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Abstract

The observation of gravitational waves (GWs) has opened up an entirely new window
into the universe, validating general relativity and enriching our understanding of
astrophysics and cosmology. Some of the observable GWs will be strongly lensed,
where these waves are deflected by massive celestial structures like galaxies and galaxy
clusters, producing multiple observable copies of the GW signals. Third-generation
detectors are expected to detect millions of GW events during their observing period,
with tens of thousands strongly lensed. The precise number of lensed events as well
as the distribution of lensing time delay (between multiple images) contain imprints
of cosmology and the nature of dark matter (DM). Thus, strong lensing of GWs holds
remarkable potential for cosmological investigation.

This thesis examines the potential of using a population of strongly lensed GWs as a
probe of cosmology and properties of DM. We develop statistical methods to measure
cosmological parameters and to constrain the nature of DM from the observed number
of strongly lensed events and the lensing time delay distribution. We also forecast
expected constraints from third-generation GW detectors, and discuss the potential
systematic errors in such a measurement and possible solutions to some of them.

Chapter 1 provides a pedagogical introduction to the physics and astronomy of GWs.
Chapters 2 and 3 present a similar introduction to the theory of gravitational lensing and
cosmology, thus introducing the necessary tools and concepts. In Chapter 4 we develop
a statistical framework to perform cosmography using strongly lensed GWs from binary
black hole (BBH) mergers. We model the expected population of lensed events and
their time delay distributions, demonstrating how future observations can constrain
cosmological parameters through Bayesian inference. Our analysis also addresses key
systematic effects involved in this measurement, and possible solutions to some of
them. Chapter 5 extends this framework to probe the nature of DM, showing how
strongly lensed GWs can constrain the mass of the DM particle. We present expected
constraints for both warm and fuzzy DM models and examine the impact of systematic
effects on these measurements. Chapter 6 presents some concluding remarks and future
work. Our work demonstrates that future GW observations will provide a powerful
new window into cosmology and DM, complementing existing probes while exploring
previously inaccessible regimes.
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1 | Gravitational Waves

1.1 Linearized theory

In 1905, Einstein published his groundbreaking paper "On the Electrodynamics of Mov-
ing Bodies," introducing the theory of special relativity (SR). This work revolutionized
physics by unifying space and time into a single four-dimensional spacetime fabric—the
only entity with absolute meaning, in contrast to the previously held concepts of abso-
lute space and absolute time. Einstein formulated SR on two fundamental postulates:
the laws of physics are identical in all non-accelerating reference frames, and the speed
of light remains constant in vacuum.

Building upon this foundation, Einstein made an even more remarkable advance-
ment by developing the theory of general relativity (GR), which provides our current
understanding of gravitation in modern physics. The cornerstone of this theory was
the principle of equivalence, which states that a gravitational field in a sufficiently
small region of spacetime is indistinguishable from an accelerated reference frame. By
extending SR (which applies in the absence of gravitation) to accelerating observers,
Einstein discovered that gravity manifests as curved spacetime. The formulation of
GR represented a monumental breakthrough in modern physics. It transformed our
understanding of gravity from Newton’s concept of a force to a geometric phenomenon
arising from the dynamic curvature of spacetime induced by the presence of matter.
Einstein expressed this theory using tensor mathematics, adhering to the principle of
general covariance, which requires that physical laws maintain their form in all reference
frames. This culminated in Einstein’s field Equations 1:

Gµν ≡ Rµν −
1
2

gµνR =
8πG

c4 Tµν. (1.1)

This remarkable equation establishes the fundamental relationship between geometry
(represented by the left-hand side) and matter (encoded in the stress-energy tensor).
It completes the unification of gravity and geometry, revealing spacetime as an active
participant in physical phenomena rather than a passive background. This relationship

1Gµν represents the Einstein tensor, constructed from the Ricci tensor (Rµν), the Ricci scalar (R), and the
metric tensor (gµν). The constants G and c denotes gravitational constant and the speed of light in vacuum.
Tµν is the stress energy tensor. The indices µ and ν range over all four spacetime coordinates, taking values
(0,1,2,3), where 0 corresponds to the temporal component and (1,2,3) represent the spatial components

15
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represents one of the most profound paradigm shifts in the history of physics.

The many remarkable predictions of GR include the existence of GWs [1, 2]. In the
weak field limit of his field equations, Einstein showed that spacetime perturbations
propagate as waves. Specifically, in the weak field regime, the metric can be decomposed
into the flat Minkowski metric plus a small perturbation that satisfies a wave equation,
analogous to retarded potentials in electromagnetism.

To derive GWs from the field equations, we need to expand the field equations
around flat spacetime, therefore we write

gµν = ηµν + hµν,
∣∣hµν

∣∣� 1. (1.2)

Expanding the equations of motion to linear order in hµν yields the linearized theory. In
what follows, we present the key aspects of linearized theory, following [3, 4]. Linearized
theory is invariant under Poincaré transformation (group formed by translation and
Lorentz transformations). The allowed gauge symmetry is then

xµ → x
′µ = xµ + ξµ. (1.3)

The linearized field equation can be written more compactly by defining:

h = ηµνhµν,

h̄µν = hµν −
1
2

ηµνh.
(1.4)

Expanding the field equation around flat spacetime to linear order in hµν and making
use of the gauge freedom 2, yields the wave equation:

�h̄µν = −16πG
c4 Tµν. (1.5)

Outside the source region, this reduces to:

�h̄µν = 0. (1.6)

The harmonic gauge condition remains invariant under coordinate transformations
xµ → xµ + ξµ where:

�ξµ = 0. (1.7)

Under this transformation, hµν transforms as:

h̄µν → h̄
′
µν = h̄µν −

(
∂µξν + ∂νξµ − ηµν∂ρξρ

)
. (1.8)

Defining:
ξµν ≡ ∂µξν + ∂νξµ − ηµν∂ρξρ, (1.9)

we can subtract now ξµν from hµν to impose four conditions on hµν. We can choose

2The Lorentz (Hilbert/harmonic/De Donder) gauge condition ∂ν h̄µν = 0 reduces the degrees of freedom
from 10 to 6 independent components of the symmetric 4× 4 matrix hµν
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ξµ to impose h̄ = 0 (implying h̄µν = hµν) and h0i = 0 (i ∈ 1, 2, 3). The Lorentz gauge
condition then implies h00 is time-independent, representing the static Newtonian
potential. Setting h00 = 0 for GWs, we obtain:

�hµν = 0. (1.10)

Making use of the remaining gauge degrees of freedom, we can choose the following
gauge, called the transverse-traceless (TT) gauge, in which the metric perturbations
obey the following conditions:

h0µ = 0,

hi
i = 0 (Traceless) ,

∂jhij = 0 (Transverse) .

(1.11)

The solution, with two degrees of freedom, takes the plane wave form:

hTT
ij (x) = eij(k)exp(ikx), (1.12)

where kµ =
(

ω
c , k

)
, ω

c = |k|, and eij(k) is the polarization tensor. For GWs propagating
along n̂ = k

|k| aligned with the z-axis:

hij(t, z) =




h+ h× 0
h× −h+ 0
0 0 0




ij

cos[ω(t− z/c)]. (1.13)

Here h+ and h× represent the amplitudes of plus (’+’) and cross (’×’) polarizations. The
effect of ’+’ and ’×’ polarized GW on a ring of test particle is shown in Figure 1.1.

Figure 1.1: (a) Free particles on a circle in the x− y plane before a GW traveling in the z
direction reaches to them. (b) Distortions of the circle produced by a ’+’ polarized GW.
The two pictures represents the same wave at phases separated by 180◦. (c) Same as (b)
but for ’×’ polarized GW. This figure is taken from [4].
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1.2 Sources of gravitational waves

GWs can be produced by various astrophysical sources, ranging from man-made devices
to violent cosmic events. While theory suggests many potential sources, only those
producing sufficiently strong signals can be detected by current or planned detectors.
Here we briefly discuss the major classes of sources and provide order-of-magnitude
estimates of their GW emission. This overview draws substantially from [5].

1.2.1 Human made sources

The possibility of artificially generating detectable GWs can be quickly dismissed
through simple calculations. Consider an extreme example of a rotating system with
two masses of 103 kg each at opposite ends of a 10m beam, rotating at 10 Hz. The
nonspherical velocity is v2

nonsph ≈ 105 m2s−2. At one Earth diameter away, this produces
waves with amplitude:

h ∼ 5× 10−43. (1.14)

This amplitude is far too small for any conceivable detector. Nature, however, provides
much more powerful sources through astrophysical systems.

1.2.2 Gravitational wave bursts from core collapse

Core-collapse supernovae and the formation of neutron stars or black holes can produce
bursts of GWs if the collapse is non-spherical. For a typical supernova at a distance of
10 kpc within our galaxy, assuming an energy release of 10−7M� at frequency 1 kHz for
duration 1 ms [5]:

h ∼ 6× 10−21
(

E
10−7M�

)1/2 (1 ms
T

)1/2 (1 kHz
f

)(
10 kpc

r

)
. (1.15)

While this amplitude is potentially detectable by current instruments, the event rate
within 10 kpc is expected to be quite low. Simulations suggest that GWs might carry
away between 10−7 and 10−5 of the total available mass-energy in core-collapse events
and the typical frequency might lie in the range of ∼ 200− 1000 Hz [6, 7].

1.2.3 Compact binary coalescences

Compact binary systems are among the most promising sources of GWs. As two
compact objects (neutron stars or black holes) orbit each other, they emit gravitational
radiation and slowly spiral inward. The GW amplitude from a binary is characterized
by:

hbinary ∼
1
r
M5/3Ω2/3. (1.16)
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Here,M denotes the chirp mass while Ω represents the orbital angular frequency. The
chirp mass is expressed as:

M = µ3/5M2/5 = ν3/5M, (1.17)

where, µ = m1m2
m1+m2

, is the reduced mass, M = m1 + m2, is the total mass and ν = µ
M is

the symmetric mass ratio.

For circular orbits near the last stable orbit (R = 6M), the frequency becomes:

fLSO ∼ 220
(

20M�
M

)
Hz. (1.18)

Binary systems provide excellent tests of general relativity through systems like
the Hulse-Taylor pulsar PSR B1913+16. This binary system’s orbital decay matches
theoretical predictions within measurement precision, providing strong validation of
general relativity.

Supermassive black holes (SMBHs) with masses 106-109M� are believed to exist in
most galactic centers. When galaxies merge, their central black holes can form binaries
that eventually merge through GW emission. For a binary with two 106M� black holes,
characteristic frequencies are:

fLSO = 4 mHz (Last Stable Orbit), (1.19)

fQNM = 24 mHz (Quasi-Normal Mode), (1.20)

where fQNM is the frequency of the dominant quasi-normal mode produced by the black
hole ring down.

1.2.4 Black hole ringdown

When black holes form or are perturbed, they emit characteristic ringdown radiation.
The characteristic strain amplitude for stellar-mass black holes forms at a distance 200
Mpc from Earth due to merger of compact objects in binary the amplitude is given by:

heff ≈ 10−21
( ν

0.25

)( M
20M�

)(
200 Mpc

r

)
, (1.21)

where ν is the symmetric mass ratio of the merging compact objects and M is the final
mass of the resulting black hole.

Supermassive black holes can produce significantly stronger signals despite cosmo-
logical distances:

heff ≈ 3× 10−17
( ν

0.25

)( M
2× 106M�

)(
6.5 Gpc

r

)
. (1.22)
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For 10M� binary mergers, the radiation emerges at 500 Hz, potentially detectable
by ground-based instruments. At cosmological distances (z ∼ 1), a 100M� black hole
plunging into a 106M� black hole emits at 15 mHz (redshifted from 30 mHz), within the
detection range of the upcoming space-based detector LISA. More dramatically, 106M�
SMBH mergers produce signals of 3× 10−17 at 7.5mHz, allowing detailed analysis of
pre- and post-merger masses and spins to test fundamental black hole properties.

1.2.5 Stochastic background

Beyond individual sources, a stochastic background of GWs is expected from the super-
position of many unresolved sources and potentially from fundamental processes in the
early universe. The energy density (as a fraction of critical density of the universe) in
GWs is characterized by:

Ωgw( f ) =
10π2

3H2
0

f 3Sgw( f ). (1.23)

Here Sgw( f ) is the mean square GW amplitude per unit frequency. Constraints from Big
Bang nucleosynthesis require Ωgw < 10−5. Detection of this background would provide
unique information about the very early universe and high-energy physics inaccessible
to conventional experiments.

1.3 Gravitational wave detectors

Modern GW detection represents a triumph of precision engineering and physics.
These instruments measure spacetime distortions through the strain h = δL

L , where L
denotes reference point separation and δL represents the induced displacement. Current
detectors achieved extraordinary displacement sensitivities better than 10−18 meters to
detect typical GW strains of ∼ 10−21.

Ground-based observatories utilize advanced Michelson interferometry with sus-
pended mirrors as test masses. The Advanced LIGO detectors [8] employ 4km arms,
complemented by Virgo [9] and KAGRA [10] with 3km arms. These detectors are
engineered with remarkable precision, considering that their required displacement
sensitivity is smaller than a proton’s radius (∼ 8.5× 10−16 m).

The interferometers implement sophisticated isolation systems, with mirrors sus-
pended from multi-stage pendulums. Above ∼ 1 Hz (the resonant frequency), these
effectively create local inertial frames. Combined seismic isolation achieves remarkable
1012-fold reduction in ground motion effects between 1 Hz and 10 Hz [11, 12].

