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Abstract

Inertial particles with finite size and mass move differently from the surrounding flow due

to finite-time hydrodynamic response of both the particle and fluid to perturbations. While

viscosity-dominated Stokes flows are well-studied under steady conditions, the unsteady

route to the steady state remains less explored. In this thesis, we examine the transport of

inertial particles using the unsteady Stokes model, capturing the non-instantaneous relax-

ation effects. We revisit the classical problem of a sphere settling in a viscous fluid under

gravity using the unsteady Stokes model, highlighting the emergence of memory effects, and

compare our theoretical findings with experimental observations from our collaborators. To

address the computational challenges of incorporating memory effects in particle dynamics

for general flows, we develop a memoryless framework using a Markovian embedding pro-

cedure. This results in an explicit integrator, called the RK-χTD schemes, for solving the

governing Maxey-Riley-Gatignol (MRG) equation. The RK-χTD schemes significantly re-

duce computational costs, making the MRG equation as accessible to numerical solutions as

ordinary differential equations. We show how the approach may be generalized to other non-

local evolutionary equations. We numerically investigate memory effects on non-interacting

particles in rotating vortical flows. Finally, we describe a two-dimensional multi-particle

model with fluid-mediated interactions in the unsteady Stokes regime, setting the frame-

work for future development of an MRG analogue that includes interactions.

xviii



Chapter 1

Introduction

Small particles or droplets suspended in, and interacting with, a background fluid are com-

mon in various physical systems across different length and timescales. Examples include

microswimmers in biological fluids, dust particles in air, bouncing droplets off a fluid sur-

face, and water droplets in the clouds. How the particles, or equivalently, droplets, move

upon interacting with the background fluid – both individually and collectively in the pres-

ence of other particles – dictates several important large-scale emergent phenomena. For

instance, organic matter and plankton, ranging in size from several nanometers to microm-

eters, aggregate to form millimeter-sized marine snow that settle in the ocean, which is

critical to oceanic carbon sequestration [5, 6]. Small and large marine animals swimming in

the ocean induce flows which positively contribute to biogenic mixing [7, 8]. In the Earth’s

atmosphere, micrometer-sized water droplets in the cloud coalesce to form bigger raindrops

through various mechanisms [9, 10], crucial for eventual precipitation.

These particle-laden flows exhibit complex coupled dynamics: the particle perturbs the

surrounding flow as it moves, and these perturbations, in turn, influence the particle’s mo-

tion. In many cases, these perturbations are small. A key factor in studying these coupled

dynamics is the response time of both the particle and the fluid to each other’s perturba-

tions. We consider scenarios, such as those in microhydrodynamic applications, where both

the particle and the fluid have perceptible response times to perturbations over the timescale

of the phenomenon in question, such that neither instantly relaxes to a quasi-steady state

upon interacting. Instead, owing to finite inertia, each relaxes non-instantaneously, resulting

in a nontrivial transient dynamic route to the quasi-steady state. It is in this sense of their

response behavior that we refer to particles with finite mass and size as ‘inertial ’. In this

thesis, we focus on the unsteady particle motion in spatio-temporally varying flows due to

the finite-time response dynamics.

Critical to characterizing various aspects of inertial particle transport in flows is an
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accurate description of particles’ motion in the fluid. This involves studying the different

forces on the particles as they move through the fluid. To relate the forces to the motion, we

write the equation of motion in its most general form for a single particle of mass mp and

arbitrary shape in a flow field using Newton’s law:

mp

dV ′
p (t

′)

dt′
= f ′

H(t
′) + f ′

NH(t
′) , (1.1)

where V ′
p (t

′) is the particle’s instantaneous translational velocity, related to its position vector

X ′
p(t

′) by dX ′
p(t

′)/dt′ = V ′
p (t

′) and t′ denotes time. For easy interpretation, we have decom-

posed the total driving force on the particle into hydrodynamic f ′
H and non-hydrodynamic

f ′
NH. All quantities with the prime symbols (·)′ are dimensional. The dynamical nature of

eq. (1.1) reflects particle’s finite inertia. In contrast, neglecting the particle’s inertia reduces

eq. (1.1) to an instantaneous force balance relation (f ′
H + f ′

NH = 0), which is often used to

model force-free particles in suspensions [11].

Non-hydrodynamic forces may include external body forces due to gravity and electro-

magnetic fields, short-ranged inter-particle forces of molecular origins such as the van der

Waals’, and stochastic Brownian forces due to thermal motion of fluid. We focus on the

hydrodynamic forces exerted by the surrounding flow, including fluid-mediated interaction

forces due to other particles. The significance of hydrodynamic forces compared to other

forces in the steady-state equilibrium varies across different length scales. Typically, larger

particles such as rocks (several centimeters in size) are minimally influenced by hydrody-

namic forces, where the body forces often dominate. On the other hand, smaller particles

such as colloidal particles (0.01 − 0.1µm) are predominantly driven by Brownian forces.

In the intermediate size range of a few hundred micrometers to a few millimeters, Brown-

ian effects are negligible, but hydrodynamic forces become significant. When making these

comparisons, the particle size is measured relative to a typical flow length scale. We are

concerned with particles in the intermediate size range. In non-equilibrium states, however,

the interplay between length scales and timescales become crucial, potentially altering the

dominant balance of forces, which will be discussed in section 1.1.

The hydrodynamic force on a particle is given by the surface integral of traction, σ′ · n,
that develops on the particle’s surface due to the surrounding fluid:

f ′
H(t

′) =

∮

x′∈∂V(t′)
σ′(v′(x′, t′), p′(x′, t′)) · n(x′) dS(x′) ,

where the fields (v′, p′) denote the velocity vector and hydrodynamic pressure of the particle-

induced flow. Here, σ′ represents the fluid stress tensor, ∂V(t′) denotes the moving particle’s
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surface, which bounds the exterior fluid volume V , n denotes the unit normal vector directed

outwards from the surface ∂V (see fig. 1.3) and dS(x′) is the surface measure in the vector

space x′. The specific form of the hydrodynamic stress, σ′, depends on the suspending fluid’s

response behavior to local deformations. The response behavior is given by a constitutive

relation between stress and a quantity characterizing the deformation, such as strain or

strain rate. For isotropic Newtonian fluids, the stress tensor depends linearly on the velocity

gradient ∇′v′ and hydrodynamic pressure p′ [12]:

σ′ = −p′Id + µ(x′, t′)[∇′v′ + (∇′v′)T ] + µ∗(x′, t′)(∇′ · v′)Id ,

where Id is the identity matrix in d−dimensional space occupied by the fluid (typically

d = 2, 3), the superscript T indicates transpose operation, and µ, µ∗ are the fluid’s dynamic

and bulk viscosity, respectively. In many cases, such as in stratified flows [13], the viscosity

may vary spatio-temporally with temperature, salinity, and other factors. However, we

restrict ourselves to the case of constant viscosity.

Integrating the traction over the particle’s surface gives the driving hydrodynamic force.

Evaluating the surface traction requires the knowledge of the flow field (v′, p′) which, for

a fluid of density ρf , evolves dynamically according to the following momentum balance

equation:

ρf

(∂v′

∂t′
+ v′ ·∇′v′

)
= ∇′ · σ′ + F ′

ext(x
′, t′) , (1.2)

subject to an external forcing F ′
ext and appropriate boundary conditions at the particle’s

surface. The above equation is supplemented by a mass-conservation equation:

∂ρf
∂t′

+∇′ · (ρfv′) = 0 =⇒ Dρf
Dt′

+ ρf∇′ · v′ = 0 . (1.3)

For incompressible flows, the density of an arbitrary small continuum fluid parcel is constant,

i.e., Dρf/Dt
′ = 0, where D/Dt′ is the material derivative following the fluid parcel. This

leads to the commonly-used divergence-free condition for incompressibility, ∇′ ·v′ = 0. As a

result, the expression for the divergence of the stress tensor in eq. (1.2) simplifies as follows,

∇′ · σ′ = −∇′p′ + µ∇′2v′ + (µ+ µ∗)∇′(∇′ · v′) = −∇′p′ + µ∇′2v′ .

Substituting the above relation in eq. (1.2) gives the Navier-Stokes equation for incompress-

ible flows with uniform viscosity.

Different hydrodynamical models for inertial particles are derived from eq. (1.1) by in-

corporating dominant hydrodynamic forces that emerge from the fluid dynamics (eq. (1.2)),
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at the relevant time and length scales of the phenomena of interest. At the smaller length

scales of the particle, viscous forces dominate. When the particle-induced perturbations are

sufficiently small, which is likely in the viscosity-dominated conditions, the dynamics follows

a linear Stokes theory. This theory is characterized by a small nondimensional Reynolds

number, Rep, which is defined based on the particle’s size and particle-induced velocity per-

turbation in the flow. To distinguish from the Reynolds number associated with the ambient

unperturbed flow field, we refer to Rep as the particle Reynolds number. Unsteady dynamics

warrants a careful assessment of the timescales involved in the system, which introduces yet

another nondimensional number, also a ratio of timescales, called the Stokes number, denoted

by S. In the following sections, we discuss the Stokesian regime, the primary theme of this

thesis, where we define these nondimensional numbers precisely and describe the dominant

hydrodynamic physics as we account for fluid’s inertia marked by finite-time relaxation.

In the rest of the thesis, we assume the particles are spherical and rigid, unless mentioned

otherwise. The symmetry of the assumed geometry greatly simplifies many calculations,

and rigidity enforces no-slip boundary conditions at the particle-fluid interfaces. Also, we

consider particles heavier than the fluid such that ρp > ρf . We reiterate our assumptions

regarding the fluid that it is Newtonian and incompressible.

1.1 Overview of unsteady Stokesian dynamics

In this section, we discuss the unsteady version of the Stokes theory relevant in particle-

laden flows and the associated nondimensional parameters. The purpose is to outline the

minimal hydrodynamic theory for viscosity-dominated flows, incorporating the fluid’s finite-

time relaxation and the forces acting on the inertial particle as a result. To that end, for

simplicity, we ignore external forces on the fluid without any loss of generality.

1.1.1 Leading order flow physics

The purpose of this subsection is to derive the leading-order governing equation for the

particle-laden flow in the viscosity-dominated regime using scale analysis. We consider the

flow field that develops as a particle moves through a background flow, which in the absence of

the particle is (u′∞, p′∞). The presence of the particle perturbs this free-space1 background

field locally, leading to the perturbed field (v′, p′), supported in the exterior volume V (see

fig. 1.3). Assuming incompressibility and uniform viscosity of the fluid, we write the Navier-

1We call u′∞ a free-space field since it is supported in the entire space R3 with no particle.
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Stokes equation for the perturbed flow subject to boundary and initial conditions:

ρf

(∂v′

∂t′
+ v′ ·∇′v′

)
= −∇′p′ + µ∇′2v′, (1.4a)

∇′ · v′ = 0 , (1.4b)

v′(x′, 0) = v′
0(x

′) , (1.4c)

v′(x′, t′) = V ′
p (t

′) on the particle’s surface , (1.4d)

v′(x′, t′) → u′∞(x′, t′) , p′(x′, t′) → p′∞(x′, t′) as |x′ −X ′
p(t)| =: r′ → ∞ , (1.4e)

where eq. (1.4e) suggests that at far-field the flow is unperturbed by the particle and is

given by the free-space field (u′∞, p′∞). For the order-of-magnitude comparison, it suffices

to consider a quiescent background flow (u′∞ ≡ 0), simplifying the analysis to focus on the

time and length scales intrinsic to the particle-induced dynamics. We will briefly address

the case of the nonuniform, unsteady background flow, which introduces external scales, at

the end of this subsection.

The dimensional equations above contain parameters ρf and µ which are fundamental

properties of the fluid. Rewriting the equations in terms of dimensionless variables eliminates

the explicit dependence on these parameters in favor of deriving an equation for a broader

class of flow conditions. The exercise further allows us to estimate the size of various terms

in the momentum balance to extract the leading order physics.

We nondimensionalise the equation by introducing a length scale Lc, a timescale Tc, and

a velocity scale Uc. In typical particle-laden flows, the particle radius ap serves as a relevant

representative length scale, so we set Lc = ap. We will explicitly state it when a different

choice is warranted during the discussion. The velocity Uc is a characteristic measure of the

particle-induced perturbed flow velocity. The timescale Tc depends on the phenomenon of

interest, often related to the background flow, which will be stated explicitly on a case-by-

case basis. For the scenarios we wish to consider, reflecting finite-time relaxation of the fluid,

we allow an independent choice for Tc, different from ap/Uc. The resulting nondimensional

variables are,
t′

Tc
→ t ,

x′

ap
→ x ,

v′

Uc

→ v ,
p′

Pc

→ p .

Consequently, the equation of motion for the nondimensional perturbed field reads

(ρfUc

Tc

)∂v
∂t

+
(ρfU2

c

ap

)
v ·∇v = −

(Pc

ap

)
∇p+

(µUc

a2p

)
∇2v, (1.5a)

∇ · v = 0 , (1.5b)
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where the variables without primes are dimensionless. We distinguish between two terms

in eq. (1.5) related to fluid inertia: we refer to the Eulerian acceleration ∂v/∂t as unsteady

inertia, and the nonlinear term v ·∇v as the convective inertia. To compare the relative size

of all the terms in the viscosity-dominated regime, we divide the entire equation by µUc/a
2
p,

ensuring the viscous term dominates the balance.

The choice for the characteristic scale for the pressure variable is yet to be made. There

are two choices: Pc = {µUc/ap, ρfU
2
c }. To reflect the viscosity-dominated regime, we choose

Pc = µUc/ap. As a result, the nondimensional equation of motion becomes

S
∂v

∂t
+Repv ·∇v = −∇p+∇2v, (1.6a)

∇ · v = 0 , (1.6b)

where the nondimensional Stokes and particle Reynolds numbers are

S = a2p/(νTc) , Rep = apUc/ν , (1.7)

respectively. Here, ν = µ/ρf is fluid’s kinematic viscosity. The Stokes number S quantifies

the relative strength of unsteady inertia (∂v/∂t) to viscous forces (∇2v), while the particle’s

Reynolds number, Rep, compares convective inertia (v ·∇v) to viscous forces. When viscous

effects dominate, we have Rep ≪ 1, and the dominant balance includes the pressure gradient

and the viscous term, both linear in v and p. The convective inertia term drops off, whereas

we retain the unsteady inertia term, which reflects the fluid’s unsteady or finite-time response,

whose relative strength is determined by S. Thus, in theRep ≪ 1 limit, the dominant balance

in eq. (1.6) is represented by the Stokes equation. Further distinction between steady and

unsteady behavior thereafter is based on S: the limit S → 0, corresponding to instantaneous

fluid relaxation over the timescale Tc, yields the steady Stokes theory, whereas allowing for

finite S > 0 corresponds to its unsteady counterpart.

A comment on the other choice for characteristic pressure is in order here. Suppose

we make the alternative choice, i.e., Pc = ρfU
2
c [14]. In this case, the pressure gradient

becomes O(Rep) and drops out of the leading-order balance, resulting in a d−dimensional

vector diffusion equation for v. This, however, introduces inconsistency if we also demand

incompressibility, since the system becomes over-constrained with (d + 1) equations for d

unknown variables. An insightful reflection of this inconsistency stemming from a poor

choice of characteristic pressure is that pressure enforces incompressibility in low-Reynolds

number flows2. Choosing Pc = µUc/ap ensures that the pressure gradient remains in the

2A similar argument can be made for the high-Rep flows, driving the choice of Pc = ρfU
2
c instead.
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leading-order balance and couples with the velocity field, ensuring in turn that the (d+ 1)-

dimensional system is adequately constrained by as many equations in eq. (1.6).

The nondimensional form of eq. (1.6) broadly applies to a class of flow scenarios charac-

terized by Rep, S due to dynamical similarity. This means that, instead of a specific fluid

with density ρf and viscosity µ in eq. (1.4), the nondimensional eq. (1.6) describes a family

of flow conditions sharing the same boundary and initial conditions, but with different val-

ues of ρf , µ and the characteristic scales, as long as the corresponding values of Rep and S

remain invariant. Thus, discounting the information on the exact magnitude of each term

in the balance, the nondimensional representation preserves the ratios of their strengths and

provides a uniform qualitative picture for a class of flows.

To begin with, we have identified the small parameter Rep ≪ 1. Therefore, we consider

the vanishing Reynolds number limit by setting Rep = 0. This limit enforces a clear and

large separation between the fast/short viscous and the slow/long inertial timescales: a2p/ν ≪
ap/Uc. A physical interpretation for the viscous timescale can be given as follows. Taking

the curl of the first equation in eq. (1.4), upon neglecting the nonlinear term, yields the

following diffusion equation for the vorticity field, ω′ := ∇′ × v′,

∂ω′

∂t′
= ν∇′2ω′ ,

where the kinematic viscosity ν acts as the diffusion coefficient. Thus, the timescale a2p/ν

is the time it takes for the vorticity generated by the particle-induced field to diffuse over a

distance ap.

The timescale Tc in the Stokes number S is a free parameter, yet to be chosen. When the

phenomenon of interest occurs over a faster timescale comparable to the viscous timescale,

the Stokes number S ∼ 1. In a time-dependent dynamical process, S ∼ 1 may also corre-

spond to the early or short-time dynamics. On the other hand, when the phenomenon of

interest is slow and is observed over longer timescales, i.e., S ≪ 1, the unsteady inertia term

becomes negligible, and we recover the classical steady Stokes equation from eq. (1.6) at the

leading order:

0 = −∇p+∇2v , (1.8)

which is the common quasi-steady assumption that accurately captures equilibrium states

in low-Rep systems. However, in the interest of capturing the transient dynamics as the

fluid relaxes in finite time, we focus on S > 0. We scale the nondimensional time further by

t/S → t, leading to the following unsteady Stokes equation at the leading order:

∂v

∂t
= −∇p+∇2v . (1.9)
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The above equation governs the primary regime of interest in this thesis (except chapter 6).

We shall refer to it as the unsteady Stokes model. It is linear and retains the unsteady inertia

term, reflecting finite-time relaxation of the fluid to perturbations caused by the particle.

Validity of the unsteady Stokes model: Understanding the validity of the simplified

unsteady Stokes model is equally important. In practice, the particle Reynolds number Rep

is never exactly zero, and the effects due to small Rep, however small, can become significant

over the timescale of interest. The dynamics in eq. (1.4) suggests a coupling between length-

and timescales. We briefly discuss how small convective inertial effects might emerge in the

dynamics when Rep ̸= 0 using scale analysis to assess the validity of the unsteady Stokes

model, which is derived in the vanishing Rep limit.

Previously, we set Lc = ap. To account for small convective inertial effects, we now seek

an alternative length scale Lc, where convective inertia becomes comparable to the viscous

effects. Comparing the coefficients of the corresponding terms in eq. (1.5), we find

ρfU
2
c

Lc

∼ µUc

L2
c

=⇒ Lc ∼
ν

Uc

= apRe
−1
p .

The new length scale, ν/Uc, is known as the Oseen length [15, 16]. The corresponding

timescale, known as the Oseen timescale, is ν/U2
c , which compares to the viscous diffusion

time as apRe
−2
p . These scalings suggest that the Oseen length and timescale correspond to

the far-field (as measured from the particle’s center) and late-time dynamics, respectively.

See the schematic in fig. 1.1 for spatial separation.

We now revisit the order-of-magnitude analysis in eq. (1.5) across the spatio-temporal

landscape swept by length scales {ap, ν/Uc} and timescales {a2p/ν, ν/U2
c }. At early/short

times, when Tc ∼ a2p/ν (equivalently S ∼ 1), diffusive dynamics dominates uniformly across

length scales, described by eq. (1.9). On the other hand, at later times, when Tc ∼ ν/U2
c

(S ∼ Re2p), distinct behaviors emerge at near (r′ ∼ ap) and far-field (r′ ∼ apRe
−1
p = ν/Uc).

Setting Tc = ν/U2
c in eq. (1.5), corresponding to later times, the nondimensional equation

reveals the following:

Near-field (r′ ∼ ap) : Re2p
∂v

∂t
+Repv ·∇v = −∇p+∇2v , (1.10a)

Far-field (r′ ∼ apRe
−1
p ) : Re2p

∂v

∂t
+Re2pv · ∇̄v = −Rep∇̄p+Re2p∇̄2v (1.10b)

where the variable with the overhead bar is scaled by Oseen length scale: ∇̄ = Re−1
p ∇. Close

to the particle, eq. (1.10a) suggests steady Stokes dynamics, whereas in the far-field all the
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r′

r′ ∼ apRe
−1
p

Oseen (far) region

r′ ∼ ap

Stokes (near) region

Figure 1.1: Schematic showing development of distinct near and far fields around the particle
at late Oseen times t′ ∼ ν/U2

c .

terms become comparable to each other, approximated by unsteady Oseen dynamics3 (see

fig. 1.2). A detailed perturbation analysis, such as asymptotic matching, would be needed

to address this complex behavior [1, 2, 16], but we do not explore it further. This heuristic

dimensional analysis suggests an inertial timescale, like the Oseen timescale in the simplified

case considered here, beyond which the unsteady Stokes equation may no longer hold, as

the omitted convective inertial term become significant. These inertial effects may become

important if they emerge during the timescale of the phenomenon of our interest, warranting

further corrections to the unsteady Stokes model.

What if there are multiple inertial timescales? So far, we have considered quiescent

background flow for simplicity. In practice, moving particles perturb a non-zero background

flow, u′∞(x, t), which can vary spatially and temporally. The insights from the previous

dimensional analysis largely hold for the perturbation field (v′−u′∞) too, showing a spatially

heterogeneous dynamics at later times under small fluid inertial effects. However, a non-zero

background flow may introduce additional inertial scales besides the intrinsic Oseen scale.

One such scale, relevant to particle lift dynamics [18], is linked to the local strain rate.

This introduces a new, typically small, Reynolds number, Res = a2s∗/ν, called the shear

Reynolds number, based on the inverse shear rate s−1
∗ ∼ 1/|∇′u′∞|. This requires careful

consideration of various limiting cases characterizing the dominant source of inertia: the

Oseen limit (Re
1/2
s ≪ Rep ≪ 1), where convective inertia dominates over shear-induced

inertia, and the Saffman limit (Rep ≪ Re
1/2
s ≪ 1), where shear-induced inertia prevails.

Both these limits have been studied previously [19–22]. Evidently, the interplay between

3This far-field behavior is similar to Oseen’s observation [17] in the steady scenario.
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(I)
unsteady
Stokes

(II)-near
steady Stokes

(II)-far
unsteady Oseen

r′/ap

t′/τv
Re−2

p

(Oseen time)

Re−1
p

(Oseen
length)

1

1

+ +

+

+

Figure 1.2: Schematic of leading-order flow physics in the spatio-temporal landscape around a
moving particle perturbing a quiescent flow in viscosity-dominated conditions (0 < Rep ≪ 1),
with no externally imposed time or length scales beyond those inherent to the dynamics.
Here, ap denotes the particle’s radius, and τv = a2p/ν denotes the time taken for particle-
induced vorticity to diffuse over particle’s size. Region (I) corresponds to early-time dynamics
with spatially homogeneous physics, uniformly described by the unsteady Stokes equation.
Region (II) corresponds to late-time dynamics, characterized by spatial heterogeneity in the
flow physics in the near and far fields. The boundaries between the regions are not as well-
defined as the dashed lines used for representation might indicate–they are separated by a
continuum of length and time scales. This representation is adapted from [1] and [2].

various scales becomes increasingly complex in multiscale processes such as turbulence.

Nevertheless, for processes with low Reynolds numbers, the early or short-time dynamics

are well-described by the unsteady Stokes model. The extent to which this model remains

valid at later times depends on the magnitude of the relevant Reynolds numbers. Smaller

inertial scale Reynolds numbers extend the early-time diffusive regime governed by the un-

steady Stokes model, prolonging its applicability.

We focus on the unsteady Stokes regime hereon, bearing in mind the above factors that

control its validity. In the next few subsections in this chapter, we briefly review some

preliminaries of the unsteady Stokes equation.
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1.1.2 Fundamental solution: the unsteady Stokeslet

We review the fundamental solution for the three-dimensional unsteady Stokes equation to

gain insights into far-field behavior and highlight key differences from the steady Stokes

problem. Although both problems are linear, the steady Stokes problem is characterized by

the Laplace equation, whereas the unsteady counterpart by the modified Helmholtz equation.

In this subsection, we also introduce the Laplace and Fourier transform conventions used

throughout this thesis.

We seek a rotationally invariant fundamental solution (the Green’s function) to the un-

steady Stokes operator in R3. We write the fundamental solution as vδ = fδ · G(x, t) and

pδ = fδ ·Π(x, t). We look for (G,Π) that solves the unsteady Stokes flow due to a constant

point force fδ applied at the origin x = 0 (chosen arbitrarily), acting impulsively at t = 0:

∂G
∂t

= −∇Π+∇2G+ Iδ(x)δ(t) , ∇ ·G = 0 , (1.11)

where I is the 3 × 3 identity matrix, δ is the Dirac delta ‘function’ satisfying the identity∫
R3 δ(r)dr = 1 for space-like argument and

∫
R+ δ(t)dt = 1 for time-like argument. The tensor

G is also known as the unsteady Stokeslet. We recall that G is a tensor, and Π a vector.

Taking the Laplace transform with respect to time, the equation becomes:

sG̃ = −∇Π̃+∇2G̃+ Iδ(x) , ∇ · G̃ = 0 , (1.12)

where s is the Laplace variable, and the tilde denotes the Laplace transform defined according

to the following transform pair-

(̃·)(∗, s) =
∫ ∞

0

e−st(·)(∗, t) dt , (·)(∗, t) = 1

2πi

∫

LB

est(̃·)(∗, s) ds ,

where LB is the standard Bromwich contour in the complex-s space. One may note the

structural similarity of eq. (1.12) for G̃ to the modified Helmholtz equation. Using the

Fourier transform in eq. (1.12), we solve for the transformed variables:

ˆ̃Π(k, s) = −i k
k2

, ˆ̃G(k, s) =
I− kk

k2

k2 + s
(1.13)

where k = |k| and the hatted variables are Fourier transforms defined as

(̂·)(k, ∗) =
∫ ∞

−∞
e−ik·x(·)(x, ∗) dx , (·)(x, ∗) = 1

(2π)3

∫

R3

eik·x(̂·)(k, ∗) dk .
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Inverting the Fourier transform gives the unsteady Stokeslet in Laplace space:

G̃(x, s) =
1

4πsr3

{
(1 + r

√
s+ r2s)e−r

√
s − 1

}(
I− xx

r2

)

+
1

2πsr3

{
1− (1 + r

√
s)e−r

√
s
}xx
r2

,
(1.14)

where |x| = r. In the interest of assessing only the spatial decay properties, we don’t perform

Laplace inverse transform. For comparison, we recall the fundamental solution to the steady

Stokes problem here [23]:

Gsteady(x) =
1

8πr

(
I+

xx

r2

)
.

We note the difference in the far-field behavior of the two fields: as r → ∞, we have

Gsteady ∼ O(1/r), whereasG ∼ O(1/r3). The fast decay of the unsteady Stokeslet guarantees

well-defined integrals in the symmetry relation that we discuss in the following section 1.1.3.

Further, it estimates a smaller radius of influence, meaning other particles–or more generally

surfaces–must be much closer to feel the hydrodynamic interaction effects.

An advantage of the fundamental solution is that a suitable modification of it may serve

as a reference known solution when constructing general solution for the unsteady Stokes

equation in scenarios subject to other initial and boundary conditions.

1.1.3 Reciprocal theorem for unsteady Stokes equation

For particle’s motion in the unsteady Stokes regime, the quantity of interest is the following

hydrodynamic force, as seen in eq. (1.1), written here in nondimensional form,

fH(x, t) =

∮

x∈∂V
σ(v(x, t), p(x, t)) · n dS(x) .

This is an integrated quantity: the surface traction σ · n is integrated over the particle’s

surface. This may be conventionally determined by exactly solving for the underlying flow

field first, (v, p), and then constructing the stress tensor. However, this approach may not

be feasible for all boundary and initial conditions. In this subsection, we review a symmetry

relation, called the Lorentz Reciprocal theorem [23, 24], for the unsteady Stokes equation that

provides direct access to this integrated quantity, circumventing the need to solve exactly

for the field.

The Reciprocal theorem is an analogue of Green’s second identity. It is derived using

the divergence theorem, yielding an integral relation between two fields satisfying identical

partial differential equation (PDE) in the same domain, differing in boundary and initial

conditions.
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∂V∞

∂V

n

V p(t)V

Figure 1.3: Schematic showing an arbitrarily-shaped particle (dotted region) and the do-
main exterior to the particle, V , where the fluid is present and follows the unsteady Stokes
dynamics. The surface bounding the particle is ∂V and n is the unit vector normal to this
surface.

Consider two incompressible (dimensionless) flow fields (v(1), p(1)) and (v(2), p(2)), each

supported in the volume V exterior to an arbitrarily shaped particle (see fig. 1.3). Let σ(1)

and σ(2) denote the corresponding stress tensors. Suppose that both these fields satisfy the

unsteady Stokes equation, eq. (1.9), distinguished by different boundary conditions on the

bounding particle surface ∂V and initial conditions. Further, we assume these fields vanish

with sufficient decay rate at ∂V∞ at infinity.

We follow the steps used in deriving Green’s second identity. We take the inner product

of the first field v(1) with the unsteady Stokes equation for the second field v(2) and subtract

the inner product of v(2) with the equation for v(1), following which we integrate over the

exterior fluid volume to get,

∫

x∈V

(
v(1) · ∂v

(2)

∂t
− v(2) · ∂v

(1)

∂t

)
dV (x) =

∫

x∈V

(
v(1) ·∇σ(2) − v(2) ·∇σ(1)

)
dV (x) , (1.15)

where dV (x) is the volume measure in the vector space x corresponding to dS(x).

