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ABSTRACT

The theory of second-order phase transition is one of the cornerstones of modern statistical

physics and condensed matter theory. Continuum field theory based on the order parameter,

whose non-zero average breaks the symmetry of the Hamiltonian spontaneously captures the

physics near the phase transition point. However, such local order parameter-based descrip-

tions can not capture the physics of phase transition involving long-range entanglement phases

having emerging gauge fields and deconfined degrees of freedom. In this work, we study the

spin-1/2 generalized Heisenberg-Kitaev-Γ model in the anisotropic (Toric code) limit involv-

ing a Z2 quantum spin liquid (QSL), which shows the signature of long-range entanglement

and fractionalized excitations. Using a combination of exact diagonalization calculations and

field-theoretic analysis we map out the phases proximate to the Z2 QSL and associated quan-

tum phase transitions to reveal the complete phase diagram as a function of the Heisenberg,

the Kitaev, and the pseudo-dipolar interactions in the anisotropic limit of ferromagnetic and

anti-ferromagnetic Kitaev interaction.

In the ferromagnetic case, we find aZ2 QSL, spin-ordered, and a trivial paramagnetic phase.

The transition between the QSL and the spin-ordered phase belongs to a self-dual modified

Abelian Higgs field theory while that between the spin liquid and the trivial paramagnet belongs

to a self-dual Z2 gauge theory. Both these transitions are examples of deconfined quantum

critical points. In the anisotropic limit of antiferromagnetic Kitaev, we also find the presence

of gapped Z2 QSL and the spin-ordered as well as a paramagnetic phase. Here, however, the

paramagnetic phase is proximate to a gapless critical point of a system described by an equal

superposition of differently oriented stacked one-dimensional Z2 × Z2 symmetry-protected

topological phase. Similar to the ferromagnetic case, the Heisenberg limit stabilizes symmetry-

breaking magnetic orders, while the phase transition between Z2 QSL and pseudo-dipolar limit

is known to be a first order phase transition.

Interestingly, both the spin liquid and the spin-ordered phases have easily identifiable coun-

terparts in the isotropic limit and the present calculations can shed insights into the correspond-

ing transitions in the material relevant isotropic limit.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The correlated electron problem is an active area of research that surprises us with a plethora

of novel phases and interesting phase transitions between them. [1, 2] In the Mott insulator

regime of electronic materials, a strong Hubbard repulsion leads to localized electron moment,

the exchange interactions give rise to low energy effective spin systems. [1, 3] Such spin

systems, at low temperatures, undergo ordering giving rise to various magnetically ordered

phases like a ferromagnet, antiferromagnetic, etc. [4, 5] In these systems, below the ordering

temperature the large thermal entropy is quenched via spontaneous symmetry breaking in the

thermodynamic limit. The paradigmatic local order parameter based Landau-Ginzburg-Wilson

(LGW) theory to describe the phase transition between such a magnetically ordered phase and a

thermal disordered phase which encapsulates the fluctuation of order parameters near the phase

transition point, provides a comprehensive description of the critical point. [4–6]

Interestingly, competing spin-spin exchange interactions can suppress such magnetic orders

at a low temperature, leading to a quantum paramagnet which quenches the thermal entropy via

long-range entanglement (LRE). [7, 8] A fallout of this LRE are exotic low energy properties

such as symmetry and statistics fractionalization in two spatial dimensions, and the emergence

of dynamic gauge fields. [9–11] These phases are dubbed as quantum spin liquid (QSL). [7,

9] This raises an important question regarding the description of the QSL and phase transitions

out of it. Such a phase or a transition out of it can not be described by the conventional local

order parameter-based LGW theories as the latter do not capture the non-trivial entanglement

structure and its fallout such as fractionalization [5, 12, 13]. The correct theory of the phase

and associated transitions has to take into account the fractional excitations and the possible

topological orders. [5].

Recently, it has been understood that the presence of the spin-orbit coupling (SOC) in the

magnets containing active elements with higher atomic numbers enhances various competing

interactions via a delicate balance between the electronic correlation, SOC and, crystal field

effects. These competing interactions can enhance quantum fluctuations in the system, which
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ultimately leads to novel quantum ground states. Prime examples are the spin-orbit coupled

layered honeycomb magnets such as A2IrO3 (A≡ Na, La, K), and α-RuCl3 with the effective

spin description is in terms of a local Jeff = 1/2 moment. [14] Pioneering work by Jackeli

and Khaliullin in 2009 [15] showed a bond-dependent interaction akin to Kitaev’s honeycomb

model [16] can be realized in these materials. Interestingly, in a subset of such magnets which

ultimately order (at very low temperatures), the low-temperature properties bear unconven-

tional experimental signatures similar to fractionalized excitations[7, 9–11, 17–22] expected

in a QSL. A framework to describe these properties starts by positing that these systems are

proximate to the quantum phase transition between a spin-ordered phase and a QSL, albeit just

on the ordered side. The finite temperature properties of such a proximate QSL phase then may

account for, among others, the neutron scattering of honeycomb lattice magnet α-RuCl3[23–

27] and rare-earth pyrochlore Yb2Ti2O7.[28–32]

The case of α-RuCl3 is particularly interesting where a collinear Zig-Zag spin order is sta-

bilized below T ∼ 7 K.[23–27] However, recent neutron scattering experiments reveal that

unusually intense diffused spin excitations resembling that of the two-particle fractionalized

spinon continuum of a QSL survive well above the spin ordering temperature.[23–25] Further,

in an in-plane Zeeman field, the spin order gives away to a field-induced partially-polarised

paramagnet[33, 34] with unusual spin dynamics[35, 36] and quantized thermal-Hall conductiv-

ity and oscillation in longitudinal thermal conductivity [37, 38]. This has led to the suggestion

the zero Zeeman field Zig-Zag order in this material occurring below 7 K[23] is fragile and

proximate to a Z2 QSL with ultra short-ranged spin correlations[39]– which supports fraction-

alized Majorana excitations and Z2 fluxes.[16]

Within the proximate-spin liquid scenario, therefore, the quantum phase transition between

the Zig-Zag spin ordered phase and the Z2 QSL then affects the low-temperature physics of

α−RuCl3. On generic grounds, such transitions[12] cannot be captured within the conven-

tional order parameter based description.[40] Further, the Z2 QSL is separated from a trivial

paramagnet (one without topological order and fractionalized excitations) through a different

and distinct quantum phase transition. In the case of this latter transition, an order parameter

based description is completely unavailable. If the transitions are continuous– as is pertinent to

the present work– the correct critical theory has to essentially account for the fractionalization

and topological order[41, 42] in the Z2 QSL in addition to any possible spin order. Several

examples of such deconfined critical points[5, 6] are known.

3



x y
z
d1d2

A

B

(a)

d2 d1
Bp

As

Wi

(b)

Figure 1.1: (a) Kitaev’s honeycomb model is described on a bipartite hexagonal lattice with
two sublattices A (red) and B (black). The spin exchanges are defined on three bonds labeled
by x, y, z (shown in blue, red, and black lines respectively). (b) The anisotropic limit in the z
direction leads to a square lattice where new degrees of freedom τ (shown in grayish blue) sit
on the bonds. Lattice vectors d1 and d2 are

(
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2
, 1
2

)
and

(
−1

2
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)
defined in the units of square

lattice bond length which are assumed to be same in the horizontal and vertical direction.

The minimal spin Hamiltonian that can capture the above physics of α-RuCl3 is given by

the so-called Heisenberg-Kitaev-Pseudodipolar (JKΓ) Hamiltonian[15, 43–45]

H =J
∑
⟨p,q⟩

σp · σq +
∑
⟨p,q⟩α

[
Γα

[
σβ
pσ

γ
q + σβ

q σ
γ
p

]
−Kασ

α
p σ

α
q

]
(1.1)

where α = x, y, z refers to the x, y, z bonds of the honeycomb lattice respectively (see Fig.

1.1) and σα
p denotes Pauli matrices representing spin-1/2 operator on the site of the honeycomb

lattice. ⟨pq⟩ refers to nearest neighbours while ⟨pq⟩α refers to nearest neighbours along α-

bonds. Note that for a given α; β, γ(= x, y, z) ̸= α. Remarkably, in addition to α-RuCl3, the

Hamiltonian in Eq. 1.1 can effectively describe the magnetic properties of several other strong

spin-orbit coupled magnets on honeycomb lattice[15, 43, 44] that include honeycomb iridates

[43, 46–50] as well as three-dimensional harmonic iridates.[26, 51–55] The material relevant

isotropic limit (Kx = Ky = Kz) has a rich phase diagram including a direct phase transition

between the QSL and collinear spin ordered phases.[43, 44, 56–63]

Kitaev’s honeycomb model [16] (J = Γ = 0 in Eq. 1.1) is one of the few known exactly

solvable models with a QSL ground state, which hosts fractionalized Majorana excitations and

static Z2 fluxes. In an interesting anisotropic limit: |Kz| >> |Kx| = |Ky|(≡ |K|), |Γ|, |J | in

Eq. 1.1, the QSL survives for J = Γ = 0, but the Majorana fermions acquire an extremely

large gap (∼ |Kz|) so that the Z2 fluxes become the low energy degrees of freedom. This is
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the so-called toric code (TC) limit which realizes a gapped topological ordered Z2 QSL, with

bosonic Ising electric (e) and magnetic (m) excitations and a fermionic excitation which is the

bound state of e and m forming the low energy spectrum. The e and m excitations see each

other as a source of π-flux (mutual semion).

Within this anisotropic setting, starting from TC limit (where J = Γ = 0) on increasing

J and Γ, the Z2-QSL gives away to other phases, providing an opportunity to understand the

phase transitions out of the Z2 QSL phase. Also, the understanding of such phase transitions

in the anisotropic limit may provide us useful insights into the nature of the phase transition in

the isotropic limit and thereby shed light on the finite temperature properties of candidates such

as RuCl3 to ascertain the validity of the proximate QSL scenario. In this thesis, with the twin

motivations above, we study the phases and phase transitions in the anisotropic limit of Eq. 1.1

to reveal the rich physics of such magnets. In the next section, we outline the structure of the

thesis.

1.2 Outline and summary of the central results

The rest of the thesis is organized as follows, in the next chapter 2, we discuss the various energy

scales of the Eq. 1.1 and set up the anisotropic limit for both ferromagnetic (FM, Kα > 0) and

antiferromagnetic (AFM, Kα < 0) Kiteav coupling. We then identify the low energy degree of

freedom in each case and discuss their symmetries. Finally, towards the end of this chapter, we

use the degenerate perturbation theory, to find out the low energy effective Hamiltonian for FM

and AFM Kitaev model. While the detailed calculation of symmetries of low energy degree of

freedom and the perturbation theory is relegated to appendices A and B respectively.

In the next chapter 3, we discuss the relevant phases in both the FM and AFM anisotropic

limit. In the case of the anisotropic limit of the FM Kitaev model, we show the system sta-

bilizes the Z2 QSL (J = Γ = 0 limit), symmetry-breaking magnetic orders by turning on

Heisenberg coupling (J), and a paramagnetic phase as we turn on pseudo-dipolar coupling (Γ)

(see Fig. 3.1). Similarly, in the AFM Kitaev model’s anisotropic limit, the three phases are Z2

QSL, symmetry-breaking magnetic order, and a paramagnetic phase in the respective param-

eter regime (see Figs. 3.9). Both in FM and AFM anisotropic limits, the symmetry-breaking

magnetic orders in terms of the underline σ-spins (of Eq. 1.1) are also found in the isotropic

limit of the Kitaev honeycomb model. [44, 63]. The paramagnetic phase in the pseudo-dipolar

(Γ) limit of the FM case is akin to the nematic phase found in the isotropic limit. [62]
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The pseudo-dipolar limit of the AFM Kitaev model is even more interesting, in this limit,

the leading order interactions lead to a superposition of stacked Z2 × Z2 Symmetry-Protected

Topological (SPTs) chains with edge modes and special sub-system symmetries which are

weakly lifted by higher-order interactions. The equal superposition of SPT leads to a gapless

critical point according to our symmetry analysis and finite size exact diagonalization calcu-

lations (presented in a later chapter). The gapless point, accordingly to our analysis, is frag-

ile and immediately opens up a small gap due to higher-order perturbations. We show this

phase is smoothly connected to a paramagnetic phase allowed by the symmetries of the AFM

anisotropic limit. In terms of the underlying σ-spins, this paramagnet forms a singlet or triplet

phase, depending upon the sign of the corresponding energy scale.

In chapter 4, we present the exact diagonalization based numerical results for FM anisotropic

limit on finite spin clusters containing 12 − 32 τ -spins to further confirm the expectation for

the phase diagram. We find out the phase boundaries between the Z2-QSL, symmetry-breaking

magnetic order, and paramagnetic phase by closely following the fidelity susceptibility and

spectral gap. Furthermore, we characterize the phases using topological entanglement entropy

[64, 65], two-point spin-spin correlator, and magnetization. In Fig. 4.5, we obtain the numer-

ical phase diagram focusing on the third quadrant of Fig. 3.1. In the subsequent chapter 5,

we obtain a similar phase diagram for the anisotropic limit of the AFM Kitaev model in Fig.

5.5. In the second part of this chapter (section 5.2) we further provide the supporting numer-

ical studies focusing on the pseudo-dipolar limit (Γ) of the AFM Kittaev model. We show by

turning the higher order corrections in this limit the gapless point proximate to Z2 ×Z2 SPT is

smoothly connected to the paramagnet allowed by the symmetry. Further numerical evidences

are relegated to appendix C, D.3, D.5, and E.1.

In chapter 6, a Z2 lattice gauge theory capturing e and m excitations of the Z2 QSL is

introduced and their symmetry transformations are analyzed for both FM and AFM case. Due

to the similarity of the Z2 QSL Hamiltonian in these two different limits, the gauge theory

remains the same, however, a difference in the symmetry transformations of the gauge charges

and fields transcends from the different symmetry transformations of the low energy degrees of

freedom. In the later part of this chapter, in section 6.2, we give a prescription to obtain the Z2

QSL starting from a symmetry-broken magnetic order. We show that starting with a symmetry-

broken magnetic order, the proliferation of selective domain walls with a specific sign structure

leads to a Z2 QSL, which can not be connected to the product state. This is quite opposite to an

6



indiscriminate condensation of all the domain walls, ultimately leading to a trivial paramagnet,

i.e. a product state. [66]

In the penultimate chapter 7, we provide the field theory of the phase transition out of

the Z2 QSL. A canonical way to understand the emergence of short-range entangled (with or

without spontaneous symmetry breaking) phases from a QSL is in terms of the condensation

of the deconfined excitations of the QSL which in this case are Z2 e and m charges. These

bosonic Z2 charges (e and m) are conserved modulo 2 and see each other as a source of π

flux (mutual semions). In the case of the FM Kitaev model, in section 7.1.1, we start with the

phase transition between Z2 QSL and symmetry breaking magnetic order (Eq. 7.2), using the

gauge charges and fields defined in previous chapter 6, we use a gauge choice we identify the

time-reversal partner soft modes from the dispersion of low energy e and m charges in Eq. 7.13

and 7.14. The symmetry transformations of the gauge charge further give rise to the symmetry

transformations of these soft modes in Eq. 7.15.

Interestingly, we find the non-trivial implementation of the time-reversal symmetry (Eq.

6.10) and translation (Eq. 6.8) under Td1 and Td2 (Fig. 1.1) on the gauge charges. The latter

leads to the permutation symmetry e ↔ m– an example of an anyon permutation symmetry.

These soft modes transform under the symmetries as a pair of complex bosons, Φe,Φm (Eq.

7.13 and 7.14) up to a quartic term that reduces the symmetry to Z4 from Ue(1) × Um(1).

Crucially, however, anyon permutation Φe ↔ Φm leads to a self-dual structure of the critical

theory. The mutual semionic statistics between the Φe and Φm soft modes are implemented

within a mutual U(1)× U(1) Chern Simons (CS) theory resulting in a self-dual 3D Euclidean

action (Eq. 7.20) with Lagrangian

L =|(∂µ − iAµ)Φe|2 + |(∂µ − iBµ)Φm|2 + u(|Φe|2 + |Φm|2) + v(|Φe|4 + |Φm|4)

− λ
[
(Φe)

4 + (Φ∗
e)

4 + (Φm)
4 + (Φ∗

m)
4
]
+ w

[
(ΦeΦm)

2 + (ΦeΦ
∗
m)

2 + c.c.
]
+
i

π
ϵµνλAµ∂νBλ

Where, A, & B are the U(1) gauge fields, which minimally couple to Φe and Φm respec-

tively, while the last term in above Eq. takes care of the mutual semionic statistics.

For u > 0 Φe and Φm are gapped and the low energy effective action is given by the last

term– the mutual CS action. This phase is nothing but theZ2 QSL with gapped e andm charges.

The phase, u < 0, on the other hand, is characterized by finite collinear spin order characterized

by the gauge invariant order parameters given by Eq. 7.29 that breaks time-reversal symmetry.
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Using particle-vortex duality we can map the above action to a modified Abelian Higgs model

(MAHM) which, at u = 0 describes the transition. We note that the Ue(1) × Um(1) breaking

anisotropy terms may be irrelevant at the critical point but relevant in the spin-ordered phases.

An external Zeeman field lifts the symmetry of the two time-reversal partners by allowing a

second order term (Eq. 7.50) of the form −hz [(Φe)
2 + (Φ∗

e)
2 + (Φm)

2 + (Φ∗
m)

2], sec section

7.1.2. While the Z2 QSL remains intact the spin-ordered phase gets affected and is now con-

tinuously connected to the polarised phase (for J < 0) or undergoes a spin-flop transition into

a polarised phase for J ∼ |hz| > 0.

For the pseudo-dipolar in FM Kitaev model (section 7.1.3), Γ, perturbations similarly we

get a pair of complex scalar modes, (Φ̃e, Φ̃m) (Eq. 7.59 and 7.60), which now are time reversal

invariant. The projective symmetry group (PSG) of the soft modes allows for a second-order

term (Eq. 7.64) similar to the Zeeman case. However, now the Higgs phase corresponds to

a time reversal symmetric trivial paramagnet. In fact, we find a continuous interpolation of

the soft modes driven by the Zeeman perturbation and the pseudo-dipolar perturbations by

identifying the residual symmetries when both these terms are simultaneously present (Eq.

7.78). The second-order anisotropic term acts like a pairing term in a superconductor and

reduces the gauge group down to Z2 from U(1) at the critical point. The transition, therefore,

belongs to Z2 gauge theory on the self-dual line. The schematic phase diagram for the FM

anisotropic limit is given in Fig. 3.1.

In the case of AFM anisotropic limit discussed in section 7.2.1, the field theory for the

transition between Z2 QSL and symmetry breaking magnetic order (Heisenberg limit, J) in

AFM anisotropic limit is similar to the FM case. However, due to the difference in symmetry

transformation between the low energy degrees of freedom in FM and AFM cases (see Eq. 2.11

and 2.12), in the Heisenberg limit (J) we have paramagnetic field contribution. In appendix C,

we provide a numerical study using a generic energy scale for this paramagnetic contribution

and show despite the presence of this paramagnetic term we are inside a symmetry-breaking

magnetic order in the extreme Heisenberg limit. Furthermore, the phase transition between

Z2 QSL and the pseudo-dipolar limit (paramagnetic phase) is known to be of a first-order

phase transition, [67, 68] hence, we do not expect any universal physics, except noting that this

transition has a fundamentally different character from FM anisotropic limit.

Finally, in chapter 8, we finally summarise all the results and conclude the thesis. The

details of various calculations are further given in the Appendices.
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CHAPTER 2

GENERALIZED HEISENBERG-KITAEV MODEL : ANISOTROPIC TORIC CODE

LIMIT

2.1 Low energy degrees of freedom in the anisotropic limit

The gapped Z2 QSL stabilized in the anisotropic [69] limit is the starting point of our analysis.

It is obtained by neglecting the Heisenberg (J) and the pseudo-dipolar (Γ) couplings in the

Hamiltonian in Eq. 1.1 and considering one of the three Kitaev couplings to be much larger

than the other two. [16] Depending on which Kitaev coupling we choose we get three equiv-

alent gapped Z2 QSLs whose properties are related by appropriately rotating the underlying

honeycomb lattice by ±2π/3 about the center of the hexagon. For the rest of the paper, we

shall take the Kitaev couplings on the z-bonds of Fig. 1.1 to be stronger than that of the x and

y bonds.

In the presence of J and Γ, our analysis of the anisotropic limit starts with the deriva-

tion of the correct low energy effective Hamiltonian from Eq. 1.1 in the limit of |Kz| >>
|J |, |Kx|, |Ky|, |Γα|. To this end we write the Hamiltonian in Eq. 1.1 as[16, 70]

HX = HX
0 + VX , (2.1)

in the above X = FM, AFM , depending upon the sign of Kα in Eq. 1.1, e.g., for

ferromagnetic Kitaev limit (Kα > 0)

HFM
0 = −(Kz − J)

∑
⟨i,j⟩,z

σz
i σ

z
j (2.2)

and VX stands for the rest of the terms in Eq. 1.1 which can be treated as perturbation in

this limit. For VX = 0 the system breaks up into isolated bonds and each bond has two ground

states. The nature of these ground states depends crucially on the sign of Kz.

For Kz > 0, i.e. the ferromagnetic case, the two spins participating in the bond are both

parallel to each other. Let us denote these states in the σz basis by[16]

| ↑↑⟩ ≡ |+⟩, | ↓↓⟩ ≡ |−⟩ (2.3)

where the first (second) spin belongs to sub-lattice A(B) of Fig. 1.1. The two excited states

are given by
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| ↑↓⟩, | ↓↑⟩ (2.4)

where the excitation energy is 2Kz. For the Kz < 0, i.e. the antiferromagnetic case, the

role of the two sets of the doublet is reversed. In this case, the effective low energy Hamiltonian

is obtained by re-writing Eq. 1.1 as HAFM = HAFM
0 + VAFM where HAFM

0 is given by

HAFM
0 = (|Kz|+ J)

∑
⟨p,q⟩,z

σz
pσ

z
q (2.5)

Similar to the FM case, for VAFM = 0 the system breaks up into isolated bonds, each with

two ground states. However, contrary to the FM in Eq. 2.3 and 2.4, in the present AFM case of

HAFM
0 , the two spins on each z-bond are anti-aligned with respect to each other in the ground

state manifold. So the ground states are:

|+⟩ ≡ |↑↓⟩ ; |−⟩ ≡ |↓↑⟩ (2.6)

which is exactly opposite to the FM case in Eq. 2.3. Also, the excited states of Eq. 2.5 are

| ↑↑⟩, | ↓↓⟩ (2.7)

We now define τ z operators for each z-bond to capture the ground state manifold, τ z |±⟩ =
± |±⟩ for both the cases of ferromagnetic (Kα > 0) and anti-ferromagnetic (Kα < 0). In terms

of the underlying σ spins,

τ z =

 (σz
A + σz

B)/2 FM(Kz > 0)

(σz
A − σz

B)/2 AFM(Kz < 0)
(2.8)

where the subscripts A and B label the two spins belonging to the two different sub-lattices

participating in a particular z-bond (Fig. 1.1). If there are Nz number of z bonds then there are

2Nz, σ-spins and hence Nz, τ -spins. The τ -spin span a rhombic lattice with d1 & d2 as the

lattice vectors, as shown in Fig. 1.1 (and also Fig. A.3 in Appendix A.1).

The ground state of H0 is clearly 2Nz -fold degenerate. Depending on the various coupling

parameters in V , it breaks this degeneracy either by selecting an ordered ground state through

quantum order-by-disorder[71] or through disorder-by-disorder[72] to a QSL by macroscopic

superposition of the states within the degenerate manifold leading to long-range quantum en-
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tanglement. We wish to understand the nature of such ordered or disordered phases along with

the nature of possible intervening quantum phase transitions.

The effective low energy Hamiltonian below the ∼ Kz scale can then be gotten using the

strong coupling expansion in 1/|Kz| from the perturbation series

Heff = P [V + VGV + · · · ]P (2.9)

where P is the projector on the ground-state manifold of H0 and G = (1−P) 1
(E−H0)

(1−P)

is the propagator in the excited manifold.

Before describing our strong-coupling calculations, however, it is useful to understand the

action of the various symmetries on the τα spins which will form an essential ingredient in

our analysis. It is also worthwhile to note that for both FM and AFM anisotropic limit we use

the same τα-notation. However, these degrees of freedom are defined differently as evident

from Eq. 2.8, and we mark FM and AFM in the Hamiltonian to clarify the context whenever

required.

2.2 Symmetries of the low energy doublet

The lattice points of the rhombic lattice on whose sites the τ -spins reside (see Fig. 1.1 and also

Fig. A.3 in the Appendix A.1) are given by

i ≡ (i1, i2) = i1d1 + i2d2, (2.10)

with the two diagonal translation vectors d1 & d2 of the rhombic lattice as shown in Fig.

1.1. Alternatively, we can choose a Cartesian coordinate system (given by x̂ = d1 − d2 and

ŷ = d1 + d2) with a two site-basis to describe the spins. We shall alternatively use both these

descriptions whenever suitable.

Starting from the symmetries of the isotropic system (Eq. 1.1) on the honeycomb lattice

(see Appendix A.1) and focusing on the FM anisotropic limit, we find the following generators

of symmetries for the anisotropic limit :

• Time reversal, T .

• Lattice translations in the honeycomb plane, Td1 and Td1 . Under translation Td1 : (i1, i2) →
(i1 + 1, i2) and Td2 : (i1, i2) → (i1, i2 + 1).
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• Reflection about z-bond of the honeycomb lattice, σv for which we have σv : (i1, i2) →
(−i2,−i1).

• π-rotation about the z-bond, C2z which gives C2z : (i1, i2) → (i2, i1).

Note that due to spin-orbit coupling, the spin quantization axes and the real space are cou-

pled and we choose the same convention as You et. al. in Ref. [73] to understand the symmetry

transformations. Further, in addition to the symmetries listed above, we find it convenient to

use the additional symmetry
• π-rotation about the honeycomb lattice hexagon center, Rπ = C2zσv

2.2.1 Symmetries of the low energy doublet in FM anisotropic limit

The action of the above symmetry transformations on the ground state doublets are given by

(see Appendix A.1 for details) :

T : {τxi , τ yi , τ zi } → {τxi , τ yi ,−τ zi }

Tdj
: {τxi , τ yi , τ zi } → {τxi+dj

, τ yi+dj
, τ zi+dj

}

σv : {τx, τ y, τ z}(i1,i2) → {−τx, τ y,−τ z}(−i2,−i1)

C2z : {τx, τ y, τ z}(i1,i2) → {−τxj , τ yj ,−τ zj }(i2,i1)
Rπ : {τx, τ y, τ z}(i1,i2) → {τx, τ y, τ z}(−i1,−i2) (2.11)

It is crucial to notice that, ταs are non-Kramers doublets. Hence any on-site (time reversal

odd) magnetic ordering that can be described within this limit, has to be an ordering of τ z. This

also means that an external Zeeman field can only couple to τ z at linear order as is characteristic

to such non-Kramers systems.

2.2.2 Symmetries of the low energy doublet in AFM anisotropic limit

Similar to the FM case we obtain the symmetry transformations of AFM τ -doublet:
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T : {τxi , τ yi , τ zi } → {τxi , τ yi ,−τ zi }

Tdj
: {τxi , τ yi , τ zi } → {τxi+dj

, τ yi+dj
, τ zi+dj

}

σv : {τx, τ y, τ z}(i1,i2) → {τx, τ y, τ z}(−i2,−i1)

C2z : {τx, τ y, τ z}(i1,i2) → {τxj ,−τ yj ,−τ zj }(i2,i1)
Rπ : {τx, τ y, τ z}(i1,i2) → {τx,−τ y,−τ z}(−i1,−i2) (2.12)

Please refer to the appendix A.2 for more details on the symmetry transformation. With the

symmetries, we now start to analyze the low energy effective theories for the Hamiltonian (Eq.

1.1) in the anisotropic limit for the ferromagnetic (Kα > 0) case.

2.3 The effective Hamiltonian in FM anisotropic limit

For the Isotropic model with ferromagnetic Kitaev exchanges (Kx = Ky = Kz > 0), with

increasing Heisenberg coupling, J , the Kitaev spin liquid gives way to a ferromagnetic (for

J < 0) or a stripy spin ordered (for J > 0) (Fig. 3.2) phase. The situation with the pseudo-

dipolar interactions are much less clear and recently both the possibilities of QSL and a lattice

nematic has been suggested[61, 62] in related models.

Here we show, similar results can also be obtained in the anisotropic limit, the effective

Hamiltonian in the anisotropic limit is obtained through degenerate perturbation theory as out-

lined in Eq. 2.9. For the FM anisotropic limit, i.e. Kx = Ky = K > 0, Γα = Γ (where

α = x, y, z), we derive the effective low energy Hamiltonian for the τ -spins till fourth-order

perturbation theory which captures the QSL, the proximate spin ordered phases as well as pos-

sible trivial paramagnets. The effective low energy Hamiltonian for the τ -spins is given by

HFM
eff = HFM

[1] +HFM
[2] +HFM

[3] +HFM
[4] (2.13)

where,

HFM
[1] =

[
2Γ

(
1− Γ2

∆2

)
− 2Γ2δ2

∆3

]∑
i

τ yi (2.14)

is the single spin interaction. The index i now denotes the bonds of a square lattice as shown

in Fig. 1.1. We have used
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δ = K − J and ∆ = Kz − J (2.15)

for clarity. Note that the linear term in τ y in Eq. 2.14 is time reversal invariant and is

proportional to Γ and hence is zero when Γ = 0. This term, as we shall see below, makes the

Z2 QSL unstable to a trivial paramagnet as Γ is increased.

The other terms a = 2, 3, 4 in the Hamiltonian H[a] involve interactions among two, three,

and four spins respectively. Odd-spin terms are generically allowed due to the non-Kramers

nature of the τ -spins.

In writing the higher order terms we use the convention: each plaquette of the rhombic

lattice is associated with its left edge such that we denote the spin on the left edge as τi (Fig.

1.1). Using the definition of d1 and d2, the topmost spin is then given by τi+d1 while the other

two spins, the one on the right and the one on the bottom are τi+d1−d2 and τi−d2 respectively.

With this, the two spin interactions are given by

HFM
[2] =

[
J − Jδ

2∆
− J3δ + Jδ3

8∆3

]∑
⟨ij⟩

τ zi τ
z
j +

[
J2δ2

2∆3

]∑
i

τ zi τ
z
i+d1−d2

−
[
5J2δ2

8∆3

]∑
i

(
τxi τ

x
i+d1−d2

+ τ yi τ
y
i+d1−d2

)
−
[
J2δ2

4∆3

]∑
i

τ zi+d1
τ zi−d2

−
[
J2δ2

8∆3
− Γ2J

∆2

]∑
i

(
τ zi+d1

τ zi−d1
+ τ zi+d2

τ zi−d2

)
(2.16)

The leading term (proportional to J) is an Ising interaction which, as we shall see drives the

transition from the Z2 QSL to a spin-ordered phase. Unlike the trivial paramagnet above, this

spin-ordered phase breaks time-reversal symmetry as well as lattice point groups symmetries

σv and C2z (Eq. 2.11) discussed in section 2.2.1.

