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Abstract

Topological quantum field theories encode an abundance of algebraic data: codimension
p operators have an Ep-algebra structure. Motivated by this, we study the deformation
theory of En-structures.

For a fixed ground field k, we use the framework of m-proximate formal moduli
problems developed by Jacob Lurie to study the formal moduli of En-algebras in: a) k-
module spectra and b) k-linear ∞-categories, up to Morita equivalences of En-algebras,
as well as equivalences of En-algebras in the appropriate categories. Two En-algebras in
a symmetric monoidal ∞-category are Morita equivalent if the higher category of n-fold
right-modules over them are equivalent. Our main results are as follows:

1. The functor classifying the deformations of a homologically bounded below En-
algebra over k (upto Morita equivalences) is a formal moduli problem given by its
En-Hochschild cohomology

2. The functor classifying deformations of an En-monoidal k-linear ∞-category (upto
Morita equivalences) which is Morita equivalent to the En-monoidal k-linear ∞-
category of right modules over En+1-algebra B is a (n+2)-proximate formal moduli
problem. The corresponding formal completion is given by the En+1-Hochschild
cohomology of B. Convention, E0-monoidal category = category; Morita equiva-
lence of E0-monoidal categories = equivalence of categories.

Assuming B is homologically bounded below and considering deformations over the
formal power series ring k[[t]]: the space of deformations is homotopy equivalent
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to the space of k[β]-linear structures on RModn
B. Here β is a variable in degree

(−n− 1).

Being a formal moduli problem implies that the formal neighbourhood is described by
‘solutions to Maurer-Cartan equation’.
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Chapter 1

Introduction

1.1 Preface

Consider an open subspace of the n-dimensional Euclidean space which is diffeomorphic
to the standard unit open ball, called an n-disk. For every integer m ≥ 0, there is an
associated space of embeddings of m-many n-disks in another n-disk, denoted E(n;m)

The connectivity of E(n;m) increases with n: E(1;m) is not connected, E(2;m) is con-
nected, E(3;m) is simply connected and so on. In general, the connectivity of E(n;m)

is related to the connectivity of the (n− 1)-dimensional sphere.

The collection of all these spaces {E(n;m1) |m1 ≥ 0} has a natural ‘composition
law’:

E(n;m)× E(n; p1)× · · ·× E(n; pm) −→ E(n; p1 + · · ·+ pm)

In plain words, pick a point in the space E(n;m), i.e. an embedding of m-many
n-disks in another n-disk. Choose an arbitrary ordering on these m-many n-disks. For
every 1 ≤ i ≤ p, pick a point in E(n, pi), i.e. an embedding of pi-many n-disks in the
disk labelled by i. This process yields an embedding of p1 + · · · + pm-many n-disks in
another n-disk, i.e. a point in the space E(n; p1 + · · · + pm). This composition can be
schematically represented as a concatenation of trees
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1.1. PREFACE

. . . . . .

... ...

... ...

... ...

1 i m

p1

pi

pm1

1

1

This collection of spaces along with this composition law is called the En-operad.
The En-operad encodes an algebraic structure, the structure of an En-algebra. The
archetypal example of an En-algebra is the n-fold loop space of a topological space.
Indeed, it is well known that the concatenation of based loops in a topological space
is homotopy associative, endowing the based 1-fold loop space with the structure of a
homotopy associative algebra in spaces. The structure of an E1-algebra over a field k

is equivalent to that of an A∞-algebra or a differential graded (dg) associative algebra.
The structure of an E∞-algebra over a field of characteristic zero is equivalent to the
structure of a commutative dg algebra.

The intermediate cases 1 < n < ∞ interpolate between the non-commutative (n = 1)
and fully commutative (n = ∞) cases. As n increases, so does the connectivity of the
spaces E(n;m). This observation translates to the increasing commutativity of the
multiplication with increasing n. The case n = 1 reflects the fact that the 0-sphere
is not connected. While the case of n = ∞ reflects the contractibility of the infinite
dimensional sphere. The increasing commutativity of multiplication with increasing n

reflects the increasing connectivity of the n-sphere with increasing n.

Topological quantum field theories are closely related to En-structures. The algebra
of local observables in an n-dimensional TQFT has an En-structure; extended operators
also have a similar structure. The local operators have a multiplication which is given by
the OPE data of the theory: computed by ‘integrating the appropriate fields’ over certain

2



1.1. PREFACE

cycles in the space of configurations of points in discs. This endows local observables
with an En-structure. More generally, one may include defects/extended operators to
obtain a richer structure. For example, the OPE data corresponding to line operators is
an En−1-structure. Crudely, this boils down to the fact that a line has one less direction
to move in compared to a point. In fact, the algebraic data of all the extended operators
in a TQFT can be organised to form a higher category. This observation serves as a
motivation for this work. Broadly, we would like to study extended operators in TQFTs
via deformation quantization of the algebraic structure of the corresponding classical
theory. This leads us to the study the formal deformations of En-structures.

The problem at hand is to classify the deformations of B, a given algebraic object.
We call this the deformation problem of B. We follow an approach to deformation theory
via dg Lie algebras, as promoted by Drinfeld, Feigin, Kontsevich and others. We note
that over a field of characteristic zero, there is a dg Lie algebra g, associated to every
deformation problem.1 Given a dg Lie algebra, there is the Maurer-Cartan equation

dµ+
1

2
[µ, µ] = 0

Each deformation of B corresponds to a Maurer-Cartan element, i.e. a solution to
the above equation, in the associated dg Lie algebra gB. We say that gB controls the
deformations of B. This observation maps the problem of classifying deformations of B
to the problem of classifying Maurer-Cartan elements in gB.

In what follows, we work over an arbitrary field k. Consequently, the dg Lie approach
to deformation theory doesn’t exactly apply here. In [Lur11b], Jacob Lurie developed a
framework of deformation theory which not only generalizes this approach to arbitrary
fields, but also is flexible enough to allow deformations over non-commutative bases. We
review this framework in §2.2.2.

In the context of En-structures over a field of characteristic zero, the correspondence
1This observation has been independently sharpened to a theorem by Lurie and Pridham. See

[Lur11b, theorem 2.0.2]
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1.1. PREFACE

between deformations and Maurer-Cartan elements is not 1-1. An arbitrary Maurer-
Cartan element may induce a curvature term, i.e. not every Maurer-Cartan element can
be associated to an honest deformation. We illustrate this in the case n = 1, using the
language of A∞-algebra:

An A∞-algebra consists of a graded k-vector space V and a sequence of k-linear maps
{mi : V ⊗i −→ V }i≥1 with deg(mi) = 2− i, such that the following holds for all N ≥ 1

∑

r,t≥0
N=r+s+t

(−1)r+stmu(1
⊗r ⊗ms ⊗ 1⊗t) = 0

where u = r + 1 + t. The above quadratic equation encodes the homotopy coherent
associative multiplication on V . In particular, when N = 1 the above sequence of
equations gives a differential on V : m2

1 = 0. We recover associative algebras by assuming
V is concentrated in degree zero and mi = 0 ∀ i ̸= 2.

In this language, a deformation of the A∞-structure is a deformation of the maps
{mi}i that satisfies the above equation.2 For instance, a first order deformation of this
data is given by a sequence of maps {mi + ϵm′

i}i≥1 such that ϵ2 = 0 and

∑

r,t≥0
N=r+s+t

(−1)r+st(mu + ϵm′
u)(1

⊗r ⊗ (ms + ϵm′
s)⊗ 1⊗t) = 0

Given the {mi}i≥1 already satisfy the above equation, we are left with the condition that

∑

r,t≥0
N=r+s+t

(−1)r+stmu(1
⊗r ⊗m′

s ⊗ 1⊗t) +
∑

r,t≥0
N=r+s+t

(−1)r+stm′
u(1

⊗r ⊗ms ⊗ 1⊗t) = 0 (1.1)

The dg Lie algebra associated to this deformation problem is the Hochschild cochain
complex of the A∞-algebra, shifted by 1 so that the Gerstenhaber bracket becomes a Lie
bracket. Moreover, equation 1.1 precisely says that {m′

i}i≥1 must be a solution to the
2We refer the reader to [PS94, KS02, KL09] for further details on the deformation theory of A∞-

algebras.
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1.1. PREFACE

Maurer-Cartan equation (upto terms of order ϵ2) in the Hochschild cochain complex.
In [KL09, example 3.14] it was demonstrated that an arbitrary Maurer-Cartan element
in the Hochschild complex of a A∞ -algebra may deform the A∞-algebra to a curved
A∞-algebra, i.e. introduce a map m0 : k −→ V in the deformed A∞-algebra. This is
a problem because in this case m2

1 = m0. A non-zero m0 forces us out of the world of
homological algebra.

Therefore, the first question should be about characterizing the situations where
Maurer-Cartan elements do not induce a curvature in deformations.

When can we gauge away the curvature?

Addressing this question over the ring of formal power series k[[t]] forms the core moti-
vation behind this work.

In order to address the question about deformations over k[[t]], we begin by first
analyzing the broader problem of characterizing the infinitesimal moduli spaces of En-
algebras and En-monoidal ∞-categories. Following Grothendieck, we adopt the functor
of points approach to study these infinitesimal moduli spaces. The framework of functor
of Artin rings, developed by Schlessinger, is an approach to deformation theory using
the functor of points approach [Sch68]. A functor of Artin rings is a functor

X : CAlgart
k −→ Set

from the category of commutative local artinian k-algebras to the category of sets, such
that X(k) is a singleton set. Lurie’s framework of formal moduli problems is an adap-
tation of Schlessinger’s framework to the setting of derived, non-commutative algebraic
geometry. A functor of artinian (small) En-rings is a functor

X : Algn,small
k −→ S

from the ∞-category of En-algebra analogs of commutative local artinian k-algebras to

5



1.1. PREFACE

the ∞-category of spaces, such that X(k) is a contractible space. See [Lur11b] for details
(or §2.2.2 for a short review).

Given an E1-algebra B there are three associated natural deformation problems: a)
deform B as an E1-algebra upto equivalences, b) deform B as an E1-algebra upto Morita
equivalences (definition 3.0.1), and c) deform B as a module over itself, i.e. as an object
of LModB. It turns out that these three deformation problems are closely related. When
made precise, this relation can be expressed as a fiber sequence of functors of small E2-
rings (proposition 3.4.3).

ObjDefE2
B SimDef(RModB ,B) CatDefRModB

In the above sequence, the middle term corresponds to the deformation problem a),
the right-most term corresponds to the deformation problem b), the left-most term
corresponds to the deformation problem c).

Moreover, there is a fiber sequence of non-unital E2-algebras associated with the
above fiber sequence of functors.

B[−1] TB[−1] HH∗
E1
(B)

where TB is the tangent complex of B (definition 3.5.14), while HH∗
E1
(B) is the Hochschild

cohomology of B (definition 3.5.12). Think of these non-unital E2-algebras as the non-
commutative versions of the dg Lie algebras which control the above three deformation
problems.

In fact, the analogs of the three deformation problems exist for an En-algebra B, for
n ≥ 1: a) deform B as an En-algebra upto equivalences, b) deform B as an En-algebra
upto Morita equivalences, and c) deform the presentable (∞, n− 1)-category of (n− 1)-
fold iterated modules over B viewed as an object of the presentable (∞, n)-category of
n-fold iterated modules over B.

The preceding fiber sequence of non-unital E2-algebras becomes a fiber sequence of
the non-unital En+1-algebras

6



1.2. MOTIVATION: DEFORMATION QUANTIZATION

B[−1] TB[−n] HH∗
En
(B)

here TB is the tangent complex of B and HH∗
En
(B) is the En-Hochschild cohomology of

B.
This discussion is closely related to the work of John Francis on the deformations of

En-algebras [Fra13]. For B an En-algebra in a symmetric monoidal k-linear ∞-category,
theorem 1.1 of loc. cit established the existence of the preceding fiber sequence of
non-unital En+1-algebras. We recover the preceding fiber sequence of non-unital En+1-
algebras through corollary 3.4.5. See § 3.5.2 for a detailed discussion connecting our
approach to Francis’.

The fiber sequence of functors of small En+1-rings associated to an En-algebra B

(proposition 3.4.3) and the fiber sequence of associated non-unital En+1-algebras of corol-
lary 3.4.5 are central objects of this work. The main results of §3.5 depend vitally on
the interrelation between the three deformation problems associated with an En-algebra
B.

1.2 Motivation: Deformation quantization

A major inspiration for this work arises from the objective of studying TQFTs as a
deformation quantization of classical theories. Broadly, deformation quantization is a
process which takes a commutative algebraic structure and gives a non-commutative
algebraic structure.

The field of deformation quantization began several decades ago through the work
of Bayen, Flato, Frøndsal, Lichnerowicz, and Sternheimer [BFF+78]. Over time, this
area has seen numerous significant contributions. Our intention here is not to provide
a detailed historical overview but rather to recall the aspects directly pertinent to this
thesis.

In his seminal work, Maxim Kontsevich proved that any finite dimensional Poisson
manifold admits a deformation quantization [Kon03], i.e the commutative algebra of

7



1.2. MOTIVATION: DEFORMATION QUANTIZATION

functions on a Poisson manifold can be canonically deformed into an associative algebra.
Given a smooth manifold M , a star product ⋆ on M is the structure of a R[[h̄]]-linear
associative multiplication on the algebra of smooth functions C∞(M). For every f, g ∈

C∞(M)

f ⋆ g = fg +
∑

i≥1

h̄iPi(f, g)

where Pi are bilinear maps which behave like differential operators in each component op-
erators. For f(h̄), g(h̄) ∈ C∞(M)[[h̄]], the star product is defined by h̄-linearity. [Kon03,
theorem 1.1] says that the set of equivalence classes of star products on a smooth man-
ifold is in bijection with the equivalence classes of Poisson structures depending on the
formal parameter h̄. Kontsevich obtained the result about deformation quantization of
Poisson manifold as a corollary of a much more general result about the quasiisomor-
phism of certain dg Lie algebras [Kon03, §4.6.2 Main Theorem], the Kontsevich formality
theorem.

In the article [Toë14], Bertrand Toën advocated a unified approach to deformation
quantization arising from derived algebraic geometry (developed in detail by [CPT+17]).
In this approach, deformation quantization of algebraic spaces is viewed from the point
of view of the deformations of the associated category of sheaves (equipped with an
appropriate monoidal structure).

Let X be a nice derived algebraic stack (eg. quotient of a commutative dg algebra
by a linear algebraic group). X admits a tangent complex TX , which is defined to be
the OX-dual to the cotangent complex. One defines the complex of n-shifted polyvector
fields on X

Pol(X,n) :=
⊕

i≥0

Γ(X, Symi
OX

(TX [−1− n]))

The Lie bracket on vector fields endows this complex the structure of a graded Poisson
dg-algebra where the Lie bracket has cohomological degree (−1 − n) and weight (−1).
The space of n-shifted Poisson structures on X is defined to be the space of maps of

8



1.2. MOTIVATION: DEFORMATION QUANTIZATION

graded dg-Lie algebras [CPT+17, definition 3.1.1]

Poiss(X,n) := MapdgLiegr
k
(k(2)[−1],Pol(X,n+ 1)[n+ 1])

where k(2)[−1] is the graded dg-Lie algebra which is k in cohomological degree 1, has
zero bracket and pure weight 2. Roughly, graded dg-modules over k are k-dg-modules
equipped with an action of k[ϵ] with deg(ϵ) = −1, ϵ2 = 0 and a direct sum decomposition
with respect to this action, called the weight decomposition.

One has the higher formality conjecture [Toë14, conjecture 5.3]: For n ≥ 0 an
integer and a nice derived algebraic stack X, the dg-Lie algebra ĤH

En+1
(X)[n + 1]

is quasiisomorphic to Pol(X,n)[n + 1]. Here ĤH
En+1

(X) ≃ EndL̂n(X)
(j∗OX) is the

formal version of the Hochschild complex of X, and L̂n(X) is the formal completion
along j : X −→ Ln(X), the natural map from X to the corresponding n-fold loop
stack of X, Ln(A) := Map(Sn, X). Here we view the topological n-sphere as a constant
derived stack. The conjecture can be interpreted as the statement that the En-Hochschild
complex of a nice derived algebraic stack is quasiisomorphic to the complex of n-shifted
polyvector fields. This conjecture reduces to Kontsevich’s formality theorem in the case
n = 0 [Kon03, §4.6.2]. The higher formality conjecture is known to be true when X is
the quotient of a cdga by a linear algebraic group [Toë13, corollary 5.4].

Our result on formal deformations (theorem 3.5.10) is an extension of the result of
Anthony Blanc, Ludmil Katzarkov and Pranav Pandit [BKP18, theorem 4.27]. It is in
the spirit of a result that would be required for the deformation quantization of algebraic
stacks. In ongoing work, we attempt to extend our result regarding formal deformations,
making it applicable to the derived category of a quasi-compact and quasi-separated
scheme. More precisely, we attempt to generalize the result to any derived category
which admits a single compact generator.

Following the argument of [Toë14, §5.3]: let X be a derived Artin stack for which
the formality conjecture holds. Given a n-shifted Poisson structure k(2)[−n − 2]

p−→

9



1.3. RELATION TO OTHER WORKS

Pol(X,n+1) on X, the formality conjecture gives a map k(2)[−n−2]
q−→ ĤH

∗
En+1

(X) −→

HH∗
En+1

(X). Now, if a version of theorem 3.5.10 holds for the derived category of X, it
will follow that q provides a formal deformation of the derived category of X, viewed
as an En-monoidal k-linear ∞-category. This deformation is the formal deformation
quantization of the pair (X, p).

Deformation quantization of an algebraic stack X equipped with a n-shifted Poisson
structure p was extensively discussed in [CPT+17]. The authors work in characteristic
zero and use the technical tools of formal algebraic geometry to define a deformation
quantization of the pair (X, p). The essential idea is to view X as a family of formal
derived stacks, which translated questions about the stack X into questions about certain
dg Lie algebras that encode the formal geometry of points of X. Given such a stack
X, there is an associated stack XDR, called the de Rham stack of X. As a functor on
the ∞-category of cdgas, XDR(A) := X(Ablack), where Ablack = π0(A)black. There is a
natural functor X −→ XDR that allows us to view X as a family of formal derived stacks
over XDR [CPT+17, corollary 2.1.9]. The authors define a certain sheaf of graded mixed
cdga BX over XDR (see [CPT+17, definition 2.4.11]) such that the ∞-category of perfect
complexes of OX-modules is equivalent to the ∞-category of perfect modules over BX ,
BX − Modperf

ϵ−dggr [CPT+17, Main result B]. The quantization of (X, p) is constructed
in terms of a deformation of the ∞-category BX − Modperf

ϵ−dggr , induced the n-shifted
Poisson structure p [CPT+17, definition 3.5.5]. One would expect that this construction
of the deformation quantization of the pair (X, p) and the one explained in the preceding
paragraph must coincide when both are valid.

1.3 Relation to other works

Throughout this work, we are over a ground field k. We study the deformations of En-
algebras in: a) the ∞-category of k-modules, b) the ∞-category of k-linear ∞-categories,
up to Morita equivalences (definition 3.0.1), as well as equivalences of En-algebras.
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1.3. RELATION TO OTHER WORKS

We situate our work in the context of deformations of monoidal categories.

1.3.1 Deformations of monoidal categories

Over the years, there has been a continuous interest in studying the formal moduli spaces
of algebraic objects: associative algebras [Ger64], abelian categories [Ane06, LVdB05],
prestacks of linear categories [VL18], A∞-algebras [PS94, KS02, KL09] dg-categories
[KL09] (equivalently, k-linear ∞-categories [Lur11b]). Following previous works [Dav97,
CY98, Yet98, Yet03], there has been a recent resurgence of interest to study deformations
of more intricate structures in the form of monoidal categories [PS22, ITC23, FGS24].
(Braided) Monoidal categories arise in the study of knot invariants and quantum groups
both of which are of interest to mathematicians and physicists alike. We summarise
some of these results and sketch a comparison with our work.

In [PS22], Piergiorgio Panero and Boris Shoikhet construct a generalization of the
Davidov-Yetter complex of a k-linear monoidal (dg-) category C as a totalization of
a 2-cocellular dg vector space. In fact, they show that this complex is an E2-algebra
[PS22, theorem 4.6] and conjecture a lift of this E2-algebra to an E3-algebra. They
define an abelian category of 2-bimodules over a k-linear bicategory [PS22, §3.6], and
show that the complex they constructed may be realised as the internal hom-object in
this category [PS22, proposition 3.14]. They argue that the third cohomology of this
complex may be identified with the equivalence class of infinitesimal deformations of
C [PS22, theorem 5.3]. We note that in their work they only consider deformations
of: a) the composition b) the monoidal product on morphisms c) the associator of
the monoidal structure and d) the left and right units of the monoidal structure. In
particular, the “set theoretic data” of objects and the monoidal structure on objects is
held fixed under deformations [PS22, §5.1]. They classify deformations up to equivalence
of monoidal categories, which is a strictly stronger notion compared to the notion of a
Morita equivalence of monoidal categories (definition 3.0.1): every monoidal equivalence
induces a Morita equivalence, while the converse need not be true.

11
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A large part of this thesis is devoted to studying the deformations of monoidal ∞-
categories upto Morita equivalences. Another difference between loc. cit. and this is that
here the “set theoretic” data is not held fixed under deformations. This means that some
objects may “disappear” under deformations. Let C be the ∞-category of right modules
over an E2-algebra B. It is reasonable to expect a map from the (space of) deformations
of C as defined by Panero-Shoikhet to the (space of) Morita deformations of C as defined
in this work (construction 3.2.1). Conjecturally, there is a natural map of E3-algebras
from the complex defined by Panero-Shoikhet to the E2-Hochschild cohomology of B,
HH∗

E2
(B) (definition 3.5.12). In fact, this map should factor via the natural map of

E3-algebras TB −→ HH∗
E2
(B) (see proposition 3.5.16), where TB is the tangent complex

of B (definition 3.5.14). Consequently, it seems reasonable to expect a natural functor
from the category of 2-bimodules of [PS22] to the underlying homotopy category of the
∞-category of bimodules over C (as defined in [Lur17, §4.3]). In this thesis we do not
study the deformations of monoidal ∞-category upto monoidal equivalences.