One can show the following relation for an incompressible Newtonian fluid using integra-

tion by parts [23]:

v(1) ·∇σ(2) − v(2) ·∇σ(1) = ∇ · (v(1) · σ(2))−∇ · (v(2) · σ(1)) .

Substituting the above on the right-hand side in eq. (1.15), followed by invoking the diver-
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gence theorem, we get the following final integral form:

∫

x∈V

(
v(1)(x, t) · ∂v

(2)(x, t)

∂t
−v(2)(x, t) · ∂v

(1)(x, t)

∂t

)
dV (x)

=

∮

x∈∂V

(
v(1)(x, t) · σ(2) · (−n)− v(2)(x, t) · σ(1) · (−n)

)
dS(x) ,

(1.16)

where the integral on the right-hand side of the relation is over the particle’s surface (a di-

mensional reduction!). Note that the integral over ∂V∞ is absent due to the assumed decay

properties of the integrand. This is the statement of the Lorentz Reciprocal theorem for the

unsteady Stokes equation, applicable for arbitrarily shaped particle. We shall, however, con-

sider the particular case of spherical particle for our applications. In applications, (v(1), p(1))

is the primary field corresponding to the conditions of interest, whereas the auxiliary field

(v(2), p(2)) is assumed known.

The above sequence of operations (eqs. (1.15) and (1.16)) can be repeated, starting from

the unsteady Stokes equations in the Laplace space instead, to derive the following relation,

which corresponds to eq. (1.16) for the Laplace-transforms of the field variables:

∫

x∈V

(
ṽ(2)(x, s) · v(1)(x, 0)− ṽ(1)(x, s) · v(2)(x, 0)

)
dV (x)

=

∮

x∈∂V

(
ṽ(1)(x, s) · σ̃(2) · (−n)− ṽ(2)(x, s) · σ̃(1) · (−n)

)
dS(x) .

(1.17)

Note that by choosing the auxiliary field ṽ(2) with desirable initial and boundary con-

ditions, the integral of surface traction due to the primary field ṽ(1) can be extracted. The

above form of the Reciprocal relation is used in deriving equation of motion for the particle

in a flow, discussed in the upcoming section 1.1.4.

The unsteady Stokeslet from eq. (1.11) can be modified for a singular source placed in

the exterior V (instead of x = 0) to serve as the auxiliary field, and obtain an integral

expression for the primary velocity field v(1) subject to desired conditions. This forms the

basis for fast numerical methods based on such integral solution representations (see [25, 26]

for example). The Reciprocal identity finds wider applications in other low-Reynolds number

flows, for instance, [27] uses a modification of the identity to explore fluids with odd viscosity

and [28] uses it in active Stokesian suspensions. We refer to [24] for a detailed review of the

reciprocal theorem and its various applications. However, we note here that the utility of

the symmetry relation relies on a known solution that serves as the auxiliary field, which

may be infeasible in some cases, especially for multi-particle systems.
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1.1.4 Hydrodynamic force on inertial particle in Stokesian regime

So far, we addressed the dominant fluid dynamics around the moving particle. In this

subsection, we discuss the hydrodynamic force that a particle experiences as a result while it

moves through a background flow field u′∞ in the unsteady Stokes regime. Using the tools

discussed so far, we outline the derivation for the particle’s equation of motion following

[29–31].

Assuming the particle induces only a small perturbation, the (dimensional) perturbed

fluid field can be decomposed as,

v′(x′, t′) = u′∞(x′, t′) +
(
v′(x′, t′)− u′∞(x′, t′)

)
≡ u′∞(x′, t′) + v′

p(x
′, t′) ,

p′(x′, t′) = p′∞(x′, t′) +
(
p′(x′, t′)− p′∞(x′, t′)

)
≡ p′∞(x′, t′) + p′p(x

′, t′) ,

where v′
p := (v′ −u′∞) represents the small disturbance induced by the particle on the free-

space background field u′∞. Correspondingly, owing to the linear dependence of the stress

tensor on the velocity field for a Newtonian fluid, the stress field and the hydrodynamic force

follow identical decomposition:

σ′(v′, p′) = σ′(u′∞, p′∞) + σ′(v′ − u′∞, p′ − p′∞) ≡ σ′∞ + σ′
p ,

=⇒ f ′
H(x

′, t′) =

∮

∂V
σ′ · n dS =

∮

∂V
σ′∞ · n dS +

∮

∂V
σ′

p · n dS
(1.18)

The Navier-Stokes equations for the decomposed fields can be written as follows:

ρf

(∂u′∞

∂t′
+ u′∞ ·∇′u′∞

)
= ∇′ · σ′∞ , (1.19a)

ρf

(∂v′
p

∂t′
+ u′∞ ·∇′v′

p + v′
p ·∇′u′∞ + v′

p ·∇v′
p

)
= ∇′ · σ′

p , (1.19b)

along with their respective divergence-free conditions.

The contribution of the known free-space ambient flow field u′∞ to the hydrodynamic

force on the particle can be inferred from eq. (1.19a) as follows,

∮

x′∈∂V
σ′∞ · n dS(x′) =

∫

x′∈R3\V
∇′ · σ′∞ dx′ ≈ 4

3
πa3pρf

Du′∞

Dt′

∣∣∣∣∣
x′=X′

p(t
′)

, (1.20)

where the final approximation is made assuming the quantity Du′∞/Dt′ is almost uniform in

the volume occupied by the particle, R3 \V . Therefore, assuming smoothness of u′∞, we use

Taylor series expansion for the material derivative in the neighborhood of the instantaneous
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center of the moving particle for sufficiently small particle size ap compared to a characteristic

length scale in the ambient flow, retaining only the leading-order term in eq. (1.20), given

by its value at the particle’s instantaneous center. Higher-order correction terms, dependent

on gradients of u′∞, have been consistently derived in [32].

Now, we focus on the remaining contribution from the unknown evolving perturbation

field, v′
p. Following the non-dimensionalisation procedure in section 1.1.1 with similar choice

of characteristic scales, Lc = ap, Pc = µUc/ap, eq. (1.19b) reduces to the following unsteady

Stokes equation at the leading-order in the small particle Reynolds number parameter4 with

modified boundary conditions,

ρf
∂v′

p

∂t′
= ∇′ · σ′

p , (1.21a)

∇′ · v′
p = 0 , (1.21b)

v′
p(x

′, 0) = v′
0(x

′)− u′∞(x′, 0) , (1.21c)

v′
p(x

′, t′) = V ′
p (t

′)− u′∞(x′, t′) on the particle’s surface , (1.21d)

v′
p(x

′, t′) → 0 , p′p(x
′, t′) → 0 as |x′ −X ′

p(t)| → ∞ , (1.21e)

Evaluating the contribution from the unknown perturbation field vp
′ is more involved and

requires solving eq. (1.21). Following [29, 30], we apply the Reciprocal Theorem in the

Laplace space (eq. (1.17)) with v(1) = v′
p and choose an appropriate auxiliary field, v(2). For

v(2), Maxey and Riley [29] used a flow resulting from an impulsively-started rigid sphere at

t′ = 0, while Gatignol [30] chose a flow resulting from an oscillating sphere as the auxiliary

field. Both choices yield the following expression for the hydrodynamic force due to v′
p:

∮

x′∈∂V
σ′

p · n dS(x′) = −6πapµw
′(t′)− 6πa2pµ

(
w′(0)√
πνt′

+

∫ t′

0

1√
πν(t′ − τ ′)

dw′(τ ′)

dτ ′
dτ ′
)

− mf

2

(
dV ′

p (t
′)

dt′
− Du′∞

Dt′
(X ′

p(t
′), t′)

)
,

(1.22)

where w′(t′) = V ′
p (t

′)−u′∞(X ′
p(t

′), t′) is the particle slip-velocity and mf is the mass of fluid

displaced by the particle.

Combining the contributions from the two decomposed fields (eq. (1.20) and eq. (1.22))

for the total hydrodynamic force in eq. (1.1), we obtain the following integro-differential

4Recall our particle Reynolds number, Rep, is based on the particle-induced perturbation velocity. The
field v′

p emerging from the decomposition here is consistent with this definition.
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equation for the particle’s translational motion,

mp

dV ′
p (t

′)

dt′
=

[
− 6πapµw

′(t′)− 6πa2pµ

(
w′(0)√
πνt′

+

∫ t′

0

1√
πν(t′ − τ ′)

dw′(τ ′)

dτ ′
dτ ′
)

+mf
Du′∞

Dt′

∣∣∣∣∣
x′=X′

p(t
′)

− mf

2

(
dV ′

p (t
′)

dt′
− Du′∞

Dt′
(X ′

p(t
′), t′)

)]
+ f ′

NH(X
′
p(t

′), t′) ,

(1.23)

This is the Maxey-Riley-Gatignol (MRG) equation5, also commonly known as the Maxey-

Riley equation, where the Faxén correction terms which account for local curvature of the

flow field are omitted (∼ ∇′2u′∞), assuming ap ≪ L∞, where L∞ is some characteristic

length scale of the ambient flow (see [29] for the Faxeń corrections). According to eq. (1.23),

the hydrodynamic force under unsteady Stokes theory includes four contributions in the

order that they appear in the square parenthesis: the quasi-steady Stokes drag, the nonlocal

Basset-Boussinesq history (BBH) force, the inertial force from the ambient flow acceleration,

and the added mass due to particle acceleration.

1.2 Motivation and Organization of thesis

Parts of this subsection are taken from the published article titled ‘The Basset-Boussinesq

history force: its neglect, validity, and recent numerical developments ’ [Jaganathan et al.,

Front. Phys. (2023)]. I acknowledge my co-authors on it for their contributions.

We have seen that accounting for finite-time response of the fluid warrants an unsteady

Stokes theory, which is fundamentally different from its steady counterpart in a number of

ways. An immediate consequence is the emergence of a nonlocal force on the particle called

the Basset-Boussinesq history force in addition to the standard Stokes drag, leading to an

integro-differential equation of motion governing the particle’s motion eq. (1.23).

Previous analytical and experimental works have reported notable qualitative differences

when the BBH force is neglected in the inertial particle model even in the simplest scenarios;

a small sphere in a quiescent fluid, either relaxing freely (no external forcing) or approaching

terminal velocity under gravity, does so algebraically when the BBH force is included [34–37]

as opposed to exponentially when excluded. This algebraic behavior is consistent with short-

time experimental observations made by [38] on a sphere settling under gravity. Similarly,

a colloidal particle in fluid displaying long-time tails in velocity auto-correlations [39, 40] is

supported in theory by inclusion of the history force [41–44]. A marginally heavy particle

5Gatignol in [30] additionally also provides the torque equation.
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in a simulation without the BBH force is ejected from a solid-body vortex more rapidly

than observed in experiment [45, 46], whereas inclusion of the BBH force provides better

agreement with experiment. Exceptionally, [47] reported that while certain aspects of the

dynamics of neutrally-buoyant particles in chaotic flow observed by [48] are predicted by the

MRG equation, any deterministic force including the BBH force is inadequate to capture

random fluctuations.

Numerical studies too have highlighted the role of the BBH force in particle dynamics

in turbulent flows [49–59]. The main conclusions of these studies are (i) particle clustering

and caustics formation are strongly reduced by the BBH force; (ii) in a typical chaotic flow

without external forcing, particle attractors are less typical in the presence of the BBH force

for light particles and the basin of attractions where particulate matter tends to aggregate

shrinks irrespective of the particle’s Stokes number (ratio of particle relaxation timescale to

flow timescale). Convergence to the attractors that remain is algebraically slower with BBH

as opposed to exponential convergence in its absence; however, (iii) several statistical prop-

erties of particles remain unchanged. For example, the standard deviation σ of trajectories

of a collection of sedimenting particles scales as ballistic, σ2 ∼ t2 for short times and diffu-

sive, σ2 ∼ t for long times both with and without the BBH force. Nevertheless, individual

trajectories of the particles show deviation. Yet, as Haller in [60] summarizes the collective

viewpoint, the BBH force “is notoriously difficult to handle”, which prompts most studies

to ignore this term despite ample numerical and experimental evidence of its significance.

The challenges posed by the BBH force and thereby the MRG equation are largely due to

its nonlocal nature and are discussed in detail in section 3.1.2.

The work in this thesis explores aspects of inertial particle transport in unsteady envi-

ronments and is motivated by the following broad questions:

• What is the unsteady Stokes flow model for a single particle? How is it fundamentally

different from its well-known steady counterpart? How do memory effects emerge?

• Accounting for memory effects results in an integro-differential equation for the parti-

cle’s motion. How can we construct an equivalent memoryless framework which lends

itself to an efficient numerical method with time-independent computational cost?

• How do the memory effects influence the dynamics of inertial particles in vortical flows?

Can inertial particles cluster and get trapped indefinitely in such flows?

• What is a minimal particle-particle interaction model in the unsteady Stokesian regime?

The rest of the thesis is organized as follows: in chapter 2, we examine the unsteady Stokes

model in a simple sedimentation experiment, containing a rigid sphere settling under gravity
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in a viscous fluid. Due to its finite inertia, the sphere undergoes perceivable unsteady settling

dynamics before reaching a steady state. Our objective is to characterize this transient

behavior and demonstrate that the unsteady Stokes model reliably describes the observed

motion and flow structures, whereas the steady Stokes model is found lacking. Experiments

conducted under controlled Stokesian conditions by our collaborators at Stanford University

show good agreement between the sphere’s trajectory and predictions from the Maxey-Riley-

Gatignol equation for Rep < 1. While the unsteady Stokes model captures flow structures

accurately for very small Rep, deviations appear at larger Rep < 1, highlighting the theory’s

limitations as indicated by scale analysis in section 1.1.1.

In chapter 3, we address the Maxey-Riley-Gatignol (MRG) equation, which governs the

motion of a sphere in nonuniform flow under unsteady Stokes conditions. The equation

includes the nonlocal BBH force, an integral along the particle’s trajectory. Closed-form

solutions exist only for specific cases, such as unidirectional sedimentation in quiescent am-

bient flow, addressed in chapter 2. For more general nonuniform flows, numerical methods

are required due to the nonlinear dependence on the particle’s position. However, solving the

MRG equation numerically is challenging because of the growing memory effect of the BBH

force. To address this, we develop a memoryless framework using a Markovian embedding

procedure, which forms the basis of our explicit time-integrator scheme, which is a general-

ization of the exponential time-differencing method [3] to nonlocal equations, significantly

reducing the computational cost of solving the MRG equation.

In chapter 4, we use the explicit MRG integrator from chapter 3 to study inertial particle

trapping and clustering tendencies, a precursor to inter-particle collisions critical for various

physical phenomena, near a pair of co-rotating vortices, which is a canonical structure in

typical 2D turbulent flows. Common wisdom suggests that particles denser than the sus-

pending fluid centrifuge out of vortical flow regions and cluster in high-strain regions [61–64].

However, particles in a rotating system of vortices can get indefinitely trapped in attracting

fixed points and orbits near the vortices in the rotating frame of reference. We find an en-

hanced clustering tendency for inertial particles, especially under the memory effects of the

BBH force.

In chapter 5, we describe a minimal hydrodynamic interaction model for multiple parti-

cles in a viscous fluid. Our long-term objective is to generalize the MRG model to multi-

particle scenarios, focusing on particle interactions mediated by the fluid within the unsteady

Stokesian regime. This involves studying the unsteady Stokes equation in a time-dependent

domain where particle motion depends on fluid flow. In this chapter, we consider a simpler

problem first: the unsteady Stokes equation in a stationary, 2D multiply-connected domain,

which poses many of the main challenges of the time-dependent domain problem.
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Chapter 6 may appear thematically different from the rest of the chapters, since it doesn’t

primarily concern particle-laden flows. However, the systems we discuss here evolve according

to an integro-differential equation like the MRG equation. The analytical work in this

chapter is derived from the ideas used for the MRG equation. We describe a generalization

of the Markovian embedding procedure to a broader class of nonlocal evolutionary equations

which have nonlinear dependence on past values of the evolving quantity. We use two physical

equations, namely the integro-differential equation in the 1D stroboscopic model for a walking

droplet [65] and the Volterra integral equation that governs the motion of a melting front in

the idealized single-phase Stefan problem [66], to demonstrate the embedding procedure.

Finally, we conclude in chapter 7 with pertinent discussions and an outlook for future

work.
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Chapter 2

A sphere settling under gravity in a

quiescent fluid

This chapter is based on the article titled Basset-Boussinesq history force and inertia are

relevant for unsteady particle settling dynamics [Jaroslawski et al., arXiv:2408.12530]. The

experiments were carried out by co-authors Tomek Jaroslawski and Prof. Beverley McKeon.

Sections 2.3 and 2.4 are largely reproduced verbatim from this article. I acknowledge the

contributions of all the co-authors. I primarily contributed to the theoretical modeling.

2.1 Introduction

The gravitational settling of particles in a viscous medium is an important aspect of several

environmental and industrial transport processes, such as settling of aerosol particles in tur-

bulent air [68], deposition of clay and silt in the oceans [69], and settling of ice particles in

cloud [70]. Understanding the short-time dynamics of these settling particles is crucial for

predicting transient behaviors like pollutant residence times, and the growth rate of parti-

cle/droplet aggregates. Previous studies on gravitational settling have examined the effects

of irregular particle shapes [71–73], inter-particle interactions [74, 75], and stratification in

the ambient flow [76, 77], among other factors. This chapter presents a simple experiment on

the gravitational settling of a rigid sphere to probe the finite-time relaxation of the system to

a steady state and compares the observations with theoretical predictions from the unsteady

Stokes model.

Despite growing evidence of the history force’s significance in short/early-time dynamics

of particles and droplets–including theoretical findings of algebraic rather than exponential

relaxation rates of particles to their asymptotic states in different physical contexts [16, 46,

78, 79] –accurate experimental observations are scarce, with even fewer studies quantitatively
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Figure 2.1: (a) Schematic showing the settling sphere, where θ is the polar angle of spherical
coordinate system. Streamlines in an axial plane for flow around a rigid sphere in uni-
form translational motion, when Vp(t) = UT , according to (b) the steady Stokes equation
(eq. (2.1)) and (c) the Oseen equation (eq. (2.3)), shown in laboratory frame The sphere,
marked by a blue circle (not to scale) at (0, 0), is falling downward under gravity. Note
the fore-aft symmetry in the steady Stokes model, while the steady Oseen model develops
asymmetry.

validating these against theoretical predictions. In addition, the flow field generated by an

accelerating particle in such flows remains poorly understood and has rarely been measured.

We consider the simple case of an isolated small rigid sphere of radius ap and density

ρp held at rest against gravity. At time t = 0, the sphere is released into a highly viscous

and otherwise quiescent fluid of density ρf and viscosity µ, and falls vertically with velocity

Vp(t) under gravity’s action (see the schematic fig. 2.1a). Eventually, the sphere reaches its

terminal velocity, Vp(t) → UT as t → ∞, and continues to move at this constant velocity

(assuming no new perturbations act on the system); an equilibrium state wherein the sphere

experiences as much hydrodynamic resistive force due to the ambient fluid as the combined

effect of gravitational force and buoyancy. In the experiments, our collaborators measure

the transient dynamics leading up to this steady state, and we demonstrate that the un-

steady Stokes model provides a more accurate prediction of the sphere’s trajectory and the

surrounding flow disturbances than the quasi-steady Stokes theory.

2.1.1 Steady-state theories and quasi-steady models

Before addressing the transient dynamics, we review low Reynolds number theories to de-

scribe the steady-state of fluid and particle during gravitational settling. These steady state

theories are useful on two accounts: they predict the asymptotic state of the experiment and

form the basis for quasi-steady particle models.
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In the equilibrium state, the rigid sphere translates steadily with constant terminal ve-

locity in the direction of gravity. For Rep = 0, this scenario can be described by the classical

Stokes problem of a sphere in uniform rectilinear motion in a quiescent fluid, first solved by

Stokes (1851) [80]. Based on this classical problem, the axisymmetric flow field that develops

around the sphere moving with terminal velocity UT is given by the following steady stream

function in spherical coordinate system [15],

ψ′
Stokes(

˜
x′) = UT

(
3

4

ap
r′

− 1

4

a3p
r′3

)
r′2 sin2 θ (2.1)

where r′ = |
˜
x′| := |x′ − X ′

p(t
′)| is the dimensional radial coordinate measured from the

sphere’s instantaneous centre and θ ∈ [0, π] is the polar angle. The corresponding stream-

lines, shown in fig. 2.1b, exhibit fore-aft symmetry about the plane perpendicular to UT .

The hydrodynamic drag on the sphere due to eq. (2.1) is the well-known Stokes drag,

f ′
H = −6πapµUT , acting in the direction opposite to gravity. This expression has found many

successful applications including famously in Millikan’s oil drop experiment [81] to determine

an electron’s electric charge. The sphere’s terminal velocity is obtained by balancing Stokes

drag with gravitational and buoyancy forces:

(mp −mf )g − 6πapµUT = 0 =⇒ UT =
2(ρp − ρf )a

2
pg

9µ
, (2.2)

where g is the gravitational acceleration.

For small but nonzero Rep, however, Oseen (1910) [17] criticized the use of eq. (1.8) to

describe steady-state flow. He noted that the convective inertia term in the Navier-Stokes

eq. (1.4) becomes comparable to the viscous term at far-field, r′ ∼ apRe
−1
p (see fig. 1.1),

affecting the leading-order balance. Thus, solving the linearized steady Oseen equations for

the uniformly moving sphere, that partially accounts for the convective inertia (see [14, 15]

for details), Lamb (1911) [82] provided an approximate expression for the steady-state stream

function:

ψ′
Oseen(

˜
x′) = UTa

2
p

[
− 1

4

ap
r′

sin2 θ+
3

2
(1−cos θ)

(
1− exp

{
−1

2
Rep(1 + cos θ)r′/ap

}

Rep

)]
. (2.3)

The streamlines plotted using the above expression are shown in fig. 2.1c. Consistent with the

expression’s dependence on cos θ, which is an odd function of the polar angle, the streamlines

show fore-aft asymmetry, reflecting the influence of convective inertia. The corresponding
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correction in the hydrodynamic drag force is given by Oseen’s drag [83]:

f ′
H = −6πapµUT

(
1 +

3

8
Rep +O(Re2p logRep)

)
. (2.4)

Notably, the expression for terminal velocity remains unchanged (eq. (2.2)) to the leading

order in Rep. Depending on the magnitude of Rep, the above expressions provide predictions

for the asymptotic states of the settling particle and flow structures in our experiments.

These steady-state theories can also model fluid’s instantaneous response to particle

perturbations in the limit S → 0. Such models assume either the Stokes or Oseen’s drag

(eq. (2.4)) as the hydrodynamic force in eq. (1.1), with UT replaced by the time-dependent

particle velocity Vp(t) in their respective expressions. This results in a simple quasi-steady

Stokes/Oseen model, without the integral BBH force, that predicts the particle’s exponential

relaxation rate to its steady state, as the fluid relaxes instantaneously. This, however, is not

true for many scenarios.

Now, we turn to the transient dynamics during gravitational settling.

2.2 Theory of an accelerating sphere: the unsteady Stokes model

In this section, we describe the unsteady Stokes model forced by gravity for the transient

settling motion of the particle and the flow field that develops around it.

For convenience, we work in the body-fixed frame of reference with nondimensional vari-

ables under the following transformation of variables: x − Xp(t) →
˜
x , v − Vp(t) →

˜
v.

All the quantities with symbol
˜
(·) are measured in the body-fixed frame, whereas the ones

without correspond to laboratory-fixed reference frame. The physical variables are nondi-

mensionalized by characteristic length ap and time a2p/ν. For convenience of interpretation,

we choose UT as the velocity scale. The pressure field is scaled by µUT/ap. The resultant

nondimensional equations of motion for the fluid in the body-fixed frame and in the vanishing

limit of Reynolds number are:

∂
˜
v

∂t
= −∇

˜
p+∇2

˜
v +

(
σ
g

|g| −
dVp

dt

)
,∇ ·

˜
v = 0 , x ∈ V , (2.5a)

˜
v(|

˜
x| = 1, t) = 0 ,

˜
v(|

˜
x| → ∞, t) = −Vp(t) ,

˜
v(

˜
x, 0) = 0 , (2.5b)

where the boundary conditions include no-slip condition at the sphere’s surface and decay at

far-field, and the initial condition corresponds to a stationary state. Here, σ = 9/[2(ρp/ρf −
1)] is the scaled gravitational acceleration. The uniform acceleration term dVp(t)/dt in

eq. (2.5a) appears as a result of coordinate change.
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We assume axisymmetry of the flow field about the axis passing through the sphere’s

center and parallel to gravity, which is reasonable since the sphere’s motion during the ex-

periment is predominantly vertical in the direction of gravity. Hence, owing to incompress-

ibility, we can define as well as solve for a scalar stream function in the body-fixed spherical

polar coordinate system to describe the flow structures. The nondimensional axisymmetric

stream function ψ = ψ(r, θ, t) is related to the radial and polar velocity fields by:

˜
vr(r, θ, t) =

1

r2 sin θ

∂ψ

∂θ
,
˜
vθ(r, θ, t) = − 1

r sin θ

∂ψ

∂r
.

By taking the curl of eq. (2.5), we eliminate pressure and uniform body forces (see

section 2.A for derivation), yielding the governing equation for the unsteady stream function,

( ∂
∂t

− d2
)
d2ψ(r, θ, t) = 0 , (2.6)

subject to conditions

ψ(1, θ, t) = 0 =
∂ψ

∂r
(1, θ, t),

ψ(r → ∞, θ, t) ∼ −1

2
r2Vp(t) sin

2 θ ,

ψ(r, θ, t = 0) = 0 ,

(2.7)

where the scalar operator d2 is

d2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

1

sin θ

∂

∂θ
.

The Dirichlet condition, ψ(1, θ, t) = 0, enforces zero radial velocity on the sphere’s surface,

whereas the radial direction Neumann condition enforces zero polar velocity.

Remark 2.1. The governing equation eq. (2.6) describes the unsteady stream function

in all scenarios where eq. (2.5) is driven by a uniform or, more generally, a curl-free force.

Such forces do not affect flow kinematics, and thus the flow structures represented by the

streamlines remain unchanged.

The linear PDE system given by eq. (2.6) and eq. (2.7) is solved using Laplace transform

(see section 2.A), yielding the following exact expression for the nondimensional unsteady

stream function (scaled by a2pUT ),

ψ(r, θ, t) = sin2 θ

[(
− r2

2
+

1

2r

)
Vp(t) +

3

2r

∫ t

0

Vp(τ)K(t− τ ; r) dτ

]
, (2.8)
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where the flow memory kernel is

K(z; c) =

(
1− ce−

(c−1)2

4z√
πz

+ erf
{(c− 1)

2
√
z

})
, z > 0, c > 1 .

The stream function in the laboratory-fixed frame is recovered by removing the spatially

uniform flow part (the term proportional to r2) from the above expression, resulting in

ψ(r, θ, t) = sin2 θ

[
1

2r
Vp(t) +

3

2r

∫ t

0

Vp(τ)K(t− τ ; r) dτ

]
. (2.9)

The above time-dependent expression for the unsteady stream function is fundamentally

different from the steady stream function in eq. (2.1). It consists of two components: one

depends on the particle’s instantaneous velocity, while the other integrates the particle’s

velocity over its lifetime. This generalizes the expressions in [1, 25]1 to a sphere moving

with arbitrary time-dependent velocity. The time integral in eq. (2.9) represents the his-

tory/memory effect: a ‘superposition’ of decaying flow perturbations generated by the sphere

along its trajectory on the present state, sustained due to fluid’s finite-time relaxation.

Figure 2.2 shows representative snapshots of the unsteady streamlines in response to

a prescribed velocity of sphere, qualitatively mimicking the settling sphere’s velocity for an

arbitrary set of parameters. A notable prediction of this theory is the vortex formation at the

sphere’s accelerating surface, which drifts away over time while exhibiting fore-aft symmetry.

In contrast, there is no vortex formation in the steady Stokes theory (see fig. 2.1b).

So far, we have looked at the fluid dynamics resulting from an arbitrarily accelerating

sphere, which also applies to gravitational settling. We now focus on the exact dynamics of

the settling sphere when coupled to the unsteady Stokes flow. The trajectory of the settling

sphere, when V ′
p (0) = 0, is given by the Basset-Boussinesq-Oseen (BBO) equation [84],

which implicitly accounts for the effects of the unsteady Stokes flow. The BBO equation is

a reduced form of the gravity-forced MRG equation for a quiescent ambient flow u′∞ = 0,

mp
dVp

′(t′)

dt′
= −6πµapV

′
p (t

′)− 6πµa2p

∫ t′

0

1√
πν(t′ − τ ′)

dV ′
p (τ

′)

dτ ′
dτ ′ − mf

2

dV ′
p

dt′
+ (mp −mf )g .

(2.10)

In fig. 2.2, we prescribed a particle velocity to obtain flow structures. In practice, the

dynamics of the particle and fluid are mutually coupled. Therefore, we first need to solve

eq. (2.10) to obtain the particle’s velocity, which is then used to obtain the unsteady stream

1where unsteady stream function was derived for an impulsively-started and an oscillating sphere, respec-
tively.
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Figure 2.2: Theoretical predictions of the unsteady Stokes model for a sphere accelerating
under gravity in a viscous medium: (a) A typical flow field around the settling sphere (blue)
in an axial plane, where colors indicate the magnitude of velocity. Panels (b), (d), and (f)
show snapshots of the flow streamlines that develop in response to the sphere’s falling motion
at representative times t1, t2, and t3, which correspond to the times marked in panel (e)
for the prescribed particle velocity Vp(t) = erf(0.25t). A counterclockwise vortex forms at
the sphere’s accelerating surface and drifts away over time, while the flow maintains fore-aft
symmetry. Compare this with the steady Stokes streamlines in fig. 2.1b where no vortex is
present.

function according to eq. (2.9). The BBO eq. (2.10) can be solved exactly (see section 2.B)

since the gravitational forcing is uniform, leading to a linear integro-differential equation2.

