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Abstract

Dijkgraaf-Witten’s construction of a topological quantum field theory (DW TQFT) for finite
gauge groups gives us connections between the representation theory of finite groups and man-
ifold invariants. Just like groups arise as symmetries of sets, 2-groups arise as symmetries of
categories. Topologically, finite 2-groups can be identified with connected homotopy 2-type
whose homotopy groups are finite.

A d-dimensional extended TQFT Zd is a symmetric monoidal 2-functor from a symmetric
monoidal bicategory of d-dimensional bordisms. It is well known that symmetric monoidal
bicategories are challenging to construct directly because of the definition’s many coherences and
coherence laws. An indirect approach, following Shulman, is to work with symmetric monoidal
double categories. This thesis proves that a 2-category of isofibrant pseudo double categories is
biequivalent to a bicategory of isofibrant Segal categories. An analogous statement for symmetric
monoidal double categories is conjectured. The main idea is that working with Segal conditions
reduces the number of coherence checks.

Given a CW complex X, a d-extended DW TQFT ZdX is defined by factoring through a
symmetric monoidal bicategory of bispans, i.e. ZdX = QX ◦FdX . In physics parlance, the TQFT
is obtained by quantizing (QX) a classical field theory (FdX). The central result of this thesis
is the characterization of the 2-functors out of the bicategory of bispans (in a given category
C) by a universal property. A stronger statement involving a symmetric monoidal structure
will construct a DW TQFT. Roughly, the universal property is that a pair of functors out of
C satisfying a higher dimensional version of the well-known Beck-Chevalley (BC) conditions
induce a 2-functor out of the bicategory of bispans in C. The thesis also discusses an example
of a pair of functors satisfying BC conditions, which induces a 2-functor Q̃, from the bicategory
of bispans of groupoids to the bicategory of linear categories, previously considered by Morton.

A finite 2-group is a connected 2-type X with finite homotopy groups. The functor FdX =

Maps(_,X), on k-manifolds for d − 2 ≤ k ≤ d, induces a d-extended DW TQFT. It is shown

that the path groupoid of F3
X(S2) is the action groupoid for the standard action of π1(X, ∗) on

π2(X, ∗). The path groupoid of FdX(S1) is also described for d ∈ {1, 2}. Morton’s 2-functor Q̃

is evaluated on these groupoids, and the evaluations can be interpreted as the assignment of an

extended DW TQFT on the spheres.
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Chapter 1

Introduction

1.1 Preface

Given a finite set S, let #S denote the number of elements in S and given a connected
topological space Σ, let π1Σ denote the fundamental group of Σ at some base point. It
is well known that for a compact manifold Σ, the fundamental group π1(Σ) is finitely
generated. Thus, given a finite groupG, the set of group homomorphisms Hom(π1(Σ), G)

is finite.

In 1906, Frobenius and Schur computed a formula for the number of elements in
Hom(π1(Σ), G) when Σ is a non-orientable surface. In 1978, Mednykh computed a
formula for the number of elements in this set when Σ is an orientable surface (in [46]).
Elements of the representation theory of finite groups feature in both formulae. The
Mednykh formula is stated in the following theorem.

Theorem 1. Given a finite group G, let Irrep(G) denote the set of irreducible repre-
sentations of G. Let a closed 2-dimensional oriented manifold Σ of genus g be given.
Then

#Hom(π1Σ, G)

#G
=

∑
V ∈Irreps(G)

(
dimV

#G

)2−2g

,

where dim(V ) represents the dimension of the representation V .

Mednykh’s proof of this formula used classical Riemann surface theory. This formula
is a relation between representation theory and manifold invariants. Interesting facts
about representation theory can be deduced by plugging in various specific manifolds.
Choosing the Riemann surface as the sphere and the torus gives well-known facts about
the dimension of the regular representation and the number of irreducible representations
of G, respectively. New proofs of special cases of the Mednykh formula were found by
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computations of partition functions in quantum field theory [14][19]. A discussion of the
formulae in non-orientable and orientable cases, due to Frobenius-Schur and Mednykh,
respectively, is given in [61].

Generalization of the Mednykh formula and its interaction with topological quantum
field theories is one of the primary motivations of this thesis. The results of this thesis
are generalizations of a TQFT due to Dijkgraaf and Witten and computations presented
by Freed, Freed-Quinn. The subsections of Section 1.1 introduce all the actors required
to understand the objectives of this thesis (found in Section 1.2).

In Subsection 1.1.1, the definition of a TQFT, due to Atiyah-Segal-Kontsevich, is
motivated from their physical origins. In this definition, categories are used to model
glueing of manifolds with boundaries. Similarly, double categories model glueing of man-
ifolds with (cubical) corners and the notion of a once extended field theory is discussed
in Subsection 1.1.3. In Subsection 1.1.4, three presentations of groupoids are discussed.
In Subsection 1.1.5 and Subsection 1.1.6, proposals of 2-group gauge theories and quan-
tization of 2-group gauge theories are sketched. In Subsection 1.1.7, Dijkgraaf-Witten
TQFT is discussed and its value on a circle are derived.

The discussions in Subsections 1.1.3, 1.1.5 and 1.1.6 are imprecise and tentative in
nature since it is the subject matter of this thesis and only the motivations are discussed
in this section. The precise contributions of this thesis are discussed in Section 1.3. The
materials in the rest of the subsections are well-known.

1.1.1 On the categorical formalism for quantum field theory

The path integral formalism dates back to Feynman’s ideas surrounding the ‘sum over
histories method’. In this method for constructing TQFTs, a phase (i.e. an element of
U(1)) associated with the functional S (in units of ~), written as eiS is associated with
every trajectory of a particle moving on a given manifold. The probability amplitude of
a transition from an initial state to a final state is given by integrating the phase over
all possible trajectories with given initial and final states. A quantum field theory in
the path integral formalism is similarly constructed by choosing a space (of fields on a
given manifold), a functional on the space (the action) and performing a “path integral”
on the exponentiated action over the space of fields given the boundary conditions. The
path integral computed on a given manifold is a complex number, and it is called the
“partition function” of the theory. A rigorous theory for path integral formalism is not
available in general. Still, it has infused fresh ideas into geometry and topology. We will
review the case that is the focus of this thesis: Topological quantum field theories.
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In the ’90s, Witten explained that the Jones polynomial for knots arises from compu-
tations in quantum gauge theory constructed from a compact semisimple Lie group (the
famous Chern-Simons theory, see [70]). Since this field theory did not depend on the
metric and depended, only1 on the underlying smooth structure of the given manifold,
the quantum field theory was called “topological”. In [1], Atiyah noted that various new
developments (due to Donaldson, Floer, Gromov, Witten and others) in the study of
manifold invariants were motivated by examples of topological quantum field theories.
So, he proposed a definition for topological quantum field theories (TQFT) (inspired by
Segal’s definition of a conformal field theory, see [56]).

Let us see how to arrive at categorical definition starting from the path integral
formalism. Let M denote the d-dimensional closed manifold of interest and F(M)

denote the space of relevant classical fields on M . For the purposes of this subsection,
the space of classical fields F is defined as follows:

Definition 1.1.1. Pre-classical fields is a (pseudo)functor F : Manop → C, where Man
denotes the category whose objects are smooth manifolds with boundaries and corners,
morphisms are smooth maps, and C is a (higher) category.

Example 1.1.2. Consider the example of “gauge fields” FG for a finite group G. Here C
is the bicategory of groupoids. For a manifold M , FG(M) is the groupoid of principal
G-bundles on M .

Example 1.1.3. Fix a CW complex X and let Maps denote the homotopy type of
the mapping space between CW complexes. Define FX(M) = Maps(M,X) . Here
C is a a category of spaces. We could also get a groupoid by defining FX(M) =

π≤1(Maps(M,X)).

The action S is a functional on F(M) i.e. S : F(M)→ R. The path integral Z can
be written schematically as

Z(M) =

∫
φ∈F(M)

eiS(φ)“dφ”.

The integral is schematic because dφ may not be a measure. The exponentiated action
is an element of the group U(1). One embeds the group U(1) ↪→ C and then sums up
the complex numbers. For a closed manifold M ,

Z(M) ∈ C.
1up to a choice of the framing of the manifold.
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The quantum field theory we will consider is topological2 and hence Z only depends
on the underlying smooth structure.

One of the fundamental principles of quantum field theories is locality. Roughly
speaking, locality in QFTs is the idea that physical phenomena in a region can be
explained by fields supported on a region’s neighbourhood. We follow the exposition in
[19] where locality is implemented for TQFTs by demanding that the (action) functional
S satisfy a criteria we currently discuss. Given manifolds M1 and M2, since F is a
functor, we have the canonical map

F(M1 qM2)→ F(M1)×F(M2) (1.1.1)

obtained by evaluating the functor F on the structure maps of the coproduct M1 qM2

(in the category Man). Let us write the map as φ 7→ (φ1, φ2). The functional S is local
if it is of the form S(φ) = S1(φ1) +S2(φ2). Tentatively, in a “local” classical field theory
determined by a pair (S,F), the functional S is local and the map in Equation 1.1.1 is
an isomorphism/equivalence. In fact, we impose that F is a symmetric monoidal functor
with the cartesian monoidal structure for Manop and a symmetric monoidal category C
as a rigorous axiom for locality. So we have the following definition:

Definition 1.1.4. The classical fields functor F : (Manop,q) → (C,⊗) is a symmetric
monoidal functor.

In the case of TQFTs, this will mean the path integral satisfies

Z(M1 qM2) = Z(M1)Z(M2).

In this thesis, we will only consider the following two-step method for constructing
TQFTs: In the first step, we consider the space of classical fields on a given manifold
where F is a symmetric monoidal functor. In the second step, we quantize the theory
by computing the path integral over the space of fields. We revisit this two-step process
precisely at the end of this subsection.

So in the simplest form, a TQFT Z assigns a complex number to each isomorphism
class of manifolds. This definition is quite common in the literature, and state sum
models often produce the manifold invariant Z(M) for each manifold M .

Now we discuss the glueing properties of a TQFT, which leads to the Atiyah-Segal-
Kontsevich definition of a functorial form of a TQFT. Classical fields F on a manifold

2A topological quantum field theory is a theory that does not depend on the metric or conformal
structure on the manifold.
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M with boundary ∂M is the data of a tuple (M,∂M, |∂M : F(M) → F(∂M)). The
elements of F(M) will be called “bulk fields”, the elements of F(∂M) will be called
“boundary fields” and the map |∂M : F(M) → F(∂M) will be called a “restriction”.
The boundary fields are fixed to compute the path integral, and the path integral is
performed over all the bulk fields restricted to the given boundary fields. For a given
boundary field φ ∈ F(∂M), the space of bulk fields with boundary field φ is given by

F(M,φ) = {ψ ∈ F(M)|ψ|∂M = φ}.

The path integral, in this case, is

Z(M,φ) =

∫
ψ∈F(M,φ)

eiS(ψ)“dψ”.

The assignment Z(M) := Z(M,−) can be viewed as a functional on the space F(N)

where N ' ∂M . This space of functionals CF(N) forms a vector space which we denote
by Z(N). This vector space is called the space of states on N . Thus, for every manifold
M with boundary, Z(M) ∈ Z(∂M).

Given two manifolds M1,M2 with a boundary diffeomorphic to N , we have two
states Z(M1) and Z(M2) in Z(N). Now, suppose we can glue the manifolds along
the boundary to get a closed manifold M = M1

∐
N M2. The path integral Z(M) is

computed by “summing over the histories”:

Z(M) =

∫
ψ∈F(N)

“dψ”Z(M1, ψ)Z(M2, ψ) = 〈Z(M1), Z(M2)〉

Thus, we get a bilinear form on Z(N), which can be an inner product. Further, the
above argument also illustrates that this bilinear form can be used to compute Z(M) in
a different way, i.e. by cutting M into M1 and M2, computing Z on the pieces and then
pairing the vectors using the bilinear form.

We have seen that the path integral assigns a Hilbert space

Z(M) = CF(M)

to a closed (d− 1)-dimensional manifolds M . Given a manifold N with in-boundary M1

and out-boundary M2, and boundary fields ψ1, ψ2, the path integral assignment

Z(N,ψ1, ψ2) =

∫
ψ∈F(N,ψ1,ψ2)

eiS(ψ)“dψ”
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can be considered a matrix element indexed by fields on M1 and M2. Here F(N,ψ1, ψ2)

is the space of all fields on N that restrict to ψ1 on M1 and restrict to ψ2 on M2. In
other words, we have a linear transformation Z(N) : Z(M1)→ Z(M2) given by

(Z(N)(f))(φ2) =

∫
ψ1∈F(M1)

“dψ1”f(ψ1)

∫
ψ∈F(N,ψ1,ψ2)

eiS(ψ)“dψ”

A manifold N with in-boundary M1 and out-boundary M2 is called a “bordism” from
M1 toM2. Further supposeM1 andM2 are a pair of (d−1)-dimensional manifolds then,
from the discussion on locality, the space of fields on M1

∐
M2 is F(M1)×F(M2). The

space of functionals is tentatively

Hom(F(M1)×F(M2),C) ' CF(M1) ⊗ CF(M2) ' Z(M1)⊗ Z(M2).

This is a schematic argument since we have not specified the nature of the “space of
fields” throughout the discussion.

Remark 1.1.5. Let us summarise the previous four paragraphs. A d-dimensional topo-
logical quantum field theory (TQFT) Z provides the following assignments.

1. Given a closed oriented d-manifold M , Z(M) is a complex number.

2. Given a closed oriented (d− 1)-manifold N , Z(N) is a vector space.

3. Given a compact oriented manifold N with boundary ∂N 'M , Z(N) is a vector
in Z(∂N).

4. For a closed oriented (d − 1)-manifold N , the vector space Z(N) has an inner
product.

5. Given two closed oriented (d−1)-manifolds N1 and N2 and bordismM : N1 → N2,
there is a linear transformation Z(M) : Z(N1)→ Z(N2).

6. Given a disjoint union of oriented manifolds N1 qN2,

Z(N1 qN2) = Z(N1)⊗ Z(N2).

Table 1.1 presents this list using pictures.

The observations in Remark 1.1.5 follows from a precise definition of a TQFT. Before
the definition can be stated, some preparations are needed. A diagram in the category
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Picture Fields Path integral

F(N) Z(N) =

∫
φ∈F(N)

eiS(φ)“dφ”

F(N,φ) ⊆ F(N) Z(N,φ) =

∫
ψ∈F(N,φ)

eiS(ψ)“dψ”

F(N,φ1, φ2) ⊆ F(N) Z(N,φ1, φ2) =

∫
ψ∈F(N,φ1,φ2)

eiS(ψ)“dψ”

F(M) 〈Z(N1), Z(N2)〉 =

∫
φ∈F(M)

“dφ′′Z(N1, φ)Z(N2, φ)

Table 1.1

of manifolds
Σ

M1 M2

i1 i2

is a bordism if Σ is a manifold with boundaries and the maps i1, i2 provide a decompo-
sition of the boundary, i.e. we have a diffeomorphism

∂Σ 'M1 qM2.

First we discuss the category (Bordd,d−1,q). The objects of this category are closed,
oriented (d − 1)-manifolds. If N is an oriented manifold, then let N denote the same
smooth manifold but equipped with the opposite orientation.

Definition 1.1.6. LetM be a d-dimensional compact oriented manifold with boundary
with a specified diffeomorphism

∂M ' N1 qN2,

then M is a bordism from N1 to N2.

We will denote this situation by M : N1 → N2. The diffeomorphism classes of
bordisms from N1 to N2 (relative to the boundaries) are the morphisms from N1 to N2

in (Bordd,d−1,q).
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Given bordisms M1 : N1 → N2,M2 : N2 → N3, we can glue the manifolds along the
common boundary N2. Topologically it is the pushout X := M1 qN2 M2. To induce a
manifold structure, we have to be able to give coordinates at all points. On all points of
the pushout that are not in the image of N2 (under the canonical map of the pushout)
come fromX\N2 := (M1\∂M1)q(M2\∂M2). SinceM\∂M is an open subset ofM , there
is a natural choice of coordinates around every point ofM , and thus we have coordinates
on points of X \N2. Now it remains to describe the coordinates in neighbourhoods of
points in the image of N2 If we choose a “collar” around the boundaries (i.e. an open
neighbourhood U of M2 in N1 that is diffeomorphism to M2× [0, 1)), then clearly there
is a way to assign coordinates to the points ofM2 in N1qM2N2. The existence of collars
is guaranteed by Brown’s collaring theorem (see [8]), and it turns out that different
choices give rise to the same diffeomorphism class of manifolds. The composition in the
category (Bordd,d−1,q) is defined by glueing bordism along the common boundary.

The disjoint union of manifolds q is the monoidal structure, and the empty manifold
is the monoidal unit.

The codomain category is the category of complex vector spaces and linear trans-
formations. The monoidal structure is the tensor product of vector spaces, and the
monoidal unit is vector space C.

We can summarise the situation in Table 1.1 succinctly using symmetric monoidal
categories3 following Atiyah-Segal-Kontsevich’s definition [1].

Definition 1.1.7. A TQFT Z is a symmetric monoidal functor

Z : (Bordd,d−1,q)→ (V ectC,⊗)

Now note that the TQFT Z has upgraded to a functor (from a function that was a
manifold invariant). The functoriality captures the compatibility of the partition func-
tion with gluing manifolds. This gives us greater flexibility in computing the manifold
invariant. The functoriality of TQFT corresponds to the locality of the theory in physics.

The definition of a symmetric monoidal functor recovers the list in Remark 1.1.5:

1. The TQFT Z is a functor and thus assigns objects to objects. So a vector space
Z(N) (of states) is assigned to a (d− 1)-dimensional closed, oriented manifold N .

3Symmetric monoidal categories are categories equipped with a commutative multiplication. It’s like
an Abelian monoid in categories. A symmetric monoidal functor is like a homomorphism of abelian
monoids. All the monoids have units, and monoid homomorphism should map units to units.
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2. The TQFT Z is a functor and thus assigns morphisms to morphisms. So a linear
transformation Z(M) : Z(N1)→ Z(N2) is assigned to a bordism M : N1 → N2.

3. IfM is a manifold with boundary N , then we can view it as a bordismM : e→ N

where e is the empty manifold. Since Z(e) ' C, we have a linear transformation
Z(M) : C → Z(N), which is determined by Z(M)(1). Thus Z(M) is a vector in
Z(N).

4. The monoidal part of the monoidal functor gives Z(N1 qN2) ' Z(N1) ⊗ Z(N2),

and Z(φ) = C.

5. A closed d-manifold M is a bordism from the empty manifold to itself (up to
diffeomorphism). By the monoidal nature of the functor Z, the assignment Z(M)

is a morphism from C to itself and hence a complex number. So, each closed
d-manifold (up to diffeomorphism) is assigned a complex number.

6. It turns out that Z(N) = Z(N)∨.4 If M1,M2 are manifolds with N as boundary
(but opposite orientations), then we can compose M1 : e→ N , M2 : N → e in the
bordism category. Since Z is a functor, it maps composites to composites. So we
get a complex number by composing: 〈Z(M1), Z(M2)〉 . This pairing is bilinear
since composition in the category of vector spaces is bilinear.

The TQFT was constructed in a two-step process. Roughly speaking, first, we con-
sider the space of classical fields on manifolds, then we quantize the space of fields. Can
the categorical TQFT (i.e. Definition 1.1.7) also be factored into a product of two func-
tors? If this is the case, what is the target of the Bordism category? We will answer
these questions in the next subsection.

1.1.2 Quantization of a classical field theory

In this subsection, we define classical field theories and discuss the construction of TQFTs
via quantizing a classical field theory. The notion of a span is the crucial ingredient used
to define a classical field theory.

4The proof of this fact uses the symmetric monoidal structure on the categories and functor. More
generally, it arises from the fact that tensor duals are mapped to tensor duals.
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Definition 1.1.8. Let C be a category. A pair of morphisms (f, g) in C of the form
f : a→ b and g : a→ c is called a span in C. It is usually depicted in the following way:

a

b c
f g

Spans are ubiquitous in mathematics. A relation R on a setX is a subset R ⊂ X×X,
and it can be viewed as a span X a←− R

b−→ X where a, b are projections. Thus, a span
is also called a generalized relation or a correspondence in the literature. For a category
C with pullbacks, Benabou constructed a bicategory whose 1-morphisms where spans
in C [6, §2.6]. We present a category whose morphisms are spans and are obtained by
identifying isomorphic 1-morphisms in Benabou’s construction.

Construction 1.1.9. Let C be a category with pullbacks. Define a symmetric monoidal
category (Span(C),×) as follows:

• The set of objects of Span(C) is the set of objects of C.

• Given two objects A,B in Span(C), a 1-morphism is a set of spans (f : X → A, g :

X → b) in C modulo the following relation: Spans (f : X → A, g : X → b) and
(f ′ : X ′ → A, g′ : X ′ → b) are related if there is an isomorphism k : X → X ′ such
that f ′k = f and g′k = g. In other words, in Figure 1.1, we say the outer spans
commute if a dashed isomorphism makes both triangles commute. We denote the
morphism by [(f,X, g)] : A→ B or [(f,X, g)] for short.

• The identity morphism for an objectA is the equivalence class of the span [(idA, A, idA)].
The composition of [(f,X, g)] : A → B and [(h, Y, k)] : B → C is defined as
[(π1, X ×B Y, π2)] where the span is a part of a pullback diagram depicted in Fig-
ure 1.2. Even though a pullback is not unique, the composition is well-defined
since a pullback is unique up to a unique isomorphism.

• The symmetric monoidal structure is given by product on objects. On morphisms,
define the monoidal product of [(f,X, g)] : A → B and [(h, Y, k)] : C → D as
[(f × h,X × Y, g × k)] : (A× C)→ (B ×D).

Matrix multiplication can be motivated as a functor out of Span(FinSets) where
FinSets is the category of finite sets and maps between them.

Construction 1.1.10. Consider a span in finite sets X a←− R b−→ Y along with a function
(called a kernel) t : R → k for some field k, R is a finite set and kZ denotes the vector
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X

A B

X ′

f g

f ′ g′

k

Figure 1.1: A figure depicting the relation between spans.

X ×B Y

X Y

B

π1 π2

g h

Figure 1.2: A figure depicting a pullback diagram used for composing
spans.

space of k-valued functions on Z. We can construct a linear transformation T : kX → kY

using the span and the function t in the following manner:

T (f)(y) =
∑

r:b(r)=y

t(r)f(a(r))

Note that R = X × Y recovers matrix multiplication in the usual form.

We can recognize three steps in Construction 1.1.10: Start with a function f ∈ kX

1. In the first step, we compose f : X → k with a : R→ X to get

a∗f = f ◦ a.

This step, i.e. the map a∗ : kX → kR is generally called “pullback”.

2. The function g : R→ k can be “pushed along b” to obtain a function b∗g : Y → k.
We do this by “integrating along the fibres”. Given a y ∈ Y , the fiber of b over y
is simply the preimage of y:

b−1(y) = {r ∈ R|b(r) = y}
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Define
b∗g(y) =

∑
r∈b−1(y)

t(r)g(r)

Note that the sum is well-defined since R is a finite set. The function t is called a
kernel.

3. So we can briefly write
T (f) = b∗a

∗f.

In summary, given a pair of functors ()∗, ()∗ : FinSets→ Vectk which agree on objects
and the former is contravariant, we can define a “pull-push” operation on a span of finite
sets as follows:

(X
a←− R b−→ Y ) 7→ (b∗a

∗ : kX → kY )

The above procedure is called “pull-push”. The pushforward required a process of sum-
mation. The ubiquity of spans is tied to the ubiquity of push-pull operations in math-
ematics. Fourier transforms, Fourier-Mukai transform, Mackey functors are different
examples of push-pull operations in mathematics 5.

In physics, pull-push arises as a way to quantize classical field theories. Typically, a
quantum field theory is constructed by first constructing the classical field theory and
then quantizing the classical fields.

First of all, what is a classical field theory?

Definition 1.1.11. Let C be a category with finite limits and let (Span(C),×) denote
the symmetric monoidal category constructed in Construction 1.1.9. A C-valued classical
field theory C is a symmetric monoidal functor

C : (Bordd,d−1,q)→ (Span(C),×).

So, let us discuss the example of a classical field theory that arises in physics. Let
M be a manifold with boundary ∂M ' N1 qN2 as shown on the left of Figure 1.3.

Let F denote a classical fields functor (see Definition 1.1.4). By restricting the fields
on M to the boundary components, we get a span of spaces on the right of Figure 1.3.
In fact, this induces a classical field theory CF that assigns a manifold M , the space
F(M). Next, we ask what is quantization?

5For a leisurely discussion, see Morton’s n-category cafe entry: https://golem.ph.utexas.edu/
category/2010/11/integral_transforms_and_pullpu.html

https://golem.ph.utexas.edu/category/2010/11/integral_transforms_and_pullpu.html
https://golem.ph.utexas.edu/category/2010/11/integral_transforms_and_pullpu.html
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M F(M)

N1 N2 F(N1) F(N2)

Figure 1.3: Classical Field theory on bordisms

Definition 1.1.12. Let C be a category with finite limits and (Span(C),×) denote the
symmetric monoidal category constructed in Construction 1.1.9. Let (V ectC,⊗) denote
the symmetric monoidal category of complex vector spaces with the usual tensor product.
A quantization functor Q is a symmetric monoidal functor

Q : (Span(C),×)→ (V ectC,⊗).

A functor Q̃ : Span(C)→ V ectC is called a prequantization functor.

The matrix multiplication discussion in Construction 1.1.10 gives an example of a
prequantization functor for C = FinSets.

Now we assume that the category C, in the definition of classical fields functor, is
the category of spaces (or equipped with a functor to a category of spaces of some kind).
We can quantize a theory by assigning the vector space of complex-valued functions on
the space of fields to the boundaries

Z(N) = CF(N).

Let S : F(M) → R be a function (the “action” functional in physics) on the space of
fields. The complex-valued function eiS will serve as the kernel (see Construction 1.1.10)
for pull-push.

Let us specify the pushforward in this case. Let f ∈ CF(M) and b : F(M) → F(N)

be the restriction of the fields on a compact manifold M to a component N of the
boundary of M . Then define the pushforward of f along b as:

(b∗f)(p) =
∑

{q∈π0(F(M))|b(q)'p}

eiS(q)f(a(q))µ(q)

where
µ(q) =

#ΩpF(N)

#ΩqF(M)
.
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Here #Z of a space Z is the homotopy cardinality6. The choice of the measure µ
determines the pushforward operation (_)∗.

Spans can be composed by using pullbacks (see Construction 1.1.9).Let Q(X) = CX

and let Q send the span of finite groupoids to a linear transformation of vector spaces
via pull-push (as described in the previous paragraph). We pose the following question
(note the absence of the monoidal structure):

Find conditions under which the operation Q : Span(Gpdsf )→ VectC is functorial.

The composition of solid lines on the right should match the dotted lines in the figure
below:

A X Z Q(A)

B Y Q(B)

C Q(C)

l

m

n

p

a

b

y

m∗l∗

p∗n∗
(pb)∗(la)∗

The compositions match p∗b∗a∗l∗ = p∗n
∗m∗l

∗ iff

b∗a
∗ = n∗m∗

This condition is a simple version of the famous “Beck-Chevalley conditions”. Let us
formalize the functoriality condition into a proposition.

Definition 1.1.13. Let C be a category with finite limits. A pair of functors

()∗, ()∗ : C → D

is called a Beck-Chevalley pair if the former functor is contravariant, the functors agree
on objects and for any pullback square in C:

• •

• •

a

b

n

m
y

the following condition holds:
b∗a
∗ = n∗m∗.

6See Subsection 1.1.6 for a precise definition due to Kontsevich.
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Let C be a category with finite limits. Let Span(C) denote the category constructed
in Construction 1.1.9. In the next proposition, we summarize the discussion on the
prequantization functor using a universal property.

Theorem 1.1.14. Let C be a category with finite limits. Let D be a category. The
pair of functors i∗, i∗ are universal Beck-Chevalley functors. In other words, given any
pair of Beck-Chevalley functors ()∗, ()∗, it uniquely factors through i∗, i∗ as shown in the
diagram below.

C Span(C)

D
()∗,()∗

i∗,i∗

Q

When constructing a quantum field theory, classical field theories are quantized by
choosing a measure to do the path integral. The above proposition imposes a condition
on the measure that allows prequantization.

Now we define the phrase “quantizing a classical field theory”.

Definition 1.1.15. A TQFT Z is obtained by quantizing a classical field theory if there
exists a category C with finite limits such that Z factors as follows

(Span(C),×)

(Bordd,d−1,q) (V ectC,⊗)Z

C Q

A classical fields functor F : (Manop,q) → (C,⊗) naturally induces a classical
field theory CF : (Bordd,d−1,q)→ (Span(C),×) such that CF (M) = F(M). Recall the
discussion on locality leading up to Definition 1.1.4 where it was explained that monoidal
structure on the functors corresponds to the locality of the theory. Theorem 1.1.14 gives
us the conditions for constructing the prequantization functor without imposing locality.
Thus, having the monoidal version of Beck-Chevalley conditions (see Definition 1.1.13),
which produces a monoidal version of Theorem 1.1.14 gives us a way to construct a
quantization functor Q. Thus, we obtain a TQFT Z = QCF by quantizing a classical
field theory.

1.1.3 Once extended field theories

In this subsection, the definition of an once extended cubical field theory is motivated..
But we first discuss the history of extended field theories. In the ’90s, following ideas
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of Freed in [19] and Baez-Dolan [2], Atiyah-Segal-Kontsevich’s definition of TQFT was
generalized. This definition of a d-dimensional TQFT can be paraphrased as assigning
a complex number to a closed-oriented d-manifold and a vector space to a codimension
1 submanifold of a d-manifold. Freed suggested that we should be able to extend this
definition to higher codimensions. He proposed that a category can be assigned to a
codimension 2-manifold (a 2-category can be assigned to a codimension 3-manifold and
so on). Freed illustrated this idea by working out parts of a once-extended 3-dimensional
Dijkgraaf-Witten theory for finite groups. He argued that the circle (which is codimen-
sion 2 for a 3-dimensional theory) should be assigned the representation category of the
Drinfeld double of the group. Baez and Dolan proposed the notion of a fully extended
TQFT (assuming we had a good model for symmetric monoidal higher categories).

Before we discuss extended TQFTs, a clarification about the type of higher categories
is overdue. There are two types of theories that are typically called higher category theo-
ries. A higher category can be defined by specifying the objects, morphisms, composition
and associated data along with a collection of rules (called “coherences”) that interrelate
the data. For instance, this is how categories are described in [43] and bicategories are
described in [6, 43, 33] (Also see Definition 2.1.3 for the definition of a bicategory). But
working with higher categories beyond bicategories (i.e. tricategories [25] and tetracat-
egories) becomes very cumbersome. On the other hand, higher categories can also be
studied within the framework of ∞-category theory. In [42], Lurie contrasts these two
different approaches and then formulates the definition of a fully extended TQFT using
the framework of∞-category theory. The methods employed in this thesis is inspired by
the methods used in ∞-category theory (that suppresses complicated coherences) but
no∞-category theory is required to understand the any result or proof in this thesis. So
when we say higher categories we mean a theory of the first type but using the methods
of the second type.

Now we discuss the notion of a fully extended TQFT informally. Given a category
C and two objects x, y in C, let C(x, y) denote the set of morphisms from x to y. We
follow the exposition of higher categories from [42, Section 1]. An inductive definition of
strict higher categories is the following: A strict n-category is a category enriched in the
category of (n− 1)-categories. A higher category is a weakened version of strict higher
category where the associative and unital laws are weakened to hold up to isomorphisms.
If we unravel the definition of a higher category, we see that a higher category C is
specified by

• A collection of objects x, y, · · · .

• For every pair of objects, a collection of 1−morphisms f, g, · · · .
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• For every pair of 1−morphisms, a collection of 2−morphisms A,B, · · · .

• For every pair of 2−morphisms, a collection of 3−morphisms α, β, · · · .

• · · ·

The notion of a bicategory is a precise example of a n-category for the case n = 2.
See Definition 2.1.3.

Back to the discussion on extended field theories: Roughly speaking, the d-category
Bordd of d-dimensional bordisms has i-dimensional bordisms as i-morphisms for i > 0

and 0-dimensional manifolds as the objects of the d-category. The coproduct of manifolds
induces the symmetric monoidal structure on Bordd.

Definition 1.1.16 (Sketch). Let C be a symmetric monoidal higher category. A fully
extended C-valued TQFT Z is a symmetric monoidal functor

Z : Bordd → C.

Baez and Dolan proposed the “cobordism hypothesis” that fully extended TQFTs
are characterized by the TQFT’s value on a point. Lurie sketched a construction of a
symmetric monoidal d-category of bordisms in [42] and it was rigorously constructed by
Calaque and Scheimbauer in [10]. We remark that the constructions are in the framework
of ∞-categories, but the distinction is not very important for our informal discussion
here. Lurie also wrote down the precise statement of the cobordism hypothesis/theorem
and sketched a proof of the theorem [42, Section 2.4]. Roughly speaking, the claim is:
A fully extended TQFT is characterized by its value on a point and the value on the
point is given by a “fully dualizable object” in the codomain d-category of the TQFT.
The notion of full dualizability is internal to the symmetric monoidal category and is
a generalization of the notion of dualizability in monoidal categories. We will not talk
about dualizability in this thesis, so we will not discuss it further. The notable point
is that all known fully dualizable objects have a rich structure. The interested reader
should refer to [42, Section 2.3].

The focus of this thesis is on generalizations of TQFTs proposed by Dijkgraaf and
Witten (discussed in Subsection 1.1.7). It is natural to wonder if there exists a fully
extended version of this theory. While it is believed that TQFTs arising in physics are
fully extendable, a rigorous construction of such a fully extended TQFT is not available
presently. The Atiyah-Segal-Kontsevich TQFT in Definition 1.1.7 can be constructed
using the tools of category theory which is well studied and classical. On the other
hand, Definition 1.1.16 requires methods from higher category theory which is relatively
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• •

• •

M

• •

• •

K00 K01

K10 K11

N ′1

N ′0

N0 N1

Figure 1.4: Manifold with corners whose boundaries are red and blue
manifolds with boundaries. The green manifolds are corners of the orig-

inal manifolds.

new and the definitions are long and complex (For instance, look at the definition of a
tetracategory due to Trimble in [32].) At the present moment, bicategories (Definition
2.1.3) can be considered as a sweet spot for the trade off between complexity and ap-
plicability. Historically, bicategories defined by Benabou [6] are precise models for weak
2-categories. Double categories are mild generalizations of bicategories and discussed in
this subsection. In this thesis, the construction of an once extended TQFT is considered
which is double categorical in nature.

So now we discuss the notion of an once extended cubical TQFT. Suppose M is
a manifold with corners as shown below in Figure 1.4. Let ψ ∈ F(K), then by the
reasoning for (2) in Remark 1.1.5, we get Z(Ni, ψ) = CF(Ni).

At this point, there are various ways to chop the manifold into smaller parts. We
will take a cubical point of view. The simplest example is shown in Figure 1.4, where
a manifold M with corners is drawn. It has four boundary components N0, N1, N

′
0, N

′
1.

Each of these manifolds has boundaries denoted in green and labelled by K.

We can assemble these cubical bordisms into some kind of category. The gluing of
manifolds along diffeomorphic boundary pieces will be the composition of this category.
The manifold with corners can be glued in two independent directions as shown in Figure
1.5 and thus the partition function on these manifolds can be composed in two ways.

We note that if fields are fixed on the boundary manifolds and on the corners in a
compatible way, then the path integral can be computed. In other words, if ψ = (ψi)

are the fields on boundaries labelled by N,N ′ and θ = (θi) are the fields on the corners
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Figure 1.5: The manifolds with corners cut in a cubical way can be
glued in two independent directions.

labelled by K as shown in Figure 1.4, then by integrating over the all the fields on M
that are compatible with the boundary conditions, we can obtain the partition function
of the field theory:

Z(M,ψ, θ) ∈ C

Now we see that Z(M,, θ) is a linear functional:

Z(M,, θ) ∈ CF∂M (θ).

Let us denote CF∂M (θ) by Z(∂M, θ). Recall that composition of morphisms was
related to a pairing of vectors. Now we will have two independent directions to pair
vectors.

Further, we can cut a big square into 4 smaller squares by drawing vertical and hori-
zontal mid-lines. The four smaller squares can be glued horizontally and then vertically
or the other way around. Either way, we get the big square as the composite. The
partition function Z on the full square given the boundary condition can be computed
directly or by composing the pieces in different ways, the answer should remain the
same.

The situation described in the paragraphs above with a pair of compositions is cap-
tured by working with a double category instead of a category. The disjoint union of
manifolds continues to be the monoidal structure.

