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Preface

This thesis is based on the publication [1]. Sections 1.2 and 1.3 are slightly rewritten

versions of sections 1 and 2 of [1] respectively. Further, chapters 3 to 6 are entirely based

on sections 3 to 6 of [1]. This work was performed in collaboration with the co-authors

of this paper.

In addition, this thesis contains a very short, and then a slightly detailed, summary

of the results of [2] in sections 1.3 and 2.3.2 respectively. Although the paper [2] does not

constitute this thesis, its results have been summarised as it is something on which the

work of [1], and therefore this thesis, rests crucially.

Finally, section 1.1 and chapter 2 were written by the author for the sake of this

thesis. Chapter 2 contains no new results; it is a review of known facts in the field,

merely compiled as a ready reference for the subsequent material.
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Abstract

Based on the asymptotic structure of the Hilbert space of Quantum Gravity around a de

Sitter (dSd+1) background, we propose a novel path-integral based norm structure. Due

to the diff × Weyl symmetry of the state wavefunctionals at late times, the integrand is

gauge fixed via a Faddeev-Popov procedure. A residual gauge freedom persists which is

found to correspond to the conformal group SO(1, d+1). This freedom is further fixed by

a point-fixing procedure within the state wavefunctionals. This norm is shown to reduce

to Higuchi’s group-average prescription in the non-gravitational limit. A novel definition

of cosmological correlators is proposed which takes care of fixing large diffeomorphisms

in the spherical dS slice. It is further shown that knowledge of all such correlators in

a finite subregion of the late time slice is enough to completely deduce all cosmological

observables in that state.
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Chapter 1

Introduction

1.1 Background

Thinkers as early as antiquity have spent time formulating the rules that govern grav-

itational phenomena. Brahmagupta attributes gurutvākars
˙
an

˙
am to the nature of things

inherent in their existence. He tells us [3]

“…all heavy things fall down to the earth by a law of nature, for it is the

nature of the earth to attract and to keep things, as it is the nature of water

to flow, that of fire to burn, and that of wind to set in motion.”

While this shows, for early medieval times, a profound understanding of geophysical

gravity, a more comprehensive grasp of the matter would come to us from Enlightenment

age Europe. Newton unified all aspects of terrestrial gravity observable at the time with

that of the patterns of planetary motion with his law of universal gravitation. This

formed an (almost) adequate framework for our understanding of gravity for over two

centuries. Einstein’s general theory of relativity (GR) would later decisively address

and rectify the non-causal nature of Newtonian gravity by introducing the notion of

dynamical spacetime. However, unifying his theory as a consistent segment within the

larger framework of quantum theory — the other crowning achievement of 20th century

physics vis à vis GR — remains, to date, one of the holy grails in theoretical physics.

In this regard, it is remarkable that despite the divergent approaches taken and chal-

lenges faced by various theories of quantum gravity (QG), a common theme has emerged

1
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today
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Figure 1.1: Four important steps in the inflationary process are shown in this figure. An
observer living in present times on the “today” slice has access to a subset of correlations
in the CMB by virtue of the transparency of the subsequent universe. Space has been
modelled as a 2-dimensional plane, and the circle on the “last-scattering” slice represents
the celestial sphere visible to the observer. The dotted lines represent the extent of their
past lightcone.

— the pervasive presence of the holographic principle. The principle states that grav-

ity in D-dimensional spacetime is dual to a nongravitational theory in (D − 1) dimen-

sions [4]. For instance, the area scaling law of black hole entropy [5, 6], the AdS/CFT

correspondence [7, 8], and the black hole information paradox [9–11], all point towards

the holographic nature of quantum gravity. This fundamental idea, which posits a deep

connection between the information content and the geometric properties of space-time,

appears to be a unifying thread across disparate frameworks.

The convergence of evidence from multiple theories of QG persuades us to take the

holographic principle seriously as a guiding principle in our quest to consistently quantise

gravity. The principle should be recognised not as one particular law, but a family of

interconnected statements which all rhyme in the property of dimensional reduction of

information in the presence of dynamical gravity. The central theme of this work is a

certain manifestation of this principle called the “Principle of Holography of Information”

(HoI) in the context of asymptotically de Sitter (dS) spaces. The statement, which will be

made precise later in the text, is roughly as follows: configurational information contained

in a subset of a Cauchy slice is also available in its complement on the same slice when

the complement surrounds it. This is a property that is neither true of classical gravity,
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nor other quantum field theories [11]. We comment more on this in section 5.2.

The study of QG and QFT in a dS background has a history in cosmology as well

thanks to the inflationary paradigm. The model posits that the universe underwent a

finite period of accelerated expansion right after the Big Bang resembling a positive Λ

universe, of which dS is the simplest example [12]. This resolves many observational puz-

zles like the horizon and the flatness problems. But more remarkably, inflation affords a

mechanism for cosmic structure formation. The idea is that the quantum fluctuations in

various fields give rise to microscopic inhomogeneities during inflation. As inflation ends,

these inhomogeneities have been stretched to macroscopic scales by the rapid expansion.

These tiny variations now act as seeds for structure formation of galaxies and clusters.

For this reason, narrowing down on an accurate mechanism of inflation is a major goal in

early-universe cosmology. On the experimental side, data from the inflationary process is

available to us in the form of spatial correlations of temperature and polarisation fluctu-

ations in the cosmic microwave background (see fig. 1.1 for a schematic representation).

Therefore, the task of relating inflationary models to these observables entails studying

equal time correlations of quantum fields, including gravity, during inflation — a field

now called cosmological correlations. We shall have more to say about this in a bit.

1.2 Motivation

It is known that both in AdS and in flat space, quantum gravity localises information very

differently from nongravitational quantum field theories and manifests the principle of

holography of information [13–19]. In AdS, all information on a Cauchy slice is available

near its boundary, as is well known from AdS/CFT but can also be shown directly from

the gravitational theory. In flat space, it was shown in [13] that all information that can

be obtained on future null infinity can also be obtained on its past boundary. Given this

context, we seek to address the following question in this work: how does the holography

of information work in de Sitter space, where spatial slices have no boundaries?

With a view to addressing this question, we study expectation values of observables

that act on the space of solutions of the Wheeler-DeWitt (WDW) equation recently

found in [2]. To begin with, this requires defining a norm on this space. We propose a

natural norm, obtained by integrating the square of the magnitude of the wavefunctional
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over field configurations and dividing by the volume of the group of diffeomorphisms

and Weyl transformations. We show how this redundancy can be gauge-fixed using the

Faddeev-Popov procedure [20, 21].

Additionally, it was shown in [2] that, in the nongravitational limit, the space of

solutions to the WDW equation reduces to the space of dS invariant states defined by

Higuchi using group averaging [22–25]. Higuchi defined a norm on this space by dividing

the QFT norm of the states by the volume of the dS isometry group, resulting in a finite

answer. Here, we show that the norm on the space of WDW solutions described above

reduces to Higuchi’s norm in the nongravitational limit. Our prescription also provides

a systematic set of gravitational corrections to Higuchi’s proposal.

Using our formalism, we turn to the set of observables called cosmological correlators.

These observables are physically significant and have attracted significant attention in

the literature [26–29]. They are usually expressed in terms of a product of local operators

on the late-time slice of de Sitter space. Since the volume of the late-time slice is asymp-

totically large, these coordinates correspond to points that are separated infinitely in the

physical spacetime and are global probes of the state. However, while such a product

is a well-defined observable in a quantum field theory, it does not commute with the

gravitational constraints. Hence, this description is not gauge invariant.

We propose that cosmological correlators should be understood as gauge-fixed observ-

ables. We provide a prescription to compute the matrix elements of such observables

between any two states of the theory. This set of matrix elements defines a gauge-

invariant operator corresponding to every cosmological correlator. These operators are

labelled by a set of coordinates on the late-time slice.

We show that our gauge-fixed observables are invariant under translations and rota-

tions, and have simple transformation properties under scaling. Crucially, this property

holds in all states of the theory, and not just in the Euclidean vacuum.

Consequently, the specification of these observables in any open set R suffices to spec-

ify them everywhere. But the full set of cosmological correlators forms an overcomplete

basis for all observables. Therefore, cosmological correlators in any arbitrary small part

of the late-time Cauchy slice are sufficient to uniquely identify the state of the theory.

Cosmological correlators can also be defined in quantum field theory. But in the
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absence of gravity, it is possible to construct states where they coincide inside a small

region but differ outside it. So the result above marks a sharp difference between the

properties of gravitational and nongravitational theories. This provides the necessary

generalisation of the notion of holography of information to asymptotically de Sitter

space.

Heuristically, this result can be put on the same footing as the results on the holog-

raphy of information in AdS and in flat space. There, the principle of holography of

information implies that whenever a region R is surrounded by its complement R then

R contains all information about R. This is simply because when spatial slices are non-

compact, R extends to infinity and so it contains all information about the state. In

the present case, the spatial slices have the topology of Sd. Therefore every region R

both surrounds and is surrounded by its complement. So it is natural for cosmological

correlators in every region R to have information about the entire state.

We present the holography of information in terms of a precise mathematical result.

However this result should be interpreted with care. In particular, we do not suggest

that a physical observer with access only to a small patch of spacetime can glean all

information about the state using local measurements.

First, as noted above, even the region R is a small part of the late-time Cauchy slice,

it still has infinite volume in the physical spacetime. Second, cosmological correlators

are gauge-fixed observables that are merely labelled by a set of points. Since there are

no local gauge-invariant observables in the theory, cosmological correlators also secretly

correspond to nonlocal operators that cannot be measured through any strictly local

process.

Moreover, in dS, it is not always fruitful to think in terms of external observers and

so the question of what is physically observable might require us to construct a model

of an observer who is part of the system. Although, we do not seek to construct such

a model in this thesis, it is reasonable to envisage a model in which a physical observer

can access low-point gauge-fixed observables of the kind we describe. But, as in AdS and

in flat space, the identification of a sufficiently complicated state, from a small region

R, requires very high-point cosmological correlators and presumably, in any reasonable

physical model, such high-point correlators are effectively inaccessible.
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We now provide an overview of the thesis. In the immediately following section 1.3, we

provide a summary of our main results, including its key technical aspects. In chapter 2

we review some technical prerequisites needed to appreciate the material in full detail. In

chapter 3, we discuss norms and expectation values in the space of solutions to the WDW

equation. In chapter 4, we define cosmological correlators and study their properties. In

chapter 5, we prove the principle of holography of information and discuss its implications.

We conclude by discussing open questions in chapter 6.

1.3 Summary of thesis

In [2], it has been shown that the space of solutions to the Wheeler-DeWitt (WDW) equa-

tion with a positive cosmological constant, Λ, where the spatial slices have the topology

of Sd take on the asymptotic form

Ψ[g, χ] = eiS[g,χ]
∑
n,m

κnδGn,mZ0[g, χ] . (1.1)

Here, g and χ are the spatial metric at a time slice and a generic scalar field respec-

tively, eiSZ0 represents the Hartle-Hawking (HH) state, and κ =
√
8πGN is a perturbative

parameter. GN is Newton’s gravitational constant. Finally, δGn,m are functionals which

append to the HH wavefunctional to make it a solution to the WDW equation. We shall

offer a slightly more comprehensive review of this structure in section 2.3.2. For now, we

jump into the main findings presented in this thesis.

It is conventional, in the cosmological literature to restrict attention to observables

that only comprise field operators and do not contain insertions of their conjugate mo-

menta. We will follow this convention in the main text of this thesis. Such observables

are sensitive only to |Ψ[g, χ]|2 and not to its phase. (See [30] for more discussion.) How-

ever, from a mathematical perspective, there is no difficulty in generalizing our analysis

to account for observables sensitive to the phase of the wavefunctional and we explain

how to do this in Appendix D.

In this thesis, we will propose that the natural norm on this space of wavefunctionals

is obtained by simply squaring the asymptotic wavefunctionals, integrating over all field

configurations and finally dividing by the volume of the diff × Weyl group. More generally,
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the expectation value of a gauge-invariant operator A is given by

(Ψ, AΨ) =
N1

vol(diff×Weyl)

∫
DgDχ

∑
n,m,n′,m′

κn+n′
δG∗

n,mδGn′,m′|Z0[g, χ]|2A[g, χ] , (1.2)

where N1 is a physically unimportant normalisation constant.

To parse this norm, we use a gauge-fixing condition which fixes the diff × Weyl

invariance. The gauge-fixing condition we choose is

∂igij = 0; δijgij = d . (1.3)

The corresponding ghost action has zero modes that correspond to residual global sym-

metries that are not fixed by the gauge choice above.

The zero modes correspond precisely to the generators of the conformal group in d-

dimensions: translations, rotations, dilatations and special conformal transformations.

For d > 2, the usual form of the special conformal transformations is corrected by a

metric-dependent diffeomorphism. The integrated operators (inside δGn,m) that appear

in the correlator (1.2) can be utilised to fix these residual symmetries. We fix three of

the operators to

x1 = 0; x2 = 1; x3 = ∞ . (1.4)

This choice, which is familiar from perturbative string theory, is enough to fix the residual

conformal symmetry in all dimensions up to a residual SO(d − 1) invariance that is

compact and can simply be excluded by hand or integrated over.

The notation δGn,m represents the operator obtained by fixing three of the points in an

integrated product of operators like (2.105) using (1.4) with the appropriate measure fac-

tor. (See (3.22) for details.) This leads to the gauge-fixed expression for the expectation

value of an operator A

(Ψ, AΨ) =
∑

n,m,n′,m′

κn+n′⟪δG∗
n,mA[g, χ]δGn′,m′⟫ , (1.5)

where the symbol ⟪ · ⟫ stands for

⟪Q⟫ ≡ N1N2

∫
DgDχ δ(gii − d)δ(∂igij)∆

′
FP |Z0[g, χ]|2Q . (1.6)
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χ(∞)

χ(0)

. . .

χ(x6)

χ(1)

hij(x5)

χ(x4)

Figure 1.2: The residual gauge group is the Euclidean conformal group in d dimensions
SO(1, d+ 1). Up to a compact subgroup, it can be fixed by fixing three points.

Here, N2 is another physically irrelevant constant and ∆′
FP is a restricted Faddeev-Popov

determinant obtained by integrating out the ghosts except for the zero modes.

At nonzero coupling the ghost determinant involves nontrivial factors of the metric.

However, as κ→ 0 these factors vanish. In the nongravitational limit, the residual group

can then also be handled by simply dropping the condition (1.4), and instead dividing by

the volume of the conformal group. The norm of a nongravitational state then becomes

(Ψng,Ψng) =
vol(SO(d− 1))

vol(SO(1, d+ 1))
lim
κ→0
⟪δG∗

n,mδGn,m⟫ . (1.7)

This is precisely Higuchi’s prescription for the norm: the RHS is the QFT norm divided by

the infinite volume of the conformal group. The factor of vol(SO(d−1)) in the numerator

arises due to a choice of normalisation and is unimportant. Therefore our prescription

leads to a derivation of Higuchi’s proposal and also provides a precise prescription for

how the norm should be generalised beyond κ = 0.

Next, we turn to cosmological correlators. Cosmological correlators are labelled by

points on the late-time slice of de Sitter space. While this makes sense in a quantum field

theory, there are no local gauge-invariant observables in quantum gravity. We therefore

propose that a cosmological correlator that is labelled by a product of p insertions of the

metric and q insertions of the matter field, Cp,q

i⃗⃗j
(x⃗), (see (4.2) for notation) corresponds

to a gauge-fixed observable:

⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC ≡

∑
n,m,n′,m′

κn+n′⟪δG∗
n,mδGn,mCp,q

i⃗⃗j
(x⃗)⟫ . (1.8)
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Note that the right hand side depends on the choice of gauge in (1.3) and also that the

points in (1.8) have not been fixed by inserting delta functions for the residual gauge

transformations and the corresponding zero-mode determinant but are simply fixed by

hand.

The residual gauge transformations above turn into symmetries of cosmological cor-

relators. Since special conformal transformations involve the metric fluctuation, they

relate lower-point cosmological correlators to higher-point correlators. But we show that

cosmological correlators are covariant under rotations, translations and dilatations in any

state. Under translations and dilatations

⟪Ψ|Cp,q

i⃗⃗j
(λx⃗+ ζ)|Ψ⟫CC = λ−q∆⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC . (1.9)

This leads us to a remarkable result: if one is given the cosmological correlators

(1.8) in an arbitrarily small region, then this is sufficient to determine the correlators

everywhere. But the set of correlators everywhere forms an overcomplete basis for the

space of all observables. This means that for any region R

⟪Ψ1|Cp,q

i⃗⃗j
(x⃗)|Ψ1⟫CC = ⟪Ψ2|Cp,q

i⃗⃗j
(x⃗)|Ψ2⟫CC, ∀x⃗ ∈ R and ∀p, q=⇒(Ψ1, AΨ1) = (Ψ2, AΨ2),

(1.10)

for any observable A. This result provides the necessary generalisation of the principle

of holography of information to de Sitter space.

As mentioned above, the discussion of observables cosmological correlators is usually

limited to products of the fields. But the set of cosmological correlators can be expanded

to include the conjugate momenta as explained in Appendix D. The set of such generalised

cosmological correlators in an arbitrarily small region suffices to completely determine the

full wavefunctional of the state, including its phase.

While this result marks a clear mathematical difference between quantum field theo-

ries and quantum gravity, it should be interpreted with caution. Cosmological correlators

are secretly nonlocal observables. So the result above does not imply that a physical ob-

server can determine the entire state of the universe through local measurements.



