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Abstract: We consider theN−particle classical Riesz gas confined in a one-dimensional

external harmonic trap. The constituent particles interact via pairwise repulsive power-

law interaction potential of the form ∼ 1/rk, with r being the distance between two

particles. In the first part of my thesis, we study the fluctuations in the system at ther-

mal equilibrium by looking at the statistics of the gap between successive particles. This

quantity is analogous to the well-known level-spacing statistics which is ubiquitous in

several branches of physics. We show that the variance of bulk gap goes as N−bk and find

the k dependence of bk via direct Monte-Carlo simulations. We provide supporting argu-

ments based on microscopic Hessian calculation and a quadratic field theory approach.

We compute the gap distribution and study its system size scaling. In the second part

of my thesis, we consider a generalized version of the Riesz gas where each particle can

interact with a maximum of d neighboring particles on either side (left or right), if avail-

able. As suggested by prior studies, the equilibrium density profile of these particles is

expected to undergo shape variations as d is changed. In this part, we investigate the

crossover by tuning the parameter f (where f = d/N) from 1 to 0 in the large N limit, for

two distinct interaction potentials: V (x) = −|x| and V (x) = − log(|x|). These potentials

correspond to the well-known 1-D one-component plasma (k = −1) and Dyson’s log-gas

(k = 0+) respectively. We explicitly show the crossover by analytically computing the

average density profile for any f ∈ (0, 1] in the 1D plasma model, while for the log-gas

model, we show the crossover numerically and provide approximate calculations for large

(close to 1) and small (close to 0) f . In the final part of my thesis, we consider an

active version of the Calogero-Moser system (k = 2) where the particles are associated

with telegraphic noise with two possible states ±v0. We numerically compute the global

density profile in the steady state which shows interesting crossovers. As the activity

increases, we observe a change from a density with sharp peaks characteristic of a crystal

phase to a smooth bell-shaped density profile, passing through an intermediary stage of a

smooth Wigner semi-circle characteristic of a liquid phase. To understand the crossovers

analytically, we compute the variance and covariance of particle positions in the steady

state under the weak noise limit. It is achieved by using the method introduced in Touzo

et al. [Phys. Rev. E 109, 014136 (2024)] to study the active Dyson’s Brownian motion.
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Chapter 1

Introduction

Interacting particle systems in equilibrium exhibit intriguing emergent phenomena, such

as phase transitions [1, 2], which are absent in non-interacting systems. For example,

unlike an ideal gas with no interparticle interactions, a van der Waals gas, where parti-

cles experience repulsion at short distances and attraction at long distances, undergoes

a transition between the liquid and gas phases [1, 2]. This transition is characterized by

a discontinuity in density, indicative of a first-order phase transition. Statistical physics

is essential in understanding such macroscopic properties in many-particle interacting

systems. Recent advancements in experimental technologies have enabled not only the

measurement of global properties like density profiles but also the tracking of individ-

ual particles [3, 4]. This allows for the study of more detailed characteristics such as

position correlations and gap statistics (mean gap, fluctuation, distribution), thereby en-

abling access to the study of microscopic properties of a system. Gap statistics provide

insights into fluctuations at the microscopic level, facilitating an understanding of local

correlations within the system. In a one dimensional system comprising of N particles

interacting via a general two-body interaction potential V (xi − xj), with xj being the

position of the jth particle, one defines the spacing distribution in thermal equilibrium

as, PN(s) = 1
N−1

∑
i⟨δ(s − si)⟩, where ⟨...⟩ denotes an average over Gibbs-Boltzmann

distribution. Here si is the spacing between successive particles normalized by their av-

erages, si = ∆i/⟨∆i⟩ with ∆i = xi+1 − xi. The reason for such normalization is to focus

on universal features while disregarding information about local densities.

The distribution PN(s) is a well studied object in random matrix theory (RMT) and
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quantum chaos [5–10] where it corresponds to the distribution of the spacing between

successive eigenvalues and energy levels {λi} respectively. It is a general consensus that

for an integrable quantum system the level-spacing statistics follows Poissonian statistics

whereas for non-integrable systems it follows RMT [7,8]. One of the important results in

RMT is the universal form of PN(s) in the large N limit for the three Gaussian ensembles:

Gaussian orthogonal ensemble, Gaussian unitary ensemble and the Gaussian symplectic

ensemble, corresponding to the Dyson indices β = 1, 2, and 4 respectively. One finds

that P∞(s) is accurately described by P2(s) = Aβs
βe−Bβs

2
, known as the Wigner surmise,

where Aβ and Bβ are β dependent constants [5,6]. For the Gaussian orthogonal ensemble,

the joint distribution Pjoint({λi}) of eigenvalues {λi} has the following form

Pjoint({λi}) ∝

(∏
i<j

|λi − λj|

)
exp

[
−1

2

N∑
i=1

λ2i

]
, (1.1)

which can be interpreted as the equilibrium Gibbs-Boltzmann measure, Pjoint({λi}) ∝

exp[−βE({λi})] of an interacting gas of N particles at inverse temperature β = 1 with

energy

E({λi}) =
1

2

N∑
i=1

λ2i −
1

2

∑
i ̸=j

log(|λi − λj|). (1.2)

The energy function E({λi}) represents a gas of particles in one dimension denoted by

their positions {λi}. These particles are confined in a harmonic trap and interact with

each other via a repulsive logarithmic potential. This system is known in the literature

as the log-gas [5, 6].

It has been proven that in the large N limit, the spacing distributions in log-gas is

invariant (up to some scaling) even after changing the external confining potential from

harmonic to any other convex analytic potentail [11]. Thus, it is natural to ask what

would happen to this distribution if we change the form of interaction among the particles

keeping them confined in harmonic trap. Specifically, we examine a system of particles

interacting with every other particle via pairwise repulsive power-law interactions confined

within a 1-D harmonic trap. We denote the positions of the particles on the line by

xj, (j = 1, 2, ..., N). The system is known as Riesz gas and is described by the following
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Figure 1.1: Schematic representation of a 1D system with five particles, illustrating all-
to-all interactions as described in Eq. (1.3). Each particle is connected to every other
particle via dashed blue lines, indicating that all particles are interacting with each other.

(potential) energy function [12,13]

Ek({xi}) =
N∑
i=1

x2i
2

+
J sgn(k)

2

∑
i ̸=j

1

|xi − xj|k
, (1.3)

where J > 0 denotes the strength of the interaction and sgn(k) ensures a repulsive

interaction. Note that the 1/rk interaction potential can be interpreted as the interaction

between two charge particles separated by a distance r in (k+2) dimensional space [14,15].

A system of particles with pairwise power-law interactions is described schematically in

Fig. 1.1. The energy function in Eq. (1.3) can be broadly categorized into short-range and

long-range interacting systems based on the parameter k. Since for k > 1, the interaction

between particles decays faster than 1/r where r is the separation, this case is called short-

range interaction. In contrast for k < 1, the interaction decays slowly with separation

and is therefore called long-range interaction [16, 17]. As opposed to the short-range

interactions, systems with long-range interaction exhibit a variety of counterintuitive

phenomena, including non-equivalence of thermodynamic ensembles, negative specific

heat, slow relaxation dynamics and anomalous heat transport, among others [16–28].

Note that while the first term in the energy function Ek({xi}) tries to keep the particles

close to the origin, the second term pushes the particles apart from each other. As a

result of this competition, the particles are expected to settle over a finite region at any

finite temperature. To ensure stability, the parameter k must be greater than −2, given

that the confining potential is quadratic. Otherwise, the particles would fly off to infinity
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due to strong repulsion among them. Special values of k in the Riesz gas described in

Eq. (1.3) correspond to some important and well-studied models in the literature.

1. The interaction term in the energy function given in Eq. (1.3) reduces to a loga-

rithmic interaction in the limit k → 0, J → ∞ keeping J |k| = J0 fixed. The energy

function in this case is given by

E0({xi}) =
N∑
i=1

x2i
2

− J0
2

∑
i ̸=j

log(|xi − xj|), (1.4)

which is known as the Dyson’s log-gas [29, 30]. From now on, we will refer to

the log-gas as the k = 0+ case of the Riesz gas, unless stated otherwise. The

minimum energy configuration {yi}, obtained by solving ∂E0({xi})
∂xi

|{yi} = 0 for all

i = 1, . . . , N are given by the zeros of the Hermite polynomials [31] for J0 = 1.

Consequently, the density profile of the particles follows the Wigner semi-circle

form [5,6,32] in the large N limit. The distribution of the position of the rightmost

(or equivalently the leftmost) particle is a well-studied object in the context of

extreme value statistics. The typical distribution of this particle is described by

the famous Tracy-Widom distribution [33–37]. Using its connection to random

matrix theory, many interesting quantities have been extensively studied across

various contexts, for example, extreme value statistics [35–37], index distribution

[38], number variance [39], third-order phase transitions [37,40,41], non-interacting

fermions [42–44], communication systems [45], and large-N gauge theory [46], to

name a few.

2. The Riesz gas described by the energy function in Eq. (1.3) with k = −1 corresponds

to the well-known 1-D one-component plasma (1DOCP) [47–50] where the particles

interact through a truly 1-D Coulomb potential (linear in the separation between

two particles)

E−1({xi}) =
N∑
i=1

x2i
2

− J

2

∑
i ̸=j

|xi − xj|. (1.5)

This system, also known as the “jellium model” [51], comprises N charges of the

same sign interacting with a uniform background of opposite charges, ensuring over-
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all charge neutrality. This model serves as a paradigm for 1D charged plasma [52]

and particularly interesting since numerous observables can be calculated analyti-

cally [47,48,53–55]. For example, recent studies include extreme value statistics and

index istribution [49,50], truncated linear statistics [56], full counting statistics [57],

as well as a third-order phase transition [49,58].

3. The famous Calogero-Moser (CM) [59–68] model refers to the Riesz gas (Eq. (1.3))

with k = 2, thus it has the following energy function

E2({xi}) =
N∑
i=1

x2i
2

+
J

2

∑
i ̸=j

1

(xi − xj)2
. (1.6)

In this system, the constituent particles interact with repulsive inverse-square po-

tential and are confined in a harmonic trap. The Hamiltonian dynamics of this

system is integrable and has been well studied in the context of shocks [69, 70],

generalized hydrodynamics [70–72], soliton physics [72, 73], out-of-time-order com-

mutator [74]. A surprising result is that although the interaction potential in CM

model is different from that in the log-gas, they share an identical minimum energy

configuration and are hence given by the zeros of the Hermite polynomials [75].

Therefore, they share the same Wigner semi-circular density profile in the large N

limit at finite temperature. Additionally, there are remarkable relations in the struc-

ture of the Hessian matrix that characterize small oscillations around the potential

minimum [75].

4. Another well-known model is the hard rods model [76,77], which represents a limit-

ing case of 1/rk repulsive interactions as k → ∞. This interaction effectively implies

that particles repel each other with infinite force upon contact, but otherwise, they

do not interact at all. The dynamics of hard rods model is also integrable and has

been known for a long time [78]. This model helps in understanding phase transi-

tions and the impact of excluded volume effects on the thermodynamic properties

of systems [76, 79]. Recently, there has been interest in breaking integrability by

adding an external potential and studying how the system thermalizes. Interest-

ingly, researchers have found that although adding an external harmonic potential
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breaks the integrability in the hard rods model, the system fails to thermalize to

Gibbs equilibrium [80,81]. Instead, it reaches a stationary state [80, 81].

5. Interactions with other values of k have been possible to achieve in experiments-

for example using Rydberg atoms [82–84] and cold atoms [85–87]. The ability to

manipulate and control these systems with high precision has opened new avenues

for exploring fundamental physics. For example, with Rydberg atoms, researchers

can create and study large, strongly interacting systems with tunable interactions,

providing insights into quantum many-body physics and phase transitions [88].

Furthermore, recent technological progress has made it possible to realize and in-

vestigate a variety of systems, including ions [88–90], dipolar Bose gases [91, 92],

and coupled lasers [93]. Additionally, advances in absorption imaging techniques

for cold atomic gases have made it possible to investigate both long and short-range

interacting systems [91, 94–96]. Overall, these advancements in experimental tech-

nologies have significantly enhanced our ability to study and understand a wide

range of physical systems, leading to new discoveries and deeper insights into the

nature of matter and interactions.

Thus it is necessary to have a complete characterization of equilibrium and dynam-

ical properties of such systems theoretically where Riesz gas offers a perfect platform.

However, theoretical studies in this system currently are limited to only large-N field

theory and average density profile for general k [97]. The knowledge of field theory

turns out to be instrumental in many other studies, particularly in log-gas (k = 0+)

and 1DOCP (k = −1) systems, such as extreme value statistics [35, 36, 49, 50], number

fluctuations [38, 39, 49, 50], large deviations [37, 49] etc., in equilibrium, especially in the

large N limit. It is important to note that in all these works, the system has been studied

using a coarse-grained description, focusing on macroscopic properties, thus involve many

particles. In our first study, we examine the microscopic properties of these systems by

looking at the statistics of the gap between successive particles [98]. We study the system

size scaling of its mean and variance to characterize the system based on the power-law

exponent k [98]. Additionally, we analyze the gap distributions to examine a potential

generalization of the Wigner surmise.
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Figure 1.2: Schematic representation of a 1D system with five particles, illustrating short-
ranged interactions as described in Eq. (1.7) with d = 2. Each particle can interact with
up to two particles on its left and two on its right, if available. Interactions are depicted
by connecting lines between particles; a line indicates that the particles are interacting,
while the absence of a line indicates no interaction. For example, the first (leftmost)
particle can only interact with the second and third particles, but not with the fourth or
fifth. In contrast, the third particle can interact with all particles shown, as it has two
particles on either side.

So far, our discussions have focused on systems with all-to-all coupling, where each

particle interacts with every other particle. However, in many physical scenarios, in-

teractions between particle pairs often get screened, resulting in effectively finite-ranged

(FR) interactions. This naturally raises the question: what are the consequences of FR

interactions on equilibrium properties, particularly within field theory and equilibrium

density profiles? Recently, a generalized version of the Riesz gas has been introduced

where constituent particles can only interact with d ≤ (N − 1) neighboring particles on

both sides, if any [99,100] and is described by the energy function

Ek({xj}) =
1

2

N∑
i=1

x2i +
J sgn(k)

2

N∑
i ̸=j

|i−j|≤d

1

| xi − xj |k
, ∀ k > −2. (1.7)

Notice that, by varying the parameter d, one can tune the range of interaction from

nearest-neighbor (d = 1) to all-to-all interacting (d = N − 1). In a system of five

particles, the energy function in Eq. (1.7) is schematically described in Fig. 1.2 for d = 2.

When d ∼ O(1), each particle interacts with only a few neighboring particles, making

the system short-ranged. Interestingly, the corresponding field theory and equilibrium

density profile in the short-ranged (SR) case [d ∼ O(1)] exhibit significant deviations
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from those observed in the all-to-all coupling case, particularly for k ≤ 0. In the SR case,

the free energy functional is local in space for any k > −2, contrasting with the non-

local free energy obtained in the all-to-all coupling scenario for −2 < k < 1. Equilibrium

density profiles, obtained by solving relevant saddle point equations also show substantial

differences for k ≤ 0. For instance, in the 1DOCP, the equilibrium density profile in the

SR case is a Gaussian which is infinitely extended. On the other hand in the all-to-all

coupling case, the density profile is uniform and supported over a finite region. In the

log-gas with short-ranged interaction, the density profile adopts a Gaussian shape instead

of the Wigner semi-circle profile seen in the all-to-all coupling limit. Thus, one expects

a crossover in density profile as one tunes the parameter d from (N − 1) to 1. One

would also expect similar crossovers in the equilibrium density profile when the system’s

temperature varied from very low to very high values. At very low temperatures, the

free energy functional is dominated by the energy functional, while the entropy term is

subdominant in system size N . Thus, the equilibrium density profile is governed by the

ground state (zero temperature) configuration. Conversely, at very high temperatures,

the interactions among the particles become negligible and the entropy term competes

with the confining harmonic potential, leading to a Gaussian density profile. Lowering

the temperature of a system is similar to increasing the strength of interaction. These

crossovers, due to changes in the strength of interaction or equivalently in temperature

have been explored in the context of random matrix theory [101,102]. In Ref. [103], rather

than varying the temperature or interaction strength, we explore how the crossover in

the equilibrium density profile is influenced by adjusting the range of interaction through

the parameter f(= d/N). A thorough investigation of this inquiry has been conducted

for two models: namely the 1DOCP and the log-gas.

Recently, researchers have begun to investigate the dynamics of interacting many-

particle systems with power-law interactions [104–110]. However, there exist only a few

analytical studies even in one spatial dimension [107–110]. In Ref. [107], the authors

considered a system of particles on a line with all-to-all coupled power-law interactions,

V (r) ∼ 1/rk for k > 0. However, there was no external potential, making the system

translationally invariant. By deriving macroscopic fluctuation theory-type equations,

they analytically computed the temporal growth of the variance of particle positions
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and the integrated current and found interesting distinction whether the system is short-

ranged (k > 1) or long-ranged (k < 1). In Ref. [110], the Langevin dynamics ofN particles

in one dimension with 1D Coulomb interaction (k = −1) was considered, once again,

without any external confining trap. By mapping to the Lieb-Liniger model of quantum

bosons, the exact joint distribution of the particles was computed. This further led to

the computation of the fluctuations of particle positions around their average positions,

gap statistics, and more [110]. To the best of our knowledge, there are no analytical

studies on non-equilibrium properties of Riesz gas in confinement except Refs. [108,109].

In Ref. [108], an active version of Dyson’s Brownian motion (DBM) model has been

introduced in which the particles interact via pairwise repulsive logarithmic interaction

and are confined in a harmonic trap. Additionally, the particles are subjected to a

telegraphic noise. The overdamped Langevin equations of motion are given by

dxi
dt

= xi −
∑
j ̸=i

1

xi − xj
+ v0σi(t) for i = 1, 2, . . . , N, (1.8)

where the spin degrees of freedom σi, associated with each particle, alternate indepen-

dently between two values, ±1, at a constant rate γ and v0 denotes the strength of the

noise. In the limit where v0 → ∞ and γ → ∞ with v20/2γ remaining finite, the mo-

tion of the particles described in Eq. (1.8) reduces to the DBM with diffusion constant

D = v20/2γ [111]. In this limit, the equilibrium configuration of the particles coincides

with the zeros of the Hermite polynomials, leading to a density profile that converges to a

Wigner semi-circle [32]. For any finite values of v0 and γ, the system will eventually reach

a non-equilibrium steady state from arbitrary initial conditions. This behavior results

from the interplay between the harmonic confining term, the repulsive logarithmic inter-

action and the active noise. Surprisingly, across a broad range of the activity strength

v0, the researchers have found that the density profile in the steady state maintains the

shape of the Wigner semi-circle, similar to the DBM [5, 6]. To support these intriguing

findings, the researchers also provided analytical arguments based on the computations

of the covariance of particle positions [109]. As mentioned earlier, the famous Calogero-

Moser model, where the particles are confined in a one-dimensional harmonic trap with a

pairwise repulsive inverse square-law interaction potential, also shares the same Wigner

29



semi-circular density profile in their passive motion [109]. It would be interesting to see

how the results of the active DBM obtained in Refs. [108, 109] get modified if the inter-

action is changed. In the last part of the thesis, we study the non-equilibrium dynamics

of an active version of the Calogero-Moser model by analyzing the density profile and

covariance in particle positions in the steady state.

In brief, the thesis addresses three main investigations. It is organized as follows.

In chapter 2, we analyze gap statistics for a harmonically confined Riesz gas in thermal

equilibrium, focusing on the mean and variance of the bulk gap, and the distributions.

In chapter 3, we investigate the crossover in equilibrium density profiles resulting from

variations in the interaction range, particularly for 1DOCP and log-gas. Shifting to a

non-equilibrium setup, we study the Calogero-Moser system driven by active noises and

explore the crossover in the density profile and compute covariances in particle positions

(chapter 4).
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Chapter 2

Gap statistics for confined particles

with power-law interactions

The study of dynamics and thermodynamic properties of long-range interacting systems

has generated lots of interest in the last few decades [20–26]. Examples of such systems

include, but are not limited to, charged particles [14, 15], dipoles [14, 15], gravitational

systems [18, 27], hydrodynamics [19], and cold atomic systems [87–89]. Often these sys-

tems are characterized by the two-particle interaction potential V (r) ∼ 1/rk where r is

the distance between two particles. The parameter k determines the range of interaction

— smaller the value of k, larger the range of the interaction potential. One well-known

example of a many-particle classical interacting system in one dimension is the harmoni-

cally confined Riesz gas consisting of N particles, described by the energy function given

in Eq. (1.3). The non-trivial all-to-all coupling interactions makes this difficult but some

progress has recently been made [35–37, 40, 41, 44, 49, 50, 91, 97, 112–117]. The system is

considered to be in thermal equilibrium at inverse temperature β which implies that any

configuration {xi} with energy function Ek({xi}) has equilibrium Gibbs measure of the

form

PG({xi}) =
e−βEk{xi}

ZN(β)
, (2.1)

where the partition function ZN(β) =
∫ ∏

i dxie
−βEk{xi} and henceforth we set the inverse

temperature β = 1. We assume the Boltzmann constant kB = 1 throughout this thesis.

Without any loss of generality, we assume that the particles are ordered which implies
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x1 ≤ x2 ≤ x3 . . . ≤ xN . As pointed out in the introduction, due to the competition

between the confining potential and the repulsive power-law interactions, the particles

are expected to settle over a finite distance at any finite temperature. The mean thermal

density of particles is defined as ρ
(eq)
N (x) = 1

N

∑N
i=1⟨δ(x − xi)⟩, where ⟨...⟩ denotes a

thermal average over the distribution PG({xi}). Using large-N field theory, the average

thermal density is calculated recently ∀ k > −2 [97], thereby obtaining a generalization

of the Wigner semi-circle law for the log-gas [32]. The form of the average density profile

and the scaling of its support with increasing N was found to be nontrivial. The average

density, ρ
(eq)
N (x), for large N is independent of the inverse temperature, β and is described

by the following scaling form

ρ
(eq)
N (x) ≡ 1

N

N∑
j=1

⟨δ(x− xj)⟩ =
1

lkNαk
Fk

( x

lkNαk

)
, (2.2)

where αk is given by

αk =


k

k+2
for k > 1

1
k+2

for − 2 < k < 1.

(2.3)

The scaling function Fk(y), supported over y ∈ [−1/2, 1/2], is given explicitly by

Fk(y) =
1

B
(
γk + 1, γk + 1

)(1
4
− y2

)γk , (2.4)

where the exponent γk is given by

γk =


1
k

for k > 1

k+1
2

for − 2 < k < 1,

(2.5)

and the system size independent length scale is explicitly

lk =


((

2Jζ(k)(k+1)
)1/k

B(1+1/k,1+1/k)

) k
k+2

for k > 1(
J |k|π(k+1)

sin
[

π
2
(k+1)

]
B( k+3

2
, k+3

2
)

) 1
k+2

for − 2 < k < 1,
(2.6)
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where B is the beta function. We use these densities to study the statistical properties

of interparticle bulk gaps, ∆i = xi+1 − xi (for 1 ≪ i ≪ N) in detail. Very recently, the

average density profile, in the presence of a hard wall, has been computed exactly [115]

which eventually leads to the computation of extreme value statistics for all k > −2 [116].

One of the interesting observations of Ref. [97] was on the system-size scaling of the

mean separation ⟨∆i⟩ between neighboring particles in the bulk. This has the form

⟨∆i⟩ ∼ N−ak where ak has a non-monotonic dependence on k and can have both positive

and negative signs. For a complete characterization, it is necessary to go beyond the mean

and study the fluctuations of this quantity as well as its full distribution. As described

in the introduction, we study the distribution of the normalized separation si = ∆i/⟨∆i⟩

defined as

PN(s) =
1

N − 1

N−1∑
i=1

p
(i)
N (s), (2.7)

where p
(i)
N (s) = ⟨δ(s − si)⟩ is the distribution of the i-th normalized gap. We expect

that for typical fluctuations, PN(s) will be dominated by the bulk gaps, but edge gap

contributions could be important for atypical s. The interplay between the power-law

interactions and the confining potential makes this a fascinating and difficult question

and this is the main focus of this chapter.

Recall that the equilibrium distribution of particle positions in the log-gas (k = 0+) at

inverse temperature β, corresponds to the distribution of eigenvalues of random matrices

for the Gaussian orthogonal, unitary and symplectic ensembles [5, 6]. From this corre-

spondence, it is known that the distribution of particle spacing, normalized by the mean

spacing, is given quite accurately by the Wigner surmise (WS) [5,6,32]. A variant of the

WS has also been applied to the Calogero-Moser model (k = 2) [67] but to the best of our

knowledge, there are no results for other values of k and this chapter provides a complete

characterisation. Needless to mention, fluctuations at the microscopic level is an avenue

that is essentially unexplored in systems with long-range interactions. Probing such fluc-

tuations has now become experimentally accessible given the recent breakthroughs in the

technology of quantum gas microscopy [118–122]. Gap fluctuations give us a novel way to

probe aspects of the underlying interacting systems that are otherwise completely elusive

33



to diagnostics such as density profiles.

Before diving into a detailed discussion, we first provide a summary of our main

findings.

1. We compute the system-size scaling of the variance of the bulk gap. For the expo-

nent bk which characterizes the system size scaling of variance of the bulk gap, we

conjecture a non-trivial form in Eq.(2.9). Through direct Monte-Carlo (MC) simu-

lations, we verify that bk indeed exhibits the non-trivial k dependence as described

in Eq.(2.9).

