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Abstract

This thesis presents work on chaos and integrability in isolated and open quantum many-

body systems and an attempt to control the classical chaotic dynamics stochastically.

Quantum chaos is a rapidly growing field aimed at understanding the behavior of com-

plex quantum systems, closely tied to both equilibrium and non-equilibrium phenomena

like thermalization and non-thermal phases such as many-body localization (MBL). We

mainly focus on investigating such properties with the spectral statistics diagnostics of

the dynamics governing operators of such systems. We consider the dissipative Dicke

model, an archetype of symmetry-breaking quantum phase transitions, and demonstrate

that the Liouvillian, which describes the quantum dynamics, exhibits distinct spectral

features indicative of integrable and chaotic behavior across the critical point of transi-

tion. We study its connections to non-Hermitian random matrices. We also discuss the

integrability and chaotic features in the extended version of the Tavis–Cummings model

on a finite chain. Furthermore, we identify a single-site impurity model that successfully

captures the spectral properties of the lattice model. We also present some analytical

and numerical results on long-range non-local spectral correlations: Spectral form factor

(SFF), and density of all gaps (DOG). We discuss their utility in characterizing and

distinguishing phases such as ergodic/chaotic and many-body localized systems. These

quantities (SFF and DOG) furnish unique signatures that can identify two phases. We

demonstrate this by numerically studying three one-dimensional quantum spin chain

models with (i) quenched disorder, (ii) periodic drive (Floquet), and (iii) quasiperiodic

detuning. Finally, we explore the stochastic control of chaos in the Kicked Top model.

This leads to the emergence of controlled and uncontrolled phases, depending on the

rate of control application on the chaotic dynamics. We present phase diagrams that il-

lustrate the relationship between chaos and control parameters and estimate the critical

transition point using observables such as square deviation and the Lyapunov exponent.



Chapter 1

Introduction

Integrability and chaos are distinct dynamical features of classical systems [1–10], char-

acterized by phase space trajectories and typically diagnosed by the Lyapunov expo-

nent [5, 9, 11–13]. Integrability in a system is reflected from an extensive number of

conserved quantities and is associated with regular, closed-orbit trajectories in phase

space. Chaos in classical dynamics arises due to non-linearity in the systems and strong

sensitivity to initial conditions. It is natural to ask what happens when the system

is quantum mechanical, where the dynamics is unitary and determined by linear op-

erations on the quantum state. How these features of chaos in classical dynamics are

mirrored when the system behaves as quantum mechanical? To address such questions,

the field of quantum chaos [1,14–19] emerged to explore the quantum manifestations of

classical chaotic dynamics and has mainly focused on the time-independent one-body

system case (few degrees of freedom). Understanding quantum chaos is not only fun-

damentally important but also provides insights into the classical limit of a quantum

system. In recent years, quantum chaos has become an increasingly relevant topic, par-

ticularly concerning the important and challenging problems of thermalization [20–22]

and the study of non-equilibrium phenomena such as localization-delocalization [23–25]

in quantum systems.

Several attempts have been made to understand and characterize the integrability

and chaos in quantum systems [19,26]. Spectral statistics that capture spectral fluctua-

tions or correlation of spectra of the dynamics-governing-operator such as Hamiltonian

of the isolated system was first proposed as an effective probe for quantum systems that

generically exhibit these two distinct behaviors in the classical limit. Berry and Tabor
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conjectured [27] that spectra of Hamiltonian of generic integrable systems behave like

uncorrelated random numbers and distribution of their nearest neighbor gaps follow one-

dimensional Poisson distribution. Later Bohigas, Giannoni, and Schmit (BGS) [28] pro-

posed a conjecture for chaotic systems that relates it to random matrix theory (RMT),

according to which, the nearest neighbor level spacings of generic chaotic systems over-

lap with random matrix statistics depending on the symmetry class of the Hamiltonian

of the system. Consequently, in the context of open quantum systems, Grobe, Haake,

and Sommers extended this analysis and established the GHS conjecture [29], according

to which signatures of integrability and chaos can be found in the spectral statistics

of dynamics-governing-operator Liouvillians L for Markovian dissipative systems. If the

corresponding classical dynamics are integrable, the complex level spacings of the spectra

of L are distributed according to the two-dimensional (2D) Poisson distribution. Con-

versely, if the systems have chaotic classical limits, they follow the predictions from non-

Hermitian RMT corresponding to appropriate classes of the Ginibre ensembles. Later

it was found that these conjectures also hold for quantum many-body systems [30–39]

not having well defined classical limit and recently these approaches have been adopted

to study non-hermitian systems [40–42]. Out-of-time-order correlator (OTOC) [43–46]

is also proposed as a measure of quantum chaos to bridge the gap between classical and

quantum systems. Generic many-body quantum systems are expected to be chaotic.

Quantum chaos, both in isolated and open systems, is usually characterized by compar-

ing the spectral properties of the time evolution generator (H for isolated and L for open

systems) to the universal predictions of RMT with systematic symmetry classification,

within a framework known with these conjectures of quantum chaos and OTOC.

One of the fundamental questions in statistical mechanics focuses on how and when

a system reaches thermal equilibrium (thermalization) from the dynamics of isolated

many-body systems. In classical systems, where dynamics is described by the Hamilto-

nian, thermalization is well understood [47–49]. In quantum many-body systems, there

are active attempts to understand how an isolated quantum many-body system under

unitary dynamics reaches the thermal equilibrium state [20,50,51]. The Eigenstate Ther-

malization Hypothesis (ETH) [20] is formulated to find when and how isolated quantum

many-body systems reach thermal equilibrium and such systems can be described with

quantum statistical mechanics. ETH is a remarkable tool for making progress in the un-

derstanding of equilibrium and non-equilibrium phases of quantum many-body systems.

Systems that satisfy ETH are said to be quantum chaotic or ergodic whose eigenstates
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are highly (volume-law) [52] entangled and eigenvalues are correlated due to level re-

pulsion and many important results can be derived with its correspondence with RMT.

The memory of the initial state is washed out in the long-time evolution under the

dynamics of such systems due to the underlying chaotic/ergodic nature of the system.

Recently it has been found in numerical and experimental studies that there are specific

kinds of settings of disordered interacting systems called many-body localized (MBL)

systems [53–57], integrable [58–60], and quantum many-body scars [61,62] violate ETH

and these systems fail to reach thermal equilibrium. In the MBL phase, systems re-

tain the memory of the initial state of the system in the long time dynamics. Probing

and testing the validity of such non-equilibrium phases of quantum matter in the ther-

modynamic limit with currently available numerical tools is an active area of research

and experiments on ultra-cold atomic gases [63–65], trapped ions [66], superconducting

qubits [67,68] and nuclear spins [69] have provided evidence for the existence of the MBL

phase.

Several probes are introduced to find the signature of these phases (ergodic and MBL)

in the numerical study of such systems. Spectral analysis [70] of such systems shows

distinct features and estimates ergodic-MBL transition points. For ergodic (chaotic)

systems, eigenvalue correlations are reproduced by an appropriate random matrix en-

semble [17]. These are manifested in local probes such as the Wigner–Dyson distribution

of spectral gaps as well as in nonlocal, long range probes such as the spectral form factor

(SFF) which shows a robust, universal linear ‘ramp’ and has been the subject of many

recent studies [71–77]. MBL systems, on the other hand, exhibit emergent integrability

characterized by an extensive number of local integrals of motion and an energy spec-

trum that behaves like numbers drawn from a Poisson process [78–82]. While Poisson

signatures in MBL systems have been studied in local probes such as the distribution

of nearest-neighbor spectral gaps and adjacent gap ratios [79]. Recently, it was also

shown that long-range spectral probes that measure correlations across the spectrum,

such as the SFF, could also exhibit a unique scaling form in the MBL phase [83, 84].

Interestingly, this has also been shown to be present in integrable quantum-mechanical

systems such as integrable billiards [85].

From a technological standpoint, chaos imposes fundamental limits on quantum in-

formation processing. Maintaining the coherence of the quantum state is highly desirable

for loss-free information processing. In the modern era of quantum technology, effec-

tively preparing systems to perform this task remains a challenge [86–91], as nearly all
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quantum many-body systems are chaotic by nature. Recent interest in quantum infor-

mation and computation has focused on exploring properties that preserve the quantum

state from decoherence or information loss. Identifying integrable regimes in quantum

many-body systems could be beneficial for achieving these goals. Significant progress

has been made in incorporating increasingly controllable quantum degrees of freedom in

quantum hybrid devices [92–103]. Additionally, studying extended quantum systems nu-

merically using exact diagonalization is challenging because the Hilbert space dimension

grows exponentially with the system size. This exponential growth makes it difficult to

analyze larger systems with current state-of-the-art computational facilities. Developing

effective methods and strategies to overcome these challenges is therefore crucial. To

address this difficulty, we seek a minimal quantum impurity model that can reproduce

the spectral features of the lattice problem at a lower computational cost.

Controlling chaotic dynamics in both classical and quantum regimes has been an ac-

tive area of research. In classical dynamical systems, there exist both deterministic and

stochastic protocols [104–106] to control chaotic dynamics and to steer the system to a

desired final state thereby negating the effects of exponential sensitivity to the infinites-

imal perturbations. With the advent of numerous noisy intermediate-scale quantum

devices, this problem of controlling chaotic dynamics has found a new context where the

goal is to find robust mechanisms for steering the dynamics to desired quantum states.

An important step in this direction has manifested in the form of the out-of-equilibrium

measurement-induced phase transition (MIPT), which is a transition from a volume law

scaling entanglement to the areal law scaling as a function of the rate of measurements.

In a recent work [107], it has been shown that a stochastic control protocol of a classi-

cally chaotic system, dubbed probabilistic control of chaos, possesses several features of

the MIPT once feedback is included in the quantum dynamics. This approach allows

us to view the classical and quantum control endeavors through a common lens thereby

enabling us to import techniques developed in classical dynamical systems to the field of

quantum control. These developments have resulted in a general framework of quantum

adaptive dynamics where measurements and feedback can be employed to stabilize a

desired quantum many-body phase. An interesting question in these studies is what are

the fundamental similarities and differences between the control transition manifesting

in the classical regime as compared to its quantum counterpart? To address these ques-

tions, we consider the stochastic control of Kicked Top model, which is a paradigmatic

model for quantum chaos with a well-defined classical and semiclassical limit.
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This thesis contains four pieces of work and is organized as follows:

Chapter [2] is focused on introducing and reviewing all the essential tools and diagnostics

of spectral statistics such as nearest neighbor spacing, level spacing ratio, and SFF that

are used for the study and characterization of chaos and integrability in isolated and

open quantum systems and as well in the MBL physics In this chapter we also review

some RMT results that we will use later part of the thesis. We also present our original

results on DOG in Section [2.4]. In Chapter [3], we discuss our work on the dissipative

Dicke model to identify integrable to chaotic transition across dissipative quantum phase

transition by analyzing the spectra of the Lindblandian of this model. In Chapter [4]

we consider an extended version of the Tavis–Cummings model on a finite chain. We

study a minimal single-site quantum impurity model that effectively captures the spec-

tral properties of the lattice system, addressing the computational challenges posed by

the large Hilbert space in such studies. By studying spectral statistics of the lattice

model and the corresponding impurity model we observe the transition from integrabil-

ity to chaos as the hopping between the Tavis–Cummings sites and drive term in the

corresponding impurity model increases above a finite value. In Chapter [5] we study

non-local measures of spectral correlations and their utility in characterizing and dis-

tinguishing between the distinct eigenstate phases of quantum chaotic and many-body

localized systems. We focus on two related quantities, the spectral form factor and the

density of all spectral gaps, and show that they furnish unique signatures that can be

used to sharply identify the two phases. We investigated three one-dimensional quantum

spin chain models: (i) with quenched disorder, (ii) under periodic driving (Floquet), and

(iii) with quasiperiodic detuning, and demonstrated that the numerical results closely

align with the analytical predictions. In Chapter [6], we discuss stochastic control of

chaos in the Kicked Top model. In classical dynamical systems, a chaotic map can be

stochastically controlled onto unstable periodic orbits leading to controlled and uncon-

trolled phases as a function of the rate at which the control is applied. In this work,

we use Kicked Top a physical model of chaos, and implement a stochastic control map.

The chaotic map (Kicked Top) acts with probability 1´p and the control map acts with

probability p. We see that at some critical control rate pc, the whole dynamics freezes

onto the fixed point which becomes the global attractor of the combined dynamics.





Chapter 2

Quantum chaos, random matrix

theory, and spectral statistics tools

In this chapter, we introduce and briefly discuss the subject of quantum chaos, along

with the essential tools used to diagnose chaos in quantum systems. We also provide

an overview of key conjectures in this field, highlighting the spectral statistics tools

employed to capture the universal signatures of chaos and integrability. Additionally,

we review important results from Random Matrix Theory (RMT), which are commonly

used to study quantum chaos. Furthermore, we discuss the Eigenstate Thermalization

Hypothesis, which explicitly connects RMT with quantum chaos, and sheds light on our

current understanding of when and how isolated quantum systems thermalize, as well

as when they fail to do so.

After the quantum revolution in physics, many phenomena observed and understood

with the principles of classical mechanics were also explained at smaller scales, where

the rules of quantum mechanics apply. Understanding the quantization of a classically

chaotic system remained an exciting and challenging problem for a long time. The

chaos that occurs in most systems due to non-linearity in classical dynamics remains

less understood in the framework of quantum mechanics. It is due to the fact that

quantum mechanics is governed by a set of linear operators and with the uncertainty

principle, the phase-space picture is absent to characterize chaos in such a framework.

Gutzwiller [108] initiated efforts to address this problem in the 1970s, with Wigner and

Dyson’s significant results [109–112] that helped establish the field of research known as

quantum chaos. Wigner used RMT [14] in nuclear physics to understand the spectra
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of complex nuclei and later RMT was used as a tool in modern physics in a variety of

topics especially capturing the chaos signature in quantum systems and understanding

the eigenstate thermalization. Below we provide an overview of RMT and its usefulness

in analyzing the spectral properties of physical systems.

2.1 RMT and quantum chaos/integrability conjec-

tures

Wigner’s key idea was to focus on the small gaps in the spectrum where the eigenvalues

exhibit a constant density of states, leading to the Hamiltonian resembling a random

matrix theory. By studying the corresponding RMT within the same symmetry class,

we can gain insights into the important spectral properties of the Hamiltonian. This

concept has been instrumental in understanding the spectra of complex systems and the

field of quantum chaos. Let’s first define an ensemble of matrices drawn from a random

Gaussian distribution [113],

P pĤq 9 exp
”

´
β

2a2
TrpĤ2

q

ı

“ exp
”

´
β

2a2

ÿ

i,j

HijHji

ı

. (2.1)

This is a general random matrix theory ensemble where a is some overall energy scale,

and β is referred to as the Dyson index. The Dyson index β is used to classify ensembles

of random matrices based on their symmetry and the nature of their entries. It plays a

pivotal role in defining the statistical properties of the eigenvalues of random matrices

and characterizes their universality classes, which are determined by the symmetries of

the matrices. The value of β corresponds to the number of degrees of freedom associated

with each independent matrix element. For β “ 1, it is called Gaussian Orthogonal

ensemble (GOE) corresponds to time-reversal symmetry where Hamiltonian is real and

symmetric (Hij “ Hji). Without time reversal symmetry the Hamiltonian is complex

hermitian (Hij “ H˚
ji) corresponding to the Gaussian Unitary ensemble (GUE) with

β “ 2. There is also β “ 4 Wigner-Dyson class that belongs to the Gaussian Symplectic

ensemble (GSE).

Level spacing distribution ppsq for β “ 1, 2 corresponds to Hamiltonian of random

entries consecutively with and without time-reversal symmetry is precisely computed for
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2 ˆ 2 with Gaussian distribution [14,113,114],

pβpsq “ Aβs
β expp´Bβs

2
q, (2.2)

where s is the separation or spacing between consecutive eigenvalues. Aβ and Bβ can

be obtained by imposing normalization conditions on distribution and fixing mean level

spacing to be one. These distributions are given by,

p1psq “ pGOEpsq “
πs

2
e´πs2{4, (2.3)

p2psq “ pGUEpsq “
32s2

π2
e´4s2{π2

. (2.4)

These are called Wigner-Dyson distributions. These level spacing distributions are also

derived for large dimensional RMT ensembles [defined in Eq. (2.1)] but these compu-

tations do not provide close forms but are asymptotically close to results in Eqs. (2.3,

2.4). As one can notice for s Ñ 0, level spacing approaches to zero with „ sβ indicating

the level repulsion. These are the key features of level spacing statistics that reflect

the underlying symmetry of the chaotic Hamiltonian. These Hermitian random matri-

ces from different symmetry classes exhibit distinct level statistics and define their own

universality classes. In this section, we discussed the Hermitian RMT classes that are

relevant for characterizing quantum chaos in Hamiltonian systems. These ideas are also

applied to diagnose chaos in open quantum systems and non-Hermitian systems, where

non-Hermitian RMT is utilized, which we will address in the Section [2.1.3].

2.1.1 BGS conjecture

In 1984, The Bohigas-Giannoni-Schmit (BGS) conjecture [115] aided in identifying chaos

through the spectral statistics of Hamiltonian systems. They got the intuition from the

ideas of Wigner and Dyson using RMT to study spectral statistics of complex nuclei.

According to BGS conjecture, the level spacing distribution of the Hamiltonian of quan-

tum system with chaotic classical limit follows the same statistics as the RMT ensemble

corresponding to their symmetry class. A system with a Hamiltonian exhibiting time-

reversal symmetry corresponds to Dyson symmetry class β “ 1 that is Gaussian orthog-

onal ensemble (GOE) RMT. Its spectral statistics (level spacing distribution) satisfy the

Wigner-Surmise distribution that is pGOEpsq defined in Eq. (2.3).
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Later studies suggested that even systems with a lack of classical limit [30–39] also can

be characterized as quantum chaotic systems with Wigner-Dyson level spacing statistics.

2.1.2 Berry-Tabor conjecture

A simple spectral measure/indicator of integrability and chaos can be found in the

spectral statistics of eigenvalues of the Hamiltonian of quantum systems. Berry and

Tabor studied a system of particles in one dimension whose classical dynamics is not

chaotic. Based on their finding they conjectured [116] that the energy levels generic

quantum integrable systems behave as uncorrelated random numbers (no level repulsion)

and level spacing distribution should be described by Poisson statistics. Nearest neighbor

level spacing distribution ppsq has to following 1D Poisson distribution,

pPoissonpsq “ e´s, (2.5)

where s is the spacing between consecutive energy levels.

2.1.3 GHS conjecture

GHS extended the BGS conjecture for the Markovian dissipative open quantum systems.