Chapter 2

Preliminaries

2.1 Gravitational Constraints

2.1.1 Setup

We start with a (d + 1)-dimensional spacetime with the metric ĝµν and cosmological

constant Λ. The signature is mostly +’s. For most of this section, the only constraint

on this spacetime will be the compactness of its spatial slices. Consider a foliation of

our spacetime given by the coordinates (t, xi), where t labels the spatial slice. Greek and

Latin indices represent spacetime and space coordinates and therefore run 0-d and 1-d

respectively. The future directed normal 1-form is n = −dt/
√
−ĝ00. Since we shall work

with standard Einstein gravity, the relevant action is the Einstein-Hilbert action with a

Gibbons-Hawking-York boundary term,

S =
1

2κ2

∫
dtddx

√
−ĝ

(
R̂− 2Λ

)
+ SGHY + Sm. (2.1)

Here, R̂ is the Ricci scalar associated with ĝµν , and Sm is a matter action. SGHY is

the Gibbons-Hawking-York boundary term which makes the total action differentiable

with respect bulk fields. Our choice of matter is going to be massive scalar χ minimally

coupled to gravity, whereby the action is

Sm = −1

2

∫
dtddx

√
−ĝ

(
ĝµν∂µχ∂νχ+m2χ2

)
. (2.2)

10
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This choice of minimal-coupling is made purely for the sake of simplicity; the discussion

which follows holds true for more general actions (for instance, containing matter self-

interactions, or other matter-gravity interactions). Equation of motion for the metric

gives the Einstein Field Equations,

Eµν =
1

κ2
(Gµν + Λĝµν)− Tµν = 0, (2.3)

where Gµν is the Einstein tensor Gµν = R̂µν − 1
2
ĝµνR̂, R̂µν being spacetime Ricci tensor,

and Tµν is the Hilbert stress tensor

Tµν = − 2√
−ĝ

δSm

δĝµν
. (2.4)

The vector ∂t may not be normal to the slice t and hence we have

(∂t)
µ = Nnµ + (∂i)

µN i, (2.5)

where N i and N are shift and lapse functions1 respectively. The metric is ADM decom-

posed as

ĝ00 = −N2 + gijN
iN j, ĝ0i = gijN

j, ĝij = gij, (2.6)

ĝ00 = −N−2, ĝ0i = N−2N i, ĝij = gij −N−2N iN j, (2.7)√
−ĝ = N

√
g. (2.8)

At this point, it is useful to write down the action in terms of spatial slice quantities:

S =
1

2κ2

∫
dtddxN

√
g
(
KijK

ij −K2 +R− 2Λ
)
+ Sm. (2.9)

Here, R is the Ricci scalar associated with gij, and Kij is the extrinsic curvature tensor

Kij =
1

2N
(−ġij +∇iNj +∇jNi) , (2.10)

1Note that this means we have
n = −Ndt.

We choose negative sign for the first component of nµ to keep nµ parallel instead of antiparallel to ∂t.
This choice is made to ensure that N is positive which in turn is to keep the formula

√
−ĝ = N

√
g working

without using |N | on the RHS. This is simply a choice of convention to reduce notational burden.
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where ∇i is the connection associated with the metric gij (as opposed to ∇̂µ associated

with ĝµν). Note that there is no boundary term in the final action (2.9). This is thanks

to the GHY term cancelling out the boundary part coming out of the purely Einstein-

Hilbert action. We define the total energy and momentum density of the system as the

following components of Eµν by

H = −Enn, Hi = −Ein, (2.11)

where subscript n means contraction with the unit normal n. That is On ≡ Oµn
µ. To

see this we write

H = − 1

κ2
Gnn +

1

κ2
Λ +Hm, (2.12)

Hi = − 1

κ2
Gni +Hm

i , (2.13)

where we have substituted ĝµνn
µnν = −1, ĝiµnµ = 0. We have further used the expres-

sions

Hm = Tnn, Hm
i = Tni. (2.14)

for the matter energy and momentum densities. We justify the names “energy” and

“momentum” in the following paragraphs where we show that these quantities are purely

a function of initial data.

Matter part. Matter canonical momentum is

πχ = −
√

−ĝĝ0µ∂µχ =

√
g

N

(
χ̇−N i∂iχ

)
. (2.15)

Next, one may check that

ĝµν∂µχ∂νχ = −
π2
χ

g
+ gij∂iχ∂jχ. (2.16)

Inserting our matter action in (2.4) we get

Tµν = ∂µχ∂νχ− 1

2
ĝµν

(
ĝαβ∂αχ∂βχ+m2χ2

)
. (2.17)
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We can read out from above

Tnn = Tµνn
µnν = T µνnµnν

= N2T 00 (∵ n = −Nδt)

=
1

2g
π2
χ +

1

2
gij∂iχ∂jχ+

1

2
m2χ2.

(2.18)

This is clearly the matter Hamiltonian density, and hence, is aptly called Hm. Similarly,

we have

Tni = Tiµn
µ = T µ

i nµ

= −NT 0
i (∵ n = −Nδt)

=
1
√
g
πχ∂iχ.

(2.19)

Hence, we conclude

Hm =
1

2g
π2
χ +

1

2
gij∂iχ∂jχ+

1

2
m2χ2, (2.20)

Hm
i =

1
√
g
πχ∂iχ. (2.21)

It may be checked with the commutation relations we shall define in a moment, that

these quantities generate local time and spatial translation of the matter field.

Gravitational part. The gravitational parts of H and Hi are

Hg = − 1

κ2
Gnn +

1

κ2
Λ, Hg

i = − 1

κ2
Gni. (2.22)

Canonical momentum for the gravitational field is

πij =
δS

δ ˙gij
= − 1

2κ2
√
g
(
Kij − gijK

)
, (2.23)

where the raising of both the raising and contraction of indices on extrinsic curvature

are performed with gij. In terms of canonical momenta the gravitational parts of the
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densities are

Hg
i = −2∇j

π j
i√
g

(2.24)

Hg =
2κ2

g

(
πijπij −

π2

d− 1

)
− 1

2κ2
(R[g]− 2Λ) . (2.25)

Here we have defined π j
i ≡ gikπ

kj, πij ≡ gikgjℓπ
kℓ, and π ≡ gijπ

ij. Note that due to

πij being a tensor density of weight 1, we must divide it by the volume factor √
g before

taking its covariant derivative.

Constraint equations. The Enn = 0 and Eni = 0 components of Einstein equations

of motion can now be expressed as

H = 0, Hi = 0. (2.26)

These are called the Hamiltonian and the momentum constraints, respectively. They are

called constraints because, as opposed to the other equations of motion Eij, these do not

contain time derivatives of canonical momenta. Alternatively in the Lagrangian picture,

these equations do not contain second-order time derivatives of any field. Therefore, these

are not true dynamical equations; that is, they only restrict the space of initial data on

a Cauchy slice.

We also note at this point that the action (2.9) does not contain time derivatives of N

and N i. These two quantities are therefore Lagrange multipliers and have no dynamics

of their own. Their form is a choice of gauge and is generally left to the physicist’s

convenience to maximise simplicity of calculation.

Quantisation

Quantisation is realised via the canonical commutation relations

[gij(x), π
kℓ] =

i

2

(
δ k
i δ

ℓ
j + δ k

j δ
ℓ
i

)
δ(d)(x− y), (2.27)

[χ(x), πχ(y)] = iδ(d)(x− y). (2.28)
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Hamiltonian of the system is

H =

∫
ddx

√
g
(
NH +N iHi

)
. (2.29)

The constraints (2.26) are now imposed as the pointwise operator statements,

H(x) |Ψ⟩ = 0, Hi(x) |Ψ⟩ = 0, ∀x ∈ bulk. (2.30)

In particular the equation H(x) |Ψ⟩ = 0 is famously called the Wheeler-DeWitt (WDW)

equation [31, 32]. The second equation has a straightforward and elegant interpretation

which we go over in section 2.2.

Integrated constraints

It is often useful, for building intuition, to study the integrated version of the above

constraints instead of the pointwise version. We construct this by smearing the constraints

with a vector Y µ over a time slice. For the remainder of this section, we shall keep N

and N i arbitrary. Note that for a generic spacetime tensor Oµ, we have

O0 = Oµ(∂t)
µ = Oµ(Nn

µ + Eµ
i N

i) = NOn +N iOi. (2.31)

Then, we know

EµνY
µnν = EµnY

µ

= Y 0(NEnn +N iEin) + EinY
i

= −
(
Y 0

(
NH +N iHi

)
+ Y iHi

)
.

(2.32)

Since EµνY
µ is a vector current, its Hodge dual can be integrated over a codimension 1

submanifold. We shall take that to be a spatial slice to obtain the integrated constraint

QY = −
∫
ddx

√
gEµνY

µnν

=

∫
ddx

√
g
[
Y 0

(
NH +N iHi

)
+ Y iHi

]
.

(2.33)
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It is useful to separate the gravitational and the matter part of the constraint as follows.

QY = Qg
Y +Qm

Y , (2.34)

such that

Qg
Y =

∫
ddx

√
g
[
Y 0

(
NHg +N iHg

i

)
+ Y iHg

i

]
, (2.35)

Qm
Y =

∫
ddx

√
g
[
Y 0

(
NHm +N iHm

i

)
+ Y iHm

i

]
. (2.36)

Gauge transformations

In gravity, gauge symmetry is the symmetry of small diffeomorphisms. The term “small”

refers to coordinate reparametrisations which maintain the boundary conditions set on the

metric. This often means that small diffeomorphisms must die faster than some minimum

rate at large distances. However, in spacetimes with compact spatial slices, such as dS, all

diffeomorphisms (connected continuously to identity) are small and therefore constitute

true gauge transformations. Therefore, while we parametrise gauge transformation with

the vector Y µ, we will not need to impose any boundary conditions on it. Under the

diffeomorphism xµ → xµ − Y µ, the canonical variables transform as follows.

LY gij =Y
0ġij +Ni∇jY

0 +Nj∇iY
0 + LY gij, (2.37)

LY π
ij =Y 0π̇ij + LY π

ij + (∇kY
0)(Nkπij −N iπjk −N jπik) (2.38)

+

√
g

2κ2
[
∇iY 0∇jN +∇jY 0∇iN +N∇i∇jY 0 − gij

(
2∇kY 0∇kN +N∇k∇kY 0

)]
,

LY χ =Y 0χ̇+ LY χ, (2.39)

LY πχ =∂0(Y
0πχ) + LY πχ + πχN

i∇iY
0 +N

√
g∇iχ∇iY 0. (2.40)
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In the above, LY represents the spatial Lie derivative with respect to Y i.

LY gij = Y k∂kgij + gjk∂iY
k + gik∂jY

k, (2.41)

LY π
ij = Y k∂kπ

ij − πik∂kY
j − πjk∂kY

i + πij∂kY
k, (2.42)

LY χ = Y k∂kχ, (2.43)

LY πχ = Y k∂kπχ + πχ∂kY
k. (2.44)

The dotted quantities ġij, π̇ij are functions of the initial data {gij, πij} on the slice through

Hamilton’s equation of motion

ġij =
δH

δπij
, π̇ij = − δH

δgij
. (2.45)

The same is true for χ̇ and π̇χ in (2.39) and (2.40); that is, they are functions of the

initial data {gij, πij, χ, πχ} defined through Hamilton’s equation as well.

The reader may have noticed that the transformation eqs. (2.37) to (2.40) resemble

a spacetime Lie derivative of the concerned quantities with respect to Y µ. This is indeed

the case. The precise forms are obtained by expressing N,N i, gij in terms of ĝµν . Then,

varying the quantities becomes an exercise in repeated use of the Leibniz rule in order

to trace the variations all the way back to ĝµν . Finally, the action of Y µ on ĝµν is simply

the spacetime Lie derivative (see [33] for details of this derivation)

L̂Y ĝµν = Y κ∂κĝµν + ĝµκ∂νY
κ + ĝνκ∂µY

κ. (2.46)

In the absence of a boundary in the spatial slice, QY induces the following transfor-

mations which we express through commutation relations.

i[QY , gij] = LY gij, (2.47)

i[QY , π
ij] = LY π

ij, (2.48)

i[QY , χ] = LY χ, (2.49)

i[QY , πχ] = LY πχ. (2.50)
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2.1.2 Perturbative picture

In this subsection, we review the perturbative form of the integrated constraints and the

transformations they induce on the canonical variables. While this calculation is pre-

sented in rigorous detail by Higuchi in [33], we present a lightning review of the bare

essentials necessary to appreciate the statement of dS invariance within the perturba-

tive paradigm. dS invariance is an important result present in the literature [23, 33, 34]

which helps us put in perspective the asymptotic structure of the correlators exposited

in chapter 5.

Consider the perturbation

gij → gij + κhij, πij → πij +
1

κ
Πij. (2.51)

Here {gij, πij} is a classical background obeying the constraints (2.26) and the equations

of motion (2.45). hij and Πij are the quantum operators. Since πij itself is of order κ−2,

its perturbative correction appears at order κ−1. Substituting the new variables in the

canonical commutation relations (2.27) gives

[hij(x),Π
kℓ(y)] =

i

2

(
δ k
i δ

ℓ
j + δ k

j δ
ℓ
i

)
δ(d)(x− y). (2.52)

Let us expand the constraint QY in increasing powers of κ as

QY =
∞∑
n=0

Q
(n)
Y , (2.53)

where Q(n)
Y ∼ O(κn−2). Then, it is easy to see that while Qg

Y has zeroth and first-order

terms, Qm
Y starts at the second order.
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Perturbation algorithm.

By virtue of the compactness of the spatial slice, the derivatives of Qg
Y can be shown to

be precisely

δ

δgij(x)
Qg

Y = −LY π
ij(x), (2.54)

δ

δπij(x)
Qg

Y = LY gij(x). (2.55)

By utility of the functional version of Taylor series, the gravitational part at n’th order

(n > 1) becomes

Q
g(n)
Y =

1

n

∫
ddx

[
1

κ
(LY gij)

(n−1)Πij − κ
(
LY π

ij
)(n−1)

hij

]
. (2.56)

The (n) superscript on the right hand represents the n’th order change in that term

under the perturbation (2.51)2. Despite appearance, both the terms on the right are the

same order of κ because πij starts from κ−2 as opposed to the gij which starts at κ0.

At the zeroth order, the Q(0)
Y vanishes trivially since the background obeys gravitational

constraints.

First order constraint

The leading order perturbation in Qg
Y reads

Q
g(1)
Y =

1

κ

∫
ddx

(
ΠijLY gij − hijLY Π̊

ij
)
, (2.57)

where for keeping track of the powers of κ we have defined the rescaled background

momentum Π̊ij = κ2πij. LY Π̊ij follows directly from (2.38) as

LY Π̊
ij =Y 0 ˙̊Πij + LY Π̊

ij + (∇kY
0)(NkΠ̊ij −N iΠ̊jk −N jΠ̊ik) (2.58)

+

√
g

2

[
∇iY 0∇jN +∇jY 0∇iN +N∇i∇jY 0 − gij

(
2∇kY 0∇kN +N∇k∇kY 0

)]
.

2Please note that this is a slightly different convention than the one for the integrated constraint
defined in (2.53).
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The matter part does not contribute at this order, so Q(1)
Y = Q

g(1)
Y . It has the following

commutation relations with the canonical variables

i[Q
(1)
Y , hij] =

1

κ
LY gij, i[Q

(1)
Y ,Πij] =

1

κ
LY Π̊

ij, (2.59)

i[Q
(1)
Y , χ] = 0, i[Q

(1)
Y , πχ] = 0. (2.60)

This is just the linearised gravity result that, under a diffeomorphism xµ −→ xµ − Y µ,

the metric and momentum undergo the transformation

hij −→
Y

hij +
1

κ
LY gij, (2.61)

Πij −→
Y

Πij +
1

κ
LY Π̊

ij. (2.62)

Now, if Xµ is a Killing vector of the background {gij, πij}, then LXgij = LXπ
ij = 0.

Therefore

Q
(1)
X = 0, when Xµ is background Killing. (2.63)

Second order constraint

At second order, Qg
Y reads

Q
g(2)
Y =

1

2

∫
ddx

[
(LY hij)Π

ij −
(
LYΠ

ij
)
hij

]
. (2.64)

Here, the first term contains

LY hij ≡
1

κ
(LY gij)

(1) = Y 0ḣij + LY hij. (2.65)

The second term contains

LYΠ
ij ≡ κ

(
LY π

ij
)(1)

= Y 0Π̇ij + LYΠ
ij + (∇kY

0)(NkΠij −N iΠjk −N jΠik)

+
1

κ

{√
g

2

[
∇iY 0∇jN +∇jY 0∇iN +N∇i∇jY 0 − gij

(
2∇kY 0∇kN +N∇k∇kY 0

)]}(1)

.

(2.66)



CHAPTER 2. PRELIMINARIES 21

In the above equations, ḣij and Π̇ij are shorthand for 1
κ
(ġij)

(1) and κ (π̇ij)
(1) respectively.

Both of these quantities can be expressed purely in terms of the background initial data

{gij, πij} and the quantum initial data {hij,Πij}. The matter part of the constraint is

nontrivial at this order. It is

Q
m(2)
Y =

∫
ddx

√
g
[
Y 0

(
NHm +N iHm

i

)
+ Y iHm

i

]
. (2.67)

Q
(2)
Y has the following commutation relations with canonical variables:

i[Q
(2)
Y , hij] = LY hij, i[Q

(2)
Y ,Πij] = LYΠ

ij, (2.68)

i[Q
(2)
Y , χ] = LY χ, i[Q

(2)
Y , πχ] = LY πχ. (2.69)

de Sitter invariance

dSd+1 has (d+1)(d+2)
2

Killing vectors. Let Xµ be such a Killing vector. We learnt that

the leading order constraint Q(1)
X vanishes identically. Since imposing the integrated

constraint on state means QX |Ψ⟩ = 0, the second-order constraint acting on the state

gives,

Q
(2)
X |Ψ⟩ = O(κ). (2.70)

Since Q
(2)
X indeed induces a diffeomorphism corresponding to Xµ as we learnt in the

previous subsection, the above statement means that the |Ψ⟩ is allowed to have only

de Sitter-invariant features up to O(κ). This is the perturbative statement of de Sitter

invariance. Note that, for an arbitrary state |Ψ⟩, ⟨Ψ|Q(2)
X |Ψ⟩ is expected to be O(κ0) be-

cause Q(2)
X is O(κ0). Therefore the requirement of de Sitter invariance (2.70) significantly

narrows down the space of allowed states from the full perturbative Hilbert space.