The solution to eq. (2.10) approaches the terminal velocity at an algebraically slow rate,

particularly, |Vp(t)− UT | ∼ 1/
√
t, as t→ ∞, as shown in section 2.B.

2.2.1 Asymptotics (t→ ∞): recovery of steady Stokes flow

We compare the unsteady stream function, ψ, to its steady counterpart given by the nondi-

mensional form of ψStokes in eq. (2.1). The idea is to determine if the steady Stokes stream

function can be retrieved in a limiting case.

We express the unsteady stream function ψ(r, θ, t) by adding and subtracting Vp(t)

2The linearity of this equation overrides the challenges posed by its integro-differential nature, which is
primarily computational in the case of the BBO/MRG equation, since it affords an analytical solution.
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to/from the integrand:

ψ(r, θ, t) = sin2 θ

[
1

2r
Vp(t) +

3Vp(t)

2r

∫ t

0

K(t− τ ; r) dτ +R(r, θ, t)

]
, (2.11)

where R is the residual term defined as

R(r, θ, t) = − 3

2r

∫ t

0

(Vp(t)− Vp(τ))K(t− τ ; r) dτ .

We assess the asymptotic behaviour of the unsteady stream function as t → ∞. For a

settling sphere, Vp(t) → 1 (or UT dimensionally) as t → ∞. Furthermore, we show (using

Mathematica) that

lim
t→∞

∫ t

0

K(τ ; r) dτ =
1

2
(r2 − 1) +O(1/

√
t) .

Assuming R → 0 as t→ ∞, the leading order behavior therefore is

lim
t→∞

ψ(r, θ, t) ∼ sin2 θ
(
− 1

4r
+

3

4
r
)
= ψStokes(r, θ) ,

which corresponds to the nondimensional steady Stokes stream function (eq. (2.1)). This

suggests that the vortex due to the unsteady stream function drifts away to infinity as

t → ∞, at which point the streamlines given by ψStokes prevail. However, the description of

this route to steady state is valid only when Rep = 0.

An analogous statement can be made in terms of perturbative expansion in small Stokes

number S3, where S = a2p/νTc for some characteristic timescale Tc. At finite t, to re-introduce

S dependence, we re-scale the nondimensional time by Tc, which effectively replaces t→ t/S

in (eq. (1.9)), resulting in the modified PDE: S∂v/∂t = −∇p+∇2v. Assuming the following

decomposition for small S,

ψ(r, θ, t) = ψsteady(r, θ) + ψcorrection(r, θ, t) ,

it can be shown that the leading correction to the steady Stokes stream function is O(
√
S),

which is consistent with the order of magnitude at which its contribution to hydrodynamic

force on particle, the BBH force, appears in the BBO eq. (2.10).

3Finite S at t → ∞ is dual to the case of S → 0 at finite t
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Figure 2.3: Experimental setup: (1) Particle attached to a magnetized needle, (2) High-speed
camera, (3) Power supply, (4) Electromagnet, (5) Thermocouples, (6) PIV laser sheet, (7)
Optical table. Image courtesy: Tomek Jaroslawski.

2.3 Experiments

In the experiments, we define a modified particle Reynolds number, Rep = dpUT/ν, based on

terminal velocity and particle’s diameter dp (instead of radius ap) for practical convenience,

without affecting the conclusions of the theoretical analysis in section 2.2. We also compute

the Oseen time, T = ν/U2
T , to track the theoretical validity of the unsteady Stokes model (as

discussed in chapter 1). Accordingly, the dimensional time is scaled by the Oseen timescale in

all the results shown in this section4. We also introduce a nondimensional control parameter

β = ρp/ρf which defines the particle-to-fluid density ratio. We now describe the experiments.

A series of controlled experiments under Stokesian conditions were conducted, which in-

volved gravitational settling of rigid spheres from an initial stationary state, Vp(0) = 0 and

v(x, 0) = 0. The schematic representation of the experimental setup is shown in fig. 2.3.

The experiments employed hardened 440C stainless steel (SS) spheres, with a density of

ρp = 8075 kg/m3, submerged in silicone oil with a nominal density of ρf = 997 kg/m3 and

kinematic viscosity 1000 cSt. The viscosity of the silicone oil was measured using a vis-

cometer to account for temperature-dependent variations. At the experimental temperature

of 19◦C, the measured viscosity was 1140 cSt. We present the results of two representa-

tive configurations: of particle diameter dp = 3.18 mm and 4.76 mm, which correspond to

particle Reynolds numbers of 0.1 and 0.32, respectively. In both cases, the particle-to-fluid

density ratio is β = 8.1. Additional experiments were also conducted for Reynolds numbers

4The nondimensional numbers Rep and T provide only a ballpark estimate and their exact computed
values are not significant by themselves.
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of Rep = 0.76 with β = 8.1, and Rep = 0.22 with β = 1.6 (see section 2.C), achieved through

modifications in particle diameter and material composition. The sphere was suspended

in the fluid medium utilizing a magnetized tether, with a sting-to-sphere diameter ratio of

0.1 and 0.15dp (for dp = 3.18 and 4.76 mm, respectively) and positioned at a depth of 20

and 30dp (for dp = 4.76 and 3.18 mm, respectively) below the free surface to reduce any

potential influence from surface and sting-induced effects. To avoid boundary effects, the

field of view around the sphere, where experimental measurements were made, was enclosed

in a cubic container of edge size ∼ 100dp
5. Temperature of the silicone oil was continuously

measured to ensure uniform thermal conditions during the experiment. The statistical error

and repeatability of the experiment were quantified through reproducing the experiments 20

times. The mean velocity error was found to be 3% in the early stages where t′/T < 0.1,

and dropped below 1% for the remainder of the sedimentation process. The uncertainty

in the sphere diameter was ±0.03dp, while the temperature measurement uncertainty was

±0.5°C, resulting in an uncertainty in the silicone oil viscosity of ±12 cSt. This uncertainty

translates to a variation in the mean velocity derived from the BBO theory of less than 1%.

Experimental noise was mitigated by smoothing raw trajectories with a Gaussian kernel of

width 0.037T , acting as a low-pass filter with a 200 Hz cut-off frequency.

The particle’s trajectory was measured using a Phantom v2012 high-speed camera, cap-

turing images at a frequency of 2 kHz, followed by a binarization algorithm to determine the

trajectory of the sphere’s centroid. To measure the particle-induced flow structures, Particle

Image Velocimetry (PIV) was employed. The fluid medium was seeded with 10µm glass

spheres. Utilizing a non-pulsed 450 nm blue laser, the light beam was directed through a

series of optics to produce a thin light sheet with a thickness of less than 1 mm oriented

in the x − y plane and aligned along the centerline of the sphere. Flow velocity fields were

computed using standard cross-correlation algorithms, with interrogation windows sized at

32 × 32 pixels in the first image and corresponding search windows of 64 × 64 pixels in

the second image within each image pair. A 50% overlap was implemented to achieve the

nominal spatial resolution of 16 × 16 pixels or 0.2 × 0.2 dp.

2.4 Comparison between theory and experiment

The experiments across various parameter configurations confirmed that the sphere ap-

proached the terminal velocity given by the expression in eq. (2.2), as expected from previous

studies. In addition, notable observations from our experiments include:

5Recall from section 1.1.2 that the unsteady Stokeslet, which is a fair description of the flow far from the
sphere, decays as 1/r3.
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1. The sphere’s approach to the terminal velocity is algebraic, not exponential as sug-

gested by the quasi-steady Stokes model that assumes Stokes’ drag on the sphere.

2. A counterclockwise vortex forms in the fluid at the sphere’s accelerating surface, drift-

ing away from the sphere in the direction perpendicular to the fall. Broadly, two

distinct behaviors were observed: at very small Rep, the centers of the vortex and

sphere lie on the same horizontal line during the approach to the steady state. On the

other hand, at larger Rep still < 1, the vortex drifts away by initially keeping pace

with the sphere and later lagging vertically behind it during the approach to steady

state.

In this section, we provide details of the experimental results and compare them against the

predictions of the unsteady Stokes model.

2.4.1 Very small Rep ≪ 1

We discuss the representative case of Rep = 0.1 which corresponds to β = 8.1 and dp = 3.18

mm. The Oseen time T ∼ 1 s and the terminal velocity UT ∼ 0.034 m/s.

Figure 2.4a displays the trajectory tracking results, namely the nondimensional vertical

displacement y′/dp of the particle at Rep = 0.1 over nondimensional time t′/T . The fig-

ure compares theoretical predictions with and without the BBH force against experimental

data. We observe that incorporating the BBH force yields predictions with reduced displace-

ment, aligning closely with experimental observations, particularly during the early stages

of sedimentation where the BBH force holds the most importance. Figure 2.4b depicts the

non-dimensional vertical velocity V ′
p(t

′)/UT as a function of t′/T , where the experimental

data is derived through temporal differentiation (dy′/dt′). In the experimental V ′
p(t

′)/UT ,

a clear and distinctive algebraic relaxation rate is evident, which aligns closely with theo-

retical predictions when the BBH force is considered, in stark contrast to the exponential

relaxation observed in its absence. Furthermore, fitting all 20 experimental velocity datasets

with a power-law model yields an exponent of −0.495 ± 0.095 for a 95% confidence inter-

val, thus reinforcing quantitative agreement with the unsteady Stokes model’s theoretical

prediction of t−1/2. Agreement between theoretical predictions that include the BBH force

and experimental observations was also established for lower β values (see section 2.C). This

agreement manifests in both vertical displacement and velocity, as well as in the exponent

of the relaxation rate, which remains consistent at t−1/2.

We now discuss the flow structures that develop around the sphere. The PIV velocity

vectors of the surrounding fluid, accompanied by plotting streamlines, are shown in fig. 2.4b,
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spanning early stages (t′/T < 1) of the sedimentation process. Initially, a counterclockwise-

rotating vortex emerges close to the particle, which represents a cross-sectional view of a

3D vortex ring on the axial plane. As sedimentation progresses, this vortex gradually shifts

away from the sphere along the x−direction. The x-displacement results from the unsteady

diffusive flow dynamics around the particle, attributed to the growth of a laminar boundary

layer as the particle sediments. Figure 2.4c shows snapshots of the velocity vectors with

streamlines plotted over different times during early sedimentation, based on the theoretical

model presented in eq. (2.9). The unsteady Stokes model successfully captures the vortex

formation, handedness, and its drift in the x-direction over time, unlike the steady Stokes

model, which fails to predict vortex formation.

In this configuration (dp = 3.18mm and Rep = 0.10), there is a distinct separation

between the viscous and inertial timescales: a2p/ν ∼ 10−3 and ν/U2
T ∼ 1 seconds, which

differ by nearly three orders of magnitude. This allows for a clear delineation between the

‘Stokes’ regime where unsteady Stokes theory is adequate to describe the flow dynamics and

the ‘Oseen’ regime where convective inertial corrections to the Stokes theory is warranted.

Additionally, the particle attains steady state, achieving up to 90% of the terminal velocity

within the Stokesian regime, before the onset of convective effects marked by the Oseen

time. These factors contribute to the effectiveness of the unsteady Stokes model for the

case of small Rep. However, as discussed in the next subsection, for higher Rep the theory

demonstrates inadequacies in explaining the experimental results.

2.4.2 Larger Rep, still less than 1

Here, we discuss the representative configuration of β = 8.1 and dp = 4.76 mm which

corresponds to Rep = 0.32, Oseen time T = 0.19 s and terminal velocity UT = 0.08 m/s.

At higher Reynolds number, the Oseen timescale T is smaller, resulting in a reduced

physical time interval where t′/T < 1. Figure 2.5a illustrates the vertical velocity of a

settling particle over time, demonstrating agreement between theoretical predictions and

experimental data at all times during the settling process. The experimental results show

that the BBO equation remains applicable up to t′/T = 5, i.e., beyond its formal range of

validity of 0 < t′/T < 1. The theory effectively models the algebraic relaxation rate observed

in experiments during later times, as shown in the log-log plot in fig. 2.5a.

The flow velocity vectors, accompanied by plotting streamlines, are shown in fig. 2.5b.

Similar to the Re = 0.10 case, the vortex core’s vertical position closely follows the particle’s

displacement, with an increasingly apparent x−direction displacement over time. However,

at later times, around t′/T ≈ 1, the rate of x−direction displacement diminishes, coinciding

with the onset of a vertical spatial lag between the vortex core and the sphere’s center. An-
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Figure 2.4: Results for Rep = 0.10, with terminal velocity UT = 0.034 m/s and Oseen
timescale T = 0.96 s. (a) Vertical displacement and velocity of the particle (represented
by gray circle, not to scale) over time. Solid and dashed lines are theoretical predictions
excluding and including the BBH force, respectively. Experimental data are indicated by
markers. (b) Experimental PIV snapshots (cross-section) and (c) theoretical predictions
of the unsteady flow (eq. (2.9)) around the particle in the laboratory frame, with overlaid
streamlines. Green and yellow points in (a) correspond to the snapshots in (b) and (c),
respectively.

other noteworthy observation is the occurrence of asymmetry in the vortex structure around

t′/T ≈ 2, characterized by outward tilting. These late-time behaviors are not explained by

the unsteady Stokes model and could be attributed to the increased influence of inertial ef-

fects due to convective inertia not accounted in the model. However, the low vortex strength

at t′ > T makes its effect on the particle’s motion weak, as confirmed by the agreement

between experiment and theory at later times in particle motion. We hypothesize that, over

a long period, the vortex will continue to move away from the sphere with a lag, and the

streamlines will approach a steady Oseen flow solution, exhibiting fore-aft asymmetry (see

fig. 2.1c).
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Figure 2.5: Results for Rep = 0.32, with terminal velocity UT = 0.08 m/s and Oseen
timescale T = 0.19 s. (a) Vertical velocity versus time and a log-log plot of residual vertical
velocity against time. The blue dot-dashed line indicates the theoretical relaxation rate of
t−1/2. Solid lines represent theoretical predictions without the BBH force, while dashed lines
include it. Experimental data are shown with markers. (b) PIV snapshots of the unsteady
flow field around the particle, with streamlines overlaid for short and intermediate times.

In fig. 2.6a, we show the vertical trajectories of the particle vortex core from both exper-

iment and theory. Additionally, as an estimate for the convective inertial term v · ∇v, we

show the vertical location of the maximum absolute value of Vp(t) · ∇v in the field of view,

where Vp(t) represents the particle’s instantaneous velocity. For Rep = 0.10, the vortex core

exhibits horizontal alignment with the particle, as predicted by our unsteady Stokes model

(see fig. 2.2). However, as Rep increases to 0.32, the vortex core, beyond t′/T ≈ 2, lags

behind the particle, a behavior not predicted by our theory, in which fore-aft flow-symmetry

is ensured. For both cases, the vertical location of the maximum in the convective term in

the flow field follows the vertical location of the vortex, diverging from the particle’s path

for Rep = 0.32. The x-displacement of the maximum convection location was found to be

negligible, remaining closely aligned with the particle. To investigate the link with increased

inertial effects, we tested a particle with Rep = 0.76, which quickly transitioned out of the

Stokes flow regime. We observed the same asymmetry in the vortex dynamics (see sec-

tion 2.C), attributed to inertial effects. In both cases, the vertical location of the maximum

convective term correlates with the vertical displacement of the vortex, diverging from the

particle’s path at Rep = 0.32. This highlights a link between the vortex core’s position and

the point of maximum convection in the flow field. In fig. 2.6b, we compare the experimen-

tal x−displacement of the vortex with theoretical predictions. For both Rep = 0.10 and
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a)

b)

Figure 2.6: Experimental (a) vertical, and (b) horizontal trajectory of the vortex center
(marked by black circle , •) compared with the theoretical model predictions (solid black line
−). Red crosses × in (a) are the y−location of the maximum absolute value of V ′

p (t
′) ·∇v′.

Error bars indicate pixel resolution in PIV data.

Rep = 0.32, the theory accurately models experimental observations at early times but soon

afterwards, a divergence between experiment and theory occurs. We do not know the reason

for this deviation.

2.5 Conclusion

We have shown that the unsteady flow structures generated by a particle settling under

gravity in Stokesian conditions are fundamentally different from those predicted by the quasi-

steady models. However, a series expansion of eq. (2.9) for small S shows that the quasi-

steady streamlines (eq. (2.1)) is recovered at the leading order, with unsteady contributions

appearing as O(
√
S) corrections. Thus, this reaffirms that a quasi-steady Stokes model may

be appropriate for very small particles or slow processes, corresponding to very small S,

where the error due to the neglect of the memory effects is small of O(
√
S). However, for

finite Stokes number, the unsteady Stokes model is warranted to capture the effects of fluid’s

slow relaxation.

The model reliably describes the transient flow structures at small particle Reynolds

number, Rep ≪ 1, notably capturing the vortex formation, handedness and its outward
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drift. This is attributed to the clear separation of timescales, distinguishing a well-defined

‘Stokes’ regime from the ‘Oseen’ regime where convective inertia (i.e., v ·∇v), absent in our

model, must be taken into account. However, as Rep ∼ 1, the model fails to capture the

asymmetry in the flow, underscoring the need to account for convective inertial effects in the

model.

The settling dynamics of the particles investigated in this chapter are consistent with

theoretical predictions made by the unsteady Stokes model. Critically, our findings show

that the BBO equation remains effective in predicting particle motion even beyond its formal

limits, specifically past the Oseen timescale.

In particle-laden flows, particle dynamics are typically of primary interest. The BBO/MRG

equation, which accurately predicts the particle dynamics, implicitly accounts for the effects

of flow structures in the unsteady Stokes regime, which might seem to render the explicit

analysis of the flow field unnecessary. However, these flow structures become important as

they inform the nature of inter-particle interactions, and thereby guide the development of

improved predictive models for particle-laden flows.
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Appendix

2.A Derivation of the unsteady stream function

We eliminate pressure and uniform body forces by taking curl of eq. (2.5) to derive the

following equation for the vector vorticity field:

∂ω

∂t
= ∇2ω, ∇ · ω = 0 . (2.12)

In axisymmetric, incompressible three-dimensional flows, the only surviving vorticity com-

ponent is in the azimuthal direction,

ωφ = − 1

r sin θ
d2ψ ,

where the scalar operator d2, different from the scalar Laplacian operator, is

d2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

1

sin θ

∂

∂θ
.

The vector Laplacian in eq. (2.12) is related to the operator d2 in the following way:

∇2ω = ∇(∇ · ω)−∇×∇× ω = − 1

r sin θ
d2(d2ψ)eφ .

Using the above, we derive the equation for the unsteady stream function (eq. (2.6)),

( ∂
∂t

− d2
)
d2ψ(r, θ, t) = 0 , (2.13)

subject to initial and boundary conditions given in eq. (2.7). The above PDE system is

solved using Laplace transform. We assume the following for the solution form (from [1]):

ψ̃(r, θ, s) = sin2 θ

[
Ã(s)r2 +

B̃(s)

r
+ C̃(s)

√
rK 3

2
(r
√
s)

]
, (2.14)
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where s is the Laplace transform variable and K 3
2
(·) is the modified Bessel function of the

second kind. The scalar functions {Ã(s), B̃(s), C̃(s)} are fixed by the boundary conditions:

Ã(s) = −Ṽp(s)/2, B̃(s) =
1

2
Ṽp(s)

(
1 +

3

s
(1 +

√
s)

)
, C̃(s) = −3

2
Ṽp(s)

√
2

π

e
√
s

s1/4
.

Here, Ṽp(s) denotes the Laplace transform of Vp(t). The real-space unsteady stream function

is obtained using the above scalar functions in eq. (2.14) and inverting Laplace transform.

2.B Solution of the BBO equation for a settling particle

We reproduce the nondimensional solution for particle’s settling velocity from [37]:

Vp(t) =
α

π

∫ ∞

−∞

∫ t

0

ike−k2τ

−k2 + ikγ + α
dτ dk =

αγ

π

∫ ∞

−∞

1− e−k2t

(−k2 + α)2 + k2γ2
dk , (2.15)

where α = R/S, γ = R
√
3/S, with S defined in eq. (3.2) and R = 3ρf/(2ρp+ρf ). We recall

that Vp(t) is nondimensionalized by the terminal velocity UT . The integral solution expres-

sion is uniformly valid for all non-negative scalars α and γ, and can be solved numerically.

We use MATLAB’s in-built function integral to compute Vp(t). Alternatively, closed-form

expressions from [84], involving error functions, can be used for different ranges of α, γ.

Using Laplace’s method, we estimate the asymptotic behavior of the expression in eq. (2.15),

Vp(t) ∼ 1− γ

α

1√
πt

+ ... , as t→ ∞ , (2.16)

showing that the sphere approaches terminal velocity at an algebraically slow rate of t−1/2.

2.C Experiments at other parameters

We provide additional experimental results for a large Rep configuration corresponding to

(β = 8.1, dp = 6mm, Rep = 0.76), and a small Rep configuration of (β = 1.6, dp =

9.67mm, Rep = 0.22). In the latter configuration, to achieve the low density ratio, our ex-

perimentalist collaborators used a 9.54 mm diameter wooden sphere, bored a small opening

in it to insert a 3.18 mm SS sphere, and sealed it after, effectively increasing the sphere’s

volume.
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1. β = 8.1, dp = 6mm, Rep = 0.76

a) b)

Figure 2.C.1: Comparison of particle’s a) vertical displacement and b) vertical velocity as
functions of time for Rep = 0.76, where the terminal velocity is UT = 0.137 m/s and the
Oseen timescale is T = 0.06 s. Green markers: experiment, solid black line: theory without
the BBH force, dashed line: theory with the BBH force.

t/T = 4.7t/T = 2.8t/T = 0.64 t/T = 0.84

Figure 2.C.2: PIV snapshots of the unsteady streamlines generated by the particle (indicated
by gray circle on the left) corresponding to fig. 2.C.1. Gravity acts vertically downwards.
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2. β = 1.6, dp = 9.67 mm, Rep = 0.22

a) b) c)

t−1/2

Figure 2.C.3: Comparison of particle’s (a) vertical displacement and (b, c) vertical velocity as
functions of time for Rep = 0.22, where UT = 0.026 m/s and Oseen timescale is T = 1.69 s.
Blue markers: experiment, solid black line: theory without the BBH force, dashed line:
theory with the BBH force. (c) The log-log plot of the residual vertical velocity versus time
confirms the theoretical algebraic relaxation rate of t−1/2.
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Chapter 3

Explicit integrator for the

Maxey-Riley-Gatignol equation

This chapter in large parts is reproduced verbatim from the published articles titled Ex-

plicit Integrators for Nonlocal Equations: the case of the Maxey-Riley-Gatignol Equation

[Jaganathan et al., Quart. Appl. Math. (2024)] and The Basset-Boussinesq history force:

its neglect, validity, and recent numerical developments [Jaganathan et al., Front. Phys.

(2023)]. I acknowledge the co-authors on these articles for their contributions.

3.1 Introduction

Standard Runge-Kutta (RK) and related iterative integrators are powerful techniques to

solve ordinary differential equations (ODEs) that describe dynamical systems. However,

several physical systems with memory effects evolve nonlocally in time and thus are not

directly expressible as dynamical systems. Memory effects appear when the present state of a

system depends explicitly on its past states. They pose a challenge for numerical simulations,

since standard algorithms are not designed for them. Another challenge, that often goes

hand-in-hand with nonlocality, but can also occur by itself in differential equations, is when

the solution cannot be expressed in Taylor series, e.g., when it scales with fractional powers

of the independent variable. In such cases, the solution and/or terms in the differential

equation may not be differentiable, which violates a key hypothesis in the derivation of

standard numerical schemes. The Maxey-Riley-Gatignol (MRG) equation is a prototypical

example posing these challenges. In this chapter, we provide an accurate and memory-

efficient RK algorithm for the MRG equation, and discuss how our ideas and method can be

extended to solve a broader class of equations with a memory term.
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3.1.1 The Maxey-Riley-Gatignol (MRG) equation

As introduced in chapter 1, the MRG equation describes the motion of an isolated, finitely

small spherical particle in the free-space nonuniform ambient flow field u∞ : Rd ×R+ → Rd,

where d is the dimension of the fluid-occupied space, in the unsteady Stokesian limit. It

is also the generalization of the Basset-Boussinesq-Oseen (BBO) equation from chapter 2

to non-zero background flow field. The instantaneous state of the particle in this system is

given by its position and velocity vectors, [Xp(t),Vp(t)]
T . Given its initial state [Xp0,Vp0]

T ,

the particle evolves according to eq. (1.23), written here in the nondimensional form:

dXp(t)

dt
= Vp(t), (3.1a)

dVp(t)

dt
+ αw(t) + γ

( w0√
πt

+

∫ t

0

dw(τ)/dτ√
π(t− τ)

dτ
)
= R

D

Dt
u∞(Xp(t), t) + fNH(Xp(t), t),

(3.1b)

where w(t) := Vp(t)− u∞(Xp(t), t) is the particle slip velocity, initialized as w0 := w(0) =

Vp0 − u∞(Xp0, 0). The term proportional to γ in eq. (3.1b) is the BBH force, which we

will refer to as the memory term, and the term proportional to α is the quasi-steady Stokes

drag. The variables in eq. (3.1) correspond to physical variables which have been non-

dimensionalized by a characteristic length scale Lc, a characteristic timescale Tc, and the

velocity scale, Uc = Lc/Tc, the choice of each is dependent on the application. The non-

negative dimensionless parameters are

R =
3ρf

2ρp + ρf
, St =

S

3R
, α =

1

St
, γ =

√
3R

St
, (3.2)

where we recall that ρf and ρp are the densities of the fluid and particle respectively, ap is

the particle radius, and ν is the fluid kinematic viscosity. The limits R → 0 and R = 1 are

for infinitely heavy (ρp/ρf → ∞) and neutrally-buoyant (ρp = ρf ) spheres, respectively. We

introduce the particle Stokes number, St, which is related to S (see eq. (1.7) for definition)

by St = S/(3R)1. While S measures the fluid’s relaxation time, the particle Stokes number,

St, reflects the particle’s relaxation time to the background flow.

Rewriting the governing equation in its nondimensional form allows assessing the relative

magnitudes of the different forces acting on the particle. Reduced forms of eq. (3.1b) are

often considered in various applications. In the limit St → 0, eq. (3.1b) reduces to w =

1This is the commonly used definition of the Stokes number. However, we distinguish between S and
St to reflect the different parameters that appear in the governing equations for the fluid and the particle,
respectively.
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0 =⇒ Vp(t) = u∞(Xp(t), t), which corresponds to a tracer particle that faithfully follows

the background fluid trajectory.

Remark 3.1. We revisit the definition of an inertial particle using the nondimensional

MRG equation (eq. (3.1b)). In the limit St → 0, the particle behaves as inertia-free, since

both the nondimensional particle acceleration term dVp/dt, and the BBH force vanish, leav-

ing an instantaneous force balance equation. When written in dimensional form, the dimen-

sional particle acceleration, mpdV
′
p/dt

′, is absent from the force balance. For a fixed particle

density, this may be equivalently interpreted as the particle having zero mass or zero size.

Conversely, an inertial particle may be defined as one with St > 0.

For non-zero, finite St (i.e., 0 < St < ∞), in the limit of (ρp/ρf ) → ∞ corresponding

to R → 0, the BBH force and the inertial force from the ambient flow in eq. (3.1b) become

subdominant, leading to a simplified model for a heavy particle:

dVp(t)

dt
+ αw(t) = fNH(Xp(t), t) . (3.3)

However, caution is needed here. Since the particle Stokes number St implicitly depends on

R (see eq. (3.2)), the limit R → 0 for non-zero finite St forces S → 0 as well. Thus, this

limit corresponds to an infinitesimally small particle, providing a model for a heavy point

particle.

On the other hand, for finite ρp/ρf , the nominal relative strength of the BBH force

compared to the quasi-steady Stokes drag is determined solely by S (check the ratio γ/α)2.

Consequently, for non-zero R and small S, which could correspond to slow processes, the

quasi-steady Stokes model for the particle, commonly known as the reduced MRG equation,

is given by
dVp(t)

dt
+ αw(t) = R

Du∞

Dt
(Xp(t), t) + fNH(Xp(t), t) , (3.4)

where the error due to ignoring the BBH force is O(
√
S). This weak scaling suggests that

the model is a good approximation for very small S whereas, S ∼ 1 warrants retention of

the memory term in the MRG equation.

These various simplifications of the MRG equation (eqs. (3.3) and (3.4)) capture the

particle’s leading-order dynamics for specific parameter limits and simplify both analytical

and numerical handling due to omission of the BBH force. However, in many practical

cases, these limits don’t apply, and the full MRG equation with the BBH force needs to be

considered.

2This is only a nominal estimate based on the assumption that the BBH force is an O(1) term, which is
however not guaranteed during the dynamics.
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The MRG equation belongs to the general class of fractional differential equations (FDEs).

Indeed, the memory term is a fractional half-derivative in t, defined in the Riemann-Liouville

sense by
d1/2w(t)

dt1/2
:=

w0√
πt

+

∫ t

0

dw(τ)/dτ√
π(t− τ)

dτ . (3.5)

The convolution operation in the above expression introduces nonlocality in time. The

slowly-decaying memory kernel, KB(τ) = 1/
√
πτ , is known as the Basset kernel. The weak,

integrable singularity of the memory kernel at current-time acts such that the current state

has the most ‘vivid’ effect, while the memory of earlier states slowly ‘fades away’ with time.