The sensitivity of a detector is characterised by its frequency-dependent noise power
spectral density S( f ). The detector noise budget [13] comprises:

Stotal( f ) = Sseismic( f ) + Sthermal( f ) + Squantum( f ) + SNewtonian( f ) + Stechnical( f ). (1.24)
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Here, Sseismic( f ) is for seismic noise due to due to direct coupling of seismic vibra-
tions to the detector. Sthermal( f ) encompasses mirror and suspension thermal noise
[14], dominant in the mid-frequency range (50 − 500 Hz) due to Brownian motion
in the mirror coatings and suspensions [15]. Squantum( f ) combines shot noise and ra-
diation pressure noise [16], limiting sensitivity at high frequencies (> 500 Hz) and
low frequencies (< 50 Hz) respectively. SNewtonian( f ) represents gravitational gradient
noise, i.e. fluctuation in local gravitational field from ground and atmospheric density
perturbations [17], particularly significant below 20 Hz and fundamentally limiting
terrestrial detectors. Stechnical( f ) includes instrumental effects like laser noise, scattered
light, and stochastic electromagnetic (EM) forces and deposition of energy by energetic
particles, etc. which can be mitigated through careful engineering but never completely
eliminated.

1.3.1 Future Networks

The Cosmic Explorer (CE) [18] is planned as a next-generation GW observatory with
two possible locations. The current plans propose CE-A in both 40km and 20km configu-
rations, while CE-B is planned as a 20km detector. These future facilities are designed to
complement the existing LIGO network, which includes observatories at Hanford (LHO)
and Livingston (LLO), along with the planned Aundha (LAO) installation targeted for
the early 2030s. All LIGO facilities are expected to be upgraded to A# sensitivity, compa-
rable to Voyager specifications, forming a comprehensive global detection network.

The Einstein Telescope (ET) [19] is a revolutionary design concept as an underground
triangular facility with 10km arm length. Various configurations and their scientific
potential have been studied in [20]. The design incorporates three interferometers,
and its strategic subterranean location is specifically chosen to significantly reduce
seismic disturbances and Newtonian noise, which traditionally limit the performance of
terrestrial facilities below 8 Hz. The targeted timeline calls for the first observations to
commence by the mid-2030s, marking a significant milestone in GW astronomy.

In the transition period before the XG era, several significant detector developments
are planned. The LIGO Voyager detector design [21] represents a crucial upgrade to
the existing LIGO observatories, proposed for later this decade. Voyager’s innovative
design promises to achieve approximately double the sensitivity of Advanced LIGO
Plus, marking a significant step forward in detection capabilities. Complementing these
developments, the Neutron star Extreme Matter Observatory (NEMO) [22] has been
proposed for construction in Australia. Designed as a specialized 4-km observatory,
NEMO specifically targets neutron star GW astrophysics, with projected sensitivity
levels matching those of ET and CE at frequencies above 2 kHz, particularly optimized
for post-merger signals from binary neutron star (BNS) coalescences.
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1.3.2 Space based detection

The frontier of GW astronomy extends beyond Earth’s atmosphere with space-based
detectors accessing frequency ranges unreachable from the ground. The Laser Inter-
ferometer Space Antenna (LISA) [23], scheduled for deployment in the mid-2030s,
represents humanity’s first dedicated space-based GW observatory. This ambitious
mission will comprise three spacecraft forming an equilateral triangle with 2.5 mil-
lion kilometer arms, trailing Earth’s orbit around the Sun. Operating in the frequency
range of 100 µHz to 100 mHz, LISA will investigate an entirely new population of
sources. Its primary scientific objectives encompass tracking the evolution of black
holes from cosmic dawn to the present era, observing mergers of intermediate-mass and
lighter supermassive black holes (ranging from 102 to 107 m�), and scrutinizing extreme
mass ratio inspirals that probe spacetime in the strongest gravitational fields known
to physics. Additionally, LISA may serve as an early warning system for stellar-mass
binary mergers, alerting ground-based observatories years in advance.

Several innovative approaches to space-based GW detection are being developed
worldwide. China’s TianQin project [24] proposes a constellation of three spacecraft
orbiting Earth with 100,000 km arm lengths, designed to operate in the same frequency
band as LISA but optimized for specific source types. The Taiji program [25], also
led by Chinese scientists, plans a LISA-like detector with 3-million-kilometer arms in
a heliocentric orbit. Japan’s DECIGO (DECi-hertz Interferometer GW Observatory)
[26, 27] aims to operate in the decihertz frequency range, bridging the gap between
LISA and ground-based detectors. With 1000-kilometer arms and a unique frequency
coverage, DECIGO would be particularly sensitive to intermediate-mass black hole
mergers and stochastic GW backgrounds from the early universe. Taking an entirely
different approach, the Lunar Gravitational Wave Antenna (LGWA) [28] proposes to
utilize Earth’s natural satellite as a detector. This innovative concept would deploy
an array of cutting-edge seismometers on the lunar surface to monitor the Moon’s
normal modes within the 1 mHz to 1 Hz frequency range (decihertz band). The Moon
offers unique advantages for GW detection due to its substantial mass, absence of
atmospheric and oceanic interference, proximity to Earth, and minimal seismic activity.
Historical data from Apollo missions confirms the Moon’s exceptionally quiet seismic
environment, with only minor disturbances from moonquakes and meteoroid impacts.
The LGWA could operate concurrently with other space-based and next-generation
ground-based observatories in the 2030s, with its capabilities improving as sensor
technology advances.

In the nanohertz to microhertz frequency band, Pulsar Timing Arrays (PTAs) function
as naturally occurring GW detectors. These arrays utilize precise timing measurements
of millisecond pulsars, effectively creating an observatory spanning the Milky Way. PTAs
are particularly sensitive to GWs generated by the cosmic population of supermassive
black hole binaries in their early orbital evolution stages, offering insights into galaxy
formation and evolution across cosmic time. The remarkable precision of pulsar timing
enables the detection of minuscule variations in arrival times of radio pulses caused by
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passing GWs, making PTAs a crucial complement to other detection methods.

1.4 Gravitational wave astronomy: Achievements and future prospects

The detection of GW by LIGO in 2015 marked the beginning of a new era in astronomy
[29]. The first observation, GW150914, originated from the merger of two black holes
(∼ 36M� and∼ 29M�) approximately 1.3 billion light-years away, confirming Einstein’s
century-old prediction of GWs. This event provided the first direct evidence of BBH
systems and their mergers, while also enabling unprecedented tests of general relativity
in the strong-field regime [30].

In 2017, during the second observing run (O2), the landmark detection of GW170817
[31] marked the first observation of GWs from a BNS merger. This historic moment
was made even more significant by accompanying EM observations spanning the
entire spectrum, marking the beginning of multi-messenger astronomy. This event
definitively established the connection between BNS mergers and short gamma-ray
bursts (sGRBs), with the detection of GRB 170817A by Fermi-GBM just 1.7 seconds
after the merger [32]. The measured time delay between the merger and the GRB onset
provided constraints on the speed of gravity relative to the speed of light at the 10−15

level [33]. The subsequent discovery of the kilonova AT2017gfo provided the first direct
evidence for r-process (rapid neutron capture) nucleosynthesis [34], demonstrating
that BNS mergers are primary sites for the production of heavy elements beyond iron.
The kilonova exhibited a rapid blue component from lighter r-process elements and a
longer-lasting red component from lanthanides, confirming theoretical predictions [35].
The event also served as a standard siren, providing an independent measurement of
the Hubble constant (H0 = 70.0+12.0

−8.0 km s−1 Mpc−1) [36].

The third observing run (O3) brought several significant discoveries. GW190412
was the first BBH system with definitively asymmetric masses (mass ratio ∼ 0.28)
and showed clear evidence for higher-order multipole moments in the gravitational
radiation [37], providing new tests of general relativity. GW190521, the most massive
BBH system detected to date, revealed a final black hole of ∼ 142M�, providing the
first clear evidence for intermediate-mass black holes [38]. This system’s primary
component (∼ 85M�) lies within the pair-instability supernova mass gap, challenging
our understanding of stellar evolution and black hole formation mechanisms [39].

GW190814 represented another milestone, involving a 23M� black hole merging
with a 2.6M� compact object - potentially either the heaviest neutron star or light-
est black hole ever observed [40]. This system’s high mass ratio (q ∼ 0.112) and the
secondary’s mass falling within the hypothesized lower mass gap have profound impli-
cations for our understanding of compact object formation and evolutionary channels.
The detection of GW190425, involving a significantly more massive BNS system (total
mass ∼ 3.4M�) than those observed in our galaxy, has expanded our knowledge of
binary evolution channels [41].

The first neutron star-black hole (NSBH) mergers, GW200105 and GW200115, were
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detected during O3 [42], filling a crucial gap in our cosmic census of compact binary
mergers. These systems, with mass ratios of ∼ 0.22 and ∼ 0.26 respectively, provide
insights into the formation and evolution of mixed compact object binaries. While no
EM counterparts were detected for these events, they established upper limits on the
rates of NSBH mergers and their contribution to r-process element production.

Multiple BBH detections have revealed a diverse population of black holes with vary-
ing masses, spins, and orbital eccentricities [43]. Systems like GW190521 and GW190814
have challenged conventional formation scenarios, suggesting contributions from both
isolated binary evolution and dynamical assembly in dense stellar environments [44].
The growing number of detections with mass ratios significantly different from unity
suggests that asymmetric systems may be more common than previously thought [45].

The network of detectors, including LIGO, Virgo, and KAGRA, has demonstrated
the power of multi-messenger astronomy. These observations have provided stringent
constraints on the neutron star equation of state through tidal deformability measure-
ments [46], particularly from GW170817 and GW190425. The combined analysis of
multiple events has enabled population studies of compact objects, revealing features
such as the presence of a mass gap between neutron stars and black holes, and potential
peaks in the black hole mass distribution that might reflect fundamental aspects of
stellar evolution [45].

Looking ahead, the field aims to detect new classes of sources including continuous
waves from rotating neutron stars, stochastic backgrounds from the early universe, and
signals from core-collapse supernovae. Particular emphasis is placed on understanding
the diversity of kilonova emissions, which could reveal the distribution of heavy element
production across cosmic time [47]. Future detectors like the Einstein Telescope [19]
and Cosmic Explorer [18] promise improved sensitivity across a broader frequency
range, potentially allowing us to probe the universe back to cosmic dawn. The enhanced
sensitivity will enable detection of sub-solar mass black holes, if they exist, providing
constraints on primordial black holes and DM candidates. Together with space-based
observatories like LISA [23], GW astronomy will continue to unveil the secrets of the
most extreme events in our cosmos, from the physics of matter under extreme conditions
to the nature of gravity itself.

GW lensing represents a powerful new tool for exploring fundamental questions in
cosmology and astrophysics [48]. The gravitational lensing of GWs from binary compact
object mergers by massive galaxies or clusters will create multiple images with distinct
magnifications and time delays, providing enhanced capabilities for source localization,
constraining the Hubble constant, and understanding merger formation scenarios [49,
50]. GW lensing will offer unique opportunities to test general relativity and probe
DM substructure in lens galaxies [51–54]. The absence of both microlensing and strong
lensing signatures in LIGO-VIRGO-KAGRA’s first three observing runs has placed limits
on the abundance of compact DM between 102 − 109 M� [55, 56]. The future CE and ET
detectors will usher in a new era of statistical studies, with their enhanced detection rates
enabling precise measurements of cosmological parameters and constraining the nature
of the DM through strongly lensed GWs [57, 58]. This convergence of next-generation
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detectors and sophisticated analysis methods will establish lensed GWs as an essential
probe of both cosmology and fundamental physics.
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2 | Gravitational lensing

Gravitational lensing, one of the remarkable predictions of GR, occurs when gravita-
tional fields bend the path of light and other forms of radiation. This phenomenon has
become a powerful tool in modern astronomy and cosmology, enabling us to study dis-
tant galaxies, detect exoplanets, measure cosmic distances, and probe DM distributions
[59, 60]. Now, with the dawn of GW astronomy, we stand at the beginning of a new
frontier: the gravitational lensing of GWs. The principles governing the lensing of GWs
are similar to those of EM waves, but with some important differences [61, 62]. This
chapter provides a pedagogical overview of gravitational lensing, beginning with the
propagation of GWs in curved spacetime and developing the mathematical framework
needed to understand strong lensing phenomena. We first discuss the fundamental
concepts of wave propagation and geometric optics in curved spacetime, followed by
a detailed derivation of the lens equation. We then explore various properties of lens
mapping, including magnification, time delays, and conditions for multiple imaging.
The chapter concludes with a discussion of lensing degeneracies and commonly used
lens models that are essential for practical applications. The presentation throughout
this chapter follows the pedagogical approaches and theoretical frameworks established
in [63] and [59].

2.1 Propagation of gravitational waves in curved spacetime

Having analyzed GWs as perturbations of flat spacetime through linearized Einstein
field equations, we now extend our framework to understand GW propagation and its
effects in curved spacetime. In this broader context, we consider GWs as perturbations
over a curved dynamical background metric gµν(x):

gµν(x) = ḡµν(x) + hµν(x),
∣∣hµν

∣∣� 1. (2.1)

The key challenge lies in distinguishing between background and perturbative compo-
nents. This separation becomes natural when considering characteristic scales. In an
appropriate coordinate system, the metric can be written as in Equation 2.1, where ḡµν

varies on a spatial length scale LB, while superimposed perturbations have a character-
istic length scale λ, satisfying:

λ� LB, (2.2)

27
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where λ = λ
2π is the reduced wavelength. This separation of scales enables us to

decompose the Einstein equations into two distinct parts:

• Low-frequency modes (long wavelengths): Describe the dynamics of the back-
ground metric ḡµν and define the energy-momentum tensor of the perturbations
hµν.