Double categories were introduced by Ehresmann in [15]. We present a definition of
a strict double category here. The reader can look at Definition 2.1.39 in Chapter 2 for
a precise definition of a weaker notion that will be used in the thesis.

Definition 1.1.17. A double category D is given by

Data:

1. A pair of categories (D0,D1) called object category and arrow category respectively.
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2. A collection of functors S : D1 → D0, T : D1 → D0 and U : D0 → D1 called source,
target and unit functors respectively.

3. A composition functor � : D1×D0D1 → D1 where the pullback is over the diagram:
D1

T−→ D0
S←− D1.

satisfying the following conditions

1. The source, target and unit functors satisfy SU = id and TU = id.

2. The source, target and composition satisfy S� = Sπ2 and T� = Tπ1.

3. The composition is associative and unital.

A double functor between double categories is the data of functors between object
and arrow categories that commute with all the structure maps (i.e. S, T, U,�). Double
categories and double functors form a category.

If we spell out the definition above, then a double category D has a set of objects
D00, a set of vertical morphisms D01, a set of horizontal morphisms D10 and a set of
2-morphisms D11 equipped with source and target maps,

D11 D10

D01 D00

A sketch of a two-cell of a double category is shown below. In Figure 1.6 the 2-

A B

α

C D

Mp

N
p

f g

Figure 1.6: A two-cell: α is a 2-morphism, M,N are horizontal mor-
phisms, f, g are vertical morphisms and the rest are objects.

morphism α is a morphism between morphisms in two ways: α : M → N and simulta-
neously α : f → g. The 2-morphisms can be composed horizontally by pasting horizontal
squares and the composition will be denoted by �. The 2-morphisms can be composed
vertically by pasting vertical squares and the composition will be denoted by ·.
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For a collection of 2-morphisms α, β, γ, δ in the following shape,

• • •

• • •

• • •

γ δ

α β

the functoriality of composition in Definition 1.1.17 corresponds to the “middle four
exchange” formula

(α� β) · (γ � δ) = (α · γ)� (β · δ).

The category formed by objects and horizontal morphisms is called the horizontal
category of D. The category formed by objects and vertical morphisms is called the
vertical category of D.

Recall that a 2-category has objects, 1-morphisms between objects and 2-morphisms
between 1-morphisms with the same source and target objects. The composition of
1-morphisms is associative and unital. For a precise definition, look at Benabou [6].

Remark 1.1.18. Certain two-cells in a double category look like 2-categories.

A B

α
H7→ A B

A B

Mp

N
p

id id

M

N

α

Given a double category D, if we discard all the 2-morphisms with non-identity
vertical morphisms, we get the bicategory (Definition 2.1.3) of horizontal morphisms
H(D). This construction is functorial (See [59, Page 4]).

A strict symmetric monoidal double category can be defined as well.
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Definition 1.1.19. A strict symmetric monoidal double category (D,⊗, I) is a double
category D equipped with functors ⊗ : D× D→ D and I : ∗ → D such that

⊗ ◦ (Id×⊗) = ⊗ ◦ (⊗× Id)

⊗ ◦ (Id× I) = Id

⊗ ◦ (I × Id) = Id

⊗ ◦ τ = ⊗

τ2 = Id

where Id denotes identity functor, τ : D2 → D2 is the braiding double functor that swaps
coordinates and ∗ denotes the terminal double category.

A symmetric monoidal double functor is a double functor that respects the monoidal
structure and the braiding. For a weak version, see [59, Definition 2.9].

In this thesis, we discuss double categories with weakly associative composition in the
horizontal direction (called a pseudo double category) and consider the double categorical
analogue of a TQFT in the spirit of Atiyah. Let DBordd denote the double category
of bordisms cut in a cubical manner as discussed at the start of this section. This
pseudo double category has a symmetric monoidal structure given by the disjoint union
of manifolds. A construction is outlined in Schommer-Pries’ thesis [54, §3.1.4].

Definition 1.1.20. A once extended cubical TQFT Z is a symmetric monoidal double
functor

Z : (DBordd,q, φ)→ (D,⊗, I)

The computation of the partition function by cutting manifolds in two independent
directions naturally leads to a cubical extended TQFT.

Remark 1.1.21. The choice of cutting the manifolds in a cubical manner naturally sug-
gests the use of the pseudo double category of bordisms. It is plausible that other ways
of cutting manifolds may model the extended TQFT differently, but the author hopes
that the data of the extended TQFT will be model independent.

The composition in the pseudo double category will be weakly associative since the
gluing process is not canonical.

It should be clear from this section, that an extended TQFT is used to compute the
partition function on a closed manifold. In simple words, we are cutting the manifold
only to glue them later. A key insight in Lurie’s construction of extended TQFTs [42] is
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that we can choose to remember where to cut without really cutting the manifold. The
results in this thesis were motivated by the problem of giving a rigorous construction of
once extended cubical TQFTs.

1.1.4 Grothendieck’s Homotopy Hypothesis

We will use the term “space” to mean a topological space that is homotopy equivalent
to a CW complex.

Definition 1.1.22. A space X such that the homotopy groups πk(X, ∗) = 0 for k > n

is called a n-type.

If X is an n-type and it has finite homotopy groups, X is called a finite n-type.

If X is a finite n-type for some n, then X is called a homotopy finite space.

In this subsection, the well known dictionary between groups, one object groupoids
and connected 1-types is presented. The corresponding dictionary between crossed mod-
ules, one object 2-groupoids and connected 2-types is discussed in Subsection 5.1.2. The
subsection ends with the statement of Grothendieck homotopy hypothesis.

Given a CW complex X, we can construct the fundamental path groupoid π≤1(X)

with points of X as the objects and the homotopy classes of paths between points as
morphisms. A CW complex |X |, called the geometric realization, can be constructed
from a groupoid X . Recall that a map of CW complexes f : X → Y is a quasiiso-
morphism if π0(f) and π1(f) are isomorphisms. Let Ho(1types) denote the category of
1-types localized at the set of quasi-isomorphisms and Ho(Gpds) denote the category
of groupoids localized at equivalences of groupoids. The pair (π≤1, |(−)|) induce an
equivalence of categories:

Ho(1− types) Ho(Gpds)

π≤1

|(−)|

Under the equivalence above, the fundamental path groupoid of a connected 1-type is a
one object groupoid.

Construction 1.1.23. So now we have three equivalent descriptions of a group:

• Algebraic description: Category with groups as objects and group homomorphisms
as morphisms. Denote this category by Grps. We can choose weak equivalences
as isomorphisms and denote this data as the pair (Grps, Iso).
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• Categorical description: Category of one-object groupoids. The morphisms are
functors between groupoids. Denote this category by Gpds∗. Choose weak equiva-
lences as equivalences of groupoids and denote this data as the pair (Gpds∗,Equiv).

• Topological description: Category of connected 1-types. The morphisms are con-
tinuous maps between spaces. Denote this category by Conn1− types. The weak
equivalences are quasi-isomorphisms and denote this data as the pair (Conn1 −
types,QIso).

Given an object G in Grps, denote ∗//G as the groupoid with one object ∗ and the mor-
phisms (∗//G)(∗, ∗) = G with composition of morphisms defined by the multiplication
in G. It turns out we have a functor

∗//(−) : Grps→ Gpds∗

which maps isomorphisms of groups to isomorphisms of groupoids. Given a one object
groupoid X with ∗ as the object, the set of morphisms G(X ) = X (∗, ∗) along with the
composition data of the groupoid gives G(X ) a group structure. The map G can be
upgraded to a functor which maps equivalences of groupoids to isomorphism of groups.

Proposition 1.1.24. The functors ∗//(−) and |(−)| described in Construction 1.1.23
induce equivalences of homotopy categories.

One imagines that a n-groupoid will have n levels of invertible morphisms. How-
ever, writing a precise definition of a weak n-groupoid will involve a prohibitively high
amount of coherence isomorphisms and very complicated coherence conditions (look at
the definition of a weak 4-category in [32, Section 3.2] due to Todd Trimble). So how can
we define weak n-groupoids? Grothendieck envisioned a remarkably simple proposal to
this conundrum [29] which can be motivated by Proposition 1.1.24 (and the analogous
Theorem 5.1.11 for 2-types in Chapter 5).
Grothendieck’s homotopy hypothesis: A CW complex X such that the homo-
topy groups πk(X, ∗) = 0 for k > n is a model for n-groupoids.
Equivalence of n-groupoids is given by weak homotopy equivalence of CW
complexes.
Essentially, the homotopy hypothesis suggests that we set the categorical description
to be equal to the topological description. Proposition 1.1.24 notes that the homotopy
category of connected 1-types is equivalent to the category of groups. This proposition
along with Grothendieck’s homotopy hypothesis suggests that a homotopy theory of
connected n-types could reasonably be called the theory of “n-groups” (generally called
higher groups when n is not specified). The homotopy hypothesis for the case n = 2 has
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been studied in the literature [68, 44, 47] and the reader is directed to Theorem 5.1.11
due to Moerdijk and Svensson. Figure 5.1 gives a map of the discussions, in Chapter 5,
that relate 3 distinct descriptions of 2-groups.

1.1.5 Classical 2-group gauge theory

In this subsection, we discuss Dijkgraaf-Witten theory for higher groups. A Chern-
Simons theory is specified by a Lie group G, a manifold M , and a principal G-bundle
on M equipped with a connection . The space of classical fields in this case is the space
of G-bundles equipped with a flat connection. The focus of Dijkgraaf-Witten theory is
on a finite group G and in this case, there is a unique flat connection. Thus the space of
classical fields in this case is simply the space of principal G-bundles. Since G is discrete,
any Eilenberg- MacLane space K(G, 1) is a classifying space BG for G-bundles. Note
that BG is a connected 1-type with a finite fundamental group. This motivates the
definition of classical field theories for finite n-groups (see Willerton [69] for a similar
discussion).

Let X be a finite n-type and M be a manifold. The mapping space Maps(M,X)

has a physical interpretation of classical gauge fields on M . In this case, from Definition
1.1.1, classical gauge field functor can be considered as a contravariant functor FX into
the category of spaces. In the informal discussion below, when we say space of classical
fields on M and denote it by FX(M), a mapping space Maps(M,X) is a good example
to keep in mind. We remark that in the physics literature this model for fields is called
a sigma model.

We motivate the bicategory of bispans of spaces as a natural home for a 2-functor
of classical fields. Given a manifold M with corners, the classical fields on M restrict to
classical fields on submanifolds of all codimensions. Schematically, the space of classical
fields FX can assemble into functor that sends bordisms M : N1 → N2 to spans (or
correspondences) of spaces.

M FX(M)

N1 N2 FX(N1) FX(M)

F
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The classical fields double functor on the manifold shown in Figure 1.4 looks like
this:

FX(K00) FX(N ′0) FX(K01)

FX(N0) FX(M) FX(N1)

FX(K10) FX(N ′1) FX(K11)

All the arrows in the above diagram are restriction functors and all squares commute.
This image should be interpreted as a 2-morphism of a pseudo double category whose
horizontal and vertical morphisms are spans of spaces and 2-morphisms are spans of
spaces in both directions (called bispans of groupoids). The space of classical fields
FX can be enhanced to a 2-functor, if the composition in the pseudo double category
of bordisms corresponds to the composition in the tentative pseudo double category
of bispans of groupoids. This motivates the composition of spans of spaces: Suppose
a manifold M is cut along a codimension 1 submanifold N into two manifolds (with
boundary) M1 and M2. Lets denote the gluing of M1,M2 along N by M1 qN M2 'M .
If the restriction map

Maps(M,X)→ Maps(M1, X)×hMaps(N,X) Maps(M2, X)

is an equivalence of spaces, which means we can reconstruct classical fields onM from its
parts. This should follow from showing that gluing along boundaries produces homotopy
colimits of spaces. Thus the composition of the spans of spaces is given by a homotopy
pullback of spaces.

In the model of double categories we consider in this thesis, the composition in the
vertical direction has to be strict. So we shall identify the vertical spans up to equiva-
lences. The compositions of 2-morphisms in two independent directions are computed
using homotopy limit diagrams which we won’t spell out here. Also, by definition of
coproduct,

FX(M1 qM2) ' FX(M1)×FX(M2)

The above discussion can be summarized as saying that there is a symmetric monoidal
2-functor F induced from the classical fields functor F on manifolds. Motivated by [20,
Section 3], higher category of spans are used to model classical field theory. While only
the bicategory of bispans is considered in this thesis, the (∞, n)-category of n-fold spans
has been constructed in [30].
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Definition 1.1.25. A C-valued once extended cubical classical field theory is a sym-
metric monoidal double functor

F : (DBordd,q)→ (DBispan(C),×).

Remark 1.1.26. In the physics literature, the pair of space of fields FX(M) on M and
the action functional S constitutes a classical field theory. So the definition 1.1.25 may
seem restrictive. However, by suitably modifying the target category of classical fields
functor, the action data can be incorporated into the above definition. Definition 1.1.25
is differs slightly from the one in [20, Section 3]. The objects of the bordism category in
loc.cit is a pair (M,φ) where φ ∈ F(M) and the objects of C are spaces equipped with
a local system.

We can also discuss a bicategorical version of classical field theory.

Definition 1.1.27. A C-valued once extended classical field theory is a symmetric
monoidal 2-functor

F : (Bordd,q)→ (Bispan(C),×).

A preclassical field theory is a 2-functor

F : Bordd → Bispan(C).

A tentative example of a preclassical field theory arises from the assignment FX(M) =

Maps(M,X) where C is a category of topological spaces. It is expected that the assign-
ment M 7→Maps(M,X) for manifolds M induces a pre-classical field theory F̃X .

1.1.6 Quantization

The path integral quantization can be carried out once we have an integration measure
for the space of classical fields and a real functional (action) on the space of classical
fields. However as the discussion in Section 1.1.1 showed, we demand that the partition
function of a manifold should be computable by composing the value of the partition
function on the pieces. In other words, we demand functoriality of the quantization
functor.

In Subsection 1.1.2, we discussed quantization of a classical field theory. This discus-
sion naturally leads to the problem of characterizing the category of spans by a universal
property. Recall that the universal property was in terms of the Beck-Chevalley condi-
tions (see Theorem 1.1.14). It is natural to wonder if Bispan(C) discussed in the previous
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section has an analogous universal property. A universal property aids in the construc-
tion of a 2-functor Q : Bispan(C) → B. If we compose the classical field theory F in
Definition 1.1.25 with a functor Q described in this section, then we can obtain a TQFT
(Definition 1.1.20) if Q is a symmetric monoidal 2-functor. Thus we have

Definition 1.1.28. Let (B,⊗) be a symmetric monoidal pseudo double category and
let C be a category with finite limits. A symmetric monoidal pseudo double functor

Q : (Bispan(C),×)→ (B,⊗)

is called an extended quantization double functor.

Note that the two-step formalism to compute the partition function can be upgraded
to extended cubical TQFTs (see Figure 1.7):

(DBord,q) (Bispan(C),×)

(D,⊗)

F

Q
Z

Figure 1.7: Two step TQFT: Extended classical field theory F followed
by quantization Q.

Usually, in the literature, an extended TQFT is defined as a symmetric monoidal 2-
functor of symmetric monoidal bicategories. Freed, Hopkins, Lurie and Teleman outlined
the construction of extended TQFTs using a two-step formalism [20]. Following that
paper, there was a lot of activity in constructing extended DW theory using two-step
formalism for finite groups [69, 49, 50, 48]. More details are discussed at the start of
Section 1.4. In this case, we can analogously define a extended quantization 2-functor and
classical field theory 2-functor. We also define a prequantization 2-functor (cf. Definition
1.1.12). Let (Bispan(C),×) denote a symmetric monoidal bicategory of spans where the
product of objects and spans provides the monoidal structure [30],

Definition 1.1.29. Let (B,⊗) be a symmetric monoidal bicategory and let C be a
category with limits. A symmetric monoidal 2-functor Q : (Bispan(C),×) → (B,⊗) is
called an extended quantization 2-functor.

An extended B-valued prequantization 2-functor Q̃ is a 2-functor of the form

Q̃ : Bispan(C)→ B,
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for some category C with pullbacks. We may simply refer to it as a prequantization
2-functor.

Once the universal property of the symmetric monoidal bicategory of bispans is
available, it can be used to determine which integration theories (read path integral
measures) produce plausible candidates for quantization.

1.1.7 Dijkgraaf-Witten theory

We now specify the Dijkgraaf-Witten theory for a finite group. Let X be a finite n-
group, then FX(M) = Maps(M,X) is also a finite n-groupoid. A d-dimensional TQFT
is specified if two ingredients are given: a functional on the space of fields (action) and
a tentative path integral measure.

The first ingredient is the action functional. Dijkgraaf and Witten argued that for a
finite group (a connected 1-type) X, the action functional for a 3-dimensional theory is
given by a 3-cocycle ω ∈ H3(X,U(1)) [14, Section 3]. Let M be an oriented 3-manifold
and f ∈ FX(M) is a classical field, then the action is the pairing 〈f∗ω, [M ]〉 where [M ]

is the fundamental class of M . We can generalize this to oriented d-manifolds and finite
n-groups X. We can consider the action functional as a d-cocycle in the cohomology of
X with U(1) coefficients (See Willerton’s introduction [69]).

The other ingredient is the path integral measure over finite n-groupoids. Kontse-
vich constructed a topological quantum field theory with a specific measure (he calls it
homotopy Euler characteristic).

Definition 1.1.30. [37, Section 7] Let F be a finite n-groupoid for some n (i.e. a finite
n-type). Given a function f : F → C, the integral

∫
F fdµ is defined as∫

G
fdµ =

∑
[x]∈π0(F )

f(x)
∏
i∈Z>0

(−1)i#πi(F, x).

The symbol πi(F, x) represents the ith homotopy group of F based at x. The volume
or the “homotopy cardinality” of the space F is the integral of the constant function 1.
We will denote it by #F .

Note that the sum is finite and well-defined since all the homotopy groups are trivial
after a certain stage. We list some nice properties of homotopy cardinality:

1. The homotopy cardinality is clearly a homotopy invariant.
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2. If we have a Serre fibration F → E → X for a connected space X and all the
spaces are homotopy finite spaces, Kontsevich notes that #F#X = #E.

3. Let X1 and X2 be two homotopy finite spaces, then

#(X1 qX2) = #X1 + #X2.

In this thesis, we have set the action functional to zero, and such Dijkgraaf-Witten
theories are called untwisted. For finite 1-groupoids (in the categorical description), one
can show that the basic Beck-Chevalley conditions (Definition 1.1.13) hold with the ho-
motopy cardinality measure and zero action functional[71]. In other words, Kontsevich’s
measure for finite 1-groupoids gives an integration theory that induces a quantization
functor.

Once the quantization functor is computed, we have the Dijkgraaf-Witten theory
(DW theory) ZG = Q ◦ F for a finite group G. A dictionary between topological
and algebraic descriptions of groupoids gives a bridge between TQFTs and finite group
theory. Let us discuss this in the case of DW theory for finite groups.

First, we need the definition of action groupoid.

Definition 1.1.31. Let a group G act on a set X, then the groupoid X//G has X as
the set of objects and Hom(x, y) is a pair (x, g) such that y = g · x. The composition is
given by the composition of the group elements.

The following proposition is an example of a dictionary between different descriptions
of a groupoid. Let LX = Maps(S1, X) denote the free loop space of X. The following
lemma is well known7.

Lemma 1.1.32. Let X be a connected 1-type and let G be the fundamental group of
X at some base point, then the fundamental path groupoid of the free loop space of
X, π≤1(LX), is equivalent to the action groupoid G//G where G acts on itself via
conjugation.

Here is a proof sketch: Use the dictionary between topological, algebraic and cate-
gorical descriptions of groupoids mentioned in Subsection 1.1.4. Compute the groupoid

[π≤1(S1), π≤1(X)] ' [BZ,BG] ' G//G,
7It appears as Proposition 4.1 on the webpage https://ncatlab.org/nlab/show/free+loop+space+object.

However, the original reference could not be traced.
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where [X,Y ] denoted the category of functors and natural transformations between X
and Y , and BG presents the group G as a one-object groupoid. The fundamental path
groupoid π≤1 is described in Subsection 1.1.4.

By computing the isomorphism classes of the groupoid G//G, we get

Corollary 1.1.33. Let X be a connected 1-type and G be the fundamental group of X,
then π0(LX) is the set of conjugacy classes in G.

Let Cl(G) denote the vector space of complex-valued class functions on G. We
recover the classic results from [14], [21].

Corollary 1.1.34. Let ZG denote the 2-dimensional DW theory for a finite group G
and let S1 denote the circle. Then

ZG(S1) = Cl(G).

Proof.
ZG(S1) = Q(F|BG|(S1)) = Q(L|BG|) = Cπ0(L|BG|) = Cl(G).

The last equality follows from the definition of class functions and Corollary 1.1.33.

In Freed’s seminal work [19], he computed some aspects of a once extended 3-
dimensional DW TQFT ZexG for a finite group G. He showed that ZexG assigns a tensor
category of representations of a nice Hopf algebra (called the Drinfeld double of the
gauge group) to the circle. Proposition 1.1.32 directly gives this linear category of rep-
resentations (See [69] for a discussion on the twisted version of this story. Recall that
twisted theories are DW theories where the action functional may not be zero).

Generalizations of Corollary 1.1.34 to finite 2-groups are considered in this thesis.

1.2 Objectives

The primary objective of the thesis is the construction of a once-extended DW theory
for finite 2-groups. As discussed in Subsection 1.1.3, there is an intuitive way of thinking
of a once-extended TQFT as a symmetric monoidal double functor. Now there are two
aspects of such constructions that pose difficulties:
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1. The first is that we have to construct weak symmetric monoidal double categories
and symmetric monoidal double functors, which have a modest number of coher-
ence isomorphisms and coherence axioms. See below Definition 2.9 in [59]. It
shows that there are 10 conditions to check.

2. The second issue is that extended TQFTs are defined as symmetric monoidal
2-functors out of a symmetric monoidal bicategory of bordisms ([2], [19]). The
construction of a symmetric monoidal bicategory has even more coherences, and
the coherence axioms are equalities of polyhedral pasting diagrams. We do not
discuss this complication here since it is discussed thoroughly in other places in
the literature (See the appendix of [54] for the definition, and the introduction in
[59] for pointers to the literature).

Apart from the tedious/complicated nature of such constructions, any construction
of an extended TQFT in the language of symmetric monoidal bicategories will be long
and will generally omit details. So we have a new objective.

Objective 1. Construction of extended TQFTs using a different model of symmetric
monoidal pseudo double category where we have to check very little.

Now, more details about the model are discussed. Let 4 denote the category of
totally ordered finite sets. A functor X : 4op → C is called a simplicial object in C. A
simplicial object in the category of sets is called a simplicial set, and a simplicial object
in the 2-category of categories is called a simplicial category. In the literature, the term
simplicial category is also used to refer to categories enriched in simplicial sets. In this
thesis, the term will always refer to a simplicial object in the category of small categories.

Let Γ denote the opposite category of finite pointed sets. Symmetric monoidal cate-
gories can be defined as fibrations over Segal’s Γ category [56] [45]. For now, a fibration
of categories can be loosely thought of as a directed version of fibrations in topology, i.e.
it is a functor that has an arrow-lifting property.

Definition 1.2.1. [64],[60, Section 5.3] A Segal fibration p : X → 4× Γ is a fibration
of categories satisfying two “Segal conditions”. If the fibre of p over ([0], S), where [0] is
the initial object in 4 and S is any finite pointed set, is a category with no non-identity
morphisms, then Segal fibration is called pinched. (For a precise version, see Definition
2.4.4.)
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The key point to note is that everything in sight is a category; thus, there are no
coherences. One of our beliefs is that Segal fibrations are equivalent to (weak) symmet-
ric monoidal double categories, and pinched Segal fibrations are symmetric monoidal
bicategories.

Assuming the conjecture is true, we have a precise form of the primary objective:

Objective 2. Build a once-extended DW TQFT for 2-groups using Segal fibrations.

Now suppose we have constructed a tentative symmetric monoidal bicategory of
bordisms. In Subsection 1.1.5, a sketch of the bicategory of bispan of spaces is outlined.
This bicategory is the natural target for the classical field theory. As we discussed in
Subsection 1.1.6, a quantization 2-functor can be constructed if the bicategory of bispans
has a universal property. This leads to another objective.

Objective 3. Let C be a category with finite limits. Characterize the symmetric monoidal
bicategory of bispans in (C,×) by a universal property.. A simpler objective is to char-
acterize the bicategory of bispans in C by a universal property.

Note that a bicategory of bispans in C can be constructed for any category C with
pullbacks [53]. Finally, we discussed in Subsection 1.1.7, that the DW theory for 1-
group assigned vector space of class functions to the circle. In that subsection, the
computation of the value of TQFTs in the language of group theory was possible by
using the equivalences between topological, algebraic and categorical descriptions of
groups (Proposition 1.1.24). In this thesis, we are interested in working with 2-groups.

Given a finite 2-group X, if we consider the groupoid π≤1(Maps(M,X)) as a model
for the space of classical fields on a manifold M , then we can consider the associated
preclassical field theory 2-functor F̃X (see discussion below Definition 1.1.27). Define
Z̃DWX = Q̃◦F̃X where Q̃ denotes Morton’s 2-functor. Since we are interested in 2-groups,
we have the following objective.

Objective 4. Compute the partition function of the low dimensional DW TQFTs for
finite 2-groups on the circle and orientable surfaces.

Here, low dimensional means dimensions two and three. More precisely, the aim is
to compute the values of Z̃DWX (M) for oriented surfaces M and the circle S1 for a finite
2-group X.

Let us summarize the objectives.

1. Construction of a different model for symmetric monoidal double categories (and
symmetric monoidal bicategories) and functors in which there are few conditions
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to check.

2. Construction of DW TQFT for finite 2-groups using the simpler model.

3. Let C be a category with finite limits. Characterize the symmetric monoidal bi-
category of bispans in (C,×) by a universal property. Basic version: Let C be a
category with pullbacks. Characterize the bicategory of bispans in C by a universal
property.

4. Let a d-dimensional extended DW theory for a finite 2-group be denoted by Z.
The computation of the value of Z on a circle and orientable surfaces in terms of
crossed modules.

1.3 Results

The main results of this thesis are presented in this section, and it will be in line with
the objectives in the previous section. The discussion of the results can also be used as
a guide to navigate the thesis.

1.3.1 Results of Chapter 2

First, we discuss the results relating to Objective 1, which is the focus of Chapter 2.
Following Tamsamani and Simpson [64],[60], we define Segal categories as simplicial cat-
egories8 satisfying Segal conditions (Definition 2.2.1). In Proposition 2.2.6, it is proved
that the nerve of an isofibrant pseudo double category (see Definition 2.1.41) is an isofi-
brant Segal category (Definition 2.2.1). In Theorem 2.2.8, the nerve is shown to fully
faithfully map onto the 2-category of isofibrant Segal categories.

Theorem 1.3.1. The horizontal nerve 2-functor N from the 2-category of isofibrant
pseudo double categories to the 2-category of isofibrant Segal categories is an equivalence.

The strategy of the proof is as follows: First, we discuss essential surjectivity (see
Definition 2.1.6). In [18], the authors show that their (strict) nerve functor (see Definition
2.1.55) Ns that sends a strict double category (see Definition 2.1.39) to a simplicial
category has a left adjoint ch. We show that the counit of the adjunction is an equivalence
when computed on a Segal category (Proposition 2.2.7). The fully faithfulness on the
level of Hom categories is formal. It follows from 2-categorical Yoneda embedding (See,
for instance [33]).

8Recall that a simplicial category is a simplicial object in a category.
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The Grothendieck construction allows us to recast Segal categories as fibrations over
4 satisfying Segal conditions (see Definition 2.3.1). Denote the bicategory of Segal
fibrations over 4 by SegFib(4). We discuss pinched Segal fibration over 4 (see Defi-
nition 2.3.3) and denote the bicategory of pinched Segal fibrations by PSegFib(4). In
Proposition 2.3.9, the inclusion of pinchable Segal fibrations over 4 into Segal fibrations
over 4 is shown to have a right adjoint P . We show that PSegFib(4) is equivalent
to Lack’s bicategory of bicategories, Bicat2 [38]. A precise statement can be found in
Theorem 2.1.10.

Let Γ be the opposite category of finite pointed sets (see Definition 2.1.2). It is
well known that Γ objects in a category, satisfying some conditions due to Segal, are
models for Abelian monoid objects in that category [55], [45], [57]. Toen has already
considered Γ objects in pinched Segal categories9 (satisfying Segal conditions) as a model
for symmetric monoidal bicategories in [65, §2]. Similarly, we work with fibrations and
define Segal fibrations over 4× Γ as fibrations over 4× Γ that satisfy Segal conditions
along4 as well as Γ (see Definition 2.4.4). Then we conjecture that Segal fibrations over
4×Γ are equivalent to Shulman’s symmetric monoidal double categories [59, Definition
2.9] in Conjecture 2.4.6.

1.3.2 Results of Chapter 3

Now we discuss the results relating to Objective 2 and the results of Chapter 3. In Chap-
ter 2, a strict double category is obtained after applying Fiore-Paoli-Pronk’s horizontal
categorification functor ch to the associated pseudofunctor of the Segal fibration over 4.
We will say that this is the "associated double category" with the Segal fibration.

Given a category C with pullbacks, Benabou has a construction of bicategory of
spans in C [6, §2.6], Grandis and Pare have constructed a pseudo double category of
spans in C [26, §3.2], Barwick [5], Haugseng [30] have constructed categories of spans in
the framework of ∞-categories. We closely follow Haugseng (but work entirely within
category theory) and construct a Segal fibration p : SpC → 4 in Subsection 3.2.1. In
Construction 3.2.12, it is shown that the associated double category is a strict double
category of spans in C.

We discuss the construction of a Segal fibration of spans of groupoids. This is a
variation on Grandis-Pare’s pseudo double category of bispans since instead of isomor-
phisms of groupoids and pullbacks of groupoids, we work with equivalences of groupoids

9Segal categories with a discrete category of 0-simplices are called "pinched Segal categories". A
discrete category has only identity morphisms.
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and homotopy pullback of groupoids (see Construction 2.1.26). In Subsection 3.2.2, we
construct a Segal fibration over 4×Γ and Construction 3.2.13 shows that the associated
double category (in the 4 direction) is a strict double category of spans of groupoids.
The fibration in 4 direction is a special case of Haugseng’s construction [30, Section 5]
and it can also be found in [5, Section 2].

The novelty of this chapter is the proposal of a fibration over 4×Γ whose associated
double category should be the bicategory of bispans of groupoids. The construction of
a fibration of bispans in groupoids is Construction 3.2.10 in Section 3.2.3. Checking the
Segal condition remains open. However, Construction 3.2.14 shows that the fibration
has the right morphisms for a double category of bispans of groupoids.

1.3.3 Results of Chapter 4

The bicategory of bispans of groupoids was constructed in the previous chapter. We
prove a universal property of the bicategory of bispans in Chapter 4 along the lines of
the Objective 3. However, we do not have a statement for the universal property of the
symmetric monoidal bicategory of bispans.

We investigate the pair of inclusion functors i∗, i∗ : C → Bispan(C) that is defined
as identity on objects and on morphisms

x

i∗(f : x→ y) =

x y

fidx

and
x

i∗(f : x→ y) =

y x

f idx

It is shown that the pair of functors i∗, i∗ satisfy 5 interesting axioms (see propositions
4.1.8, 4.1.3, 4.1.13 and 4.1.14). Any functor out of C into a bicategory B that satisfies
these axioms (called "Double Beck-Chevalley conditions") is called a "Double Beck-
Chevalley functor" (see Definition 4.1.15). The main highlight of the chapter is Theorem
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4.3.10, which proves a universal property of the 2-category of bispans. The main theorem
that we will prove is

Theorem 1.3.2. Let C be a category with finite limits and D be a bicategory. Given a
pair of 2-functors F∗, F ∗ that satisfy the double Beck-Chevalley conditions, it induces a
unique 2-functor

F : BispC → D.

The proof uses the technique of string diagrams and occupies the rest of the chapter.
Suppose the Theorem 1.3.2 is generalized to include the symmetric monoidal structure.
In that case, it can be used to construct an extended quantization 2-functor. However,
we can only construct an extended prequantization 2-functor.

Note that the collection of groupoids forms a 2-category with invertible 2-morphisms,
and the 2-category of bispans of groupoids constructed in the previous chapter uses
homotopy pullbacks (instead of ordinary pullbacks of groupoids). However, as stated,
our theorem is proved for a category C, so it looks like we should not be able to apply
it to construct a universal 2-functor. However, since we have used universal properties
and string diagrams for all the proofs in this chapter, the proofs will work for groupoids.

Alternatively, Morton [49] deals with such a situation by working with only skeletal
groupoids. One can follow Morton and apply the above theorem to a category of skeletal
groupoids.

1.3.4 Results of Chapter 5

Finally the Objective 4 is achieved in Chapter 5.

Let X be a finite 2-group and let π≤1 denote the fundamental path groupoid of space
(see Construction 5.1.10). This section has three parts:

1. Compute π≤1(Maps(Sn, X)) for n = 1, 2.

2. Using the universal property proved in Chapter 4 to construct an example of a
prequantization 2-functor Q̃ (see Definition 1.1.29).

3. Composing the above two steps and computing Q̃(π≤1(Maps(Sn, X))) for n = 1, 2.

Using Noohi’s results on derived mapping 2-groupoids (see Subsection 5.1.4) we find
2-groupoid presentations of a few mapping spaces (in Subsection 5.2.1).
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Definition 1.3.3. A linear category is a category enriched in vector spaces. The col-
lection of linear categories, linear functors and linear natural transformations form a
2-category called LinCat.

Let X be a finite groupoid. We will denote the functor category Fun(X,Vect) by
VectX to stress the analogy with the vector space of functions CX . Let f : Y → X be
a map of finite groupoids. Then the pullback functor f∗ : VectX → VectY given by

f∗F = F ◦ f.

For F ∈ VectY define the pushforward f∗F as the left Kan extension LanfF . So we
have a pair of functors out of the category of finite groupoids

()∗, ()
∗ : Gpdsf → LinCat

.

Construction 5.1.34 recalls the Beck-Chevalley conditions satisfied by the pair of
functors ()∗, ()

∗ constructed by Morton in [50]. In Theorem 5.1.35, we show that ()∗, ()
∗

satisfy all Double Beck-Chevalley conditions. Thus it induces the 2-functor Q̃ from
Theorem 1.3.2. The proof follows mostly from details in Morton’s paper. Note that this
2-functor is a prequantization 2-functor (see Definition 1.1.29).

Finally we compute Q̃(π≤1(Maps(Sn, X))) for n = 1, 2 by evaluating Morton’s 2-
functor Q̃ on the groupoid π≤1(Maps(Sn, X)) computed from Noohi’s results. These
values can be interpreted as the partition function of the tentative Dijkgraaf-Witten
TQFT for a finite 2-group X on the spheres.

1.4 Related Works

Freed, Hopkins, Lurie and Teleman (FHLT), in 2010, sketched partial constructions
of extended field theories using the two-step procedure of classical field theory and
quantization [20]. They describe possible values of the TQFT on a point and circle
for dimensions 1,2,3,4. Although the fully rigorous construction of the extended DW
theory was not available, Willerton computed the value assigned to tori in [69] following
Freed. From 2010 to 2015, Morton published a series of papers that formally constructed
the classical field theory and the quantization of a once extended DW TQFT for finite
groups, using an algebraic (read explicit) description of symmetric monoidal bicategories
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[48], [50], [49]. This was in the spirit of the 2 step formalism outlined by FHLT. All
these constructions are for finite groups.

Symmetric monoidal (∞, n)-categories have been defined as contravariant functors
out of the category Γ into the (∞, 1) category of (∞, n)-categories satisfying Segal
conditions [65, Section 2.2](for an English exposition, see [10, Section 1.3]). By the
Grothendieck construction, these constructions can be viewed as fibrations satisfying
Segal conditions. The definition of a symmetric monoidal higher category using fibration
suppresses the coherence information neatly. It is worthwhile to consider 1-categorical
analogues of this definition to model symmetric monoidal bicategories, which have a
huge number of coherences. Kaledin’s paper has studied adjunctions in a 2-category
from this point of view in [35]. In Kaledin’s paper [35, Section 2.5], strict 2-categories
are defined using fibrations. This fibrational definition is the same as the Definition
2.3.3, where the author of this thesis calls it a "pinchable simplicial fibration". In Chap-
ter 2 of this thesis, Theorem 1.3.1 (and using Grothendieck construction) shows that
the nerve functor from pseudo double categories to special simplicial fibrations is an
equivalence of 2-categories. When this nerve functor is restricted to the category of
strict 2-categories, we obtain Kaledin’s ‘simplicial replacement’ on strict 2-categories
[35, Section 2.2]. The equivalence of the nerve functor restricts to an equivalence be-
tween bicategories and pinchable simplicial fibrations. Therefore, a contribution of this
thesis is proof of the equivalence between bicategories (Benabou’s explicit definition [6])
and Kaledin’s bicategories (pinchable simplicial fibrations). Secondly, Kaledin defines
symmetric monoidal category structure as fibrations over Segal’s Γ category that satisfy
certain Segal conditions [35, Section 4.1]. He defines fibrations over the category 4
(Kaledin’s strict 2-category) and fibrations over the category Γ (Kaledin’s symmetric
monoidal category). However, in this thesis, the fibrations over 4× Γ (called ‘Segal fi-
brations’, see Definition 2.4.4) are discussed that conjecturally correspond to symmetric
monoidal bicategories.