In addition, there is an initial time singularity at t = 0 due to 1/
√
t for non-zero w0. The

BBH force may also be expressed as a total derivative owing to the following identity,

d1/2w(t)

dt1/2
=

d

dt

∫ t

0

w(τ)√
π(t− τ)

dτ , (3.6)

which is often used in constructing numerical methods for the MRG equation (discussed in

section 3.1.3).

For the rest of the chapter, we rewrite the MRG system in a compact form for the new

state variables [Xp(t),w(t)]T as:

dXp(t)

dt
= w(t) + u∞(Xp(t), t) , (3.7a)

dw(t)

dt
= −αw(t)− γ

d1/2w(t)

dt1/2
+N (w(t), t), (3.7b)

where the memory term appears as a half-derivative in time, initial state is [Xp0,w0]
T , and

the nonlinear and external forces are bundled into the vector-valued function N where

N (w(t), t) =
(
R− 1

) D
Dt

u∞(Xp(t), t)−w ·∇u∞(Xp(t), t) + fNH(Xp(t), t) .

Note that u∞(x, t) and functions of it are evaluated at the particle position, Xp(t), which

makes the system nonlinear. We assume necessary smoothness of the underlying flow field

u∞(x, t). We remind the reader that while we address the numerical treatment of eq. (3.7b),

the equation for the particle position eq. (3.7a) is co-evolved. Owing to its local nature, the

particle position can be integrated, once the velocity is known, using any standard integrator.

Hence, we do not discuss it any further.
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3.1.2 Numerical considerations for the MRG equation

Closed-form solutions to the equation exist only for some specific cases, such as the unidi-

rectional settling under the action of gravity (addressed in chapter 2), free-relaxation of a

particle in quiescent fluid, and a particle in Couette flow and oscillatory background flow

[37]. More generally, such as in turbulent flows, due to the nonlinear dependence of the

force on the particle’s instantaneous position, a numerical approach is warranted to obtain

solution to the MRG equation. However, when solving numerically on a discrete time-grid

{tn = n∆t}, the MRG equation poses several challenges:

1. Since at every time instant we need to perform an integral from the initial time to the

present, the operational costs grow quadratically with simulation time instead of the

more typical linear growth seen in ODEs.

2. Since we have to store all past states at every time instant, the memory storage re-

quirement grows linearly with time instead of staying constant. This is also reflected in

a related cost to restart the simulation from an arbitrary state: the state of the particle

at a given time can no longer be prescribed as the new initial condition to restart the

simulation, instead the entire trajectory up to the current time needs to be provided.

As a result, long-time and multi-particle simulations become prohibitively expensive.

3. The memory term in eq. (3.5) warrants care when handling the singular kernel numer-

ically.

4. The solution to the MRG equation is not differentiable at t = 0, i.e., it lacks a well-

defined Taylor series expansion around t = 0.

The BBH force is often neglected from particle dynamics due to above challenges, espe-

cially in multi-particle and long-time simulations. Further, due to the BBH force, the MRG

equation does not represent a dynamical system [36]. Indeed, the state of the particle at

any given instant, is insufficient to uniquely determine its subsequent evolution in position-

velocity space. Instead, the entire trajectory of the particle up to the current state is required

to evolve to a new state. Consequently, standard numerical integrators, such as Runge-Kutta

methods, cannot be used to solve the MRG equation without incurring significantly higher

computational and memory storage costs compared to their intended usage to solve ODEs.

3.1.3 Review of existing numerical approaches

The computational barriers have been progressively bridged in earlier works with numerical

strategies that operate broadly on ideas of truncating or approximating the BBH force.
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Exceptionally, Prasath et al. (2019) [37] provided a local PDE reformulation where the MRG

equation is prescribed as a boundary forcing to a one-dimensional diffusion problem. Their

reformulation resulted in an implicit time integrator with spectral accuracy. We classify these

numerical solution approaches by identifying the overarching strategy they use to address

the computational challenges, and briefly review them below.

1. Full quadrature: Daitche [86] developed a general scheme to compute the memory term

to arbitrarily high degrees of accuracy. Using the identity in eq. (3.6), the integrated form

of the MRG equation for the particle’s evolution between tn and tn+1 may be written as

w(tn+1) = w(tn)− γ

(∫ tn+1

0

w(τ)√
π(tn+1 − τ)

dτ −
∫ tn

0

w(τ)√
π(tn − τ)

dτ

)

+

∫ tn+1

tn

(
− αw(τ) +N (w(τ), τ)

)
dτ .

(3.8)

Typically, quadrature routines use polynomial interpolation of the integrand to derive nu-

merical approximations for the integral. However, while using this standard approach in

the case of the BBH force, care is warranted at the integral’s limits due to the current-time

singularity of the Basset kernel. Hence, [86] employed a Lagrange-polynomial interpolant

only for the slip-velocity part of the integrand, retaining the memory kernel (and sin-

gularity) as is. The resulting integrals are then evaluated exactly. Here, the degree of

the interpolating polynomial determines the order of accuracy. The quadrature for the

integrals involving the memory kernel in eq. (3.8) is given by

∫ tn

0

w(τ)√
π(tn − τ)

dτ =
n∑

m=1

∫ tm

tm−1

w(τ)√
π(tn − τ)

dτ ≈
√
∆t

n∑

m=1

µn
mw(tn−m) , (3.9)

where {µn
m} are scheme-specific, time-dependent weights which can be pre-computed and

are explicitly provided by [86] for O(∆t),O(∆t2),O(∆t3)-accurate schemes. We note the

persisting need to retain the past values of the slip-velocities to compute the quadra-

ture. Hence, the growing memory and operational cost is unavoidable in this approach.

However, higher-accuracy schemes come at essentially no additional cost.

Another class of full quadrature schemes, of varying accuracy, designed specifically for

fractional-differential equations are described in the works of [87, 88]. These methods are

similar to exponential-integrators introduced by [3] but adapted to fractional derivatives.

While they reduce operational costs, which grow slower than quadratically but faster

than linearly, memory storage costs still increase with simulation time. Additionally,

many existing methods, including these, do not address the lack of a well-defined Taylor
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series expansion near t = 0, which becomes a source of reduced error convergence rates.

2. Window-based approaches: This class of methods involves splitting the integral in the

BBH force into one over the distant past, and another for the recent past. The motivation

is to accurately treat the current-time singularity, and approximate the memory kernel in

the distant past to reduce operational costs. A general construction is given by

∫ tn

0

1√
π(tn − τ)

dw(τ)

dτ
dτ ≈ Ftail(tn) + Fwin(tn) (3.10)

where the integral is approximated following a decomposition into tail and recent window:

Ftail(tn) =

∫ tn−twin

0

Ktail(tn − τ)
dw(τ)

dτ
dτ , Fwin(tn) =

∫ tn

tn−twin

Kwin(tn − τ)
dw(τ)

dτ
dτ .

(3.11)

Here, twin =Mw∆t , Mw ∈ N is the recent-past window-size and a free-parameter of the

method. The different approaches are essentially distinguished by their choice of these

approximate kernels Kwin, Ktail.

As the current-time singularity always occurs in the window [tn − twin, tn], the form

of the kernel (hence singularity) is usually retained in this window. Thus, one sets

Kwin(·) = KB(·) and thereafter employs a quadrature scheme similar to [86]. For in-

stance, [89] assumed constant slip-acceleration whereas [90] used a linear interpolant of

the slip-acceleration. In another instance, instead of constructing a quadrature, [91] ap-

proximated the integral in the recent time-window by the series representation of the

Riemann-Liouville half-derivative.

In the tail window [0, tn − twin], one seeks fast-converging approximate kernels for the

Basset kernel, KB. Dorgan & Loth [92] and Bombardelli [91] ignored the tail, effectively

truncating the integral by setting Ktail(·) = 0. On the other hand, a new class of exponen-

tial methods emerged, e.g., [90] where Ktail(·) is given by a sum of decaying exponentials

that approximate KB in [0, tn − twin]. The resulting tail integral for method-specific

positive constants {ai, ti} and known functional forms of {α̌, β̌} is given by

Ftail(tn) =
m∑

i=1

Fi(tn) =
m∑

i=1

∫ tn−twin

0

aiKi(tn − τ)
dw(τ)

dτ
dτ,

=
m∑

i=1

∫ tn−twin

0

aiα̌(ti)e
−β̌(ti)(tn−τ)dw(τ)

dτ
dτ .

(3.12)
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In particular, Fi follows a dynamical evolution given by,

Fi(tn) = e−β̌(ti)∆tFi(tn −∆t) + aiα̌(ti)

∫ tn−twin

tn−twin−∆t

e−β̌(ti)(tn−τ)dw(τ)

dτ
dτ . (3.13)

Note the recursive nature of this method, which is a consequence of the exponential-

form approximation. This suggests that Fi(t) are dynamical variables that satisfy linear

equations forced by the slip-acceleration. Parmar et al. [93] essentially pursue this idea to

obtain a differential equation for each approximate force Fi(t). The quadrature is greatly

curtailed by requiring small twin and the exponential approximation is obtained following

[94] but otherwise their method is similar to that described above.

For window-based approaches, the parameters m and twin must be chosen carefully, and

often the criterion is problem-specific. For the physical system of interest in [91], twin is

determined based on the time beyond which the particle-state correlations were found to

be weak. A minimization problem for an error-like quantity to determine an optimal twin

may also be setup [90, 93, 95].

3. Formulation as a partial differential equation: A different approach was introduced

by [37] who showed that the governing MRG equation, in its entirety, can be posed as

a dynamic boundary-condition for a suitable 1D diffusion equation over a half-line - a

system for which much is known and solvable. Prasath et al. [37] essentially exploit the

fact that the Dirichlet-to-Neumann operator for the diffusion equation on half-line is (up to

a sign) the Riemann-Liouville half-derivative. Whereas the window-based methods hinted

at or constructed dynamical systems that approximate the MRG equation, [37] describe

an exact reformulation of the MRG equation that is local-in-time. They introduced a

diffusing quantity q(ζ, t) in a pseudo-space coordinate ζ > 0. The slip-velocity w(t) is

related to q by q(0, t) := w(t). Under these definitions, they proposed the following PDE

system,

qt = qζζ , (3.14a)

q(ζ > 0, t = 0) = 0, (3.14b)

qt(0, t) + αq(0, t)− γqζ(0, t) = N (q(0, t), t), (3.14c)

lim
t→0

q(0, t) = w0 , (3.14d)

where qζ(0, t) represents the BBH force, and the subscripts t and ζ refer to partial

derivatives. The MRG equation manifests as a generalized Robin boundary-condition

in eq. (3.14c).
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Using the above reformulation, one derives an expression for q(0, t) (equivalently the

slip-velocity) for tn < t ≤ tn+1 given q(0, tn) with the introduction of a new dynamical

quantity called the ‘history function’, denoted by Ȟ(k, t),

−π
2
q(0, t) =

∫ ∞

0

e−k2(t−tn)Im
(
kȞ(k, tn)

)
dk

+

∫ t−tn

0

N (q(0, tn + τ))

[∫ ∞

0

Im
( ke−k2(t−tn−τ)

ikγ − k2 + α

)
dk

]
dτ,

(3.15a)

Ȟ(k, tn+1) = e−k2∆tȞ(k, tn)−
∫ ∆t

0

e−k2(∆t−τ)

{
q(0, tn + τ) +

N (q(0, tn + τ))

ikγ − k2 + α

}
dτ .

(3.15b)

At t = 0, the history function is known analytically and for tn > 0, Ȟ(k, tn) is represented

using Chebyshev polynomials. One assumes the slip-velocity q(0, t), t ∈ [tn, tn+1] also has

a Chebyshev expansion. Given Ȟ(k, tn), [37] solve eq. (3.15a) using Newton’s method

for the Chebyshev coefficients of q(0, t). Then they update the history function using

eq. (3.15b) to solve for the slip-velocity in the next time-step. The highlight of the

scheme is that no approximation is made to the kernel. Moreover, by including Ȟ(k, t)

as a dynamical variable, the operational cost, the memory requirement, and the cost to

restart the simulation become independent of time.

3.1.4 An overview of the proposed method

Our approach to solve the MRG equation merges a modified version of Cox & Matthews’

exponential time-differencing (ETD) method [3] for time-stepping with the introduction of

time-evolving auxiliary variables to address nonlocality, leading to a Markovian embedding

[96–99] of the original equation into a larger state-space. The current work builds on the

ideas in [37] to develop explicit integration schemes, of various orders of accuracy, for the

MRG equation.

Remark 3.2. In [37], the authors established a relationship between the MRG equation

and the diffusion equation. Indeed the spectral representation we use in this chapter is a

consequence of that relationship. However, as we will see, the essential requirement to elim-

inate memory effects, and thereby derive numerical integrators, is simply the existence of a

spectral representation.

In order to illustrate our idea, we begin with a nonlinear integral equation, instead of

the original differential representation for the underlying dynamics (Section 3.2 provides
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details on transforming the MRG equation into an integral equation). Further, to simplify

the exposition, we consider the scalar case. Thus, suppose w : [0,∞) → R is a sufficiently

smooth solution to the integral equation

w(t) = χ(t)w0 +

∫ t

0

χ(t− τ)N(w(τ), τ)dτ (3.16)

where N is a nonlinear function of w and χ(t) is the solution to the associated linear equation.

For equations with memory effects, it is often the case that the linear solution lacks the

semigroup property, i.e., χ(t + τ) ̸= χ(t)χ(τ). Consequently, w(t) necessarily depends on

w(τ) for all τ ≤ t, i.e., the solution depends on the full trajectory and not just the present

state. To introduce the auxiliary variables that address the nonlocality (and eventually the

rising memory costs), we employ a particularly convenient ‘spectral representation’ of the

solution to the linear problem. A function χ(t) is said to have a spectral representation if it

has the form

χ(t) =

∫

Γ

ef(k)tg(k)dk (3.17)

where Γ is some contour over the k−C plane for some functions f, g of the complex variable

k. Typically, f, g are analytic functions. Up to a switch in the order of integration, we find

the integral equation for w(t) can be written as

w(t) = w0

∫

Γ

ef(k)tg(k)dk +

∫

Γ

∫ t

0

ef(k)(t−τ)g(k)N(w(τ), τ)dτ dk .

If we define

H(k, t) = w0e
f(k)tg(k) +

∫ t

0

ef(k)(t−τ)g(k)N(w(τ), τ)dτ ,

then we infer

dH

dt
= f(k)H + g(k)N(w(t), t), where w(t) =

∫

Γ

H(k, t)dk , (3.18)

with initial state H(k, 0) = w0g(k), which is an exact local-in-time reformulation of the inte-

gral equation for w(t) in terms of a new infinite-dimensional state-variable H(·, t) (considered
as a function of k ∈ Γ ⊂ C). Note that the equation for H(·, t) is a dynamical system which

naturally arises from the spectral representation of the kernel of the integral equation χ(t).

The two equations, eq. (3.16) and eq. (3.18), are equivalent, and are exact representations

of the dynamics of w(t). One may consider a discretization of either representation to develop

a numerical method. A direct discretization of eq. (3.16) is considered in [87] and leads to

generalized ETD methods for FDEs. In [100], RK integrators for generic multi-term FDEs
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are provided. These methods, however, do not address the growing memory cost associated

with the nonlocal terms present in FDEs. Alternatively, one may work with the local version,

eq. (3.18), which warrants an additional spectral discretization to compute the integral over

Γ. In section 3.6, we provide evidence suggesting that a direct discretization of eq. (3.18) in

the context of the MRG equation leads to an overall inferior numerical method.

Our proposed approach for the MRG equation involves a simultaneous discretization of

both eq. (3.16) and eq. (3.18) that retains the best features of either representation. Our work

may also be considered a window-based method but our ‘window’ is motivated by the exact

spectral representation as opposed to an ad hoc design parameter. We closely follow the

procedure of Hochbruck & Ostermann [101] to construct an RK algorithm for time-stepping

the resultant local system. Unlike the standard RK derivations which assume a Taylor series

expansion for the unknown solution, we are forced to employ expansions in non-negative

powers of t1/2 for the solution. This is a consequence of the smoothness properties of the

solution to the MRG equation. However, it also captures a feature of the physics, namely

the role of the initial slip velocity w0.

In section 3.2, we develop the ideas for our numerical procedure. The specifics of the

RK numerical schemes for the MRG equation are provided in section 3.3. In section 3.4,

we present an error analysis for the RK schemes. In section 3.5, we present numerical

experiments to verify the expected convergence rates.

3.2 Semigroup property and Markovian embedding

The central idea of Markovian embedding is to allow ideas from standard numerical time-

stepping methods (based on local evolution rules) to work efficiently for nonlocal equations

as well. Here we want to construct our Markovian embedding for the MRG equation such

that the standard ETD method can be favorably adapted. In this section, we begin with a

discussion on the iterative ETD method and identify a key property, namely the semigroup

property, that makes it work for ODEs. Following this, we address the lack of the semigroup

property in the MRG equation and construct a Markovian embedding as a fix.

3.2.1 Semigroup property and the ETD method

In the context of this study, a real-valued function S : R+ → R is said to have the semigroup

property if S(t + τ) = S(t)S(τ), ∀t, τ ∈ R+ where the right-hand side is a product of real

numbers. Additionally, one sets S(0) = 1 (the multiplicative identity) and requires some

smoothness of the function S. We refer the reader to [102] for more rigorous definitions of

the semigroup property for solutions to differential equations.
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We now discuss the construction of the ETD method [3] where the semigroup property

plays an important role. We consider eq. (3.7b) when γ = 0:

dw

dt
= −αw +N(w, t), w(0) = w0. (3.19)

The solution to the linear part of the equation is w0 exp(−αt). Hence, we can identify the

function S(t) = exp(−αt) which evidently has the semigroup property. The solution to

eq. (3.19) can be written in the following Duhamel form,

w(t) = e−αtw0 +

∫ t

0

e−α(t−τ)N(w(τ), τ) dτ , (3.20a)

=⇒ w(t+∆t) = e−α∆tw(t) +

∫ ∆t

0

e−α(∆t−τ)N(w(t+ τ), t+ τ) dτ . (3.20b)

We highlight here that the semigroup property of the exponential function allowed the

derivation of the local iterative rule eq. (3.20b) from eq. (3.20a). Assuming sufficient smooth-

ness for the functions w and N , different approximations for the integral term in eq. (3.20b),

which is now localized around t, lead to different numerical schemes. If we denote the numer-

ical approximation to the solution at time tn by wn, a canonical explicit, multi-step scheme

(such as the ETD-Adam Bashforth method) for a fixed choice of integer m ≤ n is given by

wn+1 = e−α∆twn +∆t
m∑

j=1

WjN(wn+1−j, tn+1−j).

Here the choice of nodes and corresponding weights ({tn+1−j}, {Wj}) defines a scheme with

a certain p-order local accuracy |wn − w(tn)| ∼ O(∆t)p+1.

On the other hand, a canonical explicit, multi-stage (single-step) scheme of š-stages such

as the ETD-Runge Kutta method (ETD-RK) is given by

wnj = e−αcj∆twn +∆t

j−1∑

l=1

W̃jlN(wnl, τnl),

wn+1 = e−α∆twn +∆t
š∑

j=1

WjN(wnj, τnj) ,

where {wnj} are numerical solutions progressively constructed at intermediate times between

two consecutive time-steps {τnj = tn + cj∆t} for 0 ≤ cj ≤ 1. The solution at tn+1 is

constructed from these intermediate evaluations in the ∆t−neighborhood of tn for different

choices of weights {Wj, W̃jl} (see [3] for exact expressions). A multi-stage scheme such as
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RK-ETD is a numerical Markovian3 method since the information in the ∆t-neighborhood

required to compute wn+1 is constructed from only one prior information at tn.

3.2.2 Lack of semigroup property and the MRG equation

Consider now an integral equation such as eq. (3.20a) but where the linear solution does not

have the semigroup property. In other words, in the place of the exponential function, we

have a function T (t) such that T (t + τ) ̸= T (t)T (τ). Then, for every time tn+1, we have

instead

w(tn+1) = T (tn+1)w0 +

∫ tn+1

0

T (tn+1 − τ)N(w(τ), τ) dτ,

= Rhistory(tn; tn+1) +

∫ ∆t

0

T (∆t− τ)N(w(tn + τ), tn + τ) dτ ,

where, Rhistory(tn; tn+1) :=
(
T (tn+1)w0 +

∫ tn

0

T (tn+1 − τ)N(w(τ), τ) dτ
)
.

(3.22)

Subject to smoothness requirements as before, the integral over [0,∆t] can be replaced by

numerical approximations as in the RK-ETD schemes. However, unlike in eq. (3.20b), the

lack of semigroup property leaves a residual expression denoted by Rhistory(tn; tn+1) which is

nonlocal and represents the influence of the solution up to time tn on the solution at time

tn+1.

When T has the semigroup property, Rhistory(tn; tn+1) = T (∆t)wn. But without this

property, Rhistory involves an integral over the entire history of the solution. To evolve the

solution by just one additional time-step, we need to integrate the full trajectory up to the

current time, implying we have no notion of locality. Linear FDEs possess such solutions

that lack the semigroup property. This is indeed also the case with the solution to the linear

MRG equation.

We recall the MRG equation written in compact form eq. (3.7). It suffices to consider

the MRG equation in its scalar form without loss of generality for the discussions to follow.

We begin by identifying the solution to the linear MRG equation (set N = 0). We denote

by χ(t;α, γ) the function satisfying the linear MRG equation with parameters α, γ and the

initial condition set to 1. Hence,

dχ

dt
+ γ

d1/2χ

dt1/2
+ αχ = 0, χ(0;α, γ) = 1.

3We use the term ‘Markovian’ only to indicate the memoryless property: a future state depends only
on the current state, however defined. No further connection is made to Markov process in the stochastic
models.
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One may use the inverse Laplace transform to obtain the spectral representation of the

function χ for α, γ > 0 (of the form in eq. (3.17)):

χ(t;α, γ) = L−1
[ 1

s+ γ
√
s+ α

]
(t) =

i

π

∫ ∞

−∞

e−k2tk

−k2 + ikγ + α
dk , (3.23)

where the second equality, resulting in the integral over k, can be obtained by a suitable

parameterization of the associated Bromwich contour for the inverse Laplace transform (Sec-

tion 3.A). Depending on the sign of the discriminant of the quadratic expression in the de-

nominator, (γ2 − 4α), different closed-form expressions for the function χ may be obtained

[79]. However, we retain its spectral representation. Since the semigroup property ought

to hold for all t ≥ 0, one may readily verify the lack of it by evaluating the function χ in

eq. (3.23) at an arbitrary pair of t1, t2. Note that this is true even for α = 0.

Remark 3.3. The lack of the semigroup property is not uncommon. Indeed, consider

the second-order scalar ODE:

d2w

dt2
− αw = N(w(t), t).

The solution can be written in integral form as

w(t) = C1e
√
αt + C2e

−√
αt +

1

2
√
α

∫ t

0

(e
√
α(t−τ) − e−

√
α(t−τ))N(w(τ), τ) dτ .

In the above description, w is the sole state variable and we have a non-Markovian process.

Equivalently, the solution for the linear equation lacks the semigroup property. The linear

solution for the above Cauchy problem is a linear combination of exponential functions.

Whereas a single exponential function satisfies the semigroup property, a linear combination

does not. A natural approach taken to study this example, analytically or numerically, is to

write it as a Markovian system of two state-variables, [w, dw/dt]T , each with its own dynam-

ical evolution equation. We present this example to highlight the fact that functions lacking

the semigroup property can arise naturally in physics. But we also stress that a Markovian

embedding is a natural and common approach to address these kinds of problems. Indeed,

our approach can also be thought of as a Markovian embedding but into a state-space of

much higher dimension. For another example and similar interpretation, see [103]4.

4In [103], the author discusses a second order equation for a particle undergoing random acceleration:
d2ϕ/dt2 = η(t), where η is a white noise and ϕ represents position. He argues that the process is non-
Markovian since the value of ϕ(t+∆t) depends on both ϕ(t) and ϕ(t−∆t). A similar behavior prevails in
our deterministic example, inferred through the lack of the semigroup property.
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3.2.3 Markovian embedding of the MRG equation

Using the solution to the linear MRG equation χ(t;α, γ), the solution to the nonlinear MRG

equation can be expressed in the following integral equation form:

w(t) = χ(t;α, γ)w0 +

∫ t

0

χ(t− τ ;α, γ)N(w(τ), τ) dτ . (3.24)

Remark 3.4. In ETD methods, the primary motivation for expressing the dynamical

equation in integral form is to exactly integrate the stiff linear part while using numerical

approximations for the non-stiff nonlinear term. In eq. (3.24), the integral form addresses

the singularity, rather than the stiffness, of the linear MRG operator: d/dt+γd1/2/dt1/2+α.

Notably, the integral kernel χ is well-behaved compared to the singular behavior of the orig-

inal differential operator.

Following the discussion in section 3.2.2, we have for the solution w(t) at time t = tn+1

the following

w(tn+1) = Rχ
history(tn; tn+1) +

∫ ∆t

0

χ(∆t− τ ;α, γ)N(w(tn + τ), tn + τ) dτ , (3.25)

where Rχ
history(tn; tn+1) := χ(tn+1;α, γ)w0 +

∫ tn

0

χ(tn+1 − τ ;α, γ)N(w(τ), τ) dτ ,

We note that the above are exact statements and do not involve any numerical approximation

yet.

The expression for the solution at tn+1 in eq. (3.25) contains a residual term that captures

the influence of the history of past states in the interval [0, tn] on w(tn+1). We proceed to

show, along the lines of the discussion in section 3.1.4, that we can introduce a co-evolving

state variable, denoted by H and with its own dynamical equation, that can be used to

construct an exact local representation of Rχ
history. The key requirement is that the spectral

representation for the function χ, eq. (3.23), exists which allows a Markovian embedding of

the MRG equation.

Remark 3.5. The representation of the MRG solution according to eq. (3.25) enables

the simultaneous discretization approach suggested in section 3.1.4. A direct temporal dis-

cretization is applied to the most recent interval [tn, tn+1] while a spectral discretization is

used for the past history [0, tn].

Let H(k, t) be a function of a real number k and time t related to the residual term
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Rχ
history in eq. (3.25) in the following manner

Rχ
history(tn; tn+1) =

∫ ∞

−∞
H(k, tn)e

−k2∆t dk . (3.26)

Substitution of the spectral representation of the function χ, eq. (3.23), into the above

definition of Rχ
history yields the following definition for the newly introduced variable H(k, t):

H(k, t) :=
i

π

( ke−k2t

−k2 + ikγ + α
w0 +

∫ t

0

ke−k2(t−τ)

−k2 + ikγ + α
N(w(τ), τ) dτ

)
. (3.27)

Since the function H encodes the influence of past states on the current state, we refer to it

as the history function. H(·, t) is a complex-valued function of the real number k and hence

is an infinite-dimensional object.

From the form of the history function H in eq. (3.27), one can infer it has Markovian

dynamics evolving according to the following ODE and initial condition,

dH

dt
+ k2H =

i

π

kN(w(t), t)

(−k2 + ikγ + α)
, H(k, 0) =

i

π

k

(−k2 + ikγ + α)
w0 . (3.28)

Thus, upon the introduction of the history function as a new state variable which co-evolves

with w(t), we obtain the complete state that evolves ‘locally’ from tn to tn+1 according to

w(tn+1) =

∫ ∞

−∞
H(k, tn)e

−k2∆t dk +

∫ ∆t

0

χ(∆t− τ ;α, γ)N(w(tn + τ), tn + τ)dτ , (3.29)

H(k, tn+1) = e−k2∆tH(k, tn) +
i

π

∫ ∆t

0

ke−k2(∆t−τ)

(−k2 + ikγ + α)
N(w(tn + τ), tn + τ) dτ .

We re-emphasize that there has been no numerical approximation yet. Equation (3.29) is

an equivalent way to write eq. (3.25) (which is simply the integral version of eq. (3.7b)).

We prefer to work with real-valued functions and note that H(−k, t) = H(k, t) (over-

bar indicates complex conjugate, see eq. (3.27). To this end, we introduce the following

simplifying re-definitions of variables and functions :

k
√
∆t→ k, Re

( 2√
∆t
H(k/

√
∆t, t)

)
→ H(k, t).

Next, we prefer working with the function χ(t;α = 0, γ) which has an explicit form in terms

of the complementary error function. This allows us to better handle integrals involving

the history function that will appear in the subsequent sections. Therefore, we absorb the

linear term proportional to α in eq. (3.7) into the nonlinear term. Hence, we introduce the
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following definitions:

γ̄ = γ
√
∆t, χ(t; γ) := χ(t; 0, γ) = eγ

2terfc(γ
√
t) , Nα(w) = N(w)− αw . (3.30)

Under the above transformations, we rewrite the evolution rule for the new inflated state

eq. (3.29) in the integral-equation form:

w(tn+1) =

∫ ∞

0

H(k, tn)e
−k2 dk +

∫ ∆t

0

χ(∆t− τ ; γ̄)Nα(w(tn + τ), tn + τ) dτ, (3.31a)

H(k, tn+1) = e−k2H(k, tn) +

∫ ∆t

0

2γ̃e−k2(1−τ/∆t)

π(k2 + γ̄2)
Nα(w(tn + τ), tn + τ) dτ. (3.31b)

whereH is now a real-valued function. One may note on comparing eq. (3.31a) with eq. (3.25)

in the original framework that we have effectively replaced the nonlocal residual term with

a local-in-time term. This, of course, has come at the cost of introducing eq. (3.31b) for

H. The new state description [w(t), H(k, t)]T is larger compared to the original description.

However, owing to the local evolution rules for [w(t), H(k, t)]T , standard algorithms such as

RK-ETD can be adapted for time-stepping. The associated memory and computational costs

to advance the state become independent of simulation time. Thus, to find the Markovian

embedding, we only needed the spectral representation for the function χ. In the next

section, we describe numerical time-integration schemes to evolve the new Markovian state

according to eq. (3.31).