2. This proposed form is further validated by our results based on two (semi) analytical

methods: microscopic Hessian calculation and quadratic field theory approach. In

the first method, we start with the microscopic energy function Ek(xi) given in

Eq. (2.12) to find the Hessian matrix which describes the fluctuations of the nearest-

neighbor gaps around their average values. By numerically inverting the Hessian

matrix, we compute the variance of the bulk gaps (see Sec. 2.2). We find that

except in the regime −1 < k < 0, this theory works well (see Fig. 2.3). In the

second method, we use the quadratic field theory approach, starting with the free

energy functional developed in Ref. [97]. We then connect the fluctuations in the

macroscopic density profile to those of the nearest-neighbor gaps (see Eq.(2.22) and

the discussion preceding Eq.(2.25)). This results in a matrix similar to the one

obtained in the microscopic Hessian calculation (see Eq.(2.25)). We then compute

the variance of the bulk gaps by inverting this matrix. Surprisingly, we find that

this field theory method works exceptionally well for ∀k > −2 (see Fig. 2.3).

3. We study the scaling properties of the gap distributions for different k and observe

that there exist four regimes, as shown in Fig. 2.1. As in the log-gas, we find

that for the 1DOCP the distribution PN(s) converges very quickly with system size

N (see Fig.2.6 (b), (d)); however, it fails to generalize the results of the Wigner

surmise [57]. For other values of k, the distributions PN(s) are not system size-

independent, leading to the analysis of P̃N(s̃) (see Eq. (2.30)), which turns out to

be independent of system size except in the range −1 < k < 0. Additionally, we

find that the distributions P̃N(s̃) can be well approximated by a normal distribution
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Figure 2.1: Schematic phase diagram of the behavior of the gap distribution. We find four
regimes in k ∈ (−2,∞), where the gap distribution has different scaling properties. In
the region (−2,−1)∪ (0,∞) the scaling limit is achieved by using mean and the variance
of gap only. The scaling function for k ∈ (−2,−1) ∪ (1,∞) is Gaussian whereas it is
non-Gaussian in k ∈ (0, 1). In the regime k ∈ (−1, 0) we are unable to obtain a scaling
limit.

(mean zero and variance unity) near the maxima for all k > −2 except in the range

[−1, 1] (see Fig. 2.7).

2.1 Results for mean and variance of bulk gap

The average bulk gap, ⟨∆i⟩ = 1

Nρ
(eq)
N (yi)

which naturally scales with system size as

⟨∆i⟩ ∼ N−ak , with ak = 1− αk =


2

k+2
for k > 1

k+1
k+2

for − 2 < k < 1.

(2.8)

We also find a power-law dependence on the system size of the gap fluctuations σ2
∆i

=

⟨∆2
i ⟩ − ⟨∆i⟩2. In particular, for the mid-gap corresponding to i = N/2, we make the

following conjecture based on theoretical arguments involving both microscopic Hessian
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Figure 2.2: Mean (left) and variance (right) of mid gap as a function of system size
for k = 2(•),1.5(◦),0.5(□ ),0+(■),−0.5 (▲), −1(▼) and −1.5(∗). Solid lines cor-
respond to their corresponding power-law fitting (Eq. 2.9). The slopes in (a) are
ak = 0.5, 0.57, 0.6, 0.5, 0.33, 0,−1 and in (b) are bk = 2, 1.97, 1.42, 1, 0.63, 0,−1, for de-
creasing k. These are consistent with Eq. (2.8) and Eq. (2.9) as elucidated in Fig. 2.3.
The error bars are negligible [98]. In (a) the data for k = −1.5 is scaled by a factor 500.
A total number of ∼ 108 MC samples are used for the computations.

and field theory at the microscopic scale (see below):

σ2
∆N/2

∼ N−bk , where bk =



2 for k > 1

1 + k for 0 < k < 1

2 (k+1)
(k+2)

for − 1 < k < 0

1 + k for − 2 < k < −1.

(2.9)

We present numerical evidence for the above conjecture in Figs. 2.2 and 2.3 where

we observe reasonable agreement between the numerically obtained exponent and the

conjectured values. The details of numerical simulations are given in Appendix. A.1. We

believe that the slight deviations from the predictions for a few values of k are due to

finite-size effects [98]. We verify that the above scaling in Eq. (2.9) also holds for other

gaps deep in the bulk. Interestingly we find that for −1 ≤ k ≤ 0, the ratio σ∆i
/⟨∆i⟩ as

well as P
(i)
N (s) are weakly dependent on i (for large N and i in the bulk; see Sec. 2.5).

Next, we first discuss our arguments based on the microscopic Hessian approach which

is followed by the field theory-based arguments. Both the approximate calculations are

valid as long as the typical variation of the distance between successive particles σ∆i
is
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Figure 2.3: Comparison of the exponents ak and bk (symbols) obtained from simulations
(MC), from MH and FT calculations, with Eqs. (2.8) (dashed line) and (2.9) (dotted
line). In the inset we plot

(
ak − bk

2

)
which quantifies the relative fluctuations σ∆/⟨∆⟩ in

the MC data. To extract bk the largest system sizes used were N = 2048 for MC, 4096
for MH and 16384 for FT. All the error bars are smaller than the point symbols [98].

much smaller than the average separation, ⟨∆i⟩ [109]. In this regard, we have computed

the ratio
σ∆i

⟨∆i⟩ which has the following system size dependence in the large N limit,

σ∆i

⟨∆i⟩
∼ O(N (ak−bk/2)) for 1 ≪ i≪ N. (2.10)

The exponent (ak−bk/2) is plotted as a function of k in the inset of Fig. 2.3 which clearly

shows that this exponent is negative for all k > −2, except in the range −1 < k < 0.

Therefore, one expects that in the large N limit, the approximate theories hold for all

k > −2, except for the region −1 < k < 0.

2.2 Microscopic Hessian (MH)

Computing analytically the variance of the gap for generic values of k is hard (except

for k = −1 and k = 0+). Here, we use the microscopic Hessian method to estimate the

variance for large N for all values of k. In the thermal equilibrium at inverse temperature

β, the particles are sampled from the Gibbs Boltzmann distribution (see Eq. (2.1)). Then
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the joint distribution of all gaps is given by

P({∆i}) =
∫
dx1

∫
dx2 · · ·

∫
dxN

(
N−1∏
i=1

δ (∆i − (xi+1 − xi))

)
e−βE({xi}). (2.11)

Notice that for notational simplicity, we have used E instead of Ek for the energy function

given in Eq. (1.3). From now on, we will continue using E . Also note that the distribution

P in Eq. (2.11) involves (N − 1) gap variables ∆i for i = 1, 2, . . . , N − 1, rather than

N . Using this distribution in Eq. (2.11), in principle one can calculate mean and the

variance of ith gap. However, the integrals over microscopic positions are difficult to

compute, so we only solve them approximately. At zero temperature, the system will be

in the ground state characterized by the configuration of positions yi and corresponding

gaps ∆GS
i = yi+1−yi. At low temperatures we expect that the Hessian of the microscopic

energy E({xi}) given in Eq. (1.3) about the ground state would approximately capture

the behavior of the fluctuations of the gap. The positions yi are obtained by minimizing

the energy using the Broyden-Fletcher-Goldfarb-Shanno algorithm [123,124]. Under the

Hessian approximation the joint distribution of fluctuation of gaps δ∆i = ∆i −∆GS
i

PMH({∆i}) ∼ e−
β
2

∑N
i,j=1 Hijδ∆iδ∆j , (2.12)

where the Hessian of the system about the equilibrium configuration isHij =
[
∂2E({xi})
∂∆i∂∆j

]
GS
.

The matrix Hij is obtained as follows. The Hessian H̃ij of the energy function E({xi})

in terms of the fluctuation of positions around their equilibrium values are given by

H̃ij =
[∂2E({xi})
∂xi∂xj

]
GS

= δij

[
1 +

N∑
n̸=i

J sgn(k)k(k + 1)(
yi − yn

)k+2

]
− (1− δij)

J sgn(k)k(k + 1)(
yi − yj

)k+2
.

(2.13)

To get the Hessian Hij, we change position to the gap variables, ∆i = xi+1 − xi for

i = 1, . . . , N − 1 and the centre of mass coordinate which we denote by ∆N ≡ 1
N

∑N
i=1 xi
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by the transformation

xj = ∆N −
N−1∑
i=j

∆i +
N−1∑
i=1

i

N
∆i (2.14)

=
N∑
j=1

Aij∆j, (2.15)

where A is a matrix of dimension N ×N with matrix elements

Aij =


j
N

for i > j

( j
N
− 1) for i ≤ j(̸= N)

1 for j = N, i = 1, ..., N.

(2.16)

The quadratic Hamiltonian in terms of new variables becomes 1
2

∑N
i,j=1Hijδ∆iδ∆j, where

H = AT H̃A. Using Eq. (2.12) we compute the variance of bulk gap from the relation

σ2
i = ⟨δ∆2

i ⟩ = (βH)−1
ii , where H

−1
ii is found numerically. As seen in Fig. 2.3, the exponent

bk calculated using MH theory matches with the MC result (Eq. 2.9) except in the regime

−1 < k < 0. This is perhaps not surprising since our conjecture suggests that in this

regime, the relative fluctuation of the gap, σ∆i
/⟨∆i⟩ ∼ N (ak−bk/2) does not decrease with

system size — in fact over the range of N considered we see them increasing (see inset

of Fig. 2.3). Next, we discuss the FT calculation.

2.3 Quadratic field theory (FT)

As discussed in Ref. [97] the Riesz gas for large-N can be described by a free energy

functional Σ[ρN ] = E [ρN ] − β−1S[ρN ] corresponding to a macroscopic density profile

ρN(x) where E [ρN ] is the energy and

S[ρN ] = −N
∫ ∞

−∞
dxρN log(ρN) (2.17)

is the entropy functional [36]. The form of the energy functional depends on k, being

local for k ≥ 1 and non-local for −2 < k < 1 [97]. The energy functional, E [ρN(x)] is
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given by

E [ρN(x)] ≈
N

2

∫ ∞

−∞
x2ρN(x)dx+ Jζ(k)Nk+1

∫ ∞

−∞
[ρN(x)]

k+1dx, (2.18)

for k > 1 whereas for −2 < k < 1, it is given by

E [ρN(x)] ≈
N

2

∫ ∞

−∞
x2ρN(x)dx+

J sgn(k)N2

2
PV

∫ ∞

−∞
dx

∫ ∞

−∞
dx′

ρN(x)ρN(x
′)

|x− x′|k
. (2.19)

where PV stands for principal value [97]. For a given macroscopic density profile ρN(x),

the gap between two consecutive particles at position x is ∆̄ = [NρN(x)]
−1. Note that this

definition of the gap is different from the gap ∆i defined earlier [below Eq. (2.6)] from the

microscopic position configuration. The gap ∆̄ is a coarse-grained version of ∆ averaged

over many microscopic configurations consistent with the macroscopic density ρN(x). As

the density profile ρN(x) fluctuates, the separation ∆̄ also fluctuates. We expect that for

large N , the fluctuation of ∆̄ and ∆ would have the same scaling with respect to N . We

first find the distribution of the fluctuation δρN(x) around the equilibrium profile ρ
(eq)
N (x)

in the following way.

As our aim is to find the joint distribution of (N − 1) gaps, it will be useful to

approximate the principal value integral in the Eq. (2.19). To do so we assume that there

is a particle at x and break up the x′ integrals in the three regions, (−∞, x − ∆̄),(x −

∆̄, x + ∆̄) and (x + ∆̄,∞), where ∆̄ is the separation between two adjacent particles.

Noting that the ρN(x
′) vanishes in the window (x− ∆̄, x+ ∆̄), we rewrite Eq. (2.19) as

E [ρN(x)] ≈
N

2

∫ ∞

−∞
x2ρN(x)dx+

J sgn(k)N2

2

∫ ∞

−∞
dx

[∫ x−∆̄

−∞
+

∫ ∞

x+∆̄

]
dx′

ρN(x)ρN(x
′)

|x− x′|k
.

(2.20)

The average value of the gap is given by the equilibrium density profile ρ
(eq)
N (x) i.e.

⟨∆̄⟩ = 1

Nρ
(eq)
N (x)

. The probability of a given density profile ρN(x) [99] is

P[ρN ] ∼ e−βδΣ, with, δΣ = Σ[ρN ]− Σ[ρ
(eq)
N ] (2.21)

where Σ[ρN ] = E [ρN(x)]− β−1S[ρN(x)] is the free energy functional. Writing the fluctu-
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Figure 2.4: Schematic description of the discretization of the integral in the action δΣ.

ations of density profile about the equilibrium as ρN(x) = ρ
(eq)
N (x) + δρ(x) and using the

relation ∆̄ = [NρN(x)]
−1 we obtain

∆̄(x) = ⟨∆̄⟩+ δ∆̄ =
1

Nρ
(eq)
N (x)

− δρ(x)

N
(
ρ
(eq)
N (x)

)2 . (2.22)

Using this Eq. (2.22) we expand the exponent δΣ = Σ[ρN ] − Σ[ρ
(eq)
N ] in Eq. (2.21) in

powers of δρ(x) (up to second order in δρ) to get

δΣ[δρ, ρ
(eq)
N ] ≈ Jζ(k)k(k + 1)Nk+1

2

×
∫ lk

−lk

dx [ρ
(eq)
N ]k−1 δρ(x)2

+
N

2β

∫ lk

−lk

dx
δρ(x)2

ρ
(eq)
N (x)

, for k > 1,

(2.23)

and

δΣ[δρ, ρ
(eq)
N ]

≈ 2J sgn(k)Nk+1

2

∫ lk

−lk

dx [ρ
(eq)
N ]k−1 δρ(x)2

+
Jsgn(k)N2

2

∫ lk

−lk

dx

[∫ x−⟨∆̄⟩

−lk

+

∫ lk

x+⟨∆̄⟩

]
dx′

× δρ(x) δρ(x′)

|x− x′|k
,

+
N

2β

∫ lk

−lk

dx
δρ(x)2

ρ
(eq)
N (x)

, for − 2 < k < 1.

(2.24)

It is pertinent to note that, in the quadratic approximation of the field theory, the

local term appears due to the fluctuations of the coarse-grained gap ∆̄ in the non-local
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term of the energy E [ρN(x)] for −2 < k < 1. However, for k > 1 the field theory

in Eq. (2.18) is local to the leading order in N . This leads to Eq. (2.23) which further

implies σ2
∆N/2

∼ N−2. We have neglected the contribution from non-local terms in the field

theory because they are expected to contribute to σ2
∆N/2

at most at the same order (N−2)

or less, thereby leaving the scaling exponent value bk unchanged. For N (large but finite)

particles there are (N−1) number of gap variables. In order to find the joint distribution

of these (discrete) gap variables from the field theory description, we need to discretize

δΣ given in Eqs. (2.23) and (2.24). To do so, we discretize the integral in the action δΣ

about the equilibrium positions {yi} (see Fig. 2.4). Recall that the microscopic Hessian

was computed about this position configuration in Eq. (2.12). Note that the equilibrium

(in this case the minimum energy) position configuration {yi} corresponds to equilibrium

macroscopic density ρ
(eq)
N (x) which implies that the mean gaps ⟨∆̄i⟩ = 1/Nρ

(eq)
N (yi). Also

note that for large-N , ⟨∆̄i⟩ ≈ ∆GS
i . We emphasize that this discretization of the density

profile is different from the original microscopic position description of the system. Hence

replacing the integrals as
∫ lk
−lk

dx →
∑

i
1

Nρ
(eq)
N (yi)

and performing some simplifications we

get the following joint distribution of the gap variables {δ∆̄i}:

PFT

(
{δ∆̄i}

)
∼ e−

β
2

∑N
i,j=1 Mijδ∆̄iδ∆̄j ,where (2.25)

Mii =


Jζ(k)k(k + 1)Nk+2[ρ

(eq)
N (yi)]

k+2 for k > 1

2JNk+2[ρ
(eq)
N (yi)]

k+2 for 0 < k < 1

N2β−1[ρ
(eq)
N (yi)]

2 for − 2 < k < 0,

Mi ̸=j =

0 for k > 1

JN2 sgn(k)
ρ
(eq)
N (yi)ρ

(eq)
N (yj)

|yi−yj |k for − 2 < k < 1,

(2.26)

in the leading orders in N . Using the scaling form ρ
(eq)
N (x) = 1

lkN
αk
Fk

(
x

lkN
αk

)
with

αk =
k

k+2
for k > 1 and 1

k+2
for −2 < k < 1, we find the following system size dependence
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Figure 2.5: Comparison of actual values of the variance of mid-gap calculated using all
three techniques, MC, MH and FT for β = 1.

of the matrix elements (see Appendix. A.2):

Mii ∼


O (N2) for k > 1

O
(
Nk+1

)
for 0 < k < 1

O
(
N2(k+1)/(k+2)

)
for − 2 < k < 0,

(2.27)

Mi ̸=j ∼

0 for k > 1

O
(
Nk+1

)
for − 2 < k < 1,

(2.28)

where we have ignored terms with |i − j| ∼ O(N). Assuming that the inverse of the

dominant term of the matrix M dictates the scaling of the variance we arrive at the con-

jecture on the form of bk in Eq. (2.9). From Eq. (2.25), it is easy to compute the variance

of middle gap ∆N/2 given by ⟨δ∆̄2
N/2⟩ = [(βM)−1]N

2
N
2
. This can be easily evaluated by
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Figure 2.6: Plot of distributions PN(s) for different values of k and N . Except for the
1DOCP (b) and log-gas (d), for other values of k, we do not see convergence in N which
naturally implies that it is different from P2(s) and hence there is no generalization of
WS.

numerically inverting the matrix M and we find the following scaling of the variance of

middle gap

σ2
∆N/2

∼



O (N−2) for k > 1

O
(
N−(k+1)

)
for 0 < k < 1

O
(
N−2(k+1)/(k+2)

)
for − 1 < k < 0

O
(
N−(k+1)

)
for − 2 < k < −1,

(2.29)

which match remarkably well with the large-N scaling obtained from MC simulation.

The N dependence of the variance as given in Eq. (2.9) is verified numerically and
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presented in Fig. 2.3. However, this does not contain information on the actual values

obtained using different methods (MC MH and FT). This comparison is presented in

Fig. 2.5. While the slopes are consistent with the conjecture, the actual values do not

always match which is not surprising. We find that whenever microscopic Hessian and

Monte-Carlo system size scaling agree [k /∈ (−1, 0)], they even match quantitatively for

large-N . Remarkably, in the region −1 < k < 0, the Monte-Carlo and field theory results

match quantitatively as well.

2.4 Results for distribution of gap

Having examined the average and variance of bulk gaps, we now turn our focus to analyze

the distribution of these gaps. For the distribution of eigenvalues of random matrices

belonging to the three Gaussian ensembles, characterized by Dyson indices 1, 2, 4 (which

correspond to βJ0 = 1, 2, 4 for our log-gas), PN→∞(s) is accurately described by P2(s) =

PN=2(s) (which is basically the WS) and is given by A0s
βJ0e−B0s2where A0 and B0 are

constants depending on βJ0 [5]. From our simulations, we in fact find that the surmise

for the log-gas is quite accurate for all βJ0 > 1. We now examine the distribution

PN(s) for other values of k. Interestingly, we find that for k = −1 (and similarly for

the log-gas), the distribution converges very quickly as the system size N increases, as

shown in Figs. 2.6(b) and 2.6(d). On the other hand for other values of k there is no

convergence. In particular, for the CM model (k = 2), our findings (see Sec. 2.6) are thus

in disagreement with the generalized version of WS proposed in Ref. [67]. For generic

values of k, as seen in Fig. 2.6, the distributions PN(s) do not show convergence with N .

Hence, we look at the distribution of the following natural scaling variable

s̃j =
∆j − ⟨∆j⟩

σ∆j

. (2.30)

The distribution of this quantity defined as P̃N(s̃) =
1

N−1

∑N−1
i=1 ⟨δ(s̃−s̃i), is computed nu-

merically for different values of k and N . In Fig. 2.7, we plot P̃N(s̃) for k = −1.5,−0.5, 0.5

and k = 1.5. We find that P̃N(s̃) tends to a Gaussian form with zero mean and unit vari-

ance in the limit N → ∞, except in the range −1 ≤ k ≤ 1. Interestingly, in the range
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Figure 2.7: Plot of P̃N(s̃) for different values of k and N . The distributions for k =
±1.5 are fitted with a Gaussian over two standard deviations (insets). This is generally
observed for k /∈ [−1, 1]. The distributions for k = ±0.5 are very different from Gaussian
and this is generally the case for k ∈ [−1, 1].

−1 < k < 0, we do not see convergence with N (Fig. 2.7b). In the range 0 < k < 1

relative fluctuations die out with N in which case one might expect a Gaussian scaling

form. Surprisingly, even though the MH nicely predicts the correct scaling exponent bk

the scaling form of the distribution is non-Gaussian (Fig. 2.7c).

Having discussed the main findings of our work, we now mention a few interesting

features in the gap statistics in Riesz gas for −1 ≤ k ≤ 0 followed by a discussion on the

spacing distribution PN(s) for the Calogero-Moser system.

2.5 Interesting aspects of the gap statistics for −1 ≤

k ≤ 0

The system size dependence of relative fluctuations
σ∆i

⟨∆i⟩ in the bulk is characterized by the

exponent (ak− bk/2). From the conjecture as given in Eq. (2.9), the exponent (ak− bk/2)

46



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1

σ
∆

i
/
〈∆

i
〉

i/N

k = −1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1

σ
∆

i
/
〈∆

i
〉

i/N

k = −0.75

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1

σ
∆

i
/
〈∆

i
〉

i/N

k = −0.5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1

σ
∆

i
/
〈∆

i
〉

i/N

k = −0.25

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1

σ
∆

i
/
〈∆

i
〉

i/N

k = 0
+, J0 = 1

N = 256

N = 512

Figure 2.8: Relative fluctuations
σ∆i

⟨∆i⟩ are shown as a function of i for different system
sizes N as well as for different k in the regime −1 ≤ k ≤ 0 for two different system sizes
(N = 256 in pink solid line and N = 512 in blue dashed line). For -1 < k < 0, from our
numerics we find that ak − bk/2 is slightly different from zero, possibly due to finite size
effects, hence we get a system size dependence in the relative fluctuation as well. (Inverse
temperature β is taken to be unity.)

is zero throughout the range −1 ≤ k ≤ 0. We believe that the slight deviations from

the predictions for a few values of k are due to finite size effects. Interestingly, in the

range −1 ≤ k ≤ 0, we find that the relative fluctuations have a weak dependence on i, in

the bulk (with almost independent for k = −1, 0+). This is shown in Fig: 2.8. We find

that, not only do the relative fluctuations
σ∆i

⟨∆i⟩ have small variations with i, but also the

spacing distributions p
(i)
N (s) = ⟨δ(s−si)⟩ for individual gaps are also almost the same (see

Fig. 2.9). However, we expect the differences between PN(s) and P i
N(s), for i in bulk,

to show up at very small and very large s where edge statistics (e.g i = 1) could start

dominating over bulk behavior.
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Figure 2.9: The distributions of the i-th normalized gap p
(i)
N (s) = ⟨δ(s − si)⟩ are shown

in the regime −1 ≤ k ≤ 0. It is clear that p
(i)
N (s) is independent of i. In these figures we

have taken N = 256 at inverse temperature β = 1.

2.6 Spacing distribution in the Calogero-Moser sys-

tem

For the CM model (k = 2), it was claimed in Ref. [67] that the spacing distribution

follows a form analogous to the WS, namely,

PN(s) = A e−
B2

s2
−Cs, (2.31)

where B = 1.46 is a fitting parameter while A and C are fixed from the two equations:

∫ ∞

0

PN(s)ds = 1 and

∫ ∞

0

sPN(s)ds = 1. (2.32)

However, our results for this system differ from this claim. For the CM model, we

found that the distribution, PN(s), of s does not in fact converge with increasing N , which

thus indicates that the generalization of the Wigner surmise does not work here. We

believe that the disagreement can be attributed to the ‘picket fence’ (PF) approximation

(xj ∼ j) used in the numerical computation of the level spacing distribution in Ref. [67].

Using this approximation, the Lax matrix L̃ takes the form

L̃nm = pnδnm +
i

2

1− δnm
(n−m)

, (2.33)

where pn is chosen from a uniform distribution between −1 and 1. From the eigenvalues of
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Figure 2.10: Comparison of the level spacing distribution using ‘picket fence (PF)’ ap-
proximation and the actual distribution using Monte-Carlo simulation (MC). The dis-
tribution using PF approximation is fitted with the Eq. (2.31) (Fit) with parameters
A = 410.354, B = 1.160, C = 4.441. We observe that there is no convergence of the
actual level spacing distribution (MC) with system size. ( Inverse temperature β is taken
to be unity.)

L̃, the level spacing distribution was obtained and shown to follow the expression Eq. 2.31.

Using this method we can indeed verify (see Fig. 2.10) that the level spacing distribution

converges to an N -indepependent form that is described by a WS-like distribution. On

comparing the level spacing distribution obtained using the above approximation (de-

noted by PF in Fig. 2.10) with the actual level spacing distributions (denoted by MC),

we observe that they are completely different. In particular, for the true distribution, we

find that there is no convergence as the system size grows.