• High-frequency modes (short wavelengths): Govern the propagation of perturba-
tions on the curved background spacetime

For the high-frequency modes, outside the source region and under the transverse-
traceless Lorentz gauge conditions:

∇νhµν = 0 and hµ
µ = 0, (2.3)

the propagation equation takes the form [3, 64]:

∇ρ∇ρhµν + 2R̄µρνσhρσ = 0. (2.4)

Here, ∇ denotes covariant derivatives with respect to ḡµν, and R̄µρνσ is the background

Riemann tensor. Furthermore, the term R̄µρνσhρσ = O
(

h
L2

B

)
while ∇ρ∇ρhµν = O

(
h

λ2

)
),

where h ≡ O
(
|hµν|

)
. Retaining terms to leading and next-to-leading order in λ

LB
, we

obtain:
∇ρ∇ρhµν = 0. (2.5)

Equations 2.3 and 2.5 together describe GW propagation in curved background space-
time.

2.2 Geometric optics in curved spacetime

The propagation equation for GWs (Equation 2.5) can be solved using the eikonal
approximation in geometric optics. This approximation is valid when the reduced wave-
length is much smaller than both the characteristic scales of variation of the background
metric and of the amplitude/polarization:

λ� LB and λ� Lc, (2.6)

where LB and Lc represent these characteristic scales respectively. In particular, λ must
be much smaller than the curvature radius of the wavefront. Under these conditions,
we seek a solution with a rapidly varying phase θ (varying on scale λ) and a slowly
varying amplitude (changing on scale L = min(LB, Lc)). We make the ansatz:

hµν(x) =
[
Aµν(x) + εBµν(x) + ....

]
e

ιθ(x)
ε , (2.7)

where ε ≡ O
(

λ
L

)
is a fictitious parameter (ultimately set to unity) used to track terms

order by order in the expansion.
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We define the wave vector kµ = ∂µθ and write the amplitude tensor as Aµν = Aeµν,
where eµν is the polarization tensor (normalized as eµνe∗µν = 1) and A is the scalar
amplitude. Substituting the ansatz (Equation 2.7) into equations 2.3 and 2.5 yields the
following properties of GW propagation in the geometric optics approximation [3]:

• Polarisation tensor eµν is orthogonal to the wave vector:

kνeµν = 0. (2.8)

• Wave vector is null:
kρkρ = 0. (2.9)

• GW propagates along the null geodesics of background spacetime:

kµ∇µkν = 0. (2.10)

• The number of graviton is conserved:

∇µ

(
A2kµ

)
= 0. (2.11)

• polarisations are parallelly transported:

kρ∇ρeµν = 0. (2.12)

In the geometric optics limit, both gravitons and photons follow null geodesic paths
through spacetime. This means GWs traverse curved spacetime in the same way as
light. One notable consequence is gravitational lensing, where their path is bent by the
curvature of spacetime around massive bodies just like photons.

2.3 Focusing of gravitational waves and breakdown of geometrical optics

Geometric optics approximations fail at caustics - points where multiple light rays from
a source intersect. To understand what actually happens at these points, we need to con-
sider wave optics effects like diffraction (or from a quantum perspective, the uncertainty
principle).

Figure 2.1: Focusing of GWs. This
figure is taken from [3].

Consider a circular ring of rays that is part of
a plane wave passing near a star of mass M at an
impact parameter b (see Figure 2.1). The gravita-
tional field of the star deflects these rays. Accord-
ing to Einstein’s classical result, the deflection an-
gle, θ = 2RS

b , where RS = 2GM
c2 is the Schwarzschild

radius of the star. This causes all rays in the ring to
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focus at a single point at a focal distance dF, given
by:

d f '
b2

2RS
. (2.13)

In theory, focusing a one-dimensional surface (the ring) to a point would create infinite
luminosity. However, diffraction prevents such perfect focusing in reality. We can
use the uncertainty principle to determine when geometric optics breaks down. The
error in y position is ∆y and ∆y ≤ b. Then by the uncertainty principle, this creates an
uncertainty in transverse momentum:

∆ky &
h̄
b

. (2.14)

This leads to angular spreading of:

∆θy '
∆ky

kx
&

λ

b
. (2.15)

At the focal distance dF, this creates a transverse spread of:

∆y ' dF∆θy &
λb

2RS
,

∆y
b
&

λ

2RS
.

(2.16)

For significant focusing to occur, ∆y must be much smaller than b, which means:

λ� 2RS. (2.17)

This condition determines when geometric optics remains valid. For a lens with mass
∼ M�, according to 2.17, we require λ� O(6) km, which corresponds to frequencies
f � O(10) kHz. While EM waves in the visible spectrum easily satisfy this condition,
GW sources do not emit at frequencies f � O(10) kHz. As a result, significant
amplification cannot be achieved with typical stellar-mass lenses. This represents a key
distinction between gravitational lensing of EM waves and GWs.

2.4 Derivation of the lens equation

2.4.1 Approximate metrics of isolated, slowly moving, non-compact matter distributions

The metric produced by isolated slowly moving (non-relativistic) source is given by

ds2 = −
(

1 +
2Φ
c2

)
c2dt2 +

2Ai

c
c dtdxi +

(
1− 2Φ

c2

)
dl2, (2.18)
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where dl2 = dx2 + dy2 + dz2 and

Φ(t, x) ≡ −G
∫

ρ(t, y)
|x− y|d

3y;

Ai(t, x) ≡ −4G
c2

∫
(ρvi)(t, y)
|x− y| d3y.

(2.19)

The perturbation Φ is the Newtonian potential generated by the mass distribution ρ,
while Ai emerges as a vector potential due to mass currents in the system. Now define
Ai =

4
c2 Vi where

Vi = −G
∫

(ρvi)(t, y)
|x− y| d3y. (2.20)

Then we can write the line element as

ds2 = −
(

1 +
2Φ
c2

)
c2dt2 +

V.dx
c3 8c dt +

(
1− 2Φ

c2

)
dl2. (2.21)

The post-Minkowskian metric satisfies the weak field approximation
∣∣hαβ

∣∣� 1 precisely
when the Newtonian potential Φ of the mass distribution ρ satisfies

Φ� c2, (2.22)

which implies that ∣∣∣∣
V
c3

∣∣∣∣ ≤
∣∣∣v

c

∣∣∣ .
∣∣∣∣
Φ
c2

∣∣∣∣� 1. (2.23)

For spherically symmetric objects, condition 2.22 implies RS � R. This excludes
compact objects such as black holes and neutron stars from the domain of validity.
Furthermore, condition 2.23 indicates that in the near zone, the metric is dominated by
the Newtonian potential to lowest order.

2.4.2 Deflection of gravitational waves by quasistationary, isolated mass distributions

Figure 2.2: dl =
∣∣∣ dx

dλ

∣∣∣ dλ,
where λ is an arbitrary
curve parameter. This fig-
ure is taken from [63].

Considering that the configuration of local distribution of
the matter remains approximately constant during the tran-
sit time of GW, and treating the metric in Equation 2.21 as
time-independent, we obtain the effective refractive index
of the gravitational field [65]:

n = 1− 2Φ
c2 +

4
c3 V.e, (2.24)

where e ≡ dx
dl is the unit tangent vector of a ray and

dl = |dx| denotes the Euclidean arc length. From now due
to the smallness of the effect (Equation 2.23) we will ignore
the term 4

c3 V.e.
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Let x(l) be a path of ray (see Figure 2.2), now from the variational principle

δ
∫

n [x(l)] dl = 0,

δ
∫

dλ n (x(λ))
∣∣∣∣

dx
dλ

∣∣∣∣ = 0.
(2.25)

From Euler-Lagrange equation we obtain

d
dλ

(n(x)e)− (∇n) |ẋ| = 0. (2.26)

We can choose the curve parameter along the ray path, λ, such that |ẋ| = 1, so now we
have,

dn
dλ

e + n
de
dλ

= ∇n, (2.27)

dn
dλ is the change along the ray, so dn

dλ = (∇n.e). So using this we have

de
dλ

=
∇n− (∇n.e) e

n

=
∇⊥n

n
.

(2.28)

Finally we have
ė = ∇⊥ ln n. (2.29)

Figure 2.3: Deflection of
ray by a point mass, M.
This figure is taken from
[63].

Let us define deflection angle

α̂ ≡ ein − eout. (2.30)

Now n = 1− 2Φ
c2 and Φ

c2 � 1 implies ln n ≈ − 2Φ
c2 . So total

deflection angle of the ray path,

α̂ =
2
c2

∫

λ
∇⊥Φdλ. (2.31)

Suppose a ray starts into +ez direction and passes by a
point mass lens of mass M located at z = 0, with impact
parameter b (Figure 2.3). The resulting deflection angle can
be expressed as:

α̂(b) =
2
c2

∫ +∞

−∞
∇⊥Φdz. (2.32)

For a point mass Φ = −GM
r , with r =

√
b2 + z2. Then for a

point mass lens we will obtain [63]

|α̂| = 4GM
c2b

. (2.33)
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The deflection angle given in Equation 2.33 exhibits a linear relationship with mass M.
Consider a planar distribution of N point masses, where each mass Mi is located at
position ξi (1 ≤ i ≤ N). By applying the principle of superposition, for a ray passing
through the plane at position ξ, the total deflection angle is:

α̂ (ξ) = ∑
i
α̂ (ξ− ξi) =

4G
c2 ∑

i
Mi

ξ− ξi

|ξ− ξi|2
. (2.34)

In realistic scenarios, effective lenses for GW are predominantly galaxies and galaxy
clusters. Since the lens size is substantially smaller than the involved distances (distances
between source, lens and observer), the deflection occurs along a very short section of
the light path. Thus, the lens can be approximated as a planar distribution of matter,
the lens plane. This approximation is called the thin screen approximation. Similarly, the
sources are assumed to lie on a plane, called the source plane. Under this approximation,
the lensing matter distribution is fully described by its surface density,

Σ (ξ) =
∫

ρ (ξ, z) dz, (2.35)

where ξ is a two dimensional vector on the lens plane and ρ is the three dimensional
density.

As long as the thin screen approximation holds, the total deflection angle is obtained
by summing the contribution of all the mass elements Σ (ξ) d2ξ:

α̂ (ξ) =
4G
c2

∫
(ξ− ξ′)Σ

(
ξ
′
)

|ξ− ξ′ |2
d2ξ

′
. (2.36)

This is the continuum limit of Equation 2.34.

2.4.3 Lens equation

Figure 2.4: Sketch of
gravitational lensing sys-
tem. Figure from [63].

Consider a gravitational lensing system illustrated in Figure
2.4. In this configuration, we have a source at redshift zs

located at an angular diameter distance Ds from the observer,
and a lensing mass distribution at redshift z` with an angular
diameter distance DL.

The angular diameter distance relates transverse physical
size of an object to its angular size (measured in radians).
Such distances are essential for converting angular separa-
tions observed in telescope images into proper physical sepa-
rations at the source position. The angular diameter distances
are defined as:

DL =
1

1 + z`
DM (0, z`) . (2.37)
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Here, DM represents the transverse comoving distance.
When two events occur at the same redshift or distance but
are separated by an angle θ on the sky, their transverse comov-
ing separation is given by DMδθ. In a flat universe, DM is equivalent to the line-of-sight
comoving distance (DC) 1. Assuming a flat universe, we can express the transverse
comoving distance as:

DM(z1, z2) = DC(z1, z2) =
c

H0

∫ z2

z1

dz
′

E(z′)
, (2.38)

where H0 denotes the Hubble constant and E(z) =
√

ΩM(1 + z)3 + ΩΛ. Here, ΩM

represents the matter density parameter and ΩΛ represents the dark energy density
parameter.

The optical axis, depicted as a dashed line in Figure 2.4, passes through the observer
and intersects the lens and source planes orthogonally, providing a reference for angular
measurements in both planes. A source with angular position β lies in the source plane,
displaced from the optical axis by a transverse distance η = βDs. Rays from this source
are deflected by an angle α̂ upon reaching the lens plane at impact parameter ξ = θDL,
causing the observer to perceive the source at an apparent angular position θ. In the
small-angle approximation where θ, β, and α̂ are small, their geometric relationship is
captured by the fundamental lens equation:

θDS = βDS + α̂DLS. (2.39)

Let us introduce a reduced deflection angle:

α(θ) =
DLS

DS
α̂(θ). (2.40)

Now using this definition in Equation 2.39, we arrive at the lens equation

β = θ−α(θ). (2.41)

Despite its deceptively simple form, this equation encapsulates the rich physics of
gravitational lensing through the dependence of α on θ.