3.3 Explicit multi-stage time-integrator for the MRG equation

We summarize our progress so far. We begin with eq. (3.7b) that prescribes the evolution

of the slip velocity for an idealized inertial particle in a viscous fluid. We intend to find

numerical approximations to this equation on a discrete time-grid with ∆t representing the

temporal discretization. We recall the following notation from eq. (3.30),

γ̄ = γ
√
∆t, χ(t; γ) = eγ

2terfc(γ
√
t) , Nα(w) = N(w)− αw .

Note w,N(w), Nα(w) are typically d−dimensional real-valued vectors in the MRG equation.

Based on the discussions in the previous section, the solution to the embedded MRG equation

at time tn+1 satisfies eq. (3.31) where H(k, tn) is also a d−dimensional real-valued vector for

each k ∈ R.
In this section, we outline the multi-stage time-integrator for the MRG equation rewritten

under the Markovian embedding according to eq. (3.31). We provide details of the derivation
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Figure 3.2.1: A schematic for the Markovian embedding procedure for the MRG equation
(Section 3.3). (a) Non-local inter-state interaction in the original representation, eq. (3.7).
Interaction between no two states is the same. (b) Local interaction via eq. (3.31) due to
inflated state description with the introduction of new ‘history function’, H(k, t) All local
interactions are identical.

in section 3.4. We refer to these integrators as RK-χTD schemes as they are counterparts to

the RK-ETD schemes of [3]. We introduce grid functions wn, Hn(k) which are the numerical

approximations of their exact counterparts w(tn), H(k, tn) respectively. In addition, we have

{wni} which are numerical approximations of the exact solution constructed at intermediate

stages, τni = tn + ci∆t.

We propose the following š−stage, explicit RK-χTD scheme for advancing the inflated

state from tn to tn+1, given [wn, Hn(k)]
T , for all n ≥ 0,

wn1 = wn, (3.32a)

wnj =

∫ ∞

0

Hn(k)e
−cjk

2

dk +∆t

j−1∑

i=1

aji(∆t)Nα(wni, τni), 2 ≤ j ≤ š, (3.32b)

wn+1 =

∫ ∞

0

Hn(k)e
−k2 dk +∆t

š∑

i=1

bi(∆t)Nα(wni, τni), (3.32c)

Hn+1(k) = e−k2Hn(k) +
2

π

γ̄

γ̄2 + k2
∆t

š∑

i=1

di(k)Nα(wni, τni), (3.32d)

where [aji] is the š× š RK matrix, {bi}, {di(k)} are scheme-specific weights, and {0 ≤ ci ≤ 1}
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are the explicit RK nodes. The initial conditions for the solver are:

[w0, H0(k)]
T =

[
w0,

2

π

γ̄

k2 + γ̄2
w0

]T
. (3.33)

The Butcher tableau representation for the nodes and weights in eq. (3.32) is,

c1 = 0

c2 a21

. ...

cš aš1 aš2 ... aš,š−1

b1 b2 ... bš

d1(k) d2(k) ... dš(k)

(3.34)

We set c1 = 0 and ai,j≥i = 0 to construct an explicit scheme. The above representation

differs slightly from the standard Butcher representation in that there is an extra row of

information for the functions di corresponding to the weights for the evolution of the history

function eq. (3.32d). For a user-defined choice of nodes ci, an š−stage scheme has š(š+3)/2

unknown coefficients to be fixed. We introduce the following shorthand notations for the

recurring functions used in defining the scheme-specific weights-

ϕm,n =

∫

I

χ(cn(1− τ); γ̄)τm dτ , ϕm =

∫

I

χ(1− τ ; γ̄)τm dτ ,

ψm(k) =

∫

I

e−k2(1−τ)τm dτ,

(3.35)

where interval I = [0, 1], n is an integer index (≥ 1) labelling the RK nodes, and m is a

positive real number. These parameters are pre-computed once ∆t, γ̄ are specified.

3.3.1 Two-stage, first-order RK-χTD method

The two-stage, explicit RK method is constructed using the following order conditions:

2∑

j=1

c
(i−1)/2
j bj = ϕ(i−1)/2, 1 ≤ i ≤ 2 , (3.36a)

2∑

j=1

c
(i−1)/2
j dj(k) = ψ(i−1)/2(k), 1 ≤ i ≤ 2 , (3.36b)

a21 = c2ϕ0,2 , (3.36c)
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where c2 is a free parameter, leading to the following one-parameter family of schemes,

0

c2 c2ϕ0,2

ϕ0 − 1

c
1/2
2

ϕ1/2
1

c
1/2
2

ϕ1/2

ψ0(k)− 1

c
1/2
2

ψ1/2(k)
1

c
1/2
2

ψ1/2(k)

(3.37)

We choose c2 = 1 to obtain a global error that scales linearly with ∆t.

3.3.2 Four-stage, second-order RK-χTD method

This four-stage scheme can be constructed analogous to the two-stage scheme by satisfying

the following order conditions using four intermediate stages-

4∑

j=1

c
(i−1)/2
j bj = ϕ(i−1)/2, 1 ≤ i ≤ 4, (3.38a)

4∑

j=1

c
(i−1)/2
j dj(k) = ψ(i−1)/2(k), 1 ≤ i ≤ 4, (3.38b)

j−1∑

i=1

aji = cjϕ0,j, 2 ≤ j ≤ 3, (3.38c)

b3a32c
1/2
2 = b3c

3/2
3 ϕ 1

2
,3 + b2c

3/2
2 ϕ 1

2
,2, (3.38d)

3∑

j=1

a4jc
(i−1)/2
j = c

(i+1)/2
4 ϕ(i−1)/2,4, 1 ≤ i ≤ 3 (3.38e)

where once again, besides setting c1 = 0, the choice of rest of the nodes as free parameters

leads to the following three-parameter family of schemes-

0

c2 c2ϕ0,2

c3 c3ϕ0,3 − a32
b3c

3/2
3 ϕ 1

2 ,3
+b2c

3/2
2 ϕ 1

2 ,2

b3c
1/2
2

c4 c4ϕ0,4 − a42 − a43
c24ϕ1,4

c2
− c3

c2
a43

c
1/2
2 c

3/2
4 ϕ 1

2 ,4
−c24ϕ1,4

(c2c3)1/2−c3

b1 b2 b3 b4

d1(k) d2(k) d3(k) d4(k)

(3.39)
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In the above, bi’s, di’s are obtained by solving the matrix equations, eqs. (3.38a) and (3.38b),

once a choice for the nodes cj is made. With the bi, di at hand, we compute aij from right-to-

left (see eq. (3.34) for Butcher tableau notation). It is important to choose the cj’s carefully

such that the matrices in eq. (3.38) are invertible. We use the following choice for the nodes-

(0, 0.25, 0.9, 1). The estimated convergence rate is (∆t)2.

3.4 Derivation of the numerical scheme and error analysis

Following Hochbruck & Ostermann [101], our construction of the schemes in section 3.3 relies

on the following representation of the exact solution at arbitrary times (a generalization of

eq. (3.31a)):

w(tn + θ∆t) =

∫ ∞

0

e−θk2H(k, tn) dk +

∫ θ∆t

0

χ(θ∆t− τ ; γ̄)Nα(w(tn + τ), tn + τ) dτ , (3.40)

where θ ∈ (0, 1]. We derive the RK-quadrature formulae to approximate the time-integral

over [0, θ∆t] up to a desired accuracy. The additional task is the computation of the history

integral over k in eq. (3.40). Our strategy is to ensure that the error due to approximation

of the history integrals is subdominant to that due to approximation of the time-integrals

(see section 3.4.2). Thus, when we derive the RK weights in section 3.4.1, we retain the

semi-infinite integral for H(k, tn) in the representation of the history integral.

In deriving the RK-quadrature formulae, we seek an expansion for the nonlinear function

Nα(w(t), t) in the neighborhood of a time-grid point t = tn. We assume a function Ňα such

that Ňα(t) = Nα(w(t), t). Typically, one would use a Taylor series expansion of Ňα(t) around

t = tn to derive the quadrature but the MRG equation warrants a different expansion. We

highlight that the function χ(t; γ̄) has a series expansion in powers of t1/2 around t = 0:

χ(t→ 0; γ̄) ∼ 1− 2√
π
γ̄
√
t+ γ̄2t+ ...

which implies lack of smoothness at t = 0. However, there is a regular expansion in integer

powers of t at later times t > 0. Using standard arguments, one can show that this series

expansion implicitly holds for the solution function w(t) as well as for Nα(w) (see eq. (3.24)).

This allows us to write the following expansion for the function Nα around t = tn:

Nα(w(tn + τ), tn + τ) = Ňα(tn + τ) =
∞∑

m=0

Cm(tn)τ
m/2, ∀n , (3.41)

with coefficients Cm that are functions of the ‘base point’ tn. Note that the above represen-
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tation uniformly captures both the short-time and the long-time behavior: at tn = 0 these

coefficients are non-zero, capturing the singular behavior of the MRG solution accurately,

while at later-times the odd-indexed coefficients become zero, recovering a regular Taylor

series expansion.

In section 3.D, we present two toy problems to illustrate the need for standard and

non-standard series expansions depending on the smoothness of the solution.

3.4.1 Computation of the RK matrix and weights

The state variable whose error we want to control is the slip velocity w(t). Therefore, we

introduce the primary error function en = wn − w(tn), and the auxiliary error functions,

Eni = wni−w(τni) and eHn (k) = Hn(k)−H(k, tn), which denote the difference between exact

state variables and their numerical counterparts. We subtract eq. (3.31a) from eq. (3.32c)

to get the following master equation for the primary error function for any n,

en+1 =

∫ ∞

0

e−k2eHn (k) dk +∆t
š∑

i=1

bi

[
Nα(wni, τni)−Nα(w(τni), τni)

]
+ δn+1 . (3.42)

The different contributions to the primary error function are: (i) the defect term δn+1 rep-

resents error solely due to the RK approximation of the exact time-integral, (ii) the terms

proportional to Nα(wni, τni) − Nα(w(τni), τni) represent error due to the differential action

of the nonlinear function Nα on exact and the numerical counterpart of the state variable,

and (iii) the integral term contains the error due to numerical approximation of the history

function. We derive conditions called order conditions that fix the RK matrix and weights

by controlling error from each contribution. This control is designed such that the numerical

method eq. (3.32) converges with order p, i.e., the error function en ∼ O(∆tp) as ∆t→ 0.

(i) First, we estimate the defect term δn+1 in terms of ∆t. The RK weights {bi} are fixed

by controlling this defect. We evaluate the numerical scheme eq. (3.32c) at the exact state,

i.e., we substitute wni = w(τni), wn = w(tn), Hn(k) = H(k, tn), yielding,

w(tn+1) =

∫ ∞

0

H(k, tn)e
−k2 dk +∆t

š∑

i=1

biNα(w(τni), τni)− δn+1 (3.43)

where the defect δn+1 reflects error due to the RK-quadrature. We subtract the above from

the exact expression for w(tn+1) in eq. (3.31a) and use a truncation of the series expansion
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in eq. (3.41) to get the following expression for the defect term:

δn+1 = ∆t
š∑

i=1

biNα(w(τni), τni)−
∫ ∆t

0

χ(∆t− τ ; γ̄)Nα(w(tn + τ), tn + τ) dτ

=

p1∑

m=1

Cm−1(tn)∆t
m+1

2

[
s∑

i=1

bic
(m−1)/2
i − ϕ(m−1)/2(γ̄)

]
+O(∆t

p1
2
+1) ,

(3.44)

where p1 is a positive integer indicating the extent of truncation. The expression in the

parenthesis, parameterized by index m, are generators of p1-number of order conditions. The

order conditions eqs. (3.36a) and (3.38a) result from setting these expressions for m ≤ p1 = š

to zero. As a result, across the two schemes in section 3.3, we have

δn+1 ∼ O(∆t
š
2
+1) . (3.45)

(ii) Next, we estimate the error due to the differential nonlinear action of the function

Nα. The RK matrix, [aij], is fixed by controlling this contribution. We recall the stage error

function, Eni = wni − w(τni), and state the following relation (Section 3.B):

Ndiff
n,i := Nα(wni, τni)−Nα(w(τni), τni) = JnEni +O(Eni

√
∆t) (3.46)

where Jn = ∂Nα/∂w at t = tn. Substituting this in the second term on the right-hand

side in eq. (3.42) results in the leading order contribution from the term ∆t
∑š

i=1 biJnEni.

Therefore, we estimate the stage error function, Eni, by subtracting exact solution at the

intermediate stage, τni (set θ = ci in eq. (3.40)), from the numerical expression eq. (3.32b):

Enj =

∫ ∞

0

e−cjk
2

eHn (k) dk +∆t

j−1∑

i=1

ajiN
diff
n,i + δnj, j > 1

=

∫ ∞

0

e−cjk
2

eHn (k) dk +∆t

j−1∑

i=1

aji(JnEni +O(Eni

√
∆t)) + δnj,

(3.47)

where δnj reflects error due to RK-quadrature at the intermediate stage. Note that En1 = en,

δn1 = 0. Order analysis of the stage errors, Enj, follows similarly to eq. (3.42) due to identical

error decomposition. Also note, due to recursive construction, the second term on the right

in eq. (3.47) is subdominant to the rest of the terms. Thus, it is sufficient to check the

contributions of δnj and e
H
n to the stage error Enj.

We examine the term ∆t
∑š

i=1 biJnδni. An expression for δnj (for j > 1) can be obtained
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by repeating the procedure followed for estimating δn:

δnj =

p2,j∑

m=1

Cm−1(tn)∆t
m+1

2

[
j−1∑

i=1

ajic
(m−1)/2
i − c

(m+1)/2
j ϕ(m−1)/2,j(γ̄)

]
+O(∆t

p2,j
2

+1) , (3.48)

where {p2,j} are positive integers. Using the above expression, we collect terms of different

powers of ∆t in the expression ∆t
∑š

i=1 biJnδni and set the coefficients to zero up to the

desired order. For certain choices of {p2,j < š} (see table 3.4.1), these generate the order

conditions eq. (3.36c) for the 2-stage scheme and eqs. (3.38c) to (3.38e) for the 4-stage

scheme. The resultant contribution can be shown to be

∆t
š∑

i=1

bi(Nα(wni, τni)−Nα(w(τni), τni) ∼ O(eHn (k)∆t) +O(∆t
š
2
+1) . (3.49)

(iii) Finally, we estimate the error due to numerical approximation of the history function.

This fixes the weight functions {di(k)}. We derive an equation for the history error function,

eHn (k) = Hn(k)−H(k, tn), by subtracting eq. (3.31b) from eq. (3.32d) :

eHn+1(k) = e−k2eHn (k) +
2

π

γ̄

k2 + γ̄2
∆t

š∑

i=1

di(k)N
diff
n,i + δHn+1(k) . (3.50)

We begin by estimating the history-defect term, δHn+1, whose expression is derived by sub-

tracting eq. (3.32d) evaluated at the exact state variables from eq. (3.31b) :

δHn+1(k) =

p3∑

m=1

Cm−1(tn)∆t
m+1

2

[
š∑

i=1

di(k)c
(m−1)/2
i − ψ(m−1)/2(k)

]
+O(∆t

p3
2
+1) , (3.51)

where p3 is a positive integer. Setting the expression in the parenthesis to zero form ≤ p3 = š

generates as many order conditions for di(k) for every k. Therefore, we solve for di(k)’s

(eqs. (3.36b) and (3.38b)). So far, we have fixed all the parameters in our RK scheme,

namely aij, bi, di(k). Demanding that any further conditions be satisfied would result in

contradiction from the already derived order conditions. As a result, we assess eq. (3.50)

under the constraints of the derived order conditions.

Let ρ(k) := (2/π)(γ̄/(k2+ γ̄2)). Using the history error function in eq. (3.50) recursively,

we get

eHn+1(k) = e−(n+1)k2eH0 (k) + ρ(k)∆t
n∑

m=0

š∑

i=1

di(k)e
−mk2Ndiff

n−m,i +
n∑

m=0

e−mk2δHn+1−m(k), (3.52)
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where the first term has no contribution since eH0 (k) = 0 by imposition of the exact initial

condition. Further, since eq. (3.51) and (n+ 1)∆t = tn+1, the last term can be shown to be

O(∆t
š
2 ). Using eq. (3.46) and a similar argument as before that the major contribution to

Eni in ∆t
∑š

i=1 di(k)JnEni comes from eHn (k) and δni, the second term in eq. (3.52) can be

shown to be (see section 3.C for contribution from δni):

∆t
n∑

m=0

š∑

i=1

di(k)e
−mk2Ndiff

n−m,i ∼ ∆t
n∑

m=0

š∑

i=1

di(k)e
−mk2Jn−mEn−m,i

∼ ∆t
n∑

m=0

š∑

i=1

di(k)e
−(n−m)k2Dm,i +O(∆t

š
2 )

(3.53)

where Dm,i = Jm
∫∞
0
e−ciq

2
eHm(q) dq. Combining the above estimates, eq. (3.52) reduces to

eHn+1(k) = ρ(k)∆t
š∑

i=1

di(k)D̃n,i +O(∆t
š
2 ) . (3.54)

where D̃n,i =
∫∞
0
e−ciq

2
(∑n

m=0 e
−k2(n−m)Jme

H
m(q)

)
dq. Using mathematical induction for

different n, we can show the following,

eHn+1(k) ∼ O(∆t
š
2 ) =⇒

∫ ∞

0

e−k2eHn (k) dk ∼ O(∆t
š
2 ) . (3.55)

As a result of the contributions discussed above, we have en+1 ∼ O(∆t
š
2 ).

Table 3.4.1: Parameters used to control the defects (δn, {δnj}, δHn ) for (∆t)p-accurate RK
schemes.

š p1 j p2,j p3 p

2 2 2 1 2 1

2 2
4 4 3 2 4 2

4 3

3.4.2 Computation of the history integral

We use the Clenshaw-Curtis quadrature to approximate the history integrals in the scheme

eq. (3.32). As a prerequisite, we map the semi-infinite interval k ∈ [0,∞) to k̃ ∈ [−1, 1]

under the transformation k =
√
γ̄(1 + k̃)/(1− k̃). We expand the resulting integrand in this
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interval in the basis of Chebyshev polynomials of the first kind, {Tm}. In summary,

∫ ∞

0

e−k2Hn(k) dk =

∫ 1

−1

e−k(k̃)2Hn(k(k̃))
dk

dk̃
dk̃ =:

∫ 1

−1

Fn(k̃) dk̃ ≈
M+1∑

m=1

µmFn(k̃m) ,

where {k̃m = cos(θm)} are the Chebyshev nodes computed at linearly-spaced θm = π(m −
1)/M , and {µm} are the associated weights. This procedure yields spectral accuracy with

respect to the number of quadrature points, M + 1. We note that this quadrature is a

recurring operation of a fixed cost, performed at every time-iterate as the integrand contains

a dynamically evolving state variable, Hn(·).
The RK weights derived in the previous section assumed that there is no quadrature

error incurred in computing the history-error integral (first term on the right-hand side in

eq. (3.42)). We show that it is effectively justified as long as quadrature error is subdominant

to the time-stepping error from the RK-quadrature for time-integrals. We estimate the error

due to the approximation of the history integral in the schemes. We define an associated

error quantity, ζn, with the following decomposition:

ζn :=
M+1∑

m=1

µmFn(k̃m)−
∫ ∞

0

e−k2H(k, tn) dk ,

=

∫ ∞

0

e−k2(Hn(k)−H(k, tn)) dk +
(M+1∑

m=1

µmFn(k̃m)−
∫ ∞

0

e−k2Hn(k) dk
)
,

=

∫ ∞

0

e−k2eHn (k) dk + ζQn ,

where ζQn is the error solely due to the quadrature approximation of the history-error in-

tegral (in our case the Clenshaw-Curtis quadrature) while the remaining integral term is

what appears in the master error eq. (3.42). In principle, any quadrature can be used, and

the associated convergence property will be reflected in ζQn . This justifies our assumption

that this quantity virtually sets the “machine precision” for the scheme. The effect of the

quadrature error in computing the history integral is shown in the error convergence plots

in fig. 3.5.1e and fig. 3.5.2.

3.5 Numerical results

In this section, we test the error bounds for the first- and second-order Runge-Kutta schemes

for the MRG equation described in sections 3.3.1 and 3.3.2 for two model problems.
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3.5.1 Oscillating-in-time force

We consider the scalar MRG equation eq. (3.7b) with a time-oscillating force, N(t) = sin(ωt),

decoupled from the position dynamics, for t ∈ (0, T ], subject to the initial condition w(0) =

w0. This example has the following closed-form analytical solution expression (section 4.3

in [37]):

w(t) = χ(t;α, γ)w0 +

∫ ∞

0

2γk2

π ((−k2 + α)2 + k2γ2)

(
k2 sin(ωt)− ω cos(ωt) + ωe−k2t

k4 + ω2

)
dk ,

(3.56)

where the semi-infinite k− integral may be computed numerically using any available stan-

dard high-accuracy quadrature package. We used MATLAB’s built-in numerical integrator

function integral to generate the exact solution data. We numerically evolve the forced

MRG equation over discrete times tn = n∆t using the two schemes given in section 3.3 for a

chosen set of parameters. According to the construction of the schemes, the two- and four-

stage scheme should generate first- and second-order rates of convergence for global error,

respectively. This is verified in fig. 3.5.1c, where the error is measured in the l2−norm

l2-error =
(
∆t

NT∑

n=1

|wn − w(tn)|2
)1/2

. (3.57)

where T = NT∆t.

Additionally, in fig. 3.5.1d, we measure the computational effort demanded by the schemes

to improve in accuracy. We use CPU time taken to run the simulation up to T = NT∆t

as proxy to estimate the operational cost (FLOPs) incurred by the schemes, and plot it

against the global error. In the non-Markovian treatment of the equation in the original

formalism (eq. (3.7)), the CPU time scales quadratically with the number of time-iterates,

NT , equivalently, ∆t
−2. In contrast, in our Markovian reformulation, we recover the linear

scaling for a canonical dynamical system (equivalently, ∆t−1).

3.5.2 Particle in 2D Lamb-Oseen vortex

The Lamb-Oseen vortex, a canonical structure in turbulent flows, provides a vector example

of a particle moving according to the MRG equation in a 2D stationary flow field, without

gravity. This problem, in addition to the vector equations for the particle slip velocity w

coupled via the flow vector field, requires simultaneous evolution of the particle position

vector Xp to determine the instantaneous nonlinear forcing of the flow at the particle loca-

tion. We solve the MRG system eq. (3.7) using the schemes in section 3.4 in the interval

67



(a) (b)

(c) (d)

(e)

Figure 3.5.1: Scalar MRG equation forced with N = sin(ωt), subject to initial condition,
w0 = 1, for the parameters (α, γ, ω, T ) = (0.33, 1, 5, 5), solved using the 2- and 4-stage
schemes (eqs. (3.36) and (3.38)). M = 51 quadrature points were used to compute the
history integral. (a) Comparison of exact and the numerical solutions for ∆t = 2−3. (b)
Error as a function of time for ∆t = 2−3. (c) Scaling of error with time-step ∆t. The errors
are measured against the analytical solution (3.56) in the l2−norm. (d) Scaling of CPU
time with error. As per the schemes, l2 error ∼ ∆tp, where p is the order of accuracy, and
operational cost ∼ ∆t−1, which is verified by the slopes of the lines. (e) Dependence of error
on the number of quadrature points M used in computing the history integral.
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(a) γ = 1/3 (ρp/ρf ∼ 10) (b) γ = 1/30 (ρp/ρf ∼ 103)

Figure 3.5.2: Dependence of error convergence on the parameter shown for two representative
γ’s: smaller γ typically requires more quadrature nodes M to compute the history integral
accurately. The quadrature error ζQ sets the ‘machine precision’ for the scheme, which can
be favorably lowered by increasing the number of quadrature points for a given γ.

t ∈ [0, T ], subjected to initial conditions [Xp0,w0]
T , and a 2D stationary Lamb-Oseen vor-

tex, u∞θ (r) = (1 − e−r2)/r , as the background flow, where r = |x| = (x21 + x22)
1/2 and the

subscript θ denotes the azimuthal direction.

Due to lack of an analytical solution expression for the slip velocity, we treat the numerical

solution obtained at a finer grid resolution to be the true solution. We then define error in

computing the slip velocity as the departure from the fine grid solution. Figure 3.5.3 verifies

the expected error convergence rates for the two schemes eqs. (3.36) and (3.38).

The codes used for the examples in this section are available on GitHub at https:

//github.com/jagannathan-divya/rk4mrg.

3.6 An alternative Markovian embedding procedure

We revisit the alternative Markovian embedding construction in section 3.1.4 involving a

direct discretization of the H− equation to demonstrate the computational advantage of the

construction in section 3.3.

Upon comparing the definitions of w(t) in eqs. (3.18) and (3.29), one may infer the

following relation for the history function in the alternative embedding eq. (3.18):

w(tn+1) = Rχ
history(tn+1; tn+1) =

∫ ∞

−∞
H(k, tn+1) dk . (3.58)

We point out that the two different history functions H satisfy the same differential equation,

but differ in their relation to the slip velocity w(t). In eq. (3.29), H is introduced specifi-
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(a) (b)

Figure 3.5.3: Numerical advection of a particle in 2D stationary Lamb-Oseen vortex starting
at Xp0 = (1, 0), with non-zero initial slip velocity w0 = (1, 0), for the parameters (α, γ) =
(1, 1) using our 2-stage and 4-stage schemes. M = 51 (Chebyshev) quadrature points were
used to compute the history integral. (a) Trajectory of the particle evolved up to T = 200
with ∆t = 2−3. (b) Scaling of error with time-step ∆t for simulations run up to T = 5.
Here, the errors are defined for the magnitude of slip velocity vector, |w|, and measured in
the l2−norm against a fine-resolution numerical solution computed using our 4-stage scheme
with ∆t = 2−16 and M = 101.

cally to account for the influence of past states on the present state, whereas in eq. (3.18)

(equivalently eq. (3.58)) the function H accounts for all the states up to the present state.

The rapid decay of the Gaussian multiplier in eq. (3.29) allows a smaller finite-dimensional

approximation for H, keeping a low overall operational cost. In contrast, the lack of fast

decay of the integrand in eq. (3.58) suggests that a quadrature approximation of the integral

in eq. (3.58) will require a larger number of basis functions.

To show this, we introduce the following re-definitions,

Re(H(k, t)) → H(k, t), Nα(w) = N(w)− αw , (3.59)

where the first reassignment here is due to
∫
Im(H(k, t)) dk = 0 (see eq. (6.5)). We then

consider the expansion of the history function in the basis of Hermite functions, {Ψm},

H(k, t) =
M∑

m=0

µ2m(t)Ψ2m(k) ,

where µm is an (M + 1) × 1 vector of time-dependent weights corresponding to the even-

indexed Hermite functions. The odd-indexed Hermite functions do not contribute to the

integral in eq. (3.58) due to their odd-symmetry. Substituting the Hermite expansion into
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Figure 3.6.1: Repeat of numerical experiment in section 3.5.1 under the alternative Marko-
vian embedding procedure (section 3.6) using ETD2RK (Eq. 81, 82 in [3]). M is the number
of Hermite functions used to compute the history integral. Compare the red (open circle)
curves here and in fig. 3.5.1c, both corresponding to M = 51.

eq. (3.28) with the re-definitions eq. (3.59), and taking suitable inner-products, we derive

the following evolution rule for the Hermite coefficient-vector in the Duhamel form:

µ(t+∆t) = e−L∆tµ(t) + η

∫ ∆t

0

e−L(∆t−τ)Nα(w(t+ τ), t+ τ) dτ, (3.60)

where L is an (M+1)×(M+1) tri-diagonal matrix with elements Lmn =
∫
k2Ψm(k)Ψn(k)dk,

and η2m = γ/π
∫
Ψ2m(k)/(k

2 + γ2) dk is an (M + 1) × 1 vector. The exponential matrix,

e−L∆t, is Ve−Λ∆tV−1, where Λ is the diagonal matrix with eigenvalues of the matrix L, and
V is the corresponding eigenvector matrix. Equation (3.60) can be numerically solved using

the RK-ETD method of [3]. The slip velocity can then be reconstructed by:

w(t+∆t) =
√
2π

M∑

m=0

µ2m(t+∆t)(−1)mΨ2m(0) .

We repeat the numerical experiment in section 3.5.1 for the above construction using the

second-order accurate ETD2RK scheme [3]. In fig. 3.6.1, we note that upon increasing the

number of basis functions, the error in slip velocity converges with the rate O(∆t2) over a

range of ∆t that only slowly widens before eventually saturating. In comparison, the 4-stage

RK-χTD scheme eq. (3.38) derived under the Markovian embedding procedure required

significantly fewer quadrature points to maintain the second-order accuracy over a much

larger range of ∆t (see fig. 3.5.1c).