The three spin interactions are given by
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HFM
[3] =

[
Γ2

∆
+

7Γ2δ2 − 4Γ4

4∆3

]∑
i

(
τ zi+d1

τxi τ
z
i−d1

− τ zi+d2
τxi τ

z
i−d2

)
−
[
Γ2

∆
− 4Γ4 − 6Γ2δ2 + J2Γ2

4∆3

]∑
i

τ zi+d1
τ zi−d2

(τ yi + τ yi+d1−d2
)

+

[
Γ3

∆2
− Γ4 + 3Γ2δ2

2∆3

]∑
i

(
τ zi τ

x
i+d1−d2

− τ zi+d1−d2
τxi
) (
τ zi+d1

− τ zi−d2

)
+

[
JΓ2

∆2

]∑
i

τ zi+d1−d2
τ zi (τ

y
i+d1

+ τ yi−d2
)

(2.17)

These third-order terms, along with others renormalize the energy of various excitations in

both the QSL as well as the ordered phases and trivial paramagnet. However, we expect that

they do not change the qualitative nature of the phase diagram.

Finally, the four spin interactions are given by

HFM
[4] = −

[
J4 + δ4

16∆3

]∑
i

τ yi τ
y
i+d1−d2

τ zi+d1
τ zi−d2

−
[
J2δ2

8∆3

]∑
i

τxi τ
x
i+d1−d2

τ zi+d1
τ zi−d2 (2.18)

where the first term is nothing but the Toric code Hamiltonian (exactly solvable for J = 0)

that has a Z2 QSL ground state.[16, 69] In appendix B we discuss the detailed calculation

to obtain the first term in the above Eq. along with the first order contribution coming from

pseudo-dipolar and Heisenberg energy scale.

Thus we have the entire effective Hamiltonian in the FM anisotropic limit which is consis-

tent with the symmetries up to the fourth order of perturbation theory in 1/Kz that incorporates

the physics of all the relevant phases.

2.4 The effective Hamiltonian in AFM anisotropic limit

The low energy effective Hamiltonian for AFM anisotropic limit (up to fourth order in pertur-

bation theory) is given by

HAFM
eff = HAFM

[1] +HAFM
[2] +HAFM

[3] +HAFM
[4] (2.19)

where 1 − 4 represents the number of spins operators involved.The single spin terms are

given by
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HAFM
[1] = 2J

(
1− Γ2

∆̃2

)∑
i

τxi (2.20)

where δ̃ = J + |K|, ∆̃ = |Kz|+ J .

Two-spin contributions are:

HAFM
[2] = −

[
J +

Jδ̃

2∆̃
+
δ̃3J + δ̃J3

8∆̃3

]∑
⟨i,j⟩

τ zi τ
z
j +

J2δ̃2

2∆̃3

∑
i

τ zi τ
z
i+d1−d2

−
[
2Γ3

∆̃2
+
J2δ̃2

4∆̃3

]∑
i

τ zi+d1
τ zi−d2

− J2δ̃2

8∆̃3

∑
i

(
τ zi+d1

τ zi−d1
+ τ zi+d2

τ zi−d2

)
+
δ̃JΓ2

∆̃3

∑
i

(
τxi τ

y
i+d1−d2

− τ yi τ
x
i+d1−d2

)
− 5J2δ̃2

8∆̃3

∑
i

(
τxi τ

x
i+d1−d2

+ τ yi τ
y
i+d1−d2

)
(2.21)

Three spin contributions are:

HAFM
[3] =

∑
i

([Γ2

∆̃
− (Γ)4

∆3
+

7Γ2δ̃2

4∆̃3

] (
τ zi+d1

τxi τ
z
i−d1

+ τ zi+d2
τxi τ

z
i−d2

)
+

[
Γ2

∆̃
− 4Γ4 + J2Γ2

4∆̃3
+

3Γ2δ̃2

2∆̃3

] (
τ zi+d1

τ yi τ
z
i−d2

− τ zi+d2
τ yi τ

z
i−d1

) )
−
[

Γ4

2∆̃3
+

3Γ2δ̃2

2∆̃3

]∑
i

(
τ zi τ

z
i−d2

τxi+d1−d2
+ τ zi+d1−d2

τ zi+d1
τxi − τ zi τ

z
i+d1

τxi+d1−d2
− τ zi+d1−d2

τ zi−d2
τxi
)

+
JΓ2

∆̃2

∑
i

(
τ zi τ

z
i+d1

τ yi+d1−d2
− τ zi+d1−d2

τ zi−d2
τ yi + τ zi τ

z
i−d2

τ yi+d1−d2
− τ zi+d1−d2

τ zi+d1
τ yi
)

+
Γ3

∆̃2

∑
i

(
τ zi+d1

τxi τ
z
i+d2

+ τ zi−d1
τxi τ

z
i−d2

)
(2.22)

Four spins contributions are:

HAFM
[4] = −

[
δ̃4

16∆̃3
+

J4

16∆̃3

]∑
i

τ zi+d1
τ zi−d2

τ yi τ
y
i+d1−d2

− J2δ̃2

8∆̃3

∑
i

τ zi+d1
τ zi−d2

τxi τ
x
i+d1−d2

(2.23)

.

Following the two effective Hamiltonians in both FM and AFM anisotropic limit we now

proceed to discuss the phases in different parameter regimes of both the Hamiltonian.
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CHAPTER 3

PHASES AND PHASE DIAGRAM IN ANISOTROPIC LIMIT

With the above effective low energy Hamiltonians equations 2.13 and 2.19 for FM and AFM

limit respectively, we now study the phase diagram as a function of J/|K| vs Γ/|K|.

3.1 Phases and Phase diagram in FM anisotropic limit

The central result of this analysis for FM limit is shown in the schematic phase diagram of Fig.

3.1. We will discuss the above phase diagram as well as study the possible phase transitions

using a combination of various field theoretic techniques and exact diagonalization calculations

on small spin clusters in this thesis.

Before delving into the detailed analysis that results in the phase diagram, let us focus on

the different limits to gain insights into the phase diagram. This will also allow us to understand

the nature of the low-energy modes near the phase transitions.

3.1.1 Toric code limit : J = Γ = 0 and canonical representation

In this limit the Hamiltonian in Eq. 2.13 becomes

HFM
J=Γ=0 =− JTC

∑
i

Wi (3.1)

With JTC = K4

16|Kz |3 , and Wi ≡ τ zi+d1
τ zi−d2

τ yi τ
y
i+d1−d2

is the plaquette operator shown on the

lattice (see Fig. 1.1). This is exactly equivalent to the Toric code model[69] albeit in the Wen’s

representation.[74] While the details of this limit are well known,[16, 69] we briefly summarise

them for completion as well as to set up the notations that will be useful for our calculations.

Eq. 3.1 is brought into a familiar form by the following site-dependent rotation– rotate all

the spins on the horizontal bonds (Fig. 1.1) of the square lattice by Uh = exp[iτ zπ/4]) and on

the vertical bonds by Uv = exp
[
−iπ(τx + τ y + τ z)/(3

√
3)
]
.[16] This gives
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3D Self Dual
Modified Abelian

Higgs

3D Self Dual
Z2 Gauge

3D Z2

Γ/|K|

J/|K|

Ferromagnet

Paramagnet

Neel

Z2 QSL

Figure 3.1: Schematic phase diagram of the anisotropic FM Kitaev limit. At origin, i.e. Γ =
J = 0 is the Z2 QSL, that survives the small perturbation with respect to Γ/|K|, J/|K|.
However, it finally gives way to the magnetically ordered phases (driven by the Heisenberg
coupling, J) or a trivial product paramagnet (driven by the pseudo-dipolar coupling Γ). The
field theoretic analysis leads to an understanding of the nature of the deconfined quantum phase
transition between the QSL and the spin-ordered phase or the trivial paramagnet, in addition
to the regular quantum phase transition associated with spontaneous symmetry breaking– as
mentioned in the plot above.
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{τxi , τ yi , τ zi } → {−τ̃ yi , τ̃xi , τ̃ zi } ∀i ∈ horizontal. bonds

{τxi , τ yi , τ zi } → {τ̃ yi , τ̃ zi , τ̃xi } ∀i ∈ vertical bonds (3.2)

where we denote the rotated basis by τ̃α. Eq. 3.1 then assumes the canonical Toric code

form[16, 69]

H̃FM
J=Γ=0 =− JTC

[∑
s

As +
∑
p

Bp

]
(3.3)

where the indices s, p denote star and plaquette respectively on the square lattice in Fig. 1.1

with As =
∏

i∈s τ̃
x
i , Bp =

∏
i∈p τ̃

z
i .[16, 69] This stabilizes a topologically ordered Z2 QSL[16,

69] with excitations being gapped bosonic Z2 electric (e) and magnetic (m) charges residing on

the vertices and plaquettes of the square lattice (Fig. 1.1) respectively. Crucially, the e and m

charges have mutual semionic statistics,[69] i.e., they see each other as a source of Aharonov-

Bohm flux of π. It is useful to remind ourselves the exact ground states wave-function of a

system at this point which is given by[69]

|ΨToric
G.S. ⟩ =

∏
s

(
I+ As

2

)
|0z⟩ (3.4)

where

|0z⟩ =
⊗
i

|+⟩i (3.5)

represents the reference all up-state in the τ̃ z basis. Three other ground states on a 2-tori

can be generated from the above state by operating with the following Wilson-loop operators

along the two non-trivial loops in the 2-tori :

Le
x(y) =

∏
i∈lx(y)

τ̃ zi ; Lm
x(y) =

∏
i∈l∗

x(y)

τ̃xi (3.6)

Le
x(y) (Lm

x(y)) is product over τ̃ z(τ̃x) on the closed loop lx(y) (l∗x(y)) defined on the links of the

direct(dual) lattice along horizontal and vertical directions respectively. These operators have
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eigenvalues of ±1. The four ground states of TC model are labeled by (Le
x = ±1,Le

x = ±1).

In this notation, the ground state |ΨToric
G.S. ⟩ in Eq. 3.4 is labeled as |1, 1⟩. The other three states

are |1,−1⟩ = Lm
x |ΨToric

G.S. ⟩, |−1, 1⟩ = Lm
y |ΨToric

G.S. ⟩ and |−1,−1⟩ = Lm
x Lm

y |ΨToric
G.S. ⟩.

The QSL is gapped and hence survives small Heisenberg and pseudo-dipolar perturbations

as shown in Fig. 3.1. However, due to these perturbations, the e and m charges gain dispersion.

The low energy effective description of the Z2 QSL in the continuum limit is captured by a

U(1)× U(1) mutual CS theory[13, 41, 42, 75] given by Eq. 7.18 which correctly implements

the semionic statistics between the gapped e and m excitations of the Z2 QSL.

On cranking up the Heisenberg (J) and/or the pseudo-dipolar (Γ) couplings, however, the

QSL ultimately gives way to other phases. Starting with the QSL, we can understand the pos-

sible destruction of the QSL by condensing the e and m charges.[66] This leads to different

short-ranged entangled phases without or without spontaneously broken symmetries whose ex-

act nature depends on the quantum numbers of the soft modes of the e and m charges that

condense. This, in turn, is dictated by the energetics and the nature of the microscopic cou-

plings, J , and Γ. Indeed we find that while the Heisenberg interactions, J , lead to a time

reversal symmetry broken magnetically ordered phase, the pseudo-dipolar term, Γ, gives rise

to a trivial product paramagnet.

3.1.2 Heisenberg Limit : Γ = K = 0

Another instructive and tractable limit is when both the pseudo-dipolar (Γ) and the Kitaev x

and y exchanges (K) are absent. The effective Hamiltonian in FM anisotropic limit (Eq. 2.13)

becomes

HFM
Γ=K=0 =J

∑
⟨i,j⟩

τ zi τ
z
j +O

[(
J4/∆3

)]
(3.7)

In the limit where Kz (i .e. ∆ → ∞) is the largest energy scale in which the above Hamil-

tonian is valid, the leading term is clearly given by the first term. This leads to ferromagnetic or

Neel ordering for the τ z spins depending on the sign of J . Higher order (in J/∆) terms though

introduce fluctuations, however, are expected to retain the above magnetic ordering. The same

conclusion is also obtained in the limit Γ = 0 and J = K such that δ = 0.

It is interesting to note that the Neel order (for J > 0) in terms of the τ z spins is actually
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(a) (b)

Figure 3.2: (a) Stripy order: For J > 0, Neel ordered state of the τ -spins shown in blue arrows.
For the σ-spin in the underlying honeycomb lattice, the magnetic ordering is shown, which is
consistent Eq. 2.3. This σz ordering is nothing but the stripy phase. (b) Ferromagnetic order
for J < 0: in τ z basis all the spins point to the same direction and equivalently for all the σz

spins.

the stripy order in terms of the original σz of the underlying honeycomb lattice as shown in

Fig. 3.2(a). Similarly, for J < 0, the ferromagnetic ordering in terms of τ z transforms into a

ferromagnetic ordering in terms of the underlying σz as shown in Fig. 3.2 (b). Noticeably these

are exactly the spin orders found in the immediate vicinity of the Isotropic Kitaev QSL with

ferromagnetic exchanges.[43, 44]

Hence we expect a direct transition between the Ising ferromagnet (or antiferromagnet) and

the Z2 QSL.[66, 76]

3.1.3 Pseudo-dipolar limit: J = K = 0 :

Finally, we consider the effect of only the Γ term on the τ spins. From Eq. 2.13, we put

J = K = 0, then we get

HFM
(J=K=0) =2Γ

∑
i

τ yi +O
[(
Γ2/∆

)]
(3.8)

In the Γ/∆ → 0 limit, only the first term survives which is just non-interacting spins in a

“magnetic field”. The ground state is a product state, |0; Γ±⟩ = ⊗j |∓1y⟩j . In terms of z-basis
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it is defined as |∓y⟩ = |+1z⟩∓i|−1z⟩√
2

.

Also, it is worthwhile to go to the rotated basis (Eq. 3.2) whence the first term of Eq. 3.8

becomes

H̃FM
J=K=0 = 2Γ

[∑
i∈V

τ̃ zi +
∑
i∈H

τ̃xi

]
(3.9)

As an aside, it is interesting to note that, though explicitly broken in the anisotropic limit

that we consider this work, the two above states have finite z-bond-spin-nematic correlations

as measured from the expectation value of the operator

Q̂αβ
ii′ =

(
σα
i σ

β
i′ + σβ

i σ
α
i′

2
− δαβ

3
σi.σi′

)
(3.10)

We find

⟨±|y Q̂αβ
ii′ |±⟩y =


−1

3
∓1 0

∓1 −1
3

0

0 0 2
3

 (3.11)

which describes a nematic with principle axis along n̂ = [11̄0] for Γ < 0 and is along

n̂ = [110] for Γ > 0. However, as stated above, this does not break any symmetry of the

anisotropic Hamiltonian spontaneously and hence represents a featureless paramagnetic phase

with gapped excitations which is continuously connected to the product state. Indeed signatures

of such a nematic phase were numerically observed in the isotropic K − Γ model recently[62]

where the rotational symmetry σhC6 of the extended Kitaev model is spontaneously broken

down by the development of the nematic order.

3.2 Phases and Phase diagram in AFM anisotropic limit

Having isolated the different terms in the effective Hamiltonian for AFM anisotropic limit, we

now discuss their effects in stabilizing different phases in order to develop the theory for the

associated phase transitions.
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3.2.1 Toric code limit J = Γ = 0

The full Hamiltonian in AFM anisotropic limit is given in Eq. 2.19, which in the limit: J =

Γ = 0 becomes:

HAFM
J=Γ=0 =− JTC

∑
i

Wi (3.12)

It is crucial to note that, both the Wi contribution is coming from the so-called six-spin

hexagon contribution, which are the conserved degrees of freedom of the original Kitaev model

[16]. These conserved quantities are giving rise to similar Toric code contributions both in FM

and AFM anisotropic limits. After a bond dependent unitary rotations as defined in Eq. 3.2 (see

also [16, 69]) becomes

H̃AFM
J=Γ=0 =− JTC

[∑
s

As +
∑
p

Bp

]
(3.13)

Where As =
∏

i∈s τ̃
x
i , Bp =

∏
i∈p τ̃

z
i . τ̃α denotes the rotated operators and Eq. 3.13 rep-

resents Kitaev’s toric code model [69]. The symmetry transformations for τ̃ spins are given in

the table A.3 in Appendix A.2.

The physics of the above limit of the Hamiltonian is discussed in section 3.1.1. In this limit

too the above Hamiltonian stabilizes a Z2-QSL ground state, albeit the definition of the τ̃ -spins

are different from the Eq. 3.3.

3.2.2 Heisenberg Limit: Γ = K = 0

Deep inside the anisotropic limit, i.e. |Kz| → ∞, as evident from Eq. 2.19, the leading order

contribution (up to the linear order J) arising from the Heisenberg perturbation is given by

HAFM
Γ=K=0 = −J

∑
⟨i,j⟩

τ zi τ
z
j + 2J

∑
i

τxi +O
[(
J4/∆3

)]
(3.14)

where the first term is the Ising interactions that favor ferromagnetic (Neel) ordering of

the τ z-spins for J > 0(J < 0). Qualitatively, this is similar to the FM-Kitaev case 3.1.2,

with an important difference in terms of the underlying σ spins of the honeycomb magnet– the
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(a) (b)

Figure 3.3: Configuration of σ and τ spins. (a) Zig-zag order: For J < 0,Γ = 0, K = 0 an
AFM state is realized for τ spins on z links of the honeycomb lattice, which is denoted by the
blue arrows. While the σ spins are denoted by the red (green) arrow for the A (B) sub-lattice,
this corresponds to a zig-zag order for the σ spins. Where the left (right) blue arrow means
τ z = +1(−1) state and the left (right) red/green arrow means σz = +1(−1) state. (b) Neel
order: For J > 0 a FM state is realized for the τ spins, which corresponds to a Neel order for
σ spins.

ferromagnetic (Neel) ordering for the τ z spins correspond to the Neel (Zig-Zag) ordering for

the underlying σz spins as shown in Fig. 3.3.

The second term, representing the transverse field in the leading order of Heisenberg cou-

pling, however, suggests a curious possibility of the Heisenberg perturbations stabilizing a

paramagnetic state of τ -spins polarised in the τx direction. Very interestingly, in terms of the

underlying σ-spins of the honeycomb lattice, this is given by

|ψ+⟩ = ⊗pp′

( |↑p↓p′⟩ − |↓p↑p′⟩√
2

)
; forJ > 0 (3.15)

|ψ−⟩ = ⊗pp′

( |↑p↓p′⟩+ |↓p↑p′⟩√
2

)
; forJ < 0

which are singlet and triplet states respectively for pp′ that denotes the z-bond (see Eq. 2.8).

Therefore, following section 3.1.3 the bond-nematic order parameter:
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Q̂αβ
pp′ =

(
σα
p σ

β
p′ + σβ

pσ
α
p′

2
− δαβ

3
σp.σp′

)
(3.16)

is non-zero. In particular, for the |ψ−⟩, we have

⟨ψ−| Q̂αβ
pp′ |ψ−⟩ =


2
3

0 0

0 2
3

0

0 0 −4
3

 (3.17)

On the other hand for |ψ+⟩, singlet dimers are present on the z-bonds of the honeycomb

lattice. In absence of spin-rotation symmetry, for non-Kramers doublets both these orders

represent lattice nematic.

While in Eq. 3.14 the couplings of the transverse field and the Ising term both are propor-

tional to J , on considering higher order contributions of the perturbation theory (see Eq. 2.19

and Eq. 2.20-2.23) they are differently renormalized and it is, therefore, useful to consider them

at independent parameters and study the generalized phase diagram where the strength of the

Ising term (≡ JIsing) and the magnetic field term (≡ h) is independently varied (see Fig. 3.4).

In this generalized model for h → ∞ limit we obtain the two above polarised phases for the

τ spins that correspond to a direct product state of singlets and triplets on the z bonds for the

σ-spins.

Detailed discussion regarding this model is relegated to Appendix C, where it is shown that

under unitary transformations this system is equivalent to a problem of perturbing a toric code

Hamiltonian with a transverse field and a x-z Ising term (see Eq. C.3). For this model, our

numerical studies show three prominent phases (qualitatively shown in Fig. 3.4) – (i) ferro-

magnet (FM), (ii) paramagnet (PM) and (iii) Z2 QSL. While the FM and PM are separated by

a 3D-Ising transition; the Z2 QSL and the paramagnet are separated by a first order line [67,

68]. The nature of the transition between Z2 QSL and the FM is a self-dual modified Abelian

Higgs transition as is discussed below.

Therefore, in the present case, in principle, there can be two possible ways of destroying

the Z2 QSL leading to a spin-ordered phase (in the Heisenberg limit) via tuning the Heisen-

berg interactions– (1) a direct second-order quantum phase transition into the spin ordered
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Figure 3.4: A single or a two-step transition from the Z2 QSL as a function of Heisenberg
coupling into a magnetically ordered state (Eq. 3.14). In the leading order of perturbation,
h ∼ 2J and JIsing = J where J is the strength of the Heisenberg perturbation as defined
in Eq. 1.1. The transition from the Z2 QSL to a paramagnet in the parallel field is a first
order transition[68] where the transition at JIsing = 0 is a self dual point. We expect this first-
order transition to be stable to Ising perturbation since our numerical results do not show any
significant change of behavior (see Appendix C).

phase, and (2) a two-step transition where the QSL first goes into a polarised trivial paramagnet

through a first-order transition and finally into the spin-ordered state via a 3D-Ising transition.

For the purely transverse field Ising model on a square lattice (Eq. 3.14), existing variational

and cluster Monte-Carlo calculations [77–80] shows the strength of the transverse field ≈ 3J

is the critical point for the phase transition between the symmetry broken τ z magnetically or-

dered state, i.e. ⟨τ zi ⟩ ≠ 0 and the paramagnet state, i.e. ⟨τ zi ⟩ = 0. So for Eq. 3.14, we expect

a single-step transition which is supported by our exact diagonalization results on finite spin

clusters presented in Appendix C.

3.2.3 The pseudo-dipolar limit J = K = 0

A novel and the most interesting limit of the anisotropic antiferromagnetic model is obtained

when the pseudo-dipolar interactions dominate. The leading order effect of such perturbation

in the |Kz| → ∞ limit is given by the second order perturbation theory leading to the effective

Hamiltonian from Eq. 2.19. The full Hamiltonian up to fourth order perturbation is given in

Eq. 3.18) given by
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HAFM
J=K=0 =

[
Γ2

|Kz|
− Γ4

|Kz|3
]∑

i

(
τ zi+d1

τxi τ
z
i−d1

+ τ zi+d2
τxi τ

z
i−d2

)
+

[
Γ2

|Kz|
− Γ4

|Kz|3
]∑

i

(
τ zi+d1

τ yi τ
z
i−d2

− τ zi+d2
τ yi τ

z
i−d1

)
− 2Γ3

|Kz|2
∑
i

τ zi+d1
τ zi−d2

−
[

Γ4

2|Kz|3
]∑

i

(
τ zi τ

z
i−d2

τxi+d1−d2
+ τ zi+d1−d2

τ zi+d1
τxi − τ zi τ

z
i+d1

τxi+d1−d2
− τ zi+d1−d2

τ zi−d2
τxi
)

+
Γ3

|Kz|2
∑
i

(
τ zi+d1

τxi τ
z
i+d2

+ τ zi−d1
τxi τ

z
i−d2

)
(3.18)

Stacked cluster chains

The pseudo-dipolar limit up to the second order is best described as a combination of four

Hamiltonian of the stacked one-dimensional cluster chains, which we will discuss now. Unlike

the Heisenberg perturbations (Eq. 3.14) or the Γ perturbations in the ferromagnetic Kitaev as

discussed in section 3.1.3, the above term does not get contributions at the first order level.

This allows for non-trivial spin interactions through the three spin terms. Notably, due to the

unusual implementation of time reversal symmetry (see Eq. 2.12), the above three spin terms

are symmetry allowed.

We now discuss the rich structure of the Hamiltonian in Eq. 3.18 up to the second order

perturbation ( Γ2

|Kz | ). To this end, we re-write it as

HAF
J=K=0 =

Γ2

|Kz|
(H1 +H2 +H3 +H4) (3.19)

with

H1 =
∑
i

τ zi+d1
τxi τ

z
i−d1

H2 =
∑
i

τ zi+d2
τxi τ

z
i−d2

H3 =
∑
i∈V

(
τ zi+d1

τ yi τ
z
i−d2

)
−
∑
i∈H

(
τ zi+d2

τ yi τ
z
i−d1

)
H4 =

∑
i∈H

(
τ zi+d1

τ yi τ
z
i−d2

)
−
∑
i∈V

(
τ zi+d2

τ yi τ
z
i−d1

)
(3.20)

where H,& V denote the set of sites belonging to the horizontal and vertical bonds respec-

tively.
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Figure 3.5: Four stacked cluster spin chains : The panels (a), (b), (c), (d) represent the four
Hamiltonians in Eq. 3.20 in PBC.

We immediately note that each of these Hamiltonians represents a set of stacked one-

dimensional cluster spin-1/2 chains arranged in a particular direction. This is shown in Fig. 3.5.

While H1 and H2 are stacked cluster chains oriented at π
4

and −π
4

in the lattice plane, H3 and

H4 are oriented vertically with the chains being displaced by a lattice constant with respect to

each other.

If the Hamiltonians are considered independently, as discussed in Appendix D.1, at this

leading order each decoupled chain has an enhanced Z2×Z2 symmetry and stabilizes a gapped

symmetry protected topological (SPT) phase protected by this symmetry [81–85]. As a result

each chain supports a zero energy localized spin-1/2 at the edge of each chain. Each stacking

pattern of these cluster Hamiltonians in Eq. 3.20, Hα (α = 1, 2, 3, 4), therefore, results in a

weak-SPT phase [81] whose edge mode structure depends on the shape of the cluster chosen,

as expected (see Table. 3.1 and Appendix D.2).

The full Hamiltonian in the pseudo-dipolar limit (Eq. 3.19), however, is an equal-weight

superposition of the four stackings. In order to understand this, it is useful to consider the

interpolating Hamiltonian
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Hamiltonian PBC x-CBC y-CBC OBC

H1 1 22Lx 22Ly 22(Lx+Ly)−2

H2 1 22Lx 22Ly 22(Lx+Ly)−2

H3 1 22Lx 1 22Lx

H4 1 22Lx 1 22(Lx+Ly)−2

Table 3.1: Ground state degeneracies for various stacked cluster Hamiltonians H1, H2, H3, H4

(see Eq. 3.20) when placed under various boundary conditions. PBC (OBC) is the usual pe-
riodic (open) boundary condition on a torus, while x-CBC (y-CBC) is a cylindrical boundary
condition with x(y) direction being periodic. The details are discussed in Appendix. D.2.

H(λ1, λ2) = λ2 ((2− λ1)H1 + λ1H2) (3.21)

+ (2− λ2) ((2− λ1)H3 + λ1H4)

parameterized by λ1 and λ2 – such that in the (λ1, λ2) plane, the points (0, 2), (2, 2), (0, 0)

and (2, 0) are identified withH1, H2, H3 andH4 respectively while, up to multiplicative factors,

HAF
(J=K=0) is given by (1, 1). This is illustrated in Fig. 3.6 and explained below. However, we

note that on this plane the symmetry of π-rotation about the z-bond, C2z results in H1 ↔ H2

and H3 ↔ H4 and thus constraining λ1 = 1 on the plane while λ2 being free to be renormal-

ized by higher order terms. We shall especially focus on this line while discussing the phase

diagram.

The interpolating Hamiltonian of Eq. 3.21 in the entire (λ1, λ2) has some special symmetry

and energetic features. While these properties are not stable to higher order perturbations (see

Eq. 3.18), not only such structures are interesting in their own rights as we shall see below, but

also, these weakly broken symmetries provide important insights into the nature of the phase in

this pure Γ limit. Hence, we now discuss these special symmetries.

The generic non-Kramers time-reversal symmetry is generated by (see table 2.12) the op-

erator T =
∏

i∈H, V τ
x
i K (where K is the complex conjugation operator). However Eq. 3.21

enjoys an enhanced sub-lattice time-reversal symmetry generated by the operators

TH =
∏
i∈H

τxi Ki, TV =
∏
i∈V

τxi Ki (3.22)

where the products in the first and second expressions run over the horizontal and vertical bonds
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Figure 3.6: Anticipated phase diagram for the Hamiltonian in Eq. 3.21. The four corners are
the exact limit of the stacked cluster SPTs (given in Eq. 3.20) which are oriented in different
directions and shown in Fig. 3.5. C2z symmetry transforms H1 ↔ H2 and H3 ↔ H4. The
phase transitions at λ2 = 0 (λ1 = 0) as a function of λ1 (λ2) is a first(second) order transition
which is expected to be stable when λ2 ̸= 0 (λ1 ̸= 0) (see text).

respectively. Thus this plane enjoys a global Z2 × Z2 symmetry.

The Hamiltonian in Eq. 3.21, however, has an even larger set of sub-system symmetries

which is most apparent after a unitary rotation defined on a set of bonds, followed by a global

unitary rotation. The following transformation [81, 86–89]

W ≡
∏
i

Ui,i+d1 (3.23)

where we define a bond-dependent (direction independent) unitary operator

Uij =
1

2

(
1 + τ zi + τ zj − τ zi τ

z
j

)
(3.24)

renders

W : τxi → τ zi−d1
τxi τ

z
i+d1

; τ zi → τ zi . (3.25)

This when followed by a global rotation

V : {τxi , τ yi , τ zi } → {ηyi , ηzi , ηxi } (3.26)
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leads to

Hα → H̃α = (VW)Hα (VW)−1 (3.27)

where ηαi is the new spin degrees of freedom. Note that while the transformation V is not

essential, as we shall see below, it simplifies parts of our analysis.

The resultant transformed Hamiltonians are given by

H1 → H̃1 =
∑
i

ηyi (3.28)

H2 → H̃2 =
∑
i

ηyi η
x
i+d1

ηxi−d1
ηxi+d2

ηxi−d2
(3.29)

H3 → H̃3 =
∑
i∈V

ηxi−d1
ηzi η

x
i−d2

−
∑
i∈H

ηxi+d2
ηzi η

x
i+d1

(3.30)

H4 → H̃4 =
∑
i∈H

ηxi−d1
ηzi η

x
i−d2

−
∑
i∈V

ηxi+d2
ηzi η

x
i+d1

(3.31)

Therefore under this particular transformation, the four differently stacked weak cluster SPTs

respectively get mapped to a y-paramagnet (PM) (H̃1), strong sub-system symmetry protected

topological phase (SSPT) (H̃2) of the topological plaquette Ising model [81, 90], and two hori-

zontally stacked weak cluster SPTs (H̃3 and H̃4). We have explicitly checked that the transfor-

mation when defined for an open system restores the correct number of zero modes in both Hα

and H̃α. A discussion about the transformation W (Eq. 3.23) and the way it acts on the bound-

ary Hamiltonians in an open system see Appendix D.2. The cluster SPT is briefly discussed in

Appendix D.1.

