filtering distribution

as a function of time n. Figure 3.5 and 3.6 illustrate the stability for the three different

pairs of initial distributions.

Here we use the notation πE
n for π̂n obtained by the EnKF which was described in

alogithm 1.

• Drop in Dε over time From figures 3.5 and 3.6, we see that for every pair (µi, µj)

of initial distributions Dε(π
E
n (µi), π

E
n (µj)) decreases with time rapidly within the

first 50 assimilation steps and beyond 100 assimilation steps, the observation average

of Dε for filters with different pairs initial distributions are similar and have very

little variance.

• Variation with respect to observation realization We see that the variation of

Dε for different observation realizations (shown by the shaded bands in figures 3.5

and 3.6) is significant for initial times (e.g. n < 100 for the 10-dimensional L96

model). On the other hand, for larger times (approx. n > 100), this variation is

comparatively smaller.

• Effect of localization EnKF with a small ensemble size needs localization which,

however, is an ad-hoc procedure to prevent filter divergence and may not approximate
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Figure 3.6: Dε (averaged over 10 observation realizations, with one standard deviation
confidence band) for EnKF with 40-dimensional L96 with N = 50 with localization (right)
with observation covariance σ2 = 1.0 for pairs of initial distributions in 3.22. The inset
shows the drop in Dε for the first 50 assimilation steps.

the true filter. Figure 3.5 for 10-dimensional L96 (left panel) and figure 3.6 for 40-

dimensional L96 (right panel) shows that for N = 50 with localization length 4, the

EnKF is stable, whereas the right panel in figure 3.5 (with the same configuration as

the left panel) for 10-dimensional L96 without localization, but with larger ensemble

size N = 200. This indicates that localization does not affect EnKF’s stability

properties.

We now systematically study the dependence of filter stability on two important

parameters, namely the observation gap and the observation noise covariance. These two

parameters are crucial for a numerical filtering algorithm as the former determines how

frequently the new information coming from the observation is incorporated into the filter

and the other determines the accuracy of the observations themselves, a direct measure

of the observation quality. We perform experiments with Lorenz-96 in 10 dimensions by

varying observation gaps and observation covariances as a parameter. We plot the average

of the Dϵ over 10 different realizations and also plot the points corresponding to different

individual realizations to show their variability.

To study the filter stability rates, we use two Gaussian initial distributions as initial

conditions to perform data assimilation; however, other choices are also possible. Since

we know the true initial condition x0 in synthetic experiments, we use this to generate

two different initial distributions, one denoted by µ0 which is unbiased and precise, and

the other denoted by µb which is biased and imprecise. The exact distributions with their
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g 0.01 0.03 0.07 0.09

a
PF 5.367 ± 0.080 7.077 ± 0.055 8.672 ± 0.084 9.54 ± 0.40

EnKF 9.28 ± 0.13 10.08 ± 0.27 11.11 ± 0.32 10.76 ± 0.37

λ
PF 10.73 ± 0.76 4.423 ± 0.058 2.203 ± 0.021 1.392 ± 0.052

EnKF 3.904 ± 0.085 3.56 ± 0.15 4.24 ± 0.21 2.95 ± 0.17

c
PF 4.03425 ± 0.00083 2.7524 ± 0.0018 2.1362 ± 0.0093 1.69 ± 0.14

EnKF 0.258 ± 0.016 0.459 ± 0.036 0.711 ± 0.046 0.827 ± 0.064

Table 3.1: Parameters of the best-fit for the mean Dε versus time as in (3.18) with
associated confidence intervals for fixed observation covariance σ2 = 0.4 and different
observation gap g shown in the top row.

parameters are as follows:

µ0 = N (xtrue
0 , 0.1Id)

µb = N (xtrue
0 + 4.01d, Id) (3.23)

where, 1d and Id represent a vector with all entries 1 and the identity matrix of order d× d

respectively.

We plot the Sinkhorn distance between the two distributions over time, with different

initial measures used to initialize the numerical filter at n = 0. We now discuss the

numerical stability experiments performed using EnKF for the Lorenz-96 model which we

introduced in subsection 2.6.2 with their parameters in a detailed manner and describe the

obtained results. We also have results for the particle filtering algorithm in [65] which was

used in our joint work. where the exact implementation of the PF algorithm is present in

Algorithm 2.

3.4.3 Dependence of the filter stability w.r.t observation gap

We first discuss the results of our numerical experiments with EnKF for a fixed observation

covariance σ2 = 0.4I10 with varying observation gap. As shown in figure 3.7 and 3.8,

the mean Dε falls exponentially over time until reaching a stationary value for both the

filters. Table 3.1 shows the values of the coefficients of the best-fit of mean Dε versus time,

according to equation (3.18), for different observation gaps g.

For PF, we see that the rate λ decreases with increasing observation gap g but for

EnKF, the rates are not significantly affected by the change in g. The highest Lyapunov

exponent for the model (with the chosen parameter value) is approximately λmax = 1.7

whereas the exponential rate λ for EnKF is seen to be in the range of (3.0, 4.2), close

to 2λmax, indicating a possible close relation between the dynamics and the EnKF that

could be explored further. The exponential rate for the PF does not seem to show such a

relation.
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Figure 3.7: Results for EnKF with fixed observational error variance σ2 = 0.4, and each col-
umn contains the results for different time between observations g = 0.01, 0.03, 0.07, 0.09.
Row 1: Mean Dε versus time. The dots represent 10 different realisations. The solid
line is the exponential best-fit line for the mean Dε as in (3.18). Row 2: Mean scaled l2
error from (3.19) versus time for the two initial distributions. Row 3: Mean uncertainty
from (3.20) versus time for the two initial distributions. The constant dotted line in rows 2
and 3 shows the observational error variance σ2 for reference. Row 4: RMSE versus mean
Dε. Pearson correlation coefficient between these two quantities is depicted alongside the
goodness of fit for the best-fit line.
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Figure 3.8: Results for PF with fixed observational error variance σ2 = 0.4, and each column
contains the results for different time between observations g = 0.01, 0.03, 0.07, 0.09. The
different rows corresponds to are arranged in the same order as in figure 3.7. Row 1: Mean
Dε versus time. Row 2: Mean scaled l2 error versus time. Row 3: Mean uncertainty versus
time for the two initial distributions. Row 4: RMSE versus mean Dε.

Another difference between PF and EnKF may also be noted: with increasing ob-

servation gap, the stationary value c for the PF decreases whereas it increases for the

EnKF. Also, the stationary values c of the Dε for EnKF are significantly lower compared

to corresponding values for PF. These asymptotic values of Dε over time for both filters
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can be explained by their mean posterior covariance using the following argument.

A characteristic of the numerical distance Dε is that for two different i.i.d. samples

drawn from the same probability distribution, Dε has a nonzero positive value. Statistically,

Dε between two empirical measures approaches this value at which they are essentially

representing the same distribution and cannot be distinguished. For a fixed dimension d

and sample size N , this value increases with increasing covariance of the distribution [64,

Figure 1 and discussion therein].

The mean posterior covariance trace is directly proportional to the s2n. With increasing

observation gap g, the mean uncertainty decreases for PF while it increases for EnKF.

Hence the asymptotic value of Dε decreases with increasing observation gap for PF, while

for the latter, it increases. We note that the previous paragraph explains the asymptotic

value of Dε, but the difference in the behaviour of the filter uncertainty sn for PF and

EnKF as a function of observation gap needs to be explored further.