2.2 Wavefunctionals

Most standard treatments of QFT make use of the particle or Fock basis for representing

physical states. This is the case where basis vectors are specific “particles” created by

applying creation operators on a vacuum state. However, for our purpose, it is more

judicious to work with the Schrödinger representation. In this representation, the states
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in the QFT are decomposed in terms of field configuration eigenbasis {|g, χ⟩}. |g, χ⟩

stands for the simultaneous eigenstate of the Schrödinger picture operators χ(x) and

gij(x). The wavefunctional corresponding to a state |Ψ⟩ is defined as

Ψ[g, χ] = ⟨g, χ|Ψ⟩ . (2.71)

Note that N and N i do not constitute arguments of the wavefunctional because they are

pure gauge degrees of freedom as established in the previous sections. The canonically

conjugate momenta are implemented as functional derivatives

πij(x) =
δ

iδgij(x)
, πχ(x) =

δ

iδχ(x)
. (2.72)

In the perturbative framework, where hij becomes the quantum field, its momentum can

be implemented as

Πij(x) = eiκ
∫
ddxhijπ

ij δ

iδhij(x)
e−iκ

∫
ddxhijπ

ij

, (2.73)

where the conjugation by the phase is done in order to subtract off the background

momentum. We shall not make use of this differential operator in this thesis; it has

been provided merely for the sake of completion. For the rest of the section, we shall

proceed with the non-perturbative objects gij and πij. In general, assuming Schrödinger

picture, the wavefunctional also comes with a time label t (never explicitly indicated).

Time evolution of this wavefunctional is given by the functional Schrödinger equation

i∂tΨ[g, χ] = HΨ[g, χ], (2.74)

where all the momentum operators in H (see (2.29)) are now implemented as the above

defined functional derivatives.

Momentum constraint as wavefunctional symmetry

It is illuminating to study the effect of the integrated constraint Qξ on a wavefunctional

Ψ when ξµ is a purely spatial vector, i.e. ξ0 = 0. The momentum constraint Hi |Ψ⟩ can
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be integrated with ξi to get

Qξ |Ψ⟩ = 0, (2.75)

where Qξ =
∫
ddx

√
gξiHi. For the moment, let us assume pure gravity; we shall add

matter in a moment. We may write

⟨g|[Qξ, gij]|Ψ⟩ = ⟨g|Qξgij|Ψ⟩ − gij ⟨g|Qξ|Ψ⟩ (2.76)

=⇒
∫
Dg′

(
gij − g′ij

)
⟨g|Qξ|g′⟩Ψ[g′] = iLξgijΨ[g] (2.77)

In the second line we have used (2.47) and (2.37) with ξ0 = 0. Taking inspiration from

quantum mechanics where [x, p] = i gives ⟨x|p|ψ⟩ = −i∂x ⟨x|ψ⟩ we may write

⟨x|p|x′⟩ = −i∂xδ(x− x′) = i∂x′δ(x− x′). (2.78)

We deduce that the matrix element of Qξ is

⟨g|Qξ|g′⟩ = i

∫
ddxLξgij(x)

δ

δg′ij(x)
δ(g − g′). (2.79)

Indeed substituting this in LHS of (2.77) we get the RHS via integration by parts. Now

integrating the above equation with
∫
Dg′Ψ[g′] on both sides and recognising that δ(g−

g′) = ⟨g|g′⟩ we get

⟨g|Qξ|Ψ⟩ = −i
∫
ddxLξgij

δ

δgij
⟨g|Ψ⟩ . (2.80)

Adding matter field χ to the theory modifies (2.79) to

⟨g, χ|Qξ|g′, χ′⟩ = i

∫
ddx

(
Lξgij

δ

δg′ij
δ(g − g′) + Lξχ

δ

δχ′
ij(x)

δ(χ− χ′)

)
. (2.81)

Duly, (2.80) gets modified to

⟨g, χ|Qξ|Ψ⟩ = −i
∫
ddx

(
Lξgij

δ

δgij
+ Lξχ

δ

δχ

)
⟨g, χ|Ψ⟩ . (2.82)
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With slight abuse of notation, if we interpret Qξ as a differential operator, the above

equation is can be expressed as

QξΨ[g, χ] = −iLξΨ[g, χ], (2.83)

where the Lie derivative is understood to act on the functional via Leibniz rule. Thus,

imposing momentum constraint on a state |Ψ⟩ tells us that the wavefunctional Ψ[g, χ] is

invariant under all spatial diffeomorphisms.

The interpretation demonstrated here continues to hold in momentum space repre-

sentation of both gij and χ thanks to the transformation laws (2.48) and (2.50).

2.3 de Sitter overview

2.3.1 Geometry

de Sitter space is defined as a manifold embedded in the Minkowski space R1,d+1 with

the metric:

ds2 = −
(
dX0

)2
+

d+1∑
i=1

(
dX i

)2
. (2.84)

dSd+1 of length 1 is given by the hyperboloid:

−
(
X0

)2
+

d+1∑
i=1

(
X i

)2
= 1. (2.85)

Global chart is

X0 = sinht

X1 = cosht cosθ

X i = cosht sinθ ξi−1; i = 2, . . . , d+ 1.

(2.86)

Here (ξ1, . . . , ξd) are d Cartesian coordinates of a unit Sd−1. In particular,
∑d

i=1 (ξ
i)
2
= 1

and
∑d

i=1 (dξ
i)
2 ≡ dΩ2

d−1 is the (d − 1)-spherical distance element. The global chart
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Figure 2.1: The Penrose diagram of dSd+1 is square shaped where each horizontal cross-
section is a time slice which is both topologically and geometrically an Sd (blue lines).
In the expanding Poincaré patch (grey region), the spatial slices (red lines) are naively
a plane, but the point at ∞ (red dot) should be thought of as part of the Cauchy slice.
Our slice of interest is the late-time one (I+) as equal-time correlators here correspond to
inflationary correlations accessible to the post-inflationary meta-observer. It is noticeable
how close to I+, both the global and planar slicings converge. The complementary region
of the expanding Poincaré patch is called the contracting Poincaré patch.

metric is

ds2 = −dt2 + cosh2t dΩ2
d. (2.87)

Here, we have defined dΩ2
d = dθ2 + sin2θ dΩ2

d−1, which is the distance element of an Sd

created by sewing together the Sd−1’s described by ξi.

Planar/Poincaré coordinates. Consider the embedding parametrised by (η, xi; i =

1, . . . , d),

X0 =
η − η−1

2
− x2

2η

X1 = −η + η−1

2
+
x2

2η

X i = −x
i−1

η
; i = 2, . . . , d+ 1,

(2.88)
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where x2 =
∑d

i=1(x
i)2. The metric is

ds2 =
1

η2
(
−dη2 + dx2

)
, (2.89)

where dx2 ≡
∑d

i=1 (dx
i)
2. Here, η runs from −∞ to 0 in the expanding and from 0 to

+∞ in the contracting patches respectively (see fig. 2.1). This is the chart of choice in

cosmological correlator literature.

xi coordinates of Poincaré patch match that of global at I+. Let us denote the

d-sphere of the global slicing in stereographic coordinates x̃i such that

x̃i = tanθ
2
ξi, i = 1, . . . , d. (2.90)

Then the dSd+1 metric becomes

ds2 = −dt2 + cosh2t
4dx̃2

(1 + x̃2)2
. (2.91)

Comparing the embeddings (2.86) and (2.88) we have the transformation

η = − 1

sinht+ cosht cosθ , xi =
cosht sinθ ξi

sinht+ cosht cosθ . (2.92)

In particular, note the transformation of spatial coordinates,

xi =
1 + cosθ

tanht+ cosθ x̃
i. (2.93)

Taking the late-time limit t → ∞+ we get exact equality between Poincaré and global

spatial coordinates at I+:

xi = x̃i. (2.94)

This equation reveals a curious simplification in the dictionary of correlators computed

using the Poincaré and global charts. The literature on cosmological correlators predom-

inantly uses xi to describe I+. In this work though, we shall use the coordinates (t, x̃i) to

describe it as the topology of the spatial slice will be crucial in the discussion. However,

near the boundary, since the two spatial coordinates are precisely concurrent, the state-
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ments we make about correlations between points x̃i hold just as true for correlations

between the points xi. We must remember that this agreement does not extend in the

past of I+.

In the rest of this work, we shall drop the tilde on x̃i and refer to it as just xi. There

will be no ambiguity since we will never work in Poincaré coordinates.

Isometry Group. Since dSd+1 is embedded in R1,d+1 as the surface X · X = 1, the

surface is invariant under O(1, d+1). The flow of all these boosts and rotations projected

on the dS surface forms its isometry group which therefore also has the structure O(1, d+

1).

2.3.2 Hilbert space

The WDW equation combined with the momentum constraints gives us a vanishing

Hamiltonian. This makes the evolution of the quantum gravity state

∂tΨ[g, χ] = 0. (2.95)

This equation is a bit concerning at first glance as it seems to suggest there is no time

evolution for the state. However one must note that the full Hamiltonian of a theory with

a boundary, like Anti-de Sitter (AdS) and flat space, is not just the bulk integral of the

constraints but a boundary term along with it. This boundary Hamiltonian indeed gives

the state a non-trivial evolution. The bulk nature of the constraint just echoes the fact

that in gravity, all small diffeomorphisms, that is coordinate reparametrisations which do

not extend all the way to infinity, are gauge transformations. However, we are interested

in spacetimes which are asymptotically dS; specifically, spacetimes with the topology of

dS. This means that their global time slices are topological spheres and therefore do not

have a boundary. Hence, WDW equation in this context does mean that the state is

frozen in time. How does one then recover dynamical gravity? A resolution to this puzzle

was offered in a previous work [2] along with a characterisation of the Hilbert space of

asymptotic dS which we briefly summarise in this section.
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Intrinsic time. It should actually be no surprise that a theory with general covariance

built into it exhibits no evolution over time. Time-reparametrisation, after all, is a

symmetry built into the system. A similar situation occurs in bosonic string theory

where reparametrisation of worldsheet coordinates, the time coordinate τ in particular,

is a gauge symmetry. Of course, this doesn’t mean that the string is frozen in time

because the dynamics we are interested in evolves in the target-space time X0 instead of

worldsheet time τ . In other words, time-evolution data is encoded within the state itself!

Notice that in classical dS evolution, the volume of a time slice grows exponentially

with time and therefore the quantity

log
∫
ddx

√
g (2.96)

can be taken to be a proxy for time. In the QG case, even though any reference to canon-

ical time itself is lost, the slice volume is still an argument of the wavefunctional. It is

therefore possible to promote it to the status of time, and study the evolution of observ-

ables with respect to it. Now, asking to know the late-time nature of the wavefunction is

tantamount to asking about its nature in the large-volume regime. One has to therefore,

adopt this view of “intrinsic time” and attempt to solve (2.30) in large-volume limit.

Late time solution. In [2], it was found that the WDW equation simplifies dramati-

cally in this limit and the space of solutions can be summarised as follows:

Ψ[g, χ] −→
late time

eiS[g,χ]Z[g, χ]. (2.97)

Here, S[g, χ] is a real and divergent term which is common to all states. Z[g, χ] is a

diffeomorphism invariant functional with anomalous Weyl invariance in even d. Weyl

transformation refers to a simultaneous local rescaling of the metric as well as the matter

field: gij → Ω2gij and χ → Ω−∆χ, where ∆ is a scaling dimension we attribute to the

scalar field χ, and Ω(x) is a local function. The precise formulation of its Weyl property

is

(
2gij

δ

δgij
−∆χ

δ

δχ

)
Z[g, χ] = AdZ[g, χ] , (2.98)
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where Ad is an imaginary anomaly polynomial that is nonzero only in even d and is deter-

mined explicitly in [2]. The solution is valid in the limit where the cosmological constant

dominates the spatial curvature scalar R (distinct from the spacetime curvature scalar),

and other terms in the local energy density, everywhere on the slice. This requires the

volume of the spatial slices to become asymptotically large compared to the cosmological

scale. Physically, this corresponds to the late-time limit of an asymptotically de Sitter

spacetime.

Hilbert space ∼ Theory space. The diff (diffeomorphism) × Weyl invariance of

Z[g, χ] points to it being the generating function of correlators of a primary ϕ(x) and its

stress tensor T ij(x) in a Euclidean CFT. This CFT is sourced by a coupling ϕχ and lives

in a deformed background gij. The relation, in short, is

Z[g, χ] = ⟨e−
∫
ddxϕχ⟩CFT, gij . (2.99)

Since we are interested in perturbations around the dS metric, gij is kept close to a perfect

sphere. One can make use of the Weyl invariance of |Z[g, χ]2| to “Weyl away” the very

large size and the spherical curvature of the late-time metric to write

gij = δij + κhij. (2.100)

A slight difference here in convention form the previous section is that hij is a perturbation

away from perfect spherical geometry (denoted by δij) instead of a general geometry gij.

From this point onwards in the rest of this document, gij will always represent the full

perturbed geometry instead of the background. Expanding Z[g, χ] as

Z[g, χ] = exp
{∑

n,m

1

n!m!
Gi⃗⃗j

n,m(x⃗, y⃗)hi1j1(x1) . . . hinjn(xn)χ(y1) . . . χ(ym)

}
, (2.101)

and imposing the diff × Weyl invariance on it reveals the following. The vectorised

position arguments and spatial indices are n-tuples where the k’th entry is associated

with the k’th insertion of hij or χ. The coefficients Gi⃗⃗j
n,m(x⃗, y⃗) obey conformal Ward

identities corresponding to a Euclidean CFT living in d dimensions. This straighforwardly
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leads to conformally covariant transformation laws obeyed by them. This relation can be

represented succinctly as

Gi⃗⃗j
n,m(x⃗, y⃗) ∼ ⟨T i1j1(x1) . . . T

injn(xn)ϕ(y1) . . . ϕ(ym)⟩
connected
CFT . (2.102)

This ϕ has the dual scaling dimension ∆̄ = d−∆, and the CFT has an imaginary central

charge. These symmetry laws follow from integrating to finite deformation the conformal

Ward identities discussed above. Since each distinct set of coefficients {Gn,m}3 describes

a unique CFT, but also defines a unique state, it is concluded that the space of states is

dual to the space of all CFTs of the specified form.

Excitation basis. It is possible to give another basis for this Hilbert space which

is interpretable as “excitations” on the Hartle-Hawking (HH) state. The HH state is

a naturally arising vacuum often discussed in quantum gravity literature for its many

pleasing properties, foremost amongst which is the fact that it is a solution of the WDW

equation [35]. It is defined via the no-boundary prescription

ΨHH[g, χ] =

∫
g,χ

DĝDχ̂ e−SE[ĝ,χ̂]. (2.103)

The sum runs over all Euclidean 4-geometries (assuming we are in 3 + 1 dimensions) ĝµν
which induce the 3-geometry gij on its sole boundary, which is also the final time slice.

Further the bulk field is summed over configurations χ̂ with the boundary condition χ

on the final time slice. SE stands for the Euclideanised Einstein-Hilbert action. This

prescription is natural from the perspective of quantum mechanics and as such solves

the WDW equation. It also has the nice property that in the non-gravitational limit

(GN → 0), it reduces to the Bunch-Davies vacuum familiar in dS-QFT literature. Since

ΨHH is computed with the explicit procedure above, it incorporates information about

the specific interactions of the theory, and in this sense the HH state is a special state.

Although the remaining material will pivot on the HH state as a reference, all the prop-

erties demonstrated shall continue to hold for other states. Let the HH state |Ψ0⟩ have

wavefunctional coefficients Gi⃗⃗j
n,m(x⃗, y⃗). Let another physical state be |{G̃n,m}⟩. Then it

3spatial indices will be often dropped for brevity.
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|Ψ0⟩

|{G(1)
n,m}⟩

|{G(2)
n,m}⟩δG(1)

n,m |Ψ0⟩

δG(2)
n,m |Ψ0⟩

Figure 2.2: In the Hilbert space (square box), we can interpolate physical (WDW-obeying)
states between the HH state |Ψ0⟩ and another physical state |{G(i)

n,m}⟩ by exponentiating
convex combinations of the wavefunctional coefficients of the theories at either end of the
curve. Then the tangent vector δG(i)

n,m |Ψ0⟩ (indicated with solid arrows) also represents a
physical state.

is possible to create a “tangent” state

Ψ[g, χ] = eiS[g,χ]
∑
n,m

κnδGn,mZ0[g, χ], (2.104)

which also solves the WDW equation. Here,

δGn,m =
1

n!m!