In the transformed basis, the Hamiltonian (Eq. 3.21) is invariant under the following set of

anti-unitary subsystem symmetries that are generated by

P̃ T hn =
∏

i∈nth Hor. line

ηziKi (3.32)

P̃ T vn =
∏

i∈nthVert. line

ηxi−d1
Ki−d1η

z
iKiη

x
i+d1

Ki+d1 (3.33)

where in Eq. 3.32 (3.33), hn(vn) denotes the nth horizontal (vertical) line which either can

pass through the horizontal (vertical) bonds or cut through the vertical (horizontal) bonds of

the square lattice (see Fig. 3.7) and Ki is the local complex conjugation operation which acts
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Figure 3.7: The anti-unitary symmetry operator in Eq. 3.32 is shown as a single green continu-
ous line (hn), for example, h3 passes through the horizontal bonds (spins 6, 7, 8) and h2 passes
through the vertical bonds (spins 3, 4, 5). The symmetry operator in the Eq. 3.34 is shown
using the three magenta lines. The dashed (continuous) line shows the unitary (anti-unitary)
operation.

on-site i.

In terms of the untransformed basis (by Eq. 3.27), Eq. 3.32 and 3.33 can be obtained from

Eqs. 3.25 and 3.26 and are given respectively by

PThn =
∏

i∈nthHor. line

τ zi+d1
τxi τ

z
i−d1

Ki (3.34)

PTvn =
∏

i∈nthVert. line

τ zi+d1
Ki+d1τ

x
i Kiτ

z
i−d1

Ki−d1 (3.35)

Note that both Eq. 3.34 and 3.35 involve the same transformation on horizontal/vertical stacks

of three consecutive spins separated by, Td1 , i.e. translation along d1. However, while for the

horizontal stacking in Eq. 3.34, the conjugation operator acts only on the spin in the middle,

for the vertical stacking in Eq. 3.35 they act on all the spins involved.

In addition, along the λ2 = 2 line the system has another set of subsystem symmetries

generated by :

P̃ T
′
vn =

∏
i∈nthVert. line

ηziKi (3.36)

Similar to the Eq. 3.34, we can write this symmetry in the original spin basis of Eq. 3.20 as a

combination of unitary and anti-unitary symmetry, now in the vertical direction which is

PT ′
vn =

∏
i∈nthVer. line

τ zi+d1
τxi τ

z
i−d1

Ki (3.37)
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Figure 3.8: Phase diagram corresponding to the Hamiltonian given in Eq. 3.21 after the trans-
formation defined in Eq. 3.27, also see Fig. 3.6.

We shall later return to the constraints imposed by these sub-system symmetries. However,

as briefly discussed in Appendix D.3, due to the particular non-Kramers nature of the time re-

versal symmetry the above subsystem symmetries do not constrain the dispersion of excitations

unlike fractons [91, 92].

The above transformation (Eq. 3.27) allows for new insights into the phase diagram of the

pure Γ Hamiltonian given by Eq. 3.19. In particular, the transitions along the four boundaries,

as shown in Fig. 3.8, can be immediately read off from existing literature. These are as follows

:

• The transition between H̃1 and H̃2 along the λ2 = 2 line is between a trivial paramagnet

and a two-dimensional SSPT respectively. This transition is known to be first order [87,

93] and occurs at λ1 = 1. In the un-transformed basis, we note that this represents a

transition between two stacked cluster models, H1 and H2. Remarkably, the effective

dimensional reduction at the critical point is far from apparent in this un-transformed

basis.

There exists a transformation similar to Eq. 3.27 which transforms, on the λ2 = 0 line,

H3 to a trivial transverse field paramagnet and H4 to an SSPT. The discussion of the

above paragraph then can be immediately applied to the λ2 = 0 line. (Notably, such a

transformation map H1 and H2 to weak cluster SPTs.)

Therefore at λ1 = 1, both λ2 = 0, 2 are first-order transition points. This implies that the
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phase diagram in (λ1, λ2) phase has a reflection symmetry about λ2 = 1 line.

• The transition from H̃1 to H̃3 along the λ1 = 0 line is between a trivial paramagnet and

decoupled one-dimensional cluster chains. This is a self-dual transition at λ2 = 1 that

is described by a SO(2)1 conformal field theory (CFT) with central charge, c = 1 [94,

95]. Given the existence of sub-system symmetry operators, it may seem that dynamics

of the excitations from the H̃3 state is constrained. As is discussed in Appendix D.3 we

show that the antiunitary character of these subsystem symmetries effectively renders the

dynamics to be free, especially on the λ1 = 0 line. Again, as above, in the un-transformed

basis, the above transition is between two stacked cluster models, H1 andH3, again, with

non-obvious effective dimensional reduction at the critical point.

A yet third set of transformations similar to Eq. 3.27 transforms H2 to a transverse para-

magnet and H4 to a stacked cluster SPT. This immediately allows us to import the above

physics of λ1 = 0 and apply it to the case of λ1 = 2 line. Further, the rotation about the

z-bond (C2z symmetry, see table 2.12) leads to (λ1, λ2) → (2− λ1, λ2) which also leads

to the same conclusion regarding the phases and phase transitions.

The above discussion of the phases sharpen the questions about the quantum phase transi-

tions between the Z2 QSL and the spin-ordered or a trivial paramagnetic phase as a function of

J/K and Γ/K respectively as indicated in Fig. 3.1. However, before moving on to the critical

field-theory of quantum phase transition, we present our preliminary numerical calculations in

the form of exact diagonalization on finite spin clusters in section 5.2. This provides further

insights into the nature of the soft e and m modes which then is used to construct the critical

theory.

Our numerical studies on small spin clusters reveal the general structure of the phase dia-

gram indicating that the Z2 QSL is destroyed via proliferation and condensation of its gauge

charges– both electric and magnetic. While the transition to the paramagnetic phase in the large

Γ limit turns out to be discontinuous, the continuous transition to the spin-ordered state (from

the QSL) is driven by Heisenberg coupling via a deconfined critical point. We construct a crit-

ical continuum field theory in terms of the soft modes of the electric and magnetic charges via

a mutual Z2 Chern-Simons (CS) theory and show that the direct transition between the QSL

and the spin-ordered phase is described by a self-dual modified Abelian Higgs field theory–
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Figure 3.9: Schematic depiction of the phases and phase transitions which are accessible within
the parameter space of the complete KJΓ Hamiltonian (see Eq. 2.19) in the anisotropic limit
of anti-ferromagnetic Kitaev model.
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in agreement with the critical theory obtained by us in the ferromagnetic case using a mutual

U(1) CS theory in section 7. The overall summary of our phase diagram is then illustrated in

Fig. 3.9.
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CHAPTER 4

NUMERICAL RESULTS: FM ANISOTROPIC KITAEV MODEL

4.1 Numerical results for FM Anisotropic Kitaev model

We perform exact diagonalization calculations on finite spin clusters[96, 97]. For the present

purpose, we focus on the third quadrant of the phase diagram (Fig. 3.1). For this, we take the

minimal Hamiltonian from Eqs. 3.7 and 3.8 which captures the leading perturbations to the

QSL (Eq. 3.1) arising due to the Heisenberg and the pseudo-dipolar terms. The Hamiltonian

that interpolates between the different limits is given by

HFM(t1, t2) =− (1− t1)(1− t2)HFM
TCM

− t1(1− t2)HFM
Γ − t2(1− t1)HFM

zz

(4.1)

where to compare with the couplings introduced above, we note HFM
TCM ≡ 1

JTC
HFM

J=Γ=0,

HFM
Γ ≡ 1

2Γ
HFM

J=K=0 and HFM
zz ≡ 1

J
HFM

Γ=K=0, defined in Eqs. 3.1, 3.7 and 3.8 respectively and

t1 =
2Γ

JTC+2Γ
; t2 =

J
JTC+J

.

In this parameter space, at the points (t1, t2) = (0, 0), (1, 0), (0, 1) the HFM(t1, t2) becomes

HFM
TCM , HFM

Γ and HFM
zz respectively. We perform exact diagonalization (ED) for 2 × 3, 3 ×

3, 5× 2, 4× 3, 5× 3 and 4× 4 clusters with periodic boundary conditions (PBC) such that

they contain 12− 32 spins.

To make an estimate of the phase boundaries in the system, we calculate ground state fi-

delity susceptibility and spectral gap. The numerical results for representative parameter sets,

as discussed below, are plotted in Fig. 4.1 and 4.2 respectively. The three different phases are

then characterized by calculating the Topological entanglement entropy[64, 65] that charac-

terises the Z2 QSL, the magnetization, ⟨τ y⟩, that characterizes the trivial paramagnet and the

two-point correlator ⟨τ zi τ zj ⟩ that characterizes the ferromagnet. These are then plotted in repre-

sentative parameter regimes in Fig. 4.4. A combination of the above signatures results in the

phase diagram given by Fig. 4.5 which should then be compared with the third quadrant of the

schematic phase diagram in Fig. 3.1.
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Figure 4.1: Peak in the absolute value of ∂2EGS

∂t21
, for different t2s. (a) t2 = 0.0 (b) t2 = 0.2 (c)

t2 = 0.3 (d) t2 = 0.4. The blue and red dots are for the system size 3×3 and 2×3 respectively,
we see the height of the peak increase as we increase the system size. In the thermodynamic
limit, the peaks are expected to diverge.
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Figure 4.2: Change of excitation gaps along t1, for different t2’s. (a) t2 = 0.0 (b) t2 = 0.2
(c) t2 = 0.3 (d) t2 = 0.4. GS (ES j) stands for ground state (jth excited state). ∆1, ∆2 & ∆3

are the excitation gaps above the Z2 QSL, paramagnetic (PM) and ferromagnetic (FM) GS
respectively.
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Figure 4.3: (a) The 3 × 3 cluster with 18 spins, the blue and red edges are identified due to
PBC (b) Geometry of the four sub-systems, for the calculation of the topological entanglement
entropy.
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Figure 4.4: (a) The topological entanglement entropy (TEE) for increasing system sizes (see
text). The considered system sizes are 3× 3, 5× 2, 4× 3, 5× 3 and 4× 4 which have 18, 20,
24, 30 & 32 spins respectively. Only the 3×3 cluster is shown in Fig. 4.3(a). (b) Magnetization
in the Γ-direction, as a function of t1 for constant t2 = 0.0 & 0.6, along the red dashed lines
in the Fig. 4.5. The dashed magenta line shows the phase transition points along t1, obtained
from the phase diagram in Fig. 4.5 for the respective t2 values. (c) Plot of the normalized
correlation function as a function of distance for different values of t2 (with t1 = 0, see text for
more details). Deep inside the FM phase, the correlation does not decay, beyond t2 = 0.3 the
correlation decays exponentially.
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Figure 4.5: Numerically obtained phase diagram focusing on the third quadrant of Fig. 3.1.
The phase transition points are obtained from the gap analysis and the GS susceptibility peak
for the cluster 4 × 3 (Fig. 4.3(a)). The magnetization plots in Fig. 4.4(b) are along the red
dashed lines: t2 = 0.0 & 0.6.

Fidelity Susceptibility : An estimate of the phase boundaries can be obtained from the study

of the response of the ground state energy due to the change in the parameters t1 and t2 through

the fidelity susceptibility[98]: χλ = −∂2EGS/∂λ
2 (with λ = t1, t2). In the Fig. 4.1 ((a)-(d))

we plot |χt1| as a function of t1 for four different representative values of t2. The peaks, which

increase with system size indicate possible phase transitions. Similar peaks are observed in χt2

(not shown). The position of the peaks is plotted in Fig. 4.5 which gives an estimate of the

phase boundaries.

Ground state degeneracy and spectral gap : A related way to characterize the phase bound-

aries is obtained by tracking the closing of the spectral gap. The corresponding results are

shown in Fig. 4.2 ((a)-(d)) as a function of t1 for the same values of t2 as χt1 figures in the

upper panel.

t1 = 0, t2 = 0 corresponds to the exactly solvable Toric code limit which has Z2 QSL

ground state, similarly at (t1 = 1, t2 = 0), we have spin polarized ground state (paramagnetic

phase). In the Toric code limit the system is expected to have four fold degenerate ground state.

In the spin polarized limit, there is no GS degeneracy. The gap closing gives us an estimate of

the transition which is again plotted in the numerical phase diagram of Fig. 4.5. The general

agreement of the susceptibility data and the gap data is noticeable.

Fig. 4.2(a) shows for t2 = 0 the evolution of gap at different t1. At t1 = 0 we have the
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exactly solvable Toric code model with a Z2 QSL ground state with the gap scale is ∆1, above

the four fold degenerate ground state which is exactly equal to 4 for the pure Toric code model

in accordance with the expectation. The gap closes around t1 = 0.5 and towards t1 = 1 another

gap, ∆2 opens up, which is above the trivial spin polarized paramagnetic ground state. In the

4.2(b) and 4.2(c), for t2 = 0.2 and 0.3 respectively, the size of the gap and the closing point

along t1 changes significantly. In both the cases the perturbation to the Toric code model lifts

the four fold degeneracy of the topologically ordered QSL ground state via finite size effects.

Finally in 4.2(d), at t2 = 0.4, the two fold degeneracy at t2 ∼ 0 originates from the two

possible time reversal partners describing the ferromagnetic state which spontaneously breaks

time reversal symmetry as discussed in the previous section. The gap above the ground state

manifold is given by ∆3. At t1 ≈ 0.7 this gap closes so that the system goes into paramagnetic

phase signalled by the unique time reversal symmetric ground state as seen in the figure.

Having gotten an estimate of the phase boundaries, we now turn to further characterisation

of the phases.

Topological Entanglement Entropy : In the Z2 QSL, the entanglement entropy (SA) be-

tween a sub-system (A), and its compliment (Ā) follows the area law with a sub-leading topo-

logical correction given by[64, 65]

SA(L) = αL− γ̃(L) ; γ̃(L) = log(2) +O(1/L) (4.2)

Where α is a non-universal constant and L is the length of the boundary between A& Ā. In

the limit L → ∞ the TEE saturates to log(2) ≈ 0.693. By partitioning the whole system into

4 sub-systems in a particular way, as shown in Fig. 4.3(b), the constant part of the TEE can be

extracted as[64, 65]

− γ′ = SA + SB + SC + SABC − SAB − SBC − SAC

= log(2) +
∑
β

O(1/Lβ)
(4.3)

where β is the different choices of combinations of the sub-system, such as β = A, AB

and so on. In Fig. 4.4(a) the γ′ is shown as a function of increasing system (SS) size, which is

denoted by the total number of spins in a cluster, for the higher system size TEE saturates to

log(2). The clusters considered here are 3 × 3, 5 × 2, 4 × 3, 5 × 3 & 4 × 4 which have 18,
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20, 24, 30 & 32 spins respectively. For the smallest system with 18 spins, the sub-systems (A,

B, C in Fig. 4.3(b)) has 3-4 spins, whereas for the largest system size considered here with 32

spins, the sub-systems has 7-8 spins.

Transverse magnetisation along Γ : To characterise the trivial paramagnet, we calculate the

magnetisation along Γ, i.e. ⟨τ yi ⟩. For two representative values of t2 = 0.0 and 0.6, this has

been plotted as a function of t1 in Fig. 4.4(b). In the (t1, t2) parameter space, these are along

the red dotted lines in the Fig. 4.5. For both the values of t2, in the limit t1 = 1, the system is in

PM phase, where the magnetization saturates to 1. The magnetization decreases along with the

decreasing t1, eventually being zero in the limit t1 = 0. However for two different values of t2,

the magnetization changes differently. From the Fig. 4.5, we see for t2 = 0.0 (0.6) the phase

transition is around t1 ≈ 0.5 (0.8), the magenta lines in Fig. 4.4(b) denote the corresponding

t1 values for phase transition.

The two point correlator for the ferromagnetic order parameter : To characterize the

ferromagnet, connected correlator c(r) = ⟨τ zi τ zi+r⟩ − ⟨τ zi ⟩⟨τ zi+r⟩ is used where ⟨...⟩ denotes the

ground state expectation value. The normalised c(r) is plotted as a function of distance in Fig.

4.4(c) for different values of t2 with t1 being zero. This is along the t2 axis of Fig. 4.5. In the

FM phase, starting from the t2 = 1 until t2 = 0.4 the spins are correlated. Bellow t2 = 0.3, the

correlation falls off exponentially, however due to small system size it is difficult to extract the

correlation length.

The above exact diagonalisation, is severely limited by system size. However, it has well

understood limits. The results suggest possibility of direct transitions out of theZ2 QSL into the

symmetry broken ferromagnet or the symmetric trivial paramagnet. The results are summarised

in Fig. 4.5 which is in rough agreement with the expectation of Fig. 3.1.

In the section 7.1, we present our understanding of the unconventional quantum phase tran-

sitions assuming that they are continuous. To successfully describe the transition, we need to

obtain a description of the non-trivial low energy excitations of the QSL and their behaviour

determines the critical theory. This naturally takes the form of a gauge theory coupled with

matter matter fields.
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CHAPTER 5

NUMERICAL RESULTS: AFM ANISOTROPIC KITAEV MODEL

5.1 Phase diagram : Exact diagonalisations

Having discussed the phases in the different limits in section 3.2, we now study the phase

boundaries via ED on finite spin clusters. For this we use the interpolating Hamiltonian:

HAFM(t̃1, t̃2) = (1− t̃1)(1− t̃2)H̄AFM
(J=Γ=0) (5.1)

+ t̃2(1− t̃1)H̄AFM
(Γ=K=0) + t̃1(1− t̃2)H̄AFM

(J=K=0)

Where H̄AFM
X is defined as HAFM

X with a unit energy scale and X being the various limits

in the parameter regimes of K, J, & Γ. The explicit forms of the Hamiltonians(HAFM
X ) are

given in Eqs. 3.12, 3.14, and 3.19. The rescaled parameters are:

t̃1 =
Γ2/|Kz|

JTC + Γ2/|Kz|
; t̃2 =

J

JTC + |J | (5.2)

Similar to the FM case discussed in section 4, in this parameter space, at the points,

(t̃1, t̃2) = (0, 0), (0, 1), (1, 0) the H(t̃1, t̃2) are Toric code, the Heisenberg and the pseudo-

dipolar limit respectively. We perform ED for system sizes of up to 32 spins with periodic

boundary conditions (PBC). Following the discussion on the FM case (chapter 4), we calculate

the following quantities to estimate the phase boundaries as well as the nature of the phases– (1)

Ground state fidelity susceptibility, (2) Spectral gaps, (3) Topological entanglement entropy, (4)

Magnetization, and, (5) Spin-spin correlation. In addition, we use Plaquette expectation, i.e.

the expectation value of Wi operator (following Eq. 3.12) to determine the phase boundaries in

the parameter space of (t̃1, t̃2).

1. Ground state fidelity susceptibility (χ1, χ2) : As introduced in the chapter 4, this is the

double derivative of the ground state energy EGS as a function of any of the parameters t̃1 and

t̃2: χ1 = |∂2EGS

∂t̃21
| and χ2 = |∂2EGS

∂t̃22
|. The behavior of the fidelity susceptibility for fixed values of

t̃1 as a function of t̃2 and vice-versa shows pronounced peaks (see Fig. 5.1) showing transitions
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Figure 5.1: Behavior of ground state susceptibility for Eq. 5.1. (a) χ1 along the t̃1 direction for
constant values of t̃2. (b) χ2 along the t̃2 direction for various values of t̃1. (N = 2LxLy for
Lx × Ly = 4× 3)

between the Z2 QSL (stabilized by H̄AFM
(J=Γ=0)), the ferromagnet (stabilized by H̄AFM

(Γ=K=0) ) and

the large Γ phase stabilized by H̄AFM
(J=K=0). The position of these peaks is plotted in Fig. 5.5 to

demarcate the phase boundaries.

2. Spectral gap (∆m): Further insights into the nature of phases and phase boundaries are

obtained from the bulk spectral gap of the low-lying energy eigenstates, ∆m,– the gap between

the mth excited state and the ground state. For instance, in the FM state ∆1 ∼ zero given the

expected two-fold degenerate ground states (pertaining to two symmetry broken states in the

thermodynamic limit), while in the Z2 QSL one expects ∆1 −∆3 ∼ zero since the latter has a

4 fold topological degeneracy on a torus. One expects no such degeneracy for the large Γ phase

since it is a gapless point where the bulk states would show gaps due to finite-size effects. All

these expectations are correctly borne out in our numerical results shown in Fig. 5.2, where the

behavior ∆1 −∆5 helps to demarcate the various phases.

Furthermore, the minimum bulk gap (min(∆m)) coincides with the susceptibility peaks

(see Fig.5.5) which serves as a self-consistent check for the phase boundaries for our finite spin

clusters.

3. Topological entanglement entropy (γ): As discussed in chapter 4, the non-trivial entan-

glement of the gapped Z2 QSL can be captured via the topological entanglement entropy (≡ γ).

In order to distill this it is useful to employ the Kitaev-Preskil prescription[64, 65] where the
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Figure 5.2: Low energy spectra to excited states from the ground state where ∆m defines the
gap between the mth excited state and the ground state is shown as a function of t̃2 for constant
values of t̃1 (see Eq. 5.1). In (a) t̃1 = 0.2 and (b) t̃1 = 0.6. The system size is (Lx, Ly) = (4, 3)
with N = 2LxLy spins.

area law contributions cancel perfectly (see chapter 4). The behavior of γ as a function of t̃1

for t̃2 = 0 is shown in Fig. 5.3(a). One finds that while γ ∼ log(2) in the Z2 QSL, γ ∼ 0

in the Γ phase reflecting that the latter has no topological order of a gapped spin liquid state.

To investigate the area law contributions in the various phases it is useful to calculate, for a

given spin cluster, the bipartite entanglement entropy(SA(L)) of any subpart of volume A with

a linear boundary of size L and fit it to this functional form (also see Eq. 4.3)

SA(L) = αL− γ +O(1/L) (5.3)

where α, γ are the coefficients of the area law entanglement, and the topological entangle-

ment entropy respectively [64, 65, 99]. The behavior of α is also shown in Fig. 5.3(a) reflecting

that both Z2 QSL and large Γ phase has finite area law contributions. It is worthwhile to point

out that γ obtained by fitting Eq. 5.3 (≡ γ
Fit

) seems to show a finite value in the large Γ

phase, however, is a spurious artifact of the fitting scheme as has been pointed out in [100] for

stacked/cluster SPT like states. It is pertinent to point out that in the large Γ phase we often find

a curvature in the behavior of S as a function of L which may suggest a logarithmic correction

[101]. However, in our limited ED calculations, it is hard to separate out if this is due to the

gapless nature of the (λ1, λ2) point or a finite correlation length in the large Γ phase. Some

additional results in other parameter regimes are discussed in Appendix E.1.
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Figure 5.3: (a)The bipartite entanglement entropy in the ΓK direction (t̃2 = 0 line in Eq. 5.1)
follows an area law, i.e. SA(L) = αL, however, in the Z2-QSL phase this is supplemented by
a topological correction (γ). Calculations done on a ((Lx, Ly) = (5, 3) cluster). (b) Average of
the plaquette (Wi in Eq. 3.12) expectation value for the ground state of Eq. 5.1 in the (t̃1, t̃2)
plane (for a ((Lx, Ly) = (3, 3)) spin cluster).
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Figure 5.4: (a) Behavior of Mz = 1
N

∑
i⟨τ zi ⟩ in the t̃1, t̃2 parameter regime of Eq. 5.1.

To characterize the ferromagnet state we apply a weak symmetry breaking perturbation (∼
t̃2(1−t̃1)

100

∑
i τ

z
i ). (b) Behavior of connected correlator C(r) = ⟨τ zi τ zi+r⟩ − ⟨τ zi ⟩⟨τ zi+r⟩ over the

ground state of Eq. 5.1 for different values of t2 for t̃1 = 0. (System size, Lx = 3, Ly = 3)
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4. Plaquette expectation (w): The non-trivial topological entanglement entropy of the QSL

is closely related to the type of topological order realized. As discussed above in the section

3.2.1 the low energy excitations of the QSL are gapped bosonic Ising electric and magnetic

charges [16, 69] whose density is encoded by the plaquette spin operatorsWi ≡ τ zi+d1
τ zi−d2

τ yi τ
y
i+d1−d2

(see Eq.3.12). We plot the expectation value of such average charge density w =
∑

i
1
N
⟨Wi⟩

in Fig. 5.3(b) for the entire t̃1, t̃2 plane (where the expectation value is taken over the ground

state). Clearly, in the QSL the ground state does not contain any charges resulting in w ≈ 1

which gives away to w ≈ 0 in both the spin ordered as well as the large Γ phase showing that

in the ground states of these phases the charges proliferate.

This provides an important clue into the mechanism of the phase transitions out of the

QSL via the proliferation and condensation of the gauge charges. We use these soft modes to

construct our critical theory for the phase transition in the next section.

5. Magnetization (Mz): While the QSL does not break any symmetry spontaneously, the

spin-ordered phase, on the other hand, is characterized by symmetry breaking captured by a

finite magnetization Mz = 1
N

∑
i⟨τz⟩ which is calculated in the presence of a small symme-

try breaking field (∼ t̃2(1−t̃1)
100

∑
i τ

z
i ). The resultant plot is shown in Fig. 5.4(a). Clearly, the

complete FM region shows a finite Mz while both the Z2 liquid and the large Γ phase show no

such feature. Thus we expect that this region spontaneously breaks symmetry in the thermody-

namic limit as the symmetry-breaking field is taken to zero as our calculation of the spin-spin

correlations (below) indicates.

6. Spin-spin correlation: To further characterize the ferromagnet, connected correlatorC(r) =

⟨τ zi τ zi+r⟩ − ⟨τ zi ⟩⟨τ zi+r⟩ is evaluated over the ground state in absence of any perturbing field. An

exponentially falling correlation signals no magnetic order while a long-range ordered state

will show that C(r) takes a finite value. The behavior of C(r) as a function of r is shown in

Fig. 5.4(b) for different values of t2 with t1 being zero showing the systems realize a long-range

magnetic order in the FM state.

The above numerical results, when taken together, lead to the phase diagram as shown

in Fig. 5.5 which illustrates the three phases and the intervening transitions. In the rest of the

thesis, we investigate the nature of the intervening phase transitions and develop its field theory.
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Figure 5.5: Phase diagram of Eq. 5.2 for t̃1, t̃2 ∈ [0, 1] for the complete KJΓ Hamiltonian.
The phase boundaries are obtained by analyzing ground state fidelity susceptibility and values
where the gaps to the bulk excited states ( ≡ ∆m) (see text) take the minimum value (min(∆1))
of a 24 spin (Lx = 4, Ly = 3) cluster.

5.2 Exact diagonalisation study of stacked cluster chain in context of Γ-limit of anisotropic

AFM Kitaev model

Continuing the discussion of the pseudo-dipolar limit of the anisotropic AFM Kitaev model in

section 3.2.3, here we present results from ED-based numerical analysis.

In Fig. 5.6(a) we show the ground state (GS) susceptibility [98] discontinuous peak along

the λ1 for various constant λ2 values between 0 and 0.8. We can clearly see for λ2 = 0 line

the sudden jump in the susceptibility at λ1 = 1 is indicating a first-order phase transition [87,

93] expected between the SSPT and the trivial paramagnet. On departing from the λ2 = 0

line, the weight of the discontinuous peak monotonically comes down as we approach λ2 = 1

indicating that the discontinuous nature of the transition weakens as we approach λ2 = 1 and

disappears at this point. However, our present calculations cannot discern if the discontinuity

persists all the way to λ2 = 1. Similar physics is observed coming down from the λ2 = 2 line

(not shown). It is pertinent to point out that given the limited system sizes accessible in ED,

there are significant even-odd (commensurability) effects in all regions of the phase diagram.

This, therefore, makes the role of symmetries and various transformations, even more, crucial

to understand the nature of the phases.

The above first-order transition is in stark contrast with the transition obtained by tuning
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Figure 5.6: (a) Ground state (GS) susceptibility as the absolute value of the second derivative
of the GS energy (Egs) with respect to λ1 for constant λ2 values for the Hamiltonian given in
Eq. 3.21 (b) Ground state susceptibility along λ2 for constant λ1 values. Both results are for an
18 spin cluster with Lx = 3 and Ly = 3 and PBC geometry.

λ2 as shown in Fig. 5.6(b). Here the susceptibility shows a peak without a shoulder (i.e., a

sudden jump) indicative of a continuous transition at λ2 = 1. Indeed for λ1 = 0, this transition

originates from a stack of cluster chains and is described by decoupled (1 + 1) dimensional

critical point of SO1(2) CFT [94, 95] with a description in terms of Majorana fermions (see

Appendix D.1). The continuous nature of the transition persists for larger values of λ1 until

close to the λ1 = 1 whence the peak bifurcates indicating the possibility of opening up of an

intermediate phase in the vicinity of λ1 = 1. However, our present numerical calculations are

limited by system size to probe this aspect. As we discuss below, we expect this intermediate

phase, even if it exists, to be very fragile due to a large number of special symmetries (see the

discussion above) in the (λ1, λ2) plane. Again we find a similar picture on the λ1 > 1 region

due to the π-rotation about the z-bond symmetry C2z, (see Eq. 2.12).

Right at the point λ1 = λ2 = 1, our present ED calculations reveal a bulk gapless phase.

This is shown in Fig. Fig. 5.7(a) where we plot the bulk gap to the four lowest excitations as

a function of the few systems sizes to indicate that the gap to these excitations vanishes almost

linearly in inverse system size. The contour plot of the bulk gap to the first excited state in

the entire (λ1, λ2) plane is shown in Fig. 5.7(b). This shows that gap indeed closes along the

λ1 = 1 and λ2 = 1 lines with the former leading to a first-order transition and the later leading

to a second-order transition. This separates the plane into four phases as shown in Fig. 3.6 and

3.8.
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Figure 5.7: (a) Scaling of energy gaps (∆m) to mth excited state as a function of inverse system
size (N = 2(Lx × Ly)) at pure Γ limit, i.e. (λ1, λ2) = (1, 1) (see Eq. 3.21) for systems sizes
involving N = 12 to N = 32 spins. The dashed lines are guides to the eye. (b) The gap to the
first excited state in the complete (λ1, λ2) plane for a 4× 2 cluster. Both results are for a PBC
geometry.