They used spectra of the Liouvilian master equation and found distinct features of

integrability and chaos. For this, they considered the Kicked Top model with damping

(dissipation) and used a discrete quantum map [29]. In the integrable limit, they found

agreement of level spacing ppsq with 2D Poisson distribution that is,

p2D-Ppsq “
π

2
s exp

`

´πs2{4
˘

, (2.6)

where s is the radial distance in the complex plane. This confirms that the spectrum

is distributed as independent random numbers in the complex plane. In the chaotic

limit, the level spacing distribution matches with the corresponding spacing distribution

pGinUEpsq of the Ginibre Unitary ensemble (GinUE) of non-Hermitian random matrices

given below [29,117],

pGinUEpsq “ s̄ p̄GinUEps̄sq , (2.7)
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with

p̄GinUEpsq “

8
ÿ

j“1

2s2j`1 expp´s2q

Γp1 ` j, s2q

8
ź

k“1

Γp1 ` k, s2q

k!
, (2.8)

and s̄ “
ş8

0
ds s p̄GinUEpsq. Here, Γp1 ` k, s2q “

ş8

s2
tke´tdt is the incomplete Gamma

function.

The non-Hermitian random matrix ensembles introduced by Ginibre [118]—GinUE,

GinOE, and GinSE are non-Hermitian extensions of the GUE, GOE, and GSE from

the Hermitian case. Unlike the universality classes of Hermitian RMT, which exhibit

distinct level spacing statistics, all three Ginibre matrices share the same level spacing

statistics. Subsequently, this conjecture was extended to systems without a classical

limit and to non-Hermitian systems, utilizing the spectral statistics of non-Hermitian

RMT ensembles as an indicator of chaos [117,119,120].

2.2 Adjacent gap ratio

Adjacent gap ratio proposed by Oganesyan and Huse xry [70], defined in terms of suc-

cessive gaps δi “ Ei`1 ´ Ei of the real spactra is given by

ri “
minpδi, δi`1q

maxpδi, δi`1q
. (2.9)

First, it was introduced to characterize the change of statistics across a MBL transition.

It has become one of the most extensively studied metrics in the field of disordered

quantum systems for identifying signatures of integrability and chaos. This measure has

a notable advantage over level spacing distribution because it suppresses local variations

in the density of states, eliminating the need for the numerical unfolding of spacing

to compute this quantity. It captures information about next-nearest neighbors which

is missed in the conventional diagnostics of level-spacing statistics. The probability

distribution P prq of gap ratios is well-suited to characterize statistical properties of

many-body spectra and analytical expressions are known for integrable case and RMT.

Analytical expressions for the adjacent gap ratio distribution [121–123] for integrable



12 Chapter 2. Quantum chaos, random matrix theory, and spectral statistics tools

(independent Poisson numbers) and chaotic (RMT) spectra are given by

PPoisson{RMTprq “ 2 P̃Poisson{RMTprqΘp1 ´ rq, (2.10)

with

P̃Poissonprq “
1

p1 ` rq2
,

P̃RMTprq “
1

Zβ

pr ` r2qβ

p1 ` r ` r2q1` 3
2
β
, (2.11)

where Zβ is the normalization constant which depends on the Dyson index of the random

matrix ensemble, β. For the Gaussian Orthogonal Ensemble (GOE), β “ 1 and Zβ “

8{27.

The average adjacent gap ratio, defined as xry “
ş1

0
dr rP prq, is commonly used

as a quantitative measure of quantum chaos and integrability. It is especially useful

for tracking the transition from chaos to integrability as a function of a Hamiltonian

parameter. The exact value of xry can be computed using Eq. (2.11) for independent

Poisson levels and GOE RMT:

xryPoisson “ 2 ln 2 ´ 1 « 0.386 ,

xryGOE “ 4 ´ 2
?
3 « 0.536 . (2.12)

The averages have been used to estimate a critical value of the transition parameter

signifying the extent of symmetry crossover. This kind of statistics is particularly useful

in real complex systems where one is unaware of the full analytical solution of crossover

from one symmetry class to another. If the system is in the MBL phase, irrespective of

symmetries present, xry « xryPoisson. For ergodic systems, the value of xry depends on

the global symmetries present in the system.

Generalization of this quantity for complex spectra was also introduced in Ref. [124]

and is given by

zi “ ri e
iθi “

ENN
i ´ Ei

ENNN
i ´ Ei

, (2.13)

where the superscripts NN (NNN) stand for nearest (next-nearest) neighbor. The dis-

tribution of zi in the complex plane itself provides a qualitative distinction between the

spectra of chaotic and integrable systems. For integrable systems, the distribution of z
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forms a uniform disk on the complex plane. In the case of chaos, however, the distri-

bution becomes anisotropic in the angular direction and moves away from the origin,

indicating level repulsion in the spectrum. Anisotropy and radial repulsion are measured

by computing xcospθqy and xry which are angular and radial parts of the complex quan-

tity z. Using these measures we can make a distinction between integrable and chaotic

systems.

2.3 Spectral form factor

The spectral form factor (SFF) is an important non-local spectral probe, which we

denote as Kpτ,Nq. SFF and its connected version (CSFF) Kcpτ,Nq captures 2-point

spectral density density correlations. Lets first consider the density of state ρpλ,Nq of

any spectra tEiu,

ρpλ,Nq “

N
ÿ

i

δpEi ´ λq. (2.14)

We define Zpτ,Nq that is the Fourier transformation of the density of state and can be

simplified using the above density of state expression,

Zpτ,Nq “

ż 8

´8

dλρpλ,Nqe´iλτ
“
ÿ

i

e´iEiτ “ tre´iHτ . (2.15)

SFF and CSFF for of ensembles of N eigenvalues tEiu can be defined in terms of Zpτ,Nq

as following [71],

Kpτ,Nq “

A

|Zpτ,Nq|
2
E

“

A

N
ÿ

m,n“1

eiτpEm´Enq
E

, (2.16)

Kcpτ,Nq “ Kpτ,Nq ´

ˇ

ˇ

ˇ

A

Zpτ,Nq

E
ˇ

ˇ

ˇ

2

“

A

N
ÿ

m,n“1

eiτpEm´Enq
E

´

ˇ

ˇ

ˇ

A

N
ÿ

m“1

eiτEm

E
ˇ

ˇ

ˇ

2

, (2.17)

where x. . . y stands for average over ensembles.

The SFF for random matrix spectra, applicable to quantum chaotic systems, has been

the subject of intense study and has recently attracted renewed interest [71–77, 83].

Systems with time-reversal symmetry, the appropriate RMT ensemble is the Gaussian

Orthogonal Ensemble (GOE) for which the approximate expression of SFF is known [71–
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74]. The early-time behavior of SFF, its dip, and subsequent oscillations, are dominated

by non-universal features of the spectrum. In the intermediate to long-time regime, the

linear ramp between Thouless and Heisenberg times and the subsequent plateau are

well-known universal signatures of quantum chaos.

Thouless and Heisenberg times are important time scales related to the dynamics of

the quantum system. These time scales are particularly relevant in understanding the

dynamics of complex quantum systems, such as disordered systems, systems exhibiting

quantum chaos, and quantum systems out of equilibrium. The Heisenberg time [19]

τH scale is associated with the uncertainty in the energy levels and it can be estimated

as inverse of mean of spacing between energy levels. In disordered systems, such as

those exhibiting quantum chaos, the Heisenberg time indicates how quickly the system

evolves in terms of its energy eigenstates. The Thouless time [125–128] τT is related to

the diffusive behavior of a system, and it is crucial for understanding localization and the

transition between localized and delocalized phases in disordered systems. For chaotic

systems τT ăă τH , system explore all its eigenstates. During the time interval between

τT and τH , system evolve and form universal ramp features in the spectral form factor.

To reduce clutter, we will focus on the SFF [Eq. (2.16)] but comment on the CSFF

[Eq. (2.17)] when necessary. For a fixed numberN (which we assume to be large through-

out this thesis), as τ is tuned, the SFF probes the correlations in the spectrum on scales

inversely proportional to τ . It is useful to separate the behavior of the SFF on various

τ scales. In general, there are three τ regions separated by the so-called Thouless time

τT „ 1
µN

and Heisenberg time τH „ 1
µ
where µ is the mean level spacing [71,83]:

1. Early τ : For small values of τ ăă τT , the SFF probes the spectrum on the

bandwidth scale and is sensitive to the tails of the spectrum.

2. Intermediate τ : For τT ă τ ă τH , the behavior is expected to be dominated by

universal correlations, if present. This is usually the regime of prime interest.

3. Late τ : For large values of τ ąą τH , the SFF probes the spectrum on the scale of

the mean level spacing where the levels are quantized. In the absence of accidental

degeneracies, the expression of SFF Eq. (2.16) in this regime is thus dominated by

terms where Em “ En and the SFF plateaus at K « N .

It is interesting to note that SFF also has a broader appeal. In addition to encoding
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information about long-range correlations, SFF is also a highly valuable computational

quantity. Some of the reasons are, (i) SFF is closely connected to a dynamical quantity

called the survival probability [129,130]. (ii) SFF is amenable to analytical calculations

for certain systems where other quantities are far from being analytically tractable. For

e.g. there has recently been work on hydrodynamic theory of the connected spectral

form factor [131]. (iii) There are deep analytical insights for SFF results for eigenvalues

of random matrix theories [71–77]. This makes it possible to explore deep connections

between chaotic quantum Hamiltonians and random matrix theory through the lens of

SFF.

2.3.1 The spectral form factor for random matrices

0.001 0.010 0.100 1 10 100
μτ

10

100

1000

104

105

106

K(τ,N)

Dip Ramp Plateau

Figure 2.1: SFF for GOE ensemble shown in Eq. (2.18) with N=1000. The separation
between dip, ramp, and plateau regimes is schematically indicated using dotted lines.

The SFF for random matrix spectra, applicable to quantum chaotic systems, has been

the subject of intense study and has recently attracted renewed interest [71–77,83]. We

briefly review the results here. The precise nature of the random matrix SFF depends

on the underlying symmetries [14, 71]. For systems with time-reversal symmetry, the

appropriate RMT ensemble is the Gaussian Orthogonal Ensemble (GOE) for which the
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approximate expression of SFF can be written as [71–74]

KGOE
pτ,Nq “ KGOE

c pτ,Nq `

„

π

µτ
J1

ˆ

2Nµτ

π

˙ȷ2

, (2.18)

KGOE
c pτ,Nq “ N

$

&

%

µτ
π

´
µτ
2π

log
`

1 `
µτ
π

˘

0 ă µτ ă 2π

2 ´
µτ
2π

log
´

µτ`π
µτ´π

¯

2π ă µτ ă 8
,

where J1pxq is the Bessel function of the first kind. A plot of Eq. (2.18) is shown in

Fig. 2.1 where we can see three qualitative regimes - an early dip (τ ă τT ), intermediate

ramp (τT ă τ ă τH) and a late saturation (τ ą τH). The SFF for other RMT ensembles

also exhibits these three regimes, which are considered to be universal features of level

repulsions and many-body quantum chaos.

2.3.2 The spectral form factor for Poisson numbers
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2
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Figure 2.2: Left: SFF for Poisson levels shown in Eq. (2.23). Right: The power-law
scaling form for τT ă τ ă τH is exposed by subtracting the saturation value of N
(chosen to be 1000 for both plots).

The SFF for Poisson numbers applicable to MBL and integrable systems was inves-

tigated in detail only recently [83–85]. An uncorrelated spectrum that resembles that of

integrable and MBL systems can be generated [83] by starting with nearest-neighbour

gaps tδnu from an exponential distribution,

P pδnq “
1

µ
e´δn{µ, (2.19)
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and summing them up

En “

n
ÿ

r“1

δn. (2.20)

The joint 2-point probability distribution for this spectrum, P pEn, n;Em,mq i.e. the

probability that the mth eigenvalue is Em and the nth eigenvalue is En is

P pEn, n;Em,mq “ ppEn, nq ppEm ´ En,m ´ nq, (2.21)

where ppEk, kq (k “ 1, 2, 3, . . .) is the well-known Poisson distribution

ppEk, kq “

$

&

%

e
´

Ek
µ

µpk´1q!

´

Ek

µ

¯k´1

Ek ě 0

0 Ek ă 0
. (2.22)

Using this, the SFF can be calculated to obtain the following expression (see Ref. [84]

and the supplementary materials of Ref. [83] for the derivation)

KP
pτ,Nq “ N `

2

pµτq2
´

p1 ` iµτq1´N ` p1 ´ iµτq1´N

pµτq2
. (2.23)

In Fig. 2.2, we see that the SFF for the spectrum in Eq. (2.20) can also be divided into

three τ regimes. Now we focus on the intermediate τ regime 1
N

ă µτ ă 1 when the SFF

form reduces to [83]

KP
pτ,Nq “ N `

2

pµτq2
` . . . (2.24)

We can see that if we subtract the asymptotic value of N , Kpτ,Nq ´ N (which we

will refer to as the reduced SFF) assumes a power law form independent of N with a

fixed exponent and can be used to characterize systems with uncorrelated spectra as

shown in Ref. [83]. Although the spectrum in Eq. (2.20) was built in a specific way,

it captures many essential features of uncorrelated levels. For example, if NR numbers

were drawn from any distribution and N of those were selected from a fixed window

after ordering, the distribution of kth neighbor spectral gaps En ´ En`k of these N

numbers approaches the Poisson distribution Eq. (2.22) (see the supplementary materials

of Ref. [83]). Similarly, the same is expected to be true for N energy levels chosen from

the middle of the spectrum of a system deep in the MBL phase. However, one feature
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of the spectrum in Eq. (2.20) is the fact that all levels En are positive definite, which

results in a sharp step-like feature in the density of states (DOS) which is absent if we

choose N levels from the middle of a quantum many-body spectrum. As we will see in

the coming sections, signatures such as the one shown in Eq. (2.24) are unaffected by this

DOS feature and describe the spectra of MBL systems fairly accurately. Throughout

the thesis (in Chapter [4] and Chapter [5]), we will focus only on the SFF as defined

in Eq. (2.16). Some subtleties regarding connected SFF, especially regarding the effects

of sharp DOS Eq. (2.17) will be discussed in Appendix [C].

2.4 Density of all gaps

We now discuss another useful quantity — the density of all gaps (DOG), χpx,Nq,

defined as

χpx,Nq “
1

NpN ´ 1q

@

N
ÿ

m‰n“1

δpx ´ pEm ´ Enqq
D

, (2.25)

and is related to the SFF in Eq. (2.16) as follows

Kpτ,Nq “ N ` NpN ´ 1q

ż 8

´8

dx eiτx χpx,Nq. (2.26)

In other words, the SFF is related to the Fourier transform of the DOG. We note that

often the SFF is written in terms of the two-point density correlator [14]

Kpτ,Nq “ N ` NpN ´ 1q (2.27)
ż 8

´8

dx

ż 8

´8

dy eiτpx´yq ρp2q
px, y,Nq. (2.28)

ρp2q
px, y,Nq “

1

NpN ´ 1q

@

N
ÿ

m‰n“1

δpx ´ Emqδpy ´ Enq
D

. (2.29)

We can relate χpx,Nq in Eq. (2.25) to ρp2qpx, y,Nq as follows

χpx,Nq “

ż 8

´8

du ρp2q
px ` u, u,Nq. (2.30)

We will see that studying the DOG exposes interesting details about spectral correla-

tions.
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Figure 2.3: (a) DOG [Eq. (2.25)] for the eigenvalues of GOE matrices compared with
analytical expression in Eq. (2.31). (b) DOG [Eq. (2.25)] of Poisson levels compared
with analytical expression in Eq. (2.34). The insets show the same figure restricted to
positive values with the x-axis in log scale to clarify the behavior near the origin. The
plot for each N is generated using 5000 levels with mean level spacing µ “ 1.

2.4.1 Density of all gaps for random matrices

We can obtain approximate analytical forms for the DOG for both the RMT and Poisson

cases. Let us start with the former. The expression for GOE matrices is [14,72,74,75]

χGOE
px,Nq “ ρpx,Nqp1 ´ Y2pxqq, (2.31)

where ρpλ,Nq is the well-known semi-circle density of states

ρpλ,Nq “

$

’

&

’

%

4
πNµ

c

1 ´

´

2λ
µN

¯2

|λ| ă
Nµ
2

0 |λ| ą
Nµ
2

. (2.32)

and Y2pxq is the asymptotic connected two-point spectral correlator [14]

Y2pµrq “

ˆ

sinpπrq

πr

˙2

`

„
ż 8

r

ds

ˆ

sinpπsq

πs

˙ȷ„

B

Br

ˆ

sinpπrq

πr

˙ȷ

. (2.33)

Following [72,74,75], we improve Y2pxq by introducing a density correction to the argu-

ment. Fig. 2.3 (a) shows a comparison between the numerically computed DOG and the

expression in Eq. (2.31). The agreement is very good for small gaps x that correspond

to τ ą τT in the SFF but deviates for large gaps x that correspond to τ ă τT in the
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SFF.

2.4.2 Density of all gaps for Poisson numbers

For Poisson spectra generated as described in Eq. (2.23), we can compute χpx,Nq

exactly using the distribution in Eq. (2.22) in the formula Eq. (2.25) to get

χP
px,Nq “

ˆ

e´
|x|

µ

´

|x|

µ

¯N

´

´

|x|

µ
´ pN ´ 1q

¯

Γ
´

N, |x|

µ

¯

˙

µpN ´ 1qN !
, (2.34)

where Γpx,Nq is the incomplete Gamma function defined as follows (for integer N)

ΓpN, xq “

ż 8

x

dt tN´1e´t
“ e´x

pN ´ 1q!
N
ÿ

k“0

xk

k!
. (2.35)

As seen in Fig. 2.3 (b), the exact expression perfectly matches the numerical data.

Much like the adjacent gap ratio, the DOG is a useful diagnostic not only for charac-

terizing the MBL and ergodic phases but also for estimating the location of the transi-

tion between them. For example, from the expressions Eqs. (2.31, 2.34), we see that for

RMT levels, χp0, Nq Ñ 0 while for Poisson numbers χp0, Nq Ñ 1
N
. Thus, the quantity

Nχp0, Nq takes values between 0 and 1 and tracking it on finite-size systems should give

us an estimate of the transition between the MBL and ergodic phases where different

system sizes cross. We will see in the next section that this is indeed true for various

physical models hosting an MBL to ergodic transition.