∫
dx⃗dy⃗ δGi⃗⃗j

n,m(x⃗, y⃗)hi1j1(x1) . . . hinjn(xn)χ(y1) . . . χ(ym), (2.105)

and we have defined the difference of two coefficients as

δGi⃗⃗j
n,m(x⃗, y⃗) = G̃i⃗⃗j

n,m(x⃗, y⃗)−Gi⃗⃗j
n,m(x⃗, y⃗). (2.106)

Notice that this state is an “excitation” on the HH state in the following sense

|Ψ⟩ =
∑
n,m

κnδGn,m |Ψ0⟩ . (2.107)

This machinery allows us to cover full perturbative Hilbert space in terms of excitations

on top of the HH vacuum (see fig. 2.2 for a visual representation and sec 5 of [2] for the
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detailed procedure). One must note that these states are not normalisable in the naive

QFT norm. That quantity always diverges for all states except the |Ψ0⟩ itself due to the

conformally covariant nature of the excitation tail. We now proceed to prescribe a norm

for this Hilbert space which will reproduce finite results for the excited states.

de Sitter invariance. In the nongravitational limit (κ → 0), the excitation tail van-

ishes with the exception of the leading term leaving a state of the kind

|Ψng⟩ = δGn0,m0 |Ψ0⟩ , (2.108)

where n0,m0 are a pair of positive integers. These states can be explicitly shown be

invariant under dS isometries (see [2]), thereby being in line with the discussion in sec-

tion 2.1.2. We shall revisit this idea in sections 3.4 and 5.1 where we discuss norms and

correlators of said limit states.



Chapter 3

Norm proposal

In this chapter we discuss the problem of defining a norm on the space of solutions to the

WDW equation that take the form (2.104). We also show that in the nongravitational

limit, this norm reduces to the norm defined by Higuchi. The definition of a norm also

tells us how to compute expectation values of observables.

3.1 The general problem

We have determined the form of the wavefunctional in equation (2.104) only in the limit

of large volume i.e. in the regime where the cosmological constant dominates the Ricci

scalar of the spatial slice and the matter potential. Nevertheless, we expect that this

information is sufficient to define a norm on the Hilbert space. The intuition is that

the large-volume limit is equivalent to the late-time limit in the physical spacetime. In

quantum mechanics, the norm of the state can be defined at any instant of time and does

not require knowledge of the full time-evolution of the state. Therefore, we expect that

the norm can be defined on the space of wavefunctionals in the large-volume limit and

should not require details of the wavefunctional everywhere in the configuration space.

Once the question has been reduced to that of finding the norm on states of the form

(2.104), we find another simplification. Although the wavefunctional Ψ itself has a phase

factor that is not Weyl invariant, and Z[g, χ] might have a Weyl anomaly, |Ψ|2 is diff ×

Weyl invariant since the phase factor cancels and the anomaly is pure imaginary. So it

makes sense to study |Ψ|2 beyond the domain of large-volume metrics where the form

33
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(2.104) was originally derived. (This point is discussed in some more detail in section 4.2

of [2].)

We propose that the norm of a wavefunctional Ψ is given by considering the integral

of |Ψ|2 over all field configurations and dividing by the volume of the group of diffeomor-

phisms and Weyl transformations.

(Ψ,Ψ) ≡ N1

vol(diff×Weyl)

∫
DgDχ

∑
n,m,n′,m′

κn+n′
δG∗

n,mδGn′,m′|Z0[g, χ]|2 . (3.1)

Here N1 is an overall state-independent normalisation constant that we will choose below

for convenience.

Now consider a diff × Weyl invariant operator A[g, χ] that maps states of the form

(2.104) back to the state space. We propose that the expectation value of the operator

is given by

(Ψ, AΨ) =
N1

vol(diff×Weyl)

∫
DgDχ

∑
n,m,n′,m′

κn+n′
δG∗

n,mδGn′,m′|Z0[g, χ]|2A[g, χ] . (3.2)

Note that the knowledge of the norm for the state (a|Ψ1⟩ + b|Ψ2⟩), and the expectation

value of A in this state, for all a and b is sufficient to determine the overlap (Ψ1,Ψ2) and

the matrix elements (Ψ1, AΨ2) including their phase.

The proposal for the norm and expectation value, (3.1) and (3.2), is not unique but

we adopt it because it is natural and simple. It might be of interest to explore alternative

norms, as we briefly discuss in section 3.5. We also postpone a discussion of some subtle

aspects of the proposal to section 3.5. For now, we proceed to examine the technical

problem of gauge fixing the diff × Weyl redundancy to obtain a practical method of

computing the norm. In the section below, we use the Faddeev-Popov formalism to

obtain a gauge-fixed expression. In appendix C, we show that the gauge-fixed functional

integral is invariant under a BRST transformation.

Comparison with DeWitt norm. Note that it is not clear if the norm presented here

follows from DeWitt’s norm [32] in an obvious way. In fact, these two norms are dissimilar

in at least two immediate ways. While the DeWitt norm, essentially a Klein-Gordon norm

in the superspace, contains metric derivatives within the integral and suffers from issues
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of positive-definiteness, the norm proposed here does not have that problem due to being

an integral of |Ψ|2. Secondly, the norm proposed here uses only the late-time behaviour

of the wavefunction, as opposed to the DeWitt norm which uses the full wavefunction.

Despite these superficial dissimilarities, it will an interesting pursuit to explore if these

two norms are connected in a deep way.

3.2 Gauge-fixing conditions

In order to implement the Faddeev-Popov procedure to gauge fix the functional integral,

we use the following gauge-fixing conditions

∂igij = 0; gii = d . (3.3)

We use the standard summation convention, so that repeated indices are summed over.

The derivative that appears in (3.3) is an ordinary partial derivative and so the gauge-

fixing condition explicitly breaks both diffeomorphism invariance and Weyl invariance.

With gij = δij + κhij, our choice requires hij to be traceless and transverse.

In d = 2, the conditions (3.3) are equivalent to fixing gij to δij. However, for d > 2 it is,

in general, not possible to fix the metric to a “fiducial metric” using only diffeomorphisms

and Weyl transformations.

We adopt the gauge choice (3.3) for simplicity. In Appendix A, we discuss alternate

choices of gauge that lead to the same physical results.

The infinitesimal variation due to a diffeomorphism xi → xi + ξi and a Weyl trans-

formation gij → e2φgij of the metric is given by

δ(ξ,φ)gij = ∇iξj +∇jξi + 2φgij , (3.4)

where ξi = gikξ
k. It will be convenient below to change the parameter of the Weyl

transformation to implement the shift φ→ φ− 1
d
∇kξk. The infinitesimal transformation

now takes the form

δ(ξ,φ)gij = (Pξ)ij + 2φgij , (3.5)
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where we have defined

(Pξ)ij ≡ gjk∇iξ
k + gik∇jξ

k − 2

d
gij∇kξk

= ξℓ∂ℓgij + gjk∂iξ
k + gik∂jξ

k − 2

d
gijgkℓ∂ℓξ

k .
(3.6)

The shift is chosen so that the (Pξ)ij is traceless provided gii = d.

3.2.1 Residual gauge transformations

The gauge fixing conditions (3.3) do not completely fix the gauge. Since (Pξ)ij is traceless

provided gii = d, the residual symmetry corresponds to solutions of the equation

(Dξ)j ≡ ∂i(Pξ)ij = 0 . (3.7)

Solutions of this equation are in one-to-one correspondence with the generators of SO(1, d+ 1).

However, the nature of the solutions is slightly different for d > 2 and for d = 2.

It is shown in Appendix A that, for a general metric, in d > 2, there are (d+1)(d+2)
2

solutions of (3.7). These are given by

translations : ξi = αi;

rotations : ξi =M ijxj

dilatations : ξi = λxi

SCTs : ξi = (2(β · x)xi − x2βi) + βjvij

(3.8)

where λ, and M ij denote, respectively, a number and an antisymmetric matrix and αi

and βi are vectors.

The notable aspect of (3.8) is that the usual special conformal transformations are

corrected as noted in [36, 37]. The matrix vij depends nontrivially on the metric and

vanishes when gij = δij. In Appendix A, we present an algorithm to find vij in perturbation

theory. It is also shown there that although the SCT itself is modified, the algebraic

structure of the residual transformations (3.8) remains that of SO(1, d+1). Appendix A

also discusses residual gauge transformations for other choices of gauge.

In d = 2, since the conditions (3.3) fix gij = δij, the correction term in the SCT always
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vanishes.

vij = 0, for d = 2 . (3.9)

Appropriate linear combinations of the two allowed SCTs in d = 2 correspond to the

two independent special conformal transformations that are usually described in terms

of “holomorphic” and “anti-holomorphic” transformations in the discussion of string per-

turbation theory.

3.2.2 Fixing the residual symmetry

To fix the residual gauge symmetry, we will take advantage of the presence of insertions

in (3.2). We will assume that the state under consideration has at least two insertions,

which implies the presence of at least four insertions in (3.2). In all dimensions, the

residual gauge symmetry can then be fixed by setting the position of three insertions as

follows:

x1 = 0; x2 = 1; x3 = ∞ . (3.10)

The choice of a point at the origin and another point at infinity fixes the translations

and special conformal transformations. Fixing x2 to 1 ≡ (1, 0, . . . , 0) fixes the dilatations

and also part of the rotations. This choice does not fix the SO(d− 1) group of rotations

of the hyperplane orthogonal to the 0 − 1 axis. But since this group is compact, it can

simply be integrated over and does not lead to any divergence in the functional integral.

It is convenient to impose the last condition using the coordinates x̃i3 =
xi
3

|x3|2 so that it

can be written as x̃3 = 0.

3.3 Faddeev-Popov procedure

To gauge fix the functional integral for the expectation value of an operator in (3.2), we

insert the following expression for the identity,

1 = ∆FP

∫
DξDφ δ(g

(ξ,φ)
ii − d)δ(∂ig

(ξ,φ)
ij )δ(x1)δ(x2 − 1)δ(x̃3) , (3.11)

where the notation g(ξ,φ) indicates the metric obtained upon acting on gij with the dif-

feomorphism parameterised by ξ and the Weyl transformation φ. ∆FP is the standard
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Faddeev Popov determinant that we will evaluate below.

Substituting the infinitesimal transformations in (3.11), we can write

∆−1
FP =

∫
DξDφ δ(2dφ) δ((Dξ)i) δ(ξj(0)) δ(ξj(1))δ(ξ̃j(∞)) , (3.12)

where, at infinity, we use the diffeomorphism in the inverted chart

ξ̃i(x) =
1

|x|2
(
ξi(x)− 2(x · ξ) x

i

|x|2
)
, (3.13)

which is inserted at x = ∞ corresponding to x̃ = 0. The delta function for φ is trivial,

and one can simply integrate it out.

The Faddeev-Popov determinant may be evaluated using the standard procedure of

first writing the delta functions as integrals over auxiliary parameters, and then simply

replacing the bosonic parameters by Grassmann numbers. This leads to an expression

for ∆FP in terms of a c-c̄ ghost action:

∆FP = N2

∫
DcDc̄ e−Sgh

(∏
j

cj(0)cj(1)c̃j(∞)
)
, (3.14)

where the c ghost insertions correspond to ξ insertions in (3.12) and the ghost action

(derived in appendix C) Sgh is given by

Sgh =

∫
ddx c̄j(Dc)j . (3.15)

The ghost action (3.14) has zero modes corresponding to the residual gauge trans-

formations discussed previously. Some of these are soaked up by the insertion of the 3d

c-ghosts in the denominator. But in the ghost functional-integral (3.14), we exclude the

zero modes that correspond to rotations that leave the point x2 = 1 invariant. (All rota-

tions leave the origin and the point at ∞ invariant.) These zero modes correspond to the

unfixed compact part of the residual symmetries and if we were to integrate over them

we would obtain zero since there is nothing to soak them up. But there is no difficulty

in excluding them in the functional integral since they are orthogonal to all other modes.

These unfixed residual transformations also contribute a factor of vol(SO(d − 1))−1 in

∆FP but this can be absorbed in the overall normalisation constant N2.
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We do not keep track of the overall constant N2. This factor always drops out of

any physical computation since the same constant appears in both the norm and the

expectation value and so (Ψ,Ψ)−1(Ψ, AΨ) does not depend on this constant.

Combining everything together, the gauge-fixed expression for the expectation value

of A can be written in the following form.

(Ψ, AΨ) = N1N2

∫
DgDχDcDc̄

∑
n,m,n′,m′

κn+n′
δG∗

n,mA[g, χ]δGn′,m′ |Z0[g, χ]|2e−Sgh

× δ(gii − d)δ(∂igij)δ(x1)δ(x2 − 1)δ(x̃3)
(∏

i

ci(0)ci(1)c̃i(∞)
)
.

(3.16)

It is understood that the points x1, x2, x3 correspond to operators that are part of A or

δGn,m.

In Appendix C we show that the gauge-fixed integral (3.16) remains invariant under

a BRST symmetry when the delta functions are implemented using auxiliary fields.

Ghost determinant. The expression (3.16) can simplified by evaluating the ghost

determinant. First we expand the c-ghosts using a basis of orthonormal vector fields.

The correct inner product between vector fields is the one on the sphere. (See Appendix

A for more discussion.)

We then divide the space of vector fields into the subspace of zero modes and the

subspace of nonzero modes. Since we have excluded modes corresponding to rotations

that leave (1, 0, . . . , 0) invariant, the remaining subspace of zero modes is exactly 3d

dimensional. Using the index z to run over zero modes and the index n to run over the

non-zero modes, we can write

cj =
∑
z

c(z)ζ
j
(z) +

∑
n

c(n)ζ
j
(n) . (3.17)

First, consider the contribution of the non-zero modes. This can be evaluated by ne-

glecting any c insertions outside the ghost action. This is because in the ghost action,

the nonzero modes of c are always paired with a mode of c̄. Upon series expanding the

action, further c insertions simply give zero either in the integral over the c modes or the c̄

modes (for further details, see [38]). Then, to obtain the non-zero mode contribution, we
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simply perform the integral over the ghost action to obtain a restricted FP determinant

∫
Dc̄Dc′ e−Sgh = ∆′

FP , (3.18)

where the prime label indicates that the zero modes have been excluded from the mea-

sure. Note that the above notation is somewhat deceptively compact since this restricted

determinant depends on the metric fluctuation.

We now turn to the zero mode contribution. The zero-mode fields are proportional

to those given in (3.8) but we will fix the normalisation below for convenience. We

can choose d modes to correspond to translations in the d-possible directions; one mode

corresponds to dilatations; d modes correspond to special conformal transformations; and

(d− 1) modes correspond to rotations with M ij ∝ δii0δ
j
1 − δi1δ

j
i0

with i0 ̸= 1. The index z

runs over all these 3d fields and we can therefore construct the 3d× 3d matrix

M =



ζ1(1)(0) . . . ζd(1)(0) ζ1(1)(1) . . . ζd(1)(1) ζ̃1(1)(∞) . . . ζ̃d(1)(∞)

ζ1(2)(0) . . . ζd(2)(0) ζ1(2)(1) . . . ζd(2)(1) ζ̃1(2)(∞) . . . ζ̃d(2)(∞)

... . . .
... ... . . .

... ... . . .
...

ζ1(3d)(0) . . . ζd(3d)(0) ζ1(3d)(1) . . . ζd(3d)(1) ζ̃1(3d)(∞) . . . ζ̃d(3d)(∞)


. (3.19)

The zero-mode determinant is

∆0
FP = det(M) . (3.20)

We now find that our gauge choice leads to a simplification. The special conformal trans-

formations depend on the metric through vij as shown in (3.8). However, this dependence

vanishes at infinity. Moreover, while the special conformal transformations become a

constant at infinity, all other zero-mode fields vanish at infinity. Therefore det(M) does

not depend on the special conformal transformations at the points 0 or 1 and thus det(M)

is independent of the metric. By normalizing the zero-mode fields appropriately, we can

simply set

∆0
FP = 1 . (3.21)

Final answer. We now introduce some notation and present our final answer in a

compact form. When three points within an integrated product of operators are fixed
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using the delta functions that fix the residual transformations, we denote this using a

overline. For instance,

δGn,m ≡
∫
dx⃗ δ(x1)δ(x2 − 1)δ(x̃3)G

i⃗⃗j
n,m(x⃗)hi1,j1(x1)hi2,j2(x2) . . . χ(xn+1) . . . χ(xn+m) .

(3.22)

The notation δGn,mA[g, χ]δG∗
n,m allows for the position of any three operators in the

product to be fixed.

Next, in the expression for the functional integral (3.16), we choose

N1 =
1

N2

[∫
DgDχ δ(gii − d)δ(∂igij)∆

′
FP|Z0[g, χ]|2

]−1

. (3.23)

This choice makes the product N1N2 equal to the inverse of the functional integral over the

wavefunctional of the Euclidean vacuum. Hence we should think of physical observables

as the ratio of a functional integral with operator insertions, and the functional integral

over the Euclidean vacuum.

Given a general product of the metric and other matter fields, Q, we also define the

notation

⟪Q⟫ = N1N2

∫
DgDχ δ(gii − d)δ(∂igij)∆

′
FP|Z0[g, χ]|2Q. (3.24)

Intuitively, the notation can be thought of as the expectation value of Q in the Euclidean

vacuum although this intuition should be used with care since (see section 3.5) the vacuum

itself might not be normalizable.

Using this notation, we can then rewrite the gauge-fixed path integral (3.16) as

(Ψ, AΨ) =
∑

n,m,n′,m′

κn+n′⟪δG∗
n,mA[g, χ]δGn′,m′⟫ . (3.25)

Note that setting A = 1 yields the norm.

(Ψ,Ψ) =
∑

n,m,n′,m′

κn+n′⟪δG∗
n,m δGn′,m′⟫ . (3.26)

The relations (3.26) and (3.25) represent our final answers in compact form.
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3.4 Nongravitational limit

We now show that our expression for the norm coincides precisely with the norm proposed

by Higuchi [22, 23] in the nongravitational limit.

It was explained in [2] that the form of the allowed states simplifies in the nongravita-

tional limit. More specifically, in the nongravitational limit, with the state corresponding

to the Euclidean vacuum denoted by |0⟩ the allowed states take the form

|Ψng⟩ =
∫
dx⃗ δGi⃗⃗j

n,m(y⃗, z⃗)hi1j1(y1) . . . hinjn(yn)χ(z1) . . . χ(zm)|0⟩ . (3.27)

The simplification above is that we do not have a sum over multiple values of n that is

necessary when κ ̸= 0 by the Ward identities.