As indicated above, the first-order transitions weaken near the λ1 = λ2 = 1 and possibly

lead to a bulk gapless phase right at that point. Remarkably, our ED calculations on systems

with open boundary conditions show that at this point, in addition to the gapless bulk modes

the system has an additional 22Lx exact zero energy Ising boundary modes on the top and bot-

tom boundary which do not hybridize with the bulk gapless modes due to special subsystem

symmetries (Eq. 3.35). A detailed discussion on the anomalous character of these symmetry

operations in the (λ1, λ2) plane is discussed in Appendix D.4. Such gapless phases with bound-

ary modes have recently being discussed in the context of symmetry-enriched criticality in one

dimension [102, 103] and more recently for related two-dimensional phases[104], however to

the best of our knowledge none of these phases lie in the interjection of such weak SPTs as

here.

We now turn to the important question regarding the nature of the possible gapless phase at

λ1 = λ2 = 1 with extra sub-system symmetry-protected zero energy boundary modes. At the

outset, such a gapless phase is rather remarkable in a system with no continuous symmetries

and hence would be rather novel if found to be stable. As noted above, whether such a gapless

phase is limited to only a single point or extends over a finite region is not clear from our

present ED calculations due to severe finite size effects, however as we shall discuss now, we

think it is the former and this gapless point is rather fragile.
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The first clue to the fragility of this gapless point comes from the rather fine-tuned nature

of the Hamiltonian in Eq. 3.21 which allows for a whole class of sub-system symmetries not

present in the microscopic Hamiltonian and are an artifact of keeping just the second order

terms in Γ. For example, on considering the higher order (O(Γ3/|Kz|3) in perturbation theory)

term for the Γ-Hamiltonian (see Eq. 3.18), such sub-system symmetries are explicitly broken.

However, they serve as important approximate symmetries in discerning the general structure

of the phase diagram in the (λ1, λ2) plane– particularly the gapped part of the phase diagram.

However, for the gapless part of the phase diagram, the absence of these sub-system symmetries

is rather subtle. Indeed the boundary modes are susceptible to symmetry-breaking perturbations

or to boundary interactions which can lead to spontaneous symmetry-breaking at the boundary.

A discussion of such symmetry-breaking terms on the boundary Hamiltonian of the large Γ

phase is shown in section D.4.

To check the stability of the gapless point at λ1 = λ2 = 1, we added simple perturba-

tions that explicitly break the sub-system symmetries, but are still allowed by the microscopic

symmetries and studied the fate of such a Hamiltonian. In particular, we performed ED on

H(δ1, δ2) =(1− δ1)(1− δ1)H(1, 1)

− δ1(1− δ2)
∑
i

τxi − δ2(1− δ1)
∑
⟨ij⟩

τ zi τ
z
j

(5.4)

whereH(1, 1) is the Hamiltonian which belongs to the general Hamiltonian given in Eq. 3.21

with (λ1, λ2) = (1, 1), the second term represents a x-field and the third term is a nearest

neighbor Ising exchange in the z direction, both of which are allowed within the microscopic

symmetries (see Eq. 2.12).

Fig. 5.8 shows the ground state fidelity as a function of the two interpolating parameters,

where we find that while a finite size system shows a GS susceptibility (|∂2Egs

∂δ1
2 |) peak sug-

gesting a phase transition – the peak falls significantly with the inclusion of an Ising coupling

suggesting that the large Γ phase is indeed smoothly connected to a x-paramagnet without any

intervening phase transition within the symmetry allowed parameter space. A further insight

into the nature of the phase is– as more systematically discussed in the next section we also find

that the phase has no topological entropy content and is short-range entangled (see Fig. 5.3).

Interestingly as the system is tuned to a paramagnet this topological entropy content continues

to remain zero showing that the phase is smoothly connected to a trivial state. The behavior of

the energy gaps (∆m) as well as the topological entanglement entropy (see Eq. 5.3) are shown
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Figure 5.8: Behavior of GS susceptibility as the large Γ phase is tuned to a x paramagnet in
presence of varying strengths of Ising perturbation(∼ δ2), see Eq. 5.4. The results are for a
system size N = 16, Lx = 2, Ly = 4 with PBC geometry.

in Fig. D.7 in Appendix D.6.

Together with the above signatures of the Γ phase, we conclude that the λ1 = λ2 = 1 is a

fine-tuned point which even while it is itself gapless, gets gapped out immediately by generic

microscopic symmetry allowed perturbations and the resultant gapped phase is continuously

connected to a trivial paramagnet. This insight as will discuss later will guide both the nature

of the phase and the nature of transitions in the complete KJΓ parameter space.
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CHAPTER 6

GAUGE THEORY DESCRIPTION OF THE PHASES AND PHASE TRANSITIONS

6.1 Gauge theory description of the phases

As the first step towards the gauge theory description, we find it convenient to separate the e

and m charges, and this is done by rotating the spins as outlined in Eq. 3.2. Also, following the

nature of the similarity between FM and AFM anisotropic model in the case of TC Hamiltonian

(see Eq. 3.3 and 3.13), the gauge theory description will be same for both the limit. However,

we should keep in mind that the definition of τ -spins (and τ̃ -spins) is different as described in

Eq. 2.8.

Following usual techniques,[70, 105] we introduce the Ising variables, µα, on the sites and

ρα on the bonds of the square lattice (Fig. 1.1) as follows :

τ̃ zi = µx
aρ

z
abµ

x
b , τ̃xi = ρxab (6.1)

with the Gauss’s law constraint

∏
b∈+a

ρxab = µz
a =

∏
i∈+a

τ̃xi (6.2)

where a(≡ (ax, ay)) and b denote sites the square lattice (fig. 1.1) joined by the bond

i where τ̃i sits. For N sites, there are 2N , τα-spins sitting on the bonds. Hence the total

dimension of the Hilbert space is 22N . In terms of the gauge theory, there are N µ-spins and

2N Z2 gauge potentials ρ leading to a total degree of freedom of 2N × 22N which form a

redundant description. However, for each site, there is one Gauss’s law constraint (Eq. 6.2)

leading to 22N×2N

2N
= 22N physical degree of freedom equivalent to that of the τ spins. Thus

the above mapping leads to a faithful representation.

The physical picture for the above mapping is easy to understand. The Gauss’s law shows

that µz
a = +1(−1) denotes the absence (presence) of an e charge at the sites of the square

lattice in Fig. 1.1. Therefore, µx
a’s are the creation/annihilation operators for e charges at the
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sites, and ρxab’s are the electric fields of the Z2 gauge theory whose flux is related to the density

of the electric charges µz
a through the Gauss’s law. Finally, from Eq. 6.1, we get

∏
i∈□

τ̃ zi =
∏
ab∈□

ρzab (6.3)

This is nothing but the m excitations now given by the lattice curl of the Z2 gauge potential.

At this point, it is useful to also introduce the dual gauge fields where the m charges are

explicit. This is obtained using the standard Z2 version of the electromagnetic duality[106]

τ̃xi = µ̃x
āρ̃

z
āb̄µ̃

x
b̄ ; τ̃ zi = ρ̃xāb̄ (6.4)

where the m charge creation operators, µ̃x
ā are now defined on the sites of the dual lattice,

denoted by ā ≡ Td1(a) ≡ (āx, āy) and b̄ (we use the bar above the symbol to denote dual lattice

sites), obtained by joining the centers of the direct square lattice of Fig. 1.1 such that in the

above expression the bond of the direct lattice denoted by i is bisected by the dual bond joining

the sites ā and b̄. The dual gauge fields, ρ̃α
āb̄

, reside on the links of the dual lattice, and the dual

Gauss’s law is given by

∏
b̄∈+ā

ρ̃xāb̄ = µ̃z
ā =

∏
i∈□ā

τ̃ zi (6.5)

Therefore in this dual representation, ρ̃x
āb̄

is the magnetic field of the Z2 gauge theory whose

divergence is equal to the m charge µ̃z
ā at the site of the dual plaquette. As previously, the dual

representation along with the dual Gauss’s law span the physical Hilbert space. This is further

clarified by the relation between the direct and the dual degrees of freedom which is obtained

by comparing Eq. 6.1 and 6.4, which gives

ρxab = µ̃x
āρ̃

z
āb̄µ̃

x
b̄ (6.6)

where the (ab) bond on the direct lattice bisect the dual bond (āb̄), and
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∏
b∈+a

ρxab = µz
a =

∏
⟨āb̄⟩∈□a

ρ̃zāb̄

∏
b̄∈+ā

ρ̃xāb̄ = µ̃z
ā =

∏
⟨ab⟩∈□ā

ρzab (6.7)

The last equation encodes that while the e and m charges are bosons, they see each other

as a source of π fluxes. In fact, these equations are actually not independent but are related to

each other through duality.

We can use either of the representations discussed above. However, it is often useful to in-

troduce both the charges explicitly, each coupled to its own gauge field and the mutual semionic

statistics is then represented by a mutual Z2 Chern-Simons (SC) action or, [107, 108] in the

continuum limit, a mutual U(1)× U(1) CS theory.[13, 41, 42, 75]

At this point it is worthwhile to note, although the gauge theory description for FM and

AFM TC limits are the same, the symmetry transformation of the τ -spins are different. While

the symmetry transformations of τ -spins are provided in Eq. 2.11 and 2.12 for FM and AFM

limits respectively, after the rotation to τ̃ (Eq. 3.2) the symmetry transformations are discussed

in the appendix A.1 and A.2 for the FM and AFM cases respectively.

Action of the symmetries on the gauge charges and the gauge fields in FM case

Having expressed the elementary excitations, the gauge charges, of the QSL, we now turn

to the action of symmetries on them. From Eq. 2.11, we get the symmetry transformations of

the rotated spins τ̃s using Eq. 3.2 (Table A.2 in Appendix A.1).

Lattice Translations : Under both the translations, along the directions d1 and d2 (see Fig.

1.1), the plaquettes and the vertices are interchanged. Hence the e and m charges are inter-

changed (the original square lattice and its dual get interchanged). This is thus an example of

an anyon permutation symmetry.[109] The translation symmetry acts on the gauge degrees of

freedom in the following manner.

Tdj
:

{µx, µz}a → {µ̃x, µ̃z}Tdj
(a)

{µ̃x, µ̃z}ā → {µx, µz}Tdj
(ā)

{ρx, ρz}ab → {ρ̃x, ρ̃z}Tdj
(ab)

{ρ̃x, ρ̃z}āb̄ → {ρx, ρz}Tdj
(āb̄)

(6.8)
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For translation along the cartesian axes, the lattice vectors are given by x̂ = d1 − d2 and

ŷ = d1 + d2. Under this, the gauge charges and potentials transform as

Tx̂(ŷ) :

{µx, µz}a → {µx, µz}a+x̂(ŷ)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā+x̂(ŷ)

{ρx, ρz}āb̄ → {ρx, ρz}ā+x̂(ŷ),b̄+x̂(ŷ)

{ρ̃x, ρ̃z}āb̄ → {ρ̃x, ρ̃z}ā+x̂(ŷ),b̄+x̂(ŷ)

(6.9)

Time Reversal : The bond-dependent rotation of Eq. 3.2 implies that in the rotated basis,

natural to the Toric code QSL, on the vertical bonds, the τx is odd under time reversal, whereas

on the vertical bonds τ z continues to remain time-reversal odd. This endows the gauge charges

and the gauge fields with non-trivial transformation under time reversal which depends on their

spatial location and is given by

T :

{µx, µz}a → {µx, µz}a
{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā
{ρx, ρz}ab → {(−1)ay+byρx, (−1)ax+bxρz}ab
{ρ̃x, ρ̃z}āb̄ → {(−1)āy+b̄y ρ̃x, (−1)āx+b̄x ρ̃z}āb̄

(6.10)

Reflections about z bond, σv :

σv :

{µx, µz}a → {µx, µz}σv(a)

{µ̃x, µ̃z}a → {µ̃x, µ̃z}σv(a)

{ρx, ρz}ab → {(−1)ay+byρx, (−1)ax+bxρz}σv(ab)

{ρ̃x, ρ̃z}āb̄ → {(−1)āy+b̄y ρ̃x,−1)āx+b̄x ρ̃z}σv(āb̄)

(6.11)

π-rotation about the z-bond, C2z :

C2z :

{µx, µz}a → {µx, µz}C2z(a)

{µ̃x, µ̃z}ā → {(−1)āxµ̃x, µ̃z}C2z(ā)

{ρx, ρz}ab → {(−1)ay+byρx, (−1)ax+bxρz}C2z(ab)

{ρ̃x, ρ̃z}āb̄ → {(−1)āy+āy ρ̃x, (−1)āx+b̄x ρ̃z}C2z(āb̄)

(6.12)
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π-rotation honeycomb lattice centre, Rπ :

Rπ :

{µx, µz}a → {µx, µz}Rπ(a)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}Rπ(ā)

{ρx, ρz}ab → {ρx, ρz}Rπ(ab)

{ρ̃x, ρ̃z}āb̄ → {ρ̃x, ρ̃z}Rπ(āb̄)

(6.13)

With this, we are in a position to investigate the nature of the phase transition out of the

Z2 QSL discussed in the section 3.1.1. The phase transitions out of Z2-QSL to the associated

symmetry-breaking magnetic order and to the paramagnetic phase are discussed in section 7.1,

which is related to the schematic phase diagram is summarized in Fig. 3.1. To this end, it is

worthwhile to continue the symmetry transformations of the gauge charges and fields in the

case of the AFM Kitaev model which we discuss next.

Action of the symmetries on the gauge charges and the gauge fields in AFM case

Following the symmetry transformation of the τ̃ -spins in table A.3 in appendix A.2, we will

now discuss the transformation rules for the gauge charges and gauge fields.

Lattice Translations : Under both the translations, along the directions d1 and d2 (see

Fig. 1.1), the plaquettes and the vertices are interchanged. Hence the e and m charges are

interchanged.

Tdj
:

{µx, µz}a → {µ̃x, µ̃z}Tdj
(a)

{µ̃x, µ̃z}ā → {µx, µz}Tdj
(ā)

{ρx, ρz}ab → {ρ̃x, ρ̃z}Tdj
(ab)

{ρ̃x, ρ̃z}āb̄ → {ρx, ρz}Tdj
(āb̄)

(6.14)

For translation along the cartesian axes, the lattice vectors are given by x̂ = d1 − d2 and

ŷ = d1 + d2. Under this, the gauge charges and potentials transform as

Tx̂(ŷ) :

{µx, µz}a → {µx, µz}a+x̂(ŷ)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā+x̂(ŷ)

{ρx, ρz}āb̄ → {ρx, ρz}ā+x̂(ŷ),b̄+x̂(ŷ)

{ρ̃x, ρ̃z}āb̄ → {ρ̃x, ρ̃z}ā+x̂(ŷ),b̄+x̂(ŷ)

(6.15)
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Time Reversal : Due the bond dependent nature of the τ̃ transformation the gauge degrees

of freedoms transform as:

T :

{µx, µz}a → {µx, µz}a
{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā
{ρx, ρz}ab → {(−1)ay+byρx, (−1)ax+bxρz}ab
{ρ̃x, ρ̃z}āb̄ → {(−1)āy+b̄y ρ̃x, (−1)āx+b̄x ρ̃z}āb̄

(6.16)

Reflections about z bond, σv : This transformation is different compared to the ferromag-

netic case:

σv :

{µx, µz}a → {µx, µz}σv(a)

{µ̃x, µ̃z}a → {µ̃x, µ̃z}σv(a)

{ρx, ρz}ab → {ρx, ρz}σv(ab)

{ρ̃x, ρ̃z}āb̄ → {ρ̃x, ρ̃z}σv(āb̄)

(6.17)

π-rotation about the z-bond, C2z : This transformation is also different compared to the fer-

romagnetic case:

C2z :

{µx, µz}a → {µx, µz}C2z(a)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}C2z(ā)

{ρx, ρz}ab → {−ρx,−ρz}C2z(ab)

{ρ̃x, ρ̃z}āb̄ → {−ρ̃x,−ρ̃z}C2z(āb̄)

(6.18)

π-rotation about honeycomb lattice centre, Rπ : We can obtain the transformation rules

from the Eq. 6.17 and 6.18

Rπ :

{µx, µz}a → {µx, µz}Rπ(a)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}Rπ(ā)

{ρx, ρz}ab → {−ρx,−ρz}Rπ(ab)

{ρ̃x, ρ̃z}āb̄ → {−ρ̃x,−ρ̃z}Rπ(āb̄)

(6.19)

Having discussed the symmetry transformations of the gauge charges and gauge fields for

both FM and AFM limit, in chapter 7 we discuss the theory of phase transition out of Z2 QSL

phase. In the rest of this chapter, we will try to understand a complementary analysis to obtain

the Z2-QSL starting from a symmetry-breaking ground state. To gain insight, we start with the
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ferromagnetic order in the τ -spins for the FM Kitaev model (J < 0 in Eq. 3.7), and so how to

obtain a Z2 QSL by selectively proliferating the domain walls.

6.2 Z2 QSL from the Magnetic Order

While we will later study a controlled field theory for the transition into the magnetically or-

dered phase from the Z2 QSL in chapter 7, it is interesting to understand how to obtain a Z2

QSL by disordering the magnetic order. Specifically, the Z2 QSL can be understood as the

selective proliferation of the domain wall (DW) of the magnetically ordered state, in contrast

to the indiscriminate proliferation of all the domain walls that gives a trivial paramagnet.

As mentioned above in section 3.1.2 for the anisotropic limit of FM Kitaev model, in the

limit J = 0, the ground state wave function of TC model in the rotated basis is given by Eq.

3.4. On the other hand, for JTC = 0, when the Hamiltonian is just the first term of Eq. 3.7,

albeit in the rotated basis, the two-fold degenerate ground states. (To be specific, let us consider

J < 0 such that the ground state in the un-rotated basis is a ferromagnet)

|Ψ±
FM⟩ =

⊗
i

|ψ±
i ⟩ (6.20)

where

|ψ±
i ⟩ =



 |+ 1z̃⟩ ∀i ∈ H

|+ 1x̃⟩ ∀i ∈ V

 | − 1z̃⟩ ∀i ∈ H

| − 1x̃⟩ ∀i ∈ V

(6.21)

for the two time-reversal partner ground states, in the τ̃ -spins.

Generalizing the ideas of Ref. [66], we can think about obtaining the QSL from the spin-

ordered state by selectively proliferating the domain walls of the latter. Consider taking the

above ferromagnetic ground state wave function in the rotated basis and project it in the zero e

and m sector as follows
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Figure 6.1: The |Ψ+
FM⟩ state for one plaquette expanded in the τ̃ z-basis. It is clear that for

two of the contributing terms there is a magnetic charge, Bp = −1 as marked in yellow. Blue
(green) arrows stand for τ̃ z = 1(−1) state. Orange arrows stand for τ̃x = 1 state.

|Ψ+⟩ =
[∏

s

(
1 + As

2

)][∏
p

(
1 +Bp

2

)]
|Ψ+

FM⟩ (6.22)

We note that the two projectors commute with each other. For a plaquette |Ψ+
FM⟩ is shown

in Fig. 6.1 when expanded in the τ̃ z-basis. It is clear that on applying the Bp operator to this

plaquette, the amplitudes of the two contributions that have a m charge (Bp = −1) do not

survive the projection of
∏

p(1+Bp)/2(≡ SB). Extending this argument, we conclude that the

on a torus, acting SB on |ψ+
FM⟩ leads to, up to normalization,

∏
xj

 ∏
p∈jthrow

(
1 +Bp

2

) |Ψ+
FM⟩ ≈

∏
xj

(
1 + Lm

xj

)
|0z⟩ (6.23)

where |0z⟩ is defined in Eq. 3.5. Lm
xj

are the horizontal Wilson loops (see Eq. 3.6) for each

row in the square lattice, with xj being the row index. Thus it consists of closed loops of down

spins on the vertical bonds running along the horizontal direction along the rows. In the above

equation, the product on the right-hand side is expanded to obtain

1 +
∑
xj

Lm
xj
+
∑
xj ̸=xk

Lm
xj
Lm

xk
+ ...

 |0z⟩

=

(∑
e

[
Lm

xk
...
]
+
∑
o

[
Lm

xk
...
])

|0z⟩

(6.24)
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where in the last expression we have collected all the even (first summation) and the odd

(second summation) powers of the Lm operators separately. From Eq. 6.22, it is easy to see

that on application of
∏

s(1 + As)/2(≡ SA), this leads to an equal weight superposition of the

Z2 QSL ground states belonging to two topological sectors, i.e.,

|Ψ+⟩ ∼ |1, 1⟩+ |1,−1⟩ (6.25)

Clearly from Eq. 6.25, Le
y |ψ+⟩ ≈ |1, 1⟩ − |1,−1⟩, this helps us to get :

|ΨToric
G.S. ⟩ ≡ |1, 1⟩ ≈ (1 + Le

y)SASB |Ψ+
FM⟩ . (6.26)

The above equation connects the QSL with the spin-ordered state and the operators can be

interpreted in terms of the domain walls of the spin-ordered state. Expanding the right-hand

side of the above equation, we get

|ΨToric
G.S. ⟩ ∼(1 + Le

y) (1 + (As1 · · ·Asm)(Bp1 · · ·Bpn)) |Ψ+
FM⟩ (6.27)

The first term (1+Le
y)|Ψ+

FM⟩ is a superposition of the ordered state with periodic boundary

and twisted boundary conditions (see Fig. 6.2(a)) along the x direction on the 2-tori for the

spins on the vertical bonds (For the spins on the horizontal bonds both the states have periodic

boundary conditions). Clearly, the position of the twist is a choice and does not affect the

observables in the QSL state. The rest of the terms on the right-hand side are products of As

and Bp operators and they have a straightforward interpretation in terms of the selected domain

walls (defined as the location of frustrating bonds) of the spin order.[66] With the spins located

on the bonds, the domain walls pass through the vertices of the square lattice of Fig. 1.1 and

have two sub-lattice structure. As shown in Fig. 6.2(b)-(d),

the As and the Bp operators create domain walls respectively of the spin ordering on the

horizontal and vertical bonds. An arbitrary product of only As or Bp operators creates such

domain walls of the spin order and all these contributions have an amplitude with a positive

sign as is explicit. For a combined set of As and Bp operators, the sign is given by (−1)m

where m denotes the total overlap of the horizontal bonds among the participating As and Bp
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(a) (b) (c) (d)

Figure 6.2: (a) Domain wall created by twisted boundary condition (Le
y). An electric domain

wall is created by the action of two neighboring As on |Ψ+
FM⟩ is shown in (b), whereas in (c),

a magnetic domain wall is created by a single Bp operator. (d) Both domain walls with even
overlap (see text). (e) Both domain walls with odd overlaps, this contribution has a relative
negative sign (see text). Red arrow denote τ̃x = −1, rest of the arrow definitions follow from
Fig. 6.1

operators. TheAs andBp in Fig. 6.2(d) has zero (even) overlap on the horizontal bond compare

to the single (odd) overlap in Fig. 6.2(e). Thus we have

|ΨToric
G.S. ⟩ ∼ |ΨFM⟩+

∑
α

(−1)mα|dα⟩ (6.28)

where |dα⟩ denotes various domain wall states starting with the ferromagnetic state. Fo-

cusing on a single row of horizontal bonds, the application of two neighboring As only on this

row (for reference Fig. 6.2(b)) leads to two disconnected domain walls. On application of

further Ass belonging to this row, more domain walls are either created or the ones that are

already present get transported along the chain. As a result, the spin on any site on this row of

horizontal bonds locally has an equal superposition of up and down spins (in τ̃ z-basis). This

is nothing but a state where the spins on this row of horizontal bonds are polarized along τ̃x

leading to the gapping out of the e charge. An argument for the row of vertical bonds and them

charge would lead to a similar result. A calculation starting from |ψ−
FM⟩ leads to equal weight

superposition of the other two topological sectors of the QSL. Incidentally one can perform the

above analysis starting with an all up state (in τ̃ z-basis) as was considered in Ref. [66]. In that

case, the action of Bp is trivial as the all up state is already in the zero m sector resulting in a

Z2 QSL. Indeed the right-hand side of the Eq. 6.22 in that case can be interpreted in terms of

the selective domain walls of the all up τ̃ z-ferromagnet.

We can contrast Eq. 6.28 to the ground state of the trivial paramagnet obtained by arbitrarily

proliferating the domain walls of the ferromagnetic state. Such a trivial paramagnet has a wave-
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function of the form

|ΨTrivial
G.S. ⟩ ∼ |ΨFM⟩+

∑
α

|d̃α⟩ (6.29)

which crucially differs from Eq. 6.28 in nature along with the sign structure of the domain

walls. Indeed |ΨTrivial
G.S. ⟩ can be obtained from |ΨFM⟩ by proliferating trivial domain walls using

the τ̃ zi (τ̃
x
i ) operators on the vertical (horizontal) bonds. Such domain wall states clearly lack

the sign structure discussed above.

Inside the ferromagnetic phase, all types of domain walls are gapped. However, depending

on the energetics of the microscopic model their energy costs are different. Hence as a function

of various coupling terms, one can become energetically cheaper than the other within the

ferromagnetic phase without causing a phase transition. This provides a crossover within the

ferromagnetic phase similar to the U(1) case in three dimensions as discussed in Ref. [66].

In this light, it is clear that the Toric code interaction term such as in Hamiltonian in Eq. 7.1

favors decorated (by sign) domain walls energetically whose subsequent proliferation leads to

the QSL. This also suggests that a different perturbation involving single-site spin operators

can lead to a trivial paramagnet starting from the FM. This, we argue below is exactly what the

Γ term does.

To this end, we begin with the phase transition along the line of vertical and horizontal axes

of the phase diagram in Fig. 3.1 starting with the transition between the Z2 QSL and the spin-

ordered state brought about by the Heisenberg interactions and followed by the description of

the transition between the QSL and the trivial paramagnet tuned by the pseudo-dipolar term.

Here we note that as indicated previously, we expect that the transition between the ferromagnet

and the trivial paramagnet is described by a transverse field Ising model whose transition is well

understood and belongs to the well known 3d Ising universality class.
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CHAPTER 7

FIELD THEORY

In this chapter, we discuss the theory of phase transitions out of Z2-QSL. In the first part of this

chapter, we start with the various phase transitions between the phases in the anisotropic limit

of the FM Kitaev model (section 3.1), for which the schematic phase diagram is summarized

in Fig. 3.1, subsequently, we discuss the phase transitions between the various phases in AFM

Kitaev model, the phases are described in section 3.2 and Fig. 3.9.

7.1 Phase transition in FM anisotropic Kitaev limit

7.1.1 Phase transition between QSL and the spin ordered phase

Along the vertical axis of Fig. 3.1 at Γ = 0, there are two competing phases– the Z2 QSL for

J ∼ 0 and the spin ordered phase in the Heisenberg limit, J/|K| ≫ 1. While, as we already

described, the QSL can be understood in terms of the selective proliferation of domain walls

of the spin-ordered phase, to understand the phase transition between them, it is much more

convenient to start with the QSL and obtain the description of the transition in terms of the soft

modes, as a function of J , of its excitations– the e and m charges.

To understand this transition we re-write the minimal Hamiltonian (in Γ = 0 limit)in the

rotated basis (Eq. 3.2) to obtain

H̃FM
Γ=0 = J

∑
⟨i,j⟩,(i∈H;j∈V )

τ̃ zi τ̃
x
j − JTC

[∑
s

As +
∑
p

Bp

]
(7.1)

whereAs andBp are defined below Eq. 3.3. We note that the perturbation by the Heisenberg

term is different from that considered in Ref. [105] of [110] as in the present case a term like

τ̃
z(x)
i τ̃

z(x)
j (where i ∈ V and j ∈ H) is forbidden by time reversal.

To the leading order in J , the pertinent Hamiltonian is given by Eq. 7.1 which generates the

dispersion for the localized (in the exactly solvable Toric code limit) bosonic e and m charges

eventually resulting in soft-modes which condense to give rise to the spin order as we shall

show below. We neglect the higher order terms in J and later shall return to them to understand

their effects.
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In terms of the gauge charges of Eq. 6.1, the Hamiltonian in Eq. 7.1 becomes

H̃FM
Γ=0 = J

∑
⟨ab⟩∈H;⟨bc⟩∈V

[µx
aρ

z
abµ

x
b ] [ρ

x
bc]− JTC

∑
a

µz
a − JTC

∑
p

∏
⟨ab⟩∈p

ρzab (7.2)

The second and the third term represents the energy costs for creating e and m charges

respectively. Indeed for J = 0, the theory is nothing but an even Ising gauge theory[111] that

describes the Z2 QSL.

The first term, on the other hand, creates and mobilizes both e and m charges. Of central

importance for our purpose is the particular form of the hopping term– both e and m charges,

once created, can only disperse along the horizontal directions (with reference to Fig. 1.1) at

this leading order of J . A somewhat similar effect was observed in dopped isotropic Kitaev

model.[112] The decoupling of various horizontal electric and magnetic “chains” lead to a

dimensional reduction in this order. However, different such chains, as we shall see below, get

coupled by higher order terms. This generically leads to anisotropic kinetic energy for the e

and m charges and hence one expects anisotropic correlation lengths.

Gauge mean field theory

We start our analysis by decoupling the first term in Eq. 7.2 within gauge mean field

theory[113] where we systematically neglect the gauge fluctuations. A mean-field decoupling

of the gauge charges and the gauge fields in the e and m sectors for the first term in Eq. 7.2:

[µx
aρ

z
abµ

x
b ] [ρ

x
bc] → ⟨µx

aρ
z
abµ

x
b ⟩ρxbc + µx

aρ
z
abµ

x
b ⟨ρxbc⟩, gives

H̃FM
Γ=0 → H̃GMFT

Γ=0 = H̃GMFT
Γ=0 (e) + H̃GMFT

Γ=0 (m) (7.3)

where

H̃GMFT
Γ=0 (e) =

∑
⟨ab⟩∈H

Jabµ
x
aρ

z
abµ

x
b − JTC

∑
a

µz
a (7.4)

describes the e sector with

Jab = J
[
⟨ρxb,b−ŷ⟩+ ⟨ρxb,b+ŷ⟩+ ⟨ρxa,a−ŷ⟩+ ⟨ρxa,a+ŷ⟩

]
(7.5)

being the effective coupling and
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H̃GMFT
Γ=0 (m) =

∑
⟨āb̄⟩∈H

Jāb̄µ̃
x
āρ̃

z
āb̄µ̃

x
b̄ − JTC

∑
ā

µ̃z
ā (7.6)

describes the m sector with

Jāb̄ = J
[
⟨ρ̃xb̄,b̄−ŷ⟩+ ⟨ρ̃xb̄,b̄+ŷ⟩+ ⟨ρ̃xā,ā−ŷ⟩+ ⟨ρ̃xā,ā+ŷ⟩

]
(7.7)

Clearly, at this order in J , the e andm sectors completely decouple into a series of transverse

field Ising chains in the horizontal direction in Fig. 1.1. For the horizontal direction, we can

choose a gauge

ρza,a+x̂ = ρ̃zā,ā+x̂ = +1 (7.8)

as these links do not cross. The Z2 QSL is then the paramagnetic phase of this decoupled

transverse field Ising chains where the e and m charges are both gapped. The Heisenberg term

gives kinetic energy to both the e andm charges in the horizontal direction which then develops

soft modes which condense to give rise to ⟨µx⟩ ≠ 0 and ⟨µ̃x⟩ ≠ 0 for the respective chains.