Further, the thesis proposes the equivalence between symmetric monoidal double
categories and Segal fibrations (Definition 2.4.4). Morton’s constructions of symmetric
monoidal bicategories and 2-functors, [48],[50],[49], are explicit and many coherence
conditions and axioms are suppressed from the presentation. It is the most detailed
presentation of the once-extended DW theory for finite groups available now. The work
in this thesis is motivated by the idea that the language of Segal fibrations may allow
for a transparent construction on DW TQFTs

The universal property of the span bicategory has a long history, starting in the 60s
in Chevalley’s seminar. A universal property of the bicategory of spans was published
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by Hermida (See in [31, Theorem A.2]). A universal property of a double category of
spans is discussed by Dawson, Pare, and Pronk [13].

The bicategory of bispans in a category (with pullbacks) is constructed explicitly in
Rebro’s preprint [53]. This thesis discusses the universal property of Rebro’s bicategory
of bispans. Recall that the universal property in Chapter 4 is described by functors that
satisfy 5 conditions called the "Double Beck Chevalley conditions". In 2018, Balmer
and Dell’Ambrogio described the universal property of a bicategory of certain restricted
bispans [4]. In their bicategory, the one-morphisms (spans) are assumed to have a faithful
morphism as one of the legs. In our version, there are no such restrictions. While the
universal property described in this thesis has 5 conditions, their version does not have
the last two conditions (i.e. Vertical and Horizontal Beck Chevalley conditions). It will
be interesting to check whether the additional restriction on the spans is making the last
two conditions automatic since the last two conditions are very complicated to check.
Both works use string diagrams for proofs, and the string diagram computations look
similar.

In 2020, Stefanich discovered a universal property of the (∞, n)-category of n-fold
spans presented iteratively [62]. He uses Haugseng’s iterative definition of span categories
[30]. The bispan bicategory considered in this thesis is the homotopy bicategory of the
(∞, 3) category of spans in Stefanich’s work. Our result is not iterative and directly
presents the universal property of the homotopy bicategory of tricategory of spans. On
a cursory glance, the conditions look simple and different. For instance, there is no
ambidexterity condition. It will be very interesting to prove that Stefanich’s universal
property implies the one in this thesis. It may be the case that the last two complicated
conditions in the Double Beck Chevalley conditions are a shadow of simpler higher
categorical conditions.

The DW theory for finite 2-groups is expected to relate manifold invariants with the
representation theory of 2-groups. Elgueta [16] classified the representations of a finite
2-group in semisimple linear categories. The fully extended 3-dimensional DW theory
for 2-groups is expected to assign this bicategory of representations of the finite 2-group
to the point.

Ganter and Kapranov considered an action of a group on categories by pseudofunc-
tors. This corresponds to a 2-group action (when a group is considered a 2-group) [23].
They propose a definition of a ‘categorical trace’ for a 1-endomorphism in a bicategory.
The trace is valued in sets (or vector spaces). This naturally leads to a ’categorical
character’ of the 2-group action of the group on a linear category. In this thesis, Propo-
sition 5.2.10 computes a linear category of functors that is assigned to a circle by the
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3-dimensional DW theory. The categorical characters of Ganter-Kapranov are objects
of this linear category for the case when the group is considered a 2-group.

In a recent preprint [17], Martins and Porter construct once extended TQFTs using
a two-step formalism similar to the classical field theory-quantization factorization (See
Figure 1.7) considered in this thesis and they compute the value of the partition function
on some manifolds. First, we discuss the construction of TQFTs: The construction in
[17] uses explicit descriptions of symmetric monoidal bicategories instead of the approach
using fibrations considered in this thesis. A symmetric monoidal structure on the bicat-
egory of d−bordisms is given the most detailed attention. A symmetric monoidal struc-
ture on the bicategory Prof with linear categories as objects, Vect-enriched profunctors
as 1-morphisms and natural transformations as 2-morphisms is discussed in Section 2.8
of loc.cit. In Section 2.8.4 of loc.cit, it is claimed that symmetric monoidal structure
on this bicategory follows from [12, Section 5.2]. As usual, the verification of many co-
herence axioms are left to the reader. Secondly, Martins and Porter use Brown-Higgins
crossed complexes ([9]) to model spaces as opposed to Moerdijk-Svensson-Noohi’s 2-
groupoid models (see Subsection 5.1.2) which is used in this thesis. The models used to
compute the partition function in this thesis (in Chapter 5) are restricted to 2-types. In
contrast, Martins and Porter’s models are general.. The values of the 3-dimensional and
2-dimensional TQFTs on the circle and sphere worked out in Chapter 5, i.e. Propositions
5.2.8 and 5.2.10 in this thesis, match with Theorems 276 and 283 in loc.cit respectively.
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Notations, Prerequisites and
Warnings

1.5 Notations

DW Dijkgraaf-Witten
CX The vector space of complex valued functions on the set π0(X).
Fun(A,B) The set of functors from category A to category B.
Fun(A,B) The category of functors from category A to category B.
Fun(A,B) The bicategory of 2-functors from bicategory A to bicategory B.
F a G F is left adjoint to G for 1-morphisms in a given 2-category.
(f∗, f

∗, η, ε, η!, ε!) An ambidextrous adjunction (4.1.7).
4 The skeletal category of finite ordinals and order-preserving maps.
Γ The opposite category of finite pointed sets.
n+ The set {∗, 1, 2, 3, · · · , n} where ∗ is a basepoint.
DS The discrete category associated to the set S.
C,D Symbols used to represent categories.
D,E Pseudo double categories (See Definition 2.1.39).
B Symbol used to represent a bicategory.
Man Category of smooth manifolds and smooth maps
Cat The category of small categories and functors.
V ect The category of complex vector spaces and linear transformations.
sSets The category of simplicial objects in sets (or [4op, Sets]).
CrsMod The category of crossed modules and homomorphisms (5.1.14)
2−Gpds/2−Gpds The category/bicategory of 2-groupoids.
2−Gpds∗/2−Gpds∗ The category/bicategory of pointed 2-groupoids.
Cat The 2-category of small categories.
Dbl The 2-category of small pseudo double categories.
sCat The 2-category of simplicial objects in categories.
Gpdsf The 2-category of finite groupoids.
LinCat The 2-category of linear categories.
KV2Vect The 2-category of Kapranov-Voevodsky two-vector spaces (5.1.28)
Bispan(C) The bicategory of bispans in C (3.2.15).
X ×hY Z Homotopy pullback of spaces/groupoids
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Maps(M,X) The homotopy type of a space of continuous maps from M to X.
X//G The action groupoid for the action of a group G on a set X.
#X Homotopy cardinality of a homotopy finite space X.
πi(X, ∗) The ith homotopy group of the based space (X, ∗).
π≤1(X, ∗) The fundamental path groupoid of a space X (5.1.10).
WX. Whitehead 2-groupoid of a CW complex X (5.1.9)
W The Whitehead crossed module (5.1.20).
N(_) Nerve of a category, double category, 2-groupoid.
Aut(x) The group of automorphisms of the object x.
Ho(C) The homotopy category of a model category C.

1.6 Conventions

1. Bicategories are denoted by a boldface string. For instance Cat denotes the bicat-
egory of categories as opposed to Cat which represents the category of categories.

2. Let C be either 4, Γ or 4 × Γ, the symbol SegFib(C) denotes the bicategory
of Segal fibrations over C. The appropriate Segal conditions can be assumed, for
instance look at Definition 2.3 and Definition 2.4.

3. Maps(M,X) for simplicial sets M,X is the derived internal hom object in the
simplicial model category of simplicial sets. Note that we use the same notation
for spaces but the meaning should be clear from context.

4. C is used for a category and B is used for a bicategory.

5. When dealing with an adjunction we always use η for unit and ε for counit.

6. A commutative square of the following type with a marking on the top represents
a pullback square.

• •

• •

y

7. In case of classical field theory and quantization, we denote the lack of monoidal
structure by a tilde on the top. For instance, Q̃ represents a prequantization
functor.
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Leinster Thesis
bicategories bicategories
2-categories strict bicategory
homomorphism 2-functors
strict homomorphism strict 2-functor
strong transformation pseudonatural transformation
modification modification
biequivalence biequivalence

Table 1.2: Comparison of terminology with Leinster’s article [40].

1.7 Prerequisites and Warnings

Prerequisites: We assume the reader is comfortable with category theory (see [43]),
bicategory theory [33] and string diagrams, fibrations and Grothendieck construction
[66]. We also assume acquaintance with model categories [24, Chapter II].

Warnings:

1. The terminology in this thesis regarding bicategories might be non-standard and
the literature does not have a standard reference. So here is a comparison with
Tom Leinster’s article [40] (See Table 1.2).

2. In this thesis, the term simplicial category refers to a simplicial object in categories.
This should not be confused with simplicially enriched categories.

3. Quantization, classical field theory and TQFT have various adjectives in this thesis
and let us denote these three constructions commonly as X.

• The symbol X, without the adjective “extended”, is a functor and “extended
X” is a 2-functor.

• The lack of adjective ‘pre-‘ before X implies that the (2-)functor X is sym-
metric monoidal. Otherwise it is simply a (2-)functor.

• The adjective ‘cubical’ before X implies that the 2-functor is pseudo double
functor of double categories. Otherwise it is simply a (2-)functor.

For instance, a cubical extended preclassical field theory is a pseudo double functor
from a bordism double category to a double category of spans.
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Chapter 2

Segal Fibrations and Double
Categories

The nerve construction is ubiquitous in mathematics, and is used to convert a categorical
gadget into a simplicial gadget. Grothendieck constructed the nerve of a category in [29,
§4.1] and characterized it as a simplicial set, i.e. a functor X : 4op → Sets, such that
the (Segal) morphisms Xn+m → Xm×X0 Xn are isomorphisms (called Segal conditions;
see 2.1.30 for details). Similarly, Simpson and Tamsamani constructed a nerve of a
bicategory and characterized it as a simplicial object in categories, i.e. a 2-functor
C : 4op → Cat that satisfies Segal conditions and C0 has only identity morphisms
[60],[64]. They replaced Segal isomorphisms by equivalences of categories and called it
a Segal category.

Lack notes, in [38], that a bicategory of bicategories,Bicat2, can be constructed by
choosing special 2-morphisms called ‘icons’ (see Example 2.1.51). Let Fun(4op,Cat)

denote the bicategory of pseudofunctors, pseudonatural transformations and modifica-
tions. Lack and Paoli construct a “2-nerve”, i.e. 2-functorN2 : Bicat2 → Fun(4op,Cat)

and characterise bicategories as a Segal category with discrete category1 of objects and
two other technical conditions.

Double categories are generalizations of strict bicategories that contain an additional
class of 1-morphisms (See 2.1.5 for an introduction). In [18], a strict nerve functor is
discussed for double categories and to the best of my knowledge, the strict nerve of a
double category has not been characterised. We consider a weakened version of double
categories called pseudo double categories, due to Grandis and Pare [26], where the
composition of a class of 1-morphisms is not strictly associative or unital. In Section
2.2 of this chapter, a nerve of pseudo double category is constructed, and the nerve

1Recall that a discrete category has only identity morphisms.
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of a pseudo double category, satisfying a mild condition2, is characterized as a Segal
category. Let Dbl denote the bicategory of isofibrant pseudo double categories (2.1.45),
sDbl denote the bicategory of double categories. As Lack notes in [38, §6.1], we have
an embedding j : Bicat2 → Dbl (discussed in 2.1.51). It is unclear how to construct
an isofibrant pseudo double category from a strict double category. So we have the
following situation.

Bicat2 Dbl sDbl

sCat

Lack,Paoli F iore,Paoli,Pronk
Thesis

j

On the other hand, we can also construct a bicategory HD from a double category.
Shulman, in [59], defined symmetric monoidal pseudo double categories and symmetric
monoidal double functors (defined at 2.1.52, 2.1.53). Then he showed that the bicategory
HD inherits a symmetric monoidal structure if D is symmetric monoidal and it satisfies
a mild condition (See Theorem 2.1.54).

From the work of Grothendieck on fibrations, it is known that fibrations over a cat-
egory are equivalent to pseudofunctors out of the category [28]. Further, Grothendieck
argued that fibrations are considerably easier to construct and work with since only
categories are used (instead of bicategories). The key insight is that fibrations suppress
much of the coherence data in the definition of an equivalent pseudofunctor. Now recall
that Segal categories are pseudofunctors X : 4op → Cat. Using the Grothendieck con-
struction (see 2.1.3), we get a biequivalence between the bicategory Dbl and fibrations
over 4 satisfying Segal conditions (see 2.3.2). We call these fibrations as Segal fibrations
over 4 (see 2.3.1). Following Grothendieck’s argument, it looks more practical to work
with fibrations over 4 than Segal categories since it suppresses coherence information.
This view is hardly new as it is ubiquitous in the∞-category literature (see, for instance,
[30]). In terms of category theory, Kaledin, in [35], defines bicategories as fibrations over
4 satisfying Segal conditions with a discrete fibre over object [0] of the category 4.
Segal fibrations over 4 are Kaledin’s 2-categories without the discrete fibre condition.

So nerves of isofibrant pseudo double categories (See Definition 2.1.39) induce a
biequivalence with the bicategory of Segal fibrations over 4 (See Theorem 2.3.2). Then
we construct the analogue of the functor H for Segal fibrations over 4 which we call the
pinching construction P (see 2.3.9).

2the condition is isofibrancy, see Definition 2.1.41. We say it is mild because many standard examples
satisfy this condition (see 2.1.5).
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We wish to describe symmetric monoidal double categories/bicategories using the
theory of Grothendieck fibrations of categories. It is well known that symmetric monoidal
categories can be described as “special Γ-categories”. Special Γ categories were intro-
duced in [56, §2]. Mandell shows the equivalence of homotopy theories for various flavours
of strict and non-strict symmetric monoidal categories [45, Theorem 3.9]. The homo-
topy theories of symmetric monoidal categories and special Γ-categories are known to
be equivalent [57, Theorem 6.18]. By applying the Grothendieck construction to a Γ-
category, we can obtain a fibration over Γ and thus, a symmetric monoidal category can
be considered as a fibration over Γ satisfying Segal conditions. This view is considered in
Kaledin [35, §4.1]. Toen defines a symmetric monoidal bicategory as a special Γ object in
the category of Segal categories [65, §2]. Applying Grothendieck construction to Toen’s
definition, we are led to the notion of Segal fibrations over 4× Γ which are fibrations
over 4× Γ that satisfy Segal conditions along 4 as well as Γ. We conjecture that the
bicategory of symmetric monoidal double categories is biequivalent to the bicategory of
Segal fibrations over 4 × Γ (2.4.6). Here is a schematic of the various actors in this
chapter and their relations:

SegFib(4× Γ) PSegFib(4× Γ)

SegFib(4) PSegFib(4)

SMDbl SMBicat

Dbl Bicat2
H

N

N

P

P

The red dashed arrow is proven to be a biequivalence in this chapter. A part of the
conjecture is the existence of a bicategory structure on SMBicat and SMDbl. The
conjecture is the biequivalence of the dotted arrow equipped with a compatible pinching
construction (i.e. commutativity of the squares of the cube).

Suppose Segal morphisms of a Segal fibration over 4× Γ are isomorphisms in the Γ

direction. In this case, a symmetric monoidal pseudo double category can be constructed
(see 2.4.11) and then applying H, a symmetric monoidal bicategory is obtained (see
Theorem 2.4.13).
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Organisation

In Section 2.1, we introduce the preliminaries required to understand the rest of the
chapter. It contains quick descriptions of fairly standard material on fibrations in Sub-
section 2.1.3, bicategories in Subsection 2.1.2 and nerves in Subsection 2.1.4. It also
contains an introduction to pseudo double categories in Subsection 2.1.5, Shulman’s
symmetric monoidal structures on pseudo double categories in Subsection 2.1.6 and
Fiore-Paoli-Pronk’s results about strict nerves in Subsection 2.1.7.

In Section 2.2, we discuss Segal categories and prove the biequivalence of the 2-
category of isofibrant pseudo double categories with the 2-category of Segal categories
via the nerve construction (Theorem 2.2.8).

Section 2.3 discusses the definition of Segal fibration over 4. In Subsection 2.3.1, we
discuss pinched Segal fibration corresponding to bicategories.

In Section 2.4, Segal fibrations over 4 × Γ are discussed. The main thrust of this
section is the conjecture about the biequivalence of Segal fibrations over 4 × Γ and
symmetric monoidal double categories (see Conjecture 2.4.6). In Subsection 2.4.1, the
construction of a symmetric monoidal double category from strict Segal fibration over
4×Γ is presented. This is the well-known construction of a commutative monoid object
in a cartesian monoidal category Dbl. In Subsection 2.4.2, a construction of a symmetric
monoidal bicategory from a strict Segal fibration over 4× Γ is presented.

2.1 Preliminaries

In this section, we collect the preliminary materials required for stating and proving the
results in the subsequent sections. There are no new results in this section. The content
of Subsections 2.1.1,2.1.2, 2.1.3 is fairly standard. The rest of the subsections are on
double categories, and some of it is not standard. In Subsection 2.1.5, we discuss pseudo
double categories, and in Subsection 2.1.6, we define Shulman’s symmetric monoidal
double categories. Subsection 2.1.7 discusses the preliminaries of a double categorical
generalization of discussion in Subsection 2.1.4. The content of this subsection is from
Fiore, Paoli and Pronk [18].
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2.1.1 The categories 4, Γ

All the materials in this section are standard, and the purpose of this subsection is to
collect notations in a single place.

Definition 2.1.1. Let 4 denote the category whose

1. objects are total ordered sets of the form [n] = {0 < 1 < 2 < · · · < n} for a
natural number n. We will interchangeably think of [n] as a category whose object
set is {1, 2, 3, · · · , n} and a unique morphism from i to j for every i, j such that
0 ≤ i < j ≤ n.

2. morphisms are nondecreasing maps. When the objects are considered as categories,
the morphisms will be considered as functors.

Throughout this thesis, the following notations will be used:

1. For 0 ≤ l ≤ n− k, define the morphism il : [k]→ [n] by the assignment

il(j) = j + l.

Clearly it is an order preserving injection.

2. The morphism ∂i : [n− 1]→ [n] is the unique order preserving injection that does
not have i in the range. The morphism s0 : [1]→ [0] is the unique morphism from
[1] to [0] in 4.

Note that Fun(4op, Cat) represents the set of functors, Fun(4op, Cat) represents
the category of functors and natural transformations and Fun(4op,Cat) represents the
bicategory of pseudofunctors, pseudonatural transformations and modifications.

Next, we define the category Γ:

Definition 2.1.2. Let Fin∗ be the skeletal category of finite pointed sets and pointed
maps with objects

n+ := {∗, 1, 2, 3, · · · , n}

for every natural number n. The opposite category Finop∗ is usually denoted by Γ.

Throughout this thesis, the following notations will be used:
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1. For 1 ≤ i ≤ n, let ink : n+ → 1+ be defined by ink(j) = 1 iff j = k. Maps injective
on the domain minus the base point are called inert maps. The collection of maps
ink constitutes all the inert maps from n+ to 1+.

2. Maps, where only the base point goes to the base point, are called active maps.
We will also use the following notation for active maps: for a map n+ → m+, if
the preimage of k is Ik, then we will denote the map by uI1,I2,... We will write the
set Ik as a string in increasing order.

2.1.2 Bicategories

Benabou introduced bicategories [6]. While the theory of bicategories is a prerequisite
for reading this thesis, we collect some definitions and note some conventions so that we
may use them in the future. The reader unfamiliar with bicategories is urged to refer to
[33] whenever needed. A quick primer due to Leinster is also recommended [40].

First, we record the definition of

Definition 2.1.3. A bicategory B consists of

• a collection of objects denoted by a, b, c, · · ·

• for any two objects a, b, a category B(a, b) of morphisms. An object f of this
category is called a 1-morphism from a to b and denoted by f : a→ b. A morphism
α : f → g of B(a, b) is called a 2-morphism from f to g. The composition of 2-
morphisms in a category of morphisms is called vertical composition.

• for any three objects a, b, c, there is a horizontal composition functor

◦ : B(a, b)× B(b, c)→ B(a, c)

such that for any three 1-morphisms of the type f : a → b, g : b → c, h : c → d, there
are natural 2-isomorphisms h ◦ (g ◦ f) 'α (h ◦ g) ◦ f (called an associator isomorphism)
and f ◦ 1a 'ρ f 'λ 1b ◦ f (called right and left unitor isomorphisms respectively) such
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that: 1) Pentagon axiom: The diagram

k ◦ (h ◦ (g ◦ f)) k ◦ ((h ◦ g) ◦ f)

(k ◦ (h ◦ c)) ◦ f

(k ◦ h) ◦ (g ◦ f) ((k ◦ h) ◦ g) ◦ f)

where all the arrows are associator isomorphisms commutes.

2) Triangle axiom: The following diagram

(g ◦ 1b) ◦ f g ◦ (1b ◦ f)

g ◦ f

ρ λ

α

commutes.

We will only consider the homomorphisms in [40, Variant 1.1], calling them 2-
functors. We also consider strong transformations in [40, Variants 1.2], calling them
pseudonatural transformations. Pseudonatural transformations that are invertible up to
a modification are pseudonatural equivalences.

Definition 2.1.4. A category is discrete if the set of morphisms of the category is only
identity morphisms. A bicategory is discrete if the set of 2-morphisms of the bicategory
are only identity 2-morphisms.

Definition 2.1.5. Let Bicat denote the category of bicategories and 2-functors. Given a
category C, letDC denote the discrete bicategory with the same objects and 1-morphisms
as the category C. It is easy to see that the construction D(_) is functorial.

We will need the following terms:

Definition 2.1.6. A collection of definitions about various kinds of 2-functors.

1. Given a 2-functor F : B → A, we say F is a biequivalence if there is a 2-functor
G : A → B and there are pseudonatural equivalences FG→ 1A, GF → 1B.

2. Given a 2-functor F : B → A, we say F is fully faithful if F induces an equivalence
on Hom categories.
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3. Given a 2-functor F : B → A, we say F is an embedding if F is fully faithful and
F is an injection on the set of objects.

4. Given a bicategory B, let B0 denote a subset of objects of B. The full subbicategory
with B0 as objects is a bicategory B̃0 with an embedding B̃0 → B.

5. Given a 2-functor F : B → A, the essential image of F is the set of all objects x
in A such that there is an object b in B and an equivalence F (b)→ x. Sometimes
it is also used to denote the full subbbicategory spanned by these objects. But we
will never use it in this sense.

6. A 2-functor F : B → A is a strict left 2-adjoint to G : A → B if for every pair
of objects x, y in B and A respectively there is a natural isomorphism of strict
2-categories

B(F (x), y) ' A(x,G(y))

which is a strict pseudonatural transformation in x, y.

Some examples of bicategories that will appear in the thesis:

Definition 2.1.7. The bicategory Cat is the strict bicategory of categories, functors
and natural transformations.

Definition 2.1.8. Let D be a category. Then the over bicategory Cat/D is the strict
bicategory of functors F : C → D with 1-morphisms α : F → F ′ as a functor G : C → C′

such that F ′ ◦ G = F . Let G.G′ : F → F ′, then a 2-morphism θ : G → G′ is a natural
transformation such that F ′(θx) = idF (x) for every object x in C.

Definition 2.1.9. The 2-category sCat := Fun(4op,Cat) is defined as the 2-category
of simplicial categories, simplicial functors and simplicial natural transformations.

Bicategories, 2-functors and pseudonatural transformations do not form a bicategory
(discussed in [38, §3]). In order to fix this issue, Lack defined the notion of an ‘icon’
(stands for identity component oplax natural transformation). We do not define icons
here but look at Example 2.1.51 for a double-categorical way of thinking about them.
We record the theorem due to Lack.

Theorem 2.1.10. [38, Theorem 3.2] There is a strict bicategory Bicat2 of bicategories,
2-functors and icons.

Remark 2.1.11. In [38], Lack proves the existence of a 2-category of bicategories, ‘lax
2-functors’ and icons. Since we never consider lax 2-functors in this thesis, we will not
discuss them further.
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Now we discuss the definition of bicategory PBCat (appears in Subsection 3.2.1). In
[7, Theorem 3], it is shown that the category of categories with pullbacks and pullback
preserving functors is cartesian closed. The following definition is just before [11, Lemma
2.8]

Definition 2.1.12 (Carboni-Johnstone). A cartesian natural transformation is a natu-
ral transformation if its naturality squares are pullback squares. More precisely,a natural
transformation η : F → G (for F,G : C → D) is a cartesian natural transformation iff
for any f : c→ c′ the naturality square

Fc Fc′

Gc Gc′

Ff

ηc

Gf

ηc′

is a pullback square.

It can easily be checked that the composition of pullback preserving functors is
pullback preserving. The vertical and horizontal composition of cartesian natural trans-
formations are cartesian natural transformations. This follows from the pasting law for
pullback squares. So, in effect, we have a bicategory:

Definition 2.1.13. Let PBCat denote the 2-category of categories with pullback, pull-
back preserving functors and cartesian natural transformations. We will treat PBCat as
a subbicategory of Cat.

2.1.3 Fibrations

Analogous to path lifting criteria in algebraic topology for Serre/Hurewicz fibrations,
one can define morphism lifting criteria and fibrations for categories. All the ideas in
this section are due to Grothendieck [28] and are fairly standard material in category
theory. The interested reader should look at [66, Chapter 3] for a quick exposition and
[33, Chapter 9,10] for a detailed and rigorous exposition. We note that the definition
of fibration given here is slightly different from the above texts (for instance, it can be
found in [35, Definition 1.5]).

Definition 2.1.14. Let p : C → D be a functor. A morphism f : x → x′ is weak
p-cartesian, if given any morphism g : x′′ → x′ with p(f) = p(g), there exists a unique
morphism h : x′′ → x such that p(h) = id and g = f ◦ h.

Note that isomorphisms of C are weak cartesian morphisms.
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Using weak cartesian morphisms, we can define (Grothendieck) fibrations:

Definition 2.1.15. Let p : C → D be a functor. The functor p is a fibration if given any
object x ∈ C and any morphism α : c → p(x), there exists a weak cartesian morphism
f : α∗x → x in C such that p(f) = α and composition of weak cartesian morphisms is
weak cartesian. Weak cartesian morphisms of a fibration are called cartesian morphisms,
and a morphism of the form f : α∗x→ x is called a cartesian lift of (α, x).

If we demand only isomorphisms to be lifted, then we call functors as isofibrations.

Definition 2.1.16. Let p : C → D be a fibration. A collection l of cartesian lifts
lf,a : f∗a→ a for every 1-morphism f : x→ y in D and an object a in C with p(a) = y

is called a cleavage. We say it is a splitting cleavage if lgf,a = lf,g∗alg,a.

Note that every fibration has a cleavage.

Definition 2.1.17. Let p : C → D be a fibration. Let x be an object of D. The pullback
x×D C is called the fibre of p at x and denoted by Cx.

A fibration in groupoids is a fibration whose fibres are all groupoids.

Remark 2.1.18. Isofibrations are also called “functors with i.p.l (invertible path lifting)
property” in [34].

The following is the motivating example of fibrations and explains why the term
‘cartesian’ was coined.

Example 2.1.19. Let C be a category with pullbacks and let ∂1 : [0] → [1] denote the
map ∂1(0) = 1. Consider the induced functor

∂∗1 : Fun([1], C)→ Fun([0], C).

The morphisms in Fun([1], C) are commutative squares in C. It can be checked that
cartesian morphisms are cartesian squares (i.e. pullback squares). The existence of
cartesian lifts corresponds to the existence of pullbacks in C.

Now, we discuss the morphism of fibrations.

Definition 2.1.20. Let p1 : C1 → D and p2 : C2 → D. A morphism of fibration over
D is a functor φ : C1 → C2 such that p2φ = p1 and φ maps cartesian morphisms to
cartesian morphisms.

Definition 2.1.21. Given a category D, let Cat/D denote the bicategory of categories
over D (Definition 2.1.8). The bicategory Fib(D) is the subbicategory of Cat/D whose
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objects are fibrations over D, 1-morphisms are morphisms of fibrations and 2-morphisms
are 2-morphisms of Cat/D.

Next, we discuss the Grothendieck construction (See [66, Chapter 3] for an exposi-
tion).

Definition 2.1.22. Let D be a category that is viewed as a bicategory with only identity
2-morphisms and let Fun(Dop,Cat) denote the bicategory of 2-functors, pseudonatural
transformations and modifications (See [40, Section 1.3] for modifications). An object
of the bicategory Fun(Dop,Cat) is called a pseudofunctor.

Construction 2.1.23. From [66, Proposition 3.11], a fibration p : C → D with a
cleavage l(See Definition 2.1.16) induces a pseudofunctor Pl : Dop → Cat such that
Pl(x) = Cx and on morphisms f : x → y, Pl(f) = f∗ (specified by the cleavage). If
f : x → y, g : y → z are morphisms in D and a is an object of Pl(z), then f∗g∗a '
(g ◦ f)∗a is the canonical isomorphism arising from the cartesian lift (g ◦ f)∗a→ a. The
assignment

Φ : Fib(D)→ Fun(Dop,Cat)

that maps a fibration p : C → D to the pseudofunctor Pl for the choice of some cleavage l,
is a 2-functor. If the cleavage is splitting, then Pl is a functor (instead of pseudofunctor).

The following theorem and its proof can be found in [33, Theorem 10.6.16].

Theorem 2.1.24 (Grothendieck). The 2-functor

Φ : Fib(D)→ Fun(Dop,Cat)

is a biequivalence of bicategories.

Construction 2.1.25. An inverse 2-functor to Φ in Theorem 2.1.24, denoted by
∫
, is

described in [33, Proposition 10.3.22]. This 2-functor is called the Grothendieck con-
struction.

Now we describe the Grothendieck construction. Given a pseudofunctor P : Dop →
Cat, the category

∫
P (called the category of elements of P ) has

1. the collection of pairs (a, x) as objects where a is an object of D and x is an object
of the category P (x).

2. the collection of pairs (f, g) as morphisms. Suppose (f, g) : (a, x) → (b, y) , then
f : a→ b is a morphism in D and g : x→ Pf(y) is a morphism in P (a).
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The functor p :
∫
P → D defined by p(x, a) = x is a fibration, and the assignment

P 7→
∫
P is the inverse to Φ.

Now, we will see an interesting application of isofibrations from [34].

Construction 2.1.26. Given a diagram of categories

C

E DF

G

Let P denote the pullback in the category of categories. There is a notion of a homotopy
pullback (called pseudopullback in [34]) H whose objects are (a, x, b) where a, b are
objects from C and E respectively and x : G(a)→ F (b) is an isomorphism. A morphism
u : (a, x, b)→ (c, y, d) is a pair of maps (u1 : a→ c, u2 : b→ d) so that F (u2)x = yG(u1).
The composition is a componentwise composition of morphisms.

The comparison functor φ : P → H, which sends (a, b) to (a, id, b) is fully faithful.

So when do homotopy pullbacks coincide with pullbacks? The answer is when one
of the morphisms is an isofibration as Joyal and Street [34, Theorem 1] show:

Proposition 2.1.27 (Joyal-Street). The comparison functor φ (from Construction 2.1.26)
is an equivalence for all functors F iff G is an isofibration.

2.1.4 Nerve of a category

Definition 2.1.28. The category of functors Fun(4op, Sets) is the category of simpli-
cial sets (denoted by sSets).

Example 2.1.29. For a category C, the assignment

NC([n]) := Fun([n], C)

gives a simplicial set NC associated to a category C. The construction N : Cat→ sSets
is the nerve of the category C.
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Now consider the following diagram in 4:

[0] [m]

[n] [m+ n]

i0

in

i0

in

where ik(j) = j + k.

The following definition of a Segal set (not named as such) and the characterization
that follows first appeared in Grothendieck’s FGA [27, §4.1].

Definition 2.1.30. A Segal set X is a simplicial set such that for every pair of integers
m,n ≥ 0

Xn+m Xm

Xn X0

i∗n

i∗0 i∗0

i∗n

is a pullback square in Sets. The pullback square condition is called a Segal condition.

Proposition 2.1.31 (Grothendieck [27]). The functor

N : Cat→ sSets

is fully faithful, and the essential image is the set of Segal sets.

In Gabriel and Zisman’s book [22, §4.1], a left adjoint c is constructed to the nerve
N .

We need some preparations to describe it. We follow Fiore,Paoli,Pronk [18].

Definition 2.1.32. A tuple X = (X1, X0, s, t : X1 → X0, u : X0 → X1) is called a
reflexive directed graph where X0, X1 are sets and s, t, u are functions such that compo-
sitions tu and su are identities.

Elements of X1 are called edges, and elements of X0 are called vertices. If f is an
edge with s(f) = a and t(f) = b, we denote the edge by f : a → b or a f−→ b. We will
denote u(b) = 1b for a vertex b.

The collection of reflexive directed graphs forms a category RefGraphs.
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Construction 2.1.33. Given a category C, forgetting the composition gives a reflexive
graph UC. This construction upgrades to a functor U : Cat→ RefGraphs, which has a
left adjoint F . Given a reflexive graphX, FX is a category withX0 as objects. Elements
of X1 freely generate the morphisms of FX. See [63, §1] for a detailed description of
FX.

Construction 2.1.34. Let X be a simplicial set and let X̃ denote the reflexive graph
given by the data: ∂∗0 , ∂∗1 : X1 → X0 and s∗0 : X0 → X1.

Now we describe the construction of the left adjoint to the nerve given in Gabriel-
Zisman’s book (but we follow [18]). We have to quotient a category in the sequel, so we
need the notion of a congruence (See [18, Definition 3.9]):

Definition 2.1.35. A congruence on a category C is a collection of equivalence relations
∼ on the morphism sets C(a, b) for every pair a, b ∈ C such that if f, g are composable,
f ∼ f ′ and g ∼ g′ then fg ∼ f ′g′.

Example 2.1.36. Let F : C → D, define f ∼ f ′ iff F (f) = F (f ′). Then ∼ is a congruence
by the functoriality of F .

The following definition is from [18, Definition 3.14]

Definition 2.1.37. Let C be a category and ∼ be a congruence on C. Then the quotient
category C/ ∼ has the same objects as C. Define

(C/ ∼)(a, b) = C(a, b)/ ∼ .

The composition in C/ ∼ is induced from C. We say C/ ∼ is the category “C modulo the
congruence ∼”.

Note that there is a canonical functor π : C → C/ ∼ with π(f) = π(f ′) if f ∼ f ′ and
this functor is universal for this property.

Construction 2.1.38. Let X be a simplicial set and let X̃ denote the reflexive graph
described in Construction 2.1.34. The categorification of X is the free category (Con-
struction 2.1.33) on X̃ modulo the smallest congruence ∼ such that for any t ∈ X2 with
∂∗2(t) = f, ∂∗0(t) = g and ∂∗1(t) = h we have g ◦ f ∼ h. In [18, Proposition 6.1], it is
proved that c is left adjoint to N .
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2.1.5 Double categories

In this subsection, we quickly recall the basics of double category theory. Double cat-
egories are originally due to Ehresmann [15], who proposed a strict version of the defi-
nition. We will follow Grandis and Pare [26] and adopt a weaker notion called pseudo
double categories. We follow [59] for the exposition. A technical notion of isofibrant
(and fibrant) pseudo double category is discussed, and we verify isofibrancy in standard
examples of pseudo double categories.

Definition 2.1.39. (Ehresmann-Grandis-Pare, [59, Definition 2.1]) The following data
gives a pseudo double category D:

1. A pair of categories (D0,D1) equipped with functors S, T, U

D1 D0

S

T

U

2. A ‘loose composition’ functor � : D1 ×D0 D1 → D1

3. Natural isomorphisms (a, r, l) given by

a : (M �N)� P
∼=−→M � (N � P ) associator (2.1.1)

r : M � U(A)
∼=−→M (2.1.2)

right unitorl : U(B)�M
∼=−→M left unitor (2.1.3)

satisfying the properties:

SU(A) = A (2.1.4)

TU(A) = A (2.1.5)

S(M �N) = SN (2.1.6)

T (M �N) = TM (2.1.7)

The S and T functors map the components of associators and unitors to identity, and
these natural isomorphisms satisfy the pentagon and triangle equations.