In [ITC23], Angel Toledo studies the deformations of a monoidal triangulated cate-
gories. The focus is on derived categories arising in algebraic geometry which admit an
essentially unique dg-enhancement. The strategy employed by Toledo involves construct-
ing a lift of the monoidal structure on a triangulated category to a (homotopy-truncated)
monoidal structure on the dg-enhancement, called a pseudo dg-tensor structure on the
dg-category [ITC23, §2.2]. Any pseudo dg-tensor structure on a dg-category induces
an associative monoidal structure in the homotopy 2-category of dg-categories [ITC23,
theorem 3.16]. As the name suggests, a pseudo dg-tensor structure is not compatible
with the homotopy theory of dg-categories, i.e it is not the right notion of a monoidal
structure on a dg-category. Nonetheless, the focus of Toledo’s work is tensor triangulated
categories, hence this notion suffices. Combined with Toën’s Morita theorem, Toledo
views this structure in terms of bimodules, proceeds to construct a double complex from
this data, such that the 4th cohomology of the corresponding total complex gives first
order deformations of the pseudo dg-tensor structure [ITC23, theorem 3.15]. To be pre-
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cise, only the associativity of the pseudo dg-tensor structure is deformed. In contrast
to [PS22], Toledo’s work takes into consideration the notion of homotopy equivalence of
dg-categories.

A difference between this thesis and Toledo’s work is that we focus on classifying
deformations up to Morita equivalences, which is a weaker notion of equivalence com-
pared to weak equivalence of monoidal dg-categories. It is not immediately clear how
to compare deformations of C as defined by Toledo and Morita deformations of C (as
defined in construction 3.2.1).

In [FGS24], Matthieu Faigt, Azat Gainutdinov and Christoph Schweigert use the
methods of homological algebra to develop methods to explicitly study the Davydov-
Yetter cohomology of a tensor category which is equivalent to the category of modules
over a finite dimensional algebra over a field k. They describe the Davydov-Yetter
cohomology in terms of the cohomology of an internal hom-object, i.e Ext-groups, of
the unit of the Drinfeld center of the tensor category [FGS24, theorem 1]. This allows
for an explicit characterization of the Davydov-Yetter cohomology, even describing an
associative monoid structure arising from the Yoneda product. They develop a method
to explicitly compute the cocycles which give rise to the deformation of the tensor
structure [FGS24, §5.4]. The Davydov-Yetter deformation theory characterizes only
those deformations where just the associativity of the monoidal structure is deformed.
In particular, the objects, composition and the monoidal structure on the objects is
held fixed under deformations. If C is the ∞-category of right modules over a finite
dimensional (classical) commutative k-algebra B, then there should be a map from the
Davydov-Yetter complex of C to TB (computed by viewing B as an E2-algebra over k).
Possibly, this map could allow a partial description of the cohomology of TB in terms of
the explicit calculations of [FGS24].

Here we provide (also see [PS24]) different perspective on the problem of deforma-
tions of monoidal categories by applying the framework of formal moduli problems of
Jacob Lurie. An advantage of our approach is the availability of powerful theoretical
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machinery. We study deformations of monoidal categories more comprehensively as
compared to the other approaches. For instance, we do not fix the set of objects of the
category under deformations; we work with the full ∞-categorical data, not passing to
truncations at any point; also address the question of deformations up to Morita equiva-
lences. A drawback is that the results are abstract; do not precisely connect to the more
explicit computations performed in the above three works. Although our project begun
independently, we note that a recent work by Fei Yu Chen also uses Lurie’s framework
to study deformations of objects in higher categories [Che23]. The key departure of our
work from Chen’s work is our treatment of deformations over the formal power series
ring k[[t]], which is crucial for application to deformation quantization. In addition,
the consideration given to ‘compact generators’ in this thesis is something missing in
[Che23]. A compact generator allows one to gain a better control over the space of
deformations, as demonstrated in §3.5 . We have included the full treatment without
reference to Chen to keep the thesis self contained. Part of the reason is also because
some of Chen’s work is not entirely clear to me. For instance, in the proof of [Che23,
proposition 2.2.5] Chen shows that there is a (n− 3)-truncated map of spaces

ΩObjDefM(A) −→ ΩObjDefM(B)×ΩObjDefM (B′) ΩObjDefM(A′)

from which the Chen concludes that removing the loop spaces, gives a (n−2)-truncated
map of spaces

ObjDefM(A) −→ ObjDefM(B)×ObjDefM (B′) ObjDefM(A′)

The conclusion cannot follow from such a general argument because it is agnostic to those
connected components of ObjDefM(A) which do not contain the base point. It is not
hard to cook up examples to illustrate this problem. Consider a map S2⊔S2 f−→ S2⊔{∗}

where the first copy of S2 maps to S2 via the identity, while the second copy of S2 maps
to {∗}. Choose a base point in the the first copy of S2. Then Ω(S2⊔S2)

Ωf−→ Ω(S2⊔{∗})
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is a homotopy equivalence. Clearly, the map f is not (−1)-truncated, i.e. f does not
induce a homotopy equivalence on the image. The proof of theorem 3.2.3 takes this issue
into account and provides a slightly different proof.

1.4 Overview

In this section, we set the notation to be used in the rest of this document, summarise
the content, and highlight the main results of this work.

1.4.1 Notation

• We work over a field, denoted k. This is fixed once and for all.

• Fix a nested system of three universes U0 ∈ U1 ∈ U2. The elements of U0 are called
small, the elements of U1 are called large and those of U3 are called very large. Let
κ0 be the smallest cardinal which is large but not small.

• By an ∞-category we always mean a quasicategory (weak Kan complex), as in
[Lur09, definition 1.1.2.4].

• S is the ∞-category of small spaces (Kan Complexes), as in [Lur09, definition 1.2.16.1].
Ŝ is the ∞-category of large spaces.

• Ĉat∞ is the ∞-category of large ∞-categories admitting all small colimits and
colimit preserving functors. This is a symmetric monoidal ∞-category where the
monoidal structure preserves colimits in each variable.

• PrL ⊂ Ĉat∞ is the ∞-category of presentable ∞-categories and colimit preserving
functors, as in [Lur09, definition 5.5.3.1]. This is a symmetric monoidal ∞-category
where the monoidal structure, denoted ⊗, preserves colimits in each variable.
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• Modk is the stable ∞-category of k-modules in spectra. By [Lur17, corollary 4.5.1.6],
this is canonically equivalent to the ∞-categories of left k-module spectra and
right k-module spectra [Lur17, definition 7.1.1.2]. This is a symmetric monoidal
∞-category where the tensor product is an exact functor.

• For n ≥ 1 an integer, Algn
k is the ∞-category of En-algebra objects in Modk. While

Algn,aug
k ≃ (Algn

k)/k is the ∞-category of augmented En-algebras over k.

• PrLk := ModModk
(PrL) is the ∞-category of k-linear ∞-categories. This has a

symmetric monoidal structure induced from PrL.

• For an integer n ≥ 1, nPrL
k = Modpr,(n−1)PrL

k
(Ĉat∞) is the presentable (∞, n + 1)-

category of presentable k-linear (∞, n)-categories. We adopt the convention that
0PrL

k = Modk. See definition 2.3.8.

• For an En-algebra A ∈ Algn
k , LModn

pr,A := LModLModn−1
A

((n − 1)PrL
k ) is the pre-

sentable k-linear (∞, n)-category of n-fold iterated left A-modules. We adopt the
convention that LMod0

A = A. In situations where it is unambiguous, we use A

instead of LModn
pr,A to avoid notational clutter. RModn

pr,A is defined analogously.

1.4.2 Outline and Main Results

We present an outline of the thesis and highlight the main results to aid the reader.
Chapter 2 is a review of the theoretical framework used in this work. This part

presents the language in which the results of this thesis are stated. No novelty is claimed
here, and appropriate citations have been given.

The first section recalls the Lurie’s framework of derived deformation theory [Lur11b].
We recall the notion of a formal moduli problem, which is a vast generalization of
Schelssinger’s notion of a functor of Artin rings [Sch68]. A formal moduli problem is
a functor which satisfies the derived analogs of Schlessinger’s criterion. Intuitively, a
formal moduli problem is the functor of points of an infinitesimal moduli space, and
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there is an algebraic description of this space (for example, as solutions to the Maurer-
Cartan equation in an appropriate dg Lie algebra).

The deformation problems we study in this work are not formal moduli problems.
Although this discrepancy can be quantified using the notion of an m-proximate formal
moduli problem, where m ≥ 0 is an integer. A 0-proximate formal moduli problem is a
formal moduli problem. We recall the notion of an m-proximate formal moduli problem,
originally developed in [Lur11b].

Lurie’s framework is flexible enough to allow deformations over non-commutative
bases, i.e. En-algebras. The deformation context of En-algebras is essential to us as all
results in chapter 3 are formulated in this context. We recall the relevant aspects of this
deformation context.

The second section recalls the theory of presentable (∞, n)-categories of Germán
Stefanich [Ste20]. To talk about Morita equivalences of En-algebras (definition 3.0.1) we
use the notion of the presentable higher category of iterated modules over them.

Chapter 3 is the heart of this thesis. This work is in collaboration with Pranav
Pandit (currently in preparation [PS24]). The chapter’s introduction provides an in-
depth explanation of all findings. Here we highlight the key results.

We are concerned with the deformation theory of En-algebras and En-monoidal ∞-
categories, over a field k. Let n ≥ 1 be an integer and B be an En-algebra over k. There
are two natural deformation problems associated with B.

a) Deformations of B up to equivalences of En-algebras.

b) Deformations of B up to Morita equivalences of En-algebras. This notion of equiv-
alence is described in definition 3.0.1).

In this chapter, we investigate both of these deformation problems via their functor of
points. The functor corresponding to problem a) is denoted AlgDefB, and it is studied
in §3.1; the functor corresponding to b) is denoted CatDefRModn

pr,B , and it is addressed
in §3.5. In general, neither of these two functors satisfies the derived analogs of Sch-
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lessinger’s criterion, i.e. neither of these two is a formal moduli problem. We characterize
this failure using the language of proximate formal moduli problems. Additionally, under
a boundedness condition on B, we prove each of these two functors is a formal moduli
problem:

Theorem A (proposition 3.1.3) Let n ≥ 1 and m ≤ 0 be integers, B be an En-algebra
over k such that the underlying spectrum of k is m-connective. Then AlgDefB as in
construction 3.1.1 is a formal moduli problem.

Theorem B (theorem 3.5.10) Let n ≥ 1 and m ≤ 0 be integers, B be an En-
algebra over k such that the underlying spectrum of k is m-connective. Then the space
CatDefRModn

pr,B(k[[t]]) is homotopy equivalent to the space as CatDef∧RModn
pr,B

(k[[t]]).

Warning 1.4.1. We use the convention that an E0-monoidal category is a category,
while a Morita equivalence of E0-monoidal categories is an equivalence of categories.

There is a third deformation problem which is naturally associated to an En-algebra
B.

e) Deformation RModn−1
pr,B viewed as an object of RModn

pr,B. In case n = 1, this is the
same as deforming B viewed as a module over itself.

The functor corresponding to this deformation problem is denoted ObjDefRModn−1
pr,B

. Un-
surprisingly, this functor is not a formal moduli problem. The three deformation prob-
lems a), b) and e) are not entirely unrelated.

Theorem C (proposition 3.4.3) There is a fiber sequence of functors

ObjDefRModn−1
pr,B

−→ SimDef(RModn
pr,B ,RModn−1

pr,B) −→ CatDefRModn
pr,B

18
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here SimDef(RModn
pr,B ,RModn−1

pr,B) is the deformation problem of the pair (RModn
pr,B,RModn−1

pr,B),
where RModn−1

pr,B is viewed as an object of RModn
pr,B. Note that when n = 1, this becomes

the deformation problem of the pair (RModB, B), i.e. a category with a chosen object.
Morally, one can identify SimDef(RModn

pr,B ,RModn−1
pr,B) with AlgDefB. This identification can

be made precise, but we do not attempt that in this work. This fiber sequence of functors
is important to this thesis. There is an associated sequence of formal moduli problems
(corollary 3.4.5; also see proposition 3.5.16) which makes a recurring appearance in the
proofs of various results in chapter 3.
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Chapter 2

Preliminaries

In this chapter we review the necessary background from the literature. No novelty is
claimed here.

2.1 ∞-Operads

Operads are a mathematical gadget which allows one to conveniently package algebraic
structures. The algebraic structure of a Lie algebra, an associative algebra, a commuta-
tive algebra, a left module over an associative algebra are some examples which admit a
description in terms of operads. This thesis extensively uses the framework of ∞-operads
as developed in [Lur17, §2]. In this section, we review some aspects of this framework.

Notation 2.1.1. Let Fin∗ be the skeleton of the category of finite pointed sets and
their morphisms. The objects of Fin∗ are denoted ⟨n⟩ where n ≥ 0. For n > 0 the
object ⟨n⟩ is to be understood as {∗, 1, 2, ..., n}, while ⟨0⟩ is {∗}. Let f : ⟨m⟩ −→ ⟨n⟩ be
a morphism in Fin∗, then

a. f is inert is for every i ∈ {1, ..., n}, the inverse image f−1(i) is a singleton set.

b. f is active if f−1(∗) is a singleton set.
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For every n > 0 and 1 ≤ i ≤ n there is an inert morphism, denoted ρi : ⟨n⟩ −→ ⟨1⟩,
defined as

ρi(j) =

⎧
⎪⎨

⎪⎩

1 if i = j

∗ otherwise

By N(Fin∗) be the ∞-category obtained by taking the nerve of Fin∗.

Definition 2.1.2. [Lur17, definition 2.1.1.10] An ∞-operad is a functor p : O⊗ −→

N(Fin∗) between ∞-categories which satisfies the following conditions:

1. For every inert morphism f : ⟨m⟩ −→ ⟨n⟩ in N(Fin∗) and every object C ∈ O⊗
⟨m⟩,

there exists a p-cocartesian arrow f̄ : C −→ C ′ in O⊗ lifting f .

2. Let C ∈ O⊗
⟨m⟩ and C ′ ∈ O⊗

⟨n⟩ be objects, let f : ⟨m⟩ −→ ⟨n⟩ be a morphism
in Fin∗, and let Mapf

O⊗(C,C ′) be the union of those connected components of
MapO⊗(C,C ′) which lie over f ∈ HomFin∗(⟨m⟩, ⟨n⟩). Choose a p-cocartesian mor-
phism C ′ −→ C ′

i lying over the inert morphisms ρi : ⟨n⟩⟨1⟩ for 1 ≤ i ≤ n. Then
the induced map

Mapf
O⊗(C,C

′) −→
∏

1≤i≤n

Mapρi◦fO⊗ (C,C ′)

is a homotopy equivalence.

3. For every finite collection of objects C1, ..., Cn ∈ O⊗
⟨1⟩, there exists an object C ∈

O⊗
⟨n⟩ and a collection of p-cocartesian morphisms C −→ Ci covering ρi : ⟨n⟩ −→

⟨1⟩.

Example 2.1.3. [Lur17, definition 2.0.0.7] Let C⊗ p−→ N(Fin∗) be an ∞-operad and
a cocartesian fibration. Let C ≃ C⊗

⟨1⟩ be the fiber of p over ⟨1⟩. Then the cocartesian
fibration p endows C with the structure of a symmetric monoidal ∞-category.

Definition 2.1.4. [Lur17, definition 2.1.2.3] Let p : O⊗ −→ N(Fin∗) be an ∞-operad.

22



2.1. ∞-OPERADS

A morphism f in O⊗ is inert if p(f) is inert and f is p-cocartesian. While f is active if
p(f) is active.

Definition 2.1.5. [Lur17, definition 2.1.2.7] Let O⊗ and O′⊗ be ∞-operads. A mor-
phism of ∞-operads is a map of simplicial sets f : O⊗ −→ O′⊗ such that

1. The diagram

O⊗ O′⊗

N(Fin∗)

f

commutes.

2. The map f preserves inert morphisms.

The ∞-category of ∞-operad morphisms from O⊗ to O′⊗ is denoted AlgO(O′).

Example 2.1.6. In the above definition, let O′ be a symmetric monoidal ∞-category
and let O = N(Fin∗). Then AlgN(Fin∗)(O

′) is the ∞-category of commutative algebra
objects in O′.

Definition 2.1.7. [Lur17, definition 2.1.3.7] Let p : C⊗ −→ O⊗ and q : D⊗ −→ O⊗ be
maps of ∞-operads which are also cocartesian fibrations. Then C and D are O-monoidal
∞-categories. A map of ∞-operads f ∈ AlgC(D) is a O-monoidal functor if it carries
p-cocartesian arrows to q-cocartesian arrows.

2.1.1 The left module ∞-operad

We follow [Lur17, §4.2] to review some aspects of left-module objects in ∞-categories.
An analogous treatment can be done for right-module objects.

Definition 2.1.8. [Lur17, definition 2.1.1.1] A coloured operad O is defined as follows:

1. A collection of objects or colours of O, {X,Y, Z, ..}.
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2. Given a finite set I, an I-indexed collection of colours {Xi ∈ O}i∈I and a colour
Y ∈ O, a set of morphisms from {Xi}i∈I to Y denoted MulO({Xi}i∈I , Y ).

3. Given a map of finite sets I −→ J let the fibres be {Ij}j∈J . Consider a collection
of colours {Xi}i∈I , {Yj}j∈J and Z ∈ O. There is a composition

∏

j∈J

MulO({Xi}i∈Ij , Yj)× MulO({Yj}j∈J , Z) −→ MulO({Xi}i∈I , Z)

4. A collection of morphisms {idX ∈ MulO({X}, X)}X∈O which are left and right
units of the composition on O.

5. The composition is associative.

The left module operad is an example of a coloured operad.

Example 2.1.9. [Lur17, definition 4.2.1.1] The left module coloured operad LM is
defined as follows:

1. There are two colours: a and m.

2. Let {Xi}i∈I be a finite collection of colours and Y be another colour. If Y = a and
Xi = a for every i ∈ I, then MulLM({Xi}i∈I , Y ) is the set of linear orderings of I.

If Y = m, then MulO({Xi}i∈I , Y ) is the collection of linear orderings {i1 ≤ ... ≤ in}

such that Xin = m and Xij = a for every j < n.

All other morphisms sets are empty.

3. Composition is given by composition of linear orderings. Intuitively, one can imag-
ine concatenation of trees with vertices labelled by a and m.

Another example of a coloured operad is the associative operad.

Example 2.1.10. [Lur17, definition 4.1.1.1] The associative coloured operad Assoc is
the full sub-operad of LM spanned by the colour a.
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Definition 2.1.11. [Lur17, notation 4.2.1.6] Let LM⊗ be the category obtained from
the colour operad LM. This category is defined as follows:

1. The objects are finite sequences of colours X1, .., Xn ∈ LM.

2. A morphism from {X1, .., Xm} to {Y1, .., Yn} is the data of a morphism of pointed
sets α : ⟨m⟩ −→ ⟨n⟩ along with a collection

{φj ∈ MulLM({Xi}i∈α−1(j), Yj)}j∈J

3. Composition in LM⊗ is given by compostion of LM.

Definition 2.1.12. [Lur17, definition 4.2.1.7] There is an evident forgetful functor
LM⊗ −→ F in∗ which induces a functor of ∞-categories N(LM⊗) −→ N(Fin∗). The
∞-operad LM⊗ is given by taking the nerve of the category LM⊗.

Definition 2.1.13. The full sub ∞-operad of LM⊗ spanned by the colour a is an
∞-operad Assoc⊗.

Remark 2.1.14. [Lur17, remark 4.2.1.10] The natural inclusion of coloured operads
Assoc ↪→ LM induces a fully faithful map of ∞-categories Assoc⊗ ↪→ LM⊗ which is a
map of ∞-operads.

Definition 2.1.15. [Lur17, definition 4.2.1.19] Let C⊗ q−→ LM⊗ be a map of ∞-operads
which is a cocartesian fibration. Then q exhibits Cm = q−1(m) as left-tensored over
Ca = q−1(a).

Definition 2.1.16. [Lur17, definition 4.1.1.10] A monodial ∞-category is a map of
∞-operads C⊗ −→ Assoc⊗ which is also a cocartesian fibration.

Example 2.1.17. Let C⊗ −→ N(Fin∗) be a symmetric monoidal ∞-category. Then
Assoc-monoids in C are maps of ∞-operads AlgAssoc(C). The objects of AlgAssoc(C) are
associative algebra objects of C.
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Example 2.1.18. Let C⊗ −→ N(Fin∗) be a symmetric monoidal ∞-category. Then
LM-monoids in C are maps of ∞-operads AlgLM(C). The objects of AlgLM(C) may be
viewed as pairs (A,M) where A is an associative algebra object of C and M is an object
of C equipped with a left action of A.

2.1.2 Little l-disk ∞-operad

We follow [Lur17, §5] to review some aspects of En-algebras.