The scaled l2 errors also reach an asymptotically constant value around the same time

the corresponding filters stabilize in Dε. The scatter plots for the RMSE against the Dε

shows strong correlation between them. This suggests that we can use the RMSE over

time as a good indicator for the time when the filter stabilizes. Note that the methods in

this paper give us a direct way to check whether a numerical filter is stable for a given

dynamical and observational model, and the relation between the filter stability and the l2

error or bias en implies that a stable filter may be expected to be an accurate one.

We note that in the plots in the bottom row, the cluster at the bottom left corresponds

to the time after which both RMSE and the Dε have reached their stationary values. Even

for two different biased initial distributions for the filter, there is a finite transient growth

after which Dε falls exponentially [64]. Although not shown here, the linear regime is still

present in the scatter plot of the RMSE of either one of them versus the Dε in those cases.

3.4.4 Dependence of the filter stability w.r.t observation noise

We now discuss the results of numerical experiments for fixed observation gap g = 0.05,

with varying observation error variances σ2 = 0.2, 0.4, 0.8 and 1.6. In figure 3.9 and 3.10,

we again note the exponential decrease of the distance Dε over time until it reaches a

stationary value c. The parameter values obtained for the best fit for different observation

covariances are shown in table 3.2.

In contrast with the case of varying observational gap, the exponential rates for the

PF stability are not affected by the change in observational uncertainty. While the rates

for EnKF are again close to twice the Lyapunov exponent, the rates for PF are smaller.

The scaled l2 error and the Dε achieve their stationary value around the same time as

in the former case of fixed observation. As expected, this asymptotic value c as well as the

asymptotic values of the uncertainty sn and the bias en all increase with increasing σ2 for
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Figure 3.9: Showing the results for EnKF with fixed time between observations g = 0.05,
and each column containing the results for different observational error variances σ2 =
0.2, 0.4, 0.8, 1.6.

both PF and EnKF.

We also see near perfect correlation in the scatter plots for the RMSE versus mean Dε

as for both PF and EnKF, we get a Pearson correlation coefficient very close to 1. We

remark that in our numerical experiments, either with varying observational time interval

or with varying observational covariance, we did not notice any relation between stability

and posterior uncertainty or precision, i.e., there did not seem to be any relation between
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Figure 3.10: Same as in figure 3.9 showing the results for PF for fixed time between
observations g = 0.05, and each column containing the results for different observational
error variances of σ2 = 0.2, 0.4, 0.8, 1.6.

Dε and sn.
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σ2 0.2 0.4 0.8 1.6

a
PF 7.842 ± 0.058 7.730 ± 0.046 8.153 ± 0.044 8.038 ± 0.048

EnKF 10.61 ± 0.32 10.84 ± 0.30 10.69 ± 0.23 8.75 ± 0.22

λ
PF 2.442 ± 0.016 2.858 ± 0.017 2.859 ± 0.015 2.416 ± 0.012

EnKF 3.34 ± 0.16 3.70 ± 0.16 3.86 ± 0.14 1.507 ± 0.062

c
PF 2.4050 ± 0.0022 2.4144 ± 0.0015 2.5051 ± 0.0014 2.6554 ± 0.0019

EnKF 0.470 ± 0.039 0.579 ± 0.035 0.838 ± 0.027 1.148 ± 0.041

Table 3.2: Parameters of the best-fit for the meanDε versus time as in (3.18) with associated
confidence intervals for fixed observation gap g = 0.05 and different observational error
covariance σ2 shown in the top row.

3.5 Summary

The central focus of this chapter revolves around the comprehensive examination of

the stability of nonlinear filters with a focus on the ensemble Kalman filter, utilizing a

numerical approach. We employ the recently devised Sinkhorn algorithm to compute an

approximation of the Wasserstein distance between Monte Carlo samples, each representing

a filtering distribution. This method facilitates a direct evaluation of the stability of a

filter by computing the expected value, averaged over multiple observation realizations,

of the distance between filtering distributions as a function of time. Furthermore, we

undertake an extensive exploration of the dependence of the stability characteristics of

the filter with respect to two crucial parameters: the time between observations and

the observational error covariance. Our results provide substantial numerical evidence of

exponential stability for EnKF in the context of deterministic chaotic dynamical systems.

As the gap between observations increases, the rate of decay of the distance Dϵ between

two filters decreases for the particle filter, while it stays approximately the same and

close to twice the Lyapunov exponent for the ensemble Kalman filter. Investigating the

connection between the chaotic characteristics of the system and exponential stability is an

interesting direction for future work. Proving the stability of these numerical algorithms

mathematically is another intriguing open field of study.
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Chapter 4

Computing Lyapunov instabilities of

a dynamical system using data

assimilation

In the previous chapter, we studied the problem of nonlinear filter stability numerically

using EnKF and the dynamical systems introduced in this thesis. The notion was to

numerically understand the convergence of the filtering distribution over time. We now

arrive at the second problem of computing the stability( instability) properties of the

underlying dynamical system- the Lyapunov vectors and the exponents. The asymptotic

instability directions of a chaotic dynamical system are defined by the Lyapunov vectors

and their associated growth rates called the Lyapunov exponents. The objective of this

chapter is to understand how good our reconstructed instability directions are when

computed from approximations of a true underlying trajectory. Our focus is specifically

on the two types of these vectors, namely backward Lyapunov vectors, the BLVs, and

covariant Lyapunov vectors or the CLVs.

The organization of this chapter is as follows. In section 4.1, we start with the

importance of instability directions and their utility in data assimilation. In section 4.2, we

provide an overview of the theory and mathematical definitions of Lyapunov vectors and

their subspaces in section 4.2.1. We then explain in detail Ginelli’s algorithm which we use

for the computation of covariant Lyapunov vectors in section 4.2.2. Our proposed data-

based algorithm using data assimilation for computation of LVs is presented in section 4.2.3.

We also explain our approach of computing the approximate LVs of perturbed trajectories

in section 4.2.4. In section 4.2.7, we describe the metrics employed for comparison of

the exact and perturbed or approximate CLV and the related Oseledet’s subspaces. We

present the details of the numerical implementation are presented in section 4.2.6. The

numerical results are discussed in section 4.3 followed by a summary of conclusions and

directions of further studies in section 4.4.

83



4.1 Introduction

The uncertainties in the state estimates, obtained using DA, depend quite crucially on the

directions of the error growth, or in other words, the dynamical instabilities of the system.

Lyapunov exponents and vectors are the fundamental tools used in the study of nonlinear

and chaotic systems, in order to characterize the stability properties of a dynamical system

with respect to perturbations along different directions. The paradigm called assimilation

in unstable subspace, see, e.g., [82, 20, 18, 19, 80] uses the subspace spanned by the

unstable and neutral Lyapunov vectors for producing the analysis or the update step

of assimilation and shows promising improvements over the traditional algorithms. The

importance of Lyapunov vectors in general and in the context of assimilation is also

discussed extensively in recent works of [71, 85, 13, 40, 15] and others.

For a dynamical systems, a non-increasing tuple {λ1 ≥ λ2 ≥ ... ≥ λs} of Lyapunov
exponents summarizes the global, asymptotic rate of change of linear perturbations around

a trajectory. Existence of at least one positive Lyapunov exponent indicates exponential

divergence of perturbations and is indicative of instabilities and chaotic dynamics. The

associated directions in the tangent space are called Lyapunov vectors, which span the

tangent space at a specific point in the phase space and contain information about the past

and future evolution of local perturbations [33, 56]. Various methods have been proposed

for computation of Lyapunov exponent, with or without the use of the dynamical equations

and / or their linearization, or using a time series of observations of the system [9, 10, 1].

