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Abstract: Thermalization refers to the process in which macroscopic observables

evolve with time and eventually attain constant values defined by an equilibrium ensem-

ble. The microscopic understanding of thermalization is an active area of research. In

one of our works, we study the time evolution of the Boltzmann entropy of a microstate

during the non-equilibrium free expansion of a one-dimensional quantum ideal gas. This

quantum Boltzmann entropy, SB, essentially counts the “number” of independent wave-

functions (microstates) giving rise to a specified macrostate. It generally depends on

the choice of macrovariables, such as the type and amount of coarse-graining, specify-

ing a non-equilibrium macrostate of the system, but its extensive part agrees with the

thermodynamic entropy in thermal equilibrium macrostates. We examine two choices of

macrovariables: the U -macrovariables are local observables in position space, while the

f -macrovariables also include structure in momentum space. For the quantum gas, we

use a non-classical choice of the f -macrovariables. For both choices, the corresponding

entropies sf
B and sU

B grow and eventually saturate. Similar to a classical ideal gas, the

growth rate of sf
B depends on the momentum coarse-graining scale. If the gas is initially

at equilibrium and is then released to expand to occupy twice the initial volume, the per-

particle increase in the entropy for the f -macrostate, #sf
B, satisfies log 2 → #sf

B → 2 log 2

for fermions, and 0 → #sf
B → log 2 for bosons. For the same initial conditions, the change

in the entropy #sU
B for the U -macrostate is greater than #sf

B when the gas is in the quan-

tum regime where the final stationary state is not at thermal equilibrium. One could also

study thermalization from a hydrodynamic perspective. In another work, we study the

evolution of a classical harmonic chain with nearest-neighbor interactions starting from

domain wall initial conditions. The initial state is taken to be either a product of two

Gibbs Ensembles (GEs) with unequal temperatures on the two halves of the chain or a

product of two Generalized Gibbs Ensembles (GGEs) with di!erent parameters in the

two halves. For this system, we construct the Wigner function and demonstrate that its

evolution defines the Generalized Hydrodynamics (GHD) describing the evolution of the

conserved quantities. We solve the GHD for both finite and infinite chains and compute

the evolution of conserved densities and currents. For a finite chain with fixed bound-

aries, we show that these quantities relax as ↑ 1/
↓

t to their respective steady-state

values given by the final expected GE or GGE state, depending on the initial conditions.
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Exact expressions for the Lagrange multipliers of the final expected GGE state are ob-

tained in terms of the steady state densities. In the case of an infinite chain, we find that

the conserved densities and currents at any finite time exhibit ballistic scaling while, at

infinite time, any finite segment of the system can be described by a current-carrying

non-equilibrium steady state (NESS). We compute the scaling functions analytically and

show that the relaxation to the NESS occurs as ↑ 1/t for the densities and as ↑ 1/t2

for the currents. We compare the analytic results from hydrodynamics with those from

exact microscopic numerics and find excellent agreement.
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Chapter 1

Introduction

Thermodynamics is a branch of physics that studies quantities like heat and work and

their relation to internal properties of matter like energy and entropy. It is governed by

the famous laws of thermodynamics which are phenomenological statements establishing

basic thermodynamic quantities like temperature, entropy, heat, and work and the rela-

tions between them. The second law of thermodynamics stands out from the rest as it

is a statement about the impossibility of certain processes in nature. In one of its forms,

it tells us that if we put a higher-temperature body in thermal contact with a lower-

temperature body, then heat flows from the hotter to the colder body until they are in

thermal equilibrium i.e. have the same temperature. This process of attaining thermal

equilibrium is irreversible and is known as thermalization. One of the major issues in un-

derstanding thermalization has been to reconcile the time-reversibility of the microscopic

laws of physics with the emergent irreversibility of the laws of thermodynamics.

Before going into the details of thermalization which is a non-equilibrium phenomenon,

let us first try to understand the microscopic origins of equilibrium statistical mechanics.

The explanation, found in most textbooks, is the ergodic hypothesis (see [1] and the

references therein). It states that, for an isolated system, the long-time averages of

observables are equal to the average values computed from a microcanonical ensemble,

subject to the macroscopic constraints. The argument is that a chaotic system will, over

time, explore the entire available phase space densely. There are however many issues

with this explanation. The time it requires for a trajectory to explore the available phase

space is exponentially large in system size. Whether a system is ergodic or not should
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therefore be irrelevant on much smaller time scales at which thermalization takes place.

Another objection is that the ergodic hypothesis only talks about long-time averages of

observables while in actual experiments, it is the observables themselves that relax to

their respective equilibrium values.

A more compelling explanation for thermalization is the concept of typicality [2](see

Chapter 14 on Gibbs and Boltzmann Entropy in Classical and Quantum Mechanics) that

uses the notion of macrovariables which are nothing but coarse-grained observables. It

states that most microscopic configurations correspond to the observables having their

typical i.e. equilibrium values, subject to the constraints. Though the concept applies

equally well to classical and quantum systems, we stick to the classical case here for

simplicity of arguments. The central idea is that a given choice of observables divides the

accessible phase space into two parts: an equilibrium part and a non-equilibrium part.

As we increase the system size, the equilibrium region becomes much larger in volume

than the non-equilibrium region. Hence, in the thermodynamic limit of large system

size, the equilibrium region covers almost the entire available phase space. In [3], it was

rigorously shown that for classical systems, assuming short-ranged interactions and local

observables, the equilibrium region in the thermodynamic limit is exponentially large in

system size compared to the non-equilibrium part. This would explain the much shorter

time scales observed in the thermalization of physical systems as compared to the time

taken by a trajectory to fill the entire phase space. Here, the thermodynamic limit plays

a crucial role in thermalization as we would expect from statistical mechanics. Typically,

a system starts in the non-equilibrium region of the phase space, but then quickly evolves

to the much larger equilibrium region and stays there for very long periods of time. The

formulation also allows for a finite system to occasionally leave the equilibrium region,

though it is expected to happen on time scales much larger than it takes for the system

to thermalize but much smaller than the Poincare recurrence time [4].

1.1 Typicality and the Boltzmann entropy

Since thermalization is an irreversible process, it is closely related to entropy. For the

first time, the notion of entropy appeared in Clausius’ formulation of the second law of
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thermodynamics [5]. It is defined as an extensive property of systems, like internal energy.

However, it has a very peculiar nature in that the entropy of an isolated system can only

increase. In fact, it always increases for irreversible processes like thermalization. This

presents a major challenge in the conceptual understanding of the microscopic origins

of thermalization. The microscopic laws of nature like Newton’s equation for classical

systems or Schrodinger’s equation for quantum systems are time-reversible. One of the

major issues is to reconcile this microscopic reversibility with the emergent irreversibility,

such as thermalization, at the macroscopic scales.

It was one of the most remarkable achievements of Boltzmann [6–14] to understand

the origins of macroscopic irreversibility. He constructed an entropy function, satisfying

the second law, for a typical individual microstate X of a macroscopic system that is

in a macrostate specified by the values of a collection of macrovariables. This Boltz-

mann entropy is defined for systems both in and out of equilibrium as the logarithm of

the “number” of microstates corresponding to the system’s macrostate. For a classical

system, the microstates are specified by points X in phase space, and the Boltzmann

entropy of X is, up to an additive constant, the logarithm of the phase space volume

of the set of all microstates for which the macrovariables have the same values as they

do for X. For a quantum system, the microstates are specified by wave functions |$↔.

This di!erence, which allows observables to have indeterminate values in the quantum

microstate, can make the precise definition of quantum macrovariables and macrostates

somewhat subtle [15–18], and also allows for new non-classical choices of macrovariables.

The Boltzmann entropy of |$↔ is then the logarithm of the number of independent wave

functions that have the same values of the chosen macrovariables as |$↔ does. At ther-

mal equilibrium, for all proper choices of macrovariables, this definition coincides in its

extensive part with the thermodynamic entropy of Clausius.

One of the simplest irreversible processes is the Joule expansion of gases as shown

in the numerical demonstration in Fig. (1.1). A gas of particles, in a state of thermal

equilibrium, is initially confined to a part of a container while the remaining region is a

vacuum. As the confinement is removed, the gas rushes to fill the vacuum and eventually

fills the entire container uniformly. For a classical ideal gas, it is well-known from thermo-

dynamics, that the change in entropy per particle is ln 2 which can be easily computed by
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Figure 1.1: [Taken from [22]] Numerical simulation of the free expansion on the 2-torus
of a non-interacting gas of 104 particles having a thermal distribution of momenta with
mean thermal speed equal to unity, initially confined in the horizontal direction to the
region 0.4 < x < 0.6, at the sequence of times indicated.

replacing the highly irreversible expansion with an isothermal process. However, it would

be interesting if we could determine the entropy growth curve itself. In a paper [19],

the time evolution of the Boltzmann entropy for a freely expanding classical hard point

gas (HPG) using two di!erent choices of macrovariables was investigated. It was found

that the resulting entropies grow and saturate, however, the growth is not necessarily

monotonic and the entropy curves corresponding to di!erent choices of macrostates may

not coincide. This is due to the absence of interactions. In [20], the study was extended

to the alternate mass hard particle gas (AMHPG) which is an interacting system. There

the entropy curves are found to coincide with each other and show monotonic growth in

agreement with the second law of thermodynamics. The f -macrostate entropy for 2-D

hard rods was recently studied in [21].

As part of our thesis, we have extended the study in [19] to a freely expanding quantum

ideal gas [23]. Our primary motive is to show that the notion of typicality and the

Boltzmann entropy for individual microstates out of equilibrium work equally well in the

quantum regime. We also wanted to see if the quantum statistics changes the classical

results both qualitatively and quantitatively. To that extent, we studied both fermions

and bosons in the low and high-temperature regimes. Before moving on, we mention some

of the earlier works relevant to our study. Quantum quench of non-interacting fermions

under various protocols have been studied using Wigner functions in [24, 25]. Lattice

fermions evolving from domain wall initial conditions have been studied with a focus on

the evolution of the density profile and the growth of entanglement entropy [26,27]. The
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diagonal entropy for isolated quantum systems has been studied [28] for both integrable

and non-integrable cases. Some other recent relevant discussions of entropy in quantum

systems in the nonequilibrium setting can be found in Refs. [29–33].

1.2 Thermalization and hydrodynamics

Another important tool in understanding the evolution of macroscopic systems is the the-

ory of hydrodynamics. It studies the evolution of slowly varying macroscopic fields over

an intermediate time scale that is larger than the time it takes for transient quantities

to relax but smaller than the time it takes for the system to thermalize. Hydrodynam-

ics works by first identifying the conserved quantities and writing down the continuity

equations involving the conserved densities and the associated currents. We then choose

to look at the system over intermediate length and time scales in which the transient

quantities have relaxed and the system is in a state of local thermal equilibrium (LTE).

This implies that at the Euler scale, the system must be completely characterized by the

conserved densities. Hence the currents must be functionals of the densities themselves.

Finding these functional dependences yields us with a hydrodynamic description of the

system. The fundamental equations of hydrodynamics are the Euler equations [34] for

ideal fluids and the Navier-Stokes corrections [35] taking dissipation into account.

Based on the number of functionally independent conserved quantities, systems can

be classified into integrable and non-integrable. Systems where the number of conserved

quantities does not scale with the number of degrees of freedom are called non-integrable.

A generic isolated Hamiltonian system typically has few conserved quantities like the

total particle number, the total momentum, and the total energy. On the other hand, an

integrable system has an extensive number of conserved quantities and can be interacting

or non-interacting. Thermalization is usually discussed in the context of non-integrable

systems where the chaotic nature of interactions is believed to self-thermalize a system.

For a chaotic system, a trajectory would, over time, lose information about almost all

initial conditions and evolve to a Gibbs state characterized by a few conserved quantities

and the corresponding intensive parameters such as density and temperature.

Recently, the notion of thermalization in integrable systems has gained considerable
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interest. Such systems are expected to equilibrate to a Generalized Gibbs Ensemble

(GGE) [36] which keeps information about all the conserved quantities. The relaxation

and approach to a steady state has been shown in non-interacting integrable models

such as the hard particle gas (HPG) [19] and the harmonic chain [37] and in interacting

integrable models such as hard rods [38] and the Toda chain [39]. Thermalization for a

low-density free fermion lattice model is shown rigorously in [40]. The approach to GGE

however has been demonstrated mainly in quantum integrable models [28, 36, 41–44].

Hydrodynamics also has traditionally been applied to non-integrable systems, where

the assumption of local thermal equilibrium is expected to hold due to the mixing property

of the dynamics. For integrable systems, it is now widely accepted (see [42, 45] and

the references therein) that hydrodynamics still works and is referred to as generalized

hydrodynamics (GHD) which is written in terms of the quasi-particle density and provides

the evolution of all the slowly varying conserved fields. As mentioned above, integrable

systems can be further classified into two categories: Non-interacting and interacting.

In the former case, the GHD equations are easier to write down as the quasi-particles

do not undergo any phase shifts. Common examples include the harmonic chain for

which hydrodynamic equations were derived both at the Euler level [46] (see also [47])

and with higher derivative corrections [48], and the HPG [19]. On the other hand for

the interacting case, quasi-particles undergo phase shifts upon collision. The simplest

example of such systems is a collection of hard rods for which the hydrodynamic equations

were written long back [49–51]. For the case of interacting integrable quantum systems,

GHD was derived more recently [52,53] and quite remarkably they have the same structure

as the classical systems [45]. A number of studies have established GHD for several

interacting classical and quantum integrable systems such as Toda chain [54–57], the

ω-Bose gas [58] and hard rods [38, 59]. GHD has been successfully used to understand

unusual equilibration of trapped integrable systems [60–62] and also the predictions of

GHD have been experimentally verified [63].

It is easy to see that, even among integrable systems, thermalization and the appli-

cability of hydrodynamics to non-interacting cases would be the most surprising. The

harmonic chain provides us with an example of a non-interacting integrable system that

is analytically tractable and allows macroscopic description in terms of hydrodynamics.
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For this system, a detailed comparison of the microscopic and hydrodynamic calculations

is possible. Approach to GGE starting from a domain wall initial condition with unequal

temperatures in the two halves has been studied for the case of an infinite quantum har-

monic chain in [64] where the Lagrange multipliers of the final GGE state were evaluated

explicitly. Convergence of the phase space distribution to a Gaussian stationary measure,

starting from an initial state which is also Gaussian, is studied in [65]. In [66], two families

of conserved quantities for infinite harmonic lattices were shown and the convergence of

the covariance matrix to its stationary form was studied. Hydrodynamic approaches have

also been applied to harmonic systems. In [46], starting from a family of initial states that

are slowly varying in space, the hydrodynamic equation of an infinite classical harmonic

chain was derived at the Euler level in terms of what is referred to as the spectral density

matrix function (SDMF) in the paper, which is essentially the Fourier transform of the

correlation matrix defined in a coarse-grained cell around a macroscopic point. The study

was extended in [48] where the next-order correction (in space-time scaling parameter)

to the Euler equation was derived. Alternatively, macroscopic evolution in the harmonic

chain has been studied using Wigner functions [67–70]. The harmonic chain being an

integrable system, one expects a generalized hydrodynamic description for the macro-

evolution. However, the connections between the correlation matrix approach [46, 48]

and the Wigner function method [67] have not been elaborated in the physics literature.

Furthermore, and somewhat surprisingly, their relationship to GHD remains unexplored.

In our work [71], we have addressed this gap and elucidated these connections which we

then used to understand the non-equilibrium evolution and approach to the stationary

state. We considered a classical harmonic chain with nearest-neighbor interactions either

of finite length (with fixed boundary conditions) or of infinite extent. Initially, the system

is prepared in a domain wall configuration by taking the two halves of the chain either

in thermal equilibrium with unequal temperatures or in di!erent GGEs with unequal

parameters (Lagrange multipliers). Starting from this initial condition, we studied the

evolution of the chain and the approach to the stationary state in the long time limit

(for the finite case). For the density and current profiles, we found very good agreement

between the coarse-grained microscopic and the GHD results.

In brief, the thesis addresses two main investigations and is organized as follows. In
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chapter (2), we study the evolution of the Boltzmann entropy during the non-equilibrium

free expansion of a quantum ideal gas. We discuss two choices of macrostates and calculate

the corresponding entropies. In chapter (3), we study the hydrodynamic evolution and

approach to a generalized Gibbs ensemble for a classical harmonic chain starting from

domain-wall initial states. In chapter (4), we summarize our findings and discuss potential

outlooks.
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Chapter 2

Boltzmann entropy of a freely

expanding quantum ideal gas

In this chapter, we study the evolution of the Boltzmann entropy during the free expansion

of an ideal quantum gas. The summary of the formalism can be found in [2](see Chapter

14 on Gibbs and Boltzmann Entropy in Classical and Quantum Mechanics). In [19], this

formalism was first applied to the case of a classical ideal gas. In this study, we extend

their work to the case of quantum ideal gases. Refer to appendix (A.4) for a glossary of

the notations used in this work.

2.1 Boltzmann entropy for quantum systems

Let us now discuss the construction of macrostates and the Boltzmann entropy for iso-

lated macroscopic quantum systems. For a more detailed discussion see Refs. [15–17].

Consider a quantum system with a Hilbert space H, whose wave function lies in an en-

ergy shell HE of width #E ↗ E. As macro observables, one option is to choose a set of

commuting coarse-grained operators {M̂k}, k = 1, . . . , J , meaning that the eigenvalues

of each operator are grouped into “bins” and all eigenvalues of that operator within each

bin are set equal. The simultaneous diagonalization of all the M̂k operators then provides
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a decomposition of the accessible Hilbert space into a sum of orthogonal subspaces Hω ,

HE =
⊕

ω

Hω , (2.1)

where ε = (ε1, . . . , εJ) defines a macrostate, and Hω is the joint eigenspace of the M̂k

with eigenvalues εk. The Hω will be referred to as macro-spaces, with |Hω | = dim Hω the

dimension of the corresponding macro-space. One then associates a Boltzmann entropy

Sω = kB ln |Hω | to each of the macro-spaces. Let us denote by P̂ω the projector onto the

space Hω . Any microstate, which is a pure state |$↔, is said to be in the macrostate ε

if |$↔ is almost in Hω , i.e. if ↘$|P̂ω |$↔ ≃ 1, and then its Boltzmann entropy is given

by SB(|$↔) = Sω . It is expected for many systems, including the one we study here,

that for appropriate physical macrovariables if the initial pure state |$(0)↔ is in a given

macrostate, the time-evolved microstate |$(t)↔ will continue to be (at almost all times)

in one single macrostate, i.e. Schrodinger cat-like states will not occur. The exception

being when the system crosses from one macrostate to another.