If the associator and unitors are identities, then we say that the pseudo double
category is strict.

Now, we discuss the terminologies used in double category theory.
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A B

α

C D

Mp

N
p

f g

Figure 2.1: A fundamental morphism of a pseudo double category.

Definition 2.1.40. Given a pseudo double category D,

1. the categories D0 and D1 are called category of objects (or ‘object category of D’)
and category of arrows (or ‘arrow category of D’) respectively.

2. the objects and morphisms of D0 are called objects and tight 1-morphisms of D.

3. the objects and morphisms of D1 are called loose 1-morphisms and 2-morphisms
of the pseudo double category.

4. a morphism b in D1 is globular if S(b) = T (b) = id.

Note that the associators and unitors are globular according to Definition 2.1.39.

Next, we discuss diagrams in a pseudo double category: The objects of the cat-
egory D1 represent horizontal 1-morphisms with a dash and the morphisms of D1 by
2-morphisms. A fundamental 2-morphism is shown in Figure 2.1.

Note that an arrow with a dash on it denotes a loose 1-morphism. The composition
of loose 1-morphisms is not associative on the nose, unlike tight 1-morphisms. In the
figure, S(M) = A, T (M) = B,S(N) = C, T (N) = D, S(α) = f, T (α) = g.

The composition of tight 1-morphisms is obtained from composition in D0. The
composition of loose 1-morphisms is obtained from the functor � acting on objects.
The 2-morphisms can be composed along the tight morphisms using the composition in
D1 and along the loose morphisms using the action of � on morphisms. We will line
up composable loose 1-morphisms along the horizontal direction and composable tight
1-morphisms along the vertical direction. The functoriality of � states that horizontal
and vertical composition commute.

Now we define fibrancy conditions on pseudo double categories from [59, Remark
3.22].

Definition 2.1.41. A pseudo double category D is
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A B

C D

f g

N
p

M

α

Figure 2.2: The lifting criteria diagram associated with the
(iso)fibration (S, T ).

1. isofibrant if the functor
D1

S,T−−→ D0 × D0

is an isofibration (Definition 2.1.15).

2. fibrant if the functor
D1

S,T−−→ D0 × D0

is a fibration (Definition 2.1.15).

In [59], the definition of fibrant pseudo double categories looks different. The defini-
tions are equivalent, which is proved in [58, Theorem 4.1].

Remark 2.1.42 (Source and Target fibrations). As per Definition 2.1.41 and Definition
2.1.15, in a isofibrant pseudo double category, if given a horizontal morphism C

N−→ D

and vertical isomorphisms A f−→ C,B
g−→ D, there exists an horizontal morphism A

M−→ B

and a 2-morphism M
α−→ N such that S(α) = f, T (α) = g. If the above property holds

for all vertical morphisms f, g (i.e. not merely isomorphisms), then the pseudo double
category is fibrant.

This situation is depicted in Figure 2.2 where the solid arrows are given and dashed
arrows are the lifts.

As we will see in the examples below, the source-target isofibration condition is
satisfied by natural examples. This condition guarantees that a homotopy pullback of
the diagram

D1

D1 D0

S

T

coincide with strict pullbacks (Proposition 2.1.27). It will also be useful in proving
Proposition 2.2.6. Henceforth, while proving that (S, T ) is a (iso)fibration, we will use
the right-hand side of the lifting criteria diagram shown in Figure 2.2.

Definition 2.1.43. Let D and E be two pseudo double categories. A (horizontal) pseudo
double functor F : D→ E is given by the following:
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1. A pair of functors F0 : D0 → E0 and F1 : D1 → E1 that commute with source and
target maps of the pseudo double categories.

2. A natural globular isomorphism, called the “composition coherence data”, F� :

F1 �F1 → F1 ◦ � where the functors are between D1 ×D0 D1 and E1. The natural
isomorphism satisfies the compatibility with the associators of each pseudo double
category for composing three horizontal morphisms.

3. A natural globular isomorphism, called “unit coherence data”, FU : U ◦F0 → F1◦U
that is compatible with the left unitor, right unitor and associators of both pseudo
double categories for composing horizontal morphisms on either side of horizontal
units.

If the globular isomorphisms are identities, then we say that the pseudo double functor
is strict.

Definition 2.1.44. Let D and E be two pseudo double categories. Let F,G : D→ E be
pseudo double functors. A vertical (natural) transformation θ is given by the following:

1. A pair of natural transformations θ0 : F0 → G0 and θ1 : F1 → G1 such that
S ◦ θ1 = θ0 ◦ S, T ◦ θ1 = θ0 ◦ T .

2. The natural transformations satisfy the following coherence laws: Given any two
composable horizontal morphisms M,N and any object A in D:

θ1
M�N ◦ F�M,N = G�M,N ◦ (θ1

M � θ1
N )

θ1
UA ◦ FUA = GUA ◦ Uθ0A

The composition of the components defines the composition of pseudo double func-
tors and vertical transformations. Note that composition of pseudo double functors is
strictly associative.

Definition 2.1.45. The symbol Dbl denotes the 2-category of isofibrant pseudo double
categories, pseudo double functors and vertical transformations.

We will see that isofibrancy conditions are satisfied in some standard examples.

A theorem due to Grandis and Paré in [26, Theorem 7.5] states that every pseudo
double category is equivalent to a strict double category, and every pseudo double functor
is equivalent to a strict double functor. We state this theorem below so that we can use
it later.
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c1 c2 c3

c′1 c′2 c′3

Figure 2.3: A fundamental morphism of the pseudo double category
span(C) is a commuting diagram.

Theorem 2.1.46 (Grandis-Paré). For every pseudo double category D there exists a
strict double category E and a pair of pseudo double functors F : D→ E and G : E→ D
such that GF = id and FG ' id. Further, every pseudo double functor F : D → E can
be replaced by an equivalent strict functor F ′ : D′ → E′.

We now define a bicategory associated with a pseudo double category, which is
important in constructing symmetric monoidal bicategories (Theorem 2.1.54).

Definition 2.1.47. Given a pseudo double category D, the horizontal bicategory H(D)

is a bicategory consisting of the objects, 1-morphisms, and globular 2-morphisms of the
pseudo double category D.

The examples below will show bicategories arising as horizontal bicategories of pseudo
double categories. The following examples follow Shulman’s exposition [59] except for
the discussion on isofibrancy in each example.

Example 2.1.48. Given a category C with finite limits, define the pseudo double category,
following Grandis and Pare [26, §3.2], span(C) with C as the object category and the
objects of the arrow category are spans in C, and arrows are morphisms of spans. A
fundamental morphism of span(C) is shown in Figure 2.3.

The horizontal composition of horizontal 1-morphisms c1
f←− c2

g−→ c3 and c3
h←− c4

k−→
c5 is defined using a pullback:

c2 ×c3 c4

c2 c4

c1 c3 c5

f g h k

y

The horizontal composition is a choice of a pullback c1 ←− c2×c3 c4 −→ c5. Associators and
unitors are canonical morphisms between limit diagrams. The pentagonal and triangle
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A B

C D
CND

f g

A(C⊗
C
N⊗
D
D)B

Figure 2.4: A lifting diagram for the Morita category Mor.

A B

A B
f

f

idf

Figure 2.5: A lift of a morphism showing that source and target are
fibrations for the pseudo double category HB.

laws follow from the uniqueness of canonical morphisms between limit diagrams. The
horizontal bicategory H(span(C)) is the bicategory of spans considered by Benabou [6,
§2.6].

Example 2.1.49. A Morita pseudo double category consists of rings as objects, ring
homomorphisms as tight 1-morphisms, bimodules as loose 1-morphisms and equivariant
maps of bimodules as 2-morphisms. A loose 1-morphismM : A→ B is a A−B bimodule
M . The tensor product of bimodules gives the horizontal composition.

The associator, the unitors constructed form the universal properties of the tensor
product. The pentagonal and triangle laws follow from the canonicalness of universal
arrows.

The source and target functors are fibrations, as seen in Figure 2.4. The horizontal
lift is essentially a restriction of bimodules. Note that, in this case, the source and target
functors are bifibrations.

In this case, the horizontal bicategory is the well-known bicategory of rings, bimod-
ules and equivariant maps of bimodules (often called the Morita bicategory).

The last example relates to bicategories and pseudo double categories.

Definition 2.1.50. A pinched pseudo double category is a pseudo double category with
only globular 2-morphisms.
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Example 2.1.51. Given a bicategory B, we can construct a pinched pseudo double cat-
egory jB with 1-morphisms of B as horizontal 1-morphisms of jB and all vertical 1-
morphisms are identity. This construction is 2-functorial, i.e. j : Bicat2 → Dbl is a
2-functor where Bicat2 is from Theorem 2.1.10. It turns out that j is an embedding
(as discussed in [38, §6.1]), and the essential image consists of pinched pseudo double
categories. Thus, if we consider bicategories as pinched pseudo double categories, then
‘icons’ are vertical natural transformations between pinched pseudo double categories.

In this case, the source and target functors are fibrations (hence isofibrations). See
Figure 2.5 where the lift is shown in dashed lines. The horizontal bicategory construction
H is right adjoint to j. Also, note that H(jB) is B itself (i.e. the unit of the adjunction
is identity).

2.1.6 Symmetric Monoidal Double categories

A notion of symmetric monoidal structure on pseudo double categories is introduced
in Shulman [59]. We will follow his notations and exposition . Theorem 2.1.54 is the
main tool used to construct symmetric monoidal bicategories out of symmetric monoidal
pseudo double categories.

Definition 2.1.52. (Shulman [59, Definition 2.9]) A symmetric monoidal pseudo double
category is a pseudo double category D equipped with functors ⊗ : D×D→ D, I : ∗ → D
and tight natural equivalences

1. ⊗(⊗× 1) 'α ⊗(1×⊗).

2. ⊗(I × 1) 'ρ id,⊗(1× I) 'λ id.

3. ⊗τ 'β ⊗ where τ(x, y) = (y, x) is the twist functor.

satisfying the pentagon law, triangle law and the hexagon laws.

The symmetric monoidal structure is strict if the natural equivalences are identities.

Definition 2.1.53. [67, Definition 2.14] A symmetric monoidal pseudo double functor
between symmetric monoidal pseudo double categories F : D → E is a pseudo double
functor along with tight natural equivalences

1. F⊗ ' ⊗(F × F ).

2. FI ' I.
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3. ⊗(F × F )τ ' ⊗(F × F ).

satisfying usual axioms of a symmetric monoidal functor. If the natural equivalences are
identities, then we say the symmetric monoidal functor is strict.

Given a pseudo double category D, we can extract a bicategory H(D) (Definition
2.1.47). Recall from Definition 2.1.41, that a pseudo double category D is fibrant if the
functor D1

S×T−−−→ D2
0 is a fibration of categories.

Theorem 2.1.54 ([59] Theorem 5.1). If a symmetric monoidal pseudo double category
D is fibrant, then H(D) is a symmetric monoidal bicategory.

This theorem is very useful to construct symmetric monoidal bicategories and was
used by Schommer-Pries [54, §3.1.4] to sketch the construction of a symmetric monoidal
bicategory of bordisms. The example of symmetric monoidal bicategory of vector space
valued profunctors is discussed in Shulman and used in Martins and Porter’s paper [17,
§6.6.1].

2.1.7 Nerve of a strict double category

The 2-category of pseudo double categories contain a subbicategory of strict double
categories and strict double functors which we will denote by sDbl. In this subsection, we
recall results about the strict horizontal nerve (2-functor) Ns : sDbl→ sCat from Fiore,
Paoli and Pronk’s paper [18, §5]. The key results are that Ns is fully faithful, Ns has a
(2-)left adjoint (see Definition 2.1.6) denoted by ch (called horizontal categorification).
These results can be viewed as analogues of results about nerves of categories.

Given a category [n], consider it as a bicategory with only identity 2-morphisms.
Then Example 2.1.51 constructs the pseudo double category j[n]. A quick reminder
that Cat is the 2-category of categories and Cat is the category of categories. The
symbol sCat stands for the bicategory Fun(4op,Cat).

The following definition is from [18, Definition 5.1].

Definition 2.1.55. Let D be a strict double category. The functor

Dbl(j(_),D) : 4op → Cat

is called the strict nerve NsD of D. The 2-functor

Ns : sDbl→ sCat
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is the strict nerve 2-functor.

Recall the definition of a fully faithful 2-functor from Definition 2.1.6. In [18, Propo-
sition 5.9], they show

Proposition 2.1.56. The strict nerve 2-functor Ns is a fully faithful 2-functor.

Recall the definition of strict left 2-adjoint of a 2-functor from Definition 2.1.6. In
[18, Theorem 5.6], the following result is proved:

Theorem 2.1.57. The strict nerve 2-functor

Ns : sDbl→ sCat

has a strict left 2-adjoint ch (called horizontal categorification).

Construction 2.1.58. Given a simplicial category X, we describe the strict double
category chX briefly. For full details, refer to [18, Definition 6.3]. Double analogues of
congruence (Definition 2.1.35), quotient (Definition 2.1.37) and free category (Construc-
tion 2.1.33) are constructed in loc.cit.

Let Obj : Cat→ Sets denote the functor that sends a category to its set of objects.
Clearly this induces a functor Obj∗ : sCat → sSets. Let category of objects of chX
be X0. The loose 1-morphisms are morphisms of the categorification c(Obj∗(X)) (See
Definition 2.1.38). The horizontal categorification chX is the double category freely
generated by morphisms of X1 modulo the smallest congruence that satisfies (we will
denote the free composite as a string of symbols):

1. If α, β are composable in morphisms of X1, then the vertical composite αβ in the
free product is related to the composite in X1.

2. If t is a morphism of X2 so that ∂∗2(t) = f, ∂∗0(t) = g and ∂∗1(t) = h, then we have
gf ∼ h.

3. For any morphism j in X0, the vertical identity idj satisfies idj ∼ s∗0(j) where s0

is the degeneracy map.

4. For any object f in X1, the horizontal identity Uf satisfies Uf ∼ idf where idf is
the identity map for object f in X1.

Remark 2.1.59. In [18, §3], the notion a free double category and a quotient double
category is constructed. The quotient double category generalizes in an analogous way
to the construction of a quotient category (Definition 2.1.37).
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However some care is needed to define a free double category. If we represent a
2-morphism of a strict double category by a rectangle and represent composable 2-
morphisms by pasting rectangles, then a typical composite will look like a rectangle
equipped with a subdivision into smaller rectangles. The key issue is that there are
rectangles with a subdivision that do not arise as pastings of 2-morphisms in a strict
double category. For an example, look at page 1871 of loc.cit.

2.2 Segal Categories

In this section, we state the definition of Segal categories. This is categorification of the
story discussed in Subsection 2.1.4. Instead of simplicial sets satisfying Segal conditions,
we consider simplicial categories satisfying Segal conditions.

Let 4 denote the skeletal category of finite totally ordered sets (See Subsection
2.1.1). Consider the following diagram in 4:

[0] [m]

[n] [m+ n]

i0

in

i0

in

where ik(j) = j + k.

A simplicial category is a functor C : 4op → Cat. The notion of a simplicial category
C satisfying Segal conditions was considered by Tamsamani [64] and Simpson (see [60,
Section 5.3]).

Definition 2.2.1 (Tamsamani-Simpson). A Segal category X is a simplicial category
such that for every pair of integers m,n ≥ 0

Xn+m Xm

Xn X0

i∗n

i∗0 i∗0

i∗n

is a homotopy pullback square3 in Cat.
3See Construction 2.1.26
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A Segal category can be constructed from any category.

Example 2.2.2. Let C be a category. The nerve of C, denoted by NC, is a simplicial set
and hence a simplicial category (since every set can be considered as discrete category).
First we note that NCn can be characterized as the set of n-composable arrows. Now we
check the Segal conditions: If xn, xm are n-composable arrows andm-composable arrows
respectively, then the condition xn|0 = xm|1 means that xn and xm are composable. So
we can define the (n+m)-composable arrow (xn, xm) which restricts to xn and xm.

Definition 2.2.3. SegCat is defined as the full subbicategory of simplicial categories
with Segal categories as objects.

2.2.1 Biequivalence of Segal categories and pseudo double categories

In this section, we prove the biequivalence between the 2-category of Segal categories
and 2-category of pseudo double categories (Theorem 2.2.8).

Since the category of sets embed into the category of categories, the 2-category Cat

embeds into Dbl. We call the pseudo double category in the essential image as discrete
double categories.

Definition 2.2.4. A pseudo double category whose category of objects and category of
arrows have only identity morphisms is called a discrete double category.

Let i denote the composite 4 ↪→ Cat ↪→ Dbl which induces

i∗ : Fun(Dblop,Cat) ↪→ Fun(4op,Cat).

Let Y : Dbl ↪→ Fun(Dblop,Cat) be the 2-Yoneda functor (see [33, Section 8.2] for the
definition and facts relating to 2-Yoneda functor), then we have the following definition:

Definition 2.2.5. The nerve functor N : Dbl→ Fun(4op,Cat) is defined as

N := i∗ ◦ Y.

The main theorem of this section is the biequivalence of Dbl and SegCat (Theorem
2.2.8).We briefly sketch the strategy. In Proposition 2.2.6, it is shown that the nerve
of a isofibrant pseudo double category satisfies the Segal condition. This is useful in
showing that the nerve construction of an isofibrant pseudo double category is an object
of SegCat. This proposition also proves that commutative squares in 4 that appear
in definition of Segal conditions are pushout squares.In Construction 2.1.58, a pseudo
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double category is built from the data of a Segal category. Along with Proposition
2.2.7, the construction will be used to show the essential surjectivity (onto the essential
image) in the main theorem. Finally, the above theorem is proved in Theorem 2.2.8
using 2-Yoneda lemma and assembling all the bits above.

Proposition 2.2.6. Let D be an isofibrant double category and let N denote the nerve
from Definition 2.2.5 with NDn := ND([n]). Then the induced map φ : NDm+n →
NDm ×hND0

NDn is an equivalence of categories.

Proof. We will first show that φ is essentially surjective. Given an object (G,H, η) in
the target of φ, we construct an object F in the source of φ with φ(F ) ∼= (G,H, η).
Define F on objects as

F (i) =

G(i) 0 ≤ i ≤ m

H(i−m) m < i ≤ m+ n

Before we define F on arrows, we need some preparations. Since η : Gin → Hi0 is a
pseudonatural isomorphism on [0], we have a vertical isomorphism η0 : G(m) → H(0).
Using the fact that (S, T ) : D1 → D0×D0 is an isofibration, we can lift the isomorphism
(η0, idH(1)) : (G(m), H(1))→ (H(0), H(1)):

G(m) H(1)

H(0) H(1)

idH(1)η

F (m,m+1)

H(0,1)

αm

The dashed arrows indicate the lifts and the 2-morphism αm is invertible.

Define F on arrows as

F (ij) =



G(ij) 0 ≤ i ≤ j ≤ m

F (m,m+ 1)�G(i,m) 0 ≤ i < m, j = m+ 1

H(1, j −m)� F (m,m+ 1)�G(im) 0 ≤ i < m,m+ 1 < j ≤ m+ n

F (m,m+ 1) i = m, j = m+ 1

H(1, j −m)� F (m,m+ 1) i = m,m+ 1 < j ≤ m+ n

H(i−m, j −m) m < i ≤ j ≤ m+ n
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Define the coherence isomorphisms associated to composition fi,j,k : F (j, k)�F (i, j)→
F (i, k) using the coherence isomorphisms of the pseudofunctors G, H and identities for
distinct i, j, k. The coherences associated to units fi : UFi → Fii is directly inherited
from the unit coherences of G and H. For the case when some two indices are equal,
i.e. fi,j,j : Fj,j � Fi,j → Fi,j , the unital law (fj � Fij)fi,j,j = id fixes the value (we have
used whiskering notation). Since the isomorphisms are either coherence isomorphisms
of pseudofunctors or identities, the the pseudofunctorial coherence conditions will hold.

Therefore we have constructed a pseudofunctor F : [n+m]→ D. Next we show that
φ(F ) ∼= (G,H, η) in the target of φ. We construct α : (Fim, F in, id)→ (G,H, η) as the
pair of pseudonatural isomorphisms (αg, αh). By construction Fim = G, and we choose
αg : Fim → G as identity pseudonatural isomorphism. The pseudonatural isomorphism
αh : H → Fin on objects (i.e. D0) is given by αhi = id for i 6= 0 and αh0 = η−1

0 . On
the arrow category D1, αhij = id for i, j > 0 and αh00 = Uη0 and αh01 = αm. The
pseudonatural coherences boil down to the relation αm�Uη = αm which holds because
our pseudo double category D is strict. For α to be a morphism in the fiber product
category, we must have

Gt Hs

Fimt F ins

η

αhsαgt

This square commutes in ND0 since it suffices to evaluate it on the object 0, which gives
the commuting square

Gm H0

Gm Gm

η0

η−1
0

Now it remains to show that φ is fully faithful. Given a morphism β : F → F ′ inNDm+n,
φ(β) = (βim, βin). If φ(β) = φ(γ), then βim = γim and βin = γin. Therefore, β and
γ are equal (since they agree pointwise on objects and morphisms) and therefore φ is
faithful. Given a morphism (γ, δ) between φ(F ) and φ(F ′), i.e. γ : Fim → F ′im and δ :

Fin → F ′in such that γt = δs, we construct a pseudonatural transformation β : F → F ′.
On objects, define β via the restrictions γ and δ. Since γt = δs, the isomorphism βm =

γt(0) = δs(0) is unambiguously defined. On morphisms, βi,i+1 is given by γi,i+1 or δi,i+1

and the remaining βij are fixed by the coherences of a pseudonatural transformation.
By construction, βim = γ and βin = δ, therefore φ(β) = (γ, δ) and we have established
that φ is full.
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Next, we use horizontal categorical functor ch stated in Theorem 2.1.57 to obtain a
pseudo double category chX. For the proof of the next proposition, we have to use the
description of chX given in Construction 2.1.58.

Proposition 2.2.7. If X is a Segal category, then the unit map η : X → NchX is an
equivalence of categories.

Proof. From the proof of [18, Theorem 6.7], the unit map η : X → NchX is obtained
once we have a 2-truncated morphism η≤2 : τ≤2X → τ≤2NchX. This morphism can
be seen to be identity on the category of 0-simplices and 1-simplices. For 2-simplices
η2 : X2 → X1 ×X0 X1 is the Segal morphism. This implies that the functor η≤2 is an
equivalence. Since ND is 2-coskeletal, this implies the induced map η is an equivalence.

Theorem 2.2.8. The nerve construction

N : Dbl→ Fun(4op,Cat)

is fully faithful and the essential image4 is the set of Segal categories.

Proof. Since the nerve is the restriction of the 2-Yoneda embedding, it is 2-fully faithful
(See [33, Lemma 8.3.12]) 5. By Proposition 2.2.6, the nerve of a pseudo double category
is a Segal category. Given a Segal category X, Construction 2.1.58 gives a pseudo double
category ch(X). By Proposition 2.2.7 it follows that the nerve construction is essentially
surjective onto its image.

2.3 Segal Fibrations over 4

In Theorem 2.2.8, we showed that every pseudo double category arises from a pseud-
ofunctor D : 4op → Cat satisfying Segal conditions. Applying the Grothendieck con-
struction (Construction 2.1.25) to the pseudofunctor D we obtain fibration over 4. This
motivates the definition of Segal fibrations.

4The terms essential image and fully faithful have been defined for bicategories in Definition 2.1.6.
5The [33, Corollary 8.3.13] states that for strict bicategories, we have an isomorphism of Hom

categories! In our case this applies since Dbl is a strict bicategory.
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Definition 2.3.1. A Segal fibration over 4 is a fibration p : C → 4 such that

Cn+m Cm

Cn C0

i∗n

i∗0 i∗0

i∗n

is a homotopy pullback square 6 in Cat. Here Cm denotes the fibre of p over [m].

Let SegFib(4) denote the full subbicategory of fibrations Fib(4) with Segal fibra-
tions as objects.

From Theorem 2.1.24, we know that the Grothendieck construction is a biequivalence.
This establishes a biequivalence between the bicategories SegFib(4) and SegCat. And
thus a Segal fibration is a model for a pseudo double category. We record this as a
theorem.

Theorem 2.3.2. The composite 2-functor

Dbl
N−→ SegCat

∫
−→ SegFib(4)

is a biequivalence. Here N represents the nerve construction (Definition 2.2.5) and
∫

corresponds to the Grothendieck construction (Construction 2.1.25).

Thus the bicategory Dbl is equivalent to the bicategory SegFib(4).

The proof follows from the biequivalence of N (Theorem 2.2.8) and the biequivalence
of
∫

(Theorem 2.1.24).

2.3.1 Pinched Segal Fibrations

Every bicategory can be considered as a pseudo double category (with only globular 2-
morphisms) via the 2-functor j (See Example 2.1.51). From Theorem 2.3.2 we know that
Segal fibrations over 4 are equivalent to pseudo double categories via the biequivalence∫
N .

So we have the following situation:

Bicat2 Dbl SegFib(4)
j

∫
N

6See Construction 2.1.26



76 Chapter 2. Segal Fibrations and Double Categories

We characterize the essential image as the set of pinched Segal fibrations over 4 of the
composite in this subsection.

In Proposition 2.3.9, we construct a pinched Segal fibration out of a given Segal
fibration. The pinching construction is the analogue of the horizontal bicategory H.
The definition of a pinched Segal fibration in essence goes back to Tamsamani [64]. The
main ideas and propositions in this section are already contained in [30, §4] (albeit in
an ∞-category setting). In particular, Proposition 2.3.9 is [30, Lemma 4.17].

Definition 2.3.3. A pinched Segal fibration over 4 is a Segal fibration over 4, p :

X → 4 such that the fibre over [0] is a discrete category7. The full subbicategory
of SegFib(4) with pinched Segal fibrations over 4 as objects will be denoted by
PSegFib(4).

The following theorem is a consequence of Theorem 2.3.2 and discussion at Example
2.1.51.

Theorem 2.3.4. The bicategory Bicat2 is biequivalent to PSegFib(4).

In other words, the essential image of
∫
Nj : Bicat2 → SegFib(4) the set of pinched

Segal fibrations where j is from Example 2.1.51 and
∫
is the Grothendieck construction

from Construction 2.1.25.

Remark 2.3.5. Kaledin defines a strict bicategory explicitly as it is done in this thesis.
Whereas he defines a bicategory as a pinched Segal fibration over 4 [35, Definition 2.5].
In contrast, we prove the equivalence via the

∫
Nj construction.

Remark 2.3.6. Lack and Paoli show that “2-nerve” of a bicategory is a Segal category C
with a discrete C0 [39, Theorem 7.2]. After applying the Grothendieck construction, we
obtain a pinched Segal fibration. The Proposition 2.3.4 recovers Lack and Paoli’s claim.

The next lemma follows from [30, Lemma 4.14].

Lemma 2.3.7. Let p : E → C be a cartesian fibration and let j : C̃ → C be a functor
with a right adjoint. Let

Ẽ E

C̃ C

J

pp̃

j

be a pullback square. Then the functor J has a right adjoint.
7See Definition 2.1.4
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Using the above lemma, we have a way to construct a pinched Segal fibration from
a given Segal fibration. This is also discussed in Kaledin [35, §2.2]. The strategy is
to show the inclusion i : PSegF ib(4) → SegFib(4) has a right adjoint by applying
Lemma 2.3.7.

We need some preparations. The propositions and proofs are adapted from the ideas
presented in the lemmas of [30, §4]. Any simplicial category can be projected to the
category of vertices. In other words, the projection p0 : sCat → Cat sends X 7→ X0.
The following lemma is the analogue of [30, Lemma 4.15].

Lemma 2.3.8. The projection p0 : SegCat→ Cat is a fibration of categories.

Proof. First we note that p0 has a right adjoint given by the following right Kan exten-
sion.

[0] Cat

4op

i

C

V=Rani(C)

Note that C denotes both the functor and its image.

We can compute the Kan extension to be

V (C) = Rani(C) = lim
[0]/[n]

C = Cn+1.

Also note that the counit of the adjunction is identity, i.e. εC : p0V (C) → C and the
components of the unit

ηX,n : Xn → V p0(X)n = Xn+1
0

is induced by all the maps from [0] to [n].

In order to show that p0 is a fibration, we will show it on the level of simplicial
categories itself. Let X be a Segal category, C be a category with a given functor
γ : C → p0(X), we have to construct a Cartesian lift.

Consider the following pullback square in sCat:

X ×V p0X V C X

V C V p0X

ηX

π1

V γ

π2

y
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We claim that π1 is the cartesian lift of γ. Let us denote the pullback X ×V p0X V C
by γ∗C(X).

First we show that p0(π1) = γ. Note that

p0(π2) : p0(γ∗C(X))→ p0V (C)

is identity. Indeed p0V (C) = C,

p0(γ∗C(X)) = p0(X)×p0V X0 p0V (C) = X0 ×X0 C = C

and the projection map onto the second coordinate is sent to identity under the above
identifications.

Applying p0 to the pullback diagram above and using the naturality of the counit
ε, we can paste two commutative squares together to get the following commutative
rectangle

p0(X ×V p0X V C) p0(X)

p0V C p0V p0X

C p0X

p0(ηX)

p0(π1)

p0V γ

p0(π2)

y

εp0(X)εC

γ

From the outer rectangle, we get

εp0(X)p0(ηX)p0(π1) = γεCp0(π2).

But since p0(π2), ε are identities and using one of the zig-zag identities of the adjunction
p0 a V , we get p0(π1) = γ. Thus π1 is indeed a lift of γ.

Next we show that π1 is a cartesian morphism. Let a : Y → X be a map of simplicial
categories and let β : p0Y → C be such that

p0(a) = γβ.
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We have to show there is a unique functor

F : Y → γ∗C(X)

such that Fπ1 = a and p0(F ) = β.

Composing V β with ηY , we get the map V (β)ηY : Y → V (C). Now consider the
following square:

Y X

V p0Y V C V p0X

ηX

a

ηY

V β V γ

V p0(a)

The outer rectangle commutes by naturality of η. The inner commuting parallelogram
gives the required lift of β:

F : Y → γ∗CX.

This map clearly satisfies Fπ1 = a. The condition p0(F ) = β follows from the fact that
counit of p0 a V is identity and that p0V (β) = β.

Finally note that if X is a Segal category, then γ∗C(X) is also a Segal category. Hence
the lift is contained in SegCat.

Using Theorem 2.3.2, we identify Segal fibrations over 4 with Segal categories.

Proposition 2.3.9. The inclusion i : PSegFib(4) → SegFib(4) has a right adjoint P
(will be called the “pinching functor”).

Proof. Since by Proposition 2.3.8, the map p0 is a fibration. We apply Lemma 2.3.7 to
the following pullback square

PSegFib(4) SegFib(4)

Sets Cat

i

D

p0

using the fact that D has a right adjoint.

Remark 2.3.10. Recall the functor H : Dbl −→ Bicat (See Definition 2.1.47). The pinch-
ing functor P is the analogue of functor H. The precise statement is that the following



80 Chapter 2. Segal Fibrations and Double Categories

diagram commutes:

Dbl SegF ib(4)

Bicat PSegF ib(4)

H P

∫
N

∫
N

2.4 Segal fibration over 4× Γ

It has already been established that Segal fibrations over4 correspond to pseudo double
categories (Theorem 2.3.2) and pinched Segal fibrations over 4 correspond to bicate-
gories (Theorem 2.3.4). In this subsection, we want to propose possible analogues of
symmetric monoidal pseudo double category (Definition 2.1.52) and symmetric monoidal
bicategories.

The definition of Γ and the notations can be found in Subsection 2.1.1.

Definition 2.4.1. A Gamma object in pseudo double categories is a pseudofunctor
D : Γop → Dbl such that D(∗) is the terminal pseudo double category. A strict Gamma
object is a Gamma object D that is a functor.

Definition 2.4.2. A special Gamma double category is a Gamma object in double
categories D if the induced map

D(n+)
i1∗,2∗,...,n∗−−−−−−→ D(1+)n

is an equivalence of categories (where i1∗,2∗,...,n∗ = i1∗ × i2∗ × ...in∗).

The conditions of equivalences will be termed Segal conditions. We say that special
Gamma double category is strict if the equivalences are isomorphisms.

Again using Grothendieck construction, a tentative definition of a symmetric monoidal
double category can be stated entirely in in the language of fibrations of categories. In-
stead of the skeletal category of finite pointed sets, if we consider Γ as the category of
finite pointed sets, then we may describe the Segal conditions of a special Γ objects in
a compact way. We follow [35, §4] for the definition. Let S, T be finite pointed sets and
let S ∨T denote the coproduct of finite pointed sets. Consider the map S ∨T → S that
projects all points of S and send all the points of T to the base point. Similarly, we can
define S ∨ T → T .
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Definition 2.4.3. ([35, §4.1]) A functor p : X → Γ is a Segal fibration over Γ, if it is a
fibration with X(∗) = ∗ and for S, T ∈ Γ the induced functor

X(S ∨ T )→ X(S)×X(T )

is an equivalence of categories.

Now we come to the main definition of this section.

Definition 2.4.4. A functor p : X →4× Γ is a Segal fibration over 4× Γ if

1. X[n],_ is a special Segal Γ fibration for all [n] ∈ 4.

2. X_,S is a Segal fibration for all S ∈ Γ.

The Segal fibration over 4 × Γ is pinched if X_,S is a pinched Segal fibration over 4
for all S ∈ Γ.

If the map induced by ∂0, ∂1,

X[1],S → X[0],S ×X[0],S

is a fibration, then we say that the Segal fibration is “fibrant”.

Definition 2.4.5. Let SegFib(4 × Γ) denote the full subbicategory of Fib(4 × Γ)

whose objects are Segal fibrations over 4 × Γ. Similarly let PSegFib(4 × Γ) denote
the full subbicategory of Fib(4× Γ) containing the pinched Segal fibrations.

A bicategory enriched in the cartesian monoidal 2-category Dbl is called a locally
cubical bicategory. Hansen and Shulman show that the 2-functor H : Dbl → Bicat2

can be upgraded to locally cubical functor of locally cubical bicategories [67, §4]. Let
SymMonDbl denote the category of symmetric monoidal pseudo double categories.
Hoping that there is a way to choose 2-morphisms so that we have bicategory SMBicat

of symmetric monoidal bicategories and a bicategory of symmetric monoidal pseudo
double categories SMDbl, we conjecture that

Conjecture 2.4.6. The bicategory SegFib(4× Γ) (and PSegFib(4× Γ) resp.) are
equivalent to SMDbl (and SMBicat resp.) such that the faces of the cube given below
commutes.
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The following cube demonstrates the dictionary between the fibration picture and
the pseudo double category picture.

SegFib(4× Γ) PSegFib(4× Γ)

SegFib(4) PSegFib(4)

SMDbl SMBicat

Dbl Bicat2

U

U
H

N

N

U

U
P

P

I believe the dotted arrow can be constructed and it can be shown to be an equiv-
alence. The crooked line represents the equivalence described in Conjecture 2.4.6. The
red dashed line is the equivalence described in Theorem 2.2.8. The front square with
red dashed line is the content of the pinching adjunction in Proposition 2.3.9. Shulman
has shown that the bottom square commutes for a fibrant pseudo double category [59].

The Definition 2.4.4 is important for the thesis. In the next chapter, we construct
examples of Segal fibrations over 4 × Γ. In fact, the construction of titular extended
DW TQFT in the language of Segal fibrations is one of our aims.

Remark 2.4.7. Given a pinched Segal fibration p : X → 4 × Γ, we can tentatively
construct some aspects of the equivalent bicategory (assuming the conjecture). The
Theorem 2.2.8 and Definition 2.4.3, the fibre over (0, 1+) is the set of objects of the
bicategory. The fibre over (1, 1+) is a category whose objects are 1-morphisms of the
bicategory and the morphisms are the 2-morphisms of the bicategory. The fibre over
(2, 1+) parametrises 2-composable 1-morphisms and 2-morphisms of the bicategory along
with the compositions.

2.4.1 Strict symmetric monoidal bicategories

In this section, we will first sketch a construction of symmetric monoidal bicategories
from strict Segal fibrations. We show that a strict symmetric monoidal pseudo double
category can be constructed from a strict Segal fibration. And thus using Theorem
2.1.54, Theorem 2.3.2 and Proposition 2.3.9, we can construct strict symmetric monoidal
bicategory from a strict Segal fibration.
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Definition 2.4.8. The category of strict-special Gamma pseudo double categories is
denoted by sΓDbl which is a subcategory of Fun(Γop, Dbl) of special Γ objects for
which the Segal morphisms are isomorphisms of pseudo double functors.

Analgously strict Segal fibrations over 4×Γ are Segal fibrations for which the Segal
morphisms in the Γ directions are isomorphisms. The subcategory of SegF ib(4 × Γ)

consisting of strict Segal fibrations will be denoted by sSegF ib(4× Γ).