2.5 Eigenstate Thermalization Hypothesis

Above we discussed quantum chaos and the relevance of RMT to characterize it in

quantum systems using various spectral statistics tools. Here we will briefly review

thermalization and the emergence of statistical mechanics behavior in isolated quantum

systems whose governing dynamics is unitary. The study of thermalization is mainly

focused on monitoring the behavior of observables for a long time. An observable is

considered to be thermalized when it evolves under the unitary dynamics of the system

and relaxes over a long time to a state where it can be replaced with the prediction of
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the microcanonical ensemble. The time evolution of expectation value of observable Ô,

Optq “xψptq|Ô|ψptqy

“
ÿ

m,n

C˚
mCne

ipEm´EnqtOmn

“
ÿ

m

|Cm|
2Omm `

ÿ

m,n‰m

C˚
mCne

ipEm´EnqtOmn. (2.36)

Here Omn “ xm|Ô|ny where, |my is the eigenstate of Hamiltonian. If the expectation

value of the observable approaches the average value calculated using the microcanonical

ensemble, it suggests that the primary contribution comes from the diagonal matrix

elements. In this case, the observable undergoes thermalization. When the Hamiltonian

matrix is a random matrix structure then using RMT prediction it can be concluded that

diagonal elements of observable Omm are independent of eigenstates labels m and off-

diagonal elements are exponentially small in systems size that satisfies the thermalization

condition. The statistical mechanics of isolated quantum systems using RMT was first

explored by Deutsch [132]. Our current understanding of thermalization in isolated

quantum systems is based on the Eigenstate Thermalization Hypothesis (ETH) [22]

that was proposed by Srednicki. According to ETH an ansatz for matrix element of the

few body observable on the energy eigenbasis of Hamiltonian is,

Omn “ OpĒqδmn ` e´SpĒq{2fOpĒ, ωqRmn, (2.37)

where Ē “ pEm ` Enq{2 is the average energy of considered pair of eigenstates, ω “

Em´En is the corresponding energy difference, and SpĒq is the thermodynamic entropy

at energy Ē. OpĒq and fOpĒ, ωq are smooth functions of their arguments. And, Rmn are

random numbers with zero mean and unit variance. Our current understanding is that

systems whose observables satisfy the ETH are generally quantum chaotic/ergodic, and

they thermalize over a timescale. Systems that do not satisfy the ETH are integrable [58–

60], exhibit many-body localization (MBL) [53–57], and quantum many-body scars [61,

62], and as a result they fail to thermalize.





Chapter 3

Dissipative quantum dynamics,

phase transitions, and

non-Hermitian random matrices

In this work, we study the spectral properties of the Liouvillian of a dissipative version

of the paradigmatic Dicke model [133, 134]. In the thermodynamic limit, the isolated

Dicke model displays a Z2 symmetry-breaking quantum phase transition between a nor-

mal and a superradiant phase [135–137]. Studies of the spectral statistics of the Dicke

Hamiltonian [138, 139] revealed that the level spacings are Poisson distributed in the

normal phase, reflective of integrable dynamics, whereas they are distributed accord-

ing to the Gaussian Orthogonal Ensemble in the superradiant phase, indicating chaotic

dynamics. Here, via exact diagonalization of the Liouvillian, we discuss whether and

how these connections with RMT can be generalized to the context of phase transitions

in open quantum systems. More precisely, we address the robustness of the signatures

of integrability as the system is driven through a phase transition by turning on an

integrability-breaking perturbation.

3.1 Dissipative Dicke model

The dissipative Dicke model describes the coupling of an ensemble of closely packed

quantum emitters to a single leaky cavity mode [133,134]. In the Markovian approxima-

tion, the evolution of the density matrix ρ is governed by a Lindblad Master equation
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where the Liouvillian superoperator reads

L ‹ “ ´i rH, ‹s ` κ
“

2a ‹ a:
´
␣

a:a, ‹
(‰

, (3.1)

with κ ą 0 being the cavity decay rate and ‹ stands for operators on the Hilbert space.

The Dicke Hamiltonian is given by

H “ ωca
:a ` ωsS

z
`

2λ
?
S

pa:
` aqSx . (3.2)

a (a:) is the bosonic annihilation (creation) operator of a cavity mode with energy ωc. S
α,

α “ x, y, z, are the spin angular momentum operators built from the totally symmetric

representation of S identical two-level systems with energy splitting ωs. λ is the cavity-

spin coupling which is rescaled by 1{
?
S to ensure a non-trivial thermodynamic limit

(S Ñ 8). The Dicke Hamiltonian is Z2-symmetric: rH,Πs “ 0 where the operator

Π “ exp
“

iπpa:a ` Sz
` S{2q

‰

(3.3)

gives the parity of the total number of excitations. As a consequence of the specific

structure of the dissipator in Eq. (3.1), the Liouvillian inherits a so-called weak Z2

symmetry:

rL, Πs “ 0, Π ‹ “ Π ‹ Π: (3.4)

gives the parity of the difference of the number of excitations between the left and right

sides of the states in Liouville space [140–143] defined in Eq. (3.5). In the thermodynamic

limit, this weak Z2 symmetry is spontaneously broken in the steady state at λ “ λ˚ “

1
2

?
ωcωs

a

1 ` κ2{ω2
c , corresponding to a second-order dissipative phase transition [137,

144, 145]. In the normal phase, i.e. λ ă λ˚, the boson expectation value vanishes:

xay “ 0. In the superradiant phase, i.e. λ ą λ˚, it acquires a finite expectation value:

xay ‰ 0. At λ “ 0, the model is trivially integrable. The counter-rotating terms, a:S`

and aS´, break the quantum integrability of the model.
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3.1.1 Computing the spectrum of the dissipative Dicke Liou-

villian

We use a convenient basis of the Liouville space spanned by the states

|αyy ”
ˇ

ˇ|nl,mlyxnr,mr|
D

, (3.5)

where |n,my are the Fock states of the Dicke Hamiltonian with n cavity excitations and

m “ ´S{2,´S{2`1, . . . , S{2 is the quantum number associated with the z-component of

the spin. α collects all the quantum numbers nl,ml, nr,mr. The notation |αyy underlines

that operators on the Hilbert space are states in the Liouville space. In practice, we trun-

cate the Hilbert and Liouville spaces by introducing a cavity cutoff: n “ 0, 1, . . . , ncutoff .

In the above basis, the Liouvillian can be represented by a matrix L with the elements

Lαα1 “ xxα|L|α1yy, where the Hilbert-Schmidt inner product [17,146] is given by

xxα|α1
yy ” Tr

”

p|nl,mlyxnr,mr|q
:
|n1

l,m
1
lyxn1

r,m
1
r|

ı

(3.6)

and the trace is performed over the Hilbert space. Let us recall that L has a parity

symmetry [140–142], rL, Πs “ 0, where the superoperator Π acts on the basis states as

Π|αyy “ Π|nl,mlyxnr,mr| “ ζ |αyy , (3.7)

with ζ “ `1 if pnl ` mlq ´ pnr ` mrq is even and ζ “ ´1 if it is odd. This weak Z2

symmetry of L guarantees that it does not couple states of the Liouville space with

different parities. Hence, L can be organized as a two-by-two block-diagonal matrix.

To avoid spurious overlaps of eigenvalues, we discard the odd-parity block. Finally, the

even-parity block matrix is fed to a diagonalization algorithm of the LAPACK library

suited to complex non-Hermitian matrices.

3.2 Spectral statistics of complex spectra of Liouvil-

lan

We analyze the statistical properties of the complex eigenvalues tEiu of the Liouvillian

operator L by means of extensive numerical computations. We work in the even parity
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Figure 3.1: Scatter plot of the complex spectrum of the Liouvillian L of the dissipative
Dicke model for S “ 10 and ωc “ ωs “ κ “ 1 for which λ˚ “ 1{

?
2. (a) Normal phase,

λ “ 0.2. (b) Superradiant phase, λ “ 1.0. A stark difference in the structure of the
spectrum above and below the critical point can be observed.

sector of the Liouville space to avoid possible spurious overlaps of eigenvalues from the

different symmetry sectors [147]. Throughout the chapter, we consider the strongly

dissipative regime, ωc “ ωs “ κ “ 1, for which the critical point is located at λ˚ “

1{
?
2 « 0.71.

In practice, the numerical approach comes with two inherent limitations: (i) The in-

finitely large bosonic Hilbert space of the cavity has to be truncated to a finite number

of excitations, ncutoff “ 40. (ii) Numerical errors during the diagonalization process can

propagate dangerously, yielding an accuracy of the results far worse than machine preci-

sion. Consequently, we truncate our spectra to an energy window ReEi P r´ακncuttoff , 0s

where we make sure that statistics are converged with respect to ncutoff . Although its

precise value is of little consequence to our findings, we choose α “ 2{3. This amounts to

analyzing the statistical properties of those eigenvalues which correspond to intermediate

to long-lived dynamics. We work with 128 bits complex double float precision.

The overall aspect of the spectrum is illustrated in Fig. 3.1 for different values of

the cavity-spin coupling λ and for fixed spin size S “ 10. The symmetry about the

real axis is a generic feature of Liouvillians of Lindblad Master equations [17]. The

unique steady-state of the dynamics corresponds to the single eigenvalue located at

E “ 0. The spectra in the two phases display clear differences. In the non-interacting

limit, λ “ 0, the spectrum displays ladder structures across both the imaginary and

the real axis. The former are a direct consequence of our choice of resonant parameters,



27

ωc “ ωs, whereas the latter stem from the fragmentation of the Liouville space due to the

presence of continuous symmetries at λ “ 0: The weak Up1q symmetry corresponding to

the conservation of superoperators ra:a, ‹s and the strong Up1q symmetry corresponding

to the conservation of Sz. In the normal phase, 0 ă λ ă λ˚, the spectrum in Fig. 3.1

still displays structured patterns that are inherited from the non-interacting limit. The

effect of a small but finite interaction can be seen as a renormalization of ωc, ωs and κ

leading to smearing of the patterned spectrum. There, the existence of patterns across

the real axis is robust and we suspect them to be rooted in the fragmentation of Liouville

space due to the emergence of approximately conserved quantities. This fragmentation

disappears as λ approaches λ˚ and the spectrum does not display such signature of

emergent conservation laws in the superradiant phase, λ ą λ˚.

3.2.1 Spacing statistics of complex eigenvalues

In order to unveil the universal features of these complex spectra, we turn to the study

of level-spacing statistics. We first perform an unfolding of the spectrum using standard

procedures which is discussed in detail below. The unfolded spectrum is then used to

generate the histogram of the Euclidean distance s between nearest-neighbor eigenvalues

in the complex plane, yielding the complex-level spacing distribution ppsq.

To eliminate the system-specific features of the level-spacing statistics, we first per-

form an unfolding procedure of the spectrum. Several methods have been proposed for

the case of a complex spectrum [148, 149]. We use the method of Ref. [117]. First,

we compute the Euclidean distance of each of the N complex eigenvalues to its nearest

neighbor (NN) si ” |Ei ´ ENN
i |. Next, we rescale these distances as

si Ñ s1
i “ si

a

ρavpEiq

s̄
, (3.8)

where ρavpEiq is the local average density approximated by

ρavpEq “
1

2πσ2N

N
ÿ

i“1

exp

ˆ

´
|E ´ Ei|

2

2σ2

˙

(3.9)

and σ is chosen greater than the global mean level spacing given by s̃ “ p1{Nq
řN

i“1 si.

This guarantees a smooth distribution function on the scale of s̃. In practice, we work

with σ “ 4.5 ˆ s̃. s̄ in Eq. (3.8) is set to ensure that the global mean level spacing of
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Figure 3.2: Level-spacing distribution of the complex spectrum of the Liouvillian L in
(a) normal phase with λ “ 0.2, and (b) superradiant phase with λ “ 1.0. We find
remarkable agreement with the 2D Poisson distribution p2D-Ppsq given in Eq. (2.6) and
that of the GinUE RMT prediction pGinUEpsq given in Eq. (2.7) in the normal phase and
in the superradiant phase, respectively.

the s1
i is unity: p1{Nq

řN
i“1 s

1
i “ 1. Finally, the statistics of nearest-level spacings are

computed from the s1
i. In the main text, we drop the prime notation in s1

i for the sake

of simplicity.

Using the GHS conjecture, which is introduced in Section [2.1.3], we analyze integra-

bility and chaos in the dissipative Dicke model. The results are summarized in Fig. 3.2

for values of λ corresponding to the normal and superradiant phases. For comparison, we

also plot the corresponding spacing distribution for independent complex random num-

bers, namely the 2D Poisson distribution defined in Eq. (2.6) as well as the distribution

for the eigenvalues of the corresponding non-Hermitian randommatrix ensemble [29,117].

Given the absence of symmetry of our Liouvilian (the so-called A class), it corresponds

to the Ginibre Unitary Ensemble (GinUE) [149–152]1 is defined in Eq. (2.7).

Fig. 3.2 demonstrates that the distributions computed from the spectrum of L
in Eq. (3.1) are in remarkable agreement with 2D Poisson in the normal phase, and with

the GinUE prediction in the superradiant phase. In the superradiant phase, this reflects

the presence of complex-eigenvalue repulsion characterized by a ppsq „ s3 suppression

at small energy spacings, which is consistent with Eq. (2.7). On the other hand, in

the normal phase, we find ppsq „ s, consistent with Eq. (2.6). This corresponds to the

absence of level repulsion in the 2D complex plane [17].

1We are assuming that the positivity-conservation property of Liouvilians is irrelevant to the spacing
distribution of the Ginibre Unitary Ensemble [17].
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Figure 3.3: The metric η defined in Eq. (3.10) as we increase the coupling λ from the
normal phase to the superradiant phase. It shows the crossover of the complex-eigenvalue
spacing distribution from integrable (η „ 0) to RMT (η „ 1 ) predictions. The crossover
sharpens as we increase the system size. At λ “ 0 the dissipative cavity decouples from
the spin. Hence, the spectrum is expected to display pathological statistics away from
any universal behavior. This explains the observed discrepancies close to λ “ 0.

In order to better quantify the nature of the statistics as one crosses from one phase

to another, we introduce the metric motivated by Refs. [139,153,154]

η ”

ş8

0
ds rppsq ´ p2D-Ppsqs2

ş8

0
s. rpGinUEpsq ´ p2D-Ppsqs2

. (3.10)

By construction, η vanishes when the numerically obtained distribution ppsq approaches

the 2D Poisson distribution, whereas η goes to 1 when ppsq approaches the GinUE

prediction. Fig. 3.3, showing η versus λ, exhibits the crossover from a 2D Poisson dis-

tribution to that of GinUE prediction as one crosses the critical point. This crossover

sharpens with increasing the system size.

3.2.2 Complex-plane generalization of the consecutive level-

spacing ratio

Until now, we only probed spectral statistics using the Euclidean distance s between

complex levels. To extract the angular information we resort to a recently introduced
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λ 2D Poisson 0.2 0.4 0.6 0.8 1.0 GinUE
-xcos θy 0 0.00 0.09 0.19 0.23 0.24 0.24

xry 0.67 0.69 0.71 0.72 0.74 0.74 0.74

Figure 3.4: Scatter plot of the complex level-spacing ratio z introduced in Eq. (3.11)
for S “ 10 (a) in the normal phase, λ “ 0.2, and (b) in the superradiant phase, λ “ 1.0.
The table gives xcos θy and xry for a range of λ values, along with their prediction from
the 2D Poisson distribution and GinUE RMT.

diagnostic [124] involving the level-spacing ratio

zi “ ri e
iθi “

ENN
i ´ Ei

ENNN
i ´ Ei

, (3.11)

where superscripts NN (NNN) stand for nearest (next-nearest) neighbor. Eq. (3.11)

is the generalization of the well-known adjacent gap ratio [70, 121] defined for isolated

quantum systems. It captures information about next-nearest neighbors which is missed

in the conventional diagnostics of level-spacing statistics. An additional advantage of

this quantity is that it does not rely on the unfolding procedure which may sometimes

be ambiguous and unreliable. In Fig. 3.4, we show the scatter plots of zi below and

above the critical point. The anisotropy in the superradiant phase is another signature

of connection to RMT [124]. To quantitatively compare with the predictions of 2D

Poisson and GinUE RMT, we report xry and xcos θy for a range of λ values in the table

below Fig. 3.4 and in the convergence test of data in Fig. 3.6.
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3.2.3 Convergence of the statistical properties of the spectrum

with respect to the cavity cutoff

Figure 3.5: Scattter plot of the Liouvillian spectrum of the dissipative Dicke model for
different ncutoff “ 20, 30, 40 in (a) the normal phase, λ “ 0.2 and (b) the superradiant
phase, λ “ 1.0 (S “ 10).

Figure 3.6: xcos θy and xry versus ncutoff , computed from the consecutive complex level-
spacing ratio distribution of z introduced in Eq. (3.11) (S “ 10).

While the introduction of a finite ncutoff is essential to the numerical diagonalization of

the Liouvillian, the repercussions on the resulting spectrum must be dealt with care. In

Fig. 3.5, we plot the spectrum of L both in the normal and in the superradiant phase for

different values of ncutoff “ 20, 30, 40 and focusing on the window ReE P r´2
3

ˆ 40κ, 0s.

In the normal phase, the three cutoffs yield the same highly patterned spectrum in the

window ReE P r´10κ, 0s. The patterned region of the spectrum grows as ncutoff is

increased. For ncutoff “ 40, the whole window ReE P r´2
3

ˆ 40κ, 0s is patterned. In
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the superradiant phase, convergence is obtained in the window ReE P r´5κ, 0s. Rather

than the convergence of the eigenvalues, it is more important to ensure the convergence

of their spectral statistics. In Fig. 3.6, we follow the convergence of properties extracted

from the consecutive level-spacing ratio distribution [124] introduced in Eq. (3.11). Both

xry and xcos θy remarkably converge when ncutoff « 30. All results presented in the main

text are produced with ncutoff “ 40.

3.3 Summary of results and conclusions

We investigated how the presence of a dissipative quantum phase transition driven

by an integrability-breaking term affects the spectral statistics of the complex Liou-

villian spectrum of open quantum systems. Working in the framework of the dissipative

Dicke model, we found the spectral features of integrability to be robust against the

integrability-breaking perturbation until the onset of the dissipative quantum phase

transition. In the symmetry-broken phase, they are eventually replaced by RMT fea-

tures indicative of chaotic dynamics.
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Transition to chaos in extended

systems and their quantum impurity

models

The Tavis-Cummings (TC) model [155, 156], a close variant of the Dicke model Hamil-

tonian, is widely studied in quantum optics as a model for light-matter interaction. It

describes a single-quanta light field interacting with an ensemble of N two-level atoms.

The Hamiltonian Hi defined in Eq. (4.1) undergoes a zero-temperature quantum phase

transition (normal and superradiant phases) in N Ñ 8 limit like Dicke model. Dicke

model also shows spectral transition (integrable-chaos) across the critical point of the

quantum phase transition but TC model is Bethe ansatz integrable [157] for any value

of spin-cavity coupling. In this work, we consider a collection of TC model units loaded

on a tight-binding lattice. For a finite hopping amplitude, the integrability of the Tavis-

Cummings lattice (TCL) model is expected to break, resulting in chaos.