Lyapunov vectors that capture the asymptotic growth rate as t → ±∞ are called,

respectively, forward or backward Lyapunov vectors (FLV / BLV). These FLV and BLV

provide a orthonormal basis for a filtration of the tangent space, but they are not covariant

with respect to the dynamics: the time evolution, under the linear dynamics, of an FLV

(resp. BLV) at one time does not lead to an FLV (resp. BLV) at other time but leads to a

linear combination of FLVs (resp. BLVs). Further, even though the asymptotic growth

rate of the FLV in forward time is the Lyapunov exponent, it is not so in backward

time (and similarly for BLV). Vectors that have both these properties, namely covariance

with respect to the time evolution and asymptotic growth rates in forward and backward

time, are called covariant Lyapunov vectors (CLV), which are the central focus of this

work. In recent years, various methods for computing these Lyapunov vectors have been

developed [88, 52, 39, 67].

The main aims of this chapter are twofold: one is to present a data-based algorithm

for computation of Lyapunov vectors and the other is to study their sensitivity to noise.

The first part - a data-based algorithm for calculating CLV presented in 4.2.3 along with

the results presented in 4.3.1 - is largely motivated by the work of [81, 82] and subsequent

developments of the AUS (assimilation in unstable subspace) methodology. Their work

focuses mainly on BLVs whereas we consider a natural extension to compute the CLV as
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well. Recently, another data-based algorithm has been proposed in [66], using the data to

reconstruct the system dynamics and then use this reconstructed dynamics to compute

CLVs. Our approach differs in a fundamental way, since our basic assumption - which is

also common with all the data assimilation (DA) methods - is that a dynamical model is

available but we do not know the trajectory that is being observed. This naturally leads to

our proposed algorithm that uses a DA algorithm to compute an optimal estimate, which

is then used to compute the CLV. We note that any algorithm, including our algorithm,

for computation of CLV necessarily needs to be “offline” since it requires the backward

evolution from far future. But one by-product of our algorithm that is indeed “online”

(without the need to future observations) is the data-based computation of BLV using

only the past observations.

The second part studies the sensitivity of the LVs to noisy perturbations of a trajectory.

We study how well the LVs and the associated Oseledets’ subspaces spanned by these

vectors are approximated when calculated by using a noisy trajectory instead of a true

trajectory. We note that this is quite distinct from the question of continuity of the LVs

with respect to the phase space, as has been studied in [50, sec. 19.02]; [5, 32, 63]. We

also note that the noisy trajectories we use are neither shadowing trajectories nor are they

solutions of a stochastic version of the deterministic dynamics, since the noise is added

only at discrete observation times. This choice is motivated by the parallel with the data

assimilated state estimates which also provide trajectories that are neither shadowing nor

solutions of stochastic dynamics.

4.2 Theory and computation of Lyapunov vectors

In this section, we present a brief summary of the mathematical framework for defining

the Lyapunov vectors, followed by a description of the method we used for computing

them [39, 52]. We then discuss our proposed method for computing these vectors either (i)

using state estimates obtained from the ensemble Kalman filter or (ii) using the perturbed

trajectories of a dynamical system. We also discuss the metrics that we use, namely the

subspace angles between Oseledets subspaces, to assess the accuracy of the approximate

Lyapunov vectors obtained using these two methods - this is accuracy with respect

to the Lyapunov vectors obtained from the exact trajectory (or rather, its numerical

approximation by the RK4 algorithm that we use).
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4.2.1 Definition and importance of covariant Lyapunov vectors

(CLV)

We consider an autonomous continuous-time dynamical system represented by ODE of

the form

ẋt = f(xt) , where, xt ∈ S ⊆ Rn and f : S → Rn is the vector field. (4.1)

Associated to such an ODE, the evolution for the infinitesimal perturbations in the tangent

space is obtained by linearizing along a trajectory, thus leading to the following ODE for

zt ∈ Rn:

żt = J(xt)zt , where J(x) is the jacobian matrix given by Jij(xt) =
∂fi(xt)

∂xt,j

, (4.2)

where fi and xt,j denote the i
th and jth component of f(xt) and xt. A fundamental matrix

solution of this linear non-autonomous equation solves Q̇t = J(xt)Qt with any non-singular

matrix Q0 ∈ Rn×n as an initial condition. In the discussion below, we consider the

evolution of the trajectory and the corresponding perturbations at times . . . , tk, tk+1, . . . ,

and use the notation xk ≡ xtk , zk ≡ ztk , etc. With this notation, using the fundamental

matrix solution, the tangent linear propagator from time tk to tl can be written as

Mk,l = QlQ
−1
k with the property that zl =Mk,lzk . (4.3)

The eigenvectors and eigenvalues of Mk,l for large l → ∞ and k → −∞ capture the

asymptotic stability properties of the perturbations around a trajectory and will be the

primary focus in this paper. The existence of these limits is the main content of the

Oseledets’ multiplicative ergodic theorem [69, 70]. Specifically, under suitable conditions,

the theorem implies the existence of the following limits:

λ+(z, tk) := lim
tl→∞

1

tl − tk
log
∥Mk,lz∥
∥z∥

, and λ−(z, tl) := lim
tk→−∞

1

tk − tl
log
∥Mk,lz∥
∥z∥

,

(4.4)

where λ±(z, tk) are called the Lyapunov characteristic exponents. Under appropriate

regularity conditions, the two limits in (4.4) give the same set of Lyapunov exponents but

with opposite sign and we drop the superscript ± for the exponents. There are at most

n distinct such exponents, which are usually ordered as λ1 ≥ λ2 ≥ · · · ≥ λs with s ≤ n.

Oseledets’ theorem also proves the existence of the Oseledets subspaces

{0} = S+
s+1 ⊊ S+

s ⊊ · · · ⊊ S+
1 = Rn (4.5)
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with the property that λ(z, tk) = λi when z ∈ S+
i \S+

i+1. Such vectors z satisfying this latter

property are called the forward Lyapunov vectors. The Oseledets subspaces corresponding

to the tk → −∞ limit in (4.4) are given by

{0} = S−
0 ⊊ S−

1 ⊊ · · · ⊊ S−
s = Rn (4.6)

and analogously define the backward Lyapunov vectors. Note that these subspaces depend

on time, i.e. on tk (resp. tl) for forward (resp. backward) Lyapunov vectors, so more

precisely, S+
j = S+

j (tk, xk) etc. For autonomous dynamical systems, this time dependence

is only through the trajectory, i.e., on the phase space point xk = x(tk). Thus, more

precisely, S+
j = S+

j (xk). Though this dependence was dropped above for simplicity of

notation, exploring the dependence of the Oseledets subspaces and the Lyapunov vectors

on the phase space trajectories is one of the main aims of this paper, as we discuss below.

The above discussion naturally raises the question of whether nearby points in phase

space have Oseledets spaces that are “close” to each other in an appropriate metric. In

other words, this is a question of continuity of these Oseledets spaces with respect to

phase space and has been investigated theoretically in [50, 5, 32, 63], proving Hölder

continuity of these spaces, and numerical methods for computing derivatives of CLVs

has been developed recently in [22]. But we are not aware of any numerical study of the

continuity of the Oseledets spaces with respect to perturbations to the full trajectory.

The main focus of this paper is precisely to address this lacunae by numerically studying

the sensitivity of the Lyapunov vector to perturbations in phase space. One of the key

difficulties in these numerical investigations is explained in detail in section 4.2.2.