The following construction extracts a commutative monoid object in (Dbl,×) from
a strict-special Gamma pseudo double category.

Construction 2.4.9. Given a strict-special Gamma pseudo double category X, let us
define a strict-symmetric monoidal structure on the pseudo double category D(X) :=

X(1+) (we will abbreviate it as D). Let I : X0 → D be identified with the image of the
unique object in D. The object ‘I’ will serve as a monoidal unit.

We will denote X(n+) as Dn in this construction. Using the unique active map from
2+ to 1+, u12 : 2+ → 1+, and the special Segal condition for n = 2, we define the
monoidal structure.

2+ 1+ × 1+ D2 D× D

1+ D

i1×i2

u12 u12∗

i1∗,2∗

(i1∗,2∗)−1

⊗

So we define
⊗ = u12∗(i1∗ × i2∗)−1.

The braiding morphism is defined as the map that swaps the coordinates τ : D2 → D2

and is evidently self-inverse. Now we will verify the axioms stated in Definition 2.1.52.

The associator is identity and this arises from the dotted square in the following cube

D3 D2

D3 D2

D2 D

D2 D

u1,23∗

u12,3∗

u12∗

u12∗

i1∗,2∗,3∗

i1∗,2∗

i1∗,2∗

id1×⊗

⊗×1

⊗

⊗
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Note that the blue arrows are Segal isomorphisms and can be inverted. We have to show
that all the squares in the cube commute. The red square commutes because it is the
functorial image of a commutative square in Γop.

The commutativity of the right square and bottom square follows from the definition
of ⊗.

Note that the commutativity of the top and left square in the cube needs to be
proved. The top square is shown below.

D3 D2

D3 D2

i1∗,2∗,3∗ i1∗,2∗

u12,3∗

⊗×1

The above square commutes because one can check for instance that

(⊗× 1)(i1∗ × i2∗ × i3∗) = ⊗(i1∗ × i2∗)× i3∗
= (u12∗(i1∗ × i2∗)−1(i1∗ × i2∗))× i3∗
= u12∗ × i3∗
= (i1∗ × i2∗)u12,3∗.

Similarly one can check that the left square in the cube commutes. Thus we conclude
the dotted square commutes and we have strict associativity.

The compatibility with the unit comes from the following diagram:

D2

D D2

D

i1∗,2∗

⊗

u12∗

I×1

id

u2∗

The right face on the back commute by definition of ⊗. The left face commutes
because u12u1 = id on 1+ and the face with I×1 commutes because i1u2 maps everything
to the base point and i1u2 = id.

Next we check that τ⊗ = ⊗. For this we use the morphism is defined sw = u1,2 where
sw : 2+ → 2+ is the based map that swaps 1 and 2. Look at the following commutative
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pyramid:
D2 D2

D2 D2

D

i1∗,2∗ i1∗,2∗

u2,1∗

τ

⊗ ⊗

u12∗ u12∗

The left and right face commute by the definition of ⊗. We have to check the
commutativity of the behind square:

τi1∗,2∗ = i2∗,1∗

= i2∗ × i1∗
= i1∗u2,1∗ × i2∗u2,1∗

= i1∗,2∗u2,1∗.

Thus we have a strict symmetric monoidal structure (⊗, I) on X(1+) = D.

Construction 2.4.10. Given a natural transformation between two Gamma categories
f : X → Y , we will show that D(f) := F = f(1+) is a strict symmetric monoidal pseudo
double functor. First note that in construction 2.4.9 we have shown that X(1+), Y (1+)

has a structure of a strict symmetric monoidal pseudo double category. Now we will
check the axioms stated in Definition 2.1.53.

First, we prove F⊗ = ⊗(F×F ) which is the dotted red square in the following prism
diagram:

X2 X1

X2
1

Y2 Y1

Y 2
1

u12∗

u12∗

f(2+)

F×F

F⊗

⊗

The blue arrows are Segal isomorphisms. The side squares commute because of the
naturality of f . The top and bottom triangles commute because of the definition of ⊗.

The axiom FI = I again follows from the naturality of f when it is evaluated on
the initial/terminal category ∗. The compatibility with braiding is actually automatic.
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Thus we have a symmetric monoidal functor.

Lemma 2.4.11. Given a strict-special Γ pseudo double category X, D(X) given in
Construction 2.1.52 and for a morphism f of special-Γ pseudo double category, double
functor D(f) in Construction 2.1.53 assemble into a functor D : sΓDbl→ SymMonDbl.

Proof. The Constructions 2.1.52 and 2.1.53 already show that D maps objects and mor-
phisms of sΓDbl to objects of SymMonDbl. The functoriality is clear from Construction
2.1.53 and composition of natural transformations:

D(g ◦ f) = (g ◦ f)(1+) = g(1+)f(1+) = D(g)D(f).

Also, note that all the components of identity natural transformations are identity.

Remark 2.4.12. Let p : X →4× Γ be a Segal fibration. From Construction 2.1.52, the
fibre over (n,m) is m-fold monoidal products of n-composable horizontal morphisms. So
the guiding principle for constructing Segal fibration will be the collection of all m-fold
monoidal products of n-composable horizontal morphisms.

2.4.2 Construction of symmetric monoidal bicategories from Segal fi-
brations

In this subsection, we will sketch a construction of a symmetric monoidal bicategories
from strict Segal fibrations culminating into Theorem 2.4.13. Lemma 2.4.11 that con-
structs a strict symmetric monoidal pseudo double category out of a strict-special Γ

object is crucial for Theorem 2.4.13. This theorem simply translates Shulman’s theorem
2.1.54 in the language of pinched Segal fibrations. Thus, in essence, there are no new
results in this section.

Let us denote the category of strict Segal fibrations over 4×Γ by sSegF ib(4×Γ).
A strict symmetric monoidal pseudo double category can be constructed from a strict
Segal fibration. And thus using with Theorem 2.1.54, we can describe strict symmetric
monoidal bicategories using strict Segal fibrations.

Let us record all the results, discussed in this chapter, in a single diagram as shown
in Figure 2.6.

The equivalence denoted by a pink ∼ in the diagram is via the cartesian closedness
of the category of small categories. The other equivalence denoted by a red ∼ is via
the Grothendieck construction. The top arrow St is the inverse of the Grothendieck
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sSegF ib(4× Γ) Fun(Γop ×4op, Cat)

Fun(Γop, Fun(4op, Cat))

Fun(Γop, SegCat) Fun(Γop, Dbl)

Fun(Γop, SegF ib(4)) sΓDbl

SymMonDbl

Fun(Γop, PSegF ib(4)) SymMonBicat

ch∗

H

∼

P∗

∼

Φ

D

Figure 2.6: A map of comparisons.

construction. The blue N is the horizontal nerve and in Theorem 2.2.8, it shown to be
an equivalence. The pinching functor P is from Proposition 2.3.9. The orange map D is
the map described in Lemma 2.4.11 and the green H is described in Section 2.1.6. The
Segal condition along the 4 direction in the definition of Segal fibration gives us the
dotted red lift.

Now we will redraw this diagram after removing the obvious equivalences in Figure
2.7. We discuss the construction of a red dashed arrow at the bottom. Recall that Φ is

sSegF ib(4× Γ) Fun(Γop,Dbl)

sΓDbl

Fun(Γop, SegF ib(4)) SymMonDbl

Fun(Γop, PSegF ib(4)) SymMonBicat

HP∗

D

ch∗Φ

B

I∗

Figure 2.7: A simplified map of comparisons.

an inverse to Grothendieck construction (discussed in Construction 2.1.23 and Theorem
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2.1.24). Note that the red dotted lift on the top exists since strict Segal fibrations satisfy
strict Segal conditions along the Γ direction. Given a pinched strict Segal fibration over
4, (using I∗) it is also a strict Segal fibration over 4. Now we can construct a strict
ΓDbl using the horizontal categorification (outlined in Construction 2.1.58). Finally
composing along D,H gives us a symmetric monoidal bicategory.

Recall the notion of a fibrant Segal fibration from Definition 2.4.4. Using Shulman’s
Theorem 2.1.54, we can construct a symmetric monoidal bicategory from a pinched strict
fibrant Segal fibration.

We record the conclusion of the arguments in the last couple of paragraphs formally
as a theorem.

Theorem 2.4.13. Let H denote horizontal bicategory functor (Definition 2.1.47), Φ

denote an inverse to Grothendieck construction (Construction 2.1.23) and D(_) denote
the construction of a strict symmetric monoidal pseudo double category (from Lemma
2.4.11). Given a strict fibrant pinched Segal fibration π : X → Γ × 4, the bicategory
HDch∗Φ(π) is a symmetric monoidal bicategory.
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Chapter 3

The bicategory of bispans

In this chapter, we construct examples of Segal fibrations of spans of different kinds.
Given a category C with pullbacks, Benabou introduced the bicategory of spans in [6,
§2.6] and the pseudo double category of spans was introduced in [26, §3.2] (both con-
structions are defined and discussed in Example 2.1.48). In this chapter, we construct a
Segal fibration (over 4) of spans in C (see Subsection 3.2.1). The idea of using twisted
categories Tw(_) to construct spans is not new (see [30]). A minor novelty is the explicit
construction of a strict double category of spans from the Segal fibration over 4 (see
Construction 3.2.12). The explicit construction involves applying the (Grothendieck)
Construction 2.1.23 to the Segal fibration to obtain a Segal category and the horizontal
categorification functor (see Construction 2.1.58) is applied.

For the purposes of this thesis, we are interested in the bicategory of spans (and
bispans) in groupoids in which we want to compose spans using homotopy pullback of
groupoids. From Proposition 2.1.27, it is known that homotopy pullback of groupoids
is equivalent to pullback if one of the legs of the diagram is an isofibration. So we can
construct a bicategory of spans of groupoids by setting C as the category whose objects
are groupoids and morphisms are isofibrations. While this approach may work, naturally
occurring examples of functors are not isofibrations. For instance, the canonical map of
groupoids ∗ ↪→ G, where ∗ is the terminal category and G is any groupoid other than the
terminal groupoid, is not an isofibration. It is preferable to construct the Segal fibrations
of spans in groupoids without demanding isofibrations as one of the legs. See Theorem
3.2.8 for a construction.

In [53, Theorem 8], Rebro constructs the bicategory of bispans in a category. The
bicategory of spans and bispans can be contrasted by noting the differences in the shape
of the 2-morphisms (in green) in Figure 3.1. Note that the objects (black) and the
1-morphisms (red) have the same form. The bicategory of bispans has spans for 2-
morphisms. The horizontal composition of 2-morphisms is obtained by computing limits
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d1 d1

c1 c2 c1 e c2

d2 d2

Figure 3.1: 2-morphisms in a span bicategory and a bispan bicategory.

of diagrams (see [53, Pg. 12]). Haugseng, in [30], constructs the (∞, n) category of n-
fold spans using the machinery of Complete Segal Spaces. However, the constructions
in this chapter are entirely internal to the bicategory of categories. We construct a
fibration over 4 × Γ that should produce a double category of bispans in groupoids
after applying the Grothendieck construction and horizontal categorification. In the
discussion at Construction 3.2.14, we argue that the fibration produces a tentative 2-
morphism of the expected form. However, we have not been able to verify the Segal
conditions, and thus, the construction of the double category of bispans of groupoids
remains incomplete.

Organization In Section 3.1 we introduce the shape categories Twn, Bn and their
properties. In Section 3.2, we discuss the constructions of three different kinds of Segal
fibrations of spans/bispans. In Section 3.3, we discuss a few miscellaneous properties of
bispans that will be useful in the next chapter.

3.1 Preliminaries

In this section, we define the shape categories Twn, Bn and discuss a universal property
for Twn in Proposition 3.1.5. There are no new results in this section. For instance, all
the definitions and the results in this section appear in [30].

The following construction of the twisted arrow category is well known (originally
from [41, §1]).

Construction 3.1.1. Let C be a category. Define a category Tw(C) (called the twisted
arrow category of C):

1. The objects of Tw(C) are morphisms f : x→ y.
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2. A morphism l : f → f ′ between f : x → y, f ′ : x′ → y′ is a pair (l1, l2) of
morphisms l1 : x→ x′ and l2 : y′ → y in C such that the diagram

x x′

y y′

f f ′

l1

l2

commutes in C.

3. The compositions of morphisms in Tw(C) is given by componentwise composition
of morphisms in C.

Since functors map commutative squares to commutative squares, the construction
Tw(_) is a functor Tw : Cat→ Cat.

Remark 3.1.2. Given a category C, the functor Hom : C × Cop → Sets can be viewed as
pseudofunctor valued in a discrete category1. It can be checked that the Tw(C) is the
category of elements (See Construction 2.1.25) of Hom.

Now we describe the twisted arrow category of [n] explicitly.

Construction 3.1.3. Let n be a nonnegative integer, then Twn := Tw([n]) denotes the
category whose

1. objects are pairs of natural numbers ij with 0 ≤ i ≤ j ≤ n.

2. morphisms HomTwn(ij,mn) is a singleton denoted by ijmn if i ≤ m and j ≥ n,
otherwise empty. Composition and identity are defined in an obvious manner.

Given a morphism α : [n]→ [m] in 4. Define

Tw(α)(ij) := α(i)α(j),

and the morphisms in an obvious way.

The above category is a poset with the property that any pair of elements has a
supremum. In category language, it’s a category with pullbacks.

1See Definition 2.1.4.
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The categories Twn are drawn for n = 0, 1, 2 below:

02

01 01 12

00 00 11 00 11 22

Tw0 Tw1 Tw2

y

Construction 3.1.4. We will construct a subfunctor B via a natural transformation
j : B → Tw Let Bn denote the full subcategory of Twn whose objects ij satisfy the
condition 0 ≤ |i− j| ≤ 1. On morphisms in 4, B acts via restriction of Tw. The (strict)
natural transformation jn : Bn → Twn is the inclusion functor. (The naturality can be
checked by hand.)

The category Twn is obtained by filling in all the pullbacks possible in Bn. We
formalise it below in Lemma 3.1.5. Recall the definition of PBCat from Definition
2.1.13.

Lemma 3.1.5. Let C ∈ PBCat, then the functor induced by composition along jn

j∗n : PBCat(Twn, C)→ Cat(Bn, C)

is an equivalence of categories.

Proof. We will prove j∗n is essentially surjective and fully faithful.

Let F : Bn → C be a functor. Define F̃ : Twn → C so that it agrees on the
subcategory Bn. In other words, we have defined F̃ : Twn → C on ij with 0 ≤ j− i ≤ 1.
Define

F̃ (ij) := F̃ (i(j − 1))×F̃(i+1)(j−1)
F̃ ((i+ 1)j)

iteratively for j−i ≥ 2. Note that i+1 ≤ j−1 is equivalent to j−i ≥ 2. The arrows will
be canonically defined from the definition of pullback. Using the fact that a pullback
of a pullback is also a pullback, we see that F̃ is a pullback preserving functor. Clearly
j∗nF̃ = F .

Next, we show full faithfulness. Let P,Q : Twn → C be two pullback-preserving
functors. Let j∗n : PBCat(P,Q)→ Cat(j∗nP, j

∗
nQ) denote the map θ → θjn .
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Conversely, if η ∈ Cat(j∗nP, j
∗
nQ), define η̃ij : P (ij) → Q(ij) as η̃(ij) = η(ij) for

0 ≤ j − i ≤ 1. Assume η̃ij is defined for j − i < m for some m ≥ 1. Let j = i + m, in
the figure below

Q(ij)

P (ij) Q(i(j − 1)) Q((i+ 1)j)

P (i(j − 1)) P ((i+ 1)j) P ((i+ 1)(j − 1))

P ((i+ 1)(j − 1))

all the solid arrows are already defined either because they are arrows defined via the
functors P,Q (these are the arrows on either side of the diagram) or because of our
assumption that η̃ij is defined for j − i < m for some m ≥ 1 (these are the arrows that
are going across). From the universal property of pullbacks, there exists a unique arrow,
from P (ij) to Q(ij) that makes the cube commute, which we will define as η̃ij . By
construction, j∗n(η̃ij) = ηij proving surjectivity. Uniqueness η̃ proves injectivity. Thus,
jn∗ is fully faithful and, therefore, an equivalence.

Remark 3.1.6. The summary of the above theorem:

1. Given a functor F : Bn → C, for a category C with pullbacks, there is a pullback
preserving functor F̃ : Twn → C such that F̃ ◦ jn = F .

2. The functor F̃ satisfying F̃ ◦ jn = F is not unique. But it is unique up to natural
isomorphism. In other words, if there is a F̃ ′ satisfying F̃ ′ ◦ jn = F , then there is
a unique natural isomorphism that witnesses F̃ ∼= F̃ ′.

3.2 Spans and Bispans as Segal Fibrations

In this subsection, we construct three examples of Segal fibrations. Given a category
C with pullbacks, a Segal fibration of spans in C is constructed in Subsection 3.2.1. In
Subsection 3.2.2, we construct a Segal fibration (over 4× Γ) of spans in groupoids. In
Subsection 3.2.3, we construct a fibration (over 4× Γ) of bispans in groupoids that is
hopefully a Segal fibration. In Subsection 3.2.4, we discuss the double categories that
arise from fibrations discussed in the previous three subsections.
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The fact that these fibrations are nerves of a double category of appropriate spans/bispans
is justified in Subsection 3.2.4.

The main focus of this subsection is the construction of a Segal fibration over 4 of
spans.

3.2.1 Segal fibration over 4 of spans in a category

In this section, we will discuss the construction of a Segal fibration over 4, which we
denote by SpC, for a category C with pullbacks. This construction is well known and
can be found in [30], for instance, for any ∞-category C with pullbacks (in particular,
the construction presented below is subsumed in loc.cit). We present the construction
using only the tools of category theory. The main benefit of the detailed discussion is
that the Construction 3.2.1 presents a natural cleavage (see the first line of the proof of
Theorem 3.2.3) that allows us to construct a double category in Construction 3.2.12.

Now, we construct a Segal fibration over4 using the Twn categories (from Subsection
3.1).

Construction 3.2.1. Let C be a category with pullbacks. Define a category SpC with

1. objects as pairs (n, F ) where n,m are nonnegative integers and F ∈ PBCat(Twn, C),

2. a morphism between (n, F )→ (n′, F ′) as a pair (α, η) where α : [n]→ [n′], and a
natural transformation η : F → F ′ ◦ Tw(α).

3. identity as (id, id) and composition as

(α′, η′) ◦ (α, η) := (α′ ◦ α, (η′ ◦ η)).

Define a functor p : SpC → 4 that projects the objects and morphisms onto the first
component and second component.

Lemma 3.2.2. The morphisms (α, θ) : (n, F ) → (m,G) ∈ SpC is cartesian iff θ is an
isomorphism.

Proof. Cartesian morphisms are weak cartesian morphisms that are closed under com-
position. Suppose (α, θ) ∈ SpC is weak cartesian. This means that given any morphism
(α, η) : (n,H) → (m,G), there is a unique lift over identity (id, ρ) : (n,H) → (n, F )

such that θ ◦ ρ = η. Put H = G ◦ Tw(α) and η = id, to obtain a unique lift (id, (θ)).
Note that θ : G ◦ Tw(α) → F and θ ◦ θ = id. Now put H = F and η = θ. Since both
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θ ◦ (θ ◦ θ) = θ and θ ◦ id = θ, by uniqueness of the lift over identity, θ ◦ θ = id. Thus we
conclude θ is an isomorphism.

Conversely, if θ is an isomorphism, then for any given morphism (α, η) : (n,H) →
(m,G) to factor through (α, θ), ρ has to be

ρ := θ−1 ◦ η.

Thus, there is a unique lift over identity, and (α, η) is weak cartesian. Since isomorphisms
are closed under composition, (α, η) is cartesian.

Proposition 3.2.3. The functor p : SpC → 4 (from Construction 3.2.1) is a strict
Segal fibration over 4.

Proof. First, we show that p is a fibration. Given an object (m,F ) ∈ X, and a morphism
α : [n]→ [m] in 4, the lift

([n], F ◦ Tw(α))
(α,id)−−−→ ([m], F )

is cartesian. Indeed, if (α, η) : (n,H) → (m,F ) is any morphism over α, then since
η : H → F ◦ Tw(α), we can us it to construct (id, η) : (n,H) → (n, F ◦ Tw(α)), a
morphism over identity so that (α, η) factors through (id, η).

Now we show it is a Segal fibration over 4. For this, we use the lifting criteria stated
at the start of the section. Given a diagram of cartesian arrows

(n, Fn)
(∂n,id)←−−−− (0, F0)

(∂0,id)−−−−→ (m,Fm),

we have

Fn ◦ Tw(∂n) = F0 = Fm ◦ Tw(∂0)⇔ Fn(nn) = F0(00) = Fm(00).

We obtain the functors j∗nFn : Bn → C, j∗mFm : Bm → C using j∗m defined in
Lemma 3.1.5. We can define G′ : Bn+m → C by defining G′ ◦ B(i0) = j∗nFn and
G′ ◦B(in) = j∗mFm. By unravelling the definitions,

G′(ij) = Fn(ij) for 0 ≤ i, j ≤ n (3.2.1)

G′((i+ n)(j + n)) = Fm(ij) for 0 ≤ i, j ≤ m (3.2.2)
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which is well defined since Fn(nn) = Fm(00). The functor G′ : Bn+m → C can be
factorised asG′ = Fn+m◦jn+m upto a unique natural isomorphism, following the Remark
3.1.6.

Since

(Fn+m ◦ Tw(i0)) ◦ jn = Fn+m ◦ (Tw(i0) ◦ jn)

= Fn+m ◦ (jm+n ◦B(i0))

= G′ ◦B(i0)

= j∗nFn

= Fn ◦ jn,

Remark 3.1.6 suggests that there is a unique natural isomorphism

θn : Fn → Fn+m ◦ Tw(i0)

such that θmjm = id. Similarly, there is a unique natural isomorphism

θm : Fm → Fn+m ◦ Tw(in).

such that θnjn = id. From Lemma 3.2.2, (i0, θn) is a cartesian lift of (i0, Fm+n) and
(in, θm) is a cartesian lift of (in, Fm+n). It remains to show that the following square
commutes

(0, F0) (m,Fm)

(n, Fn) (m+ n, Fm+n)

(∂n,id)

(∂0,id)

(in,θm)

(i0,θn)

This involves checking θmTw(∂0) = θnTw(∂n). We first note that

Fm+n(nn) = Fm+n(jm+n(nn)) = G′(nn) = Fm(00) = F0(00).

The third equality above follows from Equation 3.2.1. Now θmTw(∂0)(00) = θm(00) = id

since θmjm = id. and θnTw(∂n)(00) = θn(nn) = id since θnjn = id.

3.2.2 Segal fibration of spans of groupoids

In this section, the Segal fibration over 4× Γ of spans of groupoids will be constructed
using fibrations. The guiding principle of constructing Segal fibration over 4 × Γs
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(see Remark 2.4.12) is that fibre over n,m parametrizes m-fold monoidal products of
n-composable horizontal morphisms.

The data of n-composable spans in finite groupoids look like pullback preserving
functors F : Twn → Gpdsf . We will use Grothendieck construction and present n-
composable spans in Gpdsf as a functor p : A → Twopn that is a fibration in finite
groupoids.

Definition 3.2.4. Let p : X → Cop be a fibration in groupoids and let Xc denote the
fibre of p over c ∈ C. The fibration will be called special if given any pullback square in
C

a b

c d

the associated square of groupoids

Xa Xb

Xc Xd

is a homotopy pullback square of groupoids.

Now we construct a Segal fibration over 4× Γ of groupoids

Construction 3.2.5. Define a category T = Sp(Gpds) as follows:

1. The objects are tuples (m,S, p : X → Twopm ×DS) where m is a natural number,
S is a finite pointed set, DS is the discrete category associated to the pointed set
S and the functor p is a special fibration (as defined in Definition 3.2.4). Let p1, p2

be the components of the projection of p along Twopm and DS respectively. We
demand p1 over the base point of DS is the terminal groupoid.

2. A morphism between two objects (m,S, p : X → Twopm × DS) → (n, T, q : Y →
Twopn ×DT ) is a tuple (α, a, f), where α : [m]→ [n] is a morphism in 4, the arrow
a : T → S is a map of pointed sets and f : X → Y is a functor such that the
following squares commute:

X Y X Y

DS DT Twopm Twopn

f

p2 q2

Da

f

p1 q1

Tw(α)
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3. The identity morphism is identity map in all coordinates. Composition given by
pasting commutative squares.

Clearly, we have a projection map π : T → 4 × Γ that projects on to the first two
coordinates.

Proposition 3.2.6. The projection π : T → 4× Γ is a fibration of categories.

Proof. First we show that the functor π is a fibration. Given an object (n, T, q : Y →
Twopn × DT ), and a morphism (α, a) where α : [m] → [n] is an order preserving map
and S a←− T is a map of finite pointed sets. Let p : α∗Y → Twopm be the pullback of q1

along Twop(α). Then composing the canonical map g : α∗Y → Y with Daq2 gives a
map α∗Y → DS.

Now, we show that p is special. Since p is obtained as a pullback of fibrations, note
that the fibre of p at x is the fibre of q at [Tw(α)](x) and morphisms are also pulled
back from the image of Tw(α). Thus the square of groupoids induced by a square σ in
Twm is the square that is induced by the image of σ. Since the functor q is special and
all squares in Twn are pullback squares, the functor p is special.

Next we will prove that p is a cartesian lift. Given a morphism

Z Z

Twopl Y DU Y

Twopn DT
β̃

k

q1

r1 r2 k

q2
b

where β̃ = Twop(β). We will follow this tilde notation for the rest of the proof.
Suppose we are also given maps γ : Twopl → Twopm and a map of finite pointed sets
c : S → U such that α̃γ = β̃ and ca = b. In order to show that the map (α, a, g) is
a cartesian morphism, we have to show there is a unique f (shown by a dashed arrow)
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that makes the diagrams below commute.

Z Z

Twopl DU

α∗Y Y α∗Y Y

Twopm Twopn DS DT

β̃

k

q1

r1 r2
k

q2

b

α̃

p1

g

f

γ̃

g

p2

a

c

f

First we focus on the diagram on the left. It shows that f maps into a pullback
square. Further the requirement that the top triangle and left square commute forces f
to be the unique morphism such that gf = k and γ̃r1 = p2f . So the uniqueness of f is
clear. We have to simply check the compatibility with the right diagram, so we focus
on it. The top triangle is the same as the one on the left, so we check whether the left
square commutes:

cp2f = caq2gf

= caq2k

= bq2k = r2

Thus the functor p is a cartesian lift and this establishes π : T → 4×Γ is a fibration.

Construction 3.2.7. Let PbFib(Twopn ) denote domain category of pullback preserv-
ing fibrations (of groupoids) over Twopn and Fib(Bop

n ) denote the codomain category of
fibrations over Bop

n . Suppose the Lemma 3.1.5 is applied with the target category as cat-
egory of groupoids and then Grothendieck construction used on domain and codomain.
Then the restriction map rn : PbFib(Twopn )→ Fib(Bop

n ) is an equivalence of categories.
Denote the adjoint inverse by e.

Theorem 3.2.8. The functor π : T → 4× Γ is a fibrant Segal fibration over 4× Γ.

Proof. First, we prove the Segal condition in the direction of 4. Fix a finite pointed set
S. Let Tn,S denote the fibre of π over ([n], S). We have to show the Segal condition:
The canonical functor K : Tm+n,S → Tm,S ×T0,S Tn,S is an equivalence of categories.

We construct an inverse functor to the K. Given a pair of fibrations p : X →
Twopm ×DS, q : Y → Twopn ×DS that agree (upto an equivalence), when restricted along
the Segal structure maps, with s : Z → Twop0 ×DS. Using the restriction functor (see
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Construction 3.2.7), we get the following diagram:

r0Z

rnX Bop
0 rmY

Bop
n W Bop

m

Bop
n+m

Note that we have suppressed ×DS on all the base categories. The categoryW is the
homotopy pushout of the span on the top involving rnX, rmY, r0Z. From the universal
property of pushout, we obtain the dashed morphism.

Next, we apply the functor e (described in Construction 3.2.7), to the fibration
W → Bop

n+m to obtain a special fibration eW → Twopn+m ×DS. It can be checked that
the functor to K sends the tuple (X, p), (Y, q), (Z, s) to the fibration eW → Twopn+m×DS
is an inverse to K.

Next we argue that π : T → 4×Γ satisfies strict Segal conditions in the Γ direction.
Fix [m] ∈ 4 and let n+ denote the finite pointed set {∗, 1, 2, 3, · · · , n}. Let the fibre of
π over ([m], n+) be denoted by Tm,n+ . Let ij : n+ → 1+ denote the maps that sends j
to 1 and rest to the base point. These are the structure maps of Segal in the Γ direction.
The map induced by the maps ij for j = 1, 2, ..., n

I : Tm,n+ → T nm,1+

is given by

(m, p : Y → Twopn ×Dn+) 7→ (m, ijp : Y → Twopn ×D1+)j=1,2...,n.

Conversely, given a collection of maps Yi
βi−→ Twopm × D1+, consider the coproduct (or

wedge sum) of these maps
Y → Twopm × (

∨
j

D1+),

consider the maps aj : 1+ → n+ which sends 1 to j. The coproduct of pointed sets

(
∨
j

D1+)→ Dn+
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is an isomorphism and thus we get a fibration Y → Twopm ×Dn+. It can be checked that
this assignment is an inverse isomorphism to I.

Thus π : T → 4×Γ is a Segal fibration over 4×Γ. Finally, we check that the Segal
fibration over 4× Γ is fibrant. So we have to prove that

T1,1+

(∂∗1 ,∂
∗
0 )

−−−−→ T0,1+ × T0,1+

is a fibration2. For this proof, we switch to the pseudofunctorial view. We have to prove
equivalence of

Fun(Tw1 ×D1,Gpds)
(∂∗1 ,∂

∗
0 )

−−−−→ Fun(Tw0 ×D1,Gpds)2

Note that D1 is not pointed. Another way to write this using the closed cartesian
monoidal structure of Cat is

Fun(Tw1,Gpds)
(∂∗1 ,∂

∗
0 )

−−−−→ Fun(Tw0,Gpds)2

The lifting criteria corresponds to supplying the groupoid L and the dashed arrows along
with the two-cells in the following diagram:

M L N

B A C

Note all the capital letters represent groupoids and the commutative squares commute up
to a natural isomorphism of groupoids. The homotopy limit of the non-dashed diagram
gives L and the dashed arrows (along with canonical two-cells). The cartesian property
of L simply follows from the universal property of the limit. Thus (∂∗1 , ∂

∗
0) is a fibration

and π : T → 4× Γ is a fibrant Segal fibration over 4× Γ.

Remark 3.2.9. The notion of fibrations and Grothendieck constructions can be gener-
alized to bicategories [3]. All the constructions in this section pertaining to groupoids
only use the homotopy pullbacks and properties of pasting diagrams of such pullbacks.
Since these arguments extend to 2-groupoids, I suspect that the construction of Segal
fibration over 4× Γ of spans in 2-groupoids will be the same as above.

2This proof is similar to the proof in Example 2.1.48.
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3.2.3 Fibration of bispans of groupoids

In this section, we will construct a fibration that is tentatively the Segal fibration over
4×Γ of bispans in groupoids. The Segal condition verification for this fibration remains
open.

Construction 3.2.10. Define a category S = Bisp(Gpds) as follows:

1. The objects are tuples (m,S, p : X → Twopm ×DS) where m is a natural number,
S is a finite pointed set, DS is the discrete category associated to the pointed
set S and the functor p is a pullback preserving fibration (as defined in Definition
3.2.4). Let p1, p2 be the components of the projection of p along Twopm and DS

respectively. We demand p1 over the base point of DS is the terminal groupoid.

2. Given two objects (m,S, p : X → Twopm × DS) → (n, T, q : Y → Twopn × DT ),
consider a set of tuples (α, a, f, g, E), where α : [m]→ [n] is a morphism in 4, the
arrow a : T → S is a map of pointed sets and f : X → Y is a functor such that
the following squares commute:

E E

X Y X Y

DS DT Twopm Twopn

p1 q1

Da

p2 q2

Tw(α)

f g f g

Define a relation ∼: (α1, a1, f1, g1, E1) ∼ (α2, a2, f2, g2, E2) if α1 = α2, a1 = a2

and there exists a an equivalence φ : E1 → E2 such that the following diagram
commutes up to natural isomorphisms.

E1

X Y

E2

f1 g1

f2 g2

φ

3. The identity morphism at (m,S, p : X → Twopm ×DS) is the equivalence class of
the tuple (id, id, id, id,X). Let

[(α, a, f, g, E)] : (l, S, p : X → Twopl ×DS)→ (m,T, q : Y → Twopm ×DT )
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and

[(β, b, h, k, F )] : (m,T, q : Y → Twopm ×DT )→ (n,U, r : Z → Twopn ×DU)

be a pair of composable morphisms. Pasting the diagram associated to the twist
category Tw directions and computing a homotopy limit yields the following dia-
gram

E ×hY F

E F

X Y Z

Twopl Twopm Twopn

p1 q1

Twop(α)

f g

r1

Twop(β)

h k

π1 π2

Now we have to check that the outer square given below commutes:

E ×hY F

E F

X Y Z

DS DT DU

p2 q2

f g

r2

h k

π1 π2

DbDa

This follows by a direct diagram chase except for a non-trivial observation. Suppose
f1, f2 : E1 → E2 are a pair of functors and k : E2 → DS is a functor mapping to a
discrete category. Then F1 ' F2 implies that kF1 = kF2. The homotopy pullback
square at the top does not commute on the nose, and if we apply the observation,
the proof is straightforward.

Thus we can write that the composite is

[(β, b, h, k, F )] ◦ [(α, a, f, g, E)] = [(βα, ab, fπ1, kπ2, E ×hY F )]

The well-definedness of the composition follows from the universal property of
homotopy pullback.
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The associativity of the composition follows from the commutativity of homotopy pull-
backs of categories up to canonical isomorphisms.

Clearly, we have a projection map π : S → 4 × Γ that projects onto the first two
coordinates.

Proposition 3.2.11. The projection π : S → 4× Γ is a fibration of categories.

Proof. First we show that the functor π is a fibration. Given an object (n, T, q : Y →
Twopn × DT ), and a morphism (α, a) where α : [m] → [n] is an order preserving map
and S a←− T is a map of finite pointed sets. Let p : α∗Y → Twopm be the pullback of q1

along Twop(α). Then composing the canonical map g : α∗Y → Y with Daq2 gives a
map α∗Y → DS.

Now, we show that p is pullback preserving. Since p is obtained as a pullback of
fibrations, note that the fibre of p at x is the fibre of q at [Tw(α)](x) and morphisms
are also pulled back from the image of Tw(α). Thus the square of groupoids induced by
a square σ in Twm is the square that is induced by the image of σ. Since the functor
q is pullback preserving and all squares in Twn are pullback squares, the functor p is
pullback preserving.

Next we will prove that [(α, a, id, g, α∗Y )] is a cartesian lift. Suppose we are given
the following diagrams.

Z F Z F

Twopl Y DU Y

Twopn DT
β̃

q1

r1 r2

q2
b

l

m

l

m

where β̃ = Twop(β). We will follow this tilde notation for the rest of the proof.
Suppose we are also given maps γ : Twopl → Twopm and a map of finite pointed sets c :

S → U such that α̃γ̃ = β̃ and ca = b. In order to show that the map [(α, a, id, g, α∗Y )] is
a cartesian morphism, we have to show there is a unique equivalence class [(γ, c, x, y,X)]



3.2. Spans and Bispans as Segal Fibrations 105

(shown by a dashed arrow below) that makes the diagrams below commute.

Z Z

X α∗Y F X α∗Y F

α∗Y Y α∗Y Y

Twopl DU

Twopm Twopn DS DT

β̃
q1

r2

q2
b

α̃

p1

γ̃

p2

a

c

l

m

x

y
id g

l

m

r1

id g
y

x

First we focus on the diagram on the left. First we note that by composition in the
category, we require

X ×α∗Y α∗Y ' F.

This forces X ≡ F over Z, Y and fixes the equivalence class. Thus if the dashed mor-
phism in calS exists, then it is unique. Choosing X = F , x = l and y = (γ̃r1,m)

(the map into the pullback is written via the components of the structure maps and
this means gy = m) makes the left diagram commute. We have to simply check the
compatibility with the right diagram to prove existence, so we focus on it. So we check
whether the left pentagon commutes:

cp2y = caq2gy

= caq2m

= bq2m = r2l

Thus the functor p is a cartesian lift and this establishes π : S → 4×Γ is a fibration.

We have shown that the functor π : S → 4 × Γ is a fibration. It has not yet been
verified that the fibrations satisfy Segal conditions.