The TC model has a large local Hilbert space and is known to be integrable. When

loaded on a finite lattice, the integrability is expected to be broken and the chaos to set

in at finite values of the hopping amplitude. As an associated impurity model, we shall

consider the single-site TC model driven by a coherent source mimicking the coupling

to neighbors and breaking the integrability of the undriven impurity.

After we introduce the TCL and its associated impurity model, we characterize

their respective transition from integrability to chaos by means of extensive exact-

diagonalization computations. We extract the statistical properties of their spectra and
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Figure 4.1: Tavis-Cummings lattice (TCL): Tavis-Cummings units hosted on a one-
dimensional tight-binding lattice of size L with open boundary conditions. Each unit fea-
tures a large spin S coupled to a bosonic mode via the interaction λ. J sets the hopping
amplitude of the bosons between neighboring units. See the Hamiltonian in Eq. (4.1).

compute their level-spacing distributions, adjacent gap ratios, and spectral form factors.

We find the spectral properties of the TCL to transition from Poisson statistics to those

of random matrix theory (RMT) as one increases the hopping amplitude. Remarkably,

the spectral form factors are computed from disorder-free models and without averaging

over any model parameter. We show that the associated impurity model can successfully

reproduce the spectral features of the lattice model and we compute the map between

the integrability-breaking parameters of both models.

4.1 Tavis-Cummings Lattice (TCL)

We consider the following Hamiltonian for the TCL to describe an extended array of

TC model units,

H “

L
ÿ

i“1

hi `
ÿ

xijy

hij , (4.1)

hi “ωca
:

iai ` ωsS
z
i `

λ
?
S

´

a:

iS
´
i ` aiS

`
i

¯

,

hij “ ´
J

2

´

a:

iaj ` a:

jai

¯

,

where individual Tavis-Cummings (TC) models, with Hamiltonians hi, are loaded on

a one-dimensional tight-binding lattice with L sites and open boundary conditions. ai

(a:

i ) is the bosonic annihilation (creation) operator of the cavity mode at site i with

energy ωc. Sα
i , α “ x, y, z, are the spin angular momentum operators built from the

totally symmetric representation of S identical two-level systems with energy splitting
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ωs. Throughout the chapter, we consider the resonant regime ωc “ ωs “ ω0 and set the

unit of energy ω0 “ 1. λ sets the interaction strength between spins and cavity modes.

hij introduces coherent hopping amplitude J ą 0 between the nearest-neighbor cavity

modes. In the atomic limit, J “ 0, one recovers the physics of the single-site TC model:

in the S Ñ 8 limit, λ ą 1 drives a spontaneous Up1q symmetry-breaking quantum phase

transition between a normal and a superradiant phase [145, 158–161]. Notably, the TC

model is integrable on both sides of the phase transition [138,157,162,163]. The hopping

J ą 0 demotes the local Up1q symmetry of the TC model to a global Up1q symmetry

in the TCL model corresponding to the conservation of the total number of excitations.

The normal phase of the TC model extends in the J–λ plane of the phase diagram of the

TCL model. Importantly, J acts as an integrability-breaking parameter. More precisely,

for finite size lattices, the integrable character of the TC model is expected to be robust

until a finite value of J which rapidly vanishes as the size of the lattice and of the local

Hilbert space, respectively L and S, are increased. In practice, we explore the onset of

chaos by working at L “ 3 cavities, which is experimentally feasible and relevant.

Furthermore, while that the spin-boson scaling factor 1{
?
S in Eq. (4.1) is con-

ventionally introduced to ensure non-trivial thermodynamics in the S Ñ 8 limit, we

will show below that a proper dynamic scaling can be introduced for the cavity-cavity

nearest-neighbor hopping parameter J . This is due to the fact that it breaks the sys-

tem’s integrability, and as the system size increases, the integrability regime becomes

suppressed. Based on the available finite system size data, it remains challenging to

conclusively determine whether integrability persists in the thermodynamic limit. Moti-

vated by the work of Bulchandani, Huse, and Gopalakrishnan work in ref. [164], finite-size

scaling—where plots for various system sizes collapse onto one another—provides sup-

porting evidence that the integrability regime remains robust up to a certain parameter

value. However, in the thermodynamic limit, this requires additional rescaling, with

J Ñ J{S1{4. In this work, we present adjacent gap ratio xry data with J scaled by the

spin size S. These results demonstrate that the integrability-to-chaos crossover becomes

independent of the spin size S for a fixed lattice size L.
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4.2 Impurity model

Let us now introduce the impurity model associated to the above lattice model. It is

given by the Hamiltonian

Himp “ωca
:a ` ωsS

z
`

λ
?
S

`

a:S´
` aS`

˘

´ µ
?
S
`

a ` a:
˘

. (4.2)

It corresponds to a single-site TC model with an additional drive term controlled by

the parameter µ. Similarly to the lattice model, we set ωc “ ωs “ ω0. Note that

the parameter ω0 of the impurity can in principle be different from the one of the

lattice model but, for simplicity, we also set it as the unit of energy. Similarly to the

integrability-breaking parameter J{λ that lifts the local Up1q symmetry of the lattice

model to a global Up1q symmetry, the impurity drive µ ‰ 0 explicitly breaks the Up1q

symmetry as well as the integrability of the TC model. Note that the scaling factors

of the spin-boson interaction and the drive in Himp, respectively 1{
?
S and

?
S, ensure

non-trivial thermodynamics in the S Ñ 8 limit. While we follow that convention,

we shall see later that a proper dynamic scaling, in the sense of Bulchandani, Huse,

and Gopalakrishnan in Ref. [164] (discussed in the above section), requires rescaling

the drive µ with a factor 1{S1{4 rather than
?
S. Similar single-site models have been

used in the literature to study the stability of the superradiant phase-transition and the

onset of quantum chaos [165, 166]. Intuitively, the drive term in Himp can be seen as

mimicking the hopping from the rest of the lattice on the impurity site. In that view, µ

is expected to depend on the size and the precise geometry of the lattice, and it vanishes

in the atomic limit J Ñ 0. We motivate our choice of impurity model in Eq. (4.2) from

the fact that in the dynamic scaling regime, where the integrability-breaking parameter

J{λ is small, it can be derived from a lattice model with a large coordination number

using a standard mean-field approach. In other words, such term can be thought of

as effectively a mean field decoupling from the rest of the lattice sites. We refer the

reader to the Appendix [B] for a detailed presentation of this construction. Notably,

we found the classical version of the driven impurity model to unambiguously exhibit

chaotic dynamics for intermediate values of µ. We refer the reader to the Section [4.4] for

a detailed analysis. The conjecture by Bohigas, Giannoni and Schmit (BHS) [28] states

that those Hamiltonians with a chaotic classical limit have spectra whose statistical

features are governed by RMT. As a consequence, we expect the quantum impurity
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model in Eq. (4.2) to exhibit RMT features.

4.3 Spectral properties

We analyze the statistical properties of the eigenvalues tEnu of both the lattice Hamil-

tonian H in Eq. (4.1) and the impurity Hamiltonian Himp in Eq. (4.2) by means of exact

diagonalization. Given the spatial reflection symmetry and the Up1q symmetry of the

finite lattice model, we choose to compute the spectral statistics from the reflection-

symmetric sector with a fixed number of excitations, labeled by the quantum number

Nex “ 36. Therefore, the spectral statistics that we extract are independent of ω0.

However, given the lack of such symmetry in the impurity model, in principle, one has

to consider its whole spectrum. In practice, given the infinitely large bosonic Hilbert

space of the cavity, we truncate it to a finite number of excitations ncutoff “ 210. We

use standard algorithms with double precision. To provide statistics that are converged

with respect to ncutoff , we discard the upper 50% of the impurity eigenvalues. Addition-

ally, contrary to the lattice model whose spectrum was found to be statistically uniform

throughout, the spectrum of the impurity model can be mixed: a low-energy portion with

integrable statistics, and an intermediate to high-energy portion with chaotic statistics.

Such features were already reported for similar models [139,167–169] and are consistent

with the classical analysis presented in Section [4.4]. Hence, we focus on an intermediate

energy range, discarding about the first 10% of the spectrum.

4.3.1 Level-spacing statistics

In order to unveil the universal footprints of these spectra as well as the crossover regime

between integrability and chaos, we study the level-spacing statistics of the TCL and

its associated impurity model as their respective integrability-breaking parameters are

turned on. First, we perform an unfolding of the spectra using standard procedures,

see the details in Appendix [A]. The unfolded spectra are then used to generate the

histograms of the gaps s between nearest-neighbor eigenvalues, yielding the spacing

distributions ppsq. The results obtained for the lattice model are summarized in the

top panel of Fig. 4.2 for weak, intermediate, and strong values of the integrability-

breaking parameter J{λ. For comparison, we also plot the corresponding spacing dis-

tributions for independent random numbers, namely the Poisson distribution pPoissonpsq
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Figure 4.2: Distribution of level spacings ppsq in the crossover regime from integrability
to chaos (left to right). The top panel is computed from the exact diagonalization of
the Tavis-Cummings lattice (L “ 3 sites) with spin S “ 8, for (a) J{λ “ 0.02, (b)
J{λ “ 0.15, (c) J{λ “ 0.22 and (d) J{λ “ 1.0. The bottom panel is computed from the
corresponding impurity model with S “ 64 and λ “ 1, for (e) µ “ 0.1, (f) µ “ 0.65, (g)
µ “ 1.09 and (h) µ “ 1.8. The red curves correspond to fits to the Brody distribution
defined in Eq. (4.3), with the single fitting parameter b given in the legend. The values of
the impurity µ are chosen such that b is the same between the lattice and the impurity.

defined in Eq. (2.5) as well as the corresponding distribution for the eigenvalues of GOE-

Hermitian random matrix ensemble, pGOEpsq defined in Eq. (2.3) for Hamiltonian with

time-reversal symmetry.

The distributions computed from the spectrum of H are in remarkable agreement

with Poisson in the weak hopping regime, and with the GOE RMT prediction in the

strong hopping regime. The case of the Jaynes-Cummings lattice (S “ 1) has been

studied at small filling fraction in Ref. [170].

We also compute the level-spacing statistics of the impurity model in both the inte-

grable and RMT regime, as well as in the intermediate crossover regime. See the bottom

panel of Fig. 4.2. The impurity statistics successfully reproduce the ones found on the

lattice side in all these regimes. Let us better quantify the agreement between the TCL

and its associated impurity model by performing a single-parameter numerical fit of all

the computed spacing distributions to the following Brody distribution

PBpb, sq “ pb ` 1qηsbe´ηsb`1

, η “ Γ

ˆ

b ` 2

b ` 1

˙b`1

, (4.3)
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Figure 4.3: Adjacent gap ratio xry in the crossover regime from integrability to chaos.
(a) Tavis-Cummings lattice (L “ 3 sites) as J{λ ˆ S1{4 is tuned from weak to strong
hopping. (b) Corresponding impurity model as a function of the drive µˆS3{4 for fixed
λ “ 1. Other choices of λ yield similar results. The collapse of the different curves is
used to identify the dynamic scaling with respect to local spin size S.

where Γpxq is the gamma function. The transition from RMT to Poisson statistics has

already been extensively studied in a variety of models [33, 171–175] and the Brody

distribution was heuristically proposed to interpolate between the Poisson and the GOE

regimes [171,176]. We found it to be better suited than other interpolating distributions

such as the one corresponding to the Rosenzweig-Porter for 2 ˆ 2 matrices. The results

of the fitting procedure are given by the red curves in Fig. 4.2 and the corresponding

values of b are given in the legends. The values of µ were chosen so as to reproduce the

same values of b as that of the lattice.

4.3.2 Adjacent-gap ratio

As a complementary diagnostic to the spectral statistics, we compute the adjacent-gap

ratio [70] that defined in Eq. (2.9), does not rely on the unfolding procedure.

For chaotic systems in the GOE class, the tabulated average adjacent gap ratio is

xryGOE « 0.53. For integrable cases, xryPoisson « 0.39. In Fig. 4.3 (a), we report how

xry evolves as a function of the integrability-breaking parameter J{λ and we identify its

scaling with S. The figure displays a well-delineated ramp where xry crosses over from

Poisson value to GOE value. We find a good collapse of that crossover ramp for different

values of S when xry is plotted as a function of J{λ ˆ S1{4. Interestingly, this implies

that different sets of model parameters will produce the same adjacent gap ratio as long

as J{λˆ S1{4 is kept constant. More generally, this scaling has to be interpreted in the
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sense of the dynamic scaling introduced in Ref. [164]: it is the scaling that allows to

control the onset of chaos when the size of the local Hilbert space is increased. Before

the crossover ramp, the integrable phase is found to be robust until a finite value of

J{λˆS1{4 « 0.1. After the crossover ramp, we observe a large chaotic plateau where

the value of xry is the one of the GOE ensemble. For values of J{λ ˆ S1{4 that are

much larger than the ones shown in Fig. 4.3 (a), we found a departure from the RMT

statistics. This is expected when the kinetic energy dominates over the Tavis-Cummings

light-matter coupling and the model perturbatively reduces to a free bosonic tight-biding

model which is integrable.

In Fig. 4.3 (b), we display the same quantity on the impurity side as a function of

the integrability-breaking parameter µ and we identify its scaling with S. The impurity

model successfully reproduces the qualitative features found in the lattice model: a

robust integrable regime, a crossover ramp, and a subsequent chaotic plateau. We find

a good scaling collapse of that ramp when xry is plotted as a function of µ ˆ S3{4. As

it will become clear later when relating both models, such a dynamics scaling of the

impurity model is consistent with the one found in the lattice model. At large values

of µ ˆ S3{4, the re-entrance of the integrable phase can be attributed to the effective

screening of the interaction in the Hamiltonian [Eq. (4.2)] by a very strong drive term

and is consistent with what we observed on the lattice side at very large J{λ ˆ S1{4.

For both lattice and impurity models, we also checked that the entire adjacent-gap ratio

distribution P prq [121–123] converges to those universal distributions expected in the

integrable and the chaotic regimes.

4.3.3 Map between lattice and impurity models

Above, we have characterized the integrable-to-chaotic crossover of the level-spacing

distribution via its Brody parameter b, as well as the one of the adjacent gap ratio xry

when increasing the integrability-breaking parameters, namely J{λ in the lattice and µ in

the impurity. We use this to retrieve the relationship between the integrability-breaking

parameters of both models by eliminating the fitting parameter b from the data of Fig. 4.2

and, similarly, by eliminating xry from the data of Fig. 4.3. In practice, we identify the

functions α “ f1pJ{λq and α “ f2pµq where α “ b, xry and find µ “ f´1
2 pf1pJ{λqq.

Note that these functions are only invertible in the crossover region. The resulting maps

µpJ{λq for different impurity sizes S are displayed in Fig. 4.4 for a fixed lattice size
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Figure 4.4: Map between the integrability-breaking parameters of the lattice and im-
purity models, J{λ and µ, respectively. The scalings with S on both axis are deduced
from the dynamic scalings identified in Fig. 4.3. The map is numerically extracted from
the level-spacing Brody parameters b determined in Fig. 4.2 as well as from the data of
the adjacent gap ratio xry of Fig. 4.3. The methodology is explained in Section [4.3.3].
L “ 3 and S “ 8 on the lattice side and the different impurity spin sizes are given in
the legend.

L “ 3 and S “ 8. We use the dynamic scaling identified in Fig. 4.3. The resulting

maps obtained from the level-spacing distributions are similar to those obtained from

the adjacent gap ratio, and the agreement seems to improve as S is increased. Notably,

this reveals that the impurity µ is a non-linear function of the lattice J{λ. From a

mean-field point of view, this map has to be understood as the self-consistent relation

tying together the TCL model with its impurity counterpart.

4.3.4 Spectral form factor

We now turn to another diagnostic that probes the long-range correlations in the spec-

trum, namely the spectral form factor (SFF) [26] that we introduced in Section [2.3] and

discussed in detail.

SFF is typically not a self averaged quantity and x. . .y in Eq. (2.16) denotes averaging

with respect to disorder sampling. For our clean system, we replace this disorder average

by dividing the unfolded spectrum into samples of N “ 100 consecutive eigenvalues and

by averaging over those samples. In this chapter, SFF notation is presented as Kptq,

where Kptq “ Kpτ,N “ 100q. We use shorthand notation for SFF expressions for
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Figure 4.5: Spectral form factors of the lattice model with L “ 3 and S “ 8 and
of the impurity model with S “ 64 for increasing values of the integrability-breaking
parameters J{λ (lattice) and µ (impurity) given in the legends and chosen as in Fig. 4.2.
The plain and dashed black lines correspond to the Poisson and GOE distributions,
respectively.

GOE-RMT and Poisson numbers defined in Eqs. (2.18, 2.23), for fixed N as follows,

KGOEptq “ KGOE
pτ,Nq, (4.4)

KPoissonptq “ KP
pτ,Nq. (4.5)

This is justified by the expectation that the statistics are similar throughout the spec-

trum. The resulting SFF for the lattice and the impurity model are presented in Fig. 4.5

for the same parameters as in Fig. 4.2. We compare these findings to the predictions

of the relevant random matrix ensembles [26, 177–182]. The SFF of the GOE-RMT is

defined in Eq. (4.4) for asymptotically at large N .

As shown in Fig. 4.5, the early-time behavior of SFF, its dip, and subsequent oscilla-

tions, are dominated by non-universal features of the spectrum. In the intermediate to
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long-time regime, the linear ramp between Thouless and Heisenberg times and the subse-

quent plateau are well-known universal signatures of quantum chaos. On the integrable

side, the SFF for Poissonian levels with unit mean level spacing is defined in Eq. (4.5)

is the lack of such features and has power-law decay in the intermediate time regime.

In stark contrast to the chaotic case, the SFF of integrable dynamics does not show the

linear ramp. In the fully developed integrable and chaotic regimes, our results in Fig. 4.5

are in excellent agreement with those universal predictions given in Eqs. (4.4, 4.5). More

importantly, this also clearly demonstrates that the SFF of the lattice and the impurity

models are in quantitative agreement with each other throughout the crossover region

between the integrable and chaotic regimes.