Definition 2.1.19. [Lur17, definition 5.1.0.2] Let l > 1 be an integer, !l = (−1, 1)l be
the open cube of dimension l and Et ⊗

l be a topological category defined as follows:

1. The objects are ⟨n⟩ ∈ F in∗.

2. A morphisms ⟨m⟩ −→ ⟨n⟩ in Et ⊗
l is the following data

a. A morphism α : ⟨m⟩ −→ ⟨n⟩ in Fin∗.

b. For each j ∈ {1, ..., n} an embedding !l × α−1(j)
φ−→ !l. Moreover, for every

x ∈ α−1(j), φ(−, x) : !k −→ !k is given by

(y1, ..., yl) 1→ (a1y1 + b1, ..., alyl + bl)

for some real constants ai > 0 and bi. φ is called a rectilinear embedding.

3. For every pair of objects ⟨m⟩, ⟨n⟩ ∈ Et ⊗
l , the space Hom Et ⊗

l
(⟨m⟩, ⟨n⟩) has the

presentation

Hom Et ⊗
l
(⟨m⟩, ⟨n⟩) =

∐

f :⟨m⟩−→⟨n⟩

∏

1≤j≤n

Rect(!l × f−1(j),!l)

4. The composition of morphisms is defined in the obvious way, in terms of concate-
nation of trees.
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Let E⊗
l be the topological nerve of Et ⊗

l .

Proposition 2.1.20. [Lur17, proposition 5.1.0.3] There is a forgetful functor Et ⊗
l −→

Fin∗, which induces a functor E⊗
l −→ N(Fin∗). This induced functor exhibits E⊗

l as an
∞-operad.

Definition 2.1.21. E⊗
l is called the ∞-operad of little l-cubes

Construction 2.1.22. [Lur17, construction 5.1.2.1] Let l, l′ > 0 be integers. There is a
topological functor ρ : Et ⊗

l × Et ⊗
l′ −→ Et ⊗

l+l′ defined as follows:

1. The diagram

Et ⊗
l × Et ⊗

l′ Et ⊗
l+l′

N(Fin∗)× N(Fin∗) N(Fin∗)

ρ

#

commutes. Here, # : N(Fin∗) × N(Fin∗) −→ N(Fin∗) is as defined in [Lur17,
notation 2.2.5.1]:

a. ⟨m⟩#⟨n⟩ = ⟨mn⟩.

b. Given f : ⟨m⟩ −→ ⟨m′⟩ and g : ⟨n⟩ −→ ⟨n′⟩ two morphisms of finite pointed
sets,

f#g(an+ b− n) :=

⎧
⎪⎨

⎪⎩

∗ if f(a) = ∗ or g(b) = ∗

f(a)n′ + g(b)− n′ otherwise

2. Given morphisms ᾱ : ⟨m⟩ −→ ⟨n⟩ in Et ⊗
l and β̄ : ⟨m′⟩ −→ ⟨n′⟩ in Et ⊗

l′ , denote
ᾱ = (α, {fj : !l × α−1(j) −→ !l}j∈{1,..,n}) and β̄ = (β, {fj′ : !l′ × α−1(j′) −→

!l′}j′∈{1,..,n′}). Define ρ(ᾱ, β̄) : ⟨mm′⟩ −→ ⟨nn′⟩

(α#β, {fj × fj′ : !l+l′ × α−1(j)× β−1(j′),!l+l′})j∈{1,..,n},j′∈{1,..,n′}

Taking the topological nerve induces a functor E⊗
l × E⊗

l′
ϱ−→ E⊗

l+l′ .
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2.2. FORMAL MODULI PROBLEMS

The following is a version of the Dunn additivity theorem proven by Lurie. It plays
an important role throughout the next chapter.

Theorem 2.1.23. [Lur17, theorem 5.1.2.2] Let l, l′ > 0 be integers. The functor E⊗
l ×

E⊗
l′

ϱ−→ E⊗
l+l′ of construction 2.1.22 exhibits the ∞-operad E⊗

l+l′ as a tensor product of the
∞-operads E⊗

l and E⊗
l′ .

In other words, ϱ(ᾱ, β̄) is inert if both ᾱ and β̄ are inert. Let C be a symmetric
monoidal ∞-category such that the tensor product preserves colimits in each variable.
For every integer l > 0, Algl(C) := AlgEl

(C) is the ∞-category of En-algebra objects in
C. The above theorem (Dunn-Lurie additivity) implies that

Algl+l′(C) ≃ Algl(Algl′(C))

Lemma 2.1.24. [Lur17, example 5.1.0.7] There is an equivalence of ∞-operads E⊗
1 ≃

Assoc⊗.

2.2 Formal Moduli Problems

In Schlessinger’s axiomatic approach to deformation theory [Sch68], the deformations
of an algebro-geometric object are encoded in a functor from local Artin rings to sets,
called a functor of Artin rings. A functor of Artin rings that behaves well with certain
limits allows one to study its value on ‘larger’ Artin rings in terms of ‘smaller’ ones, for
example, small extensions/square-zero extensions. A functor of Artin rings that does
this may admit a hull [Sch68, definition 2.7], i.e. a surjective morphism from a ‘minimal’
pro-representable functor of Artin rings. It would be even better if such a functor
is (pro)-representable, allowing an algebraic description of the formal neighbourhood
of the object being deformed. Schlessinger’s criterion [Sch68, theorem 2.11] provides
sufficient conditions on a functor of Artin rings to guarantee the existence of a hull, and
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2.2. FORMAL MODULI PROBLEMS

pro-representability. An example of a pro-representable functor of Artin rings is the
formal completion of scheme at a closed point. If the scheme is a moduli scheme, then
the formal completion encodes the data of deformations of the object represented by the
closed point.

Analogously, one would like a ‘derived functor of Artin rings’ to behave well with
homotopy limits and satisfy a derived variant of Schlessinger’s criterion. When trying
to formulate such a criterion, one is guided by the natural requirement that the formal
completion of a derived algebraic stack at any closed point should satisfy that criterion.
In this section, we review the axiomatic framework of derived deformation theory as
developed by Lurie [Lur11b]. In this framework a derived functor of Artin rings that
satisfies certain conditions is called a formal moduli problem. If a functor is a formal
moduli problem it admits an algebraic description. For instance, in terms of a dg Lie
algebra.

There are numerous derived functors of Artin rings that arise from algebro-geometric
objects and which fail to be a formal moduli problem. The functors we study also show
this behaviour. We review the notion of an approximate formal moduli problem as
introduced in [Lur11b, §5.1]. This notion allows for a quantification of the failure of a
deformation functor to being a formal moduli problem, giving a convenient language to
formulate our results.

2.2.1 Stabilization and Spectrum Objects

We will see that the tangent space to a formal moduli problem is more naturally described
as a tangent spectrum, from which the tangent space can be recovered. In view of this
observation, we recall the definition of a spectrum object.

Definition 2.2.1. Let Y be an ∞-category which admits finite limits. A spectrum
object of Y is a reduced, excisive functor X : Sfin

∗ −→ Y. By definition, X is reduced
if it preserves final object and X is excisive if it takes pushout squares Sfin

∗ to pullback

29



2.2. FORMAL MODULI PROBLEMS

squares in Y.

Notation 2.2.2. [Lur17, notation 1.4.2.20] Let Sp(Y) = Exc∗(Sfin
∗ ,Y) be the full sub-

category of Fun(Sfin
∗ Y) spanned by the spectrum objects of Y. For each integer n, there

is a functor
Ω∞−n : Sp(Y) −→ Y

which is given by E 1→ Ω∞(E[n]), where E[n] is the shift of E be n. In case n ≥ 0, the
functor Ω∞−n is given by evaluation on the n-sphere.

Example 2.2.3. Let S be the ∞-category of spaces. The ∞-category of spectrum
objects Sp(S) is equivalent to the ∞-category of spectra.

Remark 2.2.4. Let R be an E∞-ring spectrum, Y = (CAlgR)/R = CAlgaug
R be the

∞-category of augmented E∞-algebras over R. By [Lur17, corollary 7.3.4.14], the ∞-
category Sp(Y) is equivalent to the ∞-category of R-module spectra ModR.

Let E ∈ ModR. Following [Lur17, remark 7.3.4.16], for any n ≥ 0 we can identify
Ω∞−nE with the square-zero extension R⊕ E[n].

Remark 2.2.5. Let n ≥ 1 be an integer, R be an En+1-ring spectrum, LModR be the
∞-category of left R-modules in Sp(S). As a consequence of [Lur17, corollary 4.8.5.20
& proposition 7.1.1.4] LModR is an En-monoidal stable ∞-category.

Let Algn
R be the ∞-category of En-algebras in LModR and Algn,aug

R = (Algn,aug
R )/R

be the ∞-category of augmented En-algebras over R. It follows from [Lur17, theo-
rem 7.3.4.13 & proposition 3.4.2.1] that

Sp(Algn,aug
R ) ≃ LModR

is the ∞-category of spectrum objects of Algn
R.

Remark 2.2.6. A spectrum object in spaces can be intuitively thought of as an ∞-fold
loop space of a space. This perspective is made precise by [Lur17, proposition 1.4.2.24].
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2.2. FORMAL MODULI PROBLEMS

This proposition says that the ∞-category Sp(Y) is equivalent to the homotopy limit of
the tower of ∞-categories

. . . −→ Y∗
Ω−→ Y∗

Ω−→ Y∗

2.2.2 Formal Moduli Problems

We present an introduction to the framework of formal moduli problems.

Definition 2.2.7. A deformation context is a pair (Y, {Eα}α∈T ), where Y is a pre-
sentable ∞-category and {Eα}α∈T is a set of objects of the stabilisation Sp(Y).

A deformation context decides the test objects which we are allowed to probe the
formal moduli of the objects of our interest. For instance, consider Schlessinger’s frame-
work of functor of Artin rings. In this setting one could consider a functor which maps
local Artin k-algebras to sets. The test objects in this case are local Artin k-algebras.
Lurie’s framework is more flexible, allowing one to choose test objects from arbitrary
presentable ∞-categories. In other words, the choice of a deformation context is the
choice of the objects which act as the bases over which we deform.

Example 2.2.8. [Lur11b, example 1.1.4] Let R be an E∞-ring spectrum. In view of
remark 2.2.4, the pair (CAlgaug

R , R) is a deformation context.
View R as an En+1-ring spectrum via the forgetful functor CAlg −→ Algn+1. Fol-

lowing remark 2.2.5, the pair (Algn
R, R) is also a deformation context for every integer

n ≥ 1.

For the remainder of this section, we focus on the deformation context (Algn
k , k),

where k is a field. This is the deformation context relevant for chapter 3. The reader is
referred to [Lur11b, §1] for a more general treatment.

Formal En-Moduli Problems

Let n ≥ 1 be an integer, k be a field.
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2.2. FORMAL MODULI PROBLEMS

Notation 2.2.9. Let Algn,aug
k ≃ (Algn

k)/k be the ∞-category of augmented En-algebras
over k.

We fix an integer n ≥ 1 and the deformation context (Y, {E}) = (Algn,aug
k , {E}) for

the rest of this section. Here, E ∈ Sp(Algn,aug
k ) corresponds to k ∈ Modk (remark 2.2.5).

Now we specify the test objects in the deformation context of En-algebras. These
are analogs of local Artin k-algebras.

Definition 2.2.10. [Lur11b, definitions 1.1.5 & 1.1.8]

1. A morphism φ : A → A′ in Algn,aug
k is called elementary if there is an integer n > 0

and a pullback diagram

A k

A′ Ω∞−nE

φ φ0

Here, φ0 is the base point of Ω∞−nE = k ⊕ k[n].

2. A morphism φ : A → A′ in Algn,aug
k is called small if it can be written as a

composition of finitely many elementary morphisms.

3. An object A of Algn,aug
k is called small if the canonical map A → k is a small

morphism. The full ∞-subcategory of small objects of Algn,aug
k is denoted by

Algn,small
k .

Proposition 2.2.11. [Lur11b, proposition 4.5.1] An En-algebra A over k is small if and
only if

1. A is connective, i.e. πiA ≃ 0 for all i < 0.

2. π∗A is a finite dimensional k-vector space.

3. Let n be the radical of π0A. Then unit map k −→ (π0A)/n is an isomorphism of
k-vector spaces.
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The analog of a functor of Artin rings in Lurie’s framework is the following:

Definition 2.2.12. A pre-formal moduli problem is a functor X : Algn,small
k −→ S such

that X(k) is contractible.

The following is the analog of Schlessinger’s criterion in Lurie’s framework:

Definition 2.2.13. [Lur11b, definition 1.1.14] Let σ:

A1 B1

A2 B2

φ

be any pullback in Algn,small
k . A pre-formal moduli problem X is called a formal moduli

problem if X(σ) is a Cartesian diagram in S whenever φ is small.

Notation 2.2.14. Let Modulink ⊂ Fun(Algn,small
k ,S) be the full subcategory spanned by

formal moduli problems.

Formal moduli problems have an important invariant, called the tangent complex.
Let X be an algebraic variety over C, η ∈ X(C) be a closed point of X. The Zariski
tangent space of X at η is defined to be the fiber TX,η = fibη(X(C[ϵ]/ϵ2) −→ X(C)).
Equivalently, this is the Zariski tangent space of the formal completion of X at the
closed point η. The tangent complex of a formal moduli problem is a derived analog of
the Zariski tangent space of an algebraic variety.

Remark 2.2.15. Let X : Algn,small
k −→ S be a formal moduli problem. It follows from

[Lur11b, proposition 1.2.3] that S fin
∗

E−→ Algn,aug
k factors via the full subcategory of small

objects Algn,small
k . As a consequence of [Lur11b, proposition 1.2.4] we conclude that the

composition
S fin
∗

E−→ Algn,small
k

X−→ S

is a strongly excisive, i.e. may be viewed as a spectrum.
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Definition 2.2.16. [Lur11b, definition 1.2.5] Let X : Algn,small
k −→ S be a formal moduli

problem. Let X(Eα) denote the composition S fin
∗

E−→ Algn,small
k

X−→ S. We view X(E) as
an object in the ∞-category of spectra, called the tangent complex to X, denoted TX.

The following result establishes that the tangent complex of a formal moduli problem
is a complete invariant.

Proposition 2.2.17. [Lur11b, proposition 1.2.10] Let f : X −→ Y be a map of formal
moduli problems. Then f is an equivalence if and only if it induces an equivalence of
spectra X(E) −→ Y (E).

We recall the notion of En Koszul duality in terms of a universal property. This
duality leads to the generalization of the relation between deformation problems and dg
Lie algebras.

Let n ≥ 1 be an integer, k be a field, A be an En-algebra over k. Let Aug(A) =

MapAlgnk (A, k) be the space of augmentations of A. Let B be an En-algebra over k and
choose augmentations ϵA : A → k and ϵB : B → k. Let Pair(A,B) be the fiber of the
map Aug(A⊗k B) −→ Aug(A)× Aug(B) over (ϵA, ϵB).

Definition 2.2.18. Define Dn(A) as the En Koszul dual of A, specified by the universal
property given below

MapAlgn,aug
k

(B,Dn(A)) ≃ Pair(A,B)

Equivalently, the En-Koszul dual represents the functor B 1→ Pair(A,B).

By [Lur11b, proposition 4.4.1] the object Dn(A) along with a universal pairing ν :

A⊗k Dn(A) −→ k exists. Dn : (Algn,aug
k )op −→ Algn,aug

k is called the En Koszul duality
functor.

The following result is one of the most important results in the context of derived
deformation theory. This is the non-commutative, positive characteristic analog of the
statement that “dg Lie algebras control deformation problems over a field of character-
istic zero” (see [Lur11b, theorem 2.0.2]).
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Theorem 2.2.19. [Lur11b, theorem 4.0.8] Let n ≥ 0 be an integer and k be a field.
Then there is an equivalence of ∞-categories Ψ : Algn, aug

k −→ Modulink , given by given by
A 1→ MapAlgn,aug

k
(Dn(−), A). In addition, we have the following (homotopy) commutative

diagram

Algn,aug
k Modulink

Modk Sp

Ψ

m T [−n]

where T : Modulink → Sp is the tangent complex functor and m : Algn,aug
k → Modk is the

augmentation ideal functor given by (A 1→ fib(A → k)) with the fiber taken in Modk.

Definition 2.2.20. [Lur11b, definition 4.1.1] Let m and n ≥ 1 be integers, k be a field,
and A be an En-algebra over k. Note that A is equipped with a unit, which is a map
of k-modules k

e−→ A. Then A is said to be m-coconnective if the homotopy groups
πicofib(e) vanish for i > −m.

Note that when m > 0, A is m-coconnective if and only if the unit map k → A

induces an isomorphism k −→ π0A and πiA vanish for all i > 0 and −m < i < 0.
The following two results about En Koszul duality will be essential in §3.5 and §??.

Lemma 2.2.21. [Lur11b, lemma 1.5.10] For every small object A ∈ Algn,small
k , Dn(A)

is a compact object of Algn,aug
k .

Lemma 2.2.22. [Lur11b, lemma 4.5.9] Let n ≥ 1 be an integer, k be a field and A

be an augmented En-algebra over k. If A is connective, then the Koszul dual Dn(A) is
n-coconnective.

2.2.3 Approximations to Formal Moduli Problems

Definition 2.2.23. Consider a (homotopy) commutative diagram of spaces:

X Y

X ′ Y ′
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This diagram is said to be n-Cartesian if the homotopy fibres of the the natural map
X → Y ×Y ′ X ′ are (n − 2)-truncated. We say that a space is (−2)-truncated space if
and only if it is contractible. It follows that a 0-Cartesian square is a Cartesian square
in the usual sense.

Definition 2.2.24. Let σ:

A1 B1

A2 B2

φ

be any pullback in Algn,small
k . Let n ≥ 0 be an integer. A pre-formal moduli problem X

is called a n-proximate formal moduli problem if X(σ) is a (n− 2)-Cartesian diagram in
S whenever φ is small.

Notation 2.2.25. As Modulink is an accessible localization of Fun(Algn,small
k ,S), there

exists a left adjoint L : Fun(Algn,small
k ,S) −→ Modulink to the natural inclusion i :

Modulink −→ Fun(Algn,small
k ,S). We note that the natural inclusion factors through the

full subcategory of pre-formal moduli problems Fun∗(Algn,small
k ,S). This leads to an

adjunction (denoted using the same symbols)

Modulink Fun∗(Algn,small
k ,S)i

L

For every integer m ≥ 0, Let Prox(m) ⊂ Fun∗(Algn,small
k ,S) be the full subcategory of

m-proximate formal moduli problems. We will denote the composition

Prox(m) ⊂ Fun∗(Algn,small
k ,S) L−→ Modulink

by (−)∧.

Theorem 2.2.26. [Lur11b, theorem 5.1.9] Let X : Algn,small
k → S be a pre-formal moduli

problem. Then the following are equivalent:
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1. The functor X is a n-proximate formal moduli problem.

2. There exists an (n − 2)-truncated map η : X → Y , where Y is an n-proximate
formal moduli problem.

3. Let L denote the left adjoint to the natural inclusion Modulinn ↪→ Fun(Algn,small
k ,S).

Then the unit map X → L(X) is (n− 2)-truncated.

2.3 Presentable (∞, n)-categories

Notation 2.3.1. Fix a nested system of three universes U0 ∈ U1 ∈ U2. The elements of
U0 are called small, the elements of U1 are called large and those of U3 are called very
large. Let κ0 be the smallest cardinal that is large.

Notation 2.3.2. Let Ĉat∞ be the ∞-category of large cocomplete ∞-categories and
colimit preserving functors.

The notion of a presentable (∞, n)-category relies on the observation that the ∞-
category of presentable ∞-categories PrL is an essentially large ∞-category. PrL is
both a subcategory and an object of Ĉat∞. The observation that Ĉat∞ is κ0-compactly
generated by presentable ∞-categories (see proposition 2.3.4) allows a construction of
presentable higher categories as iterated modules over PrL without a need for an infinite
nested sequences of universes. A detailed development of these ideas may be found in
[Ste20]. Here we present a terse review relevant for our purpose.

Definition 2.3.3. [Ste20, definition 5.1.2] Let C be a very large, locally large ∞-category
admitting all large colimits. An object E ∈ C is κ0-compact if the corresponding corep-
resentable functor C hE

−→ Ŝ preserves κ0-filtered colimits. We say C is κ0-compactly
generated if it is generated under large colimits by the κ0-compact objects, and the
space of κ0-compact objects is large.
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Proposition 2.3.4. [Ste20, proposition 5.1.4] The ∞-category Ĉat∞ is κ0-compactly
generated. An object of Ĉat∞ is κ0-compact if and only if it is a presentable ∞-category.

Proposition 2.3.5. [Ste20, proposition 5.1.10] Let E be an algebra in Ĉat∞, and A

be an algebra in E . Then the ∞-category RModA of right A-modules equipped with its
natural left E-module structure, is a presentable E-module. In other words, RModA is
κ0-compact as an E-module.

Notation 2.3.6. Let CAlg(Ĉat∞) be the ∞-category of E∞-algebra objects in Ĉat∞.
Following [Ste20, remark 5.1.11], we have a lax symmetric monoidal functor

Modpr,− : CAlg(Ĉat∞) → CAlg(Ĉat∞)

which sends an object E to Modpr,E the ∞-category of κ0-compact E-module objects in
Ĉat∞.

We have a functor

Mod− : CAlg(Ĉat∞) → CAlg(CAT∞)

where CAT∞ is the ∞-category of very large ∞-categories. The functor sends an object
E to the ∞-category ModE of E-module in Ĉat∞. By [Ste20, proposition 5.1.7] we know
that the collection of free E-modules E ⊗ C where C is a presentable ∞-category is a
collection of κ0-compact generators of ModE . By convention, we let the functor

Modn : CAlg(Ĉat∞) → CAlg(CAT∞)

be the composition −Mod ◦ −Modn−1
pr,−.

Definition 2.3.7. [Ste20, definition 5.2.2] We define the ∞-category of presentable
(∞, n)-categories nPrL to be the ∞-category of presentable modules over (n− 1)PrL

nPrL = Modpr,(n−1)PrL(Ĉat∞) = Modn
pr,S
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A presentable (∞, n)-category is an ∞-category that is a κ0-compact left module over
(n− 1)PrL. We adopt the convention that 0PrL is the ∞-category of spaces S.