Now consider the nongravitational limit of the expectation value defined in (3.24),

⟨0|Q|0⟩QFT ≡ lim
κ→0
⟪Q⟫ . (3.28)

In the nongravitational limit, the ghosts decouple from the metric. Since ∆′
FP has no

dependence on the metric fluctuation in the limit κ → 0, it trivialises to a numerical

factor. The gauge conditions still ensure that hij is transverse and traceless. Therefore,

this expression instructs us to integrate the product of insertions over the matter fields

and over the transverse traceless fluctuations of the metric using the κ → 0 limit of the

wavefunctional for the Euclidean vacuum. This is precisely how one would have computed

the expectation value of the product of operators in the quantum field theory, including

the fluctuations of free transverse-traceless gravitons. This explains the choice of notation

in (3.28).

Now consider the norm of two states of the form (3.27). Our final answer for the norm

in the nongravitational limit can be written as

(Ψng,Ψng) =

∫
dx⃗dx⃗′ δGi⃗⃗j

n,m(x⃗) (δG
i⃗⃗j
n,m)

∗(x⃗′)δ(x1)δ(x2 − 1)δ(x̃3)

× ⟨0|hi′1j′1(y
′
1) . . . hi′nj′n(y

′
n)χ(z

′
1) . . . χ(z

′
m)hi1j1(y1) . . . hinjn(yn)χ(z1) . . . χ(zm)|0⟩QFT

(3.29)

where x1, x2, x3 can be any three coordinates from the x⃗ = (y⃗, z⃗) or x⃗′ = (y⃗′, z⃗′) that
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appear above.

We recognise that this is just the gauge-fixed version of Higuchi’s proposal as we can

undo the residual gauge-fixing and write this as a group average which becomes

(Ψng,Ψng) =
vol(SO(d− 1))

vol(SO(1, d+ 1))

∫
dx⃗dx⃗′ δGi⃗⃗j

n,m(x⃗) (δG
i⃗⃗j
n,m)

∗(x⃗′)

× ⟨0|hi′1j′1(y
′
1) . . . hi′nj′n(y

′
n)χ(z

′
1) . . . χ(z

′
m)hi1j1(y1) . . . hinjn(yn)χ(z1) . . . χ(zm)|0⟩QFT .

(3.30)

This can be derived repeating the steps in section 5.3 of [2]. We can also write this as

(Ψng,Ψng) =
vol(SO(d− 1))

vol(SO(1, d+ 1))
⟨Ψng|Ψng⟩QFT (3.31)

and we recognise Higuchi’s inner product. In this expression the infinite volume of the

conformal group in the denominator cancels the infinite QFT norm. The additional finite

factor of vol(SO(d − 1)) emerges because an SO(d − 1) subgroup of SO(1, d + 1) leaves

three points invariant. Since this is an overall finite normalisation constant in the norm,

it is physically irrelevant.

Note that it would not be correct to equate (3.29) with (3.30) away from the non-

gravitational limit even after replacing the QFT expectation values with a gravitational

expectation value of the form (3.24). First, away from this limit the form of the states

shown in (3.27) is corrected. More importantly the action of a special conformal trans-

formation on the operators that appear there is corrected due to the correction term in

(3.8). Consequently, special conformal transformations relate an expectation value to

another expectation value with additional metric insertions. Therefore, away from the

gravitational limit the gauge-fixed integrand that appears in (3.29) cannot simply be

equated with a group average.

Therefore our proposal (3.26) reduces to Higuchi’s proposal in the nongravitational

limit but also provides a systematic method of correcting it at nonzero κ.

If, in addition to the nongravitational limit, we consider the free-field limit for matter

fields in the principal series then the space of “conformal blocks” naturally provides an

orthonormal basis for the Hilbert space under the norm (3.30). This interesting point is

discussed further in Appendix B.
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3.5 Subtleties

In the technical discussion of the norm, we have glossed over some subtleties that we now

list.

1. In even dimensions, the transformation of the measure might introduce a Weyl

anomaly in (3.25) and (3.26) [39]. Relatedly, in string theory, where a similar

functional integral appears, the critical dimension is fixed by demanding that the

Weyl anomaly vanishes. So, in even d the expression for the norm might need to be

improved by adding auxiliary fields to preserve diff × Weyl invariance. However,

we also note that we have some more freedom because |Z0[g, χ]|2 is not a local

functional and therefore it might be reasonable to study nonlocal measures. We

leave a deeper study of the measure to future work. For odd d, which includes

the case d = 3 of physical interest since it corresponds to an asymptotically dS4

spacetime, we do not expect these issues to arise.

2. The question of the normalizability of the Hartle-Hawking wavefunctional and its

relation to the nonperturbative instability of de Sitter space has been discussed

in [40–42]. This is related to the question of the measure. We will not address this

issue in this thesis. We note that physical quantities are always related to the ratio

of an expression of the form (3.25) and an expression of the form (3.26), which

might be better behaved.

3. The formula (3.25) requires the presence of at least three operators in the product

δG∗
n,mA[g, χ]δGn′,m′ . Therefore it cannot be used to compute the norm of the original

Euclidean vacuum. (This problem is separate from the one discussed in point 2.)

This suggests that the vacuum state itself is not part of the Hilbert space at all and

only excitations above the vacuum are normalizable states. This issue was noted

earlier by Higuchi [23] and also, recently, in [43]. It is similar to the one that arises

in string perturbation theory, if one attempts to define the sphere partition function

with less than three vertex operator insertions. It would be nice to understand this

better, perhaps using the techniques of [44–48].

4. Consider a term with a given value of n,m in the expression (3.25). This involves the

“expectation value” of a product of operators integrated with coefficient functions
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that are conformally covariant. (Recall the definition of Gn,m in (2.105).) It will be

shown in chapter 4, that the expectation value also transforms in a simple fashion

under the conformal group. When combined with the coefficient function this

produces an integrand that is invariant under rotations, dilatations and translations

and in the κ→ 0 limit under SCTs. Fixing three points in such an integral suffices

to remove an obvious divergence that comes from the volume of the conformal

group.

5. Nevertheless, there might be additional divergences in (3.16) that arise due to

the “collision” of operators. This issue again parallels an issue that appears in

string perturbation theory. We hope that the ideas developed to deal with these

divergences in that setting, including a suitable iϵ prescription [49], the use of string

field theory techniques [50] and off-shell methods [48,51,52], will be effective in this

setting as well. We leave further study of this issue to future work.



Chapter 4

Cosmological correlators

Cosmological correlators are of interest since they provide a leading-order approximation

to the fluctuations generated during the inflationary epoch, when the universe could be

approximated by a de Sitter spacetime. In this section, we will define these quantities

within our framework and discuss some of their properties.

4.1 Definition of cosmological correlators

In the literature, cosmological correlators are usually computed as QFT-expectation val-

ues of the form ⟨χ(x1) . . . χ(xn)⟩QFT, where xi are points on the late-time boundary of

de Sitter. Note that since these points are on the asymptotic late-time slice, they are

infinitely separated in physical distance for any finite separation of the coordinates. In a

quantum field theory, the meaning of such correlators is clear. However, in a theory of

quantum gravity, the product of local operators on the late-time slice does not commute

with the constraints and so is not gauge invariant.

For instance, under a diffeomorphism xi → xi + ξi, an operator insertion χ(x) trans-

forms as

χ(x) → χ(x) + ξi∂iχ(x) , (4.1)

and thus does not remain invariant. Since diffeomorphisms on the late-time slice are

generated by the momentum constraint, this means that the operator χ(x) does not

commute with the momentum constraint. Likewise, it may be checked that the operator

does not commute with the Hamiltonian constraint. This is expected from the well-known

46
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result [32] that gauge-invariant observables in gravity cannot be local.

Nevertheless, it is possible to make sense of such operators by fixing the gauge. We

propose the following definition of cosmological correlators. Let

Cp,q

i⃗⃗j
(x⃗) = hi1j1(z1) . . . hipjp(zp)χ(y1) . . . χ(yq) , (4.2)

denote a product of p metric fluctuations and q matter fluctuations. Now consider a state

of the form (2.104). We propose that the cosmological correlator corresponding to the

product (4.2) in the state (2.104) be defined as

⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC =

∑
n,m,n′,m′

κn+n′⟪δG∗
n,mδGn,mCp,q

i⃗⃗j
(x⃗)⟫ , (4.3)

using the expectation value (3.24). This can be written more explicitly as

⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC ≡ N1N2

∫
DgDχDc̄Dc′e−SCp,q

i⃗⃗j
(x⃗) , (4.4)

where, for convenience in the discussion below, we have introduced an “action” S

e−S ≡ e−Sghδ(gii − d)δ(∂igij)|Z0[g, χ]|2
∑

n,m,n′,m′

κn+n′
δG∗

n,mδGn,m . (4.5)

Let us discuss some features of our proposed correlator.

1. Recalling point 4 in section 3.5, our prescription for the correlator makes sense pro-

vided that the product (4.2) has at least three points. δGn,m also contains products

of the form (4.2) integrated with conformally covariant functions. Therefore, if we

study a k = p + q-point cosmological correlator, each term in the sum in (4.4)

is an expectation value of a product of (n + m) + (n′ + m′) + k operators where

(n+m)+ (n′+m′) operators are integrated with a conformally covariant function.

It will be shown below that the expectation value is conformally covariant. (See

section 4.2 for a precise discussion.) Therefore a value of k ≥ 3 is sufficient to

remove a potential divergence from the volume of the conformal group. It would

be nice to understand two-point correlators, perhaps, by generalizing the methods

of [44].
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2. The prescription (4.4) continues to make sense if we remove the insertions of δGn,m

and consider only the vacuum state. In the vacuum state, the restriction k ≥ 3

does not apply. Although the vacuum is the state that is most commonly used to

compute cosmological correlators, especially in the literature that makes contact

with AdS/CFT [26,53], we remind the reader that it is not normalizable when the

norm is given by (3.16).

4.1.1 Dependence on the gauge choice

The prescription (4.4) defines the expectation value of a gauge-fixed operator. Since the

product of operators Cp,q

i⃗⃗j
is not diff×Weyl invariant, if one were to choose a different

gauge (as opposed to the transverse-traceless gauge chosen above), one would obtain

a different answer for the cosmological correlator. In fact, it is perfectly reasonable

to make a different gauge choice, and alternative gauges are discussed in appendix A.

The transverse-traceless gauge is convenient for us since it will be shown below that the

symmetries of cosmological correlators take on a simple form. In other gauges, these

symmetries might be realised nonlinearly although different gauges might be suitable for

different physical applications.

Given a gauge choice, the prescription (4.4) defines an unambiguous conjugate-bilinear

functional on two states. Therefore, there necessarily exists some gauge invariant operator

on the Hilbert space whose matrix elements are defined by (4.4). More precisely, with

|Ψ⟩ = a|Ψ1⟩ + b|Ψ2⟩, we can simply define a gauge-invariant operator Ĉp,q

i⃗⃗jx⃗
with matrix

elements as follows

(Ψ1, Ĉp,q

i⃗⃗jx⃗
Ψ2) ≡

∂

∂a∗
∂

∂b
⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC , (4.6)

where the right hand side is defined by (4.4). The operator Ĉp,q

i⃗⃗jx⃗
is not a local functional

of χ and hij and the x⃗ are simply labels for this operator.

The map between the product Cp,q(x⃗) and the gauge invariant operator depends on

the gauge choice. However, the difference between different gauge choices manifests itself

only at O(κ). In the nongravitational limit, there is a simple gauge-invariant operator

whose expectation value yields (4.4). This is given by simply taking the group average

of (4.4).

To see this more precisely, let U be the operator in nongravitational quantum-field
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theory that implements the action of the conformal group on the late-time metric and

matter fluctuations. Then we have

Ĉp,q

i⃗⃗jx⃗
=

1

vol(SO(d− 1))

∫
dU U †Cp,q

i⃗⃗j
(x⃗)U, (κ→ 0) , (4.7)

where dU is the associated Haar measure. The right hand side makes sense provided

p+ q ≥ 3. We see that Ĉp,q

i⃗⃗jx⃗
is an average of an infinitely delocalised operator.

In the nongravitational limit, it may be checked using (3.30) that the expectation

value of (4.7) in a state of the form (3.27) is the same as (4.4). We find that

(Ψng, Ĉp,q

i⃗⃗jx⃗
Ψng) =

1

vol(SO(1, d+ 1))

∫
dU⟨0|δGn,mU

†Cp,q

i⃗,⃗j
(x⃗)UδG∗

n,m|0⟩QFT

= ⟨0|δGn,mCp,q

i⃗,⃗j
(x⃗)δG∗

n,m|0⟩QFT

= ⟨Ψng|Cp,q

i⃗,⃗j
(x⃗)|Ψng⟩QFT ,

(4.8)

where, in the second line, we use the invariance of |Ψng⟩ under conformal transformations.

At nonzero κ we do not know of any simple analogue of (4.7) that gives an explicit

expression for the gauge-invariant operator whose matrix elements coincide with the

gauge-fixed operator. Note also that, at nonzero κ, one must take a linear combination

of an infinite set of terms (4.2) with increasing values of p to construct a gauge-invariant

operator of the form given in (2.105).

4.2 Symmetries of cosmological correlators

Cosmological correlators are defined in (4.4) by inserting a product of operators in the

path integral weighted with a specific action. This action is invariant under the residual

gauge transformation that are left unfixed in (4.4). We will utilise the finite action of

translations, rotations and dilatations on the matter fields and the ghosts, which is given
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by

translations: hij(x) → hij(x+ ζ); χ(x) → χ(x+ ζ);

ci(x) → ci(x+ ζ); c̄i(x) → c̄i(x+ ζ);

rotations: hij(x) → Rk
iR

ℓ
jhkℓ(R · x); χ(x) → χ(R · x);

ci(x) → Ri
jc

j(R · x); c̄i(x) → Ri
j c̄

j(R · x);

dilatations: hij(x) → hij(λx); χ(x) → λ∆χ(λx);

ci(x) → λ−1ci(λx); c̄i(x) → λd−1c̄i(λx) .

(4.9)

Here ζ is a vector, R is a SO(d) rotation matrix and λ is a number. We discuss special

conformal transformations below. It is important that what we call “dilatations” above

includes not just a diffeomorphism but a compensating Weyl transformation that pre-

serves the gauge conditions. For this reason, the metric transforms as gij(x) → gij(λx)

and does not pick up an overall factor of λ−2. The metric fluctuation transforms as shown

above.

Since the “action” S is invariant under the transformations above, cosmological cor-

relators transform covariantly under these transformations. Under a combined dilatation

and translation we find that in any physical state |Ψ⟩

⟪Ψ|Cp,q

i⃗⃗j
(λx⃗+ ζ)|Ψ⟫CC = λ−q∆⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC . (4.10)

Under a rotation we find that

⟪Ψ|Cp,q

i⃗⃗j
(R · x⃗)|Ψ⟫CC = R

i′1
i1
R

j′1
j1
. . . R

i′p
ip
R

j′p
jp
⟪Ψ|Cp,q

i⃗′j⃗′
(x⃗)|Ψ⟫CC . (4.11)

The symmetries of cosmological correlators should be distinguished from the sym-

metries of the coefficient functions (2.105) that appear in the wavefunctional. Those

coefficient functions are constrained by the full conformal group, even away from κ→ 0,

as a consequence of the WDW equation. Cosmological correlators are obtained by squar-

ing and integrating the wavefunctional with a choice of gauge.
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Dilatations. The inclusion of dilatations in the group of symmetries requires expla-

nation since, in a quantum field theory, scale invariance is often broken by loop effects.

So the reader might worry that UV effects might force us to use a regulator that is

inconsistent with scale invariance.

However, here, the residual group of symmetries involving dilatations is a subgroup

of the diff × Weyl group. The latter symmetry is a gauge symmetry of the path integral

used to compute expectation values. So we expect that even if counterterms need to be

added to the expression for the wavefunctional to regulate UV divergences, |Ψ[g, χ]|2 will

still remain diff × Weyl invariant. Moreover, the form of the ghost action is protected

by BRST symmetry. Therefore we expect that the reduced Faddeev-Popov determinant

that appears in (4.4) remains invariant under these symmetries even when loop effects

are included.

Special conformal transformations. For d > 2 and away from κ → 0 the action of

special conformal transformations is corrected as shown in (3.8). Such a transformation

acts on an insertion in (4.4) via

δξχ = ξi∂iχ+
∆

d
∇iξ

iχ; δξgij = (Pξ)ij , (4.12)

where P is defined in (3.6).

But since ξi contains factors of the metric, this transformation acts nonlinearly on

the fields. In appendix A, it is shown how ξi corresponding to SCTs can be found

perturbatively in terms of the metric fluctuation. Keeping this structure in mind, we

see that the action of (4.12) converts a single insertion of the metric or a matter field

to an infinite series that involves powers of the metric. Therefore special conformal

transformations relate low-point cosmological correlators to higher-point cosmological

correlators [36, 54]. Although this is an important and useful constraint on cosmological

correlators, it will not be required for our purposes.

In the nongravitational limit and in d = 2, the metric-dependent term in SCTs goes

away. So, in that setting, cosmological correlators with a fixed value of p, q transform

covariantly under SCTs.

We note that rotations, dilatations and translations act in a simple manner on cos-
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mological correlators because they correspond to metric-independent residual gauge-

transformations left unfixed by the transverse-traceless gauge. In some choices of gauge,

such as the alternative gauge discussed in appendix A, all the residual gauge transfor-

mations are metric dependent. In such a gauge, all the symmetry transformations of

cosmological correlators will change the value of p. Physically, cosmological correlators

are still constrained by these symmetries in such gauges. But the constraints are more

complicated than (4.11) and (4.10).