As in the classical case, for a physical choice of the macrovariables, a particular macro-

space has by far the largest dimension, which we refer to as the equilibrium macro-space

and denote it by Heq. It is characterized by the fact |Heq| = (1 ⇐ ϑ)|HE|, ϑ ↗ 1, which

we take as a physical requirement for any proper choice of the macrovariables. We also

say that a system is in equilibrium when its microstate |$↔ is in, or almost in, Heq.

Now consider the unitary time-evolution of a system that is initially prepared in a

non-equilibrium pure quantum state |$(0)↔. Non-equilibrium means that |$(0)↔ is not

in, or not almost in, the space Heq. It starts in one of the other macro-spaces Hω →=eq

and with time it moves between di!erent macro-spaces until it eventually ends up in the

equilibrium macro-space and stays there for almost all subsequent times. It is expected

that the non-equilibrium system should evolve to macro-spaces of higher dimensions,

leading to a monotonic growth of entropy. This is what we would like to demonstrate in

an explicit example. It is important to note that we are able to define this Boltzmann

entropy for the pure quantum state, |$(t)↔, at any time [14].

Computing the Boltzmann entropy: We note that the entropy Sω of the macrostate

ε, and thus SB(|$(t)↔) for |$(t)↔ in Hω , is equal to the Gibbs-von Neumann entropy of a
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generalized microcanonical ensemble, which is a mixed state that is uniform over (the unit

sphere of) Hω . It is important to stress, however, that this generalized microcanonical

ensemble is not what we take as an accurate microscopic description of the microstate; it

is only being used as a construction to compute the Boltzmann entropy of the microstate

|$(t)↔ at time t. The Boltzmann entropy at a later time t↑ > t is dictated by what

macrostate the unitarily time-evolved microstate |$(t↑)↔ at that time corresponds to. If

we were to instead unitarily time-evolve the density matrix of this out-of-equilibrium

generalized microcanonical ensemble, its Gibbs-von Neumann entropy would not change

in contrast to the second law of thermodynamics. A typical out-of-equilibrium microstate

will, as time advances, typically move to other macrostates of higher Boltzmann entropy,

so the Boltzmann entropy thereby does obey the second law for almost all microstates.

The macrostate does not time-evolve unitarily, due to it being constructed via a coarse-

graining with suitably chosen macrovariables.

This generalized microcanonical ensemble that is used to calculate the Boltzmann

entropy of the macrostate at time t may be replaced by an equilibrium ensemble for

a fictitious system where constraints have been imposed on all macrovariables to have

particular values ε. Then, since that is a macroscopic equilibrium system, the extensive

part of its microcanonical entropy should be equal to the extensive part of the Gibbs-von

Neumann entropy of an equivalent generalized canonical ensemble. This shows that we

can arrive at a correct (to leading order) count of the number of independent microstates

in Hω by calculating the Gibbs-von Neumann entropy of an equivalent generalized canon-

ical ensemble. This is convenient because in many cases, calculating properties is simpler

in the canonical ensemble than in the microcanonical ensemble.

If we accept, as is argued above, that the Boltzmann entropy of the microstate |$(t)↔ of

a macroscopic system is equal, to leading order in system size, to the Gibbs-von Neumann

entropy of a properly chosen generalized canonical ensemble, this allows us to skip the

step of defining the generalized microcanonical ensemble. We use the expectation values,

↘M̂k↔ = ↘$(t)|M̂k|$(t)↔, k = 1, . . . J, to define the “equivalent” generalized canonical
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(GC) ensemble as

ϖ̂GC =
e↓

∑
k εkM̂k

ZGC
, (2.2)

where ZGC = Tr
[
e↓

∑
k εkM̂k

]
, (2.3)

and the Lagrange multipliers ϱk are obtained from the constraint equations

Tr[M̂kϖ̂GC] = ↘M̂k↔, k = 1, . . . , J. (2.4)

The resulting Boltzmann entropy SB for the microstate |$(t)↔ and the choice of {M̂k} is

then given by

SB = kB

∑

k

ϱk↘M̂k↔ + kB ln ZGC. (2.5)

We note that this is also equal to the maximum value of the Gibbs-von Neumann entropy

SGvN = ⇐kB Tr[ϖ̂N ln ϖ̂N ] (2.6)

over all ϖ̂N , subject to the constraints Tr[M̂kϖ̂N ] = ↘M̂k↔ [72].

Using this generalized canonical approach to compute the Boltzmann entropy permits

more flexibility in the choice of macrovariables, as compared to those that adhere to the

conditions needed for the above construction of generalized microcanonical macrostates.

In particular, the spectra of the operators {M̂k} need not be coarse-grained, and for

quantum systems, these operators need not commute and may be microscopic operators,

as we demonstrate in the example below.

2.2 An illustrative example: a one-dimensional quan-

tum ideal gas

In this work, we consider a quantum ideal gas of N particles on a circle of length L. We

examine the Boltzmann entropy for two di!erent choices of macrovariables, schematically
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Figure 2.1: Schematic of the macrovariables that we consider. (Left panel) U -
macrovariables in which, the box of length L is divided into cells of length ω. By U -
macrovariables, we mean coarse-grained particle number, momentum, and energy within
each cell. (Right panel) f -macrovariables in which the macrovariables are defined by
coarse-graining in the single-particle phase space. By f -macrovariables we mean coarse-
grained particle numbers within each box of area #x#p. A macrostate corresponds to a
specification of the values of the macrovariables.

described in Fig. (2.1), that are quantum analogs of those used for the classical ideal gas

in Ref. [19]:

1. U -macrovariables: These are specified by the three conserved fields of particle num-

ber, momentum, and energy and are direct analogs of the corresponding classical

macrovariables [19]. They correspond to the usual fields that are used in the hy-

drodynamic description of interacting systems — our non-interacting system has

further conserved quantities but we can choose to consider the coarse-grained de-

scription in terms of these fields alone. More specifically, we divide our system

of length L into A spatial cells of size ω = L/A. We consider a set of operators

{N̂ϑ, P̂ϑ, Êϑ}, ς = 1, 2 . . . A, corresponding to the total number of particles, the total

momentum, and the total energy in the ςth cell. The precise definitions of these

operators are given in Sec. (2.4.1). Given that the system is in a microstate |$(t)↔,

let ↘B̂↔ = ↘$|B̂|$↔ denote the expectation value of any operator B̂. Then, the set

of expectation values {Nϑ, Pϑ, Eϑ} = {↘N̂ϑ↔, ↘P̂ϑ↔, ↘Êϑ↔} specify, as we argued in the

preceding paragraphs, the U -macrostate.
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2. f -macrovariables: For the classical gas, the f -macrovariables are the distribution

f(x, p) of the single-particle positions and momenta [19]. Here we do not use a

direct quantum analog of the classical macrovariables, but instead use a more mi-

croscopic choice, which is permitted for the quantum gas: We choose a complete and

orthonormal basis of single-particle wavefunctions, each of which is approximately

localized in position space within a width #x and in momentum space with width

#p. Such states will necessarily have to satisfy the uncertainty relation #x#p ↭ ⊋.

As we will show in Sec. (2.4.2), it is possible to construct such an orthonormal

basis set on the circle with states that are approximately localized in position space

with #x = L/K and in momentum space with #p = 2φ⊋K/L, where K is an

integer. We denote these single-particle basis states by |↼ϖ↔ with ↽ ⇒ (r, v), where

r = 1, . . . , K and v = ⇀K where ⇀ ⇑ Z. These states are localized around x = r#x

and p = ⇀#p. Let n̂ϖ be the number operator corresponding to the occupation of

the state |↼ϖ↔. The commuting operators {n̂ϖ} form a set of microvariables, since

specifying all of their eigenvalues specifies the microstate completely.

To define macrovariables for the quantum gas, we consider the expectation values

{Dϖ = ↘n̂ϖ↔} in the microstate |$↔. Since a pure state wavefunction of a quan-

tum system implies a probabilistic description, specifying only the {Dϖ} implies a

coarse-graining, in the sense that they do not specify the microstate. In fact, these

expectation values {Dϖ} constitute a good set of macrovariables that can be used

to define a corresponding generalized canonical ensemble and Boltzmann entropy,

following the procedure outlined above. The resulting Boltzmann entropy is

Sf
B =

∑

ϖ

[⇐Dϖ ln Dϖ ⇓ (1 ⇓ Dϖ) ln(1 ⇓ Dϖ)] , (2.7)

where the negative and positive signs in the ⇓ are for fermions and bosons, re-

spectively. This entropy can also be described from a generalized grand canonical

ensemble, where each of the single-particle states ↽ has its own chemical potential

µϖ in order to set Dϖ. For the classical gas, the cells #x#p used to define the f -

macrovariables must be large enough so that they are typically occupied by many

particles, in order to have enough coarse-graining [19]. For the quantum gas, on the
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other hand, fully microscopic cells may be used, and the needed coarse-graining is

provided by using the expectation values as the macrovariables.

2.3 Microscopic model and dynamical evolution

Our system is a quantum ideal gas of N particles on a circle of length L. The microstate

of the system is a pure state |$(t)↔ or, using the position representation, the wavefunction

$(x1, x2, . . . , xN , t). This state evolves in time via the Schrödinger equation i⊋⇁t$ = Ĥ$

with the free circle Hamiltonian Ĥ = ⇐[⊋2/(2m)]
∑N

ϑ=1 ⇁2
xω

. The gas is initially confined

to a part of the circle, of length aL with 0 < a < 1 (usually a = 1/2), which we refer

to as a “box”. The initial N -particle state |$(0)↔ may be taken to be an eigenstate of

the occupations of the single-particle energy eigenstates in the box. We also compare our

results to the initial grand canonical mixed states in the box. At t = 0, the box walls are

removed at both ends and the gas is allowed to freely expand on the full circle. As the

gas expands, we are interested in the time evolution of the macrovariables U and f and

of the corresponding entropies.

The single-particle energy eigenstates and eigenvalues on the circle are given by

ϕn(x) =
1

↓
L

e2ϱinx/L for x ⇑ [0, L), (2.8)

ϑn =
1

2m

(
2φn⊋

L

)2

, (2.9)

where n runs over all integers. These are also momentum eigenstates with eigenvalues

pn = 2φn⊋/L. A complete N particle basis of Fock states is specified by the occupations

|{Nn}↔ with Nn ⇑ {0, 1} for fermions and Nn ⇑ {0, 1, . . . , ⇔} for bosons, constrained

so that
∑

n Nn = N . We will find it useful sometimes to use the language of second

quantization and so we define the particle creation and annihilation operators %̂†(x), %̂(x)

which create or annihilate, respectively, a particle at position x. For fermions, they satisfy

the anti-commutation relation {%̂(x), %̂†(x↑)} = ω(x ⇐ x↑), while for bosons they satisfy

the commutation relation [%̂(x), %̂†(x↑)] = ω(x ⇐ x↑). We also define the creation and

annihilation operators b̂†n, b̂n, corresponding to the single-particle energy eigenstate ϕn.

These are related to the position operators as %̂(x) =
∑

n b̂nϕn(x). In the Heisenberg
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representation, these operators have simple time evolution for our noninteracting gas

b̂n(t) = e↓iςnt/⊋b̂n(0). (2.10)

As we will see in the subsequent sections, for our purposes, it su”ces to study the

single-particle density matrix and the corresponding Wigner function. Therefore, in the

following subsections, we discuss the evolution of the density matrix and the Wigner

function.

2.3.1 Density matrix

For our analysis of the dynamics, we will use the single-particle density operator ϖ̂1. In

the Heisenberg picture, and in the basis of the single-particle energy eigenstates, ϖ̂1 is a

matrix of operators, with operator-valued matrix elements

ϖ̂1,mn(t) ⇒ ϖ̂1(pm, pn, t) = b̂†n(t)b̂m(t) . (2.11)

Note that this is normalized so
∑

n ϖ̂1,nn(t) = N̂ is the operator for the total particle

number. In the position basis, the matrix elements of ϖ̂1(t) are given by

ϖ1(x, x↑, t) ⇒ ↘x| ϖ̂1(t) |x↑
↔ = N

∫
dx2dx3 . . . dxN

$↔(x↑, x2, x3, . . . xN , t)$(x, x2, x3, . . . xN , t)

= Tr
[
%̂†(x↑)%̂(x)ϖ̂N(t)

]
, (2.12)

where ϖ̂N(t) is the many-particle density matrix. For this given many-particle state ϖ̂N ,

the single-particle density matrix is the matrix of expectation values of the single-particle

density operator, which in the single-particle momentum eigenbasis we write as

ϖ̃1(pm, pn, t) ⇒ Tr
[
b̂†n(t)b̂m(t)ϖ̂N

]

⇒

〈
b̂†n(t)b̂m(t)

〉
= e↓i(ςm↓ςn)t/⊋ϖ̃1(pm, pn, 0). (2.13)
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Thus we can compute the evolution of ϖ̂1 once we know the initial value, ϖ̃1(pm, pn, 0),

which we now evaluate.

For the description of the initial state where the gas is confined to a box of length aL,

we will need the following single-particle “box” energy eigenspectrum

χs(x) =

√
2

aL
sin

sφx

aL
for x ⇑ [0, aL], (2.14)

es =
φ2⊋2s2

2ma2L2
, (2.15)

where s runs over all positive integers. The box and circle states are related by the

transformation

χs(x) =
↗∑

n=↓↗
Vsn ϕn(x), (2.16a)

Vsn =

aL∫

0

χs(x)ϕφ
n(x) dx (2.16b)

=

↓
2as

φ(4a2n2 ⇐ s2)
[e↓2ϱina cos sφ ⇐ 1].

Note that since {χs(x), s = 1, . . . , ⇔} do not form a complete set for states on the circle,

V is not an invertible matrix.

As mentioned before, we are interested in the evolution of an N particle Fock state

with energy E. For large N and E, it is equivalent and more convenient to work with a

grand-canonical distribution with ▷ and µ chosen according to

N =
↗∑

s=1

f(es, ▷, µ), (2.17a)

E =
↗∑

s=1

f(es, ▷, µ)es, (2.17b)

where f(e, ▷, µ) =
1

e↼(e↓µ) ± 1
is the Fermi (+) /Bose (-) function.

In our numerical implementation, we use the following protocol. We prepare the
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system in a pure state with the single-particle density matrix given by

ϖ̂P
1 (0) =

↗∑

s=1

ns |χs↔↘χs|, (2.18)

where the superscript “P” in Eq. (2.18) denotes pure state and the set {ns} is chosen

from the grand-canonical distribution

P ({ns}) =
1

Z
e
↓↼

∑
s

(es↓µ)ns

, (2.19)

Z =
∏

s

[1 ± e↓↼(es↓µ)]±1, (2.20)

subject to the constraints
∑

s ns = N and
∑

s nses = E. Here ns ⇑ {0, 1} for fermions

(+) and ns ⇑ {0, 1, . . . , ⇔} for bosons (-). In practice, these constraints are di”cult

to satisfy exactly. Hence we chose the set {ns} such that these constraints are satisfied

within some desired tolerance. We compare our results for the pure initial state with the

mixed (thermal) state described by the single-particle density matrix

ϖ̂M
1 (0) =

↗∑

s=1

f(es, ▷, µ) |χs↔↘χs|, (2.21)

where the superscript “M” in Eq. (2.21) denotes mixed thermal state. Using the box-

to-circle transformation in Eq. (2.16a), we can write the density matrix in Eq. (2.21) in

terms of the circle eigenfunctions to give

ϖ̃M
1 (pm, pn, 0) =

↗∑

s=1

f(es, ▷, µ)VsmV φ
sn. (2.22)

Using Eq. (2.13), the evolution of the density matrix in Eq. (2.22) is thus given by:

ϖ̂M
1 (t) =

↗∑

s=1

f(es, ▷, µ)
↗∑

m,n=↓↗
VsmV φ

sn e↓i(ςm↓ςn)t/⊋
|ϕm↔↘ϕn|. (2.23)

The pure state density matrix ϖ̂P
1 has a similar representation with f(es, ▷, µ) replaced by

ns in Eqs. (2.22) and (2.23). Note that the normalization condition Tr ϖ̂1(t) = N implies

(V V †)ss = 1. The density matrix in Eq. (2.23) and the corresponding representation of
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ϖ̂P
1 (t) are used to calculate local densities corresponding to conserved quantities.

2.3.2 Wigner distribution function

The Wigner distribution function (WDF) was introduced by Wigner [73,74] as a quantum

analog of the phase space distribution in classical systems. In 1-d, on the infinite line,

the WDF, denoted by w(x, p, t), is defined as

w(x, p, t) =
1

2φ⊋

↗∫

↓↗

dy ϖ1

(
x +

y

2
, x ⇐

y

2
, t

)
eipy/⊋. (2.24)

We point out that the above transformation is one-to-one, thus the WDF and the den-

sity matrix contain the same information. For noninteracting systems in the absence of

external potentials, w(x, p, t) satisfies the simple equation

⇁tw(x, p, t) +
p

m
⇁xw(x, p, t) = 0, (2.25)

which is identical to the evolution equation of the single-particle phase space density in

classical non-interacting systems. The solution of Eq .(2.25) is simply given by boosting

the initial profile

w(x, p, t) = w

(
x ⇐

pt

m
, p, 0

)
. (2.26)

In our model, the gas is confined to a circle of length L instead of the infinite line.

Therefore, we have x ⇑ [0, L) and the allowed momenta, pn = 2φn⊋/L, with integer n,

are discrete. A natural extension of the definition in Eq. (2.24) to the case of circular

coordinates would be to replace p by pn and restrict the integral from 0 to L [75–77].

However, this extension does not satisfy Eq. (2.25) with p replaced by pn. It turns out that

a modified definition of the WDF on the circle, that obeys Eq. (2.25), can be obtained.

For this one needs to define a new momentum variable:

qn =
φn⊋
L

=
pn

2
, (2.27)
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that takes both integer as well as half-integer values. The modified WDF on the circle is

thus defined as

w(x, qn, t) =
1

2L

L∫

↓L

dy ϖ1

(
x +

y

2
, x ⇐

y

2
, t

)
eiqny/⊋, (2.28)

=
1

L

↗∑

m=↓↗
ϖ̃1

(
qn +

pm

2
, qn ⇐

pm

2
, t

)
eipmx/⊋, (2.29)

where, in Eq. (2.29), the sum is over even values of m if qn is an integer and odd values

of m is qn is a half-integer. The inverse transform is given by

ϖ̃1(pm, pn, t) =

L∫

0

dx w

(
x,

pm + pn

2
, t

)
e↓i(pm↓pn)x/⊋. (2.30)

It is easy to check that the Wigner function in Eq. (2.28) satisfies Eq. (2.25) on

the circle with p replaced by qn and thus has a solution of the form in Eq. (2.26) with

periodicity L. Using Eq. (2.23) in Eq. (2.29), we get

w(x, qn, t) =
↗∑

s=1

f(es, ▷, µ)
↗∑

ϑ,m=↓↗

VsϑV
φ
smϕϑ(x)ϕφ

m(x)

↖ e↓i(ςω↓ςm)t/⊋ω(ς + m ⇐ n), (2.31)

for the mixed state and a similar expression for the pure state with f(es, ▷, µ) replaced by

ns. As we shall see in the next section, the WDF provides a simple way to define particle,

momentum, and energy densities which are needed for defining the U -macrostate.

2.4 Choices of macrostates and the corresponding

entropies

2.4.1 U-macrostate and SU
B

In this section, we present the details of the construction of the U -macrostate. In this

description, the observables that define the system’s macrostate are the expectation values
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of the three conserved macroscopic fields, namely the particle, momentum, and energy

densities. We first motivate the basic definition of the operators corresponding to these

observables and then show that their expectation values can be written in a simple and

physically intuitive form in terms of the WDF. We then discuss the corresponding entropy

SU
B .

Using second quantized notation, the operators corresponding to the total number of

particles, total momentum, and total energy on the circle, in units of ⊋ = m = 1, are

given by

N̂ =

L∫

0

dx %̂†(x, t)%̂(x, t), (2.32a)

P̂ = ⇐i

L∫

0

dx %̂†(x, t)⇁x%̂(x, t), (2.32b)

Ê = ⇐
1

2

L∫

0

dx %̂†(x, t)⇁2
x%̂(x, t). (2.32c)

It is then natural to define the following local density operators for the three fields:

n̂(x, t) = %̂†(x, t)%̂(x, t), (2.33a)

p̂(x, t) =
i

2

[
(⇁x%

†(x, t))%(x, t) ⇐ %†(x, t)⇁x%(x, t)


, (2.33b)

ê(x, t) = ⇐
1

8

[
%̂†(x, t)⇁2

x%̂(x, t) + (⇁2
x%̂

†(x, t))%̂(x, t)

⇐ 2(⇁x%̂
†(x, t))(⇁x%̂(x, t))


. (2.33c)

Note that hermitising, as done here, only produces corrections that are spatial derivatives

and therefore, does not change the total quantities. Though our choices of the expressions

for the densities are not unique, they are motivated by the simple forms they take when

we write their expectation values in terms of the WDF. To define our coarse-grained

macrovariables, we divide the circle into A cells of size ω = L/A and label them by the

index ς = 1, 2, . . . , A with the ςth cell beginning at x = (ς ⇐ 1)ω. Our macrovariables are
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then the set of operators

{N̂ϑ, P̂ϑ, Êϑ} =

ϑ↽∫

(ϑ↓1)↽

dx

n̂(x), p̂(x), ê(x)


. (2.34)

To find the values of the macrovariables for a given microstate, we need the expectation

values of the above operators. We find that the expectation values for the densities take

the following simple forms when written in terms of the WDF:

n(x, t) =
↗∑

n=↓↗
w(x, qn, t), (2.35a)

p(x, t) =
↗∑

n=↓↗
qnw(x, qn, t), (2.35b)

e(x, t) =
↗∑

n=↓↗
(q2

n/2)w(x, qn, t). (2.35c)

As is clear from the above equations, the densities take a physically intuitive form as

the marginals of the Wigner function. The expectation values of the macrovariables in

Eq. (2.34) are denoted by {Nϑ, Pϑ, Eϑ} and are readily obtained by integrating Eq. (2.35)

across cells.

Entropy of the U-macrostate: We now return to our goal of defining the entropy for

the U -macrostate. Given the set {Nϑ, Pϑ, Eϑ}, ς = 1, 2, . . . , A, we need to find the number

of microstates consistent with a given specification for the values of the set. Assuming

small correlations between cells, the number of microstates with these constraints is

simply the product of the number of possible microstates in each cell (with the local

constraints). Hence we get the entropy

SU
B =

A∑

ϑ=1

S(Nϑ, Pϑ, Eϑ), (2.36)

where S(Nϑ, Pϑ, Eϑ) is the equilibrium entropy of the ςth cell of size ω = L/A with the

specified values of the conserved quantities Nϑ, Pϑ, Eϑ.
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2.4.2 f-macrostate and Sf
B

As discussed in Sec. (2.1) the construction of the f -macrostate requires us to find a basis

set of single particle wavefunctions that are localized both in position and momentum

space. We now discuss its construction. The ϕ-basis, defined in Eq. (2.8), consists of

momentum eigenstates on the circle that are completely delocalized in position space. To

construct our localized basis, we superimpose K number of successive ϕ-states labelled

by a central momentum p = 2φ⊋v/L, and generate K new states

|↼ϖ↔ ⇒ |r, v↔ =
1

↓
K

∑

n ς Rv

|ϕn↔ e↓in 2εr
K , (2.37)

where Rv = {v ⇐ (K ⇐ 1)/2, . . . , v + (K ⇐ 1)/2} and ↽ ⇒ (r, v) is a collective index for

the basis states. Note that r = 1, . . . , K and v = ⇀K where ⇀ takes all integer values.

The K resulting |r, v↔ states for a given v are localized around rL/K, r = 1, . . . , K in

the position space and around 2φ⊋v/L in the momentum space. For this reason, we shall

refer to the ↼-basis in Eq. (2.37) as the wavepacket basis.

We now define the wavepacket density, denoted by Dϖ(t) = ↘n̂ϖ↔ ⇒ D(r, v, t), as the

diagonal of the single-particle density matrix ϖ̂1(t) in the wavepacket basis

Dϖ(t) ⇒ D(r, v, t) = ↘r, v| ϖ̂1(t) |r, v↔ . (2.38)

It turns out that one can write down the wavepacket density in terms of the Wigner

function as

D(r, v, t) =
1

K

∑

ϑ,m↘Rv

L∫

0

dx w

(
x,

ς + m

2
, t

)
e↓2ϱi(ϑ↓m)z, (2.39)

where z = x/L⇐ r/K. Making the variable transformation q = (ς+m)/2 and n = ς⇐m,

we can rewrite Eq. (2.39) as

D(r, v, t) =
1

K

v+∑

q=v→

L∫

0

dx w(x, q, t)
2(q↓v→)∑

n=2(q↓v+)

e↓2ϱinz, (2.40)
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where v± = v ± (K ⇐ 1)/2. Summing over n yields

D(r, v, t) =
1

K

v+∑

q=v→

L∫

0

dx w(x, q, t)GK(q ⇐ v, x), (2.41)

GK(q, x) = e↓4ϱiqz sin(2K ⇐ 1)φz

sin φz
, (2.42)

where recall z = x/L ⇐ r/K. Eq. (2.41) suggests that the wavepacket density is nothing

but a coarse-grained WDF. It is also instructive to look at the marginals of the wavepacket

density. The momentum marginal is given by the expression (see Appendix A.1)

Dv(v) =
K∑

r=1

D(r, v, t) =
∑

n↘Rv

ϖ̃1(pn, pn, 0), (2.43)

where recall Rv denotes set of momenta centered around v. Similarly, the position

marginal is given by (see Appendix A.1)

Dr(r, t) =
∑

v

D(r, v, t) =

L∫

0

dx hK

(x

L
⇐

r

K

)
ϖ1(x, x, t), (2.44)

with hK(x) =
1

K2

(
sin φKz

sin φz

)2

. (2.45)

Note that Eqs. (2.43, 2.44) represent coarse-grained versions of the diagonal elements of

the density matrix in the momentum and position basis.

Entropy of the f-macrostate: We now discuss the entropy formula in Eq. (2.7) for a

given specification of the set {Dϖ}. To derive this formula, one maximizes the Gibbs-von

Neumann entropy, SGvN = ⇐ Tr[ϖ̂N log ϖ̂N ], subject to the constraint

Dϖ(t) = ↘↼ϖ| ϖ̂1(t) |↼ϖ↔ = Tr
[
ϖ̂N(t)%̂†

ϖ%̂ϖ

]
, (2.46)
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where %̂ϖ creates a particle in the state |↼ϖ↔. The density matrix ϖ̂φ
N that maximizes

SGvN is given by

ϖ̂φ
N =

1

Z
e
↓

∑
ϑ

εϑ!̂†
ϑ!̂ϑ

, (2.47)

Z =
∏

ϖ

[1 ± e↓εϑ ]±1, (2.48)

where + is for fermions and ⇐ is for bosons. Note that the expression for the density

matrix in Eq. (2.48) is correct even if the operators {M̂k} do not commute [see Appendix

(A.2) for a detailed derivation]. Also note that it is precisely the density matrix that

defines the equivalent generalized canonical ensemble ϖ̂GC , as mentioned in Sec. (2.1).

The Lagrange multipliers ϱϖ are given by the relation

Dϖ = Tr
[
ϖ̂φ

N%̂†
ϖ%̂ϖ

]
=

1

eεϑ ± 1
. (2.49)

We can thus write down the maximal Gibbs-von Neumann entropy, Sf
B = ⇐ Tr[ϖ̂φ

N log ϖ̂φ
N ],

in terms of Dϖ as

Sf
B =

∑

ϖ

[⇐Dϖ ln Dϖ ⇓ (1 ⇓ Dϖ) ln(1 ⇓ Dϖ)] , (2.50)

where the ⇐ in the ⇓ is for fermions and the + is for bosons.

In order to compute the final change in entropy #sf
B = (Sf

B(⇔) ⇐ Sf
B(0))/N , we next

provide analytical estimates for the values of Dϖ(t) at t ↙ ⇔ and t = 0. Substituting

the expression for ϖ̂1(t) from Eq. (2.23) into Eq. (2.38), we obtain an explicit expression

for the wavepacket density

Dϖ(t) =
↗∑

s=1

f(es, ▷, µ)
↗∑

m,n=↓↗
VsmV φ

sne
↓i(ςm↓ςn)t/⊋

↘↼ϖ|ϕm↔↘ϕn|↼ϖ↔. (2.51)

We first discuss the late time limit. As t ↙ ⇔, we only get contributions from the m = n

terms in Eq. (2.51)

Dϖ(⇔) =
↗∑

s=1

f(es, ▷, µ)
↗∑

n=↓↗
|Vsn|

2
||↘ϕn|↼ϖ↔||

2. (2.52)
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In the limit of large N and L (keeping N/L = ϖ fixed), we use the explicit form of Vsn in

Eq. (2.16b) and find that |Vsn|
2 is highly peaked around s ≃ 2an for large n. Hence the

sum can be approximated as
∑

s f(es, ▷, µ) |Vsn|
2

≃ f(e2an, ▷, µ)
∑

s |Vsn|
2 = af(ϑn, ▷, µ).

We thus get for the late time

Dϖ(⇔) =
a

K

∑

n↘Rv

f(ϑn, ▷, µ). (2.53)

To compute Dϖ(0) we start with the expression

Dϖ(0) =
↗∑

s=1

f(es, ▷, µ)
↗∑

m,n=↓↗
VsmV φ

sn↘↼ϖ|ϕm↔↘ϕn|↼ϖ↔. (2.54)

Using Eq. (2.16b) for Vsm, we obtain the following simplified form:

Dϖ(0) =
1

K

↗∑

s=1

f(es, ▷, µ)|gv(s, r)|
2, where (2.55)

gv(s, r) =

√
2

a

∫ a↓r/K

↓r/K

dz sin
[sφ

a

(
z +

r

K

)]
e↓2ϱivz sin φKz

sin φz
. (2.56)

Since the integrand in gv(s, r) is highly peaked about z = 0 for large K, we make the

replacement sin(φz) ≃ φz in the numerator whenever z = 0 falls inside the integration

limit i.e. for r < Ka. This allows us to make the following approximation gv(s, r) ≃

&(Ka ⇐ r)g̃v(s, r) where &(r) is the Heaviside Theta function and g̃v(s, r) is given by

g̃v(s, r) ≃

√
2

a

∫ ↗

↓↗
dz sin

[sφ

a

(
z +

r

K

)]
e↓2ϱivz sin φKz

φz
. (2.57)

This finally implies

|g̃v(s, r)|
2

≃
1

2a
&(s+ ⇐ s)&(s ⇐ s↓), (2.58)

with s± = 2av ± Ka. Using this approximation in Eq. (2.55), we get

Dϖ(0) ≃
1

2aK

s+∑

s=s→

f(es, ▷, µ)&(r < Ka). (2.59)
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Note that while making the above approximations, we have ignored possible r dependence

near the edges of the initial box of size aL. As a result, the approximated density Dϖ(0)

slightly underestimates the initial entropy.

Using Dϖ(⇔) from Eq. (2.53) and Dϖ(0) from Eq. (2.59), in Eq. (2.50) one can

numerically compute #sf
B for di!erent T and µ. However the above procedure does not

remain valid for bosons at very low temperatures because the particles occupy only a

few low-lying energy states and consequently they do not relax. On the other hand for

fermions, the above procedure works for all T , and specifically at T = 0, one can obtain

an explicit expression of #sf
B. To obtain this expression we first note that for T = 0,

Eq. (2.53) gives Dϖ(⇔) = a for all ↽ except those which are very close to the Fermi

surface. Using Dϖ(⇔) ≃ a in Eq. (2.50), we find

Sf
B(⇔) = ⇐

∑

ϖ

[a ln a + (1 ⇐ a) ln(1 ⇐ a)], (2.60)

where the summation extends over 2nmax terms such that ϑnmax = µ. Given that es = ϑs/2a

and eN = µ, we get nmax = N/2a. The number of terms in the ↽-sum is thus N/a and

hence, the late time entropy per particle is given by

sf
B(⇔) = ⇐

1

a
[a ln a + (1 ⇐ a) ln(1 ⇐ a)]. (2.61)

For a = 1/2, we obtain sf
B(⇔) = 2 ln 2. The initial density in Eq. (2.59) simplifies in a

similar manner and we get

Dϖ(0) =
1

2aK

s+∑

s=s→

&(es < µ) ≃ 1, (2.62)

which results in the initial entropy at T = 0 being zero (neglecting edge contributions as

mentioned earlier). We therefore get #sf
B(T = 0) = 2 ln 2 for the Fermi gas expanding

to twice the initial volume.
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Figure 2.2: Fermi and Bose distribution functions showing the mean occupation numbers
of energy levels at the low and high temperatures (along with an intermediate temperature
for comparison) used in our numerical study. The particle density was set to ϖ = 1. The
insets show the relative number fluctuations.

2.5 Numerical results

In this section, we present the results of the evolution of the two macrovariables f and U ,

and the corresponding entropies for fermions in Sec. (2.5.1) and for bosons in Sec. (2.5.2).

The equilibrium state of an ideal gas is described by its temperature T and density

ϖ = N/L. For a quantum system, a relevant parameter that tells us whether we are in the

quantum or classical regime is the ratio of the interparticle distance 1/ϖ to the thermal de

Broglie wavelength, ϱth = h/(2φmkBT )1/2. With our choice of units with m = kB = ⊋ = 1

and density fixed at ϖ = 1, we take the square of this ratio, (ϱthϖ)↓2 = T/(2φ) to be the

controlling parameter. In the following, we will present results for two sets of parameters:

(i) low-temperature highly quantum regime T = 2φ/5; (ii) high-temperature regime

T = 10φ. In Fig. (2.2) we show the mean energy-level occupation number and their

fluctuations for fermions and bosons at di!erent temperatures.

We recall the two di!erent initial conditions [see Sec. (2.3.1)] for which we present our

results.

1. We consider the initial state to be a single pure many-body Fock state given by the

box eigenstate:

|$↔ = |{ns}↔ , (2.63)
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Figure 2.3: Fermions - evolution of U-macrovariables: Plots showing the spatial
profiles of the number of particles, the total momentum, and the total energy in each of
the A = 20 cells for N = L = 1024 at di!erent times. The dots represent results for
the pure state initial condition while the solid lines correspond to a thermal mixed state.
Results are presented for two di!erent temperatures T = 2φ/5, 10φ (top and bottom row
respectively), and chemical potentials are fixed so that the mean density is set at ϖ = 1.
We see a good agreement between the pure state and the thermal state results.

where the single-particle level box occupancies, {ns}, are chosen with probabilities

given by the grand-canonical distribution [in the box x ⇑ (0, L/2)] with T , µ fixed

at the desired values corresponding to our specified initial T , ϖ. We sample only

one initial state this way; for large N , this comes close to “self-averaging”.

2. We consider an initial state whose one-particle density matrix is identical to that

of the grand-canonical distribution in the box.

2.5.1 Fermions

In this section, we present results for fermions first for the U -macrovariable and then for

the f -macrovariable.
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Figure 2.4: Fermions: Time evolution of the number of particles inside the 5th and 15th

cells out of a total of A = 20 cells for N = L = 1024. As in Fig. (2.3), we see a good
agreement between the pure state (dots) and the thermal state results (solid line). We
see marked oscillations at low temperatures with a time period ◁p = L/vf (see text).

U-macrostate

In this case, we set L = N = 1024 in all our numerics. Some of our main observations

are:

1. In Fig. (2.3), we show the spatial profiles of the U -macrovariables, given by the

expectation values of the operators in Eq. (2.34), at di!erent times starting with

the gas in the region (0, L/2) and with A = 20 partitions of the system. Results are

shown for both the pure state and the thermal state initial conditions and we find

a very good agreement between the two. We observe that at late times, all three

fields approach uniform profiles which characterize our equilibrium state.

2. In Fig. (2.4), we consider two fixed cells centered at x = L/4 and 3L/4 and plot

the time-evolution of the number of particles in these cells. We again see a good

agreement between the pure state and the thermal state initial conditions. An

oscillatory relaxation to the uniform equilibrium state is observed. We note that

the oscillation period in the low-temperature limit is given by ◁p = L/vf where vf

is the Fermi velocity. The amplitude of the oscillations decreases with increasing

temperature.

3. The evolution of the Boltzmann entropy SU
B at the two temperatures are shown
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Figure 2.5: Fermions: U -macrostate entropy growth for fermions for N = L = 1024 at
two di!erent temperatures and for two di!erent coarse-graining scales with A = 20 (blue
lines) and A = 40 (red lines). Results are presented for the pure state (dots) and thermal
state (solid lines) initial conditions. The initial sharp rise corresponds to the filling of
the two empty cells on either side of the unfilled part of the circle. This jump is smaller
for finer coarse-graining size. We also observe an initial flat profile in (a) which persists
till time (L/4)/vf , where vf is the Fermi velocity. At large times, in all cases, the entropy
saturates to the thermodynamic entropy of the new equilibrium state (corresponding to
uniform values of the three conserved fields on the circle). The sub-captions give the
values for the change in entropy per particle, #s, for the two cases.

in Fig. (2.5), for two choices of cell sizes, with A = 20, 40. We see a convergence

of the growth curve with decreasing cell size. A monotonic growth of the entropy

and an eventual saturation to the expected equilibrium value (corresponding to

uniform values of the conserved fields) is observed. In the low-temperature case,

we observe an initial jump in the SU
B followed by a small flat regime and then a

sharp increase. The initial jump size is smaller for finer coarse-graining. On the

other hand, the initial flat profile seen in Fig. (2.5)(a) is a result of the sharp cuto!

in the momentum distribution in the low-temperature Fermi gas. The flat region

is observed till time (L/4)/vf , where vf is the Fermi velocity, which corresponds to

the time taken by the gas to fill the circle for the first time.

f-macrostate

In this case, we set L = N = 2048 in all our numerics. Some of our main observations

are:
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Figure 2.6: Fermions - evolution of
f-macrovariables. Top left: Heat map
plot of the wave packet density for pa-
rameters T = 2φ, µ = 21.53, N = L =
2048, and K = 201. Top right: The
wave packet density as a function of mo-
mentum at two values of r = K/4 (red)
and r = 3K/4 (blue), at the same time
instances as in the heat map. Bottom
left: The entropy evolution with time
where the points a ⇐ f correspond to
the same time snapshots as in the top
row. The relative values of the entropy
at these points are consistent with the
presence of structures (or lack thereof)
in the heat map and the cross-sectional
profiles.

1. To see the evolution of the f -macrovariables, we plot heat maps in the top left

of Fig. (2.6) showing the values of wavepacket density Dϖ in the two-dimensional

↽ = (r, v) plane for an intermediate temperature T = 2φ. We present six di!erent

time snapshots indicated by (a)-(e). The wavepacket density is initially flat in the

box and there is an oscillatory relaxation to an eventual flat profile over the circle.

We see an interference pattern that disappears in (d) and reappears in (e) and then

again disappears in (f). This feature is more manifest in the top right panel of

Fig. (2.6) which shows the wave packet density as a function of momentum at two

values of r = K/4 (red) and r = 3K/4 (blue), at the same time instances as in the

heat map. These features lead to an oscillatory relaxation of the entropy growth

curve as seen in the bottom left panel of Fig. (2.6) where we find that the time for the
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Figure 2.7: Fermions: Time evolution of the f -macrostate entropy per particle, sf
B, at

two di!erent temperatures and for two coarse-graining scales K at each temperature. We
see very good agreement between results for the pure state (red dots) and thermal state
(solid lines) initial conditions. The inset in each plot shows the collapse of di!erent K
curves on re-scaling time.

entropy to first reach the saturation value, i.e, the point (d) is given by L2/(2φK).

This is also the period of the subsequent oscillations seen in the entropy evolution.

This time scale can be understood within a semi-classical framework and using the

results from Ref. [19]. There it was shown that the time scale of oscillations of sf
B

is given by ◁ = L/#v, where #v is the momentum coarse-graining scale. In the

quantum case, we replace this by #v = #p/m = 2φ⊋K/(mL). With our choice of

units ⊋ = m = 1, we therefore get ◁ = L2/(2φK).

2. In Fig. (2.7), we plot the entropy growth for the two temperatures (low and high)

and for two di!erent K values corresponding to each temperature. At both coarse

graining scales, K, we see a good agreement between the entropy calculated from

the pure state and the thermal state initial conditions. The entropy saturates to a

value as predicted from Eqs. (2.50, 2.53). In the inset, we see a collapse of the data

for di!erent K on scaling time by K, consistent with the expression for ◁ mentioned

above. Note that similar oscillations and collapse of data were seen in the entropy

growth in the free expansion of the non-interacting classical ideal gas [19].
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Figure 2.8: Bosons - evolution of U-macrovariables: Plots showing the spatial pro-
files of the number of particles, the total momentum, and the total energy in each of the
A = 20 cells for N = L = 1024 at di!erent times. Results are presented for two di!erent
temperatures T = 2φ/5, 10φ, and chemical potentials are fixed so that the mean density
is set at ϖ = 1. We see a reasonable agreement between the pure state (red dots) and the
thermal state (solid lines) results, but significant deviations (due to finite-size e!ects) are
observed at the latest times.

2.5.2 Bosons

We now present results for bosons for the U and f macrovariables. Except at very low

temperatures, we find that several features are the same as that of fermions irrespective

of the di!erence in statistics. We also highlight the striking di!erences between bosons

and fermions. For bosons at very low temperatures, only levels with the energy of order

↫ kBT will be occupied. The number of occupied levels is thus small unless we consider

very large N . Therefore it is di”cult to see relaxation at such low temperatures and we

do not consider such temperatures.

U-macrostate

In Fig. (2.8) we show the spatial profiles of the U -macrovariables, given by the expectation

values of the operators in Eq. (2.34), at di!erent times starting with the gas in the left

half of the box. We again consider a partition of the box into A = 20 cells. Results are
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shown for both the pure state and the thermal state initial conditions and as before we

find reasonable agreement between the two though we find significant di!erences at long

times. In general, we find that for bosons the agreement is not as good as that of fermions

due to stronger finite size e!ects. This is because, for a fixed total particle number and

temperature, the typical number of occupied levels in the pure state is less for bosons

compared to that for fermions and fluctuations are larger [see Fig. (2.2)].

In Fig. (2.9), we consider two fixed cells located on the two halves of the circle centered

at x = L/4 and 3L/4 and plot the time-evolution of the number of particles inside

these cells. We again see a reasonable agreement between the results from the pure

and thermal states, though the di!erences are significantly larger than what was seen

for fermions. It is worth noting that unlike in the case of fermions, here we do not

see any oscillations but rather a monotonic relaxation to the uniform equilibrium state.

The oscillations in the fermionic case arise due to the sharpness of the distribution near

the Fermi energy at low temperatures which allows one to define a typical velocity vf –

hence a period of oscillation ◁p = L/vf . On the other hand in the case of bosons, we

cannot identify such a typical velocity. Note that even though the evolution equation

for the Wigner function is formally identical for bosons and fermions (as also classical

particles), di!erences arise due to the form of the initial conditions. More precisely, for

a typical pure state corresponding to thermal equilibrium, the form of the initial state

is entirely di!erent for bosons and fermions. The evolution of the Boltzmann entropy

per particle sU
B at the two temperatures is shown in Fig. (2.10), for two choices of cell

sizes A = 20, 40. We observe: (i) a convergence of the growth curve with decreasing cell

size; (ii) a monotonic growth of the entropy and an eventual saturation to the expected

equilibrium value (corresponding to uniform values of the conserved fields).

f-macrostate

For the f -macrostate, we again plot the heat map of the wavepacket density and the

corresponding entropy growth curve in Fig. (2.11). The results look similar to fermions,

except for the fact that the wavepacket density for bosons is more smeared out as com-

pared to fermions. This is due to the usual di!erence between the Bose and the Fermi

function at low temperatures. However, in the entropy growth curves for bosons in
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Figure 2.9: Bosons: Time evolution of the number of particles inside the 5th and 15th

cells out of a total of A = 20 cells for N = L = 1024. As in Fig. (2.8), we see a reasonable
agreement, at early times, between the pure state (dots) and the thermal state results
(solid line) while at longer times there are significant deviations. Note that the thermal
data shows the absence of oscillations while in the pure state data, we see fluctuations
that are expected to decrease with increasing system size.

Fig (2.12), the saturation value of the entropy depends rather strongly on K, especially

in the low-temperature case [see details in appendix (A.3)].

2.6 Discussions and summary

The main aim of this study has been to use Boltzmann’s ideas to construct an entropy

function that can be defined for a pure quantum state and which allows us to characterize

irreversibility in macroscopic systems. For the example of the quantum ideal gas, two

sets of macroscopic descriptions (called U and f) were defined that provide a coarse-

grained view of the system, which is in a pure quantum state. The evolution of the

entropy functions associated with these macrostates was studied for the case where the

gas, initially in a pure state and spatially confined, was allowed to expand to twice its

volume. We summarize and comment on some of our main results.

1. The U -macrovariables are the coarse-grained operators corresponding to the num-

ber, momentum, and energy of particles in spatial cells of size ω = L/A. For both

fermions and bosons, we see that the macrostates reach a steady state character-

ized by the three fields reaching homogeneous spatial profiles. Depending on the
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Figure 2.10: Bosons: U -macrostate entropy growth for N = L = 1024 at two di!erent
temperatures and for two di!erent coarse-graining scales with A = 20 (blue lines) and
A = 40 (red lines). Results are presented for the pure state (dots) and thermal state (solid
lines) initial conditions. Unlike for fermions, the initial sharp rise is not seen in the case of
bosons. At large times, in all cases, the entropy saturates to the thermodynamic entropy
of the new equilibrium state (corresponding to uniform values of the three conserved fields
on the circle). The sub-captions give the values for the change in entropy per particle,
#s, for the two cases.

parameter values, we see either damped or oscillatory relaxation of the fields to the

steady state. However, we always observe a monotonic increase of the associated

entropy, sU
B.

2. The definition of our f -macrostate is aimed at obtaining an analogue of the single-

particle phase space density in classical systems. A natural candidate for this are

the number operators corresponding to a localized wavepacket set of basis states.

While these operators are not bonafide macrovariables, we nevertheless can use

their expectation values as macrovariables to identify macrostates and compute

an entropy function by maximizing the Gibbs-von Neumann entropy, given those

expectation values.

The wavepackets that we construct are located at discrete space and momentum

points, denoted ↽ ⇒ (r, v), and localized on a scale of ⊋. We show that the average

occupancy of these states denoted Dϖ, constitute a coarse-graining of the Wigner

function on a scale of ⊋. Unlike the Wigner function, Dϖ is positive and is thus

similar to the so-called Husimi function [78]. However, the Husimi function has

the full information on the one-particle density matrix and so for non-interacting
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Figure 2.11: Bosons - evolution of f-
macrovariables. Top left: Heat map plot
of the wave packet density at T = 2φ, µ =
⇐1.7, N = L = 2048, and K = 201. Top
right: The wave packet density as a func-
tion of momentum at two values of r = K/4
(red) and r = 3K/4 (blue), at the same time
instances as in the heat map. Bottom left:
The entropy evolution with time where the
points a ⇐ f correspond to the same time
snapshots as in the top row. Like fermions,
here also the relative values of the entropy at
these points are consistent with the presence
of structures (or lack thereof) in the heat
map and the cross-sectional profiles.

systems, it cannot be used for the construction of an entropy function. The function

Dϖ incorporates coarse-graining required to demonstrate entropy growth in the

quantum ideal gas. We note that the Wehrl entropy [79] uses the Husimi function

and has been used to study irreversibility in interacting quantum systems [80–82].

Our f -macrostate entropy, Sf
B, also increases with time and reaches a steady state

saturation value. In this case, the entropy growth is oscillatory with a period given

by L/#p where #p is the momentum coarse-graining scale – this can be understood

from semi-classical considerations. The change in entropy per particle satisfies the

bound ln 2 → #sf
B → 2 ln 2 for fermions and 0 → #sf

B → ln 2 for bosons. This can

be understood from the momentum distribution in the final state.

3. Results obtained for the evolution of pure states were compared with those of
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Figure 2.12: Bosons: Time evolution of the f -macrostate entropy per particle, sf
B, at

two di!erent temperatures and for two coarse-graining scales K at each temperature. We
see a good agreement between results for the pure state (red dots) and thermal state
(solid lines) initial conditions. The inset in each plot shows the collapse of di!erent K
curves on re-scaling time.

corresponding thermal initial states and we showed evidence of their equivalence

at larger system sizes. This demonstrates typicality in the dynamical evolution.

Bosons showed larger finite size e!ects at low temperatures because of the fact that

a relatively smaller number of single-particle levels are occupied and the number

fluctuations is larger.

4. From the single-particle spectrum on the circle, it is clear that the system has an

exact recurrence at a time ◁rec = L2/φ (in units of m = ⊋ = 1). However for both

our macrovariables, relaxation to the steady state occurs on a time scale ◁eq ↑ L

and so, in the thermodynamic limit L, N ↙ ⇔ with L/N constant, there is a

clear separation between the relaxation and recurrence time-scales. This kind of

recurrence is expected whenever the single-particle spectrum is given in terms of

integers and would be observed in quantum particles in harmonic traps but would

not be present in generic anharmonic potentials (see for e.g [83]).

As expected, our system does not reach a Gibbs equilibrium state. The final e!ective

temperature and chemical potential corresponding to the final particle and energy density

do not determine the true single-particle momentum distribution, which is not able to

attain thermal equilibrium for the quantum ideal gas. This is di!erent from the classical
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gas, where an initial Maxwell velocity distribution would continue to be the correct

equilibrium velocity distribution for the expanded gas. In quantum gas, it would be

necessary to include interactions to allow the momentum distribution to relax to thermal

equilibrium; this does not happen for the ideal quantum gas. A recent study considered

Boltzmann’s entropy growth in a classical interacting gas and interesting di!erences with

the non-interacting case were noted [20]. The e!ect of interactions in the quantum case

would be interesting to explore, however, this would then become a highly entangled

many-body system and thus very challenging to treat accurately.
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Chapter 3

Generalized hydrodynamics and

approach to Generalized Gibbs

equilibrium for a classical harmonic

chain

In this chapter, we study the other part of our thesis which is to study thermalization

and check the validity of the prediction of generalized hydrodynamics (GHD) for a clas-

sical harmonic chain. Being an integrable system, the harmonic chain thermalizes to a

generalized Gibbs ensemble. We study the GHD evolution of the harmonic chain and its

approach to the GGE state. Following is a summary of our main results:

We clarify how the Wigner function method [67] is related to the correlation ma-

trix approach in [46]. In particular, we write an explicit expression for the Wigner

function in terms of the Fourier transform of the local correlation function — this al-

lows us to show the equivalence between the Euler equation in [46] and the equation

satisfied by the Wigner function [see Sec. (3.2.1)].

We express all the local conserved densities and currents in terms of the Wigner

function which allows us to write the hydrodynamic equations for all the conserved

quantities. The equation for the coarse-grained Wigner function can thus be con-

sidered as the GHD equation for the harmonic chain. This approach is similar to
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that used for deriving the GHD equation for free fermions [42].

Using the non-interacting structure, we solve the GHD equations analytically and

obtain explicit expressions for the time evolution of the density and current profiles

starting from non-equilibrium initial conditions. We compare these solutions with

microscopic computations and find remarkable agreement.

On the infinite line, the domain wall spreads ballistically and from our solution

of GHD equations we can compute the exact scaling functions corresponding to

both the density and current profiles. At any fixed location, the density and the

current corresponding to any conserved quantity approach a stationary finite value

in the t ↙ ⇔ limit. The approach to the steady state value is ↑ 1/t and ↑ 1/t2,

for densities and currents respectively. Therefore the stationary state inside any

finite segment should be describable by a GGE which, in addition to the conserved

densities, also includes all the associated currents that are conserved in the infinite

geometry [64].

For the domain wall initial condition on a finite chain, we observe that the chain

relaxes to a final stationary state that is consistent with a GGE state in which all

the conserved densities become homogeneous in space and stationary in time while

the corresponding currents vanish. Note that in this case, current conservation

is violated by the reflections at the boundaries. The conserved densities and the

associated currents approach their stationary values as 1/
↓

t in the t ↙ ⇔ limit.

The final expected GGE state in the finite chain is characterized by chemical poten-

tials {ϱn} that are completely determined by the values of the conserved quantities.

We provide explicit expressions for them in terms of the conserved densities. For

the particular case of the initial condition composed of two Gibbs states at di!er-

ent temperatures, the final stationary state is also a Gibbs state. For the other

case studied in this work in which the initial domain wall state is composed of two

GGEs where only the first two Lagrange parameters are non-zero in either half of

the chain, we find that the final state is also expected to be a GGE with chemical

potentials that decay exponentially in strength for large n.
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Figure 3.1: Plot showing a schematic of the harmonic chain system of length 2N . Initially,
at t = 0, the left and right halves are disconnected and in general, described by two GGEs
with unequal chemical potentials ϱL

n ∝= ϱR
n . At t > 0, the two halves interact and the

system evolves as a whole towards a new stationary state.

3.1 Microscopic description of the system

In this section, we define the microscopic model of our classical harmonic chain and state

the exact expressions for various correlation functions that can be obtained from the

solution of the microscopic dynamics. We consider a chain of 2N particles of unit masses

whose positions and momenta are denoted by {qj, pj}, j = 1, . . . 2N . Assuming fixed

boundary conditions: q0 = q2N+1 = 0, the Hamiltonian is given by

H =
2N∑

j=1

p2
j

2
+

2N∑

j=0

(qj+1 ⇐ qj)2

2
=

1

2


pTp + qT $q


, (3.1)

where q = {q1, . . . , q2N} and p = {p1, . . . , p2N} are vectors containing the particle po-

sitions and momenta respectively and $ denotes the force matrix with elements $j,j↑ =

2ωj,j↑ ⇐ ωj+1,j↑ ⇐ ωj↓1,j↑ for j, j↑ = 1, 2, ..., 2N , where ωjj↑ is Kronecker delta. This gives us

the equations of motion (EOM)

q̈ = ⇐$q. (3.2)
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Let U be the matrix of eigenfunctions that diagonalises $ i.e., UT $U = ’2 where ’2
k,k↑ =

02
kωk,k↑ . The eigenvalues and eigenfunctions are given by

02
kω

= 2(1 ⇐ cos kϑ), (3.3a)

↼kω
(j) = Ujkω

=

√
2

2N + 1
sin jkϑ, (3.3b)

where kϑ =
φς

2N + 1
, ς = 1, . . . , 2N. (3.3c)

We can write down a general solution to Eq. (3.2) in matrix notation as

q(t) = Ȧ(t)q(0) + A(t)p(0), (3.4a)

p(t) = Ä(t)q(0) + Ȧ(t)p(0), (3.4b)

where we have defined

A(t) = U
sin(’t)

’
UT . (3.5)

For a harmonic chain of N particles, one can construct N number of local conserved

quantities which we denote by Q(n)(p,q), n = 0, 1, 2, ..., N⇐1. These conserved quantities

are of the form:

Q(n)(p,q) =
1

2


pT B(n)p + qT M (n)q


, (3.6)

where B(n) and M (n) are N ↖ N symmetric matrices [see Sec. (3.2.2) for a detailed

discussion]. The general stationary state of the chain is therefore described by a GGE of

the form

PGGE(p,q) =
1

Z({ϱn})
exp


⇐

N↓1∑

n=0

ϱnQ
(n)


, (3.7)

where ϱn are the corresponding Lagrange multipliers that determine the average values

of the conserved quantities. Here, Z({ϱn}) is the GGE partition function for a chain of
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N particles, which is explicitly given by [see Appendix (B.1)]

Z({ϱn}) = (2φ)N
N∏

ϑ=1

1

0kω

∑N↓1
n=0 ϱn cos (nkϑ)

, (3.8)

where 0k and kϑ are given in Eqs. (3.3a, 3.3c), respectively.

Initial condition: As shown in the schematic in Fig. (3.1), our system comprises of two

such N -particle chains that are initially in a domain wall configuration described by a

product of two GGE states

Pin =
e↓

∑
n εL

nQ
(n)
L

ZL
↖

e↓
∑

n εR
n Q

(n)
R

ZR
, (3.9)

with di!erent values of the Lagrange multipliers in the left and right halves, denoted

respectively by {ϱL
n} and {ϱR

n }, corresponding to the conserved quantities Q(n)
L and Q(n)

R .

Substituting the expression for Q(n) from Eq. (3.6) into Eq. (3.9), we can express Pin in

the following Gaussian form

Pin =
1

ZLZR
exp

(
⇐

1

2
[pT

Bp + qT
Mq]

)
, (3.10)

where B and M are 2N ↖ 2N symmetric matrices defined as

B =





∑
n

ϱL
nB(n) 0

0
∑
n

ϱR
n B(n)



 , M =





∑
n

ϱL
nM (n) 0

0
∑
n

ϱR
n M (n)



 , (3.11)

where the Lagrange multipliers are chosen such that B and M are positive definite ma-

trices.

The initial correlations can be immediately inferred from Eq. (3.10) and are given by

q(0)q(0)T


= M

↓1,

p(0)p(0)T


= B

↓1, and

p(0)q(0)T


= 0. Using Eq. (3.4), the
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equal time two-point correlations can then be easily obtained and we find


q(t)q(t)T


= A(t)B↓1A(t) + Ȧ(t)M↓1Ȧ(t), (3.12a)


p(t)p(t)T


= Ȧ(t)B↓1Ȧ(t) + Ä(t)M↓1Ä(t), (3.12b)


q(t)p(t)T


= A(t)B↓1Ȧ(t) + Ȧ(t)M↓1Ä(t), (3.12c)

where A(t) is given in Eq. (3.5).

3.2 Wigner function, conserved quantities and con-

nection to GHD

In this section, we discuss the Generalized Hydrodynamics (GHD) for the harmonic chain

through its connection to the Wigner function formalism. This is similar to the approach

followed in [42] for non-interacting fermions on a one-dimensional lattice. Using GHD,

we obtain an analytical understanding of the correlations and conserved quantities on a

macroscopic scale. Unless stated otherwise, we will assume the chain to be infinite at both

ends for which the eigen-spectrum in Eq. (3.3a) becomes continuous: 02(k) = 2(1⇐cos k)

where k ⇑ [⇐φ, φ].

3.2.1 Wigner function: its relation to the correlation matrix

and evolution

Although the Wigner function was originally introduced as a quantum analog of the

classical phase space distribution [73, 74], it has also been used widely in the context of

transport and hydrodynamics of classical harmonic crystals. Following [67], we construct

the Wigner function for the classical harmonic chain defined in Eq. (3.1). For this, we

first define the quantity

a(k, ◁) =
1

↓
2




0(k)q(k, ◁) +
i
0(k)

p(k, ◁)


, (3.13)
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where the Fourier and inverse Fourier transforms are defined as

q(k, ◁) =
∑

j↘Z

e↓ijkqj(◁); qj(◁) =

∫ ϱ

↓ϱ

dk

2φ
eijkq(k, ◁), (3.14a)

p(k, ◁) =
∑

j↘Z

e↓ijkpj(◁); pj(◁) =

∫ ϱ

↓ϱ

dk

2φ
eijkp(k, ◁), (3.14b)

a(k, ◁) =
∑

j↘Z

e↓ijkaj(◁); aj(◁) =

∫ ϱ

↓ϱ

dk

2φ
eijka(k, ◁), (3.14c)

where aj(◁) is defined as the Fouier transform of a(k, ◁). The quantity a(k, ◁) has a

simple evolution: a(k, ◁) = e↓i⇀(k)⇁a(k, 0). We then define the Wigner function in terms

of a(k, ◁) as

W 1(y, k, ◁) =

∫ 2ϱ

↓2ϱ

d1

4φ
eiξy

↘aφ(k ⇐ 1/2, ◁)a(k + 1/2, ◁)↔ =
∑

j↘Z

e↓ijk

aφ

y↓j/2(◁)ay+j/2(◁)

,

(3.15)

where y ⇑ Z/2. The sum on j runs over even/odd integers if y is integer/half-integer and

the average is over an initial ensemble. Substituting Eq. (3.13) into Eq. (3.15), we obtain

W 1(y, k, ◁) =
1

2

∫ 2ϱ

↓2ϱ

d1

4φ

∑

j,j↑↘Z

eiξ(y↓(j+j↑)/2)ei(j↓j↑)k

↖




0(k ⇐ 1/2)0(k + 1/2) ↘qjqj↑↔ (◁) + i


0(k ⇐ 1/2)

0(k + 1/2)
↘qjpj↑↔ (◁)

⇐i


0(k + 1/2)

0(k ⇐ 1/2)
↘pjqj↑↔ (◁) +

1
0(k ⇐ 1/2)0(k + 1/2)

↘pjpj↑↔ (◁)


.

(3.16)

Note that the above expression readily provides a connection between the Wigner function

and the correlations. If we assume the correlations to be homogeneous in space, then we

obtain a steady-state Wigner function

Wss(k) =
1

2

[
0(k)F11(k) ⇐ iF12(k) + iF21(k) +

1

0(k)
F22(k)


, (3.17)
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where Fmn(k) are elements of the 2 ↖ 2 correlation matrix

F (k) =
∑

r↘Z

eikrF̄ (r), where F̄ (j ⇐ j↑) =




↘qjqj↑↔ ↘qjpj↑↔

↘pjqj↑↔ ↘pjpj↑↔



 . (3.18)

We point out that F ↔
11(k) = F11(k), F ↔

22(k) = F22(k) and F ↔
12(k) = F21(k) so that the

Wigner function is always real. In thermal equilibrium at an inverse temperature ▷, we

simply get

W↼(k) =
1

▷0(k)
. (3.19)

In general, for a chain of N particles in GGE described by the distribution in Eq. (3.7),

the Wigner function can be obtained by computing the correlations Fj↓j↑ in Eq. (3.18)

and using them in Eq. (3.17). One finds the following explicit expression

WGGE(k) =
1

0(k)
N↓1∑
n=0

ϱn cos nk

. (3.20)

On the other hand, when the correlation functions are inhomogeneous and evolve

over a large space-time scale, one can assume the system to be locally in a steady state

characterized by the local values of the correlations. Transforming to the scaled variables:

x = ϑy, t = ϑ◁ , and taking the ϑ ↙ 0 limit in Eq. (3.16), the relation in Eq. (3.17) between

the Wigner function and the correlation matrix gets modified to

W (x, k, t) =
1

2

[
0(k)F11(x, k, t) ⇐ iF12(x, k, t) + iF21(x, k, t) +

1

0(k)
F22(x, k, t)


, (3.21)

where

W (x, k, t) := lim
ς≃0

W 1(x/ϑ, k, t/ϑ) = lim
ς≃0

ϑ

∫ 2ϱ/ς

↓2ϱ/ς

d2

4φ
eiηx

↘aφ(k ⇐ ϑ2/2, t/ϑ)a(k + ϑ2/2, t/ϑ)↔ ,

(3.22)
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and

Fmn(x, k, t) = lim
ς≃0

↗∑

r=↓↗
e↓irk

〈
ym

[ς→1x↓r/2] yn
[ς→1x+r/2]

〉
(ϑ↓1t). (3.23)

Here y1
j = qj is the displacement and y2

j = pj is the momentum of the jth oscillator.

The local correlation functions Fmn(x, k, t) were shown, in Ref. [46], to satisfy the Euler

equations, using which one can show that the Wigner function W (x, k, t) satisfies the

following transport equation:

⇁tW (x, k, t) + 0↑(k)⇁xW (x, k, t) = 0. (3.24)

A more direct way to derive this equation is to start with W 1(y, k, ◁) defined in Eq. (3.15)

which satisfies

⇁⇁W
1(y, k, ◁) = i

∫ 2ϱ

↓2ϱ

d1

4φ
eiξy[0(k ⇐ 1/2) ⇐ 0(k + 1/2)] ↘aφ(k ⇐ 1/2, ◁)a(k + 1/2, ◁)↔ .

(3.25)

We then transform to the scaled variables (x = ϑy, t = ϑ◁) on both sides of Eq. (3.25) and

expand the right-hand side in ϑ. At the leading order in ϑ, one finds the evolution equation

(3.24) for W (x, k, t) defined in Eq. (3.22). On an infinite line, the solution of Eq. (3.24)

at a later time can be simply obtained by boosting the initial function W (x, k, 0) with

the phonon group velocity 0↑(k):

W (x, k, t) = W (x ⇐ 0↑(k)t, k, 0). (3.26)

Note that in thermal equilibrium the average internal energy at a site can be obtained

from W↼(k) [given in Eq. (3.19)] as
 ϱ

↓ϱ dk/(2φ)0(k)Weq(k) = 1/▷. Generalizing this

relation to the inhomogeneous case we find that the average internal energy density can

be expressed in terms of the Wigner function as

e(x, t) =

∫ ϱ

↓ϱ

dk

2φ
0(k)W (x, k, t). (3.27)
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It is easy to see that e(x, t) satisfies a continuity equation ⇁te(x, t) + ⇁xj(x, t) = 0 where

the average energy current density is given by

j(x, t) =

∫ ϱ

↓ϱ

dk

2φ
0(k)0↑(k)W (x, k, t). (3.28)

In the following, we discuss other conserved densities and the associated currents and

show how one can express them in terms of the Wigner function.

3.2.2 Conserved quantities and connection to GHD

The Hamiltonian in Eq. (3.1) for N ↙ ⇔ can be written in Fourier space as

H =

ϱ∫

↓ϱ

dk

2φ
E(k) with E(k) =

0(k)

2
[aφ(k, ◁)a(k, ◁) + aφ(⇐k, ◁)a(⇐k, ◁)], (3.29)

where a(k, ◁) is defined in Eq. (3.13). Note that E(k) = |p(k,⇁)|2
2 + 0(k)2 |q(k,⇁)|2

2 represents

the energy of a single mode and is a conserved quantity. This allows us to define a set of

new conserved quantities as the following linear combinations:

Q(n) :=

ϱ∫

↓ϱ

dk

2φ
E(k)eink =

ϱ∫

↓ϱ

dk

2φ
cos nk 0(k)aφ(k, ◁)a(k, ◁) for n = 0, 1, 2, ... (3.30)

We now show that these conserved quantities are local in nature, i.e., they can be ex-

pressed as a sum over local terms. To see this, we insert Eq. (3.13) into Eq. (3.30) and

after some simplifications, obtain

Q(n) =
∑

ϑ↘Z

3(n)
ϑ (◁) where 3(n)

ϑ (◁) =
1

2
[pϑpϑ↓n + 2qϑqϑ↓n ⇐ qϑqϑ↓n+1 ⇐ qϑqϑ↓n↓1] . (3.31)

It is easy to see that the microscopic densities 3(n)
ϑ (◁) obey a discrete continuity equation

⇁⇁3
(n)
ϑ (◁) = j(n)

ϑ↓1(◁) ⇐ j(n)
ϑ (◁), (3.32)
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where the microscopic current j(n)
ϑ (◁) from site ς to ς + 1 is given by

j(n)
ϑ (◁) =

1

2
(pϑ↓n+1qϑ ⇐ pϑ↓nqϑ+1) . (3.33)

Note that Q(n) in Eq. (3.31) can also be written in matrix form as

Q(n) =
1

2


pT B(n)p + qT M (n)q


, (3.34)

where B(n) and M (n) are symmetric matrices defined as

B(n)
ϑ,ϑ↑ =

1

2
(ωϑ↓n,ϑ↑ + ωϑ+n,ϑ↑) , (3.35a)

M (n)
ϑ,ϑ↑ = ωϑ↓n,ϑ↑ + ωϑ+n,ϑ↑ ⇐

1

2
(ωϑ↓n+1,ϑ↑ + ωϑ+n↓1,ϑ↑ + ωϑ↓n↓1,ϑ↑ + ωϑ+n+1,ϑ↑) . (3.35b)

These matrix forms are particularly useful for numerical microscopic computations. For

initial conditions chosen from a distribution such as in Eq. (3.9), one is interested in

the average values of these conserved densities ϖ(n)
ϑ :=

〈
3(n)

ϑ

〉
, which, on a macroscopic

scale can be expressed in terms of the coarse-grained Wigner function W (x, k, t). Noting

↘a↔(k, ◁)a(k, ◁)↔ =
∑

y W 1(y, k, ◁) from Eq. (3.15) and substituting it in Eq. (3.30) gives


Q(n)


=

∑

y

ϱ∫

↓ϱ

dk

2φ
cos nk 0(k)W 1(y, k, ◁). (3.36)

Defining ϖ(n)(x, t) = limς≃0 ϑ↓1ϖ(n)
[ς→1x](ϑ

↓1t), we can write

Q(n)


=


dxϖ(n)(x, t), where

ϖ(n)(x, t) =

ϱ∫

↓ϱ

dk

2φ
cos nk 0(k)W (x, k, t). (3.37)

Using Eq. (3.24), it is easy to see that the densities in Eq. (3.37) obey the continuity

equation

⇁tϖ
(n)(x, t) + ⇁xj

(n)(x, t) = 0, (3.38)

59



where the macroscopic currents j(n)(x, t) are given by

j(n)(x, t) =

ϱ∫

↓ϱ

dk

2φ
cos nk 0(k)0↑(k)W (x, k, t). (3.39)

We now comment on the connection to GHD. We see that the coarse-grained Wigner

function in Eq. (3.22) indeed has the structure of GHD equations if we identify W (x, k, t)

as a phase space distribution of non-interacting quasi-particles (basically the phonons)

with position x, momentum k, and velocity 0↑(k). This identification is natural as was

pointed out in [67]. The definition of conserved densities and currents in Eqs. (3.37,

3.39) is consistent with this identification. One question is regarding the positivity of W .

At the microscopic level, it can be negative but coarse-graining can lead to a positive-

definite quantity. Various possibilities for coarse-graining exist, for example through the

construction of the Husimi function (see [47]). Another more physical construction was

discussed in [23] in the context of a non-interacting quantum gas where the coarse-grained

Wigner function has the direct interpretation as the number of quasi-particles in a coarse-

grained cell. Note that at a physical level, the GHD equation for the harmonic chain is

the same as the Peierls-Boltzmann equation for a weakly anharmonic chain with collision

terms neglected (see [84]).

3.3 Comparison between microscopic and hydrody-

namic evolution from domain wall initial condi-

tion

In this section, we apply the hydrodynamic formulation developed in Sec. (3.2) to the

study of equilibration of the harmonic chain starting from a domain wall initial condition

as depicted in Fig. (3.1). We study both a chain of infinite extent and a chain of finite

length with fixed boundaries. For the hydrodynamics of a finite-sized chain, we assume its

length to be 2L with 2N particles and lattice constant ϑ such that N ↙ ⇔ and ϑ ↙ 0 with

L = Nϑ held fixed. The microscopic numerical calculations are done for finite N with unit

lattice constant and to compare the results, we make the identification L = N . For both
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cases, we consider two types of domain wall initial conditions. In the first choice, only the

(inverse) temperatures in the two halves of the chain are di!erent, namely ▷1 and ▷2, while

all other Lagrange multipliers are zero i.e., ϱL
n = ϱR

n = 0, ′ n ∞ 1. For a finite chain, this

implies that the only conserved quantity with a non-zero average value initially is the

energy. As a consequence of conservation laws, the values of higher conserved quantities

remain zero in the final stationary state which is thus again expected to be described by

a GE with the final temperature being the mean of the initial temperatures in the two

halves. In Sec. (3.3.1), by studying the evolution of the conserved densities we show how

the system relaxes to the final expected GE state. In Sec. (3.3.2), we consider the second

choice of the initial condition in which the first two parameters (Lagrange multipliers)

are non-zero and take di!erent values in the two halves while other parameters are zero

on both sides. In this case, all the conserved quantities have non-zero average values

initially, and consequently, we expect the system to finally reach a GGE stationary state.

Once again, by solving the GHD equation in Eq. (3.24), we study the evolution of the

conserved densities and the associated currents and show how the system in this case

approaches the final expected GGE state. Note that for both types of initial conditions,

the infinite chain is expected to go to a GGE stationary state which is current carrying.

This is due to the presence of additional conserved quantities (see [66]).

3.3.1 Domain wall initial condition composed of two GE states

As described above, initially, there is a domain wall at the center of the chain such that

the left and the right halves are described by two GE states with unequal inverse tem-

peratures ▷1 and ▷2 respectively. We first consider the simpler case of an infinite chain

which will be followed by a discussion on finite-size chain.

Infinite chain: We assume the domain wall to be initially located at x = 0. Using

Eq. (3.19), we can write down the Wigner function at t = 0 as

W (x, k, 0) =
1

0(k)

[
1

▷1
⇐

(
1

▷1
⇐

1

▷2

)
& (x)


. (3.40)
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From Eq. (3.26) the Wigner function at time t can straightforwardly be written as

W (x, k, t) =
1

0(k)

[
1

▷1
⇐

(
1

▷1
⇐

1

▷2

)
& (x ⇐ 0↑(k)t)


. (3.41)

Substituting Eq. (3.41) into Eq. (3.27) and performing the integral, one can compute the

average internal energy density e(x, t). Since we assume the lattice spacing to be unity,

the particle density is unity everywhere. Hence, e(x, t) is essentially the temperature

profile which is explicitly given by

T (x, t) := e(x, t) =






1

▷1
, x < ⇐t

1

2

(
1

▷1
+

1

▷2

)
⇐

1

φ

(
1

▷1
⇐

1

▷2

)
sin↓1

(x

t

)
, |x| < t

1

▷2
, x > t

(3.42)

The expressions for other conserved quantities ϖ(n)(x, t) for n > 0 can be calculated

similarly and are given by

ϖ(n)(x, t) =
1

2nφ

(
1

▷1
⇐

1

▷2

)
sin

{
2n cos↓1

(x

t

)}
&

(
1 ⇐

|x|

t

)
. (3.43)

Using the continuity equation in Eq. (3.38) for n = 0, we can also write down the energy

current density

j(0)(x, t) =
1

φ

(
1

▷1
⇐

1

▷2

) √
1 ⇐

(x

t

)2

&

(
1 ⇐

|x|

t

)
. (3.44)

The higher currents j(n)(x, t) for n > 0 can be similarly evaluated and one finds the

following expression

j(n)(x, t) =


2n

x

t
sin

(
2nµ

(x

t

))
+

√
1 ⇐

(x

t

)2

cos
(
2nµ

(x

t

))

↖
(⇐1)n+1

φ(4n2 ⇐ 1)

(
1

▷1
⇐

1

▷2

)
&

(
1 ⇐

|x|

t

)
,

(3.45)
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where µ(z) = sin↓1 (z).

To compare the numerical microscopic computations with the theoretical results from

hydrodynamics, we coarse-grain the microscopic densities (and currents) by averaging

over # number of consecutive sites:

ϖ̄(n)
y (t) =

1

#

ϑ”∑

j=(ϑ↓1)”+1

ϖ(n)
j (t) where y = ς

#

2
. (3.46)

Note that we have expressed the coarse-grained densities as functions of macroscopic time

variable t, because, as mentioned earlier, in our case ϑ = 1 which is small compared to

L = N . In Fig. (3.2a) and Fig. (3.2b), we plot the coarse-grained temperature and the

corresponding current density obtained numerically from the microscopic computations

in a chain of length 2N . In the insets of these figures, we show that these profiles

have ballistic scaling and we compare the scaling functions with those (dashed black

lines) obtained analytically in Eqs. (3.42) and (3.44) for temperature and the associated

current respectively. The microscopic calculations are performed by evaluating averages

of the corresponding microscopic quantities given in Eq. (3.31) and Eq. (3.33) and for

that, we use the correlations from Eq. (3.12). We see that the hydrodynamic results for

both temperature and energy current density match with the corresponding finite-size

microscopic computations as long as t < N . This can be understood since N is the time

taken by the step initial condition to spread and reach the boundaries.

It is interesting to note that in the t ↙ ⇔ limit, the currents at any fixed point x in

the system approach stationary nonzero values given by

j(n)
ss =

(⇐1)n+1

φ(4n2 ⇐ 1)

(
1

▷1
⇐

1

▷2

)
, (3.47)

and the relaxation happens as ↑ 1/t2. On the other hand, at any fixed location in

the t ↙ ⇔ limit, all the densities of the conserved quantities approach zero except

temperature which approaches the mean temperature. The relaxation to these stationary

values occurs as ↑ 1/t. Therefore any finite segment of the infinite chain reaches a non-

equilibrium steady state (NESS) which cannot be described by a GE but possibly by a

current carrying GGE instead, as shown for the quantum harmonic chain in [64].
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Figure 3.2: Plot showing the early time behavior of the coarse-grained microscopic (a)
temperature profile and (b) energy current density profile at di!erent times (in the scaled
units t̃ = t/(2N)). The insets in both figures show the collapse of the profiles upon x/t
scaling of the x-axis where x = y ⇐ N . The dashed black lines in the insets correspond
to the analytic scaling functions obtained from Eq. (3.42) and Eq. (3.44) respectively.
The coarse-graining was done over # = 8 consecutive sites. The parameters used are
▷1 = 0.25, ▷2 = 1.0 and 2N = 512.

As we will see below, this is di!erent from the case of the finite chain where the steady

state is indeed expected to be described by a GE since the currents, decay to zero due to

reflections at the boundaries.

Finite chain: We now turn our attention to the case of a finite chain. Let the length of

the chain be 2L and the initial condition be that of a domain wall at x = L as given in

Eq. (3.9) with ϱL
0 = ▷1, ϱR

0 = ▷2 and all other ϱL,R
n = 0. Using Eq. (3.19), we can write

down the Wigner function for the finite chain at t = 0 as

W (x, k, 0) =
1

0(k)

[
1

▷2
+

(
1

▷1
⇐

1

▷2

)
[& (x + L) ⇐ & (x ⇐ L)]


, (3.48)

where x ⇑ [0, 2L]. Using Eq. (3.26) and taking care of reflections at the boundaries

(following a similar procedure as done in Appendix A of Ref. [19]), the Wigner function
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at a later time t is given by

W (x, k, t) =
1

0(k)

(
1

▷1
⇐

1

▷2

) ↗∑

s=↓↗
[& (x ⇐ 0↑(k)t + 4sL + L) ⇐ & (x ⇐ 0↑(k)t + 4sL ⇐ L)]

+
1

▷20(k)
.

(3.49)

Substituting Eq. (3.49) into Eq. (3.37) with n = 0, we obtain the following series repre-

sentation for the temperature

T (x, t) =
1

▷2
+

(
1

▷1
⇐

1

▷2

) ↗∑

s=↓↗

[
I

(
x + 4sL + L

t

)
⇐ I

(
x + 4sL ⇐ L

t

)
, (3.50)

where we have defined the integral

I(z) :=

1∫

↓1

du

φ

&(z ⇐ u)
↓

1 ⇐ u2
=






0, z < ⇐1

1

2
+

1

φ
sin↓1 z, |z| < 1

1, z > 1

(3.51)

Note that Eq. (3.49) can alternatively be written in a compact form

W (x, k, t) =
1

0(k)

[
1

▷1
⇐

(
1

▷1
⇐

1

▷2

)
&

({
x ⇐ 0↑(k)t + L

4L

}
⇐

1

2

)
, (3.52)

where {x} = x ⇐ ∈x∋ is the fractional part function. Defining z =

{
x ⇐ 0↑(k)t + L

4L

}
, we

write the Fourier series representation, &

(
z ⇐

1

2

)
=

1

2
⇐

∑

ϑ→=0

(eϱiϑ
⇐ 1)e↓2ϱiϑz

2φiς
. Putting

this in Eq. (3.52) gives

W (x, k, t) =
1

20(k)

(
1

▷1
+

1

▷2

)
+

1

0(k)

(
1

▷1
⇐

1

▷2

) ∑

ϑ →=0

sin(φς/2)

(φς)
exp

(
⇐2φiς

x ⇐ 0↑(k)t

4L

)
.

(3.53)
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Figure 3.3: (a) Plot showing the coarse-grained temperature profile at di!erent times
t̃ = t/(2N). (b) shows the evolution of the temperature with time at a fixed coarse-
grained point y/(2N) ≃ 0.46. The inset in (b) shows the same curve on a log-log scale but
with the steady state value subtracted. We observe a ↑ 1/t decay at small times which,
after many reflections from the boundaries, changes to a ↑ 1/

↓
t decay at large times

as expected from the analytical expressions. In both figures, the points are calculated
by coarse-graining the microscopic temperature profile whereas the continuous lines are
obtained from the analytic GHD solutions. We find an excellent agreement between the
coarse-grained microscopic and the GHD results. The coarse-graining is done over # = 8
consecutive sites. The parameters used are ▷1 = 0.25, ▷2 = 1.0 and 2N = 512.

Now substituting Eq. (3.53) into Eq. (3.37) after setting n = 0 and integrating over k

yields an alternate series representation for the temperature profile

T (x, t) = ϖ(0)(x, t) =
1

2

(
1

▷1
+

1

▷2

)
+

(
1

▷1
⇐

1

▷2

) ↗∑

ϑ=1

sin(φς/2)

(φς/2)
cos

φςx

2L
J0

(
φςt

2L

)
,

(3.54)

where Jω(z) is the Bessel function.

From Eq. (3.53), we can also compute all other densities ϖ(n)(x, t) for n > 0 and we

find the following evolution

ϖ(n)(x, t) = (⇐1)n

(
1

▷1
⇐

1

▷2

) ↗∑

ϑ=1

sin(φς/2)

(φς/2)
cos

φςx

2L
J2n

(
φςt

2L

)
. (3.55)

Similarly putting Eq. (3.53) into Eq. (3.39) and integrating over k gives us the current
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Figure 3.4: (a) Plot showing the coarse-grained energy current density profile at di!erent
times t̃ = t/(2N). (b) shows the evolution of the energy current density with time at a
fixed coarse-grained point y/(2N) ≃ 0.23. The inset in (b) shows the same curve on a
log-log scale. We observe a ↑ 1/

↓
t decay at large times as expected from the analytical

expressions. In both figures, the points are calculated by coarse-graining the microscopic
energy current density profile whereas the continuous lines are obtained from the analytic
GHD expressions. We find an excellent agreement between the coarse-grained microscopic
and the GHD results. The coarse-graining is done over # = 8 consecutive sites. The
parameters used are ▷1 = 0.25, ▷2 = 1.0 and 2N = 512.

densities

j(0)(x, t) =

(
1

▷1
⇐

1

▷2

) ↗∑

ϑ=1

sin(φς/2)

(φς/2)
sin

φςx

2L
J1

(
φςt

2L

)
, (3.56a)

j(n)(x, t) =
(⇐1)n

2

(
1

▷1
⇐

1

▷2

) ↗∑

ϑ=1

sin(φς/2)

(φς/2)
sin

φςx

2L

[
J2n+1

(
φςt

2L

)
⇐ J2n↓1

(
φςt

2L

)
, n > 0.

(3.56b)

The Bessel function Jω(z) decays as 1/
↓

z for large z. Therefore, the temperature goes

to a steady state value of (1/2)(▷↓1
1 + ▷↓1

2 ) while all other quantities in Eqs. (3.55, 3.56)

go to zero. All quantities relax as 1/
↓

t in the large t limit.

In Figs. (3.3-3.5), we show a comparison of the analytic results from hydrodynamics,

for temperature, energy current density, and Q(1) density, with those obtained numerically

from the microscopics by computing averages of the corresponding microscopic quantities

in Eqs. (3.31, 3.33) and using the correlations from Eq. (3.12).

In Fig. (3.3a) we show the temperature profiles at di!erent scaled times t̃ = t/2N . The

initial front spreads freely as long as t < N . At t = N the front reaches the boundaries for
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the first time and gets reflected back into the bulk. These reflections continue to even out

the temperature in the two halves as can be observed from the profile corresponding to the

largest time t̃ = 9.68 shown in (3.3a). The temperature eventually becomes flat and equal

to the mean of the initial temperatures. In Fig. (3.3b), we show how the temperature

evolves with time at a coarse-grained point y ≃ (2N) ↖ 0.46 that is slightly to the left of

the center. The temperature remains unchanged until t̃ = (N ⇐ y)/(2N) ≃ 0.04 which

is the time taken by the edge of the front to reach that point (not visible in the scale

of the plot). After that it starts decaying as ↑ 1/t [see inset of Fig. (3.3b)] similar

to the infinite chain case and continues to do so until an edge of the reflected front [in

Fig. (3.3a)] crosses the particular coarse-grained point for the first time. The temperature

at any given point continues to show an overall decay interspersed with the presence of

isolated kinks that appear corresponding to the passing of an edge of the reflected front.

Eventually, the temperature at a fixed coarse-grained point approaches the final value as

↑ 1/
↓

t (as also expected from our hydrodynamic calculations). In both figures, points

represent numerical data, and the solid lines are analytical results from Eq. (3.54) and

we observe an excellent agreement between the two, thus demonstrating the validity of

the GHD results for the case of finite-size chains.

In Fig. (3.4a), we plot the energy current density profiles at a few di!erent times. The

current profile is initially zero everywhere and starts to grow from the center. As long as

t < N , the current evolves according to Eq. (3.44) after which the reflections from the

boundaries become relevant. Fig. (3.4b) shows the evolution of energy current density at

a coarse-grained point that lies near the middle of the left half. The current stays zero

until t̃ = (N ⇐ y)/(2N) ≃ 0.27 which is the time taken by the edge of the front to reach

that point. Here also we observe kinks that correspond to the passing of an edge of the

reflected front of the current profile in Fig. (3.4a). The current eventually approaches

zero as ↑ 1/
↓

t [see inset of Fig. (3.4b)]. We again see good agreement between the

numerical microscopic computations and the analytical results from hydrodynamics.
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Figure 3.5: (a) Plot showing the coarse-grained Q(1) density profile at di!erent times
t̃ = t/(2N). (b) shows the evolution of the Q(1) density with time at a fixed coarse-grained
point y/(2N) ≃ 0.30. The inset in (b) shows the same curve on a log-log scale. We again
observe a ↑ 1/

↓
t decay at large times as expected from the analytical expressions. In

both figures, the points are calculated by coarse-graining the microscopic Q(1) density
profile whereas the continuous lines are obtained from the analytic GHD expressions.
We find an excellent agreement between the coarse-grained microscopic and the GHD
results. The coarse-graining is done over # = 8 consecutive sites. The parameters used
are ▷1 = 0.25, ▷2 = 1.0 and 2N = 512.

3.3.2 Domain wall initial condition composed of two GGE states

We now consider a more general initial condition where the two halves are described by

a product of two GGEs, as given in Eq. (3.9). The initial Wigner functions in the left

and right parts are given by Eq. (3.20) with the Lagrange parameters {ϱL
n} and {ϱR

n }

respectively. In the following, we focus on the particular case where only the first two

parameters are non-zero and the rest are zero on both sides of the chain.

Infinite chain: Once again we assume that the domain wall is initially located at x = 0

and the first two Lagrange multipliers have values ϱL
0 = ▷1, ϱL

1 = ⇐▷141, ϱR
0 = ▷2, and

ϱR
1 = ⇐▷242. The initial Wigner function in this case is

W (x, k, 0) =
1

0(k)

[
1

▷1(1 ⇐ 41 cos k)
⇐

(
1

▷1(1 ⇐ 41 cos k)
⇐

1

▷2(1 ⇐ 42 cos k)

)
& (x)


,

(3.57)
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which according to Eq. (3.26) takes the following form at time t

W (x, k, t) =
1

0(k)

[
1

▷1(1 ⇐ 41 cos k)
⇐

(
1

▷1(1 ⇐ 41 cos k)
⇐

1

▷2(1 ⇐ 42 cos k)

)
& (x ⇐ 0↑(k)t)


.

(3.58)

Using this solution in Eq. (3.37) and simplifying we find that the density profiles associ-

ated with the conserved quantities are given by

ϖ(n)(x, t) =






g(n)(▷1, 41), x < ⇐t

1

2
[g(n)(▷1, 41) + g(n)(▷2, 42)]

⇐

sin→1(x/t)
0

d5

φ
cos{2n cos↓1

| sin 5|}

(
1

▷1(1 + 41 cos 25)
⇐

1

▷2(1 + 42 cos 25)

)
, |x| < t

g(n)(▷2, 42), x > t

(3.59)

where the quantity g(n)(▷, 4) is given by

g(n)(▷, 4) =
1

▷(1 + 4)
3F

reg
2

(
{1/2, 1, 1}; {1 ⇐ n, 1 + n};

24

1 + 4

)
, (3.60)

with pF reg
q ({a1, . . . , ap}; {b1, . . . , bq}; z) being the regularized generalized Hypergeometric

function. The details of the calculation are given in Appendix (B.2). Putting n = 0 in
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Figure 3.6: Plot showing the early time behavior of the coarse-grained microscopic (a)
temperature profile and (b) Q(1) density profile at di!erent times (in the scaled units
t̃ = t/(2N)). The insets in both figures show the collapse of the profiles upon x/t
scaling of the x-axis where x = y ⇐ N . The dashed black lines in the insets correspond
to the analytic scaling functions obtained from Eq. (3.61) and Eq. (3.63) respectively.
The coarse-graining was done over # = 8 consecutive sites. The parameters used are
▷1 = 0.25, ▷2 = 1.0, 41 = 0.4, 42 = 0.8 and 2N = 512.

Eq. (3.59) and performing the integrals we find that the temperature profile is given by

T (x, t) = ϖ(0)(x, t) =






g(0)(▷1, 41), x < ⇐t

1

2


g(0)(▷1, 41) + g(0)(▷2, 42)


⇐

1

φ

[
g(0)(▷1, 41) tan↓1

{u(41)s(x/t)}

⇐g(0)(▷2, 42) tan↓1
{u(42)s(x/t)}

]
, |x| < t

g(0)(▷2, 42), x > t

(3.61)

where g(0)(▷, 4) = 1

↼
↓

1↓▷2
and s(z) and u(4) are defined as

s(z) =
z

↓
1 ⇐ z2

, u(4) =

√
1 ⇐ 4

1 + 4
. (3.62)
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The expression for the density corresponding to Q(1) is similarly given by

ϖ(1)(x, t) =






g(1)(▷1, 41), x < ⇐t

1

2


g(1)(▷1, 41) + g(1)(▷2, 42)



+
1

φ

[(
1

▷141
tan↓1

{
[1 ⇐ u(41)]s(x/t)

1 + u(41)s(x/t)2

}
⇐

1

▷242
tan↓1

{
[1 ⇐ u(42)]s(x/t)

1 + u(42)s(x/t)2

})

⇐
1

φ

[
g(1)(▷1, 41) tan↓1

{u(41)s(x/t)} ⇐ g(1)(▷2, 42) tan↓1
{u(42)s(x/t)}

]
, |x| < t

g(1)(▷2, 42), x > t

(3.63)

where g(1)(▷, 4) = 1
↼▷

(
1↓
1↓▷2

⇐ 1

)
and s(z) and u(4) are defined in Eq. (3.62).

In Fig. (3.6), we show a comparison of the analytic results from hydrodynamics with

those obtained microscopically for a chain of length 2N . The averages of the correspond-

ing microscopic quantities in Eq. (3.31) are evaluated by using the correlations from

Eq. (3.12). We see that the hydrodynamic results in Eqs. (3.61) and (3.63) for tempera-

ture and Q(1) density, respectively, match with the corresponding finite-size microscopic

computations as long as t < N .

Finite chain: We now turn our attention to the case of a finite chain. Let the length of

the chain be 2L and the initial condition be that of a domain wall at x = L as given in

Eq. (3.9) with ϱL
0 = ▷1, ϱL

1 = ⇐▷141, ϱR
0 = ▷2, ϱR

1 = ⇐▷242 and all other ϱL,R
n = 0. Using

Eq. (3.20) with these parameters in the two halves of the chain, we can write down the

Wigner function at t = 0 as

W (x, k, 0) =
1

0(k)

(
1

▷1(1 ⇐ 41 cos k)
⇐

1

▷2(1 ⇐ 42 cos k)

)
[& (x + L) ⇐ & (x ⇐ L)]

+
1

0(k)

1

▷2(1 ⇐ 42 cos k)
,

(3.64)

where x ⇑ [0, 2L]. As was argued in Sec. (3.3.1) for the finite chain, we can similarly

72



write down the Wigner function at time t as

W (x, k, t) =
1

0(k)

[
1

▷2(1 ⇐ 42 cos k)
+

(
1

▷1(1 ⇐ 41 cos k)
⇐

1

▷2(1 ⇐ 42 cos k)

)

↖

↗∑

s=↓↗
[& (x ⇐ 0↑(k)t + 4sL + L) ⇐ & (x ⇐ 0↑(k)t + 4sL ⇐ L)]


.

(3.65)

Substituting Eq. (3.65) into Eq. (3.37) with n = 0, we obtain the following series repre-

sentation for the temperature

T (x, t) =
1

▷2


1 ⇐ 42

1

+
↗∑

s=↓↗

[
1

▷1
I▷1

(
x + 4sL + L

t

)
⇐

1

▷2
I▷2

(
x + 4sL ⇐ L

t

)
, (3.66)

where I▷(z) is defined as the integral

I▷(z) :=

1∫

↓1

du

φ

&(z ⇐ u)
↓

1 ⇐ u2[1 ⇐ 4(2u2 ⇐ 1)]
. (3.67)

Note that, as before, Eq. (3.65) can alternatively be written in a compact form

W (x, k, t) = ⇐
1

0(k)

(
1

▷1(1 ⇐ 41 cos k)
⇐

1

▷2(1 ⇐ 42 cos k)

)
&

({
x ⇐ 0↑(k)t + L

4L

}
⇐

1

2

)

+
1

0(k)

1

▷1(1 ⇐ 41 cos k)
,

(3.68)

As done in Sec. (3.3.1) for the finite case, we define z =

{
x ⇐ 0↑(k)t + L

4L

}
and write

the Fourier series representation, &

(
z ⇐

1

2

)
=

1

2
⇐

∑

ϑ→=0

(eϱiϑ
⇐ 1)e↓2ϱiϑz

2φiς
. Putting this in

Eq. (3.68) gives

W (x, k, t) =
1

20(k)

(
1

▷1(1 ⇐ 41 cos k)
+

1

▷2(1 ⇐ 42 cos k)

)

+
1

0(k)

(
1

▷1(1 ⇐ 41 cos k)
⇐

1

▷2(1 ⇐ 42 cos k)

) ∑

ϑ →=0

sin(φς/2) exp
(
⇐2φiςx↓⇀↑(k)t

4L

)

φς
.

(3.69)
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Figure 3.7: (a) Plot showing the coarse-grained temperature profile at di!erent times
t̃ = t/(2N). (b) shows the evolution of the temperature with time at a fixed coarse-
grained point y/(2N) ≃ 0.30. The inset in (b) shows the same curve on a log-log scale but
with the steady state value subtracted. We observe a ↑ 1/t decay at small times which,
after many reflections from the boundaries, changes to a ↑ 1/

↓
t decay at large times

as expected from the analytical expressions. In both figures, the points are calculated
by coarse-graining the microscopic temperature profile whereas the continuous lines are
obtained from the analytic GHD expressions. We find an excellent agreement between
the coarse-grained microscopic and the GHD results. The coarse-graining is done over
# = 8 consecutive sites. The parameters used are ▷1 = 0.25, ▷2 = 1.0, 41 = 0.4, 42 = 0.8
and 2N = 512.

Substituting Eq. (3.69) into Eq. (3.37), the evolution for ϖ(n)(x, t) can be formally written

down as

ϖ(n)(x, t) = ϖ(n)
GGE +

↗∑

ϑ=1

sin(φς/2)

(φς/2)
cos

φςx

2L

[
1

▷1
C(n)

ϑ (41, t) ⇐
1

▷2
C(n)

ϑ (42, t)


, (3.70)

where the stationary state density ϖ(n)
GGE is given by

ϖ(n)
GGE =

1

2

[
g(n)(▷1, 41) + g(n)(▷2, 42)

]
, (3.71)

with g(n)(▷, 4) defined in Eq. (3.60) and C(n)
ϑ (4, t) given by the integral

C(n)
ϑ (4, t) =

ϱ∫

0

dk

2φ

2 cos nk

1 ⇐ 4 cos k
cos

(
φςt

2L
cos

k

2

)
. (3.72)
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Figure 3.8: (a) Plot showing the coarse-grained energy current density profile at di!erent
times t̃ = t/(2N). (b) shows the evolution of the energy current density with time at a
fixed coarse-grained point y/(2N) ≃ 0.23. The inset in (b) shows the same curve on a
log-log scale. We observe a ↑ 1/

↓
t decay at large times as expected from the analytical

expressions. In both figures, the points are calculated by coarse-graining the microscopic
energy current density profile whereas the continuous lines are obtained from the analytic
GHD expressions. We find an excellent agreement between the coarse-grained microscopic
and the GHD results. The coarse-graining is done over # = 8 consecutive sites. The
parameters used are ▷1 = 0.25, ▷2 = 1.0, 41 = 0.4, 42 = 0.8 and 2N = 512.

Similarly, we can write down the formal expression for the currents j(n)(x, t)

j(n)(x, t) =
↗∑

ϑ=1

sin(φς/2)

(φς/2)
sin

φςx

2L

[
1

▷1
D(n)

ϑ (41, t) ⇐
1

▷2
D(n)

ϑ (42, t)


, (3.73)

where D(n)
ϑ (4, t) is given by the integral

D(n)
ϑ (4, t) =

ϱ∫

0

dk

2φ

2 cos nk cos(k/2)

1 ⇐ 4 cos k
sin

(
φςt

2L
cos

k

2

)
. (3.74)

It can be shown that, in the large time limit, the densities and currents in Eq. (3.70)

and Eq. (3.73) respectively relax to their equilibrium values as ↑ 1/
↓

t, similar to the

finite-size case in Sec. (3.3.1). In Figs. (3.7-3.10), we show a comparison of the analytic

results from hydrodynamics, for temperature, energy current density, Q(1) density, and

Q(1) current density with those obtained numerically from the microscopics by computing

averages of the corresponding microscopic quantities in Eqs. (3.31, 3.33) and using the

correlations in Eq. (3.12). The qualitative features of the evolution of these quantities

are similar to those for the finite chain in Sec. (3.3.1). We again find a good agreement
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Figure 3.9: (a) Plot showing the coarse-grained Q(1) density profile at di!erent times
t̃ = t/(2N). (b) shows the evolution of the Q(1) density with time at a fixed coarse-
grained point y/(2N) ≃ 0.30. The inset in (b) shows the same curve on a log-log scale
but with the steady state value subtracted. We observe a ↑ 1/

↓
t decay at large times

as expected from the analytical expressions. In both figures, the points are calculated
by coarse-graining the microscopic Q(1) density profile whereas the continuous lines are
obtained from the analytic GHD expressions. We find an excellent agreement between
the coarse-grained microscopic and the GHD results. The coarse-graining is done over
# = 8 consecutive sites. The parameters used are ▷1 = 0.25, ▷2 = 1.0, 41 = 0.4, 42 = 0.8
and 2N = 512.

between hydrodynamics and exact numerics.

We expect the final state to be a GGE state characterised by Lagrange multipliers {ϱn}

which are related to the average densities as

ϖ(n)
GGE =

ϱ∫

↓ϱ

dk

2φ

cos nk
↗∑

m=0
ϱm cos mk

. (3.75)

The expression in Eq. (3.75) can be easily inverted using the Fourier cosine series and we

obtain the following explit expressions for the Lagrange multipliers of the finite chain

ϱ0 =
1

2φ

ϱ∫

0

dk
1

f(k)
, (3.76a)

ϱn =
1

φ

ϱ∫

0

dk
cos nk

f(k)
for n > 1, (3.76b)
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Figure 3.10: (a) Plot showing the coarse-grained Q(1) current density profile at di!erent
times t̃ = t/(2N). (b) shows the evolution of the Q(1) current density with time at a
fixed coarse-grained point y/(2N) ≃ 0.23. The inset in (b) shows the same curve on a
log-log scale. We observe a ↑ 1/

↓
t decay at large times as expected from the analytical

expressions. In both figures, the points are calculated by coarse-graining the microscopic
Q(1) current density profile whereas the continuous lines are obtained from the analytic
GHD expressions. We find an excellent agreement between the coarse-grained microscopic
and the GHD results. The coarse-graining is done over # = 8 consecutive sites. The
parameters used are ▷1 = 0.25, ▷2 = 1.0, 41 = 0.4, 42 = 0.8 and 2N = 512.

where f(k) is given by

f(k) =
1

2
ϖ(0)

GGE +
↗∑

n=1

ϖ(n)
GGE cos nk. (3.77)

Putting the values of the conserved densities from Eq. (3.71) into Eq. (3.76), we can

compute the {ϱn} in the final state. In Fig. (3.11), we plot the stationary state density

and the absolute values of the Lagrange multipliers on a log-linear scale. Unlike the

case where the initial state is composed of two GEs, here we find that all densities and

Lagrange multipliers are non-zero in the final state. However, both quantities decay

exponentially for large n. Note that Eqs. (3.75-3.77) are valid even if the initial state is

described by a product of two GGEs with an arbitrary number of nonzero parameters

that have unequal values in the two halves of the chain. It is important to point out that

these results are specific to the harmonic lattice due to the linear nature of interactions

and the quadratic nature of the distributions involved, and may not hold for systems

with non-linear interactions.
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Figure 3.11: Plot showing exponential decay of the densities ϖ(n)
GGE and the absolute values

of the Lagrange multipliers ϱn with increasing n. The points in red are calculated using
Eq. (3.71) whereas the blue points are evaluated using Eq. (3.76). The dashed lines show
an exponential fit to the data points. The parameters used are ▷1 = 0.25, ▷2 = 1.0, 41 =
0.4, 42 = 0.8.

3.4 Discussions and summary

In this work, we first provided a physically motivated derivation of the generalized hydro-

dynamics of a classical harmonic chain, based on the approach of the Wigner function.

Our work thus makes connections between earlier work on harmonic chains [46,48,50,51]

with the recent developments in GHD. As an application, we studied the problem of

thermalization of a harmonic chain starting from domain wall initial conditions.

Specifically, we studied the evolution of a classical harmonic chain with nearest-

neighbor interactions starting from a domain wall initial state composed of either two

GEs or two GGEs with unequal chemical potentials in the left and right halves of the

chain. For each type of the initial distribution, we study both finite and infinite chains.

In all cases, we found excellent agreement, at all times, between results from hydrody-

namics with those obtained from exact numerics. We observe that a finite chain relaxes

as ↑ 1/
↓

t to a steady state that is expected to be described by a GE or a GGE depend-

ing on whether we use the GE or GGE type of initial condition. For the GGE initial

condition, the final state is also expected to be a GGE characterized by a set of Lagrange

multipliers which we evaluate exactly in terms of the steady state densities. We find that

this GGE steady state has an infinite number of Lagrange parameters with exponentially
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decaying strengths. All currents decay to zero as ↑ 1/
↓

t as we approach the steady state

due to reflections at the boundaries. For the case of an infinite chain, we find that even

for the initial condition composed of two GEs, any finite region of the system tends, in

the t ↙ ⇔ limit, towards a non-equilibrium steady state (NESS) in which the currents

have nonzero but constant values. The NESS in the infinite chain is therefore expected

to be a current-carrying GGE. The relaxation to this NESS happens as ↑ 1/t for the

densities and as ↑ 1/t2 for the currents.

We note that the Wigner GHD equation is applicable for generic harmonic systems

incorporating more complex force matrices in arbitrary dimensions and quantum statis-

tics. These can be interesting extensions of the present work. For the quantum case,

the computation of entanglement entropy in free fermionic systems using semiclassical

hydrodynamics has generated a lot of interest [85, 86] and it would be of great interest

to explore this in the context of quantum harmonic crystals. Another interesting open

question would be to prove or demonstrate equilibration in the harmonic chain for a

single realization that starts from an arbitrary initial condition. This has recently been

proved [87] in the quantum case for non-interacting fermions while for a classical ideal gas,

it has been established for initial conditions chosen from continuous distributions [22].
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Chapter 4

Conclusions

In this thesis, we have investigated the possibility of thermalization and the applicability

of hydrodynamics to non-interacting integrable systems. In chapter (2), we studied the

Joule expansion of an ideal quantum gas on a circle, starting from an initial pure state

that was confined to a part of the circle. Building upon the work done in [19] for the

classical ideal gas, we considered two choices of macrovariables: the U -macrovariables and

the f -macrovariables which correspond to coarse-graining in the real and phase space re-

spectively. To define the U -macrostate, we divided the circle into a number of cells which

are macroscopic themselves. The U -macrovariables are then the expectation values of the

three conserved macroscopic fields: the total particle number, the total momentum, and

the total energy. Although the ideal gas has an extensive number of conserved quanti-

ties, we chose to describe the macro-evolution in terms of these three usual hydrodynamic

fields. While defining the U -macrostate for the quantum gas is very similar to the clas-

sical case, the f -macrostate is not that straightforward. This is because the classical

f -macrostate in [19] was constructed by coarse-graining the single particle phase space

and just counting the number of particles within each grid cell. This cannot be done

for quantum gas due to the Heisenberg uncertainty principle. So we constructed a new

basis, the wavepacket basis (see Eq. (2.37)), in which the basis states are localized in

both position and momentum space, obeying the uncertainty principle. The expectation

values of the occupation numbers in these new basis states are then used to define the

f -macrovariables for the quantum gas.

To study the microscopic evolution of the quantum gas, we defined the Wigner dis-
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tribution function (WDF) on the circle in Eq. (2.28). Note that the Wigner function can

be negative and therefore cannot be interpreted as a probability density function. In the

literature [78–82], the Husimi distribution and the Wehrl entropy have been used to study

the irreversibility in interacting systems. However, it is an invertible transformation of

the Wigner function and is therefore not suitable for our ideal gas. The wavepacket den-

sity on the other hand provides us with a coarse-grained Wigner function that can be

used to define a non-trivial entropy function for the ideal gas.

For the U -macrostate, we found that the entropy grows monotonically and the curves

converge as the coarse-graining scale is reduced [see Figs. (2.5, 2.10)]. This is because the

U -macrovariables i.e. the number, momentum, and energy density fields actually attain

their equilibrium values on the circle (subject to the constraints of the total particle

number and the total energy). On the other hand, for the f -macrostate, the entropy is

seen to have an oscillatory relaxation and the initial growth is proportional to the coarse-

graining scale K. Thus, in the limit of K ↙ 0, the entropy does not grow. This is similar

to the classical ideal gas [19] and is due to the fact that the momentum distribution for

the ideal gas never evolves.

Many of the results in our study of the quantum ideal gas are similar to the classical

case studied in [19]. However, there are striking di!erences as well and here we mention

some of them.

The f -macrostate observables for the quantum case are microscopic as the coarse-

graining occurs on scales of #x#p ↑ h where h is Planck’s constant. For instance,

the average occupation number for fermions, ↘n̂ϖ↔, are of order one.

The change in the f -macrostate entropy per particle satisfies log 2 → #sf
B → 2 log 2

for fermions, and 0 → #sf
B → log 2 for bosons. The classical result is log 2 which is

approached for both fermions and bosons in the high-temperature limit.

The U -macrostate entropy for fermions in the low-temperature limit shows an initial

flat region [see Fig. (2.5) (a)] which persists till time (L/4)/vf , where L is the circle

length and vf is the Fermi velocity. This does not happen for the classical gas which

is nothing but the high-temperature limit of the fermi gas.
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At the same time, the many similarities between the classical and quantum ideal gases

also indicate that the quantum statistics does not change much of the qualitative behavior

of the relaxation to the steady state and the entropy. The study in [19] was extended to

the case of an alternate mass hard particle gas (AMHPG) in [20] which is an interacting

and non-integrable system. There it was found that the U and f macrostate entropies

have identical curves and monotonic growth. In [21], the f -macrostate entropy is studied

for 2-D hard rods and it was found that the growth curve has two parts. The first part,

due to the free motion of the gas, has features similar to the ideal gas like the initial growth

proportional to the coarse-graining scale and the oscillatory relaxation. The second part,

which is due to the interparticle collisions, shows monotonic growth independent of the

coarse-graining. This leads us to the conclusion that certain observables like particle

and energy densities thermalize even in the absence of interactions. However, to observe

thermalization and monotonic entropy growth irrespective of the choice of macrovariables,

interactions do play a vital role. It would be interesting to study a weakly interacting

quantum gas. However, this would be a highly entangled many-body system and thus

very challenging to treat accurately.

In Chapter (3), we studied the other part of our thesis which was to check the ap-

plicability of generalized hydrodynamics (GHD) and approach to a generalized Gibbs

ensemble (GGE) for the case of a non-interacting integrable model of a classical har-

monic chain with nearest neighbor interactions. On intermediate scales of space and

time, the evolution of integrable systems is expected to be described by the theory of

generalized hydrodynamics (GHD) [42,45]. We decided to study the GHD evolution and

approach to GGE for the classical harmonic chain due the following main reasons.

The approach to GGE has been demonstrated mainly in quantum integrable mod-

els [28,36,41–44] and recently for the classical hard rods gas [38]. So it makes sense

to explore more classical models in this context.

A number of studies have established GHD for several interacting classical and

quantum integrable systems such as Toda chain [54–57], the ω-Bose gas [58] and

hard rods [38, 59]. Applicability of GHD to non-interacting systems however has

not been widely explored. There are reasons, such as the possible absence of local
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GGE, to believe that GHD may not apply to non-interacting systems. So it would

be interesting to check its validity.

For a non-interacting system such as the harmonic chain, the evolution is linear and

thus a lot of quantities such as the conserved densities and the associated currents

can be computed exactly using the GHD.

In particular for the harmonic chain, two formalisms to study the macroscopic

evolution can be found in literature: the correlation matrix method [46, 48] and

the Wigner function method [67–70]. However, the connections between the two

have not been elaborated in the physics literature. The connection to GHD also

remained unexplored. So, we decided to elucidate these connections and work out

the GHD in detail.

We studied the evolution of the harmonic chain starting from a Gaussian initial

domain-wall state. The initial state composed of two Gibbs ensembles (GEs) (choice

1) is discussed in Sec. (3.3.1) while the one consisting of two generalized Gibbs ensembles

(GGEs) (choice 2) is worked out in Sec. (3.3.2). For each type of the initial state, we

studied both finite and infinite-length chains. We showed that the finite chain tends to a

final expected GE or GGE depending on whether the initial state is composed of two GEs

or two GGEs respectively. Both the conserved densities and the currents relax as ↑ 1/
↓

t

to their respective equilibrium values. The currents all decay to zero due to reflections at

the boundaries. For an infinite chain, both types of initial states lead to a final expected

GGE state which is current carrying. Here, the densities and currents corresponding to

the conserved quantities relax as ↑ 1/t and ↑ 1/t2 respectively. Starting from an arbi-

trary Gaussian initial domain-wall state, we were able to characterize the final expected

GGE state completely by explicitly writing down its Lagrange multipliers in terms of the

conserved quantities in Eqs. (3.76, 3.77). In [64], an infinite quantum harmonic chain

was studied, and the final GGE state starting from an initial state composed of two GEs

was explicitly evaluated. We can use the GHD formalism to reproduce that result while

also studying the finite length case and the initial state composed of two GGEs. More

interestingly, we can study the classical harmonic chain with long-range interactions and

see if the GHD predictions hold against Hamiltonian evolution.
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Appendix A

A.1 Marginals of the wavepacket density

Here we establish the fact mentioned in Sec. (2.4.2) that the marginals of the wave-packet

density, Dϖ, after integrating either over momentum or space, correspond respectively to

the coarse-grained particle density and momentum density. Let us consider the momen-

tum marginal first i.e. sum over r

Dv(v, t) =
∑

r

D(r, v, t) =
∑

r,m,n

↘r, v|m↔ϖ̃1(pm, pn, t)↘n|r, v↔

=
1

K

K∑

r=1

∑

m,n↘Rv

e2ϱi(m↓n)r/K ϖ̃1(pm, pn, t)

=
∑

n↘Rv

ϖ̃1(pn, pn, 0).

(A.1)

Let us now consider the r-marginal i.e. sum over v

Dr(r, t) =
∑

v

D(r, v, t) =

∫
dxdx↑

LK

∑

v

∑

m,n↘Rv

Qmn(x, x↑, t), (A.2)

Qmn(x, x↑, t) = e2ϱi(↓mx+nx↑)/Lei(m↓n)2ϱr/Kϖ1(x, x↑, t). (A.3)

Note that m, n ⇑ Rv which is given by

Rv =

{
v ⇐

K ⇐ 1

2
, . . . , v +

K ⇐ 1

2

}
. (A.4)

We substitute m = v + m̃ and n = v + ñ to get rid of the v dependence in the sums over
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Figure A.1: Fermions: The late time value of the f-macrostate entropy per particle,
sf

B(⇔) as a function of the coarse-graining scale K for the low and intermediate temper-
atures. It seems that we require K/L ↗ 1 for the final value to not vary strongly with
K. The variation also goes down with increasing temperature.

m and n. We thus get

Dr(r, t) =

∫
dxdx↑

LK

∑

v

∑

m̃,ñ↘R0

e2ϱiv(x↑↓x)/LQm̃ñ(x, x↑, t). (A.5)

Now since v takes values ⇀K where ⇀ is an integer that runs from ⇐⇔ to +⇔, the sum

over v can be done and gives

Dr(r, t) =

∫
dxdx↑

K2

∑

m̃,ñ↘R0

ω(x ⇐ x↑)Qm̃ñ(x, x↑, t)

=

L∫

0

dx

K2

∣∣∣∣∣∣

(K↓1)/2∑

ñ=↓(K↓1)/2

exp
[
2φiñ

(x

L
⇐

r

K

)]
∣∣∣∣∣∣

2

ϖ1(x, x, t)

=

L∫

0

dx hK

(x

L
⇐

r

K

)
n(x, t),

(A.6)

where n(x, t) is the particle density and hK(x) =
1

K2

(
sin φKz

sin φz

)2

.

A.2 Maximizing the von Neumann entropy

In this section, we present a derivation for the formula of the maximal density matrix

ϖ̂↔ subject to the constraints
〈
M̂k

〉
= Tr

[
ϖ̂M̂k

]
that does not require the operators to
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Figure A.2: Bosons: The late time value of the f-macrostate entropy per particle, sf
B(⇔)

as a function of the coarse-graining scale K for the low and intermediate temperatures.
It seems that we require K/L ↗ 1 for the final value to not vary strongly with K. Also
note that the variation with K is stronger for bosons as compared to fermions, so a
relatively smaller K/L may be required for bosons. Here also, the variation goes down
with increasing temperature.

commute. Consider a set of operators M̂k; k = 1, 2, 3, . . . and a density matrix ϖ̂ such

that
〈
M̂k

〉
= Tr

[
ϖ̂M̂k

]
(A.7)

We want to construct a density matrix ϖ̂↔ with maximal Von-Neumann entropy, S[ϖ̂] =

⇐ Tr[ϖ̂ ln ϖ̂], subject to the constraints that the expectation values of all M̂k are given by

some fixed values Mk. We start by writing down the functional to maximize with the

corresponding Lagrange multipliers ϱk for each constraint
〈
M̂k

〉
= Mk

S[ϖ̂] = ⇐ Tr[ϖ̂ ln ϖ̂] ⇐
∑

k

ϱk

(〈
M̂k

〉
⇐ Mk

)
⇐ ϱ0 (Tr[ϖ̂] ⇐ 1) (A.8)

Now given a Hermitian operator Ô, we can define the following identity for any function

of Ô

f(Ô) =
1

2φi

∫

C

dz
f(z)

z ⇐ Ô
(A.9)

where the contour C encloses all eigenvalues of Ô. Using Eq.(A.9), we can write

ϖ̂ ln ϖ̂ =
1

2φi

∫

C

dz
z ln z

z ⇐ ϖ̂
(A.10)

87



Substituting Eq.(A.10) in Eq.(A.8), we get

S[ϖ̂] = ⇐ Tr


1

2φi

∫

C

dz
z ln z

z ⇐ ϖ̂
+

∑

k

ϱkM̂kϖ̂ + ϱ0ϖ̂


+

∑

k

ϱkMk + 1 (A.11)

Varying the entropy in Eq.(A.11) w.r.t ϖ̂ yields

ωS[ϖ̂] = ⇐ Tr

(
1

2φi

∫

C

dz
z ln z

(z ⇐ ϖ̂)2
+

∑

k

ϱkM̂k + ϱ0

)
ωϖ̂


(A.12)

From Eq.(A.12), we see that the density matrix, ϖ̂↔, which maximises the entropy subject

to the constrains, satisfies

1

2φi

∫

C

dz
z ln z

(z ⇐ ϖ̂↔)2
= ⇐

∑

k

ϱkM̂k ⇐ ϱ0 (A.13)

The integral in Eq.(A.13) can be evaluated by noting that it has second-order poles at

the eigenvalues of ϖ̂↔, and therefore we obtain

ln ϖ̂↔ + 1 = ⇐

∑

k

ϱkM̂k ⇐ ϱ0 (A.14)

ϖ̂↔ =
1

Z
exp


⇐

∑

k

ϱkM̂k


; Z = Tr


exp


⇐

∑

k

ϱkM̂k


(A.15)

The constant ϱ0 ⇐ 1 is absorbed in the normalization Z. This is the desired result for the

density matrix. The Lagrange multipliers are fixed by the constraint equations.

A.3 Dependence on K

Here we briefly discuss the dependence of our results on the coarse-graining parameter

K.

Fermions: In Fig. (A.1), we plot the saturation value sf
B(⇔) for di!erent K and

for the low and intermediate temperatures. We observe that as long as K ↗ L, the

saturation value does not vary strongly with K. Also, the variation becomes smaller

with increasing temperature.
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Bosons: The strong dependence on K can be understood from Fig. (A.2) which

shows the variation of the saturation value of the f-macrostate entropy per particle with

K. Here, we can clearly see that the variation is stronger for bosons as compared to

fermions. As a result, the K values used in our numerical study are not small enough

compared to the system size L for bosons, especially in the low-temperature case.

A.4 Glossary

f, U : denote the two macrovariables studied in this work.

Sf
B, SU

B : the Boltzmann entropies corresponding to the two macrovariables.

sf
B, sU

B: Boltzmann entropies per particle.

X: Phase space point.

|$↔: Pure state wavefunction.

N, E, L: The total number of particles, the total energy, and the system size (Circle

perimeter) respectively.

T, ▷, µ: The temperature, the inverse temperature, and the chemical potential re-

spectively.

a: Fraction of the circle occupied by the gas at time t = 0. In most cases a = 1/2.

m: Mass of the particles.

H: Hilbert space.

HE: Subspace of the full Hilbert space corresponding to the energy E.

M̂k: Generic self-adjoint operators.

ε, Hω : Generic macrostate and the corresponding macro-space.

|Hω |: Denotes the dimension of the Hω macro-space.

P̂ω : Projection operator onto the Hω macro-space.
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Sω : Boltzmann entropy corresponding to the ε macrostate.

Heq: Equilibrium macro-space.

ϖ̂GC, ZGC: Generalized canonical density operator and the corresponding partition

function.

ϱk: Lagrange multipliers (for satisfying the constraints) in the expression for ϖ̂GC.

SGvN: The Gibbs-von Neumann entropy of the system

ω, A: Denote the size and number respectively of the coarse-grained cells in the

U -macrostate.

ς: Labels the coarse-grained cells in the U -macrostate.

N̂ϑ, P̂ϑ, Êϑ: Denote the particle number, the momentum, and the energy operators

respectively corresponding to the ςth cell in the U -macrostate.

K: Denotes the coarse-graining scale in the f -macrostate.

|↼ϖ↔ ⇒ |r, v↔: The wavepacket basis state localized in position around x = rL/K

and in momentum around p = 2φ⊋v/L.

n̂ϖ, Dϖ(t) ⇒ D(r, v, t): Denote the occupation number operator and the average

occupancy (wavepacket density) respectively of the wavepacket basis state |↼ϖ↔.

|χs↔ , es, ns: Denote the box energy eigenfunction, eigenvalue, and occupancy of the

sth level respectively.

|ϕn↔ , pn, ϑn: Denote the circle energy eigenfunction, momentum, and energy eigen-

value of the nth level respectively.

%̂x, b̂n: Denote the annihilation operator in the position and in momentum space

respectively.

ϖ̂N : The N -particle density operator.

ϖ̂1, ϖ1(x, x↑), ϖ̃1(pm, pn): The single-particle density operator and its matrix elements

in the position and momentum space respectively.
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V : Transformation matrix from the box to the circle basis.

f(es, ▷, µ): Denotes the Fermi/Bose function.

ϖ̂P
1 , ϖ̂M

1 : Denote the single-particle density operator corresponding to the pure and

mixed state initial conditions respectively.

P ({ns}): Denotes the grand canonical probability distribution of the configuration

{ns}.

w(x, p, t): The Wigner function on the real line.

qn: Denotes the half-integer momenta on the circle.

w(x, qn, t): The Wigner function on the circle.

N̂ , P̂ , Ê: Denote the total particle number, the total momentum, and the total

energy operators respectively.

n̂(x, t), p̂(x, t), ê(x, t): Denote the local particle, momentum, and energy density

operators respectively.

n(x, t), p(x, t), e(x, t): Denote the expectation values of the local particle, momen-

tum, and energy density operators respectively.

Rv: The set of K integers centered around v.

v±: The two end points of the set Rv.

GK(q, x): The localized kernel that, when integrated over the Wigner function,

yields the wavepacket density.

Dr(r, t), Dv(v, t): The respective marginals of D(r, v, t).

hK(x): The localized kernel that, when integrated with the particle density n(x, t),

yields the coarse-grained marginal Dr(r, t).

ϖ̂φ
N : Maximal N-particle density operator subject to the wavepacket density con-

straints.
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ϱϖ: Lagrange multipliers (for satisfying the constraints) in the expression for ϖ̂φ
N .

#sf
B, #sU

B: The final change in the entropies of f and U macrostates respectively.

ϖ: Particle density N/L.

ϱth: The thermal De-Broglie wavelength.

◁p: The period of oscillations of the particle density.

vf : Fermi velocity.

◁ : The period of oscillations of the Boltzmann entropy Sf
B.

◁rec: The recurrence period.
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Appendix B

B.1 GGE partition function

The GGE partition function in Eq. (3.7) is given by the integral

Z({ϱn}) :=

∫ ↗

↓↗

N∏

j=1

dpjdqj exp


⇐

N↓1∑

n=0

ϱnQ
(n)(p,q)



=

∫ ↗

↓↗

N∏

j=1

dpjdqj exp


⇐

1

2


pT

∑

n

ϱnB
(n)p + qT

∑

n

ϱnM
(n)q

 (B.1)

where we have used the expression for Q(n) in Eq. (3.34) and the Lagrange multipliers are

chosen such that
∑

n ϱnBn and
∑

n ϱnMn are positive definite matrices. The Gaussian

integration can be easily performed once we know the eigenvalues of B(n) and M (n)

matrices which are respectively given by cos(nkϑ) and 02
kω

cos(nkϑ) with kϑ =
φς

N + 1
, ς =

1, . . . , N and 02
k = 2(1 ⇐ cos k). We therefore get

Z({ϱn}) =

√√√√ (2φ)N

∏N
ϑ=1

(∑N↓1
n=0 ϱn cos(nkϑ)

) ↖

√√√√ (2φ)N

∏N
ϑ=1 02

kω

(∑N↓1
n=0 ϱn cos(nkϑ)

) , (B.2)

which can be simplified to yield Eq. (3.8).
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B.2 Density evolution corresponding to the initial

condition composed of two GGEs

Here we show the steps leading to the density profiles in Eq. (3.59) starting from the

expression for the Wigner function in Eq. (3.58). Substituting the Wigner function from

Eq. (3.58) into Eq. (3.37), we obtain the following expression for ϖ(n)(x, t)

ϖ(n)(x, t) = 2

ϱ/2∫

0

d5

φ
cos 2n5

1

▷1(1 ⇐ 41 cos 25)
⇐ I(n)(x, t) = g(n)(▷1, 41) ⇐ I(n)(x, t), (B.3)

where g(n)(▷, 4) is defined in Eq. (3.60) and I(n)(x, t) is given by

I(n)(x, t) =

ϱ/2∫

0

d5

φ
cos 2n5

(
1

▷1(1 ⇐ 41 cos 25)
⇐

1

▷2(1 ⇐ 42 cos 25)

)
[&(x ⇐ t cos 5) + &(x + t cos 5)] .

(B.4)

Di!erentiating Eq. (B.4) w.r.t x on both sides and simplifying yields

⇁I(n)

⇁x
=

cos 2n5φ

φt sin 5φ

(
1

▷1(1 ⇐ 41 cos 25φ)
⇐

1

▷2(1 ⇐ 42 cos 25φ)

)
, |x| < t (B.5)
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where 5φ = cos↓1(|x|/t). Integrating Eq. (B.5) w.r.t x gives

I(n)(x, t) =






0, x < ⇐t

ϱ/2
0

d5

φ
cos 2n5

(
1

▷1(1 ⇐ 41 cos 25)
⇐

1

▷2(1 ⇐ 42 cos 25)

)

+

sin→1(x/t)
0

d5

φ
cos{2n cos↓1

| sin 5|}

(
1

▷1(1 + 41 cos 25)
⇐

1

▷2(1 + 42 cos 25)

)
, |x| < t

2

ϱ/2
0

d5

φ
cos 2n5

[(
1

▷1(1 ⇐ 41 cos 25)
⇐

1

▷2(1 ⇐ 42 cos 25)

)
, x > t

(B.6)

Using Eq. (3.60), we can rewrite Eq. (B.6) as

I(n)(x, t) =






0, x < ⇐t

1

2
[g(n)(▷1, 41) ⇐ g(n)(▷2, 42)]

+

sin→1(x/t)
0

d5

φ
cos{2n cos↓1

| sin 5|}

(
1

▷1(1 + 41 cos 25)
⇐

1

▷2(1 + 42 cos 25)

)
, |x| < t

g(n)(▷1, 41) ⇐ g(n)(▷2, 42), x > t

(B.7)

Substituting Eq. (B.7) into Eq. (B.3) gives us the required expression in Eq. (3.59).
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