The forward and backward Lyapunov vectors are not mapped to each other under the

action of the tangent linear operator, i.e., they are not covariant. Further they are also

not invariant with respect to time reversal. Instead they satisfy the following property:

if the forward (resp. backward) Lyapunov vectors at time tk are arranged in columns of

Φ+(tk) [resp. Φ
−(tk)], then

Mk,lΦ
+(tk) = Φ+(tl)Lk,l and M−1

k,lΦ
−(tl) = Φ−(tk)Rk,l , (4.7)

where Lk,l and Rk,l are, respectively, lower and upper triangular matrices. The diagonal

elements of these matrices give the local stretching or contraction of the Lyapunov vectors.

These properties motivate the numerical algorithms to calculate the BLV and FLV, e.g.,

see the review [52].

To summarize, the BLV and FLV are not covariant but form orthonormal bases of the

Oseledets subspaces. On the other hand, these subspaces are covariant under the linear

dynamics as indicated by (4.7). By looking for bases that may not be orthonormal, it is

possible to find a set of basis vectors of these Oseledets’ spaces that are covariant with
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respect to the dynamics and invariant with respect to time reversal. Such basis vectors

are called covariant Lyapunov vetors (CLV). In particular, they have the property that

the i-th covariant Lyapunov vector qi(tk) satisfies the dynamics given by,

qi(tl) =Mk,lqi(tk) and ∥Mk,k+lqi(tk)∥ ∼ eλitl for tl → ±∞ . (4.8)

The FLV satisfy the above only in the limit of tl → +∞ but not in the other limit of

tl → −∞, and similarly the BLV satisfy only one of the two limits above.

The existence of such covariant Lyapunov vectors is guaranteed by the following

fact: the dimensions of i-th forward and backward Oseledets subspace S+
i and S−

i are,

respectively, ds + · · ·+ di and d1 + · · ·+ di. Since the sum of these dimensions is n+ di,

their intersection has minimum dimension of di. We can see that the vectors that belong

to this intersection S+
i ∩ S−

i satisfy the properties (4.8) and are the covariant Lyapunov

vectors that we seek. Indeed the numerical algorithm presented below directly make use

of the fact that they belong to this intersection.

4.2.2 Computation of Lyapunov vectors

We now discuss the dynamic algorithm introduced in the work of Ginelli [39] for the

computation of BLVs and CLVs about a reference trajectory. We assume that we have

the database consisting of states xj sampled at time tj = j∆t with ∆t as the interval

between two consecutive states from a fixed trajectory starting at j = 0. Since we have

pre-computed trajectories, we first carry out time integration of the perturbation vectors

in tangent space, using the state information from the trajectory whenever required in the

evaluation of the jacobian in equation (4.2) to obtain the BLVs. More specifically, BLVs

are required as an intermediate step since they provide a basis in the tangent space which

is then used to represent the CLVs at any time tj. This necessitates that the trajectory

should be long enough to contain three distinct time intervals: (i) an initial “forward

transient” time interval denoted as [0, I] to account for the forward transient required

to converge to the BLV basis, (ii) the subsequent interval of interest denoted by [I, F ]

over which we want to obtain the BLVs (and later on the CLVs), and (iii) an additional

“backward transient” interval denoted by [F,E] to account for the backward iterations to

converge to give the CLVs. This is shown schematically in the left panel of figure 4.1.

We perform gram-schmidt re-orthonormalization via QR decomposition after every l∆t

interval and use or store the vectors for integrating over the next interval. The number

N0I of times the QR-decomposition is performed in the forward transient time interval

is given by the relation N0I l∆t = I. Similarly for the other two intervals, NIF and NFE

denote the number of times the QR-decomposition is performed, i.e., NIF l∆t = F − I and

NFEl∆t = E − F .

88



Forward dynamics

Backward dynamics

Forward transient Interval of interest Backward transient

Figure 4.1: Schematic diagram of Ginelli’s dynamic algorithm for computing covariant
Lyapunov vectors.

Let Bj ∈ Rn×m with m ≤ n denote the matrix containing a set of orthogonal perturba-

tion vectors along the columns at time tj. For the forward transient interval, we initialize

B0 as the initial condition for equation (4.2) and integrate over small time intervals [tj, tj+l]

of length l∆t, at the end of which we perform the gram-schmidt re-orthonormalization

of the columns of Bj. Recall thatMj,j+l is the linear tangent propagator from time tj

to tj+l. So the evolution of the perturbation vectors followed by re-orthonormalization

satisfies the following relations,

B̃j+l =Mj,j+lBj (evolution) and B̃j+l = Bj+lRj,j+l (re-orthonormalization) , (4.9)

for j = 0, l, . . . , (N0I − 1)l where, Rj,j+l is the matrix containing the growth rates of the

vectors over the interval [tj, tj+l] obtained by QR decomposition of B̃j+l. The choice of

l must be small enough so as to prevent the rank collapse of the columns of B̃j at any

time tj where the matrices are stored. The length of the forward transient interval [0, I] is

chosen to be long enough such that at time I, the columns of the matrix Bj provide a

good approximation of the columns of Φ−
j , i.e., the BLVs, as defined in equation (4.2).
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From this time onwards, we store both the matrices Bj and Rj−l,j , as computed in (4.9)

for j = (N0I)l, . . . , (N0I +NIF − 1)l, thus covering the time interval [I, F ] during which

we want to compute the CLVs. Note that over this time interval, we already get the

numerically approximate BLVs as the columns of the matrices Bj. The main idea is to

note the following fact: if the CLVs at time tj are arranged as columns of matrix Cj , then

their relation to the BLV basis can be expressed as

Cj = BjUj , (4.10)

for some Uj which is an upper triangular coefficient matrix. This is due to the fact that

the ith CLV lies in the span of the first i BLVs. Since the CLV are covariant, they satisfy

the following relation:

Cj+lDj,j+l =Mj,j+lCj , (4.11)

where Dj,j+l is a diagonal matrix with the diagonal elements being the norms of the

columns of the product on the right-hand side. Combining the above three relations (4.9)-

(4.11), the backward evolution of the perturbation vectors in matrices Uj followed by

re-normalization satisfies the following relations,

Ũj = R−1
j,j+lUj+l (backward evolution) and Ũj = UjD

−1
j,j+l (re-normalization) . (4.12)

Hence the rest of the algorithm is the backward evolution aimed at calculating these

matrices Uj.

At the end of the interval [I, F ], we further integrate forward the perturbation vectors

using (4.9) for j = (N0I + NIF )l, . . . , (N0I + NIF + NFE − 1)l, thus covering the time

interval [F,E]. During this time, we only store the matrices Rj−l,j. At the end of this

backward transient interval, we set Uj for j = (N0I +NIF +NFE)l to be a generic upper

triangular full-rank matrix UF . This is to ensure that the ith column of the matrix Cj

lies in ith backward Oseledets subspace S−
i at j = (N0I +NIF +NFE)l, since under the

backward evolution, a generic vector in this subspace S−
i converges asymptotically to the

ith CLV.

The backward dynamics is then performed on the upper-triangular coefficient matrices

Uj over the backward transient interval via (4.12) for NFE + NIF number of steps for

j = (N0I +NIF +NFE − 1)l, . . . , (N0I +NIF )l, . . . , (NIF )l, utilizing the inverses of Rj−l,j

which were computed and stored in the course of forward evolution over the respective

time interval. This step gives us the set of upper triangular matrices Uj over the time

interval [F,E] which is the backward transient interval and also over the interval [I, F ]

over which the relation (4.10) between BLVs and CLVs is valid with the matrices Uj.