4.4 Chaos in the classical limit of Impurity model

In this section, we discuss the integrability to the chaotic crossover of the classical limit of

the dynamics of the impurity model [139,166]. We recall that the quantum Hamiltonian

of the impurity model reads

Himp “ωc a
:a ` ωs

ˆ

Sz
`
S

2

˙

´
?
Sµ

`

a:
` a

˘

`
λ

?
S

`

a:S´
` S`a

˘

. (4.6)

Note that we do not consider the dynamic scaling regime here. The corresponding

classical Hamiltonian is obtained in three steps:

(i) Express the spin operators in terms of bosonic operators using the Holstein-Primakoff

transformation, yielding,

Himp “ωc a
:a ` ωs b

:b ´
?
Sµ

`

a:
` a

˘

`
λ

?
S

´

a:
a

S ´ b:b b ` b:
a

S ´ b:b a
¯

. (4.7)

(ii) Writing the resulting Hamiltonian in terms of position and momentum operators

defined as,

x̂c :“
1

?
2ωc

`

a:
` a

˘

, p̂c :“ i

c

ωc

2

`

a:
´ a

˘

,

x̂s :“
1

?
2ωs

`

b:
` b

˘

, p̂s :“ i

c

ωs

2

`

b:
´ b

˘

. (4.8)
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(iii) Taking the classical limit, by replacing position and momentum operators by real

numbers. This yields the classical Hamiltonian

Hcl
imp “

1

2

`

p2c ` ω2
cx

2
c ´ ωc

˘

`
1

2

`

p2s ` ω2
sx

2
s ´ ωs

˘

` λ

ˆ

?
ωcωsxcxs `

pcps
?
ωcωs

˙

ηpps, xsq ´
?
Sµ

?
2ωcxc, (4.9)

where ηpps, xsq :“
a

1 ´ pp2s ` ω2
sx

2
s ´ ωsq {2ωsS.

We consider the S Ñ 8 limit by first rescaling the position and momentum coor-

dinates as pxc, pc, xs, psq ÞÑ
?
S ˆ pxc, pc, xs, psq, and the energies as E ÞÑ S ˆ E. We

obtain the following classical Hamilton’s equations of motion [3]

d

dt
xc “ pc `

λ
?
ωcωs

η̃pxs, psqps , (4.10)

d

dt
pc “ ´ ω2

cxc ´ λ
?
ωcωsη̃pxs, psqxs `

?
2ωcµ ,

d

dt
xs “ ps `

λ
?
ωcωs

”

η̃pxs, psqpc

´
1

2ωsη̃pxs, psq

´

ωcωs xcxs ` pcps

¯

ps

ı

,

d

dt
ps “ ´ ω2

sxs ´ λ
?
ωcωs

”

η̃pxs, psqxc

´
1

2ωcη̃pxs, psq

´

ωcωs xcxs ` pcps

¯

xs

ı

,

where η̃pxs, psq “
a

1 ´ pp2s ` ω2
sx

2
sq{2ωs. Note that the phase space is constrained by

0 ď η̃pxs, psq ď 1. One simple and qualitative way to study the chaos in classical dynam-

ics is to study Poincaré sections [3, 5]. These are obtained by numerically integrating

the above equations of motion, with the initial conditions set by xcp0q, pcp0q, xsp0q, psp0q

and the energy E. The trajectories are projected on a chosen two-dimensional section.

We choose it to be the intersection between the hypersurface of constant energy E,

the hypersurface of equation psptq “ 0, and the pxc, pcq plane. Regular and structured

Poincaré sections indicate integrable dynamics, whereas erratic and random structures

indicate chaotic dynamics.

The Poincaré sections generated for various initial conditions with different energies

and for various values of the drive µ are displayed in Fig. 4.6. At small values of µ
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Figure 4.6: Poincaré sections of the classical driven impurity model defined in Eq. (4.9)
in the limit S Ñ 8, λ “ 1.0, and for various energies E and (top) weak drive µ “ 0.1,
(middle) intermediate drive 1.8, (bottom) strong drive 10.0. Different colors represent
trajectories with different initial conditions

pµ “ 0.1q, Poincaré sections are regular except for a small intermediate energy window

where the dynamics are chaotic. This indicates a relative robustness of the µ “ 0

integrable phase. If one views this phenomena through the lens of an energy-resolved

version of Bohigas, Giannoni, and Schmit (BGS) conjecture, it hints at the presence of

extensive (in S) low-energy and high-energy portions of the spectrum of the quantum

impurity model whose universal features are dictated by Poisson statistics.

At intermediate values of the drive µ pµ “ 1.8q, we observed chaotic dynamics at

all the energies we numerically investigated. This hints at a quantum spectrum with

statistical features dictated by random matrix theory. Interestingly, at very large values

of µ pµ “ 10q, we observed close-to-integrable features at all energies. We attribute

this to a drive term which is so strong that it effectively screens the effect of the non-

linearity λ that is responsible for chaos. The same reasoning can be applied to the

quantum version of the model.
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4.5 Summary of results and conclusions

In this work, we argued that the universal spectral features of a spatially extended sys-

tem can be captured by a minimal impurity model with a much smaller Hilbert space.

This impurity modeling is inspired from what is routinely done to capture local physics

in the thermodynamic scaling regime. Here, we proposed to extend this approach to the

dynamic scaling regime to capture spectral features at the onset of chaos. The validity of

this approach was tested by comparing spectral statistics computed on both the lattice

and the impurity side. A complementary test would be to compare the chaotic features

of out-of-time-order correlators. Note that we have treated the integrability-breaking

parameter µ as freely adjustable. This is similar to proving that a single spin coupled

to a carefully chosen Weiss field is a faithful impurity representation of an extended

magnet in that it can exactly reproduce its magnetization. However, an exciting chal-

lenge remains: analytically identifying the relationship between the lattice problem and

its impurity that self-consistently determines the amplitude of the integrability-breaking

drive term. This means analytically deriving the map between J{λ and µ that has been

numerically computed in Fig. 4.4. Although our elementary implementation relied on a

single-site impurity driven by a static source, its generalization to larger impurities (e.g

to accommodate larger LIOMs, increase the local Hilbert space) or more complex envi-

ronments is not expected to bring extra conceptual difficulty. Adapting this approach to

other lattice models relies on: piq the impurity model featuring a tunable integrability-

breaking term analogous to our µ, piiq a local (impurity) Hilbert space which is large

enough to ensure sufficient spectrum data for universal statistics to develop.

As a side note, we found that both the quantum and the classical versions of our

impurity model exhibit a rich phenomenology, with regimes of chaos and integrability

simultaneously present at different energies, see the Section [4.4]. Similar observations

were made in various other models [166, 167, 183–185]. The classical-to-quantum corre-

spondence of such models with mixed phase space is still an open question that could

be investigated through the lens of an energy-resolved extension of BGS conjecture.



Chapter 5

Long-ranged spectral correlations in

eigenstate phases

In this chapter, we investigate the utility of long-range spectral probes: Spectral form

factor( SFF)and density of all gaps (DOG) that are introduced and discussed to great

detail in Chapter [2]. We use these probes in characterizing and distinguishing between

the MBL and ergodic phases further. First, we extend the results of previous work in

Ref. [83] where an analytical form for SFF was obtained and verified for energy conserv-

ing systems with quenched disorder. Here, we show that the SFF form is also applicable

to quasiperiodic systems (deterministic potentials) and Floquet systems (which do not

conserve energy). Second, we study a quantity related to the Fourier transform of the

SFF, the distribution of all spectral gaps that we refer to as the density of gaps (DOG),

for which we obtain an analytical form for Poisson numbers Eq. (2.34) and random ma-

trices Eq. (2.31) (both of which have not been presented in the literature previously to

the best of our knowledge). Using this, we show that the DOG also exhibits distinct

signatures in the MBL and ergodic phases and also furnishes a means of tracking the

transition between the two phases. Finally, we also clarify the robustness and univer-

sality of these spectral signatures in the MBL phase. We show that unlike the ‘ramp’

which is seen in the SFF of ergodic systems, the scaling form of the SFF in MBL sys-

tems depends on global aspects of the spectrum as a consequence of the lack of intrinsic

correlations in MBL spectra. Altogether, our results show that the universal signa-

tures present in long-range spectral probes that arise from both intrinsic correlations

and global features of the spectrum can comprehensively characterize eigenstate phases
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more efficiently on finite-size simulations than either intrinsic or global only.

In this work we consider three one-dimensional quantum spin chain models incor-

porating quenched disorder in Eq. (5.1), periodic driving (Floquet) in Eq. (5.2), and

quasiperiodic detuning in Eq. (5.6), as a setup for numerical analysis. These models

belong to different classes to study MBL physics and more details of these models are

discussed in Section [5.1.1]. Below are the important properties of these probes (SFF and

DOG) we will be focusing on in this work in the numerical study of various quantum-

many body systems:

SFF : We extract the spectral form factor Kpτ,Nq defined in Eq. (2.16) and compare it

with the analytical form obtained from RMT shown in Eq. (2.18) in the ergodic phase

and to the form obtained from Poisson numbers shown in Eq. (2.23) in the MBL phase.

In particular, we verify that deep in the MBL phase we observe the power law scaling

shown in Eq. (2.24). The SFF plots are shown in Fig. 5.1 for above mentioned models

and defined in Eqs. (5.1, 5.2, 5.6).

DOG : We compute the density of all gaps defined in Eq. (2.25) and compare it

with the analytical expression obtained from RMT shown in Eq. (2.31) in the ergodic

phase and to the form obtained from the Poisson spectra shown in Eq. (2.34) in the

MBL phase. The DOG plots are shown in Fig. 5.2 for the above mentioned models.

As discussed in Section [2.4.2], we also use the appropriately normalized density of zero

gaps rNχp0, Nqs P r0, 1s as an order parameter to track the transition between the MBL

and the ergodic phases. This is shown in Fig. 5.3 where we compare the location of the

transition determined by rNχp0, Nqs with the same determined by the more conventional

adjacent gap ratio (r) defined in Eq. (2.9). Discussions on the sensitivity of numerical

computations of χpx,Nq to binning are discussed in Appendix [D].

5.1 Numerical study of physical models

In order to perform our numerical analysis, we employ the following prescription: From

each disorder realization of the model, we extract N consecutive levels from the middle

of the spectrum where N is smaller than the total number of levels NR and then proceed

to compute the SFF and DOG. This does not produce any sharp DOS features of the

kind present in Eq. (2.20). We also rescaled the data to set the mean level spacing µ,

averaged across disorder samples, to 1 for convenience. Whenever we have a global Up1q



49

symmetry, we extract the levels from the zero total magnetization sector,
ř

j S
z
j “ 0.

Additional details of numerical analysis, such as the number of disorder samples the

data is averaged over to produce all the figures, are tabulated in Appendix [E] to reduce

clutter. In general, all our numerical results are in excellent agreement with analytical

predictions. We provide details of each model and comment on various features below.
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Figure 5.1: Top row: SFF [Eq. (2.16)] for N “ 20 levels across various disorder
strengths. Bottom row: Reduced SFF deep in the MBL phase with power-law scaling.
Plots in left, middle and right columns correspond to the disordered spin chain (D),
Floquet spin chain (F) and quasi-periodic spin chain (Q) defined in Eqs. (5.1, 5.2, 5.6)
respectively. System sizes used are (from left to right) L “ 14, 10, 12 for the top row
and L “ 18, 12, 16 for the bottom row. The disorder strengths used for the bottom row
is (from left to right) W “ 25, Γ “ 0.01 and W “ 15.

5.1.1 Physical models

Spin chain Hamiltonian with quenched disorder

We begin with the quantum spin chain Hamiltonian with quenched disorder considered

in Refs. [83,186].

H “
ÿ

i

J1pS
x
i S

x
i`1`Sy

i S
y
i`1`∆Sz

i S
z
i`1q`wiS

z
i `

ÿ

i

J2pSx
i S

x
i`2`Sy

i S
y
i`2`∆Sz

i S
z
i`2q. (5.1)
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Here and henceforth, Sα are spin-half operators that can be written in terms of Pauli

matrices as Sα “ 1
2
σα and wi are random numbers drawn from a uniform distribution

wi P r´W,W s. Following Refs. [83, 186], we set J1 “ J2 “ 1.0 and ∆ “ 0.55. This

Hamiltonian has Up1q spin-rotation symmetry which allows us to work with the spectrum

of the zero magnetization sector (half-filling) for numerical analysis. Variants of this

model have been previously studied [187, 188] and are known to have a thermal phase

at weak disorder and an MBL phase in strong disorder, as can be seen by tracking the

adjacent gap ratio (r) defined in Eq. (2.9). As shown in Fig. 5.3 (top row, left column),

tracking the adjacent gap ratio indicates that the strength of the critical disorder is

somewhere near Wc « 7.3 where the curves cross for different sizes of the system.

Floquet spin chain with quenched disorder

Local conservation laws produce diffusive hydrodynamic modes that can slow down

dynamics and obscure the thermalization properties of the system [52]. Periodically

driven Floquet systems with quenched disorder and no global symmetries serve as a

useful testing ground for studying eigenstate phases because they contain no conservation

laws, including energy. As a result, the system is allowed to thermalize rapidly in the

ergodic phase, leading to a sharper MBL-ergodic transition. Now we consider the Floquet

model defined in Ref. [189]. This is described by the following Floquet unitary operator

that generates the time evolution for one time period, 2T

UpT q “ exp

ˆ

´i
T

2
Hx

˙

exp p´iTHzq exp

ˆ

´i
T

2
Hx

˙

, (5.2)

where, the Hamiltonians Hx and Hz are defined as follows:

Hx “ gΓ
L
ÿ

j“1

σx
j ,

Hz “

L´1
ÿ

j“1

σz
jσ

z
j`1 `

L
ÿ

j“1

ph ` g
?
1 ´ Γ2Gjqσ

z
j .

(5.3)

Our choice of parameters pg, hq “ p0.9045, 0.8090q and the time period 2T “ 1.6 are

the same as studied in Ref. [189]. tGju are independent Gaussian random numbers with

zero mean and unit standard deviation where it was argued that the critical point Γc

was near 0.3. For Γ ă Γc this system is in MBL phase and for Γ ą Γc it is ergodic.
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Eigenvalues of unitary operator Eq. (5.2) are pure complex phases teiθju where tθju

define the Floquet spectrum and take values on the unit circle. We will use tθju to

study the SFF and DOG.

Kpτ,Nq “ x

N
ÿ

m,n“1

eiτpθm´θnq
y, (5.4)

χpx,Nq “
1

NpN ´ 1q

@

N
ÿ

m‰n“1

δpx ´ pθm ´ θnqq
D

. (5.5)

Since tθju are only well defined on a unit circle, for the SFF expression in Eq. (5.4) to

be well defined, τ are restricted to take on discrete values [190] τ P Z. When we rescale

the values of tθmu to set the mean level spacing µ to unity, this condition reads τ P µ.

On the other hand, for the DOG expression in Eq. (5.5) to be well defined, x can only

take values on a circle and thus χpx,Nq has to be a periodic function of x with period

2π (2π{µ when levels are rescaled to set mean level spacing to 1). Since we performed

our analysis by selecting a relatively small subset of levels from the full spectrum, large

values of θm ´ θn are suppressed. Therefore, the SFF and DOG for circle-valued levels

tθmu can be described by the expressions obtained for real-valued levels tEmu shown in

Eqs. (2.18, 2.23, 2.34, 2.31).

Spin chain with a quasi-periodic local field

Models of quasi-periodic MBL have now been studied in a variety of contexts through

the properties of their eigenstates, transport, and operator dynamics [188,191–200]. We

consider the interacting spin chain system with a quasiperiodic magnetic field (QP) [188],

defined as:

H “ J
L´1
ÿ

i“1

pSx
i S

x
i`1 ` Sy

i S
y
i`1q ` Jz

L´1
ÿ

i“1

Sz
i S

z
i`1 ` W

L
ÿ

i“1

cosp2πki ` ϕqSz
i

`J
1

L´2
ÿ

i“1

`

Sx
i S

x
i`2 ` Sy

i S
y
i`2

˘

(5.6)

Here, ϕ P r´π, πq is a site-independent phase offset used to generate an ensemble,



52 Chapter 5. Long-ranged spectral correlations in eigenstate phases

k “ p
?
5 ´ 1q{2 is an irrational number, and we set J “ J

1

“ Jz “ 1 for numerical

computation. With xry, the critical disorder is estimated to be around Wc « 4.3 [188].

When W ą Wc, the system is in the MBL phase and when W ă Wc it is in the ergodic

phase. This model also has spin-rotation Up1q symmetry, and we consider the spectrum

of the zero magnetization sector for numerical computations.
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Figure 5.2: DOG [Eq. (2.25)] plots deep in the ergodic phase (top row) and the MBL
phase (bottom row) for (from left to right) the disordered spin chain (D), the Floquet spin
chain (F) and the quasiperiodic spin chain (Q) defined in Eqs. (5.1, 5.2, 5.6) respectively,
compared to the analytical expressions in Eqs. (2.31, 2.34) (dotted lines). N “ 20 levels
drawn from the middle of the spectrum and rescaled to set mean level spacing at unity,
and plotted the numerical data with positive values of gaps with the log scale on x-axis.
The system sizes used are (from left to right) L “ 12, 10, 12.

5.1.2 Summary of results

The SFF for all three models [Eqs. (5.1, 5.2, 5.6)] is shown in the three columns of Fig. 5.1

from left to right, labeled (D), (F) and (Q) respectively. The SFF for disordered spin

chain model [Eq. (5.1)] was studied in [83] where it was verified that the numerical

results match the analytical expressions very well. We reproduce the plots in Fig. 5.1

(left column) for completeness. For small values of N , we see in Fig. 5.1 that the SFF

expressions Eqs. (2.23, 2.18) match the data well deep in the MBL and ergodic phases,

respectively. The power-law scaling form deep in the MBL phase is also verified in

Fig. 5.1. The DOGs for all three models are shown in Fig. 5.2. We see that deep in
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the MBL and ergodic phases, the analytical expressions Eqs. (2.34, 2.31) describe the

DOG well. Finally, in Fig. 5.3 (bottom row), we show the utility of the density of zero

gaps Nχp0, Nq to estimate the critical disorder strength corresponding to the MBL to

ergodic transition using the location where the curves for various sizes of the system

cross. Moreover, we see that it agrees well with the same result obtained from the

adjacent gap ratio in Fig. 5.3 (top row).
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Figure 5.3: (Top row) Plots of the adjacent gap ratio xry and (Bottom row) rescaled
density of zero gaps (Nχp0, Nq) across various strengths and sizes of the system used to
locate the approximate strength of the critical disorder (dashed line) where the curves
for different sizes of the system cross for (from left to right) the disordered spin chain
(D), Floquet spin chain (F) and quasi-periodic spin chain (Q) defined in Eqs. (5.1, 5.2,
5.6) respectively. The estimate of the critical disorder computed from xry and Nχp0, Nq

agrees for all models. The full spectrum used for the plots in the top row and N “ 20
levels drawn from the middle of the spectrum used for plots in the bottom row.

