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Abstract

With the first detection of gravitational waves (GWs) in 2015,
GW astronomy has opened a new window to the otherwise (elec-
tromagnetically) unseen side of the universe. Another pivotal pre-
diction of general relativity (GR), along with GWs, is the bending
of light due to an intervening potential in its path, called gravita-
tional lensing. GWs, similarly to light, can also bend when they
travel near a galaxy, a cluster of galaxies or compact objects such
as black holes (BHs). Depending on the mass of the lens and
the wavelength of GWs, there could be either strong, weak, or
microlensing effects on the incoming GWs. In the case of strong
lensing, there would be multiple copies of the GW signal with
some time delay and a relative magnification. On the other hand,
weak lensing would (de-)magnify the GW signal and induce a
phase shift, whereas microlensing would distort the GWs. If ob-
served, the lensing of GWs can enable several scientific pursuits.

Through a variety of astronomical observations, it is firmly
established that a significant fraction of mass-energy in the uni-
verse is in the form of dark matter, which interacts only through
gravity. Fundamental particles beyond the Standard Model of
particle physics are the most popular candidates for dark matter.
However, such particles have, so far, evaded a confident detection
through direct or indirect methods. Massive astrophysical com-
pact halo objects (MACHOs), particularly primordial black holes
(PBHs), are potential candidates for dark matter. PBHs could be
formed via the collapse of large overdensities in the early universe.
Their abundance is constrained heavily in several mass windows
by the non-observation of their signatures in various astronomi-
cal probes. However, the possibility of dark matter constituted
by compact objects in the mass range ∼ 102 − 105M⊙ is not
tightly constrained. Such objects can cause wave optics lensing ef-
fects (microlensing) on GWs, potentially detectable by LIGO and
Virgo. So, gravitational lensing of GWs is an independent way



18

of constraining MACHOs as dark matter. This thesis presents a
Bayesian statistical formalism to constrain the dark matter frac-
tion in the form of compact objects using the microlensing signa-
tures in the GW signals observed by LIGO and Virgo. We also
present the constraints on compact dark matter from the non-
observation of microlensing signatures in the binary BH (BBH)
events detected by LIGO-Virgo during their first three observing
runs.

Chapter 1 gives an overview of GW astrophysics. In Chap-
ter 2, we briefly describe the theory of gravitational lensing. In
Chapter 3, we develop a Bayesian formalism on how to constrain
compact dark matter from the non-observation of the microlens-
ing signature of GW events and show the constraints from the GW
microlensing data during the first three observing runs of LIGO-
Virgo (O1, O2, and O3). In Chapter 4, we develop a method
to constrain compact dark matter without relying on a specific
threshold for identifying lensed GW signals and revise our earlier
upper limits using this threshold-independent method. Finally,
in Chapter 5, we conclude the thesis by summarising our work
and discussing the improvement in the bounds of compact dark
matter fraction from the future observing runs.



1 | Introduction and Overview

In this chapter, we will briefly discuss the physics of gravita-
tional waves (GWs). Starting from the Einstein field equations
describing the dynamics of gravity, we will see how GWs naturally
occur from the weak-field limit. Subsequently, we will look at dif-
ferent categories of GW sources and discuss a particular kind of
GW source in detail, i.e., binary compact objects. The material
presented in this chapter is based on the standard theory of GWs.
For a more detailed discussion, see, e.g., [1, 14].

1.1 Gravitational waves

With the formulation of the theory of special relativity (SR)
by Albert Einstein in 1905, which states that the laws of physics
are invariant in all inertial frames and that no information can
travel at a speed faster than the speed of light in vacuum, a new
era in understanding the nature of the universe began. Together,
these two postulates suggest that space and time can no longer
be separated from each other, and they form a four-dimensional
manifold called spacetime, implying that there is no notion of
absolute time, as is assumed in Newtonian gravity. Later, he
took a step forward in generalising the principles of SR to all
frames of reference, including non-inertial. In 1915, he formulated
a relativistic theory of gravity known as the theory of general
relativity (GR), which respects the principle of general covariance,
i.e., no coordinate system is preferred. This means that in GR,
we can work in any coordinate system of our choice, e.g., one
can always construct a frame of reference associated with a freely
falling observer. Any physical experiment in such a freely falling
frame will give the same results as a similar experiment done in
the absence of gravitational fields. This is known as the Einstein
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equivalence principle. The physical effect of gravity starts showing
up only when we look at the geodesics of two nearby test particles.

GR explains gravity as the curvature of spacetime caused by
matter and energy, i.e., the change in the geometry of the space-
time is caused due to the presence of matter-energy distribution.
On the other hand, the curvature of spacetime determines the
motion of objects. This dynamical relationship is perhaps best
expressed through John Wheeler’s famous quote: ‘Spacetime tells
matter how to move; matter tells spacetime how to curve’, which
is expressed through Einstein field equations 1: 1Unless otherwise stated, through-

out this thesis, we will be working in
natural units: G = c = 1. Here G is
Newton’s gravitational constant and c

is the speed of light in a vacuum. In
these units, 1M⊙ ≃ 5 × 106s ≃ 1.5km.
In the standard units, Einstein field
equations become Gµν = 8πG

c4 Tµν .

Gµν = 8πTµν , (1.1)

where the left-hand side, known as the Einstein tensor, repre-
sents the geometry of spacetime, while the right-hand side repre-
sents the matter-energy content. Mathematically, Gµν := Rµν −
1
2Rgµν , where gµν is the metric of the spacetime, R is the trace of
Riemann tensor, Rαµβν , which is a function of the metric gµν and
involves the first and second derivatives of it 2. The particular 2Greek indices (α, β, µ, ν, etc.)

run over all four spacetime indices tak-
ing values 0, 1, 2, and 3, whereas Ro-
man indices (a, b, i, j, etc.) refer to the
space index only taking values 1, 2,
and 3.

combination Rµν − 1
2Rgµν is divergenceless, i.e.,

∇µG
µν = 0, (1.2)

where ∇µ is the curved spacetime generalisation of the partial
derivative (∂µ) in the flat spacetime. Tµν is known as the stress-
energy tensor. This quantity is covariantly conserved, i.e.,

∇µT
µν = 0, (1.3)

which is analogous to the conservation law ∂µT
µν = 0, in the flat

spacetime.

Equation (1.1) can be solved for a given matter-energy distri-
bution, i.e., Tµν . However, only a few exact solutions currently
exist, such as the Schwarzschild and Kerr metrics, which predict
the existence of the Schwarzschild and Kerr black holes, respec-
tively. The Schwarzschild black hole can be described solely by
its mass, while the Kerr black hole is described by its mass and
angular momentum. Finding a complete analytical solution to
the Einstein equations for general spacetimes is still a challenge.

Another remarkable prediction of GR is the existence of GWs.
To understand how they emerge from the Einstein equations, we
begin with a weak gravitational field. In other words, the metric
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of the curved spacetime (gµν) deviates by just a small amount
(hµν) from that of the flat spacetime (ηµν).

gµν = ηµν + hµν , (1.4)

where |hµν | ≪ 1. Plugging Equation (1.4) into Equation (1.1),
and keeping the terms up to first order in hµν only, i.e., work-
ing in the linearised gravity regime, the Einstein field equations
(Equation (1.1)) reduce to 3 3This particular form of Equa-

tion (1.5) is valid only in a spe-
cialised coordinate system, known as
the Lorenz gauge, constructed using
up the gauge degrees of freedom in
general relativity. In this gauge, h̄µν

has zero divergence, i.e., ∂ν h̄µν = 0,
which helps cast the Einstein equa-
tions in this particular form.

□h̄µν = −16πTµν , (1.5)

where h̄µν is the trace-reversed form of hµν , defined as:

h̄µν = hµν − 1
2ηµνh, (1.6)

where h is the trace of hµν .

In vacuum or outside the source, where Tµν = 0, Equation (1.5)
reduces to

□h̄µν =
(

− ∂2

∂t2
+ ∇2

)
h̄µν = 0. (1.7)

This is a wave equation in three spatial directions, of which the
solution is

h̄µν = Aµνexp(ikαx
α), (1.8)

where kα represents the direction of propagation of the GW, and
Aµν is a second-rank symmetric tensor, which, while working in a
specific gauge called the transverse-traceless (TT) gauge, can be
shown to have only two independent physically important com-
ponents 4 . This is the GW solution arising from the linearised 4h̄µν is a symmetric tensor with

ten independent components, but the
Lorenz gauge condition reduces it to
six. The residual gauge degrees of free-
dom preserve the Lorenz gauge but
further reduce h̄µν to two independent
degrees of freedom. In other words,
the Lorenz gauge choice makes the
metric perturbation look like a trans-
verse wave, while the residual gauge
degrees are used to make h̄µν trace-
less and purely spatial, i.e, Aµ

µ = 0
and Aν0 = 0 = Aν3, for all ν).

Einstein equation.

For a wave travelling along the z-direction, Aµν can be written
as

ATT
µν =


0 0 0 0
0 ATT

xx ATT
xy 0

0 ATT
xy −ATT

xx 0
0 0 0 0

 . (1.9)

Or more generally, 5 5In the TT gauge, the trace of hµν

is zero, i.e., h = 0. Hence, h̄µν =
hµν − 1

2 ηµνh = hµν . So, we are us-
ing hµν instead of h̄µν .
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hTT
µν (t, z) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 exp(ikz − iωt). (1.10)

The two independent components, ATT
xx and ATT

xy (or, hTT
xx and

hTT
xy ) correspond to the two polarisation states of gravitational

waves, denoted as h+ and h×, respectively.

We found that the vacuum Einstein equations predict wave-like
solutions, which can propagate out to the asymptotic infinity. It’s
interesting to ask if GWs have any physical effects on the bodies
they pass through. For that, let us consider a system of two test
particles at rest, and separated in the x-direction by a coordinate
distance L. In the TT gauge, we can show that the coordinates
of the free test particles do not change with time even if there is a
GW propagating along the z-axis. However, the proper distance
(s) between them does change. This is sometimes referred to as
the ‘stretching’ of space, and up to linear order in h̄TT

xx , we can
show

s ≃ L[1 + 1
2 h̄

TT
xx ]. (1.11)

Alternatively, the change in the proper distance is given by

δL

L
≃ 1 + 1

2h+cos(ωt). (1.12)

According to Equation (1.12), the change between two freely
falling particles is directly proportional to the initial separation
L. Therefore, the larger the initial separation, the easier it is
to detect the change. Additionally, the equation shows that δL
is proportional to h+, which is usually on the order of 10−21 or
smaller for expected astrophysical sources. This is why detecting
such signals has been such a challenge until the first decade of the
21st century.

Now, consider a test mass at the origin and another one, sep-
arated by a distance ξ and a GW passes through them. It can
be shown that the geodesic deviation equation between them is
given by

ξ̈i =
1
2δ

ikḧTT
jk ξ

j . (1.13)
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The above equation states that in the proper detector frame,
the effect of GWs on a point particle of mass m can be described
in terms of a Newtonian force:

F i =
m

2 δ
ikḧTT

jk ξ
j . (1.14)

The effect of the passage of a GW can also be viewed as tidal
forces on particles. To study the motion of the test particles in
the (x, y) plane, we first consider the ‘+’ polarisation. Choosing
the origin of time so that hTT

ij = 0 at t = 0, we get, at z = 0,

hTT
ab = h+cos(ωt)

(
1 0
0 −1

)
, (1.15)

where a, b = 1, 2 are the indices in the transverse plane. Let’s
consider ξ(t) = (x0 + δx(t), y0 + δy(t)), where (x0, y0) are the
unperturbed positions of the test particles, and δx(t), δy(t) are
the displacements induced by the GW. Hence, following Equa-
tion (1.13), we get

δẍ = −h+
2 (x0 + δx)ω2 cos(ωt), (1.16)

δÿ = +
h+
2 (y0 + δy)ω2 cos(ωt). (1.17)

Since δx is O(h+), on the right-hand side of the above equa-
tions, the quadratic terms containing δx, δy can be neglected with
respect to the constant parts x0, y0. The equations are then im-
mediately integrated to give

δx(t) = +
h+
2 x0 cos(ωt), (1.18)

δy(t) = −h+
2 y0 cos(ωt). (1.19)

Similarly, for the ‘×’ polarisation, i.e., for

hTT
ab = h×cos(ωt)

(
0 1
1 0

)
, (1.20)

we get

δx(t) = +
h×
2 y0 cos(ωt), (1.21)

δy(t) = +
h×
2 x0 cos(ωt). (1.22)
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Now, we consider a GW passing perpendicular to a ring of
freely falling particles in the (x, y) plane. If h+ ̸= 0,h× = 0,
with the help of Equations (1.19) and (1.22), we can show that
the proper distance of the ring from the centre of it changes as
shown in the top panel of Figure 1.1. Similarly, if h+ = 0,h× ̸= 0,
the ring will move as shown in the bottom panel of Figure 1.1.
These two independent states define the two independent polar-
isations of a GW. They are called the ‘+’ (plus) and ‘×’ (cross)
polarisations, respectively, and are rotated by 45◦ with respect to
each other.

Figure 1.1: The two in-
dependent polarisations of a
GW passing perpendicular to
a ring of freely falling parti-
cles lying in the (x, y) plane;
(a) the effect of a purely
plus-polarised GW (h+ ̸= 0,
h× = 0), and (b) the effect
of a purely cross-polarised
GW (h+ = 0, h× ̸=
0). (Credit: Creighton and
Anderson Gravitational-Wave
Physics and Astronomy [1])

From Equation (1.14), we see that

∂iF
i = ∇ · F =

m

2 δ
jkḧTT

jk . (1.23)

Since hTT
jk is traceless, the divergence of the force vanishes,

i.e., ∇ · F = 0. Pictorially, its field lines on the (x, y) plane
indicate the direction of the force at each point, with their density
representing the force’s strength (|F |). The zero divergence of the
force implies that there are no sources or sinks for the field lines,
much like magnetic fields in electrodynamics. The field lines for
the h+ and h× polarisations of GWs passing through a ring of
particles centred on the origin take shape corresponding to ‘+’
and ‘×’ signs, respectively, which is why they are named as such.

1.2 Generation of Gravitational Waves

In this section, we discuss the generation of GWs and their
solution in different scenarios. The materials presented here are
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heavily borrowed from [1, 14].

Equation (1.7) represents the linearised vacuum Einstein equa-
tion, and correspondingly, we get the vacuum solution of the equa-
tion in terms of GWs, which is valid when we are in a region far
away from the source. In the presence of matter, the general so-
lution to the linearised Einstein equation (Equation (1.5)) in the
Lorenz gauge is

h̄µν(t, x) = 4
∫
Tµν(t− |x − x′|, x′)

|x − x′|
d3x′. (1.24)

We will solve Equation (1.24) in both the far and near regions,
assuming that the source is moving slowly. It’s important to note
here that the Lorenz gauge, ∂µh̄

µν = 0, guarantees the conserva-
tion laws,

∂µT
µν = 0. (1.25)

1.2.1 Far-field zone

The far-field zone is defined when the point at which we want
to compute the field, which is at a distance r, is much greater than
the GW wavelength (λ), and that itself is much greater than the
size of the source R, i.e.,

R ≪ λ ≪ r. (1.26)

In this approximation, the quantity |x − x′| ≃ r would not vary
significantly across the source and hence, it can be taken out of
the integral in Equation (1.24). Furthermore, the slow motion
assumption of the source allows us to approximate t− |x − x′| ≃
t− r. By using these valid approximations, Equation (1.24) can
be written as

h̄µν(t, x) ≃ 4
r

∫
Tµν(t− r, x′)d3x′. (1.27)

Now, in the far-field region, we will be interested in computing
the corresponding solution in the TT gauge, where only the spa-
tial components of the metric are non-vanishing. Hence, we can
deal only with the spatial components of the perturbation metric,
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which readily implies

h̄ij(t, x) ≃ 4
r

∫
T ij(t− r, x′)d3x′. (1.28)

Using the conservation Equation (1.25), we can show that the
spatial component of the stress-energy momentum tensor Tij is
related to the time-time component by

T ij =
1
2
∂2

∂t2
(xixjT 00) + boundary terms. (1.29)

So, Equation (1.28) can then be written as

h̄ij(t, x) ≃ 2
r

∂2

∂t2

∫
x′ix′jT 00(t− r, x′)d3x′ (1.30)

=
2
r

∂2

∂t2
Iij(t− r), (1.31)

where Iij(t) is defined as the quadrupole moment tensor:

Iij(t) =
∫
xixjT 00(t, x)d3x. (1.32)

With the constants G and c reintroduced, Equation (1.31) be-
comes

h̄ij(t, x) ≃ 2G
c4r

Ïij(t− r/c), (1.33)

where the overdots represent the derivative with respect to time.