The codes used for the example in this section are available on GitHub at https://

github.com/jagannathan-divya/rk4mrg.
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3.7 Conclusions and discussion

We have derived explicit integration schemes for the MRG equation via the introduction of

a co-evolving state variable which we call the history function. We have further established

their formal rates of convergence and presented some numerical experiments to verify the

same. Both the introduction of the co-evolving state variable and the derivation of the

numerical integration scheme relied crucially on the spectral representation of the solution

to the linear equation. The ideas presented here generalize to any equation with memory

effects which can be expressed in the following form along with the spectral representation

of the linear solution operator along some contour Γ in the complex-k plane:

w(t) = T (t)w0 +

∫ t

0

T (t− τ)N(w(τ), τ) dτ, T (t) =

∫

Γ

ef(k)tg(k) dk . (3.61)

This form includes many FDEs where the non-local term appears linearly, including notably

the MRG equation. The form of the integrand in the definition of T in (3.61) determines

the evolution equation for the co-evolving history function H(k, t),

dH(k, t)

dt
= f(k)H(k, t) + g(k)N(w(t), t) , (3.62)

whereas the smoothness in t for the function T determines the kind of expansions (integer or

fractional powers of t) involved in the derivation of the RK scheme. The resultant numerical

schemes are local in time, self-starting, incur fixed memory cost throughout the simulation,

and do not introduce any arbitrary design parameters (besides the step-size ∆t). Typical

numerical methods for equations with memory effects have computational costs that grow

quadratically with simulation time, whereas our approach has the linear growth seen in

equations without memory-effects due to the Markovian embedding.

We summarize the findings of this chapter:

• We propose a method to numerically integrate the MRG equation by embedding the

equation into a larger Markovian system. We derive an RK method for the resulting

system of equations. The explicit integrator thus constructed -

(a) is local in time, incurring operational costs that grow only linearly with simulation

time,

(b) has constant memory storage and simulation restart cost,

(c) can admit non-zero initial conditions without loss of accuracy, and

(d) can be derived with tunable order of accuracy in the step-size ∆t.
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• We adapt the ideas of exponential time-differencing (ETD) in [3] to equations which

do not possess a semigroup structure for the linear problem, while still maintaining a

constant memory storage cost.

• Our method follows naturally from the existence of an exact spectral representation

for the linear solution operator. Both the Markovian embedding and the need for

expansions in powers of t1/2 in the RK derivation are consequences of the spectral

representation relevant to the MRG equation.

• Our method generalizes to other equations with memory effects, which includes FDEs,

subject to the existence of the relevant spectral representation. We emphasize that the

spectral representation for the linear solution (and its associated properties) dictates

the development of the numerical method.

A comment on the use of the history function in the place of a non-local expression is in order.

At first sight, it seems that both involve variables in infinite-dimensional space. However, the

history function makes an impossible calculation viable as higher modes in its wave-number

space lead to squared-exponentially smaller contributions, so a truncation is possible. This

feature is true of any physical system, where viscous and other dissipative effects will erase

out higher spatial wave-numbers. In any particulate flow, for example in atmospheric clouds,

the number of particles is so large that a continuously increasing memory requirement would

be difficult to accommodate, whereas our local representation makes it easier to contemplate.

Memory effects in evolution equations can appear nonlinearly. Indeed, this is the case

for the evolution of moving boundary in the classical Stefan problem for phase change.

Another notable example is the generalization of the MRG equation for finite Reynolds

number presented in [16]. While these kinds of equations are not directly amenable to the

method introduced in this chapter, suitable adaptations of the present method will work. The

extension of the present method to problems with nonlinear non-local effects is considered

in chapter 6.
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Appendix

3.A Spectral representation of χ(t;α, γ) using inverse Laplace trans-

form

We have

χ(t;α, γ) = L−1
[ 1

s+ γ
√
s+ α

]
(t) =

1

2πi

∫ a+i∞

a−i∞

est

s+ γ
√
s+ α

ds

where the complex contour (a − i∞, a + i∞) is the standard Bromwich’s vertical contour

such that all the singularities of the function 1/(s + γ
√
s + α) lie to the left of it. We use

the following parametric representation for complex s on this contour -

s = a(1 + i tan θ), θ ∈ (−π/2, π/2) .

Then one may show the following for
√
s:

√
s = (

√
a sec θ)eiθ/2 =: ik =⇒ s = −k2

where k is a complex number. Following the above representation in θ it can be shown that

k lies on yet another complex contour ∂D− in the lower half complex plane defined by:

k2I − k2R = a, and kI < 0

where kR, kI are the real and imaginary parts of k respectively. Thus, we have now

χ(t;α, γ) =
i

π

∫

∂D−

e−k2tk

−k2 + ikγ + α
dk .

Further, the above integral can be deformed to the real line using the Cauchy’s integral

theorem and an application of Jordan’s lemma. It involves using the information that none

of the poles of the complex integrand for α, γ > 0 lie in the lower half of the complex k−
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plane. Finally, we have:

χ(t;α, γ) =
i

π

∫ ∞

−∞

e−k2tk

−k2 + ikγ + α
dk,

which is the claim we made in eq. (3.23).

(0,−√
a)

∂D−

kR

kI

Figure 3.A.1: Contour ∂D− (continuous red).

3.B Action of nonlinearity Nα on the numerical solution

We assumed the smooth mapping of the function Nα(w(t), t) to Ňα(t). This does not hold

when the first argument is wni, which is only an approximation to the true variable w(tni).

We estimate the effect of this approximation on the nonlinear action. Recall that wni =

w(τni) + Eni where Eni is the stage error function. Therefore,

Nα(wni, τni) = Nα(w(τni) + Eni, τni) .

We Taylor-expand the nonlinear function around (w(τni), τni) which yields,

Nα(w(τni) + Eni, τni) = Nα(w(τni), τni) + Eni
∂Nα

∂w

∣∣∣
w(τni),τni

+O(E2
ni),

= Ňα(τni) + Eni
∂Nα

∂w

∣∣∣
w(τni),τni

+O(E2
ni).

The derivative ∂Nα/∂w is yet another function of w, thus we define G(w(t)) := ∂Nα/∂w.

Further, we assume a smooth function exists such that G(w(t)) = Ǧ(t). This function

inherits the behaviour of Nα with a similar series expansion as in (3.41). This allows us to
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write the following, for some constant c,

∂Nα

∂w

∣∣∣
w(τni),τni

= G(w(τni)) = Ǧ(τni) = Ǧ(tn) + c
√
∆t+ ...

Thus we have the estimate claimed in (3.46) once we identify Ǧ = Jn

Nα(w(τni) + Eni, τni) = Ňα(τni) + Ǧ(tn)Eni +O(Eni

√
∆t) .

3.C Error estimate in the history function integral

We want to verify the following estimate for the 2-stage and 4-stage schemes:

ρ(k)
n∑

m=0

(
∆t

š∑

i=1

di(k)Jmδmi

)
∼ O(∆t

š
2 ) . (3.63)

Recall that {di}’s are fixed already at this point via the order conditions eqs. (3.36b)

and (3.38b), so we cannot impose any further independent conditions on them. Instead,

we assess the sum given the {di}’s. Recall also that δn1 = 0 for all n. We verify (3.63)

separately for š = 2 and š = 4. We introduce a shorthand for the expressions

j−1∑

i=1

ajic
l−1
2

i − c
l+1
2

j ϕ(l−1)/2,j(γ̄) =: [OC]j,l

which become order conditions when they are zero for some j, l.

(i) š = 2

∆t
š=2∑

i=1

di(k)δmi = (∆t)d2(k)

p2,2=1∑

l=1

Cl−1(tm)∆t
l+1
2 [OC]2,l +O(∆tq(m)) .

In the two-stage scheme, [OC]2,1 = 0 via (3.36c). The leading behaviour of the remainder

however is time-dependent. We recall that the coefficients Cl for the odd index are zero for

t > 0. This means that for m = 0, we have q(0) = 5/2 while for m > 0, we have q(m) = 3.

As a result, for large enough n,

n∑

m=0

Jm∆t
2∑

i=1

di(k)δmi ∼ O(∆t2)

which is a better estimate than required in the relation 3.63.
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(ii) š = 4

∆t
š=4∑

i=1

di(k)δmi ∼ ∆t
4∑

i=2

di(k)

p2,i∑

l=1

Cl−1(tm)(∆t)
l+1
2 [OC]i,l (3.64)

Here, the leading contribution proportional to C1(tm)(∆t)
5/2 comes due to non-zero expres-

sions [OC]i,2. Once again, this contribution becomes zero for m > 0. Note that the other

expressions [OC]i,l in (3.64) are zero due to the order conditions (3.38c) and (3.38e). Thus,

we have the following which verifies (3.63) for š = 4,

n∑

m=0

Jm∆t
4∑

i=1

di(k)δmi ∼ O(∆t2) .

3.D Standard versus non-standard RK schemes

Consider scalar initial value problems of the following general form:

dx

dt
= f(x, t), x(0) = x0 ,

where x(t) is the unknown dynamical variable we wish to solve for.

Toy problem 1: Consider f(x, t) = −x+ t. The exact solution to this problem is:

x(t) = x0e
−t + (t− 1) + e−t .

We may check that the above solution has a well-defined Taylor-series expansion centered

around any t ≥ 0. We numerically solve this ODE using the standard RK schemes and

assess the performance (see fig. 3.D.1). The standard schemes perform as expected with the

promised convergence rates.

Toy problem 2: Consider now f(x, t) = −x +
√
t. The expression for the exact solution

in the variation-of-parameters form is:

x(t) = e−tx0 +

∫ t

0

e−(t−τ)
√
τ dτ = e−tx0 +

√
t−Dawson(

√
t) . (3.65)

The expansion of Dawson function around t = 0 goes as:

Dawson(y) ∼ y − 2

3
y3 +

4

15
y5 + ...
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(a) (b)

Figure 3.D.1: Toy problem dx/dt = −x+ t solved using standard RK schemes. (a) Solution
up to T = 2. (b) Consistent error convergence rates for RK2 and RK4.

From the above, we deduce the following leading order behavior of the solution around t = 0,

x(t) ∼ x0 − x0t+
2

3
t3/2 +

1

2
x0t

2 − 4

15
t5/2 + ...

Consequently, around t = 0, f then goes as:

f(x, t) = −x(t) +
√
t ∼ −x0 +

√
t+ x0t−

2

3
t3/2 − 1

2
x0t

2 +
4

15
t5/2 + ...

The above expression evidently doesn’t have well-defined derivatives at t = 0. Therefore

it cannot be expressed in Taylor series around t = 0. However, for all other t > 0, the

solution (eq. (3.65)) can be expanded about a point in Taylor series. We now put to test

(a) (b)

Figure 3.D.2: Toy equation dx/dt = −x +
√
t solved using the standard RK schemes. (a)

Solution up to T = 2. (b) Error convergence at a reduced rate of ∆t3/2 instead of (∆t)2 and
(∆t)4 expected of RK2 and RK4, respectively.

the standard RK algorithm to numerically solve toy problem 2. We observe in fig. 3.D.2

that the standard RK schemes suffer a reduced rate of error convergence. This is attributed
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to the assumption made in these schemes of a well-defined Taylor-series expansion for the

solution at all times including t = 0. However, the function f in toy problem 2 does not have

a Taylor-series expansion at t = 0. The large error suffered in the construction of solution

at the first time-step t1 = ∆t lingers throughout the simulation despite the smaller error in

the solutions at other times.
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Chapter 4

Fate of inertial particles with memory

effects in rotating vortical flows

This chapter is based on the article titled Trapping and extreme clustering of finitely dense

inertial particles near a rotating vortex pair [Kapoor et al., J. Fluid Mech.]. Saumav Kapoor

is the first author. Our contributions are distinguished as follows: Saumav Kapoor conducted

the study on the two vortex and particle model where the particle dynamics was evolved

with the reduced MRG equation without the BBH force. I was responsible for the results

which include the BBH force. Some figures which will form a part of Saumav Kapoor’s

thesis have been used here for comparison. All results which are without the BBH force are

to be credited to Saumav Kapoor. Wherever it is unclear, Saumav’s contribution has been

highlighted in the respective figure caption.

4.1 Introduction

Turbulent flows with suspended inertial particles of varying relative densities are common

in both natural and industrial systems, such as dust in protoplanetary disks and air-drying

systems of powdered fertilizers and pesticides. In such scenarios, particles—typically denser

than the surrounding fluid—can exhibit clustering, which is a precursor to inter-particle

collisions. These collisions are critical for various natural phenomena including raindrop

formation [9, 10], reproduction among small organisms [5] and planet formation [105, 106].

Understanding and predicting particle dispersion and transport in particle-laden turbu-

lent flows is an outstanding problem of significance. The multiscale nature of turbulence

makes it challenging to find a physical model universally valid across scales for probing

such systems. Particle-resolved simulations may be performed, however, they require ex-

ceptionally high computational power and time, often providing little physical intuition.
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Instead, we can make progress by studying inertial particle dynamics in simplified, model

flows that mimic key structures of turbulent flows. This approach isolates relevant length

and timescales, informing appropriate particle models that capture the dominant physics.

In this chapter, we investigate the dynamics of inertial particles, characterized by particle

Stokes number St and density parameter R (for definitions, see 3.2), in a rotating system

of vortices. We now motivate our interest in such vortical regions and their vicinity. In-

tense vortices, generated by vortex stretching, are the building blocks of turbulent flows

[107]. Suspended inertial particles often sample these prevalent structures, influencing their

clustering behavior. It is commonly understood that particles heavier than the suspending

fluid centrifuge out of vortical flow regions and cluster in high-strain regions [61–64]. An

explanation for this was provided by Haller & Sapsis in [108] for inertial particles with small

particle Stokes number, St≪ 1. In the field description of particle velocity Vp(t) → Vp(x, t),

an approximation that is allowed when St≪ 1, its divergence at any spatial point x is given

by,

∇ · Vp(x, t) = −St
{
|S(x, t)|2 − |R(x, t)|2

}
. (4.1)

Here, S and R are the strain-rate and rotation-rate tensors of the ambient incompressible

flow field, u∞, respectively, and |.| is the Euclidean matrix norm. A positive divergence

implies the evacuation of the neighborhood, while a negative divergence implies clustering.

Haller & Sapsis [108] showed that the net divergence from any region encompassed by a

closed streamline is positive. Using this argument, we may conclude that particles of St≪ 1

will evacuate the vicinity of an isolated vortex and constantly move away from it.

In the presence of background rotation, however, the criterion 4.1 is modified. Ravichan-

dran, et al. in [109] showed that,

˜
∇ ·

˜
Vp(

˜
x, t) = −St

{
|
˜
S(

˜
x, t)|2 − |

˜
R(

˜
x, t)|2 + 2Ω2

}
≡ StQrot , (4.2)

where Ω is the constant angular speed of the frame of reference, and the quantities with

˜
(.) are written in the rotating frame. The above condition also defines the Okubo-Weiss

parameter Qrot in the rotating frame. Based on 4.2, even particles with small St can cluster

into regions within closed streamlines, suggesting that the vicinity of vortices may host

particle clusters. This highlights the role of systemic rotation in particle clustering, and

motivates our investigation of particle clustering in rotating vortical systems.

For the rest of the chapter, we switch back to the Lagrangian description of the particle

velocity, Vp(t).

We present a toy problem for particles in a simple two-dimensional vortical flow with

systemic rotation: inertial particles near a co-rotating pair of Lamb-Oseen vortices, to study
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Figure 4.1.1: Snapshot of vorticity field (color indicating strength) from a forced two-
dimensional turbulence simulation in a periodic box. Regions containing co-rotating pair
of vortices form our domain of interest to study clustering and trapping of inertial particles.
Image credit: Rajarshi.

particle trapping and clustering tendencies. Our choice of the Lamb-Oseen vortex is legiti-

mate, as it mimics a typical vortex seen in two-dimensional turbulence [110, 111]. Figure 4.1.1

shows a snapshot from a typical two-dimensional turbulence simulation, showing prevalence

of co-rotating vortex pairs, identified by pairs of identically colored patches of vorticity. The

toy problem approach highlights general physical features of particle clustering and trapping,

and is not to considered a predictive tool.

4.2 Our model and governing equations

Our background flow consists of a pair of co-rotating Lamb-Oseen vortices of identical

strength Γ and core-width b, with their centres separated by a distance dsep (see fig. 4.2.1(a)).

In accordance to the Biot-Savart law, these vortices revolve around each other on a circle

of diameter dsep, with an angular speed Ω = Γ/πd2sep, while maintaining a constant mutual

angular separation of π. The corresponding time period of rotation is Tc = 2π/Ω.

The width of the vortices is assumed sufficiently small compared to their separation, i.e.,

b≪ dsep. The basis for this assumption is as follows: two identical vortices which are initially

separated undergo merger in four stages [112]. In the first diffusive stage, they maintain their

individual Gaussian structure and mutual separation while executing uniform motion on a
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(a) (b) (c)

Figure 4.2.1: (a) Schematic showing two identical vortices (marked at their centers by red
dots) executing circular motion at a constant rate. (b) Vortex locations and representative
tracer-particle trajectories (closed orbits shown in black lines) are shown in the rotating frame
of reference. Region II is the primary host for the attracting orbits of inertial particles.
(c) Negative of the Okubo-Weiss parameter Qrot overlaid by a representative limit cycle
(attractor) of inertial particle trajectories. This schematic will also appear in the thesis of
Saumav Kapoor.

circle. In two-dimensional flows, as the flow Reynolds number, Re = Γ/ν, is made arbitrarily

large, the first stage of merger can last for an arbitrarily long time. Once the vortices diffuse

to a radius of about 0.3 times their separation, the second stage of merger begins, and the

large-scale motion is no longer periodic. Therefore, to simplify our study, we assume a high

enough flow Reynolds number such that the vortices execute circular motion with constant

angular velocity during our simulation time.

The separation length dsep, the time period of rotation Tc = 2π/Ω, and their ratio

Uc = dsep/Tc provide natural length, time, and velocity scales to nondimensionalize the

system. In the nondimensional form, the ambient flow field is given by

u∞(x, t) = πez ×
[
(1− e−|x−X|2/b2)

x−X

|x−X|2 + (1− e−|x+X|2/b2)
x+X

|x+X|2

]
, (4.3)

where the instantaneous vortex centres are at ±X with X = (cos(2πt)/2, sin(2πt)/2), and

ez is the unit vector perpendicular to the plane of the vortices. The nondimensional vortex

width is set to b = 0.1 throughout our analysis, without loss of generality.

We are interested in the dynamics of inertial particles in the above unsteady background

flow in the absence of gravity. A majority of studies [109, 113–115] on inertial particles have

focused on either heavy point-like particles (ρp/ρf → ∞) or particles with very small inertia

(finite ρp/ρf , St << 1). These cases afford simplified MRG models, given by eqs. (3.3)

and (3.4), neglecting the nontrivial Basset-Boussinesq history (BBH) force to describe their
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dynamics. However, for finite ρp/ρf and finite-time relaxation of fluid, the effects of the BBH

force could become significant, and are expected to be pronounced for near-neutrally buoyant

particles (ρp ∼ ρf ). Thus, we model the particle dynamics using the Maxey-Riley-Gatignol

(MRG) equation, incorporating the BBH force. To isolate the history force’s effects, we also

compare results with the reduced MRG equation, which neglects this term.

Consistent with the conditions under which the MRG equation is derived (section 1.1.4),

we assume negligible particle Reynolds number, i.e, Rep = ap|V ′
p (t) − u′∞(X ′

p, t)|/ν ≪ 1,

based on particle’s slip velocity and radius ap, and ap/dsep ≪ 1 to ignore Faxén corrections.

We recall that [X ′
p(t), V

′
p(t)]

T represents the instantaneous state of the particle. We also

assume negligible shear Reynolds number, neglecting any lift dynamics. Further, we assume

that the particles are in dilute suspension, allowing us to neglect their mutual interaction

as well as their effect on the flow (one-way coupling). The dynamics of the non-interacting

inertial particles in the ambient flow of co-rotating Lamb-Oseen vortex pair, under the above

assumptions, is governed by the MRG equation. For completeness, we reproduce the nondi-

mensional MRG eq. (3.1) from chapter 3 here with the parameters,

dXp(t)

dt
= Vp(t), (4.4a)

dVp(t)

dt
+

1

St
w(t) +

√
3R

St

( w0√
πt

+

∫ t

0

dw(τ)/dτ√
π(t− τ)

dτ
)
= R

D

Dt
u∞(Xp(t), t) , (4.4b)

where we recall that w(t) = Vp(t) − u∞(Xp(t), t) is the particle slip velocity, the nondi-

mensional parameters R, S are as defined in eq. (3.2), and u∞ is the ambient flow from

eq. (4.3).

Figure 4.2.2 shows snapshots of a particle ensemble evolved according to the MRG equa-

tion with the BBH force near the rotating vortex pair in the laboratory frame.

The dynamics are more insightful in the frame of reference rotating with the nondi-

mensional angular velocity of the vortex pair. The background flow field in the rotating

frame transforms according to u∞(x) − 2πez × x → u∞(x). In this co-rotating frame, the

background flow is steady, and the stationary vortices are centred at (±1/2, 0). The repre-

sentative streamlines of the stationary flow are shown in fig. 4.2.1(b), which also defines the

horizontal and vertical coordinates.

We can identify three distinct regions based on the behavior of tracer particles in fig. 4.2.1(b).

Region I is the close vicinity of the vortices; tracer particles seeded in this region execute

closed trajectories around the closest vortex. In region II, which is of primary interest to us,

the tracer particles move on closed orbits passing through their initial positions, and are,

on average, equally influenced by the two vortices. Region III is the far-field, where tracers
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Figure 4.2.2: Evolution of particle ensemble (orange dots) using the MRG equation near a
rotating vortex pair (marked by big red filled circles), for St = 0.4, R = 0.5(ρp/ρf = 2.5), at
four progressive time instances shown in the laboratory frame. Some particles have attracted
to a limit cycle (right-most panel), which co-rotates with the vortex pair. Majority have
centrifuged out.

execute closed orbits encircling both vortices, as they increasingly perceive the system as a

single vortex of twice the strength.

In fig. 4.2.1(c), we show the modified Okubo-Weiss parameter, Ωrot, which is most neg-

ative in the red region. According to the condition 4.1, heavy particles with St → 0 are

more likely to cluster in this red region. Overlaid is a typical limit cycle for finitely-dense

inertial particles with finite St, showing that they can cluster outside the region predicted

by 4.1. Comparing the location of the closed streamlines in fig. 4.2.1(b) with the limit cycle

in fig. 4.2.1(c) reveals that inertial particles can cluster within closed streamlines enclosing

a elliptic fixed point in the rotating frame.

4.2.1 Simulation details and numerical methods

We perform numerical simulations of inertial particles for a range of particle Stokes number

and density ratios. Without the BBH force, the MRG equation simplifies to a nonlinear

ODE, which we solve using a standard fourth-order Runge-Kutta scheme to obtain particle

trajectories. The time-step is chosen between ∆t = 10−3 and 10−4. However, when the BBH

force is retained, the MRG equation is a nonlinearly forced integro-differential equation,

posing numerical challenges discussed in section 3.1.2. We therefore use the explicit time-

integrator developed for the MRG equation in chapter 3. We solve eq. (4.4) using the second-

order RK-χTD scheme given in section 3.3.2 (with 10−4 < ∆t < 10−3) in the laboratory

frame, and then transform the variables to their counterparts in the rotating frame.

To detect an attractor (fixed points and limit cycles), we initially place O(103) particles

on a uniform grid in the region [−1.5, 1.5]× [0, 1.5] in position space (see fig. 4.2.2(a)). The
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Figure 4.2.3: Typical evolution of an ensemble of inertial particles (ρp/ρf > 1) in the position
space, in the rotating frame of an identical vortex pair. The particles are uniformly seeded
near the vortex pair as shown in (a). Particles after 10 time periods of rotation, evolved
under reduced MRG equation, are shown in (b). A fraction of particles (colored maroon)
get trapped to an attractor such as a fixed point or a limit cycle. However, a majority of
particles (colored black) are centrifuged out in spiraling orbits. The former set of particles
forms our primary focus. This figure forms a part of Saumav Kapoor’s thesis and is shown
here for clarity.

initial particle velocity in the rotating frame is set to zero, and the trajectories are evolved

over a sufficiently long time until convergence onto an attractor. The properties of the

attractor are calculated using the last 5% of each trajectory. Fixed points are identified

when the particle’s velocity in the rotating frame goes to zero. To detect limit cycles, we

note that at its extremities in the horizontal x-direction, we must have the x component

of the particle velocity Vpx = 0 in the rotating frame. We count the number of distinct x

locations at which Vpx = 0 and divide by two to get the period of the limit cycle. When

every such location is distinct, we have a chaotic attractor. Without the BBH force, a few

tens of nondimensional time are typically sufficient for particles to converge to an attractor,

whereas with the inclusion of the BBH force the system takes longer to converge. However,

we note that within a few nondimensional times the attractors are clearly delineated, even

for the cases including the BBH force (see fig. 4.2.3(b)), but we run simulations for longer

times for near-perfect convergence.

Simulating large ensembles of particles to obtain attractors would have been computa-

tionally prohibitive with brute-force methods to compute the BBH force. However, using

RKχTD from chapter 3, simulating a single particle for O(106) time iterations typically

took under a third of a minute, making it feasible to simulate large particle ensembles of size

O(103).

Figure 4.2.3 shows a typical evolution of an ensemble of particles in the position space

in the rotating frame. In fig. 4.2.3(a), we have a uniformly seeded particle ensemble with

R = 0.84, St = 0.22, each particle colored either in maroon or black. Figure 4.2.3(b) shows
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(a) St = 0.09 (b) St = 0.22 (c) St = 0.24

Figure 4.3.1: Typical asymptotic states shown in maroon (top) and their corresponding
basins of attraction (bottom) for a finitely dense inertial particle with density factor R =
0.84 (ρp/ρf ≈ 1.3) and varying particle Stokes number St, without the BBH force. Red dots
indicate the vortex centres in the rotating frame. In (a) the particle spirals (shown in blue)
into a fixed point attractor, whereas in (b) and (c) the particle is trapped into a limit cycle of
period 2 and a strange attractor respectively. The orbits are overlaid on the separatrices of
the background flow for clarity of their scale and location. Mirror-symmetric patterns exist
in the lower half-plane. This figure forms a part of Saumav Kapoor’s thesis and is shown
here for clarity.

their respective positions after 10 time periods of rotation: the maroon patch of particles

has converged to an attractor (a limit cycle here) whereas the black patch of particles has

centrifuged out spirally. Since we are interested in clustering and trapping behavior of

particles, the centrifuging particles are excluded from our study and the results therein.

4.3 Particle trapping dynamics and Results

We focus on region II in fig. 4.2.1(b), where attracting orbits of various descriptions, in-

cluding fixed points and limit cycles, are contained, potentially trapping particles for long

times. We study the parameter space defined by 0 < St < 1 and 0 < R < 1, corresponding

to inertial particles that are finitely denser than the ambient fluid. To highlight the funda-

mental differences, we briefly review the idealized case of heavy particles (ρp/ρf → ∞) for

comparison. Particles of a fixed St and R are initially placed in a dense uniform grid across

a region of interest, and their asymptotic behavior is categorized.
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(a) (b)

Figure 4.3.2: Bifurcation diagrams for R = 0.84 (ρp/ρf ≈ 1.3) shown (a) with and (b)
without the BBH force. The y−axis plots the horizontal extremities of the attractor where
Vpx = 0. Trapping prevails for wider range of St, with the BBH force. In both cases, an
attracting fixed point exists below St ∼ 0.12. With the BBH force, a period-1 limit cycle
exists for 0.12 ≲ St ≲ 0.5, with particles escaping beyond Stcrit ≈ 0.5. Without the BBH
force, a period-1 limit cycle prevails for 0.12 ≲ St ≲ 0.22, followed by period-2 and more
complex limit cycles. Beyond a lower critical Stcrit ∼ 0.25, all particles escape. This figure
will be part of Saumav Kapoor’s thesis as well.

4.3.1 Low particle-to-fluid density ratio (1 < ρp/ρf < 2)

We examine the trapping behavior of particles with a large density parameter R, correspond-

ing to small particle-to-fluid density ratio, using the prototypical case of R = 0.84 (ρp/ρf ≈
1.3), both with and without the BBH force. The top panels in fig. 4.3.1 show typical attrac-

tors for particles of increasing particle Stokes numbers evolved without the BBH force in the

rotating frame: a fixed point, a period-2 limit cycle and a chaotic (strange) attractor. The

fixed point in fig. 4.3.1(a) represents a point undergoing periodic motion along a circle in the

laboratory frame. Similarly, the limit cycle observed in the rotating frame fills an annular

region in the laboratory frame. All particles starting within the corresponding basins of

attraction (BoA) shown in the lower panels of fig. 4.3.1 asymptotically reach their respective

attractors and never leave the vicinity.

Figure 4.3.2 shows bifurcation diagrams for R = 0.84 with and without the BBH force,

identifying attractors for different St, if present. The y-axis records a relevant feature of

the attractor for each St–specifically, the horizontal extremities where the particle’s hori-

zontal velocity vanishes. Alternatively, the local maxima of the time series for the particle’s

horizontal position on the attractor can be used to generate these diagrams.

Particles with large inertia exit the vicinity of the vortex pair–indicated by the absolute
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truncation of the bifurcation diagrams at higher St. This truncation occurs at the critical

particle Stokes number, Stcrit, beyond which no particles remain trapped. Notably, the

Stcrit ≈ 0.25 for the case without the BBH force, and is significantly greater at Stcrit ≈ 0.5

when the BBH force is included. For small to moderate St, particles can either get trapped

indefinitely in the vicinity of the vortex pair or spend varying amounts of time in the vicinity

before escaping. Figure 4.3.2(b) shows that for particles evolved without the BBH force, a

fixed attracting point exists below St ≈ 0.12. Beyond this threshold, limit cycles of varying

complexities emerge, leading to a period-doubling route to escape as St increases. In contrast,

the influence of the BBH force in fig. 4.3.2(a) is self-evident. Interestingly, the bifurcation

from a fixed point to a limit cycle occurs at a similar particle Stokes number with and

without the BBH force. However, the period-1 limit cycle persists under the effect of the

BBH force up to Stcrit ≈ 0.5, where the period-doubling route is left incomplete. The wider

range of St for which particles remain trapped with the BBH force highlights its importance

in modeling particle dynamics.