Definition 2.3.8. [Ste20, variant of definition 5.2.5] Let k be a field. We define the
∞-category of k-linear (∞, n)-categories to be the ∞-category of presentable modules
over (n− 1)PrLk .

nPrL
k = Modpr,(n−1)PrL

k
(Ĉat∞) = Modn+1

pr,k

A k-linear (∞, n)-category of an ∞-category that is a κ0-compact left module over
(n− 1)PrLk . We adopt the convention that 0PrL

k is the ∞-category of k-module spectra
Modk.

There are several examples of presentable k-linear (∞, n)-categories:

Example 2.3.9. Let C be an algebra object in nPrLk . It follows from proposition 2.3.5
that RModC(nPrLk ) ∈ (n+ 1)PrLk is a k-linear (∞, n+ 1)-category.
If A is an En-algebra over k, then RModn

A := RModRModn−1
A

((n−1)PrLk ) is the presentable
k-linear (∞, n)-category of n-fold iterated right A-modules.

When n = 2, it follows from [Lur17, corollary 4.8.5.20] that RModA is an E1-monoidal
k-linear ∞-category. It follows from proposition 2.3.5 that RMod2

A = RModRModA(PrLk )
is a presentable k-linear (∞, 2)-category. When n > 2, iterating this argument shows
that RModn

A is a presentable (n− 1)PrLk -module.

Given a presentable ∞-category M tensored over a presentable symmetric monodial
∞-category A one may construct an ∞-category M enriched in A. This construction is
in fact functorial (see [Ste20, §3.2] for a discussion, or alternatively [GH15, §7]). In case
A = (n− 1)PrL, we may view M as an (∞, n)-category. We recall the definition of the
(∞, n+ 1)-category nPrL of presentable (∞, n)-categories.

Remark 2.3.10. Let n ≥ 1 be an integer, nĈat∞ be the ∞-category of ∞-categories
enriched in (∞, n − 1)-categories. By [Ste20, §5.3] we have a lax symmetric monoidal
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functor
ψn : Modn

S → nĈat∞

which turns ∞-categories tensored over Modn−1
pr,S in to the associated ∞-categories en-

riched in (∞, n− 1)-categories. If C ∈ Modn
S , then the underlying ∞-category of ψn(C)

is equivalent to C.

Let C be a presentable (∞, n)-category. Given that there is the enrichment functor
ψn, we can define the n-fold endomorphism object for an object E ∈ C. We define this
object iteratively.

Definition 2.3.11. Let C be a presentable (∞, n)-category and E ∈ C be an object.
Then there is an associated (presentable1) (∞, n − 1)-category of endomorphisms of
E, denoted MapC(E,E). The n-fold endomorphism object of E, denoted Z(E), is the
(n − 1)-fold endomorphism object of the identity idE ∈ MapC(E,E). It follows that
Z(E) has the structure of an En-algebra.

Let nCatL be the (∞, n+1)-categorical enrichment of Modn
S . More precisely, we view

Modn
S as a module over itself, therefore Modn

S may be enriched in itself. The functor
ψn : Modn

S → nĈat∞ allows us to enrich Modn
S in nĈat∞. Note that the underlying

∞-category of nCatL is equivalent to Modn
S .

Definition 2.3.12. The full subcategory of nCatL spanned by presentable (∞, n)-
categories is denoted nPrL. The underlying ∞-category of nPrL is equivalent to nPrL.

1In general, the endomorphism (∞, n − 1)-category is not κ0-compact, i.e. it is not presentable.
Although it can be realized as a κ0-filtered colimit of κ0-compact objects of (n− 1)PrL.
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Chapter 3

Deformations of En-monoidal
categories

This chapter serves as the core of this thesis. In the following sections, we will under-
take an in-depth study of the deformation theory of En-monoidal k-linear ∞-categories,
considering both Morita equivalences and En-monoidal equivalences.

Definition 3.0.1. Two En-algebra objects B,B′ in a symmetric monoidal ∞-category
are Morita equivalent if RModn

pr,B and RModn
pr,B′ are equivalent as n-fold iterated module

∞-categories.

Due to [Lur17, corollary 4.8.5.20] we know that for every B ∈ Algn
k , an En-algebra

over k, the corresponding k-linear ∞-category of right B-modules, RModB, has an En−1-
monoidal structure. Stefanich, in [Ste20, §5], introduced the concept of a presentable
(∞, n)-category. Based on [Ste20, §5], we define the presentable k-linear (∞, 2)-category
of right modules over RModB as RMod2

pr,B := RModRModB(PrL
k ). Proceeding along these

lines, we define the presentable k-linear (∞, n)-category of n-fold modules over B to be
RModn

pr,B := RModRModn−1
pr,B

((n− 1)PrL
k ) (see definition 2.3.8 and example 2.3.9).

In section 3.1, we study the deformations of En-algebras over k, up to equivalences of
En-algebras. We construct a functor AlgDefB, called the deformation functor for an En-
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algebra B (construction 3.1.1), and establish that this functor is a 1-proximate formal
moduli problem (lemma 3.1.2). We also prove that under a boundedness hypothesis
on the underlying k-module of B, the functor AlgDefB is a formal moduli problem
(proposition 3.1.3). This result plays a crucial role in the proofs of our main results in
the subsequent sections.

In section 3.2, we study the deformations of presentable k-linear (∞, n)-categories.
This section extends the work of [Lur11b, §5.3], originally focusing on deformations of
k-linear ∞-categories, to include presentable k-linear (∞, n)-categories where n > 1.
We construct a functor CatDefC, called the deformation functor of a presentable k-linear
(∞, n)-category C, for every integer n ≥ 0 (construction 3.2.1). Per our established
convention, C is a k-module in the case where n = 0. We show that CatDefC is a (n+1)-
proximate formal moduli problem (theorem 3.2.3). We define Z(C), a k-linear center of
C (definition 3.2.5), and construct a natural transformation from CatDefC to the formal
moduli problem given by Z(C) (construction 3.2.7). We show that the formal completion
of CatDefC, denoted CatDef∧C , is equivalent to the formal moduli problem given by Z(C)

(corollary 3.2.10). As a consistency check, one can see that the results of this section
reduce to those of [Lur11b, §5.3] upon setting n = 1.

In section 3.3, we study the deformations of objects in presentable k-linear (∞, n)-
categories. This part is a common generalization of [Lur11b, §5.2 & §5.3], which deal
with the deformations of objects in k-linear ∞-categories and the deformations of k-
linear ∞-categories respectively. We construct ObjDefE, the deformation functor for
an object E in a presentable k-linear (∞, n)-category, for n ≥ 1 (construction 3.3.1).
We prove that ObjDefE is a n-proximate formal moduli problem (theorem 3.3.3). It is
noteworthy that the functor CatDefC can be seen as a specific instance of the functor
ObjDefE: if C is a presentable k-linear (∞, n)-category for n ≥ 0, then consider C as an
object in the presentable k-linear (∞, n + 1)-category nPrL

k . We adopt the convention
that 0PrL

k = Modk.

In section 3.4, we study the deformations of pairs (C, E) such that E is an object
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of a presentable k-linear (∞, n)-category C, for every integer n ≥ 1. This part is a
generalization of [BKP18, §4.1], which deals with the deformations of pairs (C, E) such
that C is a k-linear ∞-category. We construct a functor SimDef(C,E), the deformation
functor of the pair (C, E) (construction 3.4.1). We demonstrate that there exists a
fiber sequence of deformation functors that includes ObjDefE, SimDef(C,E), and CatDefC
(as stated in proposition 3.4.3). This leads to the conclusion that SimDef(C,E) is a
(n + 1)-proximate formal moduli problem (corollary 3.4.4). An immediate corollary
that follows is that there is an associated fiber sequence of formal moduli problems
associated with the pair (C, E) (corollary 3.4.5). Next, we undertake a closer analysis
of the formal completion of SimDef(C,E), which is a formal moduli problem denoted
SimDef∧(C,E). We define Z(C, E), a k-linear center of the pair (C, E) (definition 3.4.6),
and construct a natural transformation from SimDef(C,E) to the formal moduli problem
given by Z(C, E) (construction 3.4.10). We finally show that SimDef∧(C,E) is given by
Z(C, E) (proposition 3.4.11). The last part of this section focuses on obtaining an explicit
description of the functor ObjDef∧E, using the fiber sequence of formal moduli problems
obtained earlier (proposition 3.4.14). In pursuit of this proposition, we discuss the
restriction of a formal En-moduli problem to a formal En+1-moduli problem via the
natural forgetful functor Algn+1

k −→ Algn
k . To conclude this section, we make some

conjectural observations, connecting to [Fra13, conjecture 4.50].

In section 3.5, we focus on studying the deformations of an En-monoidal k-linear
∞-category C, up to Morita equivalences. As we discussed above, this amounts to
studying the deformations of the presentable k-linear (∞, n+1)-category RModn

pr,C. We
assume that C arises as the ∞-category of modules over an En+1-algebras B over k. We
impose an additional boundedness hypothesis on the underlying k-module of B (defini-
tions 3.5.2 & 3.5.3). We focus on deformations over the formal power series ring, k[[t]],
(theorem 3.5.10) We show that the space of deformations CatDefRModn

pr,C(A) is equiva-
lent to the space CatDef∧RModn

pr,C
(A), where A = k[[t]] . To conclude this section, we show

through proposition 3.5.16 that the fiber sequence of non-unital En+1-algebras of [Fra13,
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theorem 1.1] can be seen as a specific case of the fiber sequence of formal moduli prob-
lems in corollary 3.4.5: in the notation of corollary 3.4.5, if we choose C = RModn+1

pr,B and
E = RModn

pr,B, we recover the fiber sequence appearing in [Fra13]. Specifically, through
lemma 3.5.13 we show that the En+1-Hochschild cohomology of B (definition 3.5.12) is
canonically equivalent to the k-linear center Z(RModn+1

pr,B). Moreover, in lemma 3.5.15,
we also show that the tangent complex of B (definition 3.5.14) is canonically related to
the k-linear center Z(RModn+1

pr,B,RModn
pr,B).

We need a couple of results to show that the various deformation functors that we
construct are m-proximate. We record these now:

The following lemma does not rely on any specific model of an (∞,m)-category.
All we use is that an (∞,m)-category has an (∞,m − 1)-category of morphisms be-
tween any pair of objects. Following the standard practice, an (∞, 0)-category is an
∞-groupoid/Kan complex. In addition, we use that there is a truncation functor from
the ∞-category of (∞,m)-categories to the ∞-category of (∞, 0)-categories which sends
an (∞,m)-category to the underlying Kan complex. For instance, the model of (∞,m)-
categories developed in [GH15] meets these requirements, so does the model used by
[Ste20].

Lemma 3.0.2. Let m ≥ 1, F : C → D be a functor between (∞,m)-categories. If F

induces an equivalence of m-morphism spaces C(x1, y1)(x2, y2)...(xm, ym)
≃−→ D(Fx1, Fy1)

(Fx2, Fy2)...(Fxm, Fym) for all x1, y1 ∈ C, for all xi, yi ∈ C(xi−1, yi−1), then the induced
map of spaces (F )≃ : C≃ → D≃ is (m− 2)-truncated.

Proof. We prove this by induction on m. When m = 1, then F : C → D is a fully
faithful map of (∞, 1)-categories. We note that a fully faithful map is conservative.
This implies that F induces an equivalence of spaces C(x, y)eq Fxy−−→ D(Fx, Fy)eq for all
x, y ∈ C. Here C(x, y)eq ⊂ C(x, y) and D(Fx, Fy)eq ⊂ D(Fx, Fy) are the subspaces of
invertible morphisms, i.e. morphisms which are equivalences. In particular, for every
x ∈ C, the map F≃

x : C≃(x, x) → D≃(Fx, Fx) is an equivalence of spaces. This gives
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an isomorphism of homotopy groups πi(C≃, x) ≃ πi(D≃, Fx) for every x ∈ C, for every
i ≥ 1. We conclude that the map F≃ is (−1)-truncated when m = 1.
Assume that the result is true for some m. Let F : C → D be a functor of (∞,m + 1)-
categories satisfying the hypothesis. For every pair of objects x, y ∈ C, C(x, y) Fxy−−→

D(Fx, Fy) is a functor of (∞,m)-categories such that Fxy induces an equivalence of
m-morphism spaces: for every object x0 ∈ C and every sequence {xi+1 ∈ C(xi, xi)}mi=0,
the induced map of spaces

C(x0, x0)(x1, x1)..(xm, xm)
F≃
x1,..,xm−−−−−→ D(Fx0, Fx0)(Fx2, Fx2)..(Fxm, Fxm)

is an equivalence. By the induction step, the map of spaces C(x0, x0)≃
F≃
x0−−→ D(Fx0, Fx0)≃

is (m−2)-truncated for every x0 ∈ C. We conclude that C≃ F≃
−−→ D≃ is a (m−1)-truncated

map of spaces.

Lemma 3.0.3. Let m ≥ −2 be an integer, U f−→ V be a m-truncated map of space over
a space Y . Then for any map ∗ y−→ Y , the base change preserves m-truncated maps, i.e.
the induced map Uy := U ×Y ∗ fy−→ Vy := V ×Y ∗ is m-truncated.

Proof. We proceed by induction on m. The result is evident for m = −2. Let the result
be true for some m ≥ −2 and U → V be a (m + 1)-truncated map of spaces over Y .
Consider the pullback of spaces

Uy U

∗ Y

g

h

y

Then for any u ∈ Uy, the induced map of loop spaces U(gu, gu)
f∗
−→ V (fgu, fgu) is a

m-truncated map of spaces over Y (y, y). By the induction hypothesis, U(gu, gu)ȳ →

V (fgu, fgu)ȳ is m-truncated. Here ȳ is the constant loop at y ∈ Y . By commutativity
of limits, we have that U(gu, gu)ȳ ≃ Uy(u, u) and V (fgu, fgu)ȳ ≃ Vy(fyu, fyu) for all
u ∈ Uy. We conclude that Uy(u, u)

fy−→ Vy(fyu, fyu) is m-truncated for all u ∈ Uy. So
Uy → Vy is m+ 1-truncated.
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3.1. DEFORMATIONS OF En-ALGEBRAS

3.1 Deformations of En-algebras

In this section, for an integer n ≥ 1, we will study deformations of an En-algebra over a
field k, viewed as an object of the ∞-category of En-algebras over k. A key result to be
used in §3.5 is proposition 3.1.3. The proposition says that the formal moduli space of a
homologically bounded below En-algebra B over the field k is characterized by a dg-Lie
algebra, more precisely by an En+1-algebra.

Construction 3.1.1. By [Lur17, theorem 4.8.5.16] there is a symmetric monoidal func-
tor

Algk → PrL
k

which sends A 1→ LModA. By passing to En-algebra objects and using [Lur17, theo-
rem 5.1.2.2] (Dunn-Lurie additivity) we obtain a symmetric monoidal functor

Algn+1
k −→ Algn(PrLk )

which sends an En+1-algebra A to the En-monoidal k-linear ∞-category of left A-modules
LMod⊗

A. We compose the functor Algn+1
k −→ Algn(PrLk ) with the functor Algn(PrL

k ) →

PrL given by taking En-algebra objects, D 1→ Algn(D). This composition of functors
classifies a cocartesian fibration Algn q−→ Algn+1

k . We restrict to q-cocartesian arrows to
obtain a left fibration, Algn,coCar → Algn+1

k . Given an En-algebra B over k with n ≥ 1,
[Lur09, proposition 2.1.2.1] gives an induced left fibration

Deform[B] := (Algn,coCar)/(k,B) → (Algn+1
k )/k ≃ Algn+1,aug

k

classifying the deformations of B where equivalences are equivalences of algebras. We
call Deform[B] the ∞-category of deformations of B. The objects of Deform[B] are tuples
(A,BA, µ) where A is an augmented En+1-algebra over k and BA is an En-algebra over
A such that k⊗ABA

µ−→ B is an equivalence in Algn
k . The restriction of the preceding left
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3.1. DEFORMATIONS OF En-ALGEBRAS

fibration to small En+1-algebras along the inclusion Algn+1,small
k → Algn+1,aug

k is classified
by the functor

AlgDefB : Algn+1,small
k → Ŝ

which we call the deformation functor of B.

Lemma 3.1.2. Let n ≥ 1 be an integer, k be a field, B be an En-algebra over k. Then the
deformation functor of B, AlgDefB (as defined in construction 3.1.1) is a 1-proximate
formal moduli problem. In particular, AlgDefB can be regarded as a functor taking values
in the ∞-category S of small spaces.

Proof. The case n = 1 is [BKP18, corollary 4.18]. Their proof can be directly adapted
to the case n > 1. The key input to the proof is that given a pullback in Algn+1

k

A A0

A1 A01

the image of this diagram in Algk under the forgetful functor Algn+1
k → Algk is a pullback

square. Consequently, it follows from [Lur11a, proposition 7.4] that the map

LModA
F−→ LModA0 ×LModA01

LModA1

is a fully faithful functor of k-linear ∞-categories. In other words, it admits a right
adjoint G such that the unit of the adjunction is an equivalence. It is a straightfor-
ward observation that F has a natural lift to an En-monoidal functor. The functor
Algn : Algn(PrL

k ) → PrL takes a cocartesian fibration over the ∞-operad E⊗
n and assigns

to it the ∞-category of its sections which are morphisms of ∞-operads (see [Lur17,
definition 2.1.2.7]). It follows that Algn(−) preserves limits. The forgetful functor from
En-algebras to the underlying k-module spectra is conservative. This implies that the
functor Algn(F ) is fully faithful: note that F is an En-monoidal functor and G is a lax
monoidal functor, i.e. G is a map of ∞-operads. In fact, G preserves the En-monoidal
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3.1. DEFORMATIONS OF En-ALGEBRAS

unit. It follows that Algn(F ) admits a right adjoint, Algn(G), such that the unit of the
adjunction is an equivalence. We conclude that the following map is fully faithful.

Algn(LModA)
Algn(F )−−−−→ Algn(LModA1)×Algn(LModA01 )

Algn(LModA0)

It now follows from lemmas 3.0.2 & 3.0.3 that

AlgDefB(A) −→ AlgDefB(A1)×AlgDefB(A01) AlgDefB(A0)

is (−1)-truncated.
We now show that AlgDefB is valued in essentially small spaces. For m ≥ 0 an

integer, we note that AlgDefB(k ⊕ k[m]) → ΩAlgDefB(k ⊕ k[m + 1]) is a homotopy
equivalence on the essential image. In addition, the space ΩAlgDefB(k ⊕ k[m + 1]) is
the fibre of the map MapAlgn+1

A
(A ⊗k B,A ⊗k B) → MapAlgn+1

k
(B,B), implying that it

is essentially small. We conclude that AlgDefB(k ⊕ k[m]) is essentially small for any
m ≥ 0. Now given any A ∈ Algn+1,small

k , we choose a finite sequence A = A0 → A1 →

· · · → An = k such that there exists integers mi ≥ 0 and pullbacks

Ai k

Ai+1 k ⊕ k[mi]

We note that the map AlgDefB(Ai) → AlgDefB(k) ×AlgDefB(k⊕k[mi]) AlgDefB(Ai+1) is
a homotopy equivalence on the image. By descending induction we conclude that
AlgDefB(A) is essentially small for any A ∈ Algn+1,small

k .

Proposition 3.1.3. Let n ≥ 1 and m ≤ 0 be integers, k be a field, B be an En-algebra
over k such the the underlying spectrum is m-connective. Then the deformation functor
AlgDefB is a formal moduli problem.

Proof. Note that as B is an En-algebra over k, it is equipped with the unit map k → B,
forcing π0B to be non-zero. The case n = 1 is [BKP18, proposition 4.19]. Their proof
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3.1. DEFORMATIONS OF En-ALGEBRAS

can be directly adapted to the case n > 1. The key input is that for any pullback of
connective objects of Algn+1

k

A A1

A0 A01

such that π0A0 → π0A01 and π0A1 → π0A01 are surjective, the map

LModA
F−→ LModA1 ×LModA01

LModA0

restricts to a map

(LModA)≥m
F≥m−−→ (LModA1)≥m ×(LModA01 )≥m

(LModA0)≥m

which is an equivalence (variant of [Lur11a, proposition 7.6]). For every A′ ∈ Algn+1
k ,

(LModA′)≥m ⊂ LModA′ is the full subcategory consisting of m-connective A′-modules.
We note that F has a natural lift to an En-monoidal functor, which in turn induces the
following colimit preserving, fully faithful map (the argument supporting this is in the
proof of lemma 3.1.2)

Algn(LModA)
Algn(F )−−−−→ Algn(LModA1)×Algn(LModA01 )

Algn(LModA0)

It follows from above that Algn(F ) restricts to a fully faithful map

(Algn(LModA))≥m
Algn(F )≥m−−−−−−→ (Algn(LModA1))≥m ×(Algn(LModA01 ))≥m

(Algn(LModA0))≥m

Observe that for every A′ ∈ Algn+1
k , the forgetful map Algn(LModA′) → LModA′ is

conservative and the functor Algn(−) preserves pullbacks. We conclude that the counit
of the adjunction, where Algn(F ) is the left adjoint, is an equivalence when restricted to
m-connective algebras. We conclude that Algn(F )≥m is an equivalence. In addition, the
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3.2. DEFORMATIONS OF HIGHER PRESENTABLE CATEGORIES

proof of [Lur11b, proposition 5.2.14] implies that every deformation of an m-connective
object over a small En+1-algebra is m-connective. It follows that the below diagram is a
cartesian square of spaces

AlgDefB(A) AlgDefB(A1)

AlgDefB(A0) AlgDefB(A01)

and therefore AlgDefB is a formal En+1-moduli problem.