It’s worthwhile to note that not all of the spatial components
are physical. This can be observed by projecting h̄ij into the
TT gauge, which will exclusively select the physical degrees of
freedom. To accomplish this, we construct a transverse projection
operator based on the direction of propagation of the gravitational
waves (n):

Pij = δij − n̂in̂j , (1.34)

where n̂i = xi/r is the unit vector. This operator projects a
vector into a plane orthogonal to the propagation direction of
GWs. By employing Pij , we can create a projection tensor that
can project any second-rank symmetric tensor into the TT gauge,
which is given by

Λij,kl(n̂) = PikPjl − 1
2PijPkl. (1.35)
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Hence, for a plane wave solution in the Lorenz gauge, the cor-
responding solution in the TT gauge is

h̄TT
ij = hTT

ij = Λij,klh̄
kl. (1.36)

By construction, the right-hand side of Equation (1.36) is trans-
verse and traceless in (i, j).

1.2.2 Near-field zone

The near-field zone depicts the dynamics of the source. This
zone is described where the distance from the source to the field
point, r, is much smaller than the GW wavelength λ but much
larger than the characteristic size of the components of the system
R. Mathematically,

R ≪ r ≪ λ. (1.37)

Also, since we are working with slow-motion sources in weak
gravity, the source dynamics can be described by Newtonian me-
chanics. In this case, the equation of motion of the source is
described by the Newtonian potential,

ϕ = −1
2c

4h00 = −1
2c

4(h̄00 +
1
c2
δij h̄

ij). (1.38)

Given the energy-momentum tensor (Tµν), the solution to this
above potential is

ϕ(t, x) = −G
∫ T 00(t, x′) + 1

c2 δijT
ij(t, x′)

|x − x′|
d3x′. (1.39)

In the Newtonian limit, we can neglect the term δijT
ij , which

represents the internal stresses in the source, because this is sup-
pressed by a factor 1

c2 and is thus much smaller than the mass-
energy density c2T 00. Hence, we have

ϕ(t, x) = −G
∫
T 00(t, x′)

|x − x′|
d3x′. (1.40)
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Expanding |x − x′|−1 in 1 in powers of 1/r, we can rewrite the
above equation as

ϕ(t, x) = −G
[M
r

+
Dix

i

r3 +
3
2
Iijx

ixj

r5

]
, (1.41)

where

M :=
∫
T 00(x)d3x, (1.42)

Di :=
∫
xiT 00(x)d3x, (1.43)

Iij :=
∫
(xixj − 1

3r
2δij)T 00(x)d3x. (1.44)

We can set the origin of the coordinate system at the centre
of the mass, which remains fixed in time for Newtonian motions.
In these coordinates, the dipole moment of the source (Di) can
be set to zero at all times. Also, note that ITT

ij = ITT
ij since

the only difference between them is the trace, which is zero in
the TT gauge. From Equation (1.33), we see that the far-field
solution, i.e., the GWs, is related to the near-field solution, i.e.,
the Newtonian potential, in terms of ITT

ij , given by

h̄ij
TT = hij

TT ≃ 2G
c4r

Ï
ij
TT(t− r/c) (wave zone). (1.45)

1.2.3 Order-of-magnitude estimates of gravitational-wave amplitude

To get an order-of-magnitude estimate of GW amplitude, let’s
consider a gravitational system of mass M and size R, and r is
the distance between the system and an observer. The amplitude
of GWs is

h ∼ G

c4
Ï

r
. (1.46)

Here I ∼ MR2, so Ï ∼ Mv2
NS ∼ Ekin

NS , where vNS is the velocity
of the non-spherically symmetric motion of the source, and ENS is
the kinetic energy associated with such motion. This way, we get
the estimate of the order-of-magnitude for the GW amplitude in
terms of the non-spherically symmetric kinetic energy in a system,
given by

h ∼
G(Ekin

NS /c2)
c2r

. (1.47)

On the other hand, if the motion within the body obeys the
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virial theorem, then v2
NS ∼ GM

R ∼ −ϕint, the scale of the Newto-
nian potential within the system, and hence,

h ∼ 1
c4
ϕextϕint, (1.48)

where ϕext = GM/r is the external Newtonian potential associ-
ated with the source at the observer.

For example, consider a bar with mass M , length ℓ, spinning
with angular frequency ω has Ekin

NS ∼ Mℓ2ω2. So, an observer at
a distance r would receive a GW with amplitude

h ∼ GMℓ2ω2

c4r
. (1.49)

To get the order-of-magnitude estimate, let’s consider typical
laboratory measurements are used, i.e, let M = 1 kg, ℓ = 1 m,
and ω = 1 s−1. The observer must be in the wave zone to detect
GWs, so r ≫ c/ω. Therefore,

h ≪ Mℓ2ω3

c5/G
=

1W
3.63 × 1052W ∼ 10−53. (1.50)

This is a tiny gravitational perturbation. On the other hand,
for a neutron star source (ϕint ≃ 0.2) in the Virgo cluster (r ∼
18Mpc) with mass 1.4M⊙, the upper limit on h ∼ 10−21. These
are typically the GW amplitudes the current generation of ground-
based detectors like LIGO-Virgo-KAGRA are looking for.

1.3 Gravitational-wave luminosity

Before delving into the discussion of GW luminosity, let’s first
discuss the separation of GWs from the background. So far, we
have defined the background spacetime as flat, and the small fluc-
tuations around it as ‘gravitational waves’. However, to investi-
gate whether GWs cause a curvature, we need to define them as
perturbations over a dynamic and curved background metric, as
given by the equation

gµν(x) = ĝµν(x) + hµν(x), |hµν | ≪ 1. (1.51)

However, a problem immediately arises here in distinguishing
between the background and the fluctuations. A natural way of
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separating the two is when there is a clear distinction in scales,
such that the metric has a typical scale of spatial variation LB,
and small amplitude perturbations are superimposed on top of it
with a much smaller wavelength λ, such that

λ ≪ LB. (1.52)

In this case, hµν has the physical interpretation of small ripples
on a smooth background. Another way to distinguish between the
background and the GWs is by analysing the frequency space. If
ĝµν has frequencies up to a maximum value fB, and hµν is peaked
around a frequency f such that

f ≫ fB, (1.53)

then hµν can be considered a high-frequency perturbation of a
static or slowly varying background. We can show that hµν fol-
lows a wave equation in a suitable gauge, and as a result, its
characteristic wavelength and frequency, λ and f are related by
λ = c/f, where c is the speed of light in vacuum. Interestingly,
the scales that characterise the background are a priori unrelated.
This means that the conditions Equations (1.52) and (1.53) are
independent, and satisfying one of them is sufficient.

We can now ask two questions:

• How does the high-frequency (or short-wavelength) perturba-
tion propagate in the background spacetime with metric ĝµν?
The answer to this question justifies the fact that the pertur-
bation hµν is called a ‘gravitational wave’.

• How does the perturbation affect the background metric itself?
The answer to this question allows us to assign an energy-
momentum tensor to GWs.

To address these questions, we begin by expanding the Einstein
equations around the background metric g̃µν . This expansion in-
volves two small parameters: the first is the typical amplitude
h ≡ O(|hµν |), and the second is either λ/LB or fB/f, depending
on whether Equation (1.52) or Equation (1.53) applies. It is worth
noting that the situations in which λ/LB ≪ 1 and fB/f ≪ 1 can
be treated in parallel, with the appropriate change of notation.
Generically, we will refer to both cases as the short-wave expan-
sion.
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As a first step, we expand to quadratic order in hµν . With
a rigorously detailed calculation, we can show that the energy-
momentum tensor associated with GWs is given by the expression

tµν =
c4

32πG⟨∂µhαβ∂νh
αβ⟩, (1.54)

6 and the conservation laws, when taking into account the effect 6The notation ⟨⟩ is used to rep-
resent an average over many wave-
lengths of GWs. In GR, there is no
concept of unique local gravitational
energy. This is because one can al-
ways choose to work in a local iner-
tial frame where it would vanish. In
simpler terms, GWs cannot be con-
fined locally. To find an expression for
the energy carried by GWs, we need
to decompose the total metric into a
background metric (smooth) and the
metric perturbation, hµν (highly oscil-
lating). The averaging procedure pro-
vides a way for such a decomposition.
The resulting tµν is an invariant quan-
tity, which means its value does not
depend on any chosen coordinate sys-
tem. Therefore, we can replace hµν

by the physical modes hTT
ij in the TT

gauge.

of GWs on the background spacetime, are modified to

∇̂µ(T̂µν + tµν) = 0, (1.55)

where the ∇̂µ is the covariant derivative with respect to the back-
ground curvature, and T̂µν is the effective matter-energy density
7. Far from the source, this reduces to

7It is important to note that
T̃µν is a purely low-frequency (or
low-momentum) quantity and is a
smoothed form of the matter energy-
momentum tensor Tµν . When sepa-
rating the background and perturba-
tion based on the condition λ ≪ LB,
we can visualise T̃µν as a ‘macroscopic’
(with respect to the scale λ) version
of the energy-momentum tensor while
Tµν remains the fundamental ‘micro-
scopic’ quantity.

∂µtµν = 0. (1.56)

In the TT gauge, the energy density carried by GWs is given
by

t00 =
c2

32πG⟨ḣTT
ij ḣij

TT⟩. (1.57)

Using Equation (1.56), we can show that the GW flux, i.e.,
the amount of energy passing through an area dA of a spherical
surface surrounding the source at a large distance r, is given by

dE
dtdA = − c3

32πG⟨ḣTT
ij ḣij

TT⟩. (1.58)

In terms of GW amplitudes 8, the above equation becomes

8For a plane wave, hTT
ij = h+e+ij +

h×e×
ij , where e+ij and e×

ij are the two
polarisation tensors, which depend on
the direction of propagation.

dE
dtdA = − c3

32πG⟨ḣ2
+ + ḣ2

×⟩. (1.59)

Using Equation (1.45), we can rewrite the GW flux directly in
terms of the source moments as

dE
dtdA = − G

8πc5r2 ⟨
...
I

ij
TT

...
I

TT
ij ⟩. (1.60)

Thus, the energy radiated per unit solid angle at the source is

dE
dtdω = − G

8πc5 ⟨
...
I

ij
TT

...
I

TT
ij ⟩. (1.61)
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To find out the GW luminosity (LGW), i.e., the total energy
emitted by the source per unit time, we need to integrate the
above equation over all solid angles, which provides

LGW = −dE
dt =

1
5
G

c5
⟨
...
I

ij
TT

...
I

TT
ij ⟩. (1.62)

1.3.1 Order-of-magnitude estimates of gravitational-wave luminosity

To get an order-of-magnitude estimate of GW luminosity, let’s
consider a system of mass M , size R, and T is the time-scale of
motion within the system. In Section 1.2.3, while estimating the
GW amplitude, we have seen that Ï ∼ Ekin

NS , the kinetic energy
associated with the non-spherically symmetric dynamics. Hence,...
I ∼ Ekin

NS /T is the power flowing from one side of the system to
the other. For some violent burst of energy, the associated GW
luminosity would then be

LGW ∼ G

c5
...
I

2 ∼
(Ekin

NS /T )2

c5/G
. (1.63)

If the dynamics of the system are quasi-stationary and grav-
itationally dominated, the luminosity can then be estimated in
the following way. In terms of vNS, we have T ∼ R/vNS, and so,...
I ∼ (Mv2

NS)/(R/vNS). The luminosity can then be written as

LGW ∼ G

c5
...
I

2 ∼ c5

G

(
GM

c2R

)2(vNS
c

)6
. (1.64)

For the one-metre long one-kilogram rotating at one radian
per second example in the previous example as described in Sec-
tion 1.2.3, we would have vNS ∼ 1 m s−1 and M/R ∼ M/ℓ =
1 kg m−1. Therefore, the luminosity would be a meagre LGW ∼
10−53W. The largest value of the luminosity would occur for
highly relativistic (vNS ∼ c) systems with sizes comparable to
the Schwarzschild radius of their mass (R ∼ GM/c2). For such
systems, the luminosity can approach the bound c5/G, which is
quite large:

c5

G
= 3.63 × 1052W = 3.63 × 1059erg s−1 = 2.03 × 105M⊙c2s−1.

(1.65)

Also, if the system is in virial equilibrium then GM/R ∼ v2
NS



33

and hence,

LGW ∼ c5

G

(
vNS
c

)10
. (1.66)

For example, if two neutron stars in a binary system orbiting
each other at 10% of the speed of light, the GW luminosity from
this motion is LGW ∼ 10−10c5/G ∼ 1042W.

On the other hand, the solar luminosity is 3.8 × 1026W and a
typical galaxy has a luminosity ∼ 1037W. The luminosity of all
the stars put together in all the galaxies in the visible universe
is ∼ 1048W. As a comparison, the peak luminosity of the first
detected GW signal, GW150914 was 3.6 × 1049W, which is more
than ten times greater than the combined luminosity of the stars
and the galaxies in the observable Universe.

1.4 Radiation Reaction

Because of the generation of GWs by accelerating bodies, there
is a gravitational radiation reaction that acts back on the bod-
ies, ensuring energy conservation. The force that a body expe-
riences due to its gravitational field is known as its self-force.
Interestingly, the self-force not only includes a non-conservative
component that is responsible for energy radiation, but it also
has a conservative component that alters the motion of the body
without producing any radiation.

The form of the radiation reaction force is known ([15, 16]),
though its computation is very challenging. However, for weakly
gravitating and slowly moving, i.e., nearly Newtonian systems, we
can find the radiation reaction force by enforcing energy conser-
vation. Here, we use the fact that the work done by the radiation
reaction force (F RR) on a body should be equal to the negative
of the power radiated from the body in the form of GWs (see
Equation (1.62)), i.e.,∫

F RR · vdt = −1
5
G

c5

∫ ...
I ij

...
I

ij , (1.67)

where the integral is performed over many GW cycles. From here,
with a little bit of mathematical calculation, we can show that
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the radiation reaction force on a body with mass m is given by

FRR
j = −2

5
G

c5
mxi d5Iij

dt5 , (1.68)

where x is the position of the body. The potential associated with
this force, such that F RR = −∇ϕRR, is

ϕRR =
1
5
G

c5
xixj d5Iij

dt5 . (1.69)

To obtain the equations of motion for a system, we need to
add this radiation reaction potential, which includes the effects
of energy loss on GWs, to the Newtonian potential. The latter
gives the conservative dynamics of the system, while the former
includes the effect of the energy loss by the system in GWs.

We can also show that a particle, moving under the influence
of a radiation reaction potential, will lose angular momentum as
well as energy. Hence, the radiation reaction force can be used to
obtain the expression for the angular momentum carried by GWs.
The rate of change of angular momentum (J) of a point particle
due to the radiation reaction force (F RR) acting upon it is

dJ

dt = x × F RR. (1.70)

With a few steps of calculation, this can be further simplified
to

dJi

dt = −2
5
G

c5
ϵijk⟨Ïjl ...

I
k
l ⟩, (1.71)

where ϵijk is the Levi-Civita tensor.

1.5 Sources of Gravitational Waves

In general, any object with acceleration which is not spheri-
cally or cylindrically symmetric will produce GWs. However, the
masses and accelerations of any earthly bodies are too small to
make GWs big enough to detect with our existing instruments.
Outside our solar system, however, the universe is abundant with
incredibly massive objects undergoing rapid accelerations which
generate GWs that we can potentially detect. Some known ob-
jects include pairs of compact objects like black holes or neutron
stars orbiting each other or gigantic stars blowing themselves up
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at the end of their lives. The sources of GWs are broadly cate-
gorised into four types: Burst, Continuous, Stochastic, and Com-
pact Binary Systems, depending on the object or system that
generates them. Each category produces a characteristic set of
GW signals. Below, we discuss them one by one.