4.3 Symmetries and initial conditions

Our analysis of symmetries does not assume that the state in (4.4) is the Euclidean

vacuum, as obtained from the Hartle-Hawking proposal. Cosmological correlators in all

states have the same symmetries; and vacuum cosmological correlators do not display an

enhanced symmetry group.

This also means that, contrary to what is sometimes claimed, the observed approx-

imate symmetries of cosmological correlators including scale invariance do not provide

evidence that our universe was in the Hartle-Hawking state during the inflationary pe-

riod. If there was a period of inflation, and if the universe was well described by an

excited state of the form (2.104), one would obtain cosmological correlators with the

same symmetries.

This strengthens the argument made in [55] that the symmetries of correlators —

which completely fix specific low-point functions — provide a sharp test of inflation,

since it removes the need for assuming a particular initial state.

On the other hand, to make contact with empirical observations, it is often interesting

to consider departures from the slow-roll approximation. These must be present in the

real world since inflation cannot go on forever but must end before the local curvature

becomes arbitrary small. To analyse these corrections in our language, would require

knowledge of the state away from the large-volume limit. We are unable to make any

statements about these corrections since we have not considered these subleading terms

in this thesis or in [2].



Chapter 5

Holography of information

The symmetries of cosmological correlators immediately lead to a remarkable result.

Let R be any open subset of Rd and x⃗′ = (x′1, . . . , x
′
p+q) be an arbitrary set of p + q

points in Rd. Then we can find a set x⃗ of p+ q points in R such that

x′k = λxk + ζ, xi ∈ R, k = 1, . . . , p+ q , (5.1)

for some choice of λ > 0 and vector ζ. In other words, an arbitrary configuration of points

can always be mapped to lie in the region R with a suitable dilatation and translation.

Therefore, if we are given the set of all cosmological correlators

{⟪Ψ|Cp,q

i⃗⃗j
(x⃗)|Ψ⟫CC} (5.2)

for all values of p, q and all configurations of points xi ∈ R, the symmetry (4.10) implies

that this information is sufficient to determine all cosmological correlators in the state Ψ

everywhere on the spatial slice (see fig. 5.1). But the set of all cosmological correlators

everywhere on the spatial slice are evidently enough to reconstruct all observables on the

slice.

This immediately leads us to the following result.

Result. The set of all cosmological correlators in any open region R in a state Ψ deter-

mines all observables in the state.

Our result relies on the relation (4.10). In other gauge choices, such as the alternative

gauge discussed in appendix A.5, translations and dilatations will act on cosmological

53



CHAPTER 5. HOLOGRAPHY OF INFORMATION 54

Figure 5.1: Given all correlators in a subregion R (blue shaded region) and a set of
points xi (black dots) in the dS late-time slice (outer square), one can perform a dilatation
to bring these points to within some desired distance of the origin (red dots inside red
shaded circle). Then, one translation (blue dotted line) is sufficient to map these points
to within R. Since the correlation of these points transforms predictably under both of
these operations, it can be deduced from the correlations within R even though the points
xi were outside R to begin with.

correlators by changing the value of p as the residual symmetry generators have metric-

dependent corrections. Nevertheless, they still relate the set of all cosmological correlators

in a region R (i.e. cosmological correlators with all possible value of p, q) to cosmological

correlators outside that region. Therefore we expect that the result above should also

hold for cosmological correlators in such gauges although it is calculationally harder to

obtain the value of a cosmological correlator outside R using information inside R.

5.1 Nongravitational limit

Somewhat surprisingly, the result above remains true even as we take κ→ 0.

It was shown in [2] that the states Ψng (displayed in (3.27)) have the property that

they are invariant under the de Sitter isometries,

U |Ψng⟩ = |Ψng⟩ . (5.3)
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Following the steps in section 3.4, we see that the expression for the cosmological corre-

lator is simply

lim
κ→0
⟪Ψng|Cp,q

i⃗⃗j
(x⃗)|Ψng⟫CC = ⟨Ψng|Cp,q

i⃗⃗j
(x⃗)|Ψng⟩QFT , (5.4)

where, on the right hand side, we now find simply the QFT expectation value of Cp,q

i⃗⃗j
(x⃗)

in the state |Ψng⟩. Using the invariance of the state under the de Sitter isometries we see

that

⟪Ψng|Cp,q

i⃗⃗j
(x⃗)|Ψng⟫CC = ⟪Ψng|U †Cp,q

i⃗⃗j
(x⃗)U |Ψng⟫CC . (5.5)

So, in the nongravitational limit cosmological correlators are invariant under the entire

conformal group. This includes the action of special conformal transformations that do

not appear in the group of symmetries at finite κ shown in (4.9). The result on the

holography of information follows immediately.

Physically, this analysis tells us that holography of information does not rely on

the measurement of “small gravitational tails” but rather from an imposition of the

gravitational Gauss law. The constraints implied by the Gauss law restrict the form of

the allowed states in the theory, which is why it is possible to uniquely identify states

from cosmological correlators in any open set.

5.2 Difference between quantum field theories and

quantum gravity

We have shown that holography of information persists, if one takes the nongravitational

limit of a theory of gravity while preserving the gravitational Gauss law. This can be

held in contrast to classical gravity, which is not holographic (see fig. 5.2). In this section,

we explain why nongravitational quantum field theories do not display this property as

well.

Starting with the Euclidean vacuum, which is still obtained by the Hartle-Hawking

prescription, states in a QFT take the form

|ψ⟩ =
∫
dy⃗dz⃗ ψ i⃗⃗j(y⃗, z⃗)hi1j1(y1) . . . hinjn(yn)χ(z1) . . . χ(zm)|0⟩ , (5.6)

where hij are transverse traceless graviton fluctuations. Here ψ i⃗⃗j is an arbitrary smearing
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Figure 5.2: Let ρ1,2 be two stationary and spherically symmetric but radially distinct
distributions (weight shown in red) with support in a ball of finite radius such that∫
ddx ρ1 =

∫
ddx ρ2. In classical gravity, these two configurations of mass/energy would

be indistinguishable for any number of mutually communicating observers in the exterior
of the ball. This is due to Birkhoff’s theorem which posits identical exterior gravitational
fields for both configurations.

function and the only constraint is that |ψ⟩ should be normalizable under the usual QFT

norm.

⟨ψ|ψ⟩QFT =

∫
dx⃗dx⃗′ψ i⃗⃗j(y⃗, z⃗)∗ψi⃗′j⃗′(y⃗′, z⃗′)

× ⟨0|hi′1j′1(y
′
1) . . . χ(z

′
m)hi1j1(y1) . . . χ(zm)|0⟩QFT .

(5.7)

We emphasise the difference with the Hilbert space obtained in the nongravitational limit

of a gravitational theory where the states take the form (3.27). In (3.27) the smearing

function is constrained by conformal symmetry, whereas in (5.6) it is not.

Moreover, the smearing functions that appear in (3.27) are disallowed by normaliz-

ability in (5.6). This is simply the statement that, apart from the vacuum, there are no

states that are invariant under the de Sitter isometry group in the usual QFT Hilbert

space. This can also be seen directly from the expression for the norm (5.7). The cor-

relator in the Euclidean vacuum is conformally covariant because the Euclidean vacuum

itself is invariant. But if this correlator were to be integrated with the smearing function

that appears in (3.27) the entire integrand would be invariant under the action of the

conformal group. Therefore, the norm would pick up a divergence proportional to the

volume of the conformal group. When we consider states in the nongravitational limit of

a gravitational theory and use the correct norm, this divergence is cancelled by dividing

by the volume of the conformal group but there is no such factor in the ordinary QFT

norm.
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Therefore for a generic value of λ and ζ and for any QFT state except for the vacuum,

⟨ψ|Cp,q

i⃗⃗j
(λx⃗+ ζ)|ψ⟩QFT ̸= λ−q∆⟨ψ|Cp,q

i⃗⃗j
(x⃗)|ψ⟩QFT . (5.8)

So the argument leading to the holography of information breaks down in the QFT Hilbert

space.

As usual, in a QFT, it is possible to prepare “split states” [56] where correlators

coincide inside a region but differ outside that region. This means the following. Let

Rϵ = R∪ ϵ be the complement of the union of the region R and a small “collar region”,

ϵ. Then given any two states of the form (5.6) one can find a split state with the property

that when xi ∈ R and x′i ∈ Rϵ

⟨ψsplit|Cp,q

i⃗⃗j
(x⃗)Cp′,q′

i⃗′j⃗′
(x⃗′)|ψsplit⟩QFT = ⟨ψ1|Cp,q

i⃗⃗j
(x⃗)|ψ1⟩QFT⟨ψ2|Cp′,q′

i⃗′j⃗′
(x⃗′)|ψ2⟩QFT (5.9)

for any choice of the operators Cp,q

i⃗⃗j
(x⃗) and Cn′,m′

i⃗′j⃗′
(x⃗′). In such a split state, not only are

observations in Rϵ not determined by observations in R, they are not even correlated.

Clearly this means that the full state cannot be identified by observations in R.

We conclude that the result on holography of information marks a clear mathematical

difference between the properties of quantum field theory and quantum gravity, in terms

of how such theories localise information. This difference persists in the nongravitational

limit of a gravitational theory provided one consistently imposes the Gauss law while

taking this limit.

5.3 Comparison to flat space and AdS

The result above can be placed in the context of similar results proved in AdS and in

asymptotically flat space. There, the principle of holography of information is usually

framed as follows: “the information in the bulk of a Cauchy slice is also available near

its boundary.” More precisely, in asymptotically flat space, it was shown in [13] that all

information that is available on all of I+ is also available on its past boundary I+
− ; and, in

a spacetime that is asymptotically AdS, all information that is available on the timelike

boundary is also available in an infinitesimal time band.
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In the form above, it is unclear how the principle should be generalised to dS, where

a Cauchy slice has no boundary. But, consider the following alternative phrasing of this

principle: “in all pure states of the theory, whenever a region, R, is completely surrounded

by its complement, R, then all the information inside R is accessible in R.”1 In flat space

and AdS, this is trivially equivalent to the usual statement; when R surrounds R then it

also includes the asymptotic region near infinity.

R

R
∞

AdS or flat space

R

R

dS

Figure 5.3: In flat space and in AdS (left), when a region on a spatial slice, R is
surrounded by its complement then R extends to infinity. But in dS (right), every region
R surrounds and is surrounded by its complement on a sphere.

The second form of the slogan generalises naturally to dS. Since the Cauchy slices

in dS are compact, every region R both surrounds its complement and is surrounded by

its complement. (See Figure 5.3.) So it is natural that cosmological correlators in every

region R contain all the information that is available on the Cauchy slice in a pure state.

5.4 Higher-spin matter fields and stringy corrections

In the analysis above, we have studied a massive scalar field in the matter sector. This

choice was made for simplicity. It seems clear that the proof of the principle of holography

of information will go through in the presence of higher-spin matter.

Our results in [2] and in this thesis rely only on an asymptotic analysis. The assump-

tion is that the formalism of quantum field theory makes sense at asymptotic infinity.

This assumption is usually taken to be valid even in the presence of stringy corrections.2

1We restrict to pure states to avoid situations where entanglement with an auxiliary system has
produced an “island” inside R.

2Here, we do not enter into the recent debates on whether de Sitter solutions can be found within
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However, there is an important difference in dS compared to AdS and flat space. In the

latter setting, it is reasonable to assume that the asymptotic structure of the spacetime

is not modified even nonperturbatively. Therefore the results of [13] are expected to

hold even nonperturbatively. But the asymptotic structure of dS is not expected to be

nonperturbatively stable [60]. Therefore, nonperturbatively, our analysis might require

modifications.

5.5 Cautionary physical remarks

The principle of holography of information provides an interesting mathematical dif-

ference between quantum field theories and quantum gravity, but the result should be

interpreted with care. First, as we have emphasised above, there are no local gauge in-

variant operators in the theory. Therefore, the measurement of a cosmological correlator

is secretly a nonlocal process. Cosmological correlators are labelled by a set of points in

R; but they do not correspond to any physical observable that is strictly localised in R.

Second, in both AdS and flat space, if one considers heavy, nonperturbative states in

the bulk, then it is usually necessary to study nonperturbative correlators at infinity to

identify the state. This point was already noted in [13, 16] and recently re-emphasised

in [61,62]. So, in a typical heavy classical state, mundane notions of locality are preserved

at all orders in perturbation theory. This is important since it explains why we do not

“see” the holography of information all around us.

This does not mean that the unusual localisation of information in gravity is unim-

portant. In its nonperturbative avatar, it is important for understanding the information

paradox [15]. Moreover, if one studies simple states like low-energy excitations about

empty AdS then the holography of information can be seen even within perturbation

theory.

We expect the same features to hold in dS. In a “little Hilbert space” comprising

simple excitations about the Hartle-Hawking state, we expect it should be possible to

identify states uniquely using only perturbative cosmological correlators. On the other

hand, to identify sufficiently complicated states might require very high-point cosmolog-

ical correlators. It would be interesting to work this out in more detail.

string theory [57–59].



Chapter 6

Conclusion

We started this thesis, review of technical material aside, by studying the norm on the

space of solutions to the WDW equation obtained in [2]. The magnitude-squared of

these wavefunctionals leads to a diff × Weyl invariant functional. We defined the norm

by averaging this functional over field configurations and dividing by the volume of the

diff × Weyl group. We used the Faddeev-Popov trick to make sense of this expression,

leading to the final gauge-fixed expression (3.16).

In the nongravitational limit, our norm reduces to the one proposed by Higuchi on

the space of group-averaged states. Therefore, our procedure provides a derivation of

Higuchi’s prescription in the nongravitational limit and a means of understanding grav-

itational corrections to this prescription.

In chapter 5, we explored the meaning of cosmological correlators. We proposed

that these commonly-discussed quantities correspond to gauge-fixed observables. These

observables are labelled by a set of local coordinates although their gauge-invariant de-

scription is necessarily nonlocal. We showed that, in any state of the theory, these

observables are invariant under rotations, translations and dilatations of their coordinate

labels. This marks a sharp difference from nongravitational quantum field theories, where

cosmological correlators manifest this symmetry in the vacuum but not in other states.

As a consequence of this symmetry, we showed that, in a theory of gravity, cosmological

correlators in an arbitrarily small region, R, suffice to uniquely identify any state in the

theory.

These results open up several interesting questions that we now describe.
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Holography in de Sitter. Strictly speaking, our result on the holography of infor-

mation does not allow us to obtain information about a higher-dimensional space from a

lower-dimensional space since R still has codimension 0. This is similar to the situation

in AdS — where arguments based on the gravitational constraints are sufficient to show

that information in the bulk is available in an infinitesimal time band in the boundary,

but are not sufficient to squeeze the time band to a time slice. Moreover, our results

pertain to information but do not address the issue of bulk dynamics.

So the natural question is whether there is some way of understanding bulk dynamics

in all of de Sitter space from a lower-dimensional subregion on the late-time slice. Similar

ideas were recently explored in [63]. (See [64] for a different perspective.)

Such a holographic duality, if it exists, should account for all states in the bulk theory.

In the literature, the study of dS/CFT has often been restricted to understanding the

Euclidean vacuum, obtained from the Hartle-Hawking proposal. But as we have shown

the bulk theory has many other interesting states.

It would also be interesting to understand the relationship of such a holographic

dual to the work on holographic spacetime [65–67] and the proposal of static patch

holography [68,69]. In the latter proposal, it is suggested, using very different arguments,

that all information about the state can be obtained from the bifurcation sphere that lies

between two static patches. This sphere lies in the “bulk” of dS whereas our results have

to do with the asymptotic late-time slice. So our results do not contradict this proposal,

but nor do they obviously lend it support.

A related question is to understand the relationship of our results to the de Sitter

entropy. One interesting possibility — which deserves further exploration — is whether

small effects in our norm likes the ones alluded to in [70] can render the Hilbert space

finite dimensional [65–67,71–75].

Potential toy models for explicit checks. While the work in [2] indicates, on general

grounds, the existence of a large class of WDW wavefunctions, frameworks to explicitly

generate such a wavefunction from a putative CFT are harder to come by. Such models

have been worked out in a few cases; for instance the authors of [76] and [77] envision

the CFT as an Sp(N) and O(N) model respectively, which is able to produce the HH

wavefunction of Vasiliev higher spin gravity in dS4. It will be interesting to test out the
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ideas presented in this thesis, chiefly that of cosmological correlators, in such an explicit

setting.

Significance of holography of information. For asymptotically AdS and asymptot-

ically flat spacetimes, it is understood that holography of information is significant in two

regimes. One regime is when we study low-energy excitations about the vacuum. Then,

in AdS [14] and flat space [78], it is possible to completely identify the excitation using

only simple observables at infinity. The second regime is when we ask questions about

the unitarity of black-hole evaporation. To make this question meaningful, one must keep

track of fine-grained observables outside the black hole since we do not expect a coarse-

grained description to be unitary. But, when the spacetime is asymptotically AdS or flat

space, holography of information tells us that fine-grained observables at infinity always

have information about the black-hole interior. This helps to identify a precise loophole

in Hawking’s argument for information loss [17]. In a third intermediate regime, where

we consider a heavy classical background but also restrict ourselves to coarse-grained

observations — where we do not keep track of exponentially small corrections — the

unusual properties of gravity are not apparent. In this regime, gravity behaves much like

an ordinary field theory as was shown in AdS in [61]. It would be interesting to work out

the analogue of these three regimes in de Sitter space.