For the above gauge, the soft mode develops at zero momentum as shown in Fig. 7.1(a) for

both the e and m sectors. This can be denoted by

ν̂(1)e = 1; ν̂(1)m = 1 (7.9)

for the e sector on the direct lattice and m sector on the dual lattice respectively.

Application of time reversal symmetry (see Eq. 6.10) gives the time reversal partner soft

mode for both the e and m sectors as shown in Fig. 7.1(b) which are given by

ν̂(2)e = eiπx; ν̂(2)m = eiπX (7.10)

for the e sector and m sectors. The cartesian coordinates of the direct and dual lattices are

given by (x, y) and (X, Y ) with X = x + 1/2 and Y = y + 1/2. Other symmetries do not

generate any further soft modes and hence the transition out of the QSL into the spin-ordered

phase is described in terms of the above soft modes.
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Figure 7.1: The electric (black) and the magnetic (red) soft modes on the direct and dual lattice
respectively. The ± denotes µx = ±1 and µ̃x = ±1 respectively. Fig. (a) and (b) show the
two time-reversal partners respectively, (ν̂(1)e , ν̂

(2)
e ) for the electric and (ν̂

(1)
m , ν̂

(2)
m ) the magnetic

sectors.

Soft modes

The soft mode expansion for the e sector is therefore given by[75, 108, 114]

Ψe(r, τ) = ϕ(1)
e (r, τ) ν̂(1)e + ϕ(2)

e (r, τ) ν̂(2)e (7.11)

where (ϕ
(1)
e (r, τ), ϕ

(2)
e (r, τ)) are real fields that represent amplitudes of the electric soft

modes. Similarly, for the m sector, the soft mode expansion is given by

Ψm(r, τ) = ϕ(1)
m (r, τ) ν̂(1)m + ϕ(2)

m (r, τ) ν̂(2)m (7.12)

where (ϕ
(1)
m (r, τ), ϕ

(2)
m (r, τ)) are real amplitudes of the magnetic soft modes.

The Higg’s phase obtained by condensation of a combination of the above modes is nothing

but the spin-ordered phase as we shall see below, while the “uncondensed” phase represents

the Z2 QSL. However, due to the non-trivial projective symmetry group (PSG) transformation

of the soft modes under various symmetries of the system and due to the non-trivial mutual

semionic statistics between the e and the m excitations, the construction of the critical theory

requires careful analysis starting with the PSG analysis of the soft mode amplitudes. To this

end, it is useful to define the complex soft mode amplitudes

Φe = ϕ(1)
e + iϕ(2)

e = |Φe|eiθe (7.13)
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and

Φm = ϕ(1)
m + iϕ(2)

m = |Φm|eiθm (7.14)

where we have suppressed the arguments for clarity. Now, for the different symmetries

considered in Eqs. 6.8-6.13, we have

Td1 :

 Φe → Φm

Φm → Φ∗
e

Td2 :

 Φe → Φ∗
m

Φm → Φe

Tx :

 Φe → Φ∗
e

Φm → Φ∗
m

Ty :

 Φe → Φe

Φm → Φm

T :

 Φe → −iΦe

Φm → −iΦm

σv :

 Φe → iΦ∗
e

Φm → iΦ∗
m

C2z :

 Φe → iΦ∗
e

Φm → iΦ∗
m

Rπ :

 Φe → Φe

Φm → Φ∗
m

(7.15)

where we have considered the origin of the coordinates to be centered at the site of the

direct lattice. Clearly under Td1 and Td2 the e and m soft modes transform into each other–

as mentioned above– due to the fact that the horizontal and vertical bonds interchange under

these transformations. This is an example of anyon permutation symmetry.[109, 115] Due to

this, the mass of the e and m excitations are forced to be the same in the critical theory.

The gauge invariant spin order parameter can be constructed out of the above soft modes[75,

108, 114] by considering the symmetry transformation, as

τ̃ zi ∼ |Φe|2 cos(2θe) ∀i ∈ Horizontal bonds

τ̃xi ∼ |Φm|2 cos(2θm) ∀i ∈ Vertical bonds (7.16)

Among other transformations, it is clear from the symmetry transformation table that, as

expected, the above two spin order parameters are odd under time-reversal symmetry, T .

A crucial ingredient missing from the above analysis of the soft modes is the mutual

semionic statistics of the electric and magnetic modes. This can either be implemented using a

U(1)×U(1) mutual Chern-Simons (CS) theory[13, 41, 42, 75] or a slightly more microscopic

mutual Z2 CS theory.[107, 108] Here we shall use the U(1)× U(1) formalism.
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Mutual semionic statistics and the U(1)× U(1) mutual Chern-Simons action

Within the U(1) × U(1) mutual CS formalism,[41, 75, 116] the mutual semionic statistics

between the e and m charges is implemented by introducing two internal U(1) gauge fields

Aµ and Bµ that are minimally coupled to the electric (Φe) and magnetic (Φm) soft modes

respectively. The PSG transformations of these fields are obtained from the fact that they are

minimally coupled to Φe and Φm respectively. For the different symmetries in Eqs. 6.8-6.13,

this leads to

Td1 :

 Aµ → Bµ

Bµ → −Aµ

Td2 :

 Aµ → −Bµ

Bµ → Aµ

Tx :

 Aµ → −Aµ

Bµ → −Bµ

Ty :

 Aµ → Aµ

Bµ → Bµ

T :

 Aµ → −Aµ,

Bµ → −Bµ

σv :

 Ax → −Ax, Ay → Ay, Aτ → −Aτ

Bx → −Bx, By → By, Bτ → −Bτ

C2z :

 Ax → Ax, Ay → −Ay, Aτ → −Aτ

Bx → Bx, By → −By, Bτ → −Bτ

Rπ :

 Ax → −Ax, Ay → −Ay, Aτ → Aτ

Bx → Bx, By → By, Bτ → −Bτ

(7.17)

The mutual U(1)×U(1) CS action in continuum in (2+1) dimensions is then given by[41,

75]

SCS =
i

π

∫
d2rdτ ϵµνλAµ∂νBλ (7.18)

where µ, ν, λ = x, y, τ . It is easy to see that the above action implements the semionic

statistics,[117] for example, by extremizing SCS with respect to Aµ in presence of a static e

charge density, ρe, which gives

ρe =
1

π
(∂xBy − ∂yBx) (7.19)
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Therefore the m charge, Φm, sees an odd number of e charge as a source of π flux as ex-

pected for a Z2 QSL. Note that both Aµ and Bµ have their respective Maxwell terms. However

such terms are irrelevant in presence of the CS term and the respective photons gain mass.[117]

Using the symmetry transformation in Eq. 7.17, we find that the CS action (Eq. 7.18) is odd

under T andRπ. However, we note that since the attachment of π and −π fluxes are equivalent,

the above CS theory is in accordance with these symmetries.[75]

The critical theory

With this, we can now write down the continuum critical action which is given by

Sc =

∫
d2rdτ L+ SCS (7.20)

where SCS is given by Eq. 7.18 and

L = Le + Lm + Lem (7.21)

with

Le = |(∂µ − iAµ)Φe|2+u|Φe|2 + v|Φe|4 − λ
[
(Φe)

4 + (Φ∗
e)

4
]

(7.22)

Lm = |(∂µ − iBµ)Φm|2+u|Φm|2 + v|Φm|4 − λ
[
(Φm)

4 + (Φ∗
m)

4
]

(7.23)

Lem = w
[
(ΦeΦm)

2 + (ΦeΦ
∗
m)

2 + c.c.
]

(7.24)

At this stage, it is useful to draw attention to three important features of the above critical

theory. Firstly, at the GMFT level (Eqs. 7.4 and 7.6), different horizontal chains are decoupled.

Hence the soft modes do not have any rigidity in the vertical direction. However, fluctuations

beyond the GMFT level lead to interactions between different horizontal chains. This is clear

from Eq. 7.2, where each horizontal chain of e charges is coupled with twom horizontal chains

at Y = y ± 1/2. Thus integrating out the high energy m modes generate interaction between

neighboring electric chains and thereby provides effective dispersion to the electric soft mode

along the vertical direction. Additional contributions to both horizontal and vertical dispersions
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are further obtained from higher-order corrections of the perturbation theory. However, the

above mechanism leads to anisotropic dispersion, and the couplings for horizontal and vertical

directions for the kinetic terms are indeed different. However, such anisotropy can be scaled

away by simultaneously re-scaling y (say) and the fields. Such anisotropy would be reflected

in terms of correlation functions in terms of lattice unit of length.

Secondly, due to Eq. 7.15 and 7.17, the coupling constants of the e and m modes are equal.

In particular, the mass is related to the microscopic coupling constants as u ∼ (JTC − J) for

both the e and m charges. This ensures that both the e and m soft modes condense together

unless the translation symmetries, Td1 and/or Td2 are spontaneously broken. In terms of the

soft modes, this is then the continuum version of a Z2 anyon permutation symmetry which

places very strong constraints on the structure of the critical theory and ensures the correct

phases as well as phase transitions.

Finally, for λ = w = 0, the system conserves fluxes in both the e and m sectors, Ue(1) and

Um(1), separately.[75] Since, due to the mutual CS term, the fluxes of Aµ(Bµ) are attached to

m(e) particle densities, the above flux conservation results in charge conservation for both e

and m charges. This is broken down when λ ̸= 0 to Ze
4 and Zm

4 . Further, w ̸= 0 indicates

short-range interaction between the e and m soft modes as expected, say, from Eq. 7.2. Both

these terms receive contributions from various terms in the perturbation theory and as such

these coupling constants can be both positive or negative. For w ̸= 0 the symmetry is broken

down further to Z4. We note that, in principle, the λ term can be generated from the w term at

the second order level due to the integration of high energy modes with λ ∼ w2/u > 0, but we

keep both these symmetry-allowed terms as independent for our discussion.

The phases

The critical theory clearly captures the two phases as expected. At the mean-field level, for

u > 0, we have

⟨Φe⟩ = ⟨Φm⟩ = 0 (7.25)

Therefore both of them can be integrated out and the low energy effective theory is given

by SCS (Eq. 7.18) which is the Z2 QSL with the right low energy spectrum consisting of the

gapped electric and magnetic charges and a four-fold ground state degeneracy in the thermo-

dynamic limit on a two-tori.[41, 75]
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For u < 0 both the electric and magnetic modes condense, i.e.,

⟨Φe⟩, ⟨Φm⟩ ≠ 0 (7.26)

Therefore both Aµ and Bµ gauge fields acquire mass through the Anderson-Higgs mecha-

nism and hence their dynamics can be dropped. To understand the nature of this phase we note

that the fourfold terms in Eqs. 7.22 and 7.23 becomes (using Eqs. 7.13 and 7.14)

∼ −λ
(
|Φe|4 cos(4θe) + |Φm|4 cos(4θm)

]
(7.27)

Therefore, for λ > 0 the free energy minima occurs for

θe, θm = 0,±π/2, π (7.28)

which gives the two possible symmetry broken partner spin ordered states as is now evident

from Eq. 7.16 with the spin order parameters being :

⟨τ̃ zi ⟩ ∼ ⟨|Φe|2 cos(2θe)⟩ ∼ ±1 ∀i ∈ Horizontal bonds

⟨τ̃xi ⟩ ∼ ⟨|Φm|2 cos(2θm)⟩ ∼ ±1 ∀i ∈ Vertical bonds (7.29)

Further the state also breaks σv and C2z. Note that the order parameter is indeed invariant

under the Z2 gauge transformations and individual gauge charges are absent in the low energy

spectrum in the spin-ordered phases due to the mutual CS term.

In this phase, the interaction between the electric and the magnetic modes (Eq. 7.24) can

be written as

Lem ∼ w|Φe|2|Φm|2 cos(2θe) cos(2θm) (7.30)

For w < 0(> 0), this results in ferromagnetic (antiferromagnetic) spin ordering in terms

of τ̃x (on horizontal bonds) and τ̃ z (on the vertical bonds) giving rise to the two states shown

in Fig. 3.2. The latter choice also breaks translation symmetry under Td1 and Td2 which

interchanges a vertical and horizontal bond. The above phenomenology matches with the un-

derlying microscopics for w ∼ J . Therefore the above critical theory indeed reproduces the

right phases.

73



It is interesting to note that for λ < 0, Eq. 7.27 shows that the free energy is minimised for

θe, θm = ±π/4,±3π/4 (7.31)

It is easy to see that this phase is time-reversal symmetric. However, note that in such a

state the order parameters

⟨|Φe|2 sin(2θe)⟩, ⟨|Φm|2 sin(2θm)⟩ (7.32)

are non-zero. These order parameters however break translation symmetry in the horizontal

direction, Tx, and possibly represent some type of bond nematic state. However, for the type

of microscopic model that we are concerned with– as our numerical calculations suggest– this

bond nematic is not relevant and hence we shall not pursue it further.

The critical point

We now turn to the critical point. It is useful to start by neglecting the anisotropic terms in

the critical theory described by Eq. 7.21 by putting λ = w = 0. The critical action can then be

written as

S =

∫
d2rdτ [Le + Lm] + SCS (7.33)

where in this limit

Le = |(∂µ − iAµ)Φe|2+u|Φe|2 + v|Φe|4 (7.34)

Lm = |(∂µ − iBµ)Φm|2+u|Φm|2 + v|Φm|4 (7.35)

and SCS given by Eq. 7.18.

This class of mutual U(1)× U(1) CS theories has been described in a number of different

contexts.[41, 75, 116, 118] Most pertinent to our discussion is Ref. [75] where such theories

were considered in the context of transitions out of a Z2 QSL– similar to the present case.

However, there, in absence of the anyon-permutation symmetry that leads to a constraint on the

masses as given in Eq. 7.37, the above class of transitions in that case turns out to be fine-tuned

and in general separated by an intermediate e-Higgs or m-Higgs phase each characterized by
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a distinct spontaneously broken symmetry. Hence the anyon-permutation symmetry due to the

microscopic symmetry Td1(2)
(Eqs. 6.8 and 7.15) is crucial to protect the above critical point

facilitating the direct phase transition in the present case.

Ref. [118] studied the lattice version of the above model for generic values of the coupling

parameters including the self-dual line which is directly relevant to us. Along the self-dual line,

it was found[118] the Z2 QSL phase gives way to a line of first-order transitions (separating

the e and m condensates– not applicable to our work) before it leads to a e − m condensed

phase which is characterized exactly through the order parameters as we find here (Eq. 7.16).

The meaning of the line of first-order phase transition along the self-dual line is not clear in the

present context since our severely system size limited numerics did not find any signature of it.

To gain complementary insights into the critical theory, it is useful to apply particle-vortex

duality[119, 120] for bosons in (2 + 1) dimensions to either the e (in Eq. 7.34) or m (in Eq.

7.35) sector. Let us choose to dualise the m sector to get the dual of Eq. 7.35,

LD
m = |(∂µ − ibµ)Φ

D
m|2+uD|ΦD

m|2 + vD|ΦD
m|4 +

i

2π
ϵµνλbµ∂νBλ (7.36)

where ΦD
m is dual to the m soft mode, Φm which is coupled to the internal gauge field bµ.

In other words, ΦD
m is the vortex of the m field, Φm. uD and vD are the respective couplings. It

is clear that when the m-vortex condenses, i.e., ⟨ΦD
m⟩ ̸= 0, then the m-charge, Φm, is gapped,

i.e. ⟨Φm⟩ = 0, and vice versa. Therefore on general grounds, we expect that at low energies,

the dual couplings are given by

uD = −κu vD = ηv (7.37)

where κ, η > 0 are proportionality constants and u, v are the coupling constants of the

original theory of Eq. 7.35. This ensures that the m-vortex vacuum is mapped to the m-charge

condensate and vice-versa. From Eq. 7.62 and 7.36 we can now integrate out Bµ to get

bµ + 2Aµ = 0 (7.38)

which when put back into Eq. 7.36, gives

LD
m = |(∂µ + i2Aµ)Φ

D
m|2 − κu|ΦD

m|2 + ηv|ΦD
m|4 (7.39)
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Figure 7.2: The phase diagram corresponding to the critical Lagrangian, Lc in Eq. 7.41. At the
mean-field level, the bare u = 0 corresponds to the synchronized condensing and gapping out
of ΦD

m and Φe respectively as shown. While, this may appear fine-tuned, as explained in the
text, the above picture is indeed generic and is protected by symmetry.

The critical action is now given by

S =

∫
d2rdτ Lc (7.40)

where

Lc =|(∂µ − iAµ)Φe|2 + |(∂µ + i2Aµ)Φ
D
m|2

+ u(|Φe|2 − κ|ΦD
m|2) + v(|Φe|4 + η|ΦD

m|4) + g(ϵµνλ∂νAλ)
2 (7.41)

where we have now explicitly written the Maxwell term for Aµ with coupling constant

g(> 0) in absence of any CS term. The resultant phase diagram is shown in Eq. 7.2 where Φe

(ΦD
m) are condensed for u < 0(> 0) with u = 0 being the critical point where, as an increasing

function of u across u = 0 lead to simultaneous condensation and un-condensation (gapping

out) of ΦD
m and Φe respectively. Clearly, this is true irrespective of the renormalization of the

bare mass-scale, u, and is not fine-tuned.

The ⟨ΦD
m⟩ ≠ 0 phase represents the QSL where both the e and m charges are gapped.

However due to the fact that ΦD
m carries charge-2 of the U(1) gauge field Aµ, on condensing

ΦD
m the gauge group is reduced toZ2 as is appropriate for theZ2 QSL. In this phase, both Φe and

Φm exist as gapped excitations. To uncover the mutual semionic statistics, we remind ourselves

that Φm corresponds to π-flux of Aµ due to the mutual CS term (Eq. 7.18). In the Higgs phase

of ΦD
m, such fluxes are gapped. However, once excited, the Φe charges are sensitive to it by

virtue of their minimal coupling to Aµ as given by Eq. 7.41. This description of the Z2 QSL is

quite similar to that obtained by disordering a superconductor through condensation of charge-

2 vortices.[107, 114] Indeed in the present case all the even charges of Aµ are condensed while

the odd charges are gapped out which is equivalent to the conservation of the e and m charges
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modulo 2– as expected in a Z2 QSL. The above description of the Z2 QSL remains unchanged

even in the presence of the anisotropy terms in Eq. 7.21.

The spin-ordered state, on the other hand, is obtained for u < 0 when both Φe and Φm

(and hence ΦD
m is gapped) are condensed as we described earlier. The photon of Aµ acquires

a gap by the Anderson-Higgs mechanism. Indeed all odd charges of Aµ are condensed in this

spin-ordered phase. We, of course, could have performed the particle-vortex duality in the e

sector in Eq. 7.34 to obtain an equivalent critical theory in terms of the m charges, Φm and e

vortices, ΦD
e . In particular, we get

LDual
c =|(∂µ − iBµ)Φm|2 + |(∂µ + i2Bµ)Φ

D
e |2

+ u(|Φm|2 − κ|ΦD
e |2) + v(|Φm|4 + η|ΦD

e |4) + g(ϵµνλ∂νBλ)
2 (7.42)

which is same as Eq. 7.41 once we identify the following mapping :

(Φe,Φ
D
m, Aµ) ⇔ (Φm,Φ

D
e , Bµ) (7.43)

which shows that the critical theory is self-dual.[121]

Turning to the anisotropy terms in the critical action in Eq. 7.21 by considering λ,w ̸= 0

in Eqs. 7.22-7.24. Due to the symmetry under Td1(2)
, we expect that the scaling dimension of

the Φe and Φm are equal at the critical point. Hence, in order to judge the relevance of these

quartic terms, for our formulation (Eq. 7.41), it is easiest to start with the (Φm)
4 term. From

Eq. 7.36 and 7.38, that the current of Φm is related to the flux of Aµ as

jµm =
1

2π
ϵµνλ∂νbλ = − 1

π
ϵµνλ∂νAλ. (7.44)

The anisotropic term breaks the O(2) symmetry of the m sector in Eq. 7.41 down to Z4

since four Φm charges can be created/annihilated. Each such charge being proportional to π

flux of Aµ the (Φm)
4 term therefore corresponds to the doubled monopole operator[122] of Aµ.

For an Abelian Higgs model for a superconductor, such doubled monopoles may be irrelevant

in a parameter regime[123] raising hope that the present transition may indeed be controlled by

the λ = w = 0. However, the critical theory needs to be studied in further detail to settle this

issue.
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The critical point described by u = 0 involving the simultaneous condensation and gapping

out of the even and odd charges of Aµ respectively and the gauge flux of Aµ being conserved is

novel and is expected to be different from the transition in Abelian Higgs model[120] on one

hand and the transition in the dual Abelian Higgs model describing the condensation of paired

vortices[107, 114] on the other.

The critical theory (Eq. 7.40) therefore suggests that the deconfined quantum phase tran-

sition between the Z2 QSL and the magnetically ordered phase is described by a modified

self-dual modified Abelian Higgs model (MAHM) with conserved flux. In absence of the mu-

tual CS term, the critical action in Eq. 7.20 describes an easy-plane non-compact projective

field theory (easy-plane NCCP1) studied in Ref. [121] while the one with the mutual CS term

was studied in Ref. [118]. In the second study– as mentioned before– it was found that the

QSL and the e−m condensate phases are separated by a line of first-order transition along the

self-dual line. The relevance of this line is not clear in the present context. Hence, at present,

it is not clear to us whether the present self-dual modified Abelian Higgs model belongs to the

same universality class at easy-plane NCCP1.

The transition, therefore, is an example of a deconfined quantum critical point.[5] The criti-

cal theory is not written in terms of the order parameters but the low energy degrees of freedom

of the Z2 QSL. Characteristic of deconfined critical points, the spin order parameter is bilinear

in terms of the critical field– the gauge charges. Therefore we expect a large anomalous dimen-

sion for the order parameter which naively should be twice that of the critical field. [121] The

above critical theory is expected to be stable in presence of small Γ as it does not add any new

symmetry-allowed terms to the critical theory at the lowest order, thus resulting in the phase

diagram as shown in Fig. 3.1 for small Γ.

7.1.2 Effect of an external Zeeman field

So far we have neglected the experimentally relevant possibility of turning on an external mag-

netic field (we refer to it as a Zeeman field to avoid confusion) on Eq. 1.1 in the anisotropic

limit. This perturbation in the isotropic limit is given by

HFM
Zeeman = −

∑
i

h · σi (7.45)

for the spins, σα
i on the sites of the honeycomb lattice, where h = (hx, hy, hz) is the external
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Zeeman field. In the anisotropic limit (|h|/Kz) that we are concerned with, the degenerate

perturbation theory (Eq. 2.9) gives rise to the following addition in the leading order of h to

Eq. 2.13:

HFM
z = −2hz

∑
i

τ zi (7.46)

for the τ -spins on the z-bond in the unrotated basis. This is clearly in agreement with the

fact that τ zi is the time reversal odd component of the non-Kramers doublet (Eq. 2.11). In the

rotated basis (Eq. 3.2) becomes

H̃FM
z = −2hz

[∑
i∈H

τ̃ zi +
∑
i∈V

τ̃xi

]
(7.47)

where the first sum is over the horizontal bonds and the second sum is over the vertical

bonds. There are higher order terms in the above Zeeman field including cross terms involving

the other perturbing terms in VFM of Eq. 2.1. We neglect the detailed structure of these

higher-order time-reversal symmetry-breaking terms. Notice that the structure of the above

term is “opposite” to that of the leading order pseudo-dipolar term given by Eq. 3.9 with a

crucial difference that unlike Eq. 3.9, the present term in Eq. 7.47 is time reversal odd since

the Zeeman field breaks the time-reversal symmetry. We explore this relationship between the

Zeeman and the pseudo-dipolar perturbations in the next section in the context of the latter.

In terms of the gauge theory, Eq. 7.47 becomes

H̃FM
z =− 2hz

∑
a

µx
aρ

z
a,a+x̂µ

x
a+x̂ − JTC

∑
a

µz
a

− 2hz
∑
ā

µ̃x
āρ̃

x
ā,ā+x̂µ̃

x
ā+x̂ − JTC

∑
ā

µ̃z
ā (7.48)

This, therefore, leads to the dispersion of the e andm charges along the horizontal direction

which renormalizes the results of Eq. 7.4 and 7.6 for the e and m sectors respectively.

Crucially, however, it lifts the degeneracy of the two time-reversal partner soft modes in Eq.

7.11 and 7.12. This allows the following term in addition to the ones already in the soft mode

critical action in Eq. 7.20

Sz =

∫
dxdτ Lz (7.49)
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where,

Lz = −h̃
[
(Φe)

2 + (Φ∗
e)

2 + (Φm)
2 + (Φ∗

m)
2
]

= −2h̃
[
|Φe|2 cos(2θe) + |Φm|2 cos(2θm)

]
(7.50)

with h̃ ∝ hz. This clearly lifts the degeneracy between the two time-reversal invariant spin

states. In presence of this second order term (∝ cos 2θ), the fourth order Z4 anisotropy terms

(proportional to λ cos 4θ) in Eq. 7.22 and 7.23 can be neglected.

The Z2 QSL remains unchanged for u − h̃ > 0. However, for u − h̃ < 0, inside the

spin-ordered phase, for h̃ > 0(< 0), we have

θe, θm = 0, π(±π/2) (7.51)

which is nothing but the polarised phase. This is indeed true forw < 0 in the e−m coupling

term in Eq. 7.24 or equivalently Eq. 7.85 where the h̃ = 0 state is a ferromagnet. However,

for w > 0, where the h̃ = 0 ground state is antiferromagnetic, we expect a first-order spin-flop

transition from the antiferromagnet to a polarised phase within the spin-ordered phase.

The critical point is given for u − h̃ = 0. It turns out that for J < 0, this critical point is

similar to that obtained by destabilizing the Z2 QSL using the pseudo-dipolar interactions, Γ.

Hence to avoid repetition, we first develop the soft modes of the pseudo-dipolar limit and then

return to discuss the critical point for both the Zeeman and the pseudo-dipolar limits together.

7.1.3 Phase Transition between QSL and the trivial paramagnet

Having understood the transition to the spin-ordered phase from the QSL in section 7.1.1 we

now turn to the transition between the QSL and the trivial paramagnet accessed by tuning the

Γ term (horizontal axis of the Fig. 3.1). Again a controlled description of the phase transition

is achieved by starting with the QSL and understanding the fate of its excitations– the gauge

charges. The effect of the Zeeman field– the topic of the last subsection– sheds crucial insight

into this transition. This becomes even more clear by comparing the leading order perturbations

due to the hz (Eq. 7.47) and Γ (Eq. 3.9). It is clear that the reflection about the x = y line

of the square lattice in Fig. 1.1 and passing through the sites maps all the vertical bonds to

horizontal bonds and vice versa and thereby mapping Eq. 7.47 to Eq. 3.9 when we perform

a concomitant transformation of hz → −Γ. We note that under the above reflection the Toric
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code Hamiltonian (Eq. 3.3) remains unchanged. However, now the τ̃x(τ̃ z) on the horizontal

(vertical) bonds are time-reversal odd. This is in accordance with our previous observation that

Eq. 3.9 is time-reversal even. As a consequence, a trivial time-reversal symmetric paramagnet

is realized due to the pseudo-dipolar perturbations, Γ.

Decoupled vertical Ising chains

Similar to the case of Heisenberg interactions, we first incorporate the leading order pertur-

bation in Γ given by Eq. 3.9 to the QSL Hamiltonian in Eq. 3.3 in the rotated basis. In terms

of the gauge fields and the gauge charges, this becomes

H̃FM
J=0 =2Γ

∑
a

µx
aρ

z
a,a+ŷµ

x
a+ŷ − JTC

∑
a

µz
a

+ 2Γ
∑
ā

µ̃x
āρ̃

x
ā,ā+ŷµ̃

x
ā+ŷ − JTC

∑
ā

µ̃z
ā

(7.52)

Contrast this with the effect of the Zeeman field given in Eq. 7.48. Here, evidently, the first

(second) line denotes a series of now decoupled vertical, with respect to Fig. 1.1, transverse

field Ising chains[124] representing the e(m) charges as opposed to the horizontal ones in

Eq. 7.48. This can alternatively be looked up as a consequence of the x = y reflections

discussed above which converts the horizontal chains to vertical chains. This leads to important

differences, particularly regarding the nature of the phase that the QSL transits into due to the

non-trivial projective implementation of the time-reversal symmetry (Eq. 6.10).

Similar to Eq. 7.8, we can choose the gauge

ρza,a+ŷ = ρ̃za,a+ŷ = +1 (7.53)

as these links do not cross. Thus we get, from Eq. 7.52

H̃J=0 =2Γ
∑
a

µx
aµ

x
a+ŷ − JTC

∑
a

µz
a + 2Γ

∑
ā

µ̃x
ā̃̃µ

x
ā+ŷ − JTC

∑
ā

µ̃z
ā (7.54)

The paramagnetic phase of each vertical chain– both for e and m sectors– for Γ = 0 is

clearly the Z2 QSL. On increasing Γ, the electric and the magnetic charges now develop dis-

persions along the vertical direction and when the minima of such dispersion hits zero they

condense destroying the QSL.

For Γ < 0(> 0) the soft mode for e andm sectors are given by a charge arrangement similar
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to Fig. 7.1(a) (7.1(b)). However, very crucially, unlike the Heisenberg case of the previous sec-

tion 7.1.1, these two soft modes are not degenerate because they are not time-reversal partners

as is evident from Eq. 6.10. This will become more evident below. Anticipating the difference,

we, therefore, denote these two soft modes as

ξ̂(1)e = 1 ξ̂(2)e = eiπx (7.55)

for the e sector on the direct lattice and

ξ̂(1)m = 1 ξ̂(2)m = eiπX (7.56)

for the m sector on the dual lattice.

Indeed, as discussed above, for a given choice of Γ the two states have different energies

and hence we can completely work with one of the soft modes for each sign of Γ. This becomes

more evident in the PSG analysis of the soft modes (see below) where we see that the two soft

modes do not mix with each other under symmetry transformations. This, to draw a further

analogy with the Zeeman perturbation, is like the lifting of the degeneracy of the two soft

modes, of Eqs. 7.11 and 7.12, as discussed below Eq. 7.48. There, the existence of the time

reversal symmetric point hz = 0 allows us to use a theory with two soft modes each in the e

and m sector which is subsequently broken down further by the Zeeman field through Eq. 7.50

in the critical theory.