1.5.1 Burst Gravitational Waves

In the final stages of a massive star’s life, it can collapse into a
neutron star or a black hole due to the exhaustion of its fuel and
under the force of gravity. If the collapse is not symmetric, it can
create GWs due to the change in the quadrupole moment. On the
other hand, accreting compact objects can also create GWs. Such
sources are called burst sources of GWs. These sources are usually
unmodelled due to the unknown physics behind the gravitational
collapse mechanism. To look for such signals in the noisy data,
the excess in power over the background noise is observed for very
short periods, as most of these events are expected to be transient
and rare.

1.5.2 Continuous Gravitational Waves

Theoretically, another source of GWs is a spinning neutron
star with a ‘bump’ or an asymmetry on the surface of it. If a
neutron star of a certain mass and radius is spinning at a par-
ticular frequency and has a bump of mass on its surface, it is
expected to spin down due to the emission of GWs. The bump is
characterised by a fractional asymmetry ratio that compares the
moment of inertia of the bump to the spherical moment of inertia
of the entire neutron star. The typical amplitude of continuous
GWs is 10−25, much smaller than the typical amplitudes of 10−21,
expected for the burst or transient sources. However, GWs from
spinning neutron stars can still be expected to be observed be-
cause, unlike the transient sources, which last for a fraction of a
second, such sources produce GWs for a long period and conse-
quently can have a long observation period. Hence, such sources
are called continuous wave sources.
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1.5.3 Stochastic Gravitational Waves

Another kind of GW is a stochastic signal, which arises from
the indistinguishable overlap of GWs from multiple sources, arriv-
ing at the detector from all directions without any phase coher-
ence. They are the quietest signals. Although these small waves
are difficult to detect due to their random nature, they could
hold valuable information about the history of the Universe, po-
tentially even originating from the Big Bang. By detecting these
relic GWs, we could, in principle, gain insight into the earliest
period of the history of the Universe.

1.5.4 Compact Binary System Gravitational Waves

Let us now focus on a particular kind of source of GWs, the
compact binary system. Throughout the thesis, we will be pri-
marily interested in the GW sources of such systems. All the
signals LIGO-Virgo have detected so far fall into this category.

Compact binary inspiral GWs are produced by orbiting pairs
of massive and dense objects like black holes and neutron stars.
There are three subclasses of compact binary systems in this cat-
egory: binary black holes (BBHs), binary neutron stars (BNSs),
and neutron star-black hole (NS-BH) binaries, each creating a
unique pattern of GWs that depends on their properties. As pairs
of dense compact objects orbit around each other, they radiate
GWs that carry away some of the system’s orbital energy. This
causes the objects to move closer and closer together until they
are locked in a runaway spiralling embrace.

In this section, we discuss the physics and the mathematical
foundation of the inspiralling process of compact binaries, in de-
tail.

We consider a system of two point particles with massesm1 and
m2 orbiting each other (see Figure 1.2). To analyse the system,
we choose to work in the centre of mass coordinates, and we
assume that the orbit is circular. Let’s also consider that an
observer is located at a distance r from the centre of the binary
plane and forms an angle ι with the axis of the orbital plane. It is
important to note here that since we assume Newtonian dynamics
of the system, the orbital angular momentum direction (x3) will
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Figure 1.2: A binary system
with two point masses in the
x1 − x2 plane, encircling each
other. (Credit: Creighton
and Anderson Gravitational-
Wave Physics and Astronomy
[1])

not change with time, i.e., the binary plane will remain fixed.

To compute the quadrupole moment tensor for this system, we
put it in Equation (1.33), which allows us to obtain two polarisa-
tions of GWs, h+ and h×, as follows:

h+ =
−2Gµ
c2r

(1 + cos2ι)
(v
c

)2
cos(2ϕ), (1.72)

h× =
−2Gµ
c2r

2cosι
(v
c

)2
sin(2ϕ), (1.73)

where ϕ = ωorbt and ωorb is the orbital frequency of the system.
The other parameters are defined as:

µ =
m1m2
M

, M = m1 +m2, (1.74)

v = (GMωorb)
1/3. (1.75)

We find that the GW generated by such a system has twice the
orbital frequency, i.e., ωGW = 2πf = 2ωorb, where f is the GW
frequency. The conversion of the orbital energy of such systems
into GWs over time leads to the decay of the orbit and a simulta-
neous increase in the frequency and amplitude of the waves. To
understand it, we calculate the luminosity, i.e., energy lost by the
system using Equation (1.62),

LGW =
32
5
c5

G
η2
(v
c

)2
, (1.76)

where η = µ
M is called the symmetric mass ratio. Now, the

orbital energy of the system is the sum of the kinetic energy of the
individual particles plus their gravitational interaction potential
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energy, and we find
E = −1

2µv
2. (1.77)

We assume that the system is losing orbital energy only through
gravitational radiation, and so LGW = −dE

dt . Hence, we readily
have

d( v
c )

dt =
32η
5

c3

GM

(v
c

)9
. (1.78)

This expression gives the evolution of the orbital frequency ωorb
with time as a consequence of the gravitational radiation reaction,
and it can be used to estimate the time that the binary takes
to coalesce starting from some initial orbital velocity/frequency
(v0/f0). In order to get an estimate of the time until coalesce,
i.e., the time duration of the GWs being produced, we integrate
Equation (1.78), so that

∫ ∞

v0/c

d(v/c)
(v/c)9 =

32η
5

c3

GM

∫ τc

0
dt, (1.79)

where τc is called the time of coalescence. Upon integration, we
get,

τc =
5

256η
GM

c3

(v0
c

)−8
. (1.80)

One of the important quantities in GW data analysis is the
phase evolution of the binary due to the loss in orbital energy
and angular momentum. For that, let us define two useful dimen-
sionless quantities, the energy function E(v) and the flux function
F(v) as

E(v) :=
E(v) −Mc2

Mc2
, (1.81)

F(v) :=
G

c5
LGW(v). (1.82)

For this system, the above equations become

E := −1
2η
(v
c

)2
, (1.83)

F :=
32
5 η

2
(v
c

)10
. (1.84)
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Using LGW = −dE
dt , we can write

dt
dv = −GM

c3
1
F

dE
dv . (1.85)

Upon integration, the time corresponding to a given orbital
velocity v is given by

t(v) = τc +
GM

c3

∫ vc

v

1
F

dE
dv dv, (1.86)

where vc is the velocity at the coalescence time τc. The orbital
phase as a function of orbital velocity/frequency can be shown to
be

dϕ
dv =

dϕ
dt

dt
dv = −

( v
vc

)3 1
F

dE
dv , (1.87)

which readily gives

ϕ(v) = ϕc +
∫ vc

v

1
F

dE
dv dv. (1.88)

The gravitational waveform given in Equations (1.72) and (1.73)
can now be parametrised by v = (GMωorb)

1/3, as

h+(t(v)) =
−2Gµ
c2r

(1 + cos2ι)
(v
c

)2
cos(2ϕ(v)), (1.89)

h×(t(v)) =
−2Gµ
c2r

2cosι
(v
c

)2
sin(2ϕ(v)), (1.90)

where t(v) and ϕ(v) are given by Equations (1.86) and (1.88),
respectively.

Also, since v is directly related to the GW frequency by v =

(πGMf)1/3 as f = 2ωorb/2π, the GW frequency evolution can
be shown to be

df
dt =

df
dv

dv
dt =

96
5 π

8/3η
(
GM

c3

)5/3
f11/3 (1.91)

=⇒ df
dt =

96
5 π

8/3
(
GM

c3

)5/3
f11/3, (1.92)

where M = η3/5M = µ3/5M2/5 = (m1m2)3/5(m1 +m2)−1/5 is
called the the chirp mass of the system.

The above expression shows that the GW frequency evolution
depends solely on the chirp mass and not on any other combi-
nation of the component masses. We can also show that in the
leading order in v/c, the entire gravitational waveform has mass
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dependence only through the chirp mass as expressed below:

h+(t) = −GM

c2r

1 + cos2ι

2

(
c3(τc − t)

5GM

)−1/4
cos
[
2ϕc − 2

(
c3(τc − t)

5GM

)5/8]
,

(1.93)

h×(t) = −GM

c2r
cosι

(
c3(τc − t)

5GM

)−1/4
sin
[
2ϕc − 2

(
c3(τc − t)

5GM

)5/8]
.

(1.94)

As the orbit of the binary decays, the frequency of the gravita-
tional waveform increases, and so does its amplitude. This kind
of a signal is known as a chirp, and such an inspiral waveform is
referred to as a chirp waveform. This ‘Newtonian’ approximation
is accurate only when the compact objects move with minimal ve-
locities. The accuracy of the approximation can be improved by
post-Newtonian corrections (corrections in v/c) to the energy and
flux functions. Still, at the final stages of inspiral, when v/c → 1,
the post-Newtonian approximation becomes inaccurate. A rough
estimate of the frequency at which the post-Newtonian approxi-
mation breaks down is given by the frequency of the last stable
orbit (LSO) of a Schwarzschild black hole with a mass equal to
the total mass of the binary.

fLSO ∼ 220
(20M⊙

M

)
Hz. (1.95)

After that, these two compact objects merge. The merger
phase involves relativistic motions and strong gravitational fields,
which cannot be modelled accurately using approximation tech-
niques. Currently, the merger stage of the coalescence process
is modelled using numerical relativity, which involves obtaining
numerical exact solutions of Einstein’s equations using numerical
techniques employing large supercomputers. Binary white dwarfs
are expected to merge much before reaching the LSO as they have
a less compact structure. Therefore, they emit GWs in the range
of mHz to a few Hz, making them more suitable for detection
using space-based detectors. On the other hand, compact bina-
ries consisting of neutron stars or black holes can reach the LSO
without merging. These sources emit GWs with frequencies rang-
ing from a few Hz to a few kHz, which fall within the sensitivity
band of ground-based interferometric detectors like the advanced
LIGO and Virgo.

After the two black holes merge, the remnant object emits grav-
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itational radiation in the form of quasi-normal modes (QNMs),
which are exponentially damped sinusoids. The spectrum of these
QNMs can be solved using black hole perturbation theory [17].
The ground-based detectors can observe the dominant QNMs, de-
pending on the mass and spin of the remnant object. However,
space-based detectors like LISA are better suited for observing
clear QNMs from the merger of supermassive black hole bina-
ries. This phase of a compact binary coalescence is called the
ringdown phase. Figure 1.3 shows the three stages of black-hole
binary coalescence evolution: (from left to right) inspiral, merger,
and ringdown.

Figure 1.3: Stages of
black-hole binary coalescence:
(from left to right) inspi-
ral, merger, and ringdown.
(Credit: A. Taracchini, Max
Planck Institute for Gravita-
tional Physics)





2 | Theory of Gravitational Lensing

This chapter focuses on the gravitational lensing of GWs, which
refers to the bending of GWs due to the presence of a massive ob-
ject. In other words, this is related to the study of the propagation
of GWs in curved spacetime. Understanding the effect of GWs
on the background spacetime helps find an expression for the en-
ergy they carry. However, here we ask a different question: how
does the background object, or the lens, affect the propagation of
gravitational waves, assuming that these waves have a negligible
contribution to the background curvature? While gravitational
lensing has been observed for electromagnetic (EM) waves, such
as light, it does not apply to GWs in the same way. GWs are
disturbances in spacetime itself, and they interact differently and
very weakly with matter compared to EM waves. Depending on
the size of the lens and the wavelength of GW (or EM waves),
gravitational lensing can produce multiple copies of the same sig-
nal, resulting in the potential observation of multiple images of a
source or a single interfered image to the observer [2].

The study of gravitational wave lensing is still a theoretical and
experimental challenge, and no direct observations of GW lensing
have been reported. Advances in technology and improvements
in GW detectors may provide more insights into this phenomenon
in the future.

In this chapter, we will first discuss the general case of gravita-
tional lensing, i.e., the wave optics limit of gravitational lensing
and then discuss how to transition into the geometric optics limit.
We will compute the lensing effect on GWs for a point-mass lens
case. At the end of this chapter, we will show the impact of lens-
ing on GWs due to several such point-mass lenses and how they
distort the GW signal. The material presented in this chapter is
based on the standard theory of gravitational lensing. For a more
detailed discussion, see, e.g., Takahashi et al. [2], Misner et al.
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[18], Schneider et al. [19].

2.1 Propagation of Gravitational Waves through the
Curved Spacetime

We consider the propagation of gravitational waves under the
gravitational potential of a massive object (considered as a lens)
[2, 18], and the background metric is given by

ds2 = −(1 + 2U)dt2 + (1 − 2U)dr⃗2 ≡ ĝµνdxµdxν , (2.1)

where U(r⃗)(≪ 1) is the gravitational potential of the lens object.
Let us consider the linear perturbation hµν in the background
metric tensor, ĝµν as gµν = ĝµν + hµν . We further assume that
|hµν | ≪ 1 and λ ≪ LB, where λ is the typical wavelength of
the perturbation hµν , and LB is the typical scale over which the
background spacetime ĝµν varies.

Using the transverse-traceless Lorentz gauge condition: ∇̂νh
µν =

0 (transverse) and hµ
µ = 0 (traceless), we have

∇̂α∇̂αhµν + 2R̂αµβνh
αβ = 0, (2.2)

where the nabla operators correspond to the covariant derivative
compatible with the background metric ĝµν , and R̂αµβν is the
background Riemann tensor. If the wavelength λ is much smaller
than the typical radius of the curvature of the background, we
can ignore the second term, and this leads to

∇̂α∇̂αhµν = 0. (2.3)

2.2 Eikonal Approximation

In order to solve Equation (2.3), we use the eikonal approxima-
tion, which assumes that the phase θ of the perturbation changes
on the scale λ, while the amplitude changes on the scale LB. In
other words, the phase changes much faster than the amplitude.
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We make the following ansatz of the waveform:

hµν(x) = [Aµν(x) + ϵBµν(x) + ...]eiθ(x)/ϵ. (2.4)

Here ϵ is a book-keeping parameter, which we will later set to
unity. It is present there to remind us that any term before ϵ

is of order (λ/LB)
n. The wave vector is defined by kµ = ∂µθ.

We write the GW amplitude in terms of the polarisation tensor
eµν as Aµν = Aeµν , where A is the scalar amplitude. Plugging
Equation (2.4) in the transverse Lorentz condition and keeping
only the lowest order in ϵ, we get 1 1Using the fact that the change in

the amplitude over length λ is negligi-
ble.

kµeµν = 0. (2.5)

Also, from Equation (2.3), we get

kµkν = 0. (2.6)

Using this equation, we can also show that

kµ∇̂µkν = 0. (2.7)

This says that the gravitational waves travel along the null
geodesics of the background spacetime metric ĝµν . We further
find that to the next-leading order in ϵ, Equation (2.4) gives

kα∇̂αeµν = 0. (2.8)

Thus, Equations (2.5) and (2.8) imply that the polarisation
tensor is transverse and parallel-transported along the null geodesic.

2.3 Gravitational Lensing: Wave Optics

We have shown that the polarisation tensor remains unchanged
during the propagation. We can thus treat the propagating grav-
itational waves as scalar waves times the polarisation tensor:

hµν = ϕ eµν , (2.9)
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where ϕ is a scalar wave, eµ
µ = 0, and eµνeµν = 0. Hence, the

propagation equation, Equation (2.3) becomes

∂µ(
√

| − ĝ|ĝµν∂νϕ) = 0. (2.10)

For the scalar wave in the frequency (f) domain ϕ̃(f, r⃗), the
above equation, with the metric given by Equation (2.1), can be
rewritten as

(∇2 + ω2)ϕ̃ = 4ω2Uϕ̃, (2.11)

where ω = 2πf. This is the fundamental equation that we need
to solve to get the lensing effect on the gravitational waves.