2.7 Summary and outlooks

In this work, we studied the nearest-neighbor gap statistics for a harmonically confined

Riesz gas, particularly focusing on the variance and the distribution. The variance of

the bulk gap is characterized by the exponent bk, for which we conjectured a form,

Eq. (2.9), for the k-dependence. We supported this conjecture through direct Monte-

Carlo simulations and numerics based on small fluctuation theories such as microscopic

Hessian and quadratic field theory. We analyzed the normalized gap distribution, PN(s),

and found convergence with N for k = 0+ and k = −1. For other values of k, PN(s) did
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not converge with increasing N . This led us to study s̃i [gap normalized by fluctuations,

see Eq. (2.30)]. As summarized in Fig. 2.1, for −2 < k < −1 and k > 1, we found that

the scaling form of P̃N(s̃) was Gaussian, while for all other k values, we observed strong

non-Gaussian behavior. In fact, for −1 < k < 0, we found that there was no convergence

with N . Moreover, in this regime, the fluctuations are of the same order as the mean,

leading to the failure of the Hessian theory. Remarkably, the quadratic field theory

approach was able to predict the expected scaling exponent even in this regime. We

emphasize that the analytical microscopic treatment of fluctuations is extremely difficult.

We proposed two different analytical approaches that successfully captured the main

features observed in direct simulations: (i) mapping between the microscopic variables

and the coarse-grained macroscopic density field, which provides enormous simplification

for the otherwise intractable and highly non-local microscopic model, and (ii) the Hessian

approximation, which results in an all-to-all connected harmonic network and provides

a powerful tool for tackling long-ranged systems. We also discussed a few interesting

features in the gap statistics that exist in the −1 < k < 0 regime. For the Calogero-

Moser system, our findings suggested that there is no generalization of the Wigner surmise

as claimed in Ref. [67].

Some interesting outstanding problems include understanding the non-Gaussian be-

havior, including large deviations, of the gap distribution and its analytical derivation

for special cases such as the CM model (k = 2) and hard rods (k → ∞). Future re-

search directions include studying the statistics of gaps between any two particles (not

just nearest neighbors), which corresponds to the classical analog of the spectral form

factor. Investigating how different systems (distinguished by the exponent k) thermalize

would also be an interesting and challenging question. Additionally, examining the ef-

fects of variations in temperature and the confining potential on the results are promising

directions to pursue.

In the next chapter, we discuss the effect of tuning the range of interaction on the

equilibrium density profiles specifically in two models: 1DOCP and log-gas.
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Chapter 3

Crossover in densities of confined

particles with finite range of

interaction

In a pure Coulomb interaction, the potential energy between two charges present in three

dimensions decreases inversely with the separation between them. Since the power-law

exponent (= 1) is less than the dimensionality of the system (= 3), this is a long-range

interaction [16, 17]. However, in physical systems, the presence of other charges causes

the interaction potential between two particles to be screened, resulting in a finite-ranged

interaction. Understanding the finite-ranged interactions is essential for accurately mod-

eling and predicting the behavior of many-body systems in condensed matter and soft

matter physics [125–129]. In this chapter, to account for the finite range of interac-

tions, we consider a generalized version of the one dimensional Riesz gas as described in

Eq. (1.7). For the convenience, we rewrite the energy function [99]

E ({xj}) =
1

2

N∑
i=1

x2i +
J sgn(k)

2

N∑
i ̸=j=1
|i−j|≤d

1

| xi − xj |k
, ∀ k > −2. (3.1)

As in the previous chapter, we have omitted the subscript k in the energy function to

simplify the notation. The parameter d in Eq. (3.1) determines the number of particles

each particle is allowed to interact with on either side (left or right) of it, if available.
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When d = N − 1, the energy function in Eq. (3.1) reduces to the all-to-all coupled

(ATAC) model as given in Eq. (1.3) in which each particle interacts with every other

particle present in the system. For d ∼ O(1), each particle can interact only with a few

other particles. Such a system is called short-ranged (SR). By tuning the fraction f = d
N

from 1 to 0 in the large N limit, one can go from the ATAC regime (f = 1) to the SR

regime (f = 0). We call systems with intermediate values of f i.e., 0 < f < 1 to be finite

ranged (FR).

In thermal equilibrium at temperature T = β−1, the generalized version of Riesz gas

system in Eq. (3.1) can be described by the Boltzmann distribution

PG({xj}) = e−βE ({xj})/ZN(β), (3.2)

where ZN(β) is the partition function of the system at inverse temperature β. The first

natural question: what is the equilibrium density profile of the particles? Recall that for

the ATAC case (f = 1), by developing a large-N field theory, the average thermal density

has been calculated for any k > −2 in Ref. [97] at small temperature [β−1 ∼ O(1)]. It was

observed that the average thermal density for large N is independent of the temperature

of the system and has a finite support for all k > −2, although the support explicitly

depends on the power-law exponent k (see Eqs. (2.2)-(2.6)) [97].

While these results are valid for the ATAC case of Riesz gas i.e., for f = 1, they are

expected to get modified for other values of f < 1. Moreover, in most of the physical

systems, the particles do not interact with all other particles and hence the interactions

are not all-to-all coupled. It is important to study the effect of the parameter f on

different physical quantities of the system. The basic physical quantity that one would

naturally consider is the average equilibrium density profile and study how the density

profile changes with f in the large N limit. Recently, the equilibrium density profile for

the SR case (f = 0) has been computed in Ref. [99]. In this paper, after developing a

large-N field theory similar to the all-to-all coupling case, the density profile was obtained

analytically for β ∼ O(1). It was found that in the SR case, the density profile is

drastically different compared to the ATAC scenario for Riesz gas with k ≤ 0. However,

interestingly, for k > 0 the shape of the density profile in the SR case remains same as in
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the ATAC case [99]. Natural questions arise: what is the density profile for intermediate

f i.e., for 0 < f < 1? How does the shape of the density profile change as f is tuned from

1 to 0 while keeping the temperature fixed at O(1) value? In this chapter, we address

this question for two specific systems: 1DOCP and log-gas which correspond to k = −1

and k = 0+ cases of the energy function in Eq. (3.1), respectively. A similar question

was studied in the context of random matrix theory in Ref. [101], where a change in the

spectral density profile from the Wigner semi-circle to a Gaussian form was observed as

the strength of the interaction was varied smoothly from a very high value to a low value.

With decreasing interaction strength, the entropy starts taking part in balancing the

confining effect of the harmonic trap. At a very small value of the interaction strength,

only entropic contribution is dominant and one observes a Gaussian distribution as one

would see for non-interacting particles inside a harmonic trap. Same interaction strength

(or equivalently temperature) tuned crossover of spectral density was observed in the

context of invariant β-Wishart ensembles as well [102].

For the 1DOCP and log-gas models, we demonstrate a crossover in the density from

a finitely supported profile to a Gaussian form as the parameter f is tuned from 1 to

0 [103]. For the 1DOCP model, we obtain an analytical expression for the density profile

for any f ∈ (0, 1] in the large N limit, while for the log-gas model, we provide approximate

analytical calculations to understand the density profiles for f close to 1 and 0, separately.

For other values of k > −2, we numerically demonstrate a similar crossover in the density

profile.

The rest of the chapter is organized as follows. In Sec. 3.1, we define the main physical

quantity of interest and give a quick summary of important previous results. We provide

the summary of our findings in Sec. 3.2 along with numerical demonstrations of the

density crossover in both systems. In Sec. 3.3, we study the density crossover in 1DOCP

(k = −1) by solving saddle point equations for f ∈ (0, 1]. We present this solution in

two parts, for 1/2 ≤ f ≤ 1 in Sec. 3.3.1 and for 0 < f < 1/2 in Sec. 3.3.2, respectively.

Then in Sec. 3.4, we study the density crossover in the log-gas (k → 0) model. Along

with the numerical results, we provide approximate analytical calculations to understand

the density profiles both in the f → 1 and f → 0 limits. Finally, in Sec. 3.5, we

summarize our study along with some interesting future directions. Some details of the
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calculations and numerical simulations are relegated to the Appendices. The details of

numerical methods used in this paper are given in Appendix. A.1. The derivation of the

saddle point equations are presented in Appendix. A.3. Some details pertaining to the

solution of the saddle point equations in the 1DOCP case are provided in Appendix. A.4.

In Appendix. A.5, we numerically demonstrate similar density crossover in the general

Riesz gas model defined in Eq. (3.1) for other values of k.

3.1 Definitions and relevant previous results

We consider FR Riesz gas consisting of N particles in thermal equilibrium at temperature

β−1 ∼ O(1). We focus on the two choices of the interaction potentials, 1DOCP and log-

gas for which the microscopic energy functions are given explicitly as

E ({xj}) =
1

2

N∑
i=1

x2i +
1

2

N∑
i=1

j=min(i+d,N)∑
j=max(i−d,1)

j ̸=i

V (xi − xj),

with V (x) =

 − |x|, for 1DOCP,

− log(|x|) for log-gas.

(3.3)

In Eq. (3.3), we have set the strengths J and J0 of the interaction potentials, respectively,

for 1DOCP and log-gas to 1 in this chapter.

In these systems, we are interested in computing the average equilibrium density

profile ϱN(x) = ⟨ρN(x)⟩T , where the empirical density ρN(x) is defined as ρN(x) ≡
1
N

∑N
i=1 δ(x − xi), and the average ⟨...⟩T is performed over the Boltzmann distribution

in Eq. (3.2). In the large N limit, the multiple integrals required in order to compute

the average ⟨...⟩T , can be converted to a functional integral over fluctuating density

profiles weighted appropriately by a free energy functional Ψ[ρN(x)] written in terms of

the empirical density, ρN(x) [36, 97, 99]. The free energy functional Ψ[ρN(x)] for a given

density profile ρN(x) has two parts

Ψ[ρN(x)] = E [ρN(x)]− β−1S[ρN(x)], (3.4)
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where E [ρN(x)] is the energy functional and S[ρN(x)] = −N
∫∞
−∞ dxρN(x) log[ρN(x)] is

the entropy functional [36]. The energy functional needs to be determined from the

microscopic energy function in Eq. (3.3) and in general should contain a self energy term

and the bulk energy term [36,130].

In terms of the free energy functional Ψ[ρN(x)], the partition function of the system

can be written (up to an overall multiplicative factor) as [36, 97,99]

ZN(β) ∼
∫
dµ

∫
D[ρN(x)] exp

[
− βΨ̄[ρN(x)]

]
, (3.5)

where
∫
D[ρN(x)] denotes functional integration over density function ρN(x) and

Ψ̄[ρN(x)] = Ψ[ρN(x)]− µ

(∫
dxρN(x)− 1

)
. (3.6)

Note µ is a Lagrange multiplier that ensures the normalization of the density profile to

unity. In the large N limit, the equilibrium density profile ϱN(x) can be obtained by

solving the saddle point equations (SPEs) [97,99]

δΨ̄[ρN(x)]

δρN(x)

∣∣
ρN (x)=ϱN (x)

= 0, and
∂Ψ̄

∂µ
= 0. (3.7)

For fixed f it is possible to show that in the large N limit, the energy functional scales

as ∼ NΛ with Λ ≥ 1. This fact has been proved for Riesz gas with general k (> −2)

for f = 1 and f = 0 in Refs. [97] and [99] respectively. Additionally, in the large N

limit one can show (see Appendix. A.3) that for fixed f ∈ (0, 1] the contributions from

the entropy and the self energy are much smaller compared to the bulk energy term and

consequently, they can be neglected while solving the SPEs.

Before going into the details of the derivation and presentation of the results for the

FR case (0 < f < 1), we discuss some of the relevant results obtained previously for

ATAC (f = 1) and SR (f = 0) cases.
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3.1.1 Equilibrium density profile in the ATAC case (d = N − 1

i.e., f = 1)

In this case, the entropy as well as the self energy terms are subdominant compared to the

bulk energy part in the free energy [36,97]. Neglecting these contributions, minimizing the

free energy functional essentially becomes minimizing the (bulk) energy functional. One

finds that the average density ϱN(x) is described, for both 1DOCP and log-gas systems,

by the following scaling form [97]

ϱN(x) =
1

Nα
ϱ̃1

( x

Nα

)
, with α =

1 for 1DOCP

1
2

for log-gas,

(3.8)

with scaling functions given explicitly by

ϱ̃1(y) =


1
2

for − 1 ≤ y ≤ 1 in 1DOCP

1
π

√
2− y2 for −

√
2 ≤ y ≤

√
2 in log-gas.

(3.9)

We would like to emphasize that these scaling functions correspond to the equilibrium

densities of particles under conditions ofO(1) temperature and largeN . In such scenarios,

the contribution from entropy can be disregarded when solving the SPEs. However,

as the temperature increases, the entropy’s influence becomes increasingly significant.

Consequently, the solution of the SPE deviates from those presented in Eqs. 3.8 and 3.9.

This phenomenon has been rigorously examined within the framework of random matrix

theory [101, 102], wherein instead of raising the temperature, the interaction strength is

diminished. This adjustment leads to a cooperative interplay between energy and entropy,

working together to counterbalance the confinement imposed by harmonic trapping.

3.1.2 Equilibrium density profile in SR case (d ∼ O(1) i.e., f = 0)

Contrary to the previous case, the entropy term in this case dominates over the interaction

energy term in the 1DOCP system. However, for the log-gas the entropy, the self energy

and the bulk interaction energy all contribute at the same order [99]. The density profiles
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Figure 3.1: Demonstration of the crossover in the density profiles in (a) 1DOCP and
(b) log-gas systems. For both the systems we plot the scaled density profile ϱ̃f (y) =
NαϱN(yN

α) as functions of y [see Eq. (3.11)] for eight values of f = n/8 with n = 1
(red), 2 (dark-green), 3 (blue), 4 (brown), 5 (green), 6 (dark-pink), 7 (black), and 8
(violet). For 1DOCP model, the profile transitions from a flat profile at f = 1 to a delta
function profile in the f → 0 limit. The peaks of the delta functions on the z-axis are cut
in order to display the features of the density profiles for f close to 1. For the log-gas, the
density profile changes its shape [shown in figure (b)] from Wigner semi-circle at f = 1
to bell-shaped at small f . For both cases we observe that the total support of the density
profile decreases as f is reduced. The plots of density profiles are obtained numerically
for N = 128 for both systems. Details of the numerical simulation are provided in A.1.

in this case for large-N are given by [99]

ϱN(x) = ϱ0(x), where, ϱ0(x) =


√

β
2π
exp(−βx2/2) for 1DOCP√

β
2(βd+1)π

exp(− βx2

2(βd+1)
) for log-gas.

(3.10)

In contrast to the ATAC scenario (f = 1), the equilibrium density profiles in the SR case

remain independent of the system size N and are of Gaussian form.

3.2 Summary of the results

As mentioned in the previous section, the equilibrium density profiles are dramatically

different for the ATAC (f = 1) and the SR (f = 0) case. In this chapter, we investigate

how the density profiles cross over from finitely supported profiles to infinitely extended

Gaussian profiles as f is decreased from 1 to 0. We find that in both models, the density

profiles for large N and fixed f consist of three parts: one central part extending over

region x ∈ [−ℓN , ℓN ] and two symmetric edge parts supported over regions [−bN ,−ℓN)
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and (ℓN , bN ], respectively, where 0 < ℓN < bN . At low temperature (T ∼ O(1)), these

three regimes naturally appear because the interactions felt by a particle in these regimes

are different. For f < 1, the central part contains |1 − 2f | fractions of particles where

each particle can interact either with 2d other particles or the remaining (N−1) particles

depending on whether 2d < (N −1) or not. On the other hand, the remaining fraction of

particles residing on the edges always find less than d particles on at least one side, either

left or right. The lengths of these supports depend on f . As f is changed, the ranges

as well as the shape of the profiles in these regimes get modified and one observes the

above-mentioned crossover in the density profile as numerically demonstrated in Fig. 3.1

for both 1DOCP and log-gas models. Below, we briefly summarise our main findings [103].

1. We find that for both 1DOCP and log-gas, the equilibrium density profile for fixed

f in the large N limit, possesses the following scaling form,

ϱN(x) =
1

Nα
ϱ̃f

( x

Nα

)
, with

α = 1, for 1DOCP,

α = 1
2
, for log-gas.

(3.11)

Note even for f < 1, the density profile satisfies the same scaling form as in the

ATAC case given in Eq. (3.8). The length of the total support of the scaling

function ϱ̃f (y) remains finite for all f > 0 and it decreases as f is reduced from 1

(see Fig. 3.1).

2. We have derived the saddle point equations satisfied by the equilibrium density

profiles for both cases (see Appendix. A.3).

3. For the 1DOCP case, one can solve the SPEs for arbitrary values of f ∈ (0, 1]. We

find that the scaling function ϱ̃f (y), in this case, is given by

ϱ̃f (y) =


1 for − f ≤ y < −(2f − 1),

1
2

for − (2f − 1) ≤ y ≤ (2f − 1),

1 for (2f − 1) < y ≤ f,

for
1

2
≤ f ≤ 1, (3.12)

ϱ̃f (y) = (1− 2f)δ(y) + Θ(y + f)Θ(f − y), for 0 < f <
1

2
, (3.13)
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which describes the crossover in the scaled density profile as f is reduced from 1 to

0. This crossover phenomena is demonstrated in Fig. 3.1(a). In the f → 0 limit, the

strength of the delta function part grows and approaches unity which (as shown in

Sec. 3.3.2), when zoomed in, essentially corresponds to the Gaussian profile given

in Eq. (3.10) in terms of the unscaled variable x as obtained previously in Ref. [99].

4. For the log-gas case, we numerically demonstrate the crossover of density pro-

file from Wigner semi-circle to Gaussian form as f is decreased from 1 to 0 (see

Fig. 3.1(b)). Solving the SPEs for arbitrary values of f seems difficult in this case.

We find approximate solutions for the density profiles for f close to 1 and 0. In the

former case, we find that the scaling function for the density can approximately be

described by [39]

ϱ̃f (y) ≈
1

π

√
(y2 − ã2)(b̃2 − y2)

(y2 − ℓ̃2)
, (3.14)

which exists on a three-cut support [−b̃,−ã], [−ℓ̃, ℓ̃], and [ã, b̃] with 0 < ℓ̃ < ã < b̃

and y belongs to any of the intervals in the support. For given ℓ̃, the parameters ã, b̃

can be determined from the relation ã2+ b̃2 = 2+ ℓ̃2 and the normalisation condition∫ b̃

ã
ϱ̃f (y)dy = (1−f) [39]. In our case we determine ℓ̃ from the numerically obtained

density, ϱ̃nu(y) using the relation
∫ ℓ̃nu
−ℓ̃nu

ϱ̃nu(y)dy = (2f−1), where the subscript ‘nu’

stands for numerical value. With increasing f towards unity, the parameters ℓ̃ and

ã in Eq. (3.14) approach to b̃. Exactly at f = 1, they all become equal to
√
2 and

one recovers the density profile in the ATAC case (given in Eq. (3.9)). A comparison

of our theoretical result with numerically obtained density is provided in Fig. 3.4

where we observe decent agreement.

For small f , we find that the density profile in the central part can be well

described by the following approximate scaling function

ϱ̃f (y) ≈
1√
2πf

exp

(
− y2

2f

)
, − ℓ̃ ≤ y ≤ ℓ̃, (3.15)

where ℓ̃ is determined from
∫ ℓ̃

−ℓ̃
ϱ̃f (y)dy = 1 − 2f . This result is consistent with

the result in Eq. (3.10) obtained previously in Ref. [99]. To see this one needs
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to consider both d and N large in Eq. (3.10), so that the fraction f = d/N is

fixed. This essentially means ℓ̃ → ∞ as f → 0 in Eq. (3.15). To determine ϱ̃f (y)

outside the central part, we notice that for small f the solution of the SPE can be

approximated by a problem in ATAC log-gas system with a region [−ℓ̃, ℓ̃] deprived

of particles. The saddle point solution for this problem is given by [39]

ϱ̃f (y) ≈
1

π

√
y2 (b̃2 − y2)

(y2 − ℓ̃2)
for ℓ̃ < |y| ≤ b̃, (3.16)

where b̃ =

√
ℓ̃2 + 4f can be obtained from the constraint

∫ b̃

ℓ̃
ϱ̃f (y)dy = f . We find

that this form describes the behavior of the density profile near the edges well (see

Fig. 3.5).

3.3 Density crossover in 1DOCP (V (x) = −|x|)

In this section, we solve the SPE in Eq. (3.7) for given f to study crossover in the density

profile for the 1DOCP model described by the energy function given in Eq. (3.3). For

0 < f < 1 one gets separate SPEs in the three parts: the central part [−ℓN , ℓN ], the

left edge part [−bN ,−ℓN) and the right edge part (ℓN , bN ]. These equations, derived in

Appendix. A.3, can be solved exactly as shown below. We first present the solution for

1/2 ≤ f ≤ 1. For 0 < f < 1/2, as we will see, one requires to solve the SPEs separately

for 1/3 ≤ f < 1/2 and 0 < f < 1/3.

3.3.1 Solution for 1/2 ≤ f ≤ 1:

For fixed f and large N , in order to minimize energy (see Eq. (3.3)), particles settle over

a region which scales as O(N). In this configuration, the contributions from the confining

harmonic term and the repulsive interaction term both become order N3 such that they

can compete with each other. Note, on the other hand, entropy is always of order N for

β−1 ∼ O(1). Hence it is expected that the equilibrium density profile possesses the scaling

ϱN(x) =
1
N
ϱ̃f (x/N) which is also verified numerically in Fig. 3.2 for two representative

values of f > 1/2. To find the scaling function ϱ̃f (y), it seems convenient to rewrite the
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SPEs in terms of the scaling variable y = x/N and the scaling functions ϱ̃f (y) as given

in Eqs. A.21 and A.22. Furthermore, numerical observations from Fig. 3.2 suggest that

the equilibrium density profile is piece-wise uniform. This leads us to make the following

ansatz for the saddle point density profile

ϱ̃f (y) =


ϱ̃edge for − b̃ ≤ y < −ℓ̃

ϱ̃mid for − ℓ̃ ≤ y ≤ ℓ̃

ϱ̃edge for ℓ̃ < y ≤ b̃,

(3.17)

where ℓ̃ = ℓN/N and b̃ = bN/N . Note there are six unknown constants, namely,

ϱ̃edge, ϱ̃mid, b̃, ℓ̃ and the chemical potentials µ̃1 and µ̃2, which are required to ensure

appropriate normalizations of the density profiles in respective parts [see Eq. (A.2)]. In-

serting the above form of the scaled density profile in SPEs, one finds six equations which

determine the values of these constants. Since the calculations to find these six constants

are involved and lengthy, we present the details of this calculation in Appendix. A.4.1.

Here, we only present the final result:

ϱ̃edge = 1, ϱ̃mid =
1

2
,

ℓ̃ = (2f − 1), b̃ = f,

µ̃1 = µ̃2 = −2

(
f − 1

2

)2

,

(3.18)

inserting which in Eq. (3.17) completely determines ϱ̃f (y) for 1/2 ≤ f ≤ 1. The theoret-

ical density profile is numerically verified in Fig. 3.2. In Appendix. A.1, we provide all

the details of our numerical simulations.

3.3.2 Solution for 0 < f < 1/2:

In this case also we find that the equilibrium density profile has scaling form ϱN(x) =

1
N
ϱ̃f (x/N) which is demonstrated numerically in Fig. 3.3(a). Note that with increasing

N , the central part (in terms of the scaling variable y = x/N) shrinks to a delta function

(see inset of Fig. 3.3(a)) while the profiles in the edge parts are uniform. When this delta
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Figure 3.2: Plots of numerically obtained density profiles (dashed lines) for (a) f = 9
16

and (b) f = 3
4
in 1DOCP. Collapse of data for different N verifies the scaling relation

in Eq. (3.11) with α = 1. The solid green lines represent the analytical prediction in
Eq. (3.12). We observe good agreement between simulation and theory. With decreasing
f , the size of the central region reduces and the edge regions grow.

function is zoomed to the original scale, we observe from Fig. 3.3(b) that, the density

profile there can very nicely be described by a Gaussian form in terms of the unscaled

variable x. This suggests us to expect the following form for the equilibrium density

profile (in terms of the unscaled variable x)

ϱN(x) =

ρcentral(x) for − ℓN ≤ x ≤ ℓN

ρedge for ℓN < |x| ≤ bN ,

(3.19)

such that
∫ ℓN
−ℓN

dxρcentral(x) = 1− 2f , ρedge = f/(bN − ℓN). This, in turn, suggests us the

following form for the scaled density profile:

ϱ̃f (y) = (1− 2f)δ(y) + ϱ̃edge1[−b̃,b̃](y), (3.20)

where ℓ̃ = ℓN/N → 0 and, ϱ̃edge = Nρedge and b̃ = bN/N . Note, ϱ̃edge and b̃ are O(1)

constants which we need to find. We also show below that ρcentral(x) indeed has a Gaussian

form. We first write the SPEs from Eqs. (A.18)-(A.20) (with V (x) = −|x|) in terms of

the scaling variable y = x/N and the scaled density profile ϱ̃f (y). The explicit expression

of the SPE on the left edge part [−b̃,−ℓ̃) is given in Eq. (A.32). Here, we rewrite it for

62



convenience:

y2

2
−
∫ 0−

−b̃

|y − y′|ϱ̃f (y′)dy′

−
[ ∫ y+δ̄y

0−

(y′ − y)ϱ̃f (y
′)dy′ − 1

2

(∫ y

−b̃

δ̄y′ ϱ̃f (y
′)dy′ +

∫ y+δ̄y

0−

δy′ ϱ̃f (y
′)dy′

)]
− µ̃2 = 0,

(3.21)

where we have used the fact ℓ̃ → 0 in the large N limit. In fact, we will later show that

ℓN ∼ O(
√
logN). In the above equation, δ̄y = D̄x=Ny/N and δy = Dx=Ny/N with Dx

and D̄x, representing the distances from point x, respectively, on the left and right side

over which one would find f fraction of particles (see their definitions in Eq. (A.8)). The

chemical potential µ̃2 = µ2/N
3 ensures that the density profile ϱ̃f (y) on the left edge is

normalized to f . One can write an equation similar to Eq. (3.21) for the right part as well.