For the spin chain with a quasiperiodic local field [Eq. (5.6)], we observe certain

finite-size oscillatory features in the SFF, DOG and also in the density of states (DOS)

as shown in Fig. 5.4 which are not removed by increasing the number of samples the

data are averaged over. However, the amplitude of oscillations reduces with increasing

system size as seen in Fig. 5.4. We postulate that these finite-size oscillations have an

origin in the quasiperiodic nature of on-site detuning.
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Figure 5.4: Left: Persistent oscillations seen in the density of states of the full Sz “ 0
spectrum. Right: SFF [Eq. (2.16)] plotted for levels drawn form the middle of the Sz “ 0
sector of the spin chain with quasi-periodic local field [Eq. (5.6)] deep in the MBL phase
(W “ 15). These oscillations remain unchanged with increased disorder averaging, but
decrease in amplitude with increase in system size.

5.2 On the universality and robustness of spectral

signatures in the MBL phase

Spectral signatures in the ergodic phase, for example, the linear ramp in the SFF, are

considered to be universal features arising from the underlying level correlations in the

system. This means that the ramp survives global deformations of the spectrum, such

as unfolding. MBL, on the other hand, is often characterized by the absence of RMT

features and level repulsions [201]. It is desirable to identify spectral signatures unique

to the MBL phase beyond the absence of ergodic signatures. The results in the preceding

sections are an attempt to isolate such signatures. The analytical expressions for the

SFF and DOG, especially the power-law scaling form with a fixed exponent shown

in Eq. (2.24) was studied in Ref. [83]. This was shown to be a robust feature of the MBL

spectra and can be thought of as a universal signature that can help to identify the MBL

phase and distinguish it from the ergodic phase. However, a natural question is what

the origin of these signatures in the MBL phase is and how robust they are. Since it is

known, by the very definition, that uncorrelated Poisson numbers cannot have intrinsic

correlations, their spectral signatures must have their origin in global effects.

In this section, we clarify robustness of universal MBL signatures to smooth changes

in global density of states using deformations of various kinds to the spectrum and its
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probes. First, we study the effects of sharp features in the DOS of Poisson numbers

generated as shown in Eq. (2.23) and we study the robustness of the SFF as they are

smoothed. We find that key features of the SFF, such as power-law scaling Eq. (2.24)

survive such changes. Next, we modify the expression for the SFF formula following the

prescription in Ref. [201] and find that while the power-law scaling form survives, the

coefficient is renormalized and eventually disappears. Finally, we compute the SFF after

unfolding the spectrum, where we find that the power-law scaling form is eliminated.

However, we find that it is again recovered if the SFF is computed from a subset of

the levels in the unfolded spectrum. We conclude that the power-law scaling form has

its origin in the global features of Poisson numbers but not directly from the density

of states. They are nevertheless useful to distinguish MBL from ergodic systems in

finite system size simulations, especially when probed at energy scales where the latter

is dominated by intrinsic level repulsions.
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Figure 5.5: DOS (top row) and the reduced SFF (bottom row) for Poisson numbers gen-
erated as described in Eq. (2.20) (left column), Poisson numbers generated in Eq. (2.20)
with random offset to soften the DOS edges, shown in Eq. (5.10) (middle column) and
levels chosen from the disordered Hamiltonian Eq. (5.1) (L “ 18) deep in the MBL
phase (W “ 25).
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5.2.1 Deforming the global density of states

Using the probability density in Eq. (2.21), we can easily compute the density of states

for Poisson numbers generated explicitly as [83]

ρpE,Nq “
1

N

N
ÿ

k“1

xδpE ´ Ekqy “
Γ pN,E{µq

µ N !
, (5.7)

where, ΓpN, xq is the incomplete Gamma function defined (for integer N) as

ΓpN, xq “

ż 8

x

dt tN´1e´t
“ e´x

pN ´ 1q!
N
ÿ

k“0

xk

k!
. (5.8)

Since the energies are chosen to be positive definite, the ensemble-averaged DOS has a

sharp edge at E “ 0 as shown in the top left column of Fig. 5.5. One might postulate

that the power-law scaling form is an artifact of Fourier transforming this sharp edge.

However, this is not the case, as easily seen from the formula for the SFF in Eq. (2.16)

which only takes into account the differences in levels and would not change if the

spectrum were modified to smooth out the sharp edge. For instance, let us shift all

Poisson numbers by the same random offset parameter E0, drawn from a Gaussian

distribution p0pxq with mean N{2 and variance N ,

p0pxq “
1

?
2πN

exp

ˆ

´
px ´ N{2q2

2N

˙

. (5.9)

Assuming m ą n, the new joint two-point distribution P̃ pEn, n;Em,mq is

P̃ pEn, n;Em,mq “ p̃pEn, nq ppEm ´ En,m ´ nq, (5.10)

where,

ppE, kq “
e´E

µ

µpk ´ 1q!

ˆ

E

µ

˙k´1

, (5.11)

p̃pE, kq “

ż 8

0

dx ppx, kq p0pE ´ xq. (5.12)



57

The form of the new density of states, ρ̃pE,Nq can be determined as

ρ̃pE,Nq “

ż 8

0

dx ρpx,Nq p0pE ´ xq (5.13)

where, ρpx,Nq is the original DOS given in Eq. (5.7). By numerical integration Eq. (5.13),

we can see in Fig. 5.5 (top row, middle column) that the DOS is smoothed out. However,

as mentioned before, the calculation of the SFF Eq. (2.16) only involves the distribution

of energy differences Em ´En and therefore is completely independent of the change in

DOS introduced in Eq. (5.10) and leaves both analytical expressions of Eqs. (2.23, 2.24)

unchanged (see the bottom row, middle column of Fig. 5.5.

In fact, this was already verified directly in Fig. 5.1 , where the plots were generated

by selecting levels from the middle of the spectrum. As seen in Fig. 5.5 (top right), the

density of states for these levels has no sharp edges, and we clearly see that the power-law

scaling is robust. To end this section, we remark that the formula for the connected SFF

shown in Eq. (2.17) does have a dependence on DOS. However, the effect of smoothing

the DOS as Eq. (5.10) is to enhance (double) the coefficient of the power-law scaling

form as

Kcpτ,Nq ´ N “
1

pµτq2
ÞÑ

2

pµτq2
. (5.14)

See Appendix [C] for more details on this.

5.2.2 Filtering the SFF formula

We now modify the expression for SFF Eq. (2.16) using the prescription of Ref. [186]

by introducing weights ζpEq associated with the eigenvalue E to define the filtered SFF

expression

Kηpτq “ x

Nr
ÿ

m,n“1

ζpEmqζpEnqeiτpEm´Eny. (5.15)

Above, ζpEq is a Gaussian filter function defined as

ζpEq “ exp

„

´pE ´ Ēq2

2pΓηq2

ȷ

, (5.16)
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where Ē and Γ are set to the mean and variance of levels from each disorder realization.

In the limit τ Ñ 8, Kηpτq saturates to Zη, given by the expression

Zη “ x

Nr
ÿ

m“1

|ζpEmq|
2
y. (5.17)

The parameter η controls the width of the filter. As seen in Fig. 5.6, as η is reduced, the

filtered SFF preserves the power-law scaling form but renormalizes the coefficient as

Kηpτq ´ Zη “
2

pµτq2
ÞÑ αpηq

2

pµτq2
, (5.18)

where, αpηq is a function that depends on the filter parameter η but not on the number

of levels N as shown in Fig. 5.6. A spectral signature that does not have its origin in

2

τ2

η
40

30

20

10

5

4

3

2.5

2.0

1.5

1.25

1.1

1.0

0.95

0.90

0.85

0.80

0.75

0.70

10
-4

10
-2

10
0

τ

10
3

10
6

10
9

Kη(τ)-Zη

100 101
0.0

0.2

0.4

0.6

0.8

1.0

(
)

N = 40000
N = 60000
N = 80000

Figure 5.6: Left: The reduced filtered SFF Eq. (5.15) for N “ 80,000 Poisson numbers
generated as shown in Eq. (2.20) averaged over 50,000 disorder samples. Right: Plot of
modified coefficient of the power-law scaling α, defined in Eq. (5.18) for various η. It is
clear that αpηq has no dependence on N .

global features would be expected to survive in the limit when we take N to be large

and η to be small. This is true for the linear ramp in the ergodic phase [186]. However,

since α has no dependence on the number of levels, in the limit of large N and small η, it

is expected that the power law scaling will vanish. This is consistent with the assertion

that the power-law scaling has its origin in global features.
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5.2.3 Unfolding the spectrum

In this section, we discuss the effect of unfolding the spectrum on the SFF. We begin with

Poisson numbers generated as mentioned in Section [2.3.2] whose SFF matches the ana-

lytical expression in Eq. (2.23) and exhibits power law scaling Eq. (2.24) at intermediate

τ values. We now unfold [202–205] the same levels using the usual polynomial method,

described in Appendix [A]. Although the density of states was uniform before and after

unfolding [84], we see in Fig. 5.7 that the SFF is no longer described by Eq. (2.23) and

does not exhibit power law scaling Eq. (2.24). Now, if we compute the SFF with de-

creasingly smaller fractions of the unfolded spectrum, the analytical form as well as the

power law scaling is recovered as shown in Fig. 5.7 (left). To quantify this, we compute

the root-mean-square (RMS) deviation of the SFF from the power law scaling form, Σ,

defined as

Σ2
“

A´

Kpτ,Nq ´ N ´
2

τ 2

¯2E

´

´A

Kpτ,Nq ´ N ´
2

τ 2

E¯2

, (5.19)

where x. . . y represents the average taken over data points falling in the domain τ P

r 3?
N
, 0.2s where the power law scaling form is expected to be clearest when present. As

seen in Fig. 5.7 (right), for N{NR Ñ 1, Σ is large, indicating that the SFF deviates

significantly from the power-law scaling form. As N{NR Ñ 0, we find that Σ vanishes,

indicating that the power-law scaling form is recovered.

We conclude this section with a few comments. Unlike the linear ramp of the ergodic

SFF which is unaffected by unfolding, the power-law scaling form of the SFF in the MBL

phase is a global feature. The long-ranged spectral signatures for the MBL phase, such as

power-law scaling, arise from the global features of ordered, uncorrelated levels. This is

related to the emergence of the Poisson distribution in the distribution of spectral gaps

starting with an ensemble of random numbers drawn from any independent identical

distribution after ordering (see the supplementary material of Ref. [83] for a discussion

on this). In conclusion, we believe that our results suggest that using spectral signatures

that have their origin in both intrinsic and global details is more useful in characterizing

eigenstate phases as well as integrability (and its breaking) on a finite number of levels

as compared to those that are retained by unfolding and similar procedures and depend

on intrinsic correlations only. For example, the analysis presented here is quite useful for

characterizing the spectral correlations in the middle part of the many-body spectrum
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Figure 5.7: Left: Reduced SFF for N “ 1000 fixed levels selected from unfolded
NR Poisson numbers generated as shown in Eq. (2.20) averaged over 400,000 disorder
samples. Right: RMS deviation of the SFF Σ from the power law scaling form, defined
in Eq. (5.19) calculated with the data points in the window τ P r 3?

N
, 0.2s. The power-law

scaling form is absent when N
NR

„ 1 and is recovered at the limit N
NR

„ 0.

at finite sizes, as conventionally considered in numerical studies of MBL.

5.3 Discussion

In this section, we discuss our findings relative to other related works of long-ranged

spectral correlations in the MBL phase.

5.3.1 The effect of many-body resonances in the MBL phase

In this work, we have used Poisson numbers to derive analytical expressions for the

SFF and DOG in the MBL phase, which assumes that the levels have zero intrinsic

correlations. While this should be a good description deep in the MBL phase, as we

approach the transition, however, many-body resonances will begin to proliferate [206,

207], an effect that we have neglected in our treatment of the SFF. These resonances can

lead to weak but nonzero level repulsions in finite-size systems that have been shown to

have a nonvanishing value of χp0, Nq [208] if the energy resolution is chosen appropriately

(and we note that this effect vanishes in the thermodynamic limit). Indeed, these effects

are also observable in our finite-size simulations and in the appropriate regimes connects

to our results from the previous sections as we now demonstrate.
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Figure 5.8: Left: DOG [Eq. (2.25)] for the disordered spin chain model Eq. (5.1) in
the MBL phase with disorder strength W “ 15 computed with N “ 20 energy levels
drawn from the middle of the spectrum plotted on a log scale to capture the dip at the
origin. The DOG approaches the form predicted by Poisson numbers Eq. (2.34) with an
increase in system size. Right: Rescaled density of zero gaps (Nχp0, Nq) versus binning
size. This vanishes for small bin and system size and approaches the value of 1 predicted
using Poisson numbers with an increase in bin and system size.

The expression of DOG for Poisson numbers, χP px,Nq shown in Eq. (2.34) shows

a peak for zero-gaps, χp0, Nq as shown in Fig. 2.3 which is confirmed in numerical

studies of χpx,Nq in Section [5.1]. To see the vanishing of χp0, Nq predicted in [208], we

consider the disordered spin chain model shown in Eq. (5.1). Fig. 5.8 shows that with

careful binning on a log-scale, χpx,Nq deviates from χP px,Nq in a range δL and vanishes

in the limit x Ñ 0. With increasing system size, we also see that δL reduces and the

DOG increasingly agrees with Eq. (2.34). If we increase the size of the histogram bins

to be larger than δL, as it was done in Section [5.1], the finite-size vanishing of χp0, Nq

in the MBL is not observed, as seen in Fig. 5.2 and we find Nχp0, Nq Ñ 1 as expected

from Eq. (2.34). More details on the robustness of χpx,Nq for binning sizes larger than

δL are shown in Appendix [D].

In summary, if we choose a bin size larger than δL, Eq. (2.34) reproduces the form

of χpx,Nq accurately. As we increase system size L and disorder strength, we expect δL

to reduce, and the expression of Eq. (2.34) is increasingly accurate for various binning

sizes.
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5.3.2 Symmetry breaking picture for delocalization

Fig. 2.3 shows the DOG for Poisson numbers and random matrices. It is clear that

the DOG distinguishes the two cases very well. While the DOG for random matrices is

characterized by a deficit in zero gaps, the Poisson DOG is characterized by a clustering

at zero gaps. From its definition in Eq. (2.25), χpx,Nq has a reflection symmetry

χp´x,Nq “ χpx,Nq. (5.20)

The value of spectral gaps x˚ that maximizes χ serves as a proxy for level repulsions.

From Fig. 2.3 it is clear that for RMT, x˚ ‰ 0 and for Poisson numbers, x˚ Ñ 0.

Thus, the x ÞÑ ´x symmetry of χpx,Nq leaves the value of x˚ invariant in the MBL

phase but not in the ergodic phase. This is reminiscent of the symmetry-breaking

transition in the Ising model if we make an analogy between´χpx,Nq with the Landau

free-energy potential of the Ising model and x˚ the location of the potential minima with

the magnetic order parameter. This motivates the possibility of tracking the MBL-to-

ergodic transition via a symmetry-breaking framework. We remark that a symmetry-

breaking framework to describe the ergodic-MBL transition was recently discussed in

Ref. [209] where the ergodic phase also corresponded to the symmetry-breaking phase.

However, the symmetry they consider is more complex, and it is unclear if and how it

is connected to the Z2 symmetry of the DOG described above.



Chapter 6

Stochastic control of chaos in

Kicked Top model

Methods have been developed to control the chaotic dynamics of classical systems using

both deterministic [210] and probabilistic [104–106] control protocols. In this chapter,

we will focus on the probabilistic control of chaos. The main idea behind these control

protocols is to stochastically apply a control map (with probability p) to the chaotic map.

The chaotic map may possess unstable periodic orbits. The control map is constructed

to share the same periodic orbits as the chaotic map but must be stable fixed points.

Through the stochastic process of control and chaos, the dynamics get stabilized on the

periodic orbit, which serves as a global attractor for a rate pc at which control is applied

and we have control transition.

6.1 Classical Kicked Top model

In this work, we study the Kicked Top model in the chaotic regime under the probabilis-

tic control map and show that the dynamics can be frozen around the unstable fixed

point of the chaotic map. To construct models with a competition of chaotic dynam-

ics and control we first choose a generator of the chaotic dynamics, and then identify

its unstable fixed points to form a control map that “pushes” the state of the system

onto them. As we show below, the the Kicked-Top model introduced by Haake and

Kus [211], is a suitable setting to explore this phenomenon. In this model, a spin (or

“top”) is periodically driven representing a dynamical system that can manifest classi-
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cal, and quantum chaotic motion. It has a single spin degree of freedom and a compact

two-dimensional sphere as its classical phase space. An interesting aspect of the dynam-

ics of the Kicked top is that the strength of classical chaos is tunable allowing for an

interesting platform to introduce competing perturbations. Importantly, the classical

unstable orbits can be identified through an analytic equation that can be straightfor-

wardly solved numerically. This allows for control maps to be accurately constructed,

an essential piece to this dynamical model construction.

The classical Kicked Top model is described by the following Hamiltonian,

HKT “

´ℏα
T

¯

Jy `

´ℏk
2S

¯

J2
z

8
ÿ

n“´8

δpt ´ nT q. (6.1)

In this model, J “ pJx, Jy, Jzq represents the components of the angular momentum

operator, where |J| “ S denotes the total spin magnitude. The spin J is subjected to

periodic external impulses, referred to as ”kicks.” The parameters α and k character-

ize the strength of the kinetic and kicked terms in the Hamiltonian, respectively. This

Hamiltonian can be interpreted as describing the dynamics of a large spin J that pre-

cesses around the y-axis with an angular frequency α{T . One of the example of finding

such kind of spin precession occurs when it is in the presence of a uniform magnetic field

(represented in kinetic term). At regular intervals of time T , the system experiences a

kicks that induce an impulsive rotation around the z-axis with the angle proportional

to Jz, affect the spin’s evolution.

For small kicking strength k, trajectories of motion of kicked top in the phase space

pθ, ϕq appear regular and with increasing k, trajectories become random and filled the

phase-space. Within random trajectory points, there are some specific points that are

the fixed points (stable and unstable) of this map. The stability of the orbit points of

the map can be tested by linearizing the map in their vicinity. This model has stable

fixed points (Ex. period-1 solutions given in Eq. 5.3) for kicking strength k ă
?
2π

and become unstable for k ą
?
2π. For strong enough kicking strengths k ą

?
2π [211],

the Kicked Top Hamiltonian defined in Eq. (6.1) exhibits fully chaotic dynamics (for

α “ π{2). This model can be made quantum mechanical by promoting the classical spin

variables to quantum spin operators pĴx, Ĵy, Ĵzq of size S that satisfy the SU(2) algebra

rĴi, Ĵjs “ iϵijkĴk.
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6.1.1 Chaos-Control Dynamics

We now construct the chaotic part of the dynamics, which is a review of the classical

equations of motion of the Kicked top. In the following, we apply Newtonian dynamics

(i.e. the chaotic map) with probability 1 ´ p and the control map with probability p,

which introduces a model that allows for the competition between chaos and control in

the dynamics of the rotor.