Before discussing the solution of Equation (2.11), let’s look at
the lensing geometry first. Figure 2.1 shows the gravitational lens
configuration of the source, the lens, and the observer. Here, DS
and DL represent the (angular diameter) distance to the source
and the lens from the observer, respectively, while DLS denotes
the distance between the lens and the source. η is the position
vector of the source in the source plane, and ξ is the impact
parameter in the lens plane. We assume that our lens can be
characterised by its surface mass density Σ(ξ). This is called
‘thin-lens approximation’, and the gravitational waves are scat-
tered on the thin-lens plane. This is a reasonable approximation
if the distances are much larger compared to the size of the lens,
which is valid for most cosmological cases.

Figure 2.1: Gravitational
lens geometry for the source,
the lens, and the observer.
Here DL, DS, and DLS are
the distances between them,
η is the displacement of the
source, and ξ is an impact pa-
rameter. We use the thin-lens
approximation in which the
gravitational waves are scat-
tered in the thin-lens plane.
(Credit: Takahashi et al. [2])

Now, the solution of Equation (2.11) is found by using the
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Kirchhoff integral theorem [20], following which,

ϕ̃L(f) =
ωA

2πiDL

∫
d2ξ exp(iωtd(ξ, η)), (2.12)

where A is the (unknown) amplitude of the scalar wave ϕ̃L(f),
and td is the arrival time of the deflected ray at the observer from
the source position η through ξ (Figure 2.1), given by

td =
DLDS
2DLS

( ξ

DL
− η

DS

)2
− ψ̂(ξ) + ϕ̂m(η). (2.13)

The first and second terms in the above equation correspond
to the geometric and Shapiro time delay relative to the unlensed
ray. The third term represents the arrival time of the unlensed
ray.

Now, it is convenient to define the amplification factor as

F (f) =
ϕ̃L(f)

ϕ̃(f)
, (2.14)

where ϕ̃L(f) and ϕ̃(f) are the lensed and unlensed (U = 0 in
Equation (2.11)) GW amplitudes, respectively, in the frequency
domain.

With this configuration, the amplification function takes the
form:

F (ω, η) =
DS

DLDLS

ω(1 + zL)

2πi

∫
d2ξ exp[iω(1 + zL)td(ξ, η)].

(2.15)

In the above equation, (1 + zL) factor takes into account the
cosmological expansion, i.e., replacing ω by ω(1 + zL), where zL
is the redshift of the lens.

We rewrite the amplification factor F (f) in terms of dimension-
less quantities. We introduce ξ0 as the normalisation constant
of the length in the lens plane. The impact parameter ξ and
the source position η (Figure 2.1) are rewritten in dimensionless
form:

x =
ξ

ξ0
, y =

DL
ξ0DS

η. (2.16)
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Similarly, we define dimensionless frequency w by

w =
DS

DLDLS
ξ2

0(1 + zL)ω. (2.17)

Hence, the dimensionless time delay is given by

T (x, y) =
DLDLS
DS

1
ξ2

0
td(ξ, η) (2.18)

=
1
2 |x − y|2 − ψ(x) − ϕm(y), (2.19)

where ψ(x) and ϕm(y) correspond to the dimensionless forms
of ψ̂(ξ) and ϕ̂m(η) in Equation (2.13). The value of ϕm(y) is
chosen in a way such that the minimum value of the time delay is
zero. Also, note that F is normalised in such a way that |F | = 1
in no lens limit (U = 0).

Finally, using the above dimensionless quantities, the amplifi-
cation factor is rewritten as

F (w, y) = w

2πi

∫
d2x exp[iwT (x, y)]. (2.20)

2.4 Gravitational Lensing: Geometrical Optics Ap-
proximation

The geometric optics limit is approached when w ≪ 1 or
fGW ≫ t−1

d . In this limit, only the stationary points of T (x, y)

contribute to the integral of Equation (2.20) so that the image
positions xj are determined by the lens equation,

∇xT (x, y) = 0
=⇒ y = x − α(x),

(2.21)

where α(x) = ∇xψ(x) is called the deflection angle. In this
case, the integral of Equation (2.20) is given by the sum over
these images xj , and hence, the amplification function is

Fgeom(f) =
∑

j

|µj |
1
2 exp(iwTj − iπnj), (2.22)

where µj = 1/det( ∂y
∂xj

) is the magnification of the j-th image,
Tj = T (xj , y) and nj = 0, 1/2, and 1 when xj is a minimum,
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saddle, and maximum point of T (x, y), respectively.

2.5 Gravitational lensing of GWs due to a point-
mass lens

The surface mass density for a point mass lens is described by
Σ(ξ) = Mℓδ

2(ξ), where Mℓ is the mass of the lens. The normali-
sation constant here is chosen by the Einstein radius 2 of the sys- 2The Einstein radius defines the

radius of an Einstein ring, which ap-
pears if the source, lens, and observer
are all in perfect alignment, and the
image appears as a ring.

tem, given by ξ0 = (4MℓDℓDℓs/Ds)1/2, while the dimensionless
deflection potential (Equation (2.19)) is given by ψ(x) = ln x,
where x = |x|. In this case, it is possible to find an analytical
expression of Equation (2.20). This is given by [2],

F (w, y) = exp[πw4 + i
w

2 {ln(w2 )−2ϕm(y)}]× Γ(1− i

2w)× 1F1(
i

2w, 1; i2wy
2),

(2.23)
where w = 8πMz

ℓ f,ϕm(y) = (xm − y)2/2 − ln xm, with xm =

(y+
√
y2 + 4)/2,Mz

ℓ = Mℓ(1+ zℓ) is the redshifted mass of the
lens, and 1F1 is the confluent hypergeometric function. Here we
find that the amplification function depends on just two lens pa-
rameters: the redshifted mass of the lens Mz

ℓ and the dimension-
less source position y. In geometric optics limit, i.e., f ≫ (Mz

ℓ )
−1,

Equation (2.23) reduces to

Fgeom(w, y) = |µ+|1/2 − i|µ−|1/2eiw∆T (2.24)
=⇒ |Fgeom(w, y)|2 = |µ+| + |µ−| + 2|µ+µ−|1/2sin(w∆T ),

(2.25)

where the magnification of each image is µ± = 1/2 ± (y2 +

2)/(2y
√
y2 + 4). Also, the time delay between the double im-

ages is ∆T = y
√
y2 + 4/2 + ln((

√
y2 + 4 + y)/(

√
y2 + 4 − y)).

The expected typical time delay is ∆td = 4Mz
ℓ ∆T . Thus, the

expected time delay varies from a few minutes to a few months
for galaxy lenses with a mass between ∼ 107 − 1012M⊙.

Note that the first and second terms in the above equation
(Equation (2.25)), µ = |µ+|+ |µ−|, correspond to the total mag-
nification in the geometrical optics limit, while the third term
represents the interference between the double images. It is in-
teresting to note here that as the source position y increases, the
total magnification µ (= |µ+| + |µ−|) and the amplitude of the
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oscillation 2|µ+µ−|1/2 decrease. This is because each magnifica-
tion µ±(y) decreases as y increases.

In the case of gravitational lensing of GWs in the wave optics
limit, we will use the term microlensing of GWs throughout the
thesis. We will also consider compact objects such as PBHs [21],
or more generally, MACHOs 3 as point mass lenses. Figure 2.2 3Although the prime candidates of

MACHOs are PBHs, the microlens-
ing effects are practically the same for
any compact object. Hence, we keep
the generic name MACHOs through-
out this thesis.

shows the microlensing effect of a GW signal, produced by the
merger of a BH binary, due to the presence of different point
mass lenses, where we have modelled the lensing magnification
as presented in Equation (2.23), along with the corresponding
unlensed waveform. The (redshifted) lens masses are shown in
the legend. Here we have kept the dimensionless source position
fixed at y = 1. The left (right) plot corresponds to the frequency
(time) domain waveform.

101 102

f [Hz]

10−25

10−24

10−23

|h
(

f)
|

Unlensed
Mz
` = 100 M�, y = 1

Mz
` = 1000 M�, y = 1

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
t [sec]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

h(
t)

×10−22

Figure 2.2: Microlensing
effect of a GW signal pro-
duced by the merger of a BBH
due to the presence of differ-
ent point mass lenses (red-
shifted lens mass shown in
the legend) along with the
corresponding unlensed wave-
forms. Here we have kept
the dimensionless source po-
sition fixed at y = 1. The
left (right) plot corresponds
to the frequency (time) do-
main waveform.
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In the remaining part of the thesis, we will see how, from the
(non-observation of) microlensing signature of the GWs detected
by LIGO-Virgo detectors, we can constrain the fraction of com-
pact objects forming dark matter.





3 | Constraining compact dark matter
from GW microlensing

The microlensing of GWs involves qualitatively different fea-
tures compared to the microlensing of light [22, 23, 24]. Here,
the wavelength of the radiation can be comparable to the gravita-
tional radius of the lens (λGW ∼ GMz

ℓ /c2). Hence, wave diffrac-
tion effects will be evident, and the lensing has to be treated in
the wave optics regime [2].

The microlensing effect on a GW signal h(f; λ) (in Fourier
domain) due to a point mass lens can be modelled in terms of a
frequency (f) dependent, complex magnification F (f) so that the
resulting lensed waveform is (see Section 2.5 of Chapter 1):

hℓ(f; λ,Mz
ℓ , y) = F (f;Mz

ℓ , y) h(f; λ), (3.1)

where Mz
ℓ ≡ Mℓ(1 + zℓ) is the redshifted mass of the lens (Mℓ

being its actual mass and zℓ the cosmological redshift), and y

is the dimensionless source position defined with respect to the
optical axis [2]. Also, λ is the set of parameters that describe
the (unlensed) GW signal in the detector, such as the redshifted
masses (mz

1,mz
2), the dimensionless spin vectors (χ1, χ2), sky lo-

cation of the binary (α, δ), luminosity distance (dL), inclination
and polarisation angles (ι,ψ), and the time and phase of coales-
cence (t0,ϕ0).

Given the data d containing a GW signal and models of (micro-
)lensed and unlensed waveforms (Hℓ and Hu), we can compute
the Bayesian likelihood ratio between the “(micro-)lensed” hy-
pothesis Hℓ and “unlensed” hypothesis Hu:

Bℓ
U =

P (d|Hℓ)

P (d|Hu)
=

∫
P (λℓ|Hℓ)P (d|λℓ,Hℓ) dλℓ∫
P (λ|Hu)P (d|λ,Hu) dλ

, (3.2)
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where λℓ := {λ,Mz
ℓ , y} denotes the set of parameters describing

the lensed waveform model.

If the Bayes factor is significantly high, this indicates that
the microlensing hypothesis is preferred over the unlensed hy-
pothesis, indicating evidence of microlensing. Non-observation of
any microlensing effects can be used to constrain the fraction of
dark matter [25] in the form of MACHOs (microlenses) in the
mass range ∼ 102 − 105M⊙. Below, we discuss how, from the
non-observation of the microlensing signature of GW events from
BBHs detected by LIGO-Virgo, we constrain the compact dark
matter fraction fDM. Here, fDM = 0 implies no dark matter is
made of compact objects, and fDM = 1 implies all the dark mat-
ter is in the form of compact objects.

3.1 Calculating the lensing fraction

We consider that a total of N merger signals are confidently
detected, and none of them is found to be lensed (i.e., Nℓ = 0),
i.e., the observed Bayes factors are not significantly high enough
to support the lensing hypothesis. Further, we assume that the
number of detected events follows a Poisson distribution with
mean Λ, whose posterior distribution can be estimated as

p(Λ|N) = Z−1p(Λ)p(N |Λ), (3.3)

where p(Λ) is the prior distribution on Λ, and Z is the normali-
sation constant, while the likelihood p(N |Λ) is approximated by
a Poisson distribution.

p(N |Λ) =
ΛNe−Λ

N !
. (3.4)

Similarly, from the observation of zero lensed events (Nℓ = 0),
the posterior on the Poisson mean Λℓ of the number of lensed
events can be calculated as

pℓ(Λℓ|Nℓ = 0) = Z−1
ℓ pℓ(Λℓ)p(Nℓ = 0|Λℓ), (3.5)

where pℓ(Λℓ) is the prior distribution on Λℓ, and Zℓ is the nor-
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malisation constant. The likelihood is

pℓ(Nℓ = 0|Λℓ) =
e−Λℓ

1 − e−Λmax
ℓ

, (3.6)

where Λmax
ℓ is the largest value that Λℓ can take (corresponding

to the situation where all dark matter is in the form of MACHOs;
i.e., fDM = 1).

To compute the posterior on the fraction of lensed events u ≡
Λℓ
Λ , we need to use the ratio distribution. This gives

p(u|Nℓ = 0,N) ∝
∫ ∞

0

ΛN+1

Zℓ
pℓ(uΛ)p(Λ)e−Λ(u+1)du, (3.7)

where the normalisation can be fixed by requiring∫ umax

0
p(u|Nℓ = 0,N)du = 1, (3.8)

where umax is the maximum possible value of u (corresponding
to fDM = 1).

To calculate the posterior of lensing fraction u, we assume two
different choices of priors for Λ and Λℓ: flat and Jeffreys. If we
assume flat priors for Λ and Λℓ, i.e.,

p(Λ) =
1

Λmax Θ(Λ − Λmax),

p(Λℓ) =
1

Λmax
ℓ

Θ(Λℓ − Λmax
ℓ ) =

1
Λumax Θ(u− umax),

(3.9)

where Λmax, Λmax
ℓ , and umax are the maximum possible values of

Λ, Λℓ, and u, respectively (umax corresponds to fDM = 1). This
results in the explicit expression

p(u|{Nℓ = 0,N}) ∝ Θ(umax − u)
∫ Λmax

0

ΛN+1e−Λ(u+1)

1 − eumaxΛ dΛ.
(3.10)

However, if we assume Jeffreys prior for Λ and Λℓ, i.e.,

p(Λ) =
1√

ΛΛmax Θ(Λ − Λmax),

p(Λℓ) =
1√

ΛℓΛmax
ℓ

Θ(Λℓ − Λmax
ℓ ) =

1
Λ

1√
uumax Θ(u− umax),

(3.11)
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this results in the explicit expression

p(u|{Nℓ = 0,N}) ∝ Θ(umax − u)√
u

∫ Λmax

0

ΛNe−Λ(u+1)

erf(
√
umaxΛ)

dΛ.

(3.12)

We use these expressions to compute the posteriors (see Fig-
ure 3.7 of Section 3.3).

From the posteriors of Λ and Λℓ, we can compute the posterior
on the fraction of the lensed events u := Λℓ

Λ . Finally, the posterior
on fDM can be computed as

p(fDM|{Nℓ = 0,N}) = p(u|{Nℓ = 0,N})
∣∣∣∣ du
dfDM

∣∣∣∣, (3.13)

where du
dfDM

is the Jacobian of the lensing fraction u and the com-
pact dark matter fraction fDM. We use astrophysically motivated
distributions for the parameters of simulated BBHs and identify
the events that are detectable by the LIGO-Virgo network using
an appropriate signal-to-noise ratio (SNR) threshold for detec-
tion. We assume a particular value for fDM, distribute lenses
uniformly in comoving volume and mark a fraction of the BBH
events as lensed according to the lensing optical depth (which, in
turn, is a function of fDM). Among these lensed events, we iden-
tify the fraction usim(fDM) of events with microlensing Bayes
factor Bℓ

U greater than a threshold 1. These are the events that 1Since the calculation of the lens-
ing likelihood ratio Bℓ

U using nested
sampling from all the simulated sig-
nals is computationally expensive, we
use an approximation that is expected
to be accurate in the high SNR regime
[11, 12]. For this work, we use the ap-
proximation provided by Cornish et al.
[11] (See Section 3.2 for more details).
We explore the justification for this as-
sumption in Appendix A.3.

are confidently identified as lensed by our search. In the limit of
a large number of simulated events, this fraction is equal to the
lensing fraction u(fDM). This simulation is repeated for different
values of fDM, from which we calculate the Jacobian du

dfDM
. Be-

low, we describe step-by-step how the astrophysical simulations
are done.
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3.2 Astrophysical simulations of lensed mergers

Here we describe the astrophysical simulations used to evaluate
the efficiency of our Bayesian model selection way in distinguish-
ing lensed merger events from unlensed events, thus estimating
the Jacobian between the compact dark matter fraction fDM and
the fraction of lensed events u. Here are the steps involved:

1. Generate a population of mergers: The source redshifts zs are
drawn from four redshift distributions — uniform distribution
in comoving volume, as well as the ones predicted by the pop-
ulation synthesis models, presented in Dominik et al. [3] and
Belczynski et al. [4, 5] 2 (Figure 3.1). We use a power-law

2In these stellar population syn-
thesis models, the formation of com-
pact object (black holes or neutron
stars) binaries through stellar evo-
lution and their merger rate den-
sity are studied under various initial
conditions, such as galaxy mass dis-
tribution, metallicity, stellar popula-
tions, etc. In the ‘optimistic’ mod-
els, progenitor stars may initiate and
survive common-envelope (CE) evolu-
tion, leading to a significantly higher
number of binaries being formed. In
the ‘pessimistic’ models, black holes
receive high natal kicks, disrupting
and reducing the number of BBH pro-
genitors. Additionally, as per Bel-
czynski et al. [4, 5], considerations
are also made for pair-instability pul-
sation supernovae and pair-instability
supernovae, which are associated with
severe mass loss and may suppress
the formation of massive black holes,
consequently decreasing the rates of
black hole mergers for the highest-
mass black holes.

mass distribution model [10] for the binary mass distribution,
p(m1) = m−2.35

1 , on the mass of the heavier black hole while
the mass ratio q := m2

m1
is distributed uniformly in the interval

[ 1
18 , 1] with the total mass lying in the interval [5 − 200] M⊙.