Owing to the symmetry between the two parts, the calculation on the right part would be

exactly the same as in the left part. Therefore, here we only discuss the computations for

the left part. Our next task is to insert the ansatz from Eq. (3.20) for the scaled density

profile in Eq. (3.21) and evaluate different integrals in this equation. For that, we first

need to find the y dependence of δ̄y and δy explicitly. It turns out that the dependence of

these functions on y changes as f decreases below 1/3. This happens because the number

of particles (1 − 2f)N in the central region changes from being smaller to being larger

than the number of particles fN at the edges as f is decreased below 1/3. Hence, one is

required to consider the two cases 1/3 ≤ f < 1/2 and 0 < f < 1/3 separately.

We first discuss the 1/3 ≤ f < 1/2 case. The functions δ̄y and δy are determined in

Eq. (A.37) and Eq. (A.39) respectively and they are given by

δ̄y =


−y for − b̃ ≤ y ≤ −x̃f

x̃f for − x̃f ≤ y < 0−

b̃ for y = 0+,

, δy =


y for x̃f ≤ y ≤ b̃

x̃f for 0+ < y ≤ x̃f

b̃ for y = 0−,

(3.22)

with

x̃f =
(3f − 1)

ϱ̃edge
for

1

3
≤ f <

1

2
. (3.23)
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We use the above explicit expressions of the functions δ̄y and δy and the ansatz for ϱ̃f (y)

from Eq. (3.20) in the SPE (3.21). After performing the integrals in Eq. (3.21) we find

the following equations [details are provided in Appendix. A.4.2]

(
1− ϱ̃edge

)
y2

2
≈ µ̃2, for − b̃ ≤ y ≤ −x̃f ,

( 1− ϱ̃edge)
y2

2
+ ϱ̃edge

(
f

ϱ̃edge
− b̃
)
y − ϱ̃edge

4

[
b̃2 −

(
3f − 1

ϱ̃edge

)2 ]
(3.24)

+ 1
2
(1− 2f)

[
b̃− (1−2f)

2ϱ̃edge

]
≈ µ̃2, for − x̃f ≤ y < 0−.

Since the above equations are valid for arbitrary y in the respective regions, the coefficients

of different powers of y should vanish individually in both the regions of y. Solving the

resulting equations, we get

ϱ̃edge = 1, b̃ = f, and µ̃2 = 0. (3.25)

A similar calculation is performed for the 0 < f < 1/3 case in Appendix. A.4.2 and

once again one finds the same solutions for the constants as in Eq. (3.25). We would like

to mention again that a similar calculation can be performed for the SPE on the right

edge part and arrive at the same solutions as in Eq. (3.25). Note that the solutions in

this equation completely specify the expression of the scaled density profile in Eq. (3.20)

which is given explicitly in Eq. (3.13) and verified numerically in Fig. 3.3(a).

We now focus on the central regime which is described by the delta function part of

the scaling distribution in Eq. (3.20). However, if one zooms over this region, then one

does not find that (1 − 2f) fraction of particles at the central region are just piled up

at the origin. They of course, get spread over a region [−ℓN , ℓN ] due to the presence of

finite temperature, however as we will show below ℓN/N → 0 as N → ∞. This spreading

happens because of the entropy of these particles. As it turns out the net interaction

energy of the particles in this region is sub-dominant compared to the entropy. Hence,

neglecting the interaction part of the free energy, the SPE in the central region can be

written in terms of the un-scaled density profile ϱN(x) as

N
x2

2
+Nβ−1 log[ϱN(x)] = µ1, (3.26)

64



which has the following solution

ϱN(x) = exp

(
µ1

N
− β

x2

2

)
. (3.27)

Note that the above Gaussian form of the density profile remains valid over the central

region [−ℓN , ℓN ] and it should smoothly connect to the density profile outside the central

region on both sides. Furthermore, µ1 should be such that the fraction of the number of

particles inside the central region is (1− 2f). These conditions provide the following two

equations

exp

(
µ1

N
− β

ℓ2N
2

)
=

1

N
, (3.28)

with

∫ ℓN

−ℓN

ϱN(x)dx = (1− 2f). (3.29)

Solving these two equations one finds that

ℓN ≈
√

2

β
logN, and exp(µ1/N) ≈ (1− 2f)

√
β

2π
, (3.30)

which completely specify the density profile in Eq. (3.27) in the central region [−ℓN , ℓN ].

This Gaussian form for the density profile is verified in Fig. 3.3(b).

In summary, for fixed f ∈ [1
2
, 1] and large N , the equilibrium density profile is piece-

wise uniform

ϱN(x) ≈


1
N

for x ∈
[
− fN,−(2f − 1)N

)
,

1
2N

for x ∈
[
− (2f − 1)N, (2f − 1)N

]
1
N

for x ∈
(
(2f − 1)N, fN

]
,

(3.31)

On the other hand for 0 < f < 1/2, the equilibrium density profile has the following form

ϱN(x) ≈


1
N

for x ∈
[
− fN,−ℓN

)
.

(1− 2f)
√

β
2π
e−βx2/2 for x ∈ [−ℓN , ℓN ], with ℓN ∼ O(

√
logN)

1
N

for x ∈
(
ℓN , fN

]
,

(3.32)

for large N . In terms of the scaled variable y, the density profiles in the above equations
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Figure 3.3: (a) System size collapse of scaled density ϱ̃f (y) = NϱN(x) for 1DOCP at
f = 7/16. Data collapse for different N verifies the scaling relation in Eq. (3.11) with
α = 1 over almost the full range except for a small region around the origin. The
green solid line represents a uniform profile on both the left and right edge parts, as
described by Eq. (3.13). The inset displays a zoomed version of the central part, where
we observe that under scaling y = x/N the density profile for larger N becomes sharper
and narrower which is consistent with the delta function in Eq. (3.13). (b) This figure
plots the density profile in the central part [zoomed version of delta part in (a)] as
functions of unscaled variable x for different N . We observe that the density profile in
the central part approaches, with increasing N , to a Gaussian form as given in Eq. (3.32).
Simulation data are obtained using β = 1.

possess the scaling form in Eq. (3.11) with α = 1 and the scaling functions are given

in Eq. (3.12) and Eq. (3.13). These scaling functions can indeed describe the crossover

demonstrated in Fig. 3.1(a). Note, for f = 1 these results reproduce the density profile of

the ATAC case given in Eq. (3.9) which represents a flat profile existing over a single sup-

port [−N,N ]. As f is reduced from 1, the particles at the edges do not feel the repulsion

from all the particles, however, the particles at the central part feel the interaction from

all other particles. Consequently, the total support of the profile shrinks to [−fN, fN ]

and the density profile becomes piecewise uniform over three parts. Since the particles in

the central part feel more repulsion than the edge parts, more particles get pushed away

from the centre of the trap giving rise to a higher density value in the edge parts than the

central part. As f is further reduced, the two edge parts approach each other, causing

the central part to shrink and cease to exist at f = 1/2. When f is reduced below 1/2,

one does not find a single particle in the system that interacts with all other particles. On

the other hand, because of the reduced f , the amount of overall repulsion that the edge
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particles can manage to climb against the harmonic potential also got reduced. Hence

they get more squeezed leading to an even smaller spread (2fN) for the full profile. In

this situation to minimize energy, the particles at the central part find themselves easier

to sit on top of each other at the minimum of the harmonic trap leading to piling up at

the center. At this point, the entropy starts dominating because the contribution from

the interaction part of the energy to the free energy becomes negligible. As a result, the

particles behave like a non-interacting fluid and get distributed according to the Boltz-

mann distribution which is a Gaussian in harmonic trap. With decreasing f , more and

more particles join the fluid in the central part. In the f → 0 limit the edge parts get

completely melted into the fluid part and one finds the density profile to be Gaussian as

was obtained in Ref: [99].

3.4 Density crossover in log-gas (V (x) = − log |x|).

The energy function of log-gas is given in Eq. (3.3). In the ATAC (f = 1) case, as

mentioned earlier, the equilibrium density profile has the Wigner semi-circular scaling

form given in Eq. (3.9) [97]. On the other hand, in the SR case (f = 0), the equilibrium

density profile is Gaussian and the width of the profile depends on the parameter d (see

Eq. (3.10)) [99]. As demonstrated in Fig. 3.1(b), the density profile changes from Wigner

semi-circle to Gaussian as f is decreased. To understand this crossover in the equilibrium

density profile one requires to solve the relevant SPEs for arbitrary f ∈ [0, 1]. While exact

solutions for the scaling density function ϱ̃f (y) have been obtained for f = 1 and f = 0,

finding the solution for general f seems difficult. However, it turns out that for f close

to 1 and 0, one can find approximate solutions to the SPEs, which we discuss below.

3.4.1 Solution for f close to 1:

For 1/2 ≤ f ≤ 1 the SPEs in the central, left and right edge parts are derived in Eqs. (A.13

- A.15). Here, we write them explicitly with log-gas interaction V (x) = − log(|x|). In
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the central part −ℓN ≤ x ≤ ℓN one has

N
x2

2
−N2

∫ bN

−bN

log(|x′ − x|) ϱN(x′) dx′

+
N2

2

[ ∫ −ℓN

−bN

log
(
D̄x′
)
ϱN(x

′) dx′ +

∫ bN

ℓN

log(Dx′) ϱN(x
′) dx′

]
= µ1, (3.33)

and in the left part (−bN ≤ x < −ℓN) one has

N
x2

2
−N2

∫ bN

−bN

log(|x′ − x|) ϱN(x′) dx′ +
N2

2

[
2

∫ bN

x+D̄x

log(|x′ − x|)ϱN(x′)dx′

+

∫ x

−bN

log
(
D̄x′
)
ϱN(x

′)dx′ +

∫ x+D̄x

ℓN

log(Dx′)ϱN(x
′)dx′

]
= µ2. (3.34)

One can write a similar equation on the right part, which has the same structure due to

the inversion symmetry (about the origin) of the problem. The chemical potentials µ1

and µ2 ensure the two normalization constraints given in Eq. (A.2). Recall that Dx (D̄x),

defined in Eq. (A.8), represents the distance from x over which one would find f fraction

of particles on the left (right) side.

For f close to 1, most of the particles stay in the central region and consequently,

the edge regions being lightly populated become much narrower than the central region.

Hence, in this limit, the contribution from the third terms (inside the square brackets)

on the L.H.S. of Eq. (3.33) and Eq. (3.34) are much smaller than the first and second

terms. We neglect these terms and solve the resulting approximate SPEs which look like

N
x2

2
−N2

∫ bN

−bN

log(|x′ − x|) ϱN(x′) dx′ ≈ µ1, for |x| ≤ ℓN

N
x2

2
−N2

∫ bN

−bN

log(|x′ − x|) ϱN(x′) dx′ ≈ µ2, for ℓN < |x| ≤ bN ,

(3.35)

with the constraints
∫ ℓN
−ℓN

ϱN(x) dx = 2f − 1 and
∫
ℓN<|x|≤bN

ϱN(x) dx = 1 − f . Note

that the saddle point problem in Eq. (3.35) is equivalent to the problem of computing

the equilibrium density profile in an ATAC log-gas system, where (2f − 1)N number of

particles are restricted to be inside [−ℓN , ℓN ] and the rest of the particles stay outside.

For log-gas, this problem was solved in Ref. [39] subject to the constraint of having

a fixed number of particles inside [−ℓN , ℓN ]. The density profile is given by ϱN(x) =
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Figure 3.4: These plots show system size collapse of the numerical density profiles (dashed
lines) for different N in the log-gas model for (a) f = 3

4
and (b) f = 7

8
. The good collapse

verifies the scaling ϱN(x) = 1√
N
ϱ̃f (x/

√
N) in Eq. (3.11). The solid green line plots

the scaling function ϱ̃f (y) as given in Eq. (3.14). We observe good agreement between
simulation and theory in the central regime (represented by solid black vertical lines at
y = ±ℓ̃). Outside this regime, the agreement between theory and simulation is better for
f close to one and declines as f is reduced from one.

(1/
√
N)ϱ̃f (x/

√
N) with ϱ̃f (y) given explicitly in Eq. (3.14) with ℓ̃ = ℓN/

√
N and b̃ =

bN/
√
N . We adopt this solution in our case however, ℓN is not known beforehand. We

calculate its numerical value, ℓnu using
∫ ℓnu
−ℓnu

ϱnu(x)dx = (2f − 1), where ϱnu(x) being the

numerically obtained density profile. The analytical form in Eq. (3.14) is compared with

the numerically obtained densities in Fig. 3.4, where we notice good agreement between

them. Closer the f is to one, better the agreement is.

3.4.2 Solution for f close to 0:

The SPEs for 0 < f < 1/2 are different from the previous case and are derived in

Eqs. (A.18 - A.20) for the three regimes, where one needs to insert V (x) = − log(|x|).
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The SPE in the central part −ℓN ≤ x ≤ ℓN is written explicitly as

Nx2

2
−N

2

2

[
2

∫ x+D̄x

x−Dx

log(|x′ − x|)−
∫ x

x−Dx

log
(
D̄x′
)
−
∫ x+D̄x

x

log(Dx′)
]
ϱN(x

′)dx′

− N2

2

∫ −ℓN

−bN

[
log(|x′ − x|)− log

(
D̄x′
)]
Θ(x′ + D̄x′ − x) ϱN(x

′) dx′ (3.36)

− N2

2

∫ bN

ℓN

[
log(|x′ − x|)− log(Dx′)

]
Θ(x− x′ +Dx′) ϱN(x

′) dx′ = µ1,

where Θ(x) is the Heaviside step function.

We, here, solve this equation approximately for small f . Similar to the previous

case (f close to 1), in this case also the central region [−ℓN , ℓN ] is much wider than the

two edge regimes [−bN ,−ℓN) and (ℓN , bN ]. Recall the central region contains (1 − 2f)

fraction of particles and the two edge regions contain f fractions of particles each. As f

approaches to zero, the central region widens and the edge regions shrink. Starting from

any point x′ ∈ [−bN ,−ℓN) one must traverse to the image point X̄(x′) = x′ + D̄x′ on the

right of x′, to find f fraction of particles. For f close to 0, one does not require to move

far inside the bulk. More precisely, the distance D̄−ℓN =
(
X̄(−ℓN) + ℓN

)
is very small

for small f and X̄(x′) < X̄(−ℓN) for any x′ ∈ [−bN ,−ℓN). Additionally, the presence of

Θ(x′+ D̄x′ −x) on the second line of Eq. (3.36) makes the contribution from this integral

non-zero only over a tiny region −ℓN ≤ x ≤ X̄(−ℓN). For x in this small region, we

neglect the contribution from the integral on the second line of Eq. (3.36). Following

similar arguments, the contribution from the integral on the third line of Eq. (3.36) is

also ignored in the f → 0 limit. As a justification, we later show that the resulting

approximate solution for the density profile in the central part indeed matches quite well

with the numerical results.

Neglecting the contributions from these integrals on the second and third lines of

Eq. (3.36), the SPE in now approximately reads

Nx2

2
−N2

∫ x+D̄x

x−Dx

log(|x′ − x|)ϱN(x′) dx′

+
N2

2

∫ x

x−Dx

log
(
D̄x′
)
ϱN(x

′) dx′ +
N2

2

∫ x+D̄x

x

log(Dx′)ϱN(x
′) dx′ ≈ µ1. (3.37)
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For small f , Dx and D̄x can be approximated by f
ϱN (x)

which can be obtained from

Eq. (A.8). After a few simple algebraic steps, one can calculate the contribution from the

interaction part of the energy in the SPE. Apart from some numerical additive constants,

which are independent of x, the contribution of the interaction term comes out to be of

order fN2 log[ϱN(x)]. The SPE then becomes

Nx2

2
+ fN2 log(ϱN(x)) ≈ µ1. (3.38)

Solving this equation one finds

ϱN(x) ≈ AN exp

(
− x2

2Nf

)
for − ℓN ≤ x ≤ ℓN ,

where AN = exp

(
µ1

N2f

)
.

(3.39)

This density profile should satisfy the normalisation
∫ ℓN
−ℓN

ϱN(x)dx = 1−2f which provides

a relation between µ1 and ℓN for given f . It is easy to realize that in the f → 0

limit, the support length ℓN → ∞. Using this fact, we find that AN ≈ 1/
√
2πNf i.e.,

µ1 ≈ −(N2f/2) log(2πNf) in the leading order in f . Making use of this approximate

expression of AN back in the normalisation condition yields erf(ℓN/
√
2Nf) ≈ 1 − 2f ,

solving which one can find ℓ̃ = ℓN/
√
N in the leading order in f . Note that the density

profile in the central regime −ℓN ≤ x ≤ ℓN given in Eq. (3.39) has the scaling form

ϱN(x) = (1/
√
N)ϱ̃f (x/

√
N) with ϱ̃f (y) given explicitly in Eq. (3.15). A comparison of

this result with numerical simulation is provided in Fig. 3.5 for f = 1/8 and f = 1/16.

The excellent agreement of theory with the numerical profiles in the central part provides

justification of the approximations made to go from Eq. (3.36) to Eq. (3.37).

The density profile in Eq. (3.39) does not explain the behavior of the density of the

remaining 2fN particles in the left and right edge parts. These regimes therefore need to

be considered separately. We first focus on the left edge part. The SPE in the left edge
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Figure 3.5: Comparison of numerically obtained (scaled) density profiles for different
system sizes (dashed lines) with the analytical predictions (green solid lines) for log-gas
(a) with f = 1/8 and (b) with f = 1/16. Once again collapse of numerical data for
different N verifies the scaling in Eq. (3.11) with α = 1/2. The theoretical prediction for
the form of the scaled density profile ϱ̃f (y) inside the central part (−ℓ̃, ℓ̃) is Gaussian as in
Eq. (3.15) [for log-gas]. The central region (−ℓ̃, ℓ̃) (represented by two vertical solid black

lines) can be found from the relation
∫ ℓ̃

−ℓ̃
ϱ̃f (y)dy = 1 − 2f . Outside the central region,

the equilibrium density profile ϱ̃f (y) is different from the central part and its approximate
analytical formula is provided in Eq. (3.16). Although agreement between the analytical
formula [Eq. (3.16)] for the density and the numerical density profile reduces as f is
increased from zero, however, it captures the total support of the density profile quite
accurately.

part (−bN ≤ x < −ℓN) can be written from Eq. (A.18) with V (x) = − log(|x|) as

Nx2

2
−N2

∫ −ℓN

−bN

log(|x′ − x|) ϱN(x′) dx′ − N2

2

[
2

∫ x+D̄x

−ℓN

log(|x′ − x|)ϱN(x′)dx′ (3.40)

−
∫ x

−bN

log
(
D̄x′
)
ϱN(x

′)dx′ −
∫ x+D̄x

−ℓN

log(Dx′)ϱN(x
′)dx′

]
= µ2.

It turns out that this SPE is in general difficult to solve for arbitrary f ∈ (0, 1/2). We

however notice that for small f , the contribution from the last three terms on the L.H.S.

of Eq. (3.40) (i.e. the terms inside the square bracket) should be much smaller than the

second term (in the first line).

As mentioned previously, the size (bN − ℓN) of an edge part is very small for small

f and consequently, for any x ∈ [−bN ,−ℓN) the image point (x + D̄x) ≈ −ℓN . Hence,

the integration ranges of the three terms inside the square bracket on the L.H.S. of
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Eq. (3.40) are very small and one can neglect them compared to the first two terms. This

approximation is exact for x = −bN and it becomes less valid as x is taken away from−bN .

Owing to the symmetry of the problem, one can make the same set of approximations

for the SPE on the right edge part ℓN < x ≤ bN . After making the above mentioned

approximations, the SPEs on both edge parts now read

Nx2

2
−N2

∫ −ℓN

−bN

log(|x′ − x|) ϱN(x′) dx′ ≈ µ2, for − bN ≤ x < −ℓN

Nx2

2
−N2

∫ bN

ℓN

log(|x′ − x|) ϱN(x′) dx′ ≈ µ2, for ℓN < x ≤ bN .

(3.41)

The problem in Eq. 3.41 can be interpreted as the problem of finding the density profile

of the 2fN particles interacting all-to-all and conditioned to be outside the central range

[−ℓN , ℓN ]. This problem was studied in Ref. [39]. For this case, the scaled density profile

ϱ̃f (y) takes the same form as in Eq.(3.14) with ã = 0, since the central region [−ℓN , ℓN ]

is empty, and thus is given by Eq.(3.16). The analytical form in Eq. (3.16) for the

equilibrium density at the edges is compared with the density obtained numerically in

Fig. 3.5. The support of the density b̃ can be computed from normalization and one finds

b̃ =

√
ℓ̃2 + 4f which quite accurately describes the support of the simulation density

profile in Fig. 3.5 even though the analytical form in Eq. (3.16) is only approximate.

This happens because Eq. (3.41) is exact only when |x| = bN and the approximations for

getting Eq. (3.41) starting from Eq. (3.40) does not hold for x away from the edges.

In summary, we found approximate forms of the equilibrium density profiles of the

FR log-gas model for f close to 1 given by Eq. (3.14) and for small f given by Eqs. (3.15)

and (3.16). These theoretical results are compared with simulation data in Fig. 3.4 and

Fig. 3.5 respectively. We observe that the density profiles for large and small f are quite

different. From Fig. 3.4, with f decreasing from one, the edge parts grow inside the

central part as in the 1DOCP case discussed in the previous section. At f = 1/2 the

central part vanishes. On the other hand, for small f , we observe from Fig.3.5(a) (for

f = 1/8) and Fig.3.5(b) (for f = 1/16) that with decreasing f , the density profile in the

central part grows, causing the edge parts to vanish at f = 0. At this value of f , the

scaled density profile ϱ̃f (y) is described by Eq. (3.15) and reproduces the result obtained

previously in Ref: [99].
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Features
Model

1DOCP (k = −1) log-gas (k → 0) other
k>−2

Numerically Numerically Numerically
Crossover demonstrated demonstrated demonstrated

in Fig. 3.1(a) in Fig. 3.1(b) in Fig. A.1
Entropy Subdominant∗ Subdominant

Free Bulk Dominant Dominant
energy energy contribution contribution

functional Self No Neglected for
energy contribution fixed f > 0 Only

Saddle point Derived in Derived in Numerical
equation Appendix. A.3 Appendix. A.3 observation

Exact analytical Approximate
expression for ϱ̃f (y) expression for ϱ̃f (y)

Given in Given in
f ∈ Eq. 3.12 f Eq. 3.14[
1
2
,1
]

Verified close Compared
numerically to 1 with numerics

Scaling in Fig. 3.2 in Fig. 3.4
function Given in Given in
ϱ̃f(y) f ∈ Eq. 3.13 f Eq. 3.15 & 3.16(

0, 1
2

)
Verified close Compared

numerically to 0 with numerics
in Fig. 3.3 in Fig. 3.5

Table 3.1: A table summarising the status of our results. The ∗ in the second row indicates
the fact that for 0 < f < 1/2 the entropy can contribute in the central part of the density
profile in the 1DOCP model. However the central region [−ℓN , ℓN ] shrinks to a point in
terms of scaled variable y = x/N in the N → ∞ limit since ℓN ∼

√
logN [see Eq. (3.30)].

3.5 Summary and outlook

We studied equilibrium density profiles of two harmonically confined classical many-

particle model systems – 1DOCP and log-gas, in which the particles are interacting via

potentials V (x) = −|x| and V (x) = − log(|x|), respectively. Additionally, the interaction

is such that each particle, in both systems, can interact only up to d particles to its left

and right if available. We numerically demonstrated that as the parameter f = d/N

is reduced from 1 to 0, the density profile in both models undergoes crossover from

a finitely supported density profile to an infinitely extended Gaussian density profile.

Furthermore, for both the models, we found that for all f ∈ (0, 1] the density profile

possesses the same scaling with respect to the system’s size N as in their respective
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all-to-all coupling cases. To understand the above-mentioned crossover of the density

profile, we derived the corresponding saddle point equations for both models. We found

that the SPEs are different for 1/2 ≤ f ≤ 1 and 0 < f < 1/2. For the 1DOCP model, we

solved the SPEs in all regimes of f and found exact analytical expressions for the density

scaling functions which are verified with numerical computations. For the log-gas, we

provided approximate solutions of the SPEs for large (close to 1) and small (close to 0)

f . We have numerically found similar crossover in the density profiles to exist for other

Riesz gas models corresponding to other values of k in Eq. (3.1). A brief discussion along

with a numerical demonstration of such crossover for other values of k is provided in

Appendix. A.5. We provided a table of summary in Tab. 3.1 which contains essential

features of our results along with the equation numbers and the section numbers where

they appear or they are derived.

Our work can be extended in several directions in the future. One immediate direction

would be to find a complete solution of the SPEs for arbitrary f in the log-gas model

as well as for other values of k in Eq. (3.1). It would be interesting to look at how the

distribution of position of the particle at the edge gets affected as f is reduced from one.

In the all-to-all coupled case it was found that the spacing distribution exhibits interesting

statistical fluctuations for different k [98]. It would also be interesting to investigate how

the spacing statistics get affected as f is reduced. Another interesting outlook would be

to look at the crossover in densities due to temperature variation. Particularly for the

all-to-all coupled log-gas (f = 1), Gauss-Wigner crossover is observed in Ref. [101] but

how would such temperature-tuned crossover happen for f < 1? This is an interesting

question to study. Extensions of our study to higher dimensional Riesz gas is another

interesting and challenging problem [13,131–133]. Exploring crossover in densities within

quantum systems exhibiting power-law interactions could also be an intriguing avenue

to investigate [134, 135]. It is important to emphasize that the parameter d in Eq. (3.1)

does not really quantify the “range” of interaction. A more realistic model would be

the Yukawa gas where the interaction gets screened on a finite length scale [125–129].