3.2 Deformations of higher presentable categories

In this section, we study the deformations of presentable k-linear (∞, n)-categories. For
the sake of technical simplicity, we focus on those presentable k-linear (∞, n)-categories
where the (∞, n)-category of k-linear endofunctors is κ0-compact, i.e. it is an object
of nPrL

k . Additionally, we assume that the (n + 1)-fold endomorphism objects of these
higher categories are small (definition 2.3.11). An example of such objects is the n-
fold iterated module category over an En-algebra. The results in this section, which
are crucial for §3.5, are: a) theorem 3.2.3, which implies that the deformations of a
presentable k-linear (∞, n)-category C fail to be a formal moduli problem, but this
failure is be quantified; and b) corollary 3.2.10 which gives the formal moduli problem
which ‘most closely approximates’ the deformations of C.

Construction 3.2.1. Let n ≥ 0 be an integer, k be a field, nPrLk be the ∞-category of
presentable k-linear (∞, n)-categories, C be an object of nPrLk . We adopt the convention
that 0PrLk = Modk and Alg0(PrL

k ) = PrL
k . Following [Lur17, theorem 4.8.5.16] there is a

symmetric monoidal functor
Algk −→ PrLk

which sends an algebra A to the ∞-category LModA of left modules over A. Using Dunn-
Lurie additivity [Lur17, theorem 5.1.2.2] and taking En-algebra objects (repeatedly apply
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3.2. DEFORMATIONS OF HIGHER PRESENTABLE CATEGORIES

the functor Algk(−)), we get an induced symmetric monoidal functor

Algn+1
k −→ Algn(PrLk )

which sends A 1→ LModA, the En-monoidal k-linear ∞-category of left A-modules.
Following [Ste20, proposition 5.1.13], there is a lax symmetric monoidal functor

Algn(PrLk ) −→ (n+ 1)PrLk

which sends an En-monoidal k-linear ∞-category A to the presentable (∞, n + 1)-
category LModn

pr,A of presentable modules over LModn−1
pr,A in nPrLk . We adopt the con-

vention that the functor Alg0(PrL
k ) −→ PrL

k is the identity. The composition gives a
functor

Algn+1
k −→ (n+ 1)PrL

k

which classifies a cocartesian fibration, denoted nCatk
q−→ Algn+1

k . The fiber over A ∈

Algn+1
k consists of D, an object of LModn+1

pr,A, i.e. a presentable A-linear (∞, n)-category1.
Restrict to allow only q-cocartesian arrows to obtain a left fibration (nCatk)cocar →

Algn+1
k . Note that (k, C) is in the fiber over k and define Deform[C] := (nCatk)cocar

/(k,C). It
follows from [Lur09, proposition 2.1.2.1] and stability of left fibrations under pullbacks
and composition that there is an induced left fibration

Deform[C] −→ (Algn+1
k )/k ≃ Algn+1,aug

k

This induced left fibration is classified by the functor

χ : Algn+1,aug
k → Ŝ

1see example 2.3.9: LModn+1
pr,A = LModLModn

pr,A
(nPrL

k ).
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3.2. DEFORMATIONS OF HIGHER PRESENTABLE CATEGORIES

Restricting along the natural inclusion Algn+1small
k → Algn+1,aug

k gives the functor

CatDefC : Algn+1,small
k −→ Ŝ

called the deformation functor of C.

Lemma 3.2.2. Let κ0 be the smallest large cardinal, n ≥ 0 be an integer, k be a field,
C be an object of Indκ0((n+ 1)PrL

k ). Consider σ:

A A′

B B′

a pullback square in Algn+1
k . Then the induced morphism in Indκ0((n+ 1)PrL

A)

LModn+1
pr,A(C)

F−→ LModn+1
pr,A′(C)×LModn+1

pr,B′ (C) LModn+1
pr,B(C)

is (n + 1)-fully faithful. Recall that a functor F : C → D between k-linear (∞, n + 1)-
categories is (n + 1)-fully faithful iff for every pair of objects C,C ′ ∈ C, the induced
map FC,C : C(C,C ′) → D(F (C), F (C ′)) of k-linear (∞, n)-categories is n-fully faithful.
We adopt the convention that a map F : C → D between k-linear (∞, 0)-categories (i.e.
k-module spectra) is 0-fully faithful iff it is an equivalence.

Proof. This proof is identical to that of [Che23, proposition 2.2.4]. When n = 0 and
C ∈ PrL

k , the result was proven by Lurie ([Lur11a, proposition 7.4]). In case n = 0

and C ∈ Indκ0(PrL
k ), the result follows from Lurie’s proposition: let C ≃ colimiCi be a

κ0-filtered colimit of k-linear ∞-categories and consider the morphism

LModA(colimiCi)
F−→LModA′(colimiCi)×LModB′ (colimiCi) LModB(colimiCi)

≃colimi(LModA′(Ci)×LModB′ (Ci) LModB(Ci))
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3.2. DEFORMATIONS OF HIGHER PRESENTABLE CATEGORIES

The preceding functor is induced by the functors

LModA(Ci)
Fi−→ LModA′(Ci)×LModB′ (Ci) LModB(Ci)

which are fully faithful for every i. Note that colimits in PrL can be computed as limits
in the ∞-category of ∞-categories (see [Lur09, §5.5.3]). It follows from the definition
of a cofiltered limit diagram of ∞-categories that the functor F is fully faithful when
n = 0.

We induct on n to prove the result. Assume that the lemma is true for some 0 ≤

n, consider the case of n + 1. Given a map of En+1-algebras k → R, denote CR :=

LModn+1
pr,R(C). Consider the following map in Indκ0((n+ 1)PrL

A)

CA
F−→ CA′ ×CB′ CB

Following the argument for the case of n = 0 above, we may assume that C ∈ (n+1)PrL
k ,

instead of Indκ0((n+1)PrL
A). Let C ∈ CA, and consider following map arising due to the

unit of the adjunction given by F and its right adjoint (‘restriction of scalars’)

C
uC−→ CA′ ×CB′ CB

here CA′ = A′ ⊗A C, with CB and CB′ defined similarly. To prove the lemma, it is
enough to show that

CA(C ′, C)
uC∗−−→ CA(C ′, CA′ ×CB′ CB) ≃ CA′(C ′

A′ , CA′)×CB′ (C′
B′ ,CB′ ) CB(C ′

B, CB)

is a n-fully faithful map in Indκ0(nPrL
k ) for every C ′ ∈ CA. Note that uC∗ preserves κ0-

small colimits and admits a right adjoint (‘restriction of scalars’). Let D,D′ ∈ CA(C ′, C),
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3.2. DEFORMATIONS OF HIGHER PRESENTABLE CATEGORIES

and consider the following map induced by the unit of the adjunction arising due to uC∗

D −→ DA′ ×DB′ DB

It is enough to show that the induced map

CA(C ′, C)(D′, D) −→CA(C ′, C)(D′, DA′ ×DB′ DB)

≃CA(C ′, C)A′(D′
A′ , DA′)×CA(C′,C)B′ (D′

B′ ,DB′ ) CA(C ′, C)B(D
′
B, DB)

is a (n− 1)-fully faithful map in Indκ0((n− 1)PrL
k ) for every D′ ∈ CA(C ′, C). Note that

CA(C ′, C)A′ := A′ ⊗A CA(C ′, C) with CA(C ′, C)B′ and CA(C ′, C)B similarly defined.
The preceding map is (n− 1)-fully faithful because of the induction hypothesis.

Theorem 3.2.3. Let n ≥ 0 be an integer, k be a field, C be an object of nPrLk , i.e. a
presentable k-linear (∞, n)-category. Then the deformation functor CatDefC : Algn+1

k →

Ŝ (as in construction 3.2.1) is a (n+1)-proximate formal moduli problem (after a change
of universe).

Proof. Consider a pullback square in Algn+1,small
k

A A′

B B′

By lemma 3.2.2, the induced map

LModn+1
pr,A

F−→ LModn+1
pr,A′ ×LModn+1

pr,B′
LModn+1

pr,B

is (n+ 1)-fully faithful.2 By lemma 3.0.2 the induced map of spaces

(LModn+1
pr,A)

≃ F≃
−−→ (LModn+1

pr,A′×LModn+1
pr,B′

LModn+1
pr,B)

≃ ≃ (LModn+1
pr,A′)≃×(LModn+1

pr,B′ )
≃(LModn+1

pr,B)
≃

2see example 2.3.9: LModn+1
pr,A = LModLModn

pr,A
(nPrL

k ).
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is (n− 1)-truncated. Note that F≃ fits into a commutative triangle

(LModn+1
pr,A)

≃ (LModn+1
pr,A′)≃ ×(LModn+1

pr,B′ )
≃ (LModn+1

pr,B)
≃

(LModn+1
pr,k )

≃

(k⊗A−)≃

F≃

(k⊗−)≃

here (k⊗−)≃ : (LModn+1
pr,A′)≃×(LModn+1

pr,B′ )
≃(LModn+1

pr,B)
≃ → (LModn+1

pr,B′)≃
(k⊗B′−)≃−−−−−−→ (LModn+1

pr,k )
≃.

Taking the fibers over the point C ∈ (LModn+1
pr,k )

≃ induces the following map of spaces

CatDefC(A) −→ CatDefC(A′)×CatDefC(B′) CatDefC(B)

which, due to lemma 3.0.3, is (n − 1)-truncated. We conclude that CatDefC is a
(n+ 1)-proximate formal En+1-moduli problem.

Corollary 3.2.4. Let n ≥ 0 be an integer, k be a field, C be an object of nPrLk . There
exists a formal moduli problem CatDef∧C : Algn+1,small

k −→ S and a (n − 1)-truncated
natural transformation θ : ObjDefC −→ ObjDef∧C (possibly after a change of universe).

Proof. This follows from [Lur11b, theorem 5.1.9].

We now give an explicit description of the natural transformation θ : ObjDefC −→

ObjDef∧C .

Let n ≥ 0 be an integer, k be a field, C be an object of nPrLk . We have the functors

a. Algn+1
k → Alg(nPrLk ), sending A 1→ LModn

pr,A ([Ste20, remark 5.1.13] and Dunn-
Lurie additivity [Lur17, theorem 5.1.2.2]).

b. RMod(nPrLk ) → Alg(nPrLk ) is a cocartesian fibration (combination of [Lur17, corol-
laries 4.2.3.2 & 4.2.3.3] and [Lur09, corollary 5.5.2.9]), where the objects of the
domain are given by pairs (A,D) such that A is an object of Alg(nPrLk ) and D

is a right module over A. The functor sends the pair (A,D) to A (right module
variant of [Lur17, definition 4.2.1.13]).
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c. RMod(nPrLk ) → nPrLk is the forgetful functor which sends a pair (A,D) to D.

Define
RCatn(k, C) := (Algn+1

k ×Alg(nPrLk ) RMod(nPrLk ))×nPrLk {C}

to be the ∞ category of right actions of En+1-algebras on C. An object of RCatn(k, C) is
a pair (A, CA), where A ∈ Algn+1

k and CA is a right module over LModn
pr,A such that the

underlying k-linear (∞, n)-category of CA is equivalent to C. We arrive at the following
definition:

Definition 3.2.5. A k-linear center of C is a final object of RCatn(k, C).

Lemma 3.2.6. Let n ≥ 0 be an integer, k be a field, C be an object of nPrLk . Let
E := Funk(C, C) be the presentable k-linear (∞, n)-category of k-linear endofunctors of
C.3 Let the En+1-algebra of (n+1)-fold endomorphisms of C be small. Then there exists
a k-linear center of C.

Proof. Let Z(C) be the En+1-algebra of n-fold endomorphisms of idC ∈ E (definition 2.3.11).
The cases n = 0 and n = 1 have been proven in [Lur11b, §5] (see proposition 5.3.12 of
loc.cit.).

We have a lax symmetric monoidal functor given by the composition

Algn
k −→ Alg((n− 1)PrL

k ) −→ (nPrLk )Modn
pr,k/

given by A 1→ (LModn
pr,A,LModn−1

pr,A). The left functor in the composition arises due
to [Ste20, remark 5.1.13], while the right functor arises due to a variant of [Lur17,
theorem 4.8.5.5] for large ∞-categories. Applying the functor Alg(−), we obtain a
functor Algn+1

k
F−→ Alg((nPrL

k )Modn
pr,k/) ≃ Alg(nPrL

k ).
We show that F admits a right adjoint at E . By [Lur09, lemma 5.2.4.1], it is enough

to show that the right fibration AE := Algn+1
k ×Alg(nPrL

k )
(Alg(nPrL

k ))/E
q−→ Algn+1

k is
3In general, E need not be presentable, i.e. it need not be a κ0-compact object of nPrL

k . It should
be possible to relax this hypothesis, but we do not do it here.
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representable. An object of AE is given by a colimit preserving functor LModn
pr,A

φ−→ E of
monoidal presentable k-linear (∞, n)-categories. Following [Lur17, proposition 4.7.3.14
]4, LModn

pr,A is generated under small colimits by objects of the form LModn−1
pr,A ⊗k D,

where D is a presentable k-linear (∞, n − 1)-category . This tells us that the k-linear
functor φ is determined by the component

φLModn−1
pr,A

: MapLModn
pr,A

(LModn−1
pr,A,LModn−1

pr,A) −→ MapE(idC, idC)

which is a colimit preserving functor of E2-monoidal k-linear (∞, n− 1)-categories. But

MapLModn
pr,A

(LModn−1
pr,ALModn−1

pr,A) ≃ LModn−1
pr,A

is an equivalence of E2-monoidal presentable k-linear (∞, n − 1)-categories. There is a
map of E2-monodial k-linear (∞, n− 1)-categories

φLModn−1
pr,A

: LModn−1
pr,A −→ MapE(idC, idC)

Now we repeat the argument for the E2-monoidal k-linear functor φLModn−1
pr,A

and, after
repeating this argument n times, see that φ is determined by a map of En+1-algebras,
A → Z(C). This argument shows that all objects and morphisms in AE can be viewed
as morphisms of algebras and their homotopies.

Note that there is a canonical functor of monoidal k-linear (∞, n)-categories LModn
pr,Z(C) →

E , arising from the identity morphism Z(C) id−→ Z(C). This shows that Algn+1
k ×Alg(nPrL

k )

(Alg(nPrL
k ))/E has a final object and the fibration Algn+1

k ×Alg(nPrL
k )

(Alg(nPrL
k ))/E

q−→

Algn+1
k is representable:

MapAlgn+1
k

(A,Z(C)) ≃ MapAlg(nPrL
k )
(LModn

pr,A, E)

4To apply [Lur17, proposition 4.7.3.14], we first complete LModn
pr,A and (n − 1)PrL

k under κ0-
filtered colimits, use the adjoint functor theorem for κ0-presentable ∞-categories, and use [Lur17,
lemma 4.7.3.12].
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Note that the space MapAlg(nPrL
k )
(LModn

pr,A, E) is the fiber of q over A. By the universal
property of the endomorphism object (see [Lur17, §4.7.1]), the space MapAlg(nPrL

k )
(LModn

pr,A, E)

classifies the actions of LModn
pr,A on C. We note that

Algn+1
k ×Alg(nPrL

k )
(Alg(nPrL

k ))/E ≃ RCatn(k, C)

The canonical morphism of monoidal presentable k-linear (∞, n)-categories LModn
pr,Z(C) →

E endows C with a right Z(C)-module structure, and gives a final object of RCatn(k, C).

Construction 3.2.7. Let n ≥ 0, k be a field, C be an object of nPrLk . By [Lur11b,
construction 4.4.6] we have a functor λn+1 : Mn+1 −→ Algn+1,aug

k × Algn+1,aug
k which

is a right fibration. The objects of Mn+1 may be viewed as triples (A,B, ϵ), where
A,B ∈ Algn+1,aug

k and ϵ : A ⊗k B → k is an augmentation such that A → A ⊗k B
ϵ−→ k

is equivalent to the augmentation of A and similar holds for B. Let Deform[C] −→

Algn+1,aug
k be the left fibration of construction 3.2.1, whose objects may be viewed as

pairs (A,D, µ), where D is an object of nPrLA and µ : k ⊗A D −→ C is an equivalence in
nPrLk .

Let (A,B, ϵ) ∈ Mn+1 and (A,D, µ) ∈ Deform[C]. Then D ⊗k B has a left A ⊗k B-
linear, and right B-linear structures. Therefore, k ⊗A⊗kB (D ⊗k B) has a right B-linear
structure. As this construction is functorial in A, B and D, we get a map

Deform[C]×Algn+1,aug
k

Mn+1 −→ Deform[C]×(Algn+1,aug
k ×Alg(nPrLk )RMod(nPrLk )×nPrLk {C})

which is a left representable fibration, i.e. for every object (A,D, µ) ∈ Deform[C],
the ∞-category Deform[C]×Algn+1,aug

k
Mn+1 ×Deform[C] {(A,D, µ)} has a final object (see

[Lur11b, definition 3.1.2]): the final object is the En+1 Koszul dual of A, denoted Dn+1(A)

equipped with the universal augmentation A ⊗k Dn+1(A)
ϵD−→ k. Due to [Lur11b, con-
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struction 3.1.3], this left representable fibration leads to a duality functor

Dn+1
C : Deform[C]op −→ Algn+1,aug

k ×Alg(nPrLk ) RMod(nPrLk )×nPrLk {C}

There is a canonical equivalence

Algn+1
k ×Alg(nPrLk ) RMod(nPrLk )×nPrLk {C} ≃ (Algn+1

k )/Z(C)

As a consequence of [Lur09, proposition 1.2.13.8], the natural functor Algn+1,aug
k

f−→

Algn+1
k which forgets the augmentation preserves colimits. Hence this functor admits a

right adjoint, which we denote as k⊕− : Algn+1
k −→ Algn+1,aug

k . We obtain the following
equivalence by pulling back the preceding equivalence along f

Algn+1,aug
k ×Alg(nPrLk ) RMod(nPrLk )×nPrLk {C} ≃ (Algn+1,aug

k )/k⊕Z(C)

We get a homotopy commutative diagram

Deform[C]op (Algn+1,aug
k )/k⊕Z(C)

(Algn+1,aug
k )op Algn+1,aug

k

Dn+1
C

Dn+1

where Dn+1(−) : (Algn+1,aug
k )op −→ Algn+1,aug

k is the En+1-Koszul duality functor (see
[Lur11b, §4.4]). The right vertical functor is the natural projection, sending an object
A −→ k ⊕ Z(C) to A. Let

X(−) = MapAlgn+1,aug
k

(Dn+1(−), k ⊕ Z(C)) ≃ MapAlgn+1
k

(Dn+1(−),Z(C))

The above commutative square leads to a natural transformation α : CatDefC −→ X.

Remark 3.2.8. By the adjunction between (n+1)-proximate formal En+1-moduli prob-
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lems and formal En+1-moduli problems the map α factors as

CatDefC θ−→ CatDef∧C
β−→ X

where θ is (n − 1)-truncated (see [Lur11b, remark 5.1.11]). By [Lur11b, proposi-
tion 1.2.10], if β induces an equivalence of tangent complexes, then β is an equivalence
of formal moduli problems. Following [Lur11b, remark 5.1.10 & lemma 5.1.12] we note
that

CatDef∧C (k ⊕ k[m]) ≃ colimiΩ
iCatDefC(k ⊕ k[m+ i]) ≃ Ωn+1CatDefC(k ⊕ k[m+ n+ 1])

the second equality follows from the fact that CatDefC is a (n + 1)-proximate formal
moduli problem.

If CatDefC(k⊕ k[m])
k⊕k[m]−−−−→ X(k⊕ k[m]) is (n− 1)-truncated for every m > 0, then

Ωn+1CatDefC(k ⊕ k[m + n + 1]) ≃ X(k ⊕ k[m]). Therefore, β : CatDef∧C → X induces
an equivalence of tangent complexes, therefore β must be an equivalence.

Lemma 3.2.9. The natural transformation α : CatDefC −→ X of construction 3.2.7 is
(n− 1)-truncated.

Proof. Following remark 3.2.8, it suffices to only evaluate α on k ⊕ k[m] for m > 0

and exhibit that the fibers are (n− 1)-truncated. Consider the homotopy commutative
diagram

CatDefC(k ⊕ k[m]) MapAlgn+1
k

(Dn+1(k ⊕ k[m]),Z(C))

Ωn+1CatDefC(k ⊕ k[m+ n+ 1]) Ωn+1MapAlgn+1
k

(Dn+1(k ⊕ k[m+ n+ 1]),Z(C))ω

the left vertical map is (n− 1)-truncated because CatDefC is (n+1)-proximate, and the
right vertical map is an equivalence because X is a formal moduli problem. It suffices
to show that ω is an equivalence.
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Denote A = k ⊕ k[m+ n+ 1]. Note that Ωn+1ObjDefC(A) is the homotopy fiber of

ξ : EndEA(A⊗ id, A⊗ id) ≃ EndE(id, A⊗ id) −→ EndE(id, id)

where E is the k-linear ∞-category of n-fold endomorphisms of C. Note the fiber sequence
of k-modules

k[m+ n+ 2] → A → k

this induces a fiber sequence in E

k[m+ n+ 1]⊗ id → A⊗ id → id

We conclude that Ωn+1ObjDefC(A) ≃ MapE(k[m+n+1]⊗id, id) ≃ MapE(id, id)⊗k[m+

n+ 1]. Note that

MapE(id, id)⊗ k[m+ n+ 1] ≃ Mapk(k[−m− n− 1],Z(C))

≃ MapAlgn+1
k

(Freen+1
k (k[−m− n− 1]),Z(C))

By [Lur11b, proposition 4.5.6], Dn+1(k ⊕ k[m]) ≃ Freen+1
k (k[−m − n − 1]). One can

conclude from the universal property of pullbacks and the co-Yoneda embedding that
the map ω is induced by a map ν : Freen+1

k (k[−m− n− 1]) → Dn+1(k⊕ k[m]) which by
uniqueness has to be an equivalence.