We consider spinning black holes with component spin mag-
nitudes distributed uniformly between 0 and 0.99 with spins
aligned/antialigned with the orbital angular momentum. The
binaries are distributed uniformly in the sky with isotropic ori-
entations (Figure 3.2).

0.0 0.5 1.0 1.5 2.0
zs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
(z

s)

uniform
Dominik
Belczynski

Figure 3.1: Redshift distri-
bution of binary black hole
mergers assumed predicted
by different models — uni-
form distribution in comoving
volume, population synthesis
models predicted by Dominik
et al. [3] and Belczynski et
al. [4, 5]. We also show, in
thin grey lines, several mod-
els of primordial black hole
mergers given by Mandic et
al. [6]. Since most of them
are “bracketed” by the three
models that we consider, we
do not use them explicitly in
the computation of fDM up-
per limits.
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Figure 3.2: Distribution of
the simulated binaries (light
grey), detected binaries (dark
grey) and lensed binaries
(black). The binaries are
assumed to be distributed
uniformly in comoving four-
volume. The detector PSDs
are from O3a. The shape of
the dark grey region (distribu-
tion of the detected binaries)
is different from the light grey
region (distribution of simu-
lated binaries) because of the
selection effects of GW detec-
tors. For example, binaries
with high masses (large m1),
comparable masses (large q),
and high spins (large a1 and
a2) are intrinsically louder.
Because of the emission pat-
tern of GWs, face-on binaries
(|cos ι| ∼ 1) are louder than
edge-on binaries (|cos ι| ∼ 0).
The lower detection probabil-
ity at higher redshifts is sim-
ply due to the inverse scaling
of the GW amplitude with the
luminosity distance. How-
ever, note that the lensing op-
tical depth (Equation (3.14))
is larger for binaries at higher
redshifts. Hence, the number
of lensed binaries among the
detected samples (black his-
tograms) has a slight bias to-
wards higher redshifts.

2. Identify the detectable events: Compute the optimal SNR of
the binaries observed by the LIGO-Virgo detectors, using ap-
propriate noise power spectral density (PSD) and antenna pat-
tern functions. Binaries producing a network SNR of 8 or above
are considered detectable (Figure 3.2). A given choice of red-
shift and mass distribution of the mergers yields N number of
detectable events.

For O1, we have used the representative PSDs given in [26, 27].
For O2, the representative PSDs given in [28] have been used.
While for O3a, we have used the representative PSDs presented
in [29]. Finally, for O3b, we have used the representative PSDs
given in [30].

3. Identify the lensed events: Assuming that the MACHOs are
distributed uniformly in comoving volume, the probability that
GWs from a binary located at a redshift of zs is lensed is given
by

PL(zs) = 1 − e−τ (zs), (3.14)

where τ is the lensing optical depth (see Figure 3.3), given by

τ (zs, fDM, y0) =
∫ zs

0

dτ
dzℓ

dzℓ, (3.15)

with the differential optical depth given by [31] (for details,
see Appendix A.1)

dτ
dzℓ

= fDM
3
2y

2
0
H2

0
c

(1 + zℓ)
2

H(zℓ)

DlsDl

Ds
. (3.16)

Above, y0 is a fiducial dimensionless radius of influence of the
lens, or the maximum impact parameter (in units of the Ein-
stein angle θE) within which the lens can potentially produce
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Figure 3.3: Microlensing
optical depth (solid lines) and
lensing probability (dashed
lines) as a function of the
source redshift zs assuming
different values of fDM (shown
in legend).

a desired lensing effect 3. 3As long as y0 is chosen sufficiently
large and the actual impact parame-
ters are distributed up to y0, the pre-
cise choice of y0 does not affect our
estimation of the lensing fraction.

We identify a binary as lensed when the lensing probability
PL(zs) of that binary is larger than a random number uni-
formly distributed between 0 and 1. This ensures that PL(zs)

fraction of binaries located at a redshift zs is counted as lensed.

4. Assign lens properties: When a merger located at a redshift zs
is identified as lensed, the lens redshift zℓ is randomly drawn
from a probability distribution given by the differential optical
depth (Equation (3.16)). For a lens mass Mℓ, the redshifted
lens mass is computed as Mz

ℓ = Mℓ(1 + zℓ). The impact
parameter y is drawn from the distribution P (y) ∝ y, with
y ∈ [0.01, y0]. We choose y0 = 5 since signals with y ≳ 5 are
unlikely to contain identifiable lensing signatures (Figure 3.4).
Note that since the optical depth is also scaled with the same
value of y0, this will not change the fraction of identifiable
lensed events.
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Figure 3.4: Scatter plot
of BBH events in the source
frame lens mass Mℓ and im-
pact parameter y plane for
fDM = 1. The colour bar
shows the value of the ln Bℓ

U,
and the size of the points
are assigned by the values of
ln Bℓ

U. The simulation corre-
sponds to a redshift distribu-
tion that is uniform in comov-
ing four-volume. We see that
for higher values of lens mass
Mℓ and lower values of impact
parameter y, the (simulated)
GW signals contain identifi-
able lensing signatures, re-
sulting in larger Bayes fac-
tors. At very high values of
Mℓ, the lensing is in geomet-
ric optics limit and hence, the
Bayes factor is set to 1.

5. Identify events with wave optics effects: Wave optics effects
in the waveform are observed when the time delay caused by
lensing is smaller than the duration of the signal [13]. Other-
wise, lensing will produce multiple temporally separated copies
of the GW signal. The time delay produced by a point mass
lens is given by [2]

∆Tℓ = 4Mz
ℓ

y√y2 + 4
2 + ln

√y2 + 4 + y√
y2 + 4 − y

 . (3.17)

We approximate the duration of a GW signal by the Newtonian
chirp time [32], with some extra time to adjust for the presence
of the merger and ringdown part, given by

τsignal =
5

256M
z
s

−5/3(πflow)
−8/3 + 104Mz

s , (3.18)

where Mz
s and Mz

s are the redshifted chirp mass and total
mass of the binary, respectively, while flow is the low-frequency
cutoff of the detector. We consider those lensed binaries with
∆Tℓ < τsignal as the ones potentially containing wave optics
effects (Figure 3.5).
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Figure 3.5: The colour bar
shows the lensing time delay
log10(∆Tℓ/s) as a function of
the redshifted lens mass M z

ℓ

and dimensionless source po-
sition y. The black dots show
the merger events for which
∆Tℓ is less than the signal du-
ration τ .

6. Generate lensed waveforms: Generate gravitational waveforms
corresponding to the source parameters. Apply the wave optics
lensing effects on them using Equation (3.1). (As an example,
see Figure 2.2 in Section 2.5).

7. Compute the approximate Bayes factor for the microlensed
events at each detector: In the high SNR limit, the Bayes fac-
tor Bℓ

U between the lensed and unlensed hypotheses can be
approximated as [11, 12]

ln Bℓ
U ≈ (1 − FF) ρ2, (3.19)

where ρ ≡
√
(hℓ|hℓ) ≃

√
(h|h) is the optimal SNR of the sig-

nal, where we assume that in the wave optics regime, the ampli-
fication of the signals is not substantial unlike in the geometric
optics regime. And hence the approximation (hℓ|hℓ) ≃ (h|h)
is a good one [13] (see Appendix A.3 for more details). And
FF is the fitting factor of the unlensed waveform family h(Θ)

with the lensed waveform hℓ, defined by

FF = max
Θ

(hℓ|h(Θ)). (3.20)

Here the brackets denote the following noise-weighted inner
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product
(a, b) = 4

∫ ∞

flow

a(f)b∗(f)

Sh(f)
df, (3.21)

where Sh(f) is the one-sided power spectral density of the de-
tector noise. In Equation (3.20), Θ comprises the intrinsic
source parameters {Mz

s , ηs,χs} of the unlensed template, where
Mz

s , ηs, and χs represent the chirp mass, symmetric mass ratio,
and the effective spin of the BH binary, respectively. It is not
necessary to maximize the match explicitly over the extrin-
sic parameters, as this is performed semi-analytically by the
match calculation (for non-precessing signals containing only
the dominant mode of the gravitational radiation) (Figure 3.4
shows the scatter plot of BBH events in the source frame lens
mass Mℓ and impact parameter plane y for fDM = 1. The
colour bar shows the value of the approximate Bayes factors.
The simulation corresponds to a redshift distribution that is
uniform in comoving four-volume).

8. Combine Bayes factors from multiple detectors: Assuming that
the noise of different detectors are statistically independent, the
Bayes factors Bℓ

U
(D) obtained from the individual detector D

can be combined as

Bℓ
U =

∏
D

Bℓ
U
(D). (3.22)

9. Compute the fraction of identifiable lensed events: If an event
has a ln Bℓ

U greater than a threshold, it is deemed as an event
that is identifiable as lensed. If there are N̂ℓ such identifiable
lensed events in the simulation, the lensing fraction u is com-
puted as u ≡ Λℓ

Λ ≃ N̂ℓ

N̂
, where N̂ is the number of detectable

events from the simulation. This lensing fraction u as a func-
tion of fDM can be used to compute the Jacobian du

dfDM
for

a given choice of the source population and lens mass (Fig-
ure 3.8).
Since the PSD of the noise of a detector is different between
observing runs, this affects the fraction of lensed events for a
given fDM. We combine the lensing fraction u(fDM) computed
from simulations using different PSDs, with the number of de-
tected events from that observing run as the weight. That is,

u(fDM) =
1
N

∑
R

NR uR(fDM), (3.23)

where NR is the number of events detected in an observing
run R, and uR(fDM) is the lensing fraction estimated from
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simulations using the PSD of that observing run. N is the
total number of detected events considered.

3.3 Constraints using O1, O2, and O3a data

We searched for evidence of microlensing effects in the 10 BBH
events reported by the LIGO–Virgo Collaboration from the first
two observing runs (O1 and O2) [33]. Our search is similar to
what is reported by Hannuksela et al. [34]. We also include in
our analysis 8 additional events reported by Zackay et al. [35, 36]
and Venumadhav et al. [37]. To generate the unlensed BBH
waveforms h(f) (see Equation (3.1)), the IMRPhenomPv2 wave-
form approximant [38, 39, 40] coded in the LALSuite software
package [41] has been used. Also, we use the Dynamic Nested
Sampling [42] implementation (Dynesty) in the Bilby package
[43] to compute the posteriors of the signal parameters and the
marginal likelihoods of Hℓ and Hu. In addition to this, we also
make use of the results (i.e., the Bℓ

U values) of the microlens-
ing search on the 36 BBH events from the first half of the third
observing run (O3a) reported by Abbott et al. [44]. For the
Bayesian parameter estimation, we use uniform priors in the de-
tector frame chirp mass Mz ∈ [3, 60] M⊙ and the mass ratio
q ≡ m2

m1
∈ [0.125, 1], along with the constraint on the component

masses mz
1,mz

2 ∈ [5, 80] M⊙. We also use isotropic sky location
(uniform in α and sin δ) and orientation (uniform in cos ι and
ϕ0), uniform in polarisation angle ψ, and a volumetric prior ∝ d2

L
on luminosity distance 4. Additionally, we use a uniform prior in 4In the current GW detectors’ sen-

sitivity range (redshift ∼ 1.5), the
prior choice on the luminosity distance
wouldn’t show appreciable differences
in the results had we chosen a different
prior other than the volumetric prior,
e.g., uniform in comoving volume.

log10(Mz
ℓ /M⊙) ∈ [0, 5] and p(y) ∝ y with a cutoff y ∈ [0.1, 3].

In addition, we restrict the parameter space of lens parameters
(Mz

ℓ , y) such that the time delay ∆tlens(M
z
ℓ , y) due to lensing is

always less than the duration τsignal(λ) of the corresponding sig-
nal. 5 5If the lensing time delay is

larger than the duration of the wave-
forms, the resulting waveform will
appear as two separate GW events
in the LIGO–Virgo data. The non-
observation of multiple images can
also be used to put constraints on fDM
at higher lens masses. This is being
explored in an ongoing work.

Figure 3.6 shows the distribution of ln Bℓ
U from the 54 binary

black hole events detected during the O1, O2, and O3a. No event
provides strong support for the lensing hypothesis (largest ln Bℓ

U
being 1.15). We use this non-observation of lensing effects to
put constraints on the fraction of compact objects forming dark
matter. Here we take that a total of N = 54 merger signals
are confidently detected, and none of them is found to be lensed
(i.e., Nℓ = 0). Using this data, we can calculate the posterior
distribution of Λ, Λℓ, and u, as discussed in Chapter 3. These
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Figure 3.6: Cumulative
distribution of ln Bℓ

U from
LIGO–Virgo events from O1,
O2, and O3a (number of
events with ln Bℓ

U less than
the value shown in the hor-
izontal axis). The largest
value is ln Bℓ

U = 1.15, which
is not large enough to provide
strong evidence for lensing.

are shown in Figure 3.7.
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Figure 3.7: Posterior distri-
butions of the Poisson mean
of the total number of detec-
tion (Λ), that of the num-
ber of lensed events (Λℓ) and
that of the fraction of lensed
events (u) obtained from the
O1, O2, and O3a observa-
tion runs of LIGO and Virgo.
Here the observed number
of events N = 54 and the
observed number of lensed
events is Nℓ = 0.