Extending our studies on density crossover and gap statistics, Riesz gas with Yukawa-

type interaction would indeed be an interesting problem to explore in future.

After analyzing gap statistics in the all-to-all coupling Riesz gas and density crossovers
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in the finite-ranged 1DOCP and log-gas systems under thermal equilibrium, we next

investigate the Calogero-Moser model under non-equilibrium conditions by introducing

activity into the system.
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Chapter 4

Crystal to liquid cross-over in the

active Calogero-Moser model

Active particles refer to a class of non-equilibrium systems where every individual unit

breaks the detailed balance condition [136]. Powered by some mechanism, active particles

exhibit stochastic but directed motion. A notable example is the run-and-tumble particle

(RTP) which is used to describe the motion of certain species of bacteria like E. Coli [137].

Such a particle is often driven by an athermal noise with non-trivial correlations. As

a result, analytical computation of their statistical properties is generally challenging.

However, in the past few years, several striking properties have been uncovered for a single

RTP in the form of position distributions in the free as well as confined space [138–140],

first-passage properties [138,141], extreme value statistics [142], convex hull problem [143,

144] and so on. These studies have quantitatively established notable distinctions between

the active motion and the passive Brownian motion [145,146].

Going beyond single particle, studies on interacting active particles have also re-

vealed fascinating behaviors like formation of fish schools [147, 148], flocking [149], jam-

ming [150], absence of the equation of state for pressure [151] and motility-induced phase

separation [152,153], which are not seen for the thermal particles. Unlike, in the equilib-

rium case, where the stationary measure has Boltzmann form, there exists no universal

principle to write the steady state for active particles. Recently, there is a growing in-

terest in constructing microscopic lattice models and continuous space models that are

amenable to analytical treatment, and which provide insights into the above mentioned
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features. [109, 154–164]. Some recent works, for instance, looked at the active version

of the Dyson’s Brownian motion (DBM) [108, 109]. DBM is one of the well-studied

models in statistical physics, which shares a direct connection with the random matrix

theory [5, 6]. It has also found applications in other areas such as quantum chaos [5]

and growth model [165]. In DBM, the underlying particles interact via pairwise repul-

sive logarithmic potential and are additionally subjected to a global harmonic trap. Due

to the confining trap, the system attains equilibrium at late times, and in the large N

limit (with N being the particle number), the average density profile takes the famous

Wigner semi-circle (WSc) form [32]. The active version of this model was studied in

Refs. [108, 109]. Surprisingly, across a broad range of the activity parameter, it was nu-

merically found that the density profile in the steady state still maintains the shape of

the WSc [108]. In support of this, some analytical arguments were given based on the

computations of the covariance of the particle positions [109].

The Calogero-Moser (CM) model is another classic example of a solvable many-

particle system where particles interact via repulsive inverse-square law potential as

opposed to the logarithmic interaction in the DBM [60, 61, 65, 66]. It has also found

connections with the random matrix theory and soliton physics [67, 68, 72]. As men-

tioned earlier, although the interaction potentials of the CM model and DBM model are

very different, it turns out that they share an identical minimum energy configuration.

The equilibrium positions of particles for both models coincide with the zeros of the

Hermite polynomials in the zero noise limit [31]. Consequently, the average equilibrium

density profiles for the two cases are exactly the same, and they converge to the WSc

form in the large N limit. However, the fate of this connection in the presence of activity

is not known. In the present work, we systematically explore the connections between

the two models when the particles are driven by the active noise instead of the thermal

noise.

In particular, we investigate the following steady-state properties of the active Calogero-

Moser model: (i) the mean density profile and, (ii) fluctuations and correlations of particle

positions. For part (i), we numerically demonstrate that as the system’s activity increases,

the density profile undergoes a crossover from a multi-peaked crystalline structure at low

activity, to a liquid-like state exhibiting a smooth Wigner semi-circular density profile at
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the intermediate activity. As the activity increases further, the profile changes from the

Wigner semi-circle to a bell-shaped form. For part (ii), we follow the approach developed

in Ref. [109] and compute the covariance of particle positions and of the gaps in the limit

of small activity and large persistence time, providing support for the observed transition

in the density profile. Additionally, we point out notable differences between the active

CM and active DBM models in both the steady-state density profile and the variance of

particle positions.

The remainder of the chapter is structured as follows: Sec. 4.1 is devoted to the de-

scription of the model and summarising the main results. We present numerical results on

the steady-state density profile including its crossover and system size scaling in Sec. 4.2.

Sec. 4.3 looks at the fluctuation and covariance of particle positions, which is followed by

the conclusion and future directions in Sec. 4.4.

4.1 Model, observables and the summary of our find-

ings

We consider the motion of N run-and-tumble particles in one dimension, interacting with

each other via repulsive inverse-square power-law interaction with strength g (> 0). In

addition, the particles are subjected to a global confining harmonic potential with stiffness

parameter ω (> 0). Denoting the position of the i-th particle at time τ by Xi(τ), the

time evolution equation is given by

dXi

dτ
= −ωXi +

N∑
j=1
j ̸=i

2g

(Xi −Xj)3
+ V0σi(τ), for i = 1, 2, ..N, (4.1)

where V0 is the speed of the particle and σi(τ) is the dichotomous noise that switches

between ±1 at a constant rate Γ. Because of the infinite repulsion on contact, the

particles remain ordered, X1 < X2 < ... < XN . For any pair of particles, the noises σi(τ)

on different particles are statistically independent and their temporal correlation takes

the form ⟨σi(τ)σj(τ ′)⟩ = δij exp (−2Γ|τ − τ ′|) with δij being the Kronecker delta. Note

that for Γ → ∞, V0 → ∞ with the ratio V 2
0 /Γ fixed, the model reduces to the passive
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limit of Brownian particles with diffusion coefficient equal to V 2
0 /2Γ. However, for any

other values of these parameters, we anticipate to see departures from the thermal case.

It is instructive to write the equations in dimensionless form. Defining the dimensionless

time and position variables t = ωτ and xi = Xi/(g/ω)
1/4, the above equations take the

form:
dxi
dt

= −xi +
N∑
j=1
j ̸=i

2

(xi − xj)3
+ v0σi(t), for i = 1, 2, ..N, (4.2)

where now the only remaining dimensionless parameters are v0 = V0

ω3/4g1/4
and the tum-

bling rate γ = Γ/ω. Note that, the activity in the system can be increased either by

enhancing the speed v0 or reducing the tumbling rate γ, although the two parameters

have quantitatively different effects.

In this work, we will be interested in steady-state properties. In particular, we consider

the density of particles defined as follows:

ρst(x) =
1

N

N∑
i=1

⟨δ(xi − x)⟩st, (4.3)

where ⟨...⟩st denotes an average over the steady-state distribution.

In our simulations, we observe that increasing the activity in the system causes the

density profile to cross over from a multi-peaked crystalline structure to a smooth Wigner

semicircle, and eventually to a bell-shaped profile. To characterize the first crossover from

a crystal-like structure to a liquid-like structure, we examine the fluctuations of particle

positions in the steady state. Therefore, we measure the mean positions, the variances,

and the mean interparticle separations as follows:

x̄i = ⟨xi⟩st, (4.4)

s2i = ⟨(xi − x̄i)
2⟩st (4.5)

∆i,n = x̄i+n − x̄i. (4.6)

Additionally, we compute the covariance of the particle positions which finally leads to
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the computation of the variance of inter-particle gaps

g2i,n = ⟨(xi+n − xi)
2⟩st −∆2

i,n. (4.7)

Specifically, to study the crossover more quantitatively, we compare the standard devi-

ation of particle positions to the average interparticle separation, known as the Linde-

mann’s ratio [166],

ηi =
si
∆i,1

. (4.8)

To address the second transition, from a smooth Wigner semi-circle to a bell-shaped

profile, we quantify the difference between the steady-state density profile and the Wigner

semi-circle ρsc(x) by computing the following quantity:

χ =

∫ ∞

−∞
|ρst(x)− ρsc(x)|dx, (4.9)

where

ρsc(x) =


1

πN

√
2N − x2 for |x| ≤

√
2N

0 otherwise.

(4.10)

In the following sections, we will numerically study the form of ρst(x), the position

fluctuations {si}, Lindemann’s ratio {ηi}, the quantity χ and the variance of inter-particle

gap g2i,n upon varying (i) the activity parameters v0 and γ and (ii) the number of particles

N .

Before going into the detailed discussion, it is useful to summarize our main results:

1. As observed in the active Dyson’s Brownian motion, the steady-state density profile

in the active Calogero-Moser model also exhibits three distinct structures depend-

ing on the strength of the activity. At very small activity, the system resembles a

‘crystal’ having a multi-peaked density profile. The Wigner semi-circle gives the

envelope of the density profile (see Fig. 4.2(a)). As activity increases, the crystalline

structure in the density profile vanishes, resulting in a smoother profile resembling

a ‘liquid’. This profile matches well with the Wigner semi-circle across nearly the

entire support region, except at the edges (see Fig. 4.2(b)). The support of the
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density profile can be approximated as [−
√
2N,

√
2N ]. By increasing the activ-

ity further, the steady-state density profile deviates significantly from the Wigner

semi-circle, transforming into a bell-shaped profile with support approximately on

[−v0, v0] where v0 ∼ O(N) (see Figs. 4.2(c) and 4.3). Interestingly, we observe that

near the edges, the density profile decays following a power-law of the form ∼ 1/x3

(see Fig. 4.3). This power-law decay seems to be universal as long as the particles

confined in a harmonic trap experience infinite repulsion upon contact.

2. These three distinct structures in the density profile correspond to three different

activity regimes, referred to as the weakly active, intermediate, and strongly active

regimes. A density profile with noticeable peaks defines the weakly active regime.

The intermediate active regime corresponds to a smooth Wigner semi-circle density

profile, while the bell-shaped density profile is indicative of the strongly active

regime. These regimes are further quantified by the computation of the Lindemann’s

ratio ηi (defined in Eq. (4.8)) and the quantity χ (defined in Eq. (4.9)). Based on

the numerical values of these two quantities ηN/2 and χ, we draw a ‘phase’ diagram

in Fig. 4.8 showing three activity regimes for two different system sizes.

3. We use an analytic approach developed in Ref. [109] based on small oscillations

about the ground state (i.e., in the limit v0 → 0) to describe the transition from

the weakly active to the intermediate active region. Surprisingly, this small oscilla-

tion theory accurately predicts the variance of particle positions and gaps in both

the weakly active and intermediate active regions. For large N , we derive a closed

expression for the variance of particle positions in the small tumbling rate limit, as

presented in Eq. (4.33). By comparing the typical fluctuations in particle positions

with the existing length scales in the system, we identify the criteria for the transi-

tions. The first transition from the weakly active to the intermediate active region

occurs when v0 ∼ O(1), independent of system size. On the other hand, the second

transition, from the intermediate active to the strongly active region, is expected

to occur at v0 ∼ O(N). Additionally, from the covariance of particle positions, we

have computed the variance of the gap between any two particles. In the large N

limit, we derive an analytical formula for the variance of the interparticle gap g2i,n
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in Eq. (4.45) near the center of the trap (i = N/2). An extension to finite γ, based

on a future work [167], is also presented.

4.2 Density profile

In this section, we discuss the effect of activity on the average density profile in the steady

state. To get the density profile, we first evolve the system for a very long time following

Eq. (4.2). After that, the density profile is obtained simply as the histogram of the

positions and then averaged over many similar realizations. For v0 = 0, the density takes

the Wigner semi-circular form for large N [75]. As mentioned in the previous section,

the system’s activity can be tuned by varying both the speed v0 and the tumbling rate

γ. Initially, we adjust the system’s activity by varying the parameter a ∈ (0, 1] where, a

is defined as v0 = aN , while keeping γ fixed at unity. Later, we will also present results

due to the variation of the tumbling rate γ. Here, we will demonstrate that even for

the active CM model, the density converges to the Wigner semi-circle in a significant

parameter regime. To present density profiles across various system sizes effectively, we

find it useful to show the scaled density profile ρ̃(z), defined by

ρ̃(z) =
√
Nρst(

√
Nz), (4.11)

where both ρ̃ and z are of order O(1). For further discussion, it is useful to identify three

parameter regimes depending on the value of v0.

4.2.1 Weakly active

At zero activity (v0 = 0), the equilibrium configuration {x(eq)i } is obtained by equat-

ing dxi/dt = 0 in Eq. (4.2) and solving the resulting equations. This implies that the

equilibrium configuration {x(eq)i } corresponds to the zeros of Hermite polynomials [75].

For small v0, particles fluctuate little about their equilibrium positions. This is also illus-

trated in Figure 4.1(a) where we observe sharp peaks in the density about the equilibrium

positions. For instance, with just two particles (N = 2), the peaks are located (in the

unscaled variable) around x = ±0.71 which are the zeros of the Hermite polynomials of
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Figure 4.1: The total (scaled) density profiles ρ̃(z) for different (small) system sizes with
several values of the activity, a = 0.01 in (a), 0.1 in (b) and 1.0 in (c) show the crossover:
from sharply peaked density profile in (a) at very small activity to bell-shaped density
profile in (c) at very large activity via an intermediary WSc profile in (b). For all the
panels, the flipping rate γ is kept fixed at 1.

degree 2. Similarly, for N = 4 the locations of the peaks are at x = ±1.65 and x = ±0.52

which again are zeros of the Hermite polynomial of degree 4. As long as the width of

these peaks remains much smaller than the inter-particle separation, we refer to the sys-

tem as being in the weakly active regime. In this regime, the entire system resembles

a crystal where particles are ordered around their equilibrium positions, as illustrated

in Fig. 4.1(a). Therefore, the coarse-grained density, in this regime is governed by the

Wigner semi-circle in the large-N limit, supported over [−
√
2N,

√
2N ] (see Fig. 4.2(a)).

Detailed information about the numerical simulations can be found in Appendix A.1.

4.2.2 Intermediate activity:

As the activity increases, particle fluctuations around their equilibrium positions grow,

becoming comparable to the distance to their nearest neighbors. Consequently, the den-

sity profile becomes smoother. For example, see Fig. 4.1(b), where in a system with

N = 16 particles, the peaks in the steady-state density profile almost vanish, creating

a density profile that aligns well with the Wigner semi-circle form. In Fig. 4.2(b), for

the activity parameter a = 0.1, the steady-state density profiles for two different (large

but finite) system sizes match extremely well with the Wigner semi-circular form, apart

from the edges. We refer to this as the intermediate active region, where the steady-state

density profile loses the peaks, at least in the bulk, and conforms well to the Wigner semi-

circular form. Thus, as observed in the case of active DBM [108], the density profiles
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Figure 4.2: The transition in the (scaled) density profile ρ̃(z) is shown once again with
the same set of parameters as in Fig. 4.1, but now for large system sizes. In (a), where the
activity parameter a = 0.01, the peaks in the density profile smooth out with increasing
system sizes, and the numerically obtained density profile approaches the WSc density
profile. In the middle panel (b) with an activity parameter of a = 0.1, the density
profile in the bulk approximately matches the WSc form but deviates at the edges. The
deviation from the WSc profile increases with system size. The form as well as the support
of the density profile has changed significantly in (c) with a = 1.0. The density forms
a bell-shaped profile extending approximately to [−aN, aN ] (depicted separately in Fig.
4.3). However, it is important to note that the

√
N scaling in the density profile remains

consistent throughout the bulk.

in the active CM model also maintain their Wigner semi-circular form in the bulk even

at significantly high levels of activity. Notice that near the edges, the density profiles

exhibit slight deviations from the Wigner semi-circular form. However, it is important to

observe that there are no ‘wings’, a clear distinction from the active DBM as discussed in

Refs. [108,109]. This is probably related to the distinctive behaviors of the edge particles

compared to those in the bulk of the active DBM [109] (see Sec.4.3.2 near Eq. (4.35)). It

is due to the fact that the (active) CM model is much more rigid than the (active) log

gas [75].

4.2.3 Strongly active

When v0 becomes substantially large, particles in the edge can move significantly more

in the harmonic trap compared to the passive case. Under this circumstance, the density

deviates notably from the semi-circular form, they now have a bell-shaped appearance

(see Fig. 4.1(c) and 4.2(c)). Remarkably, as the density profile transitions from the

Wigner semi-circle to a bell-shaped distribution, the scaling behavior with system size as

in Eq. (4.11) persists. The bulk of the density is thus still contained over an interval of
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Figure 4.3: Showing the total support of the density profile ρ(x) approximates to
[−aN, aN ] in the large activity limit. The steady-state density profiles are drawn as
a function of x/N for three different system sizes which seem to converge and show a
sharp drop at x = aN . Near the edges, the density profiles (dashed lines) decay as ∼ 1/x3

(red solid line).

size ∼
√
N . However, the total support of the density profile undergoes an approximate

shift to [−aN, aN ], contrasting with the previous support of [−
√
2N,

√
2N ] (see Fig.4.3).

Additionally, near the edges, the density profile exhibits a power-law decay characterized

by ∼ 1/x3 (see Fig.4.3). The 1/x3 power-law decay is not limited to the active CM model;

it has been observed in various other systems. For instance, it manifests in active DBM

under extreme activity conditions (v0 ∼ O(N)), as documented in Ref. [108]. Moreover,

it emerges in models featuring contact interaction i.e., where the interaction strength

tends towards zero (g → 0+), even at modest activity levels (v0 ∼ O(1)) [108]. This

decay seems to be universal, independent of the specific interaction potential, provided it

involves infinite repulsion upon contact. Nevertheless, our current understanding of this

decay lacks theoretical insights.

Recall that the system’s activity can also be enhanced by reducing the flip rate γ. In

Fig. 4.4, we demonstrate a crossover in a system of 64 particles, this time with changing

the γ keeping the speed v0 fixed at 1.6 (a = 0.025). As γ is reduced, the density profile

transitions from having noticeable peaks to a smooth Wigner semi-circle density profile,

at least near the center of the trap. With such a small v0, the strongly active regime

cannot be achieved solely by reducing γ as demonstrated in the phase diagram (Fig.4.8).

Thus, the system’s activity is mainly controlled by v0 rather than γ.
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Figure 4.4: Showing the crossover from a ‘crystal’ to ‘liquid’ in a system of 64 particles
because of reducing the flip rate γ keeping the activity parameter a fixed at 0.025. For
the system size N = 128 with a = 0.025, the system has already crossed over to the liquid
state characterized by a smooth density profile.
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Figure 4.5: Demonstration of the emergence of wing-like structures in the density profile
within the strongly active region (a = 0.25) as a result of the reduced flipping rate, γ.

In the strongly active region, where the density profile deviates significantly from the

Wigner semi-circle and attains a bell-shaped profile, it has a sharp cut-off at ±v0 when

γ remains sufficiently large (see Fig. 4.3). For smaller γ, two slightly broadened peaks

appear near the edges (±v0), creating a wing-like structure as shown in Fig. 4.5. The

position of the ‘wings’ can be roughly obtained by balancing, for the edge particles, the

driving velocity term with σi = +1 and the harmonic term, leading to xi ∼ v0 ∼ N (while

in the intermediate regime of the active DBM, the position of the ‘wings’ is ∼
√
N). Note

that these ‘wings’ are only observed when γ is small enough (γ ≲ 0.1), since it requires

that the particles spend a lot of time near the fixed points for which σi = +1 for the edge

particles.
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Figure 4.6: Numerically computed Lindemann’s ratio ηi (points) as a function of i/N
for different values of the flipping rate γ within a system comprising N = 64 particles.
Three panels correspond to three different values of the speed v0, 0.32, 0.64 and 1.6 in
(a),(b) and (c) respectively. Additionally, we have drawn a solid black (horizontal) line
at 0.5 indicating the cases where the standard deviation of particle positions becomes
exactly equal to 50% of the average distance to the nearest neighbor. For a quantitative
distinction between the ‘crystal’ and ‘liquid’ phases, we use this as a reference line above
which we consider the system to be in the ‘liquid’ phase and below which is in the ‘crystal’
phase. In the first two panels, the system remains in the ‘crystal’ phase regardless of the
γ values analyzed. However, in the third panel with speed v0 = 1.6, the system stays in
the ‘crystal’ phase for higher values of γ (γ ≳ 1). Conversely, for smaller γ values (≲ 0.5),
the Lindemann’s ratio exceeds 0.5 at the center, indicating a ‘liquid’ phase.

4.2.4 Discussion of crossovers

Thus, based on values of the parameters v0 and γ, the steady-state density profile has

three different forms. When the activity is extremely low, the particles stay close to their

equilibrium positions and fluctuate within a small region. This leads to a density profile

with sharp peaks, resembling a crystal phase. As the activity increases, particle fluctu-

ations around their equilibrium positions grow, becoming comparable to the distance to

their nearest neighbors. The density profile then becomes smoother, resembling a liquid

phase. To quantify this transition further, we numerically compute the Lindemann’s ratio

defined in Eq. (4.8). This ratio compares the standard deviation of a particle’s position

to the average gap between the particle and its nearest neighbor. The numerical values

of this ratio are shown in Fig. 4.6 for different values of the activity parameter v0 and the

flipping rate γ in a system with a total 64 particles. Notably, we introduce a reference line

at 0.50, representing scenarios where particle fluctuations are exactly 50% of the average

gap. When Lindemann’s ratio at the center exceeds this reference value, we consider the

system to be in a ‘liquid’ phase; when it is below, it is in a ‘crystal’ phase. It’s evident
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Figure 4.7: Lindemann’s ratio ηi as a function of i/N for different values of the flipping
rate γ is shown in Fig. 4.6, now within a system comprising N = 128 particles. Similar to
the scenario of N = 64 in this case, the system remains in the ‘crystal’ phase for v0 = 0.32
and 0.64 across all values of γ and shifts to the ‘liquid’ phase for v0 = 1.6 when γ ≲ 0.5.

that a system comprising 64 particles with speed v0 = 0.32 and 0.64 consistently remains

within the ‘crystal’ phase, as illustrated in Fig. 4.6(a) and (b). Conversely, for v0 = 1.6,

the system resides in the ‘crystal’ phase only when the flip rate γ ≳ 0.5; below this

value, it is in the ‘liquid’ phase. The corresponding scenarios are illustrated in Fig. 4.7

for a system comprising of 128 particles. From Figs. 4.6 and 4.7, it is now clear that the

‘crystal’ to ‘liquid’ transition occurs at v0 ∼ O(1), independent of system size.

For the second crossover, from a smooth Wigner semi-circular density profile to a bell-

shaped density profile, we numerically compute the values of the quantity χ as defined

in Eq. (4.9) across various combinations of parameters a and γ. Table 4.1 presents the χ

values for two distinct system sizes, N = 64 and 128. Whenever the value of χ exceeds

0.1, we call the system to be in the strongly active regime. Based on the values of

Lindemann’s ratio and the quantity χ we draw a ‘phase’ diagram in the a, 1/γ plane in

Fig. 4.8 separating three distinct ‘phases’ which correspond to weakly active, intermediate

and strongly active regions.

In summary, we numerically compute the steady-state density profile in three activity

regimes: weakly active, intermediate active and strongly active regime. In these regimes,

the density profile exhibits distinct characteristics: in the weakly active regime, it fea-

tures sharp peaks akin to a ‘crystal’ phase, which vanish (at least in the bulk) in the

intermediate active region, resembling a transition to a ‘liquid’ phase. In the strongly

active region, the density profile takes on a bell-shaped form. To distinguish these three

regions more quantitatively, we look at the Lindemann’s ratio ηi (defined in Eq. (4.8))
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Figure 4.8: Lower diagram depicts three distinct ‘phases’ in the active CM model within
the parameter space represented by a and 1/γ, with red, blue, and black points repre-
senting weakly active, intermediate and strongly active regimes respectively. Red points
signify scenarios where Lindemann’s ratio ηi at the center of the trap (i = N/2) is less
than 0.5 (see Fig. 4.7). Blue points represent intermediate active regions where the Lin-
demann’s ratio at the trap center exceeds 0.5, but the values of χ defined in Eq. (4.9)
remain below 0.1 (see Table. 4.1). The strongly active regime (indicated by black points)
corresponds to cases where the value of χ exceeds 0.1. Density profiles in the correspond-
ing regimes are shown schematically in the top panels. Two different system sizes are
represented: circles (◦) correspond to N = 64, while triangles (▲) represent N = 128.
Notice that the second transition (from blue to black) occurs at a ∼ O(1), which is inde-
pendent of N . In contrast, the first transition (from red to blue) occurs at a values that
depend on N , as depicted by two schematic (dashed) lines for the different system sizes.

and the quantity χ (defined in Eq. (4.9)). Based on their numerical values, we made

a ‘phase’ diagram in the a, 1/γ plane. Next, we discuss our theoretical understanding

of the fluctuations in particle positions using Hessian calculations. By examining the

Hessian matrix of the CM system [75, 168], analytical results have been obtained by our

collaborators L. Touzo, P. L. Doussal, and G. Schehr from the University of Paris City

and the Sorbonne University, respectively.
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Flip rate, γ Activity parameter a χ for N = 64 χ for N = 128
1.000 0.100 0.014 0.018
1.000 0.250 0.084 0.084
1.000 0.500 0.230 0.229
0.500 0.100 0.017 0.021
0.500 0.250 0.099 0.096
0.500 0.500 0.266 0.264
0.100 0.100 0.022 0.027
0.100 0.250 0.122 0.117
0.100 0.500 0.325 0.322
0.050 0.100 0.023 0.028
0.050 0.250 0.126 0.120
0.050 0.500 0.337 0.332
0.010 0.100 0.024 0.029
0.010 0.250 0.130 0.125
0.010 0.500 0.351 0.344

Table 4.1: Table showing the values of χ (defined in Eq. (4.9), which measures the
deviation of the steady-state density profile from the Wigner semi-circle profile, for system
sizes N = 64 and 128. The table includes results for various combinations of the tumbling
rate γ and the activity parameter a (= v0/N). By applying a cutoff of χ = 0.1 to
distinguish the transition from the intermediate activity region to the strongly active
region, we observe that this transition is independent of system size.