Thus over the interval [I, F ], we obtain the BLVs that are stored in the matrices Bj, and
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using the upper triangular coefficient matrices Uj, we also obtain the CLVs as columns of

Cj = BjUj.

For an more in-depth discussion of the algorithm and its convergence, we refer to [39, 52]

and [67].

4.2.3 Data-based algorithm to calculate the Lyapunov vectors

We now describe the problem of computing the LVs when we cannot observe the full

system in time, i.e., we only have access to partial and noisy observations of some of the

components of the state xj instead of the full trajectory. As discussed above in section 4.2.2,

Ginelli’s algorithm requires a reference trajectory or the initial condition at tj = 0 which

can be integrated forward to obtain that reference trajectory. The above procedure cannot

be carried out directly when the initial condition is unknown and only partial observations

of the state over time are available. This is because of the exponential divergence of nearby

trajectories for chaotic systems.

Under the condition that the true trajectory may only be observed partially and

indirectly through noisy measurements of state-dependent physical quantities, nonlinear

filtering aims to obtain optimal estimates of the state that are in proximity to the true

trajectory, or more precisely, the posterior probability distribution called the filtering

distribution or simply the filter. [See, e.g., 17, 7, 36, for reviews and further references.]

Most common numerical filtering algorithms compute Monte Carlo approximations of the

filtering distributions, and the mean of the filter – called the analysis mean – is an optimal

estimate of the true state.

When a numerical filter performs reasonably well, we expect the analysis mean to

be sufficiently near the true state. The filter may also be used to give an uncertainty

associated with the analysis mean, most commonly in terms of the covariance of the filter.

One of the important factors affecting this uncertainty is the observational uncertainty

and we focus on this aspect in this chapter. Some of the other factors affecting the filter

performance include observational frequency, the sparsity of the observations, and the

dynamical characteristics of the system itself.

We propose to use the analysis mean xa
j obtained over time as an approximation of the

state xj of the true underlying trajectory, in order to compute the approximations of the

true Lyapunov vectors and Oseledets’ subspaces. This leads to our proposed modification

of Ginelli’s algorithm discussed in section 4.2.2: the (pseudo-)trajectory we use in this

algorithm now consists of the analysis means {xa
j} at times tj obtained from a filtering

algorithm. In order to get the tangent linear propagatorMj,j+1 over the time interval

(tj, tj+1), equations (4.1)-(4.2) are solved with xa
j as the initial condition for (4.1) and with

Bj as the initial condition for (4.2). The other steps are exactly the same as described in

the previous section 4.2.2.
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This allows us to compute the LVs and the sub-spaces defined by them from the

estimated trajectory obtained from any general data assimilation method. However, this

comes with a caveat that nonlinear filtering algorithms result in an estimated trajectory

that is not a dynamical trajectory of the model itself, i.e., there is no initial condition such

that if integrated forward in time contains the filter analysis means obtained over time.

But it is close to the true state over time which can be quantified by the l2 error over

time or other popular metrics such as RMSE. We used ensemble Kalman filter (EnKF) as

our choice of filtering algorithm to obtain the analysis mean trajectory. We apply this

method to two models L63 and L96. Further details of EnKF and the data assimilation

experimental setup are given in subsection 4.2.6.

4.2.4 Lyapunov Vectors from perturbed trajectory

Any filter-based trajectory violates the criteria of being the dynamical trajectory of the

system, as illustrated in figure 4.2. Even when the deviations eaj of the analysis from the

true state, given by eaj = xa
j − xj are small, it is not a priori clear how they may affect

errors in the computed LVs, through their effect on the Jacobian matrix in equation (4.2).

This motivates us to investigate the stability of the LVs from a more general perspective.

Figure 4.2: Schematic picture illustrating the idea of how filter estimated trajectory is
only an approximation of the true underlying trajectory.

To systematically investigate the stability of numerically calculated LVs about the

reference trajectory, we generate a perturbed or noisy version of the state xj at each point

on the trajectory by adding random perturbation to the true underlying trajectory in the

following way,

x̃j = xj + ϵj, with ϵj ∼ N (0, σ2In) , (4.13)
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where ϵj is randomly sampled from a standard normal distribution of covariance σ2In at time

tj and x̃j is then used as state estimates in the computation of the BLVs and CLVs at the

respective time. We refer to the obtained trajectory as a perturbed orbit for the respective

noise level σ in future discussions. We show the results for σ ∈ {0.1, ..., 0.5, 1.0, ...5.0} for
the Lorenz-63 model and for σ ∈ {0.1, ..., 0.5} for the Lorenz-96 model.

We compute all the BLVs and CLVs about the true and the perturbed trajectories

over a common interval using the same procedure mentioned in section 4.2.2. The above

notion of sensitivity to the perturbations in the underlying dynamical trajectory allows us

to think of the analysis mean trajectory as a perturbed trajectory obtained from the true

trajectory where the perturbations follow the unknown error statistics of the difference

between the true state and analysis mean over time. We perform sensitivity analysis for

Lorenz-63 and Lorenz-96 for n = 10, 20 and 40, which we introduced earlier chapters in

section 2.2. As far as we know, this question of the sensitivity of BLVs and CLVs to

perturbations in the space of trajectories has not been investigated either numerically

or mathematically. We note that the results about their Hölder continuity with respect

to initial conditions are quite distinct from the question of continuity with respect to

perturbations of the whole trajectory [32, 63, 5].

4.2.5 Models

We apply our analysis to the compute the LV of use Lorenz-63 and Lorenz-96 [58, 61],

which we introduced earlier in chapter 2, section 2.6. We briefly describe these two model

here for the sake of ease. The standard Lorenz-63 model is given by the following set of

equations

dx

dt
= σ (y − x) ,

dy

dt
= x (ρ− z)− y ,

dz

dt
= xy − βz , (4.14)

with the parameters (σ, ρ, β) = (10, 28, 8/3) for which the system exhibits chaos and has

the well-known butterfly-shaped attractor.

Lorenz-96 is a n dimensional nonlinear dissipative model with a constant external

forcing term. It mimics the dynamics of a meteorological scalar variable along the latitude.

The model is given by the evolution of a set of n ordinary differential equations given

below:

dXk

dt
= Xk−1 (Xk−2 −Xk+1)−Xk + F (4.15)

where Xk is the kth component of the n-dimensional state and with periodic boundary

conditions Xk+n = Xk. We choose n=10, 20 and 40. For the specific value of forcing F = 8

for n = 40 dimensions, it is a chaotic system with 13 positive Lyapunov exponents and
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has a Kalpan-Yorke dimension close to 28.4.

4.2.6 Details of computing Lyapunov Vectors from filtered and

perturbed trajectories

For the Lorenz-63 model in equation (4.14), we start with a random initial condition and

integrate for a long transient up to t = 500 to reach the attractor. We then choose this point

on the attractor as the initial condition for the true orbit which is generated by numerically

integrating the ODE for a total time T = 350 with δt = 0.002 using the Runge-Kutta 4th

order scheme and storing the state every ∆t = 0.01. To generate observation for the data

assimilation experiment, we choose to observe only the Y coordinate at every ∆t = 0.01

with noisy observations given by yj = Hxj + ηj with H = [1, 0, 1] and ηj ∼ N (0, µ2). We

show the results for µ = 0.1, 0.3, 0.5, 0.7, 0.9. In order to start the assimilation, we use an

arbitrary initial distribution N (x0 + 6× 13, 2.0× I3) at tj=0, where 13 is a vector with all

entries as 1, from which we generate N = 25 ensemble members to initialize the EnKF

algorithm. We then assimilate the previously generated observations yj performing 35000

assimilation steps. We didn’t use any inflation and localization for this simple case of

Lorenz-63 ODE. Neglecting the first 5000 assimilation steps, we perform the computation

of both BLV and CLV over a smaller interval excluding the transient intervals as mentioned

below.