3.2.4 Double categories of spans and bispans

In this subsection, we apply the horizontal categorification functor (see Construction
2.1.58) to obtain a strict double category from the fibrations in Subsections 3.2.1, 3.2.2
and 3.2.3.
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Construction 3.2.12. Consider the Segal fibration of spans, p : SpC → 4 (from
Construction 3.2.1). Pick a cleavage s (see Definition 2.1.16) which is a collection of
cartesian lifts s(α,F ) : (m,α∗F ) → (n, F ). Let the components of s(α,F ) be (α, η(α,F ))

where η(α,F ) : α∗F → F ◦Tw(α) is an isomorphism by Lemma 3.2.2. From Construction
2.1.23, we obtain a Segal category Ps : 4op → Cat. The pseudofunctor Ps is described
as follows:

1. On objects Ps([n]) = Spn is the category of functors Fun(Twn, C).

2. On morphisms α : [m]→ [n],

Ps(α) = (_) ◦ Tw(α).

3. Let α : [m] → [n], β : [n] → [p], then the pseudofunctorial coherence φβ,αF :

α∗(β∗F )→ (β ◦ α)∗F is the unique isomorphism that satisfies

η(β◦α,F )φβ,αF = η(β,α∗F )η(α,F ).

Such an isomorphism exists because (β ◦ α, η(β◦α,F )) is a cartesian morphism.

Suppose we choose the cleavage α∗F = F ◦Tw(α), η(α,F ) = id. Construction 2.1.58 pro-
duces a strict double category chX out of a Segal category X. We apply this procedure
to obtain a double category of spans Span(C) := ch(Ps):

1. The category of objects of Span(C) is the category

Ps(0) = Fun(Tw0, C) = C.

2. From Construction 2.1.38, the categorification c(Obj ◦ Ps) is a category whose
objects are objects of C and morphisms are spans in C. Now consider an object
F : Tw2 → C of Ps([2]) (the image of F is shown in Figure 3.2). The boundaries
are indicated in Figure 3.3, and the definition of categorification declares the red
span in the figure as the composite of the black spans. From Construction 2.1.58,
we have to quotient the double category freely generated by the morphisms Ps([2])

(as 2-morphisms of the double category) quotiented by a congruence specified in
loc.cit in the given order:

(a) It can be checked that the vertical composition of natural transformations is
the vertical composition in the double category.
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F (02)

F (01) F (12)

F (00) F (11) F (22)

y

Figure 3.2: An object of Ps([2]) from Construction 3.2.12.

(b) Given two loose 1-morphisms F,G : Tw1 → C, a 2-morphism is a natural
transformation η : F → G is shown (in green) in Figure 3.4. Note that
the dashed arrow is uniquely determined by the rest of the data using the
universal properties of pullback squares.

(c) The identity 2-morphism of a loose 1-morphism is the identity natural trans-
formation.

(d) The identity 2-morphism of a tight 1-morphism is the identity morphism in
C.

Thus, we reproduce a strict version of the double category of spans constructed in
Grandis-Pare [26, §3.2] where we have identified a composition of loose 1-morphisms
up to isomorphisms of spans. The Grandis-Pare pseudo double category of spans is
discussed in Example 2.1.48.

By applying the horizontal bicategory functor (see Definition 2.1.47), we get a strict
bicategory of spans H(Span(C)). This is a strict version of Benabou’s bicategory of
bispans discussed in [6, §2.6].

The Segal fibration of spans of groupoids is discussed next. But we keep it brief
since the construction is almost similar to Construction 3.2.12. The only change is that
pullbacks are replaced by homotopy pullbacks.

Construction 3.2.13. Consider the restriction of the Segal fibration π : S → 4 × Γ,
from Construction 3.2.5, over 4×D1. Pick a cleavage s (see Definition 2.1.16) which
is a collection of cartesian lifts s(α,p) : (m,α∗X) → (n, p : X → Twopn ) (the coordinate
of Γ is suppressed).

By Grothendieck construction (see 2.1.23), the fibration p : X → Twn corresponds
to a pseudofunctor P : Twn → Gpds after choosing a cleavage and the special condition
(see Definition 3.2.4) ensures that P preserves pullback. A choice in the construction is
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F (12) F (01)

F (11) F (22) F (00) F (11)

∂∗0F ∂∗2F

F (02)

F (00) F (22)

∂∗1F

Figure 3.3: The boundaries of F from Figure 3.2

F (02) G(02)

F (01) G(01) F (12) G(12)

F (00) G(00) F (11) G(11) F (22) G(22)

y y

Figure 3.4: A morphism of Ps([2]) between black colored F and blue
colored G is shown in green.
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A00 A01 A11

E00 E01 E11

A′00 A′01 A′11

Figure 3.5: A 2-cell in the double category of bispans from Construction
3.2.14.

the cleavage from the first paragraph of the proof of Proposition 3.2.6. The cartesian
lifts of this cleavage is α∗X is the fibre product X ×Twopm Twopn .

By repeating the rest of the procedure from Construction 3.2.12, we obtain a strict
double category of spans of groupoids. The composition of 1-morphisms is given by
homotopy pullbacks, and the composites are identified up to the equivalence of spans of
groupoids.

The fibration of bispans of groupoids, if it satisfies Segal conditions, should corre-
spond to a strict double category.

Construction 3.2.14. Consider the restriction of the Segal fibration π : S → 4 × Γ,
from Construction 3.2.10, over 4×D1. Pick a cleavage s (see Definition 2.1.16) which
is a collection of cartesian lifts s(α,p) : (m,α∗X) → (n, p : X → Twopn ) (the coordinate
of Γ is suppressed). The component of the lift is a span: (fα,p, Eα,p, gα,p).

By Grothendieck construction (see 2.1.23), the fibration p : X → Twn corresponds
to a pseudofunctor P : Twn → Gpds after choosing a cleavage and the special condition
(see Definition 3.2.4) ensures that P preserves pullback. A choice in the construction is
the cleavage from the first paragraph of the proof of Proposition 3.2.11. The cartesian
lifts of this cleavage is α∗X is the span: (id,X ×Twopm Twopn , c) where c : X ×Twopm
Twopn → X is the canonical map out of the fibre product. While applying the horizontal
categorification function, the 2-morphisms are freely generated from morphisms of Ps([1])

modulo an equivalence relation. Figure 3.5 shows the image of the pseudofunctor of a
morphism in Ps([1]).

All the morphisms in the above construction seem to indicate that if π from the
above construction is a Segal fibration, then we can obtain a strict double category of
bispans of groupoids.
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Inspired by the Construction 3.2.14, we briefly describe the definition of the bi-
category of bispans. This bicategory has been described in great detail by Rebro [53,
Theorem 8].

Construction 3.2.15. Let C be a category with finite limits. Define a bicategory of
bispans Bispan(C) as follows:

1. The objects of Bispan(C) are objects of C which we will denote by A,B,C, ....

2. The 1-morphisms of Bispan(C) are spans in C like

X

A B

3. The 2-morphisms of Bispan(C) are bispans in C as shown below (with commuting
squares) modulo an equivalence relation.

X

A P B

Y

Two spans X ←− P −→ Y and X ←− P ′ −→ Y are equivalent if there exists an
isomorphism P → P ′ such that the following triangles commute.

P X

Y P ′

'

4. The 1-morphisms are composed by choosing a pullback. The composition of 1-
morphisms is not associative on the nose.
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5. The vertical morphism is the usual composition of spans in a category. The com-
position of horizontal morphisms is shown below.

X Y X ×B Y

A E B F C A E ×B F C

X ′ Y ′ X ′ ×B Y ′

3.3 Miscellaneous properties of bispans

In this subsection, we record a useful lemma that will be used in the next chapter. Then
we discuss the symmetries of the bicategory of bispans.

A very useful lemma which is recorded in [30] is the following:

Lemma 3.3.1. A span of the form a
f←− b g−→ c is invertible iff f and g are invertible.

Now we discuss the flipping symmetry. The equivalence Flipn : [n]op → [n] given by

Flipn(k) = n− k,

induces an involution of the Tw functor. Thus we have a (Z/2Z)2 action on the bicat-
egory of bispans. The generating flips will be called horizontal flip (denoted by HFlip)
and vertical flip (denoted by VFlip). Essentially HFlip flips 1-morphisms only, VFlip
flips 2-morphisms only and the composition flips both. The figures below indicate the
action of the Flip functors.

x x

a X b b X a

y y

HFlip
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x y

a X b a X b

y x

VFlip

Note that VFlip and HFlip preserve identity morphisms.
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Chapter 4

Double Beck Chevalley condition

Let C be a category with finite limits. In Chapter 1, the category Span(C) is defined
in Construction 1.1.9 and it is characterized by a universal property involving Beck-
Chevalley functors in Theorem 1.1.14. In this chapter, the bicategory of bispans in C
(see Construction 3.2.15) is analogously characterized via a universal property. The
characterization of bicategory of bispans is the main result of this thesis.

First, let’s take a look at the universal property of a bicategory of spans. Historically,
Hermida’s paper contains the first written account of the universal property of the
bicategory of spans1 [31]. The universal property is in terms of the conditions written
down in the ’60s by Beck and Chevalley, which went unpublished. In [13], Dawson, Pare
and Pronk discuss a universal property for a pseudo double category of spans.

We start by noting that a morphism f : A→ B in C can be interpreted as a span in
two different ways:

A A

A B B A

u∗(f) u∗(f)

id f idf

These two ways give a pair of functors u∗, u∗ : C → Span(C). It can be checked that
u∗(f) is left adjoint to u∗(f) in Span(C). In fact, the pair of pseudofunctors satisfy
additional conditions listed in the following definition.

1This bicategory is the horizontal bicategory of the pseudo double category of spans discussed in
Example 2.1.48.
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Definition 4.0.1. Let C be a category with finite limits and D be a bicategory. A pair
of pseudofunctors

(_)∗, (_)∗ : C → D

is called a Beck-Chevalley pair if

1. the former pseudofunctor is contravariant, the 2-functors agree on objects,

2. for any morphism f : x→ y, the morphisms f∗ is left adjoint to f∗ and the tuple
(f∗, f

∗, ηf , εf ) is the adjunction data with unit ηf and counit εf .

3. for any pullback square in C:
• •

• •

a

b

n

m
y

the “Beck-Chevalley morphism”

b∗a
∗ ηnb∗a∗−−−−→ n∗n∗b∗a

∗ ' n∗m∗a∗a∗
n∗m∗εa−−−−−→ n∗m∗

is an isomorphism.

Hermida showed that the natural pair of maps C u∗,u∗−−−→ Span(C) is universal among
all Beck-Chevalley pairs out of C. The precise statement can be found in Theorem 4.1.3.

In Chapter 3, we constructed the Segal fibration over4×Γ of spans of groupoids and
constructed a fibration that is a candidate for Segal fibration over 4× Γ of bispans of
groupoids. Following Hermida’s characterization of spans via a universal property, it is
natural to ask for an analogous universal property of the Segal fibration of bispans. The
primary motivation for such a characterization in this thesis is “quantizing an extended
field theory” (cf. Definition 1.1.12 and “quantizing a field theory” in Subsection 1.1.2
from the Chapter 1).

The first step is to characterize the bicategory of bispans, i.e. ignoring the symmetric
monoidal structure. Recall that conjecturally symmetric monoidal bicategories are the
same as pinched Segal fibrations over 4× Γ (See Conjecture 2.4.6). Since a symmetric
monoidal bicategory has a high number of coherences and coherence laws, we worked
with Segal fibrations in the last chapter. In contrast, bicategories have significantly
fewer coherences, and we can calculate using string diagrams (see Subsection 4.2.1), so
we can work with bicategories without using the Segal fibration picture.
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A bicategory in which all 2-morphisms are invertible is called a (2, 1)-category. An
example of a (2, 1) category is the bicategory of groupoids, functors and natural transfor-
mations. Although a category C is considered throughout this chapter, it can be remarked
that the arguments throughout the chapter can be adapted for a (2, 1)-category C with
homotopy pullbacks (see Construction 2.1.26 for an example). The proof of the main
theorem is a construction and verification of a 2-functor using string diagrams which
works for (2, 1)-category. For the proofs involving the bicategory of bispans, it may be
assumed that the coherence 2-cells are suppressed.

Thus, in this chapter, we consider the bicategory of Bispan(C) described in Con-
struction 3.2.15. Let C be a category with finite limits. Recall that Bispan(C) is a
bicategory with the following morphisms:

• the objects of Bispan(C) are the objects of C.

• a 1-morphism (f,X, g) : A→ B is a span f : X → A, g : X → B. The composition
of 1-morphisms is by pullbacks.

• the set of 2-morphisms (s, P, t) : (f,X, g)→ (f ′, X ′, g′) is the data of the form

X

A P B

X ′

s

t

f g

g′f ′

modulo an equivalence relation: (s, P, t) : (f,X, g) → (f ′, X ′, g′) is related to
(s′, P ′, t′) : (f,X, g)→ (f ′, X ′, g′) if there is an isomorphism k : P → P ′ such that
s′k = s and t′k = t.

Note that there are a pair of functors I∗, I∗ : Span(C) → Bispan(C) which agree on
objects and 1-morphisms. On 2-morphisms

I∗(f : X → Y ) = [(id,X, f)], I∗(f : X → Y ) = [(f,X, id)].

We obtain a pair of pseudofunctors i∗, i∗ : C → Bispan(C) defined as i∗ = I∗u∗ and
i∗ = I∗u∗. This pair of pseudofunctors (i∗, i

∗) satisfy a more general version of Beck-
Chevalley conditions called Double Beck-Chevalley conditions (see Definition 4.1.15). It
is shown in Theorem 4.3.10 that the pair (i∗, i

∗) is universal among all Double Beck-
Chevalley pseudofunctors out of C.
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Section 4.1 discusses the pair of embeddings of the category C into the bicategory of
spans and the embedding of the bicategory of spans into the bicategory of bispans. The
conditions needed to be imposed on the pullback and pushforward to obtain a universal
property of bispans are called “Double Beck-Chevalley” conditions, and the conditions
are recorded in Definition 4.1.15. Theorem 4.1.18 checks the Double Beck-Chevalley
conditions for the pair of embeddings of C into bispans of C. The universal property is
stated in Theorem 4.3.10. The proof of the theorem uses string diagrams. In Section
4.2, we draw the adjunctions, Double Beck-Chevalley conditions in string diagrams. In
Section 4.3, we prove the universal property of bispans.

4.1 Hierarchy of Spans

We will discuss this characterization in a systematic manner paying attention to the
following hierarchy of spans:

C ↪→ Span(C) ↪→ Bispan(C)

A typical 2-morphism in each case is shown below:

x x

a b a b a X b

y y

A detailed description of the bicategories Span(C) and Bispan(C) for C = Gpdsf

can be found in a Segal fibrational manner in Section 3.2.2 and Section 3.2.3. An explicit
description of the bicategory of bispan is discussed in Construction 3.2.15. The bispan
bicategory in general is discussed in Construction 3.2.15.
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We would like to know sufficient conditions that must be imposed on the functors
F∗, F

∗ shown below so that the dotted extensions exist:

C Span(C) BiSp(C)

D

F∗,F ∗

()∗,()∗ I∗,I∗
i∗,i∗

Remark 4.1.1. The bicategory Span(C) has a fully faithful map I∗ to Bispan(C) where
I∗ is identity on objects and 1-morphisms. On 2-morphisms, we have

x x

a b a x b

y y

l

l

Note that we also have I∗ that is contravariant on the morphism categories which sends

x y

a b a x b

y x

l

l

For the lift F : Span(C) → D to exist, it suffices that the pair F∗, F ∗ satisfies the
Beck-Chevalley conditions.

Before we move ahead, we need the notion of a Beck-Chevalley morphism.

Definition 4.1.2. Given a pullback square σ shown below,

w y

x b

q

p

g

h

y

the Beck-Chevalley morphism is the induced morphism

BC[σ] : q∗p
∗ → h∗g∗
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defined by

F∗(q)F
∗(p) F ∗(h)F∗(g)

F ∗(h)F∗(h)F∗(q)F
∗(p) F ∗(h)F∗(g)F∗(p)F

∗(p)

ηhF∗(q)F
∗(p)

F ∗(h)θF∗(p)

F ∗(h)F∗(g)εp

BC[σ]

The following theorem is due to Beck and Chevalley and can be found in [31, A.2].

Theorem 4.1.3. Let F∗, F ∗ : C → D be a covariant and a contravariant pseudofunctor
that agrees on objects and identity morphisms. Suppose the following “Beck-Chevalley”
conditions hold:

1. For every morphism f : a→ b in C, we have a functorial adjunction

F∗(f) a F ∗(f).

2. Given a pullback square σ in C, the induced Beck-Chevalley morphism BC[σ] is an
isomorphism.

Then there exists a unique 2-functor F∗ : Span(C) → D such that F∗(f)∗ = F∗(f) and
F∗(f)∗ = F ∗(f) and on 2-morphisms

F∗(l :f xg →h yk) = F∗(k)εlF
∗(h) ◦ θ1∗θ

∗
2

where we have used a counit of the adjunction F∗(l) a F ∗(l) and the functorial coherences
F∗(g) 'θ1∗ F∗(k)F∗(l) and F ∗(f) 'θ∗2 F

∗(l)F ∗(h).

Remark 4.1.4. The functors F∗, F ∗ are generally termed as pushforward functor and
pullback functors respectively.

With Theorem 4.1.3, we have a characterisation of functors F∗ : Span(C) → D.
Next, we ask for conditions that allow us to lift F∗ to a dotted arrow as shown:

C Span(C) Bisp(C)

D

F∗,F ∗
F∗

I∗,I∗
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However, if F : Bispan(C)→ D is a 2-functor, then FI∗ and FI∗ are both 2-functors
out of the span bicategory. These functors on further restriction to C satisfy a pair of
Beck-Chevalley conditions and the adjunction condition is strengthened as we will see
now.

Construction 4.1.5. The category C can be embedded into Bispan(C) in two ways,
denoted by i∗, i∗:

1. Let f : c→ c′ be a morphism of C, then define i∗ as identity on objects and define

i∗(f) := c
id←− c f−→ c′.

By our choice of pullbacks, we note that i∗(gf) = i∗(g)i∗(f) and thus it is a strict
functor.

2. Let f : c→ c′ be a morphism of C, then define i∗ as identity on objects and define

i∗(f) := c′
f←− c id−→ c.

By our choice of pullbacks, we note that i∗(gf) = i∗(f)i∗(g) and thus it is a strict
contravariant functor.

These functors interact in a special way with each other which we now establish in
a series of propositions. Let us denote the span by a bimodule type notation:

x

fxg = a b
f g

.

Remark 4.1.6. Given a span x∗ =f xg, consider the transpose span x∗ =g xf The
compositions x∗x∗ and x∗x∗ have natural maps with appropriate identities as shown
below:
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ida a ida

= a x a =

x∗x∗ x×b x x∗x∗

idb b idb

= b x b =

x∗x
∗ x×a x x∗x

∗

f
ida ida

fπ1 fπ2
4

ηε!

idb idb

gπ1 gπ2

g

4

ε η!

Note that ε! = VFlip(η) and η! = VFlip(ε).

It turns out that the morphism x∗ and its transpose interact in a special way: x∗ is
both the left and right adjoint of x∗. This motivates the following definition.

Definition 4.1.7. In a bicategory B, an ambijunction (or an ambidextrous adjunction)
is a tuple

(f : a→ b, g : b→ a, η : ida → gf, ε : fg → idb, η
! : idb → fg, ε! : gf → ida)

such that (f, g, η, ε) is the data of the adjunction f a g and (g, f, η!, ε!) is the data of
the adjunction g a f .

Further if ε!η = id and εη! = id then we say that the ambijunction is special. If only
the second condition is satisfied, then we say it is partly special.

Proposition 4.1.8. The tuple (x∗, x
∗, η, ε, η!, ε!) forms an ambidextrous adjunction.

Further if x∗ is invertible, then the ambijunction is special.

Proof. We have to verify the triangle identities.

1. First we can check
x∗ x∗x

∗x∗

x∗

x∗η

εx∗
id

So we have to show the composite of the following morphism is identity:
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x∗id a×a x

x×a x

x∗x
∗x∗ = x×a x×a x

x×b x

idx∗ x×b b

x∗η

εx∗

(f,id)

(4,id)

(id,4)

(id,g)

The above morphism can be simplified:

x×a x x×b x

x x×b x×a x x

π2

(4,id) (id,4)

π1

Since the diagram

x x×a x

x×b x x×b x×a x

(4,id)

(id,4)

4

4

is a pullback square, we can compose the morphism above to obtain the composite

x x

x×a x x×b x =

x x x x

4 4

π2 π1

id id

where we have used the fact that 4 = (id, id).

2. The proof of the other zigzag identity for the adjunction x∗ a x∗ is obtained by
applying HFlip to case 1.

3. Applying VFlip =: V to case 1, we obtain
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V x∗ V x∗V x
∗V x∗

x∗

V (V x∗η)

V (εV x∗)
V (id)

Now we use the fact that V is identity on 1-morphism but flips the order of com-
position of 2-morphisms. Further, we use ε! = VFlip(η) and η! = VFlip(ε) and the
fact that V is an involution to obtain,

x∗ x∗x
∗x∗

x∗

η!x∗

x∗ε!id

4. The proof of the other zigzag identity can be obtained by applying HFlip to the
above calculation.

If x∗ =f xg is an equivalence, then by Lemma 3.3.1, the morphisms f, g are isomor-
phisms. Now the 2 composable 1 morphism (ε!, η) is given by

a

x

a x×b x a

x

a

Using the fact that x×x×bx x ' x, we the 2-morphism c is

a

a x a

a

f

f
id id

id id
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Since f is invertible and the diagram

x

a a

a

f f

id id

f

commutes, the 2-morphism fxf is equal to idida . Thus we have shown that ε!η = idida .
The other case εη! = ididb is very similar where b replaces a and g replaces f in the
calculation.

Corollary 4.1.9. Let f : c→ c′ be a morphism in C. The morphisms i∗(f), i∗(f) form
a part of an functorial ambijunction data and the ambijunction is special when f is an
isomorphism.

Proof. The statement of ambijunction and the speciality when f is an isomorphism is
a direct corollary of Proposition 4.1.8. The functoriality of the ambijunction has to be
proven. This follows from the fact that

i∗(gf) = i∗(g)i∗(f), i∗(gf) = i∗(f)i∗(g)

along with the relation of flip functors with i∗ = HFlip◦ i∗ and the fact that composition
of adjunction is an adjunction.

Remark 4.1.10. Since

x

x x x

a b = a x b

f g f gidid

id id

we see that an arbitrary 1-morphism fxg can be written as i∗(g)i∗(f). Thus the image
of the pair of functors i∗, i∗ generate all 1-morphisms of Bispan(C) via composition.

We will now show that the Beck-Chevalley condition stated in Theorem 4.1.3 is
obeyed by the inclusions i∗, i∗.

Proposition 4.1.11. The functors i∗, i∗ satisfy Beck-Chevalley conditions for 1-morphisms.

Proof. We have already checked the adjunction condition in Proposition 4.1.8.
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Now we have to prove the “base change” property: Given a pullback square σ

x a

b c

q

p

g

hy

we will demonstrate that the Beck-Chevalley morphism BC[σ] is an isomorphism.

The Beck-Chevalley morphism is

BC[σ] := i∗(h)i∗(g)εp ◦ i∗(h)θi∗(p) ◦ ηhi∗(q)i∗(p).

Using the adjunction data from Remark 4.1.6, we compute BC[σ] as shown in Figure
4.1.

idaq∗p
∗ x×x x×a a x

x×x x×a x x

g∗g∗q∗p
∗ x×x x×a a×c a x×c a

x×x x×a a×c a x×c a

g∗f∗p∗p
∗ x×x x×b b×c a x×c a

x×b b×c a x×c a

g∗f∗idb b×b b×c a b×c a

(id,id,4)

(id,id,q)

(id,id,pπ2,id)

(id,id,id,id)

(p,id,id)

(4,id,id)

(id,q)

(p,id)

Figure 4.1: The columns are the Beck-Chevalley composable morphism,
the computation in the category of bispan and a simplification.

Composing the spans in the final column we get:

x x×c a x×c a b×c a
(id,q)∗p p (p,id)p

Thus the Beck-Chevalley morphism is equal to

x
(p,q)∗−−−→ b×c a
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which is an isomorphism since σ is a pullback square.

For 2-morphisms, we have a similar story.

Remark 4.1.12. A 2-morphism in the bispan bicategory can be decomposed as

x

x X

a X b = a X b

y X

y

f g

h k

l

m

l

m

f g

h

k

fl,hm

gl,km

So we see that an arbitrary 2-morphism lXm can be written as I∗(m)I∗(l). Thus
the image of the pair of functors I∗, I∗ generate all 2-morphisms of Bispan(C) via
composition.

From Theorem 4.1.3, we know that

F∗(l :f xg →h yk) = (F∗(k)εlF
∗(h)) ◦ (θ1∗θ

∗
2)

Since I∗ = I∗ ◦VFlip, given F∗,F∗ out of Span(C) to D such that

FI∗ = F∗, FI∗ = F∗,

we can explicitly write

F (lXm) = F (I∗(m)I∗(l))

' F (I∗(m))F (I∗(l))

= F∗(m)F∗(Vflip(l))

=
(

(F∗(k)εmF
∗(h)) ◦ (θ′1∗θ

′∗
2 )
)
◦
(

(θ′′1∗θ
′′∗
2 ) ◦ (F∗(g)η!

lF
∗(f))

)
=
(

(F∗(k)εmF
∗(h)) ◦ (θ1∗θ

∗
2) ◦ (F∗(g)η!

lF
∗(f))

)
where we have used the properties of the vertical flip functor. We have also used the
fact that coherences θ1, θ2 that witnesses fl = hm and gl = km are the compositions
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of the dashed coherences. So the 2-functors FI∗, FI∗ determine the action of F on all
morphisms and objects.

Now the natural question is what constraints do the functors F∗,F∗ satisfy?

Proposition 4.1.13. The pair of functors I∗, I∗ : Span(C)→ Bispan(C) satisfies the
following “Vertical Beck-Chevalley” condition:
Given a pullback square in C:

x a

b c

q

p

f

g

p

the following diagram commutes:

g∗g
∗ idc

f∗f
∗

g∗q∗q
∗g∗ f∗p∗p

∗f∗

εg

η!f

g∗η!qg
∗

θ∗θ∗

f∗εpf∗

Proof. The bottom path can be computed using the adjunction data

g∗idcg
∗ a×a a×a a a

a×a x×a a x

g∗q∗q
∗g∗ a×a x×x x×a a x

a×a x×x x×a a x

f∗p∗p
∗f∗ b×b x×x x×b b x

b×b x×b b x

f∗f
∗ b×b b×b b b

g∗η!qg
∗

θ∗θ∗

f∗εpf∗

(id,q,id)

(id,4,id)

(pπ2,π2,π3,pπ3)

(id,4,id)

(id,p,id)

q

p
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and the composable arrow composes to the following morphism:

x

a b

q p

Similarly we compute the top path:

g∗g
∗ a×a a a

a a

idc∗ c c

b b

f∗f
∗ b×b b b

εg

η!f

4

q

p

4

q

p

and the composable arrow composes to the following morphism:

x

a b

q p

Since both morphisms are equal, the vertical Beck-Chevalley diagram commutes.

There is an involved constraint that arises out horizontal functoriality of 2-morphisms.

Proposition 4.1.14. The pseudofunctors i∗, i∗ satisfy the “Horizontal Beck-Chevalley”
condition: Given a diagram in C and a limit v over it:

u x2 c u x2 c

x1 b y2 x1 v y2

a y1 w a y1 w

l

f1

m

f2

n

p

g2

g1

πy2

πy1

πx1

πx2

σ1 p

σ2
p

S

π1

π2

T

m πy1

p

πy2

nπx2

πx1

l
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where the squares σ1, σ2 are pullback squares and BC[σ1], BC[σ2] denote the associ-
ated Beck-Chevalley isomorphisms. Then the following diagram commutes:

n∗πx2∗π
x∗
1 l∗ n∗g∗1f1∗l∗ p∗g∗2f2∗m∗ p∗πy2∗π

y∗
1 m∗

n∗πx2∗S∗S
∗πx∗1 l∗ p∗πy2∗T∗T

∗πy∗1 m∗

n∗n∗π2∗π
∗
1l
∗l∗ π2∗π

∗
1 p∗p∗π2∗π

∗
1m
∗m∗

BC[σ2]BC[σ1] θ∗θ∗

n∗πx2∗η
!
Sπ

x∗
1 l∗

ε!nπ2∗π
∗
1ε

!
l

ηpπ2∗π∗1ηm

n∗θ∗θ∗l∗ p∗θ∗θ∗m∗

p∗πy2∗εT π
y∗
1 m∗

Proof. We will compute the morphisms along top path and bottom path. We will show
they are equal. In order to simplify the long calculation, we first note that 2-morphism
spans with both legs isomorphisms are equivalent to identity morphism. So the functorial
coherences θ∗/θ∗ and Beck Chevalley isomorphisms are essentially identities and thus
they wont be computed.

In the computation of bottom composable arrow (in the commutative diagram in
question), we have directly shown the simplified expressions in Figure 4.2. Since Beck-
Chevalley isomorphisms are equal to identity, we have to show that the above composable
arrow in Figure 4.2 is identity when composed. Using

u ' x1 ×a x2, w ' y1 ×a y2, v = b×a c,

we can write

b×x1 u×x2 c ' b×x1 (x1 ×a x2)×x2 c

' b×a c

' v

and

b×x1 v ×x2 c ' b×x1 b×a c×x2 c.

Now we compute the composable morphism as
b×x1 b×a c×x2 c b×a c b×y1 b×a c×y2 c

b×a c b×x1 b×a c×x2 c b×y1 b×a c×y2 c b×a c

(p1,p4) (4,4) (4,4)

(p1,p4)
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n∗πx2∗iduπ
x∗
1 l∗ b×x1 u×x2 c

b×x1 v ×x2 c

n∗πx2∗S∗S
∗πx∗1 l∗ b×x1 v ×x2 c

n∗n∗π2∗π
∗
1l
∗l∗ b×x1 v ×x2 c

v

π2∗π
∗
1 v

v

p∗p∗π2∗π
∗
1m
∗m∗ b×y1 v ×y2 c

p∗h2∗T∗T
∗πy∗2 m∗ b×y1 v ×y2 c

b×y1 v ×y2 c

p∗πy2∗idwπ
y∗
1 m∗ b×y1 w ×y2 c

n∗πx2∗η
!
Sπ

x∗
1 l∗

ε!nπ2∗π
∗
1ε

!
l

ηpπ2∗π∗1ηm

p∗h2∗εT π
y∗
2 m∗

(id,S,id)

(π1,id,π2)

(π1,id,π2)

(id,T,id)

Figure 4.2: Computation of the long path of HBC commutative dia-
gram

Simplifying this, we obtain the identity morphism of b×a c which is what we set out to
show.

The properties listed in Propositions/Theorems 4.1.8, 4.1.3, 4.1.13 and 4.1.14 can be
collected into a single definition.

Definition 4.1.15. Given a category C and a bicategory B, a tuple (F∗, F
∗, η, ε, η!, ε!)

where

• F∗ : C → B, F ∗ : Cop → B are pseudofunctors that agree on objects.
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• for every morphism f : a → b, the tuple (F∗(f), F ∗(f), ηf , εf ) is the adjunction
data for an adjunction F∗(f) a F ∗(f) and (F ∗(f), F∗(f), η!

f , ε
!
f ) is the adjunction

data for an adjunction F ∗(f) a F∗(f).

is called a double Beck-Chevalley functor data if it satisfies the following axioms:

1. (Ambijunction) The tuple

(F∗(f), F ∗(f), ηf , εf , η
!
f , ε

!
f )

is an ambijunction and the ambijunction data is functorial in f .

Further, if f is an isomorphism, then the ambijunction is partly special. For every
object a ∈ C, the ambijunction for ida is

(F∗(ida), F
∗(ida), ηa, εa, η

!
a, ε

!
a)

is given by
ηa = θ∗aθ∗a = (ε!a)

−1, η!
a = θ∗aθ

∗
a = (εa)

−1,

where θ∗, θ∗ are the identity coherences of F∗, F ∗.

2. (BC) Given a pullback square in C:

x a

b c

q

p

f

g

p

Let σ∗ denote the invertible 2-cell that witnesses g∗q∗ 'σ∗ f∗p∗, then the Beck-
Chevalley morphism

BC[σ∗] : q∗p
∗ → g∗f∗

is an isomorphism.

3. (VBC) Given a pullback square in C:

x a

b c

q

p

f

g

p
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the following diagram commutes:

g∗g
∗ idc

f∗f
∗

g∗q∗q
∗g∗ f∗p∗p

∗f∗

εg

η!f

g∗η!qg
∗

σ∗σ∗

f∗εpf∗

Figure 4.3: Vertical 2-functoriality constraint

4. (HBC) Given a diagram in C and the limit v over it:

u x2 Y u x2 Y

x1 b y2 x1 v y2

X y1 w X y1 w

l

f1

m

f2

n

p

g2

g1

πy2

πy1

πx1

πx2

σ1 p

σ2
p

S

π1

π2

T

m πy1

p

πy2

nπx2

πx1

l

where the squares σ1, σ2 are pullback squares, let BC[σ1], BC[σ2] denote the as-
sociated Beck-Chevalley isomorphisms. Then the following diagram commutes:

n∗πx2∗π
x∗
1 l∗ n∗g∗1f1∗l∗ p∗g∗2f2∗m∗ p∗πy2∗π

y∗
1 m∗

n∗πx2∗S∗S
∗πx∗1 l∗ p∗πy2∗T∗T

∗πy∗1 m∗

n∗n∗π2∗π
∗
1l
∗l∗ π2∗π

∗
1 p∗p∗π2∗π

∗
1m
∗m∗

BC[σ2]BC[σ1] θ∗θ∗

n∗πx2∗η
!
Sπ

x∗
1 l∗

ε!nπ2∗π
∗
1ε

!
l

ηpπ2∗π∗1ηm

n∗θ∗θ∗l∗ p∗θ∗θ∗m∗

p∗πy2∗εT π
y∗
1 m∗

Figure 4.4: Horizontal 2-functoriality constraint

Definition 4.1.16. A pair of pseudofunctors F∗, F ∗ : C → D are called a pair of Double
Beck-Chevalley pseudofunctors if these functors are part of a double Beck-Chevalley
functor data (F∗, F

∗, η, ε, η!, ε!).
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Remark 4.1.17. The first condition is mostly motivated by the properties of the bispan
category mentioned in the corollary of Proposition 4.1.8. The speciality of the ambi-
junction is needed for the welldefinedness of the functor and the identity ambijunction
condition is a technical assumption that seems harmless for the examples we have in
mind.

The second and the third condition is a consequence of Theorem 4.1.3 and is need
to prove horizontal and vertical functoriality of 1-morphisms and 2-morphisms.

Using Theorem 4.1.3, the first three conditions imply the existence of a pair of
functors F∗,F∗ : Span(C)→ D.

The condition in Figure 4.4 will be used to prove the horizontal functoriality of
2-morphisms. The functoriality conditions can be simply paraphrased as a coherence
condition that states that various equivalent ways of composing the “push-pull” functors
are equivalent.

Theorem 4.1.18. The pseudofunctors i∗, i∗ : C → Bispan(C) (from Construction
4.1.5) are a pair of Double Beck-Chevalley 2-functors.

Proof. We have to construct a tuple (i∗, i
∗, η, ε, η!, ε!) of double Beck-Chevalley functor

data.

Constructions:

We have already defined the adjunction data in Remark 4.1.6.

ida a ida

= a x a =

x∗x∗ x×b x x∗x∗

idb b idb

= b x b =

x∗x
∗ x×a x x∗x

∗

f
ida ida

fπ1 fπ2
4

ηε!

idb idb

gπ1 gπ2

g

4

ε η!

Checking the various axioms of Double Beck-Chevalley condition:
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1. (Ambijunction) For any f : a → b in C, it has been verified in the corollary to
Proposition 4.1.8 that the tuple (i∗(f), i∗(f), ηf , εf , η

!
f , ε

!
f ) is an ambijunction that

is functorial in f . Further the ambijunction was proved to be partly special when
f is an isomorphism. Since i∗, i∗ both send identity morphisms to identity 1-
morphisms, the identity coherences are trivial. The adjunction data for ida a ida
is also trivial and therefore axiom for identity ambijunction holds.

2. (BC) The Beck-Chevalley condition has been checked in the Proposition 4.1.11.

3. (VBC)The Vertical Beck-Chevalley condition has been checked in Proposition
4.1.13.

4. (HBC) The Horizontal Beck-Chevalley condition has been checked in Proposition
4.1.14.

Remark 4.1.19. Summarizing the situation: If we have a 2-functor F : Bispan(C)→ D,
we can get a pair of pseudo-functors F∗,F∗ by composing F with I∗, I∗ respectively.
From Remark 4.1.12, we see that

F (fXg) = F (I∗(g)I∗(f)) ' F∗(g)F∗(f).