4.3 Variance and covariance of the particle displace-

ments

In this section, we compute the correlation between the displacements of different particles

in the small noise limit (v0 → 0). To this end, we will utilize the Hessian-based technique

developed in Ref. [109]. A striking feature about the model in Eq. (4.2) is that for

v0 = 0, the positions of the particles x(eq) = (x
(eq)
1 , x

(eq)
2 , ..., x

(eq)
N ) are given by the zeroes

of the Hermite polynomial of degree N , i.e., HN

(
x
(eq)
i

)
= 0. Moreover, for N → ∞,

the equilibrium particle density converges to the Wigner semi-circle which has a finite

support on [−xe, xe] where xe =
√
2N . For small v0, we anticipate the position xi of

the i-th particle to deviate very little from its equilibrium value x
(eq)
i . Let us denote this

displacement by δxi and write

xi = x
(eq)
i + δxi. (4.12)
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Assuming that the typical fluctuations of the particle positions δxi are small compared

to the typical size of the gaps x
(eq)
i+1 − x

(eq)
i ∼ 1/

√
N , one can linearise the equation of

motion in (4.2) in δxi to obtain

d (δx)

dt
≃ −HCMδx+ v0σ, (4.13)

with δx = (δx1, δx2, ..., δxN)
T and σ = (σ1(t), σ2(t), .., σN(t))

T . Moreover, HCM denotes

the Hessian matrix for the Calogero-Moser model and is given completely in terms of the

zeroes of the Hermite polynomial as [75]:

(HCM)ij = δi,j

1 + N∑
n=1
n̸=i

6(
x
(eq)
i − x

(eq)
n

)4
− 6 (1− δi,j)(

x
(eq)
i − x

(eq)
j

)4 . (4.14)

(4.15)

Although we have linearized the equation of motion, solving Eq. (4.13) analytically still

turns out to be difficult due to the dynamics of the σ variables. Therefore, in order to

simplify the dynamics further, we will focus on the γ → 0+ limit, which implies that the

σ variables remain fixed to their initial values throughout the time evolution. However,

these initial values still fluctuate for different realizations. Now, for a given realization of

σ, we anticipate our system to go to a unique fixed point at large times. For the case of

the active Dyson’s Brownian motion, this was seen in Ref. [109] using extensive numerical

simulations. Anticipating this to be true for the active Calogero-Moser model also, we

can then write the steady-state displacements from Eq. (4.13) as

δx ≃ v0 H−1
CM σ. (4.16)

We now use this solution to calculate the variance and covariance of the displacement

variables. To do this, we first recall that σi is chosen from ±1 with equal probability

independent of the index i. Hence, we obtain ⟨σi⟩ = 0 and ⟨σiσj⟩ = δi,j. This allows us
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to write the expressions of the mean and the covariance as

⟨δxi⟩st ≃ 0 (4.17)

⟨δxiδxj⟩st ≃ v20
(
H−2

CM

)
ij
. (4.18)

Note that at leading order in v0, the average of δxi vanishes, which means that the average

position x̄i of the i
th particle coincides with its equilibrium position x

(eq)
i . This implies

in particular that s2i = ⟨δx2i ⟩st and g2i,n = ⟨(δxi+n − δxi)
2⟩st.

4.3.1 Inverting the Hessian matrix HCM

Given the complicated form of the matrix HCM in Eq. (4.14), it might seem difficult to

invert it analytically. However, we use the fact that the Hessian matrix of the Calogero-

Moser model can be expressed in terms of the Hessian matrix HL of Dyson’s Brownian

motion as HCM = H2
L where HL is given by [75]

(HL)ij = δij

[
1 +

N∑
n=1
n ̸=i

1

(x
(eq)
i − x

(eq)
n )2

]
− (1− δij)

(x
(eq)
i − x

(eq)
j )2

. (4.19)

The covariance in Eq. (4.18) then becomes

⟨δxiδxj⟩st ≃ v20
(
H−4

L

)
ij
. (4.20)

It turns out that the matrix HL can be diagonalized exactly using the Hermite poly-

nomials [168]. Its eigenvalues are simply the integers from 1 to N , and the normalized

eigenvector ψλ associated to the eigenvalue λ has components given by

(ψλ)i =
uλ

(
x
(eq)
i

)
√∑N

n=1 uλ

(
x
(eq)
n

)2 , with uλ(x) = 2λ−1 (N − 1)!HN−λ(x)

(N − λ)!HN−1(x)
. (4.21)
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Figure 4.9: Numerically computed variance of particle positions s2i ≡ ⟨x2i ⟩−⟨xi⟩2 (points)
in the steady-state of active CM model for different values of the flipping rate γ keeping
the activity parameter a fixed at 0.05 in (a), 0.1 in (b) and 0.5 in (c) for the system size
N = 64. The dashed blue line represents our theoretical expectation given in Eq. (4.33).
In the first two panels, the matching between numerical and analytical results becomes
more and more promising as the flipping rate γ is reduced from 1. However, in the last
panel where the activity is very high, the approximation used in the theoretical calculation
is not valid. Therefore, the theoretical formula is no longer correct.

Using the eigenvalue decomposition

(
H−4

L

)
ij
=

N∑
λ=1

(ψλ)i(ψλ)j
λ4

, (4.22)

the covariance in Eq. (4.20) then simplifies to

⟨δxiδxj⟩st ≃ v20

N∑
λ=1

1

λ4

uλ

(
x
(eq)
i

)
uλ

(
x
(eq)
j

)
∑N

n=1 uλ

(
x
(eq)
n

)2 . (4.23)

From this expression, the variance ⟨δx2i ⟩ turns out to be

⟨δx2i ⟩st ≃ v20

N∑
λ=1

1

λ4

uλ

(
x
(eq)
i

)2
∑N

n=1 uλ

(
x
(eq)
n

)2 . (4.24)

These results are similar to the active DBM but with a 1/λ4 factor instead of 1/λ2 [109].

This leads to a faster convergence of the sum. Later, we will discuss that this results in

some interesting differences between the two models. In what follows, we will analyze the

results derived in Eqs. (4.23) and (4.24) in the large N limit to obtain some nice scaling

relations for the variance and the covariance.
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4.3.2 Variance and covariance of particle positions in the large

N limit

We now make the same approximations as done in Ref. [109] in the limit N → ∞. We

first note that even though the summation in Eq. (4.23) runs from 1 to N , the sum

gets dominant contribution from the smaller values of λ. In particular, for λ ≪ N , the

function uλ

(
x
(eq)
i

)
has a simplified expression [109]

uλ

(
x
(eq)
i

)
≃ (2N)

λ−1
2 Uλ−1

(
x
(eq)
i√
2N

)
, (4.25)

in terms of the Chebyshev polynomial of the second kind Uλ(w) of order λ. Moreover for

|w| < 1, Uλ(w) can be written as

Uλ(w) =
sin
(
(λ+ 1) arccos(w)

)
√
1− w2

. (4.26)

To fully simplify the correlation in Eq. (4.23), we still need to simplify the denominator∑N
n=1 Uλ−1

(
x
(eq)
n√
2N

)2
in this expression. Remember that as N becomes large, the density

of the Hermite zeroes approaches the Wigner semi-circle. Moreover, the difference be-

tween successive roots

[
x
(eq)
n√
2N

− x
(eq)
n−1√
2N

]
∼ 1

N
. Therefore, we can change the aforementioned

summation to an integration with an appropriate measure as follows:

N∑
n=1

Uλ−1

(
x
(eq)
n√
2N

)2

≃ N

∫ 1

−1

dw
2
√
1− w2

π
Uλ−1(w)

2 = N. (4.27)

Finally plugging the approximations from Eqs. (4.25)-(4.27) in Eq. (4.23) and taking the

N → ∞ limit, we find that the covariance ⟨δxiδxj⟩st satisfies the scaling relation

⟨δxiδxj⟩st ≃
v20
N

C

(
x
(eq)
i√
2N

,
x
(eq)
j√
2N

)
, (4.28)

with the scaling function C(w, z) defined as

C(w, z) =
N∑

λ=1

1

λ4
Uλ−1(w)Uλ−1(z), (4.29)
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and both the scaled variables w and z lie between [−1, 1]. In fact, the sum can actually

be computed explicitly, leading to

C(w, z) = c(arccos(w), arccos z)√
1− w2

√
1− z2

, with (4.30)

c(u, v) =
1

6

[uv
2
(u2 + v2) +

π

4
(|u− v|3 − (u+ v)3 + π2uv

]
, (4.31)

=
v

12
(π − u)(2πu− u2 − v2) for u > v. (4.32)

From the expression of the covariance, one can easily get the variance of the position for

a single particle as

⟨δx2i ⟩st ≃
v20
N

V

(
x
(eq)
i√
2N

)
, with V(w) = arccos2(w)(π − arccos(w))2

6(1− w2)
. (4.33)

In Fig. 4.9, we compare this analytical formula (Eq. (4.33)) with the numerically com-

puted variance of particle positions in the steady state. The comparison is done across

various values of the activity parameters v0 and γ in a system with N = 64. The formula

provided in Eq. (4.33) (labeled by the dashed line in Fig. 4.9) appears to be valid for

sufficiently large values of v0. However, it is evident that the flip rate γ needs to be very

low.

Since for a general particle x
(eq)
i ∼

√
N , the only real N dependence in (4.28) and

(4.33) is in the prefactor and we find that the variance and covariance of the particle

positions decay as ⟨δx2i ⟩st ∼ 1/N for large N . For particles that are far away in the bulk,

i.e. when x
(eq)
i ≪

√
N , the first few orders of the expansion of V(w) near w = 0 are given

by,

V(w) = π4

96
+
π4

96

(
1− 8

π2

)
w2 +

π4

96

(
1− 32

π2
+

16

π4

)
w4 +O(w6), (4.34)

and we see that the 1/N decay also holds at the leading order. This is similar to the

behavior obtained in Ref. [109] for the active Dyson’s Brownian motion. However, the

main difference is that, due to the faster convergence of the series in Eq. (4.29), these

results are also valid for the edge particles. Indeed, expanding V(w) near the edge (since

x
(eq)
i ∼

√
2N for the edge particles, we replace w = (1 − ϵ) in Eq. (4.33) and take the
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ϵ→ 0+ limit) we find

V(1− ϵ) =
π2

6
− π

3

√
2ϵ+O(ϵ). (4.35)

We see that there is a finite limit, which indicates that for large N the variance decays

as ⟨δx2i ⟩st ∼ 1/N even for the edge particles. This is very different from the active DBM

which exhibits different scaling behaviors for the bulk and the edge particles [109]. For

the active DBM, the equivalent of the function V(w) diverges near the edges, which shows

that the 1/N scaling breaks down, and an alternative analysis is required to obtain the

variance of the position of the edge particles. Nothing of the sort seems to occur for the

active CM: the leading order decay of the variance is the same regardless of whether the

particle is in the bulk or at the edge. All of this is also true for the covariance (4.28).

As a remark, one can use (4.35) along with the asymptotics of the Hermite zeros at

the edge to obtain the behavior of the edge particles, for which m = N − i = O(1),

⟨δx2N−m⟩st ≃
v20
N

(
π2

6
− π

3

√
−amN−1/3 +O(N−2/3)

)
, (for edge particles). (4.36)

Comparing the values of position fluctuations to other existing length scales in the

system, one can derive the criterion of the crossovers observed in the steady-state density

profile. We first compare the typical displacements (∼ v0/
√
N) of the particle with the

typical inter-particle separation (∼ 1/
√
N), we get Lindemann’s ratio

ηi =

√
⟨δx2i ⟩st(

x
(eq)
i+1 − x

(eq)
i

) ∼ v0
√
N√
N

∼ v0. (4.37)

Thus, if v0 is very small (≪ 1), the particle fluctuations are much less compared to the

mean spacing between successive particles. This situation corresponds to the density

profiles with sharp peaks and refers to the weakly active regime. On the other hand,

when the particle fluctuations become comparable to the total support of the density

profile in the passive limit xe =
√
2N , then the ratio√

⟨δx2i ⟩st
xe

∼ v0
N

(4.38)

suggests that when v0 ∼ O(N), the particle fluctuations are of the order of total support
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of the density profile in the passive case which in turn implies very strong activity and

corresponds to the bell-shaped density profile. Thus the transition from weakly active

to intermediate active region occurs when v0 ∼ O(1) and the second transition, from

intermediate to strongly active region happens at v0 ∼ O(N). Notice that the transition

regions are consistent with the phase diagram shown in Fig. 4.8 as well. This argument

also explains why in the strongly active regime, while the total support of the density is

[−aN, aN ], the bulk of the density is still contained in an interval of size ∼
√
N . Indeed

in this regime, the density is dominated by the fluctuations of the particles, which are

typically of order
√

⟨δx2i ⟩st ∼ v0/
√
N = a

√
N (assuming that the (4.33) still gives the

correct order of magnitude for the typical fluctuations in this regime).

Extension to finite γ. It is actually possible to extend the present results to finite

values of γ. The derivation will be presented in a future paper [167]. The idea is to start

again from the linearized equation of motion (4.13), and to solve it in Fourier space to

obtain an expression of the covariance ⟨δxiδxj⟩st for any value of γ. Going back to real

space and taking the large N limit, we arrive at

⟨δxiδxj⟩st ≃
v20
N
Cγ

(
x
(eq)
i√
2N

,
x
(eq)
j√
2N

)
, (4.39)

Cγ(w, z) =
∞∑
λ=1

1

λ2(λ2 + 2γ)

sin(λ arccosw)√
1− w2

sin(λ arccos z)√
1− z2

. (4.40)

For the variance, this reads

⟨δx2i ⟩st ≃
v20
N
Vγ

(
x
(eq)
i√
2N

)
, Vγ(u) =

∞∑
λ=1

1

λ2(λ2 + 2γ)

sin2(λ arccosu)

1− u2
. (4.41)

In the limit γ → 0 we recover the previous results (4.28) and (4.33), while for γ ≫ 1 we

recover the results for the passive Calogero-Moser model derived in Ref. [109], with an

effective temperature v20/(2γ). Here, however, the sums cannot be computed explicitly.

In Fig. 4.9, we see that the agreement with numerical simulations is very good for small

values of a (up to a ∼ 0.1), for all values of γ.
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4.3.3 Variance of interparticle distance

The expression of the covariance can also be used to obtain the variance of the distance

between two particles. Indeed

⟨(δxi − δxi+n)
2⟩st = ⟨δx2i ⟩st + ⟨δx2i+n⟩st − 2⟨δxiδxi+n⟩st. (4.42)

One can use the results from the previous section to estimate each term in Eq. (4.42).

This leads to

⟨(δxi − δxi+n)
2⟩st =

v20
N
D
( x(eq)i√

2N
,
x
(eq)
i+n√
2N

)
, (4.43)

where D(w, z) = V(w) + V(z) − 2C(w, z) with C and V are given in Eq. (4.30) and

Eq. (4.33) respectively. Let us examine the behavior of this observable near the center of

the quadratic well. In the limit where both w and z are close to zero, D(w, z) admits a

simple expression. Indeed in this limit,

D(w, z) =
π2

24
(w − z)2 +O(w3, z3) (4.44)

Using the fact that near w = 0, x
(eq)
i − x

(eq)
i+n ≃ πn√

2N
. Eqs. (4.43) and (4.44) lead to the

variance of mid-particle gap (i = N/2)

g2n ≡ ⟨
(
δxi − δxi+n

)2
⟩st ≃

π4

96

v20
N3

n2, i = N/2. (4.45)

Upon comparing this theoretical model with numerical findings in Fig.4.10, we observe

a notable agreement between theoretical predictions and numerical data, particularly

evident for lower values of n. Notice that the agreement gets better and better with

decreasing γ which is not surprising since the formula is valid only in the γ → 0 limit.

Contrary to what we observed in Ref. [109] for the active DBM, the results (4.43) and

(4.45) seem to be compatible with numerical simulations even for n = O(1) (see Fig. 4.10).

In particular, the variance of mid-gap near x = 0 is correctly given to leading order by

Eq. (4.45) with n = 1. This is again due to the faster convergence of the series defining

C(x, y) and V(x).
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Figure 4.10: Variance of the gap g2n as defined in Eq. (4.45), is plotted as a function of
n for two different values of the activity parameters, a = 0.01, 0.05, and 0.1, in panels
(a), (b) and (c) respectively, within a system of 128 particles for three different choices
of the flipping rate γ. The points represent the numerically computed variance of the
gap, while the solid lines indicate the corresponding theoretical expectations given by
Eq. (4.46) with i = N/2. The red dashed line represents the approximated theoretical
form of g2n given in Eq. (4.45) obtained in the γ → 0 limit. For small values of n, the
numerical results show good agreement with the theoretical predictions.

Extension to finite γ. The results (4.39) and (4.41) enable us to generalize to finite

γ the expressions (4.43) and (4.45). Indeed,

⟨(δxi − δxi+n)
2⟩st =

v20
N
Dγ

(
x
(eq)
i√
2N

,
x
(eq)
i+n√
2N

)
, with (4.46)

Dγ(w, z) = Vγ(w) + Vγ(z)− 2Cγ(w, z)

=
N∑

λ=1

1

λ2(λ2 + 2γ)

(
sin(λ arccosw)√

1− w2
− sin(λ arccos z)√

1− z2

)2

. (4.47)

As in the γ → 0 case, we could not derive a simple formula for the variance of the gap

g2i,n at any finite γ, even for i = N/2. The formula for the variance of the gap, given in

Eq.(4.46), has been compared with numerical results in Fig.4.10 for i = N/2. We find a

good agreement between the theoretical predictions and the numerical results for all γ at

small v0.

4.3.4 Validity of the approximation

The result (4.45) allows us to test a posteriori the validity of the small v0 approximation

made at the beginning of this section. This requires that the typical variations of the

distance between successive particles gi,1 is much smaller than the average distance ∆i,1.
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Thus we get that our results should be valid when the following ratio is small (assuming

that γ is small and that i is close to N/2 to simplify the evaluation),

gi,1
∆i,1

∼ v0/N
3/2

1/
√
N

=
v0
N
. (4.48)

Thus we find that the weak noise approximation should always hold as long as v0 ≪ N ,

i.e. in the entire ‘solid’ and ‘liquid’ regimes.

4.4 Summary and outlook

We extended the analysis of active Dyson’s Brownian motion presented in Refs. [108,

109] to the active Calogero-Moser system described by Eq. (4.2). In the steady state,

we focused on computing the density profile of the particles. As the activity in the

system increases, the density profiles exhibit interesting crossovers from a sharply peaked

profile to a smooth bell-shaped profile, passing through an intermediate Wigner semi-

circle profile. The first crossover is analogous to a crystal-to-liquid transition, where the

‘crystal’ phase is characterized by sharp peaks in the density profile, and the ‘liquid’

phase has a smooth Wigner semi-circular density profile without such peaks. To quantify

these transitions, we computed Lindemann’s ratio, which compares the fluctuations in

particle positions to the average gaps between successive particles. As observed in the

active DBM [108], we also found that the density profile in the steady state retains the

shape of the Wigner semi-circle even at sufficiently large activity. However, at extremely

high activity, the density profile transitions to a bell shape. To characterize this second

crossover, we measured the deviation of the density profile from the Wigner semi-circle

by computing χ. Based on these values, we constructed a ‘phase’ diagram in the a, 1/γ

plane.

Using Hessian theory, we computed the covariances of particle positions in the small

activity (small v0) limit, which allowed us to calculate the variance of interparticle gaps.

Closed-form expressions for the variance of particle positions and interparticle gaps were

obtained in the long persistence time limit (small γ) for large system sizes. These theo-

retical expressions remain valid at sufficiently large v0 but require a very large persistence
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time limit (see Figs. 4.9 and 4.10). The active CM model exhibits some distinctive be-

haviors compared to the active DBM. As a manifestation of the short-range interactions

in this model, the fluctuations of particles, both at the edges and in the bulk, decay

with system size as ∼ 1/N . This contrasts with the active DBM, where long-range in-

teractions cause the bulk fluctuations to decay as ∼ 1/N , but edge fluctuations decay as

∼ 1/N2/3 [109]. By comparing the fluctuations in particle positions with other existing

length scales, we also identified the crossover regions from weakly active to intermediate

active, and finally to strongly active regimes. The transition from weakly active to in-

termediate active occurs at v0 ∼ O(1), while the transition to the strongly active regime

takes place at v0 ∼ O(N). The analytical computation of particle position covariances

was also extended to finite γ, yielding exact results up to a summation.

This study has numerous interesting extensions and outlooks. The very first task

would be to analytically comprehend the bell-shaped density profile emerging in the large

activity limit in both the active DBM and active CM models. It’s now evident that, for

both models, the density profile maintains its passive structure even at sufficiently large

activity. The next question arises: does a similar behavior occur in other many-particle

interacting systems, such as the harmonically confined Riesz gas [97]? Additionally, what

happens to this robustness if one shortens the range of interactions [99]?
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Chapter 5

Conclusions

In this thesis, we investigated the equilibrium and non-equilibrium properties of strongly

interacting systems in one dimension. Specifically, we focused on the Riesz gas, where the

particles interact through pairwise repulsive power-law interactions of the form ∼ 1/rk,

with r representing the distance between two particles. This repulsive interaction is coun-

terbalanced by an overall confining harmonic potential. Special values of k correspond

to some important models such as the Dyson’s log-gas (k = 0+) [29, 30], the 1-D one-

component plasma (k = −1) [47–50], the Calogero-Moser model (k = 2) [60, 61, 65, 68],

3-D Coulomb gas confined in one dimension (k = 1) [169], hard rods (k → ∞) [78, 80].

Experimental realizations of this model in cold atom systems have now become possible

(ions [88–90], dipolar Bose gas [91, 92], coupled lasers [93]). Since power-law interac-

tions describe a broad range of physical systems, including gravitational systems [18,27],

Coulomb systems [14, 15] and 2D hydrodynamics [19], it is important to understand the

physics of this Riesz gas. A coarse-grained description of these models in thermal equi-

librium has been developed [97]. The saddle point method was then used to compute the

average density profiles for the general k > −2. While most studies focus on mean density,

examining fluctuations is important for a complete characterization of the system.

In the first part of the thesis, we analyzed the microscopic properties of these systems

in thermal equilibrium by studying the statistics of the gap between successive particles.

We found a power-law system-size dependence for the variance of the bulk gap as N−bk .

Specifically, for the mid-gap, we conjectured the k-dependence of the exponent bk and ver-

ified it via direct Monte-Carlo simulations. The conjecture was further validated through
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two (semi)analytical techniques: the microscopic Hessian and the quadratic approxima-

tion of the associated field theory. It is important to re-emphasize that the entropy, which

was irrelevant in determining the density profile, plays a significant role in fluctuations

in the range −1 < k < 0. We expect that the microscopic Hessian theory can be used

to compute the connected correlators of the form ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ for all k > −2, ex-

cept in the range −1 < k < 0. For the log-gas (k = 0+) and Calogero-Moser (k = 2)

models, the Hessian theory accurately captures these correlations at low temperatures

(T ∼ O(1)) [75]. However, this has not yet been verified for general k, and it would

be interesting to investigate further [170]. We anticipate that the microscopic Hessian

technique can be applied to any many-particle interacting system where the fluctuations

of the gaps decrease more rapidly than their averages as the system size increases. The

field theory approach that we have used in the all-to-all coupled Riesz gas to compute

the system size scaling for the variance of the bulk gap can easily be utilized in the SR

Riesz gas studied in Ref. [99].

After studying the mean and variance of gaps between successive particles in the bulk,

we moved on to study the system-size scaling of their distributions. As in the log-gas,

we found that the distribution of s (gap scaled by its mean) in 1DOCP converges very

quickly with system size N but fails to generalize the Wigner surmise for log-gas. We

found the distribution of s̃ (gap scaled by its fluctuations), P̃N(s̃), to be more universal

than the distribution PN(s) in the sense that P̃N(s̃) is independent of system size except

for −1 < k < 0, whereas PN(s) is system-size independent only for k = −1 and k = 0+.

The scaling behavior of the distributions is summarized in Fig. 2.1.

In the second part of this thesis, we analyzed how the density profile changes as the

range of interaction is varied in systems with power-law interactions. To adjust the range

of interaction, we varied the parameter d, which represents the maximum number of

particles a given particle can interact with on either side (see Eq. (3.1)). Specifically,

we considered two model systems: the 1DOCP and the log-gas described by the energy

function given in Eq. (3.3). We found that as the parameter f(= d/N) is varied from 1

to 0, the density profiles in both models transition from a finitely supported profile to an

infinitely extended Gaussian profile. Starting from the microscopic energy function given

in Eq. (3.3), we derived the saddle point equations (in Appendix. A.3) that the equilibrium
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density profile must satisfy for any values of f ∈ (0, 1). Here, we want to emphasize that

these saddle point equations are valid for general Riesz gas (described in Eq. (3.1)) for any

k ∈ (−2, 1). Interestingly, we found that the density profile for any finite f in the large N

limit exhibits the same system-size scaling as in the all-to-all coupling case, although the

scaling functions explicitly depend on the parameter f . For the 1DOCP model, we solved

the saddle point equations and found exact analytical expressions for the scaling functions

across the entire range of f . For the log-gas, solving the relevant SPEs is more challenging.