Observers in quantum cosmology. An interesting conceptual question is the fol-

lowing. Gauge-invariant operators in gravity must be nonlocal but this is in apparent

contradiction with our physical intuition that measurements are made locally. Fixing

the gauge, as we did to study cosmological correlators, provides a mathematically con-

venient method of obtaining observables that are labelled by a set of coordinates. But

it is important to develop a deeper understanding of the meaning of measurements in a

cosmological setting. The usual theory of measurement [79] involves an external appara-

tus that is entangled with the system by the experimenter who turns on an interaction

Hamiltonian. Clearly this cannot correctly describe measurements in a theory of gravity,

where bulk evolution is generated by the constraints, that cannot be altered at will. Pre-

sumably, the correct framework is to study an observer who is already part of the system

and where measurement happens through the autonomous evolution of the system. We
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do not know the correct formalism to analyse this process.

A simple model of an observer was recently discussed in [43] where it was argued that

the algebra of observables dressed to the observer’s worldline is of type II1. Since we have

presented the full Hilbert space and a formalism for understanding observables, it should

be possible to embed the model of [43] into our analysis and make it precise. It would be

interesting to work out these details.

Technical questions about the norm. From a technical perspective, we would like

to better understand the functional integral that was used to define the norm. Some

subtleties, including the question of the measure, the requirement of a minimum of three

operator insertions, and potential divergences due to the “collision” of operators are listed

in section 3.5. Similar problems have been studied extensively in string perturbation

theory and we hope that the techniques developed there can be applied to the functional

integrals that appear in our context.

Implications for cosmology. Our result implies that when gravitational constraints

are taken into account, every physical state has the same symmetries as the vacuum.

This would not be true in quantum field theory where the vacuum is singled out by its

symmetries. This suggests that the approximate scale invariance observed in the early

universe cannot be used to justify the Hartle-Hawking proposal. It is in fact a general

consequence of the constraints in any asymptotically de Sitter spacetime, such as the

early universe as predicted by inflation.



Appendix A

Residual gauge symmetry

In this Appendix, we study the residual gauge symmetry after fixing the diffeomorphism

and Weyl gauge symmetries using

∂igij = 0, δijgij = d . (A.1)

After solving for the traceless condition, the variation of the metric is a combination

of a diffeomorphism and a Weyl transformation

δξgij = (Pξ)ij ≡ Lξgij −
1

d
gijδ

kℓLξgkℓ (A.2)

in terms of the Lie derivative

Lξgij = ξk∂kgij + gik∂jξ
k + gkj∂iξ

k = ∇iξj +∇jξi . (A.3)

The residual gauge symmetry algebra corresponds to solutions of

∂i(Pξ)ij = 0 . (A.4)

The metric is written as

gij = δij + κhij , (A.5)
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which leads to the expansion

(Pξ)ij = (P0ξ)ij + κ(P1ξ)ij + κ2(P2ξ)ij , (A.6)

that is exact since no higher orders of κ appear.

Firstly, note that in the limit κ → 0, the residual symmetry is SO(1, d + 1) because

we then have

(P0ζ)ij = ∂iζj + ∂jζi −
2

d
δijδ

kℓ∂kζℓ = 0 , (A.7)

for any conformal Killing vector ζ. In other words, conformal Killing vectors preserve the

background metric and hence trivially preserve any gauge-fixing condition.

A.1 Translations, rotations and dilatations

We will see that translations, rotations and dilatations remain residual symmetries at

finite κ. To show this, we write the explicit form

∂i(Pξ)ij =

[(
∂kgij + ∂jgik −

2

d
giℓ∂ℓgjk

)
∂k +

(
gijδkℓ + gjkδiℓ −

2

d
gikgjℓ

)
∂k∂ℓ

]
ξj .

(A.8)

We see that translations ξj = const are always a residual symmetry since at least one

derivative acts on ξj in (A.8). For rotations and dilatations, the term with two derivatives

vanishes so we get

∂i(Pξ)ij =

(
∂kgij + ∂jgik −

2

d
giℓ∂ℓgjk

)
∂kξ

j . (A.9)

Rotations are of the form ξj = M jkxk where M jk is antisymmetric. So we see that

∂kξ
j = M jk and the above expression vanishes by symmetry. For dilatations, we have

ξj = xj so ∂kξj = δjk and the expression vanishes using the transverse and trace conditions.

As a result, we see that translations, dilatations and rotations are residual symmetries.
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A.2 Modified special conformal transformation

The usual special conformal transformation takes the form

vi0 = 2(β · x)xi − x2βi . (A.10)

We can check that this is not a residual symmetry as we have

∂i(Pv0)ij = −2κdβjhij , (A.11)

which does not vanish.

However, using a standard perturbative procedure, the SCT can be systematically

corrected [37] to give a residual symmetry, ξ,

ξ = v0 + κv1 + κ2v2 + . . . . (A.12)

Define the operator

(D0ξ)
j ≡ ∂i(P0ξ)ij = ∂2ξj +

(
1− 2

d

)
∂i∂jξ

i . (A.13)

The corrections vn are obtained by solving the equation (A.4)

(D0vn)
j = sjn, n = 1, 2, . . . (A.14)

where

sj1 = 2dβihij , (A.15)

and the higher order sources are determined iteratively using

sjn = −∂i(P1vn−1)ij − ∂i(P2vn−2) , n ≥ 2 . (A.16)

We can show that, provided one places physical boundary conditions on the metric

fluctuation, the equation (A.14) always has a smooth solution vj that is smooth on the

sphere so that it is always possible to correct the SCT in this way. As detailed in the
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next section these boundary conditions constrain the metric around x = ∞ to be

hij = Wikjℓ
xkxℓ
|x|4

+O(|x|−3) , (A.17)

where Wijkℓ is a constant tensor with the symmetries and tracelessness of a Weyl tensor.

As a result the first source has the fall-off

si1 = 2d βiWikjℓ
xkxℓ
|x|4

+O(|x|−3) , (A.18)

and higher order sources are more suppressed as they contain additional factors of the

metric.

The decay of the sources at infinity guarantees that solutions for vj always exist. For

the leading fall-off, we obtain the solution

vj1 = βiWikjℓ
xkxℓ
|x|2

+O(|x|−1) = |x|2βjhij +O(|x|−1) , (A.19)

which is just proportional to the source at this order. For the subleading fall-offs, the

solution can be written in Fourier space

vj(x) =

∫
ddp

(2π)d
1

p2

(
−δij +

2(d− 2)

d− 1

pipj
p2

)
eipxŝi(p) , (A.20)

which is well-defined as the sources are si = O(|x|−3) at infinity so their Fourier transforms

are ŝi(p) = O(|p|3−d) around p = 0.

A.3 Boundary condition for the metric

Although the physical metric is the round metric on Sd, we have performed a Weyl

transformation so that the background metric becomes flat. The Weyl factor is singular

at x = ∞ so we must impose an appropriate boundary condition at infinity. The physical

metric takes the form

ds2 =
4

(1 + |x|2)2
(δij + κhij)dxidxj (A.21)
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and we should demand that this metric be regular. In addition we impose the gauge-fixing

conditions

∂ihij = 0, δijhij = 0 . (A.22)

The Ricci scalar of the physical metric must be a regular function on the sphere. At first

order in κ, it is a linear combination of ∂i∂jhij, xj∂ihij and xixjhij. The first two terms

vanish due to the transverse condition and we obtain

R = d(d− 1)(1 + κhijxixj) +O(κ2) . (A.23)

This must be a smooth function on the sphere which implies that hijxixj must tend to a

constant C at infinity. Our gauge-fixing conditions also imply that

∂i(xjhij) = δijhij + xj∂ihij = 0 , (A.24)

which after integration over a ball of radius r gives by Stokes’ theorem

0 =

∫
Br

ddx ∂i(xjhij) =

∫
Sr

dd−1Ω rd−2xixjhij = vol(Sd−1)rd−2C r → +∞ . (A.25)

This implies that C = 0 so we find that

lim
x→∞

hijxixj = 0 . (A.26)

Additional constraints come from demanding that the metric be smooth near infinity.

Expansion around infinity. The metric around x = ∞ can be expanded using the

inverted coordinates defined as

x̃i =
xi
|x|2

. (A.27)

The inverted metric h̃ij is defined as

ds2 =
4

(1 + |x̃|2)2
(δij + κh̃ij)dx̃idx̃j , (A.28)
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and is related to the original metric using

hij =
1

|x|4
(δik|x|2 − 2xixk)(δjℓ|x|2 − 2xjxℓ)h̃kℓ . (A.29)

The expansion around x = ∞ is an expansion around x̃ = 0. The boundary condition

(A.26) in inverted coordinates gives

lim
x̃→0

x̃ix̃jh̃ij
|x̃|4

= 0 . (A.30)

To analyse this condition, we demand that the metric be smooth and at least twice

differentiable near x̃ = 0 so that it is possible to perform a series expansion

h̃ij(x̃) = H
(0)
ij +H

(1)
ijk x̃k +H

(2)
ijkℓx̃kx̃ℓ + . . . , (A.31)

where H(n)
ijk... are constant tensors.

For the leading orders, the limit implies that we identically have

H
(0)
ij x̃ix̃j = 0, H

(1)
ijk x̃ix̃jx̃k = 0, H

(2)
ijkℓx̃ix̃jx̃kx̃ℓ = 0 . (A.32)

Taking derivatives, we obtain that H(0)
ij = 0. For the linear term, we obtain constraints

on H
(1)
ijk which allows us to write the transverse equation as

0 = ∂ih
(1)
ij =

(d− 1)

2|x|4
H

(1)
kℓjxkxℓ, (A.33)

which implies that H(1)
ijk = 0. This means that limx̃→0 ∂̃kh̃ij = 0 so that x̃i are the Riemann

normal coordinates around x̃ = 0. Thus we have

g̃ij = g̃ij(0) +
1

3
R̃ikjℓ(0)x̃kx̃ℓ +O(|x̃|3) , (A.34)

and this fixes the term quadratic to

H
(2)
ijkℓ =

1

3
R̃ikjℓ(0) . (A.35)

The tracelessness condition also implies that R̃ij(0) = 0 so this is really a Weyl tensor.
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As a result H(2)
ijkℓ can be any constant tensor with the same symmetries of a Weyl tensor.

Conversely, we can verify that this gives a valid metric.

As a result, we obtain the leading behavior of the metric at infinity

hij = Wikjℓ
xkxℓ
|x|4

+O(|x|−3), x→ +∞ , (A.36)

where Wijkℓ is a constant tensor with the symmetries and tracelessness of a Weyl tensor.

Note that for dS4, we have Wijkℓ = 0 as there are no non-trivial Weyl tensor in d = 3 ;

so in this case we have hij = O(|x|−3).

A.4 Residual symmetry algebra

The residual symmetry algebra is generated by vector fields ξ[g] which in general have

metric-dependent corrections. The Lie bracket between two generators must be modified

as

[ξ1[g], ξ2[g]]M = [ξ1[g], ξ2[g]]− δξ1[g]ξ2[g] + δξ2[g]ξ1[g] , (A.37)

where we have added the action of the transformation on the metric-dependent terms

obtained from the transformation of the metric.

For example, let ξ1 be a translation, rotation or dilatation and ξ2 be a modified SCT.

We can write

ξ2 = ζ + v[h] , (A.38)

where ζ is the unmodified SCT and v[h] contains the metric-dependent corrections. We

then have

[ξ1, ξ2]M = [ξ1, ζ] + [ξ1, v[h]]− δξ1v[h] = [ξ1, ζ] , (A.39)

which gives the standard Lie bracket as if the SCT was unmodified.

As a result, the modification at finite κ doesn’t affect the algebra which is always the

conformal algebra. The residual symmetry group is then always SO(1, d + 1). However,

the finite κ corrections to the SCT modify the way this group acts on the fields.
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A.5 Alternative gauge-fixing conditions

In this thesis, we have presented our analysis in a Weyl gauge where the background

metric for the sphere is flat. We can also consider the a similar gauge-fixing procedure

where we keep the round metric.

In this case, we write the metric as

gij = γij + κhij, γij =
4δij

(1 + |x|2)2
, (A.40)

where γij is the round metric on Sd. The gauge fixing conditions can be taken to be

γjkDkgij = 0, γijgij = d , (A.41)

where we use Di for the background covariant derivative with respect to γij.

After solving for the trace condition, the variation of the metric is

δξgij = (Pξ)ij = (P0ξ)ij + κ(P1ξ)ij + κ2(P2ξ)ij , (A.42)

and the residual symmetry is generated by solutions of

γjkDk(Pξ)ij = 0 . (A.43)

Again we see that at κ→ 0, the residual symmetry is generated by the CKVs as we have

(P0ξ)ij = Diξj +Djξi −
2

d
γijγ

kℓDkξℓ (A.44)

is the conformal Killing equation on Sd.

At finite κ, we can write

ξi = vi0 + κvi1 + κ2vi2 + . . . . (A.45)

Taking v0 to be any CKV, we can make ξ into a residual symmetry by choosing the
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corrections vn to be solutions of

(D̃0vn)
i = sin, n = 1, 2, . . . , (D̃0v)

i ≡ γjkγiℓDj(P0v)kℓ , (A.46)

where the sources are given as

si1 = −γjkγiℓDj(P1vn−1)kℓ, sin = −γjkγiℓ (Dj(P1vn−1)kℓ +Dj(P2vn−2)kℓ) , n ≥ 2 .

(A.47)

The operator −D̃0 is Hermitian and non-negative as we have

−
∫
ddx

√
γ γijv

i(D̃0v)
j =

1

2

∫
ddx

√
γ γikγjℓ(P0v)ij(P0v)kℓ ≥ 0, (A.48)

using integration by parts. This can only vanish when P0v = 0 so that v is a CKV. This

shows that the only zero modes of D̃0 are the CKVs. A similar argument shows that for

any vector field v, D̃0v is always orthogonal to the CKVs. Note that this was used by

York in [80] to prove the existence of his decomposition.

As a result, the operator −D̃0 preserves the space of vector fields orthogonal to the

CKVs and is strictly positive on that space. We can see that the sources sin belong to

that space. Indeed for any CKV ζ, we have

∫
ddx

√
γ γijζ

isjn =

∫
ddx

√
γ γikγjℓDiζj ((P1vn−1)kℓ + (P2vn−2)kℓ) (A.49)

=
1

2

∫
ddx

√
γ γikγjℓ(P0ζ)ij ((P1vn−1)kℓ + (P2vn−2)kℓ)

= 0 ,

using integration by parts, tracelessness and symmetry of (Pv)ij, and the fact that P0ζ =

0.

As the operator D̃0 is invertible on the space of vector fields orthogonal to the CKVs,

the corrections vn in (A.46) always exist and are unique. An explicit representation can

be written by decomposing the sources in eigenvectors {uk} of D̃0:

sin =
∑
k

cku
i
k, (A.50)
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where D̃0uk = −λkuk with λk > 0. This is well-defined because D̃0 is an elliptic operator

on a compact manifold and hence has a discrete spectrum. The solution can then be

written as

vin = −
∑
k

ck
λk
uik . (A.51)

We can check that the SO(1, d+1) algebra is satisfied after using the modified Lie bracket

(A.37) which takes into account the transformation of the metric-dependent corrections.

More generally, we expect that for a large class of gauge-fixing conditions, SO(1, d+1)

should always be the residual symmetry group. This is because the CKVs preserve the

background metric and it should be always possible to correct them so that they preserve

the gauge conditions.

The advantage of the transverse-traceless gauge used in the main text is that trans-

lations and dilatations are realised linearly. This results in simple symmetries for cosmo-

logical correlators and simplifies the proof of the holography of information. In a different

gauge, the symmetries of cosmological correlators relate correlators of different orders.

We expect that the holography of information will still hold in alternative gauges, since

given the set of all-order cosmological correlators in a region, the residual symmetries can

be used to obtain correlators outside that region.



Appendix B

Orthonormal basis of conformal

blocks

In this Appendix, we explain that for free fields in the nongravitational limit, the quantum

gravity Hilbert space admits a basis in terms of conformal blocks or conformal partial

waves. Moreover we will see that the Higuchi inner product is the natural inner product

studied in the CFT literature.

We consider a set of free massive scalar fields χk in the principal series so that they

have dimensions

∆k =
d

2
+ iνk , k = 1, 2 . . . , (B.1)

with νk is real. We can define a basis of dS invariant states following section 3.4 as

|ψ⟩ =
∫
ddx1 . . . d

dxn ψ(x1, . . . , xn) : χ1(x1) . . . χn(xn) : |0⟩ , (B.2)

where, as in the main text, |0⟩ is the Hartle-Hawking state. Note that we have redefined

the basis by replacing the product of operators by its normal-ordered product which

simply corresponds to taking a specific linear combination of the basis elements (3.27).

We must take ψ(x1, . . . , xn) to transform appropriately under the conformal symme-

try so that |ψ⟩ is dS invariant. This corresponds to taking ψ(x1, . . . , xn) to have the

symmetries of a CFT correlator

ψ(x1, . . . , xn) ∼ ⟨O1(x1) . . . On(xn)⟩CFT , (B.3)
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where Ok(x) is a local operator of dimension d−∆k in a CFTd. This implies that ψ can

be decomposed as a sum of conformal blocks or conformal partial waves. In the example

of n = 4, we have the decomposition

ψ(x1, . . . , x4) =
∑
∆,J

c∆,JΨ
∆1,...,∆4

∆,J (x1, . . . , x4) , (B.4)

where the conformal partial waves Ψ∆i
∆,J are linear combinations of conformal blocks.

(See [81] for details.)

In the principal series, the complex conjugate operator χ∗
k has the conjugate dimension

∆∗
k = d−∆k and conformal symmetry implies that we have [82, 83]

⟨0|χk(x)
∗χk(x

′)|0⟩QFT = δ(d)(x− x′) . (B.5)

This can be derived for example from the asymptotic limit of de Sitter Green’s functions.