From Theorem 4.1.3, we know that further restriction of the pair F∗,F∗ should satisfy
a pair of Beck-Chevalley conditions.

We can get a pair of pseudo-functors F∗, F ∗ : C → D by composing F with the pair
of double Beck-Chevalley pseudofunctors i∗, i∗ respectively. From Remark 4.1.10, we see
that

F (fxg) = F (i∗(g)i∗(f)) ' F∗(g)F ∗(f).

Such a composition is called “pull-push” functor.

Further, i∗, i∗ agree on objects and for any object a in the category C, since we have
i∗(ida) = i∗(ida), i∗(idida) = i∗(idida), the following must be true:

F∗(a) = F ∗(a), F∗(ida) = F ∗(ida), F∗(idida) = F ∗(idida).

Now we ask the following natural question: What are the conditions that should be
imposed on the pseudofunctors

F∗, F
∗ : C → D,
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so that it induces a 2-functor F : Bispan(C) → D such that Fi∗ = F∗, F i
∗ = F ∗?

The answer: F∗, F ∗ should be a pair of double Beck-Chevalley pseudofunctors. This
is the main theorem of this chapter (Theorem 4.3.10). The proof of this theorem is in
Section 4.3. In the Section 4.2, we describe the basic moves allowed in proofs using string
diagrams and we also present the Double Beck-Chevalley condition in a diagrammatic
form.

4.2 Basic moves

The proof of Theorem 4.3.10 will use calculations by manipulating string diagrams. A
move is an equation of diagrams. In Subsection 4.2.1, a quick introduction to string
diagrams is given. Especially the zig-zag laws followed by adjunctions (Figure 4.5) and
coherence laws followed by pseudofunctors are depicted as moves (Figure 4.6). These
are standard moves in the theory.

In Subsection 4.2.2, we present the string diagrams for the Double Beck-Chevalley
data (see Definition 4.1.15). The Beck-Chevalley isomorphism in the definition is de-
picted in Figure 4.10, speciality (of the ambijunction) move is depicted in Figure 4.11.
The vertical Beck-Chevalley move is shown in 4.12 and the horizontal Beck-Chevalley
move is shown in 4.13.

4.2.1 String diagram notations

In this subsection, we setup the notations for string diagrams.

Given a bicategory D, the string diagram notations for the concepts in a bicategory
are shown below:

A 2-morphism α : f → g between 1-morphisms f, g : A→ B is shown below:

A B

f

g

α
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DATA =

η

f g

ε

g f

LAWS =

g

g

=

g

g
ε

η

=

f

f

f

f
ε

η

Figure 4.5: Adjunction moves

Ff Fg

F (fg)

θ

Figure 4.6: Coherence isomorphism of a 2-functor

The associator and unitor coherences are suppressed in string diagrams. For instance,
identity 2-morphism is denoted by no dot and identity morphism is denoted by an empty
region.

The order of composable horizontal morphisms is from left to right in the string
diagram and the composition of vertical 2-morphisms is from top to down. For example,
to depict

A
f−→ B

g−→ C,

we will draw f to the left of g.

The adjunction data (f, g, η, ε) and laws are denoted in Figure 4.5.

Given a 2-functor between strict bicategories F : C → D, the composition coherence
is shown in Figure 4.6.

The invertiblity of the functorial coherences are captured by the string diagram
equations in Figure 4.7.

The compositional and unitor coherence laws are depected in Figure 4.8.
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=

θ

θ

=
θ

θ

Figure 4.7: Two conditions denoting invertibility of functorial coher-
ences

fgh

gh

fgh

=

fgh

fg

fgh F(f)

F(id)F(f)
=

F(f)

=

F(f)

F(id)F(f)

Figure 4.8: Functorial coherence laws
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(ida)∗

(ida)∗

(1)
=

(ida)∗

ηida

εida

(ida)∗

(2)
=

(ida)∗

(ida)∗

(ida)
∗

(3)
=

(ida)∗

(ida)∗

Figure 4.9: Breaking pushforward and pullback of identity morphism

4.2.2 Ambijunction and Beck-Chevalley moves

The string diagrams for the data of double Beck-Chevalley conditions is discussed in this
subsection.

The ambijunction data is essentially the data of a pair of adjunctions. The identity
ambijunction data specified in Definition 4.1.15 allows us to “break" F ∗(id) and F∗(id).
For the case of F∗(ida), this is shown in Figure 4.9. The steps use the zig-zag property
of adjunction, definition of identity ambijunction and invertibility of identity coherence.

We will now specify the Beck-Chevalley morphism. Given a pullback square in C:

x a

b c

q

p

f

g

p

Let σ∗ denote the invertible 2-cell that witnesses g∗q∗ 'σ∗ f∗p∗ and t := gq = fp, then
the string diagram for the Beck-Chevalley morphism

BC[σ∗] : q∗p
∗ → g∗f∗

is shown in Figure 4.10.

If f : a → b is invertible, then the special ambijunction condition entails εfη!
f is

identity and the string diagram for this is shown in Figure 4.11.

The vertical Beck-Chevalley condition (stated in Definition 4.1.15) in terms of string
diagrams is described in Figure 4.12.
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=

q∗p∗

g∗f∗

BC[σ∗]

q∗p∗

g∗f∗

ηf

εq

t∗

Figure 4.10: Beck-Chevalley morphism BC[σ∗]

η!
f

εf

=

Figure 4.11: The partly special ambijunction condition gives a move
where the circle on left hand side can be deleted.

f∗f∗

g∗g∗

η!
p

εq

=

f∗ f∗

g∗g∗

η!
g

εf

Figure 4.12: Vertical BC condition
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l∗ n∗πx2∗πx∗1

BC[σ1∗]

πy2∗πy∗1

BC[σ2∗]

m∗ p∗

=

l∗ n∗πx∗1 πx2∗

p∗m∗
πy2∗πy∗1

η!
S

εT

ε!l

ηm

ε!n

ηp

Figure 4.13: Horizontal BC condition

The horizontal Beck-Chevalley condition (stated in Definition 4.1.15) in terms of
string diagrams is described in Figure 4.13.

4.3 Proof of the main theorem

In this section, we characterise the universal property of bispans in Theorem 4.3.10.
Given a double Beck-Chevalley functor data F∗, F ∗ : C → D, Construction 4.3.1 specifies
the data of the 2-functor F : Bispan(C)→ D. First, F is a well defined functor on the
morphism category of Bispan(C) (Lemma 4.3.5).

Construction 4.3.1. Given a 2-functor that satisfies the Double Beck-Chevalley con-
ditions given in Definition 4.1.15, we construct a 2-functor

F : Bispan(C)→ D.
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F (fxg) :=

f∗ g∗

F∗(a) F∗(x) F∗(b)

Figure 4.14: String diagram for g∗f∗

Define F on objects as
F (c) = F∗(c) = F ∗(c).

Given a 1-morphism fxg : a→ b,we define

F (fxg) := F∗(g)F ∗(f)

which we will abbreviate as g∗f∗ as usual.

Given a 2-morphism lXm :f xg →h yk, the action of F on 2-morphisms is given by

F (lXm) = (k∗εmh
∗) ◦ (θ∗glθ

∗
fl) ◦ (g∗η

!
lf
∗).

The 1-morphism and 2-morphism above are shown in string diagram notation in Figure
4.14 and Figure 4.15.

Given a 2-composable arrow in Bispan(C)

x1 ×b x2

x1 x2

a b c

πx1 πx2

f gα β

and its composition
x1 ×b x2

a c

απx1 βπx2

the composition coherence of the 2-functor F is depicted in Figure 4.8.
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F (fxg)

F (hxk)

F (lXm) :=

h∗ k∗

g∗f∗

η!
l

εm

Figure 4.15: String diagram for 2-morphism assigned to F

F (x2 ◦ x1)

F (x1) F (x2)

:=

(γπx2 )∗(απx1 )∗

BC[σ∗]

α∗ f∗ g∗ γ∗

Figure 4.16: Composition coherence of F
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Let a, b ∈ C, now we prove that

F : Bispan(C)(a, b)→ D(Fa, Fb)

is a functor in a series of lemmas. Lemma 4.3.2 shows that F is well defined on 2-
morphisms, Lemma 4.3.3 shows that F preserves identity of 1-morphisms and Lemma
4.3.4 shows that F preserves composition of 2-morphisms. Thus we conclude F is a
functor on the morphism category (in Lemma 4.3.5).

The 2-morphisms in the bicategory of bispans is defined up to isomorphisms of di-
agrams. If F , in Construction 4.3.1, is a 2-functor, then F should be well defined. We
prove this in the next lemma.

Lemma 4.3.2. The assignment

F : Bispan(C)(a, b)→ D(Fa, Fb)

given in Construction 4.3.1 is well defined on 2-morphisms.

Proof. Suppose lXm, l′X ′m′ are related, then there exists an isomorphism α : X → X ′

in C such that
l = l′α,m = m′α.

In order to show that F (X) = F (X ′), we use the string diagram description of F (X), F (X ′)

given in Construction 4.3.1. We start with F (X) on the left hand side in Fgure 4.17 and
the last diagram can be simplified to by F (X ′).

f∗ g∗

k∗h∗

εm

η!
l

(1)
=

h∗ k∗

g∗f∗

η!l′

η!α

εα

εm′

(2)
=

h∗ k∗

g∗f∗

η!
l′

εm′

η!
α

εα

(3)
=

f∗ g∗

k∗h∗

εm′

η!
l′

Figure 4.17: Well definedness of the 2-functor

The reasons for the equality (numbered in Figure 4.17) is given below:
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1. Follows from the definition of X ′, specifically from

l = l′α,m = m′α.

2. Follows from 2-functor’s composition coherence condition presented in string di-
agram form in Figure 4.8. This condition is applied 4 times as indicated by the
dotted red boxes in the figure.

3. Follows from the fact that α is an isomorphism and hence the partly special con-
dition of the ambijunction data for α as shown in Figure 4.11.

This proves that the assignment is well defined.

Lemma 4.3.3. The assignment

F : Bispan(C)(a, b)→ D(Fa, Fb)

given in Construction 4.3.1 preserves identity of every object in Bispan(C)(a, b).

Proof. Let fxg be an object Bispan(C)(a, b), then the identity morphism is idxid. Since
identity is an isomorphism, by the ambijunction axiom in Definition 4.1.15, the ambi-
junction data is special. The proof that F preserves identity 2-cell is shown in Figure
4.18.

F (fxg)

F (fxg)

F (idxid) (1)
=

f∗ g∗

g∗f∗

η!
id

εid

(2)
=

f∗

f∗

εid

η!
id

g∗

g∗

(3)
=

f∗

f∗

g∗

g∗

Figure 4.18: Proof of F preserves identity 2-morphisms.

The following list explains the reasons for every step of the equality in Figure 4.18.
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1. From Construction 4.3.1, the 2-cell assignment F (idxid) is given by the first equal-
ity.

2. This equality follows from the invertibility of the coherence id∗f∗ 'θ f∗ (See
Figure 4.7.

3. The third equality from the speciality of the ambijunction specified in Figure 4.11.

Lemma 4.3.4. The assignment

F : Bispan(C)(a, b)→ D(Fa, Fb)

given in Construction 4.3.1 preserves composition in the category Bispan(C)(a, b).

Proof. Let fxg,h yk,l zm be three objects in Bispan(C)(a, b), and let

pXq : x→ y, rYs : y → z

be a pair of composable arrows. The composition in the bicategory of bispans is given
by

x x

X

y = X ×y Y

Y

z z

p

q

r

s

pπ1

sπ2

We need to show that

F (pπ1X ×y Ysπ2) = F (rYs) ◦ F (pXq).

We start with the left hand side of the above equality

In Figure 4.19, the first equality uses the definition of F . The second equality uses
the functoriality of the adjunction data.
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F (fxg)

F (lzm)

F (X ×y Y )
(1)
=

l∗ m∗

g∗f∗

η!
pπ1

εsπ2

(2)
=

f∗ g∗

(pπ1)∗

η!
π1

η!
p

l∗ m∗

(sπ2)∗

επ2

εs

Figure 4.19: Vertical composition of 2-cells

Now we focus on the green dotted rectangle in the figure. Using the 2-functoriality
of F ∗, we can write the composition of 2-morphisms in the rectangle as:

(pπ1)∗f∗
θ1' π∗1(fp)∗

= π∗1(hq)∗

θ2' π∗1q∗h∗

θ3' π∗2r∗h∗

θ4' π∗2(hr)∗

= (π2)∗(ls)∗

θ4' (sπ2)∗l∗

We can use the 2-functoriality of F∗ to replace the diagram in the dotted red box in
Figure 4.19.

So the string diagram in the last step can be written as another string diagram shown
in Figure 4.20. Note that we have omitted the composition coherences in the diagram
and the equality follows from the vertical Beck-Chevalley axiom shown in Figure 4.12.
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f∗ g∗

p∗ p∗

η!
p

q∗
π∗1 π1∗

η!
π1

q∗

h∗ k∗

m∗ l∗

s∗ s∗

εs

r∗
π2∗ π∗2επ2 s∗

=

h∗ k∗

g∗f∗

η!
p

εq

l∗ m∗

η!
r

εs

Figure 4.20: Final step of the proof of Proposition 4.3.4

Lemma 4.3.5. The assignment

F : Bispan(C)(a, b)→ D(Fa, Fb)

given in Construction 4.3.1 is a functor.

Proof. The proof follows from Propositions 4.3.2, 4.3.3, 4.3.4.

Next we check the naturality of the composition coherence proposed in Figure 4.16.

We need two observations that will aid the proof of Lemma 4.3.7. They are recorded
as propositions below.

Proposition 4.3.6. Let a, b, c, d, e be 1-morphisms in a category C, and suppose cb = ed,
then for a 2-functor F : C → D, the move shown in Figure 4.21 is allowed.
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F (a) F (b)

F (ba)

F (c)

=

F (a)

F (b) F (c)

F (d) F (e)

F (da)

Figure 4.21: Proposition 4.3.6

Proof. The string diagrammatic steps of the proof are shown in Figure 4.22.

The steps of the proof are explained below:

1. This follows from 2-functorial composition axiom given in Figure 4.16 and the
hypothesis bc = de. We use the invertibility of the composition coherence shown
in Figure 4.7.

2. This follows from the composition axiom applied to the dotted red rectangle.

Lemma 4.3.7. The composition coherence given in Construction 4.3.1 is a natural
transformation.

Proof. Given a pair of composable 1-morphisms and a pair of horizontally composable
2-morphisms between them as shown below:

F (a) F (b)

F (ba)

F (c)

(1)
=

F (c)F (b)F (a)

F (cb)

F (ed)

(2)
=

F (a)

F (b) F (c)

F (d) F (e)

F (da)

Figure 4.22: Proof of Proposition 4.3.6
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x1 x2

a X b Y c

y1 y2

l

m

n

p

f1

f2

g1

g2

α

β

γ

δ

compositions involve choices of pullbacks. The composition is given by

x1 ×b x2

a X ×b Y c

y1 ×b y2

απx1 γπx2

δπy2βπy1

S

T

Note that we have the following equations: S = (lπ1, nπ2), T = (mπ1, nπ2) where
π1, π2 are the projections of X ×b Y to X,Y respectively.

We have to check the following naturality square:

F (x2 ◦ x1) F (x2) ◦ F (x1)

F (y2 ◦ y1) F (y2) ◦ F (y1)

F (Y×bX) F (Y )◦F (X)

θy

θx

where θ represent the compositional coherences.

The naturality coherence involves checking the equality of the string diagram shown
in Figure 4.23.

We substitute the definitions of F in the left hand side of the equality shown in
Figure 4.23 to obtain the string diagram in Figure 4.24.

The adjunction zig-zag is used in the red dotted box and their companion counits
below. In the blue dotted box, the invertible Beck-Chevalley isomorphism and inverse
can be substituted to obtain the Figure 4.25

The Horizontal Beck-Chevalley condition described in Figure 4.13, is replaced in the
dotted red box and the adjunctions are straightened to obtain the string diagram shown
in Figure 4.26.
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F (x1) F (x2)

F (x2 ◦ x1)

F (y1) F (y2)

F (lXm) F (lYm)
=

F (y1) F (y2)

F (x2 ◦ x1)

F (X ×b Y )

F (y2 ◦ y1)

Figure 4.23: Naturality of the composition coherence

F (x1) F (x2)

F (x2 ◦ x1)

F (y1) F (y2)
F (lXm) F (lYm)

=

α∗ π∗1

(απx1 )∗

π∗2 γ∗

(γπx2 )∗

f1∗ g∗1

β∗ f2∗

η!
l

εm
g∗2 δ∗

η!
n

εp

Figure 4.24: Naturality check: Step 1.

Now using Proposition 4.3.6 for the dotted red box and three other symmetric strings
along with invertiblity of composition coherences (see Figure 4.7), we get the string
diagram in Figure 4.27.

This step finishes the proof of naturality.
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α∗ π∗1

(απx1 )∗

π∗2 γ∗

(γπx2 )∗

f1∗ g∗1

BC[σ1]

η!
l η!

n

ε!l ε!n

η!
l η!

n

f2∗ g∗2

BC[σ2]

f2∗ g∗2

BC[σ2]

β∗ δ∗

εm εp

ηm ηp

εm εp

Figure 4.25: Naturality check: Step 2.

Finally we have to check the composition and identity coherence axioms. Given a
3-composable arrow

u

v w

x1 x2 x3

a b c d

l1 r1

l2 r2 l3

f g h k

r3

m n

y

y y
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α∗ π∗1

(απx1 )∗

π∗2 γ∗

(γπx2 )∗

η!
S

n∗l∗ π∗1

π2∗

εT

m∗ p∗

β∗ δ∗
f2∗ g∗2

BC[σ2]

πy∗1 πy2∗

Figure 4.26: Naturality check: Step 3.

the composition axiom is checked in Lemma 4.3.8. In terms of string diagrams, we have
to check the left diagram in Figure 4.28.

Lemma 4.3.8. The proposed assigment F given in Construction 4.3.1 satisfies the com-
position axiom.

Proof. We will assume the three composable arrow is the one given above. Using the
functorial coherence specified in Figure 4.16, we can write

In Figure 4.29, the dotted rectangles can be replaced using the composition axiom
to obtain the string diagram in Figure 4.30.

Since l3r1 = r2l1, we can replace the (l3r1)∗ line segment by (r2l1)∗. And then using
composition axiom a couple o times, we arrive at the string diagram in Figure 4.31.

Now we zig-zag r∗2 and isotope the string diagram to obtain the Figure 4.32.

In Figure 4.32, the 1-morphisms in the dotted red box can be composed. After using
composition axiom for (kr2l1)∗ and (kl3r1)∗, then the invertibility of the composition
coherence of (kl3)∗, composition axiom m∗r∗3r

∗
1 and functoriality of the adjunction data

for r3r1 , we get the required final string diagram.
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(βπy1)∗ (δπy2)∗

(γπx2 )∗(απx1 )∗

η!
S

εT

β∗ δ∗
f2∗ g∗2

BC[σ2]
πy∗1 πy2∗

=

F (y1) F (y2)

F (x2 ◦ x1)

F (X ×b Y )

F (y2 ◦ y1)

Figure 4.27: Naturality check: Step 4.

Next we check that the identity axiom (the equality on the right in Figure 4.28).

Lemma 4.3.9. The proposed assigment F given in Construction 4.3.1 satisfies the iden-
tity axiom.

Proof. Given an 1-morphism fxg composed with identity on the left as shown below,

x

a x

a a b

ida

ida f

g

idaf y

the string diagram for the identity coherence axiom is shown in Figure 4.33,

The ambidexterity axiom stated in Definition 4.1.15 specifies the ambidexterity data
associated with an identity morphism. Using this data, we simplify the computation in
Figure 4.34.

The final equality in Figure 4.34 uses the identity coherence axioms for F∗(g) in the
dotted blue box and F ∗(f) in the dotted green box. The string in the dotted red box
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F (x3)F (x2)F (x1)

F (x2x1)

F (x3x2x1)

=

F (x3)F (x2)F (x1)

F (x3x2)

F (x3x2x1) F(x)

F(b)F(x)
=

F(x)

=

F(x)

F(a) F(x)

Figure 4.28: Functorial coherence axioms checked in Propositions 4.3.9
and 4.3.8

vanishes because of the invertibility of the identity coherence. One final application of
the identity coherence axiom to F ∗(f) finishes this step.

For the other identity coherence axiom, the composition of 1-morphism is shown
below:

x

x b

a b b

idx

g

g

idb

f idb

The string diagram proof of the identity coherence axiom is proved in Figure 4.35.

In the first step, we use the breaking of identity morphism property (proved in Figure
4.9) on (idx)∗ in the blue dotted box. Then we use the identity coherence axiom on F ∗(g)

for the dotted green box and on F∗(g) for the dotted red box. We also apply identity
coherence axiom for F ∗f on the left most connected string. In the last equality we use
the zig-zag identity to straighten g∗.
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f∗

f∗

l∗2 l∗1
r1∗ (nr3)∗

g∗ g∗

ηg

g∗

(hl3)∗
r∗1

εr1
ηk

h∗ m∗

k∗ l3∗

r3∗

εr3

n∗

Figure 4.29: Step 1 of the composition coherence 2-morphism on RHS
of the first equality in Figure 4.28.
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f∗

f∗

l∗2

r1∗ (nr3)∗l∗2 l∗1

g∗ g∗

ηg

g∗

(l3r1)∗

r∗1

εr1

ηk

h∗ m∗

k∗ l3∗

r3∗

εr3

n∗

Figure 4.30: Step 2 of the composition coherence 2-morphism on RHS
of the first equality in Figure 4.28.
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f∗

f∗

l∗2

(nr3)∗l∗2 l∗1

g∗ g∗

ηg

g∗

r∗2

r∗1

εr1

ηk

h∗ m∗

k∗ l∗3

r3∗

εr3

n∗

Figure 4.31: Step 3 of the composition coherence 2-morphism on RHS
of the first equality in Figure 4.28.
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f∗

f∗

l∗1l∗2

εr2

r2∗

ηr2

g∗ g∗

ηg

g∗

r∗1

εr1

ηk

h∗ m∗k∗

l∗3

r3∗

εr3

r1∗

n∗

n∗

Figure 4.32: Step 4 of the composition coherence 2-morphism on RHS
of the first equality in Figure 4.28.
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F (f)

F (f)

F (ida)

=

f∗

f∗

(idx)∗ g∗

g∗

BC[σ]

g∗

(ida)
∗

f∗

(ida)∗

=

f∗

f∗

g∗

g∗

ηida

(idx)∗εidx

g∗

(ida)∗

f∗

(ida)∗

Figure 4.33: Step 1 of identity axiom check

f∗

f∗

g∗

g∗

ηida

(idx)∗εidx

g∗

(ida)∗

f∗

(ida)∗

=

f∗

f∗

g∗

g∗

g∗f∗

(ida)∗ (ida)∗

=

f∗

g∗

Figure 4.34: Step 2 of the identity axiom check

Theorem 4.3.10 (Main theorem). Let C be a category with pullbacks and D be a bi-
category. Given any pair of Double Beck-Chevalley 2-functors (see Definition 4.1.16)
F∗, F

∗ : C → D with Double Beck-Chevalley data (see Definition 4.1.15)

(F∗, F
∗, η, ε, η!, ε!),

there exists a 2-functor
F : Bispan(C)→ D

such that FI∗ = F∗, FI∗ = F∗.

Proof. The tentative functor is constructed in Construction 4.3.1. Note that by con-
struction

FI∗ = F∗, FI∗ = F∗
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F (f)

F (f)

F (ida)

=

f∗ (idx)∗

f∗ g∗

ηg

g∗

εg

(idb)∗

f∗
(idb)

∗

g∗

=

f∗

g∗

ηg

εg

g∗

=

f∗

g∗

Figure 4.35: Identity Coherence Axiom.

holds. Given objects a, b in the Bispan category, Lemma 4.3.5 shows that F is a functor
on the category of morphisms. This checks that F preserves composition of vertical
2-morphisms and identity morphism of all 1-morphisms. The naturality of the com-
positional coherence of F is checked in Lemma 4.3.7. This checks that F preserves
composition of horizontal 2-morphisms upto coherence isomorphisms. Finally Lemmas
4.3.8, 4.3.9 check the composition and identity axioms for coherences of F .

Remark 4.3.11. Note that the uniqueness of the 2-functor follows from the uniqueness of
the 2-functor in Hermida’s Theorem 4.1.3. Indeed, the Double Beck-Chevalley conditions
contain the conditions of Hermida’s theorem. Thus we have unique pair of functors
F∗,F∗ out of the bicategory of Spans in C to D satisfying the conditions in the above
Theorem. If FI∗ ' F∗, FI∗ ' F∗, then the 2-functor is uniquely determined since on
the level of 2-morphisms, every span can be written as a composition of push and pull
of a 2-morphism in Bispan. This is similar to the discussion in Construction 4.1.5.
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Chapter 5

Applications to gauge theories

In the last chapter, we characterized bispans in a category C (with pullbacks) using dou-
ble Beck-Chevalley functors (see Theorem 4.3.10). The double Beck-Chevalley functor
data (see Definition 4.1.15) was inspired by Morton’s work [49].

For the choice of C as the category whose objects are skeletal groupoids with mor-
phisms as functors, we obtain an example of double Beck-Chevalley functor data that
arises in Morton’s work (discussed in Subsection 5.1.5). Recall that the definition of dou-
ble Beck-Chevalley functor data has 4 axioms: Ambidexterity, Beck-Chevalley, Vertical
Beck-Chevalley, Horizontal Beck-Chevalley (see Definition 4.1.15). One of the require-
ments in the ambidexterity axiom is that the ambijunction associated to an isomorphism
is special. This condition is verified in the proof of Theorem 5.1.35 and the rest of the
axiom verification is directly from Morton. Thus using the universal property of the
bicategory of bispans, Theorem 5.1.35 gives a 2-functor Q̃ which matches Morton’s
2-functor (described in Construction 5.1.36). Morton’s example is an example of an
extended prequantization 2-functor (see Definition 1.1.29).

Whitehead introduced the notion of a crossed module (Definition 5.1.14) as an alge-
braic way to model 2-types. In [47] Moerdijk and Svensson construct a 2-groupoid WX,
called a Whitehead 2-groupoid, from a given CW complex X (see Construction 5.1.9).
They show that the functor W has a right adjoint N (a nerve functor), and together,
they form a Quillen equivalence (see Theorem 5.1.11). Thus, the homotopy theory of 2-
types is shown to be equivalent to the homotopy theory of 2-groupoids, establishing the
Grothendieck’s homotopy hypothesis for the 2 dimensional case (see Subsection 1.1.4).
This result induces an equivalence between pointed 2-groupoids and pointed connected
2-types. Further, the homotopy theory of pointed 2-groupoids is proven to be equivalent
to the homotopy theory of crossed modules [68]. Thus, we have three homotopy theories
pairwise equivalent to each other, furnishing three descriptions of 2-groups as shown in
Figure 5.1.
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2−Gpds∗

2Groups

2types∗ CrsMod

|N(_)|

W

C

∗//(_)

W

|(_)|

Figure 5.1: Three equivalent descriptions of 2-groups.

The notion of a derived internal hom object is well known (see Definition 5.1.12).
Given a pair of CW complexes A,B, one can construct a derived internal hom object,
a mapping space, Maps(A,B). Given a pair of 2-groupoids A, B, Noohi defines a
derived mapping 2-groupoid and shows that the nerve of this 2-groupoid is homotopy
equivalent to Maps(NA, NB) (see Theorem 5.1.13). He also constructs a derived map-
ping 2-groupoid between a pair of crossed modules (Definition 5.1.26). We compute
Q̃(Maps(Sn, X)) for n = 1, 2 in Subsection 5.2.

Organization

In Section 5.1, we discuss the homotopy theory of 2-groupoids, crossed modules and 2-
types (in Subsections 5.1.2, 5.1.3). In particular, we discuss a crossed module description
of the mapping space Maps. We also recall Morton’s 2-functor Q̃ (in Construction
5.1.36). In Section 5.2 we compute the value of

Q̃(π≤1Maps(Sn, X))

for n = 1, 2 using the crossed module description.

5.1 Preliminaries

In this section, there are no new results except Theorem 5.1.35. In Subsection 5.1.1, we
quickly recall the basics of model categories. In the next three subsections, we explore
three equivalent descriptions of 2-groups as shown in Figure 5.1 and we follow [51].
Moerdijk and Svensson’s pair of functors W : sSets ↼−−⇁ 2 − Gpd : N , shown in Figure
5.1, is constructed in Subsection 5.1.2. Theorem 5.1.11 claims that the pair N,W is
a Quillen equivalence when considering 2-types instead of all simplicial sets. Noohi’s
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derived mapping 2-groupoid (Definition 5.1.12) and the result that the nerve of this
mapping 2-groupoid has the right homotopy type, can also be found in this subsection
(Theorem 5.1.13). In Subsection 5.1.3, we introduce the model category of crossed
modules. The pair of functors ∗//(_) : CrsMod ↼−−⇁ 2 − Gpd∗ : C shown in Figure 5.1
is constructed in this subsection and Theorem 5.1.19 claims that these functors induce
an equivalence of homotopy theories. Noohi’s derived mapping 2-groupoid of crossed
modules (Definition 5.1.26) and the Whitehead crossed module (Definition 5.1.20) is
discussed in Subsection 5.1.4.

In Subsection 5.1.5, we discuss Kapranov-Voevodsky 2-vector spaces and show that
Morton’s construction [50] gives us an example of a double Beck-Chevalley functor data
in Theorem 5.1.35. This is the only new result in this section.

5.1.1 Model categories

We quickly recall the basic definitions in model category theory from [24, Chapter II].

Definition 5.1.1. A model category C is a category equipped with three classes of
morphisms called fibrations, cofibrations and weak equivalences, respectively. These
morphism classes and the category C are supposed to satisfy the following axioms.

1. (CM 1) The category C has all limits and colimits.

2. (CM 2) Let f, g, h be 1-morphisms such that f = g ◦ h. If any two of these is a
weak equivalence, so is the third.

3. (CM 3) If a morphism f is a retract of a morphism g, and g is weak equivalence,
fibration or cofibration, then so is f .

4. (CM 4) Suppose that we are given a commutative solid arrow where i is a cofibra-
tion and p is a fibration:

A X

B Y

pi

Then the dotted arrow exists making the triangles commute if i or p is a weak
equivalence.

5. (CM 5) Any morphism f : A → B can be factored as f = p ◦ i where p is a
fibration, i is a cofibration and further the factorization can be chosen so that any
one of the pair p, i is a weak equivalence.
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If there is a weak equivalence f : A→ B, then we say A and B are weakly equivalent.

We will not compare distinct model structures on the same category in this chapter
so we suppress the three classes of morphisms and say C is a model category.

By (CM1) in Definition 5.1.1, a model category C has an initial object φ and a
terminal object ∗.

Definition 5.1.2. An object X of C is fibrant if the canonical map X → ∗ is a fibration.
Similarly, an object X of C is cofibrant if the canonical map φ→ X is a cofibration.

Construction 5.1.3. Let X be an object of a model category C, then by (CM5) the
canonical map X → ∗ can be factored as X i−→ RX

p−→ ∗ with i chosen as a weak
equivalence. Thus, we have a fibrant object RX that is weakly equivalent to X. Such
an object RX is called a fibrant replacement for X. Similarly, given any object X in a
model category C, there is a cofibrant replacement QX for X.

It turns out that we can define a notion of homotopy between morphisms in a model
category (see [24, Chapter II.1]) and this leads to a definition of a homotopy category
of a model category.

Construction 5.1.4. Let X,Y be two objects in a model category C, define

HomHoC(X,Y ) = HomC(QX,RY )/ ∼

where ∼ is the homotopy relation in the model category C. We get the homotopy category
Ho(C) whose objects are objects of C and the set of morphisms is given by HomHoC .
The composition is induced from the composition of morphisms in C.

Clearly, we have a functor j : C → Ho(C) that is the identity on objects and sends
a morphism to its equivalence class. It can be shown that j maps weak equivalences to
isomorphisms (see Whitehead’s theorem at [24, §II.1.10]). The category Ho(C) is initial
among all functors out of C that map weak equivalences to isomorphisms [24, §II.1.11].

Given a functor F : C → A out of a model category that sends weak equivalences
between cofibrant objects to isomorphisms, one can construct a left Kan extension LF
(dotted arrow) (see [24, Lemma II.7.3])

C A

Ho(C)

F

j
LF
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Similarly, we have a right Kan extension RF if F maps weak equivalences between
fibrant objects to isomorphisms.

Theorem 5.1.5. [24, Theorem 7.7] Let C,D be model categories. If an adjunction F a G
with left adjoint F : C → D is such that F preserves weak equivalences between cofibrant
objects and G preserves weak equivalences between fibrant objects, then LF : Ho(C) →
Ho(D) and RG : Ho(D)→ Ho(C) exists with LF a RG.

Further, suppose that for any cofibrant X ∈ C and any fibrant A ∈ D, X → GA is a
weak equivalence iff its adjoint FX → A is a weak equivalence. Then the LF and RG
are adjoint equivalences and thus Ho(C) ' Ho(D).

A morphism that is both a fibration and a weak equivalence is called a trivial fibra-
tion. A morphism that is both a cofibration and a weak equivalence is called a trivial
cofibration.

Definition 5.1.6. Let C and D denote two model categories. An adjunction F a G
with F : C → D, G : D → C is called a Quillen adjunction if L preserves cofibrations
and trivial cofibrations (or equivalently R preserves fibrations and trivial fibrations).

It turns out that given a Quillen adjunction F a G, we have an adjunction LF a RG
on the homotopy categories [24, Lemma II.7.9].

An example is the Quillen equivalence of simplicial sets and compactly generated
weak Hausdorff spaces. Let Sing : Top → sSets denote the singular complex functor.
It’s left adjoint geometric realization is denoted by |(_)|. We won’t describe the model
structures here and assume the reader knows it. A detailed discussion can be found in
[24, Chapter I].

In Subsections 5.1.2, 5.1.3, we describe the examples of model categories relevant to
this chapter.

5.1.2 Homotopy theory of 2-groupoids and 2-types

We know that a groupoid is a category in which all the morphisms are invertible. Thus,
a groupoid has objects and invertible 1-morphisms. A 2-groupoid is a bicategory that
has invertible 1-morphisms and invertible 2-morphisms (see Definition 2.1.3).

Definition 5.1.7. Let Gpds denote the category of groupoids and functors between
them. 2 − Gpds will denote the category of strict 2-groupoids and strict 2-functors.
2 − Gpds∗ will denote the full subcategory of 2 − Gpds with objects as one-object 2-
groupoids.
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Throughout this chapter, we will need the notion of a homotopy groupoid.

Definition 5.1.8. Let X be a 2-groupoid, the homotopy groupoid Ho(X ) has the same
objects as X . Given two objects x, y, the 1-morphisms of Ho(X ) are 1-morphisms of
X modulo the following relation: f ∼ g if there is a 2-morphism η : f → g. The
composition is induced from the composition of 1-morphisms in X .

Alternatively, given a groupoid C, let iC denote C with identity 2-morphisms. The
left adjoint to the functor i : Gpds→ 2−Gpds is Ho.

Moerdijk and Svensson have constructed a model structure on the category 2 −
Gpds of strict 2-groupoids and 2-functors with weak equivalences as 2-functors that
are essential surjective and fully faithful (see Definition 2.1.6). Since Noohi has proved
that the homotopy theories of 2-groupoids and strict 2-groupoids are equivalent (see
[51, Proposition 9.8]), we may not always specify which kind of 2-groupoids are under
discussion. In [47, §2], Moerdijk and Svensson consider a nerve functor N(_) : 2 −
Gpds → sSets described in [47, §2]. They also construct a strict 2-groupoid out of a
simplicial set which we describe now.

Construction 5.1.9. [47, Example 1.2, (2.5)] Given a simplicial set X, let Xi denote
the ith skeleton of X. Define W(X) as a 2-groupoid with objects as elements of X0 and
1-morphisms as homotopy classes of paths in X1 between points of X0. Given a pair of 1-
morphisms f, g : x→ y, the set of 2-morphisms is given by the set of maps α : I×I → X

modulo an equivalence relation. A map α is a 2-cell which is bounded by vertical paths
that are constant paths at x, y and horizontal paths are given by 1-morphisms f, g, as
shown below.

x y

x y

f

g

cx cyα

We say α ∼ α′ if there is a homotopy H : I × I × I → X between them that is constant
on X0, X1. Composition is obtained by concatenation of cells along common boundaries
which is strictly associative and unital.

Construction 5.1.10. Given a spaceX, the groupoid obtained by identifying 2-isomorphic
1-morphisms in WX (from Construction 5.1.9) is called the fundamental path groupoid
of X and is denoted by π≤1(X). The objects of π≤1(X) are elements of the 0-skeleton of
a CW complex X, and morphisms are homotopy classes of paths in X1 between points
of X0. The composition is the concatenation of paths.
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We quickly note that, for a CW complex X, the homotopy groupoid of WX (Defi-
nition 5.1.8) is the fundamental path groupoid of X.