Similarly, we define a hypothetical Γ = 0 situation where both these modes are degenerate

as our starting point and then use a redundant description keeping both the soft modes and

obtain the correct description for the phases and phase transition. We note that unlike in the

Zeeman case, this hypothetical situation is not realized in our model and indeed is actually an

unstable quantum ground state with ln 2 entropy per site as this does not break any symmetry

of the anisotropic Hamiltonian. In the passing, we note that the soft modes result in two distinct

nematic states as given in Eq. 7.50 and hence may be relevant to the isotropic/near isotropic

limit of Eq. 1.1. However, here we use this limit only as a convenient starting point for our

analysis of the critical theory.

Soft modes

Similar to Eq. 7.11 and 7.12, we expand the gauge charges in terms of the soft modes. This
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gives

Ψe(r, τ) = ϕ̃(1)
e (r, τ) ξ̂(1)e + ϕ̃(2)

e (r, τ) ξ̂(2)e (7.57)

for the e sector and

Ψm(r, τ) = ϕ̃(1)
m (r, τ) ξ̂(1)m + ϕ̃(2)

m (r, τ) ξ̂(2)m (7.58)

for the m sector. Here (ϕ̃
(1)
e , ϕ̃

(2)
e ) and (ϕ̃

(1)
m , ϕ̃

(2)
m ) are the new e(m) soft mode amplitudes.

In order to obtain the PSG transformations we once again combine the two amplitudes of each

sector as

Φ̃e = ϕ̃(1)
e + iϕ̃(2)

e = |Φ̃e|eiθ̃e (7.59)

and

Φ̃m = ϕ̃(1)
m + iϕ̃(2)

m = |Φ̃m|eiθ̃m (7.60)

The PSG transformations under different symmetries listed in Eqs. 6.8-6.13 are now given

by

Td1 :

 Φ̃e → Φ̃m

Φ̃m → Φ̃∗
e

Td2 :

 Φ̃e → Φ̃∗
m

Φ̃m → Φ̃e

Tx :

 Φ̃e → Φ̃∗
e

Φ̃m → Φ̃∗
m

Ty :

 Φ̃e → Φ̃e

Φ̃m → Φ̃m

T :

 Φ̃e → Φ̃∗
e

Φ̃m → Φ̃∗
m

σv :

 Φ̃e → Φ̃e

Φ̃m → Φ̃m

C2z :

 Φ̃e → Φ̃e

Φ̃m → Φ̃∗
m

Rπ :

 Φ̃e → Φ̃e

Φ̃m → Φ̃∗
m

(7.61)

We shall find the Higgs phase resulting from condensing the above charges results in a

trivial paramagnet.

The mutual U(1)× U(1) CS critical theory
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Using a redundant description by keeping both the soft modes in each of the electric and

magnetic sectors allows us to extend the U(1)× U(1) mutual CS formalism for this transition.

In this case, the CS action is given by

S̃CS =
i

π

∫
d2rdτ ϵµνλÃµ∂νB̃λ (7.62)

where now Ãµ and B̃µ are the internal U(1) gauge fields that couple minimally to the soft

modes Φ̃e and Φ̃m respectively. The PSG of the gauge fields are given by

Td1 :

 Ãµ → B̃µ

B̃µ → −Ãµ

Td2 :

 Ãµ → −B̃µ

B̃µ → Ãµ

Tx :

 Ãµ → −Ãµ

B̃µ → −B̃µ

Ty :

 Ãµ → Ãµ

B̃µ → B̃µ

T :

 Ãµ → Ãµ

B̃µ → B̃µ

(7.63)

σv :

 Ãx → Ãx, Ãy → −Ãy, Ãτ → Ãτ

B̃x → B̃x, B̃y → −B̃y, B̃τ → B̃τ

C2z :

 Ãx → −Ãx, Ãy → Ãy, Ãτ → Ãτ

B̃x → B̃x, B̃y → −B̃y, B̃τ → −B̃τ

Rπ :

 Ãx → −Ãx, Ãy → −Ãy, Ãτ → Ãτ

B̃x → B̃x, B̃y → B̃y, B̃τ → −B̃τ

which are consistent with the CS action in Eq. 7.62 as before up to in inconsequential sign

change under C2z. The resultant critical field theory is

S̃c =

∫
d2rdτL+ S̃CS (7.64)

where S̃CS is given by Eq. 7.62 and

L̃ = L̃e + L̃m + L̃em (7.65)

with
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L̃e = |(∂µ − iÃµ)Φ̃e|2+ũ|Φ̃e|2 + ṽ|Φ̃e|4 − λ̃
[
(Φ̃e)

2 + (Φ̃∗
e)

2
]

(7.66)

L̃m = |(∂µ − iB̃µ)Φ̃m|2+ũ|Φ̃m|2 + ṽ|Φ̃m|4 − λ̃
[
(Φ̃m)

2 + (Φ̃∗
m)

2
]

(7.67)

L̃em = w̃
[
(Φ̃eΦ̃m)

2 + (Φ̃eΦ̃
∗
m)

2 + c.c.
]

(7.68)

Considerations similar to those noted below Eq. 7.24 for the case of Heisenberg perturba-

tions, also apply here with an important difference that in the present case, the decoupled limit

pertains to vertical Ising chains. In particular the mass term, u ∼ JTC − 2Γ.

Note that due to the presence of the second-order anisotropic term proportional to λ in the

critical action given by Eq. 7.64, the discussion of the phases and phase transitions has an exact

parallel with the case of the Zeeman term (Eq. 7.49)– a consequence of the x = y reflection

as discussed above– with the difference being, in the present case the condensation of the soft

modes lead to a time-reversal symmetric paramagnet.

The phases

Turning to the phases, clearly, as before, the un-condensed phase for ũ− λ̃ > 0, i.e.,

⟨Φ̃e⟩ = ⟨Φ̃m⟩ = 0 (7.69)

is the Z2 QSL with gapped e and m charges with mutual semionic statistics. For ũ− λ̃ < 0,

the both electric and magnetic charges condense, i.e.

⟨Φ̃e⟩, ⟨Φ̃m⟩ ≠ 0 (7.70)

This Higgs phase does not break time-reversal symmetry. Indeed, in terms of symmetry,

the Z2 gauge invariant fields are given by

Φ̃2
e + (Φ̃∗

e)
2 ∼ |Φ̃e|2 cos(2θ̃e) ∼ τ̃xi ∀i ∈ Horizontal bonds

Φ̃2
m + (Φ̃∗

m)
2 ∼ |Φ̃m|2 cos(2θ̃m) ∼ τ̃ zi ∀i ∈ Vertical bonds (7.71)
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These should be contrasted with Eq. 7.16 which characterizes spin ordering. In spite of

similar appearances, the above equations are exactly opposite in terms of the type of the bonds

(vertical versus horizontal) with respect to that of Eq. 7.16, and this has a central effect in

the nature of the resultant phase which for the present case is a symmetric non-degenerate

paramagnet.

For λ̃ > 0(< 0) in Eq. 7.66 and 7.67, the free energy is minimised for

θ̃e, θ̃m = 0, π(±π/2) (7.72)

This corresponds to ordering (see Eq. 7.71)

τ̃xi = ±1 ∀i ∈ Horizontal bonds

τ̃ zi = ±1 ∀i ∈ Vertical bonds (7.73)

all of which are time reversal symmetric (see Table. A.2 in Appendix A.1). For each of

these cases, the interaction between the e and m modes is given by Eq. 7.85, i.e.

L̃em ∼ w|Φ̃e|2|Φ̃m|2 cos(2θ̃e) cos(2θ̃m) (7.74)

For w < 0(> 0) the spin components as given in Eq. 7.73 are parallel (antiparallel). The

latter case breaks translation by Td1 and Td2 which interchanges horizontal and vertical bonds

and appears to be not relevant for the present case. The above phenomenology is consistent

with the microscopic of Section 3.1.3 for λ̃ ∼ −Γ. This then completes the discussion of the

two trivial paramagnets as shown in Fig. 3.1. We expect the above theory to be stable to small

Heisenberg perturbations, J .

Effects of Zeeman term and the critical point

Before discussing the critical point, we would like to understand the effect of the Zeeman

term in this pseudo-dipolar limit which would throw critical insight into the nature of the tran-

sition both in the Zeeman limit of subsection 7.1.2 and the present pseudo-dipolar limit. The

starting point is the previously mentioned observation of the leading order Zeeman terms and

pseudo-dipolar terms mapping into each other under x = y reflection. This becomes more

clear when we consider the leading Zeeman perturbing term given by Eq. 7.47 along with the
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leading pseudo-dipolar perturbation given by Eq. 3.9 whence the net leading perturbation is

given by

HFM
Γ−z =

∑
i∈V

[2Γτ̃ zi − 2hz τ̃
x
i ] +

∑
i∈H

[2Γτ̃xi − 2hz τ̃
z
i ] (7.75)

In particular for the limit hz = −Γ the above Hamiltonian becomes

HΓ−z = 2Γ
∑
i

[τ̃xi + τ̃ zi ] (7.76)

In conjunction with the Toric code term in Eq. 3.3, this is exactly the Hamiltonian studied in

Refs. [125], [126] and [127] for a Toric code QSL in a “magnetic” field along the self-dual line.

While this inference is drawn on the basis of the leading order perturbations, in the spirit of the

discussions presented, it leads to interesting possibilities, particularly in the light of the rich

properties of the self-dual line as known from very systematic numerical calculations.[125] We

shall return to this in a moment, but first let us notice that in presence of the Zeeman field, from

the symmetry transformations in Eq. 2.11, it is clear that the residual symmetry of the system is

generated by only Td1 ,Td2 (and hence Tx,Ty) and Rπ. This is the reason for the exact match

between the transformation tables of the soft modes (Φe,Φm) (Eq. 7.15) and (Aµ, Bµ) (Eq.

7.17) with (Φ̃e, Φ̃m) (Eq. 7.61) and (Ãµ, B̃µ) (Eq. 7.63) under Td1 ,Td2 (and hence Tx,Ty)

and Rπ. Indeed, we can introduce the following linear superposition of the soft modes

χe =
1√

Γ2 + h2z

[
ΓΦ̃e − hzΦe

]
(7.77)

χm =
1√

Γ2 + h2z

[
ΓΦ̃m − hzΦm

]
(7.78)

and their corresponding gauge fields

Cµ =
1√

Γ2 + h2z

[
ΓÃµ − hzAµ

]
(7.79)

Dµ =
1√

Γ2 + h2z

[
ΓB̃µ − hzBµ

]
(7.80)

for the perturbation corresponding to Eq. 7.75 which interpolates between the two limits

Γ = 0 and hz = 0. The left-hand side of the above equation, by construction, has the same

transformation property as the right hand side under Td1 ,Td2 (and hence Tx,Ty) and Rπ.

Clearly, at the special value hz = −Γ, corresponding to Eq. 7.76 whence the system enjoys a
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reflection symmetry to the leading order, stands for an equal superposition of the two sets of

soft modes.

Hence following the symmetry arguments as before, we can write a critical action as

Sχ
c =

∫
d2r dτ Lχ

c + Sχ
CS (7.81)

where

Sχ
CS =

i

π

∫
d2r dτ ϵµνλCµ∂νDλ (7.82)

and

Lχ
c = Lχ

e + Lχ
m + Lχ

em (7.83)

with

Lχ
e = |(∂µ − iCµ)χe|2+ũ|χe|2 + ṽ|χe|4 − λ̃

[
(χe)

2 + (χ∗
e)

2
]

Lχ
m = |(∂µ − iDµ)χm|2+ũ|χm|2 + ṽ|χm|4 − λ̃

[
(χm)

2 + (χ∗
m)

2
]

(7.84)

and

Lχ
em = w̃

[
(χeχm)

2 + (χeχ
∗
m)

2 + c.c.
]

(7.85)

which clearly interpolates between the two limits in Eqs. 7.64 (for hz = 0) and 7.49 (for

Γ = 0).

The discussions of the Z2 QSL for ũ− λ̃ > 0 and the trivial paramagnet for ũ− λ̃ < 0 now

directly follow from our previous discussions. Note that the trivial paramagnet continuously

deforms from the polarised state (for Γ = 0) to a time-reversal symmetric trivial paramagnet

(for hz → 0+) with the hz = 0 line being the time-reversal symmetric paramagnet.

The two-fold anisotropy term proportional to λ is given by Eq. 7.84 carries charge-2 under

Cµ and Dµ respectively. Therefore this is like the pairing term in superconductors, albeit for

bosons which breaks down the gauge group from U(1) to Z2.[106, 128] However, we note that

in our case the Z2 theory is naturally tuned to be along the self-dual line due to the e ↔ m

symmetry. Indeed a similar action was proposed in Ref. [116] for the transition to from the
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Z2 QSL to a trivial paramagnet in the context of Toric code models. However, there due to the

absence of the e ↔ m symmetry, the masses and other coupling constants of the e sector were

different from that of the m sector and thereby away from the self-dual line.

In particular, Eq. 7.76 corresponds to the exact numerical calculations of Refs. [125] and

[126] and series expansion techniques of Ref. [127]. In the light of our present discussion, it

is certainly worthwhile to understand if the entire range from hz = 0 to Γ = 0 is given by

the same physics as this would indicate an extremely interesting mapping of the physics under

Zeeman perturbations to that of the pseudo-dipolar interactions. Of course, this conclusion is

tentative at this point as the above mapping is drawn on the basis of the effects of the leading

order perturbations and the effects of the higher order terms need to be taken into account in

any systematic numerical calculation.

Assuming that the physics of the self-dual line is relevant for the present discussion, we now

ask what do we know about this line ? From the point of view of Z2 gauge theory with dynamic

electric and magnetic charges, the e-Higgs and the m-Higgs (confined) phases are smoothly

connected[128] with both phase transition belonging to 3D−Z2 universality class and meeting

at a multicritical point which merges with a line of first order transition along the self-dual line

ending in a critical point. Series expansion techniques of Ref. [127] show that along the self-

dual line, the charge gap, ∆, for both the e and m sectors vanishes as ∆ ∼ |hz − hcz|zν where

the critical value of the field is estimated to be hcz ≈ 0.34 (for JTC = 1) and the exponent,

zν ≈ 0.69−0.70[127, 129]– different from the 3D−Z2 value, (zν)3D−Z2 = 0.6301. The first-

order transition, on the other hand ends at h1stc ≈ 0.42.[126] The above picture is confirmed by

Monte Carlo calculations.[125, 126, 130, 131]

We end this section with two more comments. First, away from the self-dual line when

either e or m charges condense, neglecting the gauge fluctuations of Aµ and Bµ at the critical

point on the grounds that the CS term makes the respective photons massive results in a transi-

tion correctly belonging to the 3D − Z2 universality class.[116] A similar mean-field assump-

tion would lead to 3D − XY transition in the present case with (zν)3D−XY ≈ 0.67155.[132]

Second, recent series expansion calculations[129] and tensor-network based wave-function

analysis[133] has been suggested that perturbations on the self-dual line in the vicinity of the

multicritical point can open up a gapless phase with power-law correlations for the e and m

charges with continuously varying exponents. However, in our severely finite-size limited ED

results, we did not find any signatures of such a phase. The relevance of this physics to the
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anisotropic Kitaev model in a magnetic field as well as the higher order terms neglected in Eq.

7.47 remains to be understood.

This concludes our discussion of the phases and phase transitions for the ferromagnetic

Kitaev-Heisenberg-Γ model in the anisotropic limit in reference to the discussion in section

3.1.

7.2 Phase transition in AFM anisotropic Kitaev limit

In this section, we will study the phase transitions between phases discussed in section 3.2,

while the schematic phase diagram pertaining to this section is shown in Fig. 3.9

Our numerical studies leading to the phase diagram of Fig. 5.5 show that the phase transi-

tions out of the QSL are brought about by the condensation of the Ising electric and magnetic

charges. We now build on the above observation to develop field theories for phase transitions.

7.2.1 Phase transition between QSL and the spin ordered phase

Along the Γ = 0 line (t1 = 0 line in Fig. 5.5), there are two competing phases– the Z2 QSL

for J ∼ 0 and the spin-ordered phase in the Heisenberg limit, J/|K| ≫ 1. To understand the

phase transition between them, it is convenient to start with the QSL and obtain the description

of the transition in terms of the soft electric and magnetic modes similar to section 7.1.1, as a

function of J , of its excitations– the e andm charges. To the leading order in J , the Hamiltonian

is given by Eq. 3.14, where, we neglect the higher order terms in J . Since at large J (depending

on the sign) the system goes into a ferromagnet or anti-ferromagnet state for τ -spins we, for

now, ignore the transverse field term and look at the effect of the Ising exchange term on the

Toric code Hamiltonian. Please refer to the numerical analysis in the appendix E.2 for further

comments on this approximation.

In terms of the gauge charges and fields (see section 6.1), the Hamiltonian in Eq. 2.19 in

the limit Γ = 0 becomes:

H̃AFM
Γ=0 = −J

∑
⟨ab⟩∈H;⟨bc⟩∈V

[µx
aρ

z
abµ

x
b ] [ρ

x
bc]− JTC

∑
a

µz
a − JTC

∑
p

∏
⟨ab⟩∈p

ρzab (7.86)

Where a, b, c are the square lattice vertices (see Fig 1.1). Similar to the FM case (section

7.1.1) we identify the soft modes within a gauge mean field analysis (also see Appendix E.2)

appropriately modified to the present symmetry considerations. As in the ferromagnetic case
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(section 7.1.1) (see Appendix E.3), we get two soft modes for each of electric and magnetic

sectors [75, 108, 114]:

Ψe(r, τ) = ϕ(1)
e (r, τ) ν̂(1)e + ϕ(2)

e (r, τ) ν̂(2)e (7.87)

Ψm(r, τ) = ϕ(1)
m (r, τ) ν̂(1)m + ϕ(2)

m (r, τ) ν̂(2)m (7.88)

where (ϕ
(1)
e (r, τ), ϕ

(2)
e (r, τ)) (and (ϕ

(1)
m (r, τ), ϕ

(2)
m (r, τ))) are real fields that represent am-

plitudes of the electric (magnetic) soft modes. Defining complex variables

Φe = ϕ(1)
e + iϕ(2)

e = |Φe|eiθ
e

(7.89)

and

Φm = ϕ(1)
m + iϕ(2)

m = |Φm|eiθ
m

(7.90)

provides us with the fields using which the critical field theory is formulated. The symmetry

transformations of these fields are given in Eq. E.9, we notice that the transformation rules for

the symmetries σv and Rπ are different from the FM case (section 7.1.1) given the different

implementation of microscopic symmetries.

Given the electric and magnetic charges see each other as a source of mutual π-flux due

to their statistics such long-range statistical interactions need to be accounted for through an

appropriate Chern-Simons term. In the FM case, as discussed in section 7.1.1, we presented

a mutual U(1) gauge theory to account for this long-range statistical interaction. The same

techniques can be applied to the present case as shown below. However, here we employ a

somewhat more microscopic formulation using a mutual Z2 gauge theory formalism to obtain

the same critical field theory. We discuss them in turn.

Mutual U(1) Chern Simons theory

The semionic statistics between the Ising electric and magnetic charges can be captured

[16] using a mutual U(1) Chern-Simons term [41, 75, 116]

SU(1)
CS =

i

π

∫
d2rdτ ϵµνλAµ∂νBλ (7.91)
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where µ, ν, λ = x, y, τ , and Aµ and Bµ are U(1) gauge fields that couple to the electric and

magnetic soft modes respectively. The symmetry transformations for the gauge fields Aµ (Bµ)

are given in Eq. E.11.

The critical theory is identical to the FM case and is given by

Sc =

∫
d2rdτ L+ SU(1)

CS (7.92)

where SCS is given by Eq. 7.91 and

L = Le + Lm + Lem (7.93)

with

Le = |(∂µ − iAµ)Φe|2+u|Φe|2 + v|Φe|4 − λ
[
(Φe)

4 + (Φ∗
e)

4
]

(7.94)

Lm = |(∂µ − iBµ)Φm|2+u|Φm|2 + v|Φm|4 − λ
[
(Φm)

4 + (Φ∗
m)

4
]

(7.95)

Lem = w
[
(ΦeΦm)

2 + (ΦeΦ
∗
m)

2 + c.c.
]

(7.96)

Similar to the FM case (section 7.1.1) (see details in Appendix E.5) we find that while u > 0

signifies the Z2 spin liquid state, (u < 0, λ < 0, w ̸= 0 ∝ sgn(J)) specifies the spin symmetry

broken ordered state, where the ordered states correspond to FM (AFM) for J > 0 (J < 0) in

Eq. 3.14 for the τ spins state, which translates into Neel (zig-zag) order for underlying σ spins

(see Fig. 3.3).

The Mutual Z2 gauge theory

The soft modes of the Ising electric and magnetic charges in Eq. 7.89 and 7.90 respectively

are charges under a Z2 gauge field and hence their mutual semionic statistics are naturally

captured by a mutual Z2 CS theory as we describe below [107, 108]. This provides for con-

necting the more prevalent mutual U(1) approach described above [134] with a systematic Z2

approach. Indeed, the latter approach is generically more suited to faithfully capture the nature

92



of phase transitions. However, in the present case, we obtain the same continuum theory for

the transition.

The starting point of the mutual Z2 formalism is obtaining a lattice version of the soft mode

theory since the Z2 gauge fields are naturally formulated on the lattice. Hence using Eq. 7.89

and 7.90, we write the lattice low energy action as [128]

S = Se + Sm + SCS (7.97)

where

Se = −t
∑
ab

ρab cos(θ
e
a − θeb) + · · · (7.98)

is the electric action defined on the direct square lattice with ρab being the Z2 link field with

which it is minimally coupled,

Sm = −t
∑
āb̄

ρ̃āb̄ cos(θ
m
ā − θmb̄ ) + · · · (7.99)

is the magnetic action defined on the dual square lattice with ρ̃āb̄ being the dual Z2 gauge

field and

SCS = i
π

4

∑
ab∈□

(1− ρab)

1−
∏
āb̄∈□

ρ̃āb̄

 (7.100)

is the Ising Chern-Simons action that implements the mutual semionic statistics between

the electric and the magnetic charges[16].

Note that the hopping amplitude for both the electric and magnetic charges are fixed to be

the same (denoted by t above) by the self-dual structure of the action since the electric and

magnetic soft modes transform into each other under unit lattice translation (see section 7.1.1

and the discussion near Eq. E.9). Similarly (· · · ) represents higher-order interaction terms

that are highly constrained by the self-dual structure of the theory. We shall consider such

interaction terms soon.

To proceed further we seek to dualize either the electric or the magnetic sectors both of
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which are XY-fields and hence can be dualized using the particle-vortex duality [135, 136]. We

choose to dualize the electric sector.

To this end, we re-write the electric action

Se = −t
∑
ab

cos
(
θea − θeb +

π

2
(1− ρab)

)
(7.101)

using Villain approximation [137] to obtain (the details are given in Appendix E.6)

S ′
e =

1

2t

∑
ab

L2
ab + iLab

(
θea − θeb +

π

2
(1− ρab)

)
(7.102)

where Lab is an integer value link field. Further integration over θea gives rise to the zero

divergences (on a lattice) constraint on them, i.e.,

∇jLab = 0 (7.103)

which is solved by defining an integer field Cāb̄ on the dual lattice through a lattice curl

Lab = ∇× Cāb̄ (7.104)

Putting this together with SCS (Eq. 7.100), we have

Se + SCS =
∑
āb̄

(∇× Cāb̄)
2

2t
+ i

π

2

∑
ab

[1− ρab]

[
∇× Cāb̄ +

1−∏□ ρ̃āb̄
2

]
(7.105)

such that on integrating over ρab we get the constraint which gives rise to

∏
āb̄∈□

ρ̃āb̄ = (−1)(∇×Cāb̄) (7.106)

which can be solved by dividing Cāb̄ into an even and an odd part as

Cāb̄ = 2Aāb̄ + ηāb̄ (7.107)
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where ηāb̄ = 0, 1 and Aāb̄ ∈ Z, such that

τāb̄ = 1− 2ηāb̄ (7.108)

In continuation with our soft mode treatment, we now implement the integer constraint on

Aāb̄ softly through the potential

−w cos(2πA) (w > 0) (7.109)

such that the whole action (Eq. 7.97) becomes

S =
∑
āb̄

(∇× Cāb̄)
2

2tπ2
−
∑
āb̄

ρ̃āb̄
[
w cos(Cāb̄ + ϑā − ϑb̄) + t cos(θmā − θmb̄ )

]
(7.110)

where we have re-scaled C → πC and have separated out a vortex field ϑā through a gauge

choice [138–140]: ∇ · C = 0. Integrating out ρ̃, we get, to the leading order

S =
1

2tπ2

∑
āb̄

(∇× Cāb̄)
2 +

t2

4

∑
āb̄

cos[2(ξā − ξb̄)− 2(ϑā − ϑb̄)]

+
w2

4

∑
āb̄

cos[2(ϑā − ϑb̄ − Cāb̄)] +
tw

2

∑
āb̄

cos[ξā − ξb̄ − Cāb̄] (7.111)

where we have defined

ξ = θm + ϑ (7.112)

The continuum limit can be obtained by introducing bosonic fields

φ = ei2ϑ, χ = e−iξ (7.113)

to get
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S =
1

2tπ2

∑
āb̄

(∇× Cāb̄)
2 + tw

∑
āb̄

χ∗
āe

−iCāb̄χb̄

+
w2

2

∑
IJ

φ∗
ā e

i2Cāb̄ φb̄ +
t2

2

∑
āb̄

(χ∗
āχb̄)

2(φ∗
āφb̄) (7.114)

such that the continuum action is given by

Scont =

∫
d2xdτ Lcont (7.115)

where

Lcont =|(∂µ − iCµ)χ|2 + |(∂µ + i2Cµ)φ|2 + V [χ, φ]

+ g(ϵµνλ∂νCλ)
2 (7.116)

where V [χ, φ] denotes the interactions between the modes that are allowed by symmetry.

The above critical theory is exactly dual to Eq. 7.92. Indeed starting with Eq. 7.92, we can

dualize the electric charges to get the above field theory as was shown for the FM case in section

7.1.1. Similarly, based on the symmetry transformations of the soft modes and in particular the

permutation of the electric and the magnetic soft modes under translation, we have:

V [χ, φ] = u
(
|χ|2 − |φ|2

)
+ v

(
|χ|4 + |φ|2

)
+ w̃|χ|4|φ|2 + · · · (7.117)

where the relative negative sign for the quadratic term is obtained by noting that φ is dual

to the electric soft mode. Thus the transition belongs to a self-dual modified Abelian Higg’s

theory. This concludes our discussion of the deconfined critical point describing the quantum

phase transition between the Z2 QSL and the spin-ordered phase. For a detailed discussion of

this critical theory, we refer to section 7.1.1.

A two-step or a single step transition

In the above discussion, we have presently ignored the transverse field term (see Eq. 3.14)

which occurs with a strength of 2J may potentially open up an intermediate phase as J is

increased (see Fig. 3.4). We now focus on the viability of such a scenario.
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The inclusion of the Heisenberg term leads to a perturbation of both an Ising term and a

transverse field to the parent Toric code Hamiltonian in the strong anisotropic limit. In the

complete parameter space, therefore we clearly have three phases (i) The Z2 QSL for the Toric

code. (ii) The Ising ordered phase which breaks a Z2 symmetry stabilizing a Neel order for the

original σ spins. (iii) A x paramagnet (in τs, also, see Fig. 3.4 and Fig. C.1).

Even while for τ spins the paramagnet is may seem featureless and trivially x polarized,

in terms of underlying σ spins it an intriguing state given the eigenstates correspond to τx is

essentially a singlet or a triplet bond

|±⟩x =
1√
2

(
| ↑↓⟩ ± | ↓↑⟩

)
(7.118)

ordered state on every z bond of the underlying honeycomb lattice. A polarized state in

the τ spins, therefore, corresponds to a direct product state of singlets on all z bonds which in

turn corresponds to a lattice nematic state for the σ spins (see discussion in section 3.2.2). The

analysis already provides some interesting insights. This present study in the anisotropic limit

already leads to the fact that the transition from the Neel state to the lattice nematic phase is

essentially an Ising transition. The transition from the Z2 liquid to the Neel phase is the self-

dual modified Abelian Higgs transition. Now at infinite J , we know the system enters a Neel

phase – this can either occur directly through a single-step transition or the route may entail an

intermediate paramagnet phase which could then imply a two-step transition (see Fig. 3.4). A

detailed numerical study of the Toric code Hamiltonian with a generalized Ising perturbation

and a transverse field is given in appendix C. We find that in general, a Heisenberg perturbation

in this strong anisotropic limit is in fact a single-step transition where the Z2 QSL undergoes a

self-dual modified Abelian Higgs transition to a ferromagnet state.

7.2.2 Transition between large Γ phase and Z2 QSL

While the nature of the transition from a Toric code to the Neel state is captured in the frame-

work discussed above - the transition from the Z2-QSL to the paramagnet is quite interesting

and we now discuss this transition. The Z2 QSL for the τ spins is in Wen’s representation

[11] while the paramagnet it transits to is x-polarized which is adiabatically connected to the

large-Γ phase (see discussion in sections 3.2.3 and 5.2). Under a unitary rotation (see Eq. 3.2)

while the QSL can be exactly mapped to the Kitaev’s Toric code ground state (see Eq. 3.4), the

paramagnet gets converted to y-polarized state. The nature of the transition from a Toric code
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QSL to a transverse field in y direction is known to be a first-order transition [67, 68]. Given

the first-order nature of this transition, we do not expect any universal physics, except noting

that this transition has a fundamentally different character from our related FM study discussed

in section 7.1.1, where the transition between the QSL and large Γ phase was a second order

transition.

7.2.3 Transition between spin-ordered phase and large Γ phase

This leaves us with the transition between the FM and the large Γ phase. Given the large Γ

phase contains all the microscopic symmetries, we expect the transition from the large Γ to

the FM transition to be of the Ising kind where a symmetry-breaking order gets developed

at a critical value of Ising coupling. Our numerical estimation of the phase boundary shows

that the transition from the large Γ phase to the FM occurs along the t2 = t1
3−2t1

curve. This

corresponds to a critical value of Jc which quadratically increases with the strength of the Γ

coupling strength (Γ2/Jc|Kz| ∼ 3).

This completes our discussion of the phase transitions between the phases in the anisotropic

limit of the AFM Kitaev model discussed in section 3.2, which is also summarized in Fig. 3.9.
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CHAPTER 8

SUMMARY AND OUTLOOK

8.1 Summary

In summary, starting with a well motivated and concrete microscopic model we obtain phase

diagrams (both in FM and AFM cases) and the theory for unconventional quantum phase tran-

sitions out of a Z2 QSL phase. This is obtained via multi-step calculations to identify the right

low energy degrees of freedom and the correct symmetry implementations using complemen-

tary methods such as exact diagonalization, strong coupling, and effective quantum field theory.