The Higuchi inner product then takes the form

⟨ψ|ψ⟩ = vol(SO(d− 1))

vol(SO(1, d+ 1))

∫
ddx1 . . . d

dxn |ψ(x1, . . . , xn)|2 . (B.6)

This is actually the natural inner product on conformal partial waves. In the example of

n = 4, we have the orthogonality relation

⟨Ψ∆i
∆,J ,Ψ

∆̄i

∆̄,J
⟩ = vol(SO(d− 1))

vol(SO(1, d+ 1))

∫
ddx1 . . . d

dx4Ψ
∆i
∆,J(xi)Ψ

∆̄i

∆̄′,J ′(xi) = n∆,J2πδJ,J ′δ(ν−ν ′) ,

(B.7)

where we have written ∆ = d
2
+ iν,D′ = d

2
− iν ′ with ν, ν ′ ≥ 0 and the normalisation

constant n∆,J is the one given in [81] multiplied with an additional factor of vol(SO(d−1))

to match our convention. This appeared recently in [81, 84–86] following earlier work

[87, 88]. The case n = 4 has been most studied in the CFT literature but we expect

that similar results exist for all n. This implies that conformal partial waves provide an

orthonormal basis for the quantum gravity Hilbert space of free fields in dSd+1.

Semi-classical dS3 gravity can be formulated as a Chern-Simons theory [89]. So it

would be interesting to understand the connection of the construction above to the

construction of the Hilbert space of Chern-Simons theory in terms of two-dimensional
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conformal blocks [90].



Appendix C

BRST invariance of inner product

In this section we demonstrate that the correlator

(Ψ, AΨ) =

∫
DgDχDcDc̄ δ(gii − d)δ(∂igij)|Ψ[g, χ]|2A[g, χ]e−Sgh , (C.1)

where |Ψ[g, χ]|2 and A[g, χ] are diffeomorphism and Weyl invariant, enjoys BRST sym-

metry as is expected of gauge fixed path integrals. In order to show this, we introduce

BRST transformation for matter, metric and ghost fields. The BRST operator δB that we

define below should be distinguished from the BRST operator that would arise if we at-

tempted to implement the gravitational constraints using the BRST formalism. Rather,

it arises when we gauge fix functional integrals like (3.1) and (3.2) in order to define norms

and correlators. For this reason, it does not appear that the cohomology of the BRST

operator discussed in this section has any particular significance. In this Appendix, for

simplicity, we do not consider the fixing of residual gauge.

We will proceed in two steps. First we show BRST invariance of the ghost action

containing both diffeomorphism and Weyl ghosts. In the next step, we integrate out

the Weyl ghost to obtain the effective ghost action (3.15) and show that the inner prod-

uct path integral (C.1) with this action is also BRST invariant. (See [91] for a similar

procedure in the context of string theory.)
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C.1 BRST formulation

We remind the reader that the gauge transformation of the fields under diff × Weyl group

is given by

δ(ξ,φ)χ = δD
ξ χ+ δW

φ χ = ξ · ∂χ−∆φχ, (C.2)

δ(ξ,φ)gij = δD
ξ gij + δW

φ gij = ∇iξj +∇jξi + 2φgij , (C.3)

where δD and δW represent an infinitesimal diffeomorphism and a Weyl transformation

respectively. The change in gauge fixing functions under this flow is

δ(ξ,φ)(gii − d) = 2∇kξk + 2giiφ, (C.4)

δ(ξ,φ)(∂jgij) = ∂j (∇iξj +∇jξi + 2φgij) . (C.5)

From here we can read off the full ghost action as,

Sfull
gh =

∫
ddx

(
2giib̄b+ 2b̄∇kck + 2c̄i∂j(gijb) + c̄i∂j (∇icj +∇jci)

)
, (C.6)

where b, b̄, ci, c̄i are the Weyl and diffeomorphism ghost anti-ghost pairs.

Structure constants. Commutators of the gauge group algebra can be given through

their action on χ,

[δD
ζ , δ

D
ξ ]χ = δD

[ζ,ξ]χ, [δW
φ , δ

D
ξ ]χ = −δW

ξ·∂φχ, [δW
φ , δ

W
ϖ ]χ = 0 . (C.7)

It’s easy to check that the same commutation relations hold for the action on gij.

[δD
ζ , δ

D
ξ ]gij = δD

[ζ,ξ]gij, [δW
φ , δ

D
ξ ]gij = −δW

ξ·∂φgij, [δW
φ , δ

W
ϖ ]gij = 0 . (C.8)

Consider the diffeomorphism and Weyl basis {δ̂D
xi , δ̂W

x } defined by

δD
ξ =

∫
ddx ξi(x)δ̂D

xi , δW
φ =

∫
ddxφ(x)δ̂W

x . (C.9)
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Define the structure f(_|_,_) as

[δ̂D
yi , δ̂

D
zj ] =

∫
ddw f(wk|yi, zj)δD

wk , (C.10)

[δ̂W
y , δ̂

D
zi ] =

∫
ddw f(w|y, zi)δ̂W

w , (C.11)

[δ̂W
zi , δ̂

W
y ] =

∫
ddw f(w|z, y)δ̂W

w . (C.12)

The notation f(_|_,_) has been overloaded so that its indexed and un-indexed argu-

ments indicate diffeomorphism and Weyl basis indices respectively. From the commuta-

tion relations (C.7) or (C.8) we can read off the structure constants,

f(wk|yi, zj) = ∂wiδ(w − z)δ(w − y)δkj − ∂wjδ(w − y)δ(w − z)δki , (C.13)

f(w|y, zi) = −δ(w − z)∂wiδ(w − y), (C.14)

f(w|y, z) = 0 . (C.15)

BRST transformation. Let us rewrite the path integral (C.1) as

(Ψ, AΨ) =

∫
DgDχDcDc̄DbDb̄DBDBi e−Sg.i.−Sg.f.−Sfull

gh , (C.16)

where have implemented the gauge fixing delta functions through the Nakanishi-Lautrup

fields B,Bi and the gauge fixing action

Sg.f = i

∫
ddx

(
B(gii − d) +Bi∂jgij

)
, (C.17)

and indicated the rest of the gauge invariant integrand using e−Sg.i .

The BRST transformation is

δθBχ = θ
(
ci∂iχ− b∆χ

)
, δθBgij = θ (∇icj +∇jci + 2bgij) ,

δθBc
i = θck∂kc

i, δθBc̄
i = −iθBi,

δθBb = θck∂kb, δθBb̄ = −iθB, (C.18)

δθBB
i = 0, δθBB = 0 .
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We have used the following formulae to obtain the ghost field transformations

δθBc
k(w) =

θ

2

∫
ddy ddz f(wk|yi, zj)ci(y)cj(z), (C.19)

δθBb
k(w) = θ

∫
ddy ddz f(w|y, zi)b(y)ci(z) . (C.20)

BRST invariance. We shall show that the amplitude (C.16) is invariant under the

above transformation. Let us define the operation δB via

δθB ≡ θδB.

Firstly note that the operator δB is nilpotent on all variables. That is

δBδBgij = δBδBχ = δBδB(c̄
i, ci, b̄, b, Bi, B) = 0 . (C.21)

This is a group theoretic result which can be easily checked (see for instance [92]). This

further means

δBδB (any polynomial in field variables) = 0 . (C.22)

The ghost and gauge fixing actions can be rewritten as

Sfull
gh =

∫
ddx

(
b̄δB(gii − d) + c̄iδB(∂jgij)

)
, (C.23)

Sg.f =

∫
ddx

(
−δBb̄ (gii − d)− δBc̄

i ∂jgij
)
. (C.24)

Adding these up,

Sfull
gh + Sg.f = −δB

∫
ddx

(
b̄(gii − d) + c̄i(∂jgij)

)
. (C.25)

Since the sum is BRST exact, we have

δB(S
full
gh + Sg.f) = 0 . (C.26)
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C.2 Eliminating the Weyl ghost

Now, since the b, b̄ ghosts in the action (C.6) are non-dynamical, we can simply integrate

them out to get the effective ghost action

e−S̃gh =

∫
DbDb̄ e−Sfull

gh

=

∫
DbDb̄ e−

∫
ddx{b̄(2giib+2∇kck)+2c̄i∂j(gijb)+c̄i∂j(∇icj+∇jci)}

=

∫
Db δ (−2(giib+∇kck)) e

−
∫
ddx{2c̄i∂j(gijb)+c̄i∂j(∇icj+∇jci)}

= N3 exp
{
−
∫
ddx c̄i∂j

(
∇icj +∇jci −

2

gii
gij∇kck

)}
.

(C.27)

Here N3 = det(−2gii). As we will see shortly, this is invariant under our new BRST

transformation and so N3 reduces to an unimportant numerical constant. For these

reasons we can drop it from our effective ghost action, and quote

Sgh =

∫
ddx c̄i∂j

(
∇icj +∇jci −

2

gii
gij∇kck

)
. (C.28)

The gauge fixing part Sg.f remains the same,

Sg.f = i

∫
ddx

(
B(gii − d) +Bi∂jgij

)
. (C.29)

The new BRST transformation is obtained by replacing b→ − 1
gii
∇kck in (C.18).

δθBχ = θ

(
ci∂iχ+

1

gii
∇kck∆χ

)
, δθBgij = θ

(
∇icj +∇jci −

2

gℓℓ
∇kckgij

)
,

δθBc
i = θck∂kc

i, δθBc̄
i = −iθBi, (C.30)

δθBB
i = 0, δθBB = 0.

Nilpotence of δB. Since the transformations of ci, c̄i, B,Bi are unchanged, their nilpo-

tence is trivially maintained. So we only need to show the nilpotence of the transforma-

tions of χ and gij.

Firstly we note that

δBgii = 0 . (C.31)
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This gives δBN3 = 0. The modified BRST transformation can thus be interpreted as

a diffeomorphism followed by a compensating Weyl transformation which preserves gii.

Written explicitly in terms of the ghost field, the transformation is

δBgij = (Pgc)ij , (C.32)

where we define

(Pgc)ij ≡ ck∂kgij + 2gk(i∂j)c
k − 2

gmm

gij

(
gkℓ∂kc

ℓ +
1

2
c · ∂gkk

)
, (C.33)

whose gauge-fixed version is (3.6).

The b-ghost transformation in the full analysis is compatible with the substitution

b→ − 1
gii
∇kck in the new transformation. That is,

δB

(
− 1

gii
∇kck

)
= ci∂i

(
− 1

gii
∇kck

)
. (C.34)

Now for the matter field,

δBδBχ = δB

(
ci∂iχ+

1

gii
∇kck∆χ

)
= δBc

i∂iχ− ci∂iδBχ+∆δB

(
1

gii
∇kck

)
χ− ∆

gii
(∇kck) δBχ

= cj∂jc
i∂iχ− cj∂jc

i∂iχ− cicj∂i∂jχ− cj∂j

(
∆

gii
∇kck

)
χ+

∆

gii
∇kckc

j∂jχ

+ δB

(
∆

gii
∇kck

)
χ− ∆

gii
∇kckcj∂

jχ− ∆2

(gii)2
∇kck∇ℓcℓ

= 0.

(C.35)

In the third line, the second and last terms cancel out due to antisymmetry of the ghost

field and the fourth and sixth terms cancel out due to the relation (C.34). After a slightly
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more tedious computation of the same for the metric we get

δBδBgij = δB

(
ck∂kgij + gki∂jc

k + gkj∂ic
k − 2

gmm

∇kckgij

)
= −ck∂k

(
gℓi∂jc

ℓ + gℓj∂ic
ℓ
)
+
(
cm∂mgki + gℓi∂kc

ℓ
)
∂jc

k

+
(
cm∂mgkj + gℓj∂kc

ℓ
)
∂ic

k + gki∂j
(
cℓ∂ℓc

k
)
+ gkj∂i

(
cℓ∂ℓc

k
)

= 0.

(C.36)

Hence, we can once again make the following assertion for the new δB:

δBδB (any polynomial in field variables) = 0 . (C.37)

Also once again,

Sgh =

∫
ddx c̄iδB(∂jgij), (C.38)

Sg.f =

∫
ddx

(
iB(gii − d)− δBc̄

i ∂jgij
)
, (C.39)

giving

Sgh + Sg.f = −δB

∫
ddx

(
c̄i∂jgij

)
+ i

∫
ddxB(gii − d) . (C.40)

The first part is BRST exact, and the other parts depend on gii and B, both of which

are BRST closed, thereby yielding

δB (Sgh + Sg.f) = 0 . (C.41)

Since Sg.i is by definition diffeomorphism and Weyl invariant, this concludes the proof of

BRST invariance of the correlator (C.1).



Appendix D

Phase of the wavefunctional

In the literature on inflationary cosmology, it is generally assumed that the phase of the

wavefunctional, Ψ[g, χ], is not observable. (See [30] for more discussion.) In accordance

with this perspective, in the main text we restricted attention to observables that de-

pended only on the field insertions. Such observables are only sensitive to |Ψ[g, χ]|2 and

not to the phase of the wavefunctional.

On the other hand, from a formal perspective one may wish to study a broader class

of observables. The conjugate momenta, that act on the wavefunctional as πij = −i δ
δgij

and πχ = −i δ
δχ

are sensitive to the phase of the state. However, the derivative acts on

the leading phase-factor in the wavefunctional (2.104) to give a divergent contribution

in the large-volume limit. This is the reason these operators are usually excluded in the

study of cosmological correlators.

To obtain finite quantities we focus on the “dressed” momentum operators

π̃ij = eiS
′[g,χ]πije−iS′[g,χ]; π̃χ = eiS

′[g,χ]πχe
−iS′[g,χ] (D.1)

where S ′[g, χ] = S[g, χ] + SA[g, χ] and SA[g, χ] is any solution to the anomaly equation

i

(
2gij

δ

δgij
−∆χ

δ

δχ

)
SA[g, χ] = Ad. (D.2)

These operators remain finite even in the large volume limit. We will show that the

discussion in the main text easily generalises to cosmological correlators that include

such dressed conjugate momenta.

84
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If A is an operator that involves the dressed conjugate momenta then the expression

(3.2) must be generalised to

(Ψ, AΨ) =
N1

vol(diff×Weyl)

∫
DgDχΨ∗[g, χ]AΨ[g, χ], (D.3)

i.e. the functional derivatives in A act on the wavefunctional on the right but not on its

conjugate.

Similarly, one may define a generalisation of cosmological correlators. Consider the

string of operators

Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(x⃗) = hi1j1(y1) . . . hipjp(yp)χ(z1) . . . χ(zq)π̃

k1ℓ1(u1) . . . π̃
krℓr(ur)π̃χ(v1) . . . π̃χ(vs).

(D.4)

Then, we can define a generalised cosmological correlator

⟪Ψ|Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(x⃗)|Ψ⟫CC ≡ N1N2

∫
DgDχDc̄Dc′e−Sghδ(gii−d)δ(∂igij)Ψ∗[g, χ]Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(x⃗)Ψ[g, χ].

(D.5)

We note the following.

1. The operators (D.1) involve a choice of the functional SA[g, χ]. This choice can be

made according to convenience and our discussion is valid for any choice. Given

correlators of operators with one choice of SA, it is evident that one may obtain

correlators of operators corresponding to another choice.

2. In (D.5), all the momenta appear on the right. Since the momenta and the fields

satisfy canonical commutation relations, it is clear that knowledge of all such cor-

relators suffices to determine cosmological correlators of operators with other or-

derings.

By combining the anomaly equation (D.2) with (2.98), we see that the wavefunctional

Ψ̃[g, χ] = e−iS′
Ψ[g, χ] (D.6)

is diff × Weyl invariant. A slight manipulation shows that the cosmological correlator
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can be written as

⟪Ψ|Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(x⃗)|Ψ⟫CC = N1N2

∫
DgDχDc̄Dc′e−Sghδ(gii − d)δ(∂igij)

× Ψ̃[g, χ]∗hi1j1(y1) . . . hipjp(yp)χ(z1) . . . χ(zq)π
k1ℓ1(u1) . . . π

krℓr(ur)πχ(v1) . . . πχ(vs)Ψ̃[g, χ]

(D.7)

Here, note that all the dressed momentum operators have been replaced by their ordinary

counterparts and it is the wavefunctional that is dressed instead.

Using the diff × Weyl invariance of Ψ̃[g, χ], and by repeating the arguments in subsec-

tion 4.2, we see that cosmological correlators involving the momenta have the following

symmetries.

⟪Ψ|Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(λx⃗+ ζ)|Ψ⟫CC = λ−q∆−rd−s∆̄⟪Ψ|Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(x⃗)|Ψ⟫CC, (D.8)

⟪Ψ|Cp,q,r,s

i⃗⃗jk⃗ℓ⃗
(R · x⃗)|Ψ⟫CC = R

i′1
i1
R

j′1
j1
. . . R

i′p
ip
R

j′p
jp
×Rk1

k′1
Rℓ1

ℓ′1
. . . Rkr

k′r
Rℓr

ℓ′r
⟪Ψ|Cp,q,r,s

i⃗′j⃗′k⃗′ℓ⃗′
(x⃗)|Ψ⟫CC,

(D.9)

with ∆̄ = d − ∆. This is a straightforward generalisation of (4.10,4.11) with the corre-

sponding momentum insertions acquiring dual scaling dimensions and the gravity mo-

menta rotating the inverse way.

The result of chapter 5 can now be generalised to

Result. The set of all generalised cosmological correlators of the form (D.5) in any open

region R in a state Ψ is sufficient to determine the wavefunctional Ψ[g, χ].

We emphasise that the generalised correlators fix not just the magnitude but also the

phase of the wavefunctional.
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