To express the lens equation (Equation 2.41) in dimensionless form, we introduce
characteristic scales: ξ0 in the lens plane and its corresponding scale η0 = ξ0DS

DL
in the

source plane. We then define dimensionless coordinates:

x =
ξ

ξ0
; y =

η

η0
. (2.42)

The deflection angle can be similarly scaled:

α(x) =
DLDLS

ξ0DS
α̂(ξ0x). (2.43)

1see [66] for the relationship between DM and DC in non-flat universes.
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With these definitions, Equation 2.39 reduces to the dimensionless form:

y = x−α(x). (2.44)

2.5 Properties of lens mapping

2.5.1 Lensing potential

The effective lensing potential, Ψ̂, characterizes extended mass distributions, derived
by projecting the three-dimensional Newtonian potential, Φ, onto the lens plane with
appropriate scaling:

Ψ̂(θ) =
DLS

DLDS

2
c2

∫
Φ (DLθ, z) dz. (2.45)

Its dimensionless form is given by:

Ψ =
D2

L
ξ2

0
Ψ̂. (2.46)

This potential yields two fundamental quantities: The scaled deflection angle, obtained
from its gradient in the lens plane:

∇xΨ(x) = α(x). (2.47)

And the convergence, given by it’s Laplacian:

∇2
xΨ(x) = 2κ(x). (2.48)

Here, convergence represents the dimensionless surface density:

κ(x) =
Σ(x)
Σcr

. (2.49)

where Σcr =
c2

4πG
DS

DLDLS
is the critical surface mass density—a characteristic quantity of

the lens system determined by the angular diameter distances to the lens and source.
The Equation 2.48 can be derived from the Poisson equation

∇2Φ = 4πGρ. (2.50)

Note that, above ∇2 is the three dimensional Laplacian. Now the surface mass density

Σ(θ) =
1

4πG

∫ +∞

−∞
∇2Φdz, (2.51)

and the dimensionless surface mass density using Equation 2.49

κ(θ) =
1
c2

DLDLS

DS

∫ +∞

−∞
∇2Φdz. (2.52)
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Introducing a two-dimensional Laplacian operator:

∇2
θ =

∂2

∂2θ2
1
+

∂2

∂2θ2
2
= D2

L

(
∂2

∂2ξ2
1
+

∂2

∂2ξ2
2

)
= D2

L

(
∇2 − ∂2

∂z2

)
. (2.53)

This allows us to decompose the three-dimensional Laplacian:

∇2Φ =
1

D2
L
∇2

θΦ +
∂2Φ
∂z2 . (2.54)

Substituting this expression into Equation 2.52 yields:

κ(θ) =
1
c2

DLDLS

DS

[
∇2

θ

∫ +∞

−∞
Φdz + D2

L

∫ +∞

−∞

∂2Φ
∂z2 dz

]
. (2.55)

For a gravitationally bound lens, ∂Φ
∂z vanishes at the boundaries, eliminating the second

term. Using Equation 2.45, we can write:

κ(θ) =
1
2
∇2

θΨ̂ =
1
2

ξ2
0

D2
L
∇2

θΨ. (2.56)

Given the relation:

∇2
θ = D2

L∇2
ξ =

D2
L

ξ2
0
∇2

x. (2.57)

We can finally express the dimensionless surface mass density κ from Equation 2.56 as:

κ(x) =
1
2
∇2

xΨ(x). (2.58)

To obtain an expression for Ψ in terms of κ, we need to integrate Equation 2.48.
Through this integration, we can express the effective lensing potential in terms of the
convergence (κ) as:

Ψ(x) =
1
π

∫

R2
κ
(
x
′)

ln
∣∣∣x− x′

∣∣∣ d2x
′
. (2.59)

From this expression, we can write the scaled deflection angle:

α(x) =
1
π

∫

R2
κ
(
x
′) x− x′

|x− x′ |d
2x
′
. (2.60)

2.5.2 Magnification and distortion

A fundamental characteristic of gravitational lensing is its ability to induce morphologi-
cal distortions in extended sources. When a source of finite, non-negligible angular size
undergoes gravitational lensing, differential deflection of light bundles results in system-
atic shape deformation. This phenomenon is particularly evident in EM gravitational
lensing, where galaxies can manifest as elongated arclike structures.

The precise image morphology can be determined by applying the lens equation to
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each point within the extended source distribution. For sources whose angular extent is
substantially smaller than the characteristic scale over which the lens properties vary, the
source-to-image mapping can be linearized. This linearized mapping is characterized
by the Jacobian matrix.

A ≡ ∂y

∂x
=

(
δij −

∂αi(x)

∂xj

)
=

(
δij −

∂2Ψ(x)

∂xi∂xj

)
, (2.61)

where xi represents the i-component of x on the lens plane (i = 1, 2). The Jacobian matrix
can thus be expressed in terms of second-order derivatives of the lensing potential Ψ.
For notational convenience, we introduce:

∂2Ψ(x)

∂xi∂xj
≡ Ψij. (2.62)

The Jacobian matrix can be decomposed by isolating its isotropic component:
(

A− 1
2

trA.I
)

ij
= δij −Ψij −

1
2
(1−Ψ11 + 1−Ψ22)δij

= −Ψij +
1
2
(Ψ11 + Ψ22)δij

=

[
− 1

2 (Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2 (Ψ11 −Ψ22)

]
.

(2.63)

The resulting trace-free, antisymmetric matrix is the shear matrix, which characterizes
projection of the the gravitational tidal field. This matrix quantifies how the gradient of
the gravitational force induces distortions in background sources.

Figure 2.5: Distortions
effects due to gravita-
tional lensing on a circular
source. Figure from [60].

On the lens plane, we can introduce a shear pseudo-
vector γ = (γ1, γ2) with components defined as:

γ1(x) =
1
2
(Ψ11 −Ψ22),

γ2(x) = Ψ12 = Ψ21.
(2.64)

The shear matrix exhibits eigenvalues of ±γ = ±
√

γ2
1 + γ2

2.
There exists a coordinate rotation by an angle φ, the shear
matrix admits the representation:

[
γ1 γ2

γ2 −γ1

]
= γ

[
cos 2φ sin 2φ

sin 2φ cos 2φ

]
. (2.65)

The remaining component of the Jacobian can be expressed
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as:

1
2

trA =

[
1− 1

2
(Ψ11 + Ψ22)

]
δij

=

(
1− 1

2
∆Ψ
)

δij

= (1− κ)δij.

(2.66)

This leads to the complete form of the Jacobian matrix:

A =

[
1− κ − γ1 −γ2

−γ2 1− κ + γ1

]

= (1− κ)

[
1 0
0 1

]
− γ

[
cos 2φ sin 2φ

sin 2φ cos 2φ

]
.

(2.67)

The physical significance of convergence and shear becomes evident through this
decomposition. Convergence produces isotropic distortion, uniformly rescaling images
across all directions. In contrast, shear induces anisotropic distortion by elongating
the intrinsic shape of the source along a preferred direction. As illustrated in Figure
2.5, when both κ and γ are non-zero, a sufficiently small circular source, which is small
enough compared to the scale of the lens is transformed into an ellipse. The resulting
semi-major and semi-minor axes are given by:

a =
r

1− κ − γ
, b =

r
1− κ + γ

, (2.68)

where r represents the original source radius. Magnification emerges as a fundamental
consequence of gravitational lensing distortion. The lens equation describes how a
source’s solid angle element δβ2 (alternatively expressed as the surface element δy2)
undergoes transformation into the observed solid angle δθ2 (corresponding to surface
element δx2). Gravitational lensing neither creates nor destroys photons or gravitons,
and according to Liouville’s theorem, the source’s surface brightness remains constant.
Consequently, when the solid angle under which we observe the source changes, this
results in a corresponding magnification or demagnification of the source’s observed
flux.

The magnification can be quantitatively expressed through the determinant of the
inverse of the Jacobian matrix(see Equation 2.61). The inverse transformation matrix,
denoted asM = A−1, is consequently termed the magnification tensor. This leads us to
define

µ ≡ detM =
1

detA =
1

(1− κ)2 − γ2 . (2.69)

The eigenvalues ofM quantifies the amplification in the tangential and in the radial
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direction and are given by

µt =
1
λt

=
1

1− κ − γ
,

µr =
1
λr

=
1

1− κ + γ
.

(2.70)

When either λt or λr vanishes, the magnification becomes theoretically infinite. These
conditions define two distinct curves in the lens plane: the tangential and radial critical
curves. Images formed near the tangential critical curve exhibit strong distortion parallel
to the curve itself, while those near the radial critical curve are elongated perpendicular
to it.

2.5.3 Time delay function

The travel time for a lensed ray propagating from source to observer can be decomposed
into two separate components:

t = tgeom + tgrav. (2.71)

Here, tgeom represents the geometric time delay, which emerges from the difference in
path length between the actual lensed trajectory and the unperturbed null geodesic. This
term scales with the squared angular separation between the source position (β) and the
image location (θ). The second component, tgrav, known as the gravitational or Shapiro
delay, is characterized by the lensing potential (Ψ). This delay occurs because GWs or
light experience reduced propagation speeds within the gravitational field of the lens
compared to empty space, thereby increasing the travel duration along an equivalent
path length.

Considering a lens at redshift z`, the total time delay (between the lensed and
unperturbed geodesic) caused by gravitational lensing at the position x on the lens
plane is given by [65]

t(x) =
1 + z`

c
DSξ2

0
DLDLS

[
1
2
(x− y)2 −Ψ(x)

]
. (2.72)

This is known as time delay function, t(x). Now from equations 2.44 and 2.47, we can
see that the lens equation can be written as

(x− y)−∇Ψ(x) = 0,

∇t(x) = 0.
(2.73)

So the images are located at the stationary points of the time delay surface. The height
difference between two stationary points on t(x) gives the relative time delay between
the corresponding images. Any variability in the source is observed first in the image
corresponding to the lowest point on the surface, which means out of all images it
arrives first, followed by the extrema located at successively larger values of t.
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Figure 2.6: Left: Time delay components for an off-axis source in a circularly symmetric
gravitational lens system, showing geometric delay, Shapiro delay, and their sum.
The lens center is denoted by the dotted vertical line, while β indicates the source
location. The resultant images form at the stationary points of the total time delay
curve, marked by dots in the lower panel. Right:Time delay functions for varying
source-lens configurations. (Top) Time delay function for the case of perfect source-lens
alignment. (Middle) Time delay function when the source is moderately offset from the
lens. (Bottom) Time delay function for a large angular separation between source and
lens. Adapted from [60]

The hessian matrix of the time delay surface is

T =
∂2t(x)
∂xi∂xj

∝ (δij −Ψij) = A. (2.74)

The time delay surface exhibits three types of stationary points characterized by
the eigenvalues of the Hessian matrix. Type I images form at minima, where positive
eigenvalues (detA > 0, trA > 0) indicate upward curvature in both coordinate direc-
tions, resulting in positive magnification. Type II images occur at saddle points where
opposite-signed eigenvalues create upward curvature in one direction and downward
in another, resulting in negative magnification (detA < 0) and image parity inversion.
Type III images emerge at maxima, characterized by negative eigenvalues (detA > 0,
trA < 0) that produce downward curvature in both directions, yielding positive magni-
fication. The three images shown in the left panel of Figure 2.6 represent, in left-to-right
sequence, a saddle point, a maximum, and a minimum of the time delay surface.

The inverse magnification of lensed images is characterized by the curvature of the
time delay function t(x). Low curvature along a coordinate direction corresponds to
high magnification, while steep curvature yields low magnification. For a circularly
symmetric lens, the image multiplicity depends on the source-lens separation: a large
offset produces a single image, while small separations generate three images. As
the source position varies, image pairs can merge and disappear at critical lines in
the lens plane, with corresponding caustic points in source plane. The curvature of
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t(x) approaches zero as δx → 0 near these merging points, resulting in maximum
magnification just before image coalescence. Critical lines and caustics are fundamental
properties of the lens mapping that identify regions of high magnification and separate
domains of different image multiplicities.

A source positioned far from the gravitational lens produces a single image, which
manifests as a minimum of the time delay surface. Additional extrema of the time delay
surface emerge in pairs, as demonstrated in right panel of Figure 2.6. This paired creation
of extrema leads to odd number image theorem [67], which states that non-singular
lenses always produce an odd number of images.

2.5.4 Necessary and sufficient conditions for multiple imaging or strong lensing

The formation of multiple images by a gravitational lens depends critically on its dimen-
sionless surface mass density κ. We can establish two key criteria that determine whether
a given matter distribution will produce multiple images of background sources.

1. Multiple image formation in gravitational lensing occurs if and only if there exists
a point where detA(x) is negative. This criterion arises because a consistently
positive detA(x) > 0 means the lens mapping is one-to-one, precluding multiple
images. Conversely, a negative detA(x0) at any point x0 indicates a saddle point
in the time delay surface, which by the odd-number theorem necessitates at least
two more images at the extrema points.

2. A simple sufficient condition for multiple imaging is the existence of a point where
κ(x) > 1. When this occurs at a point x0, the corresponding image cannot be a
minimum of the time delay surface since minima require κ < 1, as evident from
trA = 2(1− κ). Therefore, at least one additional image must exist at a minimum
point, though this condition is not necessary for multiple imaging.

Lenses with κ > 1 are termed ’strong’ lenses, though this condition isn’t strictly
required for multiple image formation. The critical surface mass density Σcr serves as
the fundamental scale that determines when strong lensing effects, such as arcs and
image multiplication, emerge. The source’s redshift plays a crucial role: as it increases,
Σcr decreases, effectively strengthening the lens for a fixed physical surface mass density
Σ. This relationship manifests clearly in galaxy clusters, where strong lensing features
appear at varying distances from the cluster’s center, depending on the source redshifts.