The area of the basin of attraction (BoA) is a measure of the fraction of particles which

get trapped onto an attractor. It is calculated as the area bounding the initial locations of the

particles that get trapped on the attractor. Figure 4.3.3 compares the size of BoA measured

for a range of Stokes numbers at R = 0.84 (ρp/ρf ≈ 1.3), with and without the BBH force.

Both with and without the BBH force, particles with larger inertia, characterized by higher

St, have greater propensity to leave the vicinity, marked by the shrinking size of BoAs in

fig. 4.3.3. Notably, besides missing the significant trapping of particles of larger inertia,

the fraction of particles trapped is grossly underestimated at all particle Stokes numbers by

neglecting the BBH force.

We conclude our discussion on the particle trapping dynamics for the prototypical case

corresponding to R = 0.84.

4.3.2 Moderate particle-to-fluid density ratio (2 < ρp/ρf < 10)

We now move on to higher particle densities, i.e., smaller R. Figure 4.3.4 shows the bifur-

cation diagrams corresponding to R = 0.2 (ρp/ρf = 7) and R = 0.5 (ρp/ρf = 2.5). Changing

the density ratio introduces unexpected features in the dynamics. In fig. 4.3.4(d), corre-

sponding to R = 0.5 (ρp/ρf = 2.5), we see period-doubling bifurcation followed by unusual

period-halving bifurcations back to a fixed point at higher particle Stokes number. For

the same density ratio, the inclusion of the BBH force affects the dynamics to exhibit a

period-doubling bifurcation route to chaos, as shown in fig. 4.3.4(b). Interestingly, even at

this density ratio, the BBH force does not significantly change the particle Stokes number at

which the first bifurcation occurs: going from fixed point to limit cycle. At the larger density
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Figure 4.3.3: Variation of the area of the basin of attraction with the Stokes number for
R = 0.84 (ρp/ρf ≈ 1.3), with and without the BBH force. This figure will be a part of
Saumav Kapoor’s thesis as well.

ratio of ∼ 7 (fig. 4.3.4(c)), particles are trapped only for two small, distinct ranges of St.

In contrast, with the inclusion of the BBH force, fig. 4.3.4(a) shows a widespread trapping

across a broad range of St, with a period-halving bifurcation, recovering a fixed point as the

sole attractor at large St < Stcrit.

Another non-standard feature observed in the bifurcation diagrams for inertial parti-

cles in this moderate range of density parameters is the existence of intermittent gaps i.e.,

particle Stokes numbers for which no particles are trapped in the vicinity of the vortices.

Figure 4.3.4(a) shows two such windows, a wide window around St ∼ 0.2 and a narrower one

around St ≈ 0.55. This non-monotonic trend of trapping behavior with increasing St, going

back and forth between attractors of different complexities, is remarkably non-intuitive and

warrants further investigation.

These examples illustrate a general trend about inertial particles in our system: the long-

time behavior of inertial particles with the BBH force at a given density parameter R is in

broad qualitative agreement with the behavior without BBH at a higher R. In other words,

a denser particle with the BBH force behaves qualitatively like a lighter particle without the

BBH force over time.

4.3.3 Heavy limit (ρp/ρf → ∞)

The idealized case of the infinitely dense particles in co-rotating vortices was studied by

Angilella (2010) in [4] upon neglecting the BBH force. The author analytically showed
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(a) R = 0.2 (ρp/ρf = 7) (b) R = 0.5 (ρp/ρf = 2.5)

(c) R = 0.2 (ρp/ρf = 7) (d) R = 0.5 (ρp/ρf = 2.5)

Figure 4.3.4: Bifurcation diagrams for inertial particles with higher density-ratios, shown
with the BBH force in the top panels and without in the bottom panels. This figure will be
a part of Saumav Kapoor’s thesis too.

the existence of a fixed point up to Stcr = (2 −
√
3)/2π and no attractor beyond. We

repeated the calculations with the BBH force included for ρp ≫ ρf , and found the critical

particle Stokes number unchanged. Supporting this, in fig. 4.3.5, we show the bifurcation

diagram obtained by numerically integrating the particle trajectories with the BBH force for

R = 10−4. For a finite St, this limit is practically equivalent to the case in [4], where the

BBH force is neglected. Our results show good agreement with the analytical expressions

for the attractor location and the critical Stokes number given therein.

We note a qualitative difference in the influence of the BBH force between idealized

infinitely dense particles and physical finitely dense particles, such as R = 0.2 (ρp/ρf = 7)

(fig. 4.3.4(a). The BBH force significantly affects finitely dense particles, particularly when

their densities are comparable to that of the ambient fluid. This underscores the importance

of including the BBH force as a significant factor in studies of solid-liquid systems, such as

microplastics in the ocean.

Summarizing the complexity of particle dynamics discussed thus far for exemplar pa-
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rameters, we provide a phase plot in fig. 4.3.6, which characterizes the trapping behavior

across density ratios and particle Stokes number without the BBH force. Figure 4.3.6(a)

Figure 4.3.5: Critical particle Stokes number St and the location of fixed-point attractor for
R = 10−4 with the BBH force. Analytical results of Angilella (2010) in [4] are shown by (i)
solid black line for the analytical expression for location of the attracting point, r, and (ii)
dashed black line for the analytical critical Stokes number beyond which no stable attracting
point exists. Our numerical results (dots) at small R recover both.

(a) (b)

Figure 4.3.6: Phase plots for inertial particles evolved without the BBH force based on (a)
the period of the attracting orbit, and (b) the logarithm of the size of the basin of attraction.
The regime occupied by limit cycles of period 2 and above is very narrow. Particles of near-
neutral densities tend to stay longer in the vicinity of the vortex pair. The computations for
this figure were performed by Saumav Kapoor and this figure forms a part of his thesis. It
is shown here to help some of the present discussion.
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shows the different kinds of attracting orbits obtained from reduced MRG model for inertial

particles. We may identify the following three broad regimes: for 1 > R ≳ 0.5 we have a

period-doubling route to chaos, for 0.5 > R > 0.35 a period-doubling route, which may go

all the way to chaos or may be limited to a few bifurcations, is followed by period halving,

leading to a single fixed point, and for 0.35 > R we have only attracting fixed point in

the regime where we have trapped particles. Even with the BBH force, the three regimes

prevail, but the transitions happen at lower values of R. The density ratio of R ∼ 0.5 is

most interesting, distinguished by the existence of attracting orbits at large particle Stokes

number, with sensitive dependence on R. Chaotic attractors only exist at R ≳ 0.5, i.e.,

when the particle and fluid densities are comparable. The corresponding areas of the BoA

are shown as a phase plot in fig. 4.3.6(b). Broadly, at low particle Stokes numbers, as the

particles become denser, the BoA shrinks. However, at intermediate Stokes numbers and

density ratios, we see non-monotonic behavior.

4.4 Conclusions and Discussion

In this chapter, we investigated the dynamics of inertial particles that are denser than the

fluid in the simplest rotating vortical system: of two identical co-rotating vortices in a

periodic circular motion, using both the MRG and the reduced MRG models. Primarily, we

demonstrated using our toy problem that the conventional wisdom of clustering in high-strain

regions, away from vortical regions, is challenged in rotating systems of vortices. Broadly,

we find that particles of finite density have a higher propensity to be trapped indefinitely in

the system compared to the idealized infinitely dense particles, where the history effects due

to the BBH force is negligible. This warrants caution in using heavy point-particle models

for practical scenarios.

We summarize our findings from the toy problem. For brevity, particles evolved with

memory effects of the BBH force are referred to as Particles-E, and those without as

Particles-G, with E and G standing for elephant and goldfish1, respectively.

1. Our study reveals rich dynamical states for such particles depending on (R, St): they

can get confined into regions of complex structures, ranging from simple fixed points

to limit cycles of varying periodicity, including possibly chaotic attractors, shown by

the phase plot in fig. 4.3.6.

2. Particles-E are more susceptible to clustering and trapping near the vortex pair over a

wider range of densities and sizes than particles-G. The larger critical Stokes number

1going by the adages based on myths: “memory like a goldfish” and “elephants never forget”.
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for particles-E, a parameter beyond which no trapping is seen, is suggestive of this.

3. A larger fraction of particles-E than particles-G in the vicinity of the vortex pair

participate in extreme and permanent clustering on the attractors. The larger size of

the basins of attraction of particles-E is suggestive of this (see fig. 4.3.3).

4. Particles-E take longer to converge to the attractor, if one exists, due to the slow late-

time relaxation enforced by the BBH force. These long transients indicate that the

non-interacting particles-E spend longer time around each other, in the vicinity of the

vortex pair.

We now discuss the limitations of our model. We recall that the MRG equation is a model

equation derived in the small particle Reynolds number limit, Rep → 0. In practical scenarios

where Rep is only finitely small, the effects due to flow inertia will become significant in long

but finite time. Therefore, the validity of the MRG equation in various regards including the

form of the history force and quasi-steady drag force are questionable after long simulation-

time. However, our results are valid and insightful in the cases where significant clustering

is observed within short-times, subject to the condition Rep < 1.

The MRG equation is widely used at Stokes numbers of O(1) but the need to satisfy

this requirement simultaneously with Rep ≪ 1, as well as keeping the particle size small,

i.e., ap/dsep ≪ 1 imposes additional restrictions. By expressing Rep in terms of our control

parameters R and St, we obtain the scaling relation Rep(ap/dsep) ∼ RSt|w|, where we recall
that w is the nondimensional particle slip velocity. For a small particle under the influence

of a single vortex, the vortex turnover time may be used to define St. In our model, the

St is defined using the system’s period of rotation. In both cases, when St ∼ O(1) we

usually have |w| ∼ O(1). In principle, the above scaling requirement can be satisfied if

R → 0, but in practice we typically have non-zero R, however small. Demanding arbitrary

smallness of the particle size (ap/dsep) is therefore penalized by large Rep near vortices. For

finite density ratios, as in our case, satisfying the requirements is even harder. From our

computations of slip velocity, we find that the slip velocities with the BBH force are usually

significantly lower than without it. At the highest Stokes numbers in our study, Rep ∼ O(10)

for ap/dsep ∼ O(10−2) for some part of the dynamics. However, close to the fixed points, and

often near the limit cycles, slip velocities are low and so is Rep. The small Rep assumption

is realized for very dense and near-neutrally buoyant particles. Due to this, and the findings

in [116] that show applicability of the MRG equation for Rep ≲ 17, we expect that our

findings have qualitative significance. We note that estimates of Rep are rarely discussed in

the literature, and need more attention.
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Chapter 5

Particle-interaction model in

two-dimensional unsteady Stokes flow

5.1 Introduction

In the previous chapters, we used the Maxey-Riley-Gatignol (MRG) equation to model the

motion of an isolated sphere (chapters 2 and 3) and a collection of non-interacting particles

(chapter 4) in flows. However, particle interactions may become significant, say, when two

particles approach each other just before a collision-event. The long-term goal of the work

presented in this chapter is to derive an analogue of the MRG equation that accounts for

inter-particle interactions mediated by an unsteady Stokes flow.

Ardekani and Rangel (2006) [117] studied the unsteady motion of two spheres embedded

within a Stokesian flow, derived equations of motion using approximation techniques (such as

repeated reflections and the point-force method) and computed the unsteady hydrodynamic

force acting on the particles. However, the kernels associated with the history forces in their

equations can be challenging (and possibly even intractable) to compute due to the presence

of poles in the complex plane whose location must be determined for the pertinent set of

system parameters.

The reciprocal theorem [24], used in the derivation of the original MRG equation, has

also been used to study the hydrodynamic interactions between solid surfaces mediated by

Stokesian flow for simplified geometries, for example, a sphere near a wall. The success of

the reciprocal theorem lies in the use of a particular auxiliary solution, which is typically

only known for the simplest of geometries. Thus, the application of the reciprocal theorem

in more complex geometries with multiple boundaries is less fruitful where the auxiliary

function is not available readily.

In this chapter, we consider a simplified interaction problem involving two stationary
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disks embedded in a two-dimensional fluid with finite-time relaxation. This translates into

the problem of solving the unsteady Stokes equation in a multiply connected domain. Our

immediate goal is to derive an approximate integral equation for the unsteady hydrodynamic

force on the disks as the initial nonzero flow relaxes under the unsteady Stokes dynamics.

This simplified problem establishes an approach and framework to derive the MRG analogue

with inter-particle interactions. Once the hydrodynamic forces on the stationary disks have

been computed, the subsequent steps in the program would involve allowing the disks to move

and then ultimately repeating the calculations for spherical particles in a three-dimensional

fluid. As we shall see, the two-dimensional stationary disk scenario already requires the

introduction of new ideas.

5.2 Problem statement

Consider an incompressible Newtonian fluid in a two-dimensional, multiply connected do-

main V embedded in R2 (see fig. 5.2.1). The domain is exterior to two rigid stationary disks

of radius ap whose centers are given by the position vectors r(1) and r(2) and we denote their

mutual separation by l = |r(1)− r(2)|. The boundaries of the disks are denoted by ∂V(1) and

∂V(2), where the index in the superscript identifies the disk. We denote the union of the two

disk boundaries by ∂V := ∂V(1) ∪ ∂V(2). The far-field boundary at infinity is denoted by

∂V∞ where we assume the fluid velocity v and pressure p vanishes.

We consider a nonzero initial state of the flow (v0(x), p0(x)) supported in V . The flow is

left to relax according to the unsteady Stokes equation while satisfying the no-slip boundary

condition simultaneously on both disks (equivalently on ∂V). The nondimensional PDE

system describing the scenario is given below,

∂v

∂t
= ∇ · σ , ∇ · v = 0 , x ∈ V (5.1)

subject to the following initial and boundary conditions,

v(x, 0) = v0(x), x ∈ V , (5.2a)

v(x, t) = 0 , x ∈ ∂V , t > 0 , (5.2b)

v(x, t) = 0 , x ∈ ∂V∞ , t > 0 , (5.2c)

where σ(v, p) = [∇v + (∇v)T ] − pI denotes the stress tensor for a Newtonian fluid and

I is a 2 × 2 identity matrix. We impose a compatibility condition on the initial flow field:

v0(x) = 0 when x ∈ ∂V , in order to satisfy eq. (5.2b) at t = 0. Similarly, we also assume
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incompressibility of initial flow field ∇ · v0 = 0.

The variables in eq. (5.1) are scaled by Lc = ap, Tc = a2p/ν and an independent velocity

scale, Uc, characteristic to the initial flow field v0. The stress tensor and pressure are scaled

by µUc/ap. Consequently, all the coefficients in the nondimensional form of the governing

eq. (5.1) and the constitutive relation for the stress tensor are unity. Also, the disks have unit

radius and the inter-particle separation between the disks is given by the nondimensional

parameter ϵ−1 = l/ap.

The principal quantity of interest is the time-dependent hydrodynamic force on each disk

that develops as the surrounding fluid relaxes under the unsteady Stokes dynamics,

f
(m)
H (t) :=

∮

x∈∂V(m)

σ(v(x, t), p(x, t)) · n(x) dS =

∮

x∈∂V(m)

T (x, t) dS , (5.3)

where we have introduced the vector-valued traction, given by,

T (x, t) := σ(v(x, t), p(x, t)) · n(x) .

The superscript m in eq. (5.3) refers to the disk, i.e. m = 1, 2, and n is the unit vector

normal to the disk’s surface, directed into the fluid domain.

Remark 5.1. We motivate our interest in the unsteady hydrodynamic force by antici-

pating how it will feature in the construction of the MRG analogue down the line (which

will be actively pursued in future work). Suppose the disks are allowed to move in response

to the flow dynamics, and assume no other external force acts on the system. Then the

equation of motion for the disk will be given by Newton’s equation as follows,

dV
(m)
p (t)

dt
= f

(m)
H (t) ,

where V
(m)
p (t) is the m−th disk’s instantaneous velocity vector related to its position vector

(now time-dependent) by V
(m)
p = dr(m)(t)/dt. The coefficients here are set to unity for

exposition only. By constructing the appropriate hydrodynamic force that, in addition to

modeling finite-time relaxation of the fluid, also incorporates inter-particle interactions, the

analogous MRG equation with inter-particle interactions may be subsequently derived. This

chapter describes the computation of such a hydrodynamic force.
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Figure 5.2.1: Schematic of the domain and coordinate system. The region occupied by the
fluid, V , is marked in blue. Two identical stationary disks are placed at a mutual separation
of l = |r(1) − r(2)|. The boundaries of V are shown: ∂V(m) on the disks, for m = 1, 2, and
∂V∞ denotes the boundary at far-field.

5.3 Derivation

We use ideas from the Unified Transform method (UTM), also known as the Fokas method,

to derive various expressions [118]. We introduce the Fourier transform pair of a function

supported in V as follows:

(̂.)(k, t) :=

∫

x∈V
e−ik·x(.)(x, t)dV (x) , (.)(x, t) =

1

(2π)2

∫

R2

eik·x(̂.)(k, t) dk ,

where k is an arbitrary real vector in the two-dimensional Fourier space. Note, to define

the inverse transform, we have extended the function originally supported only in V to the

whole of R2 by setting the function to zero in the disk-regions. We denote the magnitude of

k by k = |k|.

Note the incompressibility condition for the velocity field in the multiply connected do-

main V is given by

0 =

∫

V
e−ik·x∇ · v(x, t) dV =

∮

∂V
e−ik·xv(x, t) · n′(x) dS + ik · v̂(k, t) . (5.4)

Since we assume the disks are stationary, the integral term vanishes resulting in a simple

condition for incompressibility in Fourier space: k · v̂ = 0.
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5.3.1 The global relation

Let us define,

φ(x, t,k) = −ik · x+ ω(k)t .

For brevity, we use φ dropping the arguments when the dependence is unambiguous. We

now introduce the following functions:

A(x, t,k) = eφv, B(x, t,k) = eφ
{
σ + ik ⊗ v

}
, C(x, t,k) = ieφ(k · v) , (5.5)

where A, B, and C are vector, tensor, and scalar functions respectively. The symbol ⊗
indicates tensor product (of 2D vectors). Using these functions, we can write the governing

equation in eq. (5.1) in divergence form to the extent possible, leaving a few extra terms as

follows,
∂A

∂t
= ∇ · B+∇C − i(eφk)p− k(k · v)eφ , (5.6)

if we assume the following relationship between ω and k (also referred to as the dispersion

relation in the UTM literature)

ω(k) = k2 .

Henceforth in all the subsequent expressions, we always set ω = k2.

We integrate eq. (5.6) over the fluid domain V and over time [0, t] to obtain the following:

∫ t

0

∫

x∈V

(
− ∂A(x, τ,k)

∂τ
+∇ · B(x, τ,k) +∇C(x, τ,k)

− i(eφ(x,τ,k)k)p(x, τ,k)− k(k · v(x, τ))eφ(x,τ,k)
)
dV dτ = 0.

(5.7)

One can show the last term vanishes on account of incompressibility condition on v in

the Fourier space. Subsequently, using divergence theorem, the above equation gives the

following relation in the Fourier space,

−
∫

x∈V

{
A(x, t,k)−A(x, 0,k)

}
dV +

∫ t

0

∮

x∈∂V
B(x, τ,k) · n′(x) dS dτ

+

∫ t

0

∮

x∈∂V
C(x, τ,k)n′(x) dS dτ − i

∫ t

0

∫

x∈V
eφ(x,τ,k)k p(x, τ) dV dτ = 0 ,

(5.8)

where n′(x) is the unit normal vector at x on the disk’s surface pointing outwards from the

fluid domain V , and therefore relates to the unit normal vector on the disk as n′ = −n.

Finally, by expressing the functions A, B and C back in terms of the primary dynamical
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variables v and σ, and using the definition of the Fourier transform, we derive the following

relation in the Fourier space,

ek
2tv̂(k, t) + ik

∫ t

0

ek
2τ p̂(k, τ) dτ = v̂0(k)

+

∫ t

0

ek
2τ

∮

x∈∂V
e−ik·x

{
σ(v(x, τ), p(x, τ)) · n′(x) + ϕ(x, τ,k)

}
dS dτ ,

(5.9)

where the vector function ϕ(x, t,k) := i
{(

v · n′(x)
)
k +

(
v · k

)
n′(x)

}
.

We note that ϕ = 0 on the surface of stationary disks due to eq. (5.2b). Therefore, the

equation further reduces to:

ek
2tv̂(k, t) + ik

∫ t

0

ek
2τ p̂(k, τ) dτ = v̂0(k)

+

∫ t

0

ek
2τ

∮

x∈∂V
e−ik·xσ(v(x, τ), p(x, τ)) · n′(x) dS dτ , k ∈ R2 .

(5.10)

We refer to eq. (5.10) as the (vector) global relation1 for the PDE system in eq. (5.1). It

contains all relevant boundary conditions and initial condition that the solution, here its

Fourier transform (v̂, p̂), depends on. This is the master equation from which desired

quantities of interest can be constructed by performing suitable operations. Indeed, the

global relation can be interpreted as an integral relation equivalent to the original PDE

description in eq. (5.1).

Note that we have already used the Dirichlet condition, prescribed by the no-slip con-

dition, in deriving the global relation. Further, if traction (T = σ · n) on the surface is

prescribed, then the expressions for the solution function can be readily derived using the

inverse Fourier transform. However, when the no-slip boundary condition is enforced, the

traction on the disk must be determined from the solution to the PDE. In other words, the

traction is an unknown here. More importantly, the final term in eq. (5.10) resembles our

quantity of interest, the hydrodynamic force, except for the lingering exponential function.

However, progress has been made in identifying such a term in the global relation.

Our objective now is to derive an independent integral equation for the evolution of the

traction. A surface integral of the traction over a specific disk will then yield an integral

equation for the corresponding unsteady hydrodynamic force, the quantity of our interest.

For that, we proceed to find expressions for the flow field.

1The phrase global relation comes from the UTM literature [118–120].
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5.3.2 Expressions for the flow field

We now derive the expressions for the velocity and the pressure fields as a function of traction

using the global relation. By taking the dot product of the global relation eq. (5.10) with

the vector k, and applying the divergence-free condition to v0 and v in the bulk for t > 0,

we eliminate the explicit dependence on the current unknown velocity field v̂(k, t). Thus,

we derive an expression for the integral of (the Fourier transform of the) pressure:

ik

∫ t

0

dek
2τ p̂(k, τ)dτ =

∫ t

0

ek
2τ

∮

x∈∂V
e−ik·x (k ⊗ k)

k2
·
{
σ(v(x, τ), p(x, τ)) ·n′(x)

}
dS(x)dτ .

(5.11)

Substituting eq. (5.11) in eq. (5.10), we get the following expression for the fluid velocity

field:

v̂(k, t) =e−k2tv̂0(k)

+

(
I− (k ⊗ k)

k2

)
·
∫ t

0

dτ e−k2(t−τ)

∮

x∈∂V
e−ik·xσ(v(x, τ), p(x, τ)) · n′(x) dS(x) dτ .

(5.12)

We have eliminated explicit pressure dependence from the expression for velocity; an implicit

dependence via the traction term remains. But, in line with our goal, we have derived an

expression for the Fourier transform of velocity field in terms of the traction field.

Next, we proceed to derive an expression for the pressure field. We differentiate eq. (5.11)

with respect to the time variable, to obtain the following:

p̂(k, t) = −i
∮

x∈∂V
e−ik·xk · σ(v(x, t), p(x, t)) · n′(x)

k2
dS(x) . (5.13)

Thus, we have obtained the expressions for both the Fourier transform of the flow fields,

namely eq. (5.12) and eq. (5.13). A few remarks are in order at the moment:

1. Fluid velocity in real space: We perform an inverse Fourier transform of eq. (5.12) at

an arbitrary point x ∈ V to obtain

v(x, t) =

∫

y∈V
G0(x, t,y, 0) · v0(y) dV (y) +

∫ t

0

∮

y∈∂V
G(x, t,y, τ) · T (y, τ) dS(y) dτ ,

(5.14)

where G0 and G are Green’s function associated with the unsteady Stokes flow, for

zero Dirichlet condition and no bulk forcing, with divergence-free constraint. Their
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expressions are given by:

G0(x, t,y, τ) :=
1

(2π)2

∫

R2

eik·(x−y)−k2(t−τ)I dk ,

G(x, t,y, τ) := − 1

(2π)2

∫

R2

(
I− (k ⊗ k)

k2

)
eik·(x−y)−k2(t−τ) dk .

The above solution expression in eq. (5.14) is written in the form that appears in the

classical potential theory: the two terms on the right-hand side are the initial potential

and the single layer potential, respectively [121].

2. Divergence-free fluid velocity field: The Fourier-space projection operator featuring in

eq. (5.12),
(
I− (k⊗k)

k2

)
, enforces the divergence-free condition for the flow velocity field

at all times t > 0.

3. Pressure develops instantaneously in incompressible flows. The hydrodynamic pressure

responds instantaneously to the surface traction (see eq. (5.13)), whereas the velocity

field depends nonlocally on the surface traction (see eq. (5.12)), with the presence of

the time-integral. This, however, is not the case if the velocity field is compressible.

5.3.3 Expression for the hydrodynamic force on a disk

Using the expressions for the flow field, we now construct the traction term. To construct the

corresponding traction term in Fourier space, we consider the following combination of terms

written in index notation for convenience: (kj v̂i + kiv̂j + ip̂δij), where δij is the Kronecker

delta. The inverse Fourier transform of this expression relates to the traction and, in turn,

the hydrodynamic force in the following way,

∫

R2

eik·x
(
kj v̂i + kiv̂j + ip̂δij

)
n′
j(x) dk = −i(2π)2σij(x, t)n′

j(x) = i(2π)2Ti(x, t) ,

=⇒
∮

x∈∂V(m)

{∫

R2

eik·x
(
kj v̂i + kiv̂j + ip̂δij

)
n′
j(x) dk

}
dS(x) = i(2π)2(f

(m)
H )i(t) ,

(5.15)

where we have used eq. (5.3) to relate traction to hydrodynamic force and the relation

n′ = −n.

The above relation guides the series of operations to be performed to derive an expression

for the hydrodynamic force on the m−th disk: an inverse Fourier transform followed by a

surface integral over the chosen disk. We perform this sequence of operations on the left-

hand side of the expression in eq. (5.15) after substituting the expressions for v̂ and p̂ from

eqs. (5.12) and (5.13). Computations involve multiple integrals over the disks’ surfaces, the
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spectral k space, and possibly a time integral (a typical computation for one such term is

shown in section 5.A). We recall the small parameter, ϵ = ap/l, which compares the disk’s

size with the inter-disk separation and appears in the following equations. Choosing m = 1,

without loss of generality, the series of integral computations on eq. (5.15) yields the following

final integral relation for the hydrodynamic force on the first disk:

(π
2
− 1
)
f

(1)
H (t) + π

∫ t

0

K(t− τ ; 1)f
(1)
H (τ) dτ = g(v0(r

(1)))− π

2
h(1)(t)

+ π

∫ t

0

G(t− τ ; 1)h(1)(τ) dτ − πϵ2M (θ, r(1)) · f (2)
H (t)

− π

∫ t

0

K(t− τ ; ϵ−1)f
(2)
H (τ) dτ

+M (θ, r(1)) ·
∫ t

0

G(t− τ ; ϵ−1)f
(2)
H (τ) dτ .

(5.16)

Note that a symmetric equation for f
(2)
H for the second disk can be similarly derived.

The function g is the driving function, which abstracts the dependencies on the initial

flow field at the disk’s location. The function h is defined as,

h(m)(t) =

∫ 2π

0

M(θ, r(m)) · T (θ, t) dθ ,

which represents variation of the traction over the disk’s surface. The matrix M and the

memory kernels are defined in the subsequent section, where we derive the minimal model.

5.4 The minimal model: integral equations

To derive a minimal model that captures the memory effects at the leading order, we assume

(i) large separation compared to disk size, l/ap = ϵ−1 ≫ 1, and (ii) very small variation

of the traction over the disk’s circumference, which allows us to ignore the functions h(m)

from eq. (5.16). As a result, we are able to derive a closed set of integral equations for the

unknown unsteady hydrodynamic forces on the two disks, driven by a known driving term,

here g. The resultant model for the hydrodynamic forces is nonlocal and is given by the

following compactly-written set of integral equations, at the leading order in ϵ:

(
L − I I(1)

I(2) L − I

)(
f

(1)
H (t)

f
(2)
H (t)

)
=

(
g(v0(r

(1)))

g(v0(r
(2)))

)
, (5.17)
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Figure 5.4.1: Behaviour of the kernels in the integral operators, K(t, ·) and G(t, ·), as a
function of time t for the parameter, c = 4 which is representative of disk-separation of
l/ap ∼ 4

where the vector-valued function g contains dependence on the initial flow field, v0, which

drives the dynamics in our problem. I is the 2 × 2 identity matrix, and L, I are integral

operators, denoting self-interaction and inter-particle interaction, respectively. They are

defined by their action on an arbitrary vector z, using index notation:

L[zi](t) =
π

2
zi(t) + π

∫ t

0

K(t− τ ; 1)zi(τ) dτ ,

I(m)[zi](t) = π

∫ t

0

{
K(t− τ ; ϵ−1)δij −Mij(θ, r

(m))G(t− τ ; ϵ−1)
}
zj(τ) dτ , i, j ∈ {1, 2} ,

where M(θ, r(m)) is the standard 2× 2 reflection matrix along the directed line joining the

centers of the interacting disks, which originates from r(m) and makes an angle θ with the

horizontal axis. The kernels in the operator definitions are given in terms of Bessel functions

of the first kind:

K(t; c) =

∫ ∞

0

e−k2tk2J1(k)J0(ck) dk , G(t; c) =

∫ ∞

0

e−k2tk2J1(k)J2(ck) dk , (5.18)

which are well-behaved smooth functions as shown in fig. 5.4.1.