We demonstrated the density crossover numerically and provided approximate analytical

solutions only in the limits f → 1 and f → 0. It is important to point out that the

approximations used to solve the saddle point equations for the log-gas in the f → 1

and f → 0 limits are also valid for FR Riesz gas (described in Eq. (3.1)) with k ∈ (0, 1).

Therefore, the problem of finding the equilibrium density profile in these two limits for

k ∈ (0, 1) can similarly be mapped to a problem in the corresponding all-to-all coupling

domain, with the constraint that a specific number of particles remain inside a finite

region while the rest stay outside. However, these problems for k ∈ (0, 1) in the all-to-all

coupling domain have not yet been solved, except for the log-gas case [39]. Nevertheless,

computing the density profile in the finite-range Riesz gas for any −2 < k < 1 seems to be

a difficult and challenging task. Extending our gap statistics analysis to the finite-range

Riesz gas would be particularly interesting. Investigating how ‘level repulsion’ in the

log-gas or ‘level clustering’ in the 1DOCP changes with variations in interaction range

would be a compelling problem to explore.

In the final part of this thesis, we explored a non-equilibrium setup involving N run-

and-tumble particles confined in a one-dimensional harmonic trap. The particles interact

through pairwise repulsive inverse-square law interactions (force ∼ 1/x3), forming an

active version of the Calogero-Moser model. In the steady state, as the system’s activity

increased, we observed intriguing crossovers in the density profile: from a profile with

multiple sharp peaks reminiscent of a crystal to a smooth Wigner semi-circle resembling

a liquid, and finally to a bell-shaped density profile. To analytically understand these

crossovers, our collaborators L. Touzo, P. L. Doussal, and G. Schehr from the University

of Paris City and Sorbonne University, respectively derived a formula for the variance of

particle positions in the small noise limit. They used the Hessian approach, similar to the
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method applied in the active Dyson’s Brownian motion in Ref. [109]. The covariance of

particle positions has also been computed which leads to the computation of the variance

of interparticle separations.

Our study could be extended to the harmonically confined Riesz gas described in

Eq.(1.3) for k > 0. For the active Dyson’s Brownian motion model (corresponding to

k = 0+) and active Calogero-Moser model (corresponding to k = 2), many analytical

results have been obtained because the eigenvalues and eigenfunctions of their Hessian

matrices are known [168]. However, these are not known for other values of k. Despite

this, the covariance of particle positions can still be computed by numerically inverting the

Hessian matrix [98]. Investigating the gap distributions in the active Dyson’s Brownian

motion or active 1DOCP would be particularly interesting [110].
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Appendix A

Appendix

A.1 Numerical details

In this Appendix, we provide details of our numerical computations. In chapter 2, we

compute the mean and variance of the bulk gap using Monte Carlo (MC) simulations.

For a given processor, we disregard about initial 106 MC cycles. By MC cycle, we

mean O(N) Metropolis steps. We then collect data of about 106 samples. This process

is simultaneously executed in around N/2 processors thereby making the number of

samples to be around 108. Needless to mention, the exact numbers depend on whether

we achieve satisfactory convergence of our results for a given N and k. For all the spacing

distributions (which contain a total of (N − 1) gaps ), we have used 106 MC samples.

Both J0 and J are taken to be unity for log-gas (k = 0+) and for any other values of

k > −2 respectively. To determine the density profiles in chapter. 3, we compute the

histograms of particle positions obtained through MC simulations at inverse temperature

β = 1. For each case, the system is allowed to thermalize over 106 MC cycles initially.

We perform averages over 107 samples to determine the density profiles. In chapter 4, the

Euler method [171] is used to evolve the positions of the particles in the active Calogero-

Moser model, following the equation of motion given in Eq. (4.2). To ensure that the

particles in the underlying systems do not cross during the evolution, we chose a time

step of dt ∼ 10−5. Starting from any initial configuration, the particles are evolved for

a long time, t ∼ O(105), to ensure that the system reaches a steady state. All physical

quantities such as the density profiles, the variance of particle positions, and variance
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of interparticle gaps in the steady state are obtained by averaging over approximately

∼ 1011 samples of steady-state configurations.

A.2 System size scaling of the matrix elements M

and H

In chapter. 2, we were interested in finding the system size scaling of the variance of

gap between successive particles. The variance of the bulk gap and the coarse-grained

bulk gap are described by MH and FT respectively and these are in turn governed by

the matrices H and M respectively. Since they quantify similar physical quantities it is

natural to compare the matrices element wise which is shown in Table A.1. We notice

Mij Hij

Range of k i = j |i− j| ∼ O(1) i = j |i− j| ∼ O(1)
k > 1 N2 0 N2 N2

0 < k < 1 N1+k N1+k N1+k N1+k

−1 < k < 0 N
2(1+k)
(k+2) N1+k N N1+k

−2 < k < −1 N
2(1+k)
(k+2) N1+k N N1+k

Table A.1: System size dependence of the matrix elementsMij andHij for different values
of i and j. As we are interested mainly in the bulk part of the system we ignore such
terms where (i− j) ∼ O(N).

that the elements of matrices H and M have similar system size scaling for 0 < k < 1,

while for k > 1 off-diagonal terms and for −2 < k < 0 the diagonal terms differ. The

variance of the bulk gap is found by the numerical inversion of these matrices H and M .

The scaling behavior of the elements of the inverse matrices is presented in Table. (A.2)

We observe that the inverse of the dominant term in the matrix M gives the scaling

similar to the variance calculated by the numerical inversion of these matrices. This leads

us to the conjecture for the variance given in Eq. (2.9). It is clear from Table. A.2 that

except in the regime −1 < k < 0 the microscopic Hessian theory captures the system

size dependence of variance of bulk gap whereas the quadratic field theory gives correct

exponent bk (consistent with MC simulation) for all k > −2.
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M−1
ij H−1

ij

Range of k i = j |i− j| ∼ O(1) i = j |i− j| ∼ O(1)
k > 1 N−2 0 N−2 N−2

0 < k < 1 N−(1+k) N−(1+k) N−(1+k) N−(1+k)

−1 < k < 0 N
−2(1+k)
(k+2) N

−2(1+k)
(k+2) N−(1+k) N−(1+k)

−2 < k < −1 N−(1+k) N−(1+k) N−(1+k) N−(1+k)

Table A.2: System size dependence of the matrix elements M−1
ij and H−1

ij for different
values of i and j. Again we ignore such terms where (i− j) ∼ O(N).

A.3 Field theoretic description of FR Riesz gas and

the derivation of the saddle point equations

In this Appendix, we provide the derivation of the saddle point equations both for 1DOCP

and log-gas described by the energy functions given in Eq. (3.3). As mentioned at the

beginning of Sec. 3.2, for both the models with 0 < f < 1 the support of the equilibrium

density profile should consist of three regimes over which they behave differently. Such

regimes naturally appear because the interaction felt by a particle in these three regimes is

different since the number of other particles available to which it can interact, is different.

Recall, we denote these regimes as the central part, the left edge part and the right edge

part which are supported over the following regions [−ℓN , ℓN ], [−bN ,−ℓN) and (ℓN , bN ],

respectively, with 0 < ℓN < bN . On average, the central part contains |1 − 2f | fraction

of particles and the two edge parts contain the rest of the fraction of particles equally

divided. Consequently, the free energy functional defined in Eq. (3.6) now reads

Ψ̄[ρN(x)] = Ψ[ρN(x)]− µ1

(∫ ℓN

−ℓN

dxρN(x)− |1− 2f |
)

(A.1)

− µ2

(∫ −ℓN

−bN

dxρN(x)−
(1− |1− 2f |)

2

)
− µ3

(∫ bN

ℓN

dxρN(x)−
(1− |1− 2f |)

2

)
,
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where µ1, µ2 and µ3 are the chemical potentials that ensure the following normalizations

∫ ℓN

−ℓN

ρN(x) dx = |1− 2f | and∫ −ℓN

−bN

ρN(x) dx =

∫ bN

ℓN

ρN(x) dx =
(1− |1− 2f |)

2
,

(A.2)

in the central, the left edge and the right edge parts respectively. Due to the inversion

symmetry of the microscopic energy function E ({xi}) in Eq. (3.3), we expect the equi-

librium density profile to be symmetric about the origin (the center of the trap) which

implies µ2 = µ3 in equilibrium.

The free energy functional defined in Eq. (3.4) is a combination of energy and entropy

functionals Ψ[ρN(x)] = E [ρN(x)]−β−1S[ρN(x)]. The entropy S[ρN(x)] can be computed

by ‘counting’ the number of microscopic configurations compatible with a given density

profile ρN(x) which essentially provides S[ρN(x)] = −N
∫
dxρN(x) log ρN(x) [30, 36]. To

find an expression for the energy functional E [ρN(x)] corresponding to the energy function

in Eq. (3.3), we first notice that the functional E [ρN(x)] has the form

E [ρN(x)] =
N

2

∫ bN

−bN

x2ρN(x)dx+ EI [ρN(x)], (A.3)

where the first term comes from the confining potential in Eq. (3.3) and the second term

EI [ρN(x)] represents contribution from the interaction potential. To find the equilibrium

density profile for large N , one needs to solve the following saddle point equation

δΨ̄[ρN(x)]

δρN(x)

∣∣
ρN (x)=ϱN (x)

= 0, (A.4)

subject to the normalisation conditions in Eq. (A.2) which arise by equating the deriva-

tives of Ψ̄[ρN(x)] with respect ot µ1 and µ2 to zero, respectively.

As mentioned in Sec. 3.2, we numerically observe [from Figs. (3.2, 3.3) for 1DOCP

and Figs. (3.4, 3.5) for log-gas] that the density profile possesses scaling form (see

Eq. (3.11))with a N -dependent length scale LN ∼ Nα where α is given in Eq. (3.8).

Using this scaling form in the expression of the free energy, it is easy to notice that the

energy E [ρN(x)] ≃ N
∫ bN
−bN

(x2/2) ρN(x) dx + EI [ρN(x)] scales as N
2α+1, whereas the en-
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tropy contribution scales as N . Therefore, for large N one can neglect the contribution

of the entropy term in the saddle point calculation. The SPE in Eq. (A.4) now explicitly

reads

Nx2

2
+
δEI [ρN(x)]

δρN(x)

∣∣∣∣
ρN (x)=ϱN (x)

=

µ1 for − ℓN ≤ x ≤ ℓN

µ2 for ℓN < |x| ≤ bN .

(A.5)

In the large N limit the functional EI [ρN(x)] for a fixed f can be computed (for both the

models) following the procedure in [97]. Since the form of the energy functional EI [ρN(x)]

turns out to be different for 1/2 ≤ f ≤ 1 and 0 < f < 1/2, we present the derivation of

the SPEs for these two cases separately in the next subsections.

A.3.1 For 1/2 ≤ f ≤ 1:

Note in this case N/2 ≤ d ≤ N − 1. We first rewrite the interaction part of the energy

function E ({xi}) in Eq. (3.3) as

EI({xi}) =
1

2

 N∑
i=1

N∑
j=1

i ̸=j

−
N−d−1∑
i=1

j=N∑
j=i+d

−
N∑

i=d+2

j=i−d∑
j=1

 V (|xi − xj|). (A.6)

Recalling the definition ρN(x) =
1
N

∑N
i=1 δ(x−xi), it is easy to convert the different terms

into integrals as

EI [ρN(x)] =
N2

2

∫ bN

−bN

dx

∫ bN

−bN

dx′ V (x− x′) ρN(x)ρN(x
′)

− N2

2

∫ −ℓN

−bN

dx

∫ bN

x+D̄x

dx′ V (x− x′) ρN(x) ρN(x
′) (A.7)

− N2

2

∫ bN

ℓN

dx

∫ x−Dx

−bN

dx′ V (x− x′) ρN(x) ρN(x
′),

where V (x) is specified in Eq. (3.3). The distances Dx and D̄x depend on density profile

ρN(x) as ∫ x

x−Dx

ρN(x
′)dx′ = f =

∫ x+D̄x

x

ρN(x
′)dx′. (A.8)
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These equations define Dx and D̄x that represent the distance one has to move starting

from x to find f fraction of particles on the left and right side, respectively. Note these

quantities, being an addition to the function of x, are also functionals of ρN(x). In the

following, we will refer to them as functions of x.

Note that, in writing down the interaction energy part EI of the energy functional, we

have ignored possible self-energy contribution [36, 130]. The reason behind this is that,

in the large N limit the self-energy term remains subdominant compared to other terms

in the free energy. Such self energy contribution for ATAC log-gas (f = 1) was shown

to be of order ∼ N
∫
dxρN(x) log(ρN(x)) in Ref. [36]. While writing the expression of

EI [ρN(x)], given a particle at x we are integrating x′ over a region including the point x.

For the log-gas interaction, two particles cannot stay at the same point. Hence the region

near point x should be excluded in the integration of x′ in the log-gas case. However for

1DOCP, one does not face any such problem. In order to correct for that, one needs to

subtract a self energy contribution which for large N can be estimated as

Eself ∼ N2

∫ bN

−bN

dxρN(x)

∫ x+ϵx

x−ϵx

dx′ρN(x
′)V (|x− x′|). (A.9)

Here ϵx represents the smallest gap between two particles at position x, which in the

large N limit for a given density profile ρN(x) is given by ϵx ≈ 1
NρN (x)

[30]. After a few

straightforward algebraic steps, the self-energy term for the log-gas (V (x) = − log(|x|))

simplifies to

Eself ∼ N

∫ bN

−bN

ρN(x) log[ρN(x)]dx+ constant. (A.10)

This term, however, is much smaller than the bulk interaction energy term of O(fN2) in

the large N limit. Hence, one can neglect the self energy contribution in the saddle point

calculation for a fixed arbitrary value of f .

To obtain the SPE (A.5) explicitly, we perform functional derivative of E [ρN(x)] and for

that we use the following results

δDx

δρN(z)
= − 1

ρN(x−Dx)
Θ(z − x+Dx)Θ(x− z). (A.11)

δD̄x

δρN(z)
= − 1

ρN(x+ D̄x)
Θ(x+ D̄x − z)Θ(z − x). (A.12)
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Performing the functional derivatives and using the above equations, we finally get the

SPEs in all three regimes. The equation in the central regime −ℓN ≤ x ≤ ℓN is given by

N
x2

2
+N2

∫ bN

−bN

V (x′ − x) ϱN(x
′) dx′ (A.13)

− N2

2

[ ∫ −ℓN

−bN

V (D̄x′) ϱN(x
′) dx′ +

∫ bN

ℓN

V (Dx′) ϱN(x
′) dx′

]
= µ1.

The SPEs in the left regime −bN ≤ x < −ℓN and the right regime ℓN < x ≤ bN are,

respectively,

N
x2

2
+N2

∫ bN

−bN

V (x′ − x) ϱN(x
′) dx′ − N2

2

[
2

∫ bN

x+D̄x

V (x′ − x)ϱN(x
′)dx′

+

∫ x

−bN

V (D̄x′)ϱN(x
′)dx′ +

∫ x+D̄x

ℓN

V (Dx′)ϱN(x
′)dx′

]
= µ2. (A.14)

and

N
x2

2
+N2

∫ bN

−bN

V (x′ − x) ϱN(x
′) dx′ − N2

2

[
2

∫ x−Dx

−bN

V (x′ − x)ϱN(x
′)dx′

+

∫ bN

x

V (Dx′)ϱN(x
′)dx′ +

∫ −ℓN

x−Dx

V (D̄x′)ϱN(x
′)dx′

]
= µ2. (A.15)

Note in the ATAC (f → 1) limit, the central part grows and both the edge regions shrink

to the edge points of the central part. The terms inside the square brackets of Eqs. (A.13

- A.15) go to zero and consequently the SPEs corresponding to the edge parts reduce to

the SPE of the central part evaluated at the edge points with µ2 = µ1.

A.3.2 For 0 < f < 1/2

In this case 0 < d ≤ N/2, we rewrite the microscopic energy function E ({xi}) in Eq. (3.3)

as

EI({xi}) =
1

2

 d∑
i=1

i+d∑
j=1

i ̸=j

+
N−d∑
i=d+1

j=i+d∑
j=i−d

i ̸=j

+
N∑

i=N−d+1

j=N∑
j=i−d

i ̸=j

 V (|xi − xj|). (A.16)
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In terms of the empirical density ρN(x) =
1
N

∑N
i=1 δ(x− xi), we convert the double sums

in the above equation to double integrals and find

EI [ρN(x)] =
N2

2

∫ −ℓN

−bN

dx

∫ x+D̄x

−bN

dx′V (x− x′)ρN(x)ρN(x
′)

+
N2

2

∫ ℓN

−ℓN

dx

∫ x+D̄x

x−Dx

dx′ V (x− x′) ρN(x) ρN(x
′) (A.17)

+
N2

2

∫ bN

ℓN

dx

∫ bN

x−Dx

dx′V (x− x′)ρN(x)ρN(x
′),

where the distance functions Dx and D̄x are defined in Eq. (A.8). In this case also we

have neglected the self energy contribution for V (x) = − log(|x|). As can be seen from

Eq. (A.10), this contribution can be neglected for 0 < f < 1/2 also as long as it is kept

fixed at a non-zero value (however small it could be) in the N → ∞ limit. Inserting the

above form for EI [ρN(x)] in Eq. (A.5), one can get the SPEs for 0 < f < 1/2. The SPE

in the left regime −bN ≤ x < −ℓN is given by

Nx2

2
+N2

∫ x+D̄x

−bN

V (x′ − x) ϱN(x
′) dx′ (A.18)

− N2

2

[∫ x

−bN

V (D̄x′)ϱN(x
′) dx′ +

∫ x+D̄x

−ℓN

V (Dx′)ϱN(x
′) dx′

]
= µ2,

and in the right regime ℓN < x ≤ bN we get

Nx2

2
+N2

∫ bN

x−Dx

V (x′ − x) ϱN(x
′) dx′ (A.19)

− N2

2

[∫ bN

x

V (Dx′) ϱN(x
′) dx′ +

∫ ℓN

x−Dx

V (D̄x′) ϱN(x
′) dx′

]
= µ2.
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In the central regime −ℓN ≤ x ≤ ℓN we get

Nx2

2
+N2

∫ x+D̄x

x−Dx

V (x′ − x) ϱN(x
′) dx′

− N2

2

[∫ x

x−Dx

V (D̄x′) ϱN(x
′) dx′ +

∫ x+D̄x

x

V (Dx′) ϱN(x
′) dx′

]

+
N2

2

∫ −ℓN

−bN

[
V (x′ − x)− V (D̄x′)

]
Θ(x′ + D̄x′ − x) ϱN(x

′) dx′ (A.20)

+
N2

2

∫ bN

ℓN

[V (x′ − x)− V (Dx′)] Θ(x− x′ +Dx′) ϱN(x
′) dx′ = µ1.

A.4 Explicit solution of the saddle point equation for

FR 1DOCP

In this Appendix, we provide details on solving the SPEs of the 1DOCP model for

arbitrary f ∈ (0, 1]. We present the solutions in different regions for 1/2 ≤ f ≤ 1 and

0 < f < 1/2 separately.

A.4.1 The saddle point calculation for 1/2 ≤ f ≤ 1:

The SPE for this case in the central region [−ℓN , ℓN ] is given in Eq. (A.13) whereas the

SPEs on the left part [−bN ,−lN) and right part (lN , bN ] are given in Eqs.(A.14) and

(A.15) respectively with V (x) = −|x|. From numerical results in Fig. 3.2, we observe

that both the length scales ℓN and bN are ∼ O(N) and the equilibrium density indeed

has the scaling form ϱN(x) =
1
N
ϱ̃f
(

x
N

)
. Hence it is natural to work in the scaling variable

y = x/N and with the scaled density profile ϱ̃f (y). The SPE in the central regime can

be written as

y2

2
−
∫ b̃

−b̃

|y′ − y| ϱ̃f (y′) dy′

+
1

2

[ ∫ −ℓ̃

−b̃

δ̄y′ ϱ̃f (y
′) dy′ +

∫ b̃

ℓ̃

δy′ ϱ̃f (y
′) dy′

]
= µ̃1, (A.21)
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where y = x/N , b̃ = bN/N , ℓ̃ = ℓN/N and µ̃1 = µ1/N
3. The SPE on the left edge part

can be written in terms of the scaled quantities as

y2

2
−
∫ b̃

−b̃

|y′ − y| ϱ̃f (y′) dy′

+
1

2

(
2

∫ b̃

y+δ̄y

|y′ − y|ϱ̃f (y′) dy′ +
∫ y

−b̃

δ̄y′ ϱ̃f (y
′) dy′ +

∫ y+δ̄y

ℓ̃

δy′ ϱ̃f (y
′) dy′

)
= µ̃2. (A.22)

where µ̃2 = µ2/N
3. A similar equation can be written for the right edge part as well.

Note that in writing the above equations we have assumed that the functions Dx and D̄x

[defined in Eq. (A.8)] have scaling forms D̄x=Ny = Nδ̄y and Dx=Ny = Nδy, respectively.

From Fig. 3.2 we further observe that the scaled density profile is piece-wise uniform.

This leads us to make the following ansatz for the scaled density profile as

ϱ̃f (y) =


ϱ̃edge for − b̃ ≤ y < −ℓ̃

ϱ̃mid for − ℓ̃ ≤ y ≤ ℓ̃

ϱ̃edge for ℓ̃ < y ≤ b̃.

(A.23)

Our next task is to express the SPEs in terms of the above ansatz for ϱ̃f (y) and solve for

the six unknown constants ϱ̃mid, ϱ̃edge, ℓ̃, b̃, µ̃1 and µ̃2. To proceed further, we first need

to determine the y dependence of the functions δy and δ̄y. Recall that these functions

determine the lengths, starting from y, one needs to cover on the left or right to find f

fraction of particles. They are defined as

∫ y

y−δy

ϱ̃f (y
′)dy′ =

∫ y+δ̄y

y

ϱ̃f (y
′)dy′ = f. (A.24)

Note these equations are scaled versions of Eq. (A.8). For the particle at y′ = −b̃, the

distance δ̄y′ is (ℓ̃ + b̃) since exactly f fraction of total particles are present inside [−b̃, ℓ̃]

and the remaining (1−f) fraction of particles stay inside (ℓ̃, b̃]. As the equilibrium density

is equal to ϱ̃edge both in the left part [−b̃,−ℓ̃) and in the right part (ℓ̃, b̃], the distance

δ̄y′ for any y
′ ∈ [−b̃,−ℓ̃] is exactly equal to (ℓ̃ + b̃). Similar arguments hold for δy′ when

y′ ∈ [ℓ̃, b̃]. As a result δy′ for any y′ ∈ [ℓ̃, b̃] is also equal to (ℓ̃ + b̃). The function δy is
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defined only over the domain [ℓ̃, b̃] and δ̄y over [−b̃,−ℓ̃]. They have the following explicit

forms

δ̄y = (b̃+ ℓ̃) for − b̃ ≤ y ≤ −ℓ̃

δy = (b̃+ ℓ̃) for ℓ̃ ≤ y ≤ b̃.
(A.25)

Inserting the form of ϱ̃f (y) from Eq. (A.23) and the forms of δy and δ̄y from Eq. (A.25)

in the SPE (A.21), and performing the integrals one finds

(1
2
− ϱ̃mid

)
y2 − ϱ̃midℓ̃

2 = µ̃1, for − ℓ̃ ≤ y ≤ ℓ̃. (A.26)

Since this equation is valid for all −ℓ̃ ≤ y ≤ ℓ̃, the coefficients of all the powers of y must

vanish individually, which in turn implies

ϱ̃mid =
1

2
, ℓ̃ = (2f − 1) and µ̃1 = −ϱ̃midℓ̃

2. (A.27)

We now focus on solving the SPEs on the edges. We start with the SPE on the

left edge part given in Eq. (A.22), where once again we insert the ansatz for ϱ̃f (y) from

Eq. (A.23) and the forms of δy and δ̄y from Eq. (A.25). After performing the integrals

we get (
1− ϱ̃edge

)y2
2

+ 2ℓ̃

(
ϱ̃mid −

ϱ̃edge
2

)
y − ϱ̃edge

ℓ̃2

2
= µ̃2. (A.28)

This equation is valid for any y ∈ [−b̃,−ℓ̃). Consequently, the coefficients of all the

powers of y must vanish individually which provides

ϱ̃edge = 1, ϱ̃mid =
ϱ̃edge
2

=
1

2
and µ̃2 = −ϱ̃midℓ̃

2. (A.29)

From Eq. (A.27) and Eq. (A.29) we notice µ̃1 = µ̃2. One can perform a similar calculation

for the right part and find exactly the same expressions for the constants as in Eq. (A.29).

Combining Eqs. (A.27) and (A.29) we get the values of all the constants appearing in

Eq. (A.23)

ϱ̃edge = 1, ϱ̃mid =
1

2
, b̃ = f, ℓ̃ = (2f − 1), (A.30)
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and thus completely specify the scaled density profile ϱ̃f (y) defined in Eq. (A.23).