The largest value of the microlensing likelihood ratio obtained
from O1, O2, and O3a events is ln Bℓ

U = 1.15. We use this value
as a threshold to calculate the lensing fraction Jacobian. To do
that, we simulate the astrophysical populations of BBH mergers.
We use a power-law distribution model for the primary mass of
the black hole binary [45]. We also consider the black holes spin-
ning with component spins aligned/antialigned with the orbital
angular momentum. Furthermore, we consider three different cos-
mological redshift distributions of BBHs: uniform distribution in
comoving volume, as well as the ones predicted by the population
synthesis models, presented in Dominik et al. [3] and Belczynski
et al [5, 4]. And we assume that the binaries are distributed uni-
formly in the sky with isotropic orientations. Also, MACHOs are
approximated by point mass lenses and distributed uniformly in
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comoving volume. Lensing effects on the GW signal are computed
using Equation (3.1). Binaries producing a network SNR of 8 or
above in the LIGO–Virgo detectors are deemed detectable. We
then compute the fraction of detected lensed events that produce
an ln Bℓ

U that is larger than the highest ln Bℓ
U obtained from real

LIGO–Virgo events (i.e., 1.15). The fraction of simulated events
with ln Bℓ

U > 1.15 is shown as a function of the fDM in Fig-
ure 3.8 for different lens masses. This allows us to compute the
lensing fraction Jacobian du

dfDM
and thus, the posterior on fDM as

described by Equation (3.13).
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Figure 3.8: The fraction
of simulated events with ln
Bℓ

U greater than the thresh-
old value 1.15 is shown as a
function of the fDM. The left,
middle, and right plots cor-
respond to different assumed
redshift distributions of merg-
ers. In each plot, different
colours correspond to differ-
ent lens masses (shown in leg-
end). The solid, dashed, and
dotted lines correspond to the
lensing fraction estimated us-
ing the noise power spectral
densities of LIGO–Virgo de-
tectors from O3a, O2, and
O1 observing runs, respec-
tively. The error bars indicate
the counting errors due to
the finite number of samples
of simulated binaries and the
curves show quadratic poly-
nomial fits.
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As commonly done in the literature, we assume monochromatic
spectra for MACHOs [7, 8]. Figure 3.9 shows the posterior of fDM,
with masses given in the legend. The 90% upper limits are shown
as filled circles in each plot. The upper limits depend on the
assumed redshift distribution of BBHs, as well as the Bayesian
priors used in the analysis. Nevertheless, we are able to place
upper bounds on fDM of the order of 50%–80%. The 90% upper
limits are shown as a function of the lens mass in Figure 3.10.
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Figure 3.9: Posteriors on
fDM obtained by the non-
observation of microlensing
signatures in the 54 BBH
events detected in O1, O2,
and O3a. Posteriors shown
by solid (dotted) lines are ob-
tained by assuming flat (Jef-
freys) prior in Λ and Λℓ.
The left, middle, and right
plots correspond to differ-
ent assumed redshift distribu-
tion models of binary black
holes. In each subplot, dif-
ferent curves correspond to
different assumed lens masses
(shown in legends). The
90% credible upper limits are
shown by dots.
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from the stability of wide bi-
naries (WBs) and a star clus-
ter in the galaxy Eridanus II
(E) [7, 8].
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3.4 Constraints using the complete O3 data

The material presented in this section is part of a collabora-
tive work [46] of the LIGO-Virgo-KAGRA scientific collaboration.
Here, we constrain the compact dark matter fraction from the
non-observation of microlensing during the third observing run
(O3a + O3b) of LIGO-Virgo. The essential idea remains the
same here, i.e., if a significant fraction of dark matter is in the
form of compact objects, they will introduce detectable microlens-
ing signatures on the GW signals that we observe. And we use
the non-observation of microlensing effects on the GW signals
detected by LIGO and Virgo to constrain the fraction of dark
matter contributed by these compact objects in the mass range
∼ 102 − 105M⊙ [46].

Assuming that lensed and unlensed events occur as Poisson
processes, we compute the posterior distribution on the lensing
fraction (u := Λℓ

Λ ), defined as the ratio of Poisson means of lensed
events to the total number of detected events. This is then used
to compute the posterior of the fraction of compact dark matter
(fDM) [13]. We take that a total of N = 36+ 31(O3a & O3b) =
67 BBH mergers are detected during the O3 run, and none of
them is lensed (i.e., Nℓ = 0). We then estimate the posterior
distribution of the lensing fraction u. Finally, the posterior of
fDM can be computed using Equation (3.13).

We determine this Jacobian by simulating astrophysical popu-
lations of BBH mergers lensed by point mass lenses [13]. The con-
straints we obtain depend upon the assumed distributions of the
component masses, spins and the redshifts of the mergers, which
have considerable uncertainties. We assume that the masses are
distributed according to the Power-law + Peak model of Abbott
et al. [10], while the spins are assumed to be aligned/antialigned
with the orbital angular momentum. We consider five differ-
ent redshift distributions of the mergers: uniform distribution
in comoving volume, the power-law model of Abbott et al. [10],
the Madau-Dickinson model [9], as well as some representative
population-synthesis models given by Dominik et al. [3] and
Belczynski et al. [5, 4]. We also assume that the binaries are
distributed uniformly in the sky with isotropic orientations. In
our simulations, compact objects are approximated by point mass
lenses and distributed uniformly in comoving volume. Lensing
effects on the GW signal are computed using Equation (3.1). Bi-
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naries producing a network SNR of 8 or above in the LIGO–Virgo
detectors are deemed detectable. We then compute the fraction
of detected lensed events that produce an ln Bℓ

U larger than the
highest ln Bℓ

U obtained from real LIGO–Virgo events. The largest
value of the microlensing likelihood ratio obtained from O3 events
is ln Bℓ

U = 1.84. We compute the fraction of simulated events
with ln Bℓ

U ≥ 1.84 for different lens masses. This allows us to
compute the Jacobian du

dfDM
and thus the posterior on fDM. The

90% upper limits on fDM are shown as a function of the lens
mass (assuming a monochromatic spectrum) in Figure 3.11. In
Figure 3.12, the spread in the 90% upper limits on fDM are shown
for using 5 different source redshift distribution models. The grey
(black) shaded regions correspond to the spread in fDM upper
bounds computed assuming flat (Jeffreys) prior on Λ and Λℓ.
The upper and lower curves bounding the spreads correspond to
the most pessimistic (weakest) and optimistic (strongest) upper
limits, as determined from the set of assumed redshift distribu-
tions, in each mass bin.
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Figure 3.11: 90% upper
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els for BBH mergers: Bel-
czynski et al. [5], Do-
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Λℓ.
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on Λ and Λℓ. The upper
and lower curves bounding
the spreads correspond to the
most pessimistic (weakest)
and optimistic (strongest) up-
per limits, as determined
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from the stability of wide bi-
naries (WBs) and a star clus-
ter in the galaxy Eridanus II
(E) [7, 8].
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Later, we will observe that as the number of detected GW sig-
nals increases and assuming no lensing has been detected, the
constraints on compact dark matter improve (see Chapter 5).
With an increase in the total GW events in the O3 run (i.e., 67)
compared to the O1-O2-O3a runs (i.e., 54), we would expect the
constraints to improve. However, we can see that the constraints
achieved from the O3 search (Figure 3.11) haven’t improved sig-
nificantly compared to the O1-O2-O3a search (Figure 3.10). One
reason for this is that there was a louder event in O3b, which
caused a statistical fluctuation in the constraints inferred. This
observation leads us to modify our formalism to search for com-
pact dark matter without relying on a specific choice of the thresh-
old value of the Bayes factor to distinguish GW lensed signals
from their unlensed counterparts. In the next chapter, we will
explore how we can constrain compact dark matter from the
microlensing signature of GW events in a threshold-independent
way.





4 | Constraints on compact dark mat-
ter from GW microlensing in a threshold-
independent way

In Chapter 3, we developed a formalism to obtain a posterior
distribution of the compact dark matter fraction fDM from the
non-observation of microlensing signatures in GW events. Fur-
ther, we presented the obtained upper limits on fDM using the
BBH events from the first three observing runs of LIGO and
Virgo. However, the method described there depends on the
choice of the threshold value of the Bayes factor, which comes
from the maximum observed value of the Bayes factor from the
GW signals detected. Small fluctuations in the loudest value of
the Bayes factor from the observations (even when the events are
unlensed) can cause fluctuations in the upper limits derived (see,
e.g., the difference between Figure 3.10 and Figure 3.11). Here we
develop a Bayesian formalism to obtain the posterior on the lens-
ing fraction from the data in a threshold-independent way. This is
based on the formalism developed by Farr et al. [47] and Kapadia
et al. [48] to estimate the merger rate of compact binaries from
GW searches. We also apply this formalism to derive posteriors
on the compact dark matter fraction using the O1, O2, and O3
data. These upper limits are more robust as they do not depend
on the specific threshold of the microlensing Bayes factor. We
find that the constraint on the fraction of compact dark matter
in the mass range ∼ 102 − 105M⊙ to be less than ≃ 50% − 80%
(details depend on the assumed source population properties and
the Bayesian priors).
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4.1 Microlensing signatures in LIGO-Virgo binary
black hole events

As described in Chapter 3, we model the microlensing effect
on a GW signal due to a point mass lens using Equation (3.1).
And similarly, as done before, given the data d containing a GW
signal and models of (micro-)lensed and unlensed waveforms (Hℓ

and Hu), we can compute the Bayesian likelihood ratio between
the “(micro-)lensed” hypothesis Hℓ and “unlensed” hypothesis
Hu using Equation (3.2).

Here we use our previous results (i.e., the ln Bℓ
U values) [13]

of the microlensing search on the 18 BBH events reported by
the LIGO-Virgo Collaboration [33], Zackay et al. [35, 36] and
Venumadhav et al. [37] from the first two observing runs, and
the results of the same on the 36 binary black hole events from
the first half of the third observing run (O3a) [44] reported by the
LIGO-Virgo-KAGRA Scientific Collaboration [44]. In addition
to that, we also make use of the results of the microlensing search
on the 31 binary black hole events from the second half of the third
observing run (O3b) [49] reported by the LIGO-Virgo-KAGRA
Scientific Collaboration [46]. This is the most comprehensive
dataset so far.

Figure 4.1 shows the distribution of lnBℓ
U from the 85 binary

black hole events detected during the O1, O2, and O3a+O3b.
The largest lnBℓ

U value here is 1.84. All the events here are not
claimed to be unlensed based on their lnBℓ

U values. Instead, we
look at the relative weight of these events of being lensed or un-
lensed. This is done by making use of the expected distributions
of lnBℓ

U from lensed and unlensed events. From this, we put con-
straints on the fraction of compact objects forming dark matter,
which we discuss in the next section.
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4.2 Threshold-independent method to compute the
lensing fraction

The method relies on the fact that if the background (unlensed)
and foreground (microlensed) distributions of the ranking statistic
(here, Bℓ

U) are known or estimated, then the joint probability dis-
tribution of the Poisson expected counts of the background (ΛU)
and foreground (Λℓ) can be determined given a set of events of
which the ranking statistics are known. In other words, given a
set of x⃗ = {lnBℓ

U}, we can evaluate the joint probability distri-
bution of the unlensed (ΛU) and lensed (Λℓ) Poisson expected
counts. The two-component likelihood has the following form

p(x⃗|ΛU, Λℓ) ∝ e−ΛU−Λℓ

N∏
j=1

[ΛUb(xj) + Λℓf(xj)], (4.1)

where x⃗ = {xj}N
j=1, are the ranking statistics (here, x = ln Bℓ

U)
of the GW events under consideration, and b(x⃗) and f(x⃗) are the
background and foreground (normalised) distribution functions,
respectively, evaluated at xj , i.e., b(xj) ≡ bj = p(xj |unlensed)
and f(xj) ≡ fj = p(xj |lensed). So, using Bayes theorem, the
joint posterior of the background and foreground Poisson ex-
pected counts, given a set of ranking statistics from N events,
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is

p(ΛU, Λℓ|x⃗) ∝ p̃(ΛU, Λℓ)e
−ΛU−Λℓ

N∏
j=1

[ΛUb(xj) + Λℓf(xj)],

(4.2)
where p̃(ΛU, Λℓ) is the joint prior of the background and fore-
ground Poisson means.

To evaluate Equation (4.2), in our analysis, we use two different
choices of prior:

p̃(ΛU, Λℓ) = constant (flat),

p̃(ΛU, Λℓ) ∝ 1√
ΛUΛℓ

(Jeffreys).
(4.3)

To estimate b(xj) and f(xj), we simulate astrophysical pop-
ulations of unlensed BBH mergers as well as those lensed by
point mass lenses. We consider the power-law + peak (PP)
model [10] for the binary mass distribution. For the binary red-
shift distribution, we consider the Madau-Dickinson star forma-
tion rate [9]. We also assume spinning black holes with component
spins aligned/antialigned with the orbital angular momentum.
And we consider that the binaries are distributed uniformly in the
sky with isotropic orientations. With these binary configurations,
we generate ∼ 1000 BBH GW signals (with the detectability cri-
teria of SNR ≥ 8). To find the background distribution of ln Bℓ

U
(b(x⃗)), we inject these signals in Gaussian noise with the noise
PSD from O3b [30], and compute the Bayesian evidence with both
unlensed and lensed templates. Similarly, to get the foreground
distribution of ln Bℓ

U (f(x⃗)), we introduce gravitational lensing
effects on these signals with the lens parameters Mz

ℓ and y and
compute the Bayesian evidence using both unlensed and lensed
templates.

Figure 4.2 shows the background and foreground distributions
of ln Bℓ

U. To get an estimate of b(x⃗) and f(x⃗), we use kernel
density estimation (KDE) method. Figure 4.3 shows the joint
posterior on the Poisson expected counts of lensed (Λℓ) and un-
lensed (ΛU) events given the set of ln Bℓ

U values of the 85 GW
events detected during the first three observing runs of LIGO-
Virgo. The 2D joint probability contours show strong support of
the signals being unlensed for both choices of the prior, i.e., the
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Figure 4.3: Joint poste-
rior on the Poisson expected
counts of lensed (Λℓ) and un-
lensed (ΛU) events given the
set of ln Bℓ

U values of the
85 GW events detected by
LIGO-Virgo till O3b. The
2D joint probability contours
show a peak at ΛU = 85 and
Λℓ = 0, supporting the sig-
nals being unlensed.

peak is at 85 in the case of ΛU and at 0 in the case of Λℓ.

Once the joint posterior probability is known, we can use that
to calculate the posterior on the fraction of lensed events u :=

Λℓ
ΛU+Λℓ

= Λℓ
Λ , where Λ = ΛU + Λℓ. To do that, we use the ratio

distribution, which says that given two positive random variables,
y1 and y2, with joint distribution g(y1, y2), the distribution of the
ratio of these two variables goes as

p(r ≡ y2
y1

) =
∫ ∞

0
y1 g(y1, ry1) dy1. (4.4)
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So, in the case of lensing fraction (u) distribution,

p(u ≡ Λℓ

Λ
|x⃗) =

∫ ∞

0
Λ g(Λ,uΛ|x⃗) dΛ. (4.5)

Since we know the joint distribution of ΛU, Λℓ, i.e., p(ΛU, Λℓ|x⃗),
we need to make a variable transformation to find g(Λ,uΛ|x⃗).
Now, for a general coordinate transformation, (x, y) → (x′, y′),
it follows

p′(x′, y′) =

∣∣∣∣ ∂(x, y)
∂(x′, y′)

∣∣∣∣ p(x, y)

=⇒ p(x, y) =
∣∣∣∣∂(x′, y′)

∂(x, y)

∣∣∣∣ p′(x′, y′)

= mod

∣∣∣∣∣∣
∂x′
∂x

∂x′
∂y

∂y′

∂x
∂y′

∂y

∣∣∣∣∣∣ p′(x′, y′).

(4.6)

Here, we have (ΛU, Λℓ) → (Λ,uΛU) = (ΛU + Λℓ,u(ΛU +

ΛU)). In this case, the determinant is 1. So, this implies p′(x′, y′) =

p(x, y). And this gives g(Λ,uΛ) = p(ΛU, Λℓ). Finally,

p(u|x⃗) =
∫ ∞

0
Λ p(ΛU, Λℓ|x⃗) dΛ. (4.7)

Figure 4.4 shows the Posterior distribution of u obtained from
LIGO-Virgo events from the O1, O2, and O3a+O3b observation
runs, assuming two different choices of prior distributions: flat
and Jeffreys. Once we know the posterior distribution of u, we
can use that to translate to the posterior on fDM.

p(fDM|x⃗) = p(u|x⃗)
∣∣∣∣ du
dfDM

∣∣∣∣ , (4.8)

where du
dfDM

is the Jacobian of the lensing fraction u and the
compact dark matter fraction fDM.