2.6 Lensing degeneracies

Most of the observables in lensing are dimensionless, leading to important degeneracies
in the interpretation of observations. Here we will discuss very briefly about these
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degeneracies through the time delay expression. This part is mostly adapted from [68]:

t(x) =
1 + z`

c
DSξ2

0
DLDLS

[
1
2
(x− y)2 −Ψ(x)

]
. (2.75)

Now choosing a the length scale ξ0 = DL we can write time delay in terms of angular
positions:

t(θ) =
1 + z`

c
DSDL

DLS

1
2
(θ− β)2 − (1 + z`)

8πG
c3 ∇

−2Σ(θ). (2.76)

Here, θ and β represent angular positions in the image and source planes respectively,
with ∇−2 being the inverse 2D Laplacian operator. Other symbols have usual meaning

2.6.1 Similarity transformations

Distance degenracy This arises from uncertainty in distance measurements (uncer-
tainty in one or more of DS, DL and cosmology). This is characterized by the transfor-
mation:

DSDL

DLS
→ s

DSDL

DLS
, Σ(θ)→ sΣ(θ). (2.77)

This degeneracy only affects time delays by factor s (Equation 2.76), preserving image
positions and magnifications.

Angular degenracy This can be applied when images are unresolved. This is described
by:

θ →
√

sθ, β →
√

sβ, Σθ → sΣ(θ). (2.78)

Here also magnification remains unchanged as the source and image positions are scaled
by same factor,

√
s. It only scales the time delay by a factor s.

These two degeneracies operate independently, meaning that breaking one does not
necessarily break the other. Through their combination, one can derive additional pairs
of independent similarity transformations.

Consider the parallax effect induced by observer motion. When an observer moves
transversely to the optical axis by robs, this generates apparent displacements of −robs

DL

for the lens and −robs
DS

for the source. This is same as keeping θ fixed while shifting β by

robs
DLS

DLDS
. Applying these transformations to 2.76 and discarding θ-independent terms

we can write the modified equation for the arrival time:

t(θ) = (1 + z`)
[

DSDL

cDLS

(
1
2
θ2 − θ.β

)
− 1

c
robs.θ−

8πG
c3 ∇

−2Σ(θ)
]

. (2.79)

Perspective Degeneracy When robs is known and non-zero., transformations 2.77 and
2.78 are not allowed individually but a combination of them is allowed.

θ → sθ, β → sβ,
DSDL

DLS
→ s−1 DSDL

DLS
, Σ(θ)→ sΣ(θ). (2.80)
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This degeneracy maintains magnification invariance by equally rescaling θ and β (here
magnifications depends on robs). This degeneracy is known as perspective degeneracy
because this preserves the product of distance and angular scales.

Parallax degeneracy

θ → sθ, β → sβ,
DSDL

DLS
→ s

DSDL

DLS
, Σ(θ)→ s3Σ(θ). (2.81)

This degeneracy is broken by a parallax observation.

2.6.2 Mass-sheet degeneracy

The arrival time from Equation 2.76 can be expressed in a scaled form:

τ(θ) =
1
2
(θ− β)2 − 2∇−2

θ κ(θ), (2.82)

where κ(θ) and ∇−2
θ are dimensionless quantities. This leads to:

t(θ) =
(1 + z`)

c
DLDS

DLS
τ(θ), Σ(θ) =

c2

4πG
DS

DLSDL
κ(θ). (2.83)

Under the transformation:

1− κ → s(1− κ), β → sβ, (2.84)

time delays are rescaled while preserving image structure. But, since the source plane
is rescaled by s, all magnifications are scaled by 1

s2 , leaving relative magnifications
unchanged. The effect on the lens is to rescale the lensing mass and then add or subtract
a constant mass sheet. This degeneracy is known as the mass-sheet degeneracy, it is also
known as magnification transformation [69]. This degeneracy can be broken through:

1. Time delay measurements combined with independent measurements of the
Hubble constant, H0 (assuming the redshifts are known).

2. Multiple lensed sources at different redshifts, as κ varies with source distance
through the Σcr dependence, preventing factorization of the source redshift depen-
dent term in Equation 2.76.

However, physical constraints restrict viable values of s, as the resulting mass distri-
bution must remain non-negative, depending on κ.

2.6.3 Other degeneracies

Additional transformations exist that preserve t(θ) and its derivatives at image positions
while modifying other regions, without affecting observables or introducing negative κ.
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The monopole transformation exemplifies this: circularly symmetric mass redistributions
inside or outside all observed images leave observables unchanged. Another example is
the prismatic transformation, which adds an identical constant to the source position and
bending angle, equivalent to introducing a massive lens at a large transverse distance
while displacing the source oppositely. For more details of additional degeneracies, see
[68, 69].

2.7 Simple lens models

A central objective in gravitational lensing theory is identifying lens-source configura-
tions that generate observed image patterns. Analytic lens models serve as valuable
tools in this endeavor, offering computational simplicity and easily derivable lensing
properties. These models span various scales of astronomical objects: point-mass approx-
imations effectively describe compact objects (planets, stars, black holes, and Massive
Astrophysical Compact Halo Objects known as MACHOs), while extended mass distri-
butions require more sophisticated approaches. Although axially symmetric models
provide a fundamental starting point, elliptical models more accurately represent typical
astrophysical systems, better capturing the complexity of observed lensing phenomena.

2.7.1 Point mass lens

When a light ray passes by a point mass lens of mass M with impact parameter b, the
deflection angle is given by:

α̂ = −4GM
c2b

er. (2.85)

Here, er represents the unit vector in the radial direction. In this axisymmetric system,
we can allign er along a coordinate axis, reducing our analysis to one dimension. The
scalar deflection angle becomes:

α̂ =
4GM
c2b

=
4GM
c2DLθ

. (2.86)

The gravitational lensing potential for a point mass lens takes the form:

Ψ̂ =
4GM

c2
DLS

DLDS
ln |θ| . (2.87)

Now we can write the lens equation

β = θ − 4GM
c2DLθ

DLS

DS
. (2.88)

Now defining the Einstein radius,

θE ≡
√

4GM
c2

DLS

DLDS
, (2.89)
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the lens equation simplifies to

β = θ − θ2
E
θ

. (2.90)

Now we can use the dimensionless coordinates x = θ
θE

and y = β
θE

on the lens and
source plane respectively. With a length scale ξ0 = θE we can write the lens Equation
2.44 as

y = x− 1
x

. (2.91)

This equation admits two solutions:

x± =
1
2

[
y±

√
y2 − 4

]
, (2.92)

representing the positions of the two images formed by the point mass lens.

For a source that is perfectly aligned with the lens (i.e., y = 0), we find that x± =

±1. This special configuration results in the formation of an Einstein ring - a circular
image with angular radius θE. The Einstein radius can be estimated in terms of typical
astronomical scales:

θE ≈ (10−3)”
(

M
M�

) 1
2
(

D
Gpc

)− 1
2

,

≈ 1”
(

M
1012M�

) 1
2
(

D
Gpc

)− 1
2

.

(2.93)

In these expressions, D represents the effective lensing distance, defined as D ≡ DLDS
DLS

,
which combines the various distance measures in the lensing system.

For very large angular separations between the source and lens (as β→ ∞), the two
image positions show distinct behaviors: θ+ → β indicates that one image appears at
approximately the true source position, while θ− → 0 shows that a second image forms
at the lens center. For such large source-lens separations, the lensing effect becomes
negligible for the primary image, though mathematically a second image still exists at
θ− = 0.

For an axially-symmetric lens, the magnification can be derived from the determinant
of the Jacobian matrix:

detA =
y
x

∂y
∂x

=
(

1− α

x

)(
1− ∂α

∂x

)

=

(
1− 1

x2

)(
1 +

1
x2

)

= 1−
(

1
x

)4

.

(2.94)
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The magnification is therefore:

µ =

[
1−

(
1
x

)4
]−1

. (2.95)

Expressing the magnification in terms of the source position for both images:

µ± =

[
1−

(
1

x±

)4
]−1

=
x4
±

x4
± − 1

=
1
2
± y2 + 2

2y
√

y2 + 4
.

(2.96)

In the limit where y → ∞, we find that µ− → 0 while µ+ → 1. This indicates that
although the lens equation always yields two solutions, at large angular separations
between the source and lens, the image near the lens center becomes undetectable as it
is highly demagnified. The other image becomes indistinguishable from the unlensed
source, having both its position and flux same as source. For such large source-lens
separations, the lensing effect becomes negligible.

In the context of lensing of GW, only very massive objects with M > 108 M� can
effectively act as strong lenses. These primarily consist of galaxies, clusters, SMBHs,
and MACHOs. For compact lenses such as SMBHs and MACHOs, the point mass lens
model provides an accurate approximation. However, when considering less compact
massive objects like galaxies and galaxy clusters, the point mass approximation fails,
necessitating extended mass distribution models to accurately characterize the lensing
phenomena.

2.7.2 Axially symmetric lenses

We consider a class of matter distributions characterized by a circularly-symmetric
surface mass density, Σ(ξ) = Σ (|ξ|). This symmetry allows the lens equation to be
reduced to a one-dimensional form. For axially symmetric lenses, the deflection angle is
given by [65]

α̂(ξ) =
4GM(ξ)

c2ξ
. (2.97)

This expression reveals an important property: mass within a disc of radius ξ around
the mass center affects the deflection at point ξ as if concentrated at the center, while
mass outside this radius has no contribution. This behavior mirrors the gravitational
effects of spherically symmetric mass distributions in three dimensions.
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Now we can write the scaled deflection angle

α(x) =
DLDLS

ξ0DS
α̂(ξ0x)

=
M (ξ0x)
πξ2

0Σcr

1
x

≡ m(x)
x

,

(2.98)

where m(x) represents the dimensionless mass contained within radius x. Using
Equation 2.60, we can express the scaled deflection angle α(x) as

α(x) =
2
x

∫ x

0
x
′
κ
(

x
′)

dx
′
. (2.99)

The dimensionless mass m(x) can then be written in terms of the dimensionless surface
mass density, κ, as

m(x) = 2
∫ x

0
x
′
k
(

x
′)

dx
′
. (2.100)

Then lens euqation 2.44 now becomes

y = x− m(x)
x

. (2.101)

Lets write the deflection angle at a point x = (x1, x2) as a vector

α(x) =
m(x)

x2 x, (2.102)

where x = |x|. We can obtain the Jacobian matrix for the lens mapping by differentiation
of lens equation, which leads to

A = I − m(x)
x4

(
x2

2 − x2
1 −2x1x2

−2x1x2 x2
1 − x2

2

)
− dm(x)

dx
1
x3

(
x2

1 x1x2

x1x2 x2
2

)
, (2.103)

where I is the two dimensional identity matrix. From which we obtain the convergence
and shear components:

κ(x) =
1

2x
dm(x)

dx
, (2.104)

γ1(x) =
1
2
(

x2
2 − x2

1
) (2m(x)

x4 − dm(x)
dx

1
x3

)
, (2.105)

γ2(x) = x1x2

(
dm(x)

dx
1
x3 −

2m(x)
x4

)
, (2.106)

and γ =
√

γ2
1 + γ2

2 is
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γ(x) =
m(x)

x2 − κ(x). (2.107)

Now from Equation 2.100,

m(x)
x2 = 2π

∫ x
0 x

′
κ
(

x
′
)

dx
′

πx2 = κ̄(x), (2.108)

where κ̄ is the mean surface mass density within radius x. Then from Equation 2.107
we can write

γ(x) = κ̄(x)− κ(x). (2.109)

Now the determinant of the Jacobian matrix A is

detA =
y
x

dy
dx

=

(
1− m(x)

x2

) [
1− d

dx

(
m(x)

x

)]

=
y
x

dy
dx

=

(
1− m(x)

x2

)(
1 +

m(x)
x2 − 2κ(x)

)

=

(
1− α(x)

x

)(
1− dα(x)

dx

)
.

(2.110)
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Figure 2.7: Critical curves and caustics of a core SIS lens (M ∼ 1015 M�) at z` = 0.5,
with source at zs = 2. Dashed and solid curves represent critical curves and caustics
respectively, with yellow indicating tangential and magenta indicating radial features.
Green star denotes the source position. Panels show image configurations for different
source positions: (Upper) Single image for source outside radial caustic; (Middle) Three
images formed when source crosses radial caustic, with two new radially stretched
images on opposite sides of the radial critical curve; (Lower) when source approaches
center, two images with strong tangential stretching near tangential critical curve and
one highly demagnified near the center. Central point caustic is not shown. Plots are
made using lenstronomy package [70, 71]

For axially symmetric lenses with monotonically increasing m(x), critical lines occur
where detA = 0. According to Equation 2.110, this produces two specific critical lines
defined by:

https://github.com/lenstronomy/lenstronomy
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1. The tangential critical line condition: m(x)
x2 = 1.

2. The radial critical line condition: d
dx

(
m(x)

x

)
= dy

dx = 1.

Both conditions defines circles on the lens plane. Which are tangential and radial critical
curves, which are shown in dashed yellow and magenta circles in Figure 2.7. .

For the tangential critical line [where m(x)
x2 = 1]:

• Any vector tangential to this line becomes an eigenvector with zero eigenvalue of
the Jacobian matrix A.

• From the lens mapping we can see that all points along this critical line map to a
single point (y = 0) on the source plane.

• This results in point tangential caustics in axially symmetric models.

For the radial critical line [where d
dx

(
m(x)

x

)
= 1]:

• Any vector perpendicular to this line becomes an eigenvector with zero eigenvalue.