For the computation of LVs using the algorithm explained in section 4.2.2, the forward

transient [0, I], the sampling interval of interest [I, F ], and the backward transient [F,E]

are all chosen to be equal to 100 which was found to be sufficient for the convergence to

BLVs. The QR decomposition is performed every l = 1 step. For the choice of initial

perturbations B0, we use the standard orthonormal basis vectors and integrate them

forward in time using the tangent linear equations described in section 4.2.4.

For the case of the Lorenz-96 model, we perform data assimilation for 40-dimensional

model, where we assimilate 20 observations taken at the evenly indexed components of

the full state every time step of ∆t = 0.05. We then generate the observations using

yj = Hxj + ηj with H being the appropriate matrix to observe the alternate coordinates

and ηj ∼ N (0, µ2I20) for the observation noise statistics. The initial condition for the filter

was chosen to be the distribution N (x0+5.0×13, 1.0×I40) which is biased, as may happen

often in practice. We implement covariance localization using the localization radius r = 4

when performing the analysis as it is necessary when we have partial observations with

ensemble sizes smaller than the system dimensions [17]. We vary µ as a parameter to study

the dependence on observation noise in the reconstruction of the trajectory by relating it

to the RMSE of the obtained analysis trajectory.

To study the dimension dependence of sensitivity in L96, we perform similar numerical
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experiments in dimensions equal to 10, 20 and 40. We generate a long trajectory of length

T , where for dimension 10 and 20, we choose T = 600 whereas for 40 we choose T = 1000,

all obtained using the solver time step of δt = 0.01 while saving the states every ∆t = 0.05.

For dimensions 10 and 20, we chose the forward transient interval [0, I] and backward

one [F,E] to be of length 200 whereas for dimension 40, we choose them to be 400, and

the interval of interest [I, F ] is of length 200. The QR decomposition is performed every

l = 5 steps. The lengths of forward and backward transients were chosen based on the

convergence of BLVs for the respective systems.

4.2.7 Comparison metrics

We compare the individual LVs and the Oseledets subspaces obtained using the perturbed

or the assimilated trajectories with those obtained from the true underlying trajectory. To

understand the sensitivity of the individual LVs with respect to the perturbation strength

σ, we use the angle between the ith Lyapunov vector computed from the original trajectory

and the perturbed trajectory. Note that we compute the Lyapunov vectors over a length

of trajectory (of course discretely sampled) and at each of the phase space points of that

trajectory, we compute the cosine of the angle between the LVs of the true trajectory

and LVs of the approximate trajectory. We then plot the median of the angle computed

over the sampling interval along with the error bars which represent the 25th and 75th

percentile of the distribution of the angle obtained.

A subspace of dimension k in Rn admits an infinite number of possible basis vectors.

Thus, even though the individual LVs from the perturbed trajectory and those from the

true trajectory may differ, the Oseledets subspaces spanned by them may still be “similar.”

In order to quantify this “similarity” and understand the sensitivity of the Oseledets

subspaces, we use the principal angles as described in detail below.

Principal angles [43] are defined as a sequence of minimum angles between two unit

vectors corresponding to each of the two subspaces, such that the unit vectors are chosen

to minimize the angle between them while being orthogonal to all the previous unit vectors

obtained in their respective subspaces. Mathematically, for two subspaces P and Q,
the principal angles are defined by an m-tuple of angles θ(P ,Q) = [θ1, θ2, .., θm], where

m = min(dim(P), dim(Q)) and θk is defined by,

cos(θk) = max
pk∈P

max
qk∈Q
|pTk qk| subject to ||pk|| = ||qk|| = 1 , pTk pi = qTk qi = 0, i < k.

(4.16)

When the set of angles between two subspaces are all small, they are closely aligned and

have a strong degree of similarity. On the other hand, if the angles are large, this implies

that the subspaces are more dissimilar and have less overlap. The two subspaces are
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identical (when they have the same dimension) or one is fully contained in the other (when

they have different dimensions) if and only if all the principal angles are zero.

In order to investigate the quality of subspaces we obtain from the approximate LVs, we

study i ≤ k principal angles between the subspace spanned by the first k BLVs computed

from the true and the perturbed trajectory. The aim is to understand whether a set

of k-BLVs have a common lower dimensional subspace. These results are discussed in

section 4.3.4. Similar to the relative angle of BLVs and CLVs, we compute the principal

angles for different points along the trajectory and plot the median along with 25th and

75th percentile for the confidence intervals, see, e.g., figure 4.5).

There are several methods for calculating the principal angles between two subspaces,

including the singular value decomposition (SVD) and the QR decomposition. If the

two orthogonal bases pi and qi are arranged along the columns of two matrices P and Q

respectively, we let P TQ = UΣV T denote the singular value decomposition of P TQ. Then

the cosines of the principal angles are the diagonal elements of the matrix Σ.

4.3 Results and discussion

We now discuss the results of using the algorithms described above, by comparing the

true LVs and the LVs obtained from the assimilated and the perturbed trajectories for

both Lorenz-63 and Lorenz-96 systems. In section 4.3.1, we first describe the results

obtained from using assimilated trajectory for different values of observation noise strength

µ. We plot the median of the angle between the true vectors and the ones obtained from

the assimilated trajectory along with a confidence interval denoting the 25th and 75th

percentile, which is obtained from all the points at which we compute the LV in the time

interval [I, F ] along the trajectory. In section 4.3.2 and 4.3.3, we present the results of

the exploration of the sensitivity of the BLVs and the CLVs to the noise strength of the

perturbations in the underlying true trajectory.

For Lorenz-96 in 40 dimensions, we discuss, the approximations of the Oseledets

subspaces obtained using the assimilated and the perturbed trajectories by plotting the

principal angles between k-dimensional subspaces spanned by the first k BLVs obtained

from the true and the approximate trajectory for k = 2, 5, 10, 15, and 20. To further un-

derstand the quality of recovered subspaces from the approximate trajectories, we compare

them against principal angles between randomly generated k-dimensional subspaces in

section 4.3.4. We find that the angles for randomly generated subspaces are significantly

larger than those between the true and perturbed Oseledets’ subspaces.
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4.3.1 BLVs and CLVs computed from assimilated trajectories

Figure 4.3 shows the angles between the Lyapunov vectors obtained from the true trajectory

with those from the assimilated trajectory for Lorenz-63 model. In this case, we only

observe the y-coordinate. Left panel shows the angles for the BLV while the right one

is for the CLV. We first note that since BLV are orthonormal, two of these angles are

necessarily equal which happen to be those between the second and third BLV and they

are quite small even for the largest observational noise strength we have used. In addition

we note that the median of angle between the first - most unstable - BLV is also within 15

degrees and does not increase rapidly with the observation noise strength µ. The CLVs

show a similar behaviour but being non-orthonormal basis, all the three angles are distinct,

with the angle between the third - most stable - CLV being the smallest. The top axis

in these plots shows the RMSE averaged over the whole time interval of interest [I, F ]

of length 100 in this case. We later discuss the relation of these results to the case of

perturbed trajectory discussed in detail in section 4.3.2.