A.4.2 The saddle point calculation for 0 < f < 1/2:

In this case, there are (1−2f) fraction of particles in the central region and f fractions of

particles on either side of it in equilibrium. The SPEs in all three regions, center, left and

right, can be read off from Eqs. (A.18- A.20 ) with V (x) = −|x|. One can rewrite these

equations in terms of the scaled variable y = x/N which will turn out to be convenient as

shown below. As discussed in Sec. 3.3.1 (see Eq. (3.20)), we expect that for 0 < f < 1/2

the saddle point (scaled) density profile should have the following form:

ϱ̃f (y) = (1− 2f)δ(y) + ϱ̃edge1[−b̃,b̃](y). (A.31)

Our task is to find the density value ϱ̃edge and the size b̃ of the support. For that we first

rewrite the SPE from Eq. (A.18) in terms of scaling variable y = x/N on the left part

−b̃ ≤ y < 0−:

y2

2
−
∫ 0−

−b̃

|y − y′|ϱ̃f (y′)dy′︸ ︷︷ ︸
T2

−
∫ y+δ̄y

0−

(y′ − y)ϱ̃f (y
′)dy′︸ ︷︷ ︸

T3

+
1

2

∫ y

−b̃

δ̄y′ ϱ̃f (y
′)dy′︸ ︷︷ ︸

T4

+
1

2

∫ y+δ̄y

0−

δy′ ϱ̃f (y
′)dy′︸ ︷︷ ︸

T5

− µ̃2 = 0.

(A.32)

Note, while writing the above saddle point equation we have assumed that ℓ̃ = ℓN/N → 0

as N → ∞. We will later show that ℓN ∼
√
logN [see Eq. (3.30)] and for the time being

we assume ℓ̃ → 0 and proceed. Also note that we have assumed that the functions D̄x

and Dx have the following scaling D̄x=yN = Nδ̄y and Dx=yN = Nδy. Explicit forms of

these functions will be determined later.

The next task is to insert the ansatz from Eq. (A.31) for the scaled density profile

in Eq. (A.32), and evaluate different integrals in this equation. The second term in the
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L.H.S. of Eq. (A.32) can be evaluated easily and one finds

T2 = −
∫ 0−

−b̃

|y − y′|ϱ̃f (y′)dy′ = −ϱ̃edge
[
y2 + yb̃+

b̃2

2

]
. (A.33)

To evaluate the other terms we first need to find the y dependence of δy and δ̄y. It turns

out that the y dependence of δ̄y and δy are different for 1/3 ≤ f < 1/2 and 0 < f < 1/3.

This happens because for 1/3 ≤ f < 1/2, the fraction of particles (1 − 2f) in the

central region is smaller than the fraction f of particles on either edge part, whereas for

0 < f < 1/3, the fraction in the central part is larger than f . Hence, from this point,

one requires to consider the two cases separately.

1/3 ≤ f < 1/2:

In order to determine y dependence of δy and δ̄y, we first need to investigate the x

dependence of Dx and D̄x. As shown in Fig. 3.3(b), the density profile in the central part

can be described by a Gaussian distribution function of the unscaled variable x. On the

other hand from Fig. 3.3(a), we observe that the density profile outside the central part

is constant and to be consistent with the ansatz for the scaled profile in Eq. (A.31), the

value of the constant should be
ϱ̃edge
N

. It is easy to see that for x = −bN one has to move

to point x = −ℓN i.e. by a distance D̄−bN = bN − ℓN on the right to find f fraction of

particles. Now if we start from a point x slightly above x = −bN , one has to reach a

point X̄(x) = x + D̄x inside the central region [−ℓN , ℓN ] in order to find f fraction of

particles on the right. As the point x moves towards right starting from x = −bN , the

image point X̄(x) also moves towards right and for 1/3 ≤ f < 1/2 there will be a point

x = −xf for which the image point will touch the right boundary of the central region

i.e. X̄(−xf ) = ℓN . It is easy to see that for −bN ≤ x < −xf , X̄(x) can be obtained by

solving ∫ X̄(x)

−ℓN

ρcentral(x
′)dx′ = (bN + x)

ϱ̃edge
N

, (A.34)

where ρcentral(x) is density profile in the central part described by a Gaussian function

as shown in Fig. 3.3(b) [see Eq. (3.19) and Eq. (3.27)]. Since the central region contains

(1−2f) fraction of particles, |X̄(x)| < ℓN for −bN ≤ x < −xf and X̄(−xf ) = ℓN . Hence,
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one finds the following expression for xf

xf =
(3f − 1)N

ϱ̃edge
+ ℓN . (A.35)

Now as the point x moves further right of −xf , the corresponding image point X̄(x)

enters the right edge region where the density profile is again uniform with value
ϱ̃edge
N

.

So it becomes straightforward to show that D̄x = xf + ℓN i.e. independent of x for

−xf ≤ x < −ℓN . Now as x enters the region [−ℓN , ℓN ], we expect D̄x should again start

depending on x and should change rapidly by large amount over a small distance 2lN

such that X̄(ℓN) = bN , the rightmost point of the support of the full density profile.

Performing a similar estimate as done for the range −bN ≤ x < −xf , one can show that

D̄x = xf +
N

ϱ̃edge

∫ x

−ℓ
ρcentral(x

′)dx′ − x for −ℓN ≤ x ≤ ℓN . Collecting the functional forms

of D̄x from different regions we, for 1/3 ≤ f < 1/2, have

D̄x =


X̄(x)− x for − bN ≤ x ≤ −xf

xf + ℓN for − xf ≤ x ≤ −ℓN

xf +
N

ϱ̃edge

∫ x

−ℓN
ρcentral(x

′)dx′ − x for − ℓN ≤ x ≤ ℓN ,

(A.36)

where xf is given in Eq. (A.35) and X̄(x) is determined from the solution of Eq. (A.34).

In the large N limit the length function D̄x can be written in terms of the scaling variable

y = x/N as D̄x=Ny = Nδ̄y where

δ̄y =


−y for − b̃ ≤ y ≤ −x̃f

x̃f for − x̃f ≤ y ≤ 0−

b̃ for y = 0+,

(A.37)

with

x̃f =
xf
N

=
(3f − 1)

ϱ̃edge
for

1

3
≤ f <

1

2
. (A.38)

One can perform a similar analysis to find the y dependence of δy. Using the fact that

the saddle point density profile should be symmetric about the origin (center of the trap),
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one can write

δy =


y for x̃f ≤ y ≤ b̃

x̃f for 0+ ≤ y ≤ x̃f

b̃ for y = 0−.

(A.39)

Now we are in a position to evaluate the 3rd, 4th and 5th terms on the L.H.S. of

Eq. (A.32). We now insert the ansatz for the density profile from Eq. (A.31) and, δ̄y

and δy from Eqs. (A.37, A.39), respectively, in the expressions of these terms and per-

form the integrals. Since y dependence of δ̄y is different in different ranges of y, one

needs to evaluate the integrals for y falling in different ranges separately. We first focus

on the third term T3 for −b̃ ≤ y ≤ −x̃f , in Eq. (A.32). To evaluate this term, we first

note that for −b̃ ≤ y ≤ −x̃f , the image point Ȳ (y) = y + δ̄y satisfies 0− < Ȳ (y) < 0+

(which in terms of unscaled variable reads −ℓN < X̄(x) < ℓN . Hence we put y′ = 0

in the integrand and approximate T3 as T3 ≈ y
∫ y+δ̄y
0−

ϱ̃f (y
′)dy′. Note that, the integral∫ y+δ̄y

0−
ϱ̃f (y

′)dy′ represents exactly the same fraction of particles inside the region [−b̃, y].

This is because one has to acquire the same fraction of particles that one loses when

one moves from −b̃ to y (< −x̃f ) so that one finds f fraction of particles between y to

y + δ̄y. For −x̃f ≤ y < 0−, it is straightforward to evaluate the integral T3. One can

evaluate the integral T4 in the two different ranges of y also separately and once again

straightforwardly. One finally has

T3 =

y(b̃+ y)ϱ̃edge for − b̃ ≤ y ≤ −x̃f

y(1− 2f)− ϱ̃edge

[
(y+x̃f )

2

2
− y(y + x̃f )

]
for − x̃f ≤ y < 0−,

(A.40)

T4 =


ϱ̃edge
4

(
b̃2 − y2

)
for − b̃ ≤ y ≤ −x̃f

ϱ̃edge
4

(
b̃2 − x̃2f

)
+

x̃f ϱ̃edge
2

(
y + x̃f

)
, for − x̃f ≤ y < 0−,

(A.41)

To compute the fifth term T5 in Eq. (A.32) one needs to be careful and we discuss the

computation for the two ranges −b̃ ≤ y ≤ −x̃f and −x̃f ≤ y < 0− separately. We first
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focus on the first regime, in which the integral is

T5 =
1

2

∫ Ȳ (y)

0−

δy′ ϱ̃f (y
′)dy′, (A.42)

where Ȳ (y) = y+ δ̄y < 0+. Although the range of the integral [0−, Ȳ (y)] is very small (in

fact infinitesimal), the integral would produce a finite contribution because the (scaled)

density profile in this range is a delta function and the function δ̄y changes rapidly by a

large amount which, in fact, appears to be a discontinuous change in the N → ∞ limit.

In order to find the contribution of the integral we rewrite the integral T5 in terms of the

unscaled variables as

T5 =
1

2N

∫ X̄(x)

−ℓN

Dx′ρcentral(x
′)dx′. (A.43)

Recall that for large N , there are (1 − 2f)N particles in the central part out of which

n = ϱ̃edge(bN +x) particles stay inside [−ℓN , X̄(x)]. In terms of the microscopic positions

of these particles, the integral in Eq. (A.43) can be written as

T5 =
1

2N

∫ X̄(x)

−ℓN

Dx′
1

N

〈
N∑
i=1

δ(x′ − xi)

〉
eq

dx′ =
1

2N2

fN+n∑
i=fN+1

⟨Dxi
⟩eq . (A.44)

It is easy to see that for the left-most particle inside the central region [−ℓN , ℓN ] labeled

by i = fN +1, the distance ⟨Dxi
⟩eq ≈ bN since exactly f fraction of particles are present

inside the left edge region [−bN ,−ℓN). For the next particle labeled by i = fN + 2,

the distance ⟨Dxi
⟩eq ≈ (bN − d̄) with d̄ = 1/(Nρedge) = 1

ϱ̃edge
. Since the density inside

[−bN ,−ℓN) is uniform ρedge, the equilibrium separation between two consecutive particles

inside [−bN ,−ℓN) is d̄. Hence for a particle labeled by i ∈ [fN + 1, fN + n] with

n = ϱ̃edge(bN + x), the distance ⟨Dxi
⟩eq ≈ bN − (i − fN − 1)d̄. Putting this form in

Eq. (A.44) and performing the summation one finds

T5 ≈
1

2N2

n−1∑
j=0

(b− j d̄) ≈ 1

4
ϱ̃edge(b̃

2 − y2) for − b̃ ≤ y ≤ −x̃f . (A.45)
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We now evaluate the 5th integral T5 in Eq. (A.32) for −x̃f ≤ y < 0−. For y in this range,

one finds 0+ ≤ Ȳ (y) < x̃f . Hence we decompose the integral as

T5 =
1

2

∫ 0+

0−

δy′ ϱ̃f (y
′)dy′︸ ︷︷ ︸

T51

+
1

2

∫ Ȳ (y)

0+

δy′ ϱ̃f (y
′)dy′︸ ︷︷ ︸

T52

. (A.46)

Note that the first term in the above equation, denoted by T51, has the same form as the

integral in Eq. (A.42) except that now the upper limit is 0+. As done for the integral

in Eq. (A.42), the integral in Eq. (A.46) once again can be expressed in terms of the

unscaled variables as

T51 =
1

2N

∫ ℓN

−ℓN

Dx′ ρ(x′)dx′ =
1

2N

∫ ℓN

−ℓN

Dx′ ρcentral(x
′)dx′. (A.47)

which can again be evaluated as

T51 =
1

2N

∫ ℓN

−ℓN

Dx′
1

N

〈
N∑
i=1

δ(x′ − xi)

〉
eq

dx′ =
1

2N2

(1−f)N∑
i=fN+1

⟨Dxi
⟩eq , (A.48)

where for a particle labeled by i ∈ [fN + 1, (1 − f)N ], the distance ⟨Dxi
⟩ ≈ bN − (i −

fN − 1)d̄. Putting this form in Eq. (A.48) and performing the summation one finds

T51 ≈
1

2N2

(1−2f)N−1∑
j=0

(b− j d̄) =
1

2
(1− 2f)

[
b̃− d̄

2
(1− 2f)

]
. (A.49)

We now have to evaluate the remaining term T52 on the R.H.S. of Eq (A.46). We first

note that for −x̃f ≤ y < 0−, the image point lies within 0+ ≤ Ȳ (y) < x̃f and from

Eq. (A.39) we observe that δy = x̃f . Putting this form of δy and ϱ̃f (y) = ϱ̃edge inside the

integral T52 in Eq. (A.46) and performing the integral, we get

T52 =
1

2
ϱ̃edgex̃f (y + x̃f ). (A.50)
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Hence, collecting the results from Eqs. (A.45), (A.49) and (A.50), we finally have

T5 =


1
4
ϱ̃edge(y + b̃)(b̃− y) for − b̃ ≤ y ≤ −x̃f ,

1
2
(1− 2f)

[
b̃− (1−2f)

2ϱ̃edge

]
+ 1

2
ϱ̃edgex̃f (y + x̃f ), for − x̃f ≤ y < 0−.

(A.51)

Now we have values of all the integrals in Eq. (A.32). Putting the expressions of the

integrals from Eqs. (A.33), (A.40),(A.41),(A.51), we rewrite Eq. (A.32) as

(
1− ϱ̃edge

)
y2

2
≈ µ̃2, for − b̃ ≤ y ≤ −x̃f ,

( 1− ϱ̃edge)
y2

2
+ ϱ̃edge

(
f

ϱ̃edge
− b̃
)
y − ϱ̃edge

4

[
b̃2 −

(
3f − 1

ϱ̃edge

)2 ]
(A.52)

+ 1
2
(1− 2f)

[
b̃− (1−2f)

2ϱ̃edge

]
≈ µ̃2, for − x̃f ≤ y < 0−.

Equating coefficients of different powers of y to zero individually in both the regions of y

and solving the resulting equations, we find

ϱ̃edge = 1, b̃ = Jf and µ̃2 = 0, (A.53)

as announced in Eq. (3.25). Following a similar procedure, it is straightforward to check

that one would get the same solution for ϱ̃f (y) if one solves the saddle point equation in

the right part (0+ < y ≤ b̃). We thus get the full solution of the scaled density profile

ϱ̃f (y) given in Eq. (A.31).

0 < f < 1/3:

Having discussed the saddle point calculation for 1/3 ≤ f < 1/2, we now move to the

0 < f < 1/3 case. To find D̄x one can follow a similar analysis as done in Eq. (A.36) and

get

D̄x =


X̄(x)− x for − bN ≤ x ≤ x∗f

ℓN + N
ϱ̃edge

∫ x

x∗
f
ρcentral(x

′)dx′ − x for x∗f < x ≤ ℓN ,

(A.54)
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where x∗f is the special position such that it’s image point X̄(x∗f ) on right is equal to ℓN .

It is easy to see that X̄(x) satisfies

∫ X̄(x)

max(x,−ℓN )

ρcentral(x
′)dx′ =

[bN +min(x,−ℓN)]ϱ̃edge
N

. (A.55)

From the above equation, one finds that x∗f should satisfy

∫ x∗
f

0

ρcentral(x
′)dx′ =

1− 4f

2
, (A.56)

from which it is easy to see that |x∗f | < ℓN for 0 < f < 1/3. Also note that for

−bN ≤ x ≤ x∗f , the image point X̄(x) falls in the range [−ℓN , ℓN ] i.e. |X̄(x)| ≤ ℓN .

Additionally, using the definition of x∗f from Eq. (A.56) in Eq. (A.54), one can see that

D̄x → (bN − ℓN) as x → ℓN . Hence, it is easy to see that for large N , D̄x behaves as

D̄x = Nδ̄x/N where

δ̄y =

−y for − b̃ ≤ y < 0−

b̃ for y = 0+.

(A.57)

Note the y dependence of δ̄y for 0 < f < 1/3 is same as δ̄y for 1/3 ≤ f < 1/2 given in

Eq. (A.37) with x̃f = 0. Hence, the analysis of the SPE (A.32) is almost same as for

the 1/3 < f < 1/2 case with x̃f = 0. Hence the calculations for T3, T4 and T5 in the

range b̃ ≤ y ≤ −x̃f for the previous case (1/3 ≤ f < 1/2) would go through and the

expressions of these terms for 0 < f < 1/3 can be easily obtained by putting x̃f = 0 in

the expressions of these integrals. Hence, for 0 < f < 1/3 the SPE (A.32) gets simplified

to

(1− ϱ̃edge)
y2

2
≈ µ̃2, (A.58)

which once again implies ϱ̃edge = 1, and µ̃2 ≈ 0. The value for b̃ can be determined from

the normalisation
∫ 0−
−b̃

ϱ̃f (y)dy = f and it yields b̃ ≈ f as in Eq. (A.53). One can follow

the same procedure to solve the saddle point equation on the right part and arrive at the

same solution for ϱ̃f (y).
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A.5 Crossover in the density profiles in Riesz gas

models for other values of k

In chapter 3, we explored the crossovers in the density profiles for FR 1DOCP and log-

gas, which correspond to the FR Riesz gas with k = −1 and k = 0+ respectively. For

other values of k > −2 in Eq. (3.1), we observe similar crossovers in the density profile

with respect to f as observed for the 1DOCP and log-gas models. In this section, we

briefly demonstrate such crossover. Based on the behavior of the density profiles due to

the variation in f , one can categorize them into three k regimes.

(i) k > 1: In this case, we find that for any fixed f ∈ (0, 1] the density profile for large

N remains same as in the ATAC (f = 1) case. The density profile posses the same

scaling form ϱN(x) = (1/Nαk)ϱ̃f (x/N
αk) with αk = k/(k + 2) and does not depend on

f . This happens because for k > 1, the free energy functional Ψ[ρN(x)] (in leading order

in N) is local as the dominant contribution comes from the self energy contribution. In

Fig. A.1(a), we plot the scaled density profile for this case that is obtained numerically.

(ii) 0 < k < 1: In this range of models, the ATAC case (f = 1) was studied in Ref. [97]

and the SR case (f = 0) was studied in Ref. [99]. In these studies, it was observed that

in both the limits of f , the equilibrium density profile is finitely supported and possesses

the same scaling form ϱN(x) = (1/Nαk)ϱ̃f (x/N
αk) as in the k > 1 case. However, in this

case the exponent αk takes different values for f = 1 and f = 0 [97, 99]. Consequently,

the shape of the density profile differs. We numerically observe from Fig. A.1(b) that

with decreasing f from one, the density profile seems to smoothly change from the ATAC

profile to the SR profile.

(iii) −2 < k < 0: Unlike the previous cases, in this range of k, we observe that the

density profile undergoes a drastic change of shape as f is reduced from 1 to 0. Crossover

in the density profiles in this case is demonstrated in Fig. A.1(c) and Fig. A.1(d). For

−1 < k ≤ 0, the structural shift in the density profile takes place through a transition

from a dome-shaped profile at f = 1 to a bell-shaped profile in the f → 0 limit (see

Fig. A.1(c)). The particular case of log-gas (k → 0) falls in this regime which has been

studied in detail in Sec. 3.4. For −2 < k < −1, the crossover in density profile, shown

in Fig. A.1(d), is qualitatively similar to the 1DOCP (k = −1) case discussed in Sec. 3.3
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of the main text. In the ATAC limit (f = 1), the density profile has a shape of ‘U’ with

integrable divergences at the edges. As f is decreased from 1, two narrow density profiles

with density values higher than that of the central part appear at the edges. The edge

parts approach each other with decreasing f further until they touch each other at the

center of the trap at f = 1/2. When f is decreased further, a fraction of particles gets

accumulated at the center of the trap and the rest of the fraction pushed away creating

two holes (regions deprived of particles) symmetrically placed on both sides of the central

peak.

127



0.5
1 −1

0
1

0.2

0.4
: = 1.5

5 H

r̃
5
(H
) (a)

0.5
1 −1

0
1

0.4

0.8 : = 0.5

5 H

(b)

0.5
1 −4

−2
0

2
4

0.2

0.4 : = −0.5

5 H

r̃
5
(H
) (c)

0.5
1

−1

0

1

1

2
: = −1.1

5
H

(d)

Figure A.1: This figure demonstrates how the density profiles change from one shape
to another as f is reduced from 1 to 0 for four representative values of k: (a) k = 1.5,
(b) k = 0.5, (c) k = −0.5 and (d)k = −1.1, chosen from the following ranges k > 1,
0 < k < 1, −1 < k < 0 and −2 < k < −1. For each case except k = −1.1, we have
plotted scaled density profiles ϱf (y) for 8 values of f : f = n/8 with n = 8, 7, ..., 1 (from
violet to red). To avoid congestion, for k = −1.1 we show density profiles only for five
values of f corresponding to n = 8, 7, 5, 4 and 3 (from violet to blue). For k = 1.5 there
is neither a change in the support nor in the shape. For k = 0.5, with decreasing f the
repulsion among the particles reduces which causes them to gather near the centre of the
trap. Consequently, the profile get squeezed from a dome shape at f = 1 to a hill shape
at f → 0. For k = −0.5, the equilibrium density profile changes drastically as compared
to the previous two cases. The profile shows a crossover from a dome-shaped profile at
f → 1 limit to a bell-shaped profile at f → 0. Near f = 0, the peaks of the bell-shaped
profiles on the z-axis are cut in order to display the features of the density profiles for f
close to 1. For k = −1.1, the density profile changes from a ‘U’ shaped profile at f = 1
to a bell-shaped profile at f = 0 passing through different other interesting shapes at
intermediate values of f .
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formation of fish schools and migrations of fish, Ecol. Model. 174, 359 (2004).

141



[149] J. Toner, Y. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals

of Physics, 318, 170 (2005).

[150] A. B. Slowman, M. R. Evans and R. A. Blythe, Jamming and attraction of inter-

acting run-and-tumble random walkers, Phys. Rev. Lett. 116, 218101 (2016).

[151] A.P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar and J. Tailleur,

Pressure is not a state function for generic active fluids, Nature physics, 11, 673

(2015).

[152] Y. Fily and M. C. Marchetti, Athermal phase separation of self-propelled particles

with no alignment, Phys. Rev. Lett. 108, 235702 (2012).

[153] M. E. Cates and J. Tailleur, Motility-induced phase separation, Annu. Rev. Con-

dens. Matter Phys. 6, 219 (2015).

[154] I. Mukherjee and A. Raghu and P. K. Mohanty, Nonexistence of motility induced

phase separation transition in one dimension, SciPost Phys. 14, 165 (2023).

[155] G. Thompson, J. Tailleur, M. E. Cates and R. A. Blythe, Lattice models of nonequi-

librium bacterial dynamics, J. Stat. Mech. 2011, P02029 (2011).

[156] S. Put, J. Berx and C. Vanderzande, Non-gaussian anomalous dynamics in systems

of interacting run-and-tumble particles, J. Stat. Mech. 2019, 123205 (2019).

[157] A. Das, A. Dhar and A. Kundu, Gap statistics of two interacting run and tumble

particles in one dimension, J. Phys. A: Math. Theor. 53, 345003 (2020).

[158] R. Dandekar, S. Chakraborti and R. Rajesh, Hard core run and tumble particles

on a one-dimensional lattice, Phys. Rev. E 102, 062111 (2020).

[159] P. Singh and A. Kundu, Crossover behaviours exhibited by fluctuations and corre-

lations in a chain of active particles, J. Phys. A: Math. Theor. 54, 305001 (2021).

[160] M. J. Metson, M. R. Evans and R. A. Blythe, Tuning attraction and repulsion

between active particles through persistence, Euro Phys. Lett. 141, 41001 (2023).

142



[161] M. J. Metson, M. R. Evans and R. A. Blythe, From a microscopic solution to a

continuum description of active particles with a recoil interaction in one dimension,

Phys. Rev. E 107, 044134 (2023).

[162] S. Santra, P. Singh and A. Kundu, Tracer dynamics in the active random average

process, J. Stat. Mech. 2024, 063204 (2024).

[163] S. Paul, A. Dhar and D. Chaudhuri, Dynamical crossovers and correlations in a

harmonic chain of active particles, arXiv:2402.11358 (2024).

[164] R. Mukherjee, S. Saha, T. Sadhu, A. Dhar and S. Sabhapandit, Hydrodynamics of

a hard-core non-polar active lattice gas, arXiv:2405.19984 (2024).

[165] H. Spohn, Exact solutions for KPZ-type growth processes, random matrices, and

equilibrium shapes of crystals, Physica A. 369, 71 (2005).

[166] F. A. Lindemann, The calculation of molecular vibration frequencies, Phys. Z. 11,

609 (1910).

[167] L. touzo, P. L. Doussal and G. Schehr, In preparation.

[168] S. Ahmed, M. Bruschi, F. Calogero, M. A. Olshanetsky and A. M. Perelomov,

Properties of the zeros of the classical polynomials and of the Bessel functions, Nuovo

Cimento B 49, 173 (1979).

[169] D. H. E. Dubin, Minimum energy state of the one-dimensional Coulomb chain,

Phys. Rev. E 55, 4017 (1997).

[170] C. W. J. Beenakker, Pair correlation function of the one-dimensional Riesz gas,

Phys. Rev. R. 5, 013152 (2023).

[171] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2008.

143



144



Publications

• List of publications included in the thesis:

1. Saikat Santra, Jitendra Kethepalli, Sanaa Agarwal, Abhishek Dhar, Manas Kulkarni

and Anupam Kundu, Gap statistics for confined particles with power-law interactions,

Phys. Rev. Lett. 128, 170603 (2022).

2. Saikat Santra and Anupam Kundu, Crossover in densities of confined particles with

finite range of interaction, J. Phys. A: Math. Theor. 57, 245003 (2024).
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