They prove the following theorem. The following summary is from [51, Theorem
5.6].

Theorem 5.1.11. [47, §2] The pair of functors W : sSets
2
↼−−⇁ −Gpd : N is a Quillen

adjunction with W a N where W is from Construction 5.1.9. It satisfies the following
properties:

1. The adjoints preserve weak equivalences.

2. For every 2-groupoid X , the counit of the adjunction WNX → X is a weak equiv-
alence.

3. For every simplicial set X such that πnX = 0 for n ≥ 3, the unit of the adjunction
X → NWX is a weak equivalence.

So, in particular, the functor RN : Ho(2 − Gpd) → Ho(sSets) induces an equivalence
of categories onto the full subcategory of 2-types.

Loosely speaking, 2-groupoids are a categorical description of 2-types.

There is a well-known monoidal closed model structure in the category of sSets.
See [24, Chapter II.2] for details regarding monoidal closed model structure. For our
purposes, it suffices to note that there is a monoidal structure along with an internal
hom object and these structures are compatible with the model structure. From [51,
Definition 5.9]

Definition 5.1.12. Let C be a monoidal closed model category with an internal hom ob-
ject denoted byHom. LetX,Y be objects of C, then the derived hom-object RHom(X,Y )

is defined as Hom(QX,RY ) where QX is the cofibrant replacement of X and RY is the
fibrant replacement of Y (see Construction 5.1.3).

In Noohi’s paper[51], it is noted that the nerve functor N is not full. Further, the
sSet model category has an internal hom object that gives a derived mapping space. In
simple words, there is a space of maps between spaces. Noohi shows that we can endow
the model category of 2-groupoids with a monoidal structure so that there is an internal
hom, and then he proves that the nerve functor preserves the derived mapping space.
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In more details: In case of 2-groupoids, for a specific monoidal structure1, and
the associated internal hom of 2-groupoid: Hom(X ,Y) is a 2-groupoid with strict 2-
functors as objects, pseudo natural transformations as 1-morphisms and modifications
as 2-morphisms. See [51, §4] for a discussion on two different monoidal model structures.
The above monoidal structure is chosen since it behaves well with the nerve functor, as
shown by this theorem:

Theorem 5.1.13. [51, Proposition 7.9] Let Hom denote the derived internal hom object
of sSets and RHom denote the derived internal hom object of 2 − Gpds. If X ,Y are
2-groupoids, then there is a natural homotopy equivalence between simplicial sets

NRHom(X ,Y) ' Hom(NX , NY)

Note that Theorem 5.1.13 and Theorem 5.1.11 shows that if X and Y are 2-types,
then geometric realization |RHom(WY,WX)| is homotopy equivalent to derived map-
ping space Maps(X,Y ) where WX is the Whitehead 2-groupoid from Definition 5.1.9.

5.1.3 Crossed Modules

In this subsection, we describe the homotopy theory of crossed modules, define the
derived mapping 2-groupoid between two crossed modules.

Definition 5.1.14. [68, §2] A crossed module G is a tuple (G2, G1, d, ρ) where G2, G1

are groups, d : G2 → G1 is a group homomorphism, ρ : Gop1 → Aut(G2) is a group
homomorphism (or equivalently a right action of G1 on G2 via group automorphisms)
such that the following conditions are satisfied:

1. (equivariance) d(hg) = d(h)g for all h ∈ G2 and g ∈ G1.

2. (Peiffer) hd(h1)
2 = hh12 for all h1, h2 ∈ G2.

where xy represents the adjoint (i.e. conjugation) action whenever x, y belong to the
same group and when x ∈ G2, y ∈ G1, then xy := ρ(y)(x). We will denote G1 by
Dom(G) and G2 by Tar(G).

A morphism of crossed modules f : G → H is a pair of group homomorphisms
fi : Gi → Hi for i = 1, 2 (called components) such that df1 = f2d and

f2(ρ(g1)(g2)) = ρ(f1(g1))(f2(g2)).

1the Gray tensor product for the cognoscenti.
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The category whose objects are crossed modules and morphisms are morphisms of
crossed modules is denoted by CrsMod.

Given a crossed module d : G2 → G1, define the kernel of d as π0(G) and the cokernel
of d as π1(G).

Definition 5.1.15. Let φ : G → H be a morphism of crossed modules with components
(φ1, φ2).

1. The morphism φ is a weak equivalence if it induces isomorphisms on π1 and π2.

2. A morphism φ is a fibration if the components φ1, φ2 are both surjective.

There is a model structure on the category CrsMod with fibrations and weak equiv-
alences specified in Definition 5.1.15 (see [51, §6]).

Proposition 5.1.16. [51, Proposition 6.2, 6.3] Two important facts about the model
category CrsMod:

1. Let φ : G → H be a morphism of crossed modules with components (φ1, φ2). The
morphism φ is a trivial fibration iff the commutative square

G2 H2

G1 H1

φ2

dd

φ1

is a pullback square. Note that this means every crossed module is fibrant.

2. A crossed module d : G2 → G1 is cofibrant iff G1 is a free group.

3. Given a crossed module d : G2 → G1 and a surjective homomorphism F1 → G1

with F1 a free group, the crossed module G2×G1F1 → F1 is a cofibrant replacement
for the crossed module d : G2 → G1.

Now we construct a one object strict 2-groupoid from a crossed module (see [51,
§3.3]).

Construction 5.1.17. Given a crossed module G in CrsMod specified by d : G2 → G1

with action denoted by ρ, denote ∗//G as the strict 2-groupoid with one object ∗ and
the category of morphisms is specified as follows:

1. Objects(∗//G(∗, ∗)) = G1.
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• • • • •
id id

x y

id

yx

α β βα

Figure 5.2: Composition for G2 in Construction 5.1.18

2. Given two elements f, g ∈ G1, a morphism of ∗//G(∗, ∗) is a pair ρ = (a, f) with
a ∈ G2 such that da = f−1g.

3. The vertical composition of 2-morphisms (a, f) : f → g, (b, g) : g → h is given by
(ba, f). The horizontal composition of 1-morphisms is the group multiplication in
G1. The horizontal composition of 2-morphisms (a, f) : f → g and (b, h) : h → k

is given
(b, h) ◦ (a, f) := (bρ(h)(a), hf).

Next, we construct a crossed module from a pointed 2-groupoid.

Construction 5.1.18. Let X denote a pointed strict 2-groupoid.

1. Define CX1 as the set of 1-morphisms of X with group multiplication as compo-
sition. Composition is associative since X is a strict 2-groupoid.

2. Define CX2 as all the 2-morphisms with source as the identity 1-morphism. For
the group multiplication, we use horizontal composition as shown in Figure 5.2.

3. Define dC : CX2 → CX1 sends a 2-morphism to its target. Figure 5.2 shows that
d is a group homomorphism.

4. Let x be an element of CX1 and α be an element of CX2, define the element αx

to be the composite of the 2-cell depicted in Figure 5.3. Note α−1 represents the
horizontal inverse in the figure.

From Figure 5.3, the equivariance axiom is trivially checked. The Pieffer identity follows
from the middle four exchange.

Recall the weak equivalences of a crossed module from Definition 5.1.15 and weak
equivalences of pointed 2-groupoids are 2-functors that are essential surjective and fully
faithful (see Definition 2.1.6).

Theorem 5.1.19. [51, §3] The pair of functors

∗//(_) : CrsMod ↼−−⇁ 2−Gpd∗ : C
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• • • •
id x−1x

x y x−1

α−1βα

Figure 5.3: Action of G2 on G1 in Construction 5.1.18

from Constructions 5.1.17 and 5.1.18 preserve weak equivalences and induce an equiva-
lence of homotopy theories.

Although we defined a 2-group as a connected 2-type, from Theorem 5.1.11 and
Theorem 5.1.19 shows that that there are 3 descriptions for homotopy theory of 2-groups
which are equivalent to each other.

5.1.4 Mapping space of crossed modules

In this subsection, we aim to define Noohi’s derived mapping 2-groupoid between crossed
modules and describe the homotopy equivalence with mapping spaces.

First, let us describe Whitehead’s construction of a crossed module from a CW pair
(X,A) [68, §2]. Given a pointed CW complex (X, ∗) and subcomplex A, the boundary
map between relative homotopy groups

∂ : π2(X,A, ∗)→ π1(A, ∗)

is a crossed module. See [52, §2.1.2].

Definition 5.1.20. Given a CW pair (X,A), the boundary map

∂ : π2(X,A, ∗)→ π1(A, ∗)

can be upgraded to a crossed module called the fundamental crossed module of the pair
(X,A).

Given a pointed CW complex (X, ∗) with first skeleton X1, the crossed module
associated with the pair (X,X1) is called the Whitehead crossed module W(X,X1).

Note that W(X,X1) is a cofibrant crossed module. It can be checked that the
Whitehead crossed module WX of a space X is isomorphic to the composite W(X) :=

C ◦W (X) whereW is given in Construction 5.1.9 and C is given in Construction 5.1.18.
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���
��: 0

π2(X1, ∗) π2(X, ∗)

π1(X, ∗) π1(X1, ∗) π2(X,X1, ∗)

���
���

�: 0
π1(X,X1, ∗)

∂

Figure 5.4: LES of pairs. The red arrow is part of the data of a
Whitehead crossed module.

Proposition 5.1.21. Let (X, ∗) be a pointed connected 2-type with 1-skeleton X1 and
let

W(X,X1) = (∂ : π2(X,X1, ∗)→ π1(X1, ∗))

denote the Whitehead crossed module (from Definition 5.1.20). Then the kernel of ∂ is
the homotopy group π2(X, ∗) and the cokernel of ∂ is the homotopy (fundamental) group
π1(X, ∗).

Proof. Consider the long exact sequence of relative homotopy groups applied toX1 ↪→ X

shown in Figure 5.4. Since X1 is a 1-type, π2(X1, ∗) = 0 and since the quotient X/X1

is a wedge of spheres, π1(X,X1, ∗) = 0. Thus the kernel of ∂ is isomorphic to π2(X, ∗)
and cokernel of ∂ is isomorphic to π1(X, ∗).

The computations of Whitehead crossed modules of a circle and oriented surfaces
are shown in the next two examples.

Example 5.1.22. If we choose the standard CW structure of the circle S1 with a 0-cell
and a 1-cell, then WS1 is the discrete crossed module d : 0→ Z.

Example 5.1.23. If we choose the standard CW structure of an orientable surface Σg of
genus g, with one 0-cell, 2g 1-cells and one 2-cell, then WΣg is

d : Z→ F2g

which provides a generator-relations presentation of π1(Σg). Note that F2g is the free
group on 2g generators.

Following [51, §6], we define the derived mapping 2-groupoid between crossed mod-
ules. Morphisms of crossed modules have already been defined in Definition 5.1.14. Now,
we define weak transformations and modifications.
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Definition 5.1.24. [51, Section 6.1] Let p, q : H → G be a pair of morphisms between
crossed modules. A weak natural transformation t : p→ q is given by a pair (a, θ) where
a ∈ G1 and θ : H1 → G2 is a crossed homomorphism (i.e. θ(hh′) = θ(h)p1(h′)θ(h′))
satisfying the rules:

1. p1(h)adG(θ(h)) = q1(h) for all h ∈ H1.

2. p2(x)aθ(dH(x)) = q2(x) for all x ∈ H2.

A strict natural transformation is a weak natural transformation with a = 1.

Note that if θ is trivial, then a weak natural transformation is simply conjugation by
a, i.e. p = a−1qa, which we will write as p = qa. Next, we define modifications between
weak transformations.

Definition 5.1.25. [51, Definition 8.6] Let p, q : H → G be a pair of morphisms between
crossed modules and let the pairs (a, θ), (b, σ) denote a pair of weak natural transforma-
tions from p to q. A modification from (a, θ) and (b, σ) is an element µ ∈ G2 that has
the following properties:

1. adµ = b.

2. µσ(x) = θ(x)µq1(x) for all x ∈ H1.

The morphisms, weak natural transformations and modifications of crossed modules
can be assembled into a 2-groupoid HomCrsMod [51, Definition 8.5,8.6].

Recall that the Whitehead crossed module WX of a CW complex X is cofibrant,
and every crossed module is fibrant. So we have the following definition by using the
equivalence of crossed modules and pointed 2-groupoids and the definition of derived
mapping 2-groupoid from Definition 5.1.12.

Definition 5.1.26. Let H,G be crossed modules, then the derived mapping 2-groupoid
HomNoohi(H,G) is defined as HomCrsMod(QH,G) where QH is a cofibrant replacement
of H.

The following theorem shows that Definition 5.1.26 has the correct homotopy type.

Theorem 5.1.27. [51, §8] For any connected pointed 2-types Z, let WZ denote the as-
sociated Whitehead crossed module. Then we have a homotopy equivalence of topological
spaces

|HomNoohi(WM,WX)| 'Maps(M,X).
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5.1.5 An example of a DBC functor data

In this section, we quickly describe the bicategory KV 2V ect of Kapranov-Voevodosky
2-vector spaces following Morton [50]. Inspired by [50, §5], we construct an example
of a double Beck-Chevalley functor data out of the category of groupoids and with
target KV 2V ect (Construction 5.1.34). In Theorem 5.1.35, we check that double Beck-
Chevalley functor data that we have constructed satisfy the axioms: Ambidexterity,
Beck-Chevalley, Vertical Beck-Chevalley and Horizontal Beck-Chevalley and thus by
Theorem 4.1.15 we obtain a canonical 2-functor Q̃. In Construction 5.1.36, we explicitly
specify the 2-functor that arises from the Theorem 4.1.15. It agrees with Morton’s 2-
functor (called Λ in loc.cit) in [50, §7.1]. In Corollary 5.1.37, the value of Q̃ is computed
on groupoids at various levels of morphisms.

Definition 5.1.28. A Kapranov-Voevodsky (KV) two-vector space is a semisimple lin-
ear additive category with finitely many simple objects. A two-linear map is a linear
functor.

The symbol KV2Vect denotes the 2-category of Kapranov-Voevodsky two-vector
spaces, two-linear maps and natural transformations.

Example 5.1.29. Let G be a finite group. The category Rep(G) of linear representations
of a group is a KV two-vector space. The semisimplicity follows from Maschke’s theorem,
and the number of simple objects is finite since it is equal to the number of conjugacy
classes in a finite group.

Example 5.1.30. Let G be a finite groupoid. It can be shown that every finite groupoid
G is equivalent to a coproduct of one object groupoids (aka groups):

G '
∐

x∈π0(G)

∗//Aut(x)

where π0(C) is the set of isomorphism classes of objects of a category C and Aut(x) is
the group of automorphisms of x in C. Since G is a finite groupoid, π0(G) is finite, and
the groups Aut(x) are finite. Thus

Fun(G, V ect) '
∏

x∈π0(G)

Rep(Aut(x)).

Thus, the category
Rep(G) = Fun(G, V ect)
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of linear representations of the finite groupoid is a KV two-vector space. Note that the
finite is crucial; otherwise, the category will not be generated by finitely many simple
objects.

A finite 2-groupoid is a bicategory with a finite number of invertible 1-morphisms
and 2-morphisms and a finite number of objects. An essentially finite 2-groupoid is a
2-groupoid biequivalent to a finite 2-groupoid.

Remark 5.1.31. If G is a finite 2-groupoid (see Definition 2.1.3), then the category of
representations of G,

Fun(G, V ect)

factors through the homotopy groupoid of G (Definition 5.1.8), denoted by G. Thus

Fun(G, V ect) ' Fun(G, V ect).

Example 5.1.32. Let G be a finite group. Given a #G-tuple of vector spaces Vg indexed
by elements g of G, define

V = ⊕
g∈G

Vg

Then V is a G-graded vector space. The G-graded vector spaces form a linear category
Vect[G], and the direct sum can be defined levelwise. Scalar multiplication with a vector
space W is defined by

(W ⊗ V )g = W ⊗ Vg.

It has #G simple objects; thus, Vect[G] is a KV two-vector space. A monoidal structure
can be defined by

(V ⊗W )g =
⊕
g1g2=g

Vg1 ⊗Wg2 .

This monoidal category is often called a group 2-algebra(since it categorifies a group
algebra).

Example 5.1.33. Let Vect denote the category of vector spaces. Then, for any natural
number n, the category Vectn of n-tuples of vector spaces is a two-vector space. It follows
from the fact that it has n simple objects given by a copy of C in the ith coordinate for
1 ≤ i ≤ n. Given a collection of vector spaces Fij for 1 ≤ i ≤ m, 1 ≤ j ≤ n. A matrix
functor

F : Vectn → Vectm

can be defined as
F (V )i =

n
⊕
j=1

Fij ⊗ Vj .
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The functor F is linear and thus, it is a two-linear map. Given linear transformations
tij : Fij → Gij , a matrix natural transformation t : F → G can be induced by summing

Fij ⊗ Vj
tij⊗id−−−−→ Gij ⊗ Vj

The collection of Vectn for different natural numbers n, matrix functors and matrix
natural transformations form a 2-category which we will denote by KV2Vectc (following
[36]). The monoidal structure on KV2Vectc is analogous to the tensor product of Cm.

Example 5.1.33 is canonical since it is well known that the 2-category KV2Vect is
equivalent KV2Vectc (see [50, §3.2]).

Given a matrix 2-linear map F , define F † as

F †ij = F∨ji

where V ∨ is the dual of the vector space V . The two-linear map F † is an ambidextrous
adjoint to F ( [50, Theorem 2, page 672]). This fact follows from the Hom-tensor
adjunction in the category of vector spaces.

The key ingredient in the computations below, Construction 5.1.34, is the isomor-
phism between the left Kan extension f∗F (y) and the right Kan extension f !F (y) of
F : Y → Vect. Since every groupoid is equivalent to a coproduct of one-object groupoids,
the computations in Construction 5.1.34 will follow from considering the one-object
groupoid case which we discuss now.

Let Y = ∗//G, X = ∗//H and thus a functor f : Y → X is given by a group
homomorphism G → H that induces an algebra homomorphism f : C[G] → C[H].
Given a functor F : X → V ect, we have an C[H]-module F (∗) = F . The pullback
functor f∗F is given by the abelian group F again but with a C[G] action via f . This
functor is, therefore, the restriction of representation F . The left and the right adjoint
to restriction are given by

f∗F = C[H]⊗C[G] F,

f !F = HomC[G]−Mod(C[H], F ).

The Nakayama isomorphism N : f !F → f∗F is given by the formula:

φ→ 1

#G

∑
h∈H

h−1 ⊗ φ(h)

Construction 5.1.34. We will denote the functor category Fun(X,Vect) by VectX in
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order to stress the analogy with the vector space of functions CX . Let f : Y → X be a
map of finite groupoids. Then the pullback functor f∗ : VectX → VectY given by

f∗F = F ◦ f.

is a two-linear map with an ambidextrous adjoint given by the “pushforward” f∗. In
section 4.2 of [49], Morton notes that for F ∈ VectY , the pushforward f∗F can also
be written as left Kan extension LanfF . More accurately, using the pointwise Kan
extension formula and decomposition of a groupoid into a coproduct of groups, we get

f∗F (x) =
⊕

[y]|f(y)'x

C[Aut(x)]⊗C[Aut(y)] F (y)

where [y]|f(y) ' x denotes the set of all isomorphism classes of objects y in Y such that
the condition f(y) ' x holds.

Now we describe the identity coherence θ∗ : (idX)∗F → F for a groupoid X, for
x ∈ X,

θ∗x : C[Aut(x)]⊗C[Aut(x)] F (x)→ F (x)

is given by the canonical isomorphism

g ⊗ v 7→ gv.

The other coherence θ∗ for the pullback is just identity.

Following Morton, we will assume all the groupoids are skeletal. Thus, if x is iso-
morphic to y in the groupoid, then x = y. This assumption will be used in the formulae
below. We will now specify the ambidextrous adjunction data (f∗, f∗, η, ε, η

!, ε!):

1. The unit

ηF : F → f∗f∗F (y) =
⊕

[y′]|f(y)'f(y′)

C[Aut(f(y))]⊗C[Aut(y′)] F (y′)

is given by
(ηF (y))(v) =

⊕
[y′]|f(y)'f(y′)

1⊗ v.

2. The counit
εG(x) :

⊕
[y]|f(y)'x

C[Aut(x)]⊗C[Aut(y)] G(x)→ G(x)



178 Chapter 5. Applications to gauge theories

is given by ⊕
[y]|f(y)'x

gy ⊗ v 7→
∑

[y]|f(y)'x

gyv.

3. The unit

η!
G(x) : G(x)→ f∗f

∗G(x) =
⊕

[y]|f(y)'x

C[Aut(x)]⊗C[Aut(y)] G(x)

is given by

v 7→
⊕

[y]|f(y)'x

1

#Aut(y)

∑
g∈Aut(x)

g−1 ⊗ g(v)

4. The counit

ε!F (y) :
⊕

[y′]|f(y)'f(y′)

C[Aut(f(y))]⊗C[Aut(y′)] F (y′)→ F (y)

is given by ⊕
[y′]|f(y)'f(y′)

gy′ ⊗ vy′ 7→
#Aut(y)

#Aut(f(y))
gy(vy).

The proof of the following theorem is assembled from Morton’s work [50]. The
only thing missing is the speciality of the ambijunction for the equivalence of skeletal
groupoids. Note that this was crucial to prove that the 2-functor underlying quantization
is well-defined.

Theorem 5.1.35. The data (f∗, f∗, η, ε, η
!, ε!) described in Construction 5.1.34 is a

double Beck-Chevalley functor data.

Proof. First we prove axiom 1 from Definition 4.1.15 for the data (f∗, f∗, η, ε, η
!, ε!)

constructed in Construction 5.1.34. As mentioned in Construction 5.1.34, Morton has
already shown that this is the data of the ambidextrous adjunction. The speciality of the
ambijunction and the compatibility with identity coherences remains to be seen. First,
we prove the speciality of the ambijunction. Let f : Y → X be an equivalence of skeletal
groupoids. We quickly note that f induces a bijection on isomorphism classes of objects
(by essential subjectivity, skeletalness and using the inverse functor). It also induces
an isomorphism on the automorphism group of an object in Y (by fully faithfulness).
We will use these observations below. Now we check εη! = id. Using the details from



5.1. Preliminaries 179

Construction 5.1.34, and the observations above for equivalence, we see that

εG(x)η!
G(x)(v) = εG(x)

 1

#Aut(x)

∑
g∈Aut(x)

g−1 ⊗ gv


=

1

#Aut(x)

∑
g∈Aut(x)

g−1(gv)

= v.

Next we check η!ε = id using the details from Construction 5.1.34, and the observations
above for an equivalence,

ε!F (y)ηF (y)(v) = ε!F (y)(1⊗ v)

=
#Aut(y)

#Aut(f(y))
v

= v.

Now we consider (id∗, id∗, η, ε, η
!, ε!) and the identity coherence θ∗ defined in Construc-

tion 5.1.34. Clearly, ε! = ε = θ∗ and η! = η = θ−1
∗ . Recall that θ∗ is identity; thus, we

have checked axiom 1. Morton has checked the remaining axioms in [50], and we indi-
cate them here. Axiom 2 of Definition 4.1.15 discusses the Beck-Chevalley isomorphism
condition. This check is quite involved and can be found in the proof of Theorem 3
(page 685) in [50]. Axiom 3 is checked in the proof of Lemma 4 (page 692), and Axiom
5 is checked in the proof of Lemma 5 (page 694) in loc.cit.

Since Theorem 5.1.35 checks that the hypotheses of Theorem 4.3.10 hold, we obtain
a 2-functor

Q̃ : Bispan(Gpdsf )→ KV2Vect

The description of this 2-functor is given below in Construction 5.1.36. We recover
Morton’s 2-functor, which is no surprise since our work is motivated by his construction.

Construction 5.1.36. From the double Beck-Chevalley functor data from Construction
5.1.34 and the 2-functor construction from Construction 4.3.1 we obtain a 2-functor Q̃
with the following properties:

1. On objects: Let X be a finite groupoid, then

Q̃(X) = VectX .
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2. On 1-morphisms: Let fXg : A→ B denote a span of groupoids. Then

Q̃(fXg) = g∗f
∗.

3. On 2-morphisms: Let lWm :f Xg →h Yk with X,Y as morphisms from A to B.
Then

Q̃(lWm) := (k∗εmh
∗) ◦ (θ∗glθ

∗
fl) ◦ (g∗η

!
lf
∗).

The 2-morphism Q̃(lWm)F is from g∗f
∗F to k∗h∗F for a functor F ∈ VectA, i.e.

Q̃(lWm)F :
⊕

[x]|g(x)'b

C[Aut(b)] ⊗
C[Aut(x)]

F (f(x))→
⊕

[y]|k(y)'b

C[Aut(b)] ⊗
C[Aut(y)]

F (h(y))

Given a fixed isomorphism class [x] ∈ X such that g(x) = b and a fixed isomor-
phism class [y] ∈ Y such that k(y) = b, the matrix entry [Q̃(lWm)F ]y,x is

[Q̃(lWm)F ]y,x(α⊗ v) =
⊕

[w]|mw=y

1

#Aut(w)

∑
β∈Aut(x)

αg(β−1)⊗ β · v

Therefore we recover Morton’s 2-functor Λ from [50, §7.1].

A specific case of Construction 5.1.36 is the value of Q̃ on a groupoid at various
morphism levels.

Corollary 5.1.37. From Construction 5.1.36, it follows that:

1. On object X, Q̃(X) = V ectX .

2. On morphism ∗ !←− X !−→ ∗,
Q̃(!X!) = Cπ0(X).

3. On 2-morphism
•

• X •

•

Q̃(•X•) = #X,

where #X is the groupoid cardinality of X.
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Remark 5.1.38. Note that the groupoid cardinality arose from the factor in the Nakayama
isomorphism. This factor was essential to verifying the speciality of ambidextrous ad-
junction in axiom 1 (see proof of Theorem 5.1.35).

5.2 Computations

Given a 2-type X, we compute the fundamental path groupoids of the mapping space
Maps(Sn, X) for n = 1, 2 (where Sn is the n-dimensional sphere) in Subsection 5.2.1.
We compute the value of Q̃ on the fundamental path groupoid of the mapping spaces
in Subsection 5.2.2.

5.2.1 Groupoid presentations of certain mapping spaces

In this subsection, we first define a notion of conjugacy classes (Definition 5.2.3) and
class functions of a crossed module (Definition 5.2.4).Given a crossed module G, there
is an associated 2-type X(G) := |N(∗//G)| (follows from results in Section 5.1).

We describe the fundamental path groupoid of a free loop space of X(G) in terms
of G in Proposition 5.2.6. It can be seen that the isomorphism classes of objects of this
groupoid is the set of conjugacy classes of the crossed module G.

Given a space X, the fundamental group π1(X, ∗) acts on higher homotopy groups
πn(X, ∗) for n > 1. In particular, this induces an action groupoid π2(X)//π1(X). In
Proposition 5.2.7, we prove that the fundamental path groupoid of Maps(S2, X) is
equivalent to π2(X)//π1(X).

Definition 5.2.1. Given a crossed module G, for a, b ∈ G1, we say a is conjugate to b
if there exists α ∈ G2 and c ∈ G1 such that

dα = a−1c−1bc = a−1bc.

Proposition 5.2.2. The conjugate relation is an equivalence relation on G1.

Proof. The reflexivity follows from choosing α and c as identity.

Now, we prove symmetry. If a ∼{α,c} b ,then

dα = a−1c−1bc.
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Inverting the equation and rearranging we get

d((α−1)c) = c(dα−1)c−1 = b−1cbc−1,

and thus b ∼ a.

For transitivity, if dα = a−1bx and dβ = b−1cy then note that

d(αβx) = d(α)d(βx) = a−1bx(b−1)xcyx = a−1cyx.

Definition 5.2.3. Given a crossed module G, the set of conjugacy classes of G is defined
as the set of equivalence classes of the conjugate relation:

CG := G1/ ∼ .

Given a morphism φ : H → G, the induced morphism between conjugacy classes is given
by Cφ := φ1.

Definition 5.2.4. Given a crossed module G, the vector space of complex-valued func-
tions on the set CG is called the space of class functions and is denoted by Cl(G). It can
be viewed as functions on Dom(G), which are constant on conjugacy classes.

Construction 5.2.5. Let G = (G2, G1, d) be a crossed module . We construct a
groupoid of conjugacy classes of G denoted by CG .

1. The objects of CG are objects of G1.

2. Given a pair of objects x, y, the morphisms are defined as

CG(x, y) =
{(a, θ)|xadθ = y}

∼

where (a, θ) ∼ (a′, θ′) if there exists µ ∈ G2 such that adµ = a′ and µθ′ = θµy.

3. The composition is given by the formula:

[(b, σ)] ◦ [(a, θ)] := [(ab, θbσ)]

Note that the isomorphism class of objects of CG is the set of conjugacy classes of G (see
Definition 5.2.3).
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Proposition 5.2.6. Let G be a crossed module, and let X = |G| be its geometric real-
ization. If LX := Maps(S1, X) denotes the free loop space of X, then

π≤1(LX) ' CG

where CG is conjugacy groupoid of G constructed in Construction 5.2.5. The connected
components of the free loop space are in bijection with the set of conjugacy classes CG of
G.

Proof. From Example 5.1.22, we know that WS1 is the cofibrant crossed module ∂ :

0→ Z. Now we compute CG := HomNoohi(WS1, G) ((see Definition 5.1.26)).

1. Objects of the 2-groupoid are morphisms of crossed modules:

0 G2

Z G2

∂

g

d

We will identify the homomorphism g with g(1) (i.e. g(1) = g). So, the objects of
the 2-groupoid can be identified with elements of G1.

2. Weak natural transformations are the morphisms (see Definition 5.1.24) between
g and g′, which is given by a pair (a, θ) satisfying a pair of axioms. First, we note
that the crossed homomorphism θ : Z → G2 is determined by θ(1) which we will
denote by θ again. The second axiom gives θ(0) = 1G2 . The first axiom gives the
following relation: for a ∈ G1,

gadθ = g′.

We quickly note a morphism (a, θ) : g → g′ iff g′ is conjugate to g in the sense of
Definition 5.2.1.

3. The 2-morphisms are given by modifications (see Definition 5.1.25) µ : (a, θ) →
(b, σ) given by µ ∈ G2 such that

adµ = b, µσ = θµg
′
.

The composition of 1-morphism and the horizontal composition of 2-morphism is the
wreath product multiplication of G2 and G1. The vertical composition of 2-morphisms
is simply the product of the group elements.
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The equivalence classes of objects of π≤1(LX) is

π0(LX) = π0(CG) = CG ,

is the set of conjugacy classes of G as given in Definition 5.2.3.

Recall the definition of an action groupoid (Definition 1.1.31). An interesting remark
is the following: If we think of the right action of H on A is given by a functor A :

(∗//G)op → Sets with A(∗) = A, then the category of elements2 of A is the groupoid
A//H.

Proposition 5.2.7. Let G be a crossed module and X = |G| be its geometric realization.
Then

π≤1(Maps(S2, X)) ' π2(X, ∗)//π1(X, ∗)

where π2(X, ∗)//π1(X, ∗) represents the action groupoid (see Definition 1.1.31) for the
action of pi1(X, ∗) on π2(X, ∗)

Proof. From Example 5.1.23, we know that WS2 is a cofibrant crossed module ∂ : Z→
0. Now we compute Noohi’s derived mapping 2-groupoid, HomNoohi(W(S2),G) (see
Definition 5.1.26).

1. Objects of the 2-groupoid are morphisms of crossed modules:

Z G2

0 G1

g

∂ d

We will identify the homomorphism g with g(1) (i.e. g(1) = g). Since dg = 0, we
see that g ∈ G2 should belong to kernel of d. So the objects of the 2-groupoid can
be identified with elements of ker(d).

2. The morphisms are given by weak natural transformations (see Definition 5.1.24)
between g and g′ which is given by a pair (a, θ) satisfying a pair of axioms. First,
we note that the crossed homomorphism θ : 0 → G2 forces θ(0) = 1. The first
axiom is redundant and the second axiom gives the following relation: for a ∈ G1,

ga = g′.

We quickly note that a morphism a : g → g′ iff g′ is in orbit of g.
2from Definition 1.1.31.
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3. The 2-morphisms are given by modifications (see Definition 5.1.25) µ : a→ b given
by µ ∈ G2 such that

adµ = b.

From item (3) in the above list, a pair of 1-morphisms a, b are isomorphic iff they map
to the same element in the cokernel of d. Thus the homotopy groupoid (Definition 5.1.8)
is the action groupoid of the action of cokernel of d on the kernel of d.

From Proposition 5.1.21, we see that cokernel of d is π1(X, ∗) and kernel of d is
π2(X, ∗). Thus, we are done.

5.2.2 Values of the tentative DW theory

Given CW complex X and n = 1, 2, the groupoid π≤1(Maps(Sn, X)) is computed in the
previous section. In Corollary 5.1.37, Morton’s 2-functor Q̃ is computed on groupoids at
various morphism levels (in the bicategory of bispans of groupoids). Composing these
constructions, we can compute Q̃(π≤1(Maps(M,X)) at various levels.

In the following proposition, the only non-trivial computation is the value of Q̃(π≤1LX)

computed at the level of 1-morphisms.

Proposition 5.2.8. Let X be the geometric realization of the crossed module G =

(G2, G1, d).

1. Let pt denote the unique connected 0-dimensional manifold, then on the level of
objects

Q̃(π≤1(Maps(pt,X))) ' Rep(π1(X)).

2. Let S1 denote the 1-dimensional manifold that is the unit circle. Then on the level
of 1-morphisms

Q̃(π≤1(Maps(S1, X))) ' Cl(G).

Proof. We will use the formulae in Corollary 5.1.37 to calculate Q̃ of a groupoid at
various morphism levels.

1.
Q̃(π≤1(Maps(pt,X))) ' Q̃(π≤1(X)) ' Vect∗//π1(X,∗) = Rep(π1(X, ∗)).

Since X is a pointed connected CW complex, the fundamental path groupoid
π≤1(X) is equivalent to the one-object groupoid ∗//π1(X, ∗).
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2.
Q̃(π≤1(Maps(S1, X))) ' Q̃(CG) = CCG = Cl(G).

The first equality follows from Proposition 5.2.6. The second equality follows from
the computation of Q̃ on one-morphism in Corollary 5.1.37. The third equality
from Definition 5.2.4.

Remark 5.2.9. Assuming the extended DW TQFT for 2-groups exists, results of Propo-
sition 5.2.8 can be considered as the values of an extended 2-dimensional TQFT on a
point and a circle. The value on a point is consistent with Martins and Porter’s result
[17, Theorem 276]. Indeed, the value of the circle in loc.cit is the vector space of class
functions on π1(X, ∗).

In the following proposition, the results of Q̃(π≤1Maps(Sn, X)) are computed at the
level of objects for n = 1 and the level of 1-morphisms for n = 2.

Proposition 5.2.10. Let X be the geometric realization of the crossed module G =

(G2, G1, d). Let C[CG] denote the groupoid algebra associated with the conjugacy groupoid
from Construction 5.2.5.

1. Let S1 denote the unit circle, then on the level of objects

Q̃(π≤1(Maps(S1, X))) = Rep(C[CG]).

2. Let S2 denote the two-dimensional unit sphere, then on the level of 1-morphisms

Q̃(π≤1(Maps(S2, X))) = Cπ2(X,∗)//π1(X,∗),

where π2(X, ∗)//π1(X, ∗) represents the action groupoid of π1 action on π2 (see
Definition 1.1.31).

Proof. 1.
Q̃(π≤1(Maps(S1, X))) ' Q̃(CG) ' Rep(C[CG ]).

The equalities above follow from Proposition 5.2.1 and Corollary 5.1.37 respec-
tively.

2.
Q̃(π≤1(Maps(S2, X))) ' Q̃(π2(X, ∗)//π1(X, ∗)) = Cπ2(X,∗)//π1(X,∗).
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which follows from Proposition 5.2.7 and Corollary 5.1.37 respectively.

Remark 5.2.11. Assuming the extended DW TQFT for 2-groups exists, results of Propo-
sition 5.2.10 can be considered as the values of an extended three-dimensional TQFT
on a circle and a sphere. The values match Martins-Porter’s results (see [17, Theorem
283]). Definition 281 in loc.cit matches the 2-groupoid described in Construction 5.2.5.

Remark 5.2.12. It is expected that the value of the tentative extended 3-dimensional DW
theory on a circle is a modular tensor category (mentioned as far back as in [37]). If a
quantization functor is constructed, we can compute the quasitriangular Hopf algebraic
structure on the algebra C[CG ]. From this computation, we hope to find the Drinfeld
double of a 2-group.
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