We determine this Jacobian by simulating astrophysical popu-
lations of BBH mergers and point mass lenses, closely following
the steps as described in Section 3.2 of Chapter 3. We consider
four different cosmological redshift distributions of BBHs: uni-
form distribution in comoving volume, the ones predicted by the
population synthesis models presented in Dominik et al. [3] and
Belczynski et al. [4, 5], as well as the Madau-Dickinson star for-
mation rate [9]. We use the power-law + peak model of Abbott
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Figure 4.4: Posterior dis-
tribution of u obtained from
the LIGO-Virgo events from
the O1, O2, O3a+O3b ob-
servation runs, assuming two
different choices of prior dis-
tributions for p̃(ΛU, Λℓ), flat
and Jeffreys. Here the ob-
served number of events N =

85.

et al. [10] for the binary mass distribution. We consider spin-
ning black holes with component spins aligned/antialigned with
the orbital angular momentum. The binaries are distributed uni-
formly in the sky with isotropic orientations. We also consider
that compact objects are approximated by point mass lenses and
are distributed uniformly in comoving volume. Also, lensing ef-
fects on the GW signal are computed using Equation (3.1). Bi-
naries producing a network SNR of 8 or above in the LIGO-Virgo
detectors are considered detectable. The probability that GWs
from a binary located at a redshift of zs is lensed is computed
from the microlensing optical depth (see Equation (3.16)), which
depends on fDM. This gives the number of lensed events (NL)
based on the lensing probability (PL). However, in order to quan-
tify identifiable lensed events, in our previous method as described
in Chapter 3, we considered those events, out of NL, crossing
the Bℓ

U-threshold value. Here we instead compute the posterior
probability that an event j, with foreground and background dis-
tribution values f(xj) and b(xj), evaluated at the event’s rank-
ing statistic xj

1, is identifiable lensed, given the data x⃗. In 1Here also, since the calculation of
the lensing likelihood ratio Bℓ

U using
nested sampling from all the simulated
signals is computationally expensive,
we use approximated analytical values
of Bℓ

U that are expected to be accu-
rate in the high SNR regime [11, 12].
We explore the justification of this as-
sumption in Appendix A.3. However,
here we consider the approximations
from Cornish et al. [11] and Vallis-
neri [12], and show the results follow-
ing these two approximations.

other words, we assign a new lensing probability P j
ℓ to an event

j to characterise its identifiable lensing signature, and the sum of
which over NL events gives the lensing fraction u, i.e.,

u =
NL∑
j=1

P j
ℓ , (4.9)
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where

P j
ℓ (xj |x⃗) =

∫ ∞

0

∫ ∞

0
p(ΛU, Λℓ|x⃗)

Λℓf(xj)

ΛUb(xj) + Λℓf(xj)
dΛUdΛℓ.

(4.10)

This way, we don’t need to consider any Bℓ
U-threshold value

to identify a signal to be lensed. Instead, P j
ℓ gives the lensing

probability for an event, which is defined as the probability for
xj to belong to the foreground distribution f(x⃗).

The lensing fraction is shown as a function of fDM in Fig-
ure 4.5(a) and Figure 4.5(b). The difference comes with the choice
of the approximate Bayes factors used in the astrophysical simu-
lations. In producing Figure 4.5(a), we have used the approxima-
tion from Cornish et al. [11] (see Equation (A.6)), while in the
case of Figure 4.5(b), we have used the Vallisneri approximation
[12] (see Equation (A.8)) 2. 2The increase in the lensing frac-

tion using the Vallisneri approxima-
tion as compared to the Cornish et al.
one is because of the fact that the ⟨xV⟩
is always greater than xC [C: Cornish,
V: Vallisneri]. And hence, the distri-
bution of xV will have a more positive
peak than xC, where the exact fore-
ground distribution (coming from PE)
of x dominates (see Appendix A.3 for
details.)

This data can be used to compute the Jacobian du
dfDM

. As com-
monly done in the literature, we assume monochromatic spectra
for MACHOs [7, 8]. Figure 4.6 shows the posterior of fDM for
different monochromatic choices of lens masses and different joint
prior in ΛU and Λℓ (shown in the legend). Unless otherwise
specified, from now on, we show results using the Vallisneri ap-
proximation of Bayes factors. The 90% upper limits are shown
as filled circles in each plot. The upper limits depend on the as-
sumed redshift distribution of binary black holes as well as the
Bayesian priors used in the analysis. Nevertheless, we are able to
place upper bounds on fDM of the order of ≃ 50% − 80%. Also,
the 90% upper limit of fDM as a function of the lens mass, i.e.,
the exclusion region of fDM is shown in Figure 4.7.

We also present the plot for the 90% upper limit of fDM as a
function of the lens mass considering the GW events till O3a to
compare it with our previous result [13] as described in Section 3.3
of Chapter 3 (see Figure 3.10), using the threshold-dependent
method. This is shown in Figure 4.8. Here, to calculate the
lensing fraction Jacobian, approximate xC has been used. Note
that these results are weaker as compared to our previous find-
ings [13] (see Figure 3.10). The reason behind this is both fore-
ground and background distributions of lnBℓ

U peak at 0 (see Fig-
ure 4.2). Hence, the foreground distribution has strong support
for the events with lnBℓ

U close to 0. Also, the distribution of xC

peaks around 0 (see Figure A.8 of Appendix A.3 for more details).
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Thus, it effectively increases the lensing probability, and hence,
the lensing fraction (see the difference between Figure 3.8 and
Figure 4.5(a)). Hence, the constraints become weaker.
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Figure 4.5: The top panel
shows the lensing fraction as
a function of fDM using the
approximation of the Bayes
factor given by Cornish et
al. [11] and the bottom panel
shows the same computed us-
ing the approximation given
by Vallisneri [12]. See Ap-
pendix A.3 for their relevant
expressions and comparisons.
Different columns of the plots
correspond to different as-
sumed redshift distributions
of mergers. In each plot,
different colours correspond
to different lens masses, and
different linestyles correspond
to the lensing fraction esti-
mated using different reali-
sations of noise power spec-
tral densities (PSD) of LIGO-
Virgo detectors (shown in leg-
end). The error bars indicate
the counting errors due to the
finite number of samples of
simulated binaries, and the
curves show quadratic poly-
nomial fits.
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Figure 4.6: Posteriors on
fDM obtained by the mi-
crolensing signatures of the 85
BBH events detected in O1,
O2, and O3a+O3b. Posteri-
ors shown by solid (dotted)
lines are obtained by assum-
ing flat (Jeffreys) joint prior
in ΛU and Λℓ. The differ-
ent columns of the plot cor-
respond to different assumed
redshift distribution models
of binary black holes. In each
subplot, different curves cor-
respond to different assumed
lens masses (shown in leg-
ends). The 90% credible up-
per limits are shown by dots.
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Figure 4.7: 90% upper lim-
its on fDM obtained from
the O1, O2, and O3a+O3b
events, assuming monochro-
matic mass spectrum for MA-
CHOs (lens mass shown in
the horizontal axis). The
left (right) panel corresponds
to bounds computed assum-
ing joint prior being flat (Jef-
freys) on ΛU and Λℓ. In each
panel, four different exclusion
regions correspond to four as-
sumed models of the redshift
distribution of binary black
holes, as shown in the legend.
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Figure 4.8: 90% upper lim-
its on fDM obtained from the
O1, O2, and O3a events, as-
suming monochromatic mass
spectrum for MACHOs (lens
mass shown in the horizontal
axis). The left (right) panel
corresponds to bounds com-
puted assuming joint prior
being flat (Jeffreys) on ΛU
and Λℓ. In each panel,
four different exclusion re-
gions correspond to four as-
sumed models of the redshift
distribution of binary black
holes, as shown in the legend.
Here, to calculate the lensing
fraction Jacobian, approxi-
mate xC has been used. Note
that these results are weaker
as compared to our previ-
ous findings [13] (see Fig-
ure 3.10). The reason be-
hind this is both foreground
and background distributions
of lnBℓ

U peak at 0. Hence, the
foreground distribution has
strong support for the events
with lnBℓ

U close to 0, and
the distribution of xC also has
a peak around 0 (see Fig-
ure A.8). Thus, it effectively
increases the lensing proba-
bility, and hence, the lens-
ing fraction. Hence, the con-
straints become weaker.
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4.3 Comparison between the threshold-dependent and
threshold-independent methods

In this section, we compare the threshold-dependent and -
independent ways of constraining compact dark matter. Since the
former method depends on the choice of the threshold of ln Bℓ

U
to identify a signal as lensed, and this comes from the maximum
value of the observed microlensing likelihood ratio obtained from
GW signals, this may change whenever we find a larger ln Bℓ

U with
a new set of GW signals detected, resulting in a rapid variation
in the fDM upper bound. On the other hand, the latter method
doesn’t depend on any particular choice of ln Bℓ

U threshold, re-
sulting in a smoother variation in the fDM upper bound with the
number of detected GW events. Figure 4.9 shows the comparison
between these two methods. The upper plot shows the chrono-
logical order of observed GW events and the lower plot shows the
variation of fDM with the observed number of detected GW events
in the case of a 1000 M⊙ lens mass. The vertical grid lines show
the presence of a louder event with a higher Bℓ

U value than the
previous ones, and there, we can see rapid jumps in the fDM up-
per bound in the case of the threshold-independent method. We
also see that the threshold-independent method offers a smoother
variation of fDM compared to the threshold-dependent method.
The sudden spikes in the fDM upper bound variation in the case of
the threshold-independent method near the interface of O3a and
O3b, and in the middle of O3b may arise due to the presence of
louder events, which can be considered as statistical fluctuations.
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Figure 4.9: Comparison
between the threshold-
dependent and threshold-
independent methods: Vari-
ation of fDM upper bound
with the number of detected
GW events. The upper plot
shows the chronological order
of observed GW events and
the lower plot shows the
variation of fDM with the
observed number of detected
GW events in the case of
a 1000 M⊙ lens mass. The
vertical grid lines show the
presence of a louder event
with a higher Bℓ

U value than
the previous ones, and there,
we can see rapid jumps in the
fDM upper bound in the case
of the threshold-independent
method. We also see that
the threshold-independent
method offers a smoother
variation of fDM compared
to the threshold-dependent
method. The sudden spikes
in the fDM upper bound
variation in the case of
the threshold-independent
method near the interface of
O3a and O3b, and in the mid-
dle of O3b may arise due to
the presence of louder events,
which can be considered as
statistical fluctuations.





5 | Summary and Discussion

GW microlensing potentially provides a new probe to constrain
compact dark matter. We have shown how, from the nonobser-
vation of microlensing signatures, we can constrain the compact
dark matter fraction. We also developed a threshold-independent
way of obtaining these constraints. Though the constraints that
we get are not strong enough as compared to the existing con-
straints from other observations, with the upcoming third gen-
eration of GW detectors that will detect hundreds of thousands
of BBH mergers every year by probing the high redshift universe
(zs ≥ 15), the constraints will improve by orders of magnitude.
The expected fDM upper limits from the near-future observations
are shown in Figure 5.1 (for lens mass 103M⊙) as a function of the
number of detected BBH mergers, assuming that none of them
shows signatures of lensing.

Here, we point out some limitations of our study. We assume
that the GW signals are (possibly) lensed by only one microlens.
However, if fDM ≃ 1, a small number of sources at high redshifts
(zs ≥ 1.5) could be potentially lensed by more than one lens.
Even then, we expect the dominant lensing effect on the waveform
will be due to a single lens. The loss of sensitivity of our search due
to neglecting the contributions of additional lenses is expected to
be negligible. We approximate MACHOs as isolated point masses.
Since these microlenses are embedded in the lensing potential of
the galaxy, the macrolens can cause additional effects when the
microlenses are within the Einstein radius of the macrolens [50].
This is especially important when the microlenses are very close
to the image locations of the macrolens, which is expected to
happen only for a small fraction of MACHOs. We also neglect any
additional effect of lensing by substructures in dark matter halos
[51]. The clustering of MACHOs, which we neglect, is unlikely to
change our results significantly [52].
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Figure 5.1: Upper bounds
on fDM expected from fu-
ture observing runs, shown
as a function of the cumula-
tive number of detected BBH
events (for lens mass 103M⊙).
The black (grey) curves show
the bounds computed assum-
ing flat (Jeffreys) prior on
Λ and Λℓ. The number of
detected events in O2, O3a,
and O3b are shown as vertical
lines. We also show the ap-
proximate number of cumula-
tive detectable events (∼ 300)
in the fourth observing run
(O4). The expected bounds
fall faster with increased sen-
sitivity anticipated in the up-
coming observing runs. We
have used the redshift dis-
tribution of binary mergers
given by Belczynski et al. [5]
to compute these expected
bounds.

Also, to estimate the background and foreground distribution
of the Bayes factors (b(x⃗) and f(x⃗), x = ln Bℓ

U), we have done
only ∼ 1000 injection studies. This gives a crude estimate of
these distributions. To get a more accurate estimate of the same,
we should increase the number of sample points by doing more
injection studies. This is currently limited by the computational
expense of performing complete Bayesian parameter estimation
calculations. Additionally, for the estimation of b(x⃗) and f(x⃗),
we have used the O3b noise PSD sensitivity only. This result is
used in the astrophysical simulations, where all noise PSD real-
isations for all the observing runs (O1, O2, O3a, and O3b) are
used. To smooth it out, we should repeat the same process of
estimating the background and foreground distribution of ln Bℓ

U
using the noise PSD for the corresponding observing runs. How-
ever, since this is computationally expensive, we have left that
as a future work. Likewise, to estimate the background and fore-
ground distribution of ln Bℓ

U, only one choice of binary black hole
source redshift distribution (Madau-Dickinson star formation rate
[9]) has been considered. However, we have used the same dis-
tribution for all four redshift distributions in our astrophysical
simulations. Ideally, we should repeat the same process of esti-
mating the background and foreground distribution of ln Bℓ

U for
all the redshift distributions considered. But since this task is
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also computationally expensive, we have skipped it too. And we
keep it as a future work to explore and to check if it changes
the result significantly. Besides, we have chosen ymax = 3.0 (the
maximum impact parameter, in units of the Einstein angle θE,
within which the lens can potentially produce the desired lensing
effect), assuming no lensing effect will be detectable beyond this
point (see Figure 4.2). To a good approximation, this serves as a
very good assumption (see Figure 5.2) However, this needs to be
verified by extensive simulations, which, we also keep as a future
work to explore.

Figure 5.2: Scatter plot of
the microlensing Bayes factor
lnBℓ

U from simulated BBH
events, shown as a function of
the detector frame lens mass,
M z

ℓ and impact parameter, y.
The result comes from fully
Bayesian parameter estima-
tion runs of the ∼ 1000 mi-
crolensed events, used to de-
termine the foreground distri-
bution of ln Bℓ

U. The colour
bar shows the values of the
exact ln Bℓ

U. Here we see
that the events with very high
ln Bℓ

U values, where only the
foreground distribution domi-
nates (see Figure 4.2), are for
small values of y, which sug-
gests that ymax = 3 is a rea-
sonable choice.

Notwithstanding these caveats, we are able to put an upper
bound on fDM of the order of ≃ 50% − 80% from the (non-
observation of) microlensing signatures in the detected GW BBH
events. While the current constraints are modest, these will be
improved significantly in the near future. In this decade, Ad-
vanced LIGO detectors will be upgraded to their A+ (advanced
LIGO plus)[53] and A# (LIGO sharp)[54] configurations. Simi-
lar upgrades are planned for the Advanced Virgo detector as well.
KAGRA and LIGO-India will join the international GW detector
network this decade. This network will observe thousands of com-
pact binary mergers during their operation, out to a redshift of
∼ 3. This will significantly improve the microlensing constraints
on compact dark matter.

A proposal for installing new detectors in the existing LIGO
facilities in the next decade is being actively considered. This
facility, called Voyager [55], will increase the detector horizon fur-
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ther by a factor of a few, resulting in an order of magnitude
increase in the detection rates of compact binary mergers. On
a longer horizon, the next-generation GW detectors, such as the
Einstein Telescope [56] and Cosmic Explorer [57] will provide an
order of magnitude improvement in the detector sensitivity. Such
detectors will observe millions of compact binary mergers during
their operation 1. In the end, it is fair to say that GW microlens- 1The upcoming space-based detec-

tor LISA will observe tens or hun-
dreds of supermassive BH (SMBH) bi-
naries [58]. Since these signals have
wavelengths of millions of km, other
SMBHs they encounter on their way
can produce microlensing effects on
them. This provides a potential op-
portunity to constrain the abundance
of such SMBH lenses. However, due to
the low expected event rates for such
events, the expected constraints are
likely to be weak.

ing will be opening up a new and powerful probe into the nature
of dark matter.