We conclude that

Corollary 3.2.10.

CatDef∧C (−)
β−→ MapAlgn+1

k
(Dn+1(−),Z(C))

is an equivalence of formal En+1-moduli problems.
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3.3 Deformations of objects in higher presentable

categories

Now we construct the deformation functor for an object E ∈ C in a presentable k-linear
(∞, n)-category (construction 3.3.1). We prove that this functor is a n-proximate formal
moduli problem (theorem 3.3.3). Further analysis of this functor will be carried out in
section 3.4.

Construction 3.3.1. Let n ≥ 1 be an integer, k a field, C a presentable k-linear (∞, n)-
category, and E ∈ C an object. Following [Lur17, corollary 4.2.3.2] there is a cocartesian
fibration5

LMod(C) → Alg((n− 1)PrL
k )

The fiber over any D ∈ Alg((n − 1)PrL
k ) is the presentable k-linear (∞, n)-category of

left D-module objects of C. Following [Ste20, remark 5.1.13], there is a lax symmetric
monoidal functor

Algn
k → Alg((n− 1)PrL

k )

sending A 1→ LModn−1
pr,A. There is an induced cocartesian fibration

nLObjk
q−→ Algn

k

where nLObjk := LMod(C) ×Alg((n−1)PrL
k )

Algn
k . The fiber of q over A ∈ Algn+1

k is
LModLModn−1

pr,A
(C). Restrict to only cocartesian arrows in nLObjk to obtain a left fi-

bration nLObjcocar
k → Algn

k . Note that (k,E) is in the fiber over k. Form the slice
category with respect to this object, inducing a left fibration

(nLObjcocar
k )/(k,E) −→ (Algn

k)/k ≃ Algn, aug
k

5The corollary actually provides a cartesian fibration. One has to use [Lur17, corollary 4.2.3.3] to
conclude that each cartesian arrow induces a functor which preserves small limits, pass to completion
under κ0-filtered colimits and appeal to the adjoint functor theorem in order to deduce the existence of
left adjoints. This gives the above cocartesian fibration.
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Deform[E] := (nLObjcocar
k )/(k,E) is the ∞-category of deformations of E. Restricting the

preceding left fibration along the natural map Algn,small
k → Algn,aug

k gives rise to a left
fibration which classified by a functor

ObjDefE : Algn,small
k → Ŝ

This is called the deformation functor of E. Given A ∈ Algn,small
k , the points of the

space ObjDefE(A) represent pairs (EA, µ), where EA is an object of LModLModn−1
pr,A

(C)

and k ⊗A EA
µ−→ E is an equivalence in C.

Remark 3.3.2. Notice that construction 3.2.1 is actually a specific instance of con-
struction 3.3.1: by selecting C = (n + 1)PrL

k in the latter, we recover the former. For
reasons related to notation and clarity, we present these as separate constructions.

Theorem 3.3.3. Let n ≥ 1, k be a field, C be a presentable k-linear (∞, n)-category
and E ∈ C be an object. The functor ObjDefE : Algn+1,small

k → Ŝ of construction 3.3.1
is a n-proximate formal moduli problem (possibly after changing to the universe U1).

Proof. Consider the following pullback in Algn+1,small
k

A A′

B B′

It follows from lemma 3.2.2 that

LModn+1
pr,A(C)

F−→ LModn+1
pr,A′(C)×LModn+1

pr,B′ (C) LModn+1
pr,B(C)

is n-fully faithful. It follows from lemmas 3.0.2 and 3.0.3 that

ObjDefE(A) → ObjDefE(A′)×ObjDefE(B′) ObjDefE(B)

is a (n−2)-truncated map of spaces. We conclude that ObjDefE is a n-proximate formal
moduli problem.
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We record the following for completeness. The proof of the statement is given in the
next section.

Remark 3.3.4. By proposition 3.4.14, we have a description of the formal moduli
problem ObjDefE:

ObjDefE(−) ≃ MapAlgn,aug
k

(Dn(−),Z(E))

where Z(E) is the En-algebra of n-fold endomorphisms of E ∈ C (definition 2.3.11).
Recall that Dn : (Algn,aug

k )op −→ Algn,aug
k is the En Koszul duality functor (see [Lur11b,

§4.4]).

3.4 Simultaneous deformations

Let n ≥ 1 be an integer, k be a field, C a presentable k-linear (∞, n)-category and E ∈ C

be an object. In this section, we study the deformations of the pair (C, E). The results
which are most relevant for §3.5 here are: a) proposition 3.4.3 which establishes a natural
fiber sequence, linking the deformations of C, deformations of E, and the deformations
of the pair (C, E); b) corollary 3.4.5 which relates the formal moduli problems associated
to these deformation functors.

Let n ≥ 1 be an integer, k be a field, nPrLk be the presentable (∞, n + 1)-category
of presentable k-linear (∞, n)-categories. Let (C, E) be an object of (nPrLk )Modn

pr,k/. We
construct the deformation functor for the pair (C, E).

Construction 3.4.1. Following [Ste20, remark 5.1.13], there is a lax symmetric monoidal
functor

Algn+1
k → Alg(nPrL

k )

sending A 1→ LModn−1
pr,A. Recall that the underlying ∞-categories of the objects in

(n − 1)PrL
k are large, cocomplete ∞-categories and the functors are colimit preserving.
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Following [Lur17, theorem 4.8.5.16], there is a symmetric monoidal functor

Alg((n− 1)PrL
k ) −→ (nPrLk )Modn

pr,k/

sending a monoidal presentable k-linear (∞, n−1)-category D to (LModD((n−1)PrL
k ),D).

The symmetric monoidal structure on (nPrLk )Modn
pr,k/ arises because Modn

pr,k is the monoidal
unit of nPrLk (see [Lur17, remark 2.2.2.5]). The composition of the above functors gives
a lax symmetric monoidal functor

Algn
k → (nPrLk )Modn

pr,k/

sending A 1→ (LModn
pr,A,LModn−1

pr,A). Following [Lur17, corollary 4.2.3.2] (see footnote 5),
there is a cocartesian fibration

LMod((nPrLk )Modn
pr,k/) → Alg(nPrL

k )

leading to the following cocartesian fibration

LMod((nPrLk )Modn
pr,k/)×Alg(nPrL

k )
Algn+1

k
q−→ Algn+1

k

Let nLCat∗k := LMod((nPrLk )Modn
pr,k/) ×Alg(nPrL

k )
Algn+1

k . The fiber over an En+1-algebra
A consists of pairs (D, E) where D is a presentable A-linear (∞, n)-category and E is an
object of D. Consider the left fibration (nLCat∗k)cocar −→ Algn+1

k obtained by allowing
only q-cocartesian arrows in (nLCat∗k). The ∞-category of deformations of (C, E) is
defined to be Deform[C, E] := (nLCat∗k)cocar

/(k,C,E).

Following [Lur09, proposition 2.1.2.1] and the stability of left fibrations under pull-
backs and compositions which induces a left fibration, we obtain an induced left fibration

Deform[C, E]
q−→ (Algn+1

k )/k ≃ Algn+1,aug
k
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The left fibration q is classified by a functor χ : Algn+1,aug
k −→ Ŝ. Restricting along the

natural map Algn+1,small
k → Algn+1,aug

k gives

SimDef(C,E) : Algn+1,small
k −→ Ŝ

called the deformation functor of the pair (C, E). The points of the space SimDef(C,E)(A)

represent tuples (CA, EA, µ, ν) where CA is an A-linear (∞, n)-category, E represents a
map Modn

pr,A −→ CA such that µ : k⊗A CA
≃−→ C is an equivalence of presentable k-linear

(∞, n)-categories and ν : µ(EA)
≃−→ E is an equivalence in C.

Remark 3.4.2. There is a forgetful functor (nPrLk )Modn
pr,k/ → nPrLk which sends a pair

(C, E) to C. This induces a map nLCat∗k −→ nCatk over Algn+1
k . This induces a natural

transformation
τ(C,E) : SimDef(C,E) −→ CatDefC

The homotopy fiber of the map (nPrLk )Modn
pr,k/ → nPrLk at the object C is underlying

Kan complex of the ∞-category Funk(Modn
pr,k, C) ≃ C. There is a natural evaluation

map Funk(Modn
pr,k, C)≃ → (nPrLk )Modn

pr,k/ given by (F : Modn
pr,k → C) 1→ (C, F (k)). This

evaluation map induces a functor Deform[E] → Deform[C, E], such that there is an
induced a natural transformation

ψ(C,E) : ObjDefEn+1

E → SimDef(C,E)

where ObjDefEn+1

E is obtained by restricting ObjDefE of construction 3.3.1 along the
natural forgetful functor Algn+1,small

k → Algn,small
k which views an En+1-algebra as an

En-algebra.

The following result establishes that the deformations of C, E and the pair (C, E)

arrange into a fiber sequence.

Proposition 3.4.3. The sequence of natural transformations of remark 3.4.2
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ObjDefEn+1

E SimDef(C,E) CatDefC
ψ(C,E) τ(C,E)

is a fiber sequence in Fun∗(Algn+1,small
k , Ŝ).

Proof. Following remark 3.4.2, we have a fiber sequence of ∞-categories

Deform[E] → Deform[C, E] → Deform[C]

which commutes with projections to Algn+1,aug
k . The fiber sequence in the statement of

the proposition follows from the preceding fiber sequence.

Corollary 3.4.4. Let n ≥ 1, k be a field, C be a k-linear (∞, n)-category and E ∈ C be
an object. Then the deformation functor SimDef(C,E) : Algn+1,small

k −→ Ŝ as defined in
construction 3.4.1 is a (n+ 1)-proximate formal moduli problem.

Proof. Proposition 3.4.3 gives a fiber sequence of functors

ObjDefEn+1

E SimDef(C,E) CatDefC
ψ(C,E) τ(C,E)

Due to theorem 3.2.3 CatDefC is a (n+ 1)-proximate formal moduli problem. It follows
from theorem 3.3.3 that ObjDefEn+1

E is a n-proximate formal moduli problem.

Every pullback square in Algn+1,small
k

A A′

B B′

induces a homotopy commutative diagram of spaces

ObjDefEn+1

E (A) SimDef(C,E)(A) CatDefC(A)

O(E) S(C, E) C(C)
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where

S(C, E) :=SimDef(C,E)(A
′)×SimDef(C,E)(B′) SimDef(C,E)(B)

C(C) :=CatDefC(A′)×CatDefC(B′) CatDefC(B)

O(E) :=ObjDefEn+1

E (A)×ObjDefEn+1
E (B′)

ObjDefEn+1

E (B)

Both the top and the bottom rows in the above diagram are fiber sequences. The left-
most vertical arrow is (n− 2)-truncated, while the right-most vertical arrow is (n− 1)-
truncated. It follows that the middle vertical arrow is (n− 1)-truncated: form the fiber
sequence consisting of the fibers of the vertical maps and use the long exact sequence of
homotopy groups. We conclude that SimDef(C,E) is a (n + 1)-proximate formal moduli
problem.

Corollary 3.4.5. The fiber sequence of proposition 3.4.3 gives rise to a homotopy
commutative diagram in the ∞-category of (n + 1)-proximate formal moduli problems
Prox(n+ 1)En+1

ObjDefEn+1

E SimDef(C,E) CatDefC

ObjDefEn+1,∧
E SimDef∧(C,E) CatDef∧C

ψ(C,E) τ(C,E)

where the bottom row is a fiber sequence of formal moduli problems.

Proof. The bottom row is a fiber sequence of formal moduli problems because the func-
tor Ln+1 : Prox(n + 1)En+1 → ModuliEn+1

k preserves small limits (lemma ??). The
homotopy commutative diagram arises from the unit of the adjunction Ln+1 ⊣ i, where
i : ModuliEn+1

k → Prox(n+ 1)En+1 is the natural inclusion.

Now we further investigate the formal moduli problem SimDef∧(C,E)(−) of corol-
lary 3.4.5.

Let n ≥ 1 be an integer, k be a field, C be an presentable k-linear (∞, n)-category,
and E ∈ C an object. We have the functors
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a. Algn+1
k → Alg(nPrLk ), sending A 1→ LModn

pr,A ([Ste20, remark 5.1.13] and Dunn-
Lurie additivity [Lur17, theorem 5.1.2.2]).

b. RMod((nPrL
k )Modn

pr,k/) → Alg(nPrL
k ) is a cocartesian fibration (combination of

[Lur17, corollaries 4.2.3.2 & 4.2.3.3] and [Lur09, corollary 5.5.2.9]), where the ob-
jects of the domain are given by pairs (A,D) such that A is an object of Alg(nPrLk )
and D ∈ (nPrL

k )Modn
pr,k/ is a right module over A. The functor sends the pair (A,D)

to A (right module variant of [Lur17, definition 4.2.1.13]).

c. RMod((nPrL
k )Modn

pr,k/) → (nPrL
k )Modn

pr,k/ which sends a pair (A,D) to D.

Define

RCat∗n(k, C, E) := Algn+1
k ×Alg(nPrL

k )
RMod((nPrL

k )Modn
pr,k/)×(nPrL

k )Modnpr,k/
{(C, E)}

to be the ∞ category of right actions of En+1-algebras on the pair (C, E). An object
of RCat∗n(k, C, E) is a pair (A, CA, EA), where A ∈ Algn+1

k and (CA, EA) is a right A-
module object of (nPrL

k )Modn
pr,k/, such that the underlying k-linear (∞, n)-category of CA

is equivalent to C, with EA corresponding to E. We arrive at the following definition:

Definition 3.4.6. The k-linear center of the pair (C, E) is a final object of RCat∗n(k, C, E).

Remark 3.4.7. Let E := Funk(C, C) be the presentable k-linear (∞, n)-category of k-
linear endofunctors of C,6 and Funk(Modn

pr,k, C) ≃ C be the presentable k-linear (∞, n)-
category of k-linear functors. An object E ∈ C can also be viewed as a functor Modn

pr,k
E−→

C. Form the following pullback square in the ∞-category of large ∞-categories.

EE E

{∗} Funk(Modn
pr,k, C) ≃ C

E∗

E

6In general, E need not be presentable, i.e. E doesn’t have to be a κ0-compact object of nPrL
k .

We make this assumption on E throughout. With some additional work, it is possible to relax this
assumption.
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To be precise, we use the functor ψn of remark 2.3.10 to form the homotopy fiber of
E := ψn(E)

ψn(E∗)−−−−→ C := ψn(C) at the object E ∈ C. Denote this fiber by EE.

EE −→ E
ψn(E∗)−−−−→ C

It is straightforward to see that the underlying ∞-category of EE, obtained by trunca-
tion, is equivalent to EE: the truncation functor is a right adjoint.

Informally, objects of EE are pairs (F, γ) such that F : C → C and F (E)
γ−→ E is an

equivalence in C. Let Map
(nPrL

k )Modnpr,k/
((C, E), (C, E)) be the ∞-category of endofunctors

of the pair (C, E). It follows from definition of the slice construction that

EE ≃ Map
(nPrL

k )Modnpr,k/
((C, E), (C, E))

is the endomorphism object of the pair (C, E). More precisely, EE is the endomorphism
object of the pair (C, E), while EE is only its underlying ∞-category. In particular, EE
has a monoidal structure.

Lemma 3.4.8. Let Z(E) be the En-algebra of n-fold endomorphisms of E ∈ C. Let
Z(C, E) be the En+1-algebra of (n + 1)-fold endomorphisms of the pair (C, E) and Z(C)

be the k-linear center of C. There is Z(C, E) ≃ Z(C) ×Z(E) {∗} is an equivalence of
En-algebras.

Proof. Consider the fiber sequence of remark 3.4.7

EE −→ E
ψn(E∗)−−−−→ C

The above is a fiber sequence in the ∞-categories enriched in (∞, n − 1)-categories.
This fiber sequence induces a diagram of monoidal ∞-categories enriched in (∞, n− 2)-
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categories:

Map
EE

(id(C,E), id(C,E)) −→ Map
E
(idC, idC) −→ Map

C
(E,E)

We claim that the above diagram is a fiber sequence: follows from the definition of a
fiber sequence in the ∞-category of ∞-categories enriched in (∞, n − 1)-categories. In
turn there is a diagram of E2-monoidal ∞-categories enriched in (∞, n− 2)-categories:

Map
EE

(id(C,E), id(C,E))(id, id) −→ Map
E
(idC, idC)(id, id) −→ Map

C
(E,E)(idE, idE)

By the same argument, the above is a fiber sequence as well. Repeating this a total of
n times, we arrive at a fiber sequence of En-algebras over k:

Z(C, E) −→ Z(C) −→ Z(E)

Lemma 3.4.9. Let n ≥ 1, k be a field, C be a presentable k-linear (∞, n)-category and
E ∈ C an object. Assume that the En+1-algebra of (n + 1)-fold endomorphisms of the
pair (C, E) is small. Then there exists a k-linear center of the pair (C, E).

Proof. We follow the notation of remark 3.4.7. This proof is analogous to that of
lemma 3.2.6. Let D be a monoidal presentable k-linear (∞, n)-category, and EE be as
in remark 3.4.7. By the universal property of an endomorphism object [Lur17, §4.7.1],
any right D-module structure on (C, E) is classified by a monoidal functor ψn(D)

ϑ−→ EE.
Such a functor gives a diagram

ψn(D)

EE E

ϱ

ϑ
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The functor ϱ induces a colimit preserving morphism of monoidal presentable k-linear
(∞, n)-categories: D −→ E . If D ≃ LModn

pr,A for some A ∈ Algn+1
k , then every colimit

preserving monoidal k-linear functor D −→ E is equivalent to a map of En+1-algebras
A

ϕ−→ Z(C) (proof of lemma 3.2.6). Let Z(C, E) be the En+1-algebra of n-fold endomor-
phisms of the identity functor id(C,E) ∈ EE. It follows that given a factorization

ψn(LModn
pr,A)

EE E

There is an induced map of En+1-algebras

A

Z(C, E) Z(C)

ϕ

As a consequence, in order for D to act on the pair (C, E), the map ϕ must factor
as A −→ Z(C, E) −→ Z(C). It follows that every right A-module structure on (C, E)

is given by a map of En+1-algebras A → Z(C, E). It follows that the following two
∞-categories are equivalent

Algn+1
k ×Alg(nPrL

k )
RMod((nPrL

k )Modn
pr,k/)×(nPrL

k )Modnpr,k/
{(C, E)} ≃ (Algn+1

k )/Z(C,E)

Hence Z(C, E) is a k-linear center of the pair (C, E).

Construction 3.4.10. Let n ≥ 1 be an integer, k a field, C a presentable k-linear (∞, n)-
category and E ∈ C an object. By [Lur11b, construction 4.4.6] we have a right fibration
λn+1 : Mn+1 → Algn+1,aug

k × Algn+1,aug
k . The objects of Mn+1 are triples (A,B, µ) such

that A,B ∈ Algn+1,aug
k and A ⊗k B

µ−→ k is an augmentation. Let Deform[C, E] →

Algn+1,aug
k be the left fibration from construction 3.4.1.
Let (A,B, µ) ∈ Mn+1 and (A, CA, EA, µ, ν) ∈ Deform[C, E]. Note that CA⊗kB can be

endowed an action of A⊗kB where the action of B is trivial. Then k⊗A⊗kB (C⊗kB) has
a right B-linear structure, more precisely it is an object of RModLModn

pr,B((nPrL
k )Modn

pr,k).
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The image of k⊗A⊗kB(C⊗kB) under the map RModLModn
pr,B((nPrL

k )Modn
pr,k) → (nPrL

k )Modn
pr,k

is equivalent to (C, E). By repeating construction 3.2.7, replacing Z(C) with Z(C, E) we
obtain a homotopy commutative square

Deform[C, E]op (Algn+1,aug
k )/k⊕Z(C,E)

(Algn+1,aug
k )op Algn+1,aug

k

Dn+1
(C,E)

Dn+1

This commutative diagram induces a natural transformation

SimDef(C,E)
ϕ−→ MapAlgn+1,aug

k
(Dn+1(−), k ⊕ Z(C, E))

where MapAlgn+1,aug
k

(Dn+1(−), k ⊕ Z(C, E)) is a formal moduli problem. Recall that
Dn+1 : (Algn+1,aug

k )op −→ Algn+1,aug
k is the En+1 Koszul duality functor (see [Lur11b,

§4.4]).

The following proposition gives an explicit description of the formal moduli problem
SimDef∧(C,E), associated with the pair (C, E), in terms of the k-linear center Z(C,E).

Proposition 3.4.11. Let n ≥ 1 be an integer, k a field, C a presentable k-linear (∞, n)-
category and E ∈ C and object. Let the k-linear center of the pair (C, E) be small.
Then

SimDef∧(C,E)(−) ≃ MapAlgn+1,aug
k

(Dn+1(−),Z(C, E))

Proof. Following remark 3.2.8, it is enough to prove that the natural transformation of
construction 3.4.10

SimDef(C,E)
ϕ−→ SimDef∧(C,E)

is such that SimDef(C,E)(k⊕k[m])
α(k⊕k[m])−−−−−−→ SimDef∧(C,E)(k⊕k[m]) is a (n−1)-truncated

map of spaces for every m > 0.
The proof is a parallel to that of lemma 3.2.9. Let En

E be the En-monoidal ∞-category
of n-fold endomorphisms of id(C,E) ∈ EE (notation as in remark 3.4.7) and Z(C, E) be the
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En+1-algebra of n-fold endomorphisms of id ∈ EE, i.e. Z(C, E) = MapEn
E

(id, id), where
id ∈ En

E is the En-monoidal unit.