Newtonian dynamics

In the classical limit of the model S Ñ 8, the chaotic evolution is driven by the classical

discrete-time evolution on the vector r ” J{S “ px, y, zq, which yields [211],

xn`1 “ zn cospkxnq ` yn sinpkxnq,

yn`1 “ ´zn sinpkxnq ` yn cospkxnq,

zn`1 “ ´xn.

(6.2)

The equation above represents an iterative map that takes the position coordinates

rn “ pxn, yn, zn) at time step n and provides the updated position coordinates rn`1 “

pxn`1, yn`1, zn`1) after a discrete time interval T . For this parameterization, we have

chaotic dynamics only in the range k ą
?
2π. For k ă

?
2π the phase space of the model

is mixed but fixed points are the stable fixed points. We note that this tunability with k

allows an interesting control over the strength of chaos that allows the control dynamics

(described below) to become more dominant.

Classical Control Map

In order to construct the control map, we have to first identify unstable fixed points of

the dynamics in Eq. (6.2). For simplicity of the construction, in this work, we focus on

unstable orbits with period-1. From the condition for a fixed point r1 “ r, it is known

that the period-1 unstable orbits are given by [211]

x20 “
sin2 pkx0{2q

1 ` sin2 pkx0{2q
(6.3)

together with z0 “ ´x0 and the normalization x20 ` y20 ` z20 “ 1 implies that y0 “
a

1 ´ 2x20, allowing the vector at the fixed point r0 ” px0, y0, z0q to be determined solely
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Figure 6.1: Density plots of trajectories of the Kicked Top model in the θ ´ ϕ phase
plane with control map [Eq. (6.5)] with probability p “0.0, 0.1, 0.2, 0.3, 0.5, and 0.7
(left to right). Parameters k “ 6, a “ 0.5 are taken for the numerical computation, and
data is generated over 1000 time steps.

through the solution of Eq. (6.3).

By numerically solving Eq. (6.3) we obtain the fixed point value r0 as a function of k.

We then apply the control map with probability p by rotating the vector r “ px, y, zq on

the sphere towards the unstable fixed point r0. We do this rotation on the sphere through

spherical coordinates r “ pcosϕ sin θ, sinϕ sin θ, cos θq allowing us to parameterize the

state of the Kicked top through pθ, ϕq where θ P p0, πq and ϕ P p0, 2πq through

θ “ cos´1
pz{

a

x2 ` y2 ` z2q

ϕ “ tan´1
py{xq.

(6.4)

This control map tries to bring the dynamics at the unstable fixed point r0 that is now

labeled by (θ0, ϕ0). The unstable fixed point r0 corresponding to solutions to Eq. (6.3) is

numerically determined by solving a transcendental equation. The control map is then

defined as follows: if the vector points within the half of the unit sphere with X ą 0

(where the unstable fixed point resides) we then “push” the vector towards the fixed

point with strength a, through the mapping r Ñ r1 defined by

θ1
“p1 ´ aqθ0 ` aθ, (6.5)

ϕ1
“p1 ´ aqϕ0 ` aϕ.

We note that we have chosen for each angle to be pushed the same, namely aθ “ aϕ “ a

for further computation.
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6.1.2 Observables

In the controlled phase, the dynamics of the system are regularized onto the desired

unstable periodic orbits, and in the uncontrolled phase, the control map fails to stabilize

the chaotic motion onto the unstable periodic orbits and it remains chaotic.

Classically, we consider two key physical quantities that can capture the nature of

the control phase transition. The first is the distance of the spin from its fixed point

value, namely, we define the square deviation as

δr2ptq ” |rptq ´ r0|
2,

O2
“ δr2pt Ñ 8q.

(6.6)

If δr2ptq remains finite in the long-time limit, we will never reach the fixed point, whereas

if δr2ptq goes to zero then we know the dynamics is exponentially close to the unstable

fixed point r0. Therefore, O
2 is a measure of the “activation” away from the fixed point

value and acts as an order parameter for the transition.

To probe the nature and strength of chaos we compute the Lyapunov exponent of the

dynamics. If the dynamics is chaotic then two initial trajectories, denoted rA and rB,

that is started from an infinitesimally small separation |rAp0q ´ rBp0q| “ d0 ! 1 grows

exponentially with time with a positive (leading) Lyapunov exponent. In contrast, in

the control phase, we expect these two initial states to both get pushed to the same

fixed point value r0, thus the Lyapunov exponent should be negative. In either phase

of the model, we expect that |rAptq ´ rBptq| „ eλt and λ is the Lyapunov exponent

of the combined Newtonian dynamics and control map. To compute the Lyapunov

exponent, we start from two random trajectories that are initially separated by an

amount d0 “ 10´7 and the Lyapunov exponent [212] λ is determined from

λ “
1

nτ

C

n
ÿ

i“1

log
di
d0

G

. (6.7)

x. . . y represent the averaging over the different initial conditions. di “ |rAptq ´ rBptq| is

the separation between trajectories A and B at time τ that are evolved from the initial

separation d0. In each step, we reset one trajectory towards another after the time τ to

keep the separation equal to the initial separation. For computation, we fixed τ “ 10

and n is taken to be sufficiently large that the λ converge to a value.
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6.2 Classical Control Transition

Figure 6.2: (Left) The plot of O2 as defined in Eq. (6.6) is the measure of the steady-state
value of square deviation from the fixed point t Ñ 8 and (Right) Lyapunov exponent λ
as defined in Eq. (6.7) with respect to control probability p for various value of a. For
numerical computation, kicking strength k “ 6 and control map parameter a “ 0.5.

As shown in Fig. 6.1, random trajectories of chaotic Kicked top motion filled the

whole θ ´ ϕ plane and with increasing control map probability p, dynamics tend to

regularize around the unstable fixed point. For sufficient enough p, the motion gets

frozen to that point. In this section, we discuss the classical control transition using

square deviation O2 [Eq. (6.6)] and Lyapunov exponent λ [Eq. (6.7)] observable. These

quantities are sampled over many realizations of initial conditions. Using these measures

we estimate the critical control probability pc at which controlled-uncontrolled transition

takes place. For that, we consider the chaotic Kicked top model with kicking strength

k “ 6, and apply the stochastic control map with probability p. O2 is the steady state

value of the square deviation from the fixed point. In Fig. 6.2 (left), O2 is finite for a

small p and at around a critical p value, O2 approaches to zero (with 0.01 tolerance). We

identify a critical point pc of the controlled-uncontrolled phase transition corresponding

to a control map parameter a. Dynamics undergoes the controlled-uncontrolled phase

transition with finite pc P p0, 1q when r⃗0 in the control map [Eq. (6.5)] is the fixed point

of the chaotic map. Otherwise, it fails to regularize the dynamics around this point for

any control probability p ă 1 and the system will remain chaotic. This shows that we

need to have knowledge of the unstable fixed points of the chaotic model to control the

dynamics. The estimated pc data is plotted in Fig. 6.3 with respect to various values of

control map parameter a.



69

Lyapunov exponent λ data in Fig. 6.2 (right) of this stroboscopic chaos-control map

also shows that λ is positive for small control probability and it decreases with increasing

p and changes sign at a control probability p that is approximately same as estimated

controlled-uncontrolled critical point pc computed from the O2 data.

6.2.1 Phase Diagram

In the above section, we have described how we estimate the critical point pc of the

controlled-uncontrolled transition using the quantity O2. In Fig. 6.2 (left), it is shown

how O2 changes with control probability p for a fixed value of control parameter a that

is applied on chaotic Kicked top model (k “ 6). For a complete picture, we generate

the full phase diagram in the a ´ p plane and plot O2 in a color bar for k “ 6 in

Fig. 6.3 (Left). In this phase diagram, controlled and uncontrolled phases are in two

distinguished regions and separated with the lines of critical points pc pO2 “ 0q and pc

pλ “ 0q. In Fig. 6.3 (Right) we present the phase diagram of O2 in the k ´ p plane for

Figure 6.3: (Left) Uncontrolled-controlled phase diagram in the a ´ p plane with the
distance measure O2 [Eq. (6.6)] (color bar) of the chaotic Kicked top model (k “ 6) with
control map. (Right) Uncontrolled-controlled phase diagram in the k´ p plane with the
distance measure O2 of the Kicked top model with control map (a “ 0.5). Uncontrolled
and controlled phases are separated by estimated critical points pcpO

2 “ 0q and pcpλ “ 0q

that are computed from the O2 and λ data respectively.

fixed control parameter a “ 0.5. In this case, also, we get two regions, controlled and

uncontrolled. For k ă 4.5, the dynamics is always controlled with infinitesimally small

control probability p as the nature of the fixed point is stable. For k ą 4.5, as the nature
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of fixed point changes one requires finite p to regularize the dynamics. Hence we have

finite pc pO2 “ 0q and pc pλ “ 0q.



Conclusion and outlook

This thesis broadly covers the work on the study of spectral signatures of chaos, in-

tegrability and MBL in many body closed and open quantum systems in first four

chapters. In Chapter [2] we introduced all the spectral statistics diagnostic that is used

to characterize chaos and integrability in quantum systems. We discussed in great detail

long-range spectral correlations: Spectral form factor and density of all gaps for GOE

random matrix theory and independent random numbers related to chaos and integra-

bility/MBL phase consecutively. We obtained analytical expressions of these quantities

verified with its numerical study.

In Chapter [3] we present the results of spectral phase transition in dissipative Dicke

model: Integrability to chaos cross over around critical point of symmetry breaking dis-

sipative phase transition that is reported in Ref. [213]. We used the tools of spectral

statistics of non-hermitian random matrix theory to diagnose chaos. While our results

unambiguously reveal a tight connection between dissipative quantum phase transition

driven by integrability-breaking term and spectral phase transition of the Liouvillian,

whether they happen simultaneously at λ “ λ˚ has yet to be scrutinized. The approach

we developed here can be straightforwardly adapted to other dissipative quantum dy-

namics.

Universal spectral features of a spatially extended system (Tavis-Cummings lattice

model) are discussed in Chapter [4] and a corresponding minimal impurity model is

introduced that can capture these features of the corresponding model with a much

smaller Hilbert space. With exact diagonalization, we study the spectral statistics of

these models. We provide an estimated relation between the integrability breaking

parameter of lattice and impurity models. We also discuss the semiclassical limit of

the impurity model and show the Poincare sections that show very rich properties at

different energy scales.
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In Chapter [5], we have studied long-range spectral probes and their use in character-

izing many-body localization and ergodic phases and the transition between them. We

obtain analytical forms for these probes and numerically verify their validity and utility

using a variety of spin chain models to find excellent agreement. We also discussed the

nature of the universality and robustness of these spectral signatures and briefly com-

mented on related work. Recent demonstration of large-scale Hamiltonians involving a

large number of qubits (or spin sites) in quantum devices is indeed a promising avenue

to potentially explore these quantities. The robust nature of these quantities that we

demonstrated in this work indicates that such quantities can potentially be observed

despite experimental imperfections that are often inevitable in large-scale systems. In

future work, it would be interesting to further explore the utility of long-range spectral

probes to shed light on the nature of the transition between many-body localization and

ergodic phases, as well as investigate whether the symmetry-breaking picture of Section

[5.3.2] can help produce an effective theory for the transition.

Chapter [6] is based on the study of stochastic control in chaotic classical systems,

where we used the Kicked Top as a model for chaos and applied a control map. Through

numerical analysis, we computed the square deviation from the fixed point and the

Lyapunov exponent, identifying a critical point pc, at which the dynamics become fully

controlled. We present a phase diagram within the chaos-control parameter space, illus-

trating the distinct regimes of controlled and uncontrolled phases. Recent work [107,214]

showed that on stochastic control protocol of a classical chaotic system, dubbed proba-

bilistic control of chaos possesses several features of the MIPT once feedback is included

in the quantum dynamics. This approach allowed us to view the classical and quantum

control endeavors within a common lens thereby enabling us to import techniques de-

veloped in classical dynamical systems to the quantum control field. With the extension

of our work to construct quantum control protocols, the Quantum Qicked Top model

may shed light on similarities and differences in quantum entanglement and classical

control transition. The Quantum Kicked Top model has a well-defined semi-classical

limit, which enables to combined quantum chaotic and control dynamics to tend to the

classical control dynamics in the J Ñ 8 limit. It would be interesting to examine how

the results obtained in the semi-classical limits of the quantum model make sense with

the classical results that we presented in the Chapter [6]. This work may further help to

develop a general framework of quantum adaptive dynamics where measurements and

feedback can be employed to stabilize a desired quantum many-body phase.
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Unfolding the spectrum

To eliminate the system-specific features of the spectrum, to extract its universal fea-

tures, and to compare them with random matrix theory predictions, it is customary to

perform a so-called unfolding procedure of the spectrum [16, 202, 215–220]. It proceeds

by transforming the original spectrum such as to ensure a uniform local density of states

in the resulting spectrum. In practice, we use the following procedure:

1. First, we compute the cumulative density of the ordered spectrum, IpEq “
ř

nΘpE´

Enq where Θpxq is the Heaviside step function.

2. IpEq is then fitted to a smooth polynomial function ĨpEq.

3. Finally, the unfolded spectrum is obtained as, Ẽn ” ĨpEnq.

We display in Fig. (A.1) the density of states of the original spectrum of Tavis-

Cummings Lattice model [Eq. (4.1)] and its corresponding unfolded spectrum for two

different values of J{λ. We have used a 12th-order polynomial in the unfolding pro-

cedure. Clearly, the resulting density of states is almost constant. The level-spacing

distribution is computed from the unfolded spectrum as ppsq “
ř

n δps ´ pẼn`1 ´ Ẽnqq.

After unfolding, the mean level spacing is unity by construction, xsy “
ş8

0
ds s ppsq “ 1,

and the higher moments are expected to display universal features depending on the

integrable or chaotic nature of the dynamics.
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Figure A.1: Density of states (DOS) of the Tavis-Cummings Lattice [Eq. (4.1) in the
main text]. (Left panel) Before unfolding. (Right panel) After unfolding. Spectra are
computed in the reflection-symmetric sector with L “ 3, S “ 8, Nex “ 36, and λ “ 1.0
for (a, b) weak hopping J{λ “ 0.02, and (c, d) strong hopping J{λ “ 1.0



Appendix B

Mean-field relation between lattice

and impurity spectral form factors

In this Appendix, we use a mean-field approach to motivate the impurity model presented

in the Chapter [4]. The mean-field approximation is a standard approach to computing

thermodynamics but, here, we perform it in the setting of computing the spectral form

factor (SFF). We work in the context of the Tavis-Cummings Hamiltonian on a “mean-

field lattice” with all-to-all couplings between the L sites, where L is large,

H “

L
ÿ

i“1

hi ´
J

L

L
ÿ

i,j“1

a:

iaj , (B.1)

hi “ ωca
:

iai ` ωsS
z
i `

λ
?
S

´

a:

iS
´
i ` aiS

`
i

¯

. (B.2)

We have scaled the hopping term by 1{L, which is the standard convention consistent

with a non-trivial thermodynamic limit. The above Hamiltonian is Up1q-symmetric

which corresponds to the conservation law rH,N s “ 0 with N “
řL

i“1 ni where ni :“

a:

iai`S
z
i `S

2
. Additionally, the Hamiltonian is symmetric under permutations of the sites.

This extra symmetry, an artifact of the all-to-all geometry, introduces a subtlety in that

the SFF which is relevant for diagnosing quantum chaotic features should in principle

be computed in a given sector of the permutation group. A proper treatment of this

permutation symmetry is technically challenging and we postpone this computation to

future work. Here below we adopt the following strategy:

• We first present a detailed computation that avoids this subtlety by explicitly
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breaking the permutation symmetry, therefore computing the mean-field SFF from

the untruncated spectrum (yet properly accounting for the Up1q symmetry). This

will yield a simple relation between the lattice and impurity SFFs, see Eq. (B.19).

• Secondly, we present a speculative discussion on how to modify the results of

the former computation to account for the permutation symmetry group and we

speculate the simple relation [ Eq. (B.22)] between the lattice and impurity SFFs.

Explicitly breaking permutation symmetry. Let us first avoid the technicalities

related to the permutation group by explicitly breaking this extra symmetry. This can

be done by adding disorder with random onsite energy shifts: hi Ñ hi ` δi

´

a:

iai ` Sz
i

¯

where δi is random-valued. We shall later take δi Ñ 0.

Working in the sector with N “ Lρ particles, where ρ is the particle density, we

define the corresponding SFF as

Kρ
Lptq :“ x|Z̃Lpt, ρq|

2
y, t ě 0 , (B.3)

where x¨ ¨ ¨ y correspond to disorder averaging and Z̃Lpt, ρq is the imaginary-temperature

partition function of the lattice model in the N “ Lρ particle sector and for a given

realization of the disorder. It is defined as,

Z̃Lpt, ρq :“ Tr
“

´HtδpLρ ´ Nq
‰

, (B.4)

where Tr is the trace over the full lattice Hilbert space and the delta function implements

the partial trace on those states with exactly N “ Lρ particles. It can be expressed in

terms of an imaginary-temperature grand-canonical partition function via

Z̃Lpt, ρq “

ż `8

´8

ν

2π

´Lρν

ZLpt, νq , (B.5)

where ν plays the role of a chemical potential and the grand-canonical lattice partition

function is defined as

ZLpt, νq :“ Tr
”

´rH´ ν
t
Nst

ı

. (B.6)

We now relate the partition function of the lattice to that of impurity by employing
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a standard Hubbard-Stratonovich decoupling of the hopping term in the Hamiltonian,

and a subsequent saddle-point approximation. The latter is sometimes dubbed the

strong-coupling random phase approximation (RPA) in the Bose-Einstein condensation

literature. The saddle-point approximation will become exact in L Ñ 8 limit.