A | Appendix

A.1 Microlensing optical depth

Here, we present a detailed calculation of the microlensing op-
tical depth, which contains the information of the compact dark
matter fraction fDM.

dχℓ

χℓ

χs

y0θE

Compact object lenses
GW source

Observer

Area of influence

Figure A.1: Diagram of the
area of influence for lensing.
The compact object lenses are
considered to be distributed
following a uniform comoving
volume distribution. We look
at sources confined within a
conical region of angle y0θE,
within which the lens can po-
tentially produce a desired
lensing effect.

Figure A.1 shows the diagram of the area of influence for lens-
ing in the 2D cross-sectional plane. The original problem is in 3D.
We consider that the compact object lenses are distributed fol-
lowing a uniform comoving volume distribution. We also assume
that the mass function of the compact object lenses is monochro-
matic. We look at sources situated within a distance y0 (a fiducial
dimensionless radius of influence of the lens, or the maximum im-
pact parameter (in units of the Einstein angle θE), within which
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the lens can potentially produce a desired lensing effect) from the
line-of-sight of the observer. So, we look at the conical shaded
region bounded by the angle y0θE. Now, the average number of
lenses between zℓ and zℓ + dzℓ (or equivalently, between the co-
moving distances χℓ and χℓ + dχℓ) encountered by the source at
redshift zs (or equivalently, at a comoving distance χs) is given
by the area of the horizontal hatched region, π(y0θEχℓ)

2 times
the number density of lenses, n(χℓ) times dχℓ, i.e.,

dτ (χℓ) = π(y0θEχℓ)
2n(χℓ)dχℓ =

dτ
dχℓ

dχℓ, (A.1)

where
θ2

E =
4GM
c2

Dℓs

DℓDs
.

Above, M is the mass of the lens, Dℓ and Ds are the angular
diameter distances to the lens and source, respectively, from the
observer, while Dℓs is the angular diameter distance from the lens
to the source.

Assuming that a fraction fDM of the dark matter is comprised
of compact objects, the number density of compact objects (each
of mass M) is given by

n =
ρ

M
,

where ρ = ΩDMfDMρcr is the mass density of compact objects in
the units of the critical energy density ρcr =

3H2
0

8πG of the universe.
Here ΩDM is the energy density of the universe in the form of
dark matter. Thus,

n =
fDMΩDM

M

3H2
0

8πG .

Using this, and keeping in mind that χℓ = Dℓ(1 + zℓ), the
differential optical depth becomes

dτ
dχℓ

= πy2
0

4GM
c2

Dℓs

DℓDs
(Dℓ(1 + zℓ))

2 fDMΩDM
M

3H2
0

8πG

=
3
2
H2

0
c2
fDMΩDMy

2
0(1 + zℓ)

2DℓsDℓ

Ds
.

From the definition of χℓ as a function of zℓ, we can show that

dχℓ

dzℓ
=

c

H0

1
E(zℓ)

,
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where E(z) ≡
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ; ΩM, Ωk, and
ΩΛ being the energy density of the matter, curvature of space,
and dark energy of the universe, respectively.

Hence,

dτ
dzℓ

=
dτ
dχℓ

dχℓ

dzℓ

=
3
2
H0
c
fDMΩDMy

2
0
(1 + zℓ)

2

E(zℓ)

DlsDℓ

Ds
.

Hence, the average number of lenses encountered by a source
at a redshift zs is

τ (zs) =
∫ zs

zℓ=0

dτ
dzℓ

dzℓ

=
3
2
H0
c
fDMΩDMy

2
0

∫ zs

0

(1 + zℓ)
2

E(zℓ)

DlsDℓ

Ds
dzℓ

=⇒ τ (zs) =
3
2
H2

0
c
fDMΩDMy

2
0

∫ zs

0

(1 + zℓ)
2

H(zℓ)

DlsDℓ

Ds
dzℓ

[
H(zℓ) = H0E(zℓ)

]
.

(A.2)

Now, the actual number of lenses, Nℓ, encountered by a source
at zs, is given by a Poisson distribution of mean τ (zs):

P (Nℓ | τ (zs)) =
e−τ (zs)τNℓ(zs)

Nℓ!
. (A.3)

So, the probability of the source to be unlensed (Nℓ = 0) is

P (Nℓ = 0 | τ (zs)) = e−τ (zs). (A.4)

And, the probability of the source to be lensed (Nℓ ̸= 0) is

P (Nℓ ̸= 0 | τ (zs)) = 1 − e−τ (zs). (A.5)

When τ ≫ 0, there is an appreciable probability of the source
being lensed by more than one lens. But we neglect this. To
justify our assumption, we look at the probability distribution of
the average number of lenses, P (Nℓ | τ (zs)) as a function of source
redshift as shown in Figure A.2. We have considered fDM = 1
here. We find that the probability for Nℓ ≥ 2 is small in the given
redshift range. Here, zs = 1.5 is the detector horizon distance in
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the O3 observing run. Hence, we consider lensing by a single lens
only.
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Figure A.2: The probabil-
ity P (Nℓ | τ (zs)) of observ-
ing Nℓ number of lenses as
a function of source redshift.
We have considered fDM = 1
here. We see that the prob-
ability for Nℓ ≥ 2 is small
in the given redshift range.
Here, zs = 1.5 is the detector
horizon distance in the O3 ob-
serving run. Hence, we con-
sider lensing by a single lens
only.
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A.2 Bayesian model selection and injection studies

Here, we provide some additional details on the Bayesian model
selection, performed to compute the likelihood ratio Bℓ

U, which,
in turn, is used to determine whether a GW event contains sig-
natures of microlensing or not. Figure A.3 (left panel) shows the
posterior distributions of redshifted lens mass Mz

ℓ (marginalised
over all other parameters) and the Bayesian likelihood ratio be-
tween lensed and unlensed hypotheses obtained from the binary
black hole signals observed during O1 and O2. None of the likeli-
hood ratios is significant enough to favour the lensing hypothesis.
The posterior distributions do not always exhibit a peak at zero
lens mass because of the free source position variable y. Higher
values of y diminish the lensing effect, leading to a broad lens
mass posterior distribution instead. In order to check the accu-
racy of our Bayesian model selection, we perform a simulation
study where an unlensed GW signal with redshifted component
masses mz

1 = 35.2M⊙, mz
2 = 31.7M⊙ (broadly consistent with

the GW150914 event) and SNR = 16.1 was added to Gaussian
noise with the noise PSD from O1. We then perform the Bayesian
model selection using both the lensed and unlensed GW signal
models. The true parameters of the simulated signal are well
recovered within a 90% credible interval of the posterior distri-
bution of the parameters. As expected, the Bayesian likelihood
ratio between lensed and unlensed hypotheses computed from this
simulated event is ln Bℓ

U = −0.2, showing no evidence of lens-
ing (Figure A.3, right panel). The recovered posterior on Mz

ℓ

is consistent with zero, as seen in the case of real events. We
also simulate a signal with the same source parameters, lensed
by a compact object with redshifted mass Mz

ℓ = 103.4M⊙ and
impact parameter y = 0.47, and repeat the same analysis on it.
Here we find that the lensing hypothesis is significantly preferred
(ln Bℓ

U = 26.7), as expected. The recovered posterior on Mz
ℓ

is also consistent with the injected lens mass (Figure A.3, right
panel).

In Figure A.4, Figure A.5, and Figure A.6, we show the cor-
ner plots of GW150914 signal, GW150914-like simulated unlensed
signal, and the simulated lensed signal whose component-mass pa-
rameters are very similar to GW150914, respectively. In the case
of GW150914 signal (Figure A.4) and GW150914-like simulated
unlensed signal (Figure A.5), the posterior of the lens mass shows
a railing behaviour towards the lower lens mass and the posterior
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of y gives no new information apart from the prior, consistent
with the hypothesis of the signals being unlensed. On the other
hand, the corner plot of the simulated lensed signal (Figure A.6)
shows the injected lens parameters (Mz

ℓ and y) are well recovered
within the 90% credible interval range. The injected parameters
are shown by the red lines in the plots.



101

GW
15

09
14

GW
15

10
12

GW
15

12
26

GW
17

01
04

GW
17

06
08

GW
17

07
29

GW
17

08
09

GW
17

08
14

GW
17

08
18

GW
17

08
23

GW
15

12
16

GW
17

01
21

GW
17

02
02

GW
17

03
04

GW
17

04
03

GW
17

04
25

GW
17

07
27

GW
17

08
17

A

0

1

2

3

4

5

lo
g 1

0(
M

z `/
M
�)

-0.3(-0.7) 0.0(0.0) 0.2(0.5) -0.0(-0.0) 0.1(0.2) 0.2(0.5) 0.1(0.2) 0.0(0.0) 0.2(0.5) -0.1(-0.2) 0.0(0.0) 0.0(0.0) -0.1(-0.2) 0.1(0.2) 0.0(0.0) 0.0(0.0) 0.1(0.2) 0.1(0.2)

Unle
ns

ed

Inj
ec

tio
n

Len
sed

Inj
ec

tio
n

0

1

2

3

4

5

-0.1(-0.2)11.6(26.7)

log10B`U(lnB`U)

Figure A.3: The left panel
shows the posterior distri-
butions of redshifted lens
mass M z

ℓ (violin plots) and
the Bayesian likelihood ra-
tio between lensed and un-
lensed hypotheses (top hor-
izontal axis) obtained from
the binary black hole signals
observed during O1 and O2.
None of the likelihood ratios
is significant enough to favour
the lensing hypothesis. The
right panel shows the same,
estimated from a simulated
lensed/unlensed binary black
hole event with redshifted
masses mz

1 = 35.2M⊙, mz
2 =

31.7M⊙ (broadly consistent
with the GW150914 event)
and SNR = 16.1. For the sim-
ulated lensed event, the lens-
ing hypothesis is significantly
preferred (ln Bℓ

U = 26.7), and
the posterior on lens mass is
consistent with the injected
value M z

ℓ = 103.4M⊙. For
the simulated unlensed event,
ln Bℓ

U = −0.2 is consistent
with the values derived from
real events shown in the left
panel (within noise-induced
fluctuations).
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Figure A.4: Corner plot
of GW150914 signal recov-
ered using lensed templates.
The posterior of the lens mass
shows a railing behaviour to-
wards the lower lens mass,
and the posterior of y gives no
new information apart from
the prior, supporting the sig-
nal being unlensed.
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Figure A.5: Corner plot of a
GW150914-like injected (un-
lensed) signal recovered with
lensed templates. The in-
jected parameters are shown
by the red lines. The pos-
terior of the lens mass shows
a railing behaviour towards
the lower lens mass, and the
posterior of y gives no new
information apart from the
prior. This simulated signal
is broadly consistent with the
real GW150914 signal.
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Figure A.6: Corner plot
of a lensed GW signal with
the injected lensed param-
eters M z

ℓ = 103.4M⊙ and
y = 0.47, along with all
the other injected parameters
shown by the red lines. The
lensed parameters are well re-
covered within the 90% credi-
ble interval. The component
redshifted masses are mz

1 =

35.2M⊙, mz
2 = 31.7M⊙ (or,

Mz = 29.06M⊙, q = 0.9),
very similar to the GW150914
event. The SNR of the signal
is 16.1.
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A.3 Approximate Bayes factor for the microlensed
events

In this section, we discuss the validity of using approximate
Bayes factors over the exact ones from the parameter estima-
tion runs. Since calculating the lensing likelihood ratio, Bℓ

U using
Nested Sampling from all the simulated signals is computation-
ally expensive, we use approximations of Bayes factors that are
expected to be accurate in the high SNR regime [11, 12]. We start
with the approximation of Bℓ

U presented in Cornish et al. [11].
For a given detector (d), the Bayes factor between two hypotheses
((micro-)lensed and unlensed) is given by

xC
(d) ≈ (1 − FF) ρ2 [C : Cornish], (A.6)

where x = ln Bℓ
U, ρ = SNR of the signal, and FF is the fit-

ting factor of the unlensed waveform family h(Θ) with the lensed
waveform hℓ, defined in Equation (3.20). The combined Bayes
factor for all the detectors considered is

xC =
∑

d

xC
(d). (A.7)

It is worthwhile to mention here that in the wave optics regime
that we consider, the amplification of the signals is not substan-
tial, unlike in the geometric optics regime, except when the im-
pact factor y is very small. Events with low-impact factors form
only a small fraction of the population. Figure A.7 shows that
the bias in ρ2 incurred using this approximation is less than 10%
for over 90% of the lensed signals. Hence, the approximation
(hℓ|hℓ) ≃ (h|h) (or, ρ2

ℓ ≃ ρ2) is a good one.
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Figure A.7: Left plot: Scat-
ter plot of the SNR of the
lensed waveforms (ρℓ) and
the corresponding unlensed
waveforms (ρ) obtained from
a population of simulated
microlensed events. (The
impact parameter range is
shown in the colourbar and
the lens mass is chosen in the
range 102 − 105M⊙). In the
wave optics regime, the am-
plification of the signals is not
substantial, unlike in the ge-
ometric optics regime, except
when the impact factor y is
very small. Events with low-
impact factors form only a
small fraction of the popula-
tion. The bias in ρ2 incurred
using this approximation is
less than 10% for over 90% of
the lensed signals (right plot).

Also, according to Vallisneri [12], for a given detector (d), the
expression for the Bayes factor is 1

1The actual expression depends on
some constants and a few other quan-
tities, which depend on the extra pa-
rameters due to lensing, e.g., the prior
and posterior ranges of these parame-
ters. It also depends on the prior odds
of the hypotheses considered, Occam
factors, etc. However, since the ra-
tios of priors and the Occam factors
are the same in both foreground and
background, we work with a rescaled
version of the Bayes factor.

xV
(d) =

n2
(d)

2 + n(d)

√
2xC

(d) + xC
(d) [V : Vallisneri], (A.8)

where x = ln Bℓ
U, n is a normal random variable with zero mean

and unit variance, which comes from the noise realisation of the
detector. It’s worth noting that xV

(d) has a negative component,
which is more realistic compared to xC

(d), the latter providing
positive Bayes factors only. Additionally, it’s interesting to see
that ⟨xV

(d)⟩ = xC
(d) + 0.5. The combined Bayes factor for all the

detectors considered is

xV =
∑

d

xV
(d). (A.9)

In Figure A.8, we show the distribution of the exact back-
ground and foreground distribution of x (= ln Bℓ

U) from fully
Bayesian parameter estimation, along with the approximate ones
xC and xV. Note that the distribution of xC peaks at 0, where
the background distribution of ln Bℓ

U dominates. On the other
hand, the peak in the case of xV is slightly positive, where the
exact distribution of ln Bℓ

U dominates. Because of this, the dis-
tribution of u as a function of fDM, as shown in Figures 4.5(a)
and 4.5(b), are different, i.e., with the Vallisneri approximation
[12], the estimation of lensing fraction, u as a function of fDM is
slightly higher as compared to the Cornish approximation [11].
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It can also be seen from Figure A.8 that the approximations
provided by Cornish et al. [11] and Vallisneri [12] generally over-
estimate the Bayes factors by a small amount. Since we are using
the foreground and background distributions (f(x⃗) and b(x⃗), re-
spectively), this might overestimate the sensitivity of our ability
to distinguish between the foreground and background events.
This needs to be further investigated in the future.
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Figure A.8: The distri-
bution of the exact back-
ground and foreground dis-
tribution of x (= ln Bℓ

U)

from fully Bayesian param-
eter estimation, along with
the approximate ones xC and
xV. Note that the distribu-
tion of xC peaks at 0, where
the background distribution
of ln Bℓ

U dominates. On the
other hand, the peak in the
case of xV is slightly posi-
tive, where the exact distri-
bution of ln Bℓ

U dominates.
Because of this, the distribu-
tion of u as a function of fDM,
as shown in Figures 4.5(a)
and 4.5(b), are different, i.e.,
with the Vallisneri approxi-
mation [12], the estimation of
lensing fraction, u as a func-
tion of fDM is slightly higher
as compared to the Cornish
approximation [11].
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