For every integer m ≥ 0, the space Ωn+1SimDef(C,E)(k⊕ k[m]) can be identified with
the left-most space of the fiber sequence

MapEn
E
(id, id[m+ n+ 1]) −→ MapEn

E
(id, (k ⊕ k[m+ n+ 1])⊗ id) −→ MapEn

E
(id, id)

We have the following equivalences

MapEn
E
(id, id[m+ n+ 1]) ≃ Mapk(k[−m− n− 1],Z(C, E))

≃ MapAlgn+1
k

(Freen+1
k (k[−m− n− 1]),Z(C, E))

Due to [Lur11b, proposition 4.5.6], there is an equivalence

MapAlgn+1
k

(Freen+1
k (k[−m− n− 1]),Z(C, E)) ≃ MapAlgn+1

k
(Dn+1(k ⊕ k[m]),Z(C, E))

We have the following equivalence of spaces induced by ϕ

Ωn+1SimDef(C,E)(k ⊕ k[m]) ≃ MapAlgn+1
k

(Dn+1(k ⊕ k[m]),Z(C, E))

In addition, there is the following natural equivalence of spaces

MapAlgn+1
k

(Dn+1(k ⊕ k[m]),Z(C, E)) ≃ Ωn+1MapAlgn+1
k

(Dn+1(k ⊕ k[m+ n+ 1]),Z(C, E))

arising from the fact that MapAlgn+1
k

(Dn+1(−),Z(C, E)) is a formal moduli problem.

It now follows from the same argument as in the proof of lemma 3.2.9 that

SimDef(C,E)(k ⊕ k[m])
α(k⊕k[m])−−−−−−→ SimDef∧(C,E)(k ⊕ k[m])

is (n− 1)-truncated. This proves the proposition.
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The following discussion aims to analyze the formal moduli problem ObjDef∧E.

Remark 3.4.12. Let (Y1, {Eα}α∈T ) and (Y2, {Fα}α∈T ) are two deformation contexts
admitting deformation theories D1 : Y

op
1 −→ Ξ1 and D2 : Y

op
2 −→ Ξ2 respectively. Let

U : Y2 −→ Y1 be a functor which preserves pullback squares and final objects. Assume
that for every α ∈ T , and every integer n > 0, there is an equivalence U(Ω∞−nEα) ≃

Ω∞−nFα.

Then there is an induced functor U small : Ysmall
1 → Ysmall

2 which preserves final objects
and pullback squares. Therefore

Ξ2 ≃ ModuliY2
(Usmall)∗−−−−−→ ModuliY2 ≃ Ξ1

is the functor given by pullback by U small.

There is a map of ∞-operads E⊗
n

j−→ E⊗
n+1 [Lur17, §5.1.1]. Heuristically, this map

is the identity on objects and given on morphism space by sending a configuration of
n-dimensional open disks to the configuration of (n+1)-dimensional open disks obtained
by taking a with the interval (−1, 1).

This map of ∞-operads gives rise to the forgetful functor Algn+1
k

U−→ Algn
k . Note that

U admits a left adjoint, in particular U preserves small limits. In addition, for every
integer m ≥ 0, U(k ⊕ k[m]) ≃ k ⊕ k[m] and U(k) ≃ k. It follows from remark 3.4.12
and theorem 2.2.19 that U induces a functor

Algn,aug
k ≃ ModuliEn

k
U∗
−→ ModuliEn+1

k ≃ Algn+1,aug
k

Lemma 3.4.13. Let n ≥ 1 be an integer, k a field, and X : Algn,small
k → S be a formal

En-moduli problem. Consider the restriction XEn+1 : Algn+1,small
k → S via the above map
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ModuliEn
k

U∗
−→ ModuliEn+1

k . By theorem 2.2.19,

X(−) ≃MapAlgn,aug
k

(Dn(−),Z)

XEn+1(−) ≃MapAlgn+1,aug
k

(Dn+1(−),Z′)

for some Z ∈ Algn,aug
k and Z′ ∈ Algn+1,aug

k . Let {mi : Algi,aug
k −→ Modk}i=n,n+1 be the

functors which map to the augmentation ideal.

Then there is an equivalence mn+1(Z′) ≃ mn(Z)[−1] of non-unital En+1-algebras.

Proof. By definition, the tangent spectrum of X is unchanged under the map U∗. By
computing the tangent spectrum of XEn+1 and applying theorem 2.2.19, we find that
mn+1(Z′) ≃ mn(Z)[−1] is an equivalence of spectra. We have the following diagram

ModuliEn+1 Algn+1,aug
k Algn+1,nu

k

ModuliEn Algn,aug
k Algn,nu

k

≃ ≃

U∗

≃ ≃

The top and bottom rightward horizontal arrows are equivalences given by [Lur17,
proposition 5.4.4.10]. We conclude that the right vertical arrow takes a non-unital En-
algebra a and maps it to the non-unital En+1-algebra whose underlying k-module is
a[−1]. Hence mn+1(Z′) ≃ mn(Z)[−1] is an equivalence of non-unital En+1-algebras.

A direct proof of the following proposition can be provided; however, we utilize the
fiber sequence of corollary 3.4.5 to illustrate its use. Subsequent sections will further
demonstrate the significant utility of this fiber sequence.

Proposition 3.4.14. Let n ≥ 1 be an integer, k be a field, C be a presentable k-linear
(∞, n)-category and E ∈ C be an object. Then

ObjDef∧E(−) ≃ MapAlgn,aug
k

(Dn+1(−), k ⊕ Z(E))
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where Z(E) is the En-algebra of n-fold endomorphisms of E, viewed as a non-unital
En-algebra over k.

Proof. Let
ObjDef∧E(−) ≃ MapAlgn,aug

k

(Dn+1(−), k ⊕ aE)

Following corollary 3.4.5, there is a fiber sequence of formal moduli problems

ObjDefEn+1,∧
E SimDef∧(C,E) ObjDef∧C

Consequentially, there is a fiber sequence of non-unital En+1-algebras (also a fiber se-
quence of k-modules):

aE −→ Z(C, E) −→ Z(C)

The above sequence leads to the following fiber sequence of k-modules

Z(C, E) −→ Z(C) −→ aE[1]

By lemma 3.4.8, Z(C, E) ≃ Z(C) ×Z(E) {∗} is an equivalence of En-algebras. Therefore,
aE[1] ≃ Z(E) an equivalence of k-modules. So, the preceding fiber sequence of k-modules
lifts to the fiber sequence of En-algebras of lemma 3.4.8.

In turn, aE ≃ Z(E)[−1] is an equivalence of k-modules. We conclude that

ObjDef∧,En+1

E (−) ≃ MapAlgn,aug
k

(Dn+1(−), k ⊕ Z(E)[−1])

It follows from lemma 3.4.13 that the non-unital En+1-algebra structure on Z(E)[−1] is
induced by the En-algebra structure on Z(E) via the map U∗ : ModuliEn

k −→ ModuliEn+1

k .
This finishes the proof of the proposition.

The following discussion connects to [Fra13, conjecture 4.50], giving insights into the
restrictions of formal En-moduli problems to formal Em-moduli problems for m > n.

The ∞-operad E⊗
n is Koszul self dual for all n > 0: consider the setting of dg-operads

over k. Let En be a dg-operad model for the ∞-operad E⊗
n , D(En) denote the Koszul
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dual dg-operad of En. A direct implication of [Fre11, theorem B] is that there is a
morphism En[−n] ≃ D(En) which is a weak equivalence of dg-operads over k.

Definition 3.4.15. Let p be an integer and M be a dg-module over k. An Em[p]-algebra
structure on M is an Em-algebra structure on M [p].

There should exist an equivalence of ∞-categories Algn,nu
k ≃ Algnu

D(En)(Modk).
The map E⊗

n
j−→ E⊗

n+1 of ∞-operads will have an analog in the dg-operad model,
En

j−→ En+1. Under Koszul duality, the map j gives rise to a map of dg-operads En+1[−n−

1]
D(j)−−→ En[−n]. Under the equivalence ModuliEn

k ≃ Algn,nu
k , the map En+1[−n− 1]

D(j)−−→

En[−n] should induce a functor ModuliEn
k

D(j)∗−−−→ ModuliEn+1

k .

Conjecture 3.4.16. [Fra13, conjecture 4.50] There exists a natural equivalence U∗ ≃

(D(j))∗.

Supporting argument: It follows from lemma 3.4.13 and the definition of a D(Em)-
algebra that for every a ∈ Algn,nu

k , the under lying k-modules of the non-unital En+1-
algebras U∗(a) and (D(j))∗(a) are equivalent to a[−1]. Moreover, the functor U :

Algn+1,aug
k → Algn,aug

k is induced by the morphism of operads En
j−→ En+1.

3.5 Module categories over En-algebras

Let C be the En-monoidal k-linear ∞-category of right modules over an En+1-algebra
B. We study the deformations of C upto Morita equivalences. By definition, C admits
a compact generator, which allows a better control over its deformations. We assume
that B is m-connective for some integer m ≤ 0. The main result here is theorem 3.5.10,
proving which was the original objective of this thesis. This result implies that ‘over k[[t]],
every Maurer-Cartan element in the k-linear center of RModn

pr,C induces a deformation
of C (upto a Morita equivalence)’. In §3.5.2 we recover the fiber sequence of non-unital
En+1-algebras of [Fra13, theorem 1.1] using the language of formal moduli problems
(proposition 3.5.16).
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Warning 3.5.1. By an E0-monoidal k-linear ∞-category we mean a k-linear ∞-category.
We emphasise that this convention is non-standard.

Definition 3.5.2. [Lur11b, definition 5.3.20] A presentable stable ∞-category C is said
to be tamely compactly generated (tcg) if it is compactly generated and if for any choice of
compact objects E,E ′ of C we have π−mMapC(E,E ′) = ExtmC (E,E ′) ≃ 0 for sufficiently
large m.

We say an En-monoidal k-linear ∞-category C is tamely compactly generated if the
underlying k-linear ∞-category of C is tamely compactly generated.

Definition 3.5.3. [BKP18, definition 3.2] Let C be an tamely compactly generated k-
linear ∞-category. C admits a single compact generator E ∈ C if E is a compact object
and for every C ∈ C, MapC(E,C) ≃ 0 iff C ≃ 0.

Remark 3.5.4. Let n ≥ 1 be an integer, C be a tamely compactly generated En-
monoidal k-linear ∞-category Assume that C admits a single compact generator E

(definition 3.5.3). We assume that E is an idempotent, i.e. there exists an equivalence
E ⊗ E

∼−→ E.
This assumption endows B := MapC(E,E) with the structure of an En+1-algebra.

This structure on B is non-canonical, depending on the choice of the equivalence E⊗E
∼−→

E. This choice is precisely a choice of an equivalence E ⊗ E
∼−→ E in the homotopy

category of C.
In the scenario of interest, namely the ∞-category of modules over En+1-algebras,

there is a canonical choice for such an equivalence because E is the unit of the En-
monoidal structure in this case. We are not aware of any other interesting and natural
examples of En-monoidal ∞-categories which satisfy the hypothesis that the compact
generator is idempotent.

Lemma 3.5.5. Let n ≥ 0 be an integer, k be a field, and C be a tamely compactly
generated En-monoidal k-linear ∞-category which admits a single compact generator E.
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Assume that E ⊗ E ≃ E when n ≥ 1, and denote the endomorphism object of E by
B := EndC(E). Then RModn

pr,C and RModn+1
pr,B are equivalent as presentable k-linear

(∞, n+ 1)-categories.7

Proof. By [Lur17, theorem 7.1.2.1] we have an equivalence of k-linear ∞-categories
RModB

U−→ C, such that B 1→ E. This proves the lemma for n = 0.
When n = 1, U allows us to endow RModB with an En-monoidal structure coming

from C. This En-monoidal structure has no reason to be equivalent to the canonical
En-monoidal structure on RModB. Using these two En-monoidal structures, we view
RModB as an object of BimodRModB C(PrL

k ), i.e. a RModB −C-bimodule. We denote this
object by MB C. In addition, we may view RModB as an object of BimodC RModB

(PrL
k ),

i.e. a C − RModB-bimodule. We denote this object by MC B. Note that, following
[Lur17, theorems 4.3.2.7 & 4.8.4.1] an equivalence of ∞-categories

MC B ∈ Map
2PrL

k
(RModC(PrL

k ),RModRModB(PrL
k )) ≃ BimodC RModB

(PrL
k )

MB C ∈ Map
2PrL

k
(RModRModB(PrL

k ),RModC(PrL
k )) ≃ BimodRModB C(PrL

k )

Under such equivalences of functor ∞-categories with bimodule ∞-categories, the diago-
nal bimodule MC C corresponds to idRModC and the diagonal bimodule MB B corresponds
to idRModRModB

. Note that MC B ⊗B MB C ≃ MC C and MB C ⊗C MC B ≃ MB B, implying
that RModC(PrL

k ) ≃ RMod2
pr,B is an equivalence of presentable k-linear (∞, 2)-categories.

Recall that RModpr,C ≃ RModC(PrL
k ) (follows from a variant of [Ste20, corollary 5.1.15]).

We induct on n and use a similar argument when n > 1 to finish the proof. As-
sume that RModn−1

pr,C
Un−→ RModn

pr,B is an equivalence of presentable k-linear (∞, n− 1)-
categories. As C is an En-monoidal k-linear ∞-category, the presentable k-linear (∞, n)-
category RModn−1

pr,C has an E1-monoidal structure8, and so does RModn
pr,B. These two

7The proof relies an the hypothesis that E is a compact generator and B has the structure of an
En+1-algebra, not that E ⊗ E ≃ E.

8This follows from [Lur17, corollary 4.8.5.20]. We have made extensive use of this corollary without
reference throughout this chapter.
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E1-monoidal structures are not necessarily equivalent. Using the equivalence Un, we
endow RModn

pr,B with the structure of a RModn−1
pr,C −RModn

pr,B-bimodule, denoted MC B

and the structure of a RModn
pr,B − RModn−1

pr,C -bimodule, denoted MB C. Note that

MC B ∈ Map
nPrL

k
(RModRModn−1

pr,C
(nPrL

k ),RModRModn
pr,B(nPrL

k ))

≃ BimodRModn−1
pr,C RModRModnpr,B

(nPrL
k )

MB C ∈ Map
2PrL

k
(RModRModB(PrL

k ),RModC(PrL
k )) ≃ BimodRModB C(PrL

k )

It follows that the above two bimodules establish an equivalence RModn
pr,C ≃ RModn+1

pr,B.

Remark 3.5.6. Let n ≥ 0 and k be a field. We have the following diagram of functors,

SimDef(RModn+1
pr,B ,RModn

pr,B) AlgDefB CatDefRModn+1
pr,B

E M

where the functor E takes the (n+ 1)-fold endomorphisms of the marked object, which
is an En+1-algebra. The functor E is induced by a right adjoint (variant of [Lur17, the-
orem 4.8.5.11] for κ0-presentable ∞-categories) to the composition of the below functor

Algn+1
k −→ (n+ 1)PrL

k

A 1→ RModn+1
pr,A

with the functor (n + 1)PrL
k

Indκ0 (−)
−−−−−→ ((n + 1)PrL

k )
∧. The functor Indκ0 , which sends

D 1→ Indκ0(D), is an equivalence because of [Lur09, theorem 5.5.7.10].
On the other hand, the functor M takes (n+ 1)-fold presentable modules over each

algebra deformation of B, induced by Algn+1
k −→ (n+1)PrL

k which sends A 1→ RModn+1
pr,A.

3.5.1 Formal deformations

We characterize formal deformations of En-monodidal k-linear ∞-categories which are
of the form RModB, where B ∈ Algn+1

k . We assume the B is m-connective for integer
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m ≤ 0 (theorem 3.5.10).

Lemma 3.5.7. [BKP18, lemma 4.23] Let k be a field and

· · · → B2 → B1 → B0

be an inverse system of discrete local artinian commutative k-algebras having same
residue field k. Let B = limi Bi be the limit. Let n ≥ 2 and consider for each i

the algebra Bi as an small (artinian) En-algebra and B as an augmented En-algebra
via the forgetful functor CAlgaug

k → Algn,aug
k . Then the natural map colimiSpf(Bi) →

Spf(B) is an equivalence of formal En-moduli problems. Equivalently, the natural map
colimiDn(Bi) → Dn(B) is an equivalence of augmented En-algebras over k.

Remark 3.5.8. It follows from lemma 3.5.7 that a point in CatDefRModn
pr,C(k[[t]]) ≃

limi CatDefRModn
pr,C(k[t]/t

i) is given by a family {Mi} with Mi a deformation of RModn
pr,C

over k[t]/ti for each i ≥ 1 and k[t]/ti ⊗k[t]/ti+1 Mi+1 ≃ Mi a an equivalence of k[t]/ti-
linear (∞, n + 1)-categories. Further, we have an equivalence CatDef∧RModn

pr,C
(k[[t]]) ≃

MapAlgn+2
k

(Dn+2(k[[t]]),Z(RModn
pr,C)).

Lemma 3.5.9. Let n ≥ 0 be an integer, k be a field, C be a tamely compactly generated
En-monoidal k-linear ∞-category admitting a single compact generator E. Assume that
E ⊗ E ≃ E when n ≥ 1. Then

CatDefRModn
pr,C(k[[t]])

θ(k[[t]])−−−−→ CatDef∧RModn
pr,C

(k[[t]])

induces a bijection on connected components.

Proof. Let B := EndC(E) be the En+1-algebra of endomorphisms of E. By lemma 3.5.5,
we have an equivalence RModn

pr,C ≃ RModn+1
pr,B, such that RModn−1

pr,C 1→ RModn
pr,B. In

turn, we have an equivalence of En+2-algebras Z(RModn
pr,C)

∼−→ Z(RModn+1
pr,B). Denote

Zn(B) := Z(RModn
pr,C).
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We compute that Dn+2(k[[t]]) = k[β] with deg(β) = −n − 2 is the free E∞-algebra
on one generator viewed as an En+2-algebra via the forgetful functor CAlgk −→ Algn+2

k .
Let η ∈ CatDef∧RModn

pr,C
(k[[t]]) correspond to a LModn+1

k[β] -linear structure on RModn
pr,C.

Note that η may be viewed as a C-linear natural transformation η : idC −→ idC. For
instance, in case n = 1:

Funk(RModpr,C,RModpr,C) ≃ BimodC C

and k[β]
η−→ Zn(B) ≃ Map BimodC C

(C, C)(idC, idC).

In addition, RModn−1
pr,C ∈ RModn

pr,C is an object in a presentable k-linear (∞, n + 1)-
category and Z(RModn−1

pr,C )
∼−→ Z(RModn

pr,B) ≃ B is an equivalence of En+1-algebras.

This data induces a composition of maps k[β] η−→ Zn(B) −→ B of En+1-algebras, which
we denote k[β]

η(E)−−→ B. Note that the map Zn(C) −→ B is from lemma 3.4.8. Consider
the image of the generator β under this map, which induces a map E

φ(E)−−→ E[n + 2].
Consider the cocone of this map in C, i.e. the fiber sequence:

Eη E E[n+ 2]
φ(E)

We note that Eη is a compact generator of C: let F ∈ C be such that

MapC(E
η, F ) ≃ 0 =⇒ MapC(E[n+ 2], F )

≃−→ MapC(E,F )

MapC(E,F )[−n− 2]
≃−→ MapC(E,F ) =⇒ MapC(E,F ) ≃ 0

the preceding implication is due to the tamely compactly generated hypothesis on C.
Since E is a compact generator, F ≃ 0. The converse is always true.

Compact objects of C are closed under finite colimits and finite limits.

Moreover by naturality and C-linearity of η, we have
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Eη ⊗ E E ⊗ E ≃ E E[n+ 2]⊗ E ≃ E[n+ 2]

Eη ⊗ E E ⊗ E ≃ E E[n+ 2]⊗ E ≃ E[n+ 2]

φ(E⊗E)

≃ ≃

φ(E)⊗idE

a fiber sequence, hence Eη ⊗ E ≃ Eη. Moreover

Eη ⊗ Eη E ⊗ Eη ≃ Eη E[n+ 2]⊗ Eη ≃ Eη[n+ 2]
φ(Eη)

φ(Eη) is homotopic to zero because the action of k[β] on Eη is trivial by construction.
We see that Eη ⊗Eη ≃ Eη ⊕Eη[n+2]. The En-monoidal structure on C induces a map
of k-modules

MapC(E
η, Eη)⊗k MapC(E

η, Eη) MapC(E
η ⊕ Eη[n+ 2], Eη ⊕ Eη[n+ 2])

MapC(E
η, Eη)

which is compatible with the E1-algebra structure on MapC(E
η, Eη) endowed by the

composition on C. We conclude that Bη := MapC(E
η, Eη) has the structure of an En+1-

algebra. By lemma 3.5.5, RModn
pr,C ≃ RModn+1

pr,Bη . In turn, Zn(B) ≃ Z(RModn+1
pr,Bη) is

an equivalence of En+2-algebras. Upon viewing RModn
pr,Bη as an object of RModn+1

pr,Bη ,
we find that Z(RModn

pr,Bη) ≃ Bη is an equivalence of En+1-algebras, and there is a map
Zn(B) −→ Bη of En+1-algebras (lemma 3.4.8).