• Points along this critical line map to a circular caustic on the source plane (solid
magenta line in Figure 2.7).

Strong lensing and image properties: Strong lensing of a source produce multiple
images. The position of the source relative to the caustics determines how many images
will appear. When a source is positioned inside the radial caustic (solid magenta in
Figure 2.7), it generates three distinct images. Conversely, only a single image forms
when the source lies outside the radial caustic, as illustrated in Figure 2.7. The tangential
critical curve has no effect on image multiplicity since it creates a point caustic at y = 0
rather than a caustic curve. Consequently, the creation or destruction of image pairs is
solely dependent on the existence of a radial critical curve.

A fundamental property of gravitational lensing is that images always appear in odd
numbers, with one important exception. This exception occurs in singular lenses-those
with infinite central density-where only two images form when the source lies within
the radial caustic. The presence of a singularity suppresses the central maximum of the
time delay surface, effectively eliminating one potential image that would typically exist
in non-singular lenses.

Images experience different streching in two directions: a tangential stretching by[
1− m(x)

x2

]−1
and a radial stretching by

[
1 + m(x)

x2 − 2κ(x)
]−1

. These distortion effects
become particularly pronounced for extended sources, as illustrated in Figure 2.7. The
figure demonstrates two distinct cases for multiple images:

1. When a source lies near the central point-like caustic (right panel of Figure 2.7), it
produces:
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• Two highly elongated tangential arcs near the outer critical curve

• One faint central image

2. When a source is positioned on the outer caustic (middle panel of Figure 2.7), it
creates:

• A radially stretched image formed by two merging images

• A third image with tangential orientation beyond the outer critical line

2.7.3 Singular isothermal sphere

The Singular Isothermal Sphere (SIS) represents a fundamental axially symmetric lens
model. Its derivation assumes matter behaves as an ideal gas in both thermal and
hydrostatic equilibrium, confined by a spherical gravitational potential. Under these
conditions, the three-dimensional density profile takes the form:

ρ(r) =
σ2

v
2πGr2 , (2.111)

where σv denotes the velocity dispersion of the particles and r is the radial distance from
the center. The corresponding two-dimensional surface density, obtained by projecting
on the lens plane:

Σ(ξ) =
σ2

v
2Gξ

. (2.112)

Despite exhibiting a central singularity at ξ = 0 where density becomes infinite, the
SIS profile serves as an effective model for galactic mass distributions. Its significance
lies primarily in its ability to reproduce the flat rotation curves of spiral galaxies.

Now choosing the length scale

ξ0 = 4π
(σv

c

)2 DLDLS

DS
, (2.113)

we obtain
κ(x) =

1
2x

; Ψ(x) = |x| ; α(x) =
x
|x| , (2.114)

and the lens equation becomes

y = x− x
|x| . (2.115)

When 0 < y < 1, two images form: one at x = y+ 1 and another at x = y− 1, positioned
on opposite sides of the lens center. When y > 1, only a single image forms at x = y + 1.
Images that form at x > 0 are classified as Type I (minima), while those at x < 0 are
Type II (saddle). The circle defined by |x| = 1 represents the tangential critical curve.
The shear can be calculated as γ(x) = 1

2x . If the central singularity were removed, an
additional third image would appear in the core region (as shown in Figure 2.7). The
studies presented in Chapters 4 and 5 primarily use this lens model.
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The magnification of an image at x is given by:

µ =
|x|
|x| − 1

. (2.116)

The radial eigenvalue of the Jacobian matrix is unity throughout the domain, meaning
magnification occurs only in the tangential direction.

For y < 1, two images are produced with magnifications given by:

µ+ =
y + 1

y
= 1 +

1
y

; µ− = 1− 1
y

. (2.117)

As y→ 1, the magnification µ− of the second image progressively decreases until the
image vanishes at y = 1. In the limit where y→ ∞, the total magnification approaches
unity, demonstrating that sources far from the lens experience minimal gravitational
lensing effects (as depicted in the Figure 2.8).

The time delay between the two images is given by

∆t =
(1 + z`)

c

[
4π
(σv

c

)2
]2 DLDLS

DS
2y. (2.118)
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Figure 2.8: An SIS lens of mass ∼ 1015 M� at z = 0.5 lensing a source at zs = 2. Panels
show image evolution as source position varies. Green star indicates the source position.
(Upper left) Single image for source outside the Einstein radius; (Upper right and Lower
left) Source crosses the Einstein radius, a new image with very low magnification is born
near the center and then both images move towards the Einstein radius while getting
stretched tangentially. (Lower right) Einstein ring forms when source aligns with lens
center. Created using lenstronomy [70, 71].

https://github.com/lenstronomy/lenstronomy


3 | Cosmology and Structure For-
mation

3.1 Cosmological Framework

This chapter aims to present a concise pedagogical introduction to the concepts and
tools in modern cosmology that will be used in Chapters 4 and 5. Modern cosmology
rests upon the foundation of an expanding universe that emerged from a dense, hot
initial state. As the universe expanded and cooled, matter began to form increasingly
complex structures, eventually leading to the formation of galaxies like our own.

The mathematical framework describing this evolution is governed by Einstein’s
field equations:

Gµν = 8πGTµν + gµνΛ, Gµν = Rµν −
1
2

gµνR. (3.1)

Here, the geometric properties of spacetime, encoded in the metric tensor gµν, Ricci
tensor Rµν, and Ricci scalar R, are directly linked to the matter-energy content repre-
sented by the stress-energy tensor Tµν and cosmological constant Λ.

The early universe exhibits remarkable uniformity on large scales, displaying both ho-
mogeneity and isotropy. These symmetries lead to the Friedmann-Lemaître-Robertson-
Walker metric:

ds2 = −dt2 + a(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2)

]
. (3.2)

In this expression, a(t) represents the cosmic scale factor describing the universe’s
expansion, while k characterizes spatial curvature. Above, r, θ, φ are the usual spherical
polar coordinates. The temporal evolution of a(t) emerges from the application of this
metric to Einstein’s field equations, yielding the fundamental Friedmann equations that
describe cosmic expansion.

(
ȧ
a

)2

+
k
a2 =

8πG
3

ρ +
Λ
3

, (3.3)

53
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ä
a
+

(
ȧ
a

)2

+
k
a2 = −8πGp + Λ. (3.4)

These equations emerge from considering a stress-energy tensor with the specific
form (perfect fluid):

Tµν = (ρ + p)uµuν + pgµν. (3.5)

The equations involve several key parameters: the scale factor a(t) along with its
time derivatives ȧ and ä, the spatial curvature parameter k, energy density ρ, pressure p,
the four-velocity vector uµ, the cosmological constant Λ, and Newton’s gravitational
constant G. The relationship between matter density and pressure follows a simple
equation of state p = wρ, where w is the equation of state parameter. Contemporary
observational evidence strongly supports a spatially flat universe [72], corresponding to
k = 0. This simplification of vanishing spatial curvature will be adopted in subsequent
analyses.

The Friedmann equations lead to a fundamental relation describing energy conser-
vation in the expanding universe:

ρ̇ = −3
ȧ
a
(ρ + p). (3.6)

For a constant equation-of-state parameter w, where p = wρ, the solution takes the
form:

ρ = ρ0a−3(1+w). (3.7)

This equation governs the behavior of different components in the universe: For
radiation and highly relativistic matter, w = 1/3, leading to:

ρr ∝ a−4. (3.8)

Non-relativistic matter has negligible pressure (w = 0), resulting in:

ρnr ∝ a−3. (3.9)

For dark energy w = −1 leads to:

ρΛ = const.. (3.10)

3.1.1 The Hubble parameter and cosmic density parameters

The Hubble parameter, which characterizes the expansion rate of the universe, is defined
as:

H(t) =
ȧ
a

. (3.11)
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Combining the Friedmann equations with the evolution of matter and radiation
densities, we can express the Hubble parameter in terms of the scale factor and various
density parameters:

(
H(t)
H0

)2

= ΩRa−4 + ΩMa−3 + ΩKa−2 + ΩΛ (3.12)

Here, we define the dimensionless density parameters:

ΩM =
ρM

ρcr
(matter density parameter), (3.13)

ΩR =
ρR

ρcr
(radiation density parameter), (3.14)

ΩΛ =
Λ

3H2
0

(dark energy density parameter), (3.15)

ΩK = − k
H2

0
(curvature density parameter). (3.16)

The critical density of the universe, which serves as a reference scale, is given by:

ρcr =
3H2

0
8πG

, (3.17)

where H0 is the Hubble constant, representing the current value of the Hubble
parameter.

3.1.2 Cosmic history and evolution

The universe undergoes three main epochs:

1. Radiation Domination:
a(t) ∝ t1/2. (3.18)

2. Matter Domination:
a(t) ∝ t2/3. (3.19)

3. Dark Energy Domination:

a(t) ∝ exp

(√
Λ
3

t

)
. (3.20)

The expansion of the universe decelerates during both radiation and matter domina-
tion. However, as the matter density approaches zero and dark energy (characterized
by the cosmological constant Λ) becomes dominant, the universe transitions into an
accelerating phase. This transition from matter to dark energy domination marks a
fundamental change in the universe’s expansion history.
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The radiation-dominated early universe began as a hot, dense particle soup in
thermal equilibrium. As space expanded and cooled, several key phase transitions
occurred sequentially: quarks confined into baryons, electrons and positrons annihi-
lated, neutrinos decoupled, first atomic nuclei formed through nucleosynthesis, and
finally recombination occurred as electrons combined with nuclei to form neutral atoms.
This last transition allowed photons to travel freely, creating the cosmic microwave
background (CMB) - our farthest observable window into the universe’s history. The
universe then entered matter domination around recombination, beginning the "dark
ages." During this period, primordial density fluctuations grew linearly before undergo-
ing nonlinear collapse to form the cosmic web and first virialized objects. The formation
of the first stars ended the dark ages and began the reionization of intergalactic hy-
drogen. Structure formation proceeded hierarchically, with small DM halos merging
into larger structures. Baryonic matter, through EM interactions and radiative cooling,
concentrated at the bottom of gravitational potentials. This process enabled significant
star formation, leading to galaxies of various sizes that traced the underlying DM den-
sity field. Currently, the universe has entered the dark energy era, dominated by the
cosmological constant’s contribution and characterized by accelerated expansion. The
future holds the progressive isolation of gravitationally unbound systems, ultimately
leading to isolated "island universes" separated by empty space [73].

3.2 Structure formation in linear regime

The early universe exhibits an almost uniform matter distribution with small density
perturbations. These perturbations originate from quantum fluctuations that were am-
plified to macroscopic scales during the inflationary period. The density perturbations,
or overdensities, are parametrized by the dimensionless quantity:

δ(x, t) =
ρ(x, t)− ρb(t)

ρb(t)
, (3.21)

where ρ(x, t) represents the density at comoving coordinate x and ρb(t) denotes the
background density.

For small perturbations where δ � 1, the evolution can be treated analytically
using perturbation theory. The analysis focuses on the linear order evolution of δ

within the Newtonian approximation when the perturbation wavelength is significantly
smaller than the horizon scale dH(t) = H−1(t). This approach provides a framework
for understanding the initial stages of structure formation in the universe.
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3.2.1 Particle motion in expanding niverse

We begin by considering the motion of a non-relativistic particle of mass m under a
smooth gravitational potential in an expanding universe1. The proper position and
velocity in physical space are given by:

r = ax, (3.22)

u = aẋ + ȧx = vp + vh, (3.23)

where a is the scale factor, u is the proper velocity, vp is the peculiar velocity, and vh is
the Hubble flow. Under the influence of a gravitational potential Φ(x, t), the Lagrangian
is:

L =
1
2

mu2 −mΦ. (3.24)

A canonical transformation of the Lagrangian is performed:

L→ L− dψ

dt
. (3.25)

where
ψ =

1
2

maȧx2. (3.26)

This transformation leads to the modified Lagrangian:

L =
1
2

ma2ẋ2 −mφ(x, t), (3.27)

with the potential term:

φ = Φ +
1
2

äax2. (3.28)

The modified potential φ is governed by a modified Poisson equation, this can be
obtained from Einstein field equations[74]:

1
a2∇

2
xφ(x, t) = 4πGρb(t)δ(x, t). (3.29)

This equation connects the potential to the density fluctuations δ(x, t) in an expanding
universe, where ρb(t) is the background density.

3.2.2 Vlasov equation

The previous section described the motion of a single particle in expanding space under
the influence of an external potential φ(x, t), which is coupled to the overdensity field
δ(x, t) through the modified Poisson equation. The evolution of the entire fluid can
be characterized using the phase-space density f (x, p, t), which is defined through the

1For more details, see [74].
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relation:
dN = f (x, p, t)d3xd3p, (3.30)

where dN represents the number of particles within a finite phase space volume V.

The real space proper density ρ(x, t) is obtained through integration of the phase
space density over velocity space:

ρ(x, t) = mn(x, t) =
m
a3

∫
d3p f (x, p, t) =

ρb0

a3 [1 + δ(x, t)]. (3.31)

The expression assumes a non-relativistic fluid where the background density ρb(t)
follows the relation:

ρb(t) = ρb0a−3, (3.32)

where ρb0 denotes the background density at redshift zero, and n(x, t) represents the
proper number density of the non-relativistic fluid.