In our present calculation for the anisotropic limit, we find that the transition between the Z2

QSL and the symmetry-breaking spin-ordered phase is given by a self-dual modified Abelian

Higgs model whereas that between the QSL and the trivial paramagnet is given by a self-dual

Z2 gauge theory. The self-duality owes its origin to the anyon permutation symmetry which

protects the structure of the critical theory. It would be interesting to understand other examples

of such anyon permutation symmetry protected phase transitions. Finally, the phase diagram

in figures 4.5 and 5.5 allows for interesting multicritical points where all the three phases–

topological, symmetry broken, and trivial– meet. The nature of the multicritical point is worth

investigating.

Interestingly, the different phases in the material relevant isotropic phase diagram for the

generalized Kitaev model are also present in the anisotropic limit. While, even in the α-RuCl3

and other materials, the strength of the three Kitaev interactions are not the same, our calcula-

tion is not applicable in its present form but gives useful insights. In the current form of our

calculation, we have ignored the Majorana degrees of freedom of the Kitaev honeycomb model

due to the higher energy scale. In the isotropic phase transition, these gapless Majorana plays

an important role along with the Z2 fluxes of the Kitaev model [16]. Given the correspondence

of the QSL and the spin-ordered phases, it is tempting to conclude that the soft modes in the

anisotropic limit indeed play an important role– along with the gapless Majorana– to determine

the critical theory for the isotropic point. Outcomes of calculations along these lines would be

interesting.

Despite the similarity like the deconfined critical point phase transition in the large Heisen-
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berg coupling (J) limit, there is an important difference between the FM and AFM Kitaev

anisotropic limit for the large pseudo-dipolar coupling (Γ). Although the large Γ phase in both

the FM and AFM limit turns out to be a trivial paramagnet, the crucial differences between

the microscopic symmetry transformations lead to the fact that the large Γ limit in the AFM

case is proximate to a gapless critical point of a system described by an equal superposition of

differently oriented stacked one-dimensional Z2 × Z2 symmetry protected topological phases.

Interestingly, earlier works in the pseudo-dipolar limit for isotropic Kitaev limit have found

a similar gapless phase [101]. Our numerical calculations on finite system size we find the

Γ phase is critical & unstable and is smoothly connected to symmetry allowed paramagnetic

phase, which doesn’t have a topological correction to the entanglement entropy, a signature of

the gapped entangled phase [122]. However, a detailed study is needed to understand the nature

of this gapless phase proximate to the stacked SPTs and its connection to the isotropic Γ limit.
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APPENDIX A

SYMMETRY TRANSFORMATIONS

A.1 Symmetry transformation in the anisotropic limit of FM Kitaev model

Since the Kitaev model is realized in spin-orbit coupled systems, the magnetic moment trans-

forms non-trivially under spin and real space rotations. Following Ref. [73] we embed the

honeycomb in a cube as shown in Fig. A.1. The generators of the symmetries (Fig. A.2) for

the underlying honeycomb lattice are given by

• Time reversal symmetry, T , where the σα spins transform as Kramers doublets in all the

known candidate materials.

• Translations in the honeycomb plane, Td1 and Td2 .

• C6 rotation about [111] about the center of the hexagon, followed by reflection, σh, about

the honeycomb plane (≡ σhC6).

• Reflection, σv, about the x = y plane.

In the anisotropic limit, T , Td1 , Td2 and σv remain intact while σhC6 is absent. However, the

combination C2z = (σhC6)
2σv(σhC6)

−1 is still a symmetry. Further, in addition to the above

symmetries, we find it useful to consider the π-rotation about [111] through the center of the

hexagon, namely Rπ = (σhC6)
3 = C2zσv.

The non-trivial transformation of the σ spins under various symmetries (except for the two

translations which are rather straightforward) is given in Table A.1. It is now easy to work out

the action of the surviving symmetries on the τ spins as shown in Fig. A.3.

Time reversal Symmetry, T : For the σ spins, the time-reversal symmetry is implemented

by the regular operator iσyK where K is the conjugation operator. Therefore, using Eq. 2.8,

under time reversal :

T : {|+⟩, |−⟩} → {|−⟩, |+⟩} (A.1)

102



Figure A.1: The hexagon embedded in a cube with the cartesian [111] direction being normal
to the hexagon plane. The red and black sub-lattice structure of the σ-spins are same as in Fig.
A.2. Green dashed arrow along [1̄10] direction is the π-rotation axis, C2z. A light red plane
cutting two of the z-bonds is the mirror reflection, σv. The purple dashed arrow along [111]
direction is the six-fold rotation supplemented by the mirror reflection about the honeycomb
plane, σhC6.

Symmetry 1 1′ 2 2′ 3 3′ 4 4′ σx σy σz

T 1 1′ 2 2′ 3 3′ 4 4′ -σx -σy -σz

σhC6 1′ 4 3′ 2 5′ 1 2′ 8 σz σx σy

σv 1′ 1 2′ 2 4′ 4 3′ 3 -σy -σx -σz

C2z 2 2′ 1 1′ 3 3′ 4 4′ -σy -σx -σz

Rπ 2′ 2 1′ 1 4′ 4 3′ 3 σx σy σz

Table A.1: The time reversal and point group symmetry operations on the σ-spin of the central
hexagon of the Fig. A.2. The second, to fifth columns, indicate the transformations of the
lattice labels while the last column shows the spin space rotations.
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1′

1

2′

2

3′

4

Td1Td2

C2z

v
hC6

Figure A.2: Symmetries with respect to the hexagonal plane. Refer to Fig. A.1 for more details.

1 2

3

4

Td1
Td2

C2z

vR

Figure A.3: In the anisotropic limit the σ-spin gives rise to τ -spins, they are labeled by the
brown spheres at the vertices of the rhombic lattice (magenta lines). Also, the honeycomb lat-
tice is shown in the background. The relevant symmetries are shown following the convention
of Fig. A.2.
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Reflection symmetry, σv : Following Table A.1, we define the symmetry transformation

operator for the σ spins as

σv(11
′) = Ê(11′)e−i

n̂v.σ⃗1π
2 e−i

n̂v.σ⃗1′π
2 (A.2)

where Ê((11′)) is the exchange operator between the 1 & 1′ and n̂v =
1√
2
(−1, 1, 0). This gives

rise to the following transformation:

σv(11
′) : {|+⟩1 , |−⟩1} → {i |−⟩1 ,−i |+⟩1} (A.3)

Rotation about the z-bond, C2z : From Table A.1 we focus on the pair σ1′ and σ2′ which are

mapped into each other under the symmetry transformation. This gives

C2z(1
′2′) = Ê(1′2′)e−i

n̂2z.σ⃗1′π
2 e−i

n̂2z.σ⃗2′π
2 (A.4)

with n̂2z = n̂v. For the τ -spins we therefore have

C2z(12; 1
′2′) : {|+⟩1(2) , |−⟩1(2)} → {i |−⟩2(1) ,−i |+⟩2(1)} (A.5)

Rotation about the center of the hexagon, Rπ : From Table A.1, this transformation does

not mix the spin components, but, it introduces lattice transformation including the interchange

of the two sub-lattices. From Fig. A.2, focusing on the spins σ1(1′) and σ2(2′), the exchange

operators E(12′) and E(1′2)) are defined, they exchange between σ1 & σ2′ and σ2 & σ1′ . The

effect of the symmetry operation on the τ z basis state is as follows

Rπ(12
′; 1′2) : {|+⟩1(2) , |−⟩1(2)} → {|+⟩2(1) , |−⟩21} (A.6)

The above transformations result in the symmetry table as summarised in Eq. 2.11. Due

to the difference in rotation (see Eq. 3.2), the τ̃ -spins on horizontal and vertical bonds of the

square lattice transform differently under the symmetries. This is summarised in Table A.2.

Accidental symmetry for Γ = 0 Apart from the symmetries listed above, as mentioned in

the main text, there are accidental symmetries present for the Hamiltonian in Eq. 1.1 in the
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Symmetry τ̃xh τ̃ yh τ̃ zh −τ̃xv τ̃ yv τ̃ zv

T τ̃xh τ̃ yh −τ̃ zh −τ̃xv′ τ̃ yv′ τ̃ zv′

σv τ̃xh′ −τ̃ yh′ −τ̃ zh′ −τ̃xv′ −τ̃ yv′ τ̃ zv′

C2z τ̃xh′ −τ̃ yh′ −τ̃ zh′ −τ̃xv′ −τ̃ yv′ τ̃ zv′

Rπ τ̃xh′ τ̃ yh′ τ̃ zh′ τ̃xv′ τ̃ yv′ τ̃ zv′

Tdj τ̃ zvj −τ̃ yvj τ̃xvj τ̃ zhj
−τ̃ yhj

τ̃xhj

Table A.2: Symmetry transformations of the τ̃ spins on the horizontal (h) and vertical (v) bonds
for FM anisotropic limit.

limit Γ = 0. These are π-rotation about the spin x, y & z-axis:

Rx
π : {σx, σy, σz} → {σx,−σy,−σz}

Ry
π : {σx, σy, σz} → {−σx, σy,−σz} (A.7)

Rz
π : {σx, σy, σz} → {−σx,−σy, σz}

These transformations act on the τ -spins states in the following way:

Rx
π : {|+⟩ , |−⟩} → {|−⟩ , |+⟩}

Ry
π : {|+⟩ , |−⟩} → {− |−⟩ ,− |+⟩} (A.8)

Rz
π : {|+⟩ , |−⟩} → {|+⟩ , |−⟩}

While the rotation about the spin z-axis results in identity transformation in the τ -spins, clearly

the other two transformations act as a π-rotation about the τx, as

Rα
π : {τxi , τ yi , τ zi } → {τxi ,−τ yi ,−τ zi } (A.9)

In a rotated basis this leads to

Rα
π : {τ̃xi , τ̃ yi , τ̃ zi } → {−τ̃xi , τ̃ yi ,−τ̃ zi } ∀i (A.10)
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Symmetry τ̃xh τ̃ yh τ̃ zh τ̃xv τ̃ yv τ̃ zv

T τ̃xh τ̃ yh −τ̃ zh −τ̃xv τ̃ yv τ̃ zv
σv τ̃xh′ τ̃ yh′ τ̃ zh′ τ̃xv′ τ̃ yv′ τ̃ zv′
C2z −τ̃xh′ τ̃ yh′ −τ̃ zh′ −τ̃xv′ τ̃ yv′ −τ̃ zv′
Rπ −τ̃xh′ τ̃ yh′ −τ̃ zh′ −τ̃xv′ τ̃ yv′ −τ̃ zv′
Tdj τ̃ zh′ −τ̃ yh′ τ̃xh′ τ̃ zv′ −τ̃ yv′ τ̃xv′

Table A.3: Symmetry transformation of the τ̃ spins on the horizontal (h) and vertical (v) links
of the AFM anisotropic limit (see Fig. 1.1). Where v′ & h′ denotes the lattice points transfor-
mation, h′ ≡ S(h) & v′ ≡ S(v) for S ≡ {T , σv, C2z, Rπ, Td1(2)}.

For the electric and magnetic charges as well as the gauge fields this leads to

Rα
π :

{µx, µz}a → {µx, µz}a
{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā
{ρx, ρz}ab → {−ρx,−ρz}ab
{ρ̃x, ρ̃z}āb̄ → {−ρ̃x,−ρ̃z}āb̄

(A.11)

and hence for the soft modes and the gauge fields we get

Rα
π :



Φe → iΦ∗
e

Φm → iΦ∗
m

Aµ → −Aµ

Bµ → −Bµ

(A.12)

However, we do not use these accidental symmetries in our calculations. We note however

that our calculation is consistent with this symmetry in the limit when Γ = 0.

A.2 Symmetry transformation in the anisotropic limit of AFM Kitaev model

Similar to the above section A.1 for the FM case, we can find out the symmetry transformations

of the τ -spins, the symmetry transformations for this case are summarized in Eq. 2.12. Also,

following the Eq. 3.2, after the rotation to the τ̃ -spins the symmetry transformations of the ttau-

spins on horizontal and vertical bonds of the square lattice are changed, this is summarized in

table A.3.
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APPENDIX B

DEGENERATE PERTURBATION THEORY TO OBTAIN THE TORIC CODE

CONTRIBUTION IN FM KITAEV MODEL

B.1 Low energy degrees of freedom

In this section, we will provide the detailed calculation of the three most important contribu-

tions using degenerate perturbation theory in the anisotropic limit of the FM Kitaev model,

these are respectively pseudo-dipolar (first order in Γ), Heisenberg (first order in J) and Kitaev

contribution (fourth order in K, i.e. ∼ δ4

∆3 , see Eq. 2.15). These contributions are given in Eq.

2.14, in the first term in Eq. 2.16, and the first term in Eq. 2.18 respectively.

Following the definition of the low energy degrees of freedom in Eq. 2.3 and excited states

in Eq. 2.3 on each z-bond of the honeycomb lattice (see Fig. 1.1), we define a projector operator

to the ground state on each z-bond, along with the associated identity operator:

Pii′ = (|↑↑⟩ ⟨↑↑|+ |↓↓⟩ ⟨↓↓|)ii′ ; Iii′ = Pii′ + (|↑↓⟩ ⟨↑↓|+ |↓↑⟩ ⟨↓↑|)ii′ = Pii′ +Qii′ (B.1)

Where ii′ denotes the z-bonds of the honeycomb lattice, and i ∈ A (i′ ∈ B) sub-lattice

(refer to the Fig. 1.1). They follow the usual relationships of projector algebra

P2
ii′ = Pii′ , Q2

ii′ = Qii′ , Pii′Qii′ = 0 (B.2)

With the help of the above projector on each z-bond, we can define the τ -spin in terms of

the underlying σ-spin.

Ii = Pii′ (σ
z
i ⊗ σz

i′)Pii′ = Pii′ (Ii ⊗ Ii′)Pii′

τ zi = Pii′(Ii ⊗ σz
i′)Pii′ = Pii′(σ

z
i ⊗ Ii′)Pii′

τxi = Pii′(σ
x
i ⊗ σx

i′)Pii′ = −Pii′(σ
y
i ⊗ σy

i′)Pii′

τ yi = Pii′(σ
x
i ⊗ σy

i′)Pii′ = Pii′(σ
y
i ⊗ σx

i′)Pii′

(B.3)

Where Ii is the identity operator on each z-bonds in the τ -spin space. The above definitions

are complimentary to the definition of the τ z-spin provided in Eq. 2.8 for FM case.

Finally, to set up the calculations we write the contributions in degenerate perturbation
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theory up to fourth order of 1/∆ in more details (see Eq. 2.9):

HFM
eff =PVFMP+ PVFMRVFMP+ PVFMRVFMRVFMP

+

[
PVFMRVFMRVFMRVFMP

− 1

2

(
PVFMR2VFMPVFMRVFMP+ PVFMRVFMPVFMR2VFMP

) ]
+ ...

(B.4)

where P = ⊗∀ii′Pii′ is the global projection operator in the ground state degenerate sector

of the HFM
0 (see Eq. 2.2), and R = I−P

E0−HFM
0

, I = ⊗∀ii′Iii′ and E0 is the energy of ground state

manifold due to HFM
0 . It is also worthwhile to note that, since the VFM acting on P is taken out

of the ground state manifold, the denominator of R is non-zero. In case of FM Kiteav model,

we write the VFM defined in Eq. 2.1 in more details:

VFM =
∑
⟨ii′⟩z

{K (σx
i σ

x
i′ + σy

i σ
y
i′) + Γ (σx

i σ
y
i′ + σx

i′σ
y
i )}

+
∑
⟨ij′⟩ x

{
− (K − J)σx

i σ
x
j′ + Jσy

i σ
y
j′ + Jσz

i σ
z
j′ + Γ

(
σy
i σ

z
j′ + σy

j′σ
z
i

)}
+
∑
⟨ij′⟩ y

{
− (K − J)σy

i σ
y
j′ + Jσx

i σ
x
j′ + Jσz

i σ
z
j′ + Γ

(
σx
i σ

z
j′ + σx

j′σ
z
i

)}
(B.5)

With the above understanding, we calculate the first-order contribution in Eq. B.4 in more

detail in the next sections.

B.2 First order contribution

We start with the pseudo-dipolar contribution in Eq. B.5, clearly using Eq. B.3 the second term

in the first summation in Eq. B.5 gives:

PΓ (σx
i σ

y
i′ + σx

i′σ
y
i )P ⇒ 2Γτ yi (B.6)

Similarly, from the Heisenberg contribution in Eq. B.5 on each x and y bond, we get:

P

∑
⟨ij′⟩ x

Jσz
i σ

z
j′ +

∑
⟨ij′⟩ y

Jσz
i σ

z
j′

P ⇒ J
∑
⟨ij⟩

τ zi τ
z
j (B.7)

while, Pσy
i σ

y
j′P = Pσx

i σ
x
j′P = 0. Noticeably, these two contributions are provided in Eq.
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2.14 and in the first term of 2.16 along with their higher order energy correction respectively.

B.3 Fourth order contribution: Toric code

We now try to understand the first term in Eq. 2.18, which is the so-called TC contribution in

Wen’s representation. [74] To this end, we define four Kitaev contributions on the hexagon (see

central hexagon in Fig. A.2)

A1 = σx
4σ

x
2′ ; A2 = σx

1σ
x
3′ ; B1 = σy

1′σ
y
4 ; B2 = σy

3′σ
y
2 (B.8)

In total, 24 different permutations of these A1, A2, B1, B2 are possible in Eq. B.4, which

will give rise to the TC contribution. We can easily find out the operator content in terms of

τ -spins, using Eq. B.4 and B.3, we get:

PA1RA2RB1RB2P ∼ P(σx
2′σ

x
4 )(σ

x
3′σ

x
1 )(σ

y
1′σ

y
4)(σ

y
3′σ

y
2)P

∼ P(σx
2′σ

y
2)(iσ

z
4)(iσ

z
3′)(σ

x
1σ

y
1′)P ∼ (−)τ z3 τ

z
4 τ

y
1 τ

y
2

(B.9)

Where we have ignored the energy contribution in the denominator of R, we have listed all

the denominators for 24 possible permutations in table B.1. Crucially out of the three possible

terms in the fourth order contributions in Eq. B.4, for each permutation either solely the first

term or the last two terms have a non-zero contribution.

Finally, we collect all the permutations to get the below TC contribution(
12−

(
8

2
+ 4

))
(K − J)4

64× (Kz − J)3
(−)τ z3 τ

z
4 τ

y
1 τ

y
2 = − δ4

16∆3
τ z3 τ

z
4 τ

y
1 τ

y
2 (B.10)

We can now see the above is one of the contributions up to the fourth order of perturbation

theory which is present in the first term in Eq. 2.18.
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V1 V2 V3 V4 Denominator

A1 A2 B1 B2 -(4)(8)(4)
A1 A2 B2 B1 -(4)(8)(4)
A1 B1 A2 B2 -(4)(4)(4)
A1 B2 B1 A2 +(4)(4)(4)
A1 B1 B2 A2 +(4)(4)(4)
A1 B2 A2 B1 +(4)(4)(4)
A2 A1 B1 B2 -(4)(8)(4)
A2 A1 B2 B1 -(4)(8)(4)
B1 A1 A2 B2 +(4)(4)(4)
B2 A1 B1 A2 +(4)(4)(4)
B1 A1 B2 A2 -(4)(4)(4)
B2 A1 A2 B1 +(4)(4)(4)
A2 B1 A1 B2 +(4)(4)(4)
A2 B2 A1 B1 -(4)(4)(4)
B1 A2 A1 B2 +(4)(4)(4)
B2 B1 A1 A2 -(4)(8)(4)
B1 B2 A1 A2 -(4)(8)(4)
B2 A2 A1 B1 +(4)(4)(4)
A2 B1 B2 A1 +(4)(4)(4)
A2 B2 B1 A1 +(4)(4)(4)
B1 A2 B2 A1 +(4)(4)(4)
B2 B1 A2 A1 -(4)(8)(4)
B1 B2 A2 A1 -(4)(8)(4)
B2 A2 B1 A1 -(4)(4)(4)

Table B.1: Permutations of A1, A2, B1, & B2.
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APPENDIX C

J −K HAMILTONIAN IN AFM ANISOTROPIC LIMIT

C.1 JK Hamiltonian in AFM anisotropic limit : a generic τx-field study

The generalization of the Hamiltonian for the antiferromagnetic Kitaev model in the strong

anisotropic limit with the Heisenberg term (Eqs. 3.13 and 3.14) is given by

HAF
Γ=0 = heff

∑
i

τxi − Jeff

∑
⟨i,j⟩

τ zi τ
z
j

− JTC
eff

∑
i

τ zi+d1
τ zi−d2

τ yi τ
y
i+d1−d2

(C.1)

where Jeff, heff and JTC
eff are the strengths of the Ising term, magnetic field and of the quartic

term respectively. On transforming the above Hamiltonian via a unitary rotation in Eq. 3.2

followed by τ̃ yi → −τ̃ yi on the horizontal bonds, we get

HAF
Γ=0 = heff

∑
i

τ̃ yi − Jeff

∑
⟨i,j⟩,i∈H,j∈V

τ̃ zi τ̃
x
j

− JTC
eff

(∑
s

As +
∑
p

Bp

) (C.2)

which now takes the form of the toric code Hamiltonian when perturbed by a transverse

magnetic field and an Ising perturbation, although of a τ̃ z τ̃x kind. This Hamiltonian, in parts,

has been a subject of recent numerical studies [67, 68]; and we now investigate it further to

develop a field-theoretic understanding of the phases and intervening phase transitions. To

understand this phase diagram numerically we define two interpolating parameters: ϵ1 and ϵ2,

and study the following Hamiltonian

H′ = ϵ1(1− ϵ2)
∑
i

τ̃ yi − ϵ2(1− ϵ1)
∑

⟨i,j⟩,i∈H,j∈V

τ̃ zi τ̃
x
j

− (1− ϵ1)(1− ϵ2)

(∑
s

As +
∑
p

Bp

)
(C.3)

which interpolates between the exact toric code Hamiltonian (ϵ1 = ϵ2 = 0), a z − x ferro-

magnet (ϵ1 = 0, ϵ2 = 1) and a y paramagnet (ϵ1 = 1, ϵ2 = 0). We perform exact diagonalization
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Figure C.1: The absolute value of ground state (GS) susceptibility (∂
2EGS

∂ϵ2
|ϵ2) (a) and the abso-

lute value of τ̃ y-magnetization (b) as a function of ϵ1 for constant values of ϵ2 are shown for the
Hamiltonian given in Eq. C.3.

(ED) studies on an 18 spin (3×3) periodic cluster and track the ground state fidelity and other

observables to identify the phase boundaries. The numerically obtained phase diagram is shown

in Fig. C.2.

In absence of the Ising term, i.e. the toric code Hamiltonian with a transverse field is self-

dual under (heff ↔ JTC
eff ) which is known to be a first-order transition at ϵ1 = 0.5 [67, 68].

Here in our finite-sized system, this transition shows up as a peak in the fidelity susceptibility

which does not change remarkably with increasing ϵ2 (∼ J) suggesting that the transition is

stable with increasing ϵ2 (see Fig.C.1 (a)). However, strictly our finite size numerics cannot

distinguish the order of transition when transiting to either the large Γ phase or the FM. The

transition is concomitant with a finite magnetization (along the transverse field) signaling a

transition to a paramagnetic (polarized) phase (see Fig.C.1 (b)). In absence of the toric code

term, the Ising magnet to paramagnet transition is governed by the Ising transition and occurs

at heff ∼ 3Jeff [77–80] where the ordered phase spontaneously breaks a Z2 Ising symmetry

operator given by
∏

i τ̃
y
i . This corresponds to ϵ2 = ϵ1

3−2ϵ1
(dashed green) line in the ϵ1 − ϵ2

phase diagram (see Fig. C.2). Clearly, the numerically obtained phase boundary follows this

quite closely especially when the toric code term is small (ϵ1, ϵ2 > 0.5). We find that this second

order line and the (expected) first order line (separating the Z2 QSL and the paramagnet) meet

at ϵ1 ∼ 0.5, ϵ2 ∼ 0.3, potentially a multicritical point. The phase boundary between the Z2 QSL

and the Ising ferromagnet (in absence of any magnetic field) (see sections 7.1.1 and 7.2.1) is
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Figure C.2: Phase diagram of Eq. C.3 where we consider a general paramagnetic field along
with the toric code and Ising contribution. The three phases are (i) ferromagnet (FM), (ii)
Paramagnet (PM), and (iii) toric code spin liquid (Z2 QSL). The green dashed line indicates the
expected phase boundary between the ferromagnetic and the paramagnetic phase in absence
of the toric code contribution (see text). The magenta dashed shows the effect of Heisenberg
coupling (J) on the anisotropic anti-ferromagnetic Kitaev model (see Eq. 3.14).

argued to be a 3D-Higgs transition with mutual Chern Simons term. We find that this transition

with increasing ϵ1 remains stable and meets both the first order line and the second order Ising

transition line again at ϵ1 ∼ 0.5, ϵ2 ∼ 0.3.

Having discussed the phase diagram of the generalized J − K Hamiltonian (see Eq. C.2)

we now specify which intervening phases to expect as we increase the Heisenberg coupling in

the anisotropic limit. Given the form of the effective Hamiltonian (see Eq. 3.14) we find that

heff = 2Jeff which corresponds to ϵ2 = ϵ1
2−ϵ1

line (shown in a magenta dashed line with an

arrow) in Fig. C.2 suggesting a single step transition.
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APPENDIX D

ADDITIONAL COMMENTS AND RESULTS ON Γ-LIMIT OF AFM ANISOTROPIC

MODEL

D.1 Summary of the 1D cluster phase (Z2 × Z2 SPT)

Here we briefly summarise the essential results for a one-dimensional cluster model for com-

pletion. The one-dimensional (on an open chain) cluster model Hamiltonian is given by [81–

85, 95]

H1d =
N−1∑
i=2

Ui (D.1)

where Ui = τ zi−1τ
x
i τ

z
i+1 and we consider N ∈ Even. The Hamiltonian, in particular, is

symmetric under a Z2 × Z2 transformation generated by

P1 =

N/2∏
i=2

τx2i−1 = τx1 τ
z
2

N/2∏
i=2

U2i−1

 τ zN (D.2)

P2 =

N/2∏
i=1

τx2i = τ z1

N/2−1∏
i=1

U2i

 τ zN−1τ
x
N (D.3)

The Hamiltonian in Eq. D.1 is exactly solvable since [Ui,Uj] = 0 ∀ i, j. Since U2
i = 1, the

ground state, |ψg⟩, satisfies

Ui|ψg⟩ = −|ψg⟩ ∀ i (D.4)

and can be obtained explicitly as

|ψg⟩ =
∏
i

[
1− U2i−1

2

]
|τx2i = −1⟩ |τ z2i±1 = 1⟩ (D.5)

Therefore for the ground state on the open chain
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P1|Ψg⟩ = (−1)N/2−1τx1 τ
z
2 τ

z
N |Ψg⟩ (D.6)

P2|Ψg⟩ = (−1)N/2−1τ z1 τ
z
N−1τ

x
N |Ψg⟩ (D.7)

Assuming that (N/2 − 1) ∈ Even, We find that the two conserved operators P1 and P2

have non-trivial structure at the two edges of the open chain, i.e.,

P1L = τx1 τ
z
2 P2L = τ z1 (D.8)

for the left edge and

P1R = τ zN P2R = τ zN−1τ
x
N (D.9)

for the right edge such that the edge operators anti-commute on the same edge leading to a

four-dimensional representation of the ground state manifold generated by

|P1L = ±1, P1R = ±1⟩, (D.10)

with each edge supporting a zero energy spin-1/2 or equivalently a complex fermion mode

that transforms under a projective representation of the above Z2 × Z2 symmetry. In fact, due

to exact solvability, each energy eigenstate is four-fold degenerate on the open chain [141] The

edge modes are a characteristic signature of the one dimensional Z2 × Z2 SPT.

Since the Hamiltonian in Eq. D.3 is invariant under the global spin-flip generated by P1P2 =∏
τxi , we can map it to a fermionic Hamiltonian via the following one-dimensional Jordan-

Wigner transformations [95] :

γi =

(
i−1∏
j=1

τxj

)
τ zi , γ̃i =

(
i−1∏
j=1

τxj

)
τ yi (D.11)

into the Majorana fermions γi and γ̃i whence we get Ui = iγ̃i−1γi+1 such that Eq. D.3

becomes
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H1d =
∑
j=2

(iγ̃j−1γj+1) (D.12)

which is nothing but two stacked Kitaev superconducting chains [142] with a complex

fermionic mode at each boundary which is annihilated respectively on the left and right edge

by

cL = (γ1 + iγ2)/2 and cR = (γ̃N−1 + iγ̃N)/2 (D.13)

The generator of the spin-flips is local under the Jordan-Wigner Transformation, i.e

τxi = −iγ̃iγi (D.14)

and is related to the fermion parity operator. Therefore the generators of the Z2 × Z2

symmetry becomes

P1 =

N/2∏
j=2

(−iγ̃2j−1γ2j−1) , P2 =

N/2∏
j=1

(−iγ̃2jγ2j) (D.15)

which shows that the parity of the even sites and the odd sites are separately preserved.

Now following arguments similar to those given above we can find the edge representations of

the symmetry in terms of the complex fermions given by Eq. D.13.

Remarkably, the representation in terms of the majorana fermions reveals further rich sym-

metry structures of the cluster Hamiltonian through its fermionic form [95] which usefully

connects to the microscopic symmetries in our case. This is seen by noticing that the fermionic

representation of the cluster Hamiltonian in Eq. D.12 is invariant under the following anti-

unitary transformations :
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V1 = P1

N/2∏
j=2

K2j−1 :

 {γ̃2j, γ2j} → {γ̃2j, γ2j}
{γ̃2j−1, γ2j−1} → {γ̃2j−1,−γ2j−1}

(D.16)

V2 = P2

N/2∏
j=1

K2j :

 {γ̃2j, γ2j} → {γ̃2j,−γ2j}
{γ̃2j−1, γ2j−1} → {γ̃2j−1, γ2j−1}

(D.17)

V3 =

N/2∏
j=2

K2j−1 :

 {γ̃2j, γ2j} → {γ̃2j, γ2j}
{γ̃2j−1, γ2j−1} → {−γ̃2j−1, γ2j−1}

(D.18)

V4 =

N/2∏
j=1

K2j :

 {γ̃2j, γ2j} → {−γ̃2j, γ2j}
{γ̃2j−1, γ2j−1} → {γ̃2j−1, γ2j−1}

(D.19)

where Kj is the complex conjugation operator at site j. Clearly, the four transformations

are related to the microscopic symmetries and the Z2 × Z2 spin-flip symmetries as follows :

P1 = V1V3; P2 = V2V4

T = V1V2; K = V3V4 (D.20)

where T is the global non-Kramers time reversal defined in Eq. 2.12 and K is the global

complex conjugation operator. Depending on convenience, we can either use (P1, P2) or (T ,K)

to understand the properties of the Z2 × Z2 SPT and the edge modes. However, the flexibility

allows us to study the fate of perturbations.