From the naturality of η, it follows that the map of En+1-algebras k[β] η−→ Zn(B) −→

Bη, factors via the natural augmentation k[β] −→ k. This implies that Eη is a k-module
object of the k[β]-linear structure on C. In other words, we have a factorization

k[β]

Z(RModn+1
pr,Bη ,RModn

pr,Bη) Zn(B) Bη

η
τ 0

where by the universal property of the endomorphism object of the pair (RModn+1
pr,Bη ,RModn

pr,Bη)

(remark 3.4.7), the τ is a map of En+2-algebras.
Let Bη := EndC(E

η), then there exists RModBη ≃ C a Morita equivalence of En-
monoidal k-linear ∞-categories. In other words, RModn+1

Bη ≃ RModn
C is an equivalence
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of k-linear (∞, n+1)-categories. We see that η may be viewed as the data of a k[β]-linear
structure on RModn+1

pr,Bη such that the induced action on RModn
pr,Bη is trivial. In other

words, RModn
pr,Bη is a Modn

pr,k-module object of RModn+1
pr,Bη .

Following [BKP18, §4] (also see remark 3.5.6), we have a commutative diagram (see
next page). Note that as Bη is m-connective for some negative integer m, AlgDefBη is
a formal moduli problem (proposition 3.1.3).
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Here ζ is a lift of η across π. The image of ζ in CatDefRModn
pr,C(k[[t]]]) provides a lift of

η across θ(k[[t]]). This establishes that θ(k[[t]]) is a surjection on connected components.
The injectivity also follows from this proof: the method of proof shows that there can
only be a unique (upto homotopy) lift of η across the map θ(k[[t]]).

The following is one of the main results of the thesis.

Theorem 3.5.10. Let n ≥ 0 be an integer, k be a field, C be a tamely compactly generated
En-monoidal k-linear ∞-category admitting a single compact generator E. Assume that
E ⊗ E ≃ E when n ≥ 1. Then

CatDefRModn
pr,C(k[[t]])

θ(k[[t]])−−−−→ CatDef∧RModn
pr,C

(k[[t]])

is a homotopy equivalence.

Proof. Let B := MapC(E,E) be the En+1-algebra of endomorphisms of E. Following
the notation of lemma 3.5.9, Zn(B) is the k-linear center of RModn

pr,C.
We will inductively prove that θ(k[[t]]) induces a bijection on homotopy groups.

The base step is that θ(k[[t]]) induces a bijection of π0, i.e. connected components
(lemma 3.5.9). This already proves the theorem when n = 0.

Assume that n ≥ 1 and θ(k[[t]]) induces an equivalence of (i− 1)th-homotopy groups
for some i ≥ 1. In what follows, a good mental aid it to set i = 1 and verify that the
statements make sense. We assume that i− 1 < n.

Let Ωi−1CatDef∧RModn
pr,C

(k[[t]]) denote the (i− 1)-fold loop space for arbitrary choices
of base points. Assume that given an arbitrary point

η ∈ Ωi−1CatDef∧RModn
pr,C

(k[[t]]) ≃ Ωi−1MapAlgn+2
k

(k[β],Zn(B))

the image of η under the map Ωi−1MapAlgn+2
k

(k[β],Zn(B)) −→ MapAlgn+1
k

(k[β], B[−i+1])

is contained in the connected component of the base point: in case i = 1, the proof of
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lemma 3.5.9 says that we can always find a suitable compact generator such that this
statement holds. Denote this compact generator by Eη

i , and Bη
i := MapC(E

η
i , E

η
i ). When

i = 1, there is the compact generator Eη
1 := Eη constructed in the proof of lemma 3.5.9.

This guarantees a lift of η to a point

τ ∈ Ωi−1SimDefRModn+1

pr,Bη
i
,RModn

pr,Bη
i

(k[[t]]) ≃ Ωi−1MapAlgn+2
k

(k[β],Z(RModn
pr,C,RModn−1

pr,C ))

The proof of lemma 3.5.9 shows that this lift exists when i = 1.

Consider an arbitrary point ε ∈ ΩηΩi−1MapAlgn+2
k

(k[β],Zn(B)). As the image of
η in MapAlgn+1

k
(k[β], Bη

i [−i + 1]) is homotopic to the base point, ε induces a map of

En+1-algebras k[β]
ε(Eη

i )−−−→ Bη
i [−i].

Let us denote ηi(Eη
i ) := ε(Eη

i ). If the map ηi(E
η
i ) were to factor via the augmen-

tation k[β] −→ k, then by the universal property of the k-linear center of the pair
(RModn+1

pr,Bη
i
,RModn

pr,Bη
i
), we would have a lift of ε to the space

ΩτΩi−1SimDef(RModn+1

pr,Bη
i
,RModn

pr,Bη
i
)(k[[t]]). Unfortunately, this is not guaranteed. We need

to construct a suitable compact generator for this purpose.

Note that the map k[β]
ηi(E

η
i )−−−→ Bη

i [−i] corresponds to a map Eη
i

φi(E
η
i )−−−−→ Eη

i [n+2− i].
As in the proof of lemma 3.5.9, form the fiber sequence

Eη
i+1 := Eε −→ Eη

i

φi(E
η
i )−−−−→ Eη

i [n+ 2 + i]

It follows that Eη
i+1 is a compact generator. Denote Bη

i+1 := Bε := MapC(E
ε, Eε). By

construction, the image of η under the map

Ωi−1MapAlgn+2
k

(k[β],Zn(B)) −→ MapAlgn+1
k

(k[β], Bε[−i+ 1])

is contained in the connected component of the base point (note that this is true for
i = 1). By construction, the map k[β]

ηi+1(E
η
i+1)−−−−−−→ Bε[−i] factors via the augmentation

k[β].
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To finish the proof it is enough to show that Bη
i+1 is an En+1-algebra. To show this we

use the C-linearity of φi, as done in the proof of lemma 3.5.9: φi(E
η
i )⊗Eη

i ≃ φi(E
η
i ⊗Eη

i ).

We claim that
Eη

i+1 ⊗ Eη
i ≃ Eη

i+1 ⊕Ni+1

for some Ni ∈ C. Convention: Eη
0 := E. One can check that N1 ≃ 0, N2 ≃ Eη

2 [n+ 2].

Eη
i ⊗ Eη

i ≃ Eη
i ⊕Mi

for some object Mi ∈ C. One can check that M0 ≃ 0, M1 ≃ Eη
1 [n + 2], M2 ≃ Eη

2 [n +

2]⊕ Eη
2 [n+ 2− 1]⊕ Eη

2 [2n+ 4− 1].

Because of C-linearity of φi: φi(E
η
i ) ⊗ Eη

i ≃ φi(E
η
i ⊗ Eη

i ) are equivalent mor-
phisms. Therefore, the fibers of these morphisms should be equivalent. By defini-
tion, fib(φi(E

η
i )) = Eη

i+1 for every i ≥ 0. According to our convention, fib(φ0(E
η
0 )) =

fib(φ(E)) = Eη
1 as constructed in the proof of lemma 3.5.9. So,

fib(φi(E
η
i ⊗ Eη

i )) ≃ fib(φi(E
η
i )⊗ Eη

i ) ≃ fib(φi(E
η
i ))⊗ Eη

i ≃ Eη
i+1 ⊗ Eη

i (3.1)

must be equivalent to

fib(φi(E
η
i ⊗ Eη

i )) ≃ fib(φi(E
η
i ⊕Mi))

≃ fib(φi(E
η
i ))⊕ fib(φi(Mi))

≃ Eη
i+1 ⊕Ni+1 (3.2)

where Ni+1 := fib(φi(Mi)). The above equivalences hold because φ distributes over finite
sums and fib(−) commutes with direct sums.

Note that, by C-linearity of φi, we have the following equivalences

fib(φi(E
η
i ⊗ Eη

i+1)) ≃ fib(Eη
i ⊗ φi(E

η
i+1)) ≃ fib(φi(E

η
i )⊗ Eη

i+1)
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The right-most space is equivalent to Eη
i+1 ⊗ Eη

i+1, because Eη
i+1 = fib(φi(E

η
i )). While

the middle space is equivalent to Eη
i ⊗ (Eη

i+1 ⊕Eη
i+1[n+2− i]), because by construction

the map φi(E
η
i ) factors via the zero object.

Using equations 3.1 & 3.2, we conclude that

Eη
i+1 ⊗ Eη

i+1 ≃ (Eη
i ⊗ Eη

i+1)⊕ (Eη
i ⊗ Eη

i+1[n+ 2− i])

≃ (Eη
i+1 ⊕Ni+1)⊕ (Eη

i+1 ⊕Ni+1)[n+ 2− i]

≃ Eη
i+1 ⊕Mi+1

where Mi+1 := Ni+1 ⊕Eη
i+1[n+ 2− i]⊕Ni+1[n+ 2− i] The En-monoidal structure on C

induces a map

MapC(E
η
i+1, E

η
i+1)⊗k MapC(E

η
i+1, E

η
i+1) MapC(E

η
i+1 ⊕Mi+1, E

η
i+1 ⊕Mi+1)

MapC(E
η
i+1, E

η
i+1)

endowing Bη
i+1 = MapC(E

η
i+1, E

η
i+1) with the structure of an En+1-algebra. We conclude

that RModn+1
pr,Bη

i+1

∼−→ RModn
pr,C. We have a lift of ϵ to the space

ϱ ∈ ΩτΩ
i−1SimDef(RModn+1

pr,Bη
i+1

,RModn
pr,Bη

i+1
)(k[[t]])

Let ϖ be the lift of η across the map Ωi−1θ(k[[t]]). Using the commutative diagram in the
proof of lemma 3.5.9 adapted to Bη

i+1, the image of ϱ in ΩϖΩi−1CatDefRModn
pr,C(k[[t]]) pro-

vides a unique (up to homotopy) lift of ϵ across the map ΩηΩi−1θ(k[[t]]). This establishes
a bijection of ith homotopy groups of CatDefRModn+1

pr,Bη
i+1

(k[[t]]) and CatDef∧RModn+1

pr,Bη
i+1

(k[[t]]).
We conclude the proof by noting that this process is finite because the natural transfor-
mation θ is n-truncated (corollary 3.2.4). There would have been an issue if this process
was infinite, because for i = n+ 2, our strategy cannot be implemented.
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3.5.2 The fiber sequence of corollary 3.4.5

Assuming that C is the k-linear ∞-category of right modules over an En+1-algebra, it is
possible to relate the fiber sequence of formal moduli problems from corollary 3.4.5 with
the fiber sequence of [Fra13, theorem 1.1]. This fiber sequence’s existence was originally
suggested in [Kon99]. The goal of this section is to prove proposition 3.5.16. We begin
by introducing some preliminaries.

The following definition is standard:

Definition 3.5.11. Let k be a field and B be an E1-algebra over k. The E1-Hochschild
cohomology of B is an E2-algebra, defined to be

HH∗
E1
(B) := Map BimodB B

(B,B)

Note that HH∗
E1
(B) ≃ Z(RModB) is an equivalence of E2-algebra ([Lur17, theorems 4.3.2.7

& 4.8.4.1]-we will freely make use of these results in this part, without an explicit refer-
ence).

Let B be an E2-algebra over k. Then RModB is an E1-monoidal k-linear ∞-category.
Following definition 3.5.11,

HH∗
E1
(RModB) := Map BimodRModB RModB

(RModB,RModB)

We have an identification : BimodRModB RModB
≃ Map

2PrL
k
(RMod2

pr,B,RMod2
pr,B).

HH∗
E1
(RModB) ≃ Map

2PrL
k
(RMod2

pr,B,RMod2
pr,B)(idRMod2

pr,B
, idRMod2

pr,B
)

Therefore, Z(RMod2
pr,B) ≃ HH∗

E1
(RModB)(id, id) is an equivalence of E3-algebras.

The analog of E1-Hochschild cohomology for En-algebras is defined as follows:
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Definition 3.5.12. [Fra13, definition 3.1] Let B be an En-algebra over k.

HH∗
En
(B) := MapModEn

B

(B,B)

is called the En-Hochschild cohomology of B. Using [Fra13, proposition 4.37], we define

ModEn
B := HH∗

En−1
(RModB)

The definition readily applies to En-monoidal k-linear ∞-categories as well.

We conclude that HH∗
E2
(B) ≃ Z(RMod2

pr,B).

Lemma 3.5.13. Let n ≥ 1 be an integer, B be an En-algebra over k, and Z(RModn
pr,B) be

a k-linear center of the presentable k-linear (∞, n)-category RModn
pr,B (definition 3.2.5).

There is a canonical equivalence of En+1-algebras over k

Z(RModn
pr,B) ≃ HH∗

En
(B)

Proof. The cases n = 1, 2 have already been verified above. The proof follows directly
from definition 3.5.12. Note that Map

nPrL
k
(RModn

pr,B,RModn
pr,B) ≃ BimodRModn−1

pr,B RModn−1
pr,B

.
It follows from definitions that

ModE2

RModn−2
pr,B

≃ HH∗
E1(RModn−1

pr,B) ≃ Map
nPrL

k
(RModn

pr,B,RModn
pr,B)(id

(1), id(1))

proceeding forward, we find

ModE3

RModn−3
pr,B

≃ HH∗
E2
(RModn−2

pr,B) ≃ Map
nPrL

k
(RModn

pr,B,RModn
pr,B)(id

(1), id(1))(id(2), id(2))

This process eventually gives

ModEn
B ≃ Map

nPrL
k
(RModn

pr,B,RModn
pr,B)(id

(1), id(1))(id(2), id(2)) . . . (id(n−1), idn−1)
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Therefore, we see that HH∗
En
(B) is equivalent to

Map
nPrL

k
(RModn

pr,B,RModn
pr,B)(id

(1), id(1))(id(2), id(2)) . . . (id(n−1), idn−1)(id(n), id(n))

By definition, the preceding En+1-algebra is Z(RModn
pr,B), a k-linear center of RModn

pr,B.

It follows from lemma 3.5.13 and proposition 3.4.14 that the fiber sequence of formal
moduli problems from corollary 3.4.5 can canonically be written as

B[−1] −→ Z(RModn
pr,BRModn−1

pr,B) −→ HH∗
En
(B)

The above is a fiber sequence of non-unital En+1-algebras.

Now we focus on the middle term in the preceding fiber sequence:

Definition 3.5.14. [Fra13, definition 2.6] Let B be an En-algebra over k. We define a
functor

Der(B,−) := Map(Algnk )/A(B,B ⊕−) : ModEn
B −→ Modk

The tangent complex of B, TB, is defined to be the value of the above functor on B

viewed as an object of ModEn
B .9 The cotangent complex LB is an object of ModEn

B which
corepresents the functor Der(B,−).

Here (Algn
k)/A is the ∞-category of En-algebras over A. While A ⊕ − : ModEn

B −→

(Algn
k)/A is the functor giving the split-square zero extension.

Let B be an En-algebra over k. By [Fra13, proposition 4.43], there is a fiber sequence
of k-modules

HH∗
En
(B) −→ B −→ TB[1− n]

9The tangent complex TB := Der(A,A) should be viewed as classifying the infinitesimal deformations
of the identity morphism B −→ B.
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where the left arrow is induced by the forgetful functor:

ModEn
B −→ RModB (3.3)

In turn, there is another fiber sequence of k-modules:

TB[−n] −→ HH∗
En
(B) −→ B

Denote C = RModn
pr,B, a presentable k-linear (∞, n)-category, and E = RModn−1

pr,B an
object of C. It follows from lemma 3.5.13 that ModEn

B is canonically identified with
the n-fold endomorphism object of C, while it follows from definitions that RModB is
canonically the (n− 1)-fold endomorphism object of E.

When n = 1,

ModE1
B ≃ BimodB B ≃ MapPrL

k
(RModB,RModB)

and the natural forgetful functor of equation 3.3 coincides with the evaluation functor

MapPrL
k
(RModB,RModB)

evB−−→ RModB

which sends F 1→ F (B). In turn, the induced map HH∗
E1
(B) −→ B is a map of E1-

algebras. Therefore, when n = 1, we note that the map HH∗
E1
(B) −→ B from [Fra13,

proposition 4.43] coincides with the map HH∗
E1
(B) ≃ Z(RModB) −→ Z(B) ≃ B from

lemma 3.4.8. We conclude that when n = 1: Z(RModB, B) ≃ TB[−1] is a canonical
equivalence of E1-algebras.

In fact, this equivalence canonically lifts to an equivalence of E2-algebras. Consider
the pullback square of remark 3.4.7
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EB MapPrL
k
(RModB,RModB) ≃ BimodB B

{∗} MapPrL
k
(Modk,RModB) ≃ RModB

B∗

B

Following [Fra13, proposition 4.23], this pullback square is identified with the one
in [Fra13, corollary 4.22]. In fact, by [Lur17, theorem 4.8.5.5], there is an equiva-
lence of spaces, (EB)≃ ≃ MapAlgk(B,B). It follows that the E2-algebra structure on
Z(RModB, B) coincides with the E2-algebra structure on TB[−1].

This result holds for n > 1 as well:

Lemma 3.5.15. Let B be an En-algebra over k. There exists a canonical equivalence
of En+1-algebras

Z(RModn
pr,B,RModn−1

pr,B) ≃ TB[−n]

Proof. The case n = 1 has been established above. Let n > 1. The map HH∗
En
(B) −→ B

of Francis is induced by a functor

HH∗
En−1

(RModB) := ModEn
B −→ RModB

By the same definition, the preceding map must be induced by a functor

HH∗
En−2

(RMod2
B) := ModEn−1

RModB
−→ RMod2

B

proceeding in this fashion, we arrive at the following map

ModE1

RModn−1
B

−→ RModn
B

We have come back to the case n = 1, where we know that Francis’s map coincides with
the map of lemma 3.4.8.

Given a pair (C, E) such that C = RModn
B and E = RModn−1

B , Francis’ map
HH∗

En
(B) −→ B canonically coincides with the map HH∗

En
(B) ≃ Z(C) −→ Z(E) ≃ B

95



3.5. MODULE CATEGORIES OVER En-ALGEBRAS

of lemma 3.4.8. These two maps are maps of En-algebras. It follows that the fibers of
these two maps must also coincide as En-algebras: Z(C, E) ≃ TB[−n]. We have already
seen that there is a commutative diagram:

Funk(RModn
pr,B,RModn

pr,B) ModE1

RModn−1
B

Funk(Modn
pr,k,RModn

pr,B) RModn
B

∼

evRModn−1
pr,B

∼

Recall that the horizontal arrows are canonical equivalences. The left vertical arrow
is the evaluation functor, while the right vertical arrows is the forgetful functor from
bimodules to right modules. The fiber of the left vertical arrow over RModn−1

pr,B gives
rise to Z(RModn

pr,B,RModn−1
pr,B), while the fiber of the right arrow over the same ob-

ject gives rise to TB[−n]. The En+1-structure on both these objects has its origins
in this diagram. We conclude that there is a canonical equivalence of En+1-algebras:
Z(RModn

pr,B,RModn−1
pr,B) ≃ TB[−n].

Proposition 3.5.16. Let n ≥ 1 be an integer, k be a field, B ∈ Algn
k an En-algebra. By

[Fra13, theorem 1.1], there is a fiber sequence of non-unital En+1-algebras:

B[−1] −→ TB[−n] −→ HH∗
En
(B)

Let C = RModn
pr,B, a presentable k-linear (∞, n)-category, and E = RModn−1

pr,B be an
object of C. By corollary 3.2.10, corollary 3.4.5, proposition 3.4.11, lemma 3.4.13, and
proposition 3.4.14 there is a fiber sequence of non-unital En+1-algebras:

Z(E)[−1] −→ Z(C, E) −→ Z(C)

These two fiber sequences fit into a commutative diagram of En+1-algebras:

B[−1] TB[−n] HH∗
En
(B)

Z(E)[−1] Z(C, E) Z(C)

≃ ≃ ≃
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where the vertical arrows are equivalences of En+1-algebras.

Proof. The middle and the right vertical arrows are canonical equivalences, as a conse-
quence of lemmas 3.5.15 & 3.5.13 respectively. The proof of lemma 3.5.15 shows that
the right square is commutative. By the universal property of fiber sequences, the left
vertical arrow is a canonical equivalence, which makes the diagram commute.

3.6 Summary

We have undertaken a detailed study of deformations of En-structures. We collect all
relevant results below for convenient reference:

1. (Proposition 3.1.3) Let n ≥ 1, m ≤ 0 be integers, k be a field, B be an En-algebra
over k such the the underlying spectrum is m-connective. Then the deformation
functor AlgDefB : Algn+1,small

k → S is a formal moduli problem.

This says that deformations of B up to equivalences of En-algebras form a formal
moduli problem, i.e. are described by an En+1-algebra.

2. (Corollary 3.4.5) Let n ≥ 1 be an integer, k be a field, C be a presentable k-linear
(∞, n)-category, E ∈ C be an object. There is a commutative diagram of functors

ObjDefEn+1

E SimDef(C,E) CatDefC

ObjDefEn+1,∧
E SimDef∧(C,E) CatDef∧C

τ(C,E)

where each row is a fiber sequence, and the functors in bottom row are formal
moduli problems.

One way to think of this fiber sequence is the following: when C is the higher
category of n-fold iterated modules over an En-algebra B, and the object E is the
higher category of n−1-fold iterated modules, then this fiber sequence characterizes
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the difference between deformations of B up to Morita equivalences (right term)
and deformations of B up to equivalences of En-algebras (middle term).

3. (Theorem 3.5.10) Let n ≥ 0 be an integer, k be a field, C be a tamely compactly
generated En-monoidal k linear ∞-category. Assume that C admits a single com-
pact generator E such that E ⊗ E ≃ E. Then the space CatDefRModn

pr,C(k[[t]]) is
equivalent to the space of k[β]-linear structures on RModn

pr,C.

We have seen that one cannot guarantee that the deformations of En-structures form
a formal moduli problem in full generality. Indeed, it is possible to construct counter
examples, see [KL09, example 3.14]. A ‘boundedness condition’ along with a ‘compact
generator’ enable us to achieve improved control over these deformations. One can
understand this as the statement that ‘solutions to the Maurer-Cartan equation over
k[[t]]’ describe the Spf(k[t]]) neighbourhood of such objects.
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