For Lorenz-96 in 40 dimensions, we performed assimilation by observing 20 alternate

coordinates. We compute all the 40 BLVs and CLVs from the assimilated trajectories for

different observation noise strengths µ and the LV index versus the error in the angle. In

figure 4.4 see that apart from the first few most unstable and the last few most stable

LVs, the angles between the true and approximate LVs are quite large, being greater

than 45◦. Even the angles for the first - most unstable - LVs are larger than 20◦. This

indicates that the LVs obtained from the assimilated trajectories provide a very poor

approximation of the true LVs. This behavior is quite distinct from the low-dimensional

Lorenz-63 model for which the assimilated trajectory could be used to obtain a significantly

better approximation of the true LVs, as discussed above.

Even though the individual LVs are not approximated well, it may be possible that

the subspaces spanned by these vectors may have significant overlap, which is exactly

the question of approximation of Oseledets’ subspaces. We now investigate this question,

using principle angles (PA) between these subspaces.

In figure 4.5, we plot the n principal angles between k-dimensional Oseledets’ subspaces

obtained from the assimilated trajectory and the true Oseledet’s subspaces, for k ∈
{2, 5, 10, 15, 20}, for three different values of observational noise. We see that with an

increase in the subspace dimension k, the number of principal angles which are smaller than

a certain threshold, say 20◦, increase almost linearly with n. For example, for k = 15 and

µ = 1.0, there are around 11 angles less than 20◦. This indicates within the 15-dimensional

Oseledets’ subspace defined by the first 15 approximate LVs, there is a 11-dimensional

subspace (not necessarily Oseledets’ space) which is within 20◦ of the true 11-dimensional

subspace. With the increase in µ, the relative angle increase systematically for all the P.A.

The increase is more prominent for a higher P.A. index.
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(a) Angle θ between the true BLVs and those recovered from the analysis
trajectory
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Figure 4.3: The figure shows the angle θ (in degree) between the true LVs and those
recovered from the analysis trajectory, for the BLVs (top) and the CLVs (below) for the
Lorenz-63 model, for different levels of observational noise µ (bottom axis) along with the
corresponding RMSE (top axis) of the analysis trajectory. The dots represent the median
and the error bars represent the 25th and 75th percentiles.

To summarize, recovering individual vectors from assimilated trajectories is not possible

except for the first few and the last few LVs. But embedded within any high dimensional
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(a) Angle θ between the true BLVs and those recovered from the analysis
trajectory
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(b) Angle θ between the true CLVs and those recovered from the analysis
trajectory

Figure 4.4: The figure shows the angle θ (in degree) between the true LVs and those
recovered from the analysis trajectory, for the BLVs (left) and the CLVs (right) for the
40-dimensional Lorenz-96 model. Different lines are for different observational noise levels
µ. The dots represent the median and the error bars represent the 25th and 75th percentiles.

Oseledets’ subspace, there are lower dimensional subspaces which are close to the true

subspaces. In order to understand this behaviour more clearly, we now study the dependence

of this approximation on the strength of perturbation of the trajectories.
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Figure 4.5: The set of principal angles between k-dimensional Oseledets’ subspace and
the corresponding subspace recovered from the analysis trajectory for different values
of observational noise level µ = 0.3, 0.7, 1.0 for k = 2, 5, 10, 15, 20 for Lorenz-96 in 40
dimensions.

Figure 4.6: The first and the last component of the 1st and 3rd CLV plotted in XZ
coordinates along the trajectory for Lorenz-63.

4.3.2 Dependence on perturbation strength for Lorenz-63

We first show in figure 4.6 the geometrical structure of the 1st and 3rd CLV by plotting the

first and the last component of the respective vectors in the XZ-plane. We observe that the

orientation of the vectors seems to change continuously as one moves along the trajectory.

In general, the mutual angle between any two CLVs change along the trajectory in the

phase space. It was found recently in [15] that these geometrical features such as the

mutual angles between CLVs contain additional information, unlike FLVs and BLVs which

are orthogonal basis vectors of the tangent space. Whenever the trajectory jumps from the

right wing of the attractor to the left and vice-versa, the first two CLVs become parallel
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Figure 4.7: Attractor of Lorenz-63 with color indicating the cosine of the angle between
the 1st and the 2nd CLV for true trajectory (σ = 0.0) (left) and perturbed trajectory for
σ = 0.5 (right).
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Figure 4.8: The angle θ between the true and LV from the perturbed trajectory for different
perturbation strength σ for Lorenz-63. The left and right panels show the results for
the BLVs and the CLVs respectively. The dots represent the median and the error bars
represent the 25th and 75th percentiles and the different line types for different LVs.

and anti-parallel respectively. In figure 4.7, we use colors to plot the cosine of the angle

between the first two CLVs over the attractor. We also plot the same for the perturbed

trajectory for perturbation strength σ = 0.5, which has no point on the attractor with

probability 1, but the angle between the first two CLVs computed from the perturbed

trajectory still captures this geometrical information, although we get a fuzzy picture of

attractor using the perturbed trajectory as we increase the perturbation strength σ.

To study the dependence on perturbation strength σ, we now plot in figure 4.8 the

angle between the LVs about the true trajectory and the perturbed trajectory as a function

of the noise strength σ, for the three Lyapunov vectors. The relative angle between the

true and the perturbed BLV and CLV increases gradually as we increase σ with a constant

slope. The 1st and 2nd BLV have the same rate, whereas the rates are different for the

1st and 2nd CLVs. We also plot the absolute error in the exponents computed from the
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perturbed trajectory and the original trajectory. The errors in the exponents obtained are

of the order 0.2, this tells us that they are almost unaffected by the perturbation when

computed from perturbed trajectories.

4.3.3 Dependence on dimension and perturbation strength for

Lorenz-96
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Figure 4.9: Angle θ between the individual true and recovered BLVs (left) and CLVs
(right) for different perturbation strength σ for Lorenz-96 in 10, 20 and 40 dimensions, in
the top, middle, and bottom rows, respectively.

102



We now describe the results for the sensitivity of the LVs for Lorenz-96. In figure 4.9,

we plot the relative acute angle between the LVs from the true and perturbed trajectory

for both BLVs and CLVs for Lorenz-96 for dimensions n = 10, 20, and 40. Similar to

results in the previous section 4.3.1 about LVs from assimilated trajectories, we observe

that even with a small amount of noise strength, the individual vectors quickly misalign

from the true vectors, which is quite different compared to Lorenz-63. Only the first few

most unstable vectors and the few most stable vectors corresponding to the two opposite

ends of the Lyapunov spectrum have significant projection along the true vectors. For

the intermediate BLVs the angles approximately lie in the interval [45◦, 90◦]. The CLVs

follow a similar picture as the BLVs for the few most unstable directions and for the stable

directions. The CLVs for n = 10 and 20 seem to have smaller errors than their BLV

counterparts. The error in angle also increases systematically with increasing perturbation

strength σ. The effect of dimension for this extensively chaotic system is clearly evident

by the degrading sensitivity of both the BLVs and CLVs we double the dimension from

n = 10 to 20 and then to 40.

When applying Lorenz-96 in various dimensions, we observe increased sensitivity as

the dimensionality expands. Both backward and covariant Lyapunov vectors exhibit high

sensitivity, resulting in minimal errors for only a few unstable and stable vectors at the

extremes.