Liouville’s theorem states that the phase space density of a collisionless fluid remains
conserved over time. DM, characterized by negligible cross section and smoothly
varying potential, represents a nearly perfect collisionless system. In the Newtonian
limit, the phase space conservation can be expressed as:

d f
dt

=
∂ f
∂t

+ { f , H} = 0, (3.33)

where the Poisson bracket { f , H} is defined as:

{ f , H} = ∂ f
∂x
· ∂H

∂p
− ∂ f

∂p
· ∂H

∂x
. (3.34)

The application of the Hamiltonian derived earlier leads to the collisionless Boltz-
mann equation (also known as the Vlasov equation):

∂ f
∂t

+
p

ma2 · ∇x f −m∇xφ · ∂ f
∂p

= 0. (3.35)

This equation describes the evolution of the phase space distribution function for a
collisionless system under the influence of gravitational forces in an expanding universe.
Due to the nonlinearity of the Boltzmann equation, general solutions cannot be obtained.
A standard way to deal with Equation 3.35 is to take velocity moments.

For the zeroth moment, integrating Equation 3.35 over p and dropping the surface
term and we then get the continuity equation:

∂δ

∂t
+

1
a
∇x · [〈v〉(1 + δ)] = 0, (3.36)
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where 〈v〉 is the local or mean streaming velocity, defined as:

〈v〉 = 1
na3

∫
d3p f . (3.37)

The momentum equations are expressed through the first moment of Equation 3.35,
i.e. the multiplication of the Boltzmann equation by pi and subsequent integration over
momentum space:

∂

∂t
[a〈vi〉(1 + δ)] +

∂φ

∂xi
(1 + δ) +

∂

∂xj
[〈vivj〉(1 + δ)] = 0, (3.38)

where 〈vivj〉 is the velocity stress tensor, defined as:

〈vivj〉 =
1

na3

∫
d3p

pi pj

(ma)2 f . (3.39)

Now from the continuity and momentum equation we can obtain

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
=

1
a2 ∂i(1 + δ)∂iφ +

1
a2 ∂i∂j[〈vivj〉(1 + δ)]. (3.40)

For the regime where δ� 1, approximate solutions can be found through lineariza-
tion of equations 3.29 and 3.40. In this regime, the velocity shear becomes so the stress
tensor becomes diagonal and the diagonal terms are given by σ/

√
3, where σ is the

initial three dimensional fluid velocity dispersion. The linearization yields:

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
=

σ2

a2∇
2
xδ + 4πGρbδ. (3.41)

The solution can be expressed through a Fourier transform:

δ(x, t) =
∫

d3k δk(t)eik·x. (3.42)

This transformation leads to the ordinary linear differential equation:

d2δk

dt2 + 2
ȧ
a

dδk

dt
=

[
4πGρb(t)−

σ2(t)k2

a2

]
δk. (3.43)

3.2.3 Multi-fluid extension

This single-fluid description can be extended to a more realistic scenario involving
multiple cosmic fluids (non-relativistic DM, baryons, radiation, etc.). The resulting set
of equations takes the form:
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d2δA

dt2 + 2
ȧ
a

dδA

dt
=

[
4πGρA(t)−

σ2
A(t)k

2

a2

]
δA + 4πG ∑

B
ρB(t)δB, (3.44)

where the subscript A and B denotes the fluid of interest and all other cosmic compo-
nents respectively. δA represents perturbations in fluid A and δB represents perturbations
in other components. ρA(t) and ρB(t) are the respective density functions of A and B.
σA(t) is the velocity dispersion of fluid A. The equation demonstrates the coupling
between perturbations in different cosmic components.

3.2.4 Evolution of dark matter perturbations

At early times and scales well below the Hubble radius, DM perturbations exhibit
distinct behavior in different cosmological epochs. The analysis begins by simplifying
Equations 3.43 and 3.44, where we initially neglect the second term in the square
brackets, as it becomes significant only at small scales (large k). A detailed analysis of
this small-scale regime follows in the next section.

During the early universe, when considering scales well below the Hubble radius,
perturbation in the dominant radiation component does not grow[75], eliminating the
coupling term in Equation 3.44. In this regime, DM perturbations behave as a single
non-relativistic fluid in a radiation-dominated universe, effectively reducing to Equation
3.43 with ρb = ρm.

Following [76], we introduce the parameter ζ = ρm/ρr = a/aeq, where aeq represents
the scale factor at matter-radiation equality. By applying the Friedmann equations and
neglecting the subdominant cosmological constant, Equation 3.43 transforms into:

d2δk

dζ2 +
2 + 3ζ

2ζ(1 + ζ)

dδk

dζ
=

3
2

δk

ζ(1 + ζ)
. (3.45)

The growing solution to this equation takes the form:

δ+ ≡ D(a) ∝ 1 +
3
2

a
aeq

. (3.46)

Radiation Domination When ζ < 1, perturbations maintain approximately constant
amplitude. This could be understood physically as the rapid expansion of the
universe during this era makes it difficult for matter to clump together. This is
known as the Mészáros effect.

Matter Domination When ζ > 1, perturbations exhibit linear growth with respect to
the scale factor. Physically this could be understood as gravitational forces from
matter can now overcome the universe’s expansion has slowed enough to allow
matter to cluster.

Λ domination As the cosmological constant becomes dominant, it significantly impacts
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structure formation. In this regime, the growing solution to the perturbation
equations must be determined through numerical calculations.

The emergence of cosmic structures marks a distinct transition in universe evo-
lution. While perturbations do not grow during radiation domination, the onset of
matter-radiation equality triggers the active phase of structure formation. This growth
mechanism persists into the present epoch, although the increasing influence of the
cosmological constant introduces a progressive dampening effect on structure formation
rates. Here we discussed only the Newtonian treatment of perturbation theory; for
relativistic or full general relativistic treatment see [74, 75].

3.3 Simpler way to understand the growth of dark matter perturbations

Let’s consider a perturbation with mode or wavelength λ. For any given mode, we can
determine when it enters the horizon (Hubble radius, dH ∼ 1

H0
) at time tenter. This leads

to two possible scenarios:

1. When t < tenter, the mode is outside the Hubble radius, meaning λ > dH

2. When t > tenter, the mode is inside the Hubble radius, meaning λ < dH

For the condition λ < dH, the general relativistic effects due to spacetime curvature
become negligible, as these are small scales compared to the background curvature scale.
In this case, a Newtonian approach is sufficient. However, when λ > dH , the curvature
of spacetime significantly affects the growth of the perturbation, requiring a full general
relativistic treatment. Nevertheless, this can be understood in a simpler way, which is
discussed next.

3.3.1 Mode outside the horizon: λ > dH

Let us consider a spherical region (with k = +1) of matter with radius λ > dH with
mean density ρ1, which is embedded inside a Friedmann universe with k = 0 having
density ρ0 such that ρ1 = ρ0 + δρ. The inner region is not affected by the outside region.

Now for this two region we can write,

H2
1 +

1
a2

1
=

8πG
3

ρ1; H2
0 =

8πG
3

ρ0. (3.47)

We will compare the perturbed universe with the back-
ground universe when their expansion rates are equal; i.e.,
we compare their densities at a time t when H1 = H0. We
then get:
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ρ1 − ρ0

ρ0
=

δρ

ρ0
=

3
8πG(ρ0a2

1)
. (3.48)

In general, if H0 = H1 at some time, then a0 6= a1 at that time. However, if (δρ/ρ0)

is small, then a1 and a0 will differ by only a small quantity and we can set a2
1 ≈ a2

0 in
the right hand side. This allows us to find how (δρ/ρ0) scales with a. Since ρ0 ∝ a−4 in
the radiation dominated phase (t < teq) and ρ0 ∝ a−3 in the matter dominated phase
(t > teq), we get:

(
δρ

ρ

)
∝

{
a2 (for t < teq)

a (for t > teq)
, (3.49)

teq is the time of matter-radiation equality. Thus, the amplitude of the mode with λ > dH

always grows; as a2 in the radiation dominated phase and as a in the matter dominated
phase. The exact general relativistic approach gives the same scaling.

3.3.2 Mode inside the horizon; λ < dH

When a mode enters the Hubble radius, two processes can inhibit its growth.

Jeans length The first is pressure support. If pressure builds up faster than gravita-
tional collapse time scale, it prevents density contrast enhancement. This requires:

tpressure ∼
λ

v
< tgrav ∼

1√
Gρ

, (3.50)

where v is the velocity dispersion. This stability criterion implies that growth is
suppressed for wavelengths below a critical value. The Jeans length is conventionally
defined as 2:

λJ = v
√

π

Gρ
. (3.51)

In multi-component systems, the pressure support and gravitational collapse may
arise from different species. While baryonic pressure comes from collisions, DM’s
effective pressure stems from orbital readjustment. Nevertheless, in both cases, the
pressure timescale is determined by the velocity dispersion v.

Rapid expansion The second inhibiting process occurs when the perturbed species is
not the dominant one driving expansion, and the dominant species remains smoothly

2Another derivation of the Jeans length is when we analyze Equation 3.43 seeking growing density

perturbations δk. The growth condition requires
[
4πGρb(t)− σ2(t)k2

a2

]
≥ 0. This mathematical approach

yields an identical Jeans scale to that derived from timescale considerations.
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distributed. Even if λ > λJ (meaning pressure cannot prevent collapse), rapid cosmic
expansion can suppress growth. In radiation-dominated phases, this leads to:

texp ∼
1√
GρR

<
1√

GρDM
< tpressure. (3.52)

This expansion-driven suppression is the primary mechanism preventing growth during
radiation domination. So perturbations evolve as follows:

• Radiation-dominated phase:

– Only modes with λ > dH grow, scaling as a2

– For λ < dH, rapid expansion prevents growth

• Matter-dominated phase:

– Modes with λ� λJ grow as a

– Modes with λ ≥ λJ grow more slowly due to pressure effects

3.4 The free streaming length scale

Let us consider the evolution of DM perturbations. And lets focus on the scales close to
the Jeans scale. For DM perturbations the Jeans length evolves as (from Equation 3.51):

λJ ∝
v√

ρdom
∝





a2 (a < anr)

a (anr < a < aeq)

a1/2 (aeq < a)

, (3.53)

where:

• ρdom is the density of the dominant background component which transitions
from ∝ a−4 (radiation) to ∝ a−3 (matter) at aeq

• v ∝ 1 (relativistic) when a < anr, changes to v ∝ a−1 (non-relativistic) at anr and
afterwards.

• aeq is the time of matter radiation equality.

• aeq. anr is the time when DM becomes non relativistic. DM become non relativistic
well before matter radiation equality.

As we know below this length scale perturbation can not grow due to the pressure
support, so no structure can grow below the Jeans scale. A more intuitive scale can be
Jeans mass, MJ , which is defined as

MJ ≡
4π

3
ρDM

(
λJ

2

)3

. (3.54)
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Note that λJ depends on ρdom (background dominat component), the conversion be-
tween Jeans length and Jeans mass requires the DM density, ρDM, which has the be-
haviour

ρDM ∝

{
a−4 for a < anr

a−3 for a > anr
. (3.55)

Now we can trace the evolution of the Jeans mass MJ .

MJ ∝





a2 (a < anr)

constant (anr < a < aeq)

a−3/2 (aeq < a)

. (3.56)

Figure 3.1: Evolution of cosmic structure formation barriers: MJ (Jeans mass) and MFS
(free streaming mass) across cosmic time. The highlighted red zone indicates suppressed
growth of density fluctuations due to pressure support exceeding gravitational effects.
In the green region, although gravity dominates pressure forces, particle velocities
completely erased potential structures through free streaming. Figure from [77]

Figure 3.1 summarises the evolution of the Jeans mass through different cosmological
epochs.

DM particles, unlike regular gas molecules, don’t interact through collisions but
follow geodesic paths in spacetime. While we can model their collective behavior using
an effective pressure in fluid approximations, this only works at large scales. At smaller
scales, particles freely move between overdense and underdense regions along their
geodesics, naturally smoothing out density variations through a process called free
streaming. A perturbation mode with proper wavelength λ(t) experiences dissipation
due to free streaming when the proper distance which a DM particle can travel in time t
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in the background spacetime, `FS satisfy `FS(t) > λ(t). Now

`FS(t) = a(t)
∫ t

0

v(t
′
)

a(t′)
dt
′
. (3.57)

Now considering the the evolution of scale factor,background density and the veloc-
ity dispersion across different epochs.

• 0 < t < tnr: DM particles are relativistic, v ≈ 1 and a(t) ∝ t1/2.

• tnr < t < teq: v ∝ a−1 and a(t) ∝ t1/2.

• t� teq: v ∝ a−1 and a(t) ∝ t2/3.

With these we can find [75],

`FS(t)
a(t)

=





(2tnr/a2
nr)a = (2t/a) t < tnr

(2tnr/anr)[1 + ln(a/anr)] tnr < t < teq

(2tnr/anr)[(5/2) + ln(aeq/anr)] teq � t

. (3.58)

We can see that `FS
a reaches to a maximum value at teq. Which is given by

λFS =

(
2tnr

anr

)(
5
2
+ ln

aeq

anr

)
. (3.59)

The comoving free streaming length λFS represents the maximum distance particles
traverse before teq, when the Jeans length rapidly decreases and gravitational collapse
becomes possible. While perturbations larger than λFS persist, smaller-scale fluctuations
(λ < λFS) are erased by free streaming before Jeans instability can take effect, preventing
structure formation at these scales.