The derived set of integral equations in eq. (5.17) can be solved, either analytically or

numerically, directly for the quantities of interest, namely the unsteady hydrodynamic forces

on the disks.
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5.5 Conclusion

In this chapter, we have presented a framework to derive an integral equation for unsteady

hydrodynamic force under unsteady Stokesian dynamics. We have shown the procedure

systematically for the simplified model problem: of two stationary rigid disks in a two-

dimensional flow field, experiencing unsteady force as the surrounding flow relaxes from an

initial nonzero state. The model problem identifies many of the challenges that will be

present when we consider more complex scenarios, such as movable disks and spheres, where

other geometry-specific computations will be needed.

The integral equations we derive are shown to have well-behaved memory kernels. Par-

ticularly, they have spectral representations, which can be potentially used to realize the

Markovian embedding procedure, discussed in chapters 3 and 6 to efficiently solve the inte-

gral equations numerically.

105



Appendix

5.A Typical computation of integrals

We consider the following term appearing in eq. (5.15) for m = 1:

I(t) = i

∮

x∈∂V(1)

∫

R2

eik·xp̂(k, t)n′
j(x) dk dS(x) .

Substituting the expression for p̂ from eq. (5.13) in the above, we get an integral over

three quantities:

I(t) =

∮

x∈∂V(1)

∫

R2

∮

y∈∂V

(
eik·(x−y)k · T (y)

k2

)
nj(x) dS(y) dk dS(x)

where the outermost integral is over the surface of the first disk, the middle integral over

the spectral space k, and the innermost is a surface integral over the union of the surfaces

of the two disks. Therefore, we can decompose the integral into two contributions based on

the innermost integral:

I(t) = I1(t) + I2(t)

=

∮

x∈∂V(1)

∫

R2

[∮

y∈∂V(1)

{
eik·(x−y)k · T (y)

k2

}
nj(x) dS(y)

+

∮

y∈∂V(2)

{
eik·(x−y)k · T (y)

k2

}
nj(x) dS(y)

]
dk dS(x)

(5.19)

We can express the position vector, x, to the m−th disk’s surface in terms of the known

position vector of the disk’s center and the unit normal vector at x: x = r(m) − n′(x). We

reiterate n′ = −n to avoid misinterpretation. Consequently, the vector x− y that appears

106



in the exponent in the above equation reduces to one of two expressions:

x− y =




−n′(x) + n′(y) , when x, y lie on same disk

(r(m) − r(n)) + (−n′(x) + n′(y)) when x ∈ ∂V(m), y ∈ ∂V(n) ,

where note the vectors are oriented with respect to the disk for which the expression is

written, and (r(m) − r(n)) is the known inter-particle separation (directional) vector.

We expand the integrals in eq. (5.19) and write them in the polar coordinates for disk

indices α, β:

∮

x∈∂V(α)

dS(x)

∫

R2

dk

∮

y∈∂V(β)

dS(y)
(
.
)
=

∫ 2π

0

dθα

∫ ∞

0

dk

∫ 2π

0

dθk

∫ 2π

0

dθβ k
(
.
)
.

We perform these integrals sequentially and carefully to derive the final expression. Some

identities that we use along the way are:

∫ 2π

0

eiC cos(θ−ϕ) dθ = 2πJ0(C) , (5.20a)

∫ 2π

0

eiC cos(θ−ϕ)n(θ) dθ = 2πiJ1(C)n(ϕ), (5.20b)

∫ 2π

0

eiC cos(θ−ϕ)n(θ)n(θ) dθ = πJ0(C)

(
1 0

0 1

)
− J2(C)π

(
cos(2ϕ) sin(2ϕ)

sin(2ϕ) − cos(2ϕ)

)
, (5.20c)

where ϕ is an arbitrary angle and C ∈ R is a non-negative constant. n = (cos(θ), sin(θ)) is

the unit vector on the disk’s surface, written in terms of the angle θ which is measured with

respect to the horizontal. The matrix that appears is a reflection matrix, about the unit

normal vector at θ, centered at the disk locally. The functions J0, J2 are Bessel functions of

the first kind.
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Chapter 6

Markovian embedding of nonlocal

equations using spectral

representation

This chapter is a verbatim reproduction of the article titled Markovian Embedding of non-

local equations with spectral representation [Jaganathan & Valani RN, arXiv:2402.00009]. I

acknowledge the contributions of the co-author, Rahil N. Valani.

6.1 Introduction

Memory effects often emerge when modelling evolutionary processes having many degrees of

freedom. They are usually the result of isolating a state variable of interest by “integrating

out“ the effects of the “environment” comprising other state variables. Mathematical models

describing the evolution of state variables of such processes often take the form of nonlocal

equations. Examples include particle motion in unsteady hydrodynamic environments [16],

dynamics of self-propelled walking droplets [65] and chemically active particles [123], bound-

ary evolution in diffusion processes in time-dependent domains [124, 125] and under nonlinear

boundary forcing [126–128], dynamics of optical and mechanical resonators [129] and pop-

ulation dynamics [130]. In this chapter, we are concerned with nonlocal models where the

evolution equation for a state variable y(t) has the following canonical structure:

y(n)(t) = L(t, y(t)) +

∫ t

0

N(y(t), y(τ), t− τ) dτ , (6.1)

where the superscript n indicates the order of the time derivative. The function L(·) is

a local-in-time term driving the evolution, whereas the function N(·) is a memory kernel
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of the nonlocal integral, which is also a nonlinear function of y(t). Without the nonlocal

term, eq. (6.1) can be readily transformed into a system of first order ordinary differential

equations (ODEs) yielding a Markovian description. However, with the nonlocal term, such a

transformation is not trivial. Different Markovian embeddings in an abstract extended space

are commonly realized by introducing an auxiliary variable that accounts for the memory

[131]. In this study, we show that a Markovian prescription can be realized for nonlocal

equations of the form in eq. (6.1) by an embedding procedure that relies on the spectral

representation of the nonlinear memory kernel (previously discussed for linear memory kernel

in chapter 3).

Our approach involves expressing the nonlocal integral term in eq. (6.1) as a local-in-

time term. We assume that the nonlinear memory kernel has a spectral representation of

the following form:

N(y(t), y(τ), t− τ) =

∫

Γ

eϕ(k;y(t),y(τ),t−τ)ψ(k, y(τ)) dk , (6.2)

where Γ is a smooth contour in the complex-plane and ϕ, ψ are complex-analytic functions

of the variable k. The spectral representation allows embedding of eq. (6.1) into an extended

space. This is done by substituting the spectral representation in the memory term, followed

by an interchange of order of integrals, to give:

∫ t

0

∫

Γ

eϕ(k;y(t),y(τ),t−τ)ψ(k, y(τ)) dk dτ =:

∫

Γ

H(k, t) dk

where H(k, t) is the newly-introduced complex-valued auxiliary variable. Since it encapsu-

lates “memory”, we refer to it as the history function. Owing to the particular spectral

form, we can infer that the history function has a Markovian evolution given by an ODE,

parameterized by the spectral variable k. Therefore, we have the following local-in-time

reformulation of eq. (6.1) in an infinite-dimensional space:

y(n)(t) = L(t, y(t)) +

∫

Γ

H(k, t) dk , (6.3a)

Ḣ(k, t) = ϕ̇(k; y(t))H(k, t) + eϕ(k;y(t))ψ(k, y(t)) , (6.3b)

where we introduce overdot notation to denote time derivative in this chapter.

We demonstrate our embedding procedure for two physical models with nonlinear mem-

ory effects, namely the one-dimensional walking droplet and the single-phase one-dimensional

Stefan problem. Both models illustrate that a Markovian embedding into an infinite-

dimensional space can be constructed subject to a natural spectral representation of the
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Figure 6.2.1: Schematic of the 1D walking droplet. Courtesy: Rahil N. Valani.

nonlinear memory kernel (eq. (6.2)). These models differ in the complexity of the auxiliary

history variable introduced upon embedding, highlighting the versatility of the approach.

6.2 Walking droplets

A hydrodynamic active system described by non-Markovian dynamics is that of walking [132]

and superwalking [133] droplets. By vertically vibrating an oil bath, a drop of the same oil

can be made to bounce and walk on the liquid surface. Each bounce of the droplet locally

excites a damped standing wave. The droplet interacts obliquely with these self-excited

waves on subsequent bounces to propel itself horizontally, giving rise to a self-propelled,

classical wave-particle entity (WPE). At large vibration amplitudes, the droplet-generated

waves decay slowly in time. Hence, the motion of the droplet is affected by the history of

waves along its trajectory. This gives rise to path memory in the system and makes the

dynamics non-Markovian.

Oza et al. [65] developed a theoretical stroboscopic model to describe the horizontal

walking motion of such a WPE. The model averages over the fast vertical periodic bouncing

of the droplet and provides a trajectory equation for the slow walking dynamics in the

horizontal plane. We consider a reduction of this model to one horizontal dimension, x ∈ R
(see fig. 6.2.1a). Consider a droplet with position and velocity given by (xd(t), ẋd(t)) ∈ R2,

which continuously generates standing waves with prescribed spatial structure W (x) that

decay with time. The dynamics of a 1DWPE follows the non-dimensional integro-differential

equation:

ẍd(t) = −ẋd(t)− C1

∫ t

0

W ′(xd(t)− xd(τ))K(t− τ ;C2) dτ, (6.4)
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where C1 and C2 are non-negative constants representing dimensionless wave-amplitude and

inverse memory parameter, respectively1. We refer the reader to Ref. [65] for details and

explicit expressions for these parameters. Equation (6.4) is a horizontal force balance of the

WPE, with the right-hand side containing an effective drag term proportional to velocity

−ẋd(t) and the nonlocal memory term capturing the cumulative force on the particle from

the superposition of the self-generated waves along its path. The memory kernel comprises

the functions W ′(·) and K(·); the former represents the wave-gradient where the prime

denotes derivative with respect to its argument, and K(·) imposes the temporal decay. In

the stroboscopic model of a walking droplet, −W ′(x) = J1(x), where J1 is the Bessel-J

function of order one and K(t) = e−C2t.

In the high-memory regime (C2 ≪ 1), WPEs exhibit hydrodynamic quantum analogs [134].

However, the regime may become experimentally difficult to access [135] due to the increased

susceptibility of the system to the Faraday instability [136]. Numerical simulations provide

an alternative with greater degree of control, but also entail dealing with the non-Markovian

structure of eq. (6.4) and the associated time-dependent computational costs.

6.2.1 Markovian embedding for the stroboscopic model

We convert eq. (6.4) to a Markovian description in the following way. We recall the following

integral representation of the Bessel-J1 function for some z ∈ R:

J1(z) = − i

π

∫ 1

−1

eikz
k√

1− k2
dk .

Substituting the above in the memory term of eq. (6.4), followed by a switch in the order of

integrals, we construct the equivalent local-in-time representation for the memory integral,

− i

π

∫ t

0

∫ 1

−1

eik(xd(t)−xd(s))−C2(t−s) k√
1− k2

dk ds =:

∫ 1

−1

H(k, t)w(k) dk

where the weight function w(k) = 1/
√
1− k2 and H(k, t) is a complex-valued function of

time t and a real number k with a finite support in [−1, 1]. The induced definition of H(k, t)

is

H(k, t) := −ik
π

∫ t

0

eik(xd(t)−xd(τ))−C2(t−τ) dτ . (6.5)

The form of H(·) in eq. (6.5) suggests that it has a Markovian evolution according to an

ODE parameterized by the spectral variable k. Consequently, combined with the definition

1Note that C1 and C2 are related to the dimensionless parameters κ and β in Oza et al. [65] by C1 = βκ2

and C2 = κ.

111



of the droplet’s velocity ẋd = vd, we derive the following Markovian prescription for the

WPE dynamics in the extended state space for t > 0:

v̇d(t) = −vd(t) + C1

∫ 1

−1

H(k, t)w(k) dk, (6.6a)

Ḣ(k, t) = −C2H(k, t) + ikvd(t)H(k, t)− ik

π
, (6.6b)

subject to initial conditions (xd0, vd0) and H(k, 0) = 0. We note in eq. (6.5) that H(·)
preserves certain symmetries with respect to the spectral variable k at all times: the real

part of the history function, Re(H), has an even-symmetry, whereas its imaginary part,

Im(H), is odd-symmetric. Therefore, whereas the real and imaginary parts of the history

function drive each other’s dynamics, only the real part contributes to the memory integral

in eq. (6.6a).

The resultant set of local differential equations eq. (6.6) can be readily solved using any

standard time-integrator; we use the second-order Runge-Kutta scheme. An additional task

involves computing the history integral over k. The integrand, with its finite support in

[−1, 1] and the form of weight function w, naturally suggests expansion of H(k, t) in the

bases of Chebyshev polynomials of the first kind. Therefore, we use the spectrally-accurate

Clenshaw-Curtis quadrature method to approximate the integral:

∫ 1

−1

H(k, t)w(k) dk ≈
M∑

n=0

ωnH(kn, t), M ∈ N ,

where kn = cos(nπ/M) are the Chebyshev nodes and ωn are the associated weights. We

numerically solve eq. (6.6) for a few representative parameter sets (C1, C2). Figure 6.2.2

shows that the embedded system of equations eq. (6.6) successfully reproduces the previously

known non-walking and walking regimes in the parameter space [137, 138]. For a steady

walker, an analytical expression for its steady speed [65] is :

v∞d =
1√
2

√
2C1 − C2

2 −
√
C4

2 + 4C1C2
2 . (6.7)

The numerical solution for the steady walker attains the above analytical steady walking

speed (dashed line) in fig. 6.2.2c.

In fig. 6.2.3, we plot the evolution of the real and imaginary parts of the history function

in the k−domain over time. The plots at different time instances demonstrate symmetry-

preserving numerical evolution of the history function in the spectral space, consistent with

the exact evolution given by eq. (6.6b) The finite support of H(k, t) in [−1, 1] and its smooth-
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ness demands a nominal, fixed (in time) requirement of fewer Chebyshev quadrature nodes

to accurately compute the history integral.
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Figure 6.2.2: Typical known droplet states in the stroboscopic model obtained by solving the
Markovian system (Equation (6.6)) for (xd0, ẋd0) = (1, 1): (a) Non-walker (C1 = 0.01, C2 =
0.1), (b) Steady walker (C1 = C2 = 0.1), (c) Chaotic walker (C1 = 1.5, C2 = 0.01). Velocity
in (b) is scaled by a factor of 20 for visibility.
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Figure 6.2.3: Evolution of real (red)/imaginary (blue) parts of the history function H(k, t)
at representative times for a steady walker (C1 = C2 = 0.1), with H(k, 0) = 0. M = 30
Chebyshev quadrature nodes are used to discretize the history function in k− space.

There have been previous works [137, 139–141] that rewrite the integro-differential equa-

tion for the walker into a system of ODEs. However, these transformations work for only

specific choices of the wave form W (x). The Markovian embedding formalism is applica-

ble for a broader class of wave forms that have a suitable spectral representation. This is

particularly useful in generalized pilot-wave framework, where new hydrodynamic quantum

analogues are being explored by investigating various wave forms [134].

6.3 Single-phase Stefan problem

We now consider the class of free boundary problems called the Stefan problem, which pri-

marily describes phase-change processes such as the melting of a solid [66, 124]. In its
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simplest non-dimensional formulation, it comprises a one-dimensional domain in R+, con-

tiguously supporting a molten phase and a solid phase, separated at their interface, which

is free to move as the solid melts (see fig. 6.3.1). The solid phase is modelled as an infinite

heat sink maintained at the melting temperature at all times. Therefore, the simplified prob-

lem involves finding the solution pair (θ(x, t), l(t)), where θ(x, t) describes the instantaneous

temperature distribution in the molten phase and l(t) is the location of the melting front.

The function θ satisfies the diffusion equation ∂tθ − ∂2xθ = 0 in x ∈ [0, l(t)], subject to an

arbitrary initial condition θ0(x) in the initial domain x ∈ [0, l0] at t = t0, and a temperature

or heat flux condition at the fixed boundary x = 0. The moving front, which is at the

melting temperature, is governed by the Stefan condition l̇ = −∂xθ(l(t), t).

x = 0 x = l(t)

θ(x, t)

θsolid(x, t) = 0

“molten phase” “solid phase”

x → ∞

θ(0, t) = f(t)

melting front

Figure 6.3.1: Schematic of 1D one-phase Stefan problem.

We consider the case where temperature is prescribed at the fixed boundary, θ(0, t) = f(t)

for exposition. With primary interest in the interface’s location, the bulk heat diffusion

process in the molten phase may be effectively “integrated out” to derive a non-Markovian

equation of motion for the moving front. The resulting velocity equation for the moving

front, v(t) = l̇(t), is compactly written in the following nonlinear Volterra integral form for

t > t0 [66, 125]:

v(t) = g(t− t0, l(t); θ
′
0, l0) +

∫ t

t0

N(l(t), l(τ), t− τ ; v(τ), ḟ(τ)) dτ (6.8)

where θ′0, ḟ denote the spatial derivative and temporal derivative of θ0, f respectively, and

the function g is:

g(t− t0, l(t); θ
′
0, l0) = − 1√

π(t− t0)

∫ l0

0

(
e−(l(t)+x)2/4(t−t0) + e−(l(t)−x)2/4(t−t0)

)
θ′0(x) dx . (6.9)

The nonlinear kernel may be decomposed into contributions from forcing at the fixed bound-
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ary and the unknown velocity of the solid-liquid interface as follows:

N(l(t), l(τ), t− s; v(τ), ḟ(τ)) = v(τ)N1(l(t), l(τ), t− τ) + ḟ(τ)N2(l(t), 0, t− τ) , (6.10)

with the definitions

N1(x, y, z) =
1

2
√
π

(
(x+ y)e−(x+y)2/4z − (x− y)e−(x−y)2/4z

z3/2

)
, N2(x, y, z) =

2√
π

e−x2/4z

z1/2
.

Note that the function g is a local-in-time term. The second term on the right-hand side in

eq. (6.8) is the memory term, which introduces non-locality and the nonlinear dependence

on the moving front l(t).

6.3.1 Markovian embedding for Stefan problem

As before, we construct an embedding such that the present non-Markovian representation

for v(t) may be turned Markovian. We claim the following spectral representation of the

nonlinear kernel for a real k:

N1(x, y, z) =

∫ ∞

−∞
n1(k;x, y, z) dk =

i

π

∫ ∞

−∞

(
e−k2z+ik(x−y) − e−k2z+ik(x+y)

)
k dk, (6.11a)

N2(x, y, z) =

∫ ∞

−∞
n2(k;x, y, z) dk =

1

π

∫ ∞

−∞

(
e−k2z+ik(x−y) + e−k2z+ik(x+y)

)
dk . (6.11b)

Substituting the above spectral representations in the memory term, followed by a switch

in the order of integrals, we derive the local representation with the introduction of the

auxiliary history function H(k, t):

∫ t

t0

(
v(τ)

∫ ∞

−∞
n1(k; l(t), l(τ), t−τ)dk+ḟ(τ)

∫ ∞

−∞
n2(k; l(t), 0, t−τ)dk

)
dτ =:

∫ ∞

−∞
H(k, t)dk .

The corresponding induced definition of the complex-valued history function is:

H(k, t) :=

∫ t

t0

(
v(τ)n1(k; l(t), l(τ), t− τ) + ḟ(τ)n2(k; l(t), 0, t− τ)

)
dτ . (6.12)

Differentiating the above with respect to time, one may derive an ODE for the history

function and realize the following equivalent Markovian prescription for the moving front for
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t > t0:

l̇(t) = g(t− t0, l(t); θ
′
0, l0) +

∫ ∞

−∞
H(k, t) dk, (6.13a)

Ḣ(k, t) = −k2H(k, t) + ikv(t)H(k, t) +
ik

π
(1− e2ikl(t))v(t) +

2

π
eikl(t)ḟ(t) , (6.13b)

subject to l(t0) = l0, v(t0) = g(0, l0; θ
′
0, l0), H(k, t0) = 0. The history function in this case too

preserves similar symmetries, suggesting that only its even-symmetric real part contributes

to the history integral.

We show equivalence of the derived embedded Markovian system to the original non-

Markovian system (eq. (6.8)) by numerically solving eq. (6.13). We use the second-order

Runge-Kutta exponential time-differencing method [3] to solve for H(k, t) due to stiffness

introduced by the −k2H term, and a standard integrator to solve for l(t). The latter requires

evaluating the history integral whose quadrature approximation, however, demands different

treatment from the walker problem on two accounts:

1. H(k, t) has infinite support in the k−space. While this warrants truncation of the k−space,

its decay behavior at large k constraints the extent of truncation.

2. H(k, t) is highly oscillatory; the frequency of oscillations increases with both k and t,

which is ascribed to terms such as eikl(t) in eq. (6.13b). The dependence on t through

l(t) exacerbates the oscillations in domain growth problems such as the one under discus-

sion. Consequently, for accurate quadrature approximation, an increasingly dense set of

collocation points in the truncated domain is required.

The above points are cautionary observations. While one could potentially address these

concerns through computationally efficient methods, such an undertaking exceeds the scope

of our present work. Therefore, we adopt a heuristic approach to compute the history

integral. This involves truncating the k−space, mapping it to the interval [−1, 1], and

employing Clenshaw-Curtis quadrature to compute the history integral.

We consider the example corresponding to melting due to constant temperature at the

fixed end, f(t) = 1, with the following analytical solution pair [142]:

θ(x, t) = 1− erf(x/2
√
t)

erf(α)
for x ∈ [0, l(t)], l(t) = 2α

√
t, t > 0 , (6.14)

where the constant α satisfies the transcendental equation:
√
πα exp(α2)erf(α) = 1. To

avoid the degeneracy at t = 0 due to zero-length domain, we let the process evolve for

time t0 > 0 to a non-zero domain length l0. Prescribing (θ(x, t0), l0) as the initial state, we
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numerically evolve eq. (6.13) from t0. Figure 6.3.2 shows agreement between the numerical

and analytical solutions (eq. (6.14)) for location of the interface, supplemented with the

pointwise error. In fig. 6.3.3, we plot the pertinent history function in the truncated spectral

space at different time instances. The highly oscillatory behavior of H(k, t) in the truncated

k−domain necessitates a large number of Chebyshev nodes to adequately capture it, ensuring

the accuracy of the history integral.
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Figure 6.3.2: (a) Numerical response of the melting front to a constant temperature forcing
θ(0, t) = f(t) = 1 at the fixed end x = 0 along with (b) the instantaneous pointwise error.
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Figure 6.3.3: Evolution of real (red)/imaginary (blue) parts of the history function H(k, t)
in the truncated k−domain k ∈ [0, 500] at different time instances for the single-phase
Stefan problem subject to constant temperature forcing (f(t) = 1) at the fixed end x = 0.
M = 2000 Chebyshev nodes were used to accurately compute the integral of the highly
oscillatory history function.

6.4 Conclusions

We have described a Markovian embedding procedure for evolutionary equations with mem-

ory effects, which critically relied on the spectral representation of the memory kernel. We
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have explicitly shown the embedding procedure for two physical models, namely the one-

dimensional walking droplet and the single-phase Stefan problem. In both cases, the memory

kernel is a nonlinear function of the underlying state variable.

Physical processes inherently follow Markovian dynamics when described adequately by

all the driving state variables. The non-Markovian description of the evolution of an isolated

state variable, such as in eqs. (6.4) and (6.8), is often the result of “integrating out” the effects

of the “environment” comprising the other state variables. While identifying these integrated

physical variables may not always be feasible, our Markovian embedding procedure provides

an alternative mathematical reconstruction of the Markovian dynamics.

From a computational standpoint, a Markovian representation ensures that the numer-

ical evolution of the corresponding time-discretized system incurs a time-independent cost.

This is in contrast with the standard approaches for memory-dependent systems, where

the computational cost grows with time. It is important to recognize that our Markovian

embedding procedure comes at the cost of solving an additional local-in-time equation for

the history function, which is an infinite-dimensional object. An accurate finite-dimensional

approximation of the function depends on the behavior of H(k, t) in the spectral space. In

this regard, the two model problems discussed here demonstrate the extreme scenarios: the

Stefan problem required a higher-dimensional approximation of the history function, com-

prising thousands of spectral variables, while the walker problem allowed a lower-dimensional

approximation, with only a few tens of spectral variables for an accurate representation of

the history function.
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Chapter 7

Summary and future directions

In this thesis, we explore inertial particle transport in unsteady environments, accounting

for the finite-time hydrodynamic response of both the particle and the fluid. We extensively

use the unsteady Stokes model, which introduces nontrivial memory effects from the Basset-

Boussinesq history (BBH) force. Through chapters 1 to 5, we emphasize the relevance

of the unsteady Stokes model using analytical, numerical, and experimental approaches

while highlighting its limitations where appropriate. In chapter 6, we look at nonlocal

evolutionary processes–specifically, the walking droplets on a fluid surface and the classical

Stefan’s problem for phase-change, both of which are described by nonlinear memory effects.

In chapter 2, we describe experiments by our collaborators on the settling of an isolated

rigid sphere in a highly viscous fluid under gravity. We test the unsteady Stokes model

to capture both the sphere’s trajectory and the perturbation flow it induces. We derive

expressions for the unsteady flow structures and find that the model qualitatively captures

experimental features such as vortex formation, its handedness, and drift at very small parti-

cle Reynolds numbers, in line with theoretical expectations. These features are not explained

by the commonly-used quasi-steady Stokes model. However, the unsteady Stokes model fails

to explain the asymmetric vortex drift at later times for larger particle Reynolds numbers

(Rep ∼ 1). We attribute this to the increased significance of convective inertia, (v ·∇v), in

the dynamics, which is neglected in the model. Prior studies by [16, 143] provide an ana-

lytical and semi-analytical reference to develop models incorporating these effects. Notably,

the unsteady Stokes model still accurately predicts the particle’s trajectory, governed by

the Basset-Boussinesq-Oseen (BBO)/Maxey-Riley-Gatignol (MRG) equation derived from

the integrated effects of the ambient flow structures, for all Rep < 1. The observed vortical

structures may play a key role in collective particle dynamics via hydrodynamic interactions.

This study encourages future experiments on multi-particle gravitational settling and the re-

sulting collective dynamics, revisiting phenomena such as Crowley’s instability [74] through
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the unsteady Stokes model. This naturally leads to the topic of inter-particle interaction

models addressed in chapter 5.

In chapter 5, we consider the simplified problem of two stationary disks embedded in a

two-dimensional incompressible, Newtonian fluid. We develop a framework to derive integral

equations that approximately describe the evolution of the unsteady hydrodynamic force on

these disks, driven by inter-particle hydrodynamic interactions mediated by the unsteady

Stokes flow. In the future, this framework could be extended to incorporate non-stationary,

arbitrarily moving disks and spheres, with the ultimate goal of deriving an analogue of

the MRG equation that includes inter-particle interactions. If successful, the model could

be tested against the multi-particle experiments mentioned earlier to predict and explain

collective behaviors.

In chapters 3 and 6, we examine nonlocal evolutionary equations and develop a memo-

ryless framework to reformulate them as local-in-time equations in an extended space, using

a Markovian embedding procedure. This procedure relies on a spectral representation of a

problem-dependent mathematical quantity, though its physical interpretation is often not

apparent. In chapter 3, we apply the procedure to the MRG equation, derived from the

unsteady Stokes model for an accelerating sphere. The nonlocality in the MRG equation

arises from the BBH force, which introduces linear memory effects from the particle’s past

states. We design an explicit time integrator, that we call RK-χTD schemes (section 3.4),

for the local reformulation of the MRG equation, significantly reducing computational and

memory storage costs. The construction procedure may be directly adapted to build numer-

ical approaches for a class of fractional differential equations. In chapter 6, we extend the

Markovian embedding approach to other evolutionary equations but with nonlinear mem-

ory effects from prior system states, namely the one-dimensional stroboscopic model for the

walking droplets and the classical one-dimensional Stefan’s problem for phase-change. In

these cases, however, whether this local reformulation yields numerical benefits depends on

the specific structure of the spectral representation. With the embedding procedure real-

ized for these specific equations, there is potential to derive generalization rules based on the

structure of the spectrally represented quantity, allowing broader application of the approach

to nonlocal equations.

Finally, in chapter 4, we perform numerical simulations to examine trapping of finitely

dense (ρp/ρf < ∞) inertial particles in a prototypical rotating flow described by a rotating

pair of Lamb–Oseen vortices of identical strength, in the absence of gravity. We use RK-χTD

from chapter 3 to evolve the particles under the MRG equation. Broadly, we find that the

memory effects of the BBH force non trivially enhances clustering and trapping of inertial

particles. In future, numerical simulations for particles in turbulent flow fields using the
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explicit integrator for the MRG equation may provide insights, more directly applicable to

physical and environmental flows of importance.

In conclusion, we have demonstrated the relevance of unsteady dynamics resulting from

finite-time hydrodynamic response of the particle-laden system. While other physical fac-

tors/effects may sometimes dominate the unsteady hydrodynamic effects in physical appli-

cations, there is ample evidence that unsteady dynamics should not be dismissed, especially

on the grounds of numerical challenges posed by the nonlocal BBH force. The importance

of the history force requires careful consideration and can only be properly assessed with its

accurate inclusion in models.
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