In figure 4.10, we also plot the exponents for the true and the perturbed trajectories

for different values of observational noise strength σ. The inset shows the absolute errors

in the exponents obtained from the perturbed trajectories from the true exponents. We

notice that these absolute errors are small of the order of 0.1 for n = 20 and 40 and 0.2

for n = 10 which suggests that the exponents themselves are not as sensitive as the BLVs

and the CLVs. The relative absolute errors in the exponents do not seem to follow any

trend for different values of σ. This shows that the Lyapunov spectrum is quite robust to

the perturbations in the underlying trajectory.

4.3.4 Oseledets’ subspaces spanned by the LVs for different

perturbation strengths

We now move towards understanding Oseledets’ subspaces recovered from the perturbed

trajectories instead of the individual vectors by computing the principal angles between

the respective subspaces obtained from the true and the perturbed trajectories. Figure 4.11

shows the PA for a few k-dimensional subspaces for k = 2, 5, 10, 15, 20 over the sampling

interval [I, F ] for n = 40. The behaviour is very similar to the case of using assimilated

trajectory that was discussed in section 4.3.1 in figure 4.5. In particular, there are a

majority of small principal angles within 30◦ for k = 5 onwards, suggesting that the

103



1 3 5 7 9
i 

4

3

2

1

0

1
i

2 4 6 8 10
0.00

0.05

0.10

0.15

0.20
i

i

= 0.1
= 0.2

= 0.3
= 0.4

= 0.5
truth

1 3 5 7 9 11 13 15 17 19
i 

5

4

3

2

1

0

1

i

5 10 15 20
0.000

0.025

0.050

0.075

0.100

i
i

= 0.1
= 0.2

= 0.3
= 0.4

= 0.5
truth

1 4 7 10 13 16 19 22 25 28 31 34 37 40
i 

5

4

3

2

1

0

1

2

i

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

i
i

= 0.1
= 0.2

= 0.3
= 0.4

= 0.5
truth

Figure 4.10: The Lyapunov exponents computed from perturbed trajectories for Lorenz-96
in 10(top left), 20 (top right) and 40 (bottom) dimensions. The inset shows relative
absolute errors from the exponents of the unperturbed trajectory.

subspaces computed from the perturbed trajectory have significant overlap with the

subspaces spanned by the true BLVs. As earlier, the angles increase with increasing

perturbation strength σ.

The merits of studying the principal angles are revealed in the fact that when the angle

between the individual BLVs from the perturbed trajectory is quite different, the unstable

subspaces computed from them do have some similarity with the subspace spanned by

the unstable vectors. When using subspaces instead of actual vectors, the BLVs from

perturbed or approximate trajectories might still present some merit in capturing the

unstable or stable Oseledets’ subspaces. To emphasize this point further, we also plot the
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Figure 4.11: The top and the bottom panel shows principal angles (PA) between the k-
dimensional Oseledet’s subspace and the corresponding subspace recovered from perturbed
trajectory for k = 2, 5, 10, 15 and 20. The line styles denote different σ values used,
the dots represent the median of the ith PA computed over the number of points in the
sampling interval with the bars are 25th and 75th percentile. For comparison, the bottom
panel shows the median of PA between a k-dimensional Oseledet’s subspace and a random
subspace of the same dimension using 100 realizations of the random subspaces. The bars
represent the median with the 25th and 75th percentile.
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principal angle between a k-dimensional random subspace and the Oseledet’s subspace

from the ture trajectory. We see the number of obtained P.A. which are smaller than

30◦ are very small compared to the ones obtained from the assimilated and perturbed

trajectories and these angles increase linearly with index which is quite distinct from the

case of the approximate Oseledets’ subspaces.

4.4 Summary

This paper focuses on two key questions pertaining to the computation of Lyapunov vectors

when complete knowledge of the true underlying trajectory for a dynamical system is not

available. Lyapunov vectors are state-dependent and their numerical computations using

the commonly used algorithms by [88, 39] require the underlying trajectory or the initial

condition along with the model for the system from which the trajectory can be generated.

These algorithms rely crucially on a long trajectory for the convergence to the Lyapunov

vectors. This poses a major challenge for chaotic systems since even a small error in initial

conditions leads to a totally different trajectory.

The first question that we address is how to use partial and noisy observations in order

to compute an approximation of the Lyapunov vectors. We propose a methodology for

this purpose, combining the algorithm of [39] with the EnKF. Specifically, using EnKF for

filtering, we use Ginelli’s algorithm [39] with the filter mean as an approximate pseudo-

trajectory and the model linearization between the assimilation times. We demonstrate

the efficacy of the proposed idea in the context of low dimensional systems by applying

it to Lorenz-63 model using only y-coordinate observations. On the other hand, for

high-dimensional chaotic ODE like Lorenz-96 in various dimensions above 10, the results

show that apart from a few most stable and most unstable directions, the Lyapunov

vectors are very sensitive and cannot be approximated well using the filter mean as an

approximate trajectory.

In order to understand the errors and biases in the recovered Lyapunov vectors, we

naturally investigate the second question: how does the perturbation strength affect the

LVs obtained from approximate trajectories. In particular, we explore the sensitivity of

the numerical computation of both the BLVs and the CLVs to general perturbations in

the underlying trajectory. In small dimensions, the results for Lorenz-63 show that the

recovered vectors are quite close to the true ones, even for significant perturbation strength.

This naturally explains the efficacy of recovering the LVs from filter estimates. On the

other hand, the results for Lorenz-96 suggest that most of the vectors, except the most

stable and most unstable, are highly sensitive to the perturbations for higher-dimensional

dynamical systems. This is consistent with a very similar conclusion for LVs obtained

from the filter estimates. In addition, using Lorenz-96 in different dimensions, we find that
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this sensitivity grows with the number of dimensions.

Using Lorenz-96 for different dimensions, we also find that the sensitivity is dependent

on the dimension of the system. We find that for both the backward and covariant

Lyapunov vectors were found to be very sensitive and consequently, only the first few most

unstable vectors and the last few most stable vectors had small errors.

The Lyapunov vectors span nested subspaces called Oseledets’ spaces. Thus, even in

cases where the individual Lyapunov vectors recovered from a perturbed trajectory are not

a good approximation of the true LVs, we investigate whether the Oseledets’ subspaces

are approximated well. In order to quanify this approximation, we studied the principal

angles between the recovered and the exact Oseledets’ subspaces. Our results suggest

that these subspaces are less sensitive compared to the individual vectors themselves with

respect to the perturbations in the trajectory. We support this claim by showing that the

principal angles between random subspaces are significantly larger than those between the

recovered and exact Oseledets’ spaces.

The sensitivity of the BLVs and CLVs was shown for perturbations generated from

a simple Gaussian distribution. The effect of perturbation statistics itself could lead

to different statistics. Although exact error statistics cannot be obtained in the actual

application as one does not know the true underlying orbit, we can use another important

object called ensemble variance which is of the same order as the error, for a reliable data

assimilation system [2].

An important direction for future research would be to investigate the sensitivity

of the Lyapunov vectors in different contracting and expanding regions of the phase

space. This may better capture the local sensitivity accounting for the variations in the

local stable and unstable subspaces over different points on the attractor of the system.

Extending the analysis discussed in this work to the case where model errors are present

is another interesting direction for future work. Applying a similar analysis to PDEs and

high-dimensional models with multiscale dynamics and spatial structures would be highly

relevant to practical problems such as those in earth sciences.
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