3.5 The Halo Mass Function

The foundation of cosmic structure formation lies in the growth of initial density pertur-
bations. While these perturbations evolve linearly when overdensities are small (δ� 1),
the physics becomes significantly more complex as they approach and exceed unity
(δ ≥ 1). At this point, the coupled system of Poisson and Vlasov equations (Equations
3.29 and 3.38) requires direct numerical solutions to understand the full non-linear
dynamics.

The advent of large-scale N-body simulations [78–81] revolutionized our understand-
ing of structure formation within the ΛCDM framework. These simulations revealed
how DM aggregates into gravitationally bound structures known as halos. However,
they were limited by their focus on DM alone, unable to directly model the baryonic
matter that dominates astronomical observations.
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To address this limitation, the field evolved toward cosmological hydrodynamical
simulations [82]. Modern implementations, including Horizon-AGN, MassiveBlack-
II, Illustris, and EAGLE [83–86], now simultaneously model DM evolution alongside
complex baryonic processes such as star formation, black hole growth, and chemical
enrichment. These simulations span impressive scales, from scales exceeding 100 Mpc
down to kiloparsec-scale galactic structures.

A key prediction emerging from both theoretical models and numerical simulations
is the clustering of DM into massive, gravitationally bound structures called halos. The
halo mass function (HMF) quantifies the abundance of DM halos as a function of their
mass per unit comoving volume. The HMF is sensitive to cosmological parameters, par-
ticularly the mass-energy density of DM (Ωc) and dark energy (ΩΛ) [87]. Furthermore,
it offers insights into the nature of DM. In the Cold Dark Matter (CDM) paradigm, the
HMF exhibits an approximate power-law behavior, with halo numbers scaling as M−1.8

[88, 89]. This relationship notably differs in alternative scenarios such as Warm Dark
Matter (WDM) models, which predict a suppression of low-mass halos [90].

3.5.1 Approximative analytical approach

Nonlinear structure formation can be analytically approximated using the Press-Schechter
(PS) model [78]. The model describes spherical collapse where a tophat spherical over-
density, initially following the Hubble flow, undergoes amplification, decouples, and
eventually collapses and virializes. This collapse occurs when the linear overdensity
reaches the critical threshold δc = 1.686.

The cumulative probability of collapse for a region of size R is described by:

F(R) =
∫ ∞

δc

P(δ|R)dδ =
1
2

erfc
[√

ν

2

]
, (3.60)

where ν = [δc/σ(R)]2 and σ(R) is the rms variance of mass within a sphere of radius R
that contains mass M. P(δ|R) follows a Gaussian distribution.

The probability distribution of overdensities can be visualized through Gaussian
curves with varying σ values, corresponding to different smoothing scales R. Larger val-
ues of σ (flatter curves) represent smaller smoothing scales. The probability of collapse,
represented by the area where δ > δc, increases as R decreases (see Figure 3.2), demon-
strating that smaller structures are more likely to form. This mathematical behavior
directly reflects the hierarchical nature of structure formation in ΛCDM cosmology.

Within the ΛCDM framework, the temporal evolution of σ(R) is governed by σ(R) =
D(a)σ0(R), with D(a) representing the growth factor. This causes the Gaussian curves
to flatten over time and increasing the collapse probability F(R). Alternatively, keeping
σ fixed while evolving the threshold as δc ∝ 1/D(a) provides an equivalent description,
visualized as the threshold (vertical dashed line in Figure 3.2) moving leftward in the
probability distribution.
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Figure 3.2: Gaussian probability distribution of density perturbations at different
smoothing scales. Each curve represents a different variance σ2(R), where flatter dis-
tributions correspond to larger variances and smaller smoothing scales R. The shaded
region above the critical density δc represents the cumulative collapse probability F(R),
which increases with decreasing smoothing scale. Figure from [77].

The HMF, expressing the differential number density of halos with mass M =
4
3 πρ0R3, takes the form:

dn
d log M

=
ρ0

M

∣∣∣∣
dF(M)

d log M

∣∣∣∣ = −
1
2

ρ0

M
fPS(ν)

d log σ2

d log M
, (3.61)

where fPS(ν) =
√

2ν
π exp[− ν

2 ].

While this model employs simplified assumptions, it achieves reasonable concor-
dance with ΛCDM simulations, though requiring a factor of 2 correction to properly
account for the total mass fraction.

The Extended Press-Schechter (EPS) model improves upon the original PS model by
solving the cloud-in-cloud problem - where underdense regions within larger overdense
regions weren’t properly counted as collapsed. EPS tracks overdensity patches across
scales and counts them as virialized at their first threshold crossing, yielding the same
mass function as PS but without needing a fudge factor of 2. This approach enables more
sophisticated modeling, such as replacing spherical collapse with ellipsoidal collapse.

3.5.2 Fits from numerical simulations

While Press-Schechter formalism offered an analytical approach to derive the HMF,
cosmological N-body simulations later revealed its limitations in predicting halo abun-
dances across mass ranges[88, 91, 92]. In describing the DM halo distribution, we
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express the comoving number density of haloes per unit logarithm of mass as:

dn
d ln M

= M · ρ0

M2 f (σ)
∣∣∣∣

d ln σ

d ln M

∣∣∣∣ . (3.62)

In this formulation of the HMF, f (σ) serves as the fitting function derived from
N-body simulations, while ρ0 represents the universe’s mean density. The parameter σ

characterizes the mass variance within a spherical volume of radius R, which contains a
mass M = 4πρ0

3 R3. This variance is quantified through the integral:

σ2(R) =
1

2π2

∫ ∞

0
k2P(k)W2(kR)dk. (3.63)

The components of this integral include the wavenumber k, the linear power spec-
trum P(k), and the Fourier transform of the top-hat window function W(kR). Various
forms of the fitting function f (σ) have emerged in different literatures, two of such
fits given by refs. [93, 94] are used in this thesis to probe cosmology and DM from
strongly lensed gravitational waves. Table 1 of [95] provides a concise summary of the
forms for f (σ) that have appeared in different literatures and which are included in
the package HMFcalc. These HMF fits are mostly validated within the mass range of
∼ 108 − 1015 M�.

3.5.3 Dependence on redshift and cosmology

The redshift evolution of the HMF enters through σ(M, z), with f (σ) remaining redshift-
independent. This evolution is governed by the growth factor:

d(z) =
D+(z)

D+(z = 0)
, (3.64)

where D+(z) is given by:

D+(z) =
5Ωm

2
H(z)
H0

∫ ∞

z

(1 + z′)dz′

[H(z′)/H0]3
, (3.65)

with the Hubble parameter:

H(z) = H0

√
Ωm(1 + z)3 + (1−Ωm), (3.66)

considering flat ΛCDM cosmology with Ωr = 0, where Ωr is the radiation density at
current epoch.

This formulation shows the connections between HMF, cosmic structure formation
at different redshifts, and the underlying cosmological parameters.

Within the Press-Schechter formalism, the redshift evolution of the HMF reflects
the increasing critical collapse threshold as we look further back in cosmic time. This
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mathematical framework naturally explains hierarchical structure formation since den-
sity fluctuation variance σ2(M) inversely correlates with mass in CDM cosmologies.
Consequently, smaller-scale regions with their larger fluctuation amplitudes exceed the
collapse threshold earlier, forming low-mass halos first. Meanwhile, larger structures
with smaller amplitude fluctuations require more time to reach the critical density. Cos-
mic evolution progressively lowers the effective critical threshold relative to the growing
fluctuation amplitudes, enabling the formation of increasingly massive structures over
time. The Press-Schechter mass function quantitatively captures this process, demon-
strating an exponentially fewer massive halos at high redshifts and predicting their
gradual buildup through mergers and accretion of smaller structures. This bottom-up
formation sequence emerges naturally from the statistical nature of the initial density
field as mathematically expressed in the Press-Schechter framework.
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4 | Cosmography Using Strongly
Lensed Gravitational Waves
from Binary Black Holes

4.1 Introduction

The next (third) generation (XG) of gravitational-wave (GW) detectors will observe a
large number of compact binary mergers out to large distances. The expected detection
rates of binary-black-hole (BBH) and binary-neutron-star (BNS) mergers are ∼ 105− 106

per year [96, 97]. These detectors will observe BBH mergers out to redshifts as large
as z ∼ 100 [98], providing new avenues to probe cosmology that complement other
observations. For example, any black holes (BHs) observed at very high redshifts
(z & 10) are unlikely to be of stellar origin as this is before the epoch of star formation.
Hence any observation of BBHs at such redshifts will provide a strong hint on the
existence of primordial BHs, which will also have implications on our understanding of
DM.

GW observations of compact binary mergers will allow us to measure the luminosity
distance dL accurately without using any distance ladders, as these objects are absolutely
calibrated standard sirens [99, 100]. An EM counterpart of the merger will enable us to
measure their redshifts, thus allowing us to populate the Hubble diagram. Due to the
limited horizon of EM telescopes such measurements are likely to be possible only at
lower redshifts (z . 0.5). Thus, such measurements will primarily track the Hubble law
dL(z) ' H−1

0 z, thus providing precise measurement of the Hubble constant. Using GW
standard sirens, XG detectors could not only enable a stringent constraint on H0, but also
potentially provide precise measurements of other cosmological parameters, such as the
matter density Ωm and cosmological constant density ΩΛ of the flat ΛCDM cosmological
model[101–105]. While precise estimates of these parameters have been obtained from
the study of the cosmic microwave background (CMB) [106], Type Ia supernovae [107]
and others, there is considerable value in providing independent constraints using
GWs. Currently, there appears to be an inconsistency between the high-redshift (z ∼
1000) CMB data and the low-redshift (z . 2) probes such as supernovae [107]. This
could could be a result of unknown systematic errors or point to the breakdown of the

71
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ΛCDM model. The systematic errors of such GW-based measurements are much better
understood than, say, that of Type 1a supernovae. Hence, such observations will greatly
aid resolving the current Hubble tension [108, 109].

At high redshifts (z & 0.5), it is difficult to observe EM counterparts of compact
binary mergers [110]. Additionally, BBH mergers, which can be seen out to very high
redshifts, are generally not expected to produce EM counterparts. However, even in
the absence of EM counterparts, statistical correlation of the mergers with large scale
structure will provide some way of inferring cosmological parameters [111–115]. Here
the Hubble diagram will contain imprints of other cosmological parameters such as the
DM energy density and the equation of state of the dark energy. Thus they will provide
strong tests of cosmological models, such as the currently favoured ΛCDM model [72].

We are unable to measure cosmological redshifts from BBH observations because
the masses are degenerate with redshift in the GW signal, thanks to the absence of
a preferred mass scale in GR. However, non-gravity physics in compact objects and
their progenitors could introduce particular mass scales in compact binaries. For ex-
ample, neutron stars have a maximum mass that depends on the nuclear equation of
state [116] and the BH mass distribution can have some features due to pair instability
supernovae [117–120]. If such features are well understood (see e.g. [121, 122] for some
caveats), they will enable redshifts measurements from compact binaries purely using
GW observations [123–128]. Such spectral sirens will also enable GW cosmography.

GW standard sirens can also probe another signature of the dark energy sector
that is not accessible to EM observations. A generic modified gravity theory induces
modifications in the evolution of the cosmological background and perturbations, with
respect to the standard model of cosmology. In some modified theories, GWs propagate
at the speed of light but their amplitude will decrease differently from general relativity
(GR). Consequently, the luminosity distance estimated from the GW standard sirens
would differ from that estimated from their EM counterparts. The next generation
detectors will be able search for this deviation, probing multiple classes of modified
theories of gravity in the context of cosmology [129, 130].

GW observations will also probe the large scale structure of the universe. The
inhomogeneities in the spatial distribution of the observed compact binary mergers will
be another tracer of the large scale structure, which can be measured by the two-point
(and higher order) correlation functions [131]. This will complement the large-scale
galaxy and quasar surveys using EM telescopes: GW observations will probe much
deeper in redshift, although their spatial resolution will be much poorer than the EM
surveys. GW observations of BNSs will be able to accurately measure the scale of baryon
acoustic oscillations [132], providing an independent probe of the cosmological model.

In this Chapter, we present a new cosmological probe that GW observations will
enable, making use of strongly lensed GWs. As discussed in Chapter 2, GR predicts that
intervening massive objects such as galaxies and clusters between the GW source and the
observer will deflect the GWs through the phenomenon of gravitational lensing. If the
lensing objects are sufficiently massive and compact, and lie sufficiently close to the line
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of sight to the source, they can create multiple images of the source. This phenomenon,
called strong gravitational lensing, is routinely observed in EM observations of galaxies,
clusters, quasars, etc. The same objects should strongly lens GW signals as well. The
precise fraction of strongly lensed GW sources will depend on the distribution of the GW
sources, galaxies and clusters that act as lenses as well as the cosmological model and
parameters. According to recent calculations, this fraction is ∼ 0.01− 0.05% for current
generation detectors [133, 134] and ∼ 0.1− 1% for the XG detectors [48, 57, 135–141].
Since XG detectors are expected to detect millions of compact binary mergers during
their operation, they will detect thousands or tens of thousands of strongly lensed GWs.

The most famous cosmological probe involving strong lensing is the use of mea-
sured time delays to infer H0: this method requires building detailed mass models for
gravitational lenses that host multiple images of background sources. These models,
along with measured time delays, enable system-by-system constraints, which can be
combined to get a better measurement of H0, and even other cosmological parameters,
from a catalog of such systems (see [142] for a recent review). The dependence of lensing
time delay on cosmological parameters is degenerate with the lens parameters and the
source location, which are usually difficult to precisely constrain in the absