Statistical properties of single and
multiple active particles

A thesis submitted to

Tata Institute of Fundamental Research, Mumbai, India
for the degree of
Doctor of Philosophy
in
Physics

By

Prashant Singh

International Centre for Theoretical Sciences
Tata Institute of Fundamental Research
Bangalore 560089, India

November, 2022



Declaration

This thesis is a presentation of my original research work. Wherever contributions of others are
involved, every effort is made to indicate this clearly, with due reference to the literature, and

acknowledgement of collaborative research and discussions.

The work was done under the guidance of Prof. Anupam Kundu, at International Centre for

Theoretical Sciences, Tata Institute of Fundamental Research (ICTS-TIFR), Bangalore.

Prashant C:%

Prashant Singh

In my capacity as supervisor of the candidates thesis, certify that the above statements are

true to the best of my knowledge.

b undiy

Anupam Kundu

Date: November 17, 2022



Acknowledgements

I would like to thank my advisor Dr. Anupam Kundu for his guidance and support during my
PhD. Discussions with him have mostly helped me in gaining a wider understanding about the
problems. Two qualities that I find most attractive about him: first, he is very professional and
second, he is very intuitive. I hope to instill these qualities even in my research. Thank you for
giving me the privilege of being your first student. I would also like to convey my best regards

to his family.

I benefitted a lot through my discussions with Dr. Abhishek Dhar and Dr. Sanjib Sabhapandit.
Also, they were kind enough to be a part of my thesis monitoring committee. I would like
to express my gratitude towards them. Recently, I also got to collaborate with Dr. Satya N.
Majumdar. I have learned a great deal from his papers and review articles. I would like to thank
him for this. T am also grateful to Dr. Arnab Pal with whom I have had the opportunity to
collaborate on different projects. He has been very kind towards me and guided me at different
times of my PhD. Working with him has always been a joyful experience. I also thank Dr. Urna

Basu for various discussions and for being a part of the committee that evaluated my synopsis.

My stay at ICTS has been a pleasant one. This, in retrospect, is partly because of my friends.
I believe our batch (constituted by Arnab, Soummyadip, Monica, Pronobesh, Sugan, Srikanth,
Pinak, Shashank and myself) was a set of most hardworking people at ICTS. In future, I would
like to be as intuitive as Arnab, as knowledged as Soummyadip, as perseverant as Monica, as
sharp as Pronobesh, as disciplined as Sugan, as rigorous as Srikanth, as computationally-skilled
as Pinak and as balanced as Shashank. Apart from them, I also thank my other friends from
ICTS, namely, Santhosh, Joydeep, Akhil, Varun, Manisha, Kohinoor, Saikat, Jitendra, Basudeb,
Saurav, Suman da, Debarshee da, Subhajit da, Soumi, Dipankar and all other students and
postdocs. They have always been very amicable towards me. In particular, discussions with
Suman da on various academic and non-academic matters are always eye-opening. I also cherish
my friendship with Kanaya, Arghya da, Subhadip da, Amit da and Aritra da who were there
when I had joined ICTS. I remember how Kanaya had taught me (a novice) simulations of run
and tumble particles. I extend my best wishes to her. I would also like to thank all professors,

academic and non-academic staffs at ICTS for making it a best place to work at.

Before coming to ICTS, I was fortunate to have very supportive teachers in my life. Right

from my schooling at Sonada Model school and St. Robert’s School till my bachelors at St.



Joseph’s college, Darjeeling, I owe a great deal to my teachers. In particular, I would like to
acknowledge Mr. Kaushal Chettri, Prof. Debarghya Goswami and Dr. Pragati Pradhan who
were very instrumental for my entry into research. During my masters at IIT, Kanpur, I got
to know many new people who subsequently became good friends. Out of them, I still share a

great camaraderie with Manika and Soummyadip. Both of them are my favourites.

Finally and most importantly, I would like to thank my parents and my family for constantly

nurturing me. I dedicate this thesis to them.



Publications [

1*

2*

3*

4*

5*

10

Generalised ‘Arcsine’ laws for run-and-tumble particle in one dimension, Prashant Singh
and Anupam Kundu, J. Stat. Mech. 083205 (2019).

Run-and-tumble particle in inhomogeneous media in one dimension, Prashant Singh, San-
jib Sabhapandit and Anupam Kundu, J. Stat. Mech. 083207 (2020).

Local time for run and tumble particle, Prashant Singh and Anupam Kundu, Phy. Rewv.
E 103 042119 (2021).

Crossover behaviours exhibited by fluctuations and correlations in a chain of active parti-
cles, Prashant Singh and Anupam Kundu, J. Phys. A: Math. Theor. 54 305001 (2021).

Mean area of the convex hull for a run and tumble particle in two dimensions, Prashant
Singh, Anupam Kundu, Hendrik Schawe and Satya N. Majumdar J. Phys. A: Math.
Theor. 55 225001 (2022).

Other publications which are not part of this thesis.

Random acceleration process under stochastic resetting, Prashant Singh, J. Phys. A:
Math. Theor. 53 405005 (2020).

Extremal statistics for stochastic resetting systems, Prashant Singh and Arnab Pal, Phy.
Rev. E 103 052119 (2021).

Extreme value statistics and arcsine laws for heterogeneous diffusion processes, Prashant

Singh Phys. Rev. E 105 024113 (2022).

Coarse-grained Stochastic Model of Myosin-Driven Vesicles into Dendritic Spines, Young-
min Park, Prashant Singh and Thomas G. Fai, STAM J. Appl. Mat. 82(3) 793-820 (2022).

First-passage Brownian functionals with stochastic resetting, Prashant Singh and Arnab
Pal, J. Phys. A: Math. Theor. 55 234001 (2022).

!« part of this thesis



Contents

I_Overview] 9
[1.1 Position distribution of a run and tumble particle|. . . . . . ... ... ... 13
.2 Motivation and outline of the thesid . . . ... ... .. ... ... ... ..... 16

2 Generalised ‘Arcsine’ laws for run-and-tumble particle in one dimension| 20
[2.1 Propagator with absorbing barrier at x = M|. . . . .. ... ... ... .... 22
[2.2  Survival probability ot the RTP|. . . . . . ... ... ... ... ... .. ..... 24
[2.3 Joint probability distribution P(M, t,,,t) of M and ¢, . . . . . . .. ... 26

[2.3.1  Marginal probability distributionof M|. . . . . ... ... ... ... ... 29
[2.3.2 Marginal probability distributionof ¢,,|. . . . . . . . ... ... 31
[2.4  The residence time distribution Pr(t,,¢t) . . . . . . . . . . ... 32
[2.5 Last passage time distribution Pr(tg, ). . . . . . . .. 35
2.6 Summary] . . . .. .. e e e 37

[3 Convex hull of a run and tumble particle in two dimensions 38
3.1 Modell . . . . . .. e 39
3.2 Mean area of the convex hulll . . . . .. .. ... ... .. . .. 40
3.3 Mean area for fixed-n ensemblel . . . . . ... oo o Lo 41

[3.3.1 Computation of (M2)| . . . . . . ... ... 42
[3.3.2  Computation of (YZ)(n)|. . . . . . oo 44
[3.3.3 Mean area (A,)|. . . . . . .. 46




[3.4.1 Computation of (M(£))| . . . . . . . ... 48

[3.4.2  Computation of (Y (£,,)°)(). -« -« o o o i 49

[3.4.3 Mean area (A(£))|. . . . . . . ..o 50

[3.5  Summary] . . .. ... e e e o1

[4  Run-and-Tumble particle in inhomogeneous media in one dimension| 53
{4.1 The probability density function P(x,t) . . . . . . .. ... ... ... ... .. 54
411 Caselia=00... ... .. 55

12 CaseIla =T . ... . . . . 58

[41.3 CaseIIl: General of. . . . . .. .. ... 62

4.2 Survival probability] . . . .. ... 66
421 Caselia=00... ... . 68

422 Casell:a=T1] . ... . . . 70

423 Caselll: General ol. . . . . . . . . . .. oo 73

4.3 Exit probability of RTP from a finite interval for general of . . . . . . . . . ... 75
4.4 Summary] . . . ... L e e e e e e e 77

[> Local time for run and tumble particle| 79
b.1 Local time statistics in an infinite inel . . . . . . ... ..o oo 80
.11 Caselia=00... ... .. 83

b.1.2 Casell: Generalal . . . . . . . . .. . o 87

5.2 Local time in presence of an absorbing wall| . . . . .. ... ... ... ... ... 90
D21 Caselia=00.... ... . 92

022 Casell: General ol . . . . . . . .. ... L 96

5.3 Summary|l . . . ... L e e e 97

[6 Crossover behaviours exhibited by fluctuations and correlations in a chain of |
[ active particles| 98




6.1 Models and preliminaries| . . . . . . . . . ... ... ... o 99
6.2  Summary of the main results| . . . . ... ... .. ... . o000 101
6.3  T'wo-point correlation tor RI'P chain| . . . . . . .. ... ... ... ... ..... 104
6.3.1 Variance for RI'P chainl . . . . .. ... ... .. o000 106
[6.3.2 Covarfance for RTP chainl . . . . . . .. ..o 0000000000000 108
[6.3.3 Position autocorrelation for RTP chainl. . . . . . ... ... ... ... .. 110
6.3.4  Unequal Time Position Correlations For RTP chainl . . . . .. ... ... 114
6.3.5  T'wo-point correlation in RTP chain for large but finite N| . . . . . . . .. 117

[6.4  Variance, covariance and two-point correlation for AOUP chain| . . . . . . . . .. 120
6.4.1 Casel: t1 < 7r, to < TK| .« v o v v v e 121
6.4.2 Casell: t1 > 7, to>7K|. . . .« 0 0 0 oo 122
16.4.3 Large but finite V| . . . . . . . . .. 126

6.5 Variance, covariance and two-point correlation for ABP chain| . . . . . . . .. .. 127
6.5.1 Case !t < 7, to < TR| - - . . . . o . 128
6.0.2 Casell: t; > 71, to>71K|. . .« o o o oL 129
16.5.3 Large but finite V| . . . . . . . . ... . 134

6.6  Summary|l . . . . ... e e e e e 135
[7__Conclusion| 137
Ap d 141
8.1 Equilibrium| . . . . ... 141
8.1.1 Detailed balance: . . . . . . . . ... 142
[8.1.2  Fluctuation-dissipation relation:| . . . . .. . ... .. ... .. ... ... 143

[8.2  The propagator with an absorbing barrierat x =M. . . . . .. ... ... ... 145
[8.3  Derivation of backward master equations for St (xo,¢)| . . . . . .. ... .. ... 148
[8.4  Proof of the identity| . . . . . . . . . . . ... 149
[8.5  Probability distribution ot ¢,, for general initial condition|. . . . . . . . . . ... 150




[8.6 Backward master equation for functional Y [z (¢)]| . . . . . . ... ... L. 151

[8.7  Probability distribution for residence time ¢, for general initial condition|. . . . . 152
(8.8 Derivation of P (£,k*|n) in Eq. (3.32)[ . . ... ... ... ... ... 153
8.9 Proof S, ~mnasn—oo| . ... .. 155
[8.10 Derivation of the approximate expression of P(z,t) given in Eq. (4.20) for a« =0 [

at large & . . . L L e 156

S8.10.1 A >0 . . . o o 156

8.10.2 A <O . . . o o 157
[8.11 Derivation of S, ()] . . . . . . . . . o 158
[8.12 Derivation of Q(p, s) in Eq. (5.37) for general of . . . . . . .. .. ... ... ... 159
[8.13 Derivation of f,(z) for finite 2|. . . . . . . ... L oo L 161
[8.14 Derivation of (22 (t))2" whent > 7| . . . . . . . ... 162




Chapter 1

Overview

Broadly speaking, out-of-equilibrium behaviour in a statistical system commonly arises in three
ways: First by suitably quenching a system below certain temperature such that physical observ-
ables take experimentally unachievable time to relax to their equilibrium value. Such systems
belong to a widely-studied state of matter called glass [1]. Second class of non-equilibrium sys-
tems are the ones that are driven from the boundary by maintaining a difference in the chemical
potential or the temperature at the two ends [2-4]. Consequently, there is a flow of particle
current or energy current through the system and one is often interested in the transport prop-
erties of these currents. Finally, in the third class, the energy drive is maintained at the local
scale and every individual unit of the system experiences a chemical difference or a temperature
difference [5H10]. This thesis presents a theoretical and numerical study on the third class of

non-equilibrium systems which are known as “active systems” in the literature.

In equilibrium, the detailed balance and the fluctuation dissipation relations are known to be
valid [11-16]. While detailed balance is a statement about the probabilistic current balance
between every pair of microscopic states, the fluctuation-dissipation relation gives the linear
response of the system in terms of its equilibrium correlations [16]. We refer to appendix
for a brief discussion on these equilibrium conditions. For a diffusing particle in presence of
a confining potential V' (7) |[17-20], the position 7(t) is often described the following evolution

equation:

i
==YV
a = Ve

!

<

)+ /2kBT 7j(t), (1.1)



where 7j(t) = (12(t),ny(t),n2(t)) is the Gaussian white noise with zero mean and correlation
(ni(t) ni(t)) = &;; 6(t —¢'). For this model, one can rigorously prove that all equilibrium
conditions mentioned above are satisfied |[21-25]. However, our interest, in this thesis, are active
systems whose constituent particles violate these conditions and thus are intrinsically driven
out-of-equilibrium right at the microscopic scale [5,8.[26/28]. These particles can, individually,
consume the supplied energy and generate a systematic movement out of it. Observe that this
behaviour is intrinsically different than that of a diffusing particle where the motion is generated
due to the thermal bombardments from the surrounding molecules. Here, instead, motion is an

autonomous property of the particle itself.

Mechanisms for generating this autonomous motion vary from system to system. For example,
some species of bacteria like E. Coli swim through the medium by rotating a collection of flagella
emanating out of their body [29]. When these helical-shaped flagella bundle together and rotate
in the counter-clockwise direction, the cell experiences a push that gives rise to the motion in
the forward direction. This mode of motion is called a ‘run’. After a random time, some of the
flagella disassemble out and start rotating in the clockwise direction. During this event, known
as ‘tumble’, the cell simply rotates and does not move forward appreciably. Bacteria, thus,
move in a series of runs and tumbles. Experimentally, the typical run duration in a uniform
medium without nutrient-gradient is found to be ~ 1s while the tumbling duration is ~ 0.1s [30].

Moreover, the run time is found to be exponentially distributed in some types of E. Coli [29,30].

Even though, historically, the subject of active matter began as a description for the biological
systems, active motion has been realised experimentally in synthetic objects also. For instance,
asymmetric chemical reaction around the surface of a spherical particle (known as Janus particle)
coated with some catalysis generates self-propulsion due to the mechanism of diffusiophoresis |31,
32]. Other examples include granular matter subjected to shaking [3335], magnetic colloids with
DNA linkers |36 and janus particles in a laser beam [37]. Designing synthetic objects to generate
controlled active motion is an active area of research [38]. Recent focus has been on tuning this
motion for various potential applications like targeted delivery of drug and biomarking [39].
Due to their autonomous motion, active particles offer advantageous functionality for delivery

actions compared to the thermal particles.

When many of these self-propelling particles are put together, they exhibit several intriguing
emergent phenomena which are otherwise absent in their passive counterparts. Paradigmatic

example is the collective coherrent motion as seen in flocks of birds and schools of fish [40-43]. A
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minimal model that captures this behavour is the Vicsek model where every particle moves with
a constant speed and also interacts with the surrounding particles to align its direction along
the average direction of motion of the surrounding particles [41]. This model gives a transition
as a function of density between two states: one where particles move randomly (low density)
and the other where particles move in the same direction (high density). Another fascinating
phenomenon in active systems is the motility-induced phase separation where particles with
purely repulsive interactions undergo phase separation into dilute and dense regions [44-47].
Note that such phase separation can occur in thermal systems only in presence of attractive
interaction [27,{44]. Similarly, one observes other exotic collective phenomena like non-existence
of the equation of state in pressure [48] and active turbulence [49-51]. The last example is
particularly intriguing because these systems typically occur at low Reynold’s number (~ 1079)

where turbulent behaviour is not anticipated [52].

Research on active matter in the last two decades has mostly focused on unravelling and under-
standing these collective behaviours. However, various recent studies have revealed that active
systems also show distinct non-thermal behaviours even at the level of a single particle or few
particles. For example, the probability distribution of finding the particle in position 7(t) at
time ¢ is strictly non-Gaussian with far tails characterised by interesting large deviation func-
tions [53-71]. Also, contrarily to the thermal particles, the steady-state distributions are found
to have non-Boltzmann forms both experimentally and theoretically [53,/70,72-82] with non-zero
entropy productions [83H90]. Also, the first-passage properties are very different than that of a
Brownian particle [54,(70}/71,/91H96]. Escape problems for a self-propelled particle also exhibit
unusual beaviours like escape through a higher potential barrier instead of the lower one and so
on [97-100]. Thus, studying non-interacting active particles has also garnered significant interest

in the last few years.

Most of these studies have been performed in the context of three archetypal models of an
active particle - active Brownian particle, run and tumble particle and active Ornstein-Uhlenbeck
particle. We will refer to them as ABP, RTP and AOUP respectively. If 7(t) denotes the position

of the particle, then the time evolution equation in the overdamped limit reads

fl—f = V2D ij(t) + FA(t). (1.2)

The first term /2D 7j(t) is the translational diffusion term with 7j(t) = (9. (t), ny(t), n-(t)) being

the Gaussian white noise. It is characterized by the zero mean and correlation (n;(t)n;(t')) =
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9;,j0(t —t'). On the other hand, the second term FA(t) is the active part to the dynamics and
its precise form depends on the choice of model. For the three models mentioned above, it has

the following forms:

ABP: In this model, the particle performs the rotational diffusion in two dimensions in addition
to the translational diffusion [10134]. The particle moves along a direction ¢ with respect to the
x-axis which itself performs the Brownian motion. Exact form of F A(t) in Eq. (6.1]) for this

model is

FA(t) = vg (cosp,sing),  with (1.3)
9 = /2D €(1), (14)

where v4 (> 0) is the speed of the ABP and D,.,; (> 0) is the rotational diffusion constant. Also,
here £(t) is the usual Gaussian white noise with zero mean and delta correlation. Experimentally

janus particles are known to perform active Brownian motion [31].

RTP: Another well-studied model for the active motion is the run and tumble particle (RTP)
where the particle runs ballistically with speed vy along some direction. In two dimensions,
this direction may be represented by an angle ¢ € [0,27] with respect to the z-axis [27]. At
a constant rate 7, the particle tumbles during which it chooses a new direction ¢’ uniformly
between [0, 27| for the next run. Thus, the particle moves in a series of runs interspersed by

tumbles. For this case, FA(t) in Eq. (6.1) takes the form
FA(t) = vg (cos ¢, sin @) . (1.5)

As discussed before, certain species of bacteria like E. Coli perform this kind of motion [29].
Moreover, since the typical duration for a run is large compared to the tumbling duration,
we assume tumbles to be instantaneous throughout this thesis. Generalisations of RTP with

non-instantaneous tumbles can be found in [81},93].

AQOUP: The third class of model for the active motion is the active Ornstein Uhlenbeck particle

where FA(t) follows the dynamics [101]

dFA 4 ~
el —(CF” 4+ \/2Doy (1), (1.6)

where 9(t) is the Gaussian white noise with ((£)) = 0 and (1;(t)1;(t')) = 6 ;6(t — t').



— Brownian particle
— RTP

Figure 1.1:  Typical trajectories of a run and tumble particle and a Brownian particle. For
Brownian particle, the trajectory is more random and changes its direction very frequently. On
the other hand, the RTP displays a persistent behaviour whereby it has non-vanishing likeability

to move along a given direction.

To illustrate more precisely the effect of activity in these models, we present below a brief
discussion on the statitical properties of the position of a single RTP. This will be relevant for

the later parts of this thesis as most of our results are based on the run and tumble motion.

1.1 Position distribution of a run and tumble particle

Historically, the first account of the run and tumble model appeared in the works of Fiirth
[102] and Taylor [103]. Taylor considered the discrete run and tumble model as a simple way
to introduce correlations between movements of a particle at two different time steps. Later
Goldstein and Kac studied the probability distribution of this model and showed that it obeys
the Telegrapher equation |104,105]. Over the course of time, this model has found applications in
chromatography [106], in electromagnetic theory [107] and also in transport theory [108] [see [109]
and references therein|. Particularly, in the random walk literature, this model was known as
the persistent random walker and a number of results were already derived for them [109-{113].
The present day interest arose due to its biological applications in mimicking the motion of some

species of bacteria like E. coli [29,30].

The evolution of the position z(t) of a RTP in one dimension is governed by the equation

dr

i voo (t), (1.7)
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where o(t) is the telegraphic or dichotomous noise that alternates between +1 with some rate .
The noise o(t) at different times are exponentially correlated as v3 (o (t)o(t')) = v3e=2"=*'1. Due
to this history dependence, the run and tumble motion is a non-Markovian process. However,
in the limit v9 — oo and v — oo keeping the ratio Dp = U(Q) /2~ fixed, the noises become
delta correlated and the RTP dynamics becomes indistinguishable from the Brownian motion
(atleast for the typical fluctuations in x). On the other hand, for v — 0, the noise o(t) = o9
is just a constant and from Eq. , it follows that the particle performs the ballistic motion.
Hence, one can interpolate between ballistic and diffusive motions by appropriately tuning the

parameter -y

In Figure we have compared the typical trajectories of a RTP and a Brownian particle by
numerically simulating Eq. . Compared to the Brownian motion, we see that the trajectory
of a RTP is more regular and show non-vanishing persistence along a given direction. By
persistence, we mean the ability of the particle to continue moving along the same direction. This
drastically changes the behaviour of the particle. For example, the mean-squared displacement

of z(t) reads as [70]

(22(t)) = th - 2”52 (1—e 21, (1.8)

We see that for t <y~ !, the MSD scales ballistically as ~ t? which is different than the diffusive
scaling at ¢ > ~~!. This time scale 74 = 7~ which sets the time scale for the crossover will be
referred to as the activity time scale. Thus, at small and intermediate time scales (compared to

T4), we get distinct non-Brownian behaviour in this model.

This difference is also seen in the probability distribution function Py, (,t(0,00) of finding the
particle at o at time ¢ with velocity ofvg such that it was initially at the origin with velocity
oovg. Both og and oy can be either + or —. To derive the master equation for the evolution of
Po; (2,10, 00), we first look at the contributions to P,,(z,t + §t|0,09) from various events for
small dt. The first contribution is from those trajectories for which the RTP was at the position
(x — opvpdt) at time t with velocity direction o(t) = 0. In the further time 6¢, the RTP did
not flip its velocity so that o(t 4+ 6t) = o and also moved a distance ofugdt so that the final
position becomes z. Note that the probability of these events is (1 —dt) since the particle does
not flip its velocity direction. The other contribution to P,,(z,t + §t|0,09) comes from those
events where the RTP was at position z at time ¢ with orientation o(t) = —of. In the next time

interval [t,t + dt], the RTP just flipped its velocity direction so that o(t 4 dt) = 0. Such events

14



occur with a probability vdt. Hence, the total contribution is given by

Po (@, + 6t]0,00) = (1 —v6t) Py, (x — 05v06t, 1[0, 00) + vt P—s, (0,10, 00). (1.9)

Finally expanding the distribution as a Taylor’s series in §t and taking the 6t — 0 limit, we get

0Py (x,t]0,00) = =090, P+ (x,t|0,00) — YP+(x,t|0,00) + vP—(x,t0, 00p), 110)
1.1

atpf(xat‘O)O-O) = vgaxP,(x,ﬂO, UO) + 7P+($7t’07 UO) - ’)/Pf(ﬂf,t’(), 00)'

These equations have the form of the Telegrapher’s equations which have also appeared in several

other contexts [109]. If the initial velocity direction og is chosen from +1 with equal probability

1/2, then the solution P(z,t) = P+($’t|0’00);7)*(x’t‘o’go) of the master equation ((1.10) is given
by [70,[114]
et

Pla,1) = 5 0@ = vot) + 3w + vot) + % {Io(w) + %Il(w)} O (vot — |x|)] . (111)

where w = %\/m , I,(2) is the modified Bessel function of the first kind and O(z) is the
Heaviside theta function. Few remarks are in order. The distribution possesses two parts: two
delta functions at x = 4wvgt and a non-delta function part. The J-functions arise from those
trajectories for which the RTP does not flip its velocity till time duration t: the probability of
which is e™7!. Since the particle reaches either vgt or —vyt depending on its initial o(, we get
two d-functions at x = £wvpt. On the other hand, when it flips its velocity, we get the non-delta
function part in Eq. . The distance traversed in this case is always less than vgt which
gives rise to © (vot — |z]) in the expression. Observe that P(x,t) has support over the finite
interval [—vot, vot] which is different than the Brownian motion where the Gaussian distribution
has infinite support. Also the form of P(x,t) is clearly non-Gaussian. For ¢ — oo and |z| — oo
keeping |x|/t finite, the distribution P(z,t) admits a large deviation form as shown in [114]. To

see this, we use the asymptotic expression I,,(z) ~ e¢*/v/27z for large z in Eq. (1.11) to obtain

P(a,t) ~ exp [—’yt\ll ('fom . with (1.12)

U(y)=1—+1-9y2, —-1<y<l1. (1.13)

For y — 0, we have ¥(y) ~ y?/2 and the distribution converges to the Gaussian form P(z,t) ~

exp (—2?/4Dt) with D = v /2. This form is valid only for the central part of the distribution
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which describes the typical fluctuations in z. For atypical fluctuations, one needs to look at the
far tail of the distribution for which the full form of the rate function ¥(y) becomes important.

As evident, this form is different than the Gaussian form.

1.2 Motivation and outline of the thesis

We saw that the position distribution of a free RTP has some key differences than that of a
passive thermal particle. These differences become more potent at small and intermediate value
of vt. On the other hand, at large ~t, the effect of activity is seen only in the tails of the
distribution. Another way to see this effect at large ¢ is to put the RTP in a confining potential.
The steady state distribution thus obtained is strictly non-Boltzmann and violates the detailed
balance condition with a net non-zero entropy production. A natural question then is - How
does activity affect the properties of a particle beyond position distributions and first-passage
properties? Especially, with the current advancements in single active particle experiments
[31-33135H37], it becomes essential to develop theoretical frameworks that can corroborate with
the experimental observations. Moreover, in some physical scenarios, the motion of an active
particle takes in spatially heterogeneous medium where the motility parameters themselves
depend on the position of the particle. For instance, during chemotaxis, the bacteria can sense
the temporal signals to detect the presence of nutrient-gradient in the environment [115-119].
Depending on whether the chemo-attractant is near or far, it can modify its flagellar motion
so that it spends more (less) time in the region of chemo-attractant (chemo-repellent). For
instance when the bacteria are far from the chemo-attractant, they perform less tumbles and
longer runs so that they can reach the site of chemo-attractant quickly [304,115]. Thus, studying
heterogeneous active models is also important to account for these behaviours. In this thesis,

we address the following three topics for active particles:

(a) Effect of activity on the extreme-value statistics and path functionals
(b) Role of spatial heterogeneity

(c) Properties of a tagged particle in a system of many active particles.

We now present an outline of the thesis. We have in total five chapters each based on five pub-
lications mentioned above. Each chapter begins with an introduction which gives the necessary

background of the problem, explains the relevant mathematical framework and fixes the nota-
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tions. Subsequent sections give a more rigorous treatment of the problem and contain most of
the technical details with some being relegated to the Appendix. We also present extensive nu-
merical verifications of all our analytical results. Each chapter then ends with a summary where
we summarise our main findings of the chapter and their possible future extensions. Below, we

discuss briefly the precise problems considered in each of these chapters.

Chapters (2) and (3) address the issues in topic (a) and demonstrate the effect of persistence
on the statistics of the extremal quantities and path functionals [120,/121]. More specifically,
chapter (2) looks at the arcsine laws and chapter (3) looks at the convex hull problem for a
RTP. For a stochastic process of fixed duration ¢ and starting from the origin in one dimension,
the arcsine laws refer to the statistics of the following three observables: (i) the time t,, at which
the particle reaches its maximum distance M, (ii) the time ¢, spent on the positive side of the
origin and (iii) the last time t; at which the particle crosses the origin. Interestingly, P. Lévy
proved that the cumulative probabilities of these observables are all same for one dimensional
Brownian motion and is given by the arcsine function [120]. Question is - How does activity
ramify this universality and the three distributions? Chapter (2) addresses this question for a
one dimensional RTP. By using the path decomposition technique for Markov processes [122]
and the Feynman-Kac formalism [121,{123,124], we show that the distributions of ¢,,, ¢, and t,
depend on the initial velocity orientation o(0). For instance when o(0) is chosen between +1
with equal probability 1/2, we find that the distributions of ¢,, and ¢, are exactly same but the
distribution of ¢, is slightly different. On the other hand, if o(0) is chosen asymmertically from
+1, then all three distributions turn out to be different. Exact forms of these distributions are

derived for all cases.

Continuing our study on topic (a), chapter (3) looks at the convex hull problem for a two
dimensional isotropic RTP. Convex hull refers to the smallest convex polytope that encloses
all points in the particle’s trajectory [125,|126]. For a two dimensional Brownian motion, the
mean area of the convex hull is given by (A(t))py = 7Dt [127]. While the linear dependence
of (A(t))pap on Dt can also be guessed from the dimensional analysis, the exact form can only
be obtained by exploiting the connection of (A(t))pas with the statistics of the maximum M
and the time t,, to reach this maximum. In chapter (3), we use this connection to demonstrate
the effect of persistence on the mean area for a run and tumble particle. We find two different
1

scaling behaviours of (A(t)) depending on the observation time ¢, namely (A(t)) ~ t3 for t < v~

and (A(t)) ~t for t > y~1. The crossover function connecting these two scaling regimes is also
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derived analytically.

In chapters (4) and (5), we study problems related to topic (b). We look at the motion of a run
and tumble particle with direction and position dependent rates of tumble. This means that
the telegraphic noise o(t) in Eq. changes from +1 to —1 with rate R;(z) and from —1 to
+1 with another rate Ry(x). For homogeneous case Ry(x) = Ra(z) = 7 (constant), we saw that
the motion of a RTP at late times becomes indistinguishable from the Brownian motion. In
chapter (4), we compute the late time behaviours of the free space position distributions, survival
probabilities and the exit probabilities from a finite interval for R;(x) # Rs(x) and show that
the spatial heterogeneity leads to strict non-Brownian forms even at late times. Chapter (5) then
demonstrates the effect of the spatial heterogeneity on the statistics of a functional called local
time (T}o.) which refers to the amount of time that the particle spends in the vicinity of a desired
point (say Zje.) in the space [128,/129]. For the case when Ry(z) = Ro(x) ~ |z|* (a > 0), we
develop a ‘path-counting method’ which enables us to write the distribution of Tj,. completely
in terms of the probabilities of multiple visits to zj,.. Then exploiting this method, we obtain

the statistics of Tj,. both in free space as well as in presence of an absorbing wall.

Finally, we turn to the topic (c) in chapter (6). Motion of a tagged particle in an interacting
multi-particle system is a classical problem in statistical physics. Paradigmatic example is
the single-file diffusion where particles diffuse in one dimension but with the constraint that
they cannot overtake the neighbouring particles [130,[131]. As a result, the order of a particle
is maintained throughout its motion. Under this constraint, the mean squared-displacement
(MSD) of the position of a tagged-particle grows sub-diffusively with time as ~ /¢ for larger
values of ¢t |132]. In the context of active particles also, the MSD was shown to grow sub-
diffusively as ~ 4/t at late times similar to the single-file diffusion [133-136]. Numerically, it
was found that the MSD possesses a scaling form in ¢/74 with 74 being the activity timescale
[136]. However, these studies are often numerical based and analytic calculations rely largely
on hydrodynamic approximations or mean-field approximations [133-136]. Chapter (6) looks at
a simple and analytically tractable model of N (> 1) active particles with nearest-neighbour
harmonic interactions. Our main goal is to study the interplay of interaction and activity on
the dynamics of tagged particles. For three models of active particles, namely RTP, AOUP
and ABP, we obtain the exact variance and the two-point correlation functions from which
we extract various scaling forms and scaling functions. For example, when the particles are

interacting and N — oo, the variance has a crossover from ~ t” scaling at t < 74 to ~ V/t
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scaling at t > 74 where 74 refers to the activity time scale. The value of the exponent v and the
crossover function connecting the two scaling regimes both depend on the choice of the model.
In addition, we also find that the equal and unequal time autocorrelation and cross-correlations
obey interesting scaling forms in the appropriate limits of the observation time ¢. The associated

scaling functions are rigorously derived in all cases.
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Chapter 2

Generalised ‘Arcsine’ laws for
run-and-tumble particle in one
dimension

The arcsine laws represent the interesting and counter-intuitive temporal behaviours of an one
dimensional Brownian motion [137]. For a Brownian trajectory of duration ¢, these laws describe
the probability distributions of the following three observables: (i) the time t,, to reach the
maximum value M of the process, (ii) the residence time ¢, spent on the positive (or the negative)
semi axis and (iii) the last time t; that the process changes its sign (or crosses the origin). A
schematic illustration of these observables for a trajectory {z(7)} with 0 < 7 < ¢ is shown in
Figure Remarkably for Brownian motion, it was shown by P. Lévy that the distributions of

all three observables are exactly same and this universal distribution is given by [120]

Ppy(ta,t) = l;, with t, € {tm,tr, te}. (2.1)
T\ ta(t = ta)

The corresponding cumulative probability F.(7,t) = Prob.(t, < 7) = (2/7)Arcsine(/7/t) has
‘arcsine’ form and hence the name arcsine laws. Over the years, the knowledge of these ob-
servables have been useful in various other contexts. For example, in convex hull problems,
the mean area and the mean perimeter of the convex hull are related to the statistics of M
and t,, [125]. Similarly, the knowledge of the residence time becomes useful in classifying the
ergodic and non-ergodic phases of some systems [138]. As a result, these laws have been studied,
either together or individually in various contexts like constrained Brownian motion [122,/139],
random acceleration process [140}/141], stochastic thermodynamics [142], finance [143H145] and
other Markov and non-Markov processes [146-160]. Extension to many diffusing particles has
also been considered in [127,/161]. Quite remarkably, the statistics of t,, was recently used to

detect whether a stationary process is equilibrium or not [162].
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Figure 2.1: Schematic illustration of the arcsine laws for a stochastic trajectory of fixed duration
t. The quantity t,, is the time at which the particle achieves its maximum displacement M within
time interval [0,¢]. The time duration ¢, is the total time spent on the positive side of the origin

over the duration ¢. Finally ¢, is the time that the particle crosses the origin for the last time.

While there has been a substantial amount of study on these observables for many stochastic
processes, the effect of activity on their statistics has not yet been studied. This chapter aims
to investigate the arcsine laws for active particles. Focus of our study will be the run and
tumble particle in Eq. . As discussed before, these particles exhibit persistence behaviour
at small and intermediate time scales which leads to distinct non-Brownian behaviours. Here,
we demonstrate the effect of this persistence on the arcsine laws. More precisely, we look at a
trajectory {z(7)} of a RTP till fixed time ¢ and compute the probability distributions of t,, t,

and ty.

To derive these results, two essential quantities turn out to be (a) the time-dependent propaga-
tors of an one-dimensional RTP in presence of an absorbing wall at = M and (b) the (survival)
probability that the RTP has not crossed the origin till time ¢. In the following, we calculate
these propagators in Sec. and the associated survival probabilities in the Sec. 2.2 We then
use their expressions to calculate the joint distribution of M and ¢, in Sec. In the next two
sections [2.4] and we obtain the distributions of ¢, and ¢, respectively which are then followed

by a summary in Sec. [2.6]
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2.1 Propagator with absorbing barrier at z = M

Let us begin by computing the propagators for the RTP in presence of an absorbing wall at
x =M (>0). We denote by Py (z,t|0,00) the probability distribution to find the particle at x
at time ¢ with velocity direction +vg starting from the origin with direction o¢ € {+1,—1} and
with absorbing boundary at M. As illustrated later, these distributions become pertinent in
deriving the results for arcsine laws. For RTP, the distributions Py (x, t|0, 0p) satisfy the forward

master equations

Ot Py (x,t|0,00) = =090 Py (,t|0,00) — vP+(x,t0,00) + vP-(z, 1|0, 00), 2.2)
O P_(x,t)0,00) = 090z P—(x,t]0,00) + vPy(x,t|0,00) — vP_(z,t]0, 00).
These equations are derived in Appendix In order to solve them, we have to supplement
appropriate intial and boundary conditions. The initial conditions are P,(x,0[0,+) = a1d(x)

such that a4 +a_ =1 and o = £1. On the other hand, the boundary conditions are

Py(x — —00,t0,£) =0, (2.3)

P_(z — M~,0,+) = 0. (2.4)

These boundary conditions can be understood as follows: For finite ¢, the RTP can at most have
x = —ugt and can never reach x — —oo . This gives boundary condition . Furthemore, for
the particle to reach x = M at time ¢ with velocity —wvp, it should have crossed the barrier at
some earlier time (since the particle is initially at the origin). However, such trajectories do not
arise since there is absorbing condition at x = M. This leads to the second boundary condition
(2.4). In appendix we have explicitly solved the master equations with boundary
conditions and . We find the following explicit expressions for the propagators for the

four possible combinations of the initial and final velocity directions:

P_(2,t)0,+) = 2%0[1(\34, 00,7, 1) — Z(2M — , 09,7, 1), (2.5)
Py (o0, 4+) = 5= (el 0,7,) = T (2M = 2, 00,7,1)] — () T2 (2:6)
P_(z,t)0,—) = ;TO[J(M,UO,%IS) — J2M — z,v,7,1)] — O(—1) W and (2.7
Py (x,0,—) = %0[1(\34, v0,7,t) — Z(2M — 2, v0,7,8)] + T(2M — x, vo, 7, t) (2.8)
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Figure 2.2: Time evolution of the propagators P_(z,t|0,+,0) and Pj(z,t|0,+,0) given in
Egs. (2.5) and respectively and their comparison with the numerical simulations. The
solid lines represent the analytic formula and symbols are the simulation data. We have chosen
the absorbing barrier at position M = 3 (shown by the thick black line). The delta function
present in Py (z,t|0,+,0) is not shown in the plot. Other parameters of the plot are vop = 1 and
v = 0.5.

where the functions Z(g,vo,v,t), J(«, g,v0,7,t) and T (g, vo,,t) (defined for g > 0) are given
by:

—t gt — g°
I(g7U0777t) :@(Uot_g)e ’YIO 77 ] (29)

Vo

t — 2t2 _ a2
T (9,v0,7,t) = © (vot — g) e "/ o9y, <7m> : (2.10)
vt +g 0

et V212 — g2 vol — 22— 2
T(g,v0,7,t) = O (vot — g) REGA (RAVA Ll Y 9, R — 2 |
vot + g | vo Vo vt + g ”

(2.11)

In these equations, I,(z) stands for the modified Bessel function of first kind and ©(z) is the
Heaviside theta function. Note that the propagators P¢{(z,t|0, £) have term % which gives rise
to terms like e 7'§(x + vgt). Physically, such terms arise from those events for which RTP has
not changed its velocity till time ¢. These events occur with probability e~. In Figures
and [2.3] we have shown the comparison of our analytic results with the numerical simulations
for all four propagators in Eqgs. —. We observe excellent match for all of them. Finally,
by using the large z asymptotic of I,(z) ~ e?/v/27z for both v = 0 and 1, we find that in the
limit v9 — oo and v — oo keeping v2/(2v) = D fixed, all four propagators reduce to

(v3/27)=D 1 Y _(2M —2)?
Py (x,t|0,00) o w0 VLoD exp 1Dt exp o (2.12)

for 0 = 41, 09 = 1 and for x < M. This is the propagator of a Brownian walker in presence

of absorbing boundary at x = M [163|. Therefore, we correctly recover the results for Brownian
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Figure 2.3:  Time evolution of the propagators P_(x,t|0,—,0) and P (x,t|0,—,0) given in
Eqgs. (2.7) and respectively and their comparison with the numerical simulations. The
solid lines represent the analytic formula and symbols are the simulation data. We have chosen
the absorbing barrier at position M = 3 (shown by the thick black line). The delta functions
present in P_(x,t|0, —,0) at different times are not shown completely. Other parameters of the

plot are v =1 and v = 0.5.

motion in the limit vg — co, v — oo keeping D = vg /2~ fixed. Howver for finite -y, the form of

the propagators is different owing to the persistence nature of the RTPs.

In this section, we have so far looked at the propagators in presence of an absorbing boundary.
Recall that our main goal is to derive the statistics of t,,, t, and t, for which these propagators
will become useful. Another essential quantity for the arcsine laws is the survival probability
Seo (0, t) which represents the probability that the RTP has not crossed x = M till duration
t starting from the position xy with velocity orientation og. In the next section, we compute

Seo (o, t) for a single RTP in one dimension.

2.2 Survival probability of the RTP

To get the survival probability S,,(zo,t), one can, in principle, integrate the propagators ob-
tained in the previous section over all final positions z [163]. However, it turns out more conve-
nient and illustrative to solve the backward master equations to get the survival probabilities.

These equations read [70]

Sy (xo,t) = 0903y S+ (o, t) — vS+ (o, t) + vS— (o, t), (2.13)

0rS_(x0,t) = —v00z,5—(z0,t) + 7S+ (z0,t) — vS— (20, t). (2.14)

The derivation of these equations are provided in appendix[8.3] In order to solve these equations,
we choose the initial condition Sy (zg,0) = 1 since the particle will surely survive the wall initially

for all xg # M. In addition, we consider the following boundary conditions: Sy (xg — —o0,t) =1
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Figure 2.4: (a) Plot of the survival probabilities Si(zo,?) given in Egs.(2.15) and (2.16) and

their comparison with simulation results (filled circles). The particle is initially chosen to be at

position = 1 with absorbing barrier at M = 3. (b) Numerical verification of the cumulative
distribution Q(M,t) in Eq. (2.33). The red solid line is the theoretical result and symbols

represent the simulation data. We have chosen t = 3, v = 2.5, v9 = 2.

and S (xg — M~,t) = 0. The first boundary condition arises due to the fact that the particle,
regardless of its initial velocity direction, will never reach x = M at any finite time ¢ if it starts
initially from zg — —oo. On the other hand if the particle starts at o = M with positive
velocity then the particle will immediately get absorbed leading to zero survival probability.

With these conditions, backward equations (2.13|) and (2.14)) can be solved to obtain [70]

_ d [ M—20\ 4 Y [n2-2 2
Si(zo,t) =1 +vodM/O dr © <7‘ —— )e I <v0 \/UOT — (M —z0)? |, (2.15)
t M — xg voe 17T ¥ y
(zo,t) =1- - (M = 2o [ L 1/v272 — (M — 20)?
S_(zo,1) /0 dr © <7’ " )UOT+ O —20) [UO( x0) 1o <v0 \/1)07- ( x0) >

vo1T — (M — x9) Y
+\/UZT+ (M—m(;)h <v0\/v(2)7'2 - (M—$0)2>] . (2.16)

Figure presents the plots of these probabilities and also their comparison with the simulation.

Due to the presence of O-functions, we notice in the figure that both S4 remains 1 till a timescale

_ M-xo
=

T This is because the RTPs, starting from zy (< M), will atleast take 7, time to reach
the barrier. After time 73, the particles can reach © = M only with positive velocity. In the
next instant, some particles flip their velocity from +wvy to — vy and avoid getting absorbed by
the wall. The remaining particles, however, do not change their velocity and get absorbed at
time 7,7. This causes sudden drop in survival probability Si(z,7;") as also seen in Fig. .
However, no sudden drop occurs in S_ (o, t) since particles cannot reach the barrier at 7,~ with
—vp velocity. But, since the overall number of particles decreases, S_(xg, t) also starts decreasing

from value 1 after time 7, but continuously.

Finally, in the limit ¥ — oo and vy — oo limit keeping v3/(27y) = D fixed, we use the asymptotic
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Figure 2.5: A typical trajectory of a RTP starting from the origin reaches the position (M — ¢)
at time t,,. In the remaining time (¢ — t,,), the RTP, starting from (M — €), does not hit the
x = M wall again. The trajectory is decomposed into two parts, from 0 to t,, (red part) and

from t,,, to t (blue part).

form of the Bessel functions I,,(z) ~ ¢*/v/27z and plug it in Eqgs. (2.15) and (2.16]) to get

(v§/2v)=D

ef(M_:UO) here, erf(z) 2 /zd —u? (2.17)
r where, erf(z) = — we . .
Y00, vo—+00 V4Dt ’ V7 Jo

which represents the survival probability of a Brownian particle [163].

Si (SCQ, t)

2.3 Joint probability distribution P(M,t,,,t) of M and t,,

We now use the propagators and survival probabilities derived in the previous sections to calcu-
late the joint distribution P(M,t,,,t) of the maximum M and time ¢,, at which this maximum
is attained within the time interval [0,¢]. For this, we decompose the trajectory {x(7)} with
0 <7 <t in two parts (see Figure [2.5)): (i) the first part is from [0, ¢,,] and (ii) the second part
from [t,,,t] . Let us now look at the contributions of each part to the distribution P (M, t,,,1t).
In the part (i), the particle, starting from the origin with direction o(t = 0) = 09, reaches
x = M at time t,, without crossing x = M at any earlier time. The probability weight to
P(M,t,,,t) in this part is just the propagator P, (M, t,,]0,00) to reach = M at time t,, with
orientation o(t,,) = oy, in presence of an absorbing wall at M. The absorbtion wall ensures
that the particle has not crossed M at any earlier time. In part (ii), the particle remains below
M in the interval (t — t,,,) such that it was at x = M at time t,, with orientation o,,. Hence,
the weight to P(M,t,,,t) from this part is given by the probability Sy, (M,t — t,,) to survive
M till time (t — t,,,) given that it was initially at x = M with orientation oy,. Now, the RTP
model is a Markov process in (z,0) variables. This implies that the two parts are statistically

independent. However, calculations in Eqs. (2.5H2.8) show that the quantities Py, (x,t,|0,00)
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and Sy, (z,t — t,,) are exactly zero at * = M for some values of og and o,,. To circumvent
this problem, we follow a technique from [140] where the propagators and survival probability
are instead calculated at x = (M — ¢€) using which we compute the distribution of the required
physical observable (which in our case is the joint distribution of M and t,,). Finally, we take
the € — 0T limit. Therefore, we calculate P, (M —¢, t,,]0,0,00) and Sy, (M —¢,t—t,,) for small
e. Furthermore, we take op = 1 with equal probability. The joint distribution P (M, t,,,t) then

reads

P(M, ty, 1) = lim Py (M — €,,,|0)SL (M — €,t — ty,) + p— (M — €,t,,|0)S_(M — €,t — t,,)
o e—0 Z(E) ’
(2.18)

for 0 < M < vt and 0 < t,,, < t where Z(e, t) is a normalization factor and py (M —€,t,,[0,0) =
%[Pi(M —€,tm|0,+) + P (M — €,t,,]0, —)]. Inserting the propagators from Egs. ([2.5))-(2.8))
and the survival probabilities from Eqs.(2.15) and (2.16]), we find

S_ (M —e,t —ty) O (t —ty) h(t —tm) + O (),
e h(t) = e [Io(yt) + Ii(vt)], (2.19)
Sy (M —e,t —ty,) = ~—h(t —t,) + O(?),

(20
d
p+(M — €,t,|0) = — [©(votm — M) g(M,tm)] + O (),
¢ d where, (2.20)
P (M = €,tm]0) = — L2 [O(vgtm — M)g(M, tm)] + O(e2),
vo dM

B t—M vy
M. = 10 (2 So2e2 — a2 P (L Je2e2 — M2 | 2.21
g( y ) € [ 0 <UO Ch) + vot + M 1 0 Vo ( )

Here h(t) can be interpreted as the probability that the RTP, starting from the origin, has not
crossed the origin till time ¢. Plugging these expansions in Eq. gives the joint distribution
P(M,t,,,t). However, the above derivation is valid only for 0 < ¢, < t. On the other hand, we
anticipate non-zero contributions to P(M,t,,t) for t,, = 0 and t,,, = ¢t due to the persistence

nature of the particle. Let us now calculate these contributions.

Note that t,;, = 0 contribution arises from those events for which the RTP, starting with —uvq
velocity, remains in the negative side till time ¢. The probability of such events is h(t)/2 (the
factor 1/2 comes due to the symmetric inital condition). Moreover, the maximum distance then

is M = 0. Therefore, the joint distribution for such events is

P(M, b, 1) = 2 5(tm) 5(0) (2.22)
contribution from paths with ¢,,=0
On the other hand the contributions to ¢,, =t event come from trajectories which starting from

the origin reach the maximum displacement M at time t,, = t. The contribution of these paths
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to the joint distribution P (M, t,,,t) is given by

[Py (M, 1[0, +,0) + Py (M, t0,—,0)]
; :

P(M, tm,t) = §(tm — ) (2.23)
~—_—

contribution from paths with ¢,,=t

where

[P+ (M.£]0+) J2FP+(M’t|0’7)] is the probability density to find the particle at time ¢ in position

M. Inserting the explicit forms of these propagators from Eqgs. (2.6) and ({2.8]), respectively, we

get
1 dZ(M t
P(M, tpn, t) St — 1) & [T, g, 1) — L0 70 E)
S 2 dM
contribution from paths with ¢,,=t
d
= — 7 1@t = M) g(M. )], (2.24)

where g(M,t) is given in Eq. (2.21). We now have all possible contributions to P(M,ty,,t).

Adding all these contributions, we get

Pt ) =008 tm) — 205 0t M) o, ) (2.25)
2.25
e Zt g Ot~ Mg )

where h(t) and g(M,t) are given in Eqgs. (2.19) and (2.21]). The only task left now is to calculate

the factor Z(e) which is fixed from the normalisation condition

t vot
/ dt, / dAM P(M, by, 1) = 1. (2.26)
0 0

The integration of the first two terms in Eq. (2.25)) is straightforward and we find both contri-
butions give h(t)/2, i.e.

Contribution from t vot h(t h(t
= / dtm/ dM(Q)é(M)é(tm) = (2) (2.27)
first /second term 0 0

Similarly, for the third term, we find

Contribution from

e /t (=t [ anr =L e Jg(M, 1)
=g [ttt [ a0 Ot~ M)t
the third term 2v0 Z(€) Jo 0 am

€

~ 2 200 2[1 — h(t)). (2.28)

In moving to the second line, we have used the identity ’yfot dt’h(t — t"h(t') = 2[1 — h(t)] (see
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Figure 2.6: Plot of Pys(tm,t) in Eq. (2.34) and its comparison with numerical simulations for
vg =1, v = 1.5 and t = 5. The solid orange line is the analytic result and the black dots are

obtained in simulations. The inset shows the delta functions at ¢,, = 0 and ¢,, = t.

appendix for the proof). Substituting all these contributions in Eq. (2.26]), we get Z(e) = 2.
Then the final form of P(M,t,,,t) follows from Eq. (2.25) to be
h( 6(tm — 1) + 7 h(t — tm) d[O(votm — M) g(M, tr)]

)
P(M, ty, 1) == 6(M)5 (t) - ; dM S (229)

To summarise, we have calculated the joint distribution of M and t,, for the case when the
particle chooses o(0) = +1 initially with equal probability, i.e. a; = a_ = 1/2. Although we
have presented our calculations for the symmetric initial condition, it can be easily extended to
the asymmteric initial condition also where a4 # a_. Since the derivation for asymmetric case is
a straightforward generalisation of Eq. , we have provided this derivation in appendix
In what follows, use the joint distribution P (M, t,,,t) to compute the marginal distributions of

M and t,,.

2.3.1 Marginal probability distribution of M

We first integrate out the ¢, variable from the joint distribution in Eq. (2.29) to get the marginal
distribution Py (M, t) for M:

t
P(M,t):/ dty, P(M' tpm,t)
0

= hét)a(M) — %% [©(vot — M) g(M, t)] (2.30)
_ g 0 dtmh(t tm)% [O(votm — M) g(M, tm)].
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It turns out more convenient to compute the cumulative probability Q(M,t) = fOM dM' Py (M’ t).
Plugging P(M,t) from Eq. (2.30) in this formula, we get the following terms:

M M
% /0 M’ d]‘\;, [O(vot — M) g(M',1)] = % (Ot —2') g(M'1)] |
- g(M,t) h(t)
= 0 (vt — M) L2 - 2 (2.31)

Y M / ¢ d
2/0 aM /0 tah(t = tm) ~ 7 (Ot — M) g(M, t)]

-1 bt — ) [0 (volon — M) g (M, t) — h(tn)],

2 0
= ;/0 dtm® (voty — M) h(t —tm)g (M, ty) — [1 = h(t)].

(2.32)

To perform algebraic simplifications in Eqgs. (2.31) and (2.32), we have used the relations

g(0,t) = h(t) and v f(f dt'h(t — t')h(t") = 2[1 — h(t)]. After these simplifications, the cumulative

probability reads
t
QUM 1) =1 — %g(M,t)@(vot _ M) — ;/ dt Ot — M) h(t— ) g(M,¢),  (2.33)
0

where h(t) and g(M,t) are given in Egs. (2.19)) and (2.21). In Fig. , we have compared our

theoretical cumulative distribution Q(M,t) against numerical simulation and we observe nice
agreement. Note that the discontinuity at M = 0 and M = vgt appear due to the presence of
delta functions in the corresponding probability distribution function Pys(M,t) in Eq. .
Finally, we remark that the cumulative probability Q(M,t) represents simply the survival prob-
ability S(0,t) = [S4+(0,t) + S_(0,t)] /2 where S4(0,t) are given in Egs. (2.15) and (2.16). Our
result in Eq. is consistent with this expression of S(0,¢).
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2.3.2 Marginal probability distribution of ¢,,

We now use the joint distribution P(M,t,,,t) in Eq. (2.29) to get the marginal distribution

Pys(tm, t) of t,,. Performing integration over M, we get

vot
Pu(tim,t) :/ dM P(M,tp,,t),
0

_ /Ovo M h(;)(s(M)(S(tm) B 5<tm — t) +27 h(t _ tm) diM [@('U(Jtm _ M) g(M’ tm)] ,
= O [500) 400t — )] + Lt 1), (2.34)

Fig. shows the comparison of Pys(t,,,t) with the numerics. We observe an excellent agreement
between them. Contrary to the Brownian motion [see Eq. ], we find that the distribution
Pyy(tm,t) for RTP possesses two delta-function terms at ¢, = 0 and t,, = t. Below we argue
that these terms arise due to the persistent nature of the RTPs. However, for v — oo, we find
h(t) ~ \/%vt Inserting this form in Eq. , the delta-function terms vanish and the non-delta
function part converges to the result for Brownian motion in Eq. .

Let us now understand various terms in Pys(ty,,t). The term proportional to d(¢,,) gets con-
tributions from those trajectories for which particle, starting from the origin with —vg, stays
in the negative side within the interval [0,¢]. The probability of such trajectories is just the
survival probability h(¢)/2. Similarly, the term proportional to §(¢,, —t) gets contributions from
those trajectories which attain their maxima at the final time ¢. Interestingly, the probability
of these events is also proportional to the survival probability h(t). Heuristically, this can be
understood by shifting the origin from z = 0 to the position of the maxima x = M for every
trajectory {z(7); 0 < 7 <t} before performing the integration over M. Under the transforma-
tions T = M —z, T =t — 7 and & = o, the particle remains above the (new) origin throughout
the duration [0,¢]. Path probabilities for the original process and the transformed process are
exactly identical which implies that their survival probabilities are also same. As a result the

survival probability of the transformed trajectories is exactly h(t)/2. This gives rise to the
prefactor h(t)/2 accompanying 6(t,, — t) term in Eq. (2.34).

We next turn to the non-delta function part. As clear from Eq. , this term is proportional
to the product of h(t,,) and h(t—t,,), which are survival probabilities in the first and second du-
rations t,, and t—t,,, respectively. To understand this form, we once again shift the origin to the
position of the maxima. For the first part of the [0, ¢,,], we consider the variable transformations
Z=M -z, T=t,,— 7 while for second part [t,,,t], we consider z = M —x, T =T —t,,. Under

these transformations, once again, we find the contribution from each part is proportional to

31



t

Figure 2.7: Plot of Pg(t,,t) in Eq. (2.56) and its comparison with numerical simulations. The
solid blue line is the analytic result and the black dots are the simulation data. Parameters
chosen are vg =, v =1 and ¢t = 5. Inset shows the delta functions at ¢, = 0 and ¢, = t for the

same values of parameters.

the corresponding survival probabilities. And since the motion is Markovian in (x, o) variables,

the contributions from two parts appear as a product of their survival probabilities.

Recall that the distribution Py (¢,,t) in Eq. is derived for symmetric initial condition
whereby particle initially chooses +vy with equal probability (a4 = a— = 1/2). However, as
mentioned before, it is easy to generalise this derivation for the asymmetric initial condition
(ayr # a_) also. We refer to appendix for a detailed derivation for the asymmetric case.
Interestingly, in contrast to the symmetric case, we find that the distribution of ¢,, for a4 # a_

is asymmetric about ¢, = t/2.

2.4 The residence time distribution Pg(¢,,t)

In the previous sections, we studied the statistics of M and t,, for a one dimensional run and
tumble particle. Due to the persistence motion, we saw that the distribution of ¢,, in Eq.
possesses delta functions at ¢,, = 0 and ¢, = t, which are otherwise not seen for Brownian
motion. Importantly, for Brownian motion, Lévy proved that the distribution of t,, is exactly
same as that of the residence time ¢, which is defined as ¢, = fot d7O (z(7)). In this section,
we proceed to study the statistics of ¢, for RTP and check if the distribution of ¢, is also given
by Eq. . In particular, we deine the distribution P]if(tr,t,wo) of t, for a given evolution
time ¢ when the RTP starts from the position zg with velocity 4vy. For this, it turns out useful
to take the Laplace transform Q*(p, zo,t) = [;° dt, e P P (t,,t,¢) of the distributions with

respect to ¢, (— p). Following the Feynman-Kac formalism [121,123}/124], we find that these
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Laplace transforms satisfy the backward master equations

6tQ+(p> Zo, t) = anon-i_(pa Zo, t) - 7Q+(p7 Zo, t) + FYQ_ (pa Zo, t) - p®($0)Q+ (pa zo, t)? (235)

Q™ (p, 0, t) = —v002,Q ™ (P, 20, t) + ¥QT (p, w0, t) — ¥Q™ (p, z0, 1) — PO(20)Q~ (p, To, t).
(2.36)

We have rigorously derived these equations in appendix [8.6] In order to solve them, we use the

following initial and boundary conditions:

Q*(p,x0,t =0) =1, (2.37)
QF(p,xg — —00,t) = 1, (2.38)
Q* (p, w0 — +00,t) = e 7. (2.39)

Let us now try to understand these conditions. If the total duration ¢ = 0, then the residence
time ¢, = 0 regardless of the initial orientation of the particle. This means that the distributions
Pj%t(tr,t = 0,z9) = 6(t,) which in terms of the Laplace transform translate to Eq. .
Similarly if the initial postion zg — —oo, then the particle stays in the negative side of the
origin for all finite ¢. This means that ¢, = 0 and Q*(p,zo — —o00,t) = 1 as indicated in Eq.
. The same reasoning gives t,, = t for £y — oo which then leads to the boundary condition
2.39).

To solve Eqs. ([2.35) and (2.36]), we take another Laplace transformation with respect to
t (— s) as QF(p,xo,s) = fooo dte™*'Q* (p, xg,t). Rewriting the backward equations in terms

of Qi(p,$07 5)7 we get

[anxo -7 p@(l’o) - S} Q+ (pvl‘Oa 3) = _IVQ_ (p7m0> S) - 17 (240)

[an’to + v +p@($0) + 3} Q_ (pvx(]v 8) = ’YQJF (p7 zo, S) + 1 (241)

The boundary conditions (2.38) and (2.39) can also be translated in terms of QF (p, xo, s) as

Q*(p,zg — —o0,5) = % and Q*(p,z9 — 00,5) = ﬁ. Let us first solve the Eqs. and

(2.41)) for xp > 0 region where we put ©(xg) = 1. We obtain

[anxo -y —P— 8] Q+ (p7$07 S) = 77/@_ (p’ Zo, S) - 17 (242)

(0002 + 7 + 1+ 8] Q™ (D, 0,5) = ¥Q™ (p, 0, 5) + 1. (2.43)
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Changing variable Q% (p, zg, s) = % + Z7F (p, x0, 5) gives

[’anmo —Y—P— 3] Z+ (pa Zo, S) = _FYZ_ (pa Zo, S) ) (244)
[000e + v + P+ 8] Z7 (p, %0, 8) =727 (p, 20, 5) - (2.45)
The boundary condition of Q* (p, kg — 00,8+ p) = ﬁ now becomes Zi(p, xg — —00,5) = 0.

Proceeding similarly as done in appendix we find that the solutions are given by

~ ]_ _Xp(s)xo

* =——+A v 2.46
Q (pvx(]vs) S+p+ (s,p)e o, ( )
~ 1 A(s, _Ap(s)zg
Q_ (p,fL'(],S) = (8 p) (8+p+’y+)\p)6 v, (247)

_s—l-p

where Ay(s) = /(s +p) (27 + s + p). Note that these solutions are derived for 2o > 0. However,

for zp < 0 also, one can put O(xp) = 0 in Egs. (2.40) and (2.41)) and proceed similarly to yield

<L 1 Ao (s)zg
Q (pa 'TO’S) = g +B(S,p)6 v, (248)
1 B(S,p) Ag(s)zg

Q- (p,xo,8) = — + (s+v—Xo(s)e v . (2.49)

V)

Y

Next to evaluate the constants A(s,p) and B(s, p) in the above expressions, we use the continuity

of QF (p, xo, s) at zy = 0 which then gives

O po(s)—9)
AP = T Dt M) F A (2:50)
B(s,p) = — PlsFptp(s)) (2.51)

(s + )P+ Ao(s) + Ap(s))’

Finally plugging these forms in Eqs. (2.46)-(2.49)), we obtain the Laplace transforms Q+(p, x0, S)

for arbitrary zg. However, we are interested in computing the statistics of residence time when

the particle starts from the origin. Therefore, we provide below the expresions of Q+(p,:n0, s)

for x¢g = O:
- 1 X\ AoA
Tp,0,8) =—— 1+ = - L — P ) 2.52
@ (p,0,5) 2’7< + s s+p  s(s+p) 252
~_ 1 Ao A Ao
0,8)=—— (1 - =4+ 2 — P_). 2.53
Q" (p.0,9) 2v< s s+p s(s-HD)) ( )

Now if the particle initially chooses +vy with equal probability 1/2, then the total probability is

P (tr )+ Py (trt)
2

given by Pr(t,,t) = . Then the corresponding Laplace transform is Q(p,0, s) =
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Jo© dtest f(f dte Pir Pp(t,,t) = Q+(p’0’s)gQ_(p’0’s). From Eqs. (2.52)) and (2.53)), it then follows

- QF(p,0,5) +Q (s,0,p) _ 1 Xo($)Ap(5)
- =—— (1= . 2.54
To get the distribution Pg(t,,t), we consider the inverse Laplace transformation
> —pt P R—— Ap(s)
dty € [5(t,) + e~ e " {To(oty) + T (at)}] = S5 (2.55)
0

and use this in Eq. (2.54). This results in the following explicit expression for the distribution
of t, spent by a RTP, starting form the origin, on the positive side over the duration ¢ for the

symmetric initial condition:

P (tr,t) = h(;) [5(75,,) 4ot — t)} + %h(tr)h(t —t), (2.56)

where h(t) is given in Eq. . Note that just like in Brownian motion, for RTP also, the
distribution of ¢, is exactly same as that of t,, in Eq. . However, due to the persistence
motion, the distribution of ¢, gets delta-function contributions at ¢, = 0 and ¢, = ¢. Physically,
these contributions arise from those trajectories which starting from the origin stay either to
the —ve side or the +ve side throughout the entire duration of evolution ¢ and probabilities of
such events are h(t)/2 each. The analytic expression in Eq. has been compared with

simulation data in Figure where we observe very good agreement.

Once again, we emphasize that the distribution of ¢, in Eq. is derived for symmetric
initial condition, i.e., RTP initially chooses +vy with equal probability 1/2. However, it is easy
to extend this derivation for asymmetric initial condition also. We refer the readers to appendix
for the details on this calculations. For the asymmetric case, we find that while the non-delta
function part is exactly same as in the symmetric case in Eq. , the coefficients of the delta
function parts depend on a4. This dependence can be understood in the same way as for the

symmetric case.

2.5 Last passage time distribution Py (t,,t)

We saw that for a RTP with symmetric initial condition, the distributions of time ¢,, to reach
maxima and the residence time ¢, are exactly same. We now look at the distribution Pr(ts,t)
of the time ¢, at which the RTP, starting from the origin, crosses the origin for the last time.

From Fig. it is clear that one can break the trajectory from [0,¢] in two parts: (i) [0, ]
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Figure 2.8: Plot of Pp(ts,t) in Eq. (2.60) and its comparison with numerical simulations for
v =15, vg = 1 and t = 5. The solid red line is the analytic result and the black dots are

simulation data. The inset shows the delta function at t, = 0.

part and (ii) [tg,t] part. In first part, the particle reaches the origin at time ¢, with orientation
o¢ given that it was initially at the origin with orientation og. The probability of such events
is Py,(0,t¢]0, 09)vodt, where the notation Py, (0,t¢]0,00) denotes the aforementioned probability
distribution in an infinite line. In second part, the particle, starting from the origin, does not
return the origin in the remaining interval (¢ —t;); the probability of which is h(t—t;). Therefore,

we have

Py(ty, t)dte = > vodtePyy (0,160, 00) h(t — ty). (2.57)

op=%

To write the distribution in infinite line, we use the following results of [70,[114]:

ot —7te
(é)+7€

Py, (0,t|0,00) = 200 . [To(vte) + I (vte)], (2.58)
_ 6(te) v h(te)
T 2 + 4oy (2:59)

where h(t) is given in Eq. (2.19). Inserting this expression in Eq. (2.57)), we get
Py(te,t) = 8(t)h(t) + Sh(toh (t—t0). (2.60)

Note that the result in Eq. is independent of oy. Therefore, Eq. also holds for
asymmetric initial condition. In Figure [2.8] we compare the analytic expression with numerical
simulations. We observe nice agreement between them. Finally, we observe that distribu-
tion Pr(tg,t) is almost same as the other two distributions Pys(t,,t) and Pr(t,,t) except that

Pr(tg,t) has only one delta function at ¢, = 0. Presence of this d-function at ¢, = 0 stems
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from the same reasons with which they appear in the cases of t,, and t,.. This represents the
contribution from those trajectories which starting from the origin, go in either 4+ve or —ve

direction and stays in that region for the entire duration of evolution ¢.

2.6 Summary

In this chapter, we examined the statistics of the following three quantities for a one dimensional
RTP starting from the origin: (i) the time t,, taken to achieve the maximum displacement M,
(ii) the residence time ¢, on the positive (or equivalently negative) semi-axis and (iii) the last
time t; that the particle crosses the origin. For Brownian motion, the distributions of these
three quantities turn out to be exactly same as shown by P. Lévy in |120]. Herein, we studied
their statistics for a single RTP. By focusing on a simple run and tumble particle, our study
illustrated the effect of persistence on the distributions of these quantities. We find that all
three distributions possess the delta-function part and a non-delta function part. While for ¢,
and t,, the distribution has two delta functions at ¢,, = 0 and t¢,, = ¢t (and same for ¢,), one
finds only one delta function at t; = 0 for the last passage time. Moreover, if the RTP initially
chooses +vg velocity with equal probability 1/2, then the non-delta function part in all three
cases are exactly same. For this case, exact expressions of these three distributions are given
in Eq. for t,,, in Eq. for ¢, and in Eq. for t;. On the other hand, if +wvg
velocities are initially chosen with probability ai where ay. # a— # 1/2, then the non-delta

function parts are also different.

Interestingly it turns out that although we have considered a simple one dimensional run and
tumble particle in this chapter, recent studies have revealed that our results on t,, and ¢, in Egs.
and respectively are true even for d-dimensional run and tumble motion [92}93].
While for t,,, this can be analytically proved, it remains still an open problem to prove this for
t,. Furthermore, analysing arcsine laws for other models of active particles like active Brownian
particle and active Ornstein-Uhlenbeck particle are interesting future directions. At the end,
we remark that some of our results may be verified experimentally using E. Coli in an isotropic
medium. Especially, our result for ¢,, in Eq. is valid even in higher dimensions. Therefore,
it would be interesting to analyze the space-time trajectories of an E. Coli and compare the

results on extreme-value statistics with our analytical results.
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Chapter 3

Convex hull of a run and tumble
particle in two dimensions

In the previous chapter, one of the problems that we considered was the statistics of the maxi-
mum displacement M of the 1-d RTP and the time t,, taken to reach this maximum displace-
ment. Interestingly, the knowledge of these two quantities play a pertinent role in calculating the
statistical properties of the convex hull of a general 2-d stochastic process. To define a convex
hull, let us assume that (77,7, ..., ¥) represent the position of a particle in two dimensions at
various instances of time. Then, convex hull refers to the smallest convex polygon that encloses
all these points [125H127]. We refer to Figure for a schematic illustration of a convex hull.
Geometrically, it gives a measure of the spatial extent over which the particle has moved in a
given duration of time. As such, convex hull has been useful in ecology in estimating the home-
range size of foraging animals from their locational data [164]. In the random walk literature, the
mean perimeter and the mean area of the convex hull were found to have connections with the
subject of the extreme-value statistics (see [161] for a review and also discussion below) which
has lead to the computation of these quantities for a wide variety of processes [165H177]. For a
two dimensional RTP also, this connection was instrumental in computing the mean perimeter
exactly in [178]. Here, we present a study on its mean area. Our aim is to demonstrate how it
gets modified due to the persistence motion of the RTP. From an experimental point of view,
since the RTP is an emblematic model for the bacterial motion [29,[30], we expect our study
to be useful in estimating the spatial extent over which the bacteria move during their (food)
search activities. This, in turn, may find application in designing and demarcating their mobility

territory.

The rest of this chapter is organised as follows: We first discuss precise run and tumble model in
two dimensions in Sec. Then, in Sec. we briefly discuss the central idea for computing

the mean area of the convex hull for a general two dimensional stochastic process. We then use
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Figure 3.1: Panel (a) shows a typical trajectory of a RTP in two dimensions with n = 6 number
of runs. The corresponding convex hull is shown in red in panel (b). Here g; = (x;,y;) is the

increment in the position in i-th run.

this idea to demonstrate the mean area for RTP in Secs. [3.3] and 3.4l Finally, we summarise in

Sec.

3.1 Model

We first discuss the run and tumble model in two dimensions and introduce the notations that
will be useful in the subsequent sections. Starting from the origin, the particle chooses a random
direction ¢ measured with respect to the z-axis and drawn uniformly between [0, 27). It then
performs a ballistic run along this direction for a random time 7 drawn from the exponential
distribution p(7) = ve™77. After this, the particle tumbles instantaneously to choose another
direction ¢2 uniformly between [0, 27) for the next run. The next run lasts for another random
time 7o drawn independently from p(7). In this way, the particle moves in a series of runs and

tumbles. During the i-th run, the increment g; = (x;,y;) in the position of the RTP is given by

x; = voT; cos(@;), (3.1)

Yi = voTi sin(e;). (3.2)

Then, the position of the RTP at the end of the i-th run reads

Xi = X1+, (3.3)

Yi = }/i—l + Yi, (34)
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where i = 1,2, .... Note that the particle is initially located at the origin which gives (Xo, Yp) =
(0,0). In this chapter, we consider this model in two different statistical ensembles depending
on whether (i) the number of tumbles n or (ii) the total observation time ¢ is fixed. In case (i),
the number of tumbles n is held fixed but the total observation time ¢ varies from realisation
to realisation. On the other hand, for case (ii), the number of tumbles fluctuates from sample
to sample and we stop the process once the total observation time ¢ has elapsed. We will refer
to (i) as fixed-n ensemble and (ii) as fixed-t ensemble. For these two ensembles, we analytically
compute the mean area by using the relevant connection to the extreme-value statistics. Below,
we briefly discuss the key idea to compute the mean area of the convex hull for a general two

dimensional stochastic process. A more rigorous account of this idea can be found in [161].

3.2 Mean area of the convex hull

Consider a closed curve C in two dimensions parametrised by points {(X(s), Y(s))} on its bound-
ary where s represents the arc length. Given this curve C, its maximum extension M(6) along
the direction 6 (with respect to the z-axis) is given by

M(0) = max [X(s) cosf + Y(s)sinf] . (3.5)

seC

According to Cauchy’s formulae, the perimeter L and the area A of the domain bounded by C

are given in terms of M(6) as [179]

L= /27r do M(6), (3.6)
0
2T
A= ;/0 a0 [M2(6) — (M(9))*] (3.7)

where M'(0) = dj\;le(a). To proceed further, we consider a two dimensional discrete time process

of n time-steps whose positions at successive times are denoted by {(X;,Y;)} with 1 < i < n.
Moreover, the curve C now represents the convex hull for the points {(X;,Y;)}. As evident from
Eq. , one then needs to construct the support function M(6) in order to compute the area
of the convex hull C. Now to construct this support function, one needs the knowledge of the
points {(X(s),Y(s))} which is a difficult task. Fortunately, as shown in [127,/161], M () also
represents the maximum of the projections of all {(X;,Y;)} along the direction 6. The support
function then becomes

M(0) = max [X;cosf + Y;sinf], (3.8)

1<i<n

40



and the mean area of the convex hull for this n-stepped stochastic process is given by

27
(An) :% /0 4o [(M2(0)) = (M'(0))*)] . (3.9)

To construct M (), we assume that the maximum in Eq. (3.8) is reached at k* step which then

gives

M(0) = Xjx cos + Vi« sin 6, (3.10)

M (0) = — X} sin @ + Yy« cos 6. (3.11)

These two equations in conjunction with Eq. give the mean area of the convex hull for a
general discrete-time stochastic process. However, for isotropic processes, we can further simplify
this formula by noting that both (M?(#)) and (M'%(6)) are independent of the direction 6. We
then just consider the direction 6 = 0 and rewrite Eq. as

(An) =7 [(M7) = (Y2)(n)] - (3.12)

Here M,, = max[Xj, X, ..., X;;] is the maximum displacement along the z-axis achieved at k*
time-step and Yy« is the corresponding abscissa. Eq. will be instrumental in calculating
the mean area in the fixed-n ensemble. While Eq. has been obtained for discrete time
isotropic stochastic process, it is straightforward to extend this analysis for continuous time case

also. For this case, the mean area is given by [161]

(A(®) =7 [(M2(t)) — (Y (tm)*) ()] , (3.13)

where M (t) = max[{X(7)}, V 0 < 7 < t] is the maxima along x-axis, t,, is the time at which
this maximum is reached and Y (¢,,) is the corresponding y-coordinate. Once again Eq.
will be useful in computing the mean area for the fixed-t ensemble. In the following sections, we
proceed to calculate the mean area of the convex hull for a RTP in the fixed-n and the fixed-t

ensembles separately.

3.3 Mean area for fixed-n ensemble

We first consider the mean area in the fixed-n ensemble. As clear from Eq. (3.12]), this problem
reduces to the computation of the statistics of the maximum M,, of the x-coordinate and the

corresponding y-coordinate Y« (n) where k* denotes the time-step at which M, is achieved. To
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Figure 3.2: Log-Log plot of the mean area of the convex hull of a RTP in fixed-n ensemble
(left) and fixed-t ensemble (right). We have also performed a comparison with the numerics.
The corresponding analytic expressions are derived in Eqgs. (3.35)) and (3.59) respectively. For

both plots, parameters chosen are vg = 1, v = 1.5.

this end, we calculate the joint probability distribution p(x;, y;, 7;) of the increments (z;,y;) and
the run duration 7;. Since, the RTP moves ballistically during i-th run, one has 1:22 + y? = U(Q)TE
with the run time 7; drawn from the exponential distribution. Hence the joint probability

distribution p(x,y, ) of the increments x; = x, y; = y and 7; = 7 is given by

e
p@,y,7) = —— 5(vg? — 2% — 7). (3.14)

The factor 1/7 is the normalisation constant. Marginalising p(z,y,7) over 7 gives the joint

distribution of the increments as

Y ) 2 2)
p(z,y) = ————F——— exp| ——Vz"+ 9y~ |. 3.15
( ) 27(’00 \ .’172 + @/2 < Vo ( )

From Egs. (3.3)) and (3.4), we see that the run and tumble motion with fixed number of tumbles
is equivalent to a random walker in two dimensions with increments (z,y) drawn from the joint
distribution p(x,y) in Eq. (3.15]). In what follows, we use this mapping to an isotropic random

walker in two dimensions to compute the quantities (M?2) and (Y2 )(n) and then insert them in

Eq. (3.12) to calculate the mean area.

3.3.1 Computation of (M?)

We first compute the second moment of the maximum M,, along z-axis of the random walker
whose positions at different time steps are denoted by { X¢, X1, Xa,...X,,}. These positions evolve
according to the update rule given in Eq. with increments {x;} drawn independently from
the distribution p;(z). This probability distribution is obtained by integrating p(z,y) in Eq.
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(B-15) over y:

@ = [ dy vy = K (’Y'x’> | (3.16)

—00 Vo Vo

Here Ky(z) denotes the zeroth order modified Bessel function of second kind. Note that p;(x)
is continuous and symmetric function of x. Therefore, the auxillary random walker is char-
acterised by independent and identical jump increments that are drawn from continuous and
symmetric distribution. This enables us to use the Pollaczek-Spitzer formula which specifies
the maximum of a random walker with independent and identical increments drawn from
continuous and symmetric distribution [180]. This formula gives the cumulative probability

Qn(M) = Prob[M,, < M] of the maximum M,, as [180}|181]

00 00 00 \
Zz”(e_AMﬂ = Zz"/ dMe_’\MQ;(M) = (2 ) , (3.17)
n=0 n=0 0 1—2
where 0 < z <1 and A > 0 and the function ¢(z,\) is defined as
A% In(l — 2pi(§))

Here p;(&) is the Fourier transform of p;(x) which from Eq. (3.16) can be written as

. > ; 1 . Vo

p1(&) = / dr €%%py (1) = ——, with 6 = — (3.19)
oo 1+ 262 Y

Finally, expanding Eq. (3.17)) in A\, we see that the generating functions of the first two moments

of M, are [182]

h(2) = Zoz"(Mn) = 7T(11_Z) /OOO ‘gg In <1_1“7’_plf)) , (3.20)

2z

e (3.21)

W (z) = i S(MZ) = (1= 2) [hO(2)] S
n=0

Next, we expand the right hand side of Eq. (3.21)) in 2 and the coefficient of 22 term gives (M?2).

Interestingly, (M?2) can be expressed in terms of (M,,) and the variance of jumps as

= na?
(M) = D (M) [(Mn—m) = (Mn—m—1)] + —5— (3.22)
m=1

Hence we need the expression of mean (M) to obtain the second moment (M?). This can, in

principle, be done by differentiating the right hand side of Eq. (3.20) with respect to z. This
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has been computed in [178| exactly and we use this expression here as

; - E:g (3.23)

From this expression, it then follows

(Mp—m) = (Mp—m-1) ° F(n:g:), n> 1. (3.24)
37 T (57)
which we plug in Eq. to obtain
(M?) = 2”52 <‘jr” + n) , n>1 (3.25)
where the quantity S, is defined as
n—1 n—m
Sy = i > %(Mmy (3.26)
o =T (=55)
Coan[ TR G-l TeR) reR)] o
vr | D(z-1+[5") T -13) (%) T(E)
It [T+ mt)  TE+15)
P [T ) T g 0

For large n, one can simplify this expression as
Sy, ~mn, asn— oo. (3.28)

The details of this calculation are given in appendix To summarise, we have obtained the

exact form of (M?2) which will be useful to compute the mean area in Eq. (3.12)).

3.3.2 Computation of (Y2)(n)

We now calculate the second quantity (Y;2)(n) required to compute the mean area in Eq.
(3.12]). For this, we first construct the grand joint distribution &(M,Y, k*|n) of the maximum
M, = M along x-axis reached at k* time-step with the corresponding displacement along y-axis
being Yy« = Y. We then use it to calculate the second moment of Y. Formally, this grand joint

distribution can be written as

‘@(M7 Y, k*|n) = /d} d?g Zy» (Ma Y, {xz}v{yl H m]ay] (329)
7j=1
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Figure 3.3: Plot of ay, vs. n (left panel) and «(t) vs. t (right panel) for two different values

of v and vy = 1 and their comparison with the numerics. The corresponding expressions of «,,

and «a(t) are, respectively, given in Egs. (3.38) and (3.63)).

with the short-hand notation dz = dx1dws...dz, and dy = dyidys...dy,. Also, the function
Zix (M, Y, {x;},{yi}) is defined as

Zp (MY fzib {yi}) = | [ @M —X))| 6 (M —Xp) 6(Y V). (3.30)
J#k*,j=0

Let us try to understand various terms appearing in Eq. (3.29). Recall that X; = 23':1 x; and
Y, = Zj’:l y; with Xo = Yy = 0. The é-functions in Eq. (3.30) then ensure that X~ = M and
Y+ =Y while ©-functions ensure that all other {X;} are below M. We then integrate over all

increments {;,y;} with appropriate probability weight [["_; p(z:, vi)-

Since, we are interested in the statistics of Y and k*, we integrate &(M,Y,k*|n) over M to

obtain the joint distribution of Y and k* as
o0
P(Y,k*|n) :/ dM P(M,Y,k*|n). (3.31)
0

Taking the Fourier transformation of this with respect to Y (— ) and performing some algebraic

simplications (see appendix , we get
P (€K |n) = qidn-ie [p2(6)]" (3.32)

where P (&, k*|n) denotes the Fourier transform of P(Y, k*|n) and p2(¢) is the Fourier transfor-

mation of the marginal distribution of y-increment and is given by

M%%«W@K¢MMFﬁ;w, (3.33)
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with @ = vg/7. The other term ¢, in Eq. is the Sparre-Andersen survival probability of
a random walker in one dimension starting from the origin and characterised by independent
and identical increments drawn from symmetric and continuous distribution |183]. It is given
by ¢, = (2:) 272" Now to calculate (Y'?), we differentiate Eq. appropriately with respect

to £ and also use the relation .. k*qu+gn—i+ = n/2 [181] to get

(Y2)(n) = (V) = L p, (3.34)

3.3.3 Mean area (4,)

We now have both quantities required to compute the mean area in Eq. (3.12). Plugging
(Y2)(n) from Eq. (3.34) along with (M?2) from Eq. (3.25)), the mean area of the convex hull of
a 2-d isotropic RTP in the fixed-n ensemble is given by

(A) = 08, n>1 (3.35)

where the term S, is given in Eq. . In Figure we have compared our analytic formula
with the numerical simulations and we find excellent agreement between them. To construct
convex hull numerically, we deploy the Andrew’s monotone chain algorithm [184] which is further
expedited with Akl’s heuristic [185]. To calculate the area, we denote the m vertices of the convex

hull as {X;,Y;}, 1 <4 < m in order of their Cartesian coordinates and use

._\

m—

(Xi — Xir1) (3.36)

l\.')\r—t

=0

with (Xo,Yp) = (Xm, Ym). Finally, we estimate the mean area using the simple sampling where
we generate 10* realisations of RTP, construct area of each of them using Eq. (3.36) and then

take the average.

One can further simplify the expression of the mean area for large n. We have shown in (3.28)
that S, ~ 7n for larger values of n and using this in Eq. (3.35]), we get

(A)Nn——8 as n — 00 (3.37)
n/ — 2,}/ . .

For better visibility of the mean area for different parameters, we define the following quantity

(3.38)
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and plot it as a function of n. From Eq. , we anticipate it to be independent of both vg
and v and also «,, should saturate to value 1 for n — oco. In Figure (left panel), we have
plotted «,, for different values of v. We observe that the simulation data for all v converge to
the analytical result and also saturate to value 1 for large n. This also provides an additional

verification of our result in Eq. (3.35).

3.4 Mean area for fixed-t ensemble

In the previous sections, we calculated the mean area in the fixed-n ensemble. Here, we look at
the RTP in the fixed-t ensemble where the total observation time ¢ is fixed while the number of
tumbles n varies from realisation to realisation. As illustrated below, the results derived for the
fixed-n ensemble before will be useful to derive the mean area for this case. The mean perimeter

of the convex hull for this case was studied in [178]. Here, we study the mean area.

Let us consider a realisation of the RTP where it encounters n tumbles. Remeber that n fluctu-
ates from sample to sample. Now after every run except the last one, the particle experiences a
tumbling event. This implies that all run times {7;} for 1 < i < n — 1 are independently drawn
from the exponential distribution p(7) = ve~7". Hence, the joint distribution p(x;, y;, 1) for the
first (n— 1) runs is still given by Eq. . However, in the last run of duration 7, the particle
is yet to experience a tumble: the probability of which is e ™. Hence, the joint distribution

for the last run is

e 1

1
plast(fnm Yn, Tn) = 5(”87—3 - :E?L - yi) = ; p({L‘n, Yn, Tn)a (3'39)

with p(zy, yn, 7n) is given by Eq. (3.14). Note that unlike in the fixed-n case, the total time ¢ is
fixed here, i.e. Y | 7; = t. Therefore, the grand joint distribution of the increments {z;}, {y;}

and n reads

P({a:}. {yi}nlt) /dn/ dr... /drni[ (xi,yi,ﬂ)](s(zn;n—t>. (3.40)

Taking Laplace transformation with respect to t (— s) gets rid of the §-function

('y+s) 2 2
- 1| v exp (=528 +
/ dt e P({%‘}v {yi},n\t) =2 H < )

0 i=1 2mvg £/ xF 4 y;

(3.41)
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Rewriting this equation as

Y+

(7+s) exp (~52 fa2 1 42)
27rv0\/a:2+y2 7

X et plat ot = 2 N T oiten
/0 dt e P({xl},{y@}, |t) 7< ) Ll;[lgs( zayz)]7 (3.42)

with gs(x,y) =

(3.43)

we perform the inverse Laplace transformation to get

P({a:}, fyi)onlt) = [ & esﬂ( v )”

F% Y \Y+ s Py

Hgs(%A yz)] , (3.44)

where I' is the Bromwich contour in the complex s plane. Now the function gs(x,y) in this
equation is positive over all (z,y) and is also normalised to unity. Hence, we can interpret it
as a probability distribution. This enables us to think of the term inside the square bracket in
Eq. as the joint distribution of the increments x; and y; of an auxillary isotropic random
walker with correlated jumps and total time steps n. Such mapping of RTP to random walk has
also been considered in [92] to study the survival probability. Here, we exploit this mapping to
compute the mean area (A(t)) of the convex hull by using the Cauchy’s formula in Eq. (3.13).
This, in turn, reduces to calculating (M?2(t)) and (Y (t,,)?)(t) which we consider below:

3.4.1 Computation of (M?(t))

Let us calculate the first quantity (M?2(t)) needed for the mean area in Eq. (3.13). Recall
that M(t) is the maximum displacement along z-direction of the RTP till duration ¢. The

joint distribution of the increments {z;} along z-direction and n is obtained by integrating

P({:c,-}, {y,},n]t) in Eq. (3.44) over all {y;}:

Px({xi}an|t) _ /;OO dy1dyo..dy, P({xi},{yi},n!t), (3.45)
s (Y [
_/F27”' 7<7+s> LHIQS( Ak (3.46)
i _ " (0 +9) . ((v+s)a]
st o= [ dyaten = K (O, (3.47)

We use this expression of P, ({xz;},n[t) to obtain the statistics of M(¢). For this, we define
Q(M,n|t) as the probability that the z-position of the RTP is smaller than M, i.e. X; < M for

1 < i < n, where X; = 22':1 xj. As done for the fixed-n ensemble, this (survival) probability
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can be formally written as

Q(M, njt) :/ dxl.../ dn Prob. [Xy < M, Xy < M, ... Xy < M,nlt], (3.48)
:/ da:l.../ dz, O(M — X1)..0(M — X,,) Pp({z:},nlt) (3.49)

After performing some straightforward calculations, the second moment (M?2(t)) turns out to

be
(M2(t)) = i/oo dM M? 9y Q(M,nlt), (3.50)

= Z/ 55 ¢ = (,YISY (MZ(n)). (3.51)

Here we have summed over all possible n and defined (M?2(n)) as
(M?2(n)) = / dM M? 9yQs(M,n),  with (3.52)
0

Qs(M,n) = /Oo dml.../oo dz, O(M — X,)..0(M — X,,) [Hgs(mi)] . (3.53)
=1

—00 —0o0

Note that gs(z) is normalised to unity and can be interpretated as the probability distribution
of x. Hence, from Eq. , we can decipher Qs(M,n) as the cumulative probability that
the maximum is below M for a random walker with n steps and independent and identical
jumps characterised by symmetric and continuous distribution gs(x). This enables us to use
the Pollaczek Spitzer formulae in Egs. and to calculate (M2(n)) (as done for the
fixed-n ensemble) [180]. Proceeding exactly as before, we get

2 ”(2) ﬁ n
(a2} = 505 (2 4m). (5.5

where S,, is given in Eq. (3.27). Substituting this form of (M2(n)) in Eq. (3.51]) and performing

the inverse Laplace transformation, we get

2 v t e +1
M=(t)) = T 14t + g )" . 3.55

3.4.2 Computation of (Y (t,,)?)(t)

We next calculate the other quantity (Y (¢,,)?)(t) for the mean area (A(t)) in Eq. (3.13]). Note

that Y (¢,,[t) is the displacement along y-direction at time t,, when the RTP achieves maximum
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along z-direction. We first notice that the maximum along z-axis will be reached at the end of
k*

1=

P({zi},{yi},n|t) in Eq. (3.44) of the random walker, we have

some compilete jum S winic 1ves m) = G- ererore, Irom € join 1stribution
plete jump, say k* which gives Y (t,,,) = Y., y;. Therefore, from the joint distributi

e = [ 5o et 2 Y () ) (3.50)

n=1

where Yy« is the y-displacement of the random walker in Eq. (3.44) at the end of k£* time step
during which maximum along z-axis is reached. Following the procedure given in sec. [3.3.2 we

get

2
Yo

(Y2)s(n) = mg (3.57)

Plugging this in Eq. (3.56|) and performing the inverse Laplace transformation and then summing

over n, we get

,UQ
(Y (tm)2) (1) = 2—;)2 (vt—1+e). (3.58)

3.4.3 Mean area (A(t))

We now have obtained both terms required for the mean area in Eq. (3.13). Substituting
(M?(t)) from Eq. (3.55) and (Y (t,,)?)(t) from Eq. (3.58) in Eq. (3.13)), we find that (A(t))

possesses the scaling form

2
v,
(AW®) = 5 5T (1), (3.59)
Y
with the scaling function J(w) is given by
J(w)=e"" i iw”'Irl (3.60)
—=T(n+2) ' '

In Figure (right panel), we have compared our analytic expression with the numerical sim-
ulation. We observe nice agreement between them. To contrast our result with that of the
Brownian motion, we look at the asymptotic forms of (A(t)) in Eq. (3.59). For large ¢, we
anticipate the number of tumbles n also to be large for which we have &, ~ mn. Using this
form gives the large-yt asymptotic form of (A(¢)). On the other hand, for small ¢, we simply

consider the first few terms of the summation in J(w). The final asymptotic expressions of
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(A(t)) are:

it 4 1

(A(t)) ~ o +O(t%), for t < v~ (3.61)
T3 1

~ 2—7015 +O0(Vt), fort >~ (3.62)

Indeed, for t > ~~!, the leading order term matches with that of the Brownian motion with
effective diffusion coefficient v3/2y [127]. However, at small times, the behaviour of (A(t)) is
quite different as indicated by the cubic (~ t3) growth. To understand this behaviour, we recall
that the minimum number of tumbles experienced by the RTP is two (counting the starting
point as a tumble). Under this circumstance, the convex hull is essentially a triangle with two
sides of length vg7 and vy(t — 7) and angle ¢ between them chosen uniformly from [0, 27). Also
note that the run time 7 is exponentially distributed, i.e. p(7) = ve~77. Then, the area is given
by A(t) = \M| whose mean grows as ~ 2 with time. Hence, even though, we recover
the Brownian motion result at large times, the short time behaviour of the mean area is rather

different. Another way to see this difference is to define the quantity

2(A(t
_HAW) s (3.63)
Y
Then, from Eq. (3.62), it follows that «(t) saturates to the value 1 as t — co. Figure (right
panel) illustrates this fact where we plot a(t) versus ¢ for two different values of v and also
compare with the numerics. For both cases, we observe excellent agreement of numerical data

with our analytic expressions. Also, in both cases, «(t) approaches the value 1. This provides

an additional verfication of our analytic formula in Eq. (3.59).

3.5 Summary

This chapter dealt with the mean area of the convex hull problem for a 2-d isotropic run and
tumble motion. Motivated by the biological applicability of the RTP model to the bacterial
motion, we computed the mean area exactly in two different statistical ensembles namely, (i)
fixed-n ensemble and (ii) fixed-t ensemble. For both cases, we saw that the effect of persistence
is sharply seen in the expression of the mean area at small and intermediate times. In fact, for
fixed-t ensemble, we saw that (A(t)), at small times, has ~ t3 scaling with time which is different
than the Brownian behaviour (linear scaling) at large times. The crossover function connecting

these two scaling regimes has been explicitly derived in Eq. (3.60)).

We end this chapter by mentioning a few open directions. While the mean area and the mean
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perimeter can be analytically calculated (thanks to their connection to the extreme-value statis-
tics), obtaining analytic results for higher moments and probability distribution is still an open
problem even for the simple Brownian motion. We believe that our work may have potential
biological applications in estimating the spatial extent over which bacteria like E. Coli move,
since they exhibit the run and tumble dynamics. Given that E. Coli inhabits the lower intestine
of warm-blooded animals, this, in turn, may find application in designing and demarcating their
mobility territory. However here, we have looked at the simple version of the RTP model where
tumbles are instantaneous. On the other hand, experimentally, the bacteria spends small but
non-zero time (~ 0.1s) during tumbling events. It would be an interesting future direction to
extend our results to the realistic run and tumble model where tumbles are non-instantaneous
as observed experimentally [29,[30]. We anticipate the results for fixed-n case to be same as our
simple model with instantaneous tumbles. However, for fixed-t ensembles, the results will be
different atleast at small and intermediate times. Furthermore, it also remains an open problem
to study the convex hull problem for other models of active particles like active Brownian motion

and active Ornstein-Uhlenbeck motion.
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Chapter 4

Run-and-Tumble particle in
inhomogeneous media in one
dimension

Up to this point in the thesis, we have considered the run and tumble particle in homogeneous
medium such that the motility parameters like vg and ~ are constant both in space and time.
However, experiments reveal that the run time for some species of bacteria like E Coli strongly
depends on the concentration of the nutrient and its gradient [115-119]. Moreover, the run time
also depends on whether the bacteria are moving along or opposite to the nutrient concentration
gradient even though the run time is still exponentially distributed [30,/115]. Motivated from
these observations, we study here a one dimensional run and tumble particle in heterogeneous
medium where the flip from +1 — —1 occurs with a rate R;(x) that is different than rate Ra(x)
with which flip from —1 — +1 occur. Note that both R;(x) and Ry(z) are functions of the

position & and we consider the following forms in this chapter:

mi) = (B) b o)+ -1, -,

rafo) = (B b 00) 4 (-0

where a > 0, 0(z) is the Heaviside function and, v; and 2 (both positive) are position indepen-
dent rates. The constant [ sets the length scale over which the rate functions vary. Given these
rate functions, we compute, for different values of o, 1 and 79, the probability distribution
function P(z,t) in an infinite space, the survival probability in a semi-infinite line and the exit
probability from a finite interval. Similar studies of RTP in heterogeneous settings have also
been considered in |186] with position dependent speed vg(x), in [187] with inhomogeneous force
field, in [188] with stochastic input signal, in Markov robots [189], in active gels [190}/191], in

chemotaxis [192,/193] and quorum sensing [194}/195].
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The rest of the chapter is structured as follows: In Sec. we calculate the probability distri-
bution P(x,t) of finding the particle at position = at time ¢ for different values of ae. We then
demonstrate the survival probability in Sec. and the exit probability in Sec. Finally, we

summarise in Sec. [4.4]

4.1 The probability density function P(z,t)

We first look at the probability distributions Py (z,t) of finding the RTP at position = at time ¢
with velocity +vg. We assume that the particle was initially located at the origin and can have
velocity +vy with equal probability 1/2, i.e. Py(z,0) = 15(z). Following the Langevin equation
(1.7) along with rates in Eq. (4.1)), the distributions Py (z,t) satisfy the following Fokker-Planck
equation:
0Py (z,t) = —v90, Py (x,t) — Ri(x) Py (x,t) + Ro(x)P_(z,1), (12)
OP_(x,t) = 090, P_(z,t) + Ri(x)Py(x,t) — Ro(z)P_(z,1).
Our aim is to solve these coupled differential equations for different «. For this, we take the

Laplace transformation of the distributions with respect to ¢ (— s) as
_ oo
Py(z,s) = / dte ' Py (z, ). (4.3)
0

The master equations (4.2)) then become

(v0ds + Ru(2) + )Py = ()P + %5(36), (4.4)
(— w0 + Ralz) + 5)P_ = Ru()Py + %5(33). (4.5)
We next define the new variables
P(z,s) = Py (z,8) + P_(z,s), (4.6)
Q(:C,S) —p+(1:,8)—P_(1‘,8), (4 7)

and rewrite the above equations in terms of P(z,s) and Q(z, s) as

sga(@)A 2, 2|2,
P =0 4.8
la + o=, (1)

sP +v90,Q = §(x), (4.9)

_ - 2
V90 P + sQ +
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with the notation A = 21522 and v = 2422 The signum function sgn(z) in Eq. (£8) takes
values —1 for # < 0, 0 for x = 0 and 1 for z > 0. Eliminating P(z, s) from Eq. (4.8) gives a

closed equation for Q(z, s) which for x # 0 reads

o e 2
%Q+2%M@AW|@@—(%:M“+S>Q:0 (4.10)

vo 1@

We can, similarly, eliminate Q(z, s) from Eq. (4.9) and get a closed equation for P(x,s) as

sP(x,s) —6(z) = 0, (1)(%) [@P(x, s) + MWP(Q},S)] : (4.11)

vol®

One can, in principle, solve this equation and then perform the inverse Laplace transformation
to obtain the distribution P(z,t). However, it turns out convenient to solve Eq. (4.10)) first and
then use it to obtain P(z,s) from Eq. (4.9).

To simplify Eq. (4.10) further, we make the transformation

_ Alz|otl

Qla,s) = ¢ = Gla, 5), (4.12)

and use it in Eq. (4.10) to get

Aa |z |71 2ys|z|@ A?|z 2>  s?
— | G=0. 4.13
vy [ Vg 1 vg 12 + v3 ( )

092G —

We have finally reduced the coupled master equations (4.2)) to this second-order differential
equation. But solving this equation for arbitrary values of « is a challenging task. However for
some specific values of «, we can solve it exactly. In what follows, we solve Eq. (4.13)) separately

for « = 0 and a = 1 and present some approximate results for general .
4.1.1 Casel: a=0
For o = 0, Eq. (4.13)) takes the form
2G — \*G =0, (4.14)

where A\(s) = %\/AQ + 2vs + s2. The boundary conditions to solve this equation are G(z —
+00,s) = 0 which stem due to the fact that the distributions Pi(x — +oo,t) = 0. It is
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Figure 4.1: (a) Steady-state distribution P;*(z) for @ = 0. The black solid line is the ana-
lytic expression given in Eq. while the symbols are the simulation data for vg = 1,v; =
2 and 72 = 1. (b) Comparison of the time dependent distribution P(z,t) given in Eq.
for & = 0 with the numerical simulations for vg = 1 and ¢ = 2.5. The solid line is the analytic
expression while the symbols are the simulation data. Parameters chosen are (i) 3 = 1.5,72 =1
(Blue) (ii) 1 = 72 = 1 (Black) and (iii) 71 = 1,72 = 1.5 (Red). For better demonstration of the

bulk part, we have not shown d-functions in this plot.

straightforward to solve Eq. (4.14]) to get

Ape T if 2 >0
G(z,s) = (4.15)

A_errif <0

with AL are being position independent constants. Substituting this solution in Eq. gives
Q(z, s) which then gives P(z,s) from Eq. in terms of A4. To evaluate the constants A,
one condition is obtained by noting the continuity of P(xz,s) across z = 0. Another condition is
obtained by integrating Eq. from —e to 4€ and take € — 0 which gives the discontinuity
relation Q(z — 0%,5) — Q(x — 07,5) = % These two conditions then give Ay. The final

expression of P(z,s) reads

Vo

P(z,s) = 1 (A(s) + A) eiQ(sH%)'m'. (4.16)

The task now is to perform the inverse Laplace transformation to get the distribution in the
time domain. First note that, for A > 0 (i.e. 41 > 72), the RTP tumbles more frequently from
+1to —1if z > 0 and from —1 to +1 if z < 0. This implies that the particle is drifted towards
the origin from both sides of the origin for A > 0. On the other hand, for A < 0, the particle is

drifted away from the origin. Hence, for A > 0, we anticipate a stationary state distribution at
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late times. Indeed, from Eq. (4.16|), this stationary distribution is

. _ A _2A |.’E|
st 1 P — v 4.1
Pyt (z) = lim [sP(z,s)] ” e v (4.17)
which is the Laplace distribution characterised by the decay length [; = 5%. Note that the decay

length diverges as A — 0 implying no steady state for A = 0 [70]. In Figure [4.1}(a), we have
compared this stationary distribution with the simulation data and we find excellent agreement
between them. As mentioned before, the RTP experiences a drift away from the origin for A < 0

which indicates no stationary distribution for this case. This can also be verified by noting that

limg_,g [515(90, s)] =0 for A <0.

Coming to the Laplace transform P(x,s) in Eq. (4.16]), we use the following inverse Laplace

transforms:
—A(s) d —t 2 y2
Lo sy [e y} = —— |vge "I 172(t? — =) | O(vot —y)| - (4.18)
dy UG

Here Lg_y[...] denotes the inverse Laplace transformation of [...]. Using this inversion in Eq.

(4.16)), we find the distribution P(x,t) is given by

1 ||
P(z,t) :ie*“té(\ x| —vot) + Ni% <1 + 2 @ ’) e 0 0 (vot— |z |)

29 2vg
\/’W/ s dI(lx],7)
- —0 — 4.19
= e =), (4.19)
_As 11( Y172( *%))
where Z(z,t) = *4 e — ¢~ with I;(z) denoting the modified Bessel function of first
t?=T

kind. Let us now try to understand the distribution physically. Note that the distribution
possesses d-function terms at x = twgt. They arise from those trajectories for which the RTP
has not changed its velocity till duration ¢: the probability of which is e=7*. The prefactor
1/2 comes because the particle can choose +vg with equal probability 1/2. Figure (b) shows
the comparison of the distribution with the numerics for different values of A. For A < 0, we
observe that P(x,t) has a dip at the origin while for A > 0, P(z,t) has a peak. This behaviour
appears due to the fact that for A < 0, there is a net drift away from the origin while for A > 0,

the drift is directed towards the origin. For A = 0, our result is consistent with that in [70].
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Figure 4.2: (a) Analytical expression of the distribution P(z,t) given in Eq. (solid line) for
a =1and A = 0 is compared with the numerics (symbols) for ¢ = 10. (b) Numerical verification
of the scaling of the position as z ~ t5 for a = 1. For both plots, the chosen parameters are
v=17=rn=15and =1

For large t, one can simplify the expression of the distribution in Eq. (4.19) as

( [ AT (17i>+A ] 5 ) 2 o
Pgt(x) + ¢ T [ t1/7'ry172 |Z| — te' Erfe[vip_] (A:E 4 P+2P_>
2 _ 2
+ tetP: Erfc[\/Zer] (Aa‘c — 7p+2p* )] , if 1 > 79
P(z,t) ~ 2
e =
\/A2—A? z :C\/'yQ A HAVIF —t[Azy—y/y2-22V1=7] o <
\ 2 g (1— m2 VA2-AZ— ’ym ’ TS 72
(4.20)
with Dy = 27, T = 1% and pr = /Yy — /M £T 7”72”2 A detailed derivation of these

approximate expressions is given in appendix For v1 = 72, we recover the Brownian
motion limit and the distribution becomes Gaussian. However for v, # 72, the distribution is
strictly non-Gaussian. In fact for v; < 79, the distribution has two symmetric moving peaks at
T = j:%vot which arises due to the effective drift that the particle experiences due to unequal

rates.

4.1.2 Casell: a=1

Let us now consider the other analytically solvable case & = 1. For this case, Eq. (4.13]) becomes

A 2vs | x s2 A%
vol 0l Uo vgl

G =0. (4.21)
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Below, we consider the A = 0 case first and then A # 0 case later.

4.1.2.1 A=0
For this case, Eq. (4.21)) becomes

%G (z,5) — [2 + ] G(z,s) = 0. (4.22)

The solution of this equation is given in terms of the Airy functions, i.e. G(z,s) ~ Ai (:l:y + dy s%>
1

with y = ¢ 53 | | and ¢ = (%) :, Proceeding exactly in the same way as for a = 0, we find
0

that the Laplace transform P(z,s) for a = 1 is given by

. AY (c 53 |z | +do s§>
2523 Ai (do s%) ’

P(z,s) = (4.23)

where dy = 275 Now performing the inverse Laplace transformation of P(x,s) for arbitrary s

turns out to be challenging. But for small s (which corresponds to large ¢ in the time domain), we

neglect ~ O(s*3) term in Eq. ([#23) and use Ai(z) = \/\/ﬁiK 1 (%z%> The resultant expression

for P(z, s) for small s reads

2
Ples)~ — 1ol 1K2(2<c\x\>
2v/37Ai(0)s5 3 \3

(NI

\/5) . (4.24)

To perform the inverse Laplace transform of this equation, we use

L [2v9 8™ Koy (20/g8)] = 2 e B W, (%) . forg>0 (4.25)

where W, , (x) is the Whittaker function. Using this in Eq. (4.24)), we find that the distribution

P(z,t) possess the scaling form

1
P(z,t) ~ —fi <|txl) , for A=0, (4.26)
3

where the scaling function fi(y) is given by

1 3c AP Y33
S S LA 1.2
L= maoV e © Wéé( 9 > (4.27)

The approximate equality in Eq. (4.26)) indicates that the expression is valid only for large t. In

Figure a), we have plotted the distribution and compared it with the numerical simulations.
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Figure 4.3: (a) Analytic expression of the stationary distribution P(z) for & = 1 given in
Eq.(4.32) (solid line) is compared with the simulation of the Langevin equation (shown by filled
circles). We have chosen are vg = 1, = 0.5,77 = 3 and v2 = 1. (b) We have shown the
simulation data (filled circles) for d(t) = var(oco) — var(t) where var(t) = (z(t)?) — (z(t))%. As
expected, we observe an exponential decay of the form ~ e~¢ of d(t) at late times (shown by
solid line) with ¢ = 0.636 obtained from the solution of Eq. with largest real part. The

parameters chosen are v;1 = 3.5,72 = 1.5,vg =1 and [ = 1.

We see excellent agreement between them. We get a further simplified expression of the scaling

1
function f;(y) for smaller values of y by using W1 1(y) =~ y%e*% for y — 0 and Ai(0) = L“l) as
6’3 2736
3%6 ly[3c3
fily) =~ e "9 , asy—0. (4.28)

From Eq. , we see that the position of the particle, for a = 1, typically scales as x ~ t5
which is different than the diffusive scaling of  for homogeneous case (a = 0). Figure [£.2(b)
illustrates this sub-diffusive scaling numerically. We finally remark that Eq. describes the
distribution only for typical fluctuations of & and fails as one moves towards the far tail of the

distribution.

4.1.22 A#0

We next solve Eq. (4.21)) for A # 0. For this case, we make the transformation \% = T+
sgn(m)%,/ﬁ Eq. (4.21)) as
2 A
e (2’4 B4 Sgr;“) G=0 (4.29)
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where 8 = WAA\;”)‘ The solution of this equation is given in terms of the parabolic cylinder

functions as

By Dﬁ3271+sg2n(A) < 21|)ﬁ| (gp + ﬂ)) , ifx>0

G(zx,s) =
o B_ D A4 (0 sl if 2 <0
_ ﬂSQ— 1+sg2n(A) ’Uol A2 I

(4.30)

Substituting this solution in Eq. (4.12) gives Q(x, s) which then gives P(z,s) from Eq. (£.9) as

2|A sl
) 1 4 Am2D5521+sgn<A>( |z|(! !+Z)>

2vql

2sd | x 2IA| ~sl
| Dﬁsz 1+<gn(A>< | Hs

(4.31)

As seen for @ = 0, for this case also, we anticipate a stationary distribution at large times

for A > 0. This can be obtained by taking the limit lim,_o [sP(x,s)]. By noting D_1(z) =
22

\/geTErfc(%), we find

_1—72 2
RE S P T (4.32)

Pii(@) = lg% [sP(z,5)] = 2771101

with subscript 1 in Pf!(z) denoting o = 1. In Figure (a), we have compared the stationary
distribution with the direct numerical simulation and we find excellent agreement between them.

While for o = 0, the stationary distribution is the Laplace distribution, it is Gaussian for o = 1.

Next, we study the relaxation to this steady state for A > 0. Recall that the relaxation is
controlled by the pole of P(x,s) with second largest real part (the largest pole is s = 0 which
gives the steady state). If we denote this pole by ¢, then |¢|~! will set the timescale for the

exponential relaxation. The pole ( is obtained by solving

[2]A[~¢) _
DﬁcQ_l ’Uol E — 0 (433)

We have verified this result in Figure [£.3(b) where we have plotted d(t) = var(co) — var(t) as a

function of t. Here var(t) = (z%(t)) — (x(t))? is the variance of x. From the above discussion,
we expect d(t) to decay exponentially to zero as d(t) ~ e~¢! at large times. Indeed, in Figure

4.3{(b), we numerically observe this exponential decay with timescale given by (.

We next turn to A < 0 case for which we have argued earlier there is no stationary state. In
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d(t)

Figure 4.4: (a) Analytic expression of the stationary state distribution PS'(x) given in Eq.
(solid lines) is compared with the numerical simulation data (filled circles) for three values of «
at t = 15. (b) Simulation data for d(t) = var(co) — var(t), where var(t) = (22(t)) — (x(t))2. We
see that d(t) has an exponential decay of the form ~ e~¢! at late times. From the numerical
fit (shown by red line), we get ¢ = 0.31. For both plots, we have taken 73 =2, v =1, | =
1 and vy = 1.

this case, the Laplace transform P(z,s) in Eq. (4.31)) takes form

2|A 1
_ 1 d A 2D582< o (|x|+73)>
P(x,s) = ———— |e 2u”

(4.34)

2— 2 . . . .
where 8 = % Performing the inverse Laplace transform analytically for this case turns

out to be difficult. However, one can carry out the Bromwich integration numerically. How-

ever, in the next section, we show that the distribution possesses the scaling form P(x,t) ~

w9 (B2 with u(t) = (Jaf) = 2% and 03(t) = (2%) = (Ja]) = (wol/|A]) In(t). The

scaling function G(u) is a mean zero and unit variance Gaussian.

4.1.3 Case III: General o

We now consider the distribution for general o (> 0) case. Unlike, in the previous two cases,
making analytic progress for this case is harder. However, for large ¢, we present some results
based on heuristic calculations. First, we rewrite Eq. in terms of P(x,t) = Py(x,t) +
P_(z,t) and Q(x,t) = Py(x,t) — P_(x,t) as

atp(xvt) =~V axQ(xat)v (435)

0Q(z,t) = =Ry (z)Q(z,t) — R_(z)P(x,t) — vy 0z P(x,t), (4.36)
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Figure 4.5: Numerical verification of the scaling function f,(y) associated with the position
distribution P(z,t) for A = 0 and two different values of .. For both plots, we have showed
the analytic formula given in Eq. by black solid line and simulation data by symbols. We
have checked the scaling function for three different times with parameters y; = v9 = 1.5, vg = 1
and [ = 1.

where Ry (z) = w. Let us first solve this equation for A > 0 for which we get steady

state at late times.

4.1.3.1 A>0:

To get the stationary distribution Ps!(z), we equate the time derivative on the left hand side of

Eqs. (4.35)) and (4.36)) to zero and solve them with appropriate boundary conditions to yield

1

]. — a+1 _ ( - ) «

P3l(z) = 1 { (7; 72)1} e~ woternm 1T, (4.37)
2r<1+a—+1) vo 12 (a+1)

For ¢ = 0 and o = 1, this expression matches with the Laplace and Gaussian distributions

obtained in Egs. (4.17) and (4.32)) respectively. In Figure [.4[a), we have numerically verified

the stationary distribution for three different values of a other than @« = 0 and @ = 1. We
observe excellent agreement for all of them. To get the relaxation behaviour for general «, one
needs to solve Egs. and which is a difficult task. However, numerically we find
that the approach to steady state is still exponential for all a (which was analytically proved
for « = 0 and @ = 1). This has been illustrated in Figure [1.4[b) where we have plotted

d(t) = var(oco) — var(t) as a function of t. We see that at late times d(t) ~ e~¢t.

4.1.3.2 A<O0:

As argued before the distribution P(x,t) does not reach a stationary state for A < 0. To get
the large-t form of the distribution, we first note that the time evolution equation (4.35) of
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P(x,t) appear in the form of a continuity equation. On the other hand, the time evolution
equation for Q(z,t) possesses decay terms proportional to the rates R4 (x) which is a
non-negative function. This implies that at large times Q(z,t) will cease to possess its intrinsic
time dependence and the only time dependence will come from P(z,t). This enables us to drop
0:Q term in Eq. and rewrite it as Ry (z)Q(z,t) = —R_(z)P(x,t) —vo0, P(x,t). Plugging
this in Eq. gives

(67

2
l
O P(x,t) ~ ”;7

Oy (| |7 0. P(z,t)) + sgn(a:)w’yAﬁch(x,t), (4.38)

where approximate equality indicates that this equation is valid only in large ¢ limit. Let us
first analyse this equation for A = 0. From numerical simulations, we find that the distribution

P(x,t), for this case, admits the scaling form (see Figure 4.5))

P(z,t) ~ 11 fa( il ) (4.39)

1
t 2+« t 24

For o = 0 and a = 1, we were able to derive the exact form of this scaling function f,(z). To
get fo(2) for general a, we inject the scaling form (4.39)) in Eq. (4.38) and obtain a differential

equation for f,(z) as

d | _. d 1 d
2 ja
where z = 2L and D, = UOQ,YI . By changing variable y = m 22T the above equation
tora o

gets further simplified as

d*fa 1 dfa fa
— -— =0. 4.41
ydy2+ 2+a+y dy+2+a (4.41)
The solution of this equation is e™¥ and y%ig 1Fy (;i—g, 2 — QJ%Q; y), where 1 F; stands for con-

fluent hypergeometric function of first kind. The latter solution diverges as y — oco. Therefore,

we keep only the first solution to finally get

(2 + a)7*a 2ta
1

Ja(z) = e (Fe)?Da (4.42)

1 2¥a
2T (515 ) D2
For @« = 0 and o = 1 the scaling function f,(z) correctly reduces to the expressions obtained
in the previous sections. Figure shows the comparison of the scaling function with the
simulation data for two different values of a. For each «a, we have performed the comparison for

three different times and we see all simulation data converge to our analtical result. As remarked
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Figure 4.6: (a) Numerical verification of the variance o2 (t) in Eq. for a = 0.5 and A < 0.
The black line corresponds to Eq. . (b) Numerical verification of the scaling behaviour of
the distribution P(z,t) in Eq. for « = 0.5 and A < 0. The solid cyan line represents the
analytic form G,(u) = e~*/2/y/27 while the symbols are simulation data for different times.

For both plots, we have taken v; = 1.5, 79 = 1.6, [ =1 and vy = 1.

for a = 1, here also, the distribution P(x,t) in Eq. (4.39) only describes the typical fluctuations

1
of the position (z ~ t2+a) and it fails as one probes the far tails of the distribution.

We next analyse Eq. for A < 0. We saw before that due to the unequal rates, the
particle experiences a drift away from the origin for A < 0. Hence, we anticipate a distribution
symmetric with respect to the origin and containing two moving peaks. This implies that
the mean position of the particle is zero whereas the average value of the absolute position
w(t) = (|z|) is not zero. In fact, the peaks of the distribution at two sides of the origin are
situated at © = £u(t). All these claims can be explicitly verified by simulating the Langevin
equation for this case. Furthermore, numerically, we also find (|z|) = p(t) ~ %t. By changing

the variables |z| = u(t) + 2z and 7 = t17% we can reduce Eq. (4.38) at late times to

0-P(2,7) = Dad?>P(z,7), (4.43)

v%éa
7(1-a)
distribution P(z,t) has the following scaling form

[e%
where D, = (ﬁ) for 0 < o < 1. This immediately implies that for large ¢, the

P(x,t) ~ 1(t> g <|x’ _“(t)> (4.44)

204 oa(t)

where the scaling form G(u) satisfies

092G (u) + ud,G(u) + G(u) = 0. (4.45)
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Also, in Eq. (#.44) 02 (t) = (z%) — (|z|)? is given by

02(t) ~ Dat'™?, for 0 < a <1, (4.46)

~ (vol/|A]) In(?), for a = 1. (4.47)

We have numerically verified the form of o2(¢) in Figure a) for o = 0.5. Coming back to Eq.
, its solution is given by the zero mean and unit variance Gaussian G(u) = e~ U /2 / V2.
Verifying the scaling form in Eq. numerically for arbitrary o (< 1) turns out to be
difficult. For given vy and A, this scaling form becomes valid only at large times and this (large)
time increases with decreasing «. Therefore, for small o, one has to go to very large times to
observe Eq. which is numerically expensive. On the other hand, for large «, the rates
~ |z|* increases rapidly and to perform the simulatation with this large rate, we have to take
a very small dt which, in turn, makes the numerics expensive. It turns out that the optimal
value of o for numerical simulation is o = 0.5. In Figure [£.6(b), we have illustrated the scaling

function G(u) numerically for o = 0.5 at different times.

Note that the scaling behaviour in Eq. (4.44)) is valid for 0 < o < 1. For a > 1, we numerically
find that the variance o, (t) decreases with time and distribution P(z,t), at large times, simply

becomes a sum of two delta-functions at = = £pu(t).

4.2 Survival probability

So far, we studied the run and tumble particle in an infinite space and computed the position
distribution for different values of a and A. Herein, we consider this system on a semi-infinite
line and claculate the survival probability. Particularly, we compute the probability Sy (xo,t)
that the particle, starting from xg with velocity +vg, has not crosses the origin till time ¢. As in
the homogeneous case, one can derive backward master equations satisfied by S (z,t) for this
case also:

0pS+ (7o, t) = v903, S+ (x0,t) — R1(x0)S+ (2o, 1) + Ri(x0)S— (20, 1),

(4.48)
0pS_(x0,t) = —000z,5— (0, t) + Ra(x0)S+(x0,t) — Ra(z0)S+ (0, 1).

Remember that the rates Rj(xo) and Ra(xo) are given in Eq. (4.1). In order to solve these
equations, we use the initial and boundary conditions as done in Sec. Recall that the
boundary conditions are Sy(xg — o00,t) = 1 and S_(0,t) = 0. The first boundary conditions

arise because if the particle initially starts from infinity, then it will not reach the origin at any

66



finite t. Similarly, if the particle is initially at the origin and starts with the negative velocity
then it will get absorbed at the very next instant. This gives rise to the second boundary

condition. By same reasoning, we get the initial condition S (zp,0) = 1 for xg # 0.

Here also, to solve the backward equations (4.48)), we first perform the Laplace transformation
with respect to t as S (zo,s) = fooo dte™tSy(wg,t) and rewrite Eqs. (4.48) as

[~v08zy + Ri(x0) + 5] St (20, s) = 1 + Ri(w0)S— (w0, ),

B B (4.49)
[ vo Ozy + Ra(x0) + s] S—(z0,s) = 1+ Ra(xo)S+ (w0, s).
To get rid of the inhomogeneous terms in this equation, we perform the transformations
_ 1 _
Sx(20,8) = ~ + Ux(2o, 5), (4.50)

which also simplifies the boundary conditions as U+ (zg — 00, s) = 0. Egs. (4.49) now become

[—v00z, + Ri(x0) + 5] U.,. = Rl(l‘o)U_,

[ V0 8960 + Rg(l‘o) + S] U_ = RQ($0)U+. (4.51)

We can further simplify these equations by defining

U(xg,s) = Uy (xg,s) + U_(z0, 5),

H(xg,8) = Uy (z0,8) — U_(0, ), (4.52)

which then gives

_ 2AzxY _ 200zt 2vysx 54 =
R H—=—20,,H— { 0+ |H=0 4.53
*o vl 0 vol® vl * v3 ’ ( )
— Vo — 2Ax§ -
and, U(xg,s) = ?O%H -, lao H. (4.54)
By making another transformation
_ A z01-5-1
H(zg, s) = evoetDi®™0 (g, s), (4.55)
in Eq. (4.53)), we get rid of the first order derivative to yield
Aaxd b 2yszd  AZg2e §2
2 0 0 0 _
0z F (w0, 8) — - B e + % F(z9,s) = 0. (4.56)

This is the main equation that we will solve for different values of . Note that this equation is
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Figure 4.7: Numerical verification of the analytical expressions of Sy (z¢,t) given in Egs.
for a = 0 and various signatures of A. In both (a) and (b), the solid lines correspond to
the analytical expression and the symbols represent the simulation data. We have chosen (i)
71 = 1.2 79 = 1 for blue, (ii) 91 = 72 = 1 for black and (iii) 71 = 1 72 = 1.2 for red. Other

parameters chosen are g = 1.5, vg =1 and [ = 1.

identical to Eq. (4.13) for G(x, s) obtained in the previous section for the distribution P(x,t).
However, the boundary conditions for two problems are different. Below, we solve Eq. (4.56)

for « = 0 and « = 1 first and then for general «.

4.2.1 Casel: a=0

We first look at the survival problem for « = 0. For A = 0, the survival probability was computed
exactly in [70]. Here, we are interested in this probability for A # 0. Solving Eq. for
this case gives F(xg,s) ~ e~ )20 where A(s) = %\/m which when inserted in Egs.
and yields

Sy (z0,5) = é + ie(ﬁ‘k(s))“ [—A — voA(s) £ 8], (4.57)

where A is a constant independent of xg. We use the boundary condition S_(0,s) = 0 to get
A(s) = m which then gives

1 1 (2a_
_(zg,8) = - — *6<”0 /\(S)>IO, (4.58)

S S

9]

(4.59)
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Next to get the survival probability in the time domain, we use the following inverse Laplace

transformations:

_ Azg d x2
Lo [6 A(S)xo} = —we 0 o [6 "I (\/7172 <t2 - US)) O (vot — xo)] ;
0

n Azxg 5
e vo L0O+/ X
Ly o [(s +9 - vg)\(s))e*A(S)wo} = VN2 [ OV <\/’71’Yz ( US))
0

t+ 32
n vot — $OI 2 x%
V vot + xo ! 2 vg

Using these identities in Eqgs. (4.58) and (4.59)), we get

Axg d t 2
S_(zg,t) =14+vge o — [ dre "I Y12 <7'2 — g) O(voT — x),
daTO 0 0

Ax / 2
St (zo,t) =1— le S0 / dr-< O(voT — ) [WIO <\/*yl’yg <7’2 - 33(2)>> (4.61)
Vo Ch)

VT — X x2
e g (\/7172 <T2—g> '
VT + X0 vy

Our result is consistent with that of [70] for v1 = 2. In Figure we have checked our analytic

O(vot — xp) (4.60)

S8

expressions with the numerics for different A. We find excellent agreement for all cases. From
Figure we see that both Sy (xg,t) remains equal to unity till time ¢, = %3' This is because
starting from zq, the RTP will atleast take time t; to reach the origin and therefore survives the
origin till this time. Now when they reach the wall with —vg at time ¢, a fraction of particles
will get absorbed which leads to a sudden jump in S_(zg,t) (see Figure . However, this

sudden jump does not appear for S, (xo,t) since the particles cannot reach the wall with +uvy.

It is interesting to recall that the particle is drifted away from the origin for A < 0. This means
it has a non-zero probability to avoid getting absorbed by the wall even at large times. In fact,

by taking the ¢ — oo limit in Eqgs. (4.61]), we find that St (xg) = S4(zo,t — 00) are given by

Y |A‘e*%xo
7+ 14 (4.62)

24|

S (zg)=1—¢ "

Si(zo) =1 -

On the other hand, Sy (x¢) turns out to be zero for A > 0 since the particle definitely reaches

the origin after sufficient time.

We next analyse the expressions of Si(zg,t) in Egs. (4.61) for large times. For this, we first

change the integration in Eqs. (4.61)) as fg = [0 — [~ and use I, (z) ~ \/% as z — 0o. Note
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that Si(zg,t) for ¢ — oo becomes Si(zy) where Si(zp) are 0 for A > 0 and are given by
Egs. (4.62) for A < 0. Defining Ly (xo,t) = S+(xo,t) — S+(z0) , we find

JAN)

1
[z 1 (v1y2)%e 0 —t(v—v/172 :
Ly (w0,t) ~ Y2 (vo * VW) \/27rt3('7_\/’)’1'72)€ | )’ o # 7 (4.63)
\/%\{,?(Io-l-%o), if 1 =72.
Azg ( )
20 (m172)%e Y0 e tlr—vrr2 if
L (CCo,t) o 0 \/27rt3(7—\/7172) ’ m 7& 72 (464)
ﬁggoﬁ? if 71 = 2.

We see that while for A = 0, the survival probabilities decay as ~ 1/v/t, they decay as ~

t=2et/mr (to Si(xp)) for A # 0 with timescale 7, = = 171%). Notice that this timescale

diverges as A — 0 and one recovers the ~ 1/v/t decay.

4.2.2 CaselIl: a=1

Let us now consider another analytically tractable case of a = 1. As shown later, the position
dependence of the rates as ~ |z|~! gives rise to different large time behaviour of the survival

probability than o = 0. We first look at A = 0.

4.2.21 A=0

For this case, Eq. (4.56|) becomes

2vsx 52
Oy F (20, 8) — (?)210 + v2) F(zo,s) = 0. (4.65)
0 0

The solution of this is given in terms of the Airy functions [as seen in Eq. (4.22)]. Proceeding

as in a = 0 case, we get

1 1
) | v AT (;05/?; +dos‘§> +55 D% A <g>f/§ +dos§>
St (xo,s) =—-—— , (4.66)
s s wAT'(0) — 53 D1/ Ai(0)

2

) 2
with ®, = %l and dy = (2,ylv0) ®. Here also, we can obtain the analytical expressions only for

small s (which corresponds to large t). Neglecting O(s*/3) term in Eq. (#.66)), we get for small
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1 1 2 1/3 4. 1
_ 1 1 o[ xos3 2 173 . [ ®0os3 s3 @77 Ai(0) , ., [ xos3
S ~ - - |vAY +s3 D77 A — L A
+leo,s) = 2= Sy M <@}/3> g 1(@/3) A\ o
(4.67)
Next we use Ai(z) = \/;FK 1 <%z%> and use the inverse Laplace transformation in Eq. (4.25)
to obtain
23
Sy(mot) ~ 14 e 1891t x0Ai(0) W z} _Uol‘otéw 3
FEOH T onBaivo | AT(0) | | [AT(0) [ VE 23 \ 991t pl/F 53 \ 9Dt
1/3
Zo CD1 338
+ 4
T Vi <9£01t | (468)

3
where g1 = 9%—01. Note that this solution is valid only at late times. In Figure (a), we have
compared our analytical results with the numerical simulations. Although at small times our

results deviate from the simulation data, the two match well at large times.

We can further simplify Eq. (4.68)) for t — co. Exploiting the relation Wy, ,,(2) = e~ Mty (%—i—
m — k,1+ 2m, z), where U(a, b, z) is the confluent hypergeometric function of second kind and

r(b—1) I(1-b)

using the asymptotic form of U(a, b, z) for small z as U(a, b, z) ~ Wzl_b + Ta—prn Ve get
1 2\ 6D (3
Sy (20,t) ® —s—— | —2T (—) + 17(3) ,
2736 (D1t)3 3 vo
S_(zo,t) ! 2r( 2) (4.69)
_(xp,t) % ————— —— . :
or3¢ (D1t)5 . \ 3

Hence for a = 1 also, both Sy (zg,t) possess power law decay with persistent exponent § = 2/3,
which is different than # = 1/2 for a = 0 case. Recall that for Brownian motion, the probability
to survive the origin starting from the origin is precisely zero [163]. On the other hand, we see
that the RTP has a non-zero probability to survive the origin even when zo = 0 [see St (zo,t) in
Eq. ] This happens because of the persistence nature of the RTPs, as previously observed
in 70,94] for « = 0 and A = 0.

4.2.22 A#£0

For A # 0 case, Eq. (4.56) takes the form

A 2ysmy 87 A%z}

Pr_ |l =422, 2 =220
o Vol val v vRl2

F=0. (4.70)
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Figure 4.8: (a) Numerical verification of the analytical expressions of the survival probabilities
S (zp,t) given in Egs. for « =1 and A = 0. We have chosen v; = v =1 and 2o = 1. In
panels (b) and (c¢), we have plotted the analytical form of Ly (zg,t) = St (zo,t) — S+ (xg,t — 00)
given in Egs. as a function of ¢ and compared them with the simulation. For these two
cases, we have taken (b) 29 = 1.5,71 =2 and 72 =1 and (c¢) 29 = 1.5, = 1 and 72 = 1.5. For
all three panels, the analytic results are shown by solid lines while the symbols correspond to

the simulation data. Also vg =1 and [ = 1 for all three panel.

This equation can also be transformed to Eq. (4.29) by performing the same variable transfor-
mations. The general solution is then given in terms of the parabolic cylinder functions. After

using the boundary condition S_(x¢ — 0,s) = 0, we get

_ 11 2% Ny(xo,s
St (wo,s) = P ;62”01 A;:_((Oos))’ (4.71)

where the functions Ny (xg, s) are defined as

2ug \ A | 2| A sl
Ni(xo,s) = {5 2O(=A) + O(A)} Dgg2_g(—a) ol (Pt Az
el +A 2| A sl
——D -— 4.72
|A\ 8s2-0(A) o~ ot 17 )| (4.72)
with 8 = %. Once again obtaining analytic expressions for arbitrary s turns out to be

challenging and we proceed to analyse Eqgs. (4.72)) for small s. For A < 0, we anticipate a non-
zero value of St (w,t) as t — oo which can be computed from the Laplace transforms S (o, s)

as

S = li S =1- = ’A‘ szo
+($0)—51_I>I(1) [8 +(.%'0,$)] - _'Y'i"A‘ )
_ NES
S_(z0) = lim [sS_(z0,s)] =1 — € Wl (4.73)

s—0

»

z

where we have used Dy(z) = e~ 7. The same calculation for A > 0 gives St (zo) = 0 since
the particle will definitely reach the origin after sufficient time. To get the approach to the

stationary value S (zp) for A < 0 and the decay to 0 for A > 0, at large ¢, we focus on the poles
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Figure 4.9: (a) Comparison of the analytic expression of the survival probability S(zg,t) given
in Eq. (shown by solid lines) with the simulation (shown by circles). We have chosen
A=0,v7m1=r=1 v=11=1and o = 10. (b) Simulation data (filled circles) for
Ly(xo,t) = St (xo,t) — S+ (xp) is shown for @ = 0.5. At late times, we observe an exponential
decay of L (xg,t) of the form ~ e~¢*. From exponential fit (shown by black line), we find that
¢ = 0.085. Parameters chosen for this plot are 73 = 1.2, 7 = 1.5, vg =1, 29 =1, and [ = 1. (c)
Survival probabilities S (z,t) are obtained from numerics for A > 0 and o = 0.5. Here also, we
see an exponential decay of the form ~ e~¢? at late times and from exponential fit (shown by black

line), we obtain ¢ = 0.2097. Values of parameters are vy =2, y9 =1, v9 =1, 29 =1, and [ = 1.

of Si(z0,s) in Egs. (4.71). One pole is s = 0 which gives the stationary value for A < 0. The
other poles are obtained by solving the equation N_(0,s) = 0 in Eq. (4.71). The largest non-
zero solution (say s*) of this equation gives the large time behaviour of Sy (xg,t). Subtracting

the stationary value from Sy (zg,t) as Li(xg,t) = St (z0,t) — St (zo,t = 0), we get

Az% es*t Nﬂ:(x() S*)
La(z0,1) ~ —eot & NET0,8 ) 474
+(zo,t) & N (0.5 (4.74)

Figures [4.8(b) and [4.8|c) compare these asymptotic results with the numerical simulation and

we observe excellent match.

4.2.3 Case III: General o

We now consider the general o case for which we solve Eqgs. directly. Once again, we
analyse these equations for large times which necessarily requires large xg so that the particle
survives for long times. With these approximations, we expect Uy (xo,t) = U_(xo,t) and the
difference H(xg,t) = Uy (x0,t) —U—_(z0,t) in Eq. should rapidly decay to zero. Then, the
equation for U(x, s) in Eq. becomes

- 5l 1, - A
sU(zo, s) ~ vgfy [ (W&COU) — UOT&COU. (4.75)
0

We now solve this separately for A = 0 and A # 0 cases.
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4.2.31 A=0:

For A =0, Eq. (4.75]) becomes

1, - 51
sU(xg,s) >~ Da0x, (;f;aa’mU) , with ©, = 037 . (4.76)
0

This equation can be solved exactly and its general solution are given in terms of the Bessel func-

24+« 24+«
. 1+ 2wo| 2 s 1ta 2|zo| 2 s '
tions as |xg| 2 Ii+ and |zg| 2 K1t . But the first solution
‘ 0| %_72 2+« Da | O| %_72 24« Do

diverges as |zg| — 0o and we take only the second solution. Therefore, we obtain
2‘ ‘ 2+«
_ 1+a X 2 S
U(zo,s) = Blxo| 2 Koo <0 ) . (4.77)
24«

Now to evaluate the constant B, we translate the boundary condition S_(0,s) = 0 in terms of

U(zo,s) and write the final expression of U(wg, s) as

Olens) = -8 o (4.78)

xp,8) = — Tia 4 1ta 9a$), :
NEDICITNERE

To derive this solution, we have used the boundary condition U(xg — oo, s) = —2/s. Finally

the survival probability is given in terms of U (zg, s) as

SJr(:EOvt) + S*($07t)

S(l‘o,t) = 9 )

1 _

~1— =L [U(xo,s)],
el | (4.79)
_L 1 a 1

L€ 200 (2+0)? {1/8 (2 + o) } 2o g t20@F) - zite
T T (%) ~5@ra) 2ot Da(2+a)?t)
(6

In the last line, we have used Eq. (4.25) to perform the inverse Laplace transformation. To
find asymptotics, we use the following representation of the Whittaker function Wy, (2) =

e~ 3 mtsy (% +m — k,1 4+ 2m, z) in terms of the Tricomi confluent hypergeometric function

U(a,b, z) of second kind whose asymptotic behaviour as z — 0 is U(a,b,z) = %Zl_b +
I(1-b)

m which giVeS

_1ta
| T ( 2+a> | zgt 1
2(1+a) 1+

P(E2)T () @+a) 5 (Dat)7e

S(zp,t) ~ (4.80)

We see that the survival probability has the power-law decay with time with persistent exponent

004 — lta

71q- 1t matches with the exponents obtained for & = 0 and o = 1 before. We have
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Figure 4.10: Numerical verification of the exit probability E1(z¢) given in Eqs. (4.85]) and (4.86))
for a = 0.5. In both panels, the solid lines represent the analytic expression and the symbols
correspond to the simulation. Parameters chosen are (i) Green: v; = 2, 72 = 1, (ii) Brown:
v =1, 72 =1 and (iii) Orange: 713 = 1, 72 = 2. Other common parameters are vg = 1, [ =1
and M =1

numerically verified our analytic result in Figure (a) and we observe nice agreement. We
emphasize that our result is valid only for large zg and fails for small zy as can be verified

numerically.

4.2.3.2 A<O:

Recall that for A < 0, the RTP experiences a drift away from the origin. This gives rise to non-
zero survival probability even for t — co. Putting 0,51 (xo,t) in Eqgs. (4.48) gives the stationary

form as

y— | A ’ - 2|A| zot1

Si(z0) =1 — — = ¢"wr@m 0 4.81
__2IAl _a+1

S_(zg) =1 —e woi*@in™o (4.82)

To find the relaxation behaviour, we have to solve the full time dependent equations which for
general « is difficult. As illustrated in Figure (b), we numerically find the approach to this
steady value is exponential with same relaxation time for both S (zg,t). Similarly, for A > 0,
the survival probability exponentially decays to zero at large times. This has been numerically

verified in Figure [4.9(c).

4.3 Exit probability of RTP from a finite interval for general «

After studying the RTP model in an infinite and semi-infinite space, we here study this model

in a finite interval [0, M]. We are interested in computing the probability E4(xo) that the RTP,
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starting from xy with velocity +wvg, will exit from = = 0 side without touching the boundary at
x = M. To derive differential equations for F4 (zg), we proceed as in [70| and consider a RTP
that starts from z¢ with ovg. In small time dt, the particle can either (i) change its velocity from

ovg to —ovg and move to new position 1:6 = xo — dz or (ii) continue moving with velocity oy

and move to x, = ¢ + dz. Events (i) occur with probability Rn(xo)% while events (ii) occure

with probability 1 — Rn(xo)% where n = 1 for 0 = +1 and n = 2 for 0 = —1. Starting from

this new position z{,, the RTP then exits from z = 0 side without touching the side at z = M.

One can then write

E+(:E0) = [1 — Rl(l‘o)dx] E+(l’0 + dl‘) + Rl(l’o)dffo(:L‘o — d{L‘),

V0 Vo
E_ (:UQ) = |:1 - RQ(xg)ij] E_(l‘() - dl‘) + Rg(xo)CZE+(l‘0 + d.CU) (483)

Keeping terms up to leading order in dx, we get the following differential equations for Fy (z¢):

anonJr - Rl(xO)EJr + Rl(fl,‘o)Ef =0,

—anon_ + RQ(.%’())E+ — RQ(.%’Q)E_ = 0. (4.84)

To solve these equations, we need appropriate boundary conditions. These conditions are
Ei(xg = M) =0 and E_(zp = 0) = 1. Now if the particle is initially located at xg = M
with +vg then it will definitely exit from x = M side giving rise to the zero exit probability
from x = 0 side. Similarly, if it is at the origin initially with —vg then it will surely exit from
x = 0 side and hence the second boundary condition. The task is to solve the coupled equations

(4.84]) with these conditions for general .. The calculation is fairly straightforward and we get

A ML Azt
pAMITe _ Agite

E+(:EO) = eAMhLQ 72 5 (485)
7
GAMITe %eﬁxé-ka
E_('I;O) = eAM1+a e’} ’ (486)
Y1
where A = —22 __ For a = 0 and A = 0, our results are consistent with previously obtained

vo(1+a)le
results in [70]. We have numerically verified these results in Figure for different signatures

of A and o = 0.5. We observe excellent match for all cases. For a given « and z(, we see that
the exit probability is largest for A > 0 and least for A < 0. For A > 0, the particle is drifted
towards the origin which increases its chance to exit from x = 0 side. Similarly, for A < 0, the
particle is drifted away from the origin which decreases its likelihood to exit the interval from

the origin.
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4.4 Summary

We have investigated the run and tumble motion of a particle in a spatially heterogeneous
medium in one dimension. More specifically, we studied the model where the telegraphic noise
o(t) in Eq. changes from +1 to —1 with rate R;(x) and from —1 to +1 with rate Ra(z).
These rates depend on the position x of the particle and their forms are given in Egs. . This
form may be motivated from the chemotaxis movement of the bacteria wherein they perform
longer (shorter) runs in the direction of the chemo-attractant (chemo-repellent) and shorter
(longer) runs away from it [115-119]. For instance, in Eqgs. , 1 > 72 mimicks the presence
of chemo-attractant at the origin and for this case, the RTP experiences a net drift towards the
origin from both sides. Consequently, the probability distribution attains a steady state whose
form is given in Eq. . Approach to this steady state was found to be exponential for all a.
Contrarily, the distribution is always in the transient state for v; < 79 case. While for v = 79,
the distribution P(z,t) has a peak at the origin [see Eq. ], we see in Eq. that the
distribution, for 71 < 72, has two moving symmetric peaks at z = i%t and a dip at the
origin.

Next, we studied the survival probability S(xo,t) in a semi-infinite line for this model. For
v1 = 2 and general «, we find that this probability possesses a power-law decay of the form
~ 1/t% at large times with the exponent 6, = 51—3 On the other hand, S(zo,t) for v1 < 2
saturates to a non-zero value as t — oo which is attributable to the drift that takes the particle
away from the origin. Approach to this steady value is exponential as proved rigorously for
a =0 and a = 1 and verified numerically for other values of «. By the same line of reasoning,

we also showed that S(zg,t) for 41 > ~2 decays exponentially to zero at large times. Finally, we

studied the RTP model in a finite interval and calculated the exit probability for all values of «.

Note that although we have focused on o > 0, some of our results remain valid for negative «
also. For example, the stationary distribution for v; > 9 in Eq. is valid for —1 < a <0
also and has been numerically verified in Figure . Similarly, the scaling function f,(z) of
the distribution in Eq. for 41 = 79 is also valid for —2 < o < 0 (numerically checked but
not shown here). Extending our study for negative o remains an interesting future direction.
Also, the distribution P(z,t) in Eq. for v1 = 2 and general « is valid only for the typical
fluctuations (x ~ tﬁ) of the position and does not describe the far tails of the distribution. In
particular, for homogeneous case (a = 0), the distribution P(z,t) for large (atypical) z admits
a large deviation form as shown in |114]. It remains open to prove if such large deviation form
also exists for the heterogeneous case. Lastly, it was recently shown in [92] that the survival

probability for a RTP in d-dimension with @ = 0 and ~; = 2 has some universal features. It
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would be interesting to see what happens to this universality when the rate becomes position

dependent.
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Chapter 5

Local time for run and tumble
particle

The previous chapter demonstrated the consequence of the spatial heterogeneity on the motion
of a run and tumble particle. Particularly, we examined how this heterogeneity ramifies the
probability distribution and persistent properties of a RTP in one dimension. In this chapter,
we continue our study on the heterogeneous RTP and look at the statistics of the local time.
Local time (density) refers to the amount of time (per unit length) spent by the particle in the
neighbourhood of a given point in space. Study of local time turns out to be useful in many
interdisciplinary settings like in chemical reactions where the yield of a product is related to the
amount of time that the reactants spent together [196-199]. Similarly, in biological settings,
the action of a molecule in the interior of a cell depends on the time that it spends inside the
cell [163,/200]. For stochastic processes, the local time properties can provide spatio-temporal
properties of the particle’s trajectory. Consequently, its statistics has been studied for a wide
variety of stochastic processes [128.129,201-208|. So far, however, such studies have not yet been
made in the context of active particles. This study is particularly relevant in the current day
research where active particles are being used as nano-machines for various applications [38}39].
One quantity that may then estimate the efficiency of these nano-machines is the amount of
time spent in the vicinity of the desired location. This potential application has motivated us

to examine the statistical properties of the local time for active particles.

Focus of our study will again be the run and tumble particle in one dimension whose position
evolves according to Eq. (1.7). Once again, we consider that the telegraphic noise o(t) in Eq.
(1.7) changes from 1 <+ —1 with rate R(z) defined as

R(z) = 7‘?1, with o > 0, (5.1)

where v is a positive constant that sets the timescale for the activity and [ is the length over
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Figure 5.1:  Schematic illustration of a typical trajectory (shown in red) of a RTP with observa-
tion time ¢. The interval [—¢, €] is shown in green and the particle spends To. = 70+ 71 + T2 + 73

amount of time inside this interval. This implies the local time (density) is given by Tj,. =

lim._o [W]

which the rate varies. Note that unlike in the previous chapter, the rate of flip here only depends
on the position of the particle and does not have any directional dependence. For this model,

we are interested in the local time (density) Tj,. which is formally defined as

Tlocz/O d(x(7))dr. (5.2)

Notice that this quantity gives a measure of the amount of time (density) that the particle
remains in the vicinity of the origin. We will demonstrate the effect of persistence on Tj,. both
in an infinite line and a semi-infinite line with an absorbtion wall. To derive the statistics of
Tioc, we follow the Feynman-Kac’s formalism [123,/124] as done for the residence time in Sec.
2.4 However, this formalism is analytically tractable only for a = 0 and solving it for general
« turns out to be difficult. Herein we develop an explicit path-counting method which gives us

the exact forms of the distribution for all values of «.

In the rest of this chapter, we study the local time statistics in an infinite line in Sec. with
Sec. [.1.1] containing discussions for o = 0 and sec. for general ae. We then study Tj,. in
a semi-infinite line in Sec. with Sec. for « = 0 and Sec. for general a. We then

summarise in Sec. [5.31

5.1 Local time statistics in an infinite line

We first look at the statistical properties of Tj,. for the RTP moving in an infinite line till time
duration t. We denote by Py (Tjoc, To,t) the probability distribution of Tj,. given that the RTP

was initially at xg with velocity £vg. We also define the Laplace transformation of Py (T}, o, t)
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with respect to Tje (— p) as

oo
Qi(% Zo, t) = / dTloc e—PTloc P:I: (Tloca Zo, t) . (53)
0

To obtain the distribution of Tj,., it turns out more convenient to consider another intuitive

definition of the local time due to P. Lévy [209]:

T t
Tioe = lim —=,  with Ty = / I (z(7)) dr, (5.4)
0

e—0t+ 2€

where I, (z(7)) = © (z(7) 4+ €) © (¢ — (7)). Then, the term I becomes I () =1 for —e <z < €
and 0 otherwise. Physically T represents the amount of time that the particle remains inside a
small but non-zero interval [—¢, €]. In Figure we have schematically illustrated the quantities
T and T}, for a trajectory of the RTP. In what follows, we first calculate the distribution of
T5¢ and use transformation to compute the distribution of Tj,..

Let the distribution of Ty be G4 (T, xo,t) with the initial position z¢ and initial velocity tvy.

The corresponding Laplace transformations with The (— ¢) are

Hi(q,a:g,t) = / dT5, e 1T G+ (Tge,xo,t). (5.5)
0

From Feynman-Kac’s formalism [121}123//124], we can write a set of coupled backward equations

for Hi(q,xzo,t) as (see appendix for details)

OHy = v0yHy — R(xzo)Hy + R(xo)H- — qlc (z0) Hy, (5.6)
OH_ = =000, H_ + R(xo)Hy — R(xo)H_ — qlc (zo) H—,

We now proceed to solve these equations with rate R(x) given in Eq. (5.1]). To solve them, we

use the following initial and boundary conditions:

Hi(q,z9,t =0) =1, (5.7)

Hy(q,xg — foo,t) = 1. (5.8)

Recall that if ¢ = 0 then the time spent in the interval [—e, €] is also zero which gives Th, =
0. Therefore, the distribution is given by Gu(Tae, zo,t = 0) = § (To¢) which gives the initial
condition in Eq. . Similarly, if the initial position is zg — F00, then also the particle will
remain outside the interval [—e¢, €] which finally gives the boundary conditions in Eq. (5.8).

As mentioned before, our main goal is to calculate the distribution Py (Tjee, o, t) of the local
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time. For this, we consider the definition of Tj,. from Eq. (5.4) and use Py (Tjoc, z0,t) dTjoc =
G+ (TQE, xo, t)dTQe to get

Qe (p.0,1) = lim e (3, 30,1) . (5.9)
e—0 2€

Therefore, the problem of deriving the statistics of Tj,. reduces to calculating Hy (q, zg,t) for
which we solve Egs. (5.6). Taking Laplace transformation of Hy(q,xo,t) with respect to ¢ in

these equations gives

Hy(q,xo,s) = / dt e Hy(q,xo,1). (5.10)
0

The boundary conditions in Eq. (5.8) then become

_ 1
Hi(q,x0 = £o0,s) = —. (5.11)
s
Introducing two new functions
_ H H_
H(q’]}O’S) _ +(q7 .Z'(),S) —; (Q7x078), (512)
_ H —H_
Z(q7x0’8) — +(q7x07$) 2 (q‘)xO?S)’ (513)

we recast Eq. (5.6 in the Laplace space in terms of these functions as

sH —1 =090, Z — qlle (w0) H, (5.14)

87 = v90z H — 2R(20)Z — ql. (20) Z. (5.15)

Using the second equation to write Z (g, zg, s) completely in terms of H(q, 2o, s) and plugging it

in the first equation, we get a closed-form differential equation for H(q, zo, s) as

_ B 0 1)3 OH _
sH —1= dzo [(s + 2R (o) + q]le> 8:00} ~ dle(z0) H. (5.16)

This is the main equation that we will solve for general a. Below we solve it exactly for a« = 0

and then present an approximate solution for the general « case.
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Figure 5.2:  Moments of Tj,. for & = 0 given in Eq. (5.25) (shown by solid line) have been
compared with the numerics (shown by red filled circles). We have taken vy = 1, v = 1. For

simulation, the interval [—¢, €] is chosen with € = 0.001.

5.1.1 Casel: a=0

For a = 0, the rate R(zg) is just a constant and our model reduces to the usual homogeneous
run and tumble motion. For this case Eq. (5.16) takes the form

_ 0 < v3 OH

H-1=—(—Y%Y —7 ) gL H. 5.17
s 0xg 5+27+q]168$0> ¢l (zo) ( )

Solving this equation separately for regions inside and outside the interval [—e, €] gives the exact
solution of H(q,ro,s). We then insert this solution in Eq. (5.15) to get Z(q,o,s). Finally
substituting these solutions in Eqs. (5.12)) and (5.13) results in the expressions of Hy (g, g, s)

as
Aszq
%—l—Al(q,s)e v if —oo<xg< —¢
Hy (q,70,8) =< L 4+ 4 Ao A Agtrrsta) L if —
[t stq + 2(q’ S)e 0o+ Z(Q7 S) o e 0, 1 € < <F¢,
—Aszq
%+A1(q,s) (%)e v if € < zg < o0.
(5.18)
1.4 Aatyts ) 2 £
s+ Ai(g, s) = e v if —oo0 << —e,
— _ Aq%o . Ago
H_(q,z0,s) = ﬁ + As(q,8)e 0 + As(q, s) (W) e v, if —e<uxg<e,
_Asaco
%—i—Al(q,s)e v if € < 29 < 00,
(5.19)

where A\s = /s(s +27), Ay = /(s +q)(s + ¢+ 27). In these solutions, the functions A (q, s)
and As(q, s) do not depend on the initial position zg. To evaluate these functions, we use the

continuity of Hx (g, o, s) across xg = e which then completely specifies the Laplace transforms
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Figure 5.3:  Left panel: Comparison of the distribution P(7j,.,t) given in Eq. fora =0
with the numerical simulations for vg = 1, v = 1 and t = 3. In simulation, local time is measured
inside the box [—¢, €] with e = 0.01. Right panel: Schematic trajectories of a RTP that give
rise to different J-function terms in Eq. . For example, the red trajectory contributes

Tioe = ﬁ = ﬁ whereas the blue trajectory contributes T = 23—50 = % to P(Tioc, t).

Hy (q,z0,s). However, recall that, we are interested in the local time statistics for which we
need to compute Hy (g, o, s) at ¢ = p/2¢ as clear from Eq. (5.9). Moreover, we are interested

at g = 0 and therefore provide only the form of As (%, 8) in the limit ¢ — 0 as

A _e
lim A (ﬁ,s) - s¥S e (5.20)
=0 2e s(/\s—i—s—i—’y—fye vo>

Plugging this in the middle equation of set ([5.18]) then gives

Q4 (p,0,t) = lim Hy (%,0,1&) : (5.21)

e—0

__p
2v,
_ stgle (5.22)

s()\s—i—s—l—'y—fye_%)

Since the initial position xg = 0, we expect Q4+ (p,0,t) = Q- (p,0,t) by symmetry. This can
also be verified by explicitly calculating Q_ (p,0,t) from Eq. . Dropping the subscript ‘4’
from Q4 (p,0,t) and simply using the notation Q(p, s) instead of Q+(p,0, s), we get

_ (As + 8)e 0

Q(p,s) = - (5.23)
s ()\S+S+’y—'ye_%)

To get the distribution P (T}, t), the only task now is to perform the inverse Laplace transfor-
mation of Q(p,s). Before that, we use the Laplace transform Q(p, s) to compute few moments

of T}, which highlight some key differences from that of the Brownian motion.
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5.1.1.1 Moments (T}

loc

(t)) for a =0

Following the definition of Q(p, s), the moments of T},. are obtained by differentiating Q(p, s)
with respect to p as
"Q(p, s
(TR 0) = Lo [(—1)” <Q(p)) ] , (5.24)
p=0

op™

where Ly ¢, as before, denotes the inverse Laplace trasformation from s — t. Substituting
Q(p, s) from Eq. (5.23) in this equation yields the expressions of the general moments of Tj,,.
Obtaining closed-form expression for n-th order moment, however, turns out to be difficult. We

below provide the expressions of the first three moments of T},

(Tue0) = 10+ 290)Do(00) + 210
(Tie(t) = 411)% (1+4vt), (5.25)
et
(Tioc()) = 5o [(1+ 19t +1697¢%) Io (7) + (67t + 167°t%) Li(71)]
Yo

Figure shows the comparison of our result with the numerical simulations and we find
excellent agreement for all three moments. For small ~¢, the RTP displays strong persistence
effects as observed before for various quantities. Here also, we anticipate strong non-Brownian

behaviour at small v¢. To see this, we take the large s form of Q(p,s) in Eq. (5.23) by
D

~ 2y

approximating As = 1/s(27 + s) ~ s. This gives Q(p, s) ~ ¢ —— from which n-th order moment
turns out to be
(TP (#) > ———,  as 4t — 0. (5.26)
oc (2,00)”

Interestingly, for small (but non-zero) times, the moments of 7j,. become non-zero constants
which is different than the Brownian motion for which the n-th moment scales as ~ t2 with
time [128]. As we show later that this difference essentially stems from the persistence nature
of the RTPs at these timescales. On the other hand, for large times, we take the small-s form

of the Laplace transform Q(p, s) ~ — 20 ___ with ©) = i} and plugging this in Eq. (5.24)),

Vs(p+2v/sDo) 2y
we get
T n! t\? ¥t — 5.27
" (1)) ~ , as vyt 00 .
< ZOC( )> I (% + 1) <4®0> ( )

which expectedly matches with the results of Brownian motion [128].
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5.1.1.2 P (T}, t) for a« =0

To compute the probability distribution P(Tjee,t), we have to perform two inverse Laplace
transformations of Q(p,s) in Eq. (5.23), namely one with respect to p — Tj,. and the other

with respect to s — t. Therefore, we get

(As + s)efﬁ
s ()\s-l-s—&—’y—'ye*%)

A — 5 & < ~ >m _@manp
L.y L e 2o |, 5.28
s—t pﬁ’l—'loc 5’7 HLZ:O )\3 +5+7 ( )

P (Tipe,t) = Lsst Ly,

)

The inversion with respect to p is easy and we have

P (Tioe,t) = L Asfsi 7 " (1, - 2t (5.29)
locy V) — Lis—t s — )\8 +s+n loc 200 .
Now to perform the inversion in s, we use the following result from [210]:
Loy |2 TV = e hr) + Fna (1) (5.30)
s—t oy Mt st m\7Y m~+170)] .
and insert it in Eq. (5.29). The final expression of P (T}, t) then follows to be
[e.e]
2m +1
P(ﬂocvt) = Z Sm(t) d <T’loc 9 > ) (531)
m=0 vo
with — Su(t) = e " [Ln(yt) + Lni1(vt)] (5.32)

In simulation also, we see that the distribution P (Tj,,t) appears as a series of J-functions as
indicated by Eq. . This comparison with the simulations has been shown in Figure
(left panel). Let us now try to understand physically how various dé-functions in Eq.
arise. Consider the red trajectory of the RTP in Figure (right panel) where the particle,
starting from the origin, does not cross the origin till time interval ¢. Here, the time spent by
the particle inside the interval [—¢, €] is Tp. = +o- Following the definition of local time in Eq.
, we then get T, = ﬁ Such events give rise to the m = 0 term in Eq. . The
corresponding coefficient Sp(t) then represents the probability that the particle, starting from
the origin, has not crossed the origin till time ¢. Similarly, for the blue trajectory, the particle
crosses the origin only once till time ¢ with the initial position also being the origin. Here,
Toe = i—; and Tj,. = Therefore, these events contribute to the m = 1 term in Eq.

with the coefficient Si(t) simply being the probability that the RTP, starting from the origin,

3
2vg *
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crosses the origin only once till time ¢. Extending this idea allows us to write the contribution

Sm(t) 6 (Tloa — 2’;;?1) when the particle crosses the origin m-times till time ¢. The coefficient
Spn(t) has the natural interpretation as the probability that the RTP crosses the origin m-times

till time ¢ starting from the origin. We have explicitly derived this in appendix

Now to contrast P (T}, t) in Eq. (5.31) with that of the Brownian motion, we analyse it in
various limits for v¢. Particularly for vt — 07, we have I, (vt — 0) = 8,0 which then makes

the right hand side of Eq. (5.31) as
1
P (Tipe,t) ~ 0 <Tloc - 2> , for vt — 0. (5.33)
Vo

This form also correctly recovers the moments of Tj,. in Eq. (5.26]) for small but non-zero ~t.

'UOTloc

Vvt
then replace the summation in Eq. (5.26|) by integration performing which gives P(Tjye,t) =~
22

Next for vyt — 0o, we also take the relevant scaling limit vy7},. — co with fixed. One can

et

_UOTloc
ve "I,o1,.(vt). Finally using the asymptotic expression 1, (7t) ~ Joi€ for the

aforementioned limits, we get the expression of P(Tj,,t) as

4Dg _ P0Tige
P (Tipe,t) ~ \/76_ = , asyt — oo, (5.34)
7r

2
with g = 12%‘ As expected in this case, we recover the results of the Brownian particle in one

dimension with diffusion constant ©q [128].

5.1.2 Case II: General o

We now derive the statistics of Tj,. for general a. Notice that the path-counting analysis used
for a = 0 in the previous section can also be applied for the general « case. So, for this case also,
we expect the distribution P (T}, t) to be given by Eq. with S,,(¢) being the probability
for m returns to the origin till time ¢. But obtaining this probability S,,(t) for general o turns

out to be challenging. Instead, we solve the backward master equations directly for this case.

From Eq. , we see that the backward equation for Z(q, ¢, s) has a decay term proportional
to 2R(z0)Z + ql. (x0) while for H(q,zo,s) in Eq. , the decay term is only proportional
to qlle (z9). So we expect Z(q,zo,s) in the time domain to decay faster than H(q,zo,s) which
enables us to drop sZ term from Eq. for small s (equivalently large ¢). Also, we are

interested in the statistics of the local time T},. which is related to the statistics of T5. via Eq.

(5.9). By replacing ¢ by p/2¢ in Eq. (5.14) and using &I (x0) — pd(zo), we can transform Eq.
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Figure 5.4: First three moments of T}, in Eq. (5.39) have been compared with the numerical
simulations for & = 0.5. The analytic form is shown by solid blue lines and the symbols are the

simulation data. Parameters chosen are vg =1, v =1, [ = 1. The slopes of the plots are (a) 3

5
(b) g and (c) %.
(5.14) for H(q, xo,s) to a differential equation for Q(p, ¢, s) as
_ 0 1 0Q _
p— ~Y 27 —_— p—
sQ — 1~ v o <2R(xo) 3xo> pd(x0)Q. (5.35)

Note that here Q(p, 79, s) = Q+(p’x°’s);é‘(p’x0’s) where Q- (p, zo, s) are the double Laplace trans-

forms of the distribution Py (Tjec, zo,t). The boundary condition for Q(p, zo, s) is obtained from

Eq. (B-11) as

Q(p, w0 — +00,5) = é (5.36)

Once again to solve Eq. ([5.35]), we follow the route as done in Sec. To avoid the repetition,
we have relegated the details of this calculation to appendix The final solution for zg = 0

reads

Qp,s) ~ — Ha) ,  with (5.37)

1 1
Co=2 <( Da )M ; Eia) . (5.38)

27
Here ©, = vg,ly . Remember that this expression is valid only in the small-s limit. We now use

it to compute the large-t behaviours of the moments and distribution separately.
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Figure 5.5: Comparison of the scaling function f,(z) of T}, in Eq. (5.43)) (shown by solid
line) with the numerical simulations (shown by different symbols) for a = 0.5 and a = 1. For
each «, we have considered the simulation data for three different times. Parameters chosen are

vp=1 vy=1land =1
5.1.2.1 Moments (T}’ (t)) for general «

Using the relation in Eq. (5.24), we can compute the moments of Tj,. by plugging Q(p, s) from
Eq. (5.37). The n-th order moment then reads

n' n(l+o)

: t 2t (5.39)
n 1+(n+1)(1+a)
43 <72 1 )

(Toe(t)) =

Note that this equation gives the moments only at late times and ceases to be a good description
at small and intermediate times. For a = 0, it correctly gives the ~ v/t scaling of T},. which was
also observed before from the exact analysis. For general «, we find that the typical fluctuations
of Ty, scale with time as Tj,. ~ t%% for large values of ¢t. In Figure we verify our results
by comparing it with the numerical simulations for o = 0.5. The deviation at small times is

self-explanatory. The match becomes better as we go to higher values of .

5.1.2.2 Scaling form of P(T},.,t) at large t for general «

Let us now perform the double inverse Laplace transformation of Q(p,s) in Eq. (5.37) to find

the distribution P(Tj,t). Inversion of Q(p, s) with respect p is straightforward and we get

c b
P(n007t) = Ls—>t (11 e—CaTl(,CSQJr . (540)
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To perform the other inverse Laplace transformation, we use the result from [211]

—wsB 0 i .
e " Lo~ (Cw) ' TA+58)
Ls —t (M) = E ) R sin (mjB), for0<pg <1, (5.41)
]:

in Eq. (5.40), which then gives that the distribution P(7},., t) satisfies the scaling form

C CoT,
P(Tioe, ) ~ —1 fa< CLZ”), (5.42)
t2+a t2+a

where the scaling function f,(z) is given by

oo o vic1 T (14 jite
! (=2) < 2+a> sin <7T'1+a>. (5.43)

falz) == 41 (I+7a) T2t a
J=1 2+a
In Figure we have numerically verified the expression of f,(z) for « = 0.5 and o = 1.
For each «, we have performed the simulations for three different values of ¢ and we see nice
agreement for all cases. For some values of «, we can perform the series summation in Eq. .
For example, for o = 0, the summation can be carried out and we recover the result in Eq.
for P(Tjpe, t). For general «, it is difficult to carry out this sum analytically. However, one can
get a simplified expression of f,(2) for large z by using the saddle point method to evaluate the
Bromwich integral in Eq. . We have derived this expression in appendix and present

only the final result here as

N 22 (1+a)? C(1+a)tte 2+a>
falz) ~ \/%(24—04)%1 exp< 7(24—04)2%‘ z . (5.44)

This expression is valid only for large z and breaks down for smaller values of z.

5.2 Local time in presence of an absorbing wall

Up to this point, we studied the moments and distribution of 7j,. when the RTP moves in an
infinite line till a fixed time duration t. But in many physical settings, particles move in a
bounded domain in presence absorbtion boundary. For example, in chemical reactions taking
place inside bounded domains, the time spent by a catalytic agent around the reactive points
before coming out of the domain might be related to the efficiency of the reaction [196-199].
Similar examples might arise in biological settings, where the time spent by a protein molecule
inside a cell before getting absorbed by a binding site might be useful [200]. Motivated from

these examples, we proceed to study the statistics of the local time in presence of an absorbing
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wall in this section.

More precisely, we consider a RTP in one dimension with the initial position zg and an absorbing
wall at © = M (> x0). We follow its motion till it gets absorbed by the wall and denote the
corresponding fisrt-passage time to M by t;. The local time Tj,. measured around the origin is

then given by

Tiow = /0 Y s () dr. (5.45)

This falls under a broad category of quantities called first passage functionals which have been
studied in detail for Brownian motion [121]. For RTP, we denote the distribution of Tj,. in Eq.
(5.45)) by P+ (Tjec, xo) and their Laplace transforms with Tj,. (— p) by

Qi(}?,ﬂfo) = / dﬂoc e*pTl[)c ,P:I:(,Tloa $0). (546)
0

As done before, to derive the statistics of the local time, we follow another intuitive definition

due to P. Lévy as [209]
Tioe = lim % with (5.47)
ty
Ty = / Ie (x(7)) dr, (5.48)
0

where Ty, is the time spent by the RTP inside a small but non-zero interval [—e, €] till the first-

passage time t;. Once again, we will first derive the statistics of T5. and use it to obtain the
properties of Tj,. via Eq. (5.47).

Let Py (T, z9) be the distribution of T and their Laplace transform with T (— ¢) be

Qu+ (g, o) 2/ dTye €1 Po(Tye, mg). (5.49)
0

Then using the definition of T}, in Eq. (5.47)), we get the relation

Qi (p,zo) = im Qu (2%,360) - (5.50)

The Laplace transforms Q4 (g, zo) satisfy the backward Fokker-Planck equations

0002, Q4+ — R(20)Q+ + R(20)Q- — qle(70)Q4 = 0, (5.51)
00020Q- — R(20)Q+ + R(z0)Q- + gle(20)Q- = 0. (5.52)
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with the following boundary conditions:

Qs (gym0 = M) = 1, (5.53)

Qx+ (g, w9 — —00) < o0. (5.54)

To understand the first boundary condition, recall that if the particle starts from xg = M~
initially with velocity 4+vg then it will instantly get absorbed by the wall. Consequently T5. = 0
and Py (Toe, M) = 6(T5) which from Eq. then gives the boundary condition in Eq.
. Let us now understand the second boundary condition. If xyp — —oo, then the first-
passage time ty also diverges. But the Th. spent inside the inteval [—¢, €] does not necessarily

diverge. So, we anticipate the distribution to remain finite which in terms of Q4 (g, z¢) translate

to Eq. (5.54).

In the following, we will solve the backward equations (5.51)) and (5.52) and then use Eq. ([5.50))

to obtain Q4 (p,xo) (as done for inifinite line case). For simplicity, here also, we consider o = 0

and general o cases separately.

5.2.1 Casel:a=0

The backward equations in (5.51)) and (5.52)) for o = 0 take the form

00020Q+ — 7Q+ +7Q- — glle(z0)Q4 =0, (5.55)

= v002,Q- +7Q+ — ¥Q- — glle(0)Q- = 0. (5.56)

Recall that Ic(xg) is 1 if —e < 29 < € and 0 otherwise. As done for infinite line case, here also,

we solve these equations in different regions of xg to get

B(q), if —oo<xg < —¢,
Q1 (q,m0) = IEJ((])t;Agfi))ac —i—F(q)eAggz, if —e<um<e, . (5.57)
C(q)(xo — M) + 1, ife<zog < M.
B(q), if —oo<xp< —¢,
Q-(g,20) = E(q)%eikggz + F(q)MeAS’?I, if —e<x<e,
Clg)(wo — M — %) +1, if e <xg < M.

(5.58)
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Figure 5.6: Numerical verification of the distributions P1(7T},.) in Eqs. (5.62) and (5.63]) for
a = 0. We have taken vg = 1, v = 1 and M = 1. In simulation, the local time is measured
inside a box [—e, €] with e = 0.001

To derive these solutions, we have used the boundary conditions in Egs. and .
Also, here \(¢q) = \/q(q + 27) and B(q), C(q), E(g) and F(q) are functions independent of z
but depend on ¢. To compute these functions, we use the continuity of the solutions Q4 (g, z¢)
across o = e which then gives four linear equations involving B(q), C(g), E(q) and F(q). By
solving these linear equations, we get the exact expressions of these functions. But here we are
interested in xg = € and therefore, need only the expression of C(q) as observed from Egs.

and (5.58)). Moreover, since we are ultimately interested in the statistics of the local time Tj,..,
we put ¢ = p/2e [see Eq. (5.50)] and obtain

2p
p ! (evo ~ 1)
lim C <Z) = . (5.59)

evo (vg +yM) —~yM

Plugging this expression in Egs. (5.57)) and (5.58]) and using the relation in Eq. (5.50)), we write

Q.+ (p,€) in terms of Q4 (g, €) as

. p Vo
Qi (p) = mQ: (£.¢) = — (5.60)
‘ € vo +YM — yMe™ o
_2p
. p vge Yo
Q- (p) =limQ (5.c) = eng (5.61)

vog +yYM —yMe o
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Figure 5.7: Schematic illustration of different trajectories of a RTP in presence of an absorbing
wall at x = M (shown in Magenta). The particle starts from xg = e with velocity +wvg for left
panel and —vq for right panel and is evolved till it gets absorbed by the wall. Local time is then

measured inside the interval [—e, €] shown by dotted green lines.

Here Q4 (p) stand for Qi(p,€). Performing the inverse Laplace transformation, we get the

distribution P (Tjc) as

Pi(Tioe) = Y _ po(1—po)™ 0 (TZ - Zm) , (5.62)
m=0 Yo
_N P =po)" o 2m
P—(Tioc) = mzl 1 po) ) <Tl » > , (5.63)

Vo
vo+yM*

where pg = In Figure we have compared our analytic result with the numerical
simulations. The agreement between them is excellent. Observe that the distributions P (Tj.c)
appear as a series of d-functions which is reminiscent about the infinite line case in Eq. .
As we show next that the form of Py (7T},.) can be more easily derived by counting the number
of paths that gives rise various delta function terms. Under this path-counting analysis, the
prefactor accompanying 0 (Tloc — %}—?) term in Eqs. (5.62) and can be interpretated as

the probability of m-visits to the origin by the RTP before getting absorbed at x = M at time

ty.

5.2.1.1 Physical Derivation of P (7},.): Path Counting Analysis

Let us now try to understand various delta-function terms in Egs. (5.62) and (5.63]). We first

focus on Py (Tjec). Figurel5.7| (left panel) schematically illustrates different trajectories of a RTP
with initial position zy = € and velocity 4+vg. Notice that for the red trajectory, the particle
gets absorbed by the wall x = M without entering the [—¢, €] interval. Hence, the time T5, spent
inside this interval is exactly zero which from Eq. implies Tj,. = 0. This gives rise to
the 0(Tjoc) term corresponding to m = 0 in Eq. (5.62)). The weight of this term will simply be

the probability that the particle, starting from the origin, exits via x = M without crossing the
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Figure 5.8: Analytical expressions of the distributions P (T},.) of the local time in Egs. ([5.66)
and ([5.67) have been compared with the numerical simulations for @ = 0.5 and o = 1.5. Values

of the parameters are vg =1, vy =1, M =1, [ = 1. For simulation, we have taken ¢ = 0.001.

x = 0. This exit probability was exactly calculated in Sec. to be po = Uoi?y 7. Consequently,
we get the contribution pod(Tj.c) in Eq. (5.62)).

Similarly, for the blue trajectory in Figure[5.7] (left panel), the particle crosses the [—e, €] interval
twice before getting absorbed by the x = M wall. Then the value of the local time is Tj,. =
2% (% + %;) = % which corresponds to the m = 1 term in Eq. . To understand its
weight, we break the blue trajectory as [1 — 2]@[2 — 3] EP[3 — 4]. By following the same
reasoning as for m = 0, we get the contributions of 1 — py and pg from parts 1 — 2 and 3 — 4
respectively. On the other hand, the RTP makes a first return to the origin in part 2 — 3 whose
probability is unity (since the RTP motion is recurrent). The total contribution then becomes
po(1 — po)d (Tloc — %) Extending this rationale to the situation when the RTP crosses the

[—e€, €] interval 2m times, we get T}, = 21]—’: and the corresponding weight po(1 — pg)™ in Eq.

(.62).

Let us now turn to P_(Tj,.) in Eq. (5.63). From Figure (right panel), we first notice that
the particle will definitely enter the interval [—e, €] when it starts from z¢ = € with —vy. Hence
Tioe = 0 term does not appear in Eq. . However, other terms still appear. For example, in
Figure (right panel), we see the blue trajectory where the particle crosses the [—e, €] interval
twice before getting absorbed by the wall. As seen before, the particle will then contribute
Tioe = % To compute its weight, we once again break the trajectory as [1 — 2] @[2 — 3]. The
motion being recurrent, we get a contribution of unity in the part 1 — 2. On the other hand,
the part 2 — 3 contributes pg since the particle exits from x = M. The total contribution then
becomes pg ¢ (Tloc — v%) Similarly when the particle enters the interval 2m times, the total
contribution to the distribution becomes po(1 — pg)™ 1§ (Tloc — 2—m>

vo

It is worth mentioning that although, we have focused on zg = €, the path-counting analysis
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can be easily extended to arbitrary xg. For example, for z9 = —e (— 07) this analysis gives the

distribution of Tj,. as

2m+1
ﬂoc Z pO 1 - pO (ﬂoc - v0 ) ) (564)

and for x¢p = 0 the distribution is given by

dm+1
Tloc Z pO 1 - pO (Tloc - 22}0 > )

dm + 3
ﬂoc Z F‘O 1 - pO <ﬂoc - 2U0 > .

In fact, the path-counting method becomes easily adaptable to the general o case also. This is
quite remarkable because solving the backward equations for arbitrary « and zq is analytically
challenging as seen for the infinite line case. In the next section, we will use this path-counting

analysis to obtain the exact distributions of T}, for the arbitrary values of a.

5.2.2 Case II: General o

Let us now look at the distribution of Tj,. for the general @ > 0 with an absorbing wall at
x = M. Solving the backward equations and analytically for general « is difficult.
However, the path-counting technique discussed in the previous section can be easily generalised
to this case. Following the same physical arguments as before, the distributions Py (7j,.) for

2o = € (— 0T) can be found to be

2m
Tloc Z pa 1 - pa 5 <T’loc - ’U()) ) (566)

2m
(T; 0 (1=pa)™ 16 (Thoe — — ), .
P_ loc Zp p) <l U0> (567)

m=1

where p,, denotes the probability that the RTP, starting from the origin, exits from z = M side
without crossing the origin. In Sec. we have derived this exit probability exactly and its
expression reads

vo(1 + a)l®
’)/MH'CY + ’U(](l + Oé)la.

Po = (5.68)

Figure shows a comparison of our analytic results with the simulations for o« = 0.5 and
a = 1.5. We observe excellent match of our analytical results with the simulation data. Here

also, one can extend these results for other initial positions as done for o = 0 case.
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5.3 Summary

Continuing our study on the heterogeneous RTP model, this chapter demonstrated the effect
of the position dependent rate R(z) ~ |z|* (a > 0) on the statistics of the local time Tj,.
For the homogeneous case (o« = 0), we used the Feynman-Kac’s formalism to compute the
moments generating function of 7Tj,. from which we exactly calculated the first three moments
of Tj,.. We then derived the distribution of Tj,. for a = 0 in Eq. which appeared as a
series summation of d-functions with appropriate weights. By counting the number of paths, we

argued that the term S, (t)d (Tloc - Zm“) in Eq. (5.31) arises when the RTP visits the origin

2v0

m-times till time ¢. The weight S,,(¢) is then interpretated as the probability of m-returns to

the origin with starting position also being the origin.

While for general «, the distribution is still given by the series summation of §-functions, calcu-
lating S, (¢) for this case turns out to be difficult. However for large ¢, we solved the backward

lta
equations to find that the typical fluctuations of Tj,. scale with time as Tj,. ~ t2+te and the

distribution obeys the scaling form P(Tjye,t) =~ fga fa (c&l:ﬁgC) The corresponding scaling
t2+a t2+a

function f,(z) is obtained explicitly in Eq. (5.43)) for arbitrary values of o > 0.

In the second part of this chapter, we considered the local time properties in presence of an
absorbing wall at * = M (> 0). By using the path-counting method, we showed that the
distribution, for all values of a > 0 and z9p = € (— 0%), is given as a series summation of
o-functions at Tj,. = 2@—7: where m = 0,1,2,3,.... The expressions of these distributions are
given in Egs. (5.66) and . Once again, these forms can be understood from the problem
of m-visits to the origin (starting from the origin) for the RTP in presence of the absorbing

boundary condition at x = M.

Although, throughout this chapter, we have focused on o > 0 case, our result on P(Tj,,t) in
Eq. is valid also for —1 < a < 0. We have verified this numerically but not shown here.
However, performing the local time study analytically in presence of an absorbing barrier for
a < 0 remains a direction yet to be explored. Finally, we end this chapter by noting that our
results for Tj,. in Eq. (for infinite line) and in Egs. and (with absorbing
wall) for & = 0 may be experimentally verified using granular self-propelled particles confined
in a quasi one-dimensional channel [22§]. In such a set-up, the RTP dynamics is generated by
tuning the width of the channel and frequency of the thermal shaker above which the granular

particles are placed.
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Chapter 6

Crossover behaviours exhibited by
fluctuations and correlations in a
chain of active particles

In the previous chapters, we studied the motion of a single run and tumble particle and exem-
plified the effect of persistence on the statistical properties of different quantities like arcsine
laws and convex hull problems. The last two chapters focused on the run and tumble motion
in a spatially heterogeneous medium. But in all these studies, focus has been a single active
particle’s dynamics. However, various studies have shown that multi-particle interacting active
systems exhibit different non-trivial features like flocking [40-43], motility-induced phase sepa-
ration [44-47], non-existence of equation of state in pressure |[48] and so on. Another interesting
problem in this direction is the single-file motion of active particles in which the particles are
constrained to move in one dimension such that they cannot overtake the surrounding parti-
cles [130,|131]. As a result, the order of a particle is maintained throughout its motion. In the
context of diffusion, the single-file constraint gives rise to the sub-diffusive scaling of the mean
squared displacement (MSD) of the tagged particle at large times as ~ +/t in contrast to the
linear scaling seen in the ordinary diffusion [132]. The associated probability distribution with

the tagged particle’s position is also known for the single-file diffusion [212-214].

For active particles with inter-particle repulsive interaction, the MSD and the correlation of the
positions of the tagged particles have been studied in [133-136] where the MSD was shown to
grow sub-diffusively as ~ /¢ at late times similar to the single-file diffusion. Numerically, it was
found that the MSD possesses a scaling form in ¢/74 with 74 being the activity (persistence)
timescale [136]. However, these studies are often numerical based and analytic calculations
rely largely on hydrodynamic approximations or mean-field approximations. A rigorous and
systematic analytical treatment of the motion of a tagged particle in the interacting active

particle systems has still been lacking. To address this problem, we consider a simple and
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analytically tractable model of IV active particles interacting via the nearest-neighbour harmonic
interaction in this chapter. We focus on three models of active particles namely, run and
tumble particle (RTP), active Ornstein-Uhlenbeck particle (AOUP) and active Brownian particle
(ABP). While the first two models are considered in one dimension, we study the ABPs in
two dimensions. For these three models, we compute different correlation functions of the
positions and see how activity modifies them. Similar studies for RTPs have also been performed
in [215]. Harmonic chain driven by active noises has also been studied in the context of polymers
in [216H220]. It is worth mentioning that in the context of Brownian particles, the harmonic
chain description has been used as an approximation of a system with fairly general class of
two-body interaction [221]. Therefore, we hope that our study on the harmonic chain of active

particles in this chapter might also be of interest in a more larger context.

The rest of this chapter is organized as follows: We begin with a basic preliminary of three
models in Sec. and then summarize our main findings in Sec. For RTPs, we provide
the derivation of various correlation functions in the limit N — oo in Sec. with variance
in sec. [6.3.1} equal time correlation in Sec. [6.3.2] position autocorrelation in Sec. and
unequal time correlation in Sec. For finite but large NV, these correlations are calculated
in Sec. We then carry out this analysis for AOUPs in Sec. [6.4] and for ABPs in Sec.
which is followed by a summary in Sec.

6.1 Models and preliminaries

Consider a chain of N active particles where every particle interacts with its nearest neighnour
by harmonic interaction of spring constant K (see Figure . If 7, (t) denotes the position
(more precisely the displacement) of the a-th particle at time ¢ with « = 0,1,2,....N — 1, then
it evolves according to the equations

dry,

= K (20— a1 = Ta1) + FA®),  fora=0,1,..,N —1, (6.1)

Throughout this chapter, we consider the periodic boundary condition where the 0-th and
(N — 1)-th particles interact with each other. Also, we consider RTPs and AOUPs in one
dimension whereas the ABP model is considered in two dimensions. Hence, the position 7, (t)
for the first two models is 7, () = (24(t),0) and it is 74 (t) = (za(f),ya(t)) for ABP. The noise
ﬁf(t) in Eq. is the force due to some non-equilibrium source which gives rise to the active

nature of the particles. Its exact form depends on the choice of models. For example, for RTP,
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Figure 6.1: Schematic illustration of a chain of active particles with nearest-neighbour harmonic

interaction with spring constant K. The tagged particle is shown in red.

FA(t) = (FETP (1) | 0) is given in terms of the telegraphic noise o4 (t) as

«

EETP (1) = vy 04 (t), fora=0,1,.,N —1, (6.2)

(7a(t)03(E)) = bag exp (2]t — 1) (63)
Similarly, for AOUPs, the noise is FA(t) = (FAOUP (1) | 0) where FACUP (¢) obeys the dynamics

FAOUP(1y = )\, (t), Va  with,

dAo

=0t V2D (t), (6.4)

where 1, (t) represents the Gaussian white noise with zero mean and correlation (1. (t)ns(t")) =
8o 0(t —t'). Finally, for ABPs, there is an internal orientational degree of freedom ¢q(t)
measured with respect to the z-axis that performs rotational diffusion. The noise F. (1) takes

the form FABP(t) = (£4(t), ha(t)) where £4(t) and 1o (t) evolve according to

Ealt) =vac08da(t), 1Po(t) =vasinpy(t), (6.5)
% = 2Drot na(t)~ (66)

Here v4 (> 0) is the speed of the particle and D,, (> 0) is the rotational diffusion constant
which also sets the timescale for the activity. Once again, 7,(t) is the Gaussian white noise with
zero mean and unequal-time correlation (1, (t)ns(t")) = da,8 6(t —t’). Furthermore, we assume
that all ABPs are initially orientated along z-axis so that ¢, (0) = 0 for all a. For this particular

choice of the initial orientation, the mean and correlations of &, (t) and 1, (t) are given by [54]

(Ca(t)) =vae™Prott, (1ha(t)) =0, (6.7)

2 .
<€a(t)€5(t/)> — 5&,5% 6*Drot|t*t | +67Drot{t1+t2+2m1n(t1,tQ)} , (68)
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Figure 6.2: Schematics of three time scales in a harmonic chain of active particles. These time
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K> Drot

RTP / AOUP /ABP and (iii) the relaxation time scale 7y = N72 due to the finite ring size. We

assume 7T L 74 L TN.

scales are (i) the interaction time scale 7 = for

(ii) the activity time scale 74 = % /% /

2
v — —t — min
<¢a(t)1/15(tl)> _ 5%6% [e Dyot|t=t'| _ o=Drot{t1+t2+2min(t1,t2)} ’ (6.9)

(Ea()yp(t)) = 0. (6.10)

For these three models, we compute various two point correlation functions between the particles
and demonstrate how activity and interaction ramify these quantities. Notice that there are three
time scales in the problem: First is the interaction time scale 7 = % which comes due to the
inter-particle harmonic interaction. Second is the time scale 74 due to the active nature of the
particles. It is given by 74 = % for RTPs, 74 = % for AOUPs and 74 = %Ot for ABPs. Third
is the relaxation time scale 7 = N72 due to the finite size of the ring. Later, we show that
Ty is the largest time scale that a particular Fourier mode will take to relax. Throughout this
chapter, we consider 7 <« 74 < 7y as shown in Figure Later, we illustrate that this order
of time scales gives rise to interesting scaling behaviours of the correlation functions. The other
case of T4 < T < Ty only recovers the results of the Brownian motion with rescaled diffusion
coefficient. Below, we use this order of 7x, 74 and 7y to calculate various correlation functions

for a chain of RTPs. We then perform this analysis for AOUPs and ABPs in the subsequent

sections. We first summarise the main results of this chapter below.

6.2 Summary of the main results

Let us first summarise our main results on the variance (z2(t)). of the position of the tagged

particle. We have schematically shown this in Figure We obtain different scaling behaviours
of the variance depending on where the observation time ¢ lies. Recall that 74 < 74 < 7n.

When t < 7, then the tagged particle has not interacted with its neighbouring particles. We

2

2(t))e ~ t°, where the exponent b is same

find that the variance for this case scales with time as (x
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Figure 6.3: Summary of the main results on the variance (22 (t)). of the position of the tagged

particle.

as the non-interacting case for all three models. On the other hand, when 7 < t < 74, the

tagged particle exhibits persistent motion and is also interacting with other particles. Here, we

2
a

find a different growth behaviour of the variance as (x7(t)). ~ t”, where the value of v depends
on the model and is given in the figure. For 74 < t < 7y, the particle is indistinguishable
from an interacting Brownian particle for all three models. In fact, we notice that the particle

effectively performs the single-file diffusion at these time scales. Consequently, we recover the

2
o

scaling behaviour (x2(t)). ~ v/t (same as single-file diffusion) for all three models. Interestingly,
we also analytically compute the scaling function 7 (¢/74) (see Figure that connects the
scaling regime ~ t¥ with the single-file regime. The form of this scaling function depends on the
model and is given in Eq. for RTP, in Eq. for AOUP and in Egs. and
for ABP. Finally for ¢ > 7y, the tagged particle performs the normal diffusion and we
obtain the diffusive scaling (22(t)). ~ t for all three models. The associated scaling function
¢ (t/7n) (see Figure connecting the single-file regime and the diffusive regime is computed
exactly and is given in Eq. . Analogous results are also obtained for the equal and unequal

time correlation functions of the positions of two tagged particles. More precisely, we define the

correlation function

Car (P15 £2) = (@ay (11)Tag (2))e = (T, (11)2ay (2)) — (e (1)) (20, (f2)),

Cgl,ag (t17t2) = <ya1 (tl)ycm (t2)>c = <ya1 (tl)yaz (t2)> - <y041 (t1)><y0t2 (t2)>'

(6.11)

We emphasize that 7, (t) = (z4(t),0) for the RTPs and AOUPs, and 7, (t) = (z4(t), ya(t)) for

the ABPs. Consequently, for the former two models, one has only the correlation Célm (t1,t2),
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while for ABPs, one has both Cé{?ag (t1,t2). For the RTPs and AOUPs, we get

t
CL (L, 1) oc t3/2 TRT/OU () , TR Lt L TN (6.12)
b TA
1 t”QRT/OU( 2ﬁK> ; T L1 KTy
Cop(t,t) o t (6.13)
B .
\/56( m)v T4 <t <L Ty,
L tv LRT/OU (%) ; T Kt KTy
Caﬂ(tl,tg) X (6.14)
\/EM(%>; TA < b L TN
tY PRT/OU< 2’2)“ ,2) ;TR <<t KL Ta
Ca1 a2(t17t2) ! (615)
fQ( t17t1> ) 7-A<<t<<7'N

where the value of v is given in Figure [6.3]and 7, Q, C, £, M, P and Q are the respective
scaling functions. We provide the explicit expressions of these scaling functions in the respective

sections where they are derived along with the proportionality constants. Similarly for the ABP,

we get
t
P (t,1) o #3/2 TAB (m) 7 T << TN (6.16)
tVQAB< 5 ); TR K<L Ty
Ch 5(t,1) o PooAV2KL (6.17)
vie(7a) s Ta <t < TN,
» t”ﬁ;‘B(%) T K11 <K Tg
Ca,a(t17t2) X (6.18)
L M%) TA <<t K TN
BPAE (B 2) s k<t <
CPaltrtg)oc {7 \VERRTD (6.19)

(VA Qg 2) s m<t<y

where p = 1 and 2 for x and y coordinates respectively. Again, the expressions of the scaling

functions are provided later.

Previous results correspond to the N — oo case for which ¢ < 7 since 7y — 0o0. These results
get modified when ¢ > 7y, i.e. for large but finite N. For this case, we find that the correlation

function C}) B(tl’ t2) for all three models takes the scaling form

2D ¢ ¢ N t Kt
Ch 5t tp) = === W< 2 0 Kb

K e ) teta 0 (6.20)

where the scaling function W(t,, z,y) is given in Eq. (6.82). Also, here D.ss is the effective
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diffusion constants for the RTP (D.;y = Dg = g), AOUP (Deyy = Dy = C%) and ABP

2
(Defr = Dapp = %‘jm) chains.

In what follows, we will rigorously derive these correlation functions. We first compute these

quantities for RTP and then for AOUP and ABP in the subsequent sections.

6.3 Two-point correlation for RTP chain

We first calculate the equal time correlation function (za,(t)xa,(t)) of the positions of the
particles in a harmonic chain of RTPs. To this aim, we proceed to solve the Langevin equation
(6.1) with 74 (t) = (z4(t),0) by taking its Fourier transform with respect to the index . For a

general function ¢, (t), the Fourier transformation is defined as

N1
ga(t) = e~ gs(t)7 (6'21)
s=0
where i2 = —1 and the inverse Fourier transformation as
1 Nl 2
gs(t) = D e ga(t) (6.22)
a=0
Under Fourier transformation, Egs. (6.1) become
dT _
o= —ad + FAY) (6.23)
where we have used the notations
N-1
1 ﬂ"LS
N 5 ), (6.24)
a:0
N-1
]. 27rzs
=% e A(t), (6.25)
a=0
as = 4K sin? (%) . (6.26)
Solving Eq. (6.23)) for Z(t), we get
t
Ta(t) = e~ 7(0) 4 =0t / dr o™ FA(r). (6.27)
0

Notice that 1/as here sets the decay time scale for the s-th mode. For fixed but large N,

this time scale is of order ~ O(N?) with respect to the system size N. Later, we show that the
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variance and the correlation functions exhibit different scaling behaviours depending on whether

the observation time ¢ is larger or smaller than the relaxation (decay) time scale 7.

From eQ. (6.27)), the connected correlations turn out to be

¢ B B (6.28)
= e~ (astas)t / dry dry e T (FRA(r) ¥ (72))e,
0

where Z*(t) is the complex conjugate of Z4(t). Now, the noise FZ(t) for RTPs is just the
telegraphic noise o, (t) whose exact correlation is given by Eq. (6.3). Using this equation to
compute the correlation (FA(7y)F j*(Tz»c and plugging it in Eq. (6.28)), we get

2
(@ (DT5 () ETP = 5,470 G(2y, a4, 1), (6.29)

where the function G(u,w,t) is defined as

w [1 + e~ 2wt _ 26—(u+w)t] _ U(l _ e—th)

w(w? — u?)

G(u,w,t) = (6.30)

Since, our main aim is to calculate the two-point correlation (x4, (t)Za,(t))c, we use the trans-

formation in Eq. (6.24]) to write

N—-1N-1
2mis _ 2mis’ _ .
(Tay ()ay (t)e = Y D €N e N 2z ()T5(1))er (6.31)
s=0 s'=0

Substituting the correlation (Z(t)z% (t)). from Eq. (6.29) in this equation, we obtain the exact
expression of the equal time correlation (x4, (t)za,(t)). for all values of N. Below, we analyse
this solution for ar; = as and @1 # a9 separately. We show that the correlations exhibit non-

trivial scaling behaviours for N — oo depending on where the observation time lies (see Figure

52).
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Figure 6.4: (a) Scaling function 757 (y) in Eq. (6.37) for a chain of RTPs has been compared
with the numerical simulations. (b) Asymptotic behaviour of (22 (¢))FTF in the two regimes
[as given in Eqs. (6.41))] has been numerically verified. For both plots, parameters chosen are

vo=1, K=2,7=0.5and N = 100 (for simulations).
6.3.1 Variance for RTP chain

Let us begin with the computation of the variance (x2(t))®T for which we put a1 = as = o in

Eq. (6.31). This gives

22(0)FTP — ((wa(1))BTF)?
-1
(|Z5(t) I

c

(wa®)e'” =

—~

=2

o

N—

Z (27, as, t), (6.32)

where as and G(2(,as,t) are given in Eqgs. (6.26) and (6.30) respectively. Also, due to the

translational symmetry of the problem, the expression of the variance is independent of the
index a. We analyze it in the limit N — oo for which we can change the summation over s in

Eq. (6.32)) to an integral as % Yo % ffﬁ dq where q = 2—]7{75 The variance then reads

2 ™
(@) TP =~ D / dq G (27, by, 1) . (6.33)
where b, = 4K sin?(q/2). (6.34)

As mentioned before, we are interested in 7 < 74 (see Figure ) with 74 = % for RTP (Note

that 7y — oo for N — o0). Let us now examine Eq. (6.33]) in different temporal regimes.

For t < 7k, the observation time ¢ is smaller than all time scales of the problem. This suggests

us to directly take the small-t approximation of the function G (27, by, t) in Eq. (6.33). Following
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the expression of G (27,b,,t) in Eq. (6.30), one has G(27,b,,t) ~ t? and inserting this in Eq.
(16.33)) gives

(22 () ETP ~ o2, for t < 7. (6.35)

Since for small times, the particles do not feel the presence of the neighbouring particles,
we reproduce the result for the non-interacting case where the RTPs move ballistically with
speed vy [70]. Let us now analyze the variance in the other limit ¢ > 7x. By plugging
G (2¢, by, t) from Eq. in Eq. (6.33), we find that (z2(t))ETP involves integrals of the
form ~ [ dq h(q) exp [~Ktsin?(q/2)] where h(q) is some function of ¢. In the limit Kt — oo,
the leading contribution to these integrals will come from small values of ¢. This implies we can
approximate b, ~ K ¢% in Eq. . Using this approximation, we have calculated the variance
for t > 7k in appendix Here, we quote only the final expression which obeys the scaling

form

92 [, \\RTP 11(2)75g 2 __pr
(w5, (1)), ﬁﬂ\/; T (1), (6.36)

where the scaling function 777 (y) is given by,
1 [ w?
T (y) = 4/ dw G (2y, o 1> , for ¢ > k. (6.37)
— 0o

The function G <2y, “’72, 1) is given in Eq. (6.30). We have numerically verified this scaling
function in Figure (a) and we see nice agreement of our analytic result with the numerics.
To understand the asymptotic behaviour of the scaling function, we expand G <2y, %2, 1) in Eq.
(6.37) in different limits of y as follows:

TRT(y) ~ 2\3/7?(2 _ \/i) _ M (8 _ 5\/5) v, as y — 0, (638)

15
~ \2/5 +0 <y12>’ as y — 00. (6.39)
Plugging these asymptotic forms in Eq. , we find the simplified expression of (x2(t))F1F
as
(@2 (1)) FTP ~ 4(;@\/7%1)@&3 +0 (1), for ¢ < i (6.40)
~ Zi :—;{ +0 (t—1/2>, for ¢ > i (6.41)

Interestingly, we find that the variance exhibits a crossover behaviour from ¢3/2 scaling for
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t < % to v/t scaling for ¢t >> % Indeed, in simulations, we see two distinct scaling regimes
of the variance as illustrated in Figure (b) These regimes are connected by the crossover
function 757 (y) given in Eq. . To understand these scaling behaviours physically, we
recall that the typical fluctuations of x,(t) for ¢ > % are effectively described by that of the
Brownian motion with diffusion coefficient D = %. Moreover, in simulations, we observe that
the particles do not overtake other particles at these time scales. Hence, the motion of the
tagged particle is effectively single-file diffusion for ¢ > % which gives rise to the ~ v/t scaling of
(z2(#))ETP. On the other hand, for t < %, the motion of the particle is highly persistent which
in conjunction to the harmonic interaction leads to the ~ ¢3/2 scaling. For a chain of RTPs, the

t3/2 behaviour for the variance was also obtained in [215] even though the crossover function

was not obtained.

6.3.2 Covariance for RTP chain

We next calculate the equal time correlation function (x4 (t)zq4s(t))e from Eq. (6.31). First
note that due to the translational symmetry with respect to «, the correlation (x4 (t)za+5(t))c

will be independent of a and we simply put o = 0 without loss of generality. In Eq. (6.31]), we

get
Nl 2misf
(wo()za) = Y e™n (z()zh ()" (6.42)
s,8'=0

The correlation (Z,4()z% ()71 is given in Eq. (6-29) and inserting this in Eq. (6:42)), we find

that the imaginary part of (zo(t)z(t))TF vanishes and we obtain

i s
<x0(t)$ﬁ(t)>fTP — NO Z COS (2]\[/8> Q(Q'y,as,t). (643)

s=0

As done for the variance, we again examine this equation in the limit N — oo for which we

change the summation in Eq. (6.43) by integral as % Do i [T _dg with ¢ = % Eq. (6.43))
then takes the form

U2 ™
<$0(t)$g(f)>fTP ~ 2;1/_ dq CcOS (q,@) Q(Q% bq,t), (6.44)

where b, = 4K sin? (¢/2). As seen before, the variance (z3(t))ZF shows interesting scaling
behaviours depending on whether the observation time ¢ is greater or smaller than 7. Here
also, we study the correlation in Eq. (6.44) for t < 7x and t > 7k to reveal interesting

scaling structures. Firstly for ¢ < 7x, the motion of two particles being uncorrelated, we have
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Figure 6.5: Scaling functions Q7 (y) and C(y) respectively in Eqs. (6.47) and (6.51]) for the

( )>RTP

correlation (zg(t)xs are compared with the simulation data for three different observation

times. Parameters chosen are (i) K = 2, v = 0.001 and vy = 1 for left panel and (ii) K =2, v =

2 and vy = 1 for right panel. Simulation is conducted with N = 200 particles on a ring.

(zo(t)z (1)) TP ~ 1242 &) 5. However, for t > Tk, we anticipate non-trivial correlation among

the particles. To see this correlation, we proceed exactly same as in the case of variance. By

plugging G(2v, by, t) from Eq. (6.30) in Eq. (6.44), we see that (zo(t)z5(t))ITF has integrals
like ~ [ dgq h(q) exp [—Ktsin®(g/2)] which for Kt — oo will be dominated by the small values

of ¢q. Performing approximations as for the variance, we get

(w0(t)25 ()P ~ F/ dw cos( f{t)g<2w,l§,1>. (6.45)

Carrying out integral over w for general ~t is difficult. However, one can perform this integral

for different limits of ~¢t. For example, for vt — 0, we approximate G <27t —0,%, ) ~

2\ 2
4 (1227) and perform the integration in Eq. (6.45) to find that (zo(t)zs(t))FTF obeys the

scaling form

otrraep® = 2L 0w (L) et (6.46)
st VK 2Kt)’ ~’ '

with the scaling function Q%7 (y) given by

QT (y) = \g [26— (44 9% —2v2e™ 7 (2+y)
(6.47)

—/7y(6 + y*) Erfc <%> + 2¢/my(3 + y*) Erfc (\%)] :

In Figure (a), we have compared our analytic result with the numerical simulations for three

different times in the range 7y < t < % For all ¢, we see that the simulation data matches
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with Eq. (6.47). The asymptotic forms of the scaling function Q7 (y) are given by

QT (y) ~ 2\3/7?(2 —V2)—v7 (\/5 - 1) y? + O(y®), as y — 0, (6.48)

2 2
~ (;{f +0 (y_6)> e_yT, as y — 00, (6.49)

C

~ 7% exp (—BQ/ZEI) decay length given by l; = 2v/2Kt.

and using them, we find that (zo(t)zs(t))ET for large 8 has faster than exponential decay as

Let us now look at the correlation (zo(t)x5(¢))ET" in Eq. (6.45) in the limit v¢ — co. Approxi-

w2
mating G (Z’yt — 00, %2, 1) ~ 1=¢"" we can now perform the integration over w in Eq. (6.45)).

~ytw?
We then get a different scaling form of (xo(t)zs(t)) 17 as
(zo(t)zs(t)) TP ~ Dy 2 C (5) for t > E (6.50)
P e = TK 2Kt)’ ok '

2
where D = ;% and the scaling function C(y) is given by

Cly) = e_é - \é%y Erfc (%) . (6.51)

The same scaling form has also been obtained in a variety of other interacting systems like
random average process [222-224] and symmetric exclusion process [225,226]. Here, we derive it
in the simple setting of a harmonic chain of active particles. In Figure (b)7 we have compared
C(y) with the numerical simulations for three different values of ¢t and we see excellent agreement
for all of them. From the following asymptotic forms of the scaling function C(y)

cw)~1- Ty

2 2
~ <y2 +0 (y_4)> e T, as y — 00, (6.53)

as y — 0, (6.52)

we see that for large 8 and ¢ > 1/7, (zo(t)zs(t))FT" decays as ~ 372 exp (—3%/13) with the
decay-length l; = 2v/2Kt. On the other hand, for 5 — 0, Eq. (6.50) correctly reduces to the

variance in Eq. (6.41]).

6.3.3 Position autocorrelation for RTP chain

We now turn to the autocorrelation (x4 (t1)za(t2))c between the positions of the a-th particle at

two different times. For simplicity, we take t; < to without any loss of generality. To proceed,
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Figure 6.6: Scaling functions £77(¢,) and M(t,) for the position autocorrelation in Eqs.
and are compared with the numerical simulations for (a) v = 0.001 and (b) v = 2. For
both panels, simulation is performed with N = 200, K = 3 and vy = 1.

we use the solution of Z(¢) in Eq. (6.27) to obtain the correlation (Z,(t1)z? (t2))F17 as
RTP vh
<f5(t1)izl(t2)>c = 5575/ N/H (2’)/, ag,ty, tz) R (6.54)

where a; is given in Eq. (6.26)) and the function H(u,w,t1,t2) is

U 67w|t17t2| _ efw(t1+t2) e*’u|t17t2| _ e*(wt1+ut2) ef(ut1+wt2) _ efw(t1+t2)

H 9 7t 7t = - -
(w0, 11, 1) w (w? — u?) * (w? — u?) (w? — u?)
(6.55)
The autocorrelation (z(t1)zq(t2)) 1" can then be easily written in terms of (Z,(t1)Zy (t2)) 217
as
N-1
(@a(ti)zalt2)d™ = Y (@:(t1)T (t2)" 7, (6.56)
s',s=0
’U2 N—-1
=¥ 2 H@rastit). (6.57)
s=0

This equation provides the exact expression of the position autocorrelation valid for all values of

RTP

N, t; and t9. But to obtain non-trivial scaling behaviours, we again analyze (rq(t1)za(t2))s

in the limit N — co. Changing the summation in Eq. (6.57)) to integration as % Do % ffﬂ dgq

with g = %, we get

™

02
(xa(tl)xa(t2)>cRTP ~ 2;/ dg H (27,bg,t1,t2), (6.58)

—Tr

with b, = 4K sin?(g/2). As done in the previous two cases, we again examine this equation

in various limits of ¢; and to with respect to 7. For t1 <« 7 and to < Tk, the observation
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Figure 6.7: Illustration of the non-monotonic behaviour of (xo(t1)zg(t2)). for RTPs (left panel)
and AOUPs (right panel). In both panels, solid curves represent the analytic results in Egs.
and and symbols are the simulation data. Values of parameters are (a) K =
3, 7 =0.02, vo=1, N =200, ¢; = 10 for left panel and (b) D = 0.1, K =2, ¢ = 0.02, N =
100, t; = 50 for right panel.

times are smaller than all time scales present in the problem. This allows us to approximate

H (27,bg,t1,t2) = tity for both t1,t; — 0 using Eq. (6.55]) and inserting this form in Eq. (6.58))
gives (74 (t1)7a(t2))ETP = v2t1ty. Since the particles move ballistically and independently at
this small time scale, we expect the autocorrelation to have this form.

For the other limit ¢; > 7k, to > 7x with fixed t—f, we perform similar approximations

as for the variance and equal-time correlation function in the previous sections. Inserting
H(27,bq,t1,t2) from Eq. in Eq. (6:58), we find that (z4(t1)2a(t2))fTF has terms like
~ [dg h(q) e &* sin®(4/2) where h(q) is some function of g. The predominant contribution to
this integral for Kty — oo will come from the smaller values of q. Therefore, we approximate

by ~ K ¢ and rewrite the autocorrelation in Eq. (6.58)) as

2 t3 [ee) t
(Zo(t1) o (t2)) TP ~ %V [é/ dw H <27t1,w2, 1, t2> , for t1 > k. (6.59)
o 1

We emphasize that this equation is derived assuming the ratio % is fixed. Once again, it is

analytically challenging to perform the integration over w in this equation. In this regard, we

RTP

p in different limits of ~¢; for which we can carry out the integration

consider (z4(t1)xq(t2))
analytically.

For vt; — 0, we use H (2vt; — 0,w?,1,,) ~ e‘w2(1+tr)(6tr_;# with t,. = to/t1. Plug-

ging this in Eq. (6.59)), we get that (x4 (t1)za(t2))F'F has the scaling form

1) 2o (t RTP:UO\/T LR (2 f o<ty <~ 6.60
(Za(t1)za(t2))e om V K ) or T <t <t K 5’ ( )
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with the scaling function £77(t,) defined as
4
LET(t,) = *?{7? [(1 +1,)32 —1 =37 (6.61)

Figure (a) shows the numerical verification of L7 (t,.) for different values of ;. For each 1,
we plot £F(t,) as a function of t5. For all cases, we see that our analytic result is consistent

with the simulations. Finally, by looking at the asymptotic forms of L7 (t,.)

LAT (1) ~ 8‘3/7? (\f - 1) N <f ) (t—1),  ast,— 1, (6.62)

4
~ 2/7t, — \3/7? as t, > 1, (6.63)
and substituting this in Eq. (6.60]), we see a crossover of (zq(t1)zqa(t2))E" from tg/2 to \/t2 as

3
(za(t1)za(ta)) TP ~ St +0(ty—t1), for ty — 1, (6.64)

v0t1 <\ﬁ N f) for ty > t;. (6.65)

Quite remarkably, we see that when both ¢; and t9 are smaller than 74 = %, the autocorrelation
increases with increasing time. This growth of (x4 (t1)za(t2))F'F with to (for a fixed t1) can

also be seen in Figure [6.6]a)

Let us now look at the other limit yt; — 0o of (x4 (t1)za(t2)) 1T for which we can explicitly
perform the integration in Eq. (6.59). Using the approximation H (2%1 — 00, w?, l,tr) ~
7w2 r—l1)_ *’LU2 T . : 3
L vt _emw(rtD) o) Eq. (6.59), we obtain the scaling form

27ty w2

t

2t t 1
(za(t)za(t2))f"" = Dry j M (2) , forty >t > = (6.66)

where D = and the scaling function M(t,) is given by

M(t,) = Vi, +1—+t, —1]. (6.67)

1
V2
Interestingly, by using the macroscopic fluctuation theory, this form of the position autocor-
relation was also obtained for the single-file diffusion [132]. In Figure [6.6(b), we have plotted
this scaling function and also compared it with the simulation for different values of times. The
simulation data for all times converge to our analytical result. For ¢; < 1/, to < 1/7 but fixed
t1/t2, we saw that the autocorrelation increases as a function of ¢y for a fixed ¢;. To check the

same for t; > 1/v, to > 1/7, we look at the asymptotic forms of M(t,) with respect to t,.
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These forms read

tr—1

M) =1 — /= 5 as t, — 1, (6.68)
1 1

~ + = as t, > 1, (6.69)

RTP.

from which we find the following asymptotic behaviours of (x,(t1)zq(t2));

2
(Zo(t1) 0 (t2)) TP = Dm/ﬂ% 40 (Vi h), for ts — t1, (6.70)

D 3
~ DRl (tl), for t5 >> ;. (6.71)

Unlike in the t; < 1/7, ta < 1/7 case, we find that (24(t1)2a(t2))FTT for t1 > 1/7, to > 1/y

RTP
241 has

decreases with the increasing time [see Figure (b)] This implies that (x4 (t1)xa(t2))
an overall non-monotonic dependence on t;. For example, in Figure [6.7(a) (3 = 0), we see
that the autocorrelation first increases with time, attains a maximum value and then starts
decreasing again for larger times. For small times to < 7Tg, particles perform independent
ballistic runs. As we increase to, the particles interact with the surrounding particles because
of which their motions get correlated. However at large times, the particles are effectively
like Brownian particles whose motions become less correlated as we increase time. Overall, we
get a non-monotonic dependence. As we show later that this non-monotonic dependence of
autocorrelation is seen for general (zo(t1)zs(t2))TF with B # 0 and for other models of active

particles also.

6.3.4 Unequal Time Position Correlations For RTP chain

We now compute the unequal time correlations (4 (t1)Zaq5(t2)) 17 for the chain of RTPs. Once

RTP

again we take t; < to and set a = 0 since the correlation (zq(t1)za4s(t2)).

is independent
RTP

of o due to the translational symmetry in «. Using the correlation (Zy(t1)Z%(t2)),

in Eq.

(6.54), we can write the unequal time correlation in the positions of two different particles as

N-1
wisf3
(wo(t)zp(t)) 17 = 37 e 5N (@ (t) T (82)) TP (6.72)
s',s=0
9 N-1
g 2wsp
=N Z cos <N> H (27, as,t1,t2) . (6.73)

sS=
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Figure 6.8: Scaling functions P¥7 (y,t,) and Q(y,t,) for the unequal time correlation function
(zo(t1)zp(t2))ETE of RTPs in Egs. (6.76) and (6.78) are compared with the numerical simu-
lations for (a) ¢; = 10, v = 0.001, N = 200 and (b) t; = 50, v = 2, N = 500. Common

parameters for both plots are vg =1, K = 2.

In the limit N — oo, this expression takes the form

™

P
(zo(t1)zp(te) ) HTT ~ UO/ dq cos(qf3) H (27,bg,t1,t2), (6.74)

C2r ),

where b, = 4K sin(q/2) and H (27, as, t1,t2) given in Eq. (6.55)). Once again, we will compute

this correlation for t; < 7x and t; > Tk keeping the ratio % fixed. For t; <« Tk, particles
RTP

move independently and ballistically and the correlation takes the form (zo(t1)x(t2))s" " =~
fugtlt265,0. This can be easily proved by using the approximate form of H (27, as, t1,t2) for small

t1 and t9 and performing the integration over g as done for the autocorrelation.

For the other limit t; > 7x, we take, as before, the small-¢ approximation of Eq. (6.74]) and

replace by ~ K ¢*. Then the correlation can be rewritten as

2 t3 [ee] t
(zo(t1)zp(ta) ) T ~ ;)—Sr\/ Ié/ dw cos (\;%) H (2'yt1,w2, 1, t?) , for t; > 1x.
—0o0 1
(6.75)

Once again we find that performing the integration over w is analytically difficult for general
~vt. But we can carry it out for different limits of «¢. For example, for v¢; — 0 with fixed
t, = to/t1, we have H <2Ct1, w?, 1, %) ~ e*w2(1+tr)w. Inserting this in Eq. (6.75))

and performing the integration over w, we find that the correlation (zq(t1)zs(t2))F1T has the

scaling form

2 |3 Bty 1
" £ WRTP o Y0 1 pRT 2, fort <t < -, 6.76
(zo(t1)zp(t))e ox VI SR 1 or t1 < ta 5 (6.76)
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where the scaling function P#7'(y, t,.) is given by,

»

2 2
P (y, tr) Q{f I F (2 + 2, + y2)e T — 22+ y2)e™ T — 2V (2t + y2)e P

+ V21 (3 4 y?)y Erfe <\5/§) V2Rt )y Erfe (\/12/7>

—V2r(3 4 3t, + y*)y Erfc <y> (6.77)

2(1+t,)

In Figure (a), we have compared this scaling function with the numerics for three different
values of t.. For each t,., we plot it as a function of 5. We find excellent agreement between
numerics and analytics in all cases. Analysing P®7(y,t,) further, we first observe that for
y — 0, we correctly reproduce the result for the autocorrelation in Eq. as PR (y —
0,¢,) = LET(t,). Similarly, for large 3 and fixed t,, we see that (zo(t1)zs(t2)). decays as
~ B7% exp (—62/1212) with the decay-length Iy = 2\/K(t; + t2). Finally for ¢, = 1, one gets
PET(y t, — 1) = 2¢/2Q8T (y) with QfT (y) given in Eq. . Then it is easy to show that
(xo(t1)zs(t2))c in Eq. converges to the equal time corrrelation (zo(t)zs(t))c in Eq. (6.46).

Let us now consider the other limit v¢; — oo in Eq. (6.75]) for which we can perform the integra-

—w2 r— _ —’UJ2 r
tion over w explicitly. Using the approximation H (27151 — oo, w?, 1, %) ~ e l)wf (trtD)

RTP

1 obeys the scaling form

in this equation yields that (zo(t1)zs(t2))

| 2ty Bt 1
t t,NVETP ~ D —_— _ = for ¢ — 6.78
(@olt)es(t2)e B\ 7K Q V2Kt 't )’ o> ok (6.78)

2
where Dr = 52 and the scaling function Q(y,t,) is given by
2y

1 v
Qy.tr) = 75¢ 2

— 92
Vir+ 1=Vt —1e <t%—1>]

VT Y Y
o ) o) e

Figure (b) shows the comparison of our analytic result with the simulations. Excellent match
between them validates our result in Eq. . Just like t; < 74, t9 < T4 case, here also, it
is straightforward to check that Q(y,t,) reduces to appropriate scaling functions for ¢, = 1 and
y = 0. Also, for large 3, the correlation decays as (o(t1)zs(t2))e ~ B2 exp (—BQ/Z:jz) with
the decay-length [y = QJm

Another interesting point to note is that for a given 8 and ¢1, we find that (zo(t1)zs(t2))ET7

c

changes non-monotonically with o where it initially increases with to, attains its maximum value

and then decreases again with the further increase in to. Similar behaviour was also observed for
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Figure 6.9: Scaling function ®(y) in Eq. (6.85)) for the variance (z2(t)). for large but finite N.
Symbols are the simulation data for RTPs in the left panel and AOUPs in the right panel. We
have chosen (a) vg =2, y=1, K =2and (b) D=06, (=1, K =2

the position autocorrelation (5 = 0) in the previous section. This non-monotonic dependence
is illustrated in Figure (a) for different 8. Physically, this behaviour can be understood by

following the same reasoning as for the autocorrelation [see discussion below Eq. (6.71])].

6.3.5 Two-point correlation in RTP chain for large but finite N

Up to this point, we calculated the variance and correlation functions for N — oo (equivalently
7N — o0) and found various scaling forms depending on where the observation time lies. Here
we compute these quantities for large but finite N such that the relaxation time scale 7 is
finite. For this case, we consider the exact expression of (xo(t1)x5(t2))ET? in Eq. and
insert H (2(, as, t1,t2) from Eq. in this equation. After some straightforward algebraic

simplifications for large N, we find

2Dgt
(wo(tr)wp(t2)) 1 =~ =

252 4K 7252

4K
DpN & 9 — e (te—ta) — BT (o 4t1) 1
+ R Zcos wsf\e N +e N ro(L).
2m2K N 52 N

s=1

(6.80)

where recall that D = v(Q] /2. Note that the first term in the right hand side can be order
~ N (same as the second term) when t; is of order N2. Therefore, we have retained it in the

expression of (zo(t1)zs(t2))FF. Finally the correlation in Eq. (6.80) satisfies the scaling form

2DRN ty B Kt
RTP TR 2 P 1
(wotr)zp(te))e” " = —— W (tl, NN ) (6.81)
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where the scaling function W(t,, z,y) is

sinh (47r282y)

52

1 oo
W(tr,z,y) =y + 52 ; cos (27sz) gAY, (6.82)
For large y — oo keeping ¢, fixed, the first term on the right hand side of this equation dominates

and we get W(t,, z,y) ~ y. This gives

2Dgtq

(wo(tr)zp(ta)) FTT ~ N

for Kt; > N2 (6.83)

On the other hand, for Kt; < N?, Kty < N? with fixed t5/t;, the summation in Eq. (6.82)

can be recasted in the form of an integral performing which results in (zo(t1)zs(t2))FF in Eq.

(6.78). In what follows, we will use Egs. (6.81]) and (6.82)) to compute the variance, covariance

and autocorrelations for large but finite N.

6.3.5.1 Variance

Let us first compute the variance for which we put 5 = 0 and t; = to = ¢ in Eqgs. (6.81)) and

(6.82) and get

2
with the scaling function ®(y) defined as

1— 67871’2327;

1 o0
Sy =y +— S ¢ 7 6.85
W) =v+ ; . (6.85)

We have compared this scaling function with the simulations in Figure (a) for different values
of N. We find an excellent agreement for all cases. To get different scaling behaviours of the
variance, we look at the asymptotic forms of ®(y) in different limits of y. For y — oo, the first
term in Eq. dominates to result in ®(y — o0) ~ y. On the other hand, for y — 0,
the second term gives the dominant contribution to yield ®(y — 0) ~ ,/y. Hence, we get the

following asymptotic expressions for ®(y):

B(y) ~ % , asy — 0, (6.86)
1
_y+2—4 , as y — oo. (6.87)
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Plugging these forms in Eq. (6.84)), we obtain

2t N2
<x2c(t)>cRTP = DR K’ for t <« ?7 (688)
Vs
2D N2
~ S0 (1) for ¢ > . (6.89)

Therefore, the variance (x2())ZTF has a crossover from ~ v/t scaling to ~ t scaling and this

crossover takes place at a time scale t ~ O (N 2). Since at this time scale, the motion of the
RTP is indistinguishable from the Brownian motion, the scaling relation in Eq. (6.84) is valid

for the harmonic chain of Brownian particles in a one dimensional ring.

6.3.5.2 Covariance

For the covariance, we replace t; = to =t in Eq. (6.81]) and obtain the scaling form

9DRN . (B Kt
RTP ., “UR
U=, — 6.90
(wo(tzs(pT” = 28w (L 12, (6.90)
where the scaling function ¥(z,y) is given by
—87r s2y
v = (2 6.91
(z,y) =y —|— Z cos (2msz) — = (6.91)
For large y, we saw before that ¥(z,y) ~ y. Following Eq. , it then follows
2Dpt
(zo(t)zs(t)) TP ~ TR for Kt > N2. (6.92)

At this time scale Kt > N2, the tagged particle has interacted with all other particles and
consequently we get 8 independence of the covariance. On the other hand, for Kt < N? which
corresponds to y — 0 in Eq. , we can neglect the first term in the right hand side of this
equation. Changing the summation over s in the second term to an integration and performing
this intergration, we correctly reproduce the scaling results for (zq(t)zs(t))FTF in Eq.
for t > % Finally, we reiterate that the scaling results derived in this section remain valid also

for the harmonic chain of the Brownian particles.
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6.3.5.3 Autocorrelation

To get the autocorrelation, we put =0 in Eq. (6.81)) and get the scaling form

2DprN ta Kt1
<$a(t1)$a(t2)>§TP ~ T R (tl, ]\],2) s (693)

where the scaling function R(¢,, z) is

(47r232z) e—47r252t,nz )

; (6.94)

1 <X sinh
R(tr,Z):Z+27T_2; s

For to — t1, this scaling form correctly reduces to that of the variance in Eq. (6.85)). Also, for

Kt1 > N2 but fixed to/t1, following the same steps as for the covariance, we get

rrP ., 2DRt1

(za(t1)wa(t2)): N for Kti> N? (6.95)

whereas for Kt; < N? and t3/t; fixed, we reproduce the scaling result in Eqgs. (6.66]) and (6.67)

for t1 > 1/~ and t2 > 1/~.

6.4 Variance, covariance and two-point correlation for AOUP

chain

For a chain of RTPs, we saw that the correlations and flucuations of the positions of the tagged
particles exhibit non-trivial scaling forms depending on the temporal regime that we are looking.
We here devote this section to the study of the correlations in a chain AOUPs. For this, we turn

to the solution of Z4(¢) in Eq. (6.27) and insert FAOUP(t) from Eq. (6.4) in this solution. Then

the unequal time correlation for the Fourier variables Z(t) as

D
<fi‘5(t1).'f:/ (tQ))?OUP - 63,3’4.7]\] Hl (C7 s, tl) tQ) ) (696)

where t1 <ty and a is given in Eq. (6.26)). Also, Hi(u,w,t1,t2) is given in terms of H(u, w, t1, t2)
in Eq. (6.55)) as

(e—wh _ e—utl) (e—wtz _ e—utg)
2

Hi(u,w,t1,t2) = H(u, w, t1,t2) — (6.97)

(w —u)

120



10 (a) o 4 = in/

: 1 / ":/
_ g o -~
=06 )
2 A l
o 8 77777 tz
& 0.4 ® Simulation % |

— Theory >~ 0.010¢ y A tg
0.2 / ® Simulation
0.001k
0.0 |
0 2 4 6 8 10 05 1 — .
y=yt t

Figure 6.10: (a) Scaling function 7°Y(y) in Eq. (6.104) for AOUPs is compared with the
numerical simulation. (b) Illustration of different scaling regimes of (22 (t))A°UF for 7, < t < 74

and 7, < 74 < t [see Egs. (6.107)]. For both plots, we have chosen K =2, ( = 0.5, D = 0.2
and N = 100

We now use the inverse Fourier transformation to write the correlation function (g (t1)zg(t2)) 2OV

in terms of (Zs(t1)Z% (t2)) 29U in Eq. as

(wo(t1)25(t2)) 2OUF = Z e N (7, (11) T (1)) AOUP, (6.98)
N—-1
D 2msf3
CNZCOS( N )’Hl ((,as,t1,t2). (6.99)

As done for the RTPs, we analyse this equation in the limit N — oo to demonstrate various
scaling behaviours of (zg (tl):cg (t2))ACUP  For N — o0, we replace the summation in Eq.

by integral as + Z — 5= f dq where ¢ = ”5 . The two-point correlation then becomes

™

(wo(tr)as(t2)) e OV = dqcos (gB) Hi (¢, bg,t1,t2), (6.100)

27TC

where b, = 4K sin? (¢/2). Once again, we will examine this expression for (i) t; < 7%, to < T

and (ii) t1 > T, to > Tk keeping the ratio % fixed.

6.4.1 Casel: t)] < 7, ty < Tg

We first look at (wo(t1)zs(t2))2OUF for t1 < Ty, ta < Tk keeping the ratio % fixed. Since 7x
is the smallest time scale in the problem, we see that ¢; and to are smaller than all other time

scales. Therefore, we expand (xo(t1)zs(t2))A°UF in Eq. (6.100) for t; — 0 and t2 — 0. In these
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limits, we approximate H1(m,n,t1,t2) ~ mt? (t2 — %1) and plugging this in Eq. (6.100]), we find

t
(zo(t1)wp(te)) 2OV ~ Dt} <t2 - 31> 95,0, as t) <ty < 7. (6.101)

At these small time scales, particles move independently which leads to zero correlation between
them. Also, for B = 0 and ¢ = to = ¢, the variance (23(t))1OUF ~ %t:)’ simply represents the

c

variance of a single AOUP.

6.4.2 Case Il: t; > 71k, to > T

AOUP
c

ta/ty fixed. For this limit, we perform similar algebraic manipulations in Eq. (6.100) as done
for the RTP [see discussion before Eq. (6.75))] to show that

3 00
(zo(t1)wp(te))2OUF zi\/g/ dw cos (\;%) Hi (Ctl,wQ, 1, Z) . (6.102)

In the following, we will use this expression to calculate the variance, covariance and autocorre-

Let us now consider (xq(t1)zg(t2)) in the other limit where ¢; > 7x and t2 > Tx keeping

lation of the positions of tagged particles in a chain of AOUPs.

6.4.2.1 Variance

We first look at the variance (23())2°UF for which we put 8 = 0 and t; = t3 = ¢ in Eq. (6.102).

This leads to the scaling form

3
(@2NAUP ~ P pou ey ot 7, (6.103)

‘ - 2n¢VK

with the scaling function 7OV (y) is given by

TOU(Z/)Z/ dw Hy (y,w?1,1). (6.104)

— 00

Figure a) presents a comparison of the scaling function with the numerical simulation. Our
analytic result is completely consistent with the simulation data. As we saw for the RTPs,
the variance (x3(¢))FTF exhibit different scaling behaviours in different limits of ¢/74. Recall

that 74 = (7! for AOUPs. To decipher these scaling behaviours for AOUPs, we look at the
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Figure 6.11: Scaling functions POV (y,t,) and Q(y,t,) in Egs. and associated
with (zo(t1)zs(t2)) AU for t; < 1/¢, ta < 1/ and t; > 1/¢, ta > 1/( respectively have been
compared with the numerical simulations. We have chosen (a) D = 0.2, K = 2, ( = 0.001 and
N =100 for left panel and (b) D =0.2, K =2, ( =1 and N = 200 for right panel.

asymptotic forms of 7OV (y) for different y. By direct expansion, we get

T(y) ~ 321\5/7? (x/i— 1)y— 52V (8\/5—9) y’, asy—0,

105
227
Y

~

+0(y™?), as y — 00. (6.105)

which then gives the crossover of (z2(¢))A°UF from t3 to /E at t ~ % as

16(v/2—-1)D 5 7 1
2/ \WAOUP L
(x5(t)): P = -4 t2 +0 <t2) , for t < 3 (6.106)

D |2t 1 1
~ 2 -3 f - 1
= ﬂ_K—i-O(t z), or £ (6.107)

Interestingly, we find that the variance scales with time as (23(t))2°UF ~ ¢ when time is much
smaller than the activity time scale. Recall that the corresponding scaling for the RTP was
(2 ()ETE ~ £2 in Eq. (6.40). Due to the inter-particle harmonic interaction, the motion of
the tagged particle gets cagged. As a result of this caging effect, the scaling of the variance
changes from ~ t3 (non-interacting) to ~ #3. On the other hand, for ¢ > 1/¢, the motion is
effectively like the single-file diffusion (as seen for RTPs) which leads to the ~ /¢ scaling of the
variance. In Figure (b), we have numerically illustrated this crossover behaviour along with

the crossover function 7OV ((t) that connects these two scaling regimes.

6.4.2.2 Covariance and unequal time correlations for t; < 74, t9 < 74:

AOUP
c

obtained in Eq. (6.102)) to possess different scaling forms for (i) t; < 74, to < 74 and (ii)

Drawing intuition from our study on RTPs, here also, we expect the correlation (zo(t1)zs(t2))
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Figure 6.12: Scaling functions £V (t,) and M(t,) for the autocorrelation (x4 (t1)xq/(t2))AOUF
in Egs. (6.111]) and (6.115]) have been compared with the numerics. We have chosen (a) D = 0.2,
K =2,¢=0.001 and N = 100 for left panel and (b) D = 0.2, K =2, ( =1 and N = 200 for

right panel.

t1 > T4, t2 > 74. We consider case (i) in this section followed by a discussion on case (ii) in

the next section.

For (t; — 0 with fixed ¢, = to/t1, we use the definition of H1(vt1,w?,1,t,) in Eq. (6.102) to
expand H1(Cty,w?, 1,t,) ~ % [—2 + 2w — g (trw? 4 go—trw? _ o—(tr—1)uw? | 2w2}. Substi-
tuting this form in Eq. (6.102)) and performing the integration over w, we find that (xo(t1)zg (tg))AOUP

c

has the scaling form

<l‘0(t1)$5(t2)>AOU‘P ~ 2 ﬁ POU IB tﬁ for tl < tQ < 1 (6.108)
¢ or VK V2Kt )’ - ¢’

with the scaling function P9V (y,t,) given by

VT

30

2
POV (y, t,) = [2\/1 Ftr (8482 4+ 9% + y* + £.(16 + 9y?)) e 2@+ — 30v/27yEaf (y>

V2

. 2 2
— 2ty —1)3 (Tt — T+ 1%) e 70D — 4 (8+9y% +y') e 7 — Vi, (862 + 9try® +y*) e 3

[

2
(154 152 102 + g+ 106, (=3 + 12)) {Zm + VamgEnt (2<51>> }
-

+2v2my® (10 4 2) Brfe (y> — 2V27y (15¢2 4 10t,4% + y*) Erf ( J )

V2 V2t
+v2my (15 + 15t + 10y® + y* + 10t,(3 + y*)) Exf (\/2(5/74—1)) : (6.109)

In Figure [6.11{(a), we have compared the scaling function POV (y,t,) with the numerical sim-

ulations for three different sets of ¢; and t9 but with constant ¢, = % For all cases, simula-

tion data converge with Eq. (6.109). By expanding P°Y(y,t,), we find that the correlation
(zo(t1)w5(t2))AOUF in Eq. (6.108) for large 3 decays as ~ 3 Sexp <ﬁ2/i§) with decay length
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Figure 6.13: Numerical verification of the scaling function Q°Y(y) in Eq. (6.113) and C(y) in
Eq. (6-51) for the covariance (xo(t)zs(t))A°VF. Parameters chosen are (a) K = 2, ¢ = 0.00,
D=05and N =150 and (b) K =2, y=2, D = 1.7 and N = 150.

ly= 2/ K (t1 + t2). On the other hand, for 8 = 0, we get the position autocorrelation

(o (t1)mo () A0UP ~ 2 [ pou (B2 for ty <t < (6.110)
VK ) Sh<e '
with the scaling function £V (t,) = POY(y = 0,t,) given as
£OV(,) = 8\f 5 [+ 1)Y2 o (6 — )72 = 214 63/%)] (6.111)

Numerical verification of this scaling function is shown in Figure [6.12((a) for different values of

t1. Finally, we look at the covariance (zq(t)zs(t))A°UP

in Eq. (6.108). We find that the covariance satisfies the scaling

which is obtained by putting ¢t} =t3 =1t

(20(6)a5(£))AOUF D t2 QOU <5> 7 for ¢ < }7 (6.112)

21VE 2Kt ¢

POV (y,1,) in Eq. (109

where the scaling function QY (y) can simply be written in terms of

as
Q%(y) =P (y,t, = 1). (6.113)

Notice that this scaling function is different than the same obtained for the RTPs in Eq. .
We have plotted the scaling function QOU(y) in Figure (a) and also compared it with the
numerical simulations for three different times. For each time, we observe excellent match of
the numerics with the analytics. We end this section by noting that the covariance for large g

decays as (zo(t)z(t)) 20U ~ 376 exp (82/13) with decay length lq = 2\/K(t; + t2) which is
different than that of the RTPs where we saw (zq(t)z5(t))F1" ~ 7% exp (82/13).
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6.4.2.3 Covariance and unequal time correlations for t| > 74, to > 74:

We will now consider the correlation (zo(t1)zs(t2))A°UF in Eq. in the other limit where
the observation times t; and ty are greater than the activity time scale 74 = 1/¢. In the
limit y¢; — oo but fixed t,, we can approximate the function H1(yt1,w?,1,t,.) in Eq.
as Hi(vty, w? 1,t,) ~ 2 <e_(t’"_1)w2 — e_(t"+1)w2> and plug it in Eq. to yield the

Yt w?2

scaling form

ot Bty 1
' to))ACUP o Dy [ 2L 2 for — < t; <t 114
(wo(t1)zp(t2))e A ¢ 9 ARC L) or <t <t (6.114)

where Dy = CQQ and the scaling function Q(y,t,) is given in Eq. (6.79). For AOUPs also, we
obtain same result as for the RTPs in Eq. (6.78) since both models are indistinguishable from the
Brownian motion in this time scale. In Figure b), we have compared this scaling function

with the same obtained from the simulation of AOUPs. We perform this comparison for three

AOUP

sets of 1 and t and we observe nice agreement for all of them. One can use (xo(t1)zg(t2))s

in Eq. (6.114]) suitably to obtain the following scaling relation for the autocorrelation and

covariance:
2t t
(o(t1)zo(t2))2OUP ~ D4y [ S22 M <2> , for T4 < ty < to, (6.115)
K t1
2t B
Dag(t))AOUP ~ D/ == C for t 6.116
<$0( )l‘ﬁ( )>c A K oK1 ) ort>>Tx, ( )

where the scaling functions C(y) and M(t,) are given in Egs. (6.51) and (6.67) respectively.
These scaling functions are numerically illustrated in Figures [6.12(b) and [6.13(b) where we find

excellent agreement between our analytic result and the simulations.

6.4.3 Large but finite NV

We now look at the two-point correlation function (zq(t1)zs(t2))2°U for AOUPs when N is
large but finite. This means that the relaxation time scale 7y ~ O(N?) is now finite. For finite
N, one needs to examine the exact expression of (zq(t1)zs(t2))2°VF Eq. (6.99). However, since
we are looking at the time scales much larger than the activity time scale 74, we expect the

two-point correlations for AOUP and RTP to be exactly same. Consequently, we get

9DAN ty B Kt
AOUP A 2 P 1
(ro(t)s(12))1OVF o 224 W(tl’ N,N2>, (6.117)
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Figure 6.14: Scaling functions 7;*Z(y) and 7B (y) in Eqs. (6.136]) and (6.137) associated with

the variance (z2(t))2P7 and (y2(t))ABP have been compared with the numerical simulations for

K=2 D,;=0.5 v4=1and N =100.

where the scaling function W(t,, z,y) is given in Eq. (6.82)). From Eq. (6.117)), it is easy to read

the variance, covariance and autocorrelation as

2DsN _ [ty Kt
(o(t1)o(t2))AOUF = A% R (ti N;) : (6.118)
2D4N (B Kt
2D4N _ (Kt
(@ ()l ~ —2—2 (m) , (6.120)

with the scaling functions ®(y), ¥(z,y) and R(t,, z) given respectively in Eqs. (6.85)), (6.91)
and (6.94). In Figure[6.9(b), we have shown a comparison of the scaling function ®(y) with the

numerical simulations for three different values of V. We see nice agreement for all cases.

6.5 Variance, covariance and two-point correlation for ABP chain

We now consider the third model of active particles called active Brownian particle and study the
two-point correlation function for N active Brownian particles with nearest-neighbour harmonic
interaction. We re-emphasize that this model is considered in two dimensions with 7, (t) =
(za(t),ya(t)) denoting the position of the a-th particle. Denoting its Fourier transformation
with respect to a by 7s(t), we can rewrite the Langevin equation as

dr, .=
% = —a,F, + FABP (1), (6.121)
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where ﬁ;‘BP(t) = (&(t),¥s(t)). Using the correlations of the noise terms in Egs. (6.7),
and (6.9), we obtain the connected correlations for Z(t) and ,(t) as

2
« v
<~i's(t1)-fsl(t2)>cABP - ﬁ Hl (Drot7 s, tl; t2) 63,3’7 (6122)
2
N v
(s (t1) 5 (t2)) 2 PF = ﬁ Ha (Drot, as, t1,t2) 0 s (6.123)

Once again we assume t; < to without any loss of generality. Also, here ay is defined in Eq.
(6.26) and the functions Hj jo(m,n,t1,t2) are given by

(e—utl _ e—wtl) (e—utz _ e—wtg)

Hp(u,w,tl, tg) = H(u, w,thtg) =+ (—1)”_1V(u, w,t17t2) — 2(517,1 (w — u)2

, (6.124)

with p € {1,2}, H(a,b,t1,t2) is given in Eq. (6.55) and V(m,n,t1,ts) is defined as

ue—w|t1—t2| (6_4ut1 o 6—2’wt1) e—wtg (e—ut1 o e—wtl) o e—th (6—3ut1 o G_wt1>

V(u,w,ty,ta) = (w— u)(w — 3u)(w — 2u) o (w—u)(w — 3u)

(6.125)

Once we get the correlations of the Fourier variables Z4(t) and gs(¢) in Egs. (6.122)) and (6.123)),

we can transform them to get the position correlations as

(zo(t)zs(t )>ABP:ﬁNilcos 2S5\ Hy (Do, as, 1, 1) (6.126)
o\t1)Lp\t2))c IN —~ N 1 roty Us; L1,02), .
9 N-1
v 2ms
<y0(t1)y5(t2)>cABP = 2—‘4 COS ( NB) H2 (DT‘Ot7 as,tl,tg) . (6127)
s=0

which in the limit N — oo takes the form

'1)2 T

(zo(t1)xp(t))APP ~ ﬁ / dq cos(gB) Hy (Dyot, by, t1,t2) , (6.128)
U2 T

(yo(t1)yp(t2))2P7 ~ A [ dq cos(qB) Ha (Drot, by, t1, ta) (6.129)
47

where b, = 4K sin2(q/ 2). As done for the other two models, we will, in the next two sections,
analyze these correlations for (i) t; < 7x, to < 7k and (ii) t1 > 7k, to > 7K with the ratio %

kept fixed. Finally, we then look at them for finite but large N.

6.5.1 Casel: t; < 7x, to < T

Let us first examine Eqs. (6.128)) and (6.129]) when both observation times t; and to are smaller

than the interaction time scale 7. Then, we can use the approximation Hj(D,e, as,t1,t2) =~
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%Dfotti’(%g — t1) and Ha(Dyor, as, t1,ta) =~ 2Dmtt% (t2 - %1) for t; — 0 and ¢ — 0 and plug
these forms in Eqgs. (6.128) and (6.129]) to obtain

1

(zo(t1)xp(t2))APY ~ —0A D2 #3(2ts — t1)050, t1 <ta < 7K, (6.130)

CO

<y0(t1)y5(t2)>ABP ~ 'U,Zquottl <t2 — 3) (55 0, 1 <ty K< 71K. (6.131)

Since these particles move independently at these time scales, we generate uncorrelated motion
between them as exemplified by d3 o term. Also, for 8 = 0 and t; = ¢t = t, both these equations

reduce to the variance which are consistent with results from the previous study [54].

6.5.2 Case II: tl > TK, tg > TK

Let us consider the correlations (xo(t1)zs(t2)) AT and (yo(t1)ys(t2))ABT in the other limit where

both ¢ and t2 are larger than 7. Substituting H /5 (Do, by, t1,t2) from Eq. (6.124) in Egs.

(6.128) and (6.129)), we see that the correlations possess integrals like ~ [ dq h(q) exp [~ Kty sin?(q/2)]

where h(q) is some function of ¢q. For large Kt1, such integrals will be dominated by small values

of g. This enables us to approximate b, ~ Kq? in Egs. (6.128) and (6.129)) and obtain the scaling

relation

2 3 [e)
(ot = A [~ cos () B (Dt ). 63
1
t3
(et 2P = U4, 1 [ au ( wp ) H, (nmttl,w?,l,ij). (6.133)

Below, we will use these expressions to demonstrate different scaling relations for the variance,

covariance and autocorrelation.

6.5.2.1 Variance

Putting f =0 and ¢t; =ty =t in Eqgs. (6.132)) and (6.133]), we obtain the variance of z((¢) and
yo(t) as

V2 13/2
(g ()87 4;:7\/? TAZ (Dyit), ¢ 7x, (6.134)
2oanp _ VAt g
(yo(t))e poa;-2 T2 (Drot),  t>> Tk, (6.135)
T
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Figure 6.15: Plot of the asymptotic behaviours of (z2())ABT (left panel) and (y2(t))}BF

(right panel) for 7, < t < 74 and 73, < T4 < t where 74 = ﬁ and T = % Their analytic

expressions are given in Eqs .(6.142]) - (6.145)) respectively. For both plots, we have chosen
K =2, Dot =0.5 and v4 = 1. Simulation is done with N = 100

where the scaling functions 7,28 (y) and 718 (y) are given by

T () =/ dw Hy (y, w?,1,1), (6.136)
TP (y) —/ dw Hy(y, w?,1,1). (6.137)

Figure [6.14] compares this scaling relation with the results of the numerical simulations. We
see a nice agreement between them. To decipher different scalings of the variance, we look at
the asymptotic forms of the scaling functions 7722 (y) and 728 (y) for which we directly expand

H, /2(y, w?,1,1) in the above equations. The asymptotic forms then read

256(v/2 — 1)/7 256/ (162 — 17
7-1AB(y) ~ ( 108 )\fy2 — (945 )y3, asy — 0, (6.138)
~ 2 ;W +0(y?), as y — 00, (6.139)
64(v2 —1)y/m 647
T8 (y) ~ ( o )fy - 18? <8f — 9) T as y — 0, (6.140)
~ 2 yzﬂ +0(y7?), as y — 0o. (6.141)
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Figure 6.16: Scaling functions P{15(y, t,) and P45'B(y, t,) in Egs. (6.147) and (6.149) associated

with (zo(t1)2s(t2)) AP and (yo(t1)ys(t2))ABY have been compared with the simulations for

C

K =2, Dot = 0.001, v4 = 1.5 and N = 100.

Inserting these asymptotic forms in the expression of (x3(¢))2PF and (y2(¢))ABF in Eqs. (6.134)

and (6.135)), we get

64(v/2 — 1) v D?
<xg(t)>é4BP ~ i;}gﬁ )Ui‘/[%ot £7/2 +0 (t9/2> ’ for T €Kt K 74, (6.142)
vi 2t 1/9
~5D W7K+0(t‘ /), for Tk < T4 < 8, (6.143)
rot

16(v/2 — 1) v4 Dyot B2 40

2/, WABP 7/2)
t ~ t f t .144
<y0( )>c 15ﬁ /*K ( ) or g K<t K74y, (6 )
Ui \/—% +0 (t‘m) for T < T4 < (6.145)
~ I 7T T . .
2Dt V TK ’ K A

We observe for t < 74, the variance (3 (t))AB" scales with time as ~ ¢7/2 which is different than
the ~ t3/2 and ~ t%/2 scalings for the RTP and AOUP respectively. The variance then crosses
over to the ~ v/t scaling for t > 74. On the other hand, for y-coordinate, we see a different
crossover for the variance from ~ t°/2 scaling at t < 74 to the ~ NG scaling at t > 74. For both
(z2())ABY and (y2(t))APF, these crossover behaviours have been numerically verified in Figure
Notice that for (y2(t))2ABF the ~ /2 scaling at t < 74 is same as that of the AOUP in
Eq. . This stems from the fact that at this time scale, the dynamics of the y-coordinate
of ABP and AOUP are exactly same.

We next use the unequal time position correlations in Eqgs. (6.132) and (6.133)) to obtain the

covariance and autocorrelation. Since they possess different forms depending on whether (i)
TR K t1 <ty < 74 and (i) 7k € T4 < t; < tg, we proceed to analyze them separately for

these two cases.
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Figure 6.17:  Numerical verification of the scaling functions £{B(t,) and £4"(y,t,) for the

autocorrelations in Eqgs. (6.152) and (6.153) for three different values of ¢;. For both plots,

parameters taken are K = 2, D,,; = 0.0001, v4 = 1 and N = 100 for the simulation.
6.5.2.2 Covariance and unequal time correlations for ¢ < 74, to € 74

Here, we will compute the correlations (zo(t1)z5(t2))2BY and (yo(t1)ys(t2))2BF when both t;
and t9 are smaller than the activity time scale 74 = ﬁ. Following Eq. (6.124]), we approximate
Hl (DTottla ’LU2, 17 tT’) by

2Dzott%
w8

2

H; (Dmttl — 0, w?, 1,tr) ~ [e_w2(1+t’") — 4Vt _ gov

+(3 = 2w)e =) 42 — 202 + w?)|

and plug it in Eq. (6.132) to obtain the scaling form

7/2
<x0(t1)$5(t2)>’c4BP ~ M Ple (IB, t2> , for t1 <ty K 74, (6.146)
271'\/? V2Kt

where the scaling function P{*B(y,t,) is given by

PAB(y,t.) = / T g S8 WV20Y) (\/Ewy) [e—w2(1+tr) — et _ g
—00 w (6.147)
+ (83— 2w2)6_w2(“_1) +4(2 — 20% + wh)|.
Same analysis for the y-coordinate yields
2 Dyort?? 3t
) yg(te))ABP ~ VAT paB C2) 0 forty <ty < Ta, 6.148
<y0( 1)y5( 2)>c 271'\/? 2 \/m t ori; > 12 TA ( )
with the scaling function 77§43 (y,tr) given by
Ps Py, t,) = POU(y, ). (6.149)
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Figure 6.18: Numerical verification of the scaling functions Q% (y) and Q42 (y) in Egs. (6.156))
and (6.157)). For both plots, we have chosen K = 2, D, = 0.001, v4 = 1.5 and N = 200.

Here POV (y,t,) represents the corresponding scaling function for AOUP in Eq. . Figure
compares the scaling functions P{*(y, t,.) and P5'B(y,t,) with the numerics for three sets
of t1 and to with fixed to/t1. We see that the simulation data collapse over our analytic results
for all cases. To contrast the correlation (xo(t1)zs(t2))2BF in Eq. from that of the RTPs
and AOUPs, we look at its behaviour for large 5. By direct expansion, we find that it decays
as ~ f(fB) exp (ﬂ2/562l> where the decay length I = 2¢/K(t1 +t2) and f(8) = B8 Recall
that this correlation for RTPs and AOUPs also had a similar decay but with different f(3),
namely f(8) = =% (RTP) and f(8) = 375 (AOUP). On the other hand, (yo(t1)ys(t2))25F in
Eq. has exactly the same form as for AOUPs in Eq. . As mentioned before that
the dynamics of the y-coordinate of the ABP and AOUP are essentially the same at these time

scales.

Next, by putting 8 = 0 in Eqgs. (6.146) and (6.148), we find that the autocorrelations have

scaling form

app _ VADZ 7 ap (b
<$0(t1)ﬂ70(t2)>c ~ W £1 ? N for t1 < t2 L TA, (6150)

Iy 1

2 Dot to
1) o(tgVABP ~ YAZroths  pAB (72 for t; < ty < T4, 6.151
(yo(t1)yo(t2))e oV 2 ) or t1 < 12 < 74 ( )

where the scaling functions [,fQB (t,) are given by

LAB(L) = 1?8{5 [(1 Y1) 4 (1 + tZ/2) VA T (4= Bt — 262+ 3t§’:)} . (6.152)
L5B(t,) = 8? [(tr +1)%2 4 (t, — 1)°2 —2(1 4 t§/2)} : (6.153)

In Figure [6.17, we have plotted these two scaling functions and compared them against the

numerical simulations for three different values of ¢t;. We find the convergence of the simulation
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data with our analytic results for all cases.

Finally, we turn to the covariance (wo(t)x5(t))2B and (yo(t)ys(t))2ABF for which we put ¢ =

C

to =t in Eqgs. (6.146)) and (6.148]). This yields the scaling relation

(rotyma(o)e” = D2 o (0 ) : (6.154)
xo(t)xs(t ~ L ——— , or T Kt K 714, .
OVIEEA e VK 1 \V2Kt ,
2D t5/2 B
Dyg(tNABP ~ VATt A < ) , for 7, € t < 74, 6.155
D e il v k (6.155)
where the scaling functions Q’f‘/g(y) are given by
QP (y) = 6—@ [2\/56*% (384 + 348y” + 40y* +y°) — 166~ (48 + 87y° + 20y* + y°) (6.156)
— V2ry Exfe (%) (840 + 420° + 42" +4°) + 8v/2ry Erfe (%) (105 + 1052 + 21y* + 1/°) ]

2P (y) = Q%% (y), (6.157)

where QO (y) is given in Eq.(6.113). Figure shows a comparison of these scaling functions
with the numerical simulations for three different values of ¢. For all ¢, we see nice agreement of

the numerical data with our analytic results.

6.5.2.3 Covariance and unequal time correlations for t1 > 74, to > 74

For times larger than the activity time scale 74, the motions of ABP, RTP and AOUP converge
to that of the Brownian motion. Hence, we expect the results for (zo(t1)zs(t2))ET? derived in

Eq. (6.78) for RTP to apply to both coordinates of ABP also. Consequently, we get

(zo(t1)zs(t2)) 8P = (yo(t1)ys(te)) i PP ~ Dappy % Q (\/ﬁ(—tla Z) ; (6.158)

for t1 > 714, ta > 74 with fixed to/t;. The scaling fucntion Q(y,t,) is given in Eq. (6.79).
As done for RTP and AOUP, it is straightforward to obtain the expressions of the variance,

covariance and position autocorrelations from Eq. (6.158)). These expressions are given in

Egs. (6.115} [6.116)) with D4 replaced by Dagp = v%/(2Dyot).

6.5.3 Large but finite NV

For this case also, the observation time is much larger than the activity time scale. So the

expressions derived in Eq. (6.81)) for RTP and AOUP will also apply for this case:

app _ 2DappN W (tz p Kt1>

(wo(t1)za(t2)) 27 ~ (yo(t1)ys(t)) e PF ~ T N N (6.159)
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2
where W(t,,y, z) is given in Eq. (6.82) and Dapp = %‘Z‘Ot. This solution then leads to the
scaling relations for the variance, covariance and position autocorrelation as written in Sec.

0.4. 3

6.6 Summary

Thus, we have studied a simple and analytically tractable model of N active particles with the
nearest neighbour quadratic interaction. We considered three models of active particles namely,
run and tumble particles and active Ornstein-Uhlenbeck particles in one dimension and active
Brownian particles in two dimensions. This problem has three time scales - (i) the interaction
time scale T = &, (ii) the activity time scale 74 = % /% /ﬁot for RTP / AOUP / ABP and
(iii) the relaxation time scale 7y = N72 due to the finite system size. We choose them such
that 7 < 74 < TN [see Figure . Our main quantities of interest were different two-point

correlation functions of the positions of the tagged particles and see how they get modified due

to the active nature of the particles.

We first computed the variance (22(t)). of the position of the a-th particle. When ¢t < 7, the
particles move independently so that we recover the scaling of (x2(t)). as in the non-interacting
case. On the other hand, when 7 < t < 74, the variance scales as ~ t¥ with exponent v
different than the non-interacting case. We calculated v = % for RTP, v = % for AOUP and
v = % (= %) for x (y)-coordinate of ABP. Note that t” scaling of the MSD arises due to the
interplay of the activity and caging effect due to the surrounding particles. Next, from this
~ t¥ scaling, the variance crosses over to ~ v/t scaling when 7x < 74 < t for all three models
with the corresponding crossover function derived rigorously in Egs. and for the
RTPs and AOUPs respectively and in Eqgs. and for the ABPs. Similar crossover
behaviour was also seen for the variance when the observation time ¢ is of the order of ~ 7.
While for ¢t < 7y, one gets ~ /¢ scaling of (22(t)). for all models, it scales diffusively when
t > 7. The associated crossover function is given in Eq. .

We next computed the equal time two-point correlation function (xo(t)zs(t)). for all three
models. Once again, this correlation function displays different scaling behaviours depending on
whether ¢ is larger or smaller than the activity time scale. For example, when 7 < t < 7, they
exhibit scaling forms with respect to y = —2— with distinct scaling functions QFT (), QO (y)

2Kt
and Qf/g(y) which were derived in Eqgs. (6.47)), (6.113]), (6.156) and (6.157)) respectively. On

the other hand, for ¢t > 74, we obtain the same scaling form for all models with the associated

scaling function C(y) given in Eq. (6.51).
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We then turned to the position autocorrelation (x,(t1)zq(t2)). and analyzed them in two limits
- (A) t] € T4, ta € T4 and (B) t1 > T4, ta > 74. In both these limits, the ratio ¢, = to/t;
is held fixed. For case (A), we derived distinct scaling forms of the autocorrelation in ¢, and
the corresponding scaling functions £ (¢,.), £LOV(t,.) and 5‘14/]:; (tr) are calculated in Egs. (6.61)),
, and respectively. For case (B), all models give rise to the same scaling
function M(t,) in Eq. (6.67). Quite remarkably, (zo(t)zs(t)). changes non-monotonically with
to (for a fixed t1) where it first rises with ¢9, attains a maximum value and then starts decreasing
again. We reasoned that this non-monotonic nature arises due to the peristent nature of these

particles.

We finally studied the unequal time correlation function (xo(t1)zg(t2))c (t1 < t2) and demon-

strated different scaling behaviours depending on where ¢; and ¢ lie. For case (A), it has scaling

B
V2Kt

tions PT (y,t,), POV(y,t,) and P{%B(y,tr) are calculated respectively in Eqs. (6.77)), (6.109)),
(6.147) and (6.149). However for case (B), all models converge to the same scaling function

Q(y,t,) given in Eq. (6.79). As seen for the autocorrelation, (xq(t1)zg(t2))c also shows a non-

form in two variables: ¢, = % and y = and the associated model-dependent scaling func-

monotonic dependence on ¢ for fixed 8 and ¢1. Once again, this non-monotonic nature owes its

origin to the persistent nature of these particles.
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Chapter 7

Conclusion

Active matter is a class of driven non-equilibrium systems where the individual unit consumes
the supplied energy and tranduces it into a systematic movement. While these systems typically
appear in the biological context in the form of bacteria, cytoskeleton, tracer proteins, schools of
fish and so on [58}26-29|, recently active motion has also been realised in non-living settings
like janus particles, vibrating granules and nano-robots [31-33,35]. The common feature of these
systems is that their dynamics violates the time-reversal symmetry (at the local scale) and thus
breaks the detailed balance condition [28,83]. In fact, the dynamics of an active particle is a
non-Markov process and the stochastic trajectory thus obtained represents a strongly correlated
time series [70]. Obtaining exact analytical results on the extremal statistics and functional
statistics for such correlated time series with history dependence is often a difficult task. In this
thesis, we were able to obtain some exact results on the extremal statistics, convex hull and path
functionals for a particular active model called run and tumble particle in Eq. . From this
exact analysis, we were able to show how distinct non-Brownian behaviours arise at small and

intermediate time scales.

In chapter (2), we looked at the arcsine laws for a single RTP in one dimension. For a stochastic
trajectory of fixed duration ¢ and starting from the origin in one dimension, the arcsine laws
refer to the statistics of the following three observables: (i) the time t,, at which the particle
reaches its maximum distance M, (ii) the time ¢, spent on the positive side of the origin and
(iii) the last time t; at which the particle crosses the origin. Interestingly, for Brownian motion,
P. Lévy proved that the distributions of these three observable are exactly same and is given by
Eq. [120]. Contrarily, our study in chapter (2) showed that these three distributions and

their universality for a RTP depend quite sensitively on its initial velocity direction og. When
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00 is chosen between +1 with equal probability 1/2, then one finds that the distributions of t,,
and t, are exactly same and this common distribution has two delta-functions at t,, = 0 and
tm =t (same for ¢,) and a non-delta function part. However, unlike in the Brownian motion, the
distribution of t; for a RTP is slightly different with only one delta-function at ¢, = 0 and the
same non-delta function part as the other two observables. The expressions of these distributions
are given in Eq. for t,,, in Eq. for ¢, and in Eq. for ty. Same analysis for
the asymmetric initial condition (where oy is chosen between 41 with unequal probability) gives
that all three distributions are different. Interestingly, it turns out that our results on ¢,, and ¢,
for the symmetric case are valid even in higher dimensions [92]. While for ¢,,, this universality
was proved in [92] by using the Sparre Andersen theorem [183|, proving the same for ¢, is still
an open problem. Also, analysing the arcsine laws for other active models like active Brownian

particle and active Ornstein-Uhlenbeck particle is an interesting future direction.

In chapter (3), we investigated the convex hull problem for a 2-d isotropic run and tumble
motion. We studied this model in two different statistical ensembles depending on whether the
number of tumbles (n) or the observation time (¢) is fixed. Utilizing the connection of convex
hull to the extreme-value statistics, we analytically computed its mean area for a single RTP in
these two ensembles. These expressions are provided in Eq. for the fixed-n ensemble and
in Eq. for the fixed-t ensemble. In particular we showed that the mean area (A(t)) for the
fixed-t case exhibits two different scaling regimes depending on the observation time ¢, namely
(A(t)) ~ 13 for t < y~! and (A(t)) ~t for t 3> v~1. This is different than the passive Brownian
case where the mean area scales linearly with time as (A(t)) ~ t for all values of ¢ [127]. We

also derived the exact scaling function that connects the two scaling regimes in Eq. (3.60).

As a future direction, it would be interesting to study the convex hull problem for realistic run
and tumble models where tumbles are not instantaneous. For fixed-n ensemble, we anticipate our
results in Eq. to be valid even for these realistic models. However, for fixed-t ensemble,
the results will be different atleast at small and intermediate time scales. Also, going beyond
the mean perimeter and the mean area, obtaining analytic results for the higher moments and

probability distribution is an open problem even for the simple Brownian motion.

Note that the previous two chapters focused on the RTP model in a homogeneous setting
where motility parameters like vy and - are constant both in space and time. However, in
many realistic scenarios, heterogeneous active models become more relevant specially when the

particle is moving in a complex environment with an asymmetric distribution of the obstacles or
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the nutrients in case of the bacteria [115-119]. This motivated us to consider, in chapter (4), the
spatially heterogeneous run and tumble particle in one dimension with a position and direction
dependent rate of tumbling. This means that the telegraphic noise o(t) in Eq. flips from
+1 — —1 with a rate Ry(z) that is different than rate Ro(z) with which flip from —1 — +1
occurs. The precise forms of these rates are given in Egs. . We computed the late time
behaviours of the position distributions, survival probabilities and exit probabilities from a finite
interval and showed that the spatial heterogeneity leads to strict non-Brownian forms even at
late times. One important point is that the position distribution in Eq. describe only the
typical fluctuations of the position and becomes invalid at the far tails of the distribution. In
particular, for the homogeneous case, it was shown in [70,|114] that the distribution possesses
a large deviation form at the tails. It remains an open direction to see if such large deviations
forms exist even for the heterogeneous run and tumble model. Another interesting direction is
to see if the universal features seen for the survival probability of a homogeneous RTP are also

observed in the heterogeneous setting.

Next, we demonstrated the effect of the spatial heterogeneity on the statistics of the local time
(density) in chapter (5). For the case when Ri(z) = Ra(z) ~ |z|* (a > 0), we developed a
‘path-counting method’ which enabled us to obtain the distribution of 7j,. completely in terms
of the probabilities of multiple visit to xj... Utilizing this method, we were able to derive the
distribution of Tj,. both in the free space and in presence of an absorbing wall. The analytic
expressions of these distributions are given in Eq. for @« = 0 in free space and in Egs.
(5.66|) and for general a with absorbing boundary condition. On the other hand, for

a # 0 and free space case, we showed that the typical fluctuations of Tj,. scales with time as

Tioe ~ t2+a and the distribution obeys the scaling form P(Tj,e,t) =~ lcfa o <C‘£la“>. The

t2+a t2+a

corresponding scaling function f,(z) is given in Eq. (5.43) for arbitrary values of o > 0.

Although, in this chapter, we have focused only on a > 0, some of our results are valid even
for the negative values of a. For example, the scaling relation for the distribution in Eq.
is valid even for —1 < a < 0. However, performing this study analytically in presence of an
absorbing barrier for o < 0 remains a direction yet to be explored. Also, studying the local time
problem for other active models like active Brownian particle and active Ornstein-Uhlenbeck

particle is a direction yet to be explored.

Finally in chapter (6), we studied a chain of N active particles with nearest-neighbour harmonic

interactions. Our study demonstrated how exactly the activity (persistence) and interaction
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affect the dynamics of tagged particles. In particular, we computed the variance and the two-
point correlation functions of the positions of the tagged particles and showed that they exhibit
interesting scaling forms depending on the observation time ¢. For instance, when the particles
are interacting and N — oo, we found that the variance scales as ~ t for t < 74 ( 74 being
the activity time scale) with exponent v different than the non-interacting case. We calculated
v =3 for RTP, v = 5 for AOUP and v = I (= 3) for z (y)-coordinate of ABP. The variance
then crosses over to ~ v/t scaling for ¢ > 74 with the corresponding crossover function given
in Eq. for RTP, in Eq. for AOUP and in Egs. and for ABP. In
addition, we also found that the equal and unequal time autocorrelation and cross-correlations
obey interesting scaling forms in the appropriate limits of the observation time ¢. The associated
scaling functions were rigorously derived in all cases. For future work, it would be interesting to
develop fluctuating hydrodynamic frameworks for active models to study the single-file motion
of tagged particles as done in |132]. Another interesting extension is to derive an effective time
evolution equation for the position of a tagged particle. This will be useful in analysing how

exactly the fluctuation-dissipation relation is broken in these models.
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Chapter 8

Appendix

8.1 Equilibrium

In this section, we briefly discuss some features of an equilibrium system. Two important prop-
erties about a system in equilibrium are detailed balance and fluctuation-dissipation relation.
While detailed balance is the statement about the probabilistic current balance between any
two microscopic states, the fluctuation-dissipation relation tells how a system in equilibrium
responds to a small external perturbation. In what follows, we discuss these two properites of
an equilibrium system briefly. For concreteness, we present our analysis for a one dimensional
diffusing particle whose position z(t) evolves with time ¢ as

ﬁccll—f - —d‘;;x) V2D n(t), (8.1)

where 7 is the friction coefficient, V(z) is the confining potential and D = kT is the diffu-
sion coefficient. Also, n(t) is the Gaussian white noise with zero mean and delta correlation
(n(t)n(t")) = 6(t — t'). For model (8.1)), the probability to observe a trajectory {z(7)} with

0 < 7 <t such that 2(0) = z; and x(t) = x is given by [21]22]

Pl{z(r)}] = Ne~ap Jo dr itV @), (8.2)
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Here N is the normalisation factor. Similarly, the probability to observe the time-reversed

trajectory {Z(7)} where Z(7) = x(t — 7) is [22]
Pl{E(7)}] = Ne~ap Jo dr =384V @), (8.3)

Given these path probabilities, the equilibrium state satisfies the following conditions [11-16,
21-24):

8.1.1 Detailed balance:

The first condition is the detailed balance condition which tells us about the time-reversibility

between two states. To see this for the diffusion, let us take the ratio of two path probabilities

in Egs. (8.2) and (8.3)) as

P[{z(r)}] — e~ 1D Jy dr ATV (z(7))d
()] ’ (84)

— o BV V()] (8.5)
Identifying the steady-state distribution as Pg(z) o e V@)/ksT it follows from Eq. that
Pat(x;) Pl{a(r)}] = Pa(xy) P[{z(7)}]. (8.6)

Next, we integrate over all intermediate {z(7)} and get
Pa(xi) Wlzglzi] = Pa(zp) Wiz, (8.7)

where the quantity W (z,|xp) defined as

z(t)=zq

W(xglay) = /( ) Dlx(7)] e~15 Jo d [%-S-V’(w(f))]?’ (8.8)
z(0)=zy

represents the transition probability distribution from position x; to the position x,. Eq.
implies that for diffusion, if the initial and the final states are drawn from the stationary dis-
tribution Pg(x) o e~ V(@)/ k8T then the probabilities to observe a transition x; — x ¢ and its
time-reversed transition zy — x; are both same. This is the detailed balance condition. More
generically, if W (I'2|I'1) denotes the transition rate between two microscopic states I'; and I'y

of a Markov process characterised by the steady-state distribution Pg (I'), then the detailed
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balance condition is

Py (T1) W (T2|Ty) = Py (T To) W (T T4|T Ts), (8.9)

where 7 is the time-reversal operator which inverts the time-sequence of the states and if the

state involves velocities, changes the sign of the velocities.

Interestingly, the probabilities to observe a forward trajectory and its time-reversed trajectory
are also related to the total entropy generated along a forward trajectory [21-23]. For a transition
between states I'y and I'y in an infinitesimal time dt, the entropy generated can be formally

written as

Py (T1) W (T[T
dSy2 = kplog | 5 ((I) W (Tl (8.10)

st (T FQ) w (T Fl’T FQ) '
Note that the detailed balance condition in Eq. implies that no entropy is produced during
a transition between two equilibrium states. Hence a non-zero value of dS1s is a clear signature

of the departure from the equilibrium.

8.1.2 Fluctuation-dissipation relation:

Another property of an equilibrium system is the fluctuation-dissipation relation which tells
how a system responds to a small external stimulus [14-16,[24,25]. One of the early examples
of this relation is the Einstein-Sutherland relation D = ¥kpT that relates the mobility 74 of a
diffusing particle to its diffusion coefficient D [17,20]. Another example is the Kubo formula
which gives the linear response of a system in thermal equilibrium to external perturbations in
terms of the correlation functions in the unperturbed state |14]. Over the years, linear response
has been studied in various cases that include Hamiltonian systems, open and chaotic systems,
quantum systems, stochastic processes and random walks. We refer to [25,227] for a detailed
discussion on the response theory. Here, we briefly recall the central idea in the context of the

diffusion [16].

Let us consider the Brownian motion in one dimension. At time ¢ = 0, we turn on a small

perturbation of the form ef,(¢) with e — 0. The time evolution equation then becomes

350 = —V'(a) + V2D 0(t) + efyl0). (s8.11)
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The effect of this perturbation on some observable O(x(t)) up to linear order in € can be written

in terms of the response function R(¢,7) as

(O(x(t)))e = (O(x(t)))o + 6/0 dr R(t,7) fp(T), (8.12)

from which the response function R(t,7) follows to be

R(t.1) = 2 (O@(®)).

5Te/, (7] (8.13)

Our aim is to calculate this response function for general observable O(z(t)). To this aim, we

first recall that the expectation of O(x(t)) in presence of the perturbation reads
(Ow(t))e = [ Dla(s) Oa(t) e~ i & 1oV )=, (8.14)

where (..). indicates average in presence of the perturbation. Taking the functional derivative

like in Eq. (8.13]) gives

R(t,7) = 55(0((0) [3(r) + V/(2(r)] o, (815)
= JL0.0(t,7) + 515 (OG(O)V (), (5.16)

with C'(t,7) = (O(x(t))z(7))o. At equilibrium, we anticipate this relation to obey the station-

arity condition. This gives
__7 Loy
R() = = 50C(0) + 55V (2(0)O((t)) o, (5.17)

where we have used the short-hand notation R(t) = R(t,0) and C(t) = C(¢,0). Next by changing
t — —t in Eq. (8.17) and noting that the response function R(—t) = 0 (which follows from the

causality condition as discussed in |16]), we get

v L _
SO0 + 55 (V' (()O((0)))o = 0. (8.18)

Adding Eqs. (8.17)) and (8.18)) gives

EsT R(t) +0.C(1) = "2 [(0((®)V/(2(0)) — OOV (D)) . (8.19)
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To calculate the right hand side of this equation, one can use the detailed balance condition in

Eq. and show
(O(z(®)V'(2(0)))o = (O(x(0))V'(x(t)))o- (8.20)
We refer to [16] for a proof of this relation. Finally, inserting this equation in Eq. , we get
kT R(t) = —0,C(t), fort> 0. (8.21)

This is the celebrated fluctuation-dissipation relation which gives the response (up to linear
order) of a system in thermal equilibrium to an external stimulus completely in terms of the
equilibrium correlation functions. As clear from the derivation, this relation is valid only when

the unperturbed state is an equilibrium state.

8.2 The propagator with an absorbing barrier at + = M

In this appendix, we derive and solve the master equations satisfied by the propagators
Py(x,t|0,00) in presence of an absorbing boundary at 2 = M (> 0). Let us consider the
probability distribution P, (z,t+ 0t|0, 0¢) for the particle to be at position x at time ¢+ d¢t. This
distribution gets contribution from two events: First, the particle was at position (z — vy o dt)
at time ¢ with orientation ¢ and it did not flip o in the interval [t,¢ + dt], the probability of
which is (1 — ~dt). Second, the particle was at position = at time ¢ with orientation —o and it

flips 0 — —o in the interval [t,¢ + 6t] whose probability is vdt. Therefore, we have
P,(z,t + t|0,00) = (1 — v6t) Py(x — voodt, t|0,00) + vt P_s(z, t]0, 00). (8.22)

Expanding the propagator up to order ~ §t and taking ¢t — 0 limit gives the master equation
(2.2) with o € {+,—}. Next, to solve these equations, we take Laplace transforms with respect
to the time variable:

Py(z,s) = /OOO dte™*'Py(z, ). (8.23)
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which reduces Eqgs. (2.2)) to

(voax +v+ 3) Py(z,8) = vP_(x,5) +a=6(z), (8.24)

(voax —y— s) P_(z,8) = —yPy(x,5) +a_6(z), (8.25)

where the coefficients a4 of the delta functions appear from the initial conditions Py (z, 0|0, 0¢) =

a+ Ogy,+0(z). For z > 0, we can get rid of the (x) terms in Eqgs.(8.24]) and (8.25)) and write

LyPy(x,s) =~P_(v,s), with Ly = (voam +v+ s), (8.26)
and,
L_P_(x,8) = —yP(,s), with L_ = (110890 —y— s), (8.27)

Multiplying both sides of Eqgs. (8.26) and (8.27) by L_ and L. respectively, we obtain the

following closed form equations:

(UO&E —y - s) (UOOZ +v4+ s) Py (x,s) = —y?Py(z, s), (8.28)

(voax oyt s) (vo&,; oy s) P_(z,8) = —42P_(z, 5). (8.29)

To solve these equations, we try the solution Py ~ %% and put this in Eq.(8.28)) which gives
B = £A(s) where A\(s) = %\/3(27 + s). We then plug this solution in Eq. 1D to obtain the

solution for P_. Finally, we get

B AerS)T 4 Bem AT it 0 <z < M
P, (z,s) = (8.30)
CerMs)z, if —co<x<0

_ 1 | A(woA(s) +7 + 8)eXT 4 B(—voA(s) + v+ s8)e™ 2 if 0 <o < M
P_(z,s) = 5 (8.31)

C(voA(s) + 7 + s)er), it —co<a<0

where A, B and C are still unknown constants that need to be determined. For this, we

integrate both sides of Egs.(8.24) and (8.25)) from x = —¢ to x = +¢ with € — 0T to obtain the
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discontinuity equations

Pz —0",s) =P (x —=0,s)= ai,

P (zx—0%s)—P.(z—0,s)=——.

(8.32)

(8.33)

Another equation comes from the boundary condition P_(M,t) = 0 in Eq. (2.4) which in the

Laplace domain becomes

P_(M,s)=0.

(8.34)

Next, we plug the solutions from Egs. (8.30) and (8.31]) in Eqgs. (8.32)), (8.33) and (8.34) to get

three linear equations for the constants A, B and C. Solving these equations yield the constants

in terms of s, «, vg for different choices of a+. For example, when the RTP starts with +wvg

initially, then a4 = 1 and a_— = 0. For this choice, we find

A( ) _ _3 + Y — UOA(S) —2MX(s)

202\ (s) ¢ ’
s+ v+ voA(s)
B(s) = ——5—+——= d
(s) 208X(s) ane
s+ —voA(s) —2MA(s)
C(s)=———>(1— o).
(s) 202\ (s) ( ¢ )

Using these expressions of the constants in Eqs. (8.30) and (8.31))

(5 + 7+ voA(s))e 2T — (5 4+ v — vpA(s)) e @=2M)
D 1 if0<az< M
Py (z,s]0,+) = ESYA)
0 (s + 7 — voA(s)) (ek(s)m _ eA(s)(w%M))j
if —co<x<0
\
P_(x,5/0,+) T M)l As)@—2M)

- 203(s)
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Similarly, when the particle starts with —vg velocity, then a4 = 0 and a_— = 1 and we get

5 N @l SEY = 0AS)\ ) @—2m)
P = _ 4
+(@, (0, -) (6 s 47 + voA(s) ¢ (840)

(s 47— voA(8)e™ &7 — (s 4 v —ypA(s)) e @=2M),
1 f0<axz< M

(8.41)
(s + 7+ 0oA(8)erHT — (s + v —voA(s))  er&)@=2M),

if —co<xz<0.

So far, we have obtained the exact form of the propagators corresponding to different initial
conditions in terms of the Laplace variables s. To get the solutions in time domain, one need to
perform inverse Laplace transforms Py (x, 5|0, 4). Looking at the expressions in Eqgs. (8.38(8.41]),

we need to know the following inverse Laplace transforms [210]

1
I [ egx(s)] —ve T, (% \/m) Ot — ) (8.42)

A(s)
A I —
7SN ESAACS () x| — et [ I (1 22 — 92> O (vt — g)
A(s) vt + g v (8.43)
1 d -
_ ;avzdg |:@<’Ut — g)I() <%m):| , for o = i17
N (s ve ™ ryg
£ i o] < 1 (20, ()
— (8.44)
vt—g . (Y '
I (L /0242 — g2 —q).
vt—i—gl(v v4t g)}@(vt q9)

Inserting these inverse Laplace transforms in Eqs. (8.381{8.41]), we arrive at the expressions of
the propagators quoted in Eqs. (2.542.8)).

8.3 Derivation of backward master equations for S.(z,t)

In this appendix, we derive the backward master equations and satisfied by the
survival probabilities S (xg,t). Let us first recall that S, (x¢,t + dt) is the probability that the
RTP with initial velocity direction ¢ survives from the absorbing wall at = 0 till time ¢ + dt.
We can break the entire trajectory into two parts: (i) [0,dt] and (ii) [dt,t + dt]. In the first
interval, the particle can do two things: (a) without changing o, the particle moves to the new
position (xg + ovgdt) with probability 1 — ~dt or (b) it changes its velocity direction from o

to —o and moves to the position (xg — ovgdt) with probability vydt. After time dt, the RTP
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survives the absorbing wall with the probability S, (zo + ovgdt,t) if event (a) occurs, and with

probability S_,(xg — ovodt, t) if event (b) occurs. Adding all these contributions, we get
So(xo,t+dt) = (1 — ~vdt) Sy(zo + ovodt,t) + vydt S_s(xo — ovodt,t). (8.45)
Performing Taylor’s expansion for small dt, we get the following backward master equations:

0pS4(x0,t) = 00025+ (w0, t) — vS+ (w0, t) + vS— (0, 1), (8.46)

S_(x0,t) = =090z S—(0,t) + vS+(x0,t) — vS— (0, t). (8.47)

8.4 Proof of the identity

Here we prove the identity

2

y / Cdh(t — R L 21 — h(t)) (8.48)
0

where h(t) = e " [Io(yt) + I1(yt)]. To prove this identity, we take Laplace transformation of the

left hand side with respect to ¢ and use its convolution form as follows:

t
Laplace Transform [7/ dt'h(t — t')h(t’)] = yh(s)>. (8.49)
0

where h(s) denotes the Laplace transform of h(t) and is given by

h(s) = Laplace Transform[h(t)] = i ("8(234_8) - 1) . (8.50)

Plugging this result in Eq. (8.49) and performing some algebraic simplifications, we get

Laplace Transform [v /Ot dt'h(t — t')h(t')] = [1 1 (”8(274_8) - 1)] . (8.51)

s s

Finally, we perform the inverse Laplace transform on both sides with respect to s to get the

identity in Eq. (8.48)).
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8.5 Probability distribution of ¢,, for general initial condition

In section , we derived the probability distribution of time t,, taken by the RTP to reach
maximum M within the time duration [0,t] given it was at the origin initially with velocity
+vy chosen with equal probability, i.e. a; = a— = 1/2. Herein, we extend this derivation
to the asymmetric inital condition whereby it initially chooses d+vg with different probabilities
(ay # a_). To this aim, we use the expressions for Py (M — €, t,,|0, =) obtained in section
to write pi(M — €,t,,|0) = a4 Py(M — €,t,,|0,+) + a_ Py (M — €,t,,|0,—) for general initial
conditions. After some simplifications, the expressions for py (M — €, t,,]0,0) read as,

d
P (M — €, t]0) =~ [O(ogtn — M) g**(M, )] + O (e)

P (M — €,t]0) = ———— [O(voty, — M)g* (M, t,)] + O(e?),

(8.52)

where the function g(M,t) in Eq. (2.21)) is now changed to

_ Y oot — M Y/
(M t) = e I | —+/v2t2 — M2 ) ———L [ =y vEt2— M2 )| . 8.53
g¥(M,t)=e [a+0<vo Vo >+a v0t+M1 " Vo ( )

Inserting these expressions in Eq. , we get the part of the joint distribution P (M, ty,,t)
of M and t,, for 0 < M < vgt and 0 < t,,, < t. Here the superscript ‘as’ in P**(M, t,,,t) denotes
the asymmetric initial condition. Note that the joint distribution thus obtained is valid only
for 0 < t,, < t. We now have to get the contributions from ¢,, = 0 and t,, = t. As seen for
symmetric case, the contributions to t, = 0 come from those events where the particle starts
with —vg initially and stays on the negative side of the origin till duration ¢. Clearly, for such

events M = 0. Consequently, we get
P (M, tm,t) = §(tm)d(M)a_h(t). (8.54)
~—_———
contribution from paths with ¢,,=0

On the other hand the contributions to t,, = t event come from events where the particle
achieves its maximum at time ¢,, = t. Generalising Eq. (2.23) straightforwardly for general

initial conditions, we find this contribution to be

P (M, tn, ) = §(tm — t) [ax P (M, [0, +) + a_ Py (M, 1|0, —)]. (8.55)
N——

contribution from paths with t,,=t

150



Plugging the expressions of the propagators Py (M, t|0,+) from Egs. (2.6) and (2.8]) gives

PO (M, b, 1) __ dL [O(vot — M) g2 (M, 1], (8.56)
————

contribution from paths with t,,=t

Finally adding all the three contributions and fixing the normalisation gives the exact form of

the joint distribution P**(M, t,,,t). Marginalising P (M, t,,,t) for t,, yields
vt
Py (tm,t) = / dM P (M, ty,,t),
0
= a_h(t)0(tm) + h*({)0(t — tm) + Yh(t — tm) R (), (8.57)
where h8(t) = e V[aly(vt) + bl1(yt)]. Note that for ay = a_ = 3, h®(t) = @ and Eq. (8.57))

and we recover the results for symmetric case in Eq. (2.34). Also observe that for ay # a_, the
joint distribution Pj; (tm,t) is different from Eq. (2.34)).

8.6 Backward master equation for functional Y [z (2)]

Here we provide a derivation of the backward master equations which is useful in computing the

statistics of a general functional Y [z (¢)]

Yo ()] = /O dr Uz (7)), (8.58)

where {z(7); 0 <7 <t} represents the trajectory of an one dimensional RTP of fixed duration
t initially located at position zg and with initial orientation o that can take values 1. Let
P (Y, xo,t) be the probability density of Y. Then the corresponding characteristic function is

given by

Q% (p, xo,t) = /OO dY e PY P70 (Y, z0,t) = <e_py> (8.59)

0 (z0,00) ’
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where <...>($070) denotes the average over trajectories with initial position zg and velocity orien-

tation o. For a small time interval [t, ¢ + dt], we have

Q°° (p,zo,t + 0t) = <e —p i dTU[a:(T)]>

(w0,00)

:<e—pf5”dvv[x<¢ Je=p f3 " drUla( >1>( | (8.60)
Z0,00

=1 —pU(x0)5t)< —p [5; " drUla(r )]>

($0,0’()) '

where (zg,00) is the initial configuration. In small time interval 6t, the state (xg,00) of the
RTP can change to (z¢ + oovodt, og) with probability (1 — ~vdt) and to (zp — oovodt, —og) with
probability vdt. We can write Eq.(8.60|) as following;:

Q7 (p, w0, t + At) = [1 = pU(w0)ot] [(1 = 73t (e 7ot AVl s

6t <e—pf5tt+6t dTU[i(T)}> (8.61)

(Ioo'ovo(;t,a'o):|
= (1 - pU(l’o)&t) [(1 - ’YCSt) QJO (pv Zo + JOU06t7 t) + WdtQ_o—O (p7 Zo, t)] :
(8.62)

Taking the 6t — 0 limit we obtain

atQ (p7 Z0, ) — GOUOaCE()QUO (p) ZQ, t) - VQUO (pa Zo, t) + 7@70’0 (p7 Zo, t) - pU(:UO)QUO (p7 xo, t)
(8.63)

For residence time t,, we choose U(x) = O(x) and then Eq. (8.63) reduces to the backward
master equations for ¢, in Eqgs.(2.35) and (12.36]).

On the other hand, for T5 in Eq. (5.4), we have U(z) = L (z) and Eq. (8.63)) reduces reduces
to the backward master equations (5.6) with p replaced by ¢ and Q7°(p,xo,t) replaced by

HO'() (q7 Zo, t)

8.7 Probability distribution for residence time ¢, for general ini-

tial condition

In Sec. ([2.4), we derived the distribution of the residence time ¢, for symmetric initial condition

where RTP initially chooses velocity v with equal probability 1/2. Herein we extend this
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calculation for asymmetric initial condition for which we assume that the particle starts with
+vg velocity with probability a4+ such that a; +a_ = 1. Let us denote the distribution of ¢, by
P{(t,,t) and its double Laplace transform by Q% (p, s). Here ‘as’ in the superscript stands for
asymmetric initial condition. Using the results in Eqs. and for this case, we have

ch(p’ S) = a+©+(p707 S) + a—@—(p707 8)7
_ 1 B AoAp Gy —a Ao B Ap
2y <1 s(s +p)> 2y ( s s +p) ' (8:64)

Now to get the distribution Pg*(¢,,t), we have to perform double inverse Laplace transformation.

Comparing this expression with that of the symmetric case, we first observe that the first term
in the right hand side of Eq. (8.64) is identical to Eq. (2.56)). The inverse Laplace transformation
of this term is given in Eq. (2.56)). On the other hand, to invert second term, we use Eq. (2.55]).

Therefore the overall expression is given by

P85 (t,.1) = h(t) [a,a(tr) Fald(te —1)] + gh(tr)h(t ). (8.65)
For ay = a_ = %, we recover the results for symmetric case in Eq. (2.56)). Also note that

asymmetry only changes the weights of the delta functions but does not alter the non-delta

function part.

8.8 Derivation of P (£, k*|n) in Eq. (3.32)

Here, we provide a detailed derivation of the Fourier transform P (£, k*|n) in Eq. (3.32) which
was instrumental in calculating the mean area of the convex hull in the fixed-n ensemble. To

this end, we first write the expression of this Fourier-transform as

P(f,k*]n):/ dYeifY/ dM 2 (M,Y, k*|n). (8.66)
—00 0

Plugging &Z(M,Y, k*|n) from Eq. (3.29), the Fourier transform can be rewritten as

o0
P&,k |n) = / M T (M, €,K) Tugn (M, k), (8.67)
0
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with the functions Iyjgne (M, k*,n) and lieg (M, €, k*) defined as

k*—1 i k*

Lo (M. €, 1) /delp ) [TO(M-Sa|o(m-u]. @6
i=1 j=1 j=1
[rlght(M k n / H dyzd$1p<xzayz M_ij ’ (869)
i=k*+1 i
with  p(z,€) = / dye™p(z,y) . (8.70)

Let us first simplify the intergral ILigne(M,k*,n). By noting that M = Zf; x; and p1(x) =

ffooo dy p(x,y), we have

Liigne (M, k¥, n) /[ H dx;p1 xz] H |- Z xj (8.71)

i=k*+1 i=k*+1 Jj=k*+1

Physically, this integral represents the probability that a random walker with identical and
independent increments drawn from the symmetric and continuous probability distribution p;(x)
remains below origin in n — k* time-steps given that it was initially at the origin. The Sparre-
Andersen theorem tells that this (survival) probability is independent of p;(z) and is given by

Gn—k+ where ¢, = (2:) 2727 [183]. Therefore
Iright(Ma k*, TL) = 4n—k* - (872)

Let us now look at the other term Iieg (M, &, k*) in the Fourier transform in Eq. (8.67). In Eq.
(8.68)), we first rewrite p(z, &) as

B €) = el rd s X €)= . ) Bae) it (5.73)
fa.6) = gl and al6) = [ dei(o ) (8.74)

Plugging this in Eq. (8.68)), we get

k*—1

) k*
Lot (M, €, k*) = /dez @8 JTOIM =Dz |6 (M= a;|. (875
i=1 j=1 j=1
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With these simplifications, the Fourier transform P (&, k*|n) in Eq. (8.67)) becomes

* k*
P&,k [n) = qng= [P2(&)]" / [deﬁif(fﬂi,f)
i1

k* i
H@ Zazk*+1_j (876)
i=1 Jj=1

Note that the function f(x,¢) in Eq. is a symmetric and continuous function of  which is
normalised to unity. Hence, it can be interpreted as a distribution of x parametrised by &. With
this interpretation, the k*-fold integral in Eq. simply represents the Sparre-Andersen
survival probability of a random walker with k* steps. As mentioned before, this probability is

given qg+ = (Qk]fj) 272F" Therefore, the final expression of P(, k*|n) reads

P(&,k*|n) = g qn—i~ [P2(E)]" (8.77)

8.9 ProofS, ~mn asn— oo

Here, we show that the term S, in Eq. (3.26) becomes S,, ~ 7n for larger values of n. To this
end, we cange the variable m = zn in Eq. (3.26)) and rewrite it as

(n—1)/n  (n1=2)+1
G (=)

By 8 r <n(1—2z)+2>

Note that z € {, 2, ..., ”T_l} For large n, we change the summation in Eq. (8.78]) to integration

n’n’

as ZS;}LM —n fol dz and rewrite it as

T (n(lfz)+1>

1
Sy~ ﬁn/ dz (M), asn — oo. (8.79)
0

o

We next use the result of [178] to write (M,.) for large n as (M,.) ~ oy/22. In addition,
T n(l—z)+1

we approximate F<n(1i>+2> ~ ,/n(f_z) as n — oo. Inserting these forms in Eq. (8.79) and
2

performing the integration over z, we get

Sy, ~ 7, as n — oo. (8.80)
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8.10 Derivation of the approximate expression of P(z,t) given

in Eq. (4.20) for o =0 at large ¢

8.10.1 A>0

We here provide a detailed derivation of the large-t expression of the distribution P(z,t) which
was written in Eq. (4.20]). For this, we consider the exact expression Eq. (4.19) and change the

time integral by fg = Jo°— [, This gives

1 el
Pla,1) = e "8( @ | —vot) + l <1 Ll |> ¢ 0 O (vl— |z |)

21}0
TR dzuw\ Doy
2Uo/ e =)
V;j:/ Md("fc" d20217) g (yr— |2 ). (8.81)

Now the particle attains a stationary distribution as t — co. Also at large times, the coefficient

of the §-functions decay exponentially. Hence for large ¢, we get

Pz, t) - Pgi(x) = Y12 / dr e ALUZLT) Id("x ||’ ) (8.82)
T

2_ a2
,% 11( Y1y2(t U(Q))

2
2_
t 2

Y0

Recall that Z(x,t) = ¢ with I; being the modified Bessel function of first

vo

kind. Since ¢ is large, the variable 7 inside the integral in Eq. (8.82) is also large. This enables

us to use the asymptotic form of the Bessel function as I,,(z) ~ \/% for large z. For vot >> ||

alongwith the aforementioned approximations, we change the variable 7 = tw to get

—t C2w+ ) 2
A o
Pz, 1) — cl/ dws w3/2 <1— 2| _ @ 7172), (8.83)

V0 U%t’w

: _ ()t -2k _ _ 22
where we have used the notation C; = e Co =v— /172 and C3 = . To

2
20312

obtain the distribution, we need the following integrals:

00 €7t<02w+cf3)
_ —Qt\/C C3
/ dww = a 2 Z3/2, (884)

7t C2w+ )
_ 1 —2t1/C2C3
/ I w5/2 - (c 7 ( +2t1/CaCs ) Vel _ 7. (8.85)
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where the term Z, is defined as,

1 e t(CQw+%’)>
Zu = / dwy——m—— (8.86)
0 wh

Now the integral Z; 5 can be easily performed to be

ot

Zyjp = \/: e~2tVCCa [1+Erf(\/@ —\/@) AT Erfc( 1Co + tcg)}. (8.87)

From this, the integrals Z3,, and Zs/, follow to be Z3/, = —d%,?’Zl/z and Zs/p = —£Z3/2.

Finally, we obtain

Zyjo = 1 /CZt e 200 |9 _ Erfe (@ — \/tC3) + Vel Erfe (\/tCQ + \/@)] ,

2
Z5/2 %1 / C5 72t\/CTC3 |:1 + 2t4/CaC3 — % (1 + 2t\/CQT;3> Erfc <\/ tCo — +/ tC;),)
+% (1 . 2t\/cTcg) AVCTT rfe ( 1Cy + \/th)] v %e—“@%). (8.88)
3

We have now all terms required to evaluate the integrals in Eqgs. (8.84) and (8.85). Then
plugging these integrals in Eq. (8.83)), we obtain the result in Eq. (4.20) valid for large t. This

derivation can also be used to evaluate the asymptotic form for v; = 7».

8.10.2 A<O0

After obtaining P(x,t) for A > 0, we now proceed to calculate the approximate expression of

P(z,t) for A < 0. To this end, we perform the Bromwich integration of the Laplace transform

P(z,s) in Eq. (4.16) as

—tAZ Yo+ioc0
Pz, t) = S— / ds (A(S)JFA) et(s), (8.89)
Y

2 0—ico 2s

where & = 12 A(s) = %\/A2 + 2vs + s2 and the function ¢(s) given by

vot?

#(s) = s — TvgA(s). (8.90)
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For large t, we expect the integration in Eq. (8.89)) to be dominated by the saddle point of ¢(s).

The saddle point is obtained by setting % = 0 which gives

[ ~2 2
Y A
Sy = — + - -9 - 8.91

Now for t — oo, we expand the function ¢(s) about s = sy and perform the integration as

follows:

t{p(s+)—AT] ~Yo+ioco "
Plat)~ S <A(S+) T A) / T s et T 2,
¥

omi 251 v
et[d)(s.,_)ng’c] </\(8_|_) + A) /oo+i(s++70) p —t(b/,(;'*')yz
~ ye
2m 254 —oorti(s4+70)
tlo(s4)—AZ] 7\ A 00 o' (s4)
~ & ( (54) + )/ dz e t— 2% (8.92)
27 28+ —00
" _ d¢ ) e . .
where, we have used ¢"(s;) = F£[s, = — s s greater than zero. Performing the integra-
z2\/ 72—

tion gives the asymptotic behaviour of P(x,t) as written in Eq. (4.20).

8.11 Derivation of S,,(t)

In this appendix, we derive the expression of the probability S,,(¢) that the RTP, starting from
the origin, returns to the origin m-times in time ¢. For simplicity, let us take the initial velocity

direction to be +vp. Formally Sy, () can be written as

Sp(t) = /0 dnFy () /0 T dnF(n)...

t—Z?;?)l T m
X /0 dTmF(_l)m—1 (Tm) S(_l)m—l O,t — Z Ti |, (893)
i=1

Here F,(7;) is the distribution of the first return time 7; to the origin with initial velocity direction
oovo where oy € [+, —]. Also, S,(0,t;) is the probability that the RTP has not returned to the
origin till time ¢; starting from the origin. Rationale for writing Eq. is as follows: The
RTP makes a first passage to the origin in the time interval [y, 71 + d7i| which F (71)dr in Eq.
(8.93)). Now it can reach the origin only with —wvg. Starting from the origin with —wvg, it again
makes another first-passage return to the origin in the time interval [r] 4+ 72, 71 + 72 + d72]. This
gives rise to F_(72)dr, term in Eq. (8.93). Similarly, between (m — 1)-th and m-th visits of

duration 7,,, the RTP makes a first-passage return to the origin with initial velocity (—1)" v.
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As a result, we get F(_jym-1(7m)d7y term in Eq. (8.93). Once it does this m-th visit, it will no
longer cross the origin in the remaining time interval ¢ — > " 7;. Hence, we get the survival
probability S(_1ym-1 (0, — >7" 7). Note that both Fyo(7) and S, (0, 7) are insensitive to the

initial velocity direction o (shown later).

The convolution structure of Eq. (8.93)) suggests us to take the Laplace transform with respect

to t — s. This equation then simplifies to

Sn(8) = [Fg(5)]™ 8 0, 9). (8.94)

Here F,,(s) and Sy, (0, s) represent the Laplace transforms of Fy,(7) and S,, (0, 7) respectively.
Since F (s) = F_(s) and S4(0,s) = S_(0, s), we have replaced the subscript ‘+’ by common oy
in Eq. (8.94). To write these Laplace transforms, we use the results of [210] as follows:

5’0’0 (07 3) — M’ and FO’O (S) = ,Y

R A 8.95
sy 547+ A(s) (8.95)

where A(s) = /s(s +27). As remarked before, both these Laplace transforms do not depend
on 0. Plugging these expressions in Eq. (8.94)) yields

Sm(s) = (A(Ss?v_ S) (8 + 71 A(S))m' (8.96)

Next using Eq. (5.30) to perform the inverse Laplace transformation, we get

Smt) = € Ln(y) + L1 (18)] (8.97)

This matches with the expression of S,,(t) quoted in Eq. (5.32]).

8.12 Derivation of Q(p,s) in Eq. (5.37) for general o

This appendix provides a derivation of the solution of the Laplace transform Q(p, o, s) of the
local time distribution P (Tj,, zo,t) for general a.. This solution has been written in Eq. (5.37)).
To begin with, we rewrite the backward equation for Q(p, xo, s) in Eq. (5.35)) as

sQ—-1~9 9 (1 8@) — pé(0)Q, (8.98)

o \ |zo|® Dz
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which for xy # 0 becomes

sQ—1~9 8( L 8Q), (8.99)

¢ Oxg ‘1’0 ’O‘ Oxg
The inhomogeneous part can be removed by defining a new function U(p, o, s)

1
Q(pa $078) = ; —I—U(p, .%'(],S), (8100)

and rewriting Eq. (8.99) in terms of U as

0 1 ou
~%,— — . 101
su o 61’0 <‘ZL‘0’O‘ 6%0) (8 0 )

In terms of this new function, the boundary conditions in Eq. (5.36) take the form U(p,zo —
+00,s) = 0. As seen in Sec. the solution of this differential equation is given in terms of

the Bessel function as

24«
1te 2|xO|T S
~ B Fiao [ 2RO 2 [ 5 8.102
U(p,z0,8) = B(p, s)|zo| 2 %L( 2+a %)’ ( )

where the function B(p, s) does not depend of xy and needs to be computed. Retracting this

solution in terms of Q(p, zo, s) from Eq. (8.100) gives

24«
1 o 2|xg| 2 s
Q(p7 Zo, 8) = ; + B(pa 5)’m0|1%K1+70¢ <’O| ) . (8103)

To evaluate the function B(p, s), we integrate Eq. (8.98)) from —7 to n and take n — 0" which

then gives the discontinuity relation

1 8@) < 1 a@> P -
|zl Do - I = Q(p,0,3). 8.104
(‘x0’a ax() ro=0F ‘(L'()’O‘ axo 2o=0— Qa Q(p 3) ( )

Plugging Q(p, zo, s) from Eq. (8.103) in this discontinuity relation gives the expression of B(p, s)

as

Blp.s) = - - L (8.105)
S S2+a (p+ca52+a>
et (o
with Ca:2( Do a>2+ (= ) (8.106)
(2+a) F(%)
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Egs. (8.103) and (8.105) completely specifies the Laplace transform Q(p,zq,s) for any zg.

However, since we are interested in 29 = 0, we provide here only the expression of Q(p,s) =

Q(p,0,s) as

~ C
Qp,s) ~ ——F——1rav (8.107)
S2+a <p+ca82+a>

This result has been quoted in Eq. ((5.37)).

8.13 Derivation of f,(z) for finite z

We here derive the expression of the scaling function f,(z) in Eq. (5.43) for the local time when
z is finite. For this, we take the Laplace transformation in Eq. (5.40) and write it in the form

of Bromwich integral as

+i00 ds C CaTlpe
P(Tloc,t):/ s Ca (s Segles) (8.108)

—1i00 2mi sﬁ
The factor C, is given in Eq. (5.38)) and the function ®(s,w) is defined as

14+

O(s,w) = s —ws2e, (8.109)

As t — oo, the integral in Eq. (8.108) will be dominated by the saddle point of ®(s,w) in s.

wThe saddle point is obtained by solving the equation (%) = 0 which gives the solution
Sx

1+« 2+a ot
= e, A1
s (2—|—a> w (8.110)

We will assume w to be finite throughout. Expanding ®(s,w) around s = s, and retaining terms

up to order (s — s*)2 in Eq. (8.108]), we get

t’I’(s*,w) C 100 &
e (s%,w)
P(,I'loc,t) &0 T / ds et™ 2 (S_S*)27

1
271 g2ra J—ioco
et@(s*,w) C,, 0o+1i(sx) _té”(s*,w) )
=T o 1 dy e 2 Y,
@ g2t —oo+i(sx)
tD(s4,w) C 0 "
e ’ 2 (sxw) 2
~— due ™2 %, (8.111)
2r she Jooo
Sk
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. 2 . 14+«
We have used the notation w = % and " (s, w) = %. Using (s, w) = 8132*“ s, We

perform the integration in the last line explicitly to get the distribution P (T}, t)

C CoT;
P(tlocat) = i fa < ozH—Z)c> (8112)
t2+a t2+oe

with the scaling function f,(z) given by

a 14+«
exp <_gia§2+a z2+a> . (8.113)

This expression works only for finite z and it fails for small values of z. We have presented this

result in Eq. ((5.44).

8.14 Derivation of (z2(¢))" when t > 7

In this appendix, we will analyse the expression of (z2 (t))%TF in Eq. (6.33) for ¢ > Tx to obtain

a more simplified expression in Eq. (6.36]). For this, we first define an integral

Jo (a) = /7r dq[G(a,bg,1)] . (8.114)

—T

Then, from Eq. (6.33)), it follows that the variance is given by
02
(o)™ = 5 Jo(29). (8.115)
i

Let us look at Jy (a) for t > 7. By inserting G(a, by, t) from Eq. (6.30) in Eq. (8.114)), we can

rewrite Joy (a) as

& b {e*bqt - 26*‘“‘/} +a
_ —bgt q
jo((l)—/_we q [ bq (bg_a2)

i dq
+ _. 8.116

/—7r bq(bq +a) ( )
N——

second term

first term

Let us first calculate the first term. Using b, = 4K sin? (¢/2), we find that this term is possesses
integrals of the form ~ [ dg exp [—Kt sin? (q/2)] which in the limit Kt — oo will be dominated

by the small values of q. Therefore, approximating b, ~ K ¢*> and making the transformation
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w = V2Kt q, this term becomes

3 00 , “’72 <e*“’2/2 — 26”“‘/) + at
first term ~ 4/ / e w2 —— . (8.117)
2K J_ w? (wi _ a2t2)

2 4

To evaluate the second term in Eq. (8.116)), we rewrite it as

t3 V2Kt dw
second term = / — 7~ TA®). (8.118)
2K —mV2Kt % <w7 + at)
where the function A(t) is given by
+3 V2Kt dw
A(t) = second term — / —_, (8.119)
2K —mV2Kt w—2 w—Q + at)

4 [ 13 / dw
= (8.120)
/—7‘(’ b + CL —mV2Kt w2 —|— at)

Numerically by plotting A(¢) as a function of ¢, we find that it is a decreasing function of t.
On the other hand, the other term in Eq. (8.118) increases with time. Hence, for large t, we
can neglect A(t) in Eq. (8.118)) in comparison to the other term. With this approximation, the

second term becomes

second term o~ \/ / - (8.121)
wf 5 +at>

Substituting these approximate expressions of the first and second terms from Eqs.(8.117) and

(8.121)) in Eq. (8.116) gives

3 [e's} 2
a) >~ 4/ 2tK/_ dw G (at, w?’ 1) , (8.122)

and following the relation in Eq. (8.I1F]), we obtain the scaling form of (z2(¢))#1? for t > %
as quoted in Eq. (6.36)).
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