Introducing complex Hubbard-Stratonovich fields Φpτq and Φ˚pτq for τ P r0, ts,

ZLpt, νq can be rewritten as

ZLpt, νq “

ż

Φptq“Φp0q

DrΦ,Φ˚
s
JL

şt
0 τΦ˚pτqΦpτq

ˆTr

„

ÐÝT ´
şt
0 τ

řL
i“1rhi´

ν
t
ni`JpΦ˚pτqai`a:

iΦpτqqs
ȷ

“

ż

Φptq“Φp0q

DrΦ,Φ˚
s
JL

şt
0 τ Φ˚pτqΦpτq

L
ź

i“1

zipt, ν; rΦ,Φ˚
sq , (B.7)

where DrΦ,Φ˚s is the functional integral measure over complex functions on r0, ts.
ÐÝT

is the time-ordering operator. zi is the partition function of a local impurity model,

namely the single site i in the presence of auxiliary Hubbard-Stratonovich fields which

act as external drives. It reads

zipt, ν, rΦ,Φ
˚
sq :“ tr

„

ÐÝT ´
şt
0 τrhi´

ν
t
n`JpΦ̄˚pτqa`a:Φ̄pτqqs

ȷ

. (B.8)

where tr is the trace in the local Hilbert space at site i. Sending the random onsite

energy shifts to zero, δi Ñ 0, we now get zi Ñ z for all sites with

zpt, ν, rΦ,Φ˚
sq :“ tr

„

ÐÝT ´
şt
0 τrh´ ν

t
n`JpΦ̄˚pτqa`a:Φ̄pτqqs

ȷ

. (B.9)

We have

ZLpt, νq “

ż

Φptq“Φp0q

DrΦ,Φ˚
s
LrJ

şt
0 τ Φ˚pτqΦpτq´ln zpt,ν,rΦ,Φ˚sqs . (B.10)

We now estimate the above path integral by a saddle-point approximation, i.e. by

extremizing the action over Φpτq, which becomes exact in L Ñ 8 limit. Restricting to
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time-independent solutions Φ̄ and Φ̄˚, the latter are governed by self-consistent equations

Φ̄ “
tr
“

a ´himppt,ν,Φ̄,Φ̄˚q t
‰

zpt, ν, Φ̄, Φ̄˚q
, Φ̄˚

“
tr
“

a: ´himppt,ν,Φ̄,Φ̄˚q t
‰

zpt, ν, Φ̄, Φ̄˚q
, (B.11)

with the impurity partition function

zpt, ν,Φ,Φ˚
q “ tr

”

´himppt,ν,Φ,Φ˚q t
ı

, (B.12)

and where we have introduced the impurity Hamiltonian

himppt, ν,Φ,Φ˚
q :“ h ´

ν

t
n ` J

`

Φ˚a ` a:Φ
˘

. (B.13)

We can now express the lattice partition function in terms of the impurity partition

function as

ZLpt, νq
LÑ8

«
LJΦ̄˚Φ̄t

“

zpt, ν, Φ̄, Φ̄˚
q
‰L
. (B.14)

Using Eq. (B.14) in Eq. (B.5), and evaluating ν integral by means of another saddle-point

approximation, we obtain

Z̃Lpt, ρq
LÑ8

«
´Lρν̄`JLΦ̄˚Φ̄t

“

zpt, ν̄, Φ̄, Φ̄˚
q
‰L
, (B.15)

where the saddle-point value of the chemical potential ν̄ is governed by the equation

ρ “

tr
”

n e´itrh´ ν̄
t
n`JpΦ̄˚a`a:Φ̄qs

ı

zpt, ν̄, Φ̄, Φ̄˚q
. (B.16)

The SFF of the lattice model can now be expressed in terms of that of the impurity

model as,

Kρ
Lptq

LÑ8
« |e´iρν̄`iJΦ̄˚Φ̄t

|
2LkptqL , (B.17)

where kptq is the impurity SFF, defined as

kptq :“ |zpt, ν̄, Φ̄, Φ̄˚
q|
2 , (B.18)
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and Φ̄, Φ̄˚ and ν̄ are determined from the saddle-point equations Eqs. (B.11, B.16).

Note that the hermiticity of the impurity Hamiltonian at the saddle point requires ν̄ to

be real and Φ̄ and Φ̄˚ to be complex conjugate of each other. Under those assumptions,

we obtain

Kρ
Lptq

LÑ8
« kptqL , (B.19)

where Kρ
Lptq is the SFF of the all-to-all lattice model defined in Eq. (B.1) and kptq is

the one of the impurity model defined in Eq. (B.13). The above equality has to be

understood as a mean-field factorization of the lattice SFF into a product of those of

the local impurity sites. This result is naturally consistent with the general expectation

that a mean-field approach formally decouples the lattice partition function in terms of

a product of local partition functions. Eq. (B.19) is trivially obeyed at t Ñ 8 and at

t “ 0. Indeed, in the former case, the SFFs simply reduce to their respective Hilbert

space dimensions, and they reduce to their square in the latter case.

Speculation in the totally-symmetric sector. Computing the lattice SFF con-

strained to the totally-symmetric sector of the permutation group relies on estimating

the partition function

Z̃Lpt, ρq :“ Tr
“

e´iHtδpLρ ´ NqPS

‰

, (B.20)

where PS is the projector onto the totally-symmetric subspace. Let us now present

arguments leading to an educated guess for this lattice SFF. The idea is to start from

the factorized result in Eq. (B.19) and rework it in order to see it as resulting from a

single trace of a permutation-symmetric operator.

Let us first introduce the eigen-basis of the impurity Hamiltonian himp evaluated

at the saddle point: himp|eny “ en|eny for n “ 1 . . . d where d is the dimension of

the local Hilbert space. Rewriting the rhs of Eq. (B.19) as kptqL “ kptq ˆ kptq ˆ

. . . ˆ kptq “ |
ř

n1,¨¨¨ ,nL
xen1 |e´i himp t|en1y ¨ ¨ ¨ xenL

|e´i himp t|enL
y|2, and given that, in the

mean-field approach, the relevant part of the lattice Hilbert space is composed of fac-

torized states of the form |en, ¨ ¨ ¨ , eny :“ |enyp1q . . . |enypLq, we propose the following

expression for the lattice SFF in the permutation-symmetric sector at large L: Kρ
Lptq

?
«

|
ř

nxen|e´ihimpt|eny ¨ ¨ ¨ xen|e´i himp t|eny|2 “ |
ř

nxen, ¨ ¨ ¨ , en|e´iph
p1q

imp`¨¨¨`h
pLq

impqt
|en, ¨ ¨ ¨ , eny|2
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where the latter expression clearly displays the permutation symmetry. This amounts

in speculating that in the permutation-symmetric sector, and at large L, the lattice SFF

is related to the impurity SFF via

Kρ
Lptq

?
«LÑ8 kpLtq (B.21)

rather than the relation in Eq. (B.19) which was derived without consideration for per-

mutation symmetry. In the rhs, L enters as a multiplicative scale to the impurity spec-

trum. However, this scale is simply gauged out if one computes the SFF from unfolded

spectra as is customary (see Appendix [A]). Ultimately, this amounts in speculating the

simple relation

Kρ
Lptq

?
« kptq , (B.22)

where Kρ
Lptq is the SFF computed from the totally-symmetric sector of the unfolded

spectrum of the all-to-all lattice model in defined in Eq. (B.1) and kptq is the SFF of

the unfolded impurity model defined in Eq. (B.13).



Appendix C

DOS effects on the connected SFF

for Poisson numbers

Let us consider the Poisson numbers generated as shown in Eq. (2.20) which has the

2-point probability distribution P pEn, n;Em,mq given by

P pEn, n;Em,mq “ ppEn, nq ppEm ´ En,m ´ nq, (C.1)

where ppEk, kq is the well known Poisson distribution

ppEk, kq “

$

&

%

e
´

Ek
µ

µpk´1q!

´

Ek

µ

¯k´1

Ek ě 0

0 Ek ă 0
(C.2)

with Ek ą 0 and k “ 1, 2, 3, . . .. As mentioned in the main text, the SFF and CSFF

can be computed to get the following expressions (see Ref. [84] and the supplementary

materials of Ref. [83] for the derivation)

Kpτ,Nq “ N `
2

pµτq2
´

p1 ` iµτq1´N ` p1 ´ iµτq1´N

pµτq2
, (C.3)

Kcpτ,Nq “ N `
1

pµτq2
´

p1 ` pµτq2q´N

pµτq2

´
i

µτ

“

p1 ` iµτq
´N

´ p1 ´ iµτq
´N

‰

. (C.4)

We now focus on the intermediate τ regime 1
N

ă µτ ă 1 where the expressions reduce
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to

Kpτ,Nq ´ N “
2

pµτq2
` . . . (C.5)

Kcpτ,Nq ´ N “
1

pµτq2
` . . . (C.6)

A noticeable feature in Eqs. (C.5, C.6) is that the SFF and the CSFF have different

overall coefficients in the power-law scaling. The reason for this is in the nature of the

density of states (DOS) for the Poisson numbers discussed in the main text - since the

energies are chosen to be positive definite, the ensemble-averaged DOS has a sharp edge

at E “ 0 as shown in Fig. 5.5. We argued that the sharp edge in the DOS has no

effect on the SFF. To understand the effect on the connected SFF, let us rewrite the

expression for the SFF and CSFF in terms of the DOS. For this, let us introduce the

quantity Zpτ,Nq which relates the SFF pKpτ,Nqq and CSFF pKcpτ,Nqq as follows

Kpτ,Nq “ Kcpτ,Nq ` |Zpτ,Nq|
2, (C.7)

Zpτ,Nq “ x

N
ÿ

m“1

eiτEmy “ N

ż 8

´8

dE e´τEρpE,Nq. (C.8)

This means that Zpτ,Nq is related to the Fourier transform of the many-body density of

states. It is important to note that the effect of a hard edge in the spectrum by shifting

the lowest energy state to zero, will have a strong effect in the Fourier transform as

follows

Zpτ,Nq “
1

µτ
` O

ˆ

1

N

˙

, (C.9)

|Zpτ,Nq|
2

“
1

pµτq2
` O

ˆ

1

N

˙

, (C.10)

Eq. (C.7) tells us that the difference in the coefficient of the power-law scaling between

Kpτ,Nq and Kcpτ,Nq arises precisely from the sharp spectral edge. On the other hand,

energy levels selected from an ensemble of levels that do not have a sharp edge such as
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those considered in Sections [5.1,5.2] have

Zpτ,Nq “ O
ˆ

1

N

˙

, (C.11)

Kpτ,Nq „ Kcpτ,Nq „ N `
2

pµτq2
` . . . (C.12)

i.e. both Kpτ,Nq and Kcpτ,Nq have the same coefficient for the power-law scaling form.

In summary, the sharp features in the DOS have no effect on the SFF but double the

coefficient of the power-law scaling form in the connected SFF. Eliminating sharp fea-

tures in the DOS has the desirable effect of leaving the power-law scaling form identical

for the SFF and CSFF.





Appendix D

Sensitivity of χp0, Nq data on

binning size

The plots on the lower column of Fig. 5.3 were presented for a specific size of histogram

bins used to produce χpx,Nq from which χp0, Nq was extracted. In Fig. D.1, we see that

the curves are robust to a range of bin sizes (60/1500, 60/3000, 60/6000). In particular,

the location of disorder strength where the curves for different system sizes cross, which

estimates the transition between MBL and ergodic phases is unchanged. However, in

order to use Nχp0, Nq as an order parameter as we have done in Fig. 5.3, we need to

make sure that the size is not smaller than δL as defined in Section [5.3.1], where it

probes the finite-size level repulsions.
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Figure D.1: Plots of Nχp0, Nq for the disordered spin chain Eq. (5.1) versus disorder
strengthW computed using different number of bins to construct histograms. Data aver-
aged over 50000, 30000, 20000, 5000 disorder samples for system sizes L “ 10, 12, 14, 16
respectively. The estimate for critical disorder strength W ˚ (dashed line) corresponding
to the location where curves of different system sizes cross is unchanged with binning
sizes. N “ 20 levels used from middle of spectrum of each disorder sample and scaled
to set mean level spacing to unity.





Appendix E

Numerical parameters used to

produce main text figures

We list the details of various numerical parameters (number of disorder samples) used

to produce Figs (5.1, 5.2, 5.3, 5.5, 5.8, 5.4) in Chapter [5].

20,000 30,000 30,000
17,500 44,000 20,000.

Table E.1: Number of disorder samples used to produce plots in Fig. 5.1.

30,000 30,000 30,000
30,000 30,000 30,000.

Table E.2: Number of disorder samples used to produce plots in Fig. 5.2. To produce
the histograms, 1500 bins are used for values of x P r´30, 30s (also see Appendix [D] for
details on sensitivity to binning).
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L=10: 50,000
L=12: 30,000
L=14: 20,000
L=16: 5,000

L=8: 40,000
L=10: 30,000
L=12: 2,000

L=10: 50,000
L=12: 30,000
L=14: 20,000
L=16: 5,000

L=10: 50,000
L=12: 30,000
L=14: 20,000
L=16: 5,000

L=8: 40,000
L=10: 30,000
L=12: 2,000

L=10: 50,000
L=12: 30,000
L=14: 20,000
L=16: 5,000

Table E.3: Number of disorder samples used to produce plots in Fig. 5.3. To produce the
histograms, 1500 bins are used for values of x between ´30 to 30 (also see Appendix [D]
for details on sensitivity to binning).

L=10: 20,000
L=12: 20,000
L=14: 20,000
L=16: 10,000
L=12: 20,000
L=14: 20,000
L=16: 10,000

Table E.4: The number of disorder samples used to produce plots in Fig. 5.4.

NA NA 2,500
40,000 40,000 17,500.

Table E.5: Number of disorder samples used to produce plots in Fig. 5.5. The entries
marked NA correspond to exact analytical plots.

L=10: 50,000
L=12: 30,000
L=14: 20,000
L=10: 50,000
L=12: 30,000
L=14: 20,000
L=16: 5,000

Table E.6: The number of disorder samples used to produce plots in Fig. 5.8.
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[211] Fritz Haake, M Kuś, and Rainer Scharf. Classical and quantum chaos for a kicked

top. Zeitschrift für Physik B Condensed Matter, 65(3):381–395, 1987. 63, 64, 65

[212] Giancarlo Benettin, Luigi Galgani, and Jean-Marie Strelcyn. Kolmogorov entropy

and numerical experiments. Phys. Rev. A, 14:2338–2345, Dec 1976. 67

[213] Mahaveer Prasad, Hari Kumar Yadalam, Camille Aron, and Manas Kulkarni.

Dissipative quantum dynamics, phase transitions, and non-hermitian random ma-

trices. Phys. Rev. A, 105:L050201, May 2022. 71

[214] Haining Pan, Sriram Ganeshan, Thomas Iadecola, Justin H. Wilson, and J. H.

Pixley. Local and nonlocal stochastic control of quantum chaos: Measurement-

and control-induced criticality. Phys. Rev. B, 110:054308, Aug 2024. 72

[215] Oriol Bohigas. Random matrix theories and chaotic dynamics. In Chaos et

Physique Quantique Chaos And Quantum Physics, pages 87–199, Les Houches,

France, August 1989. North-Holland. 73

[216] H. Meyer, J. C. Anglès d’Auriac, and J. M. Maillard. Random matrix theory and

classical statistical mechanics: Vertex models. Phys. Rev. E, 55:5380–5392, May

1997. 73

[217] Henrik Bruus and Jean-Christian Anglès d’Auriac. Energy level statistics of the

two-dimensional hubbard model at low filling. Phys. Rev. B, 55:9142–9159, Apr

1997. 73

[218] T. Guhr, J.-Z. Ma, S. Meyer, and T. Wilke. Statistical analysis and the equivalent

of a thouless energy in lattice qcd dirac spectra. Phys. Rev. D, 59:054501, Jan

1999. 73



109

[219] V. Paar, D. Vorkapić, K. Heyde, A. G. M. van Hees, and A. A. Wolters. Broken

isospin symmetry in the shell model and chaotic behavior. Phys. Lett. B, 271(1):1–

6, 1991. 73

[220] Ashraf A. Abul-Magd and Adel Y. Abul-Magd. Unfolding of the spectrum for

chaotic and mixed systems. Physica A, 396:185–194, 2014. 73





111

List of publications

Published Articles

1. Mahaveer Prasad, Hari Kumar Yadalam, Camille Aron, Manas Kulkarni. Dissi-

pative quantum dynamics, phase transitions and non-Hermitian random matrices

Phys. Rev. A 105, L050201 (Letter), May 2022.

2. Mahaveer Prasad, Abhishodh Prakash, Jedediah H. Pixley, Manas Kulkarni.

Long-ranged spectral correlations in eigenstate phases

Journal of Physics A: Mathematical and Theoretical, 57(1):015003, Dec 2023.

3. Mahaveer Prasad, Hari Kumar Yadalam, Manas Kulkarni, Camille Aron. Tran-

sition to chaos in extended systems and their quantum impurity models

Journal of Physics A: Mathematical and Theoretical, 57(1):015308, Dec 2023.

Manuscript in preparation

1. Mahaveer Prasad, Ahana Chakraborty, Tom Iadecola, Manas Kulkarni, Jede-

diah H. Pixley, Sriram Ganeshan and Justin Wilson Measurement and feedback

driven adaptive dynamics in the classical and quantum kicked top

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.L050201
https://iopscience.iop.org/article/10.1088/1751-8121/ad1342/meta
https://iopscience.iop.org/article/10.1088/1751-8121/ad119c/meta

	Acknowledgements
	Acknowledgements
	Contents
	Abstract
	Introduction
	Quantum chaos, random matrix theory, and spectral statistics tools 
	 RMT and quantum chaos/integrability conjectures
	BGS conjecture
	Berry-Tabor conjecture
	GHS conjecture

	Adjacent gap ratio
	Spectral form factor
	The spectral form factor for random matrices
	The spectral form factor for Poisson numbers

	Density of all gaps
	Density of all gaps for random matrices
	Density of all gaps for Poisson numbers

	Eigenstate Thermalization Hypothesis

	Dissipative quantum dynamics, phase transitions, and non-Hermitian random matrices
	Dissipative Dicke model
	Computing the spectrum of the dissipative Dicke Liouvillian

	Spectral statistics of complex spectra of Liouvillan
	Spacing statistics of complex eigenvalues
	Complex-plane generalization of the consecutive level-spacing ratio
	Convergence of the statistical properties of the spectrum with respect to the cavity cutoff

	Summary of results and conclusions

	Transition to chaos in extended systems and their quantum impurity models
	Tavis-Cummings Lattice (TCL)
	Impurity model
	Spectral properties
	Level-spacing statistics
	Adjacent-gap ratio
	Map between lattice and impurity models
	Spectral form factor

	Chaos in the classical limit of Impurity model
	Summary of results and conclusions

	Long-ranged spectral correlations in eigenstate phases
	Numerical study of physical models
	Physical models
	Summary of results

	On the universality and robustness of spectral signatures in the MBL phase
	Deforming the global density of states
	Filtering the SFF formula
	Unfolding the spectrum

	Discussion
	The effect of many-body resonances in the MBL phase
	Symmetry breaking picture for delocalization


	Stochastic control of chaos in Kicked Top model
	Classical Kicked Top model
	Chaos-Control Dynamics
	Observables

	Classical Control Transition
	Phase Diagram


	Conclusion
	Appendix Unfolding the spectrum 
	Appendix Mean-field relation between lattice and impurity spectral form factors
	Appendix DOS effects on the connected SFF for Poisson numbers
	Appendix Sensitivity of (0,N) data on binning size
	Appendix Numerical parameters used to produce main text figures
	Bibliography
	List of publications