A transverse field term of the form h
∑

i τ
x
i is invariant under the Z2 × Z2 symmetry and

hence the SPT is perturbatively stable to it and gives away to a trivial paramagnet polarised in

the τx direction through a quantum phase transition at |h| = 1 [95]. This transition is described

by a SO(2)1 conformal field theory (CFT) with central charge, c = 1 [94].

A transverse field perturbation along τ y, i.e. h
∑

i τ
x
i , however, it naively appears that the

aboveZ2×Z2 symmetry is broken. To be precise, we consider the (T ,K) implementation of the

symmetries. While the above term is invariant under T , it changes sign under K. However, such

a change in sign can be rectified by applying unitary global spin-flip P1P2 and thus rendering

the above perturbation invariant under the Z2 ×Z2 symmetry. Indeed the SPT is perturbatively

stable under the above transverse field and gives away to the trivial τ y-polarised phase through

the similar critical point as for the τx case above.
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Figure D.1: Uij are transformations on the bonds (see Eq. 3.24) connected shown in the cluster
for (a) PBC, and (b) OBC.

D.2 W transformation

To build intuition for the phase diagram in the (λ1, λ2) plane (Figs. 3.6 and 3.8) and the nature

of transitions we summarise the effect of the unitary transformation, W (Eq. 3.23), applied

on the Hamiltonian (see Eq.3.21). The transformation, defined on a bond ij, follows Uij =

Uji = U †
ij . The bonds involved in a periodic and open system are shown in Fig. D.1. While

it is straightforward to see how the periodic Hamiltonian then transforms from Hα to H̃α, we

discuss the same physics in an open system below to understand the intricacies of the boundary

modes.

Consider spins i where i ∈ B, i ∈ t, i ∈ b, i ∈ l, i ∈ r and i ∈ c represents bulk, top,

bottom, left, right boundary and corner of the cluster respectively. For e.g , in the cluster shown

in Fig. D.1(b), B = {4, 5, 6, 7, 10, 11, 12, 13}, t = {16, 17},b = {0, 1}, r = {14, 8}, l =

{9, 3}, c = {15, 2}. When the transformation W is performed on an open problem one obtains

(for Hamiltonian H in Eq. 3.21 in OBC) H̃ as
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τ y
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τ z
c

b

a

Figure D.2: Excitations of the cluster state and its dynamics in presence of magnetic fields.
Three chains labeled by a, b, c are shown. The orange blob shows the initial position of the
⟨τxi−d1

τ zi τ
x
i−d2

⟩ = 1 excitations (on chain a and c) which hop under the action τ y(τ z) fields to
the third (first) neighbor at the second (first) order of perturbation theory.

H̃1 =
∑
i∈B

τxi (D.21)

H̃2 =
∑
i∈B

τxi τ
z
i+d1

τ zi−d1
τ zi+d2

τ zi−d2
(D.22)

H̃3 =
∑
i∈V,B

τ zi−d1
τ yi τ

z
i−d2

−
∑
i∈H,B

τ zi+d2
τ yi τ

z
i+d1

+
∑
i∈l

τ yi τ
z
i−d2

+
∑
i∈r

τ yi τ
z
i+d2

(D.23)

H̃4 =
∑
i∈H,B

τ zi−d1
τ yi τ

z
i−d2

−
∑
i∈V,B

τ zi+d2
τ yi τ

z
i+d1

(D.24)

H1 has a set of 22(Lx+Ly−1) degeneracy which is reflected in the fact that H̃1 has no terms

which involve boundary spins. H2 has a set of 22(Lx+Ly−1) degeneracy given it is an SSPT on an

open system. H̃3 has free spins on top and bottom boundaries while symmetry-breaking terms

on the left and right boundaries. This leads to a degeneracy of 22Lx . Since H̃4 has free spins on

boundaries it again as 22(Lx+Ly−1) degeneracy. These are the exact ground state degeneracies

for H1, H2, H3, H4 when placed in an open system. The analysis, therefore, shows that W is

suitably defined for both open and periodic systems.

D.3 Excitations and their dynamics in the pure Γ limit

Consider the Hamiltonian

120



0.0 0.5 1.0 1.5 2.0
hα

0.0

0.5

1.0

1.5

2.0

2.5

∆ hz

hy

2(1− hz)
2(1− h2

y)

Figure D.3: The low energy spectrum of a one-dimensional cluster state in presence of magnetic
fields (hα = {hx, hz}) (see Eq. D.25) for a 16 site system.

H =
∑
i∈V

τxi−d1
τ zi τ

x
i−d2

+
∑
i∈H

τxi+d2
τ zi τ

x
i+d1

+ hy
∑
i∈H,V

τ yi + hz
∑
i∈H,V

τ zi (D.25)

which perturbs the cluster Hamiltonian (similar to Eq. D.1) with a magnetic field in y direc-

tion (≡ hy) and z direction (≡ hz). Both these are symmetry allowed and in either field, there

exists a second-order transition with c = 1. Note that in Eq. 3.31 for λ1 = λ2 = 0 the cluster

Hamiltonian in H̃3 is of the above form where perturbations along H̃1 direction is essentially

that of a y-field.

Here we explore the properties of the low energy excitations of the cluster state as the

magnetic field is tuned to understand their role in the eventual transition to the trivial para-

magnet. The ground state in absence of any fields is characterized by ⟨τxi−d1
τ zi τ

x
i−d2

⟩ = −1

for every i, where an excitation with energy gap = 2 localized at a particular site is given by

⟨τxi−d1
τ zi τ

x
i−d2

⟩ = 1. A y field can effectively hop a charge by three lattice constants at quadratic

order, but a z field hops it by two lattice constants at linear order (see Fig. D.2).

Therefore the charge gap behaves, for small fields, as ∆ ∼ 2 − 2hz or ∆ ∼ 2 − 2h2y

depending on the field direction both going to zero at hz (or hy) = 1 signaling that the Ising

transition (with c = 1) can be understood as the condensation of these excitations. The exact

diagonalization spectrum and how the low energy spectrum behaves is shown in Fig. D.3.

Under a unitary rotation ({τx, τ y, τ z} → {−τ z, τ y, τx}) where the cluster Hamiltonian
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gets mapped to Eq. D.1 and perturbation hz(hy) leads to a x(y) polarized state. Using trans-

formation to Majorana operators (see Eq. D.11) and defining bond complex fermion operators

through

ci =
1

2
(γi−1 + iγ̃i+1) (D.26)

Eq. D.25 becomes

H =
∑
i

(2ni − 1) (D.27)

+ hz
∑
i

(
ci+1ci−1 + c†i+1ci−1 + c†i−1ci+1 + c†i+1c

†
i−1

)
− hy

∑
i

i−1∏
j

(
iγj γ̃j

)[
i(ci−1 − c†i−1)

]
(D.28)

where ni = c†ici. Therefore the ground state of the cluster Hamiltonian (hy = hz = 0) is

given by ⟨ni⟩ = 0 ∀i while the excitations are given by particles at site i with ⟨ni⟩ = +1.

Using this fermionic description it is easily seen that τxi leads to a hopping process by two

lattice sites in the single excitation sector; while a τ yi operator changes the parity sector (along

with a string) leading to the creation of charges. A quadratic action of τ y brings it to the same

excitation sector leading to an effective hopping by three lattice sites.

While the magnetic field terms above are ultra-local and cannot lead to any dispersion of

a single excitation in the vertical direction for the stacked system (Eq. 3.21) – no interchain

couplings of the kind mediated by (H̃4) or by (H̃2) can lead to any vertical dispersion for these

single excitations. This leads to the fact that the λ2 = 1 (even at a non-zero λ1) transition is

extremely anisotropic in character where the spin-spin correlations are expected to be power

law only in the x direction, while continues to remain short-ranged in the y-direction. At

λ2 = 0, λ1 direction creates no dynamics in the single excitation sector, but perturbatively

brings down the two-excitation sector. However, before the gap to the two-excitation sector

closes, a level crossing mediated by an excited state with a host of excitations leads to a first-

order transition at λ2 = 1.

To understand the role of the subsystem symmetries on the dynamics, we consider the

cluster term of the Hamiltonian in Eq. D.25 and revisit the above discussion in light of the
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Figure D.4: The horizontal (in (a)) and vertical (in (b)) subsystems symmetries, in an open
(Lx, Ly) = (4, 3) system.

sub-system symmetries. Consider the Hamiltonian given in Eq. D.25 which has two equivalent

ways of considering the sub-symmetries which protect the SPT order. (i) P1 =
∏

i τ
z
2i−1, P2 =∏

i τ
z
2i and (ii)P1 =

∏
i τ

z
2i−1K2i−1, P2 =

∏
i τ

z
2iK2i. A z perturbation preserves both pairs of

symmetries (i) and (ii), leading to a sublattice preservation of the excitations. On the other hand,

a y perturbation, given the way time-reversal symmetry behaves in this system, continues to

preserve (ii) and does not change the eigenvalues of the horizontal sub-system symmetries with

anti-unitary character. It is the same way that the y-perturbations don’t change the eigenvalue

of vertical subsystem symmetries (see Eq. 3.33). Therefore, excitations over the cluster state as

generated by the y field are not constrained by horizontal and vertical sub-system symmetries.

D.4 Boundary modes of large Γ Hamiltonian

Our discussion of the large Γ phase in (λ1, λ2) plane in section 3.2.3 focused on the bulk system,

the corresponding phases, and tentative phase diagram of the same. We now discuss the nature

of boundary modes in this system and which symmetries protect them.

We investigate how the subsystem symmetries (see Eq. 3.35) act on the boundaries in the

(λ1, λ2) = (1, 1) point. It is easier to start from the λ2 = 0 line where we have a set of stacked

cluster phases. When we are in one of the vertical SPTs (say H3). Interestingly one finds that

both in the ground states of H3 and H4,

{PTvn , PTvn+1} = 0 (D.29)

on the top and bottom boundaries leading to 22Lx degeneracies where PTvn symmetries are
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given in Eq. 3.35 (see Fig D.4) . The corresponding horizontal subsystem symmetries given in

Eq. 3.34 commutes leading to no protected boundary modes on the right and left boundaries

for H̃3.

Given the H1 and H2 perturbations respect the symmetries given in Eq. 3.35, the boundary

modes on the top and bottom boundaries remain stable in all of (λ1, λ2) plane as is found

leading to 22Lx degeneracy even at the (1, 1) point. Interestingly given the energetics at the λ2 =

2 line, one gets additional boundary modes on the left and right boundaries which increases the

degeneracy to 22(Lx+Ly).

We now investigate how the symmetries protect the boundary modes at λ2 = 2 line where

we have boundary modes on all four boundaries. Here again for H1 (see Eq. 3.19) each of the

vertical and horizontal sub-system symmetries (see Eq. 3.35) can be written as a product of

stabilizers where it acts anomalously on the boundaries. For instance, the horizontal subsystem

symmetries behave as

PTL
hn

= τ zj=1+d2
∀ n ∈ odd (D.30)

PTR
hn

= τxj=Lx
τ zj=Lx−d1

KLx ∀ n ∈ odd (D.31)

PTL
hn

= τxj=1τ
z
j=1+d1

Kj=1 ∀ n ∈ even (D.32)

PTR
hn

= τ zj=Lx−d2
∀ n ∈ odd (D.33)

It is easy to see that these anti-commutes on the left and right boundaries. The vertical

subsystem symmetries are given by

PTB
vn = τ zj=1−d2

∀ n ∈ odd (D.34)

PT T
vn = τxj=Ly

τ zj=Ly−d1
Kj=LyKj=Ly−d1 ∀ n ∈ odd (D.35)

PTB
vn = τxj=1τ

z
j=1+d1

Kj=1Kj=1+d1 ∀ n ∈ even (D.36)

PT T
vn = τ zj=Ly+d2

Kj=Ly+d2 ∀ n ∈ odd (D.37)

Since these anticommute on the top and bottom boundaries they again lead to the 22Lx

degeneracy. This shows why H1 has a 22Lx+2Ly−2 degeneracy in the system. A similar analysis

for H2 shows the same degeneracy count. Therefore on the λ2 = 2 line the subs-system

symmetries (see Eq. 3.35) protect the boundary modes on all the boundaries. Introduction of

124



0.000 0.004 0.008 0.012
Jh

−0.04

−0.02

0.00

0.02

0.04

∆
0 m

(J
h
)

4

16

24

16

4

8.0Jh

Figure D.5: Evolution of the ground state degeneracy splits in presence of an Ising exchange
perturbation, see Eq. D.38. Along the y-axis we plot the energy of themth state after subtracting
the Jh = 0 GS energy, i.e. ∆0

m(Jh) = Em(Jh)− E0(Jh = 0).

H3 and H4 even while they do not break the symmetries interfere with the anomalous character

of the symmetry operators since the way they behave in the bulk is dependent on the stabilizers.

Since H3 and H4 couple spins in the vertical direction, they immediately hybridize the free

spins which lie on the left and right boundaries leading to the removal of degeneracies stabilized

in the λ2 = 2 limit. On the other hand, these same vertical SPTs stabilize free spins on the top

and bottom boundaries, as discussed before, and hence do not disturb the degeneracies there.

Hence the complete (λ1, λ2) has exact degeneracies on the top and bottom boundaries. Given

these degeneracies are independent of any finite size (or therefore even when the bulk gap is

dominated by Kubo gaps), these are stable and occur in all of (λ1, λ2) plane.

D.5 Effect of perturbations on the boundary modes

The large Γ phase (see Eq. 3.21), at (λ1, λ2) = (1, 1)) has a degeneracy of 22Lx in an OBC

geometry, see Fig. D.1(b), where Lx is the length of the top and bottom boundaries. We now

study the effect of various perturbations on this ground state degenerate manifold.

Symmetry allowed Ising perturbation: When ferromagnetic Ising interactions among the

boundary spins are introduced, which are allowed by the microscopic symmetries (see Eq.

2.12), we find that the top and the bottom boundaries behave as one-dimensional Ising Hamil-

tonians which spontaneously break time-reversal symmetry to order in the z direction.

More concretely, in a 3× 3 cluster (see Fig. D.1(b)) whose resulting Hamiltonian is

H(Jh) = H(1, 1)− Jh (τ
z
0 τ

z
1 + τ z1 τ

z
2 + τ z15τ

z
16 + τ z16τ

z
17) (D.38)

125



0.000 0.004 0.008 0.012
hx

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015
∆

0 m
(h

x
)

16

32

16

3.49hx

(a)

0.000 0.004 0.008 0.012
hz

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

∆
0 m

(h
z
)

1

6

15

20

15

6

1

12.0hz

(b)

Figure D.6: Splitting of the degeneracy in an OBC geometry of the H(1, 1) (in Eq. 3.21) in the
presence of τx(z)-field as a function of the field strength (hx(z)), also see Eq. D.39.

the splitting of the ground state degenerate manifold is shown in Fig. D.5. Clearly among

the 22Lx|Lx=3 = 64 degenerate states (at Jh = 0), four unique states are chosen which corre-

spond to the two Ising symmetry broken states in the top and bottom boundaries.

Bulk τx(z) field: Next we apply the symmetry allowed (breaking) bulk τx(z)-field to the (λ1, λ2) =

(1, 1) point of the Hamiltonian in Eq. 3.21 in an OBC geometry. We consider the Hamiltonian:

H(hx(z)) = H(1, 1)− hx(z)
∑
i

τ
x(z)
i (D.39)

In Fig. D.6(a) and D.6(b) we show the corresponding results. Even while a symmetry

allowed x-field splits the 64-fold degeneracy of the same 3 × 3 cluster (see Fig. D.1(b)) into

sub-branches, a time-reversal symmetry breaking τ z field immediately polarizes the boundary

spins into a unique ground state.

The above analysis shows that even while the large Γ phase has a set of boundary modes

(given its proximity to weak SPTs), these modes are extremely susceptible to both symmetry-

preserving and symmetry-breaking perturbations, thereby reflecting their fragile character.

D.6 Additional numerical results for the Γ limit

To show that the large Γ phase is indeed smoothly connected to the paramagnet, we tune it to

the x− paramagnet (via parameter δ1) in presence of Ising perturbation (∝ δ2) (see Eq. 5.4 in
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Figure D.7: (a) The first (∆1) and the second (∆2) gap to the GS energy following the Eq. 5.4
where we keep δ2 constant and vary the δ1 to tune the Γ-phase (δ1 = 0) to a τx-paramagnet
(δ1 = 1). The calculation is done for a system size Lx × Ły = 2 × 4. (b) The behavior of
topological correction to the entanglement entropy (γ) is shown for the Hamiltonian in Eq. 5.4
as a function of δ1 for constant δ2 = 0.0, 0.2. The calculation is done in a (Lx, Ly) = (4 × 3)
lattice.

the main text). While the susceptibility comes down with increasing strength of Ising perturba-

tion(see Fig. 5.8), one finds that the minima of energy gaps (min(∆m) = mth excitation gap)

remains finite as a function of δ1 for different values of δ2 (see Fig. D.7). One also finds that the

topological entanglement entropy(γ) remains close to zero across the complete interpolation

showing that the large Γ phase is not a gapped topologically ordered state.
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APPENDIX E

ADDITIONAL RESULTS IN THE ANISOTROPIC LIMIT OF THE AFM KITAEV

MODEL

E.1 Additional numerical results for the KJΓ Hamiltonian

Here we present additional results for the behavior of bipartite entanglement for different cuts

in the KJΓ phase diagram (see Fig. 5.5).

Following Eq. 5.3, we calculate the different scaling coefficients of entanglement entropy

(dubbed as X
Fit

; X = α, γ) along with the topological entanglement entropy (γ) calculated

using the Kitaev-Preskil method [64]. The behavior of these quantities in the t̃2 direction for

t̃1 = 0.0, 0.6 is shown in Fig. E.1. Clearly both in FM and Γ phase, γ ∼ 0 while in Z2 QSL,

γ ∼ log(2).

E.2 Gauge Mean Field Theory

Following the discussions in section 7.1, we start our analysis by decoupling the first term in

Eq. 7.86 within gauge mean field theory where the gauge fluctuations have been neglected.

The first term in Eq. 7.86 is written using this decoupling as: [µx
aρ

z
abµ

x
b ] [ρ

x
bc] → ⟨µx

aρ
z
abµ

x
b ⟩ρxbc+

µx
aρ

z
abµ

x
b ⟨ρxbc⟩. Thus the Eq. 7.86 becomes:

H̃AF
Γ=0 → H̃GMFT

Γ=0 = H̃GMFT
Γ=0 (e) + H̃GMFT

Γ=0 (m) (E.1)

where

H̃GMFT
Γ=0 (e) = −

∑
⟨ab⟩∈H

Jabµ
x
aρ

z
abµ

x
b − JTC

∑
a

µz
a (E.2)

describes the e sector with

Jab = J
[
⟨ρxb,b−ŷ⟩+ ⟨ρxb,b+ŷ⟩+ ⟨ρxa,a−ŷ⟩+ ⟨ρxa,a+ŷ⟩

]
(E.3)
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Figure E.1: Following Eq. 5.3 the values of α
Fit
, γFit, γ are shown as we vary t̃2 (see Fig. 5.5)

for a constant t̃1 = 0.0 in (a) and t̃1 = 0.6 in (b), the calculations are done in an (Lx, Ly) =
(4, 3) system. Here a perturbing τ z magnetic field has been applied to break the degeneracy
between the two-fold symmetry braking GS manifold.

being the effective coupling and

H̃GMFT
Γ=0 (m) = −

∑
⟨āb̄⟩∈H

Jāb̄µ̃
x
āρ̃

z
āb̄µ̃

x
b̄ − JTC

∑
ā

µ̃z
ā (E.4)

describes the m sector with

Jāb̄ = J
[
⟨ρ̃xb̄,b̄−ŷ⟩+ ⟨ρ̃xb̄,b̄+ŷ⟩+ ⟨ρ̃xā,ā−ŷ⟩+ ⟨ρ̃xā,ā+ŷ⟩

]
(E.5)

Upto the first order this becomes a series of transverse field Ising chains in the horizontal

direction, we choose the following gauge:

ρza,a+x̂ = ρ̃zā,ā+x̂ = +1 (E.6)

Clearly, in the presence of the Heisenberg term, the single excitation sector of e & m ac-

quires a dispersion, the condensation of these soft modes gives rise to ⟨µx⟩ ≠ 0 and ⟨µ̃x⟩ ≠ 0

for the respective chains.

For the above gauge, the soft mode develops at zero momentum as shown in Fig. 7.1 for
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both the e and m sectors. This can be denoted by

ν̂(1)e = 1; ν̂(1)m = 1 (E.7)

for the e (m) sector on the direct (dual) lattice.

Time reversal symmetry (see Eq. 6.16) gives the partner soft mode for both the e and m

sectors as shown in Fig. 7.1 which are given by

ν̂(2)e = eiπx; ν̂(2)m = eiπX (E.8)

for the e sector and m sectors. The cartesian coordinates of the direct and dual lattices are

given by (x, y) and (X, Y ) withX = x+1/2 and Y = y+1/2 (red dashed line in Fig. 7.1(a) and

7.1(b)). Since no further soft modes are generated by the remaining symmetry, the transition

out of the Z2-QSL is described using these soft modes.

E.3 Symmetry transformations of the soft modes

Now, using the symmetry transformations of the gauge degrees of freedoms in Eqs. 6.14-6.19,

the transformations of the complex soft modes in Eqs. 7.89 and 7.90 are obtained:

Td1 :

 Φe → Φm

Φm → Φ∗
e

Td2 :

 Φe → Φ∗
m

Φm → Φe

Tx :

 Φe → Φ∗
e

Φm → Φ∗
m

Ty :

 Φe → Φe

Φm → Φm

T :

 Φe → −iΦe

Φm → −iΦm

σv :

 Φe → Φe

Φm → Φm

C2z :

 Φe → iΦ∗
e

Φm → iΦ∗
m

Rπ :

 Φe → iΦ∗
e

Φm → iΦ∗
m

(E.9)

Here we note that the σv and Rπ symmetries act differently on the soft modes compared to

the FM case (section 7.1.1). The gauge invariant spin order parameter in terms of the above

soft modes is [75, 108, 114]:

130



τ̃ zi ∼ |Φe|2 cos(2θe) ∀i ∈ Horizontal bonds

τ̃xi ∼ |Φm|2 cos(2θm) ∀i ∈ Vertical bonds (E.10)

Crucially, the two spin order parameters are odd under T , C2z, Rπ symmetry transforma-

tions.

E.4 Symmetry transformation of the gauge fields

Following the U(1) × U(1) mutual CS formalism, we introduce two internal gauge fields Aµ

and Bµ in Eq. 7.91 that minimally couples to the electric (Φe) and magnetic (Φm) soft modes

respectively. The transformation rules for the gauge fields follow from Eqs. 6.14-6.19.

Td1 :

 Aµ → Bµ

Bµ → −Aµ

Td2 :

 Aµ → −Bµ

Bµ → Aµ

Tx :

 Aµ → −Aµ

Bµ → −Bµ

Ty :

 Aµ → Aµ

Bµ → Bµ

T :

 Aµ → −Aµ

Bµ → −Bµ

σv :

 Ax → Ax, Ay → −Ay, Aτ → Aτ

Bx → Bx, By → −By, Bτ → Bτ

C2z :

 Ax → Ax, Ay → −Ay, Aτ → −Aτ

Bx → Bx, By → −By, Bτ → −Bτ

Rπ :

 Ax → Ax, Ay → Ay, Aτ → −Aτ

Bx → Bx, By → By, Bτ → −Bτ

(E.11)

E.5 The phases

To capture the phases at the mean-field level, for u > 0, we have
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⟨Φe⟩ = ⟨Φm⟩ = 0 (E.12)

Thus the complex soft modes can be integrated out so that the effective theory is described

by SCS , which is the Z2 QSL phase.

For u < 0 both the electric and magnetic modes condense, i.e.,

⟨Φe⟩, ⟨Φm⟩ ≠ 0 (E.13)

In this case, due to the Anderson-Higgs mechanism, the gauge fields acquire a mass and

their dynamics are dropped. The four-fold terms in Eqs. 7.22 and 7.23 becomes

∼ −λ
(
|Φe|4 cos(4θe) + |Φm|4 cos(4θm)

]
(E.14)

Therefore, for λ > 0 the free energy minima occurs for

θe, θm = 0,±π/2, π (E.15)

which gives the two possible symmetry-broken partner spin-ordered states as:

⟨τ̃ zi ⟩ ∼ ⟨|Φe|2 cos(2θe)⟩ ∼ ±1 ∀i ∈ Horizontal bonds

⟨τ̃xi ⟩ ∼ ⟨|Φm|2 cos(2θm)⟩ ∼ ±1 ∀i ∈ Vertical bonds (E.16)

Further the state breaks T , C2z and Rπ. In this phase, the interaction between the electric

and the magnetic modes (Eq. 7.24) can be written as

Lem ∼ w|Φe|2|Φm|2 cos(2θe) cos(2θm) (E.17)

For w < 0(> 0), this results in ferromagnetic (antiferromagnetic) spin ordering in terms

of τ̃x (on horizontal bonds) and τ̃ z (on the vertical bonds). The antiferromagnetic order also

breaks translation symmetry under Td1 and Td2 which interchanges a vertical and horizontal
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bond. The above phenomenology suggest w ∼ sgn(J). Therefore the above critical theory

indeed reproduces the right phases.

E.6 The details of the mutual Z2 gauge theory formulation

The partition function corresponding to the mutual Z2 action (Eq. 7.97) is given by

Z =
∑
{ρ}

∑
{ρ̃}

∫
[Dθe] [Dθm] exp [−S] (E.18)

where S is given by Eq. 7.97.

For further manipulation, we re-write the above partition function as

Z =
∑
{ρ̃}

∫
[Dθm] exp [−Sm] Ze (E.19)

where

Ze =
∑
{ρ}

∫
[Dθe] exp [−Se − SCS] (E.20)

We now write the electric action, Se, as in Eq. 7.101 and perform standard steps of XY

duality in presence of a Z2 gauge field [138–140]

Starting with writing it down within a Villain approximation as

Ze =
∑
{ρ}

∑
{mab}

∫
[Dθe] exp [−SCS] exp

[
−S(1)

e

]
(E.21)

mab is an integer field living on the links of the direct lattice and

S(1)
e = −t

∑
ab

(
θea − θeb +

π

2
(1− ρab) + 2πmab

)2
(E.22)

which we can decouple via an auxiliary link field Lab to get
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Figure E.2: A single Jordan Wigner string running through the H1 direction in an open system.

Ze =
∑
{ρ}

∑
{mab}

∫
[Dθe] [DL] exp [−SCS] exp

[
−S(2)

e

]
(E.23)

where

S(2)
e =

1

2t

∑
ab

L2
ab + iLab

(
∆jθ

e
a +

π

2
(1− ρab) + 2πmab

)
(E.24)

The integer fieldmab can be integrated out and restrictsLab to an integer leading to Eq. 7.102

in the main text.
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APPENDIX F

A POSSIBLE TRANSITION BETWEEN THE Z2 QSL AND A CLUSTER SPT

F.1 Transition between Z2 QSL and a cluster SPT

It is interesting to consider the phase transition between the Z2 QSL in the Toric code limit

and each of the cluster SPTs given by Eq. 3.20. Such transitions provide examples of yet a new

class of novel phase transitions even though presently we do not know a mechanism to stabilize

either the cluster SPT phase or this transition in the spin system that we have considered. As

we discuss below, this transition is naturally described in terms of Majorana fermions rather

than the spins, which makes the transition different from the above class of bosonic transitions

discussed above– hence we describe them.

In this Appendix, we develop the mean-field theory, in particular, for the transition between

the Z2 QSL with Hamiltonian given by Eq. 3.13 and the stacked cluster SPT H1, given by

Eq. 3.20 such that the Hamiltonian is given by :

H ′ =
∑
i

[
α τ zi+d1

τxi τ
z
i−d1

+ (1− α)τ zi+d1
τ zi−d2

τ yi τ
y
i+d1−d2

]
(F.1)

where α is the parameter that can be tuned to drive the phase transition. For an open system

using the Jordan-Wigner transformations of Eq. D.11 as defined in Fig. E.2 the above Hamilto-

nian becomes

H ′ =
∑
i

[α iγ̃i−d1γi+d1 + (1− α)γ̃i−d2 γ̃i−d2+d1γiγi+d1 ] (F.2)

where (γ̃i, γi) are the two Majorana fermions at site i such that under time-reversal symmetry

T : (γ̃i, γi) → (γ̃i,−γi).
In the transformed language, each chain in the stacked cluster SPT at α = 0 is a pair of

spin-less topological superconductors whereas the Z2 QSL is a cluster Mott insulator.

A mean-field decomposition of the four Majorana terms along the time-reversal invariant

135



channels leads to

γ̃i−d2 γ̃i−d2+d1γiγi+d1 →⟨i γ̃i−d2γi⟩ iγ̃i−d2+d1γi+d1

+ i γ̃i−d2γi ⟨iγ̃i−d2+d1γi+d1⟩

− ⟨iγ̃i−d2γi+d1⟩ iγ̃i−d2+d1γi

− iγ̃i−d2γi+d1 ⟨iγ̃i−d2+d1γi⟩ (F.3)

Let us define the following mean-field ansatz:

ζ1 ≡ ⟨i γ̃i−d2γi⟩ ; ζ2 ≡ ⟨iγ̃i−d2+d1γi+d1⟩ (F.4)

ζ3 ≡ ⟨iγ̃i−d2γi+d1⟩ ; ζ4 ≡ ⟨iγ̃i−d2+d1γi⟩

which we consider as variational parameters and study the spectrum of the quadratic Hamilto-

nian as a function of α. Symmetry dictates that ζ1 = ζ2 = ζ; Fourier transforming and defining

ΨT = (γ̃k , γk), where k = (k1, k2) are the reciprocal lattice vectors in d1, d2 direction respec-

tively, the Hamiltonian one obtains is

H =
∑
k

Ψ†

 0 f(k)

f ∗(k) 0

Ψ (F.5)

where

f(k) = ie−2ik1
(
α + (α− 1)ei(k1−k2)

(
ζ4 − 2ζeik1 + ζ3e

2ik1
))

(F.6)

If ζ3 = ζ4 = 0 for a fixed ζ1 = 1
2
= ζ , f(k) = iαe−2ik1 − i(α − 1)e−ik2 which implies a

direct transition with a gap closing along the complete k2 = 2k1 + π line when α = 0.5. With

a finite value of ζ3, ζ4 the nodal line semimetal opens up into a phase with nodal points hosting

anisotropic Dirac dispersion. Generically one, therefore, expects an intermediate gapless phase

in the finite region of α when interpolating between a weak SPT and a toric code Z2 QSL.
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