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jecture for ⌘k for �2 < k < 0 given in Eq. (4.30) (where the superscript

“c” indicates our conjecture). The agreement between this conjecture and
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Abstract

In this thesis, we investigate the equilibrium and non-equilibrium properties of strongly

interacting confined systems. We first study the classical 1d Riesz gas model consisting

of N particles and confined to an external harmonic potential. These particles interact

pair-wise via the repulsive power-law potential of the form: V (r) ⇠ Jsgn(k)r�k where r

represents the interparticle distance and the exponent k ranges from �2 to 1. The Riesz

gas is an all-to-all interacting model and by tuning the exponent k, we can modify the

interactions from short-range (when k � 1) to long-range (when �2 < k < 1).

We consider the Riesz gas in Gibbs equilibrium at T ⇠ O(1). Initially, we introduce

some of the equilibrium properties of the Riesz gas. We use these properties to analyze

the behavior of the typical and the atypical fluctuations of di↵erent observables in the

large-N limit. First, we obtain the large-deviation form for the distribution of the position

of the rightmost particle. We also analyze the distribution of the number of particles in

a symmetric interval around the origin. This analysis involves the computation of the

density profiles in the presence of barriers, which we study in detail.

Next, we focus on the Riesz gas with exponent k ! 1, this model is equivalent

to a system of hard rods of unit length. The hard-rods system is integrable in the

absence of external confinement. However, the presence of external confinement breaks

the integrability. In the second part of this thesis, we study the density profile of the

hard rods when confined to external harmonic and quartic traps at high temperatures.

Furthermore, we investigate the chaos, and ergodicity of the trapped hard rod system, to

understand its thermalization properties.

1



2



Chapter 1

Introduction

Statistical physics has emerged as a powerful tool for investigating many-particle interact-

ing systems. These systems are important for understanding many natural phenomena,

like how magnets work, why water freezes, how stars collapse, and even how living things

function. To understand them, we generally model, the systems such that particles have

certain interactions with each other. These interactions can be mainly categorized into

two types: short-range (SR) and long-range (LR) interactions. This classification is based

on the additivity of energy, which states that the total energy of a combined system is

equal to the sum of the energies of its subsystems. For instance, consider a system par-

titioned into two subsystems as shown in Fig. 1.1. The energy of the left and right

Etotal
?
= Eleft + Eright

Eleft Eright

Figure 1.1: Figure adopted from Fig 1 of Ref. [1]. Classification of the range of interaction
based on the additivity of energy. The total energy of the system, Etotal = Eleft +Eright +
Einter, is the sum of the energies of left and right partitions (Eleft and Eright) and the energy
corresponding to the inter-specific interactions (Einter). For the short-range system as the
energy corresponding to the inter-specific interactions are negligible Einter ⌧ Etotal, the
system is additive Etotal ⇡ Eleft + Eright. While for long-range systems the energy is non-
additive Etotal 6= Eleft + Eright.

partitions, Eleft and Eright, depends solely on the degrees of freedom (DOF) of the par-
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ticles in their respective partitions. In contrast, the total energy of the system depends

on the DOF of all particles and is given by Etotal = Eleft + Eright + Einter which is the

sum of the energies of left and right partitions and the energy corresponding to the inter-

specific interactions (Einter). Here the inter-specific interactions stand for the interaction

between the particles of di↵erent partitions. When the system’s energy is non-additive,

Etotal 6= Eleft + Eright, it is classified as long-range [1]. Conversely, when the energy is

additive, Etotal ⇡ Eleft + Eright, the system is short-ranged as the inter-specific energy is

very small, Einter/Etotal ⌧ 1. For short-range systems, the additivity of energy implies

that the total energy is extensive, i.e. it is proportional to the number of particles or the

volume of the system. For example, doubling the number of particles or volume would

double the energy. Extensivity also implies that the energy per particle (✏) is finite and

independent of the system size. On the other hand, in long-range systems, the energy

per particle diverges with system size. This can be understood by considering a system

as shown in Fig. 1.2 with volume V and density ⇢ of particles interacting via a power-law

potential of the form Vk(~r) = J/rk, where r = |~r| is the distance between the particles,

J is the strength of the interaction and k is the exponent of the power-law potential.

The energy per particle (✏) can be obtained by integrating the potential energy over the

R

~r
a

✏Vk(~r ) = J
|~r |k

⇢(~r )

V

Figure 1.2: Figure adopted from Fig 2 of Ref. [1].A schematic plot of the spherical region,
of radius R, considered for the computation of energy per particle, ✏. Here the particles
interact via a power-law potential of the form Vk(~r) = J

|~r|k with a cuto↵ radius a. The

energy can be computed by summing the potential energy contributed by ⇢(~r)ddr particles
located at position ~r, for all values of ~r. This is formally described in Eq. (1.1). It is
shown that the energy per particle diverges with increasing volume V for k < d, and
remains finite for k > d.

volume of the system. For the system of radius R and a cuto↵ radius a for the interaction
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potential, the energy per particle is given by:

✏ =

Z
R

a

ddr Vk(~r)⇢ =
J⇢Vd

(d � k)

�
Rd�k � ad�k

�
⇠ J⇢Vd

(d � k)

8
><

>:

O(V 1� k
d ) for k < d

O(V 0) for k > d
, (1.1)

where Vd is the volume of a d dimensional sphere with unit radius. In the thermodynamic

limit, the energy of the system is then given by

E = ⇢ V ✏ =

8
><

>:

J⇢ O(V 2� k
d ) for k < d

J⇢ O(V 1) for k > d
. (1.2)

Here, we observe that the energy of the system grows super-extensively with volume for

k < d and is extensive for k > d. In principle, by rescaling the interaction strength J

appropriately with system size, we can restore the extensivity of energy. For example,

the energy for a system with k < d can be made extensive if we scale the interaction

strength as J = J0V
k
d�1. This procedure of rescaling interaction is called the Kac scaling

prescription [2]. While this restores extensivity it does not imply that the energy of the

system is additive. Consequently, the system with k < d is called the long-range system

and the system with k > d is called the short-range system.

The equilibrium properties of SR systems are well-established and extensively studied

using the principles of thermodynamics and statistical mechanics. However, the LR sys-

tems are less understood but have also garnered significant interest across various scien-

tific communities, including astrophysics [3–5], plasma physics [6], free electron lasers [7],

hydrodynamics [8,9] and cold atomic physics [10–13]. While the range of interaction pro-

vides some classification of systems the possibility of analytical solvability also classifies

systems as integrable and non-integrable. Integrable systems [14,15] are fine-tuned mod-

els that have an extensive number of conserved quantities. These models show di↵erent

properties compared to those of the non-integrable systems with only a few conserved

quantities. For example, an isolated non-integrable system with SR interactions, where

the energy is conserved, is typically expected to thermalize to the Gibbs ensemble. This

ensemble is determined only by the temperature of the system, a conjugate to the en-

ergy. In contrast, an isolated integrable system is expected to equilibrate to a statistical

state known as the Generalized Gibbs ensemble (GGE) [16]. The GGE di↵ers from the
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Gibbs ensemble as it accounts for all the conserved quantities and correspondingly the

state is determined by an extensive number of chemical potentials, each conjugate to the

respective conserved quantities. While the integrable models and LR systems are areas

of active research, there remains much to be understood about their equilibrium and

non-equilibrium properties. In this thesis, we investigate how the equilibrium property

of a given LR system in thermal equilibrium (Gibss state) di↵ers from those of the SR

system. Next, we investigate if and how an integrable system thermalizes when confined

to integrability-breaking traps.

A natural platform to study macroscopic properties of the LR and SR systems is

the family of one-dimensional (1d) Riesz gas [17]. It is a classical system of particles

interacting via the repulsive potential, of the form sgn(k)r�k, which varies with the

interparticle distance (r) as a power-law with an exponent k. By changing the exponent

k, we can modify the nature of the interactions from SR when k > 1 to LR when k < 1.

This e↵ectively allows us to systematically study the role of LR and SR interactions. For

the Riesz gas, some values of k are well studied such as Dyson’s log-gas [18–25] (k ! 0)

which is the 2d Coulomb gas and the Calogero-Moser system [15,26,27] (k = 2) which is

an integrable model. Other special values include k = �1 and k ! 1 which are known as

the 1d one-component plasma (1dOCP) [28–32] and the hard rods gas [33], respectively.

Dyson’s log-gas (k ! 0) and 1dOCP (k = �1) are LR systems that have been studied

theoretically extensively. For example, the edge particle statistics [22,23,25,31,32], linear

statistics [34, 35], truncated linear statisitics [36, 37], full counting stastics [31, 32, 38–

42], Gap distribution [42, 43] and equilibrium correlations [19, 44] have been computed.

Furthermore, the theoretical study of Riesz gas for general k has attracted significant

interest not only from the physics communities [45–49] but also is an active area of

research in mathematics [50–54].

In experiments of ultra-cold atoms, the particles can now be engineered to have specific

interactions [11–13]. For example, using a strong electromagnetic field, a dipole-dipole-

like interaction gets induced between the atoms of Strontium-84 (84Sr). These interactions

can be e↵ectively modelled as a long-range power-law potential with exponent k ⇠ �1

[12]. Quantum simulators have been developed [55] which are a type of quantum computer

where the interaction between the qubits can be controlled. In such simulators, the laser-

driven interactions can be tuned, and the system can be well described by an interacting
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spin system where the coupling strength between spins is a power-law with an exponent

that can be adjusted between k = 0.0 to 3.0. Moreover, recent experimental techniques

have made it possible to probe physics at a microscopic scale as demonstrated in cold

atoms [56–58] and ions [13]. Given the experimental feasibility of studying the 1d systems

with power-law interaction and the versatility of Riesz gas, it is a natural model to

theoretically study the equilibrium and non-equilibrium properties of LR and SR systems.

One of the aims of this thesis is to study some of the equilibrium properties of the Riesz

gas for general k. In particular, we focus on local observables like the position of the

rightmost particle [59] and the global observables like the average thermal density profile

in the presence of barriers [60], the full counting statistics of the number of particles in

a symmetric domain [�W, W ] and the index distribution for the semi-infinite domain

(�1, W ] [61]. In the above mentioned studies, we consider Riesz gas in equilibrium

at T ⇠ O(1). At higher temperatures the properties of these system for general k are

not well understood. Consequently, we further study the average density profile at all

temperatures for a special case of k ! 1 of the Riesz gas known as the hard rod gas.

This average density profile can be used to benchmark the thermalization behaviour of

hard rods confined to external trap.

To study the equilibrium properties of an isolated system, we generally expect that

all the microscopic configurations with fixed energy are equally probable [62–64]. This is

based on the assumption of ergodicity and molecular chaos. While ergodicity implies that

the time average of any observable is equal to its ensemble average, chaos in a system

quantifies or indicates the loss of information about the initial conditions. Similarly, when

the SR system is in contact with the environment, where only energy exchange is allowed,

it is expected that the probability of any microscopic configuration is given by the Gibbs-

Boltzmann distribution [62–64]. However, a natural question arises: what properties

should a system possess such that it reaches a Gibbs state or other equilibrated states?

Are chaos and ergodicity really necessary? These questions have puzzled physicists for

a long time, and the well-known attempt to answer them was the famous Fermi-Pasta-

Ulam-Tsingou (FPUT) problem [65].

In the FPUT problem, the particles interact via non-linear springs with small non-

linearity and evolve based on Newton’s equations of motion. Starting from a specific

class of initial configurations they found that the system at long times did not reach
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equilibrium. To understand this behavior many mechanisms have been proposed [66–73].

One of the main reasons could be its proximity to an integrable model as it can be

described by a perturbation of an integrable model [74–77]. More recently, in the first-

of-its-kind experiment, an anharmonically trapped Bose-Einstein condensate of ultra-

cold Rubidium atoms was investigated [78]. This gas can be modeled up to a good

approximation [79] by the well-known Lieb-Lininger model, where the identical Bosons

have contact repulsion formally expressed by a delta function interaction. The Lieb-

Liniger gas is an integrable model when it is not trapped. However, the trap breaks its

integrability. In the experiment, Newton’s-cradle-like oscillatory dynamics was observed

as shown in Fig. 1.3. To understand this peculiar oscillatory dynamics, the theory of

Figure 1.3: Figure taken from Ref. [78]. The figure shows the absorption image for the
anharmonically trapped Bose-Einstien condensate of Rubidium-87 (87Rb) consisting of
2.5 ⇥ 105 atoms. In the experiment, the two clouds of atoms were separated away from
the center of the trap. These two clouds oscillate within the trap and meet twice every
period. In the plot, note that the progression of time is from right to left. Interestingly
the clouds keep oscillating for the large observation times akin to the balls of a Newton’s
cradle toy where the momentum gets transferred to the other ball upon collision. This
oscillatory behavior suggests that the system does not thermalize even after each atom
has undergone several thousand collisions.

generalized hydrodynamics (GHD) [80,81] was used. The GHD equation at Euler’s scale

are useful to describe the hydrodynamic evolution of conserved quantities for integrable

systems. A key assumption to obtain the hydrodynamic evolution is the notion of local

equilibrium [82]. While the presence of an external trap breaks integrability, the local

dynamics remain similar to those of a homogeneous evolution governed by an integrable

Hamiltonian. Consequently, the approximation of local GGE stays valid under time

evolution. As a result, a modified GHD was proposed [83] which incorporates the e↵ects
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of external trapping in the form of an additional force-like term. This is similar to the

case of conventional hydrodynamics like the Navier-Stokes equation where a force term

is used to represent the e↵ect of the external field even though the momentum is no

longer a conserved quantity. This modified GHD proved to be e↵ective in modeling

such short-time oscillatory dynamics [84–86]. However, the fate of these systems at long

times remains inconclusive. In the experiment, it was found that the system did not

thermalize even after each atom had undergone several thousand collisions. This is in

contrast to generic ultra-cold atomic gases where only a few collisions typically lead to

thermalization [87].

To theoretically understand the long-time behavior of integrability-broken systems,

a classical model of hard rods confined to a harmonic trap in 1d was investigated in

Ref. [84]. The hard rod system in 1d is an integrable model where the rods undergo

elastic collisions and they only exchange momenta. Consequently, the momenta of all

the particles only get permuted under the dynamics and are conserved, which suggests

the model is integrable. When these hard rods are confined to an external harmonic po-

tential, integrability is broken. The time evolution of the confined rods was numerically

studied in Ref. [84] using molecular dynamics simulation. It was observed that the system

is chaotic but did not thermalize to the Gibbs state at the longest accessible simulation

times (around 10,000 periods of trapping potential), instead reaches a non-Gibbsian sta-

tionary state. It was also shown [84], that this non-thermal state is well described by

the modified GHD at Euler scale (no dissipation). It is important to note that the Euler

GHD does not lead to the entropy production expected of systems that are equilibrating

and hence an appropriate di↵usive correction needs to be incorporated [88]. Interestingly,

it was proposed that the di↵usive correction in the modified GHD could thermalize the

system [86]. However, this proposal starkly contrasts the observation of the non-thermal

steady state at long times for the harmonically confined hard rods studied in Ref. [84].

This raises a natural question: even if the system goes to a thermal state, due to di↵u-

sive correction to the modified GHD, why is the time scale so long i.e. longer than the

numerically accessed times in Ref. [84]? It is important to recognize that the modified

GHD is a phenomenological theory and the true evolution of these systems could be very

di↵erent, governed by the microscopic dynamics of positions and momenta of the parti-

cles. Therefore, studying the microscopic dynamics of the hard rods in the presence of
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the external trap is crucial, which we undertake in the later part of the thesis. Moreover,

several fundamental questions concerning the thermalization of trapped integrable parti-

cles remain unresolved, including whether or not these systems are truly ergodic, whether

they can support additional microscopic conservation laws, and how far these properties

coexist with chaos. In the second part of this thesis, we aim to address some of these

questions using molecular dynamics simulations in the context of 1d hard rods confined

to harmonic and quartic traps.

1.1 Overview of the thesis

This thesis is structured as follows. In Chapter 2, we define the Riesz gas in 1d and

summarize the well-known equilibrium properties of the Riesz gas. Chapters 3, 4, 5, 6

and 7 are based on five di↵erent articles provided at the end of each chapter. In Chapter

8, we provide a conclusion.

In Chapter 3, we study the density profiles of the constrained Riesz gas at T ⇠ O(1).

Using the saddle point method, we compute the equilibrium density profile of the particles

in the presence of a hard wall such that all the particles are always to the left of the wall.

We find that the density profiles show three di↵erent behaviors depending on the exponent

k. Furthermore, by analyzing the behavior of the density profiles as the position w of the

hard wall is changed, we find that the system undergoes a first-order phase transition for

all ks with value �2 < k < �1.

In Chapter 4, we focus on the probability distribution of the position of the rightmost

particle. Using the Coulomb gas method we compute the distribution of the atypical

fluctuations. The atypical fluctuations have a large deviation form with appropriate

large-deviation functions which we analytically compute and verify using numerical sim-

ulations. By studying the asymptotic behavior of the large-deviation functions, we find

that the system undergoes a pulled to pushed third-order phase transition for all k > �2.

Furthermore, we numerically study the distribution of the typical fluctuations which

shows non-Gaussian behavior di↵erent from the Tracy-Widom distribution that appears

in Random matrix theory or Dyson’s Log-gas [89,90]. Using the asymptotic behavior of

the large deviation function we conjecture the system size dependence of the variance of

the position of the rightmost particle. It works well for k values �2 < k < 0.
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In Chapter 5, we investigate the full counting statistics (FCS) of a harmonically con-

fined 1d short-range Riesz gas. We examine the probability distribution of the number

of particles in a finite domain [�W, W ] called number distribution. Using the Coulomb

gas method, we find that the probability distribution possesses a large deviation form

and the large deviation function depends on the the fraction c of the particles inside the

domain and W . We show that the density profiles that create the large deviations display

interesting shape transitions as one varies c and W . This is manifested by a third-order

phase transition exhibited by the large deviation function that has discontinuous third

derivatives. Monte Carlo (MC) simulations show good agreement with our analytical ex-

pressions for the corresponding density profiles. By analyzing the large deviation function

around its minimum we find that the typical fluctuations are Gaussian distributed and

we compute its variance. Additionally, we adapt our formalism to study the index distri-

bution (where the domain is semi-infinite (�1, W ]), thermodynamic pressure, and bulk

modulus. In the previous three chapters, we focused on the low-temperature or T ⇠ O(1)

properties of the Riesz gas when the entropy was subdominant. One naturally wonders

about their high-temperature properties when the entropy is of a similar magnitude as

the energy. In the next chapter 6, we investigate this regime for the hard rods which is

k ! 1 of the Riesz gas.

In Chapter 6, we focus on the equilibrium density profile of the one-dimensional

classical integrable models, namely the hard rods placed in confining potentials at very

high temperatures. Using a field-theoretic technique, we compute the density profile and

their scaling with system size and temperature. We further compare the average density

profiles with results from Monte-Carlo simulations and find good agreement between the

field theory and simulations.

In chapter 7, we move away from equilibrium and study the equilibration properties

of the hard rods. We investigate ergodicity, chaos, and thermalization for the hard rods

confined to an external (harmonic or quartic) trap, which breaks integrability. We find

that harmonically trapped hard rods are highly non-ergodic and do not resemble a Gibbs

state even at extremely long times, despite compelling evidence of chaos for four or more

rods. On the other hand, our numerical results reveal that hard rods in a quartic trap

exhibit both chaos and thermalization and eventually equilibrate to a Gibbs state as

expected for a nonintegrable many-body system.
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Chapter 2

Riesz gas in one-dimension

In this chapter, we introduce the classical Riesz gas [17] in one dimension (1d), a central

theme of this thesis, and discuss the equilibrium properties originally derived in Ref. [45]

which are important for our work. The Riesz gas is composed of N particles confined to an

external trap and interacting via repulsive pair-wise potential which varies with distance

as a power-law. When these particles are confined to harmonic trap U(x) = x2/2, the

Figure 2.1: Schematic plot of the particles of the Riesz gas in 1d. The particles of Riesz
gas interact via all-to-all repulsive pair-wise potential of the form Vij = J sgn(k)|xi�xj|�k

where xi/j represents the position of the i/j-th particle, the interaction strength J > 0
and sgn(k) ensures that the particles repel each other. The external confinement U(x) is
represented by the dashed curve and the all-to-all nature of interactions is shown by the
double-arrow-headed solid arcs.
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energy function of the system is given by

Ẽk({xi}) =
NX

i=1

x2
i

2
+

J sgn(k)

2

NX

i=1

NX

j=1
j 6=i

|xi � xj|�k, (2.1)

where {xi} denotes the positions of the particles on a line and the exponent k characterizes

the range of the interaction, it is LR for �2 < k < 1 and SR for k � 1. The interaction

strength J is positive and sgn(k) in Eq. (2.1) ensures that the pair-wise interaction is

always repulsive. In Fig. 2.1 we show a schematic demonstration of these particles. We

confine our study to the range k > �2. For k < �2, the repulsive interaction term

|xi � xj|�k is stronger than the confining potential x2
i

and the configuration is unstable

and the particles fly away to ±1 to minimize energy.

For this system, the external potential (U(x) = x2/2) tries to confine all the particles

to the bottom of the trap, and the repulsive interactions (V (r) ⇠ sgn(k)r�k) tries to push

the particles apart. As a result, one expects that in the large-N limit, the positions of the

particles in the minimum energy configuration are supported over a length scale LN such

that both the terms in the energy function in Eq. (2.1) are balanced. Consequently, the

length scale LN depends on the exponent k and also on the number of particles N . For

the notational simplicity, we drop the explicit k dependence. To estimate LN , we first

compute the approximate N dependence of the interaction and external potential energy

in the limit of large-N as follows. We introduce a scaled variable yi for i = 1, 2, 3 . . . , N

such that

yi =
xi

LN

, with yi ⇠ O(1), (2.2)

where xi ⇠ O(LN) is the position of the i-th particle. For large-N , the N dependence of

the harmonic potential energy is approximately given by

NX

i=1

x2
i

= NL2
N

P
N

i=1 y2
i

N
⇠ O(NL2

N
). (2.3)
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Similarly, the interaction energy cn be estimated as follows

NX

i=1

NX

j=1
j 6=i

|xi � xj|�k = L�k

N

NX

i=1

NX

j=1
j 6=i

|yi � yj|�k. (2.4)

To estimate the double sum we note that the typical distance between adjacent particles

is ⇠ O(N�1) and consequently one expects |yi � yj| ⇠ O(N�1|i � j|). Therefore, the

interaction energy scales as

NX

i=1

NX

j=1
j 6=i

|xi � xj|�k ⇠

8
>>>>><

>>>>>:

O(Nk+1L�k

N
) for k > 1

O(N2 ln NL�1
N

) for k = 1

O(N2L�k

N
) for � 2 < k < 1

. (2.5)

Here, the di↵erences arise due to the convergence behavior of the series
P

N

n=1 n�k, in the

thermodynamic limit, for di↵erent values of k. In particular, the series is convergent i.e.

takes a finite value for k > 1 and diverges Logarithmically as ⇠ O(ln N) for k = 1 and as

a power-law N1�k for k < 1 in the large-N limit. By balancing the energy contribution

due to the external potential given in Eq. (2.3) and the interaction potential given in

Eq. (2.4), one finds

LN =

8
><

>:

N↵k for � 2 < k 6= 1

(N ln N)1/3 for k = 1
, where ↵k =

8
><

>:

k

k+2 for k > 1

1
k+2 for � 2 < k < 1

. (2.6)

In terms of the scaled variables {yi}, many computations and results are more convenient

and revealing and we use them frequently. For example, the energy function in Eq. (2.1)

can now be expressed in terms of the scaled variables {yi} as

Ẽk({xi}) = NL2
N

Ek({yi}), where, yi =
xi

LN

and,

Ek({yi}) =
1

N

NX

i=1

y2
i

2
+

J sgn(k)

2

1

NLk+2
N

NX

i=1

NX

j=1
j 6=i

|yi � yj|�k. (2.7)

Here LN is given in Eq. (2.6) and the energy function scales super extensively with system

size as Ẽk({xi}) ⇠ O(NL2
N

) as the scaled energy is Ek({yi}) ⇠ O(1) and LN > O(1) for
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all k. The super extensive scaling of the energy function is due to the external potential

and the all-to-all nature of the interactions in the Riesz gas.

For the Riesz gas in thermal equilibrium at temperature T = ��1, the joint probability

distribution function (jpdf) of the positions of the particles is described by the Gibbs-

Boltzmann distribution given by

Pk({xi}) =
1

Zk

exp
�
��Ẽk ({xi})

�
, (2.8)

where Ẽk({xi}) is given in Eq. (2.1) and the partition function is given by

Zk =

Z 1

�1
dx1

Z 1

�1
dx2 · · ·

Z 1

�1
dxN exp

�
��Ẽk ({xi})

�
, (2.9)

which normalizes this probability distribution. To keep our notation light, the tempera-

ture (T = ��1) and system size N dependence of the partition function, Zk ⌘ Zk(N, �),

and the jpdf, Pk({xi}) ⌘ Pk({xi}, N, �), is assumed to be present implicitly and is stated

otherwise. For the Riesz gas, some of the equilibrium properties have been studied in

Ref. [45] and discussed in the following sections.

2.1 Properites of 1d Riesz gas

In this section, we provide an overview of some of the known results for the harmonically

confined Riesz gas in 1d. We first discuss the field-theoretic energy functional which was

derived in Ref. [45] and then discuss the average density profiles of the Riesz gas in Gibbs

equilibrium. These results are used extensively in Chapters 3,4 and 5.

2.1.1 Field theory for the Riesz gas

To study the equilibrium properties, generally one has to compute the partition function

given in Eq. (2.9), and performing this N -fold integral is hard for general k. However,

one can compute it in the large-N limit by coarse-graining the system in terms of the

empirical density profile, ⇢N(x) = 1
N

P
N

i=1 �(x � xi) which is normalized to unity. The

main di�culty in this coarse-graining procedure is going from the microscopic configura-

tion of the positions of particles to the macroscopic density profile, {xi} ! ⇢N(x). More

specifically, expressing the energy function Ẽk({xi}) given in Eq. (2.1) as a functional of
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the density profile ⇢N(x). This was achieved in Ref. [45]where expressed the energy due

to harmonic confinement in Eq. (2.1) was expressed in terms of the density profiles as

NX

i=1

x2
i

2
=

N

2

Z 1

�1
dx x2⇢N(x). (2.10)

Similarly, the double summation in the interaction term given in Eq. (2.1) can be ex-

pressed as a functional of the density profile ⇢N(x) as

NX

i=1

NX

j=1
j 6=i

|xi � xj|�k ⇡ N2

2

Z 1

�1

Z 1

�1
dx0dx

⇢N(x0)⇢N(x)

|x � x0|k for � 2 < k < 1. (2.11)

Here, the self energy corrections are subleading to this O(N2) term in the large-N limit

and the integral
R1
�1 dx0⇢N(x0)⇢N(x)|x � x0|�k refers to the principal value integral for

0 < k < 1 due to the integrable singularity at x = x0. For k � 1, the coarse-graining

turns out to be harder due to the non-integrable singularity of the potential |xi � xk|�k

at xi = xj. Consequently, the double sum cannot be expressed as a double integral and

instead has to be evaluated more carefully and the following di↵erent approach is used.

By ordering the position of the particles x1 < x2 < . . . < xN , xi can be approximated by

a smooth function x(i) of the index i in the large-N limit. Next, using the Taylor series

expansion of x(j) ⇡ x(i) + (j � i)x0(i) in the interaction term of Eq. (2.1) one obtains

NX

i=1

NX

j=1
j 6=i

|xi � xj|�k ⇡
NX

i=1

NX

j=1
j 6=i

|i � j|�k
�
x0(i)

��k

, (2.12)

where x0(i) = dx(i)/di is the gap between the i-th and (i+1)-th particle and only the first

term of the series expansion is considered. The gap x0(i) = xi+1 � xi can be expressed as

the inverse of the density at xi i.e., x0(i) = 1/N⇢N(xi). The interaction term then can

be expressed as a functional of the density profile ⇢N(x) as

NX

i=1

NX

j=1
j 6=i

|xi � xj|�k ⇡

8
><

>:

⇣(k)Nk+1
R1
�1 dx [⇢N(x)]k+1 , for k > 1

N2 ln N
R1
�1 dx [⇢N(x)]k+1 , for k = 1

, (2.13)

where ⇣(k) = limN!1
P

N

n=1 n�k is the Riemann zeta function and appears due to the

all-to-all nature of the interaction. For k = 1, the sum
P

N

n=1 n�k diverges Logarithmically
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with N and consequently the interaction term is modified. In Eq. (2.13) the next-order

terms are subleading in the thermodynamic limit. Using the expressions for the external

potential energy and interaction energy from Eqs. (2.10), (2.11) and (2.13) in Eq. (2.1),

we find that the coarse-grained energy functional Ẽk[⇢N ] in the large-N limit can be

expressed in the following concise form

Ẽk[⇢N ] =
N

2

Z 1

�1
dx x2⇢N(x) + J

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

⇣(k)Nk+1
R1
�1 dx [⇢N(x)]k+1 , for k > 1

N2 ln N
R1
�1 dx [⇢N(x)]2 , for k = 1

sgn(k)N2

2

R1
�1
R1
�1 dx0dx⇢N (x0)⇢N (x)

|x�x0|k for � 2 < k < 1.

(2.14)

For k � 1, the interaction term is a local functional of the density profile ⇢N(x), indicating

that the interactions are SR. In contrast, for �2 < k < 1, the interaction term is non-

local, e↵ectively capturing the LR nature in this case. It turns out that for large-N the

density profile possesses the following scaling relation

⇢N(x) =
1

LN

⇢

✓
x

LN

◆
. (2.15)

Using this form, the energy functional in Eq. (2.14) can be expressed in terms of the

scaled density function ⇢(y) as

Ẽk[⇢N(yLN)] = BNEk [⇢ (y)] , where BN = NL2
N

, and, (2.16)

Ek[⇢(y)] =
1

2

Z 1

�1
dy y2⇢(y) + J

8
>>>>><

>>>>>:

⇣(k)
R1
�1 dy ⇢(y)k+1, for k > 1

R1
�1 dy ⇢(y)2, for k = 1

sgn(k)
2

R1
�1
R1
�1 dy0dy ⇢(y)⇢(y0)

|y�y0|k , for � 2 < k < 1.

Clearly, the energy Ẽk[⇢N ] in Eq. (2.14) is superextensive and scales with system size as

Ẽk[⇢N ] ⇠ O(NL2
N

). This field theoretic free energy was used in Ref. [45] to compute the

average density profiles of the Riesz gas in Gibbs equilibrium at temperature T ⇠ O(1).

We discuss these results next.
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2.1.2 Average Density profiles of the Riesz gas

The average density profile h⇢N(x)i in the large-N limit minimizes the free energy of the

Riesz gas [45]. The free energy F̃k[⇢N ] has contributions from the energy of the system

and the configurational entropy S̃[⇢N ] as F̃k[⇢N ] = Ẽk[⇢N ] � T S̃[⇢N ]. The configura-

tional entropy is the entropy due to the number of ways the particles can be arranged

in the system such that the density profile is given by ⇢N . In the large-N limit, the

entropy functional can be expressed as S̃[⇢N ] = �N
R1
�1 dx ⇢N(x) ln ⇢N(x) ⇠ O(N). At

T ⇠ O(1), the contribution of the extensive configurational entropy S̃[⇢N ] ⇠ O(N) to the

free energy F̃k[⇢N ] is negligible when compared to the super-extensive energy function

Ẽk[⇢N ] ⇠ O(NL2
N

). Hence the free energy gets dominated by the energy only. Con-

sequently, the average density profile h⇢N(x)i is the one which minimizes the energy

functional Ẽk[⇢N ] given in Eq. (2.14) with the constraint that the density profile is nor-

malized
R1
�1 dx⇢N(x) = 1. In Ref. [45], the average density profile in the large-N limit

was formally obtained using the saddle point method. It was shown that the shape and

the scale of the average density profile crucially depend on the exponent k. For any k, it

has finite support and is described by the following scaling form

h⇢N(x)i =
1

LN

⇢⇤
uc

✓
x

LN

◆
, (2.17)

where the scaling function ⇢⇤
uc(y) is given by

⇢⇤
uc(y) ⌘ ⇢⇤

uc(y, k) = Ak(l
2
uc � y2)�k , for � luc < y < luc, with (2.18)

�k =

8
><

>:

1
k

for k � 1

k+1
2 for � 2 < k < 1

, and luc ⌘ luc(k) =
1

2
(AkB(�k + 1, �k + 1))�↵k . (2.19)

Here, B(a, b) =
R 1

0 dx xa�1(1�x)b�1 is the Beta function and the constant Ak is given by

Ak =

8
>>>>><

>>>>>:

[2J(k + 1)⇣(k)]��k for k > 1

1
4J for k = 1

sin(⇡�k)
2⇡J |k|�k

for � 2 < k < 1

, (2.20)
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Figure 2.2: Figure adopted from Fig. 1 of Ref [45]. Scaled average density of the uncon-
strained gas ⇢⇤

uc(y) in Eq. (2.18) vs. y for di↵erent values of k > �2. The three rows
correspond respectively to (i) k � 1 (third row), (ii) �1 < k < 1 (second row), and (iii)
�2 < k  �1 (first row). In (i) the density has a dome shape, in (ii) also has a dome
shape, and in (iii) it has a U-shape. At k = �1 and k ! +1 the density is flat. The
blue dashed vertical lines indicate the edges of the support of the density profile.

The formulae Eq. (2.20) are true for k 6= 0. However for k ! 0, as described in the

introduction one has to assume J = J0/k to get a meaningful limit. In this limit luc =
p

2

and A0 = 1/⇡. The superscript ‘uc’ in ⇢⇤
uc(y) and luc refers to the Riesz gas in the

unconstrained setup where no physical constraint other than harmonic confinement is

present. Note that for notational simplicity, the k dependence of ⇢⇤
uc(y) and luc are

assumed to be present implicitly.

The Fig. 2.2 is taken from Fig. 1 of Ref. [45], it shows the shapes of the scaling form

for the average density profile given in Eq. (2.18) for di↵erent values of k. The density

profile changes shape as k is modified and its behaviour can be described separately in

three regimes of k depending on the range of the pairwise interactions (see Fig. 2.3):

(i) Regime 1 (k � 1): short-ranged interactions. In this range, the interaction falls o↵

rather rapidly, as a function of the separation between two particles. Consequently,

one can replace the pairwise long-ranged interaction with an e↵ective short-ranged

one. In this regime, the average density is dome-shaped with a maximum at the

center and the density vanishes at the two edges of the support (see the third row

of Fig. 2.2).
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k�2 �1 +1

short-ranged 

interactions

weakly 

long-ranged 

interactions

strongly 

long-ranged 

interactions

Figure 2.3: The exponent k characterizes the range of pairwise repulsive interactions
between particles. For k � 1 the interaction is e↵ectively short-ranged. For �1 < k < 1,
the interaction, though long-ranged, is e↵ectively weak and does not qualitatively change
the shape of the density profile compared to the short-ranged case. For �2 < k  �1,
the particles are subjected to strong long-range interactions, that change the shape of
the density profile drastically.

(ii) Regime 2 (�1 < k < 1): weakly long-ranged interactions. In this case, the long-

ranged interaction can not be replaced by an e↵ective short-ranged one as in the

regime 1 above. Nevertheless, the average density remains dome-shaped, as in

regime 1 (see the second row of Fig. 2.2). Hence we call this regime “weakly

long-ranged”.

(iii) Regime 3 (�2 < k  �1): strongly long-ranged interactions. In this regime, the

repulsive force between two particles (i.e., the derivative of the pairwise interaction

potential) vanishes when they get closer to each other. However, at large distances,

the force increases with separation |r| as a power law ⇠ |r||k|�1, making this a

“strongly long-ranged” system. This a↵ects rather strongly the shape of the average

density profile. In fact, the density profile is now ‘U-shaped’ where it diverges at

the two edges (but still integrable) and has a minimum at the center of the support

(see the first row of Fig. 2.2).

The density profile is completely flat exactly at k = �1. Furthermore, the system un-

dergoes a change of behavior at k = 1. This is also manifest in the k-dependence of

the exponents ↵k and �k in Eqs. (2.6) and (2.19) where one sees a drastic change of

behavior as k crosses the value k = 1. Note that the classification of the three regimes

above is based on the shape of the density profile. This is somewhat di↵erent from the

nomenclature (short-ranged/weakly long-ranged and strongly long-ranged) typically used

in the literature on long-ranged interacting particle systems, where the classification is
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based on the thermodynamic behavior of the free energy [91].

The study of the average density profile is one of the most basic questions as it can

be used to compute the free energy of the system– essential for studying equilibrium

properties. Consequently, this calculation was extended for a finite-range (not all-to-all

coupled) Riesz gas [92, 93]. In a similar spirit, a natural question arises: how do the

average density profiles get modified for all values of k when the system is subjected to

barriers that restrict the particles to a particular side? This modified density profile, as

we will see later, is an important ingredient for studying various quantities of the Riesz

gas. This is the subject of the next Chapter.
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Chapter 3

Average density profile in the

presence of a hard wall

3.1 Introduction

The main goal of this Chapter is to study how the average density profile in the uncon-

strained Riesz gas gets modified in the presence of a wall at position W , such that the

particles are constrained to stay to the left of the wall. This is a naturally interesting

question in any interacting particle system: how does the presence of a hard wall a↵ect

the collective properties of the system, such as the average density? Recent experimental

progress has made ultra-cold gases an ideal platform to explore such collective behavior.

In many experiments involving ultra-cold gases, appropriate barriers are introduced to

create desired non-trivial density profiles in a controllable/tunable manner [10,94–97]. It

is also an important intermediate step in the computations of extreme value statistics

(EVS) in a strongly interacting system [98]. In EVS, one is interested in the distribu-

tion of the position of the rightmost particle, xmax. Using the Boltzmann distribution in

Eq. (2.8), the cumulative distribution of xmax, in thermal equilibrium at inverse temper-

ature �, is given by [25]

Prob.(xmax  W ) =
1

Zk

Z
W

�1
dx1 . . .

Z
W

�1
dxN e��Ẽk[{xi}], (3.1)

where Zk is the partition function of the Riesz gas given in Eq. (2.9) and Ẽk[{xi}] is its

energy defined in Eq. (2.1). To evaluate this restricted partition function in the large N
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limit using the saddle-point method, one needs to compute the density that optimizes the

multiple integrals in Eq. (3.1). This optimal density, in the large N limit, also coincides

with the average density in the presence of a wall. Hence, computing the average density

in the presence of a wall is the first step towards calculating the EVS in this strongly

interacting system.

The average density profile of the constrained Riesz gas (i.e., in the presence of a wall

at W ) has been computed, for large N , for two special values of k: namely k ! 0 limit

(Dyson’s log gas) and k = �1 (1dOCP). For the k ! 0 case, it was shown in Refs. [22,23]

that the constrained density profile satisfies the scaling form as given in Eq. (2.17) and

the scaling function is given by

⇢⇤
0(y, w) =

8
>>>>><

>>>>>:

1
⇡

p
2 � y2, with �

p
2  y 

p
2 for w >

p
2 ,

1
2⇡

q
y+l0(w)
w�y

[w + l0(w) � 2y] , with � l0(w)  y  w for w <
p

2 ,

(3.2)

where w = W/
p

N , and l0(w) = 2
p
w2+6�w

3 . For w >
p

2, the gas does not feel the

presence of the wall at w and the density is the same as that of the unconstrained gas,

i.e., the Wigner semi-circular form, as given in the first line of Eq. (3.2). In contrast,

when w <
p

2, the gas gets pushed by the wall. This leads to a complete re-organization

of the charges and the density gets drastically modified from the Wigner semi-circular

law, as given in the second line of Eq. (3.2), where the density vanishes at the left edge

of the support l0(w), while it diverges as a square-root singularity ⇠ 1p
w�y

at the right

edge of the support located at w. This integrable divergence indicates an accumulation

of charges at the wall when the gas is pushed [25].

However, the presence of the pushing wall a↵ects the density for the 1dOCP (k = �1)

di↵erently. It has been shown in Refs. [31, 32] that in this case the constrained density

profile is given by

⇢⇤
�1(y, w) =

8
>>>>><

>>>>>:

1
2J , with � J  y  J for w > J

1
2J + J�w

2J �(y � w) , with � J  y  w for � J < w < J

�(w � y), with y  w for w < �J

. (3.3)
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As in the log gas, for w > J , the gas does not feel the presence of the wall and the

average density has the same flat profile as in the unconstrained case. When w < J ,

the particles feel the presence of the wall, leading to a re-organization of the particles,

as in the log gas. However, how they get reorganized for k = �1 is drastically di↵erent

from the k ! 0 case. For k = �1, the particles that get displaced by the wall get fully

absorbed inside the wall, leading to a delta-function peak at y = w, that coexists with

an undisturbed flat bulk to the left of w. This leads to the density in the second line of

Eq. (3.3). Finally, when w < �J , all the particles get absorbed in the wall, leading to a

single delta-peak, as given in the third line of Eq. (3.3).

These two specific cases of k suggest that the shape of the density profile gets a↵ected

dramatically due to the presence of the wall. In this chapter, we compute exactly, for all

k > �2, the density profile of the constrained gas in the presence of a wall. In the next

section, we summarise our main results. The derivations of our results are provided in

Section 3.3. Section 3.4 contains a summary and conclusions. Some details are relegated

to the Appendix.

3.2 Summary of the results

Our main result is the exact computation of the average density of the Riesz gas (char-

acterized by the exponent k > �2) in thermal equilibrium in the presence of a wall at

position W . The e↵ect of the wall is to constrain the particles to stay on the semi-infinite

line to the left of the wall. Consider first the unconstrained gas, i.e., without the wall.

This is equivalent to placing the wall at W = +1. The scaled density of the uncon-

strained gas is supported over [�luc, luc] (see Fig. 2.2 where luc is given in Eq. (2.18).

Now imagine bringing the wall from infinity to a finite position W . For all k > �2,

we find that the scaled density of the unconstrained gas remains unchanged as long as

the (scaled) position of the wall w = W/N↵k [with ↵k given in Eq. (2.6)] is larger than

luc. In this regime, the particles do not feel the presence of the wall. However, when

w < luc, the particles feel the presence of the wall and reorganize themselves. This leads

to a modification of the mean density and the nature of the modifications depends on the

exponent k characterizing the range of the interactions. We again find three principal

regimes of k (see Fig. 2.3): (1) k � 1 (where the interaction is e↵ectively short-ranged),
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Figure 3.1: Scaled average density of the constrained gas ⇢⇤
k
(y, w) vs. y for di↵erent

values of k > �2. The three rows correspond respectively to (i) k � 1 (third row), (ii)
�1 < k < 1 (second row), and (iii) �2 < k  �1 (first row). The blue dashed vertical
lines indicate the edges of the support. In the second and third rows, the right edge of
the support coincides with the scaled wall position w. In the third row, the density is
a constant at the wall while it diverges in the second row. In both the second and the
third row, the density vanishes at the left edge (for k = 10 in the third row, the true
density at the left edge vanishes, though it is not clearly visible due to the compression of
the scale). In the first row, the density has an extended bulk part, sandwiched between
the two vertical dashed lines and a delta peak at the wall w (shown by a thick solid
vertical line). In between, there is a hole devoid of particles (shaded cyan region) which
disappears for k = �1 (the third figure in the first row).

(2) �1 < k < 1 (weakly long-ranged interaction), and (3) �2 < k  �1 (strongly long-

ranged interaction). The exact form of the modified density in these three regimes is

summarised below (see also Fig. 3.1). We obtain these results by employing a saddle-

point method in the large-N limit. Finding the analytical solution of this saddle-point

equation is the main technical achievement of this chapter.

Regime 1 (k � 1): short-ranged interactions. In this regime, the interaction is extremely

short-ranged and the e↵ective field theory becomes local and simple [45]. Solving the

associated saddle-point equation in the presence of a wall at the scaled position w =

W/N↵k with ↵k = k/(k + 2), we find that, for w < luc, the mean density, supported over

26



the finite interval [�lk(w), w], is given by

⇢⇤
k
(y, w) = Ak

�
lk(w)2 � y2

� 1
k , for � lk(w)  y  w, w < luc , (3.4)

where Ak is given in Eq. (2.20) and the location �lk(w) of the left edge of the support

is determined from the normalization condition
R

w

�lk(w) ⇢
⇤
k
(y, w)dy = 1. This analytical

result is verified through Monte-Carlo (MC) simulation in Fig. 3.2. The density vanishes

at the left edge �lk(w) while it approaches a finite value at the right edge, i.e., at the

location of the wall (see Fig. 3.1). In addition, as w ! �1, the size of the support in

scaled units

Lk(w) = w + lk(w) , (3.5)

decreases as Lk(w) ⇠ |w|�
1

k+2 for a fixed k � 1 (see Fig. 3.3).

Regime 2 (�1 < k < 1): weakly long-ranged interactions. In this regime the interaction

between two particles at small separation is weaker compared to the previous case (k > 1),

however, it is relatively more long-ranged. As a result, the action in the large-N field

theory becomes non-local. This modifies the density in a slightly di↵erent way compared

to the regime 1. We find that the density is still supported on a finite interval [�lk(w), w]

and it vanishes at the left edge �lk(w). However, at the right edge, i.e., at the wall, the

density diverges, though it remains integrable. This is di↵erent from regime 1 where the

density approaches a nonzero constant at the wall. We find that the density profile in

this regime is explicitly given by

⇢⇤
k
(y, w) = Ak

(l̃k(w) � y)(lk(w) + y)
k+1
2

(w � y)
1�k
2

, for � lk(w)  y  w , w < luc (3.6)

where l̃k(w) =
1

2
((k + 1)lk(w) + (1 � k)w) . (3.7)

Here, Ak is given by Eq. (2.20), and lk(w) is found from the normalization of the density.

A plot of this expression of the profile is given in Fig. 3.4 where it is also compared

with numerical results. As in the case of regime 1, we have studied the support size

Lk(w) = w + `k(w) as a function of w, shown in Fig. 3.5. As w ! �1, the support size
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decays algebraically as Lk(w) ⇠ |w|�
1

k+2 .

Regime 3 (�2 < k  �1): strongly long-ranged interactions. In this regime, the force

between two particles vanishes when two particles get closer to each other. However, at

long separation, the repulsive force increases as a power law ⇠ |r||k|�1 of the inter-particle

distance |r|. As a consequence, the associated field theory is strongly non-local. In the

presence of the wall, this leads to a rather exotic scaled density profile consisting of two

disjoint pieces separated by a hole: a bulk part, supported over [�lk(w), l̄k(w)] and a delta

peak with weight D⇤
k
(w) located at w > l̄k(w) (see the top row of Fig. 3.1. Thus the hole

extends over [l̄k(w), w] which is devoid of any particle. Moreover, unlike in regimes 1 and

2, where the density vanishes at the left edge �lk(w), in regime 3, the density diverges

in an integrable fashion. The presence of the wall is felt over a much wider region in this

case, due to the strong non-local nature of the interaction. As the wall is pushed further

to the left side, at some critical position wc(k) < luc the support of the bulk part shrinks

to zero and all the particles accumulate at the wall, leading to a single delta function at

the wall for w < wc(k). We find the following explicit expression for the density profile

⇢⇤
k
(y, w) =

8
>>>>>>>>><

>>>>>>>>>:

Ak

(lk(w)+y)
k+1
2 (l̄k(w)�y)

k+3
2

(w�y) I[�lk(w) < y  l̄k(w)] + D⇤
k
(w)�(w � y),

for w > wc(k)

�(w � y), for w < wc(k)

(3.8)

where I represents the indicator function, Ak is given by Eq. (2.20) and the other con-

stants are given by

l̄k(w) =
2w + (k + 1)lk(w)

k + 3
, (3.9)

D⇤
k
(w) =

(lk(w) � w) (w + lk(w))
k+1
2

|k| (k + 3)

✓
(k + 1) (w � lk(w))

k + 3

◆ k+1
2

, (3.10)

wc(k) =
(k + 2) |k(k + 1)|

1
k+2

k + 1
. (3.11)

The value of lk(w) is again determined from the normalization condition. The analytical

expression in the first line of Eq. (3.8) is plotted in Fig. 3.6 where it is also compared to
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MC simulations. In this regime 3 of k, the support length of the extended part decays as

the wall is pushed to the left and goes to zero at a critical wall position w = wc(k). This

can be seen in Fig. 3.7.

Furthermore, in this regime 3 of k, we find an interesting first-order phase transition

in the density profile as the scaled wall position decreases below a critical value w⇤(k) >

wc(k). We find that the actual density profile is a pure delta function for all w < w⇤(k).

Thus the solution in the first line of Eq. (3.8) is actually metastable in the intermediate

region wc(k) < w < w⇤(k). This is discussed in Section 3.3.3.

3.3 Derivation

For a given configuration of the positions (x1, x2, ..., xN) of the particles, we define the

empirical density as

⇢N(x) =
1

N

NX

i=1

� (x � xi) . (3.12)

We are interested in computing the thermal average of this empirical density for large N

which we denote by h⇢N(x)i. To proceed, we first look at the partition function of the

Riesz gas in the presence of a wall given by

Zk(W ) =

Z
W

�1
dx1 . . .

Z
W

�1
dxN e��Ẽk({xi}) . (3.13)

For large N the multiple integrals in the partition function can in principle be done in

two steps.

1. Integrate over the microscopic configurations corresponding to a given macroscopic

density profile ⇢N(x). This introduces an entropy contribution corresponding to this

density profile. Also, this stage involves converting the energy function Ẽk({xi}) in

Eq. (2.1) to an energy functional Ẽk[⇢N(x)] [45, 92]. This yields

Zk(W ) ⇡
Z

D[⇢N ]e��Ek[⇢N (x)]�N
R
dx ⇢N (x) ln(⇢N (x))�

✓Z
W

�1
dx⇢N(x) � 1

◆
, (3.14)

where the delta function ensures that the functional integrals are performed only

over normalized density profiles. For large N , the energy functional Ẽk[⇢N ] takes
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the following form, depending on the value of k

Ẽk [⇢N(x)] ⇡ N

2

Z
W

�1
dx x2⇢N(x) + J

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

⇣(k)Nk+1
R

W

�1 dx [⇢N(x)]k+1 , for k > 1

N2 ln N
R

W

�1 dx [⇢N(x)]2 , for k = 1

sgn(k)N2

2

R
W

�1 dx0dx⇢N (x0)⇢N (x)
|x�x0|k for � 2 < k < 1.

(3.15)

2. We perform the functional integral in Eq. (3.14) using the saddle point method.

We further find the saddle point density by extremizing the action which finally

provides Zk(W ) in the exponential form, as will be shown later.

To proceed, it is convenient to use the scaled variables yi = xi/LN with LN given in

Eq. (2.6). In these variables, the density profile has a scaling form ⇢N(y) = L�1
N

⇢(yL�1
N

)

[see Eq. (2.15)]. Substituting this scaling form in Eq. (3.15), we find that the energy

functional

Ẽk[⇢N ] = BNEk[⇢] where BN = NL2
N

, (3.16)

and the scaled energy functional Ek [⇢] takes the following forms

Ek [⇢(y)] ⇡ 1

2

Z
w

�1
dy y2⇢(y) + J

8
>>>>><

>>>>>:

⇣(k)
R

w

�1 dy ⇢(y)k+1 k > 1

R
w

�1 dy ⇢(y)2 k = 1

sgn(k)
2

R
w

�1
R

w

�1 dy0dy ⇢(y)⇢(y0)
|y0�y|k �2 < k < 1 ,

(3.17)

with w = W/LN . Substituting (3.16) in the expression (3.14) for the partition function,

one finds that the energy scale BN is much bigger than the scale of the entropy, since

BN � N for large N and fixed �. Hence, neglecting the entropy term and using the

integral representation of the delta function �(x) =
R
�

dµ

2⇡ie
µx where � runs along the

imaginary axis in the complex µ-plane, we rewrite the partition function in Eq. (3.14) as

Zk(W ) = CN

Z
dµ

Z
D[⇢] exp [��BN⌃k [⇢(y), µ] + o(BN)] , (3.18)
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where o(BN) represents terms of order smaller than BN (subdominant) which is composed

of the self-energy term and the entropy term. The action ⌃k [⇢(y), µ] is given by

⌃k [⇢(y), µ] =

✓
Ek [⇢(y)] � µ

✓Z
w

�1
dy⇢(y) � 1

◆◆
, (3.19)

with Ek [⇢k(y)] given in Eq. (3.17). Note that a Jacobian CN appears in Eq. (3.18) when

the positions are rescaled from {xi} ! {yi} in Eq. (3.13) where yi = xi/LN . This

multiplicative factor is given by

CN =

8
><

>:

(LN)N for k 6= 0,

N
N
2 +�

N(N�1)
4 for k ! 0

. (3.20)

The Jacobian CN is a multiplicative factor in Eq. (3.18) which does not a↵ect the equi-

librium properties.

The integrals in Eq. (3.18) can be performed using the saddle point method in which

one is required to minimize the action ⌃k[⇢(y), µ] in Eq. (3.19) to find the saddle point

density ⇢⇤
k
(y, w) and the chemical potential µ⇤

k
. The saddle point equations read

�⌃k [⇢ (y) , µ]

�⇢ (y)

�����⇢(y)=⇢
⇤
k(y,w)

µ=µ
⇤
k

= 0 (3.21)

@⌃k [⇢ (y) , µ]

@µ

�����⇢(y)=⇢
⇤
k(y,w)

µ=µ
⇤
k

= 0 . (3.22)

Note that the second equation above is equivalent to the normalization condition
R

w

�1 dy⇢(y) =

1. In the limit N ! 1, the saddle point density coincides with the average density.

3.3.1 Regime 1 (k � 1): short-ranged interactions

In this regime, the interaction energy falls so quickly with increasing separation that it

e↵ectively acts as short-ranged and consequently the energy functional Ek [⇢k(y)] becomes

local in the leading order for large N (see Eq. (3.17)). The saddle point equation (3.21)

becomes

µ⇤
k

=
y2

2
+ (k + 1)⇣(k) [⇢⇤

k
(y, w)]k , (3.23)
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for k > 1 (the case k = 1 is treated separately below). This equation of course is valid for

y belonging to the support of the density. To determine the support, we solve Eq. (3.23)

explicitly, giving

⇢⇤
k
(y, w) = Ak

�
2µ⇤

k
� y2

� 1
k , (3.24)

where Ak is given in the first line of Eq. (2.20). This density is real and nonzero for

�
p

2µ⇤
k

< y < +
p

2µ⇤
k
. Now there are two possible situations: (i) when w >

p
2µ⇤

k
and

(ii) when w <
p

2µ⇤
k
. Consider the situation (i) first. In this case, the density is given

by Eq. (3.24) and is supported over [�
p

2µ⇤
k
, +
p

2µ⇤
k
]. The only unknown is µ⇤

k
which

is fixed by the normalization condition
Rp

2µ⇤
k

�
p

2µ⇤
k

⇢⇤
k
(y, w) dy = 1. It is easy to show that

it gives
p

2µ⇤
k

= luc where luc is given in Eq. ((2.19). In this case, the density in Eq.

(3.24) is precisely the unconstrained density given in Eq. (2.18). Thus we conclude that

for w > luc the unconstrained density is not a↵ected by the presence of the wall.

We next consider the case (ii) above, i.e., when w <
p

2µ⇤
k
. In this case, the support

of the density in Eq. (3.24) is over [�
p

2µ⇤
k
, w]. Thus, unlike in case (i) above, the density

does not vanish at the upper edge w of the support (see Fig. 3.2) and it reads

⇢⇤
k
(y, w) = Ak

�
2µ⇤

k
� y2

� 1
k , �

p
2µ⇤

k
 y  w . (3.25)

Setting
p

2µ⇤
k

= lk(w), the density is then supported over [�lk(w), w]. The only unknown

lk(w) is then fixed by the normalization condition
R

w

�lk(w) ⇢
⇤
k
(y, w) dy = 1. Substituting

the density from Eq. (3.25), the normalization condition can be expressed in terms of an

auxiliary variable mk = w+lk(w)
2lk(w)

(2mk � 1)

✓
B(�k + 1, �k + 1)

B(mk; �k + 1, �k + 1)

◆↵k

=
w

luc
(3.26)

where B(mk; a, b) =
R

mk

0 ua�1(1 � u)b�1 du is the incomplete Beta function and we recall

that �k = 1/k and ↵k = k/(k + 2). The variable mk lies in the range [0, 1]. Solving Eq.

(3.26) gives mk, which in turn fixes the unknown constant lk(w). Let us investigate two

limiting cases. First, consider the limit w ! luc from the left. In this case the right hand

side of Eq. (3.26) approaches 1 and therefore mk ! 1 in this limit, i.e., lk(w) ! luc as

expected. In the opposite limit where w ! �lk(w) (i.e., in the limit of vanishing support

size Lk(w) = w + lk(w) ! 0, which happens when w ! �1), the variable mk ! 0.
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Figure 3.2: Regime 1 (k � 1): Comparison between MC simulations (symbols) and the
theoretical expression given in Eq. (3.24) (solid line) of the scaled density profile of the
Riesz gas in the presence of the hard wall at w = 1.0 for k = 1.5. The parameters used
in this plot are J = 1 and T = 1. The dashed vertical line on the left marks the left edge
�lk(w) (shown by an arrow) of the density while the wall is located at w (shown also by
an arrow).

Using the small mk behavior of B(mk; a, b) ⇠ ma

k
in Eq. (3.26), it is easy to verify that

the support length Lk(w) = w + lk(w) ⇠ |w|�1/(k+1), as w ! �1.

The density profile of the constrained gas in Eq. (3.25) is plotted (solid line) in Fig.

3.2 where it is compared with numerical simulations (symbols) for di↵erent values of N .

We observe that for increasing N the numerical density profile converges to the analytical

expression. Clearly, the density is nonzero at the wall while it vanishes at the left edge as

⇠ (lk(w) � |y|)�k with �k = 1/k, as in the unconstrained case. As w decreases below luc
k

,

the gas is pushed to the left and, as argued above, the support size Lk(w) = w + lk(w)

shrinks algebraically Lk(w) ⇠ |w|�
1

1+k as w ! �1. This result is verified in simulations

in Fig. 3.3 where we plot the support length Lk(w) as a function of w for given k.

Following the same procedure for k = 1, we find that the density profile is given by the

same form as for k > 1

⇢⇤
1(y, w) = A1

�
l1(w)2 � y2

�
, for � l1(w)  y  w, w < luc1 , (3.27)

with the prefactor A1 = 1/4J (see the second line of Eq. (2.20)) and l1(w) is determined

for the normalization condition.
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Figure 3.3: Regime 1 (k � 1): Plot of the support size Lk(w) = w + lk(w) = 2mkw

2mk�1 as a
function of w  luc, obtained by solving Eq. (3.26) for mk. Lk(w) decreases monotonically
with decreasing w, shown for two di↵erent values of k. As w ! �1, the support size
decreases algebraically as Lk(w) ⇠ |w|�1/(k+1). The vertical dashed lines indicate the
positions of the unconstrained right edge luc for the two values of k.

3.3.2 Regime 2 (�1 < k < 1): Weakly long-ranged interactions

In this regime of k, the interaction forces decay slower with increasing inter-particle

separation compared to the previous short-ranged regime. The energy functional in

this regime is given by the third line in Eq. (3.17). Using this in the saddle point

equation (3.21) we get

µ⇤
k

=
y2

2
+ sgn(k)

Z
w

�1
dy0 ⇢⇤

k
(y0, w)

|y0 � y|k . (3.28)

To solve this equation, we note that the first term on the right-hand side grows arbitrarily

for large negative y whereas the second term can at maximum grow as y1+|k| (for k < 0).

Since µ⇤
k

is a constant the Eq. (3.28) can be valid only for density profiles with finite

support (�lk(w), w). Taking a derivative with respect to y on both sides of Eq. (3.28)

we get

P.V.

Z
w

�lk(w)

⇢⇤
k
(y0, w)sgn(y0 � y)

|y � y0|k+1 dy0 = � y

|k| , �lk(w)  y  w , (3.29)

where P.V. represents the principal value. Note that this integral is interpreted in princi-

pal value sense only for 0  k < 1, but for �2 < k < 0 it is considered a normal integral.

The principal value for 0  k < 1 appears because the second term in Eq. (3.28) is not
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Figure 3.4: Regime 2 (�1 < k < 1): Comparison between MC simulations (symbols) and
the theoretical expression given in Eq. (3.38) (solid line) of the scaled density profile of
the Riesz gas in the presence of the hard wall at w = 1.0 for k = 0.5. The parameters
used in this plot are J = 1 and T = 1. The dashed vertical line on the left marks the left
edge �lk(w) (shown by an arrow) of the density while the wall is located at w (shown
also by an arrow). The density diverges at the wall as ⇠ (w � y)(k�1)/2.

di↵erentiable at y = y0 and we consider a weak derivative with respect to y (as discussed

in Ref. [99]). We need to solve the integral equation (3.29) to obtain the desired density.

We can simplify the calculations by shifting the coordinates to the left edge and scaling

with the length of the support Lk(w) = w + lk(w), i.e., by making the transformation

z = y+lk(w)
Lk(w) . Since the density is normalized it is expected to take the scaling form

⇢⇤
k
(y, w) =

1

Lk(w)
�k

✓
y + lk(w)

Lk(w)
, w

◆
, (3.30)

where �(z, w) is now supported over z 2 [0, 1] and satisfies the Sonin equation

P.V.

Z 1

0

�k(z0, w)sgn(z0 � z)

|z � z0|k+1 dz0 = hk(z) , 0  z  1 , (3.31)

with hk(z) = Ak (z � qk(w)), Ak = � [Lk(w)]k+2

|k| and qk(w) = lk(w)
Lk(w) . The only unknown so

far is lk(w). Fortunately, the Sonin equation can be inverted for arbitrary source function

hk(z) and the general solution is given by [100]

�k(z, w) = C0

�
z(1 � z)

� k�1
2 + uk(z), with (3.32)
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Figure 3.5: Regime 2 (�1 < k < 1): Plot of the support size Lk(w) = w + lk(w) =
2�k w

1+�k�gk(w) as a function of w  luc, obtained by solving Eq. (3.39) for gk(w). Lk(w)
decreases monotonically with decreasing w, shown for two di↵erent values of k. As
w ! �1, the support size decreases algebraically as Lk(w) ⇠ |w|�1/(k+1). The vertical
dashed lines indicate the positions of the unconstrained right edge luc for the two values
of k.

uk(z) =
2Ak|k|

B
�
k+1
2 , k+1

2

�z
k�1
2

@

@z

✓Z 1

z

t�k(t � z)
k+1
2

@

@t

Z
t

0

hk(y)y
k+1
2 (t � y)

k�1
2 dy dt

◆
,

(3.33)

where C0 is an arbitrary constant and Ak is given in Eq. (2.20). In Eq. (3.32), the

first term represents the general solution of the homogenous part of the equation (with

hk(z) = 0), while the second term uk(z), given explicitly in Eq. (3.33), represents a

particular solution of the full inhomogeneous equation (3.31). Inserting the explicit form

of hk(z) [given after Eq. (3.31)] in Eq. (3.33) and performing the integral (detailed

in A.1.1), we obtain the full general solution

�k(z, w) =
�
z(1 � z)

��k�1
h
C0 � Ak|k|Ak(1 � z)

�
z � �k(2qk(w) � 1)

�i
, (3.34)

where �k = (k + 1)/2. The only unknown parameters so far are C0 and lk(w).

As in regime 1, there are two possible scenarios, depending on the value of w compared

to the unconstrained right edge luc. Let us consider w < luc. In this case, it turns out that

the constant C0 is nonzero and is determined as follows. To fix C0 in this case, we need to

use some information about the density profile from numerical simulations (see Fig. 3.4.

From the simulations, we see that the density vanishes at the left edge (corresponding to

z = 0 in the shifted coordinate), while it diverges at the right edge at w (corresponding
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to z = 1 in the shifted coordinate). From Eq. (3.34), since �k � 1 = (k � 1)/2 < 0 here

for k < 1, it follows that if the density has to vanish at z = 0, the term in the square

bracket must vanish at z = 0. This fixes the constant C0 = �Ak|k|Ak�k(2qk(w) � 1).

Hence �k(z, w) becomes

�k(z, w) = �Ak|k|Akz
�k(1 � z)�k�1(gk(w) � z)I[0 < z < 1] (3.35)

where Ak = � [Lk(w)]k+2

|k| ,

gk(w) = �k (2qk(w) � 1) + 1 =
(k + 3)lk(w) + (1 � k)w

2(w + lk(w))
, (3.36)

and we used qk(w) = lk(w)/(w + lk(w)). Note that when w ! luc�
k

, qk ! 1
2

+
, which

suggests that C0 ! 0 in this limit. As a result, we get the unconstrained density profile

given in Eq. (2.18). Now if w is increased further to the right of luc, as discussed before

(Section 3.2, the particles do not feel the presence of the wall and the density remains

unconstrained. Hence, we expect C0 = 0 for w > luc. Note that gk(w) in Eq. (3.36) can

also be expressed in terms of the support length Lk(w) = w + lk(w) as

gk(w) =
k + 3

2
� (k + 1) w

Lk(w)
. (3.37)

Thus, finally, the density in terms of the original coordinate y reads

⇢⇤
k
(y, w) = Ak(lk(w) + y)

k+1
2 (w � y)

k�1
2

⇣
l̃k(w) � y

⌘
, for � lk(w)  y  w , w < luc

(3.38)

where l̃k(w) = 1
2((k + 1)lk(w) + (1 � k)w) as given in Eq. (3.7). The only remaining

unknown lk(w) is then determined from the normalization condition
R

w

�lk(w) ⇢
⇤
k
(y, w) dy =

1. The normalization condition can be conveniently expressed in terms of gk(w) defined

in Eq. (3.36) as

✓
�k + 1 � gk(w)

�k

◆✓
gk(w)

✓
2 +

1

�k

◆
�
✓

1 +
1

�k

◆◆�↵k

=
w

luc
, (3.39)

where we recall that ↵k = 1/(k+2) and �k = (k+1)/2. This equation is the analog of Eq.

(3.26) in regime 1. For a given w and k, we solve this equation numerically to get gk(w)
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which, via Eq. (3.36), in turn fixes the only remaining unknown constant lk(w). Once

lk(w) is fixed, Eq. (3.38) then provides the exact density profile of the constrained gas.

We verify that in the limit k ! 0 our results recover the known results for the Dyson’s

log gas in the presence of a wall [22, 23]. The numerical results from MC simulation for

the density profile are in perfect agreement with our analytical predictions, as shown in

Fig. 3.4 for a representative value k = �0.5 in this regime.

One can show that the solution for gk(w) in Eq. (3.39) lies in the range [1, +1). It

is easy to see that when w approaches luc, the right hand side of Eq. (3.39) approaches 1

and consequently gk(w) ! 1. From Eq. (3.36), we see that lk(w) ! w and since w ! luc

it follows that lk(w) ! luc, i.e., to the right edge of the unconstrained gas. In contrast,

when w ! �1, it is easy to check from Eq. (3.39) that gk(w) diverges as gk(w) ⇠ |w|
k+2
k+1 .

Substituting this behavior in Eq. (3.37), we see that Lk(w) ⇠ |w|�
1

k+1 as w ! �1. In

Fig. 3.5, we plot the support size Lk(w) as a function of w for k = �0.5 and k = 0.9.

We see from Eq. (3.38) that the density at the wall diverges as ⇢⇤
k
(y, w) ⇠ (w�y)(k�1)/2

(since k < 1). Thus the divergence becomes stronger as k decreases and at k = �1 it

becomes non-integrable, signaling a breakdown of the validity of the solution in Eq.

(3.38). This calls for a di↵erent analysis for �2 < k  �1, which we carry out in the

next subsection.

3.3.3 Regime 3 (�2 < k  �1): Strongly long-ranged interac-

tions

In this regime not only the interaction energy but also the interaction force is zero at

vanishingly small separation. As a consequence of this the density in this regime, in

the presence of a wall, displays interesting features as seen in Fig. 3.6 where we plot

constrained density profile ⇢⇤
k
(y, w) as a function of y obtained from numerical simulations.

Interestingly, in this case, for k < �1, the average density profile, supported over a finite

range, consists of two disjoint parts with a region devoid of the particles (hole) in between

them. One part corresponds to a very high density (a delta peak) at the position of the

wall (see the inset in Fig. 3.6). The other part has an extended profile which vanishes

at the right edge bordering the hole and has an integrable divergence at the left edge

(see Fig. 3.6. Strictly for k = �1 (1dOCP), the hole disappears, and the extended bulk

merges with the delta-peak [32]. These observations suggest an ansatz for the scaled
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density profile of the form

⇢k(y, w) = ⇢b(y, w)I[�lk(w)  y  l̄k(w)] + Dk(w)�(w � y) , (3.40)

where �lk(w) < l̄k(w) < w. The extended part of the density ⇢b(y, w) (where the

subscript b refers to the bulk density) is assumed to be supported over (�lk(w), l̄k(w)).

Here l̄k(w) denotes the right edge of the extended density profile, or equivalently the left

edge of the hole. Hence the hole is over the region y 2 (l̄k(w), w). The amplitude Dk(w)

of the delta function just denotes the fraction of particles in the delta peak. In fact, with

this ansatz (3.40) the normalisation condition reads

Z
l̄k(w)

�lk(w)

⇢b(y, w) dy + Dk(w) = 1 . (3.41)

The next step is to substitute this ansatz (3.40) in the expression for the scaled energy

function in the third line of Eq. (3.17). It reads

Ek [⇢k(y)] ⇡ 1

2

Z
l̄k(w)

�lk(w)

dy y2⇢b(y, w) � 1

2

Z
l̄k(w)

�lk(w)

Z
l̄k(w)

�lk(w)

dy0dy
⇢b(y, w)⇢b(y0, w)

|y0 � y|k

+Dk(w)

"
w2

2
�
Z

l̄k(w)

�lk(w)

⇢b(y, w)

|w � y|k dy

#
. (3.42)

The first two terms represent the energy of the particles in the extended part with density

⇢b(y, w). The third term represents the energy of the particles localized in the delta-

function – it has two parts: the first part Dk(w) w2/2 represents the potential energy

of these particles while the second part represents the long-ranged interaction energy

between these particles and the extended bulk with density ⇢b(y, w), separated by the

hole. Note that the interaction energy between the particles localized at w does not

contribute as it vanishes identically for k < 0, which is the case in this regime 3.

The goal is now to minimize this scaled energy functional in (3.42) by varying ⇢b(y, w).

Note that the amplitude of the delta-peak Dk(w) is automatically fixed by the normaliza-

tion condition (3.41). Hence the optimization will be only with respect to ⇢b(y, w), and

not Dk(w) independently. Taking a functional derivative with respect to ⇢b(y, w) subject
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to the constraint (3.41) enforced by a Lagrange multiplier µk, we get

µ⇤
k

=
y2

2
�
Z

l̄k(w)

�lk(w)

⇢⇤
b
(y0, w)

|y � y0|k
dy0 � D⇤

k
(w)(w � y)�k , (3.43)

where the subscript ‘⇤’ indicates the optimal value of the parameters and the density.

The optimal density ⇢⇤
b
(y, w) has thus two unknown parameters �lk(w) and l̄k(w) and

we recall that the constant Dk(w) is fixed from the normalization condition (3.41).

To proceed further we take a derivative of Eq. (3.43) with respect to y and get

Z
l̄k(w)

�lk(w)

⇢⇤
b
(y0, w)sgn(y0 � y)

|y � y0|k+1 dy0 = � y

|k| � D⇤
k
(w)(w � y)�(k+1). (3.44)

This can be simplified after a change of variable z = y+lk(w)

L̃k(w)
where L̃k(w) = l̄k(w)+ lk(w)

is the size of the support. In this shifted and scaled coordinate the density takes the

scaling form

⇢⇤
b
(y, w) =

1

L̃k(w)
�k

✓
y + lk(w)

L̃k(w)
, w

◆
, (3.45)

where �k(z, w) satisfies the following equation

Z 1

0

dz0
sgn(z0 � z)

|z0 � z|k+1
�k(z

0, w) = hk(z) , 0  z  1 , (3.46)

with hk(z) = Ak(z � qk) + Bk(gk � z)�(k+1). The constants are

Ak = �

h
L̃k(w)

ik+2

|k| , gk(w) =
w + lk(w)

L̃k

, qk(w) =
lk(w)

L̃k(w)
, Bk = �D⇤

k
(w) , (3.47)

where we recall that L̃k(w) = l̄k(w) + lk(w). This equation (3.46) looks similar to (3.31)

in regime 2. However, there is no principal value (P.V.) in Eq. (3.46). This is due to the

fact that for k  �1 the integrand is not singular inside the support.

The integral equation (3.46) can be solved exactly using the Sonin inversion formula

given in Eq. (3.32). After a long calculation presented in A.1.2, we find

�k(z, w) =
�
z(1 � z)

��k�1

"
C0 � Ak|k|(1 � z)Ak

�
�k

�
1 � 2qk(w)

�
+ z
�

� Ak|k| 1 � z

gk(w) � z
Bk

2�kgk(w)

(gk(w)(gk(w) � 1))�k

#
,

(3.48)
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Figure 3.6: Regime 3 (�2 < k  �1): Scaled density profile for w = 1 and k = �1.5:
Comparison between MC simulations (symbols) and the theoretical expression (solid line)
given in Eq. (3.40) with ⇢b(y, w) = ⇢⇤

b
(y, w) in Eq. (3.56) and Dk(w) = D⇤

k
(w) in Eq.

(3.54). The parameters used in this plot are J = 1 and T = 1000. The dashed vertical
line on the left (right) marks the left (right) edge �lk(w) (l̄k(w)) shown by an arrow.
The cyan shaded area is the hole region and the thick black line at y = w = 1.0 is the
delta function. Note that the theoretical expression has an integrable divergence at the
left edge as shown by the solid line. Since the numerical simulations are for finite N , we
do not see the divergence very clearly. However, the value of the density at the left edge
becomes larger as N increases, which indicates divergence in the limit N ! 1.

where C0 is an arbitrary constant and �k = (k+1)/2. Thus so far, we have three unknown

constants characterizing the optimal density: lk(w), l̄k(w), and C0. To fix these three

unknowns we proceed as follows.

We start by fixing C0. As z ! 1 in Eq. (3.48), the density �k(z, w) ⇠ C0(1�z)(k�1)/2.

Since k  �1 we see that the density has a non-integrable divergence at z = 1 unless

C0 = 0. Since the density is normalizable, C0 = 0 is the only possible choice. Setting

C0 = 0 in Eq. (3.48), we get

�k(z, w) = �Ak|k|Ak

z�k�1 (1 � z)�k

gk(w) � z

⇥
�

�k

�
1 � 2qk(w)

�
+ z
�
(gk(w) � z) +

Bk

Ak

2�kgk(w)

(gk(w)(gk(w) � 1))�k

�
, (3.49)

where we recall again that �k = (k + 1)/2 < 0 in this regime 3. Let us first look at the

edge at z = 1. The term (1 � z)�k clearly diverges at the right edge, where z ! 1. On

the other hand, from MC simulations, we see the density always vanishes at this edge.

This means that the term inside the square bracket in the second line of Eq. (3.49) must

vanish as z ! 1. Secondly, investigating the z ! 0 limit in Eq. (3.49), we see that the
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Figure 3.7: Regime 3 (�2 < k  �1): Plot of the support size L̃k(w) = l̄k(w) + lk(w)
in Eq. (3.59) (with gk(w) determined from Eq. (3.57)). L̃k(w) decreases monotonically
with decreasing w and vanishes at w = wc(k) given in Eq. (3.61) and marked by the two
vertical dashed lines on the left for k = �1.5 and k = �1.1. The unconstrained right
edge luc, for these two values of k, are also marked by two vertical dashed lines on the
right.

amplitude diverges as z(k�1)/2 which leads to a non-integrable divergence. Hence the term

inside the square bracket in the second line of Eq. (3.49) must also vanish as z ! 0. Note

that the square bracket on the second line of Eq. (3.49) is a polynomial in z of degree 2,

and hence it must be of the form z(1 � z) in order to satisfy the behavior at both edges

z = 0 and z = 1. This implies

h �
�k

�
1 � 2qk(w)

�
+ z
�
(gk(w) � z) +

Bk

Ak

2�kgk(w)

(gk(w)(gk(w) � 1))�k

i
= z(1 � z) . (3.50)

Matching the powers of z on both sides gives two relations

qk(w) =
�k + 1 � gk(w)

2�k

, (3.51)

and
Bk

Ak

= �D⇤
k
(w)

Ak

=
gk(w)�k(gk(w) � 1)�k+1

|1 + k| , (3.52)

where we used Bk = �D⇤
k
(w) from Eq. (3.47). Solving these Eqs. (3.51) and (3.52) one

can get D⇤
k

and l̄k(w) in terms of lk(w)

l̄k(w) =
2w + (k + 1)lk(w)

k + 3
, (3.53)
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Figure 3.8: Regime 3: Simultaneous plots (i) of the amplitude D⇤
k
(w) of the delta function,

associated with the density ⇢I(y, w) in Eq. (3.62) (dashed red line) and (ii) of the order
parameter Mk(w) defined in Eq. (3.67) (solid green line), as a function of w for fixed
k = �1.5. We see that D⇤

k
(w) increases with decreasing w and approaches to 1 as

w ! wc(k), while the order parameter Mk(w) coincides with D⇤
k
(w) for w > w⇤(k) but

jumps to 1 at w = w⇤(k). This jump in Mk(w) at w = w⇤(k) demonstrates a first-order
phase transition.

D⇤
k
(w) =

(lk(w) � w) (w + lk(w))
k+1
2

|k| (k + 3)

✓
(k + 1) (w � lk(w))

k + 3

◆ k+1
2

. (3.54)

The only remaining constant lk(w) is finally determined from the normalization condition

Eq. (3.41). The scaled bulk density is then given by

�k(z, w) = �Ak|k|Ak

z�k (1 � z)�k+1

gk(w) � z
, (3.55)

which in terms of the original coordinates reads

⇢⇤
b
(y, w) = Ak (lk(w) + y)�k

(l̄k(w) � y)�k+1

(w � y)
where �k =

k + 1

2
, (3.56)

and the constant Ak is given in Eq. (2.20). Inserting this density (3.56) in the normal-

ization condition Eq. (3.41) and using the expression for D⇤
k
(w) in (3.54) we find that

lk(w) satisfies the equation

gk(w)(2�k + 1) � (�k + 1)

�kB(�k + 1, �k + 1)�↵k

✓
I (gk(w), �k, �k + 1) +

dk(w)

Ak

◆�↵k

=
w

luc
, (3.57)

where we recall that gk(w) = Lk(w)/L̃k(w) with Lk(w) = w + lk(w) and L̃k(w) = l̄l(w) +
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lk(w). Here

I(gk(w), �k, �k + 1) =

Z 1

0

z�k(1 � z)�k+1

gk(w) � z
dz and dk(w) =

gk(w)�k (gk(w) � 1)�k+1

k(k + 1)
.

(3.58)

For a given w and k, we solve this equation numerically to get gk(w). Using gk(w) =

(w + lk(w))/L̃k(w) where

L̃k(w) = l̄k(w) + lk(w) =
2�kw

(2�k + 1)gk(w) � (1 + �k)
, (3.59)

we then finally fix the only unknown lk(w). We then have the full analytical expression

of the bulk density ⇢⇤
b
(y, w) in Eq. (3.56) and the weight of the delta function D⇤

k
(w) in

Eq. (3.54). The numerical results from MC simulation for the density shown in Fig. 3.6

are in good agreement with these analytical predictions. A slight complication arises in

the MC simulation as it turns out that the particles have extremely small fluctuations

and hence are confined to a small region around their mean position. So to get a better

thermal average of density we need to go to larger N which is computationally costly.

We bypassed this issue by considering comparatively high temperature T = 1000 but

still satisfying the constraint �N2↵k � 1. At such high temperatures, particles fluctuate

more leading to a smoother density profile for the chosen values of N . We notice that the

numerical densities match better with the expression Eq. (3.56) for larger values of N .

Let us first analyze the limit w ! luc from the left. In this limit, the right-hand side of

Eq. (3.57) approaches 1. Consequently, one can show, by analyzing the left-hand side of

Eq. (3.57) that gk(w) = Lk(w)/L̃k(w) ! 1 in that limit. Consequently, Lk(w) = w+lk(w)

approaches L̃k(w) = lk(w) + l̄k(w). Hence, l̄k(w) ! w indicates that the hole disappears

in this limit. In addition, from Eq. (3.59), it follows that lk(w) ! w and the support

length L̃k(w) ! 2luc. In addition, the weight of the delta-peak in Eq. (3.54) vanishes in

this limit. We thus fully recover the ’U-shaped’ unconstrained density, as in the first row

of Fig. 2.2.

Now consider pushing the position of the wall w further to the left. As w decreases,

more and more particles get transferred from the extended bulk to the delta peak. As

a result, the support of the bulk density L̃k(w) reduces monotonically with decreasing

w (see Fig. 3.7 and the weight of the delta-peak D⇤
k
(w) increases monotonically with
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Figure 3.9: Plot of the energy E
I

k
(w) and E

II

k
(w) = w2/2 vs. w for two di↵erent values

of k: for k = �1.5 (panel (a)) and k = �1.8 (panel (b)). The values of w⇤(k) and
wc(k) are marked by vertical dashed lines. In the range wc(k) < w < w⇤(k) the energy
E
I

k
(w) > E

II

k
(w), showing that the configuration with density ⇢I

k
(y, w) is metastable.

decreasing w (see Fig. 3.8. It turns out that there is a critical value wc(k) at which

D⇤
k
(w) hits 1 and simultaneously L̃k(w) hits 0. At w = wc(k), there are no particles left

in the extended bulk and the wall absorbs all the particles. If w is decreased below wc(k),

all the particles are still at the wall and the density remains a delta function at the wall,

i.e.,

⇢⇤
k
(y, w) = �(w � y) for w  wc(k) . (3.60)

To determine the critical value wc(k), we first note that the support length L̃k(w) =

lk(w) + l̄k(w) = 0 at w = wc(k). Using l̄k(wc) = �lk(wc) in Eq. (3.53) gives lk(wc) =

�wc/(k +2). Substituting this value in the expression of D⇤
k
(w) in Eq. (3.54) and setting

D⇤
k
(wc) = 1 gives

wc(k) =
(k + 2) |k(k + 1)|

1
k+2

k + 1
. (3.61)

Since �2 < k < �1, wc(k) < 0. Note that in the limit k ! �1, wc(k) ! �1, which is

indeed the left edge of the unconstrained scaled density [31, 32].

Metastability and first-order phase transition. So far, we have assumed that the optimal

density profile for �2 < k < �1 is given by the ansatz in Eq. (3.40) which consists of a

disjoint bulk part and a delta-peak at the wall, separated by a hole in between. We will
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wwc(k) w�(k)

�I !

�II !

�I ! true minimum

true minimumtrue minimum

metastable�I = �II

Figure 3.10: The optimal density is one of two di↵erent types ⇢I

k
(y, w) and ⇢II

k
(y, w)

defined respectively in Eqs. (3.62) and (3.63). For w > w⇤(k), ⇢I

k
(y, w) is the optimal

density. For wc(k) < w < w⇤(k), the density ⇢I

k
(y, w) becomes metastable, while ⇢II

k
(y, w)

represents the true minimum. Finally, for w < wc(k), the solutions ⇢I

k
(y, w) and ⇢II

k
(y, w)

merge with each other.

denote this solution by the superscript I and it reads

⇢I

k
(y, w) = ⇢⇤

b
(y, w)I[�lk(w)  y  l̄k(w)] + D⇤

k
(w)�(w � y) . (3.62)

We have seen that for w  wc(k) this density becomes a pure delta-peak located at

w, with wc(k) given in Eq. (3.61). This suggests that there could be a candidate con-

figuration for a minimum energy, denoted by a superscript II, which consists of a pure

delta-function at w for any w, and not just for w  wc(k). It reads

⇢II

k
(y, w) = �(y � w) . (3.63)

These two candidate configurations ⇢I

k
(y, w) and ⇢II

k
(y, w) merge for w  wc(k). Hence

for w > wc(k), one naturally wonders which one of these two configurations ⇢I

k
(y, w) and

⇢II

k
(y, w) has the lower energy. To answer this question, we need to evaluate the energy

in Eq. (3.17) associated with these two density profiles and compare them for w > wc(k).

Let us denote the two energies by E
I

k
(w) and E

II

k
(w) respectively. The energy E

II

k
(w) is

very simple and is given by just E
II

k
(w) = w2/2. In contrast, the energy E

I

k
(w) has to be

evaluated from Eq. (3.42) with the substitution ⇢b(y, w) = ⇢⇤
b
(y, w) as given explicitly

in Eq. (3.56) and Dk(w) = D⇤
k
(w) as given in Eq. (3.54). It is a bit hard to obtain

an explicit formula for E
I

k
(w) but it can be evaluated numerically very accurately. The

results are shown in Fig. 3.9 for two di↵erent values of k. Surprisingly, it turns out that
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Figure 3.11: Plot of the critical wall positions wc(k) and w⇤(k) as functions of k in regime
3 �2 < k  �1. wc(k) (black solid line) is given by Eq. (3.61) and w⇤(k) (blue dots) is
found numerically from the crossover location between the energies EI

k
(w) and E

II

k
(w) as

shown in Fig 3.9. We find that wc(k)  w⇤(k) for all �2 < k  �1 with wc(k) = w⇤(k)
only for k = �1.

there is yet another critical value w⇤(k) > wc(k) such that

E
I

k
(w) < E

II

k
(w) =

w2

2
when w > w⇤(k) (3.64)

E
I

k
(w) > E

II

k
(w) =

w2

2
when wc(k) < w < w⇤(k) . (3.65)

Thus for w > w⇤(k), the density ⇢I

k
(y, w) is the true optimal solution, while in the

intermediate range wc(k) < w < w⇤(k) the solution ⇢II

k
(y, w) (pure delta peak) turns out

to be the true minimum. Thus for wc(k) < w < w⇤(k) the solution ⇢I

k
(y, w) corresponds

to a “metastable” minimum. Numerically we find that, in this intermediate region, the

two energies E
I

k
(w) and E

II

k
(w) are very close to each other (see Fig. 3.9. Hence to

summarise, the true optimal density profile is given by

⇢⇤
k
(y, w) =

8
>>>>><

>>>>>:

⇢I

k
(y, w) for w > w⇤(k) ,

⇢II

k
(y, w) for w < w⇤(k) .

(3.66)

These behaviors are summarised in Fig. 3.10. Thus we see that the system undergoes

a first-order phase transition at w = w⇤(k) where the true minimum density changes

abruptly from ⇢I to ⇢II as w crosses w⇤(k) from above. A manifestation of this first-order
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phase transition can be observed in the order parameter defined as the amplitude of the

delta peak in the true optimal solution ⇢⇤
k
(y, w)

Mk(w) =

8
><

>:

D⇤
k
(w) , w > w⇤(k)

1 , w < w⇤(k) .
(3.67)

For w > w⇤(k) it is given by D⇤
k
(w) in Eq. (3.54) associated with the density ⇢I . When

w goes below w⇤(k) this amplitude undergoes a jump to 1 corresponding to the full delta

function ⇢II in Eq. (3.63). In Fig. 3.8 we have plotted both D⇤
k
(w) associated with

the density ⇢I and the true order parameter Mk(w) given in Eq. (3.67). Thus Mk(w)

undergoes a jump at w = w⇤(k), demonstrating a first-order phase transition.

In order to check this scenario numerically, we have performed MC simulations. We

have first determined w⇤(k) numerically by evaluating the energy of the solutions ⇢I and

⇢II . In Fig. 3.11 we plot w⇤(k) (numerical) and wc(k) (analytical from Eq. (3.61)) as a

function of k for �2 < k  �1. We observe that the di↵erence between the two is rather

small but clearly wc(k) < w⇤(k). In fact, the di↵erence between them vanishes as k ! �1

(see Fig. 3.11. This is expected because we know from the exact solution of the case

k = �1 (1dOCP) that ⇢I

k
(y, w) is the exact optimal solution for all w [31,32]. To test the

metastability in the intermediate regime wc(k) < w < w⇤(k), we consider three di↵erent

wall positions (a) w < wc(k), (b) wc(k) < w < w⇤(k) and (c) w > w⇤(k) for k = �1.5.

For each wall position, we study two distinct initial conditions: (i) delta function and (ii)

a uniform density profile, and observe the steady-state profiles. In Fig. 3.12, we find that

for cases (a) and (c) the steady state profile is independent of the initial conditions and

converges respectively to ⇢II

k
(y, w) and ⇢I

k
(y, w). On the other hand in case (b) the late

time profile (within the time scale of the simulation) depends on the initial conditions

– a typical hallmark of metastability. More precisely, if one starts with a delta function

profile, the late time configuration remains a delta function whereas if the initial profile

is uniform then the late time profile seems to stay closer to ⇢I

k
(y, w), within the time

scale of the simulation. This picture is thus fully consistent with our discussion that for

wc(k) < w < w⇤(k) the density profile ⇢I

k
(y, w) is metastable and the true minimum is

given by ⇢II

k
(y, w).
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Figure 3.12: In this figure we study the metastability of the extended profile in the
region wc(k) < w < w⇤(k) for k = �1.5. For this value of k, wc(k) = �0.563 and
w⇤(k) = �0.441. The figure is divided into three columns corresponding to the three
regimes (a) w = �0.6 < wc(k), (b) wc(k) < w = �0.5 < w⇤(k) and (c) w = �0.2 > w⇤(k).
For each column, the insets of the top row and the bottom row indicate two di↵erent
initial conditions (a delta peak and a flat density) while the main figures show the final
configuration after a large number of MC steps. In columns (a) and (c) we see that
the final configurations in the top row and in the bottom row are qualitatively similar,
indicating the irrelevance of the initial conditions. In contrast, in column (b) the final
configurations in the top and in the bottom row corresponding to two di↵erent initial
conditions seem to lead to di↵erent final configurations, within the time scale of the
simulation. This dependence on the initial condition is a signature of metastability in
the region (b).

3.4 Conclusions

In this chapter, we have studied the average density of a harmonically confined Riesz gas

[see Eq. (2.1)] of N particles for large N in the presence of a hard wall located at W . We

have computed exactly this average density in the limit of large N . This density can be

classified into three di↵erent regimes of k, as depicted in Figs. 2.3 and 3.1. For k � 1,

where the interactions are e↵ectively short-ranged, the appropriately scaled density has

finite support over [�lk(w), w] where w is the scaled position of the wall. While the

density vanishes at the left edge of the support, it approaches a nonzero constant at the

right edge w. For �1 < k < 1, where the interactions are weakly long-ranged, we find that
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the scaled density is again supported over [�lk(w), w]. While it vanishes at the left edge

of the support, it diverges at the right edge w algebraically with an exponent (k � 1)/2.

For �2 < k  �1, the interactions are strongly long-ranged, leading to a rather exotic

density profile: here the density has an extended bulk part and a delta-peak at the wall

and they are separated by a hole for �2 < k < �1. Interestingly, we find that there is

a first-order phase transition at a critical value w = w⇤(k) such that for w < w⇤(k) the

optimal solution changes its nature. It consists only of a delta peak at the wall, i.e., the

wall essentially absorbs all the particles and there is no extended part. The amplitude of

the delta-peak Mk(w) plays the role of an order parameter that undergoes a jump to a

value 1 as w is decreased through w⇤(k).

Our derivation can be straightforwardly generalized to other forms of external confin-

ing potential, for e.g. |x|� with any positive and real �. Note that our study corresponds

to � = 2. In this case, depending on the value of �, we expect the system to have: (1)

short-ranged interacting, (2) weakly long-ranged interacting and (3) strongly long-ranged

interacting regimes as mentioned in the introduction. It would be interesting to study

how the transitions in the shape of the density profile appear as one goes from one regime

to another and also how these density profiles get modified in the presence of a wall. Note

that for a potential |x|�, to confine the particles, we must have k > ��. Now, by def-

inition, the strongly long-ranged interaction exists in the range �� < k < �1. Hence,

the strongly long-ranged phase exists only for � > 1 where the range k 2 [��, �1] is

non-empty.

As mentioned in the introduction, the cumulative distribution of the position of the

right-most particle xmax is closely related to this density profile in the presence of a wall in

the large N limit [see Eq. (3.1)]. Therefore the results obtained here will be an essential

ingredient to compute the probability of large deviations of xmax for any k > �2. Indeed,

this large deviation behavior of xmax has so far been computed only for two specific values

of k, namely k ! 0 limit [22,23] and k = �1 [31,32]. The k ! 0 limit, also describes the

large deviation behaviour of the largest eigenvalue of random matrix from the Gaussian

ensemble. In this case, it is known that when the wall hits the right edge luc of the

unconstrained density (⇢⇤
uc(y)), it is accompanied by a third-order phase transition, where

the third derivative of the large deviation function has a discontinuity [25]. Interestingly,

a similar third-order phase transition occurs also for k = �1 [31,32]. It will be interesting
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to investigate whether this transition remains third-order for other values of k [59]. We

study this problem in the next chapter.

This chapter describes the study from the following published work, Ref. [60]:

J. Kethepalli, M. Kulkarni, A. Kundu, S. N. Majumdar, D. Mukamel, G. Schehr,

“Harmonically confined long-ranged interacting gas in the presence of a hard wall”, Jour-

nal of Statistical Mechanics: Theory and Experiment 2021 (10), 103209

Remark: In the following published article Ref. [60], we have expressed the scaled

variables with a tilde and unscaled variables without a tilde. However, to make notations

consistent throughout the thesis all the scaled variables are without tilde and the unscaled

variables are with tilde.
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Chapter 4

Edge fluctuations and third-order

phase transition

4.1 Introduction

Understanding the properties of interacting many-particle systems has been a subject of

immense interest in both physics and mathematics. Examples of such systems range from

sand-pile [101] to neural networks [102], electrons in metal and quantum liquids [103] to

finance [104], Big-data [105], charged particles [11] and gravitational systems [3] to name

a few. While collective phenomena are widely studied in many of these systems, recently

there has been a growing interest in investigating the local properties such as fluctuations,

correlations, and extreme value statistics (EVS). With recent developments in experimen-

tal techniques, it has become possible to probe the physics at a microscopic scale such

as in cold atoms [56–58] and ions [13]. Often the physics becomes even more interesting

and exotic when the interactions become long-ranged in such systems. Therefore, there

is a growing need to study the properties of long-range interacting systems. A suitable

and promising platform for such a study is the family of confined Riesz gas [17] models

with the energy function given in Eq. (2.1).

In the previous Chapters, we discussed the density profile of these particles in thermal

equilibrium has a finite support [45,60]. In this chapter, we study the fluctuations of the

position xmax of the rightmost particle. In Fig. 4.1, a schematic plot of the observable

xmax is shown. This question falls under the paradigm of EVS of correlated variables [98].

Such questions have been studied in several contexts, for example, random matrix theory

53



x1x2x3 xi xmax

P (xmax) =??

Figure 4.1: Schematic plot of the observable xmax = max(x1, x2, x3.., xN), the position of
the rightmost particle, where xi is the position of i-th particle. In this chapter, We study
the fluctuations of xmax for the harmonically confined Riesz gas with the energy function
given in Eq. (2.1).

(RMT) [25, 89, 90, 106], the lowest energy modes in ultracold gas [107], highest energy

barrier in disordered systems [108], height fluctuations in interface problems [109–111]

and binary search problems [112] to name a few.

In the context of RMT, the position xmax of the rightmost particle corresponds to the

largest eigenvalue �max of a N ⇥ N random matrix. For random matrices chosen from

Gaussian ensembles characterized by the symmetry class parameter � = 1, 2, 4, the joint

distribution of the real eigenvalues {�1, �2....�N} is given by [19,20,23,25]

P0[{�i}] =
1

Z0
exp

 
��

2

 
X

i

�2
i
�
X

i 6=j

ln |�i � �j|
!!

, (4.1)

where Z0 is a normalization constant. This distribution can be interpreted as the Boltz-

mann weight of N particles with positions xi ⌘ �i interacting via logarithmic potential.

This system of particles is known in the literature as Dyson’s log-gas [20]. Note that this

system corresponds to taking k ! 0 limit of the Riesz gas [Eq. (2.1)] after the substitu-

tion J ! J0/k. Hence, we use subscript “0” in Eq. (4.1) and set J0 = 1. It is well known

that for large N the particle (or eigenvalue) density is given by Wigner semi-circle law

i.e.

⇢⇤
N

(�) =
1p
N

f0

✓
�p
N

◆
with f0(y) =

1

⇡

p
2 � y2. (4.2)

with the support � 2 [�
p

2N,
p

2N ] [18,21]. The largest eigenvalue �max = max1iN{�i}

represents the position of the rightmost particle of the log-gas. The statistics of �max is

well understood [22, 23, 25, 89, 90]. In particular, the average of �max is given by the
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upper edge of the Wigner semi-circle h�maxi =
p

2N . The typical fluctuations around

this mean are known to scale as ��max =
p

h�2
maxi � h�maxi2 ⇠ N� 1

6 and are described

by the Tracy-Widom distribution F
0
�
(y) = F

(0)0

�
, where the superscript ‘(0)’ refers to

the limit k ! 0 [89, 90]. The distribution of atypically large fluctuations of �max of

O(
p

N) on both sides of the mean (left and right) are described by appropriate large

deviation functions (LDF). A schematic plot of this distribution is shown in Fig. 4.2a.

The cumulative distribution function (CDF) of the scaled variable �̃max = �max/
p

N is

given by [22,23, 25,89,90,113]

Prob.[�̃max < w, N ] ⇡

8
>>>>><

>>>>>:

e��N
2��(w,0)

p
2 � w ⇠ O(1)

F
(0)
�

⇣p
2N

2
3

�
w �

p
2
�⌘

|
p

2 � w| ⇠ O(N� 2
3 )

e��N�+(w,0) w �
p

2 ⇠ O(1),

(4.3)

where ��(w, 0) and �+(w, 0) are, respectively, the left and the right LDF. The 0 in the

argument of the LDF indicates that the log-gas corresponds to Riesz gas in Eq. (2.1) in

the limit k ! 0. These functions have been explicitly computed and are given by [22,23]

��(w, 0) =
1

108

h
36w2 � w4 � (15w + w3)

p
w2 + 6 + 27

⇣
ln 18 � 2 ln[w +

p
w2 + 6]

⌘i
,

(4.4)

for w <
p

2 and [113]

�+(w, 0) =
1

2
w

p
w2 � 2 + ln

w �
p

w2 � 2p
2

, for w >
p

2. (4.5)

The large deviation behavior is di↵erent for w >
p

2 and w <
p

2. This di↵erence is

manifested as a thermodynamic phase transition if one considers the free energy density

given by

lim
N!1

� 1

N2
log
⇣
Prob.[�̃max < w, N ]

⌘
=

8
><

>:

��(w, 0), w <
p

2

0 w >
p

2.
(4.6)

Since ��(w, 0) ⇠
�p

2 � w
�3

as w !
p

2 from Eq. (4.4), the third derivative of the

free energy with respect to w is discontinuous at w =
p

2. This implies that the system
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Figure 4.2: Schematic plot of the probability density function (PDF) of (a) the largest
eigenvalue in RMT (Dyson’s log-gas) and (b) the position of the rightmost particle in
the 1dOCP, along with the respective density profiles. The PDF of the position of the
edge particle in these cases is divided into three parts – typical (black) in the central
part and, left (red) and right (green) large deviations. We show in this chapter that such
representative pictures also hold for the harmonically confined Riesz gas with �2 < k <
1.

undergoes a 3rd order phase transition, from a phase (w >
p

2) in which the rightmost

particle is pulled out from the bulk to the right of w =
p

2 (pulled phase) to a phase

(w <
p

2) in which all the particles are pushed to the left of w =
p

2 (pushed phase) [25].

Recall that w =
p

2 is the right edge of the scaled density of the particles.

A similar transition has also been observed in the 1d one component plasma (1dOCP)

confined by a harmonic potential. The energy function in this case is given by

Ẽk({xi}) =
NX

i

x2
i

2
� J

2

NX

i 6=j

|xi � xj|, (4.7)

where xi’s are the particle positions and J is the strength of the repulsive interaction.

Note that this corresponds to k = �1 of the Riesz gas model Eq. (2.1). Here the average

thermal density profile is flat and is given by

⇢⇤
N

(x) =
1

N
f�1

⇣ x

N

⌘
where f�1(y) =

1

2J
, (4.8)

with the support x 2 [�NJ, NJ ]. The statistics of the position of the rightmost particle

xmax has been studied recently [31,32,37,114]. Its average is hxmaxi = NJ and its typical

fluctuations are O(1) and are governed by the CDF F
(�1)
�

(x) which is a solution to a
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non-local eigenvalue equation

d

dx
F

(�1)
�

(x) = A (J) e�
x2

2 F
(�1)
�

(x + 2J) , (4.9)

where the eigenvalue A(J) is determined by satisfying the boundary conditions F(�1)
�

(�1) =

0, F(�1)
�

(1) = 1 and 0  F
(�1)
�

(x)  1 for x 2 (�1, 1). The distribution of atypical

fluctuations (of O(N) from the mean) governed by the LDF �±(w, �1) are also well un-

derstood. A schematic plot of the PDF is shown in Fig. 4.2b. The CDF of the scaled

variable ymax = xmax/N is given by

Prob.[ymax < w] ⇡

8
>>>>><

>>>>>:

e��N
3��(w,�1) J � w ⇠ O(1)

F
(�1)
�

(N (w � J) + J) |w � J | ⇠ O (N�1)

e��N
2�+(w,�1) w � J ⇠ O(1).

(4.10)

The LDF are given by [31,32]

��(w, �1) =

8
><

>:

w
2

2 + J
2

6 for w < �J

(J�w)3

12J for � J < w < J,
(4.11)

�+(w, �1) =
(w � J)2

2
. (4.12)

Analogous to the log-gas case [Eq. (4.3)], for the 1dOCP also the large deviation functions

exhibit di↵erent behaviors to the left and right of the mean position hymaxi = J . Once

again this di↵erence gets manifested as a pulled-to-pushed phase transition at w = J .

Interestingly the order of the phase transition is also 3 because ��(w, �1) ⇠ (J � w)3 as

w ! J from Eq. (4.11) [32].

There are many physical problems where these pulled-to-pushed types of phase tran-

sitions have been investigated. For example, such transitions have been observed in spin-

glass [115], wireless telecommunication [116], chaotic cavities [117–120], entanglement in

bipartite quantum systems [121–123], random tilings [124] and non intersecting Brownian

excursions [125,126] to name a few (a review can be found in Ref. [25]). Since these sys-

tems are often related to RMT, the third-order transition is attributed to Dyson’s log-gas

and its variants. Another family of models di↵erent from log-gas which also exhibit such
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third-order phase transitions are confined particles in d dimensions interacting via d di-

mensional Coulomb interaction potentials (V (r) is |r|, log(r) for d = 1, 2 respectively and

V (r) = 1/rd�2 for d > 2) [127, 128] and Yukawa potentials [129]. In fact, similar phase

transitions were already identified in the context of large-N gauge theories and are well

known as Gross-Witten-Wadia [130,131] or Douglas-Kazakov [132] phase transitions.

The third-order phase transitions in all the above studies are either rooted in RMT

or Coulomb interaction. In this chapter, we investigate the extent of this universality

in models that do not fall in either of the above two classes and focus on the Riesz gas

family of models which has repulsive interactions of the form V (r) / |r|�k.

We study the large-deviation properties of the distribution of the position of the

rightmost particle of the harmonically confined Riesz gas model with general k > �2.

We obtain the explicit expressions for the left and the right LDF ��(w, k) and �+(w, k),

respectively. We find that for these models also the properties of large deviations get

manifested as a pulled-to-pushed phase transition. Remarkably, we show that the third-

order phase transition persists 8k > �2, thereby demonstrating the universality even

beyond RMT and Coulomb class of models. We also study the system size scaling of the

typical fluctuations numerically and we find that the commonly used “Lifshitz argument”

is valid only for special values k = �1 and k ! 0. In addition, we also show that the

appropriate Hessian theory predicts the scale of the typical fluctuations remarkably well.

The rest of the chapter is organized as follows. In Section. 4.2 we provide a summary

of our results. The derivation of results is given in Section. 4.3. We conclude our findings

along with an outlook in Section. 4.4. Additional details of our analytical and numerical

results are relegated to A.2, A.3 and A.4.

4.2 Summary of the results

We study the distribution of the typical and the atypical fluctuations of the scaled position

ymax of the rightmost particle for di↵erent k. The typical part of the distribution is studied

numerically and the atypical part is studied both analytically and numerically. We show

that the atypical fluctuations are described by the appropriate LDF. The mean of the

rightmost particle is given by the upper edge of the support of unconstrained density

[Eq. (2.20)], which in scaled variable ymax = xmax/LN is given by hymaxi = luc where luc is
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Figure 4.3: Behavior of ⌘k [Eq. (4.20), disks] and the exponent a(e)
k

of the mean gap
at the edge [Eq. (4.22), squares], as a function of k is plotted here. The exponent ⌘k
for di↵erent values of k are obtained by fitting the data for �2

ymax
with N [See Fig. A.1

and A.2] obtained numerically (MC) for the confined Riesz gas [Eq. (2.1)]. The exponent

a(e)
k

is obtained similarly. We notice that a(e)
k

obtained from numerics agrees with the one
obtained from the Lifshitz argument (dashed red line) given in Eq. (4.21). Green stars
represent the exponent ⌘hess

k
obtained by numerically inverting the Hessian matrix [see

Eq. (4.26) and Eq. (4.27)]. We also find the exponent ⌘(hMC)
k

[See Fig. A.2 and A.2] from
the MC simulations of the Hessian hamiltonian [Eq. (4.24)]. It is interesting to note that
the value of the exponent extracted from the three di↵erent approaches is in excellent
agreement with each other (⌘k = ⌘(hess)

k
= ⌘(hMC)

k
). The solid blue line represents the

conjecture for ⌘k for �2 < k < 0 given in Eq. (4.30) (where the superscript “c” indicates
our conjecture). The agreement between this conjecture and the MC simulation results
is excellent. The parameters used in these simulations are T = 1 and J = 1.

given in Eq. (2.19). For large but finite N , ymax fluctuates from sample to sample and we

numerically observe that the standard deviation �ymax =
p

hy2
maxi � hymaxi2 describing the

typical fluctuation is of order N�⌘k . It is known that, for inverse temeprature � = O(1),

for the Dyson’s log-gas ⌘0 = 2/3 [20, 25], for the 1dOCP ⌘�1 = 1 [31, 32] while for the

Calegoro-Moser system ⌘2 = 5/6 1 [133]. We have computed ⌘k numerically for di↵erent

values of k via Monte-Carlo (MC) simulation using the Metropolis-Hastings algorithm

and the results are shown in Fig. 4.3. By expanding the energy around the ground state

and truncating it at bilinear order, as is done within the Hessian theory, we find that

the resulting exponent of the variance fits the numerically obtained exponent remarkably

1The values of ⌘0 [20,25] and ⌘�1 [31,32] are analytically established whereas that of ⌘2 is numerically
established [133].
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Figure 4.4: Typical distribution of ymax for various values of k. We notice excellent data
collapse, when we plotted �ymaxPk(ymax) versus the scaling variable (ymax �hymaxi)/�ymax .
Here the values of �ymax and hymaxi were extracted from the data (therefore no fitting
parameter was used).

well. Further, we provide a conjecture [Eq. (4.30)] for the explicit k dependence of ⌘k for

k < 0 based on scaling arguments. Fig. 4.3 demonstrates an excellent agreement between

our conjecture and numerical data. We observe an excellent collapse for the typical part of

the distribution in terms of the scaling variable ỹmax = (ymax�hymaxi)/�ymax (see Fig. 4.4).

This implies that the CDF has scaling form Prob.[ymax < w] = F
(k)
�

(N⌘k (w � luc)) for

large N in the typical part of the distribution i.e. |w � luc| . O(N�⌘k). The fluctuations

larger than this scale i.e. |w � luc| ⇠ O(1) are atypical fluctuations which are described

by the left and the right LDF ��(w, k) and �+(w, k) respectively. The CDF has the form

Prob. [ymax < w] ⇡

8
>>>>><

>>>>>:

e��N
2↵k+1��(w,k) luc � w & O(1)

F
(k)
�

(N⌘k (w � luc)) |w � luc| . O(N�⌘k)

1 � e��N
2↵k�+(w,k) w � luc & O(1),

(4.13)
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Figure 4.5: (a) Plot of the exponent e�
k
, that governs the asymptotic behavior of the left

large deviation function given in Eq. (4.50) for k � 1, Eq. (4.60) for �1 < k < 1 and
Eq. (4.73) for �2 < k  �1. (b) Plot of the exponent e+

k
characterising the asymptotic

behavior of the right LDF which is 1 for k � 1, and is given in Eq. (4.61) for �1 < k < 1
and Eq. (4.74) for �2 < k  �1.

Regimes e�
k

e+
k

��(w, k) �+(w, k)

k > 1 2 + 1
k

1 Eq. (4.47), Fig. 4.8a Eq. (4.48), Fig. 4.8b
�1 < k < 1 3 3�k

2 Eq. (4.55), Fig. 4.9a Eq. (4.56), Fig. 4.9b
�2 < k < �1 3 3�k

2 Eq. (4.69), Fig. 4.10a Eq. (4.71), Fig. 4.10b

Table 4.1: The table summarizes the exponents e⌥
k

that characterize the asymptotic
behavior of left and right LDF respectively. The reference to the expressions together
with the corresponding plot of the LDF in various regimes of k are also provided.

where ↵k is given in Eq. (2.6) and equivalently the PDF is given by

Pk [ymax = w] ⇡

8
>>>>><

>>>>>:

e��N
2↵k+1��(w,k) luc � w & O(1)

N⌘kF
(k)0

�
(N⌘k (w � luc)) |w � luc| . O(N�⌘k)

e��N
2↵k�+(w,k) w � luc & O(1).

(4.14)

It is worth reminding that for k ! 0, F
(0)0

�
(z) is the Tracy-Widom distribution while

for k = �1, F(�1)
�

(z) is the solution of Eq. (4.9). As mentioned above for general k, we

provide numerical evidence supporting the existence of the scaling distributions F
(k)
�

(z)

for other values of k (see Fig. 4.4).

We have analytically studied the probability of the atypical fluctuations characterized

by the LDF �±(w, k). We have obtained explicit expressions of these functions given in

Eq. (4.47) and (4.48) for k � 1, Eq. (4.55) and (4.56) for �1 < k < 1 and Eq. (4.69)

and (4.71) for �2 < k < �1. These explicit expressions are one of our main results.
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Another important result of our study is the observation that for general k also, the

PDF behaves di↵erently for w > luc and w < luc (as seen in Dyson’s log-gas and the

1dOCP) which again leads to a phase transition at the w = luc. This transition can be

seen from the behavior of the free energy (discussed later in the Section. 4.3.2), namely

lim
N!1

� 1

N2↵k+1
log (Prob.[ymax < w]) =

8
><

>:

��(w, k), w < luc

0 w > luc,
(4.15)

across w = luc. The nature of the transition is determined by the asymptotic behavior of

the left large deviation function as w ! luc�
k

,

��(w, k) ⇠ (luc � w)e
�
k , (4.16)

where the exponent e�
k

determines the order of the transition. The asymptotic behavior

of the right large deviation function as w ! luc+
k

is given by

�+(w, k) ⇠ (w � luc)
e
+
k . (4.17)

In Section. 4.3 we compute the exponents e⌥
k
, 8k > �2 analytically. The values of these

exponents are presented in Table 4.1 and a representative plot is given in Fig 4.5. In the

regime �2 < k < 1, we find that the order of phase transition is 3, since e�
k

= 3. In

the regime k > 1, e�
k

= (2 + 1/k), which implies that the third derivative of ��(w, k)

is discontinuous and hence the system undergoes a third-order phase transition (because

d2 + 1/ke = 3, for k > 1 where d.e represents the ceiling function) according to the

Ehrenfest classification [134,135]. This leads to the remarkable finding that 8k > �2 the

system exhibits a third-order phase transition 2.

2Alternatively, the Ehrenfest classification [134, 135] can be generalized by extending the notion of

normal derivatives to fractional derivatives [136–138] da

dwa wb = �[b+1]
�[b+1�a]w

b�a, with a, b > 0. If one goes

by this classification the order of phase transition is (2 + 1/k) for k > 1.
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4.3 Distribution of xmax

We start with the CDF of xmax = max1iN xi, namely

Prob.[xmax < W ] = Prob.[{xi < W}N

i=1, �, N ] =
Zk(W )

Zk(W ! 1)
, (4.18)

where, the partition function Zk(W ) is given by

Zk(W ) =

Z
W

�1
dx1 . . .

Z
W

�1
dxN exp

⇣
��Ẽk({xi})

⌘
, (4.19)

with Ẽk({xi}) given in Eq. (2.1). This partition function can be interpreted as the

partition function of the original Riesz gas in the presence of a hard wall at x = W .

Recall that we studied this partition function in the previous chapter 3. For k ! 0 and

k = �1, these multiple integrals can be computed in the large N limit. It has been shown

that this integral is related to the solution of Painlevé equation for k ! 0 [89, 90] and a

non-local eigenvalue equation for k = �1 [31,32]. For other values of k, performing these

multiple integrals analytically remains an open and challenging problem. We therefore

resort here to direct numerical simulations to compute the typical part of the distribution.

4.3.1 Distribution in the typical region

In this section, we discuss the distribution of ymax = xmax/LN . To compute this dis-

tribution numerically we perform conventional MC simulations using the Metropolis-

Hastings algorithm for di↵erent values of k from the three regimes mentioned previ-

ously (k � 1, �1 < k < 1 and �2 < k  �1). For each value of k, we perform

simulations for N = 64, 128, 256, 512 and also compute the hymaxi and the variance

�2
ymax

= hy2
maxi � hymaxi2. As argued before, we expect hymaxi = luc, for large-N , which

is indeed corroborated by our simulations. Furthermore, we find that for large N , �ymax

scales as

�ymax ⇠ N�⌘k , with ⌘k > 0, (4.20)

as shown in Fig. A.1 in A.2. In Fig. 4.3 we plot ⌘k as a function of k where we observe

that ⌘k is interestingly non-monotonic.
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One naturally wonders how this fluctuation of ymax compares with the mean of the

separation between the scaled positions of the rightmost and the second rightmost par-

ticles denoted as h�edgei. The N dependence of this average separation at the edge can

be obtained using the “Lifshitz argument”, which is frequently used in extreme value

statistics [25, 98]. According to this argument

N

Z
luc

luc�h�edgei
dy ⇢⇤

uc(y) = 1, (4.21)

which essentially says that there is only one particle between the positions luc � h�edgei

and luc. This equation implies

h�edgei ⇠ N�a
(e)
k with a(e)

k
=

1

1 + �k

, (4.22)

where �k is given in Eq. (2.19). Our numerical data (squares) for h�edgei verifies this

result in Eq. (4.22) as shown in Fig. 4.3. It is usually assumed that the average edge

gap provides the scale for the fluctuations of ymax. This has been confirmed for Dyson’s

log-gas (k ! 0) and the 1dOCP (k = �1). Interestingly, our numerical results in Fig. 4.3

show that this assumption ⌘k = a(e)
k

is not true for other values of k.

We now look at the distribution of the typical fluctuations (of order ⇠ �ymax) for

di↵erent values of k. In Fig. 4.4 we plot �ymaxPnum(ymax) obtained numerically as func-

tions of ymax�hymaxi
�ymax

(where the subscript “num” represents the distribution obtained from

numerics). The excellent data collapse for di↵erent values of N indicates the following

scaling behavior for the typical part of the distribution

Pk [ymax = w] ⇡ N⌘kF
(k)0

�
(N⌘k (w � luc)) , for |w � luc| . O(N�⌘k), (4.23)

as announced in Eq. (4.14). However, this scaling form is not expected to be valid

for larger fluctuations of ymax of O(1) around its mean. For this one needs to study

the atypical fluctuations which is done in Section 4.3.2. Below we first provide some

understanding of the exponent ⌘k using a Hessian theory and a scaling argument.

Estimating the exponent ⌘k

Hessian Approach: Since the inverse temperature � ⇠ O(1), one would expect that
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the small fluctuations of ymax around its mean can be described by making a quadratic

approximation of the Hamiltonian characterized by a Hessian evaluated around the min-

imum energy position configuration y⇤
i

= x⇤
i
/LN for i = 1, 2, ..N . This configuration

{x⇤
i
} can be obtained by minimizing the energy function in Eq. (2.1) numerically using

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [139, 140]. Under the Hessian

approximation, the Hamiltonian takes the form

Ẽk({xi}) ⇡ Ẽk({x⇤
i
}) +

1

2

NX

i,j=1

Hij(xi � x⇤
i
)(xj � x⇤

j
), (4.24)

where the Hessian matrix is given by

Hij =
h@2Ẽk({xi})

@xi@xj

i

{x⇤
i }

= �ij
h
1 +

NX

n 6=i

Jsgn(k)k(k + 1)
�
x⇤
i
� x⇤

n

�k+2

i
� (1 � �ij)

Jsgn(k)k(k + 1)
�
x⇤
i
� x⇤

j

�k+2 .

(4.25)

The above Hessian approximation is justified when the standard deviation (��i where

�i = xi+1 � xi) of the ith bond is smaller than the mean length of the bond (h�ii) i.e.

the relative fluctuations are very small (��i/�i ⌧ 1) at a given temperature and system

size N . We can investigate the properties of interest using the Hessian Hamiltonian

[Eq. (4.24)] as a starting point. In other words, one can perform MC simulations for the

Hessian Hamiltonian [Eq. (4.24)], which in principle allows for crossing. However, in the

temperature regime considered here, such events are very rare. Thus, assuming that the

particles stay ordered, the variance of ymax = xN/LN is given by

�2
ymax

=
[H�1]NN

L2
N

, (4.26)

where H�1 is the inverse of the matrix H. We numerically perform this inversion and

find that �ymax has the following N scaling:

�ymax ⇠ N�⌘
(hess)
k . (4.27)

We compare this exponent ⌘(hess)
k

(obtained by inversion of the Hessian matrix) with the

exponent obtained using MC simulations of both the original confined Riesz gas [Eq. (2.1)]

denoted by ⌘k [Eq. (4.20)] and the Hessian Hamiltonian [Eq. (4.24)] denoted by ⌘(hMC)
k
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in Fig. 4.3. We observe an excellent agreement suggesting ⌘k = ⌘(hess)
k

= ⌘(hMC)
k

. The fact

that ⌘(hess)
k

= ⌘(hMC)
k

justifies the above assumption of almost non-crossing trajectories

of particles at O(1) temperature. While the Hessian theory along with the assumption

of an order implies the Gaussian form for the scaling distribution F
(k)
�

(z), the actual

MC simulation gives a non-Gaussian form as shown in Fig. 4.4, even though the scale

�ymax ⇠ N�⌘
(hess)
k of the data collapse is provided by the Hessian theory. Our findings

therefore indicate that the Hessian theory (albeit an approximation) encodes some non-

trivial features of the underlying confined Riesz gas.

⇢⇤
uc(y)

hymaxi = luc

y

P(ymax)

�ymax ⇠ O(N�⌘k)

`l `r

�+(w, k)��(w, k)

Figure 4.6: The schematic plot shows the distribution of ymax which is centred around
ymax = luc. The typical part of the distribution is represented in solid blue color and is the
region where |w� luc| . O(N�⌘k). These fluctuations are quantified by �ymax ⇠ O(N�⌘k),
the standard deviation of ymax. The atypical part of the distribution is described by the
left and the right LDF ��(w, k) and �+(w, k) represented by red and green solid lines,
respectively. We identify the length scales `l and `r where the typical distribution starts
having an exponential form described by the LDFs while still being of O(N0).

Analytical estimate of ⌘k for �2 < k < 0: To find an analytical estimate of ⌘k, we look

at the relevant length scales present in the system. Two length scales `l and `r can

be identified by estimating the distance (measured from w = luc on the left and right,

respectively) at which the PDF starts having the exponential form while still being of

O(N0). In Fig. 4.6, we show a schematic of the two length scales. At these length
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scales the large deviation behavior characterized by LDF ��(w, k) and �+(w, k) start

becoming valid. To identify `l we rewrite the probability in the left large deviation part

in Eq. (4.14) as

Pk [ymax = w] ⇡ exp

"
��

✓
luc � w

`l

◆e
�
k

#
, for w ! luc�

k
where `l ⇠ N

� 2↵k+1

e�
k . (4.28)

In Eq. (4.28), we have used the asymptotic form of ��(w, k) from Eq. (4.16). Note that

when we approach luc from w ⌧ luc, `l is the length scale at which the PDF in the left

large deviation regime becomes O(1) i.e Pk [w = luc � `l, N ] ⇠ e��NL
2
N��(w,k) ⇠ O(1),

where LN = N↵k for k 6= 1 and ↵k is given in Eq. (2.6). Using a similar argument one

can estimate

`r ⇠ N
� 2↵k

e+
k . (4.29)

For �2 < k < �1 and k > 0 we find that `r < `l while for �1 < k < 0 we find that

`l < `r. Notice that at the smallest length scale, the PDF described by the left and right

LDF is O(N0). If this length scale is required to describe the typical fluctuation of ymax,

the LDF form of the PDF should smoothly match the tails of the distribution in the

typical regime. Assuming that such smooth matching occurs at this scale, we arrive at

the conjecture of the exponent

⌘(c)
k

=

8
><

>:

2↵k

e
+
k

= 4
(k+2)(3�k) for � 2 < k < �1

2↵k+1
e
�
k

= 4+k

3(k+2) for � 1 < k < 0.
(4.30)

where we have used the values of e+
k

and e�
k

which are calculated in Section. 4.3 and

summarized in Table 4.1. This conjecture in Eq. (4.30) (solid line) agrees remarkably

well with our numerical data as shown in Fig. 4.3. This excellent agreement (for k < 0)

verifies the presence of a single scale that smoothly connects the large deviation and the

typical fluctuation regimes. The existence of a single scale is consistent with the fact that

the field theory for k < 0 is exact (in the sense that there are no subleading corrections in

N) and there is just a single term of O(N2) (the double sum in Eq. (2.1) can be replaced

by a double integral without invoking the notion of principal value).

For k > 0, the argument based on the existence of a single scale connecting the
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large deviation and the typical regimes gives ⌘(c)
k

= 4/(k + 2)(3 � k) for 0 < k < 1 and

⌘(c)
k

= 2k/(k + 2) for k > 1. We find that these values of the exponent for k > 0 fail

to describe the typical fluctuations. This is probably because the field theory for k > 0

has the subleading corrections (higher order derivatives in density) in N , including the

correction due to entropy. This could lead to multiple intermediate scales.

4.3.2 Distribution in the atypical region

The formal expression for the distribution of ymax is given in Eq. (4.18), where the par-

tition function Zk(W ) is a N -fold multiple integral in terms of the microscopic variables

xis. One can compute this integral using the coarse-graining approach– by converting

it to a problem of functional integration over the density profiles as described in the

previous chapter 3, see Eq. (3.14). We find that the partition function is given by [see

Eq. (3.18)]

Zk(wLN) = CN

Z
dµ

Z
D[⇢] exp [��BN⌃k [⇢(y), µ] + o(BN)] , (4.31)

where CN is given in Eq. (3.20) and the action ⌃k [⇢(y), µ] is given by

⌃k [⇢(y), µ] =

✓
Ek [⇢(y)] � µ

✓Z
w

�1
dy⇢(y) � 1

◆◆
, (4.32)

with Ek [⇢(y)] given in Eq. (3.17). Note that, we have considered T ⇠ O(1), but at

high temperatures T ⇠ O(N2↵k), the energy and entropy terms become comparable and

the free energy controls the value of the partition function in Eq. (4.31). The integral

in Eq. (4.31) can be performed using the saddle point method in which one requires to

minimize the action ⌃k[⇢(y), µ] in Eq. (4.32) to find the saddle point density ⇢⇤
k
(y, w)

and the chemical potential µ⇤
k
(w). The saddle point equations then read

�⌃k [⇢ (y) , µ]

�⇢ (y)

�����⇢(y)=⇢
⇤
k(y,w)

µ=µ
⇤
k(w)

= 0, (4.33)

@⌃k [⇢ (y) , µ]

@µ

�����⇢(y)=⇢
⇤
k(y,w)

µ=µ
⇤
k(w)

= 0 . (4.34)
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Note that the second equation above is precisely the normalization condition

Z
w

�1
dy ⇢⇤

k
(y, w) = 1.

Solving the above two equations (4.33) and (4.34) satisfying the normalization condition,

one finds ⇢⇤
k
(y, w). In the limit N ! 1, the saddle point density ⇢⇤

k
(y, w) is the average

density of the particles of the Riesz gas in the presence of a hard wall at W = wLN . In the

previous chapter 3, explicit expressions for the saddle point density ⇢⇤
k
(y, w) (hereafter

called constrained densities) have been obtained for all values of k > �2 [60].

Substituting this saddle point density in Eqs. (4.31) and (4.32), one finds the partition

function Zk(W ) in Eq. (4.19) as Zk(W ) ⇡ exp [��BNEk [⇢⇤
k
(y, w)]] where the (scaled)

energy functional is given in Eq. (3.17). Hence, using Eq. (4.18), the CDF of the position

of the rightmost particle is given by

Prob.[xmax < wLN , N ] ⇡ exp [��BN (Ek [⇢⇤
k
(y, w)] � Ek [⇢⇤

k
(y, w ! 1)])], (4.35)

where w = W/LN represents the scaled position of the wall. Notice that in the limit

w ! 1, the saddle point density ⇢⇤
k
(y, w) corresponds to the density of the unconstrained

gas i.e. in the absence of any wall. As mentioned earlier, this unconstrained density

⇢⇤
uc(y) = ⇢⇤

k
(y, w ! 1) was computed in Ref. [45] where it was shown to be given by

Eq. (2.18).

Note that if the wall is placed outside the support of the unconstrained density (i.e.

w > luc) the density profile remains unchanged because ⇢⇤
uc(y) has finite support [�luc, luc].

In other words, ⇢⇤
k
(y, w) = ⇢⇤

uc(y) for w � luc since the e↵ect of the hard wall is noticeable

only when w < luc. Consequently, the right-hand side of Eq. (4.35) can not describe

the probability distribution of ymax for ymax > luc. In this case, one needs to employ a

di↵erent method to find the CDF of ymax. This is expected since, intuitively, one would

anticipate di↵erent energy costs for creating a fluctuation with ymax < luc and ymax > luc.

To compute the PDF for ymax > luc, we follow the procedure described in Ref. [113].

In Ref. [113] it was argued for Dyson’s log-gas that for large N the dominant contribution

to the PDF for ymax > luc would come from the energy cost required to pull the rightmost

particle to the right of the right edge of the unconstrained density. Assuming the same

mechanism to hold for all values of k > �2 (which will be verified numerically later), we
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write

Prob.[xmax = W, N ] =
1

Zk

Z
W

�1
dxN�1 . . .

Z
x2

�1
dx1 exp(��Ẽk(x1, x2, ..., xN�1)) (4.36)

⇥ exp

"
��

 
W 2

2
+ sgn(k)

N�1X

i=1

|W � xi|�k

!#

=

⌧
exp


��

✓
W 2

2
+ sgn(k)N

Z
dx

⇢N�1(x)

|W � x|k

◆��

N�1

, (4.37)

where Ẽk(x1, x2, ..., xN�1) is given in Eq. (2.1) with N � 1 particles and it represents the

energy of the gas in the absence of the rightmost particle and the angular brackets h.iN�1

denotes the average with respect to N � 1 particle distribution. This average can be

computed as follows

Prob.[xmax = W, N ] =

Z
D[⇢N�1(x)]P [⇢N�1(x)] ⇥

exp


��

✓
W 2

2
+ sgn(k)N

Z
dx

⇢N�1(x)

|W � x|k

◆�
, (4.38)

where the probability distribution functional of the density profile ⇢N�1(x) for N � 1

particles is

P [⇢N�1(x)] ⇡
exp

⇣
��Ẽ[⇢N�1(x)]

⌘

Zk

. (4.39)

In the large-N limit, Eq. (4.38) can be expressed in terms of the scaled variables as

Prob.[xmax = W, N ] =

Z
D[⇢(y)]

exp (��NL2
N
E[⇢(y)])

Zk

⇥

exp


��

✓
L2
N

w2

2
+ sgn(k)NL�k

N

Z
dy

⇢(y)

|w � y|k

◆�
. (4.40)

The integral in Eq. (4.40) is computed using the saddle point method. Extremizing the

exponent in Eq. (4.40) gives the saddle point density as ⇢⇤(y) = ⇢⇤
uc(y). Note that this

is the unconstrained density given in Eq. (2.18) and is obtained as the contribution of

exponent in the square bracket of Eq. (4.40) is subleading ⇠ O(L2
N

) compared to the

70



energy which is ⇠ O(NL2
N

). Using this saddle point density in Eq. (4.40), we get

Prob.[xmax = wLN , N ] ⇡ exp

"
� �L2

N

 
w2 � luc

2

2

+
sgn(k)N

Lk+2
N

Z
luc

�luc

dy⇢⇤
uc(y)

✓
1

|w � y|k � 1

|luc � y|k

◆!#
.

(4.41)

The expressions in Eqs. (4.35) and (4.41) suggest the following large deviation form of

the CDF of ymax = xmax/LN

Prob.[ymax < w] ⇡

8
><

>:

exp(��BN��(w, k)), for luc � w � O(1)

1 � exp(��L2
N
�+(w, k)), for w � luc � O(1),

(4.42)

in the large N limit, where BN and LN are given in Eqs. (3.16) and (2.6), respectively.

The LDF is given by

��(w, k) = Ek [⇢⇤
k
(y, w)] � Ek [⇢⇤

uc(y)] , (4.43)

�+(w, k) =

✓
w2 � luc

2

2

◆
+ sgn(k)⇥(1 � k)

Z
luc

�luc

dy⇢⇤
uc(y)

✓
1

|w � y|k � 1

|luc � y|k

◆
.

Here the scaled energy functional is given in Eq. (3.17). The form of the saddle point

densities ⇢⇤
k
(y, w) and ⇢⇤

uc(y), in the presence and the absence of the wall, respectively,

depends explicitly on k. Therefore the form of the LDF as well as the exponents e⌥
k

characterizing their asymptotic behaviors near the wall, would also depend on k. In the

following, we compute the explicit form of the LDF and the exponents in the following

regimes (1) k � 1, (2) �1 < k < 1 and (3) �2 < k < �1, separately.

Regime 1 (k � 1): Short-ranged interactions -

In this regime the interaction energy falls relatively fast with increasing separation, i.e. it

e↵ectively acts as short-ranged. Consequently, the energy functional, given in Eq. (3.17),

is local in the leading order for large N . Using this functional in the saddle point equation

in Eq. (4.33), one finds that the density is given by [60] [see Fig. 4.7a and Eq. (3.24)]

⇢⇤
k
(y, w) = Ak

�
lk(w)2 � y2

� 1
k , �lk(w)  y  w . (4.44)
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Figure 4.7: A plot of the scaled average density in the presence of wall ⇢⇤
k
(y, w) versus

y for the three regimes (a) k � 1, (b) �1 < k < 1 and (c) �2 < k  �1. The blue
dashed vertical line indicates the left edge [�lk(w)] of the support and the black solid
line represents the wall position w. In regime 1 the density is constant at the wall while
it diverges in regime 2. In both of these regimes, the density vanishes at the left edge. In
regime 3 the density has two disjoint regions, an extended bulk part [�lk(w) < y < l̄k(w)]
and a delta function at the wall position (shown by a thick solid vertical line). They are
separated by a hole region [l̄k(w) < y < w] devoid of particles (shaded cyan region).

Substituting this form of the density profile in the normalization condition gives us an

equation for lk(w) expressed in terms of an auxiliary variable

mk(w) =
w + lk(w)

2lk(w)
, for k � 1 and w  luc, (4.45)

as

(2mk(w) � 1)

✓
B(�k + 1, �k + 1)

B(mk(w); �k + 1, �k + 1)

◆↵k

=
w

luc
. (4.46)

We recall that in this regime �k = 1/k and ↵k = k/(k + 2). The variable mk(w) lies

in the range [0, 1]. Solving Eq. (4.46) gives mk(w), which in turn fixes the left edge of

the support lk(w) through Eq. (4.45). Note that in this regime the density at the wall is

finite.

Finally by substituting the density profile ⇢⇤
k
(y, w) in Eq. (3.17) we get the scaled

energy functional Ek[⇢⇤
k
], which together with Eq. (4.43) allows to compute the LDF
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Figure 4.8: Regime 1 (k � 1): The numerical verification of the LDF �±(w, k) given in
Eq. (4.47) and Eq. (4.48), respectively in panels (a) and (b). The rare events such that
|ymax � luc| ⇠ O(1) are generated using the importance sampling method [141, 142] and
the associated probabilities are computed from which the large deviation functions are
calculated numerically. The parameters used in the simulations are J = 1 and � = 1.

�±(w, k). We find the following explicit expressions (see A.3.1 for details)

��(w, k) =
lk(w)2

2(k + 1)

"
1 +

4k

B(mk(w), �k + 1, �k + 1)

✓
B(mk(w), �k + 3, �k + 1)

� B(mk(w), �k + 2, �k + 1) +
B(mk(w), �k + 1, �k + 1)

4

◆#
� (luc)2(k + 2)

2(3k + 2)
,

(4.47)

�+(w, k) =
w2 � (luc)

2

2
. (4.48)

Here B(x, a, b) =
R

x

0 sa�1(1 � s)b�1 is the incomplete Beta function.

Using an importance sampling method described in the A.4, we compute the probabil-

ity distribution Pnum(ymax) which includes the atypical part also. To extract the left large

deviation function we plot � log
�
Pnum(ymax)

�
/BN as a function of ymax � hymaxi. Sim-

ilarly the right large deviation function is extracted by plotting � log
�
Pnum(ymax)

�
/L2

N

as a function of ymax � hymaxi. In Fig. 4.8, we compare the LDF obtained numerically

with our analytical expression given in Eqs. (4.47) and (4.48) and observe remarkable

agreement up to an overall translation on the x axis. This translation is an artifact of
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finite size e↵ect, due to which hymaxi is slightly di↵erent from its theoretical value luc in

the thermodynamic limit.

We study the asymptotic behavior of ��(w, k) as w ! luc�
k

. From Eq. (4.46) we

obtain the asymptotic behavious of mk(w) as w ! luc�
k

as

mk(w) ⇡ 1 � luc � w

2luc
+ o(luc � w). (4.49)

Performing the series expansion about mk(w) = 1 and using the approximation of mk(w)

[Eq. (4.49)] we get from Eq. (4.47)

��(w, k) ⇡ k2(2luc)�
1
k B(1 + �k, 1 + �k)

2(2k + 1)(k + 1)
(luc � w)e

�
k with e�

k
= 2 +

1

k
. (4.50)

Hence the system undergoes a 3rd order phase transition based on Ehrenfest classification.

The asymptotic behavior of �+(w, k) can be obtained by taking the limit w ! luc+
k

in

Eq. (4.48) and is given by

�+(w, k) ⇡ luc (w � luc)
e
+
k with e+

k
= 1. (4.51)

Regime 2 (�1 < k < 1): Weakly long-ranged interactions -

Figure 4.9: Regime 2 (�1 < k < 1): The numerical verification of the LDF �±(w, k)
given in Eq. (4.55) and Eq. (4.56), respectively in panels (a) and (b). The probabilities of
rare events such that |ymax � luc| ⇠ O(1) are computed numerically from which the large
deviation functions are extracted. The parameters used in the simulations are J = 1 and
� = 1.
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In this regime of k, the interaction forces decay slower with increasing inter-particle

separation compared to the previous short-ranged regime. The energy functional in this

regime is given in Eq. (3.17) and is non-local in leading order for large N . Using this

energy functional in Eq. (4.33), we obtain the saddle point equation given in Eq. (3.28).

This Eq. (3.28) has been solved in the last chapter [see Eq. (3.38) and Ref. [60]] using

the Sonin inversion formula [100] and is given by [see Fig. 4.7b]

⇢⇤
k
(y, w) = Ak(lk(w) + y)

k+1
2 (w � y)

k�1
2

⇣
l̃k(w) � y

⌘
, for � lk(w)  y  w, (4.52)

where l̃k(w) = 1
2

�
(k+1)lk(w)+(1�k)w

�
. Here, it is worth noting that the density at the

wall has an integrable divergence while it vanishes on the left edge �lk(w) of the support.

The quantity lk(w) is determined from the normalization condition
R

w

�lk(w) ⇢
⇤
k
(y, w) dy = 1

which leads to [60]

✓
k + 3 � 2gk(w)

k + 1

◆✓
2gk(w) (2 + k) � (k + 3)

k + 1

◆�↵k

=
w

luc
, (4.53)

where the auxiliary variable is

gk(w) =
lk(w) + l̃k(w)

w + lk(w)
, for � 1 < k < 1 and w < luc. (4.54)

We recall that ↵k = 1/(k + 2) [see Eq. (2.6)]. This equation is the analog of Eq. (4.46)

in the regime 1. This equation gives gk(w) for a fixed w, which is used to find the left

edge of the support lk(w) using Eq. (4.54). We use this saddle point density to find the

large deviation function given in Eq. (4.43). To do so we first need to calculate the scaled

energy functional Ek[⇢⇤
k
] given in Eq. (3.17). We relegate some details of this computation

in the A.3.2. Here we present only the final expressions namely

��(w, k) =(k + 2)(luc)
2

"✓
1 +

2(k + 2)

k + 1
(gk(w) � 1)

◆� k+4
k+2 h 1

2k(k + 4)

+
(gk(w) � 1)

k(k + 1)
+

2(gk(w) � 1)2

k(k + 1)2
+

4(gk(w) � 1)3

(1 + k)3

i
� 1

2k(k + 4)

#
,

(4.55)
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�+(w, k) = (luc)
2 32(guc(w)�1 � 1)

3�k
2 B(2 + k, 5�k

2 )

(k + 3)(k + 5)(k + 7)
⇥

2F1

⇥
� k + 1

2
,
k + 3

2
,
5 � k

2
, 1 � guc(w)�1

⇤
, (4.56)

where guc(w) = 2luc/(w + luc) and

2F1[a, b, c, u] = B(b, c � b)�1

Z 1

0

ds
sb�1(1 � s)c�1�b

(1 � us)a
(4.57)

=
1X

n=0

(a)n(b)n
(c)n

zn

n!
(4.58)

is the hypergeometric function with (a)n = a(a+1)(a+2)...(a+n) being the Pochhammer

symbol. Note that guc(w) is the ratio of the size of the unconstrained gas to that of the

constrained gas. These expressions of LDF are in excellent agreement with our numerical

results obtained using the importance sampling method [see A.4] as can be seen in Fig. 4.9.

As mentioned earlier the LDF describes the pulled-to-pushed type phase transition and

its nature is determined by the asymptotic behavior of LDF near the right edge of the

support of the unconstrained density.

To characterize this asymptotic behavior of LDF for w ! luc�
k

we need to expand

gk(w) around w = luc. From the Eq. (3.39) we observe that

gk(w) ⇡ 1 +
k + 1

4luc
(luc � w) + o(luc � w),

guc(w) = 1 +
w � luc

2luc
.

(4.59)

We expand ��(w, k) and �+(w, k) in powers of gk(w) � 1 and guc(w)�1 � 1, respectively

and then use these expansions Eq. (4.59) which give

��(w, k) ⇡ (k + 2)

12luc
(luc � w)e

�
k with e�

k
= 3, (4.60)

�+(w, k) ⇡
2(1 � k)B

�
k + 2, 5�k

2

�
(luc)�e

+
k

3Ak(k + 5)(k + 7) |k| B
�
k+3
2 , 1 � k

� (w � luc)
e
+
k with e+

k
=

3 � k

2
. (4.61)

The exponent e�
k

= 3 suggests that the system undergoes a 3rd order phase transition.
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Figure 4.10: Regime 3 (�2 < k < �1): The numerical verification of the LDF �±(w, k)
given in Eq. (4.69) and Eq. (4.71), respectively in panels (a) and (b). The probabilities
of rare events such that |ymax � luc| ⇠ O(1) are computed from which the large deviation
functions are calculated numerically. In the simulation, we use the parameters J = 1
and � = 10�3. It is easy to show that our field theory calculation remains valid at this
temperature since it satisfies the condition �L2

N
> 1.

Regime 3 (�2 < k  �1): Strongly long-ranged interactions -

This regime is a bit more complicated since the constrained density has disjoint parts

namely a delta function at the wall and an extended part separated by a region devoid

of particles [60]. The divergence of the density at the wall seen in the previous regime

(see Section. 4.3.2) becomes a delta function. This is rooted in the fact that the particles

are allowed to sit in the same position. It turns out that due to the intricate interplay

between the repulsive interaction and the confining harmonic potential the fraction of the

particles tries to sit together at the wall. The rest of the particles then get pushed away

from the wall by “supercharge” resulting from the delta function. This creates a hole

between the delta function and the extended region [60]. This density profile is obtained

by solving the saddle point equations (4.33), which in this regime takes the form

µ⇤
k
(w) =

y2

2
+ sgn(k)

Z
w

�1
dy0 ⇢⇤

k
(y0, w)

|y0 � y|k . (4.62)
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This equation is solved in detail in the previous chapter 3 [see Eq. (3.8) and Ref. [60]]

leading to the result [see Fig. 4.7c]

⇢⇤
k
(y, w) =

8
>>>>>>>><

>>>>>>>>:

Ak

(lk(w) + y)
k+1
2
�
l̄k(w) � y

� k+3
2

(w � y)
I[�lk(w) < y  l̄k(w)]

| {z }
extended

+ D⇤
k
(w)�(w � y)| {z }

“super charge”

,

for w > wc(k)

�(w � y), for w < wc(k),

(4.63)

where I[a < z  b] represents the indicator function of the interval [a, b]. The amplitude

Ak is given in Eq. (2.20) and

wc(k) =
(k + 2) |k(k + 1)|

1
k+2

k + 1
. (4.64)

The other constants in Eq. (4.63) are expressed in terms of the position �lk(w) of the

left edge of the extended part of the density and are given by

l̄k(w) =
2w + (k + 1)lk(w)

k + 3
, (4.65)

D⇤
k
(w) =

(lk(w) � w) (w + lk(w))
k+1
2

|k| (k + 3)

✓
(k + 1) (w � lk(w))

k + 3

◆ k+1
2

. (4.66)

The constant D⇤
k
(w) represents the strength of the “supercharge” in the saddle point

density expression in Eq. (4.63). Note from Eq. (4.63) that l̄k(w) is the position of

the right edge of the extended part of the density. Since l̄k(w) < w, as can be seen

from Eq. (4.65), there is a region l̄k(w) < y < w devoid of particles. A schematic

representation of the density is given in Fig. 4.7c. The value of lk(w) is determined from

the normalization condition which can be expressed in terms of the auxiliary function

hk(w) =
w + lk(w)

l̄k(w) + lk(w)
, for � 2 < k < �1, (4.67)

as

✓
1 + (hk(w) � 1)

2(k + 2)

(k + 1)

◆
2F1[1, �(k + 2), �k + 1

2
, 1 � hk(w)]�

1
k+2 =

w

luc
. (4.68)
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The details of the computation leading to Eqs. (4.67) and (4.68) are given in A.3.3.

The scaled energy functional Ek[⇢⇤
k
] is obtained by substituting the density profile

⇢⇤
k
(y, w) in Eq. (3.17). Using this energy functional in Eq. (4.43), we compute the LDF

�±(w, k) which is given by (see A.3.3 for details)

��(w, k) = (luc)
2

2F1[1, �(k + 2), �k + 1

2
, 1 � hk(w)]�

2
k+2

"
1

4k
� (hk(w) � 1)

k(k + 1)

� (k + 2)
(hk(w) � 1)2

k(k + 1)2
+ nk(w)2

� nk(w)
2F1[1, �(k + 3), �k+1

2 , 1 � hk(w)]

2F1[1, �(k + 2), �k+1
2 , 1 � hk(w)]

+
k + 5

4(k + 4)
2F1[1, �(k + 4), �k+1

2 , 1 � hk(w)]

2F1[1, �(k + 2), �k+1
2 , 1 � hk(w)]

#
� (luc)

2 k + 2

2k(k + 4)
,

(4.69)

where,

nk(w) =
lk(w)

L̃k(w)
=

1

2
+

1 � hk(w)

k + 1
. (4.70)

The calculation for the right LDF is the same as in Section. 4.3.2, hence the expression

is the same as Eq. (4.56) i.e.

�+(w, k) = (luc)
2 32(huc

k
(w)�1 � 1)

3�k
2 B(2 + k, 5�k

2 )

(k + 3)(k + 5)(k + 7)

⇥ 2F1

⇥
� k + 1

2
,
k + 3

2
,
5 � k

2
, 1 � huc

k
(w)�1

⇤
, (4.71)

where huc
k

(w) = guc(w) = 2luc/(w + luc). Once again these LDFs are verified numerically

using the importance sampling method in Fig. 4.10 which demonstrates an excellent

agreement.

The asymptotic behavior of ��(w, k) is obtained by performing the series expansion

about hk(w) = 1, namely

hk(w) = 1 � k + 1

k + 3

luc � w

2luc
+ o(luc � w). (4.72)
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Sbstituting this asymptotic behavior in Eq. (4.69) on finds

��(w, k) ⇡ 2(k + 2)(k + 5)

3(3 + k)2(k � 1)(k � 3)luc
(luc � w)e

�
k with e�

k
= 3. (4.73)

Hence in this regime also the system undergoes a 3rd order pulled-to-pushed phase tran-

sition. Finally, the asymptotic behavior of the right LDF is given by Eq. (4.61) namely

�+(w, k) ⇡
2(1 � k)B

�
k + 2, 5�k

2

�
(luc)�e

+
k

3Ak(k + 5)(k + 7) |k| B
�
k+3
2 , 1 � k

� (w � luc)
e
+
k with e+

k
=

3 � k

2
. (4.74)

4.4 Discussions and Conclusions

In this chapter, we investigated the fluctuations of the position of the rightmost (edge)

particle ymax = xmax/LN of harmonically confined Riesz gas [Eq. (2.1)]. We studied both

typical and the atypical fluctuations of ymax separately. From numerical analysis, we

found that the typical fluctuations characterized by the variance scales as N�2⌘k with

N . Similar to the scaling of the support, the exponent ⌘k associated with the variance

of ymax, also depends on k non-monotonically as shown in Fig. 4.3. We have provided a

physical understanding of the k dependence of ⌘k based on Hessian theory and a scaling

argument. For �2 < k < 0, the assumption that the full distribution of ymax has a single

length scale led us to conjecture an explicit expression of ⌘k given in Eq. (4.30). This

conjecture was tested against the MC simulations in Fig. 4.3 and we found remarkable

agreement. For k > 0, we found that the exponent ⌘k matches extremely well with the one

computed from the Hessian theory [see Fig. 4.3]. For all k, we found that the distribution

of ymax when shifted by mean and scaled by the �ymax ⇠ N�⌘k , exhibits a remarkable data

collapse leading to a scaling distribution which is non-Gaussian in general.

The atypical fluctuations to the left and right of the mean are described by the left and

the right LDF. We computed the explicit expressions for these LDFs in di↵erent regimes

of k. We found that their asymptotic behavior near the edge of the unconstrained density

is k dependent and shown in Table. 4.1 and Fig. 4.5. This di↵erence is a consequence

of the di↵erent mechanisms by which the saddle point density of the gas gets modified

in the presence of a wall. A manifestation of this di↵erence in the asymptotic behavior

of the LDF is demonstrated in terms of the analytic properties of appropriately defined

free energies which exhibit the third-order pulled-to-pushed phase transition 8k > �2.
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Therefore our results reveal a striking universality of the third-order phase transition in

a family of models that fall outside the paradigm of Coulomb systems and RMT. All our

results hold for temperature T < L2
N

.

The extreme value statistics is an example of local observable as it studies the distribu-

tion of the rightmost particle. While it can be studied in experiments, global observables

are more robust. In the next chapter, we discuss the Full Counting statistics (FCS)

which is a global observable and study the fluctuations of the total number of particles

in a certain domain.

This chapter describes the study from the following published work, Ref. [59]:

J. Kethepalli, M. Kulkarni, A. Kundu, S. N. Majumdar, D. Mukamel, G. Schehr,

“Edge fluctuations and third-order phase transition in harmonically confined long-range

systems”, Journal of Statistical Mechanics: Theory and Experiment 2022 (3), 033203
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Chapter 5

Full counting statistics of 1d

short-range Riesz gases in

confinement

5.1 Introduction

The study of many-particle low-dimensional quantum and classical systems has been a

subject of great theoretical and experimental interest. A very interesting observable that

unravels the equilibrium and non-equilibrium properties of low-dimensional systems is

the distribution of the number of particles in a given domain. This is often referred to

as full counting statistics (FCS). FCS is a global quantity and hence it is experimentally

more accessible [143, 144].

In the context of quantum systems, FCS has been studied in various physical se-

tups, including non-equilibrium Luttinger liquids [145], quantum transport [146–148],

shot noise [149–151], quantum dots [152, 153] as well as in quantum spin chains and

fermionic chains [154, 155]. Furthermore, the entanglement entropy of a subsystem with

its remaining part is studied extensively in the context of the free Fermi gas and is intri-

cately connected to FCS [156–161]. This connection holds true, particularly in regimes

where the particle number fluctuations exhibit Gaussian behavior. The study of FCS for

interacting systems has also gained considerable interest [162–165] as FCS can now be

measured in cold atom experiments [143, 144]. This connection emphasizes the wide-

ranging applications of FCS, particularly in understanding the relationship between in-
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teractions and correlations in the system.

In the context of classical systems, the FCS has also been widely investigated. For in-

stance, in many ecological settings, it has been observed that the distribution of the num-

ber of species and the average number of species in a given domain exhibit universal fea-

tures [166–168]. The statistics of the number of particles in specific domains for di↵erent

point processes have also been investigated [169,170]. Such point processes can be classi-

fied based on the system size dependence of the Fano factor V(D) = Var (N (D)) /hN (D)i

where N (D) is the number of particles in a given domain D. This ratio of the variance and

the mean measures the strength of the relative fluctuations of N (D). In the large N limit,

typical systems such as Poissonian point processes are characterized by V(D) ⇠ O(1).

Interestingly there are some systems for which V(D) ! 0, in the large N limit, and they

are generically called hyperuniform [171,172].

While FCS is an interesting quantity both in classical and quantum systems the role of

interactions is not well understood. This chapter investigates FCS in a one-dimensional

system of classical Riesz gas [17, 52]. We consider a harmonically confined Riesz gas

composed of N particles in thermal equilibrium described by the Boltzmann distribution

P ({xi}) = exp[��Ẽ({xi})]/Zk where ��1 is temperature and Zk is the partition function.

The energy function of the gas is given by [see Eq. (2.1)]

Ẽk({xi}) =
NX

i

x2
i

2
+

J sgn(k)

2

NX

i=1

NX

j 6=i

|xi � xj|�k, (5.1)

where xi is the position of ith particle with i = 1, 2, · · · , N and sgn(k) is the sign function.

The strength of the repulsive interaction is controlled by J > 0 and the exponent k of

the power law determines the nature of interactions; in particular, for k > 1 the system

is short-ranged and for k < 1 it is long-ranged. In this chapter, we study FCS of the

Riesz gas defined in Eq. (2.1) and we restrict ourselves to the short-range interactions,

i.e., k > 1 where the associated field theory is local [45]. It is to be noted that for

the Riesz gas, the exact results on FCS are only known for k ! 0 [40, 41, 173–176] and

k = �1 [32, 42], both of which are long-range models.

Our aim in this chapter is to study the statistical properties of N(W, N) which rep-

resents the number of particles in domain [�W, W ]. As will be discussed later, in the

large-N limit, the problem of finding the distribution of N(W, N) at O(1) temperature
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Figure 5.1: Schematic representation of the domain [�W, W ] (shaded region) studied in
this chapter. The blue dots are the positions of the particles. The number of particles
in the region [�W, W ] is defined as N(W, N). The black solid line is indicative of the
harmonic confinement.

gets e↵ectively converted to an optimization problem. This problem tries to find the most

probable density profile satisfying the constraint of fixed N(W, N). Note that, under the

transformation to the rescaled variables in Eq. (2.2), the wall position W gets transformed

to w = W/N↵k . It is evident that if w > luc then the density profile does not get a↵ected

by the presence of the hard walls and it remains the unconstrained density profile given

in Eq. (2.18). On the other hand for w < luc the most probable density profile will be

drastically di↵erent from the one given in Eq. (2.18). This modified density profile, as

we will see later, is an important ingredient for the study of FCS. We compute the con-

strained density profile and use it to study the probability distribution (more precisely

the associated LDF) of N(W, N). Before going into the details of the computation, we

summarize our main findings in the next section.

The rest of the chapter is organized as follows. In Section 5.2, we summarize our

main results on the FCS of the Riesz gas. In Section 5.3, we explain the derivation

of the large deviation function, which characterizes the probability distribution of the

number of particles in the domain [�W, W ]. The corresponding average density profiles

are also calculated. These profiles are used to study the variance along with asymptotic

behaviors, and non-analytic properties of the associated large deviation function (LDF).

Our formalism has been adapted to study the index distribution which corresponds to the

semi-infinite domain (�1, W ] in Section 5.4. In Section 5.5, we study the linear statistics

of the Riesz gas. We conclude and provide some future directions in Section 5.6.
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5.2 Summary of the main results

In this section, we present the main results related to the statistics of N(W, N), the

number of particles in a finite box [�W, W ] which is schematically shown in Fig. 5.1. It

is easy to show that the mean number of particles in the box increases linearly with the

system size (i.e., number of particles N) and is given by

hN(W, N)i ' N c⇤
✓

W

N↵k

◆
(5.2)

with c⇤(w) =

Z
w

�w

dy ⇢⇤
uc(y), (5.3)

where the unconstrained density profile ⇢⇤
uc(y) is given in Eq. (2.18). We denote the

probability distribution of N(W, N) as

P (N = c N) = Prob.[N(W, N) = c N, W ]. (5.4)

We find that in the large-N limit, the probability distribution takes the large deviation

form given by

P (N = c N) ⇣ exp
⇣

� �N1+2↵k�(c, W/N↵k)
⌘
, (5.5)

valid when W ! 1, N ! 1 keeping the ratio w = W/N↵k fixed. Here we recall that

↵k = k/(k + 2) as given in Eq. (2.6). To calculate the LDF �(c, W/N↵k), we use the

Coulomb gas method [22, 23]. A crucial ingredient in this method is the saddle point

density profiles that satisfy the constraint of having c N particles in the box [�W, W ].

We find that these constrained density profiles are also dome-shaped similar to the un-

constrained density profiles. However, their support is parameterized by the box size

controlled by w = W/N↵k and the fraction of particles c inside it. As w and c are varied,

the shape of the constrained density profile undergoes interesting shape transitions in the

(w � c) plane, as indicated in Fig. 5.2 by shaded regions separated by the two curves

c = c̄(w) and c = c⇤(w). The loci of these two curves are calculated analytically in

Eq. (5.23) and Eq (5.3) respectively. In Fig. 5.3 we compare our analytical results for the

saddle point density with the MC simulations and observe a very good agreement.

The LDF and its properties: Using these saddle point densities, we have obtained explicit
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Figure 5.2: Phase diagram in the (w, c) plane showing three di↵erent regimes: (I) low,
(II) moderate and (III) high fraction of particles in the box [�W, W ], where the saddle
point density profiles given in Eq. (5.21) exhibit distinctly di↵erent shapes (see inset).
The critical fraction line c = c̄(w) [Eq. (5.23)] separates the phases (I) and (II). Below this
fraction, we observe a disjoint density profile in the phase (I) and above this concentration
the two disjoint parts join and we observe a density profile as shown in the inset of
the regime (II). Around this line, the LDF behaves non-analytically which leads to a
third-order phase transition [see Appendix. A.5]. On the other hand, the crossover line
c = c⇤(w) [Eq. (5.2)] separates the phases (II) and (III) and the LDF shows analytic
behavior around it [see Eq. (5.33)]. This plot is generated for k = 1.25, however, such a
plot is expected to be qualitatively the same for all k > 1. Note that the x-axis is in the
units of luc.
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analytical expression of the LDF �(c, w) which is given in Eq. (5.30) and plotted in

Fig. 5.4. The behavior of the LDF is similarly governed by two parameters c and w =

W/N↵k . We note that, for a fixed box [�W, W ], as the fraction of particles is increased

from below c̄(w) [regime (I)] to above it [regime (II)], the hole region in the density profile

vanishes (see Fig. 5.2). This gap closing transition at c = c̄(w) with a fixed w gives rise to a

non-analytic behavior of the LDF characterized by a discontinuous third-order derivative

of the LDF �(c, w) w.r.t. c for |c � c̄(w)| ⌧ 1 as can be seen from

@3�(c, w)

@c3
=

8
><

>:

(1+2k)(1+k)
c̄(w)3k3 C̃+

⇣
c�c̄(w)
c̄(w)

⌘ 1
k�1

, for c > c̄(w)

6
c̄(w)3 C̃�, for c < c̄(w)

, (5.6)

where C̃± are constants [see Appendix A.5 for details]. This discontinuity in the third

derivative implies a third-order phase transition according to Ehrenfest classification

[137]. By the same mechanism, a similar gap-closing transition occurs but now with

a decreasing box size for a fixed c (along a horizontal line in Fig. 5.2). Such third-order

phase transitions via gap-closing mechanisms have been found in numerous examples

[25].

Similar non-analytic behavior of the LDF associated to N(W, N) has also been ob-

served in long-range interacting models such as the Dyson’s log-gas [40, 41] and the

1dOCP [42]. Interestingly, the non-analyticity of LDF in our short-range case (k > 1)

of Riesz gas, appears at c = c̄(w) unlike these long-range models (k ! 0 and k = �1)

for which it appears at c = c⇤(w). For our short-range case, the LDF �(c, w) is analytic

at c = c⇤(w) and shows quadratic behavior, i.e., �(c = c⇤(w) + , w) ⇠ O(2). This

quadratic behavior of the LDF �(c, w) around c = c⇤(w) suggests that the typical fluc-

tuations in the number of particles in the box are described by a Gaussian probability

distribution given by

P (N = c N) ⇣ exp

 
�N2(c � c⇤(w))2

2 Var(N)

!
, (5.7)

for |c � c⇤(w)| . O
⇣p

Var(N)
⌘

.
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Here the variance is given by

Var(N) =
N ⌫k

� l2uc ↵k

V

✓
W

N↵k luc

◆
with ⌫k =

2 � k

2 + k
, (5.8)

and the function V (h) is given in Eq. (5.35). The analytical result in Eq. (5.2) for the

mean and in Eq. (5.8) for the variance is verified with MC simulations in Fig 5.5a,b,

respectively for k = 1.5. We note that the variance scales with system size as N ⌫k with

⌫k = (2 � k)/(k + 2). This implies that for 1 < k < 2 the variance increases with in-

creasing system size. For k ! 2 we see ⌫k ! 0 as a result N ⌫k ! log(N), hence one

generally expects that the variance grows logarithmically with N similar to the case of

the Dyson’s log-gas (k ! 0). For k > 2, ⌫k < 0 and the variance decreases with system

size which suggests that the system becomes very rigid in the thermodynamic limit and

possibly the typical fluctuations are dominated by microscopic fluctuations at the edges

of the box. This is not captured by the present scaling analysis.

Generalization to other quantities: Using the same approach, we also study a more general

quantity known as linear statistics defined as SN =
P

N

i=1 r(yi), where yi = xi/N↵k and

r(y) is an arbitrary function. The mean of this quantity scales linearly with system size as

expected, whereas the variance scales as a power-law ⇠ O(N ⌫k) with ⌫k = (2�k)/(k +2)

as described in Section. 5.5. Note that the number distribution N(W, N) is also a linear

statistic with the choice r(y) = ⇥(w � y)⇥(w + y), where ⇥(x) is the Heavyside Theta

function. Another interesting and well-studied quantity is the index defined as the number

of particles, denoted by I(W, N), in the semi-infinite box (�1, W ] which corresponds

to the choice r(y) = ⇥(w � y) in the linear statistics. This quantity appears naturally

in the study of the stability of complex systems [177, 178]. It has been well studied in

the context of the random matrix theory [38, 179], Dyson’s log-gas [39] and the 1dOCP

model [32, 114]. We find that the properties of the saddle point density profiles and the

LDF corresponding to the index distributions are qualitatively similar to the number

statistics problem summarized above. It is important to note that, in general, FCS

behaves di↵erently from the linear statistics with a smooth function r(y) [40–42,180,181].

However, for the short-range case, this distinction does not seem to occur at least for the

variance.
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5.3 Derivation of the number distribution

In this section, we outline the derivation of the distribution of N(W, N), which quantifies

the number of particles in the box [�W, W ], as defined by

N(W, N) =
NX

i=1

⇥(W � xi)⇥(W + xi). (5.9)

Here ⇥(x) is the Heaviside theta function. We start by writing the Gibbs-Boltzmann

probability distribution of the position configuration in terms of the scaled variables

{yi = xi/N↵k} for i = 1, 2, · · · , N [see Eq. (2.2)]:

P
�
y1, y2, · · · , yN

�
=

1

Zk

exp
⇣

� �N1+2↵kEk

�
{yi}

�⌘
, (5.10)

where Ek({yi}) is the energy function in Eq. (2.7) and Zk is the partition function, given

by

Zk =

Z 1

�1
dy1

Z 1

�1
dy2 . . .

Z 1

�1
dyN exp

�
��N1+2↵kEk({yi})

�
. (5.11)

The mean of the number of particles can be easily computed as hN(W, N)i =
P

i
h⇥(w �

yi)⇥(yi+w)i, where w = W/N↵k and yi = xi/N↵k . Simplifying further, we get hN(W, N)i '

c⇤(w) N where c⇤(w) is given in Eq. (5.3).

The distribution of N(W, N) can be obtained by integrating the microscopic configu-

rations with the constraint of having c N particles inside the box and it is given by

P (N = c N) =

Z 1

�1
dy1 . . .

Z 1

�1
dyN

exp (��N1+2↵kEk ({yi}))

Zk

⇥

�

 
c N �

NX

i=1

⇥(w + yi)⇥(w � yi)

!
, (5.12)

where recall that w = W/N↵k . For the sake of brevity W and N in the argument of

N(W, N) are suppressed. For finite N , the integrals over the microscopic positions in

Eqs. (5.11) and (5.12) are di�cult to carry out for arbitrary k with the only notable

exceptions for k ! 0 [19] and k = �1 [31, 42, 180]. However, in the large N limit

and for � ⇠ O(1), the multiple integrals can be computed approximately using the

Laplace method in which one first rewrites the microscopic integral as a path integral
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over density field configurations and then performs the saddle point calculation. Such a

method in the literature is known as the Coulomb gas method [22, 23], which has been

used recently in the context of Riesz gases [45]. To adopt this field-theoretic method, we

first rewrite the integral in Eq. (5.12) as a path integral over the empirical density field

⇢(y) = 1
N

P
N

i=1 �(y � yi). More precisely, we compute the integral in Eq. (5.12) in two

steps: (i) we integrate over the microscopic positions corresponding to a density field ⇢(y)

(which one could assume to be a smooth function in the large N limit) and (ii) perform

the integration over these density profiles. After the first step, one generates an entropy

term S[⇢(y)] in the exponential in addition to the energy functional Ek[⇢(y)] to arrive

at [45]

P (N = c N) =

Z
D [⇢(y)]

exp (��N1+2↵kEk [⇢(y)] + NS [⇢(y)])

Zk

⇥

�

✓
c N � N

Z 1

�1
dy ⇢(y)⇥(w + y)⇥(w � y)

◆
�

✓Z 1

�1
dy ⇢(y) � 1

◆
,

(5.13)

where the energy functional Ek [⇢(y)] is given in Eq. (2.16) and the entropy functional is

given by [22,23]

S[⇢(y)] =

✓
�
Z 1

�1
dy ⇢(y) log ⇢(y)

◆
. (5.14)

Using the integral representation of the delta function on the complex plane, one can

express P (N, W ) in Eq. (5.13) as

P (N = c N) =

Z
dµ

Z
dµ̄

Z
D [⇢(y)]

exp (�� N1+2↵kG[⇢(y)])

Zk

, (5.15)

with the action given by

G[⇢(y)] = Ek [⇢(y)] � T

N2↵k
S [⇢(y)]

� µ

✓Z 1

�1
dy ⇢(y)

�
1 �⇥(w + y)⇥(w � y)

�
� 1 + c

◆

� µ̄

✓Z 1

�1
dy ⇢(y)⇥(w + y)⇥(w � y) � c

◆
, (5.16)

where w = W/N↵k . The functional G[⇢(y)] in the above equation is essentially the free
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energy required to create a particular density profile with the chemical potentials µ̄ and

µ ensuring that the fraction of particles inside and outside of the box [�w, w] is c and

1 � c respectively.

Note that the factor N1+2↵k in the exponent of Eq. (5.15) diverges for N ! 1, since

1 + 2↵k > 0 [see Eq. (2.6)]. Therefore, the integral can be evaluated by a saddle point

technique in which one needs to minimize the action in Eq. (5.16) w.r.t. the density field

⇢(y) as well as the chemical potentials µ̄ and µ. Moreover, for large N and T ⇠ O(1) one

can neglect the contribution from the entropy term in the saddle point calculation. We

find the following equations

µ̄⇤ =
y2

2
+ J⇣(k)(k + 1) (%⇤(y))k for |y| < w, (5.17)

µ⇤ =
y2

2
+ J⇣(k)(k + 1) (%⇤(y))k for |y| > w, (5.18)

along with the normalization constraints

Z 1

�1
dy %⇤(y)⇥(w + y)⇥(w � y) = c, (5.19)

Z 1

�1
dy %⇤(y)

⇣
1 �⇥(w + y)⇥(w � y)

⌘
= 1 � c. (5.20)

Here the ⇤ represents the saddle point values. Note that the saddle point equations in

Eqs. (5.17) and (5.18) are valid when the size (2w) of the box [�w, w] is much larger than

the (typical) mean inter-particle scaled distance i.e., w � O(1/N).

Note that the chemical potentials µ̄⇤ and µ⇤ in Eqs. (5.17) and (5.18) are independent

of the position y. On the other hand, the right-hand sides of Eqs. (5.17) and (5.18) diverge

in the limit y ! 1. This suggests that the saddle point density has a finite support.

The density profile takes the form

%⇤(y) =

8
>>>>><

>>>>>:

Ak

�
l̄2 � y2

� 1
k for |y|  min(w, l̄)

Ak (l2 � y2)
1
k for w  |y|  l

0 otherwise

, where l̄ =
p

2µ̄⇤, l =
p

2µ⇤, (5.21)

and the constant Ak is given in Eq. (2.20). The length scales l̄ ⌘ l̄(c, w) and l ⌘ l(c, w)

are functions of the two parameters c and w and are obtained from the normalization
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conditions Eqs. (5.19) and (5.20), respectively. We find

l̄ =

8
>><

>>:

c↵k luc for c  c̄(w),

c↵k lucI

✓⇣w

l̄

⌘2
, 1
2 ,

1
k

+ 1

◆�↵k

for c � c̄(w)
, (5.22)

where c̄(w) is the fraction for which l̄ = w which is given by

c̄(w) =

✓
w

luc

◆ 1
↵k

. (5.23)

In Eq. (5.22) we have introduced the function I(h, a, b) which is defined as

I(h, a, b) =
B(h, a, b)

B(1, a, b)
with B(h, a, b) =

Z
h

0

ds sa�1(1 � s)b�1. (5.24)

For the edge l of the density profile outside the box, we find

l = (1 � c)↵k luc

 
1 � I

✓⇣w

l

⌘2
,
1

2
,
1

k
+ 1

◆!�↵k

. (5.25)

We can now numerically compute the lengths l and l̄ for any c and w by solving the

transcendental Eqs. (5.22) and (5.25). Note that the edge of the support of the density

profile inside the box is min(w, l̄). The extent of this support depends on the fraction of

particles c in the box [�w, w]. For c less than a certain value c̄(w) we find l̄ < w while

for c > c̄(w) we get l̄ > w. As c is changed the shape of the density profile changes and

we obtain three distinct regimes (as depicted in Fig. 5.2) namely: (I) low (II) moderate

and (III) high fraction regimes. We further elaborate on these regimes below.

(I) Low fraction [0  c < c̄(w)]: As shown in Fig. 5.3a, in this regime, due to the low

fraction of the particles c within the box, the density profile inside forms a small droplet

at the minimum of the harmonic trap. It does not spread over the full extent of the box

[�w, w] and is only supported over the region [�l̄, l̄]. This leads to the appearance of

two holes with no particles between the droplet and the edges of the box. Outside of the

box, the remaining particles form truncated domes on both sides. The support of the left

dome is [�l, �w] while for the right dome, it is [w, l]. As we further increase the fraction

c, the edge of the support of the droplet l̄ increases and eventually touches the edges of

the box located at ±w when c = c̄(w). For the sake of brevity, we sometimes suppress
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Figure 5.3: Plots of the equilibrium density profiles for di↵erent fractions of particles c
confined inside the box [�w, w] with w = 0.75, k = 1.5 and J = 1. The boundaries
of the box at y = ±w are shown by the blue vertical dashed lines. We consider three
values of c, (a) 0.08 (b) 0.4 and (c) 0.8 which are representative of the three regimes: (I)
c < c̄(w), (II) c̄(w) < c < c⇤(w) and (III) c⇤(w) < c, respectively, where c⇤(w) is given
in Eq. (5.3) and c̄(w) is given in Eq. (5.23). For w = 0.75 and k = 1.5 one finds that
c̄(w) = 0.136 and c⇤(w) = 0.552. The symbols in all the plots are obtained using MC
simulation for N = 256 and N = 512 whereas the solid lines represent the theoretical
results given Eq. (5.21). The dotted line in each plot represents the density profiles ⇢0(y)
[see Eq. (2.18)] in the unconstrained case i.e., without any wall, from which one can
compute the fraction c⇤(w) of particles within the region [�w, w]. Here we have taken an
average of over 106 samples for all the plots.

the w dependence in c̄(w).

(II) Moderate fraction [c̄(w) < c  c⇤(w)]: As shown in Fig. 5.3b, as the fraction

c is increased above c̄(w), the droplet grows but its support does not expand. As a

consequence, the density near the walls just inside the box increases and this droplet

becomes a truncated dome. Outside the box, the support of the left and right truncated

domes shrink. The value of the density just outside the box decreases. Therefore the

density profile is discontinuous at the locations of the wall (±w) [see Fig. 5.3b and Fig. 5.2

(inset)]. As the fraction c inside the box is further increased, the jump in the value of

the density at the location of the wall is reduced. This jump eventually disappears when

the fraction inside the box becomes the same as the fraction c⇤(w) [see Eq. (5.3)]. Hence

in this regime with c̄(w) < c < c⇤(w), the density profile has three parts: two truncated

domes on either side of the box and another truncated dome inside the box.

(III) High fraction [c⇤(w) < c < 1]: When c > c⇤(w), we find that the density at the

wall just inside the box, increases further and becomes higher than that of the density

at the wall just outside the box [see Fig. 5.3c and Fig. 5.2 (inset)]. Therefore the density

profile in this regime, with c > c⇤(w), comprises three truncated domes.

In Fig. 5.3a,b,c, we plot the density profiles given in Eq. (5.21) for the three regimes
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along with the same obtained from MC simulation and we observe an excellent agreement.

The above discussion was based on varying c with the wall position w fixed. Similarly, one

could obtain these three regimes by varying the wall position w by keeping the fraction

c fixed [see Fig. 5.2].

As a next step in computing the integral in Eq. (5.15), we substitute the saddle point

density profile from Eq. (5.21) in the expression of the action, G[%⇤(y)], in Eq. (5.16), we

find the following large deviation form for the probability distribution

P (N = c N) ⇣ exp
⇣

� �N1+2↵k�(c, w)
⌘
, with w =

W

N↵k
(5.26)

where the large deviation function is given by

�(c, w) = G [%⇤(y)] � Guc. (5.27)

Here the unconstrained action, Guc, is given by the logarithm of the partition function in

Eq. (5.11). For large N it reads [59]

Guc ⇡ � log Zk

�N1+2↵k
=

l2uc(k + 2)

2(3k + 2)
, (5.28)

where luc is the edge of the support of the unconstrained density profile ⇢0(y) [see

Eq. (2.20)]. By neglecting the contribution from the entropy term in Eq. (5.16), we

approximate the action by

G [%⇤(y)] = Ek[%
⇤(y)] (5.29)

where the energy functional is given in Eq. (2.16). After simplifying Eq. (5.27) we obtain

the LDF as

�(c, w) =

8
>>>><

>>>>:

Guc

 
(1 � c)

3k+2
k+2 H

�
w

l

�
+ (c)

3k+2
k+2 � 1

!
, for c  c̄(w),

Guc

 
(1 � c)

3k+2
k+2 H

�
w

l

�
+ (c)

3k+2
k+2 J

⇣w

l̄

⌘
� 1

!
, for c � c̄(w).

(5.30)

The length scales l̄ and l are given in Eqs. (5.22) and (5.25). The functions H(h) and
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J(h) in Eq. (5.30) are simple and given by

H(h) =

✓
1 � I

✓
h2,

1

2
, 1 +

1

k

◆◆� 2k
k+2

+
h(1 � h2)

1
k+1 (2k2)

(k + 1)(k + 2)B
�
1
2 , 1 + 1

k

�
✓

1 � I

✓
h2,

1

2
, 1 +

1

k

◆◆� 3k+2
k+2

, (5.31)

J(h) =

✓
I

✓
h2,

1

2
, 1 +

1

k

◆◆� 2k
k+2

� h(1 � h2)
1
k+1 (2k2)

(k + 1)(k + 2)B
�
1
2 , 1 + 1

k

�
✓

I

✓
h2,

1

2
, 1 +

1

k

◆◆� 3k+2
k+2

, (5.32)

where I(h, a, b) is given in Eq. (5.24). In Fig. 5.4a. we show the LDF �(c, w) given in

Eq. (5.30) as a function of w (for fixed c) and in Fig. 5.4b we show the variation of LDF

with c (for fixed w). The three types of saddle point density profiles corresponding to the

three regions I, II, and III, shown in Fig. 5.3, determine the form of the LDF as shown

in Fig. 5.4a,b. Next, we discuss the asymptotic behavior of �(c, w) in di↵erent limits.

Behaviour around c⇤(w): We start with the behaviour of �(c, w) near c⇤(w) which

describes the probability of typical fluctuations of c around c⇤(w). Recall from Eq. (5.3)

that c represents the mean fraction of particles inside a box of size w. Setting c = c⇤(w)+

in Eq. (5.30) and expanding to leading order in  we find �(c⇤(w)+, w) / 2. A slightly

di↵erent derivation of this expansion is given in Appendix. A.7. The quadratic behavior

of �(c⇤(w) + , w) with  in the leading order implies a Gaussian distribution for the

typical fluctuations given by

P (N = (c⇤(w) + )N, W ) ⇣ exp

 
� N22

2 Var(N)

!
, (5.33)

with the variance of the number of particles given by

Var(N) =
N ⌫k

� l2uc ↵k

V

✓
W

N↵k luc

◆
, with ⌫k = 1 � 2↵k =

2 � k

k + 2
, (5.34)

and V(h) = I

✓
h2,

1

2
,
1

k

◆✓
1 � I

✓
h2,

1

2
,
1

k

◆◆
, (5.35)

where the function I(h, a, b) is given in Eq. (5.24). For small h, the function V(h) / h

whereas for h ! 1, V(h) / (1 � h)1/k. In Fig. 5.5a,b, we compare our theoretical results

for the mean [see Eq. (5.3)] and variance [see Eq. (5.34)] of N with the same measured
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Figure 5.4: The plot displays the large deviation function �(c, w), given in Eq. (5.30), for
k = 1.5 and J = 1. In (a) we show a plot of �(c, w) as a function of w for c = 0.552 and
in (b) we plot �(c, w) as a function of c for w = 0.75. In both plots, we have demarcated
three regions (I, II and III) based on the three types of saddle point density profiles
(as shown in Fig. 5.3) that create the large deviations in those three di↵erent regions.
Schematic plots of such density profiles are provided in the insets.

in MC simulations and observe good agreement everywhere except the edges where it

matches better for large-N . This is due to finite-N corrections. Note that for k > 2 the

exponent ⌫k, given in Eq. (5.34), is negative implying that the variance decreases with

increasing system size. This suggests that the contribution to the typical fluctuations for

large-N are primarily due to the microscopic fluctuation at the edges of the box. Such

fluctuations do not cause changes in the density profile and are thereby missed in the

field theory description. In the marginal case of k = 2, as mentioned earlier, the exponent

⌫k = 0 possibly suggests log(N) growth of the variance.

Non-analytic behavior and phase transitions: We recall that c̄(w) given in Eq. (5.23)

represents the fraction at which the hole in the density profile inside the box vanishes.

We find that this hole-closing phenomenon gives rise to non-analytic properties of �(c, w)
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Figure 5.5: Numerical verification of the mean and variance of the number distribution
problem. The plot displays the W dependence of (a) the mean fraction of particles and (b)
the scaled variance of the number of particles in the box [�W, W ] for N = 128, 256, 512
with parameters k = 1.5, T = 10 and J = 1. The vertical blue dashed line represents the
box with W = lucN↵k . The symbols indicate the results obtained from the Monte Carlo
simulations and they are compared with our theoretical predictions (solid lines) given by
Eqs. (5.2) and (5.34) for the mean and the variance, respectively.

around c = c̄(w). Expanding the LDF �
�
c̄(w)(1 + ✏), w

�
for small ✏ we find [see Ap-

pendix A.5.1]:

�
�
c̄(w)(1 + ✏), w

�
� �

�
c̄(w), w

�
=

8
><

>:

Ã ✏ + B̃ ✏2 + C̃+ ✏2+
1
k + o(✏2+

1
k ), for ✏ > 0

Ã ✏ + B̃ ✏2 + C̃� ✏3 + O(✏4), for ✏ < 0
,

(5.36)

where the constants Ã, B̃ etc. are given in the Eqs. (A.82)-(A.84) of the Appendix A.5.1.

Note that o(✏2+
1
k ) = O(min[✏2+

2
k , ✏3]). For a fixed w, the third derivative of the LDF

�(c, w) w.r.t. c (i.e., ✏) shows a discontinuity at c = c̄(w) [Eq. (5.23)] as demonstrated

in Fig. 5.6a. More precisely, the third derivative is finite for c ! c̄�(w) and is diverging

for c ! c̄+(w). Similar discontinuities in the third derivative of the LDF have been

observed previously in various other contexts and have been associated to third order

phase transition – such as linear statistics in 1d Coulomb gas [37] and in extreme statistics

of Riesz gas [59], of Coulomb gas [128] and random matrix theory [25, 182]. The non-

analyticity of the LDF, described above, stems from the structural change of the saddle

point density profile from (I) Low to (II) Moderate fraction regime.

By the same mechanism, a similar third-order phase transition is expected to occur
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Figure 5.6: The plot displays the derivatives of the LDF �(c, w) [Eq. (5.30)]. Specifically,
it shows the first (red dashed line), second (green dotted line) and third (blue dash-dotted
line) derivatives: (a) w.r.t. c for w = 0.75 and (b) w.r.t. w for c = 0.552. Notably, we
observe a pronounced discontinuity in the third derivative of �(c, w) in (a) at c = c̄(w)
[see Eq. (5.23)] and in (b) at w = w̄(c) = lucc↵k , establishing the presence of third order
phase transitions.

when we cross the line c = c̄(w) horizontally in Fig. (5.2) i.e., by varying w while keeping

c fixed as demonstrated in Fig. 5.6b. This phase transition can be shown by analyzing the

behavior of �(c, w) near the special box size W̄ = w̄(c)N↵k with w̄(c) = luc c↵k . While

reducing the box size starting from a larger value, the hole in the density profile inside

the box (containing c N particles) decreases and at a special value w̄(c) of the box size,

the droplet touches the boundaries of the box. In Appendix A.5.2 we show that the LDF

�(c, w) around w̄(c) also exhibits non-analytic behavior. More elaborately it behaves as

�(c, w̄(c)(1 + ✏)) � �(c, w̄(c)) =

8
><

>:

D̃ ✏ + Ẽ ✏2 + F̃+ ✏3 + O(✏4), for ✏ > 0

D̃ ✏ + Ẽ ✏2 + F̃� |✏|2+ 1
k + o(✏2+

1
k ), for ✏ < 0

, (5.37)

where the constants D̃, Ẽ etc. are given in the Eqs. (A.86)-(A.87) of the Appendix A.5.2.

We find that the third derivative is discontinuous at w = w̄(c). More precisely, �(c, w)

is finite for w ! w̄(c)+ and is diverging for w ! w̄(c)�.

Behaviour of �(c, w) near c = 0 and c = 1: In these limits we find the following approx-
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imations for a given w,

�(c, w) ⇡ �(0, w) � µ⇤c, for c ! 0, (5.38)

�(c, w) ⇡ �(1, w) � µ̄⇤(1 � c) for c ! 1. (5.39)

Here, µ̄⇤ and µ⇤ represent the chemical potentials [see Eqs. (5.17) and (5.18)] of the gas

outside and inside the box for c = 0 and c = 1, respectively. Here the LDFs �(0, w) and

�(1, w) describe the probability of having no particle and all the particles in the box. The

linear dependence on c in Eq. (5.38) represents the energy cost for depositing fraction c

of particles into the initially empty box. On the other hand, �µ̄⇤(1 � c) represents the

energy cost for taking out (1 � c) of particles out of an initially filled box.

Hole formation LDF �(0, w): Taking c = 0 in Eq. (5.30), we find that the hole formation

LDF �(0, w) is given by

�(0, w) = Guc ⇥
⇣
H

⇣w

l

⌘
� 1
⌘

, (5.40)

where Guc is given in Eq. (5.28), H(h) is given by Eq. (5.31), and l is the edge of the

support of the (scaled) density profile when the box [�W, W ] is empty. Numerically, l

can be calculated using Eq. (5.25) for c = 0.

Complete confinement LDF �(1, w): Taking c = 1 in Eq. (5.30), we find the LDF as-

sociated to the probability of containing all the particles in the box. This LDF is given

by

�(1, w) = Guc ⇥
⇣
J

⇣w

l̄

⌘
� 1
⌘

, (5.41)

where Guc is given in Eq. (5.28), J(h) is given by Eq. (5.32), and l̄ represents the edge of

the support of the density profile when the box contains N particles. Numerically, l̄ can

be calculated using Eq. (5.22) for c = 1.

5.4 Index distribution

Another interesting observable is the index for which our calculation presented in Sec-

tion 5.3 for studying the number distribution can be straightforwardly extended. The
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index denoted by I(W, N), counts the number of particles below a certain position W

and it is defined as

I(W, N) =
NX

i

⇥(W � xi), (5.42)

where xi is the position of the ith particle for any i 2 1, 2, . . . , N and ⇥(x) = 1 for x � 0

and zero otherwise. Here we focus on W > 0. The case with W < 0 can be obtained

from the distribution with W > 0 using the relation

Prob. [I(W, N) = Id] = Prob.
⇥
N[W,1)(N) = N � Id

⇤
= Prob. [I(�W, N) = N � Id] ,

(5.43)

where N[W,1)(N) =
P

N

i=1⇥(xi � W ) represents the number of particles to the right of

W . To obtain the second equality we have used the inversion symmetry of the energy

function Ẽk({xi}) = Ẽk({�xi}). To find the probability distribution of I(W, N), we

follow the same procedure as done in the previous section. We find that for large N this

probability distribution has the following large deviation form

P (I = c N, W ) ⇣ exp

 
� �N1+2↵k (c, W/N↵k)

!
, (5.44)

where  (c, w) is the LDF and ↵k = k/(k + 2). We find that the LDF is given by

 (c, w) =

8
><

>:

Guc
2

⇣
(2c)2↵k+1 + (2(1 � c))2↵k+1

H

⇣
w

l

⌘
� 2
⌘

, for c  c̄(w)

Guc
2

⇣
(2c)2↵k+1

J

⇣w

l̄

⌘
+ (2(1 � c))2↵k+1

H

⇣
w

l

⌘
� 2
⌘

, for c > c̄(w)
, (5.45)
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where Guc is given in Eq. (5.28), w = W/N↵k , c̄(w) =
⇣

w

luc

⌘ 1
↵k and the functions J(h)

and H(h) are

J(h) =

 
1 + I

✓
h2,

1

2
,
1

k
+ 1

◆!�2↵k

� h (1 � h2)
1
k+1

B
�
1
2 , 1 + 1

k

� 2k2

(k + 1)(k + 2)

 
1 + I

✓
h2,

1

2
,
1

k
+ 1

◆!�2↵k�1

, (5.46)

H(h) =

 
1 � I

✓
h2,

1

2
,
1

k
+ 1

◆!�2↵k

� h (1 � h2)
1
k+1

B
�
1
2 , 1 + 1

k

� 2k2

(k + 1)(k + 2)

 
1 � I

✓
h2,

1

2
,
1

k
+ 1

◆!�2↵k�1

. (5.47)

The length scales l̄ ⌘ l̄(c, w) and l ⌘ l(c, w) in Eq. (5.45) are functions of c and w. These

can be obtained by numerically solving the following transcendental equations

l̄ =

8
>><

>>:

c↵k luc for c  c̄(w),

(2c)↵k luc

✓
1 + I

✓⇣w

l̄

⌘2
, 1
2 ,

1
k

+ 1

◆◆�↵k

for c � c̄(w)
, (5.48)

l = (2(1 � c))↵k luc

 
1 � I

✓⇣w

l

⌘2
,
1

2
,
1

k
+ 1

◆!�↵k

, (5.49)

where the function I(h, a, b) is defined in Eq. (5.24). We analyze the behavior of the

LDF  (c, w) at c = c̄(w) for a fixed w. We find that it shows a third-order phase

transition, similar to the ‘number’ problem. In this case also, the distribution of the

typical fluctuations of I(W, N) is Gaussian distribution and the variance scales as N ⌫k

with ⌫k = (2 � k)/(k + 2).

Pressure and Bulk modulus: Using the LDF for Index distribution, we can compute the

thermodynamic pressure and the bulk modulus [see Appendix A.6].
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5.5 Linear statistics

In this section, we study linear statistics which is defined as

SN =
NX

i=1

r(yi), (5.50)

where the function r(y) is arbitrary and recall, from Eq. (2.2), that yi = xi/N↵k denote the

scaled variables. Linear statistics generalizes FCS, for example, by choosing the function

r(y) appropriately we can obtain both the number and index distribution problems:

r(y) =

8
><

>:

⇥(y + w)⇥(w � y) Number statistics

⇥(w � y) Index distribution
(5.51)

where ⇥(y) is the Heaviside theta function. Linear statistics can be used to study the

ground state properties of the system in arbitrary traps. It has been widely studied in

both mathematics and physics [118,119,147,148,150,151,153,181–198]. Interestingly, in

the context of quantum transport [117–119,147,150,151,153,181,183,184,191,192,194,195]

using the random matrix theory approach the conductance (r(y) = y [117]), Wigner time

delay (r(y) = y [153]) and shot noise (r(y) = y(1 � y) [150]) have also been computed.

In this section, we generalize the results to any arbitrary functions of r(y). Clearly,

the average value of hsi = hSNi/N , in the large N limit, is given by

hsi =

Z
luc

�luc

r(y) ⇢⇤
uc(y) dy , (5.52)

with ⇢⇤
uc(y) given explicitly in Eq. (2.18). Here, we would like to go beyond the mean

hsi and compute the variance of s for all k > 1, which were recently computed for

1dOCP, k = �1 (jellium model) in Ref. [180] (see also Ref. [199]) and then extended to

all long-ranged cases k < 1 in Ref. [46].

We follow the method used in Ref. [180]. We first compute the full distribution of s

in the large N limit. This is done by adding an extra term µr(s)
⇣R1

�1 dy r(y)⇢r(y) � s
⌘

in the energy function and then minimizing the energy by the saddle point method. Here

µr(s) is the new Lagrange multiplier that enforces the value s of the linear statistics and

hence µr(s) depends implicitly on s. The subscript ‘r’ represents the fact that the density
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and the corresponding chemical potential should depend on the choice of the function

r(y). Consequently, the new saddle point density ⇢⇤
r
(y) satisfies the saddle point condition

y2

2
+ µ⇤

r
(s) r(y) + J⇣(k)(k + 1)

�
⇢⇤
r
(y)
�k

= µk(s) (5.53)

where µ⇤
k
(s) is the s-dependent Lagrange multiplier that enforces the normalization. For

the sake of brevity, we omit the s dependence of µ⇤
r

and µ⇤
k
. Thus, the modified density

is given by

⇢⇤
r
(y) = Ak

✓
µ⇤
k
� y2

2
� µ⇤

r
r(y)

◆ 1
k

. (5.54)

Consequently, the edges of the support, �l1(s) and l2(s), where the density vanishes, are

determined by the two real roots of

l2

2
+ µ⇤

r
r(l) � µ⇤

k
= 0 . (5.55)

The two Lagrange multipliers µ⇤
r

and µ⇤
k

are then fixed by the two conditions

Z
l2(s)

�l1(s)

dy ⇢⇤
r
(y) = 1,

Z
l2(s)

�l1(s)

dy r(y) ⇢⇤
r
(y) = s. (5.56)

Clearly, when s ! hsi, we have µ⇤
r

! 0 and µ⇤
k
(s) ! µ⇤

k
(hsi) = µ0 = l2uc/2 and the density

⇢⇤
r
(y) ! ⇢0(y). We expect the distribution P(SN = sN, N) in the large N limit to have a

large deviation form

P(SN = sN, N) ⇣ exp[�N1+2↵k ⇤(s)] , (5.57)

with the large deviation function given by

⇤(s) = Gr[⇢
⇤
r
(y)] � Guc, (5.58)

where Guc is given in Eq. (5.28) and the action Gr[⇢⇤
r
(y)] = Ek[⇢⇤

r
(y)] with Ek[⇢⇤

r
(y)] given

in Eq. (2.16). The s dependence of ⇢⇤
r
(y) is implicit and comes from the second constraint

in Eq. (5.56).

To compute the explicit expression for the LDF ⇤(s) [in Eq. (5.58)], we need to specify
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the function r(y). However, we can compute an approximate expression for ⇤(s) for a

general function r(y), when s is around its mean value hsi [Eq. (5.52)]. When we expand

⇤(s) [Eq. (5.58)] for s = hsi +  with small , we find that

⇤(hsi + ) ⇡ 2

2�2
r

with �2
r

=
I2I0 � I

2
1

I0
, (5.59)

where the constants are

I0 = 2
Ak

k

Z
luc

�luc

dy
�
l2uc � y2

� 1
k�1

, I1 = 2
Ak

k

Z
luc

�luc

dy r(y)
�
l2uc � y2

� 1
k�1

(5.60)

I2 = 2
Ak

k

Z
luc

�luc

dy r(y)2
�
l2uc � y2

� 1
k�1

. (5.61)

The quadratic behavior of the LDF in Eq. (5.59) suggests that the typical fluctuations of

SN around its mean value behave like a Gaussian distribution given by [see Appendix A.7]

P(SN = (hsi + )N, N) ⇣ exp

 
� N22

2 VarS

!
. (5.62)

where the variance is given by

VarS =
N ⌫k�2

r

�
, with ⌫k =

2 � k

k + 2
. (5.63)

Note that the N dependence of the variance of the linear statistics is universal for any

function r(y). As mentioned previously, by construction, the linear statistic captures

the behavior of number and index distribution. Using r(y) = ⇥(y + w)⇥(w � y) in

Eq. (5.59), one can reproduce the variance of the ‘number’ problem as given in Eq. (5.34).

Interestingly, unlike the short-range case, for the long-range case of Dyson’s log-gas (k !

0) and the 1dOCP (k = �1), the behavior of the linear statistics for the smooth and

non-smooth function r(y) di↵er [40–42,180,181].

5.6 Conclusions

In summary, this study provides a detailed analysis of FCS of a confined short-range

Riesz gas (k > 1) in equilibrium at temperatures T ⇠ O(1) (where the entropy may be

neglected). We focused on the number and the index distribution, which characterize the
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fluctuations of the number of particles N(W, N) and I(W, N), respectively, in two distinct

domains, namely [�W, W ] and (�1, W ]. We found that the variance of the number of

particles in a given domain scales with the system size as ⇠ N ⌫k with ⌫k = (2�k)/(k+2).

Our study is a major step forward in generalizing results of Dyson’s log-gas and the

1dOCP to a broader class of interacting particles i.e., Riesz gas systems with k > 1. We

also found that the distribution of the typical fluctuations of both quantities N(W, N)

and I(W, N) around their mean values are Gaussian. These results are obtained by

computing the large deviation function (LDF) associated with the distribution of these

quantities.

We have employed a field theory method similar to the Coulomb gas method to

compute the LDFs for two quantities N(W, N) and I(W, N). The method involves deter-

mining the saddle point density profiles conditioned on a given fraction of particles inside

the specified domain. We found that for both cases (‘number’ and ‘index’), the saddle

point density profiles possess discontinuities at the location of the boundary of the spec-

ified domain and exhibit three di↵erent kinds of profiles as either c or w is changed, such

that it crosses the transition lines indicated in Fig. 5.2. These three types of configura-

tions display interesting features – such as discontinuities and emergence of void regions.

Our analytical results for the density profiles are in perfect agreement with numerical

computations.

These density profiles are then utilized to calculate the LDFs �(c, w) and  (c, w)

analytically for the number and index distributions, respectively. The density profiles

determine the values of the LDFs in the respective parameter ranges. In particular,

one finds that there exists an interesting regime of the parameter (c  c̄(w) for fixed

w or w > w̄(c) for fixed c) in which the saddle point density profile contains a hole

(devoid of particles) at the place of the discontinuity. The LDF corresponding to such

density profiles undergoes a discontinuous change in the third-order derivative leading

to a third-order phase transition. This transition is similar to the third-order transition

observed in random matrix theory [25] and the 1dOCP [37]. Apart from exploring the

non-analytic properties of the LDFs we have also discussed the various asymptotic forms

of the LDF which allowed us to study well-known problems like hole formation probability

or complete confinement probability. Additionally, the index problem provided a natural

setting for studying the physical properties like the thermodynamic pressure and bulk
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modulus.

Our analysis can be easily adapted to other traps of the form U(x) = |x|�
�

. The results

obtained for these generic traps closely resemble those obtained for the harmonic trap

with � = 2. Specifically, it is observed that the fluctuations of the number of particles

in the domain [�W, W ] or (�1, W ] are Gaussian and the variance again scales with N

as ⇠ N ⌫k . However, now the exponent gets interestingly modified to ⌫k = 1 � ↵k� =

(� + k � k�)/(k + �). Moreover, we found that for any � > 0 the non-analytic properties

of the LDF remain the same, still displaying the third-order phase transition.

This chapter describes the study from the following published work, Ref. [61]: J.

Kethepalli, M. Kulkarni, A. Kundu, S. N. Majumdar, D. Mukamel, G. Schehr, “Full

counting statistics of 1d short range Riesz gases in confinement” Journal of Statistical

Mechanics: Theory and Experiment (2024) 083206

In the last three chapters 3, 4 and 5, we studied the equilibrium properties of the

Riesz gas at low temperatures T . O(L2
N

), where LN is given in Eq. (2.6). In the next

chapter, we will study the equilibrium properties at high temperatures for the hard rod

gas and the Hyperbolic Calogero model. The hard rod model corresponds to the Riesz

gas with k ! 1, as the interaction between the i-th and j-th particle in the k ! 1

limit becomes

lim
k!1

✓
|xi � xj|

J
1
k

◆�k

= ⇥(|xi � xj| � 1) where ⇥(r � 1) =

8
><

>:

1, if r < 1

0, otherwise
.

This is a model for hard rods of unit length which is an integrable model in the absence of

confinement. On the other hand, the particles of the Hyperbolic Calogero model interact

via a repulsive potential of the form sinh(r)�2, where r is the interparticle distance. At

very high densities when r ⌧ 1 the interaction sinh(r)�2 ⇠ r�2, which corresponds to the

Riesz gas with k = 2. Consequently, the field theory for the Hyperbolic Calogero model

is the same as the Riesz gas with k = 2. Both these models are integrable in the absence

of any confinement. However, generic confinement like U(x) = x� breaks the integrability

of both models. So it raises a natural question: what are the equilibrium properties of

integrable systems in integrability-breaking confinement? In the next chapters, we will

study the density profile of the hard rod gas and the Hyperbolic Calogero model in a

harmonic and quartic trap when the system is assumed to be in Gibbs equilibrium.
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Chapter 6

Finite temperature equilibrium

density profiles of integrable systems

in confining potentials

6.1 Introduction

Integrable classical systems [200–202] have a macroscopic number of constants of motion

that are in involution with each other. In phase space, these systems (i) have regular

periodic orbits (invariant torus), (ii) are characterized by zero Lyapunov exponents, and

(iii) generally resist thermalization to a Gibbs state. However, many-body integrable

systems are also believed to be extremely fragile in the presence of external perturbations

and become nonintegrable, ergodic, and chaotic, retaining only a few constants of motion

[203]. Consequently, integrable systems are rare, and nonintegrability arising due to

imperfections dominates the natural world. For example, most experiments [78,204,205]

are performed in confining potentials where we expect that integrability will be lost and

thermalization to occur. Recent theoretical studies have addressed thermalization and

transport in such trapped integrable models [84, 85, 206–211]. To study thermalization,

one needs to have a clear understanding of the thermal equilibrium state. One simple

characterization is to look at the equilibrium density profile of the particles in the trap

which is the most commonly measured quantity in experiments [96, 212,213].

In this work, we focus on the equilibrium density profile of two one-dimensional short-

range integrable classical models in the presence of integrability-breaking external po-

109



tentials. The integrable models considered here are the gas of hard rods [33] and the

hyperbolic Calogero model [14, 214, 215]. The external trap potential keeps the particles

spatially confined and breaks integrability. Such systems have been studied recently and

many surprising results have been reported. For example, the gas of hard rods [84] and

the Lieb-Liniger model [85] in the harmonic trap were investigated. It was found that

these systems do not thermalize even in the presence of the harmonic trap. Under out-

of-equilibrium conditions, drastically slow relaxations to a non-equilibrium steady state

and large finite size e↵ects have also been observed for the Toda model with harmonic

(harmonic) pinning potential [206, 209]. In another recent work [216], a similar observa-

tion was made for the nonlinearly perturbed Toda model and a universal scaling of the

thermalization time has been reported. Studies of the integrable Calogero model in the

presence of external confining potentials have also been undertaken in recent times, see

for example, Refs. [208,211,217–219].

The equilibrium properties of trapped interacting particles have recently been studied

where field theoretic techniques are used to compute the equilibrium density profiles and

fluctuations [22, 25, 45, 59, 60, 92, 220]. Here we adapt these field theoretic procedures to

study the equilibrium properties of hard rods and the hyperbolic Calogero system in the

presence of external trapping potentials. The field theory presented here predicts quite

accurately the equilibrium density profile of these two models, and their scaling with

system size and temperature, as obtained from Monte-Carlo (MC) simulations.

The paper is organized as follows. We describe the models and definitions in Sec. 6.2.

Thereafter, in Sec. 6.3, we present the field theory for the hard rod gas and the hyper-

bolic Calogero model in both harmonic and quartic traps. In Sec. 6.4 we compute the

densities and extract their scaling with system size and temperature for (i) hard rods gas

in Sec. 6.4.1 and (ii) hyperbolic Calogero model in Sec. 6.4.2. We verify the analytical

results using Monte Carlo (MC) simulations. We summarize the main results in Sec. 6.5

and end with a discussion of open questions in such integrability broken classical sys-

tems. The Appendix is organized as follows. In Appendix A.8, we derive the field theory

for (i) hard rod gas and (ii) hyperbolic Calogero model in external confining traps. In

Appendix A.9, we compute the analytical form of the densities for low and high values

of the temperature.
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6.2 Models and definitions

We study two short-range models given by a Hamiltonian of the form

H({xi, pi}) =
NX

i=1


p2
i

2m
+ U�(xi)

�
+

1

2

NX

i=1

NX

j=1
j 6=i

V (xi � xj), (6.1)

where {xi, pi} are the position and momentum of the ith particle (1  i  N), each of

mass m which we set to unity. The second term on the right-hand side of Eq. (6.1) is

the external potential

U�(x) =
x�

�
, (6.2)

which we take to be of harmonic (� = 2) or quartic (� = 4) form. The third term in Eq.

(6.1) is the interaction term, which for hard rods (HR) of length a is

VR(r) =

8
><

>:

0 for r > a

1 for r  a.
(6.3)

Note that in Eq. (6.3) the subscript ‘R’ in VR(r) stands for the hard rods gas. For the

hyperbolic Calogero (HC) model each particle is coupled to every other particle in the

system with the interaction potential

VC(r) =
J

sinh2 |r|
. (6.4)

In Eq. (6.4), the subscripts ‘C’ in VC(r) stand for the hyperbolic Calogero model and

J > 0 is the strength of the repulsive interaction.

We consider these systems to be in their respective thermal equilibrium states de-

scribed by the canonical Gibbs distribution

P ({xi, pi}) =
e��H({xi,pi})

Z�(N)
, (6.5)

where � = 1/T is the inverse temperature and Z�(N) is the partition funtion. We are
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interested in the spatial density profile

⇢(x) =
NX

i=1

h�(x � xi)i� , (6.6)

where h. . .i� denotes the average over the thermal distribution given in Eq. (6.5). In par-

ticular, we will examine the dependence of the density profile ⇢(x) on system parameters,

such as the number of particles N and the temperature T . In the following sections, we

address these questions using field theory and MC simulations.

6.3 Field theory formalism

To obtain the thermal properties one needs to compute the partition function Z�(N)

which is generally a hard task in microscopic variables. Therefore often one resorts to a

field theoretic (macroscopic) approach to compute Z�(N). In this method, the partition

function is written as a functional integral over density fields. This procedure has been

commonly used in several contexts such as Landau theory [221], random matrix theory

[22], general Coulomb gas [128], and long-range interacting particles [45, 50]. Despite

this progress, there have been only a few rigorous comparisons between densities and

other equilibrium properties obtained from microscopic and macroscopic (field theory)

computation [45,59, 60,92,220,222].

In this section, we describe a macroscopic procedure and construct a field theory

adapted appropriately for our models. We start with the partition function

Z�(N) =

Z 1

�1

NY

i=1

dpi

Z 1

�1
dxNexp(��H({xi, pi})), where

Z
z

w

dxN ⌘
Z

z

w

dx1

Z
z

x1

dx2 . . .

Z
z

xN�1

dxN . (6.7)

Since the position and momentum variables are uncoupled, the partition function reduces

to

Z�(N) = Z(K)
�

(N) Z(C)
�

(N), (6.8)
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where the configurational contribution to the partition function is given by

Z(C)
�

(N) =

Z 1

�1
dxN exp

⇣
� �

h NX

i=1

U�(xi) +
1

2

NX

i=1

NX

j=1
j 6=i

V (xi � xj)
i⌘

, (6.9)

and contribution due to kinetic terms is

Z(K)
�

(N) =

✓
2⇡

�

◆N/2

. (6.10)

Performing the multiple integrals in Eq. (6.9) is a hard problem. However, for (i) short-

range repulsive interactions that diverge at vanishing separation, and (ii) slowly varying

confining potentials, one can approximate the full partition function as follows.

Figure 6.1: A schematic representation for partitioning the system into Nb subsystems,
each of size �. Here s = 1, 2, . . . , Nb denotes the subsystem index. Note that the particles
are represented by orange circles. In the sth subsystem there are ns particles. The double
arrow indicates the extent of each subsystem. While analyzing each subsystem we take
large-ns and then for the complete system, we finally take the small-� limit.

We divide the system into Nb subsystems, as shown in Fig. 6.1, where each subsystem

s contains a large number of particles ns. Note that the size of each subsystem, denoted

by �, is small enough compared to the actual size of the gas and large enough to contain

many particles such that the change in potential energy between two successive boxes

is smaller than thermal energy T i.e., |Vext(xs+1) � Vext(xs)| < T . The particles in each

subsystem experience an e↵ective constant potential that depends on the location of

the subsystem xs inside the trap. The partition function Z(C)
�

(N) in Eq. (6.9) can be

approximated (in the thermodynamic limit) as the product of the partition functions of
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these boxes,

Z(C)
�

(N) ⇡ exp

 
NbX

s=1

log
⇥
Z�(ns, xs,�)

⇤
!

, (6.11)

where the partition function of the sth subsystem of size �, centered around xs containing

ns particles is given by

Z�(ns, xs,�) =

Z
xs+

�
2

xs��
2

dxns

nsY

i=1

exp
⇣

� �U�(xi)
⌘ nsY

i,j=1
j 6=i

exp

 
� �


1

2
V (xi � xj)

�!

(6.12)

The free energy per particle in the sth box is given by

f (xs, �) = � 1

�ns

log
⇥
Z�(ns, xs,�)

⇤
. (6.13)

We convert the summation in Eq. (6.11) over subsystem index s to an integral over x

and get [see Appendix A.8]

F[⇢(x), �] =

Z 1

�1
dx ⇢(x)f (x, �) . (6.14)

where ⇢(x) is the density of particles at position x. The free energy per particle f(xs, �)

defined in Eq. (6.13) can be computed from the partition function of the subsystem. As

mentioned earlier, we assume that the subsystem size � is small enough such that all

the ns particles with position xi (where i = 1, 2.., ns), experience a constant potential

U�(xi) ⇡ U�(xs). The subsystem partition function can then be approximated as

Z�(ns, xs,�) ⇡ exp
⇣

� �nsU�(xs)
⌘"Z xs+

�
2

xs��
2

dxns

nsY

i,j=1
j 6=i

exp
⇣

� �


1

2
V (xi � xj)

�⌘#
.

(6.15)

Note that, in Eq. (6.15), the xi is a running integration variable not to be confused with

the position of the center of the subsystem xs. The contribution to the free energy per
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particle from the sth box is written as

f(xs, �) = U�(xs) + fint(xs, �), (6.16)

where

fint(xs, �) = � 1

�ns

log

0

BB@

Z �

0

dxns

nsY

i,j=1
j 6=i

exp
h

� �

2
V (xi � xj)

i
1

CCA . (6.17)

From Eq. (6.17) one can further rewrite fint(xs, �) ⌘ fint
�
⇢(xs), �

�
. Furthermore, using

Eq. (6.17) we can rewrite Eq. (6.14) as [see Appendix A.8]

F[⇢, �] =

Z 1

�1
dx ⇢(x)

n
U�(x) + fint

�
⇢(x), �

�o
. (6.18)

For the HR and the HC models the explicit forms of the free energy are derived in

Appendix A.8.1 and Appendix A.8.2 respectively.

The average thermal density can then be computed by extremizing the free energy in

Eq. (6.18) with the constraint that the density is normalized

Z 1

�1
dx ⇢(x) = N. (6.19)

In the next section, we compute these densities for both HR and HC models and compare

them with MC simulations.

6.4 Results from field theory and comparison with

Monte-Carlo simulations

In this section, we adapt the field theory formalism discussed in Sec. 6.3 for the case of

hard rods (HR) and hyperbolic Calogero (HC) model to compute the free energy. We

extremize the obtained free energy along with the constraint that the density is normalized

and this yields the average density profile.
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6.4.1 Hard rods model

For the HR model, the contribution due to interaction to the free energy per particle at

position x is given by (see Appendix A.8.1)

fint(⇢(x), �) = � 1

�
log

✓
1 � a ⇢(x)

⇢(x)

◆
+

1

�
. (6.20)

Using Eq. (6.20) in Eq. (6.18) we get the free energy for the HR model [ignoring the

density-independent term 1/� in Eq. (6.20)]

FR [⇢(x), �] =

Z 1

�1
dx ⇢(x)

"
U�(x) � 1

�
log

✓
1 � a ⇢(x)

⇢(x)

◆#
. (6.21)

The free energy in Eq. (6.21) is super-extensive i.e., FR[⇢(x), �] ⇠ O(N �+1) since the

ground state energy of N hard rods in a confining potential U�(x) ⇠ x� scales as N �+1.

Therefore, the average thermal density ⇢⇤(x, T ) can be computed via saddle point approx-

imation [45]. This amounts to extremizing the free energy along with the normalization

constraint

�

�⇢(x)
FR[⇢(x), �]

�����
⇢(x)=⇢⇤(x,T )

= µN(�), (6.22)

where the chemical potential µN(�) is temperature dependent and can be extracted from

the normalization condition given in Eq. (6.19). Using Eq. (6.21) in Eq. (6.22) we get

µN(�) = U�(x) � T

"
log

✓
1 � a ⇢⇤(x, T )

⇢⇤(x, T )

◆
� 1

1 � a ⇢⇤(x, T )

#
. (6.23)

To obtain the system size dependence of the density profile, we define

⇢N(x, T ) =
1

N
⇢⇤(x, T ), (6.24)

such that

Z 1

�1
dx ⇢N(x, T ) = 1. (6.25)
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Using Eq. (6.24), Eq. (6.23) can then be expressed as

µN(�) = U�(x) � T

"
log

✓
1 � a N⇢N(x, T )

N⇢N(x, T )

◆
� 1

1 � a N⇢N(x, T )

#
. (6.26)

To extract the system size (N) and temperature (T ) dependence of the density ⇢N(x, T )

we substitute the following scaling form ansatz

⇢N(x, T ) = N�↵R ⇢R (y, c) , µN(�) = N�R µR(c), (6.27)

with the scaled variables given by

y =
x

N↵R
, c =

T

N�R
, (6.28)

in Eq. (6.26). Here ↵R and �R are scaling exponents which are determined by requiring

that Eq. (6.26) is N independent in the scaled variables. Doing so we get

↵R = 1, �R = � and �R = �. (6.29)

The value ↵R = 1 can be understood from the O(N) extent of the density profile at zero

temperature. This leads to O(N �+1) energy of the system in the ground state. For the

entropy term to contribute to the free energy one needs to scale the temperature by N �

implying �R = �. Eq. (6.26) finally becomes

µR(c) =
y�

�
� c

"
log

✓
1 � a ⇢R(y, c)

⇢R(y, c)

◆
� 1

1 � a ⇢R(y, c)

#
. (6.30)

It is worth noting that the thermal equilibrium properties of hard rods in an external

potential were studied in Ref. [223]. Eq. (6.30) can be obtained from Eq. [13] of Ref. [223]

when the density is assumed to vary slowly on the rod length scale a. Since Eq. (6.30) is

a transcendental equation, it is di�cult to obtain an exact solution. We solve Eq. (6.30)

numerically by fixing µR(c) such that the normalization constraint,

Z 1

�1
dy ⇢R(y, c) = 1, (6.31)

117



is satisfied. In Fig. 6.2 we show the comparison between the scaled density profile

[obtained by solving Eq. (6.30)] and data from MC simulations (using the standard

Metropolis algorithm) for three rescaled temperatures c = 0.1, 1.0, 10.0 and three sys-

tem sizes N = 32, 64, 128. We find quite remarkable scaling collapse of the MC data with

system size which also agrees with the field theory results for both the harmonic (� = 2)

and quartic (� = 4) traps.

Figure 6.2: Comparison of scaled equilibrium density profiles ⇢R(y, c), obtained from
Monte-Carlo simulations with field theory [Eq. (6.30)] denoted by ‘FT’, for the HR model
with [(a)-(c)] harmonic trap (� = 2) and [(d)-(f)] quartic trap (� = 4). We show Monte-
Carlo data for three values of c: c = 0.1, c = 1.0 and c = 10.0, for N = 32, 64, 128. Here
the scaled variables are related to the unscaled variables as y = x/N and c = T/N � as
given in Eq. (6.28).

Although the explicit analytical solution of the saddle point given in Eq. (6.30) is

highly nontrivial to obtain, one can study the behavior of the density for low c ⌧ 1

and high c � 1 analytically using asymptotic analysis (see Appendix A.9.1). At zero

temperature the hard rods have a density profile given by

⇢R(y, 0) =

8
><

>:

1
a

for y 
��a
2

��

0 for y >
��a
2

�� .
(6.32)
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The density profile at low temperatures can then be approximated as

⇢R(y, c)
c⌧1⇡ ⇢R(y, 0) + ⇢1(y, c), (6.33)

where the deviation from the zero temperature density up to the first iteration (see

Appendix A.9.1 for more details) is given by

⇢1(y, c) ⇡

8
>>>>>>>>><

>>>>>>>>>:

� 1
a

c �

(y�c�y�)
for |y| < yc � O(c)

⇢⇤
R
(1 � a ⇢⇤

R
)2⇥

⇣
1 � exp

h
�y

�
c�y

�

c �

i⌘
for |y � yc| < O(c)

1
e
exp

⇣
y
�
c�y

�

c �

⌘
for |y| > yc + O(c).

(6.34)

Figure 6.3: A comparison of the asymptotic densities up to the third iteration (see Ap-
pendix. A.9.1) with the densities obtained from the numerical solution of Eq. (6.30),
denoted by ‘FT’, at low temperature c = 0.01 for the HR model in [(a)-(c)] harmonic
trap (� = 2) and [(d)-(f)] quartic trap (� = 4) shows the densities for hard rods confined
to harmonic trap (� = 2). Here [(a),(d)] show the bulk (|y| < yc � O(c)), [(b),(e)] edge
(|y � yc| . O(c)) and [(c),(f)] tail (|y| > yc + O(c)) regions. The vertical dotted line
represents the position y = yc given in Eq. (6.35) and this determines these three regions.

Here yc is the position at which the term in the parenthesis of Eq. (6.30) changes sign

and is given by

yc = (µR�)
1
� . (6.35)

119



The density at y = yc is denoted by

⇢⇤
R

= ⇢R(yc, c). (6.36)

Note that yc given in Eq. (6.35) determines the three regions (see Appendix A.9.1) (i)

bulk region where |y| < yc�O(c), (ii) edge region where |y�yc| . O(c), and (iii) tail region

where |y| > yc + O(c), which are displayed in Eq. (6.34). The higher-order corrections

have also been computed and are presented in Appendix A.9.1. The expression Eq. (6.33)

is verified with the numerical solution of Eq. (6.30) for c = 0.01 in Fig. 6.3 showing the

three regions. For this comparison, the value of the chemical potential µR(c) is taken

from Fig. 6.4. Note that in Fig. 6.4 the behavior of µR(c) is non-monotonic: it increases

initially as c is increased from zero and thereafter decreases. This nonmonotonicity can

be explained by noting that at smaller c, particles can only be added to the edges of the

system which requires more energy (owing to the confining potential), without a large

increase in entropy. Hence µR(c) increases initially. However, for larger c, the gas expands

and this opens up gaps, larger than the size of the rods, between the particles in the bulk

of the system. Consequently, one can easily add an extra rod with a small energy cost and

a large entropy gain, essentially lowering the free energy change. Hence µR(c) decreases

with c for larger c.

Figure 6.4: Chemical potential, µR(c), for the HR model obtained using Eq. (6.30) and
Eq. (6.31), plotted as a function of the rescaled temperature c for harmonic trap with
� = 2 (blue) and quartic trap with � = 4 (red). At large values of c the chemical potential
is negative and diverges.

In the high temperature regime (c � 1) the spread of the gas increases which in turn

dilutes the gas i.e., ⇢R(y, c) ⌧ 1. Using this low-density approximation in Eq. (6.30),
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we obtain the approximate analytical expression of the density profile (up to the first

iteration), given by (see Appendix A.9.1)

⇢R(y, c)
c�1⇡ 1

e
exp

✓
µR(c)

c
� y�

c�

◆
, (6.37)

where the chemical potential µR(c) is obtained numerically by solving Eq. (6.30) along

with the normalization condition [Eq. (6.31)] as shown in Fig. 6.4 and e = 2.71828 is

the Euler’s number. We can obtain higher order terms of the density by also considering

subdominant corrections originating due to the presence of interaction as shown in Ap-

pendix A.9.1. The expression Eq. (6.37) and the subdominant corrections (up to third

order) are verified with the numerical solution of Eq. (6.30) for both traps in Fig. 6.5 for

c = 10.0.

Figure 6.5: Comparison of the asymptotic densities up to third order (see Ap-
pendix. A.9.1) with the numerical solution of Eq. (6.30), denoted by ‘FT’, at high tem-
perature c = 10.0 for the HR model confined to (a) harmonic trap (� = 2) and (b) quartic
trap (� = 4).

6.4.2 Hyperbolic Calogero model

Unlike the hard rods (HR) model, for the hyperbolic Calogero (HC) model, each particle

is coupled to all the other particles. The field theoretic formulation of the hyperbolic

Calogero model has been studied [219]. However, the average thermal density profiles

at finite temperatures have not been computed yet. Based on the approximate scheme

outlined in Sec. 6.3 and the approach described in Refs. [45, 92, 224], we compute the
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finite temperature density profiles for the hyperbolic Calogero model below. The free

energy in this case is given by (see Appendix A.8.2)

FC [⇢(x), �] =

Z 1

�1
dx ⇢(x)


U�(x) + J⇣(2)⇢(x)2 +

1

�
log
⇥
⇢(x)

⇤�
, (6.38)

where ⇣(k) =
P1

n=1 n�k is the Riemann Zeta function. Note that, despite the all-to-

all coupling, the contribution to the free energy per particle due to interactions gets

renormalized to a local term in the density field, and is given by

fint(⇢(x), �) = J⇣(2)⇢(x)2 +
1

�
log ⇢(x). (6.39)

Here ��1 log ⇢(x) is the contribution due to the configurational entropy. To compute

the average thermal density ⇢⇤(x, T ), we extremize the free energy functional given in

Eq. (6.38) along with the normalization condition [Eq. (6.19)] which gives the chemical

potential

µN(�) = U�(x) + 3⇣(2)⇢⇤(x, T )2 + T
⇣
1 + log

⇥
⇢⇤(x, T )

⇤⌘
. (6.40)

As in the case of the HR model, to obtain a scaling form for the density profile, we use

the density normalized to unity ⇢N(x, T ) = ⇢⇤(x, T )/N in Eq. (6.40) and get

µN(�) = U�(x) + 3⇣(2)N2⇢N(x, T )2 + T
⇣
1 + log

⇥
N⇢N(x, T )

⇤⌘
. (6.41)

We can extract the system size (N) and temperature (T ) dependence of the density

⇢N(x, T ) by substituting the scaling form ansatz

⇢N(x, T ) = N�↵C⇢C (y, c) , µN(�) = µC(c)N�C , (6.42)

with the scaled variables

y =
x

N↵C
, c =

T

N�C
, (6.43)

in Eq. (6.41). Here ↵C and �C are scaling exponents which are determined by requiring

that Eq. (6.41) is N independent for large-N and depends only on the scaling variables.
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Doing so, we get

↵C =
2

2 + �
, �C =

2�

2 + �
and �C =

2�

2 + �
. (6.44)

The value ↵C = 2/(2 + �) can be understood from the O(N
2

2+� ) extent of the gas at zero

temperature [45]. This leads to O(N↵C�+1) energy of the system in the ground state. For

the entropy term to contribute to the free energy one needs to scale the temperature by

N↵C� implying �C = ↵C�. Eq. (6.41) finally becomes

µC(c) =
y�

�
+ 3⇣(2)⇢C(y, c)2 + c log ⇢C(y, c). (6.45)

We solve Eq. (6.45) numerically by fixing µC(c) such that the normalization constraint,

Z 1

�1
dy ⇢C(y, c) = 1, (6.46)

is satisfied. In Fig. 6.6, we show the comparison between the scaled density profile

obtained by solving Eq. (6.45) and data from MC simulations for c = 0.1, 1.0, 10.0. We

observe good agreement albeit with some small discrepancies, the origin of which is not

understood clearly at present. The value of the chemical potential µC(c) is obtained as

a function of c by numerically solving Eq. (6.45) subject to the normalization condition

Eq. (6.46), which is shown in Fig. 6.7. Unlike the HR model, we find that µC(c) decreases

monotonically in this case.

Similar to the HR case, obtaining the exact solution of Eq. (6.45) is highly nontrivial

for an arbitrary c. However, we can study the average thermal density profiles using

asymptotic analysis for small c ⌧ 1 and large c � 1 (see Appendix A.9.2). At zero

temperature, c = 0, the density is exactly known and is governed by the interaction

term only, since the contribution to the free energy from the entropy is zero. The zero

temperature density is given by [45,92]

⇢C(y, 0) =

8
><

>:

A�

�
l� � y�

� 1
2 for |y| < l

0 for |y| > l,
(6.47)
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Figure 6.6: Comparison of scaled equilibrium density profiles ⇢C(y, c), obtained from
Monte-Carlo simulations with field theory [Eq. (6.45)], denoted by ‘FT’, for the HC
model with [(a)-(c)] harmonic trap (� = 2) and [(d)-(f)] quartic trap (� = 4). We show
MC data for three values of c: c = 0.1, c = 1.0 and c = 10.0, for N = 32, 64, 128. Here
the scaled variables are related to the unscaled variables as y = x/N↵C and c = T/N�C ,
where ↵C and �C are given in Eq. (6.44).

where

A� = [3�⇣(2)]�
1
2 (6.48)

and the edge of the support of the density is given by

l =
⇣
µC(0)�

⌘ 1
�

=

 
�

2A�B
�
1
�
, 3
2

�
! 2

2+�

, (6.49)

with

B(x, y) =

Z 1

0

dr rx�1(1 � r)y�1, (6.50)

being the Beta function. µC(0) in Eq. (6.49) is the scaled chemical potential at zero

temperature, obtained by imposing the normalization condition [Eq. (6.46)], and is given

by

µC(0) =
l�

�
=
⇣⇡

2

⌘ �
�+2

 
��1/��

�
3
2 + 1

�

�

�
�
1 + 1

�

�
! 2�

�+2

, (6.51)
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Figure 6.7: Chemical potential µC(c) for HC model, computed by using Eq. (6.45) along
with the normalization condition Eq. (6.46), plotted as a function of the rescaled tem-
perature c for harmonic trap with � = 2 (blue) and quartic trap with � = 4 (red). At
large values of c the chemical potential is negative and diverges.

where

�[n] =

Z 1

0

dx xn�1e�x, (6.52)

is the Gamma function.

For c 6= 0, the entropy starts contributing to the density. As the rescaled temperature

is increased from zero, i.e., c ⌧ 1, we can obtain the approximate analytical form of the

density profile, as shown in the Appendix A.9.2, which is given by

⇢C(y, c)
c⌧1⇡ ⇢C(y, 0) + ⇢1(y, c). (6.53)

Here the deviation from zero temperature density (up to the first iteration) is given by

⇢1(y, c) ⇡

8
>>>>>>>>><

>>>>>>>>>:

⇢C(y, 0)⇥
µC(c)�µC(0)�c log ⇢C(y,0)

c+6⇣(2)⇢C(y,0)2 , for |y| < yc � O(c),

⇢
⇤
C(y�c�y

�)
�(c+6⇣(2)⇢⇤2C )

for |y � yc| < O(c),

exp
⇣

y
�
c�y

�

c�

⌘
for |y| > yc + O(c),

(6.54)

and the higher order corrections are provided in Appendix A.9.2. Similar to the HR

model, here yc = (µC(c)�)
1
� and ⇢⇤

C
= ⇢C(yc, c) is the value of the density at y = yc. In

Fig. 6.8, we find a good agreement between the expression Eq. (6.53) and the numerical
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Figure 6.8: A comparison of the asymptotic densities up to third order (see Ap-
pendix. A.9.2) with the densities obtained from the numerical solution of Eq. (6.45),
denoted by ‘FT’, at low temperature c = 0.01 for the HC model. Here we show the
densities for HC model confined to [(a)-(c)] harmonic trap (� = 2) and [(d)-(f)] quartic
trap (� = 4). Here [(a),(d)] show the bulk (|y| < yc), [(b),(e)] edge (|y � yc| . O(c)) and
[(c),(f)] tail (|y| > yc) regions. The dotted vertical line represents the position y = yc
which determines the three regions. In (c) and (f), as y = yc falls outside of the domain
of the x-axis, for the sake of presentation, we do not show the dotted line.

solution of Eq. (6.45) for c = 0.01. Note that, for this comparison the value of the

chemical potential µC(c) is taken from Fig. 6.7, where we recall that µC(c) is obtained

by solving Eq. (6.45) along with the normalization condition [Eq. (6.46)].

As temperature increases the particles spread spatially over a wider region. Therefore,

at high temperatures, c � 1, the gas becomes dilute i.e. ⇢C(y, c) ⌧ 1. Using this low

density approximation in Eq. (6.45) yields (see Appendix A.9.2)

⇢C(y, c)
c�1⇡ exp

✓
µC(c)

c
� y�

c�

◆
, (6.55)

where µC(c) is obtained numerically from Fig. 6.7. The form of the density in Eq. (6.55)

comes from the entropy which provides the dominant contribution to the density for c �

1. In Fig. 6.9, for c = 10, we find a good agreement between the approximate expression

of the density profile given in Eq. (6.55) (see Appendix A.9.2 for higher correction) and

the numerical solution of the Eq. (6.45).
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Figure 6.9: Comparison of the asymptotic densities up to third order (see Ap-
pendix. A.9.2) with the numerical solution of Eq. (6.45), denoted by ‘FT’, at high tem-
perature c = 10.0 for the HC model confined to (a) harmonic trap (� = 2) and (b) quartic
trap (� = 4).

6.5 Conclusion

To summarize, we have presented the equilibrium density profiles at finite temperatures

of two integrable models, the hard rods and the hyperbolic Calogero model, in harmonic

and quartic traps. For these models, inter-particle repulsion is strong enough to prevent

particle trajectories from crossing. The trap confines these systems spatially and breaks

integrability. For these two models, we studied equilibrium density profiles using a field

theory approach and Monte Carlo (MC) simulations.

Model \ Trap Harmonic (� = 2) Quartic (� = 4)
Hard rods Eq. (6.27), Eq. (6.27),

↵R = 1, �R = 2, ↵R = 1, �R = 4,
�R = 2 �R = 4

Figs. 6.2a, 6.2b, 6.2c Figs. 6.2d, 6.2e, 6.2f
Hyperbolic Calogero Eq. (6.42), Eq. (6.42),

↵C = 1
2 , �C = 1, ↵C = 1

3 , �C = 4
3 ,

�C = 1 �C = 4
3

Figs. 6.6a, 6.6b, 6.6c Figs. 6.6d, 6.6e, 6.6f

Table 6.1: A summary of the scaling behavior of the densities for the hard rods (HR)
and the hyperbolic Calogero (HC) model in harmonic and quartic traps.

We developed appropriate field theory for these two models by extending the approaches
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used in Ref. [45]. From the field theory we computed the equilibrium density profiles,

and their dependence on system size N and temperature T . The field theory calculations

predict precise scaling forms for the equilibrium density profiles as functions of N and T .

A summary of the scaling forms is given in Table 6.1. We find that the predictions from

field theory for hard rods agree remarkably well with MC simulations (Fig. 6.2). For the

hyperbolic Calogero model, the agreement is also reasonably good (Fig. 6.6).

Our work provides a framework for investigating the non-equilibrium dynamics, ther-

malization and transport in integrable models confined in external potentials. More

precisely, one can ask whether these systems under Hamiltonian dynamics are ergodic

and chaotic, and whether or not they equilibrate/thermalize when placed in di↵erent

confining traps. This is an area of active current research both theoretically [211] and

experimentally [78]. In the next chapter, we will study the dynamics of the hard rod

model in a harmonic and quartic trap and investigate the thermalization properties of

the system.

This chapter describes the study from the following published work, Ref. [225]:

J. Kethepalli, D. Bagchi, A. Dhar, M. Kulkarni, A. Kundu, “Finite temperature

equilibrium density profiles of integrable systems in confining potentials”, Phys. Rev. E

107, 044101 (2023)
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Chapter 7

Unusual ergodic and chaotic

properties of trapped hard rods

7.1 Introduction

The question of how isolated many body systems thermalize is of long-standing interest; a

canonical study is that of Fermi, Pasta, Ulam and Tsingou (FPUT) [65]. The surprising

finding of FPUT was that a one-dimensional anharmonic chain of oscillators did not

exhibit equipartition of energy even at very long times, with the system showing quasi-

periodic behavior and near-perfect recurrences. Various mechanisms have been proposed

to explain the results of FPUT [66–69], e.g, proximity to integrable models such as

the Korteweg-De Vries equation [74] or the Toda model [75–77] as formalized by KAM

theory [70], the stochasticity threshold [71], the presence of discrete breathers [226] and

most recently the formalism of wave turbulence [73].

One striking feature of this system is a separation between the timescales for equili-

bration and chaos. From numerical simulations of the ↵-FPUT model [75,227,228], it was

shown that for generic initial conditions [75], the timescale for the system to thermalize

(defined as the time to reach equipartition of energy) was much longer than the timescale

needed to observe chaos (defined as the time for the system to escape from regular regions

in phase space to chaotic ones), with both timescales increasing as the energy per particle

decreased and appearing to diverge at some critical value. (However, recent studies based

on wave turbulence seem to indicate the absence of any such threshold [73].) Some sub-

tleties in defining thermalization times and their possible relation to Lyapunov exponents
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were investigated recently in Ref. [229]. Despite a vast body of literature on the topic,

a definitive theory of thermalization in the FPUT chain still eludes the community and

there appears to be no consensus.

More recently, another family of clean many-body systems that fail to thermalize

under their dynamics has been scrutinized. These systems consist of particles with in-

tegrable two-body interactions, which are placed in an external trapping potential that

breaks both translation symmetry and integrability of their interactions. Given that the

trap breaks integrability, such systems are näıvely expected to thermalize to the Gibbs

ensemble, but a prominent experiment realizing a trapped Lieb-Liniger gas with ultracold

rubidium atoms showed that this expectation was not warranted [78]. A detailed theory of

the resulting Newton’s-cradle-like dynamics had to await the development of generalized

hydrodynamics [80,81] (GHD). While the latter theory appears to be more than adequate

for modeling short-time dynamics of such trapped integrable systems [83–86,211,230,231],

the fate of these systems at long times and in the absence of experimental imperfections

remains somewhat unclear.

For example, previous work on one-dimensional classical hard rods in an integrability-

breaking harmonic potential [84] found numerically that despite the dynamics exhibiting

positive Lyapunov exponents, the system did not thermalize to a Gibbs state at the

longest accessible simulation times (on the order of ten thousand periods of the trapping

potential). Moreover, the long-time steady state was found to be a stationary state of

the ballistic-scale (i.e. non-dissipative) GHD equations (as suggested previously [83]).

This observation, together with further numerical findings reported below, appears to be

incompatible with a subsequent proposal [86] that di↵usive corrections [232,233] to gen-

eralized hydrodynamics inevitably lead to thermalization in integrability-breaking traps.

Even if thermalization does occur for harmonically trapped hard rods at numerically in-

accessibly long times, it remains to be explained why this timescale is so long. Systems of

rational Calogero particles have also been found not to thermalize on accessible timescales

in traps that are expected to break integrability [211] (though this is not in tension with

theory [86] insofar as di↵usive corrections to the rational Calogero GHD vanish [211]).

Finally, we note that the e↵ect of integrability-breaking by traps has been studied for the

classical Toda system [206,209]. In this case, it was found that the harmonically trapped

system was weakly chaotic while the quartically trapped system displayed strong chaos
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and thermalization.

Thus despite much recent progress, several fundamental questions concerning the ther-

malization of trapped integrable particles remain unresolved, including whether or not

these systems are truly ergodic, whether they can support additional microscopic conser-

vation laws, and how far these properties coexist with chaos. Another open question, in

answer to which there is conflicting evidence in the literature, is whether the stationary

state in a generic trap is the Gibbs state [86] or one of infinitely many non-thermal sta-

tionary solutions to ballistic-scale GHD [83,84]. We will address some of these questions

below.

In this paper, we study the e↵ects of integrability breaking in one-dimensional systems

of hard rods of length a that are confined to external potentials of the form U(x) = kx�/�

with strength k > 0, where � = 2 for harmonic trap and � = 4 for the quartic trap. We

diagnose chaos, ergodicity and thermalization in these systems through probes such as

the maximal Lyapunov exponent (LE), the equipartition of energy between rods, and the

position and velocity distributions of the rods. We find that while quartically trapped

rods behave like a typical non-integrable many-body system, harmonically trapped rods

exhibit many drastically di↵erent and unexpected properties. The only additional mi-

croscopic conservation law for harmonically trapped rods beyond the total energy, E,

appears to be the energy of the center of mass, Ecm = 1
2N2 [(

P
i
xi)2 + (

P
i
vi)2]. Nev-

ertheless, we find that the system appears to be non-ergodic, has unconventional chaos

properties, and fails to thermalize to the Gibbs state even at extremely long times.

Below we summarize our main findings (see Table. 7.1):

1. We find that in a harmonic trap, a system of N = 3 hard rods shows a strong

signature of integrability in the form of a vanishing maximal Lyapunov exponent

(Fig. 7.1a) and a regular Poincaré section (Fig. 7.1b). This is in striking contrast

to the case of two rods confined to a quartic trap, which has both finite (positive)

and vanishing Lyapunov exponents ( Fig. 7.1c) and a mixed phase space with both

chaotic and regular regions (Fig. 7.1d). Our findings hint at the existence of more

conserved quantities for three rods in a harmonic confining potential (see also [84]).

2. For any finite number of rods N > 3 in a harmonic potential, we find that the

LE is positive. Nevertheless, we find compelling evidence that the system is highly
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non-ergodic. This is demonstrated by the strong initial-condition dependence of

the LE and the time-averaged kinetic temperature (Fig. 7.2). Such non-ergodicity

is further suggested by the broad distributions of Lyapunov exponents and rescaled

temperatures (Fig. 7.3). These distributions are obtained by time-evolving initial

conditions that are sampled uniformly from the constant E, Ecm microcanonical

surface (see Sec. 7.3 for details). Remarkably, hard rods confined to a quartic

trap exhibit qualitatively completely di↵erent behavior, and we find evidence of

conventional chaotic thermalizing dynamics expected for generic, non-integrable,

classical many-body systems (Fig. 7.4).

3. The system is described completely by two dimensionless parameters: the rescaled

energy, e = E/(N �+1ka�) and the number of rods, N . For the harmonic case with

fixed e, the average maximal Lyapunov exponent h�i converges to a finite value with

increasing N . This converged value shows an ⇠ e�1/2 scaling over a wide range of

e values (Fig. 7.5a). In sharp contrast, for the quartic case the average LE (h�i)

for a given N grows as ⇠ e1/2 and the proportionality constant increases with N

(Fig. 7.5b).

4. We find intriguing behavior in the approach to thermalization of macroscopic ob-

servables, such as density profiles and velocity distributions, for macroscopic sys-

tems of trapped hard rods. For both trap shapes, we study thermalization starting

from four di↵erent types of initial conditions, each of which is determined by choos-

ing either a spatially uniform or bimodal (Newton’s-cradle-like) position distribu-

tion and choosing either a uniform or a Maxwellian velocity distribution. For each

of these four initial conditions, we find that harmonically trapped rods approach

di↵erent stationary states at large times, none of which corresponds to the conven-

tional Gibbs state (Fig. 7.8). On the other hand, we find that quartically trapped

rods thermalize, eventually reaching the stationary Gibbs state for di↵erent initial

conditions (Fig. 7.9).

The paper is organized as follows. In Sec. 7.2 we describe the model in detail and

define the diagnostics that we will be using to characterize its dynamics. In Sec. 7.3, we

discuss the numerical methods employed. In Sec. 7.4, we present the results of extensive

molecular dynamics simulations of trapped hard rods. We conclude and discuss some

132



open questions in Sec. 7.5.

7.2 Models and definitions

We consider one-dimensional hard rods of length a and unit mass in a confining potential,

given by the Hamiltonian

H({xi, vi}) =
NX

i=1


v2
i

2
+ U(xi)

�
+

N�1X

i=1

V (|xi+1 � xi|), (7.1)

where {xi, vi} denote the position and the momentum of the ith rod such that xi+1 � xi+a

for 1  i  N � 1. We consider a confining potential of the form

U(x) = k
x�

�
(7.2)

with two values of �

� =

8
><

>:

2 for a harmonic trap

4 for a quartic trap
(7.3)

The interaction term for hard rods is of the form

V (r) =

8
><

>:

0 for r > a

1 for r  a.
(7.4)

Under the resulting Hamiltonian dynamics, the rods collide elastically with their

neighbors, upon which they exchange momenta instantaneously. In between collisions,

the rods move independently in the trap potential. Scaling distances and time by the

natural length and time scales, a and ⌧ = 1/
p

ka��2, respectively, one finds the total

energy of the system is given by

E = ka�

NX

i=1


ẋ2
i

2
+

x�

i

�

�
. (7.5)

The minimum energy, Em, of the system is attained by a close-packed configuration

centered at the origin, with all particles at rest. It is clear that Em ⇠ ka�N �+1. We are

interested in observing thermalization at high enough temperatures such that the central
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density of the gas is reduced from this close-packed density by a factor of order one or

more. This requires excitation energy Eex = E � Em of the same order as Em or larger.

From Eq. (7.5), we see that the only relevant parameters in the system are the rescaled

energy [225]

e =
E

N �+1k a�
(7.6)

and N . In the following, without loss of generality, we can set a = 1, k = 1 and compute

various physical quantities for di↵erent values of the parameters e and N . We further

note that for the harmonic case, there is a second conserved quantity

Ecm =
1

2N2

2

4
 
X

i

xi

!2

+

 
X

i

vi

!2
3

5 , (7.7)

beyond the total energy, which is the energy of the center of mass [84]. The center of

mass moves autonomously, and the relative motion of the rods is independent of that of

the center of mass, so without loss of generality for the harmonic trap we can restrict to

Ecm = 0. Note that this also implies that Xcm =
P

i
xi = 0 and Pcm =

P
i
vi = 0 are

separately conserved.

For these systems, we compute the finite time Lyapunov exponent, �(t), and its infinite

time limit, �, defined respectively as

�(t) = lim
✏!0

1

t
ln

����
dt

✏

���� ,

� = lim
t!1

�(t),

(7.8)

where d0 = ✏ is the separation between the two initial phase-space points, and dt is

their separation at time t. For chaotic systems � > 0, which represents the exponential

divergence of phase-space trajectories for an infinitesimally small initial separation. It

is possible to write a linearised dynamics for the variable zt = dt/✏ in the ✏ ! 0 limit,

which provides an accurate method for computing �. We use this method for computing

Lyapunov in the harmonic case, whereas for the quartic case, we compute it directly

from the evolution of two di↵erent initial conditions. In both cases, we use the widely

used numerically e�cient method due to Benettin, Galgani and Strelcyn [234]. To probe

thermalization, we compute the (running) time average of the scaled kinetic temperature
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of the individual hard rods defined as

ci =
Ti

N �
, where Ti(t) =

1

t

Z
t

0

dt0v2
i
(t0), (7.9)

and check for equipartition.

To study the relaxation dynamics and equilibration to a Gibbs state, we compute the

spatial density profile ⇢(x, t) and the velocity distribution P (v, t) defined as:

⇢(x, t) =
NX

i=1

h�(x � xi(t))i , (7.10)

P (v, t) =
NX

i=1

h�(v � vi(t))i . (7.11)

where < · · · > denotes an average over many initial microscopic states with the same

initial density profiles and velocity distributions, drawn from a microcanonical ensemble

with constant energy e and Ecm = 0. Details of the preparation of these initial states

are given below in Sec. 7.3. If the system thermalizes to a Gibbs state, then one expects

that ⇢(x) will be the same as the equilibrium distribution obtained from Monte-Carlo

simulations whose temperature is fixed so that the average energy (appropriately scaled)

equals e. The corresponding velocity distribution P (v) will be Gaussian at the same

temperature.

7.3 Numerical methods

In this section, we outline the various numerical methods and conventions that we will

use both in and out of equilibrium.

Time evolution: For the harmonic case (� = 2), one can evolve the equations of mo-

tion using exact and numerically e�cient event-driven molecular dynamics (EDMD). For

the quartic trap (� = 4) case, we employ standard molecular dynamics (MD) simula-

tions using a symplectic velocity-Verlet integration scheme. During collision events, we

exchange the velocities of the particles at the first instant that any two adjacent rods

overlap, defined as xi+1 � xi < a. To ensure the accuracy of this approximation, we use

a very small time increment dt = 10�6.

Stochastic momentum exchange dynamics (SMED): To sample initial conditions uni-
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formly over the phase space from a microcanonical ensemble with e fixed and Ecm = 0, we

allow momentum exchange of randomly chosen pairs of neighboring particles at random

times in addition to the usual Hamiltonian dynamics. This stochastic process conserves

the total momentum and energy of the system. For the harmonic trap case, this stochas-

tic momentum exchange dynamics (SMED) also conserves the center of mass energy Ecm.

The SMED exhibits the expected equipartition of energy (flat temperature profiles) and

insensitivity to initial conditions, both of which are consistent with ergodicity.

Initial state preparation: To check the initial condition dependence of the maximal

Lyapunov exponent � and its distribution we used microcanonical initial conditions gen-

erated by the SMED.

To check thermalization, we prepare the system with specified nonequilibrium spatial

density profiles ⇢(x) and velocity distributions P (v) consistent with given values of e

and Ecm = 0. This is achieved via the following protocol. First, we distribute the rods

spatially by the required density profile ⇢(x), imposing the hard-rod constraint and fixing

the center of mass at x = 0. We then compute the total potential energy Ep for this

configuration and subtract it from the total energy E to obtain the total kinetic energy

Ek. The velocities are drawn from the distribution P (v) and then shifted and rescaled

by appropriate factors so that the center of mass velocity vanishes and the total kinetic

energy is exactly Ek. In this work, we consider two non-thermal choices of ⇢(x): either

uniform over a finite width (denoted U), or a Newton’s-cradle-like profile consisting of

two uniform blobs, each of finite width and separated by an O(N) distance (denoted

Nc). For the velocities, we consider two choices of P (v): either uniform (denoted U) or

Maxwellian (denoted Mx). This leads to four possible choices of non-equilibrium initial

conditions: (i) U-U, (ii) U-Mx, (iii) Nc-U, and (iv) Nc-Mx.

7.4 Results on Chaos, ergodicity and thermalization

As mentioned earlier, one näıvely expects that the presence of the trap makes the system

chaotic (� > 0), ergodic (no long-time dependence on the details of the initial condition),

and non-integrable (strictly fewer than N independent integrals of motion). In the follow-

ing, we investigate these properties in detail by computing the Lyapunov exponent and

kinetic temperatures for di↵erent N in harmonic (� = 2) and quartic (� = 4) trapping
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potentials.

7.4.1 Chaos and ergodicity

It is easy to see that the dynamics of 2 hard rods (N = 2) is integrable for the harmonic

trap because of the presence of the second conserved quantity Ecm. This is however not

the case in a quartic trap, as will be elaborated below.

Figure 7.1: Plots of (a) time-dependent Lyapunov exponent �(t), and (b) Poincaré
section for N = 3 rods in the harmonic trap for 10 and 6 di↵erent initial conditions,
respectively, with E = 6 and Ecm = 0. Figures (c,d) show plots of �(t) and the Poincaré
section for N = 2 rods in the quartic potential for 5 and 2 initial conditions, respectively,
with energy E = 3.2. To compute �(t), we used linearized dynamics for (a) and two
trajectories with ✏ = 10�10 for (c). The log t/t behavior in (a) and the regular sections in
(b) are consistent with the integrability of N = 3 rods in the harmonic trap. Interestingly,
figure (c) reveals the existence of both chaotic and non-chaotic trajectories for the quartic
case. This is also reflected in (d) where we observe two types of patterns, namely scattered
(black) and regular (red).

N = 3 rods (harmonic trap): We first consider the case of N = 3 rods in the harmonic

trap with Ecm = 0. We find that the systems display features akin to integrable systems as

exhibited by the existence of non-chaotic trajectories with Lyapunov exponents decaying

as �(t) ⇠ log(t)/t (Fig. 7.1a). This is similar to integrable models such as the Toda
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chain [229]. The Poincaré sections are shown in Fig. 7.1b where we observe regular

patterns consistent with Fig. 7.1a.

N = 2 rods (quartic trap): In striking contrast to the above case, the behavior of

even N = 2 rods in a quartic trap shows both chaotic and regular trajectories, as depicted

in Fig. 7.1c. This observation is consistent with the Poincaré sections shown in Fig. 7.1d,

where we observe that the phase space of two hard rods can have disjoint chaotic regions

(scattered) and non-chaotic (regular) islands. However, our observations indicate that

the phase space volume of the regular island is much smaller than that of the chaotic

region even for N = 2.

N � 4 rods (harmonic trap): We find that many trajectories for N = 4 rods in a

harmonic trap are chaotic, although still non-thermalizing. We compute �(t) and c1(t)

for di↵erent initial conditions (IC) obtained from SMED simulations (see Section 7.3)

for two values of the rescaled energy, e = 0.5 and e = 5.0. The results are shown in

Figs. 7.2a,c and Figs. 7.2b,d, respectively. We find that the values of �(t) and c1(t)

at late times are sensitive to the choice of initial condition. Interestingly, we observe

that even for N = 4 there is a fraction of trajectories for which �(t) decays in time for

all numerically accessible times, as for the case of N = 3 rods (see Figs. 7.2a,b). To

investigate equipartition we plot ci(t) for i = 1, 2, 3, 4 for a single initial condition in

Fig. 7.2e for e = 0.5, and observe that c1(t) = c4(t) and c2(t) = c3(t) 6= c1(t) at late

times. This is also observed for e = 5.0 in Fig. 7.2f. These observations suggest that the

N = 4 system is chaotic but not ergodic for most choices of initial condition.

To quantify and further investigate the IC dependence and non-ergodicity in systems

with di↵erent numbers of rods N , we compute the probability distributions P (�) and

P (c1) of the late time values of �(t) and c1(t), obtained from an ensemble of ICs (once

again generated using SMED) for e = 0.5 (Figs. 7.3a,c) and e = 5.0 (Figs. 7.3b,d).

Interestingly, for the distribution P (�), we see a peak near � = 0 for N = 4 arising

from the non-chaotic trajectories observed in Figs. 7.2a,b. This peak, however, decreases

sharply with increasing N . Further, we observe that the mean of the distribution P (�)

behaves non-monotonically with increasing N . On the other hand, the width of the

distribution seems to decrease with increasing N . The fact that the distributions of

both � and c1 are still quite broad even at the largest system size N = 32 studied is
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Figure 7.2: Time evolution of �(t) and c1(t) for N = 4, starting from 40 di↵erent initial
conditions (each color denotes one initial condition) generated using the SMED protocol,
for (a,c,e) e = 0.5 and (b,d,f) e = 5.0. This shows the strong dependence on initial
conditions of the late-time values of �(t) and c1(t) for N = 4 hard rods in a harmonic
trap. In (e) and (f) we show the evolution of the time-averaged values of ci = Ti/N2 of
N = 4 hard-rods for e = 0.5 and e = 5.0 respectively, for one realization. In the long
time limit, c1 and c4 are equal but have a value that is significantly di↵erent from c2 and
c3, indicating a lack of energy equipartition.

strong evidence for a lack of ergodicity in the system. To demonstrate that t = 105

is a su�ciently long time for computing the distributions P (�) in Figs. 7.2a,b, we, in

Figs. 7.3e,f plot the distribution of �(t) at di↵erent times for N = 8. We observe that

these distributions initially display some narrowing, but seem to converge to a limiting

form of finite width at long times. This suggests that the system is genuinely non-ergodic

and that the identification of � with �(t) at t = 105 in Fig. 7.3a,b is justified.

These numerical results are consistent with the following possible scenarios for the

harmonic trap:

• The disappearance of the peak in P (�) at � = 0 with increasing N indicates that

any possible KAM-like non-chaotic islands occupy negligible phase-space volume in

the limit of large system size.
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Figure 7.3: (a,b,c,d) Distribution of the maximal Lyapunov exponent � and rescaled
temperature c1 of the left-most rod, for 4  N  32, computed at time t = 105. The
system sizes corresponding to di↵erent plots are provided in sub-plot (c). We find a
significant breakdown of ergodicity for hard rods in this harmonic trap. (e,f) Distribution
of � for N = 8 at di↵erent times, 103  t  106, which shows that P (�, t) approaches
a steady limiting distribution at late times. The initial conditions for all the plots are
generated using the SMED: (a,c,e) for e = 0.5 and (b,d,f) for e = 5.0.

• The non-vanishing width of P (�) and P (c1) for the simulated values of N suggests

the existence of multiple chaotic islands with distinct values of � and c1 in a given

microcanonical shell.

• These chaotic islands could arise either from extra conserved quantities or from

strong kinetic constraints (e.g. high entropy barriers) that prevent movement be-

tween di↵erent islands. In the former case, we expect that the width of the dis-

tributions P (�) and P (c1) will not go to zero even for long times and large N .

In the latter case, these distributions will eventually become sharp at su�ciently

long times, yielding unique values of � and c1 for any N . Our numerical results in

Fig. 7.3(e,f) are in closer agreement with the former scenario.
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Figure 7.4: Probability distribution of (a) maximum Lyapunov exponents � and (b) c1
for N = 4 rods in a quartic trap. We observe that both distributions collapse at di↵erent
times after shifting by their respective means and scaling by

p
t. This indicates that the

width of these two distributions decreases with time and becomes increasingly sharp, in
contrast to our findings for the harmonic trap depicted in Fig. 7.3. In the insets, we show
the time evolution of � and c1 for 20 di↵erent realizations (each color denotes one initial
condition), all of which converge to a unique value at late times, regardless of the initial
conditions.

N � 4 rods (quartic): For the quartic trap, numerically obtained distributions for

P (�(t)) and P (c1(t)) are shown in Figs. 7.4a and 7.4b respectively, for di↵erent times

from t = 100 to t = 104. In contrast to the harmonic trap, we find that both these

distributions are sharply peaked and that their width decreases with time as ⇠ t�1/2

(see the scaling in Fig. 7.4). This suggests that hard rods in a quartic trap thermalize.

This conclusion is supported by the insets of these figures, which demonstrate that �(t)

and c1(t) converge to unique values (within statistical fluctuations) for di↵erent initial

conditions. Thus our numerical simulations find negligible dependence of the late-time

dynamics on initial conditions, which is evidence for thermalization, and consistent with

ergodicity (testing the latter directly would require a more detailed analysis of individual

phase-space trajectories).
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Figure 7.5: Plot of average maximal Lyapunov exponent (h�i) with rescaled energy e for
(a) harmonic and (b) quartic trap. The average number of collisions per unit time hncolli
as a function of total energy e for N = 8 for (c) harmonic trap and (d) quartic trap.

7.4.2 Energy dependence of chaos

In this section, we investigate how the mean maximal Lyapunov exponent h�i (obtained

from the distributions in Figs. 7.3a and 7.3b) depends on the rescaled energy e and N for

both traps. We observe that in the case of the harmonic trap, h�i roughly saturates to

a non-zero value at large N for a fixed value of e. In Fig. 7.5a, we plot these saturation

values as a function of e where one observes that h�i decreases with e as ⇠ 1/
p

e at large

e. A similar decrease of h�i with increasing energy has been reported earlier for soft rods

in a harmonic trap [235]. For the quartic trap, in contrast to the harmonic case, h�i does

not appear to converge with increasing N for the range of N values studied here. For

fixed N , h�i grows with increasing e as ⇠
p

e for large e as can be seen from Fig. 7.5b.

This square-root dependence of � on temperature is also observed in other non-integrable

systems [236,237].

To understand this intriguing dependence of � on e better, we compute the average

number of collisions per unit time hncolli in both traps, for a fixed N = 8 and for di↵erent

values of the energy e. These are shown in Figs. 7.5c and 7.5d for the harmonic and the
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quartic trap respectively. From Fig. 7.5c we find that hncolli decreases in the harmonic

trap as e is increased. Thus, as the energy is increased the hard rod gas expands and

collisions become rarer. We expect that this reduced rate of collisions is responsible for

the decrease in h�i with increasing e for the harmonic trap. In contrast, we find for the

quartic trap that hncolli increases as e is increased (see Fig. 7.5d), which may cause the

increase of h�i with e.

7.4.3 Thermalization in macroscopic systems

In previous sections, we studied the chaos and ergodicity properties of hard rods in

harmonic and quartic traps. For harmonic traps, we found numerical evidence that for

large N the system is chaotic but not ergodic, while for quartic traps we found that the

system was both chaotic and thermalizing (and most likely ergodic). A notable feature

of the harmonic trap is that the dynamics become less chaotic as the rescaled energy is

increased.

Whether these results have any bearing on thermalization in macroscopic systems is a

nontrivial question, which we now address. We will study this question by looking at the

time evolution of non-equilibrium density profiles and velocity distributions of trapped

hard rods (evolving under Hamiltonian dynamics) and checking whether these relax to

the Gibbs state.

To this end, we compute ⇢(x, t) and P (v, t), as defined in Eqs. (7.10) and (7.11), as

a function of time for four choices of initial condition (see Sec. 7.3) with fixed values

of e and Ecm = 0. In Figs. 7.6a and b we show ⇢(x) and P (v) for small times 0 <

t . ⌧ = 2⇡, with N = 128 hard rods in the harmonic trap, starting from IC Nc-

M, i.e, from Newton’s cradle initial condition in space (two spatially separated blobs

of rods) with velocities chosen from a Maxwell distribution. It is clear that the rods,

starting from a two-blob initial condition (at t = 0), go through “breathing” dynamics

and exhibit large oscillations in their density profiles and velocity distributions. As the

system “breathes”, the density profile goes through di↵erent intriguing shapes that are

shown in Fig. 7.6a. Such transients in the finite-time dynamics of trapped integrable

systems are well documented by now [78,84, 85,203].

After these initial transients, the position and velocity distributions begin to approach

a stationary state. We plot the single-particle distributions for N = 128 hard rods in a
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Figure 7.6: (a) Density profiles ⇢(x) and (b) velocity distributions P (v) in the harmonic
trap, with e = 0.5 and N = 128, that appear at di↵erent times within one time-cycle
of the trap, 0 < t . ⌧ = 2⇡. These profiles are obtained starting at t = 0 from a two-
blob density profile and Gaussian velocity distribution (i.e. Nc-Mx) of the hard rods.
For all the figures in (a) and (b), the abscissa runs from �400 to 400. For (a) and (b),
the ordinate scale ranges are 0 � 0.007 and 0 � 0.01 respectively. As can be observed,
the hard-rod system in a harmonic trap has an initial ‘breathing-mode’ dynamics and
exhibits oscillations in the distributions, somewhat resembling Newton’s cradle. For our
parameters, these oscillations damp out in O(20) cycles.

harmonic trap at late times t = 500, 103, 104. These distributions are shown in Figs. 7.7a-

d for e = 0.5 and e = 5.0. To check whether or not the rods thermalize in the long-time

limit, we also plot the corresponding single-particle distributions obtained from SMED,

which are expected to recover the microcanonical ensemble.

Strikingly, in the harmonic trap, we find that the density profile obtained from the

microscopic dynamics even at the longest accessible times, t = 104⌧ , (where ⌧ = 2⇡
!

is

the time period of the trap) is very di↵erent from the SMED prediction. The velocity

distribution is also found to di↵er from the SMED prediction, for both e = 0.5 and

e = 5.0. Thus the hard rod gas does not thermalize in a harmonic trap even at the

very longest accessible times. This is consistent with earlier work, which found that the

long-time steady state of harmonically trapped hard rods was a non-thermal stationary

solution to ballistic-scale GHD on comparable timescales [84]. It appears that for smaller

e, the density and velocity profiles are closer to the equilibrium forms obtained from

SMED. Thus, quite intriguingly, we find that harmonically trapped hard rods at a higher

rescaled energy e are less chaotic, retain the memory of their initial conditions for longer,

and show greater reluctance to thermalize than systems at lower e.

To argue convincingly against thermalization, we must further check that the late-

144



Figure 7.7: Time evolution of density and velocity profiles: (a,c) for e = 0.5 and (b,d)
e = 5.0 for N = 128 hard rods in a harmonic trap, starting from Newton’s cradle initial
condition (i.e. two spatially separated blobs of rods) with Maxwellian velocities (Nc-Mx,
in the notation of Sec. 7.3). The times simulated are indicated by the legend in (b). These
plots illustrate that at late times (t = 104⌧) the density profiles and velocity distributions
obtained from EDMD converge to forms that di↵er from those obtained from SMED.

time behavior of the system is sensitive to the choice of initial condition. In Fig. 7.8, we

investigate the late-time behavior of hard rods in a harmonic potential for several initial

conditions and compare them with the corresponding thermal predictions from SMED.

The four di↵erent initial conditions (see Sec. 7.3) considered are (i) uniform density and

uniform velocity distribution (U-U), (ii) uniform density and Maxwell velocity distribu-

tion (U-Mx), (iii) Newton’s cradle density and uniform velocity distribution (Nc-U), and

(iv) Newton’s cradle density and Maxwell velocity distribution (Nc-Mx). We find that

neither the density profiles nor the velocity distributions of the late-time microscopic dy-

namics are consistent with SMED. Remarkably, even the late-time distributions obtained

by evolving di↵erent initial conditions under the microscopic dynamics are distinct from
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one another, implying non-ergodicity.

Figure 7.8: In this figure, we investigate the initial condition dependence of the late time
(t = 104⌧) distributions obtained from EDMD of hard rods in a harmonic potential.
These are compared with thermal predictions obtained from SMED. We compare the
density and velocity profiles of 128 rods at two energies (and : (a-c) e = 0.5 and (b-d)
e = 5.0. We use four di↵erent initial conditions: (i) uniform density and uniform velocity
distribution (blue dashed line), (ii) uniform density and Gaussian velocity distribution
(red dotted line), (iii) Newton’s cradle density and uniform velocity distribution (yellow
dashed-dotted line), and (iv) Newton’s cradle density and Gaussian velocity distribution
(magenta dashed-double-dotted line). We find that neither the density profile nor the
velocity distribution agrees between EDMD and SMED (black solid line), even at long
times t = 104⌧ . We also observe that late-time density profiles depend on the choice of
initial condition for both temperatures.

In sharp contrast, hard rods in a quartic trap thermalize rapidly to a Gibbs state,

regardless of the choice of initial condition. This is shown for two macroscopically distinct

initial conditions in Figs. 7.9a and b (for the NC-Mx initial condition) and Figs. 7.9c and

d (for the U-Mx initial condition), where long-time density and velocity distributions

obtained from the microscopic dynamics are compared with the expected equilibrium

distributions. We observe excellent agreement for both choices of initial condition.

To characterize the lack of thermalization of the hard rods in a harmonic trap in a more

quantitative manner, we characterize the ‘distance’ of the EDMD density profiles ⇢(x),

from the expected equilibrium distributions ⇢SMED(x) (obtained from SMED), using the
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absolute value norm, defined as

DL1(⇢, ⇢SMED) =

Z 1

�1
dx |⇢(x) � ⇢SMED(x)|. (7.12)

The absolute value norm as a function of time, for two di↵erent e values, is shown

in Fig. 7.10. As anticipated, DL1 for e = 5.0 is clearly larger than DL1 for e = 0.5.

Furthermore, DL1(t) at long times (t ⇠ 104⌧) seems to saturate to a non-zero value,

implying a lack of thermalization.

Figure 7.9: Time evolution of (a-c) MD density and (b-d) velocity distribution for hard
rods in a quartic trap, starting from (a-b) Nc-Mx and (c-d) U-MX initial condition,
compared with Monte-Carlo profiles for N = 16 and e = 0.10. In this case, the MD profile
converges to the Monte Carlo (MC) result appreciably fast, and the velocity distribution
approaches a Gaussian at late times, as expected for a non-integrable system.

7.5 Conclusions

In this paper, we have investigated chaos, ergodicity and thermalization for one-dimensional

gases of classical hard rods in harmonic and quartic traps. Our work demonstrates that
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Figure 7.10: Time evolution of the distance measure, DL1 [defined in Eq. (7.12)], between
⇢(x) and ⇢SMED(x) for e = 0.5 and e = 5.0 in a harmonic trap. For both EDMD and
SMED, the system is initially prepared in the Nc-Mx initial condition. The oscillations
at small times are consistent with the oscillations observed in Fig. 7.6. The saturation of
DL1 to non-zero values at large times indicates a lack of thermalization to a Gibbs state.

thermalization properties are radically di↵erent between harmonic traps (� = 2) and

quartic traps (� = 4). In the harmonic case, even though the system has a positive Lya-

punov exponent confirming that integrability is broken, the dynamics nevertheless appear

to be non-ergodic and fail to thermalize on the accessible timescale. This is markedly

di↵erent from expectations for conventional non-integrable classical many-body systems.

Our main findings for the case of N > 3 hard rods are summarised in Table. 7.1.

Our results hint at the existence of additional microscopic conserved (or quasi-conserved)

quantities that give rise to non-ergodic behavior in a harmonic trap even when the Lya-

punov exponents are positive. The special case of N = 3 displays non-chaotic (zero

Lyapunov exponent) behavior. On the other hand, hard rods confined to quartic traps

exhibit conventional non-integrable behavior, namely positive Lyapunov exponents and

thermalization to the expected Gibbs state.

Our work suggests several interesting open questions for hard rods in a harmonic trap
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N > 3 Harmonic Quartic
Chaos Yes Yes

(Fig. 7.2 and 7.5) (Fig. 7.4 and 7.5)
Ergodicity No Consistent with yes

(Fig. 7.3) (Fig. 7.4)
Thermalization No Yes

(Fig. 7.7 and 7.8) (Fig. 7.9)

Table 7.1: The table provides a summary of our findings for N > 3 hard rods confined
to harmonic and quartic traps. The case of N = 3 rods in a harmonic trap is special
(Fig. 7.1a,b) because it is characterized by vanishing Lyapunov exponents although its
quartic counterpart, even for N = 2, has non-zero Lyapunov exponents (Fig. 7.1c,d).

such as: (i) finding the extra conservation law for N = 3, assuming this exists (it was

previously argued that any such conservation law must be non-analytic in the dynamical

variables [84]); (ii) understanding the dependence of � on energy e and N (see Fig. 7.5)

; (iii) understanding whether hydrodynamics can capture the regime of intermediate

times between the initial and late-time dynamics [84]; (iv) exploring whether this lack of

ergodicity for large N has any relation to the known additional, “entropic” conservation

laws of ballistic-scale GHD [83–85,238], or some hitherto undiscovered conservation laws

of the full dissipative hydrodynamics.

We expect that some of our findings will be valid more generally for systems of classical

or quantum particles confined to a trap that breaks the integrability of their interactions.

We note that studies of the Toda chain [206, 209] have also indicated drastic di↵erences

in transport properties in a harmonic trap compared to quartic traps. As a more extreme

example of such unusual behavior, the rational Calogero model remains integrable in both

harmonic and quartic traps [239], and its ballistic scale hydrodynamics is integrable in

any trap [211]. A complete theory of this rich phenomenology of integrability breaking

by traps remains elusive for now.

This chapter describes the study from the following published work:

D. Bagchi, J. Kethepalli, V.B. Bulchandani, A. Dhar, D.A. Huse, M. Kulkarni, A.

Kundu, “Unusual ergodic and chaotic properties of trapped hard rods”, Phys. Rev. E

108, 064130 (2023)
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Chapter 8

Conclusions and Outlook

In this thesis, we study the classical 1d Riesz gas confined to an external potential.

This system consists of N number of particles that repel each other through an all-

to-all pairwise interaction, that follows a power-law behavior of the form |xi � xj|�k,

where xi represents the position of the ith particle. The exponent k determines the

interaction range, with k > 1 corresponding to short-range interactions and k < 1 to

long-range interactions. We study the Riesz gas in Gibbs equilibrium to understand how

the equilibrium properties of the system change as the interactions are modified from

short-range to long-range by tuning k. Furthermore, we study the equilibrium and non-

equilibrium properties of the hard rods confined to an external trap at high temperatures.

The hard rod model is k ! 1 limit of the Riesz gas.

In our study, we focus on k > �2, as for smaller values of k, the repulsive potential,

|xi�xj|�k, becomes dominant when the particles are confined in a harmonic trap U(x) ⇠

x2. Due to competition between the repulsive interaction and confinement, a typical

configuration of this system possesses a characteristic length scale LN which depends on

the exponent k and the number of particles N . The explicit expression for LN is provided

in Eq. (2.6) and is LN & O(1). Consequently, the total energy of the system is super

extensive. To examine the equilibrium properties of the Riesz gas, we consider the system

to be in Gibbs equilibrium at temperatures T ⇠ O(1). At this temperature regime, the

entropy term in the free energy is negligible in comparison to the energy term. Hence, the

physical properties are dominated only by the energy term. In Ref. [45], a coarse-grained

description of the system was developed in the form of field-theoretic energy. Using this

field theory and the saddle point method the average density profile was computed. We
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extend this method to study the equilibrium properties of various coarse-grained physical

quantities of the harmonically confined Riesz gas at T ⇠ O(1).

In chapter 3, we study the average density of a harmonically confined Riesz gas [see

Eq. (2.1)] in the presence of a hard wall located at W . This density can be classified

into three di↵erent regimes of k (i) short-range (k � 1), (ii) weakly long-range (�1 <

k < 1) and (iii) strongly long-ranged (�2 < k  �1) as depicted in Figs. 2.3 and

3.1. Furthermore, we discovered a first-order phase transition for the strongly long-range

system as the scaled wall position (w = W/LN) is shifted to the left of a critical value

w = w⇤(k). Below this, the wall essentially absorbs all the particles making a supercharge,

and no extended part is left. The strength of the supercharge Mk(w) plays the role of

an order parameter that undergoes a jump to a value 1 as w is decreased through w⇤(k).

This constrained density profile is important for the computation of the distribution of

the position of the right-most particle xmax in the thermodynamic limit [see Eq. (3.1)].

In chapter 4, we study the distribution of the position of the rightmost particle xmax of

the harmonically confined Riesz gas. We numerically observe that the typical fluctuation

of ymax = xmax/LN around its mean is of O(N�⌘k). We show that the exponent ⌘k

obtained from the Hessian theory predicts the scale of typical fluctuations remarkably

well. The distribution of atypical fluctuations to the left and right of the mean hymaxi

are governed by the left and right large deviation functions, respectively. We compute

these large deviation functions explicitly 8k > �2 and numerically verify them. We

also find that these large deviation functions describe a pulled-to-pushed type phase

transition as observed in Dyson’s log-gas (k ! 0) and 1d one component plasma (k =

�1). Remarkably, we find that the phase transition remains 3rd order for the �2 <

k. Our results demonstrate the striking universality of the 3rd order transition even in

models that fall outside the paradigm of Coulomb systems and the random matrix theory.

Furthermore, our study is an important step forward in improving our understanding of

extreme value statistics in strongly correlated systems.

The study in chapter 5 provides a detailed analysis of FCS of a confined short-range

Riesz gas (k > 1). We focused on the number and the index distribution, which charac-

terize the fluctuations of the number of particles N(W, N) and I(W, N), respectively, in

two distinct domains, namely [�W, W ] and (�1, W ]. We analyze the probability distri-

butions of N(W, N), I(W, N) and show that they individually exhibits a large deviation

152



forms for large N characterized by a speed N
3k+2
k+2 and by a large deviation function of the

fraction of the particles (c) inside the respective domain and W . We show in Fig. 5.2, that

the density profiles that create the large deviations display interesting shape transitions

as one varies c and W . This shape change gets manifested by a third-order phase tran-

sition exhibited by the large deviation function that has discontinuous third derivatives.

We find that the typical fluctuations of N(W, N) and I(W, N), obtained from the field

theoretic calculations are Gaussian distributed with a variance that scales as N ⌫k , with

⌫k = (2 � k)/(2 + k). Furthermore, we adapt our formalism to study the linear statistics

(the variance), thermodynamic pressure and bulk modulus. Our study is a major step

forward in generalizing results of Dyson’s log-gas and the 1dOCP to a broader class of

interacting particles i.e., Riesz gas systems with k > 1.

In chapter 6, we study the high-temperature equilibrium properties of the hard rods

and the hyperbolic Calogero model, in harmonic and quartic traps. These two mod-

els e↵ectively correspond to special values of k of the Riesz gas, k ! 1 and k = 2,

respectively. Furthermore, they are integrable in the absence of confinement but the

confinement breaks the integrability of the Hamiltonian dynamics. We study the average

density profile of these two models at T ⇠ O(L2
N

). We use field theoretic techniques

to compute the density profile and their scaling with system size and temperature and

compare them with results from MC simulations. A summary of the scaling forms is

given in Table 6.1. In both cases, we find reasonably good agreement between the field

theory and simulations (Figs. 6.2 and 6.6). Our work provides an analytical approach

for understanding the equilibrium properties of interacting integrable systems in confin-

ing traps. This work provides the foundation to study the thermalization properties of

integrable systems in integrability-breaking traps. We can use these density profiles to

understand whether the system thermalizes to the expected Gibbs state.

In chapter 7, we shift our focus and study the dynamics of the 1d gases of classical hard

rods in harmonic and quartic traps, which breaks microscopic integrability. We investigate

its chaos, ergodicity and thermalization properties. To quantify the strength of chaos in

this system, we compute its maximal Lyapunov exponent numerically. The approach to

thermal equilibrium is studied by considering the time evolution of single particle position

and velocity distributions and observe that at late time these distributions become time

stationary. We compare these stationary profiles with the Gibbs state studied in the
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previous chapter 6. Our work demonstrates that thermalization properties are radically

di!erent between harmonic and quartic traps. In the harmonic case, even though the

system has a positive Lyapunov exponent confirming that integrability is broken, the

dynamics nevertheless appear to be non-ergodic and fail to thermalize on the accessible

timescale. Our results hint at the existence of additional microscopic conserved (or quasi-

conserved) quantities that give rise to non-ergodic behavior in a harmonic trap even when

the Lyapunov exponents are positive. The special case of N = 3 displays non-chaotic

(zero Lyapunov exponent) behavior. On the other hand, our numerical results reveal

that hard rods in a quartic trap exhibit both chaos and thermalization and equilibrate

to a Gibbs state as expected for a nonintegrable many-body system. Our main findings

for the case of N > 3 hard rods are summarised in Table. 7.1.

In this thesis we studied the Riesz gas, initially focusing on its low-temperature prop-

erties and later examining its high-temperature behaviour, particularly in cases where

k = 2 and k → ↑. We further study the unusual thermalization properties of the

k → ↑ case. Interesting future prospects include the study of the equilibrium proper-

ties of the Riesz gas for general k in various external traps, at high temperatures where

entropy and energy have comparable contributions to free energy. Another interesting

direction is to investigate the Riesz gas in higher dimensions d > 1, focusing on the be-

haviour of equilibrium density profiles. Additionally, constructing a field-theoretic free

energy fucntional for the short-range case when k ↓ d remains an open problem.

The Riesz gas encompasses diverse models and exhibits complex behaviours, making

its thermalization properties an intriguing area of study. Such studies could clarify the

role of the range of interaction (short and long) in thermalization. While the dynam-

ics of the Riesz gas have attracted significant interest for systems connected to a heat

bath [47,240,241], the thermalization of an isolated Riesz gas remains an open question.

One promising approach to studying this is hydrodynamics, which emphasizes the evo-

lution of the densities of conserved quantities like mass, momentum, and energy over

the microscopic observables. However, hydrodynamics assumes local equilibrium, and

whether it can e!ectively describe long-range systems with non-local interactions is still

uncertain and warrants further investigation. Similarly, in a kinetic theory approach

when the interaction is weak and Kac-rescaled, one would obtain the appropriately mod-

ified Vlasov equation (see Ref. [242]). Solving the Vlasov equation could give insights
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into how such systems relax.
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Appendix A

Appendix

A.1 Constrained density profiles

In this Appendix, we detail our derivation of the constrained scaled density for !1 < k < 1

in Eq. (3.34), and for and for !2 < k 1 !1 in Eq. (3.48).

A.1.1 Regime 2 : !1 < k < 1

We start with the solution of the Sonin equation (3.31), as given in Eqs. (3.32) and (3.33).

For convenience we rewrite here the particular solution uk(z) in Eq. (3.33)

uk(z) =
2Ak|k|z k�1

2

B
Z
k+1
2 , k+1

2

" ⇢

⇢z

 X 1

z

t�k(t ! z)
k+1
2

⇢

⇢t

X
t

0

hk(y)y
k+1
2 (t ! y)

k�1
2 dy dt

!
, (A.1)

where hk(z) = Ak(z ! qk(w)). This Eq. (A.1) can be written as

uk(z) =
2Ak|k|

B
Z
k+1
2 , k+1

2

"z
k�1
2

⇢

⇢z
I2(z, k) (A.2)

where

I2(z, k) =

X 1

z

dt t�k(t ! z)
k+1
2

⇢

⇢t
I1(t, k) (A.3)

I1(t, k) =

X
t

0

dy hk(y)y
k+1
2 (t ! y)

k�1
2 . (A.4)

The integral I1(t, k) in Eq. (A.4) can be computed explicitly and we get

I1(t, k) =
Akt1+k

2
B

 
k + 1

2
,
k + 1

2

! 
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k + 3

2(k + 2)

!
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!
. (A.5)
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Taking a derivative of the Eq. (A.5) with respect to t, we get
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. (A.6)

Substituting this result in Eq. (A.3), the integral I2(z, k) reads

I2(z, k) = B
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(A.7)

Now taking a derivative with respect to z gives
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⇢z
I2(z, k) = B

 
k + 1

2
,
k + 1

2

!
Ak(1 ! z)

k+1
2

#
qk(w)(k + 1)

2
! (1 + k + 2z)

4

⌧
. (A.8)

We then finally get from Eq. (A.2)

uk(z) = Ak|k|z
k�1
2 (1 ! z)

k+1
2 Ak

#
qk(w)(k + 1) ! 1 + k + 2z

2

⌧
. (A.9)

In terms of �k = k+1
2 it reads

uk(z) = !Ak|k|Akz
↵k�1(1 ! z)↵k

Z
z ! �k(2qk(w) ! 1)

"
. (A.10)

Substituting this in Eq. (3.32) gives

�k(z, w) =
Z
z(1 ! z)

"↵k�1

#
C0 ! Ak|k|Ak(1 ! z)

Z
z ! �k

Z
2qk(w) ! 1

""
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, (A.11)

which is indeed Eq. (3.34) in the main text.

A.1.2 Regime 3 : !2 < k 1 !1

Equation (3.46) in the main text reads explicitly

X 1

0

dz1
sgn(z1 ! z)

|z1 ! z|k+1
�k(z

1, w) = Ak(z ! qk(w)) + Bk(gk(w) ! z)�(k+1) (A.12)
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where Ak = ! L̃k(w)k+2

|k| , gk(w) = w+lw

l̃w+lw
, qk(w) = lk(w)

L̃k(w)
and Bk = !D⇤

k
(w). The solution of

the Sonin equation (A.12) is given by
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with the particular solution uk(z) given by
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where hk(z) = Ak(z ! qk(w)) + Bk(gk(w) ! z)�(k+1). This can be written as
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The integral I1(t, k) in Eq. (A.17) becomes
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We take the derivative with respect to t to get
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The integral in the second term in Eq. (A.19) can be done by a change of variable

s =
r(a ! 1)

a ! r
with a =

gk(w)

t
, (A.20)

159



where we have assumed that gk(w)
t

� 1 (which can be verified a posteriori). Doing the

above variable transformation and performing the integral in Eq. (A.19) we get
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Using Eq. (A.21) in Eq. (A.19) we write
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Substituting this in Eq. (A.16) we get
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The first two integrals in the above equation can be straightforwardly reduced to Beta

functions. For the third integral, we first transform t ⇡ r = (t!z)/(1!z) and then take

a derivative with respect to z. The resulting expression for the integral is now amenable

for analytical calculation once we make the transformation given in Eq. (A.20) but now

with a = (gk(w) ! z)/(1 ! z). We finally get
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Using this expression in Eq. (A.15), we get
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gk(w)(k + 1)

(gk(w)(gk(w) ! 1))
k+1
2

⌧
.

(A.25)

In terms of �k = k+1
2 it reads

uk(z) = !Ak|k|z
↵k�1(1 ! z)↵k

gk(w) ! z
Ak

#
Z
�k(1 ! 2qk(w)) + z

"
(gk(w) ! z)

+
Bk

Ak

2�kgk(w)

(gk(w)(gk(w) ! 1))↵k

⌧
.

(A.26)

Substituting the above expression in Eq. (A.13) gives

�k(z, w) =
Z
z(1 ! z)

"↵k�1


Co ! Ak|k|(1 ! z)Ak

Z
�k

Z
1 ! 2qk(w)

"
+ z

"

! Ak|k| 1 ! z

gk(w) ! z
Bk

2�kgk(w)

(gk(w)(gk(w) ! 1))↵k

✓
,

(A.27)

which is indeed Eq. (3.48) in the main text.

A.2 System size dependence of ↵ymax

Here, we provide plots of the numerical data for log2 ↵2
ymax

vs log2 N (symbols) in Fig. A.1

(for confined Riesz gas [Eq. (2.1)]) and Fig. A.2 (for the Hessian Hamiltonian [Eq. (4.24)])

for di↵erent values of k. For each k the slope of the linear fit (solid lines) of this data

provides the exponent (�k, �
(hMC)
k

) which we plot in Fig. 4.3.

A.3 Large deviation functions

In this appendix, we present the details of the derivation of the LDF (�±(w, k)) which

characterizes the distribution of the atypical fluctuations. To obtain the LDF �±(w, k),

we use the energy functional Eq. (3.17) in the formal expression of the LDF given in

Eq. (4.43). We study all the three regimes of k separately and compute �±(w, k), for (a)
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Figure A.1: Plots of the logarithm of the variance of the position of the rightmost particle
obtained using the MC simulations of the confined Riesz gas Hamiltonian [Eq. (2.1)]
versus the logarithm (base-2) of system size N (disks) for (a) k = !1.5, (b) k = !1.25,
(c) k = !0.75, (d) k = !0.5, (e) k = !0.25, (f) k ⇡ 0, (g) k = 0.25, (h) k = 0.5, (i)
k = 0.75, (j) k = 1.0, (l) k = 1.25, (n) k = 1.5, (m) k = 1.75, (n) k = 2.25, (o) k = 2.5.
Here we use a linear fit (solid lines) of the data to extract the slope !2�k.

k > 1 given in Eq. (4.47) and (4.48), (b) !1 < k < 1 given in Eq. (4.55) and (4.56) and

(c) !2 < k 1 !1 given in Eq. (4.69) and (4.71).

A.3.1 Regime 1 : k > 1

Left large deviation function: We start by rewriting the expression of the left LDF

��(w, k) given in Eq. (4.43) as

��(w, k) =
1

2(k + 1)

 
lk(w)2 ! (luc)

2 + k

X
w

�lk(w)

dy y2⌘⇤
k
(y, w) ! k

X
luc

�luc

dy y2⌘uc(y)

!
.

(A.28)
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Figure A.2: Plots of the logarithm of the variance of the position of the rightmost particle
obtained using the MC simulations for the Hessian Hamiltonian [Eq. (4.24)] versus the
logarithm (base-2) of system size N (disks) for (a) k = !1.5, (b) k = !1.25, (c) k =
!0.75, (d) k = !0.5, (e) k = !0.25, (f) k ⇡ 0, (g) k = 0.25, (h) k = 0.5, (i) k = 0.75,
(j) k = 1.0, (l) k = 1.25, (n) k = 1.5, (m) k = 1.75, (n) k = 2.25, (o) k = 2.5. Here we

use a linear fit (solid lines) of the data to extract the slope !2�(hMC)
k

.

Substituting the expression of the constrained density from Eq. (4.44), unconstrained

density from Eq. (2.18) in Eq. (A.28), and using a variable transformation

z =
y + lk(w)

2lk(w)
, (A.29)
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the left LDF can be expressed in terms of an auxiliary variable, mk(w) = w+lk(w)
2lk(w) [see

Eq. (4.45)] as

��(w, k) =
1

2(k + 1)


lk(w)2 ! (luc)

2 + kAk(lk(w))2↵k+3

X
mk(w)

0

dz

 
z ! 1

2

!2

(z(1 ! z))↵k

! kAk(luc)
2↵k+3

X 1

0

dz

 
z ! 1

2

!2

(z(1 ! z))↵k

✓
.

(A.30)

Using Eq. (4.46) in Eq. (A.28) we can further simplify the expression in terms of incom-

plete Beta function as given in Eq. (4.47), i.e.,

��(w, k) =
lk(w)2

2(k + 1)


1 +

4k

B(mk(w), �k + 1, �k + 1)

 
B(mk(w), �k + 3, �k + 1)

! B(mk(w), �k + 2, �k + 1) +
B(mk(w), �k + 1, �k + 1)

4

!✓
! (luc)2(k + 2)

2(3k + 2)
.

(A.31)

Right large deviation function: The formal expression for the PDF of the atypical fluc-

tuation to the right of the mean is given in Eq. (4.41) from which the right LDF can be

written as

�+(w, k) =

#
w2 ! luc

2

2
+

JN

Lk+2
N

X
dy⌘⇤

uc(y)

 
1

|w ! y|k ! 1

|luc ! y|k

!⌧
. (A.32)

Note that the right LDF has two parts: (1) an external potential term and (2) an inter-

action term. In the large-N limit, the interaction term becomes negligible, since N ⇡ �

implies N/Lk+2
N

⇡ 0, compared to the external potential term, which is a consequence of

the short-ranged nature of the force. Hence, we obtain Eq. (4.48) which is given by

�+(w, k) =
w2 ! (luc)

2

2
. (A.33)
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A.3.2 Regime 2 : !1 < k < 1

Left large deviation function: The expression for left LDF given in Eq. (4.43) is simplified

using the formal equation for the chemical potential Eq. (3.28) which gives

��(w, k) =

X
w

�lk(w)

dy
y2

4
⌘⇤
k
(y, w) !

X
luc

�luc

dy
y2

4
⌘⇤
k,uc(y) +

2µ⇤
k
(w) ! (luc)2

4
. (A.34)

We substitute the expression for the constrained density profile [⌘⇤
k
(y, w)] from Eq. (3.38)

and the unconstrained density profile [⌘⇤
k,uc(y)] from Eq. (2.18) in the above simplified

expression Eq. (A.34). Using the change of variable

z =
y + lk(w)

Lk(w)
with Lk(w) = w + lk(w), (A.35)

where Lk(w) is the total size of the support, one can express Eq. (A.34) in terms of

auxiliary variables

gk(w) =
l̃k(w) + lk(w)

Lk(w)
and qk(w) =

lk(w)

Lk(w)
=

1

2
+

gk(w) ! 1

k + 1
. (A.36)

In terms of these auxiliary variables, the left LDF takes the form

��(w, k) = Ak (Lk(w))2↵k+3
X 1

0

dz
(z ! qk(w))2

4
(gk(w) ! z)z

k+1
2 (1 ! z)

k�1
2

! Ak (2luc)
2↵k+3

X 1

0

dz

Z
z ! 1

2

"2

4
(z(1 ! z))

k+1
2 +

2µ⇤
k
(w) ! (luc)2

4
.

(A.37)

To proceed further we now need to compute the chemical potential µ⇤
k
(w).

The chemical potential in Eq. (3.28) can be simplified by a variable transformation

given in Eq. (A.35) which gives

µ⇤
k
(w) = Lk(w)2


(z ! qk(w))2

2
+ Aksgn(k)

X 1

0

dr
r

k+1
2 (1 ! r)

k�1
2

|z ! r|k (gk(w) ! r)

✓
. (A.38)

The integral in the square bracket can be split into two integrals as

X 1

0

dr
r

k+1
2 (1 ! r)

k�1
2

|z ! r|k (gk(w) ! r) =

X
z

0

dr
r

k+1
2 (1 ! r)

k�1
2

(z ! r)k
(gk(w) ! r)

+

X 1

z

dr
r

k+1
2 (1 ! r)

k�1
2

(r ! z)k
(gk(w) ! r).

(A.39)
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The first integral in Eq. (A.39) can be further simplified by using the following variable

transformation

s1 =
z ! r

z
, (A.40)

which gives

X
z

0

dr
r

k+1
2 (1 ! r)

k�1
2

(z ! r)k
(gk(w) ! r)

= z2
X 1

0

ds1
s�k

1 (1 ! s1)
k+1
2

Z
s1 + 1�z

z

" 1�k
2

 
s1 +

gk(w) ! z

z

!

=

 
1 ! z

z

! k�1
2


z2B

 
2 ! k,

k + 3

2

!
2F1

◆
1 ! k

2
, 2 ! k,

7 ! k

2
,

z

z ! 1

�

+ z(gk(w) ! z)B

 
1 ! k,

k + 3

2

!
2F1

◆
1 ! k

2
, 1 ! k,

5 ! k

2
,

z

z ! 1

� ✓
.

(A.41)

Similarly, the second integral in Eq. (A.39) can be further simplified by using the following

variable transformation

s2 =
r ! z

1 ! z
, (A.42)

which gives

X 1

z

dr
r

k+1
2 (1 ! r)

k�1
2

(r ! z)k
(g ! r)

= (1 ! z)2
X 1

0

ds2
s�k

2 (1 ! s2)
k�1
2

Z
s2 + z

1�z

"� 1+k
2

 
g ! z

1 ! z
! s2

!

=

 
z

1 ! z

! k+1
2


(1 ! z)(g ! z)B

 
1 ! k,

k + 1

2

!
2F1

◆
!k + 1

2
, 1 ! k,

3 ! k

2
,
z ! 1

z

�

! (1 ! z)2B

 
2 ! k,

k + 1

2

!
2F1

◆
!k + 1

2
, 2 ! k,

5 ! k

2
,
z ! 1

z

� ✓
.

(A.43)

Note that the argument of the hypergeometric function in Eq. (A.41) is z

z�1 whereas in

Eq. (A.43) it is z�1
z

. Hence to simplify this further we use the following hypergeometric
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function identity [243]

B(b + 1, a + 1) 2F1

◆
a + 1, c, a + b + 2, !1

u

�

= ua+1B(!a + c ! 1, a + 1) 2F1

�
a + 1, !b, a ! c + 2, !u

⇣

+ ucB(b + 1, a ! c + 1) 2F1

�
c, !a ! b + c ! 1, c ! a, !u

⇣
.

(A.44)

Substituting the above identity in Eq. (A.41), we can express the Eq. (A.41) as a function

of z�1
z

instead of z

z�1 . Then using the new expression in terms of z�1
z

and Eq. (A.43)

in Eq. (A.38), we can simplify the expression of µ⇤
k
(w) which after a tedious calculation

gives

µ⇤
k
(w) = Lk(w)2

 
1

8k
+

(gk(w) ! 1)2

2(k + 1)2
+

gk(w) ! 1

2k(k + 1)

!
. (A.45)

Since the chemical potential is a constant, we can independently find the value of µ⇤
k
(w)

by substituting z = 0 or z = 1 in Eq. (A.38). This expression is verified by numerically

evaluating the integrals in Eq. (A.38) directly and comparing with Eq. (A.45). This

comparison is shown in Fig. A.3. The remaining integrals in the left LDF given in

Figure A.3: Regime 2 (!1 < k < 1): For k = 0.5, the plot of chemical potential as a
function of the wall position, computed from numerical integration (circles) of Eq. (A.38)
for z = 0. This evaluation is compared with the simplified expression given in Eq. (A.45)
(solid lines). The parameter used for the computations is J = 1.

Eq. (A.37) can be expressed as beta functions. Now using the expression of the chemical
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potential from Eq. (A.45) in Eq. (A.37) we get

��(w, k) =(k + 2)(luc)
2

 
1 +

2(k + 2)

k + 1
(gk(w) ! 1)

!� k+4
k+2 ⌘ 1

2k(k + 4)

+
(gk(w) ! 1)

k(k + 1)
+

2(gk(w) ! 1)2

k(k + 1)2
+

4(gk(w) ! 1)3

(1 + k)3

8
! 1

2k(k + 4)

✓
,

(A.46)

as announced in Eq. (4.55). Here, the length of the constrained support Lk(w) = w/(1!

qk(w)) was expressed in terms of the auxilary variable gk(w) which was obtained using

Eq. (3.39).

Right large deviation function: In this regime both the external potential term and the

interaction term contribute equally to the right LDF in Eq. (A.32) since N ⇡ � implies

N/Lk+2
N

⇡ 1. Hence the right LDF is given by

�+(w, k) =Aksgn(k)

>

<
X

luc

�luc

dy

Z
(luc)

2 ! y2
" k+1

2

(w ! y)k

:

�+
w2

2
! (luc)2

2k
. (A.47)

Using the following variable transformation

z =
luc ! y

2luc
and guc(w)�1 =

w + luc
2luc

, (A.48)

Eq. (A.47) can be expressed as

�+(w, k) = (2luc)
2

#
Aksgn(k)

X 1

0

dz
(z(1 ! z))

k+1
2

(z + guc(w)�1 ! 1)k
+

(2guc(w)�1 ! 1)2

8
! 1

8k

⌧
.

(A.49)

This can be further simplified to

�+(w, k) = (luc)
2 32(guc(w)�1 ! 1)

3�k
2 B(2 + k, 5�k

2 )

(k + 3)(k + 5)(k + 7)
⇥

2F1[!
k + 1

2
,
k + 3

2
,
5 ! k

2
, 1 ! guc(w)�1].

(A.50)

which is Eq. (4.56) of the main text.
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A.3.3 Regime 3 : �2 < k  �1

We start by expressing the normalization condition
R

w

�lk(w) dy⇢⇤
k
(y, w) = 1 in terms of

the auxiliary variable hk(w) given in Eq. (4.67). Using the expression of the constrained

density given in Eq. (4.63) and the variable transformation

z =
l̄k(w) � y

L̃k(w)
with L̃k(w) = l̄k(w) + lk(w), (A.51)

we get

Z
w

�lk(w)

⇢⇤
k
(y, w) =

⇣
L̃k(w)

⌘2�k+1
 

Ak

Z 1

0

dz
z

k+3
2 (1 � z)

k+1
2

z + hk(w) � 1
+

hk(w)
k+1
2 (hk(w) � 1)

k+3
2

k(k + 1)

!

=
⇣
L̃k(w)

⌘2�k+1
 

Ak

⇣
(hk(w) � 1)

k+3
2 hk(w)

k+1
2 B

✓
�k + 3

2
,
k + 5

2

◆

+ B

✓
k + 3

2
,
k + 3

2

◆
2F1[1, �(k + 2), �k + 1

2
, 1 � hk(w)]

⌘

+
hk(w)

k+1
2 (hk(w) � 1)

k+3
2

k(k + 1)

!
,

(A.52)

where L̃k(w) is the size of the support of the extended part of the density profile. This

equation can be further simplified by using the fact that

AkB

✓
�k + 3

2
,
k + 5

2

◆
=

1

|k|(k + 1)
, (A.53)

which then gives

 
L̃k(w)

2luc

!2�k+1

2F1[1, �(k + 2), �k + 1

2
, 1 � hk(w)] = 1. (A.54)

The position of the wall can be expressed as w = L̃k(w)
�
hk(w) � nk(w)

�
where

nk(w) =
lk(w)

L̃k(w)
=

1

2
+

1 � hk(w)

k + 1
. (A.55)

The relation between nk(w) and hk(w) is obtained using Eq. (4.65). This finally gives

Eq. (4.68).
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Left Large deviation function: Since the structure of the field theory is the same, the

formal expression of the left LDF in this regime is similar to the previous regime given

in Eq. (A.34). However, the density profiles here are di↵erent, as in this regime the

constrained density given in Eq. (4.63) has a delta function of strength D⇤
k
(w) and a

disjoint extended part denoted as ⇢⇤
b
(y, w). For convenience we here write the explicit

expression of ⇢⇤
b
(y, w) from Eq. (4.63) as

⇢⇤
b
(y, w) = Ak

(lk(w) + y)
k+1
2
�
l̄k(w) � y

� k+3
2

(w � y)
. (A.56)

We use ⇢⇤
k
(y, w) = ⇢⇤

b
(y, w)I[�lk(w) < y  l̄k(w)] + D⇤

k
(w)�(y � w) in Eq. (A.34) which

gives

��(w, k) =
2µ⇤

k
(w) + Dk(w)w2

4
+

Z
l̄k(w)

�lk(w)

dy
y2

4
⇢⇤
b
(y, w)

� (luc)
2

4
�
Z

luc

�luc

dy
y2

4
⇢⇤
k,uc(y).

(A.57)

We substitute the expressions of ⇢⇤
b
(y, w) from Eq. (A.56), D⇤

k
(w) from Eq. (3.52) and

⇢⇤
k,uc(y) from Eq. (2.18) in the above equation. Using the variable change given in

Eq. (A.51), we can now express the left LDF in terms of auxiliary variables hk(w) and

nk(w) given in Eq. (4.67) and Eq. (A.55), respectively. The left LDF then becomes

��(w, k) = Ak

⇣
L̃k(w)

⌘2�k+3
Z 1

0

dz
(1 � qk(w) � z)2

4

z
k+3
2 (1 � z)

k+1
2

z + hk(w) � 1

� Ak (2luc)
2�k+3

Z 1

0

dz

�
z � 1

2

�2

4
(z(1 � z))

k+1
2 +

2µ⇤
k
(w) + w2D⇤

k
(w) � (luc)2

4
.

(A.58)

To simplify this expression further we evaluate the chemical potential µ⇤
k
(w) first by

substituting the expression of the constrained density Eq. (4.63) in Eq. (4.62) and we get

µ⇤
k
(w) =

y2

2
�
Z

w

�lk(w)

dy0 ⇢⇤
k
(y0, w)

|y0 � y|k

=
y2

2
� Ak

Z
l̄k(w)

�lk(w)

dy0 (lk(w) + y0)
k+1
2
�
l̄k(w) � y0� k+3

2

(w � y0)|y0 � y|k � D⇤
k
(w)

(w � y)k
.

(A.59)

It turns out to be non-trivial to compute it for an arbitrary value of y. However, it can
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be calculated for specific values y = �lk(w) and y = l̄k(w). Here we compute it for

y = l̄k(w), which formally gives

µ�
k
(w) =

l̄k(w)2

2
� Ak

R
l̄k(w)

⇤lk(w)

dy0 (lk(w) + y0)
k+1
2
Z
l̄k(w) � y0⇣ 3�k

2

(w � y0)

� D�
k
(w)

(w � l̄k(w))k
.

(A.60)

To perform the above integral, we use the variable transformation given in Eq. (A.51)

which simplifies the equation to

µ�
k
(w) = L̃k(w)2

⌘
(1 � nk(w))2

2
� Ak

R 1

0

dz
(1 � z)

k+1
2 z

3�k
2

(z + hk(w) � 1)

� hk(w)
k+1
2 (hk(w) � 1)

3�k
2

k(k + 1)

 

= L̃k(w)2
⌘

(1 � nk(w))2

2
� Ak

B
Z
5⇤k

2 , k+3
2

⇣
2F1

!
5⇤k

2 , 1, 4, 1
1⇤hk(w)

✓

hk(w) � 1

� hk(w)
k+1
2 (hk(w) � 1)

3�k
2

k(k + 1)

 
.

(A.61)

Further using the hypergeometric identity in Eq. (A.44) and Eq. (A.55), one gets the

following simplified equation

µ�
k
(w) = L̃k(w)2

◆
1

8k
� hk(w) � 1

2k(k + 1)
� (hk(w) � 1)2(k + 2)

2k(k + 1)2

�
. (A.62)

To verify the validity of this expression we numerically perform the integral in Eq. (A.59)

and compare it with Eq. (A.62) in Fig. A.4. The left LDF given in Eq. (A.58), can be

further simplified by using the expression of the chemical potential from Eq. (A.62) and
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Figure A.4: Regime 3 (�2 < k < �1): For k = �1.5, the plot of chemical potential as a
function of wall position, computed from numerical integration (circle) given in Eq. (4.62)
and the simplified expression (solid lines) given in Eq. (A.62). Here we considered J = 1.

representing the integrals in terms of hypergeometric functions,

Ak

R 1
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2 (1 � z)

k+1
2

z + hk(w) � 1

=
Ak

4

⌘
nk(w)2

R 1

0

dz
z

k+3
2 (1 � z)

k+1
2

z + hk(w) � 1
� 2nk(w)

R 1

0

dz
z

k+3
2 (1 � z)

k+3
2

z + hk(w) � 1

+

R 1

0

dz
z

k+3
2 (1 � z)

k+5
2

z + hk(w) � 1

 

=
Ak

4(hk(w) � 1)

⌘
nk(w)2B

◆
k + 3

2
,
k + 5

2

�
2F1[

k + 5

2
, 1, k + 4,

1

1 � hk(w)
]

� 2nk(w)B

◆
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(A.63)

Using the hypergeometric identity given in Eq. (A.44) in Eq. (A.63) and simplifying, we
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get

Ak
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2
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◆
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(A.64)

This Eq. (A.64) can be expressed further as

Ak

R 1

0

dz
(1 � nk(w) � z)2

4

z
k+3
2 (1 � z)

k+1
2

z + hk(w) � 1

=
1

4
!
L̃k(w)

✓k+2

⌘
nk(w)2 � nk(w)

2F1[1, �(k + 3), �k+1
2 , 1 � hk(w)]

2F1[1, �(k + 2), �k+1
2 , 1 � hk(w)]

+
k + 5

4(k + 4)
2F1[1, �(k + 4), �k+1

2 , 1 � hk(w)]

2F1[1, �(k + 2), �k+1
2 , 1 � hk(w)]

 

� hk(w)
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2 (hk(w) � 1)

k+3
2

4k(k + 1)

◆
2(k + 2)hk(w) � (k + 3)

2(k + 1)

�2

.

(A.65)

where we used Eq. (A.54). We then use this expression along with the simplified expres-

sion of the chemical potential given in Eq. (A.62) and the normalization condition from

Eq. (A.54) to get the final expression for left LDF given in Eq. (4.69).

A.4 Importance sampling method

Using a conventional Markov chain Monte-Carlo simulation using the Metroplis-Hashting

algorithm, we can explore the probabilities of the order n⇤1
mc

, where nmc ⇥ number of data

points. However, to compute the probability of the extremely rare events say of order

10⇤20 is not feasible to use this algorithm. Hence, we use the importance sampling

method [141,142,244] which is described here.
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Figure A.5: (a) We join the P�(ymax)e�ymax for di↵erent values of ⇢ by multiplying them
by the appropriate normalization constant considering there is a small overlap in the
argument of the distribution for two successive values of ⇢. (b) This stitching procedure
gives the distribution of ymax in the unbiased problem for rare fluctuations.

Probability of the position of the edge particle for a given ensemble is

P (y) =
�

{yi}

Q[{yi}]�(y � ymax), (A.66)

where Q[{yi}] is the probability of a configuration {yi} and ymax is the position of the

rightmost particle. To sample atypical values of ymax one needs to bias the sampling

procedure in the simulation. We run a Markov chain Monte-Carlo simulation using a

biased Metropolis-Hastings Algorithm given by the following weight for the jump from

configuration {yi} to {y0
i
}:

A({yi}, {y0
i
}) = min

◆
1,

Q[{y0
i
}]

Q[{yi}]
e(⇤�(y0max⇤ymax))

�
. (A.67)

More precisely A({yi}, {y0
i
}) is the probability of acceptance of the new configuration

({y0
i
}) given a configuration ({yi}). Note that ⇢ > 0 biases the ensemble to have smaller

ymax and ⇢ < 0 does the opposite. The stationary distribution of this Markov chain is

given by Q�[{yi}] = Q[{yi}]e⇤�ymax .

Now using this algorithm one can numerically compute the PDF of ymax in the biased
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simulation which we denote by P�(y). We have

P�(y) =
�

{yi}

Q�[{yi}]�(y � ymax),

=
�

{yi}

Q[{yi}]e⇤�ymax�(y � ymax),

= e⇤�y
�

{yi}

Q[{yi}]�(y � ymax),

(A.68)

which from Eq. (A.66) gives

P (y) =
�

{yi}

Q[{yi}]�(y � ymax) = P�(y)e�y. (A.69)

Using this relation Eq. (A.69), we can compute the PDF [P (ymax = y)] of extremely large

fluctuations of ymax which can be obtained by considering larger absolute values of ⇢.

However for any ⇢ the width of the distribution obtained numerically is finite. Hence to

compute the PDF which also includes the rare fluctuations one has to simulate P�(y) for

many values of ⇢ and these di↵erent biased PDFs are glued together by multiplying by

the appropriate normalization prefactor to P�(y) such that ⇢ ⌘= 0 connects smoothly with

⇢ = 0. A schematic cartoon of this procedure is shown in Fig. A.5.

A.5 Non-analytic properties of LDF �(c, w)

In this appendix, we investigate the non-analytic properties of the LDFs �(c, w) as given

in Eqs. (5.36) and (5.37). We study the series expansions of the LDF �(c, w) around

c = c̄(w) for a fixed value of w, where c̄(w) = (w/l0)
1
↵k and around w = w̄(c) for a fixed

value of c, where w̄(c) = c✓k l0. For this analysis, we take advantage of the separable

nature of the LDF i.e. �(c, w) = Ein + Eout � Guc for the number distribution problem

[see Eq. (5.30)]. The energy Ein and Eout for the particles inside and outside the box
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[�w, w] is given by

Ein =

"
#X

#8

Guc  c2✓k+1 for c 6 c̄(w)

Guc  c2✓k+1
J

!w

l̄

✓
for c > c̄(w)

and, (A.70)

Eout = Guc  (1 � c)2✓k+1
H

!w

l

✓
, (A.71)

where the constant Guc is given in Eq. (5.28) and, the functions J(h) and H(h) are given

in Eq. (5.32) and Eq. (5.31), respectively. Here the length scales l and l̄ are given in

Eqs. (5.22) and (5.25).

A.5.1 �(c, w) for c ⇠ c̄(w) for a fixed w

We first present the series expansion of the Ein and Eout separately as follows:

Energy within the box (Ein): When the fraction of particles c within the box [�w, w] is

slightly greater than the c̄(w), i.e., c = (1 + ✓)c̄(w) with 0 < ✓ ⌧ 1, we can find the free

energy of particles inside the box by expanding the expression in Eq. (A.70) in terms of

✓. This expansion yields the following series:

Ein = Guc

Z
c̄(w)

⇣1+2✓k
>
1 + Ain ✓ + Bin ✓2 + Cin+ (✓)2+

1
k + o(✓2+

1
k )
<
, where, (A.72)

Ain = 1 + 2✏k, Bin =
(1 + 2✏k)2✏k

2
, Cin+ =

k2(1 + 2✏k) (2✏k)
2+ 1

k

(k + 1)(2k + 1) B
Z
1
2 ,

1
k

+ 1
⇣ .

(A.73)

To obtain Eq. (A.72) we use the expressions of l̄ and l which are functions of c and w

and are given in Eqs. (5.22) and (5.25). The notation small ‘o’ specifically o(✓a) indicates

corrections smaller than ✓a as ✓ ! 0.

Conversely, when the fraction of particles within the box is smaller than c̄(w) and

satisfies c = (1 + ✓)c̄(w), with ✓ < 0 and |✓| ⌧ 1, we find that the energy of the particles

inside the box is given by:

Ein = Guc

Z
c̄(w)

⇣1+2✓k
>
1 + Ain ✓ + Bin ✓2 + Cin⇤ ✓3 + O(✓4)

<
, (A.74)
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where the constants Ain and Bin are given in Eq. (A.73), and

Cin⇤ =
(1 � 4✏2

k
)2✏k

6
. (A.75)

Energy outside the box (Eout): Similarly, we examine the energy of particles outside the

box given in Eq. (A.71). We find the following expansion in powers of ✓

Eout = Guc

Z
1 � c̄(w)

⇣1+2✓k
>
H

(0)(h̃) + Aout ✓ + Bout ✓2 + Cout ✓3 + O(✓4)
<
, (A.76)

Aout = h̃ ↵out H
(1)(h̃) � c̄(w)(1 + 2✏k)

1 � c̄(w)
, (A.77)

Bout =

Z
c̄(w)

⇣2
2✏k(1 + 2✏k)

2
Z
1 � c̄(w)

⇣2 +
h̃2↵2

out

2
H

(2)(h̃) � c̄(w) h ↵out H
(1)(h̃)(1 + 2✏k)

1 � c̄(w)
, (A.78)

Cout = �
Z
c̄(w)

⇣3
2✏k(4✏2

k
� 1)

6
Z
1 � c̄(w)

⇣3 +

Z
c̄(w)

⇣2
h̃ ↵out H

(1)(h̃)2✏k(1 + 2✏k)

2 (1 � c̄(w))2
+

h3 ↵3
out

6
H

(3)(h̃)

� c̄(w) h̃2 ↵2
out H

(2)(h̃)(1 + 2✏k)

2
Z
1 � c̄(w)

⇣ , (A.79)

where h̃ = w/l(c̄(w), w) and H
(n)(h̃) is the nth derivative of H(h̃) given in Eq. (5.31).

The constant ↵out is given by

↵out =
c̄(w)✏k

1 � c̄(w)

⌘
1 � I

!
h̃2, 1

2 , 1 + 1
k

✓

1 � I
!
h̃2, 1

2 , 1 + 1
k

✓
+ 2✏k

h̃(1⇤h̃2)
1
k

B( 1
2 ,

1
k+1)

 
, (A.80)

where the function I(g, a, b) is given in Eq. (5.24).

We can now calculate the LDF �(c̄(w)(1+ ✓), w) for small |✓| ⌧ 1 by substituting the

expressions of the energies from Eqs. (A.72), (A.74) and (A.76) in the expression of the

LDF �(c, w) given in Eq. (5.27). This yields:

�(c̄(w)(1 + ✓), w) � �(c̄(w), w) =

"
#X

#8

Ã ✓ + B̃ ✓2 + C̃+ ✓2+
1
k + o(✓2+

1
k ), for ✓ > 0

Ã ✓ + B̃ ✓2 + C̃⇤ ✓3 + O(✓4), for ✓ < 0
,

(A.81)
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where the constants are given by

Ã = Guc

!Z
c̄(w)

⇣1+2✓kAin +
Z
1 � c̄(w)

⇣1+2✓kAout

✓
, (A.82)

B̃ = Guc

!Z
c̄(w)

⇣1+2✓kBin +
Z
1 � c̄(w)

⇣1+2✓kBout

✓
, (A.83)

C̃+ = Guc

Z
c̄(w)

⇣1+2✓kCin+, C̃⇤ = Guc

!Z
c̄(w)

⇣1+2✓kCin⇤ +
Z
1 � c̄(w)

⇣1+2✓kCout

✓
.

(A.84)

The values of Ain, Bin, Cin, Aout, Bout and Cout are provided in Eqs. (A.73), (A.77),

(A.78) and (A.79). From Eq. (A.81), we find that the third derivative of the LDF �(c, w)

w.r.t. c shows a discontinuity at c = c̄(w), which is a signature of a third order phase

transition.

A.5.2 �(c, w) for w ⇠ w̄(c) for a fixed c

By following the same procedure as in the previous subsection A.5.1, we can expand the

LDFs �(c, (1 + ✓)w̄(c)) in powers of ✓, for small |✓| ⌧ 1 at a fixed c. We find:

�(c, w̄(c)(1 + ✓)) � �(c, w̄(c)) =

"
#X

#8

D̃ ✓ + Ẽ ✓2 + F̃+ ✓3 + O(✓4), for ✓ > 0

D̃ ✓ + Ẽ ✓2 + F̃⇤ |✓|2+ 1
k + o(|✓|2+ 1

k ), for ✓ < 0
,

(A.85)

where the constants are given by

D̃ = Guc

Z
1 � c̄(w)

⇣1+2✓k h̃ �outH
(1)(h̃), Ẽ = Guc

Z
1 � c̄(w)

⇣1+2✓k �
2
outh̃

2

2
H

(2)(h̃),

(A.86)

F̃+ = Guc

Z
1 � c̄(w)

⇣1+2✓k �
3
outh̃

3

6
H

(3)(h̃), F̃⇤ = Guc

Z
c̄(w)

⇣1+2✓kk2(1 + 2✏k) (2)2+
1
k

(k + 1)(2k + 1) B
Z
1
2 ,

1
k

+ 1
⇣ ,

(A.87)
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where in this case h̃ = w̄(c)/l(c, w̄(c)) and the function H
(n)(h) is the nth derivative of

H(h) given in Eq. (5.31). The constant �out is given by

�out =

⌘
1 � I

!
h̃2, 1

2 , 1 + 1
k

✓

1 � I
!
h̃2, 1

2 , 1 + 1
k

✓
+ 2✏k

h̃(1⇤h̃2)
1
k

B( 1
2 ,

1
k+1)

 
. (A.88)

Here the function I(g, a, b) is given in Eq. (5.24). From Eq. (A.85), we find that the third

derivative of the LDF �(c, w) w.r.t. w shows a discontinuity at w = w̄(c) which is a

signature of a third order phase transition.

A.6 Pressure and Bulk modulus

For the short-range Riesz gas, we find that the index problem provides a natural setup

to compute the pressure in the bulk of the gas. Consider the unconstrained Riesz gas

in thermal equilibrium characterized by the density profile �0(y) from Eq. (2.18). The

thermodynamic pressure of this gas at a location W can be thought of as the free energy

change of the particles to the left of W when they are pushed by moving a wall from W

by an infinitesimal amount ✓N . Using the separable (additive) nature of free energy in

Eq. (5.45), one can easily identify the free energy of the left partition which is given by

 (L)(c�(w), w) = N1+2✓k
Guc

2

◆Z
2c�(w)

⇣ 3k+2
k+2 J

!w

l̄

✓�
, (A.89)

where w = W/N✓k , l̄ is given in the Eq. (5.48) and c�(w) =
:

w

⇤l0
dy �0(y), represents the

fraction of particles below W when the gas is at equilibrium (without any constraint).

Also, the function J(h) in Eq. (A.89) is given in Eq. (5.46). When the particles on the

left are pushed by moving a wall from W to W � ✓N the free energy on the left changes to

 (L)(c�(w), w � ✓) where ✓ = ✓N/N✓k . Note the fraction of particle on the left of W � ✓N

remains the same. The pressure is then obtained by taking a derivative of the free energy

of the left partition and can be written as

P(W, N) = N1+✓k
d

d✓
 (L)(c�(w), w � ✓)

hhh
↵=0

= N
2(k+1)
k+2 P

◆
W

N✓k

�
, (A.90)
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where the scaling function P(w) is given by

P(w) = J⇣(k)k (�0(w))k+1 . (A.91)

One can also define a mechanical pressure PM(W, N) locally at W as the average force

exerted by the particles above W on the particles below W and can be expressed as

PM(W, N) =

i
s�

i=1

N�

j=s+1

1

|xj � xi|k+1

�
, (A.92)

where xs 6 W < xs+1 and xi’s are the unscaled positions of the particles. We remark

that the definition of the local mechanical pressure does not involve the external poten-

tial explicitly, but only implicitly through the average over the equilibrium measure in

Eq. (A.92).

We observe that in our model the mechanical pressure PM(W, N) [see Eq. (A.92)] and

the thermodynamic pressure P(W, N) [see Eq. (A.90)] yield the same result as shown in

Fig. A.6a. Since the gas is confined to a harmonic trap the pressure is not uniform as

expected. It is maximum at the center of the trap and decreases as we go further from

the center of the trap and becomes zero at the edge of the support of the scaled density

profile at y = l0 because the value of the density decreases to zero.

Bulk modulus: As usually done in statistical mechanics, to define the bulk modulus we

here consider the change of the mean position hxmi of a particle inside the bulk (say

the mth) due to an external force F applied only on that particle. The bulk modulus is

defined as

1

Km

= � 1

�

@hxmi
@F

hhh
F=0

=
1

�2
@2
F

ln Z(�, F )|F=0, (A.93)

where Z(�, F ) is the partition function of the system in the presence of an external force

F on the mth particle i.e. with the energy function ẼF ({xi}) = Ẽk({xi}) + Fxm that

appears in the Gibbs-Boltzmann distribution. A straightforward calculation shows the

following fluctuation-response relation

1

Km

= hx2
m

i � hxmi2 = N2✓k(hy2
m

i � hymi2), (A.94)
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where we have used the scaled position ym = xm/N✓k .

To obtain the bulk modulus at position W , denoted by K(W, N), we need to compute

the variance of the position ym of the mth particle such that m = c�(w)N with w = W/N✓k

and c�(w) =
:

w

⇤l0
dy �0(y). In other words

K(W, N) = Km=c⇤(w)N with w =
W

N✓k
. (A.95)

To proceed, we first note that

Prob.[ym 6 w] = P (I = m, N) , (A.96)

where from Section 5.4 we have

P (I = m, N) ⇣ exp
!
��N1+2✓k 

!m

N
, w
✓✓

. (A.97)

From this probability distribution, it is straightforward to see that

hy2
m

i � hymi2 =

*
�N1+2✓k

d2

d✓2
 (c�(w), w � ✓)

hhh
↵=0

+⇤1

. (A.98)

Inserting Eq. (A.98) in Eq. (A.94), we get

K(W, N) = NK

◆
W

N✓k

�
, where, (A.99)

K(w) =
k

(k + 2)

2

664
l20 (�0(w))2◆

c�(w) � k

k+2w�0(w)

�◆
1 �

!
c�(w) � k

k+2w�0(w)
✓�

3

775 . (A.100)

In Fig. A.6b, K(w) given in Eq. (A.100) is plotted and compared with Km , obtained from

MC simulations. We observe a good agreement as stated in Eq. (A.95) which improves as

N is increased. In this figure, we observe that the bulk modulus monotonically decreases

starting from a finite value at the center of the trap and approaches zero at the edge of

support of the scaled density profile �0(y) at l0. Near the edge of the scaled density profile,

l0, the bulk modulus K(w ! l0) ⇠ (l0 � w)
1
k and its derivative exhibits a discontinuity.
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This reflects a third-order phase transition, interpreting the bulk modulus as an order

parameter.
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Figure A.6: In (a) we plot the scaling function of the thermodynamic pressure
[Eq. (A.91)], P(w), as depicted by the dashed line and the scaled average mechanical

pressure [Eq. (A.92)], PM(wN✓k , N)/N
2(k+1)
k+2 , as indicated by symbols. The average in

Eq. (A.92) is computed using the MC simulations. In plot (b), the scaling function of
the bulk modulus [Eq. (A.100)], K(w), as depicted by the dashed line is compared with
Km/N [Eq. (A.94)] where m = c�(w)N and is shown by symbols. In Eq. (A.94), the
variance of the position of the mth particle is computed using the MC simulations. We
use k = 1.5, T = 1, and J = 1 for performing the MC simulations of the unconstrained
gas consisting of N = 128, 256 and 512 particles and the averages are computed using
106 samples.

A.7 Variance of linear statistics

In this section, we study the variance of linear statistics SN =
P

N

i=1 r(yi) [Eq. (5.50)] for

arbitrary function r(y). Note that r(y) = ⇥(w � y)⇥(w + y) and r(y) = ⇥(w � y) cor-

respond the number problem and index problem, respectively. To compute the variance

we adapt the method of the field theory described in Ref. [220]. We are computing the

typical fluctuations of SN around its mean hSNi = hsiN where hsi is given in Eq. (5.52).

We express SN as SN = N(hsi+) where N is the fluctuation. To compute the variance,

we consider the small deviations, ��r ⌧ 1, of the density profile from the unconstrained

density profile as

�r(y) = �0(y) +��r(y). (A.101)
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Note that the deviation in density profile satisfies the constraints in Eq. (5.56), which

becomes

R
l0

⇤l0

dy ��r(y) = 0,

R
l0

⇤l0

dy r(y)��r(y) = , (A.102)

where the limits of the integrals have been approximated to leading order. Using the

Eq. (A.101) in the saddle point equation Eq. (5.53) and assuming the contribution due

to the higher order terms O((���
r
)3) are negligible, gives

���
r
(y) =

�µ�
k
+ r(y)�µ�

r

J⇣(k)(k + 1)(k)
(�0(y))1⇤k , (A.103)

where ‘⇤’ represents the saddle point value. Here �µ�
k

= µ�
k
�µ0 and �µ�

r
= µ�

r
. Inserting

the expression of the perturbed density from Eq. (A.103) in the constraints in Eq. (A.102)

we get

�µ�
k
I0 +�µ�

r
I1 = 0, �µ�

k
I1 +�µ�

r
I2 = , (A.104)

with the constants I0, I1, I2 given explicitly in Eq. (5.60) and (5.61) which we recall to be

I0 = 2
Ak

k

R
l0

⇤l0

dy
Z
l20 � y2

⇣ 1
k⇤1

, I1 = 2
Ak

k

R
l0

⇤l0

dy r(y)
Z
l20 � y2

⇣ 1
k⇤1

, (A.105)

I2 = 2
Ak

k

R
l0

⇤l0

dy r(y)2
Z
l20 � y2

⇣ 1
k⇤1

. (A.106)

Solving for �µ�
k

and �µ�
r

in Eq. (A.104) one finds

µ�
k

= µ0 � I1
I2I0 � I21

, µ�
r

=
I0

I2I0 � I21

. (A.107)

Inserting the expression for the perturbed density ��
r
(y) = �0(y) + ��r(y) with ��r(y)

from Eq. (A.103) and the perturbed chemical potentials from Eq. (A.107), in the expres-

sion of the LDF given in Eq. (5.58), we find that ⇤(s = hsi + ) (upto quadratic order in

) is given by

⇤(s = hsi + ) =
2

2�2
r

where �2
r

=
I2I0 � I

2
1

I0
. (A.108)
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Here the constants I0, I1 and I2 are given in Eqs. (A.105) and (A.106). By substituting

this LDF [Eq. (A.108)] in large deviation form given in Eq. (5.57), we find that the typical

fluctuations of SN are Gaussian distributed [see Eq. (5.62)] with the variance given by

[Eq. (5.63)]

Varr =
N1⇤2✓k�2

r

�
. (A.109)

Here �2
r

is given in Eq. (A.108) and it depends on the function r(y). By choosing the

function r(y) = ⇥(y+w)⇥(w�y) in Eq. (A.109), we recover the variance for the number

problem as given in Eq. (5.8). Similarly, for the index case, when we choose the function

r(y) = ⇥(w � y), the variance is given by

Var(I) =
N ✏k

� l20 ✏k

U

◆
W

N✓k l0

�
, (A.110)

where l0 is given in Eq. (2.20) and the exponent ⌫k = 1 � 2✏k = (2 � k)/(2 + k). Here

the function U(h) is given by

U(h) =

Z
1 � I

Z
h2, 1

2 ,
1
k

⇣⇣ Z
1 + I

Z
h2, 1

2 ,
1
k

⇣⇣

4
, (A.111)

where the function I(h, a, b) is defined in Eq. (5.24).

A.8 Derivation of the free energy

To obtain the free energy F[�, �] in Eq. (6.18), one first needs to compute fint(�(x), �)

defined in Eq. (6.17), where we recall that fint(�(x), �) is the contribution to the free

energy of the subsystem (recall Fig. 6.1) due to interactions (i.e., excluding the external

confining potential). In the following, we present the calculation of fint(�(x), �) for the

hard rods (HR) model in Appendix A.8.1 and the hyperbolic Calogero (HC) model in

Appendix A.8.2 separately.
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A.8.1 Free energy for hard rods

The free energy per particle for hard rods of length a, fint(�(x), �), can be calculated

using the partition function [term in the parenthesis (square bracket) of Eq. (6.15)]

Zint(ns, xs,�, �)

=

R
xs+�/2⇤(ns⇤ 1

2 )a

xs⇤�/2+a
2

dy1...

R
xs+�/2⇤(ns⇤i+ 1

2 )a

yi�1+a

dyi...

R
xs+�/2⇤a

2

yns�1+a

dyns

=

R �⇤(ns⇤ 1
2 )a

a
2

dy1...

R �⇤(ns⇤i+ 1
2 )a

yi�1+a

dyi...

R �⇤a
2

yns�1+a

dyns , (A.112)

where yi is the position of the ith rod of the subsystem which is centered at xs and has

a size �. In each subsystem, there are ns hard rods. Note that, since the integrand in

the second line of Eq. (A.112) is constant and translationally invariant, we have shifted

the limits of the integrals from yi ! yi � (xs ��/2). This shift results in the integrals

given in the third line of Eq. (A.112). These integrals can be computed using the variable

transformation zi = yi � (i � 1
2)a, which gives

Zint(ns, xs,�, �) = exp

⌘
ns log

◆
1 � �(xs)a

�(xs)

�
� ns

 
, (A.113)

where we introduce the density in the given subsystem

�(xs) =
ns

�
. (A.114)

The free energy per particle in a given subsystem in the large ns limit is given by [33]

fint (xs, �) = � 1

ns�
log

>
Zint(ns, xs,�, �)

<

= � 1

�
log


1 � a�(xs)

�(xs)

�
+

1

�
. (A.115)

One can see that, from the partition function in Eq. (A.112), the logarithmic term in

Eq. (A.115) is the configurational entropy which includes the e↵ect of hard rod exclusion.

Note that the free energy due to interaction is a function of the density field and we
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rewrite the arguments of

fint(xs, �) ⇥ fint(�(xs), �). (A.116)

The total (i.e. including the contribution due to the external potential) free energy of

the entire system FR[�(xs), �] is obtained by summing over the total free energy

nsf(xs, �) = nsfint(�(xs), �) + nsU⌫(xs), (A.117)

associated with each subsystem. We therefore get

FR[�(xs), �] =
Nb�

s=1

nsf(xs, �),

=
Nb�

s=1

�(xs) �
>
fint(�(xs), �) + U⌫(xs)

<
. (A.118)

Converting the summation to integration i.e.,
P

Nb
s=1� !

:1
⇤1 dx we obtain

FR[�(x), �] =

R 1

⇤1
dx �(x)

>
fint(�(x), �) + U⌫(x)

<
(A.119)

Using Eq. (A.115) in Eq. (A.119), we obtain

FR [�(x), �] =

R 1

⇤1
dx �(x)

⌘
U⌫(x) � 1

�
log

◆
1 � a�(x)

�(x)

� 
, (A.120)

which is the free energy of the hard rods in an external trap U⌫(x) given in Eq. (6.21)

of the main text. In Eq. (A.120) we have ignored the density-independent term from

Eq. (A.115).

A.8.2 Free energy for hyperbolic Calogero model

The field theoretic description of the hyperbolic Calogero model in external traps is well

understood [219]. In this section, we present an alternative derivation of the total free

energy FC [�(x), �] of the system. Using the approximate scheme described in Refs. [45,

224] we compute the free energy per particle fint(�(x), �) of the subsystem due to the

interaction which is described below.
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The free energy per particle for the HC model, fint(�(x), �), can be calculated using

the partition function which we recall to be

Z�(ns, xs,�) ⇡ exp
Z

� �nsU⌫(xs)
⇣


⌘R
xs+

�
2

xs⇤�
2

dxns

nsY

i,j=1
j 6=i

exp
!

� �

2
[V (xi � xj)]

✓ 
. (A.121)

For the HC model Eq. (A.121) becomes

Z�(ns, xs,�) ⇡ exp
Z

� �nsU⌫(xs)
⇣
Zint(ns, xs,�, �),

where

Zint(ns, xs,�, �) =

R �

0

dxns

exp

2

664��J

2

ns�

i=1

ns�

j=1
j 6=i

1

sinh2 (|xi � xj|)

3

775 , (A.122)

where xi is the position of the ith particle and J is the interaction strength. As mentioned

in the main text [Sec. 6.3], the xi is a running integration variable not to be confused

with the position of the center of the subsystem xs. One can approximate the exponential

term in the integrand of Eq. (A.122) as

exp

0

BB@��J

2

ns�

i=1

ns�

j=1
j 6=i

1

sinh2 (|xi � xj|)

1

CCA

⇡ exp

0

BB@��J

2

n2
s

�2

ns�

i=1

ns�

j=1
j 6=i

1

(|i � j|)2

1

CCA ,

⇡ exp

◆
��J

n3
s

�3
⇣(2)�

�
, (A.123)

where in the second line of Eq. (A.123) we approximated xi ⇡ i�/ns for all i since � is

assumed to be small enough to ensure uniform density over the subsystem. We have also

used ⇣(2) =
P1

i=1 1/i2, where ⇣(k) =
P1

i=1 1/ik represents the Riemann zeta function.
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Using Eq. (A.123) the partition function in Eq. (A.122) takes the form

Zint(ns, xs,�, �) ⇡ exp

◆
��J

n3
s

�3
⇣(2)�

�R �

0

dxns ,

= exp

◆
��J

n3
s

�3
⇣(2)�

�
�ns

ns!
, (A.124)

which can be rewritten using Stirling’s approximation log[n!] ⇡ n log[n] � n as

Zint(ns, xs,�, �)

⇣ exp

*
� ns

>
log

⇥
�(xs)

⇤
+ ⇣(2)�J�(xs)

2
<+

, (A.125)

where we recall that �(xs) = ns/�. Hence, using the first line in Eq. (A.115), the free

energy per particle of the subsystem becomes

fint (�(xs), �) = J⇣(2)�(xs)
2 +

1

�
log [�(xs)] . (A.126)

Similar to the procedure detailed in Appendix A.8.1, using the above expression Eq. (A.126)

we can compute the total free energy of the system as

FC [�(x), �] =

R 1

⇤1
dx �(x)

*
U⌫(x) + J⇣(2)�(x)2

+
1

�
log �(x)

+
, (A.127)

which is the expression for the free energy [see Eq. (6.38) of the main text] of the HC

model in an external trap U⌫(x).

A.9 Analytical forms of density profiles for hard rods

and hyperbolic Calogero model at low and high

rescaled temperatures c

To obtain the exact analytical expression for the equilibrium density profiles by solving

the transcendental equations, Eq. (6.30) for the HR model and Eq. (6.45) for the HC
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model, is a highly non-trivial. However, we can obtain approximate expressions for the

densities at low (c ⌧ 1) and high (c � 1) rescaled temperatures c. For c ⌧ 1, this is

done by approximating the equilibrium density profile to be a small deviation around

the zero temperature density profile. On the other hand, for c � 1, the particles are

expected to spread far apart, thereby diluting the gas. Thus in this regime (c � 1), it

is reasonable to assume the density to be very small. In this section, using the above-

mentioned assumptions for the saddle point equations i.e., Eq. (6.30) for the HR model

and Eq. (6.45) for the HC model, we discuss the analytical forms of the density profiles.

A.9.1 Analytical forms of the density profiles for hard rods

In this subsection, we discuss the case of hard rods, recall that the saddle point equation

for the hard rods is

µR(c) =
y⌫

�
� c

⌘
log

◆
1 � a �R(y, c)

�R(y, c)

�
� 1

1 � a �R(y, c)

 
. (A.128)

We now analyze Eq. (A.128) for both small and large rescaled temperatures c. In the

following, we use the value of chemical potential µR(c) which is obtained by numerical

solving Eq. (A.128) with the constraint that the density is normalized to unity.

Small rescaled temperature c ⌧ 1

At zero temperature i.e., c = 0, all the hard rods arrange themselves leaving no gaps.

In other words, the center-to-center distance between the rods is a, thereby making the

density �N(x, 0) = N/a where we recall that N is the number of hard rods. In the rescaled

density variables this corresponds to a scaled density profile

�R(y, 0) =

"
#X

#8

1
a

for y 6
hha
2

hh

0 for y >
hha
2

hh .
(A.129)

We now study the e↵ects of turning on a small temperature. More precisely we address

how the zero temperature profile given in Eq. (A.129) gets smeared. Note that at

y = yc = (µc�)
1
� . (A.130)

189



the square bracket in Eq. (A.128) changes sign. This in turn determines the following

three distinct regions

(i) Bulk region (|y| < yc): The density profile deviates from the value 1/a.

(ii) Edge region (a zone where |y � yc| . O(c)): The density profile deviates from a

value �R(yc, c) = ��
R

which is the density at y = yc. At this value of ��
R

the square

bracket in Eq. (A.128) becomes zero.

(iii) Tail region (|y| > yc): The density profile for finite temperature in this region

deviates from its zero temperature value �R(y, 0) = 0.

We now compute the density profile at low temperatures of these three regions separately.

(i) Bulk region |y| < yc: In this region, we assume that the density takes the form

�R(y, c) =
1

a
+ �1(y, c), (A.131)

where �1(y, c) denotes the deviation about the zero temperature density. For the sake of

brevity, we henceforth omit the arguments of �1(y, c). Using Eq. (A.131) in Eq. (A.128)

we get

µc � y⌫

�
= �c

⌘
log

◆
�a2�1

1 + a �1

�
+

1

a �1

 
. (A.132)

It turns out that a convenient perturbation parameter is the following

⌫(y) =
c�

(y⌫
c
� y⌫)

, (A.133)

where we have used Eq. (A.130). Using Eq. (A.133) in Eq. (A.132) we obtain

� 1

⌫(y)
= log

◆
�a2�1

1 + a �1

�
+

1

a �1
. (A.134)

To solve Eq. (A.134) we first perform a Taylor expansion

� 1

⌫(y)
= log

Z
�a2�1

⇣
� a �1 � a2

2
�2
1 +

1

a �1
, (A.135)
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which can be again rearranged to give

a �1 = �⌫(y)
1

1 + ⌫(y)
Z
log [�a2�1] � a �1 � a2

2 �2
1

⇣ . (A.136)

We perform a Taylor series expansion [up to second order in ⌫(y)] of the fraction on the

right-hand side of Eq. (A.136), since ⌫(y) ⌧ 1. This gives

�1 ⇡ �⌫(y)

a

⌘
1 � ⌫(y)

◆
log

⇥
�a2�1

⇤
� a �1 � a2

2
�2
1

�

+ ⌫(y)2
◆

log
⇥
�a2�1

⇤
� a �1 � a2

2
�2
1

�2
 
. (A.137)

Since the correction to the zero temperature density �1 ⌧ 1 and ⌫(y) ⌧ 1, we can invert

Eq. (A.137) to express �1 as a function of ⌫(y) order by order. This gives

�(0)
1 = �⌫(y)

a
, (A.138)

�(1)
1 = �⌫(y)

a
+

⌫(y)2

a
log

>
a⌫(y)

<
, (A.139)

�(2)
1 = �⌫(y)

a
+

⌫(y)2

a
log

>
a⌫(y)

<
� ⌫(y)3

a
log

>
a⌫(y)

<2
, (A.140)

where recall that ⌫(y) is defined in Eq. (A.133). The superscript associated with �1

in Eqs. (A.138)-(A.140) represents their respective orders. In Figs. 6.3a and 6.3d using

Eqs. (A.138)-(A.140), we find a good agreement between the analytically obtained series

solutions and the numerical solution of Eq. (A.128).

(ii) Edge region |y�yc| . O(c): Recall that this region is a zone defined by |y�yc| .
O(c). Here ⌫(y) & O(1), and therefore, the above expressions Eqs. (A.138)- (A.140) fail.

Hence, in this zone [|yc � y| . O(c)], we assume that the density takes the form

�R(y, c) = ��
R

+ �(y), (A.141)

where ��
R

is the value of the density at y = yc and the correction �(y) ⌧ 1. The value of

��
R

can be obtained by numerically solving Eq. (A.128) at y = yc which gives

log

◆
1 � a��

R

��
R

�
� 1

1 � a��
R

= 0. (A.142)
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In this region, we define the perturbation parameter

b(y) = 1 � exp


�y⌫

c
� y⌫

c�

�
⌧ 1. (A.143)

Using Eq. (A.143) in Eq. (A.128) we get

log [1 � b(y)] = log

⌘
1 � a��

R
� a�(y)

��
R

+ �(y)

 
� 1

1 � a��
R

� a�(y)
, (A.144)

which upon Taylor series expansion, up to third order in �(y), yields

b(y) ⇡ �(y)

◆
1

��
R

(1 � a��
R
)2

�
� �(y)2

◆
�1 + 3a��

R

2��2
R

(1 � a��
R
)3

�

� �(y)3
◆

�1 + 4a��
R

� 6(a��
R
)2

3��3
R

(1 � a��
R
)4

�
. (A.145)

We can represent the correction to density �(y) as a function of b(y) by inverting Eq. (A.145)

order by order which gives

�(0)(y) = b(y)��
R
(1 � a��

R
)2, (A.146)

�(1)(y) = b(y)��
R
(1 � a��

R
)2 +

b(y)2

2
��
R
(1 � a��

R
)3
Z

� 1 + 3a��
R

⇣
, (A.147)

�(2)(y) = b(y)��
R
(1 � a��

R
)2 +

b(y)2

2
��
R
(1 � a��

R
)3
Z

� 1 + 3a��
R

⇣

+
b(y)3

6
��
R
(1 � a��

R
)4
!
1 � 10a��

R
+ 15(a��

R
)2
✓
. (A.148)

In Figs. 6.3b and 6.3e, using Eqs. (A.146)-(A.148), we compare the analytically obtained

series solutions with the numerical solution of Eq. (A.128) and see reasonable agreement.

(iii) Tail region |y| > yc: In this region we assume that the density is very small and

takes the form �R(y, c) = �1 with �1 ⌧ 1. Using this assumption in Eq. (A.128) we get

µc =
y⌫

�
� c

⌘
log

◆
1 � a �1

�1

�
� 1

1 � a �1

 
. (A.149)

We introduce the perturbation parameter

✓(y) = exp

◆
y⌫

c
� y⌫

c�

�
. (A.150)
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Since in this region |y| > yc and c ⌧ 1, it implies ✓(y) ⌧ 1. Using Eq. (A.150) in

Eq. (A.128) we get

log
⇥
✓(y)

⇤
= � log

◆
1 � a �1

�1

�
+

1

1 � a �1
. (A.151)

After some algebra and assuming �1 ⌧ 1 in Eq. (A.151), we obtain the transcendental

equation

�1 ⇡ ✓(y)

e
exp

*
� 2a�1 � (a�1)2

2

+
, (A.152)

where e ⇡ 2.71828 is the Euler’s number. We can now represent the density in terms of

✓(y)/e as a series given by

�(0)
1 =

✓(y)

e
, (A.153)

�(1)
1 =

✓(y)

e
� 2a

◆
✓(y)

e

�2

, (A.154)

�(2)
1 =

✓(y)

e
� 2a

◆
✓(y)

e

�2

+
11

2
a2

◆
✓(y)

e

�3

. (A.155)

In Figs. 6.3c and 6.3f, using Eqs. (A.153)-(A.155), we show a good agreement between the

analytically obtained series solutions with the numerical solution of Eq. (A.128). Recall

that the chemical potential µR(c) in the perturbation parameter ✓(y) given in Eq. (A.150)

is obtained from the numerical solution of Eq. (A.128) along with the constraint of unit

normalized density.

Large rescaled temperatures: c � 1

When the temperature is high the particles explore a larger region in space thereby

diluting the system as a consequence of which we get �R(y, c) ⌧ 1. We introduce a

convenient perturbation parameter

⌘(y) = exp

◆
µc� � y⌫

c�

�
, (A.156)

where ⌘(y) ⌧ 1, since the chemical potential [see Fig. 6.4 in the main text], obtained by

numerically solving Eq. (A.128), is negative and diverges for c � 1.
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We use the approximation �R(y, c) ⌧ 1 in Eq. (A.128), and use a procedure math-

ematically similar to the low-temperature tail region (Appendix. A.9.1), to obtain the

expressions

�(0)
R

(y, c) =
⌘(y)

e
, (A.157)

�(1)
R

(y, c) =
⌘(y)

e
� 2a

◆
⌘(y)

e

�2

, (A.158)

�(2)
R

(y, c) =
⌘(y)

e
� 2a

◆
⌘(y)

e

�2

+
11

2
a2

◆
⌘(y)

e

�3

. (A.159)

Note that the superscript in Eqs. (A.157)-(A.159) represents the order in ⌘(y). In Fig. 6.5,

we see a decent agreement of the analytically obtained series solutions with the numerical

solution of Eq. (A.128).

A.9.2 Asymptotic densities for hyperbolic Calogero model

In the following subsections, we compute the asymptotic densities for the hyperbolic

Calogero model at low and high rescaled temperature c using a similar approach as

described above for the HR model in Appendix A.9.1. Here we recall that the saddle

point equation for the HC model is

µC(c) =
y⌫

�
+ 3⇣(2)�C(y, c)2 + c log �C(y, c). (A.160)

As before we analyze Eq. (A.160) for small and large c. In the following, we use the value

of chemical potential µC(c) which is obtained by numerically solving Eq. (A.160) with

the constraint that the density is normalized to unity.

Small rescaled temperatures c ⌧ 1

For c ⌧ 1 the densities �C(y, c) are assumed to be a small deviation from the zero

temperature which is obtained by solving Eq. (A.160) for c = 0. The density profile is

then given by

�C(y, 0) =

"
#X

#8

A⌫

Z
l⌫ � y⌫

⇣ 1
2 for |y| < l

0 for |y| > l,
(A.161)
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where

A⌫ = (3�⇣(2))⇤
1
2 (A.162)

and the edge of the support of the density is given by

l =

*
�

2A⌫Beta
Z
1
⌫
, 3
2

⇣
+ 2

2+�

. (A.163)

Here

Beta(x, y) =

R 1

0

dr rx⇤1(1 � r)y⇤1, (A.164)

is the Beta function. The zero temperature chemical potential is given by [Eq. (6.51) of

main text]

µC(0) =
!⇡

2

✓ �
�+2

*
�⇤1/⌫�

Z
3
2 + 1

⌫

⇣

�
Z
1 + 1

⌫

⇣
+ 2�

�+2

. (A.165)

Similar to the HR model [Appendix A.9.1], at low temperatures the value of chemical

potential µC(c) [in Eq. (A.160)], determines the (i) bulk |y| < yc, (ii) edge |y �yc| . O(c)

and the (iii) tail regions |y| > yc, where

yc = (µC(c)�)
1
� . (A.166)

We compute the density profile at low temperatures separately for the three regions.

(i) Bulk region |y| < yc: In this region we assume that the density takes the form

�C(y, c) = �C(y, 0) + �1(y, c), (A.167)

where �1(y, c) is the correction to the zero temperature density. We use the following

notations in the rest of the calculations

�1(y, c) ⇥ �1, �C(y, 0) ⇥ �0

µC(c) ⇥ µc, µC(0) ⇥ µ0. (A.168)
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Using Eq. (A.168) in Eq. (A.160) gives

µc =
y⌫

�
+ c log �0 + c log


1 +

�1

�0

�

+ 3⇣(2) (�0 + �1)
2 . (A.169)

Since the temperature is low (c ⌧ 1), the correction to the zero temperature density

�1 ⌧ �0. Furthermore, we introduce the perturbation parameter in the bulk region

⌫(y) =
µ0 + c log �0 � µc

c + 6⇣(2)�2
0

⌧ 1. (A.170)

For c ⌧ 1, it turns out that µc and µ0 are very close, which implies ⌫(y) ⌧ 1 and therefore

a suitable perturbative parameter. Using Eq. (A.170) in Eq. (A.169) and expanding

Logarithmic term up to (�1/�0)3 gives

�1

�0
⇡ �⌫(y) � 1

2

◆
�1

�0

�2

� 1

3

◆
�1

�0

�3 c

c + 6⇣(2)�2
0

. (A.171)

We can solve Eq. (A.171) iteratively which gives

�(0)
1

�0
= �⌫(y), (A.172)

�(1)
1

�0
= �⌫(y) � ⌫(y)2

2
, (A.173)

�(2)
1

�0
= �⌫(y) � ⌫(y)2

2
� ⌫(y)3

◆
1

2
� 1

3

c

c + 6⇣(2)�2
0

�
, (A.174)

where the superscript represents their respective orders. In Fig. 6.8a and 6.8d using the

Eqs. (A.172)-(A.174) we find a good agreement between the analytically obtained series

solution and the numerical solution of Eq. (A.160).

(ii) Edge region |y �yc| . O(c): Recall that this region is a zone defined by |y �yc| .
O(c). Here ⌫(y) defined in Eq. (A.170) is no longer a small parameter and therefore

ill-suited to be a perturbation parameter. Hence as in the case of the HR model, we

assume the density to take the form

�C(y, c) = ��
C

+ �(y), (A.175)
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where ��
C

is the value of the density at y = yc and the deviation �(y) ⌧ ��
C
. The value

of ��
C

can be obtained by numerically solving Eq. (A.160) at y = yc where yc is given in

Eq. (A.166). This gives

3⇣(2)��2
C

+ c log ��
C

= 0. (A.176)

We now introduce a perturbative parameter

b(y) =
y⌫

c
� y⌫

� (c + 6⇣(2)��2
C

)
⌧ 1, (A.177)

since in this region |y � yc| . O(c) and c ⌧ 1. Substituting Eq. (A.175) and using

Eq. (A.177) in Eq. (A.160) and expanding, we get

�(y)

��
C

= b(y) � 1

2

◆
�(y)

��
C

�2

� 1

3

◆
�(y)

��
C

�3 c

c + 6⇣(2)��2 . (A.178)

Using a similar iterative approach as before we can represent the correction to the zero

temperature density �(y) as

�(0)(y)

��
C

= b(y), (A.179)

�(1)(y)

��
C

= b(y) � b(y)2

2
, (A.180)

�(2)(y)

��
C

= b(y) � b(y)2

2
+ b(y)3

◆
1

2
� 1

3

c

c + 6⇣(2)�2
0

�
. (A.181)

In Figs. 6.8b. and 6.8e, using Eqs. (A.179)-(A.181), we find a good agreement between

the analytically obtained series solution and the numerical solution of Eq. (A.160).

(iii) Tail region |y| > yc: Unlike the bulk and the edge regions, in the tail region, we

assume that the density is small and takes the form �C(y, c) = �1 where �1 ⌧ 1. Using

this assumption in Eq. (A.160) we obtain

µc =
y⌫

�
+ c log �1 + 3⇣(2)�2

1. (A.182)
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We now introduce a suitable perturbation parameter

✓(y) = exp

◆
y⌫

c
� y⌫

c�

�
. (A.183)

In the tail region, since |y| > yc and c ⌧ 1, the perturbation parameter ✓(y) ⌧ 1. Using

Eq. (A.183) in Eq. (A.182) and rearranging the terms gives

�1 = ✓(y) exp

*
� 3⇣(2)�2

1

c

+
. (A.184)

We can now represent the density in terms of ✓(y) by using the iterative scheme, similar

to bulk and edge regions, on Eq. (A.184). This then gives

�(0)
1 = ✓(y), (A.185)

�(1)
1 = ✓(y)


1 � 3⇣(2)

c
✓(y)2

�
, (A.186)

�(2)
1 = ✓(y)

⌘
1 � 3⇣(2)

c
✓(y)2 +

5

2

◆
3⇣(2)

c

�2

✓(y)4
 
. (A.187)

In Fig. 6.8c and 6.8f, using Eqs. (A.185)-(A.187), we show the analytically obtained

asymptotic densities of the matches well with the numerical solution of Eq. (A.160).

Large rescaled temperature: c � 1

Similar to the HR model (Appendix A.9.1), when the temperature is high the particles

are spread out over a larger region of space hence diluting the system as a consequence

of which we get �C(y, c) ⌧ 1. We again introduce a convenient perturbation parameter

⌘(y) = exp

◆
µc� � y⌫

�c

�
. (A.188)

Since the chemical potential (see Fig. 6.7 in the main text), obtained by numerically

solving Eq. (A.160), is negative and diverges for c � 1, the perturbation parameter

becomes small i.e., ⌘(y) ⌧ 1. Using Eq. (A.188) along with the low-density approximation

in Eq. (A.160) and following a procedure mathematically similar to low-temperature tail
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region (Appendix A.9.2) we obtain the expressions

�(0)
C

(y, c) = ⌘(y), (A.189)

�(1)
C

(y, c) = ⌘(y)


1 � 3⇣(2)

c
⌘(y)2

�
, (A.190)

�(2)
C

(y, c) = ⌘(y)

⌘
1 � 3⇣(2)

c
⌘(y)2 +

5

2

◆
3⇣(2)

c

�2

⌘(y)4
 
. (A.191)

In Fig. 6.9, using Eqs. (A.189)-(A.191), we see a good agreement of the analytically

obtained series solutions with the numerical solution of Eq. (A.160).
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lévy flights on an interval with absorbing boundaries,” Physica A: Statistical

Mechanics and its Applications, vol. 302, p. 148, 2001. [Online]. Available:

https://doi.org/10.1016/S0378-4371(01)00461-7

[101] D. Dhar, “The abelian sandpile and related models,” Physica A: Statistical

Mechanics and its Applications, vol. 263, p. 4, 1999. [Online]. Available:

https://doi.org/10.1016/S0378-4371(98)00493-2

212



[102] G. Rotsko↵ and E. Vanden-Eijnden, “Trainability and accuracy of artificial

neural networks: An interacting particle system approach,” Communications

on Pure and Applied Mathematics, vol. 75, p. 1889, 2022. [Online]. Available:

https://doi.org/10.1002/cpa.22074

[103] G. D. Mahan, Many-Particle Systems. Princeton University Press, 2008.

[104] G. Akemann, J. Baik, and P. Francesco, The Oxford Handbook of Random Matrix

Theory. Oxford University Press, 2011.

[105] X. He, Q. Ai, R. C. Qiu, W. Huang, L. Piao, and H. Liu, “A big

data architecture design for smart grids based on random matrix theory,”

IEEE transactions on smart Grid, vol. 8, p. 674, 2015. [Online]. Available:

https://doi.org/10.1109/TSG.2015.2445828

[106] C. Nadal and S. N. Majumdar, “A simple derivation of the tracy-widom

distribution of the maximal eigenvalue of a gaussian unitary random matrix,”

Journal of Statistical Mechanics: Theory and Experiment, p. 04001, 2011. [Online].

Available: https://doi.org/10.1088/1742-5468/2011/04/P04001

[107] S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of ultracold atomic

fermi gases,” Rev. Mod. Phys., vol. 80, p. 1215, 2008. [Online]. Available:

https://doi.org/10.1103/RevModPhys.80.1215

[108] P. Le Doussal and C. Monthus, “Exact solutions for the statistics of extrema of

some random 1d landscapes, application to the equilibrium and the dynamics of

the toy model,” Physica A: Statistical Mechanics and its Applications, vol. 317, p.

140, 2003. [Online]. Available: https://doi.org/10.1016/S0378-4371(02)01317-1

[109] S. N. Majumdar and A. Comtet, “Exact maximal height distribution of the

fluctuating interfaces,” Physical Review Letters, vol. 92, p. 225501, 2004. [Online].

Available: https://doi.org/10.1103/PhysRevLett.92.225501

[110] G. Schehr and S. N. Majumdar, “Universal asymptotic statistics of maximal relative

height in one-dimensional solid-on-solid models,” Physical Review E, vol. 73, p.

056101, 2006. [Online]. Available: https://doi.org/10.1103/PhysRevE.73.056101

213



[111] S. Raychaudhuri, M. Cranston, C. Przybyla, and Y. Shapir, “Maximal height

scaling of kinetically growing surfaces,” Physical Review Letters, vol. 87, p. 136101,

2001. [Online]. Available: https://doi.org/10.1103/PhysRevLett.87.136101

[112] P. L. Krapivsky and S. N. Majumdar, “Traveling waves, front selection, and

exact nontrivial exponents in a random fragmentation problem,” Physical Review

Letters, vol. 85, p. 5492, 2000. [Online]. Available: https://doi.org/10.1103/

PhysRevLett.85.5492

[113] S. N. Majumdar and M. Vergassola, “Large deviations of the maximum eigenvalue

for wishart and gaussian random matrices,” Physical Review Letters, vol. 102,

p. 060601, 2009. [Online]. Available: https://doi.org/10.1103/PhysRevLett.102.

060601

[114] R. D. H. Rojas, C. S. H. Calva, and I. Perez-Castillo, “Universal behaviour of the

full particle statistics of one-dimensional coulomb gases with an arbitrary external

potential,” Physical Review E, vol. 98, p. 020104, 2018. [Online]. Available:

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.020104

[115] V. Y. Fyodorov and C. Nadal, “Critical behavior of the number of minima

of a random landscape at the glass transition point and the tracy-widom

distribution,” Physical Review Letters, vol. 109, p. 167203, 2012. [Online].

Available: https://doi.org/10.1103/PhysRevLett.109.167203

[116] P. Kazakopoulos, P. Mertikopoulos, A. L. Moustakas, and G. Caire, “Living at

the edge: A large deviations approach to the outage mimo capacity,” IEEE

Transactions on Information Theory, vol. 57, p. 1984, 2011. [Online]. Available:

https://doi.org/10.1109/TIT.2011.2112050

[117] P. Vivo, S. N. Majumdar, and O. Bohigas, “Distributions of conductance and shot

noise and associated phase transitions,” Physical review letters, vol. 101, p. 216809,

2008. [Online]. Available: https://doi.org/10.1103/PhysRevLett.101.216809

[118] ——, “Probability distributions of linear statistics in chaotic cavities and

associated phase transitions,” Physical Review B, vol. 81, p. 104202, 2010. [Online].

Available: https://doi.org/10.1103/PhysRevB.81.104202

214



[119] K. Damle, S. N. Majumdar, V. Tripathi, and P. Vivo, “Phase transitions in the

distribution of the andreev conductance of superconductor-metal junctions with

multiple transverse modes,” Physical Review Letters, vol. 107, p. 177206, 2011.

[Online]. Available: https://doi.org/10.1103/PhysRevLett.107.177206

[120] F. D. Cunden, P. Facchi, and P. Vivo, “Joint statistics of quantum transport in

chaotic cavities,” Europhysics Letters, vol. 110, p. 50002, 2015. [Online]. Available:

https://doi.org/10.1209/0295-5075/110/50002

[121] A. De Pasquale, P. Facchi, G. Parisi, S. Pascazio, and A. Scardicchio, “Phase

transitions and metastability in the distribution of the bipartite entanglement of

a large quantum system,” Physical Review A, vol. 81, p. 052324, 2010. [Online].

Available: https://doi.org/10.1103/PhysRevA.81.052324

[122] P. Facchi, U. Marzolino, G. Parisi, and S. Pascazio, “Phase transitions of bipartite

entanglement,” Physical Review Letters, vol. 101, p. 050502, 2008. [Online].

Available: https://doi.org/10.1103/PhysRevLett.101.050502

[123] C. Nadal, S. N. Majumdar, and M. Vergassola, “Phase transitions in the

distribution of bipartite entanglement of a random pure state,” Physical

Review Letters, vol. 104, p. 110501, 2010. [Online]. Available: https:

//doi.org/10.1103/PhysRevLett.104.110501

[124] F. Colomo and A. G. Pronko, “Third-order phase transition in random

tilings,” Physical Review E, vol. 88, p. 042125, 2013. [Online]. Available:

https://doi.org/10.1103/PhysRevE.88.042125

[125] G. Schehr, S. N. Majumdar, A. Comtet, and P. J. Forrester, “Reunion

probability of n vicious walkers: typical and large fluctuations for large

n,” Journal of Statistical Physics, vol. 150, p. 3, 2013. [Online]. Available:

https://doi.org/10.1007/s10955-012-0614-7

[126] P. J. Forrester, S. N. Majumdar, and G. Schehr, “Non-intersecting brownian

walkers and yang-mills theory on the sphere,” Nuclear Physics B, vol. 844, p. 3,

2011. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.2010.11.013

215



[127] F. D. Cunden, P. Facchi, M. Ligabò, and P. Vivo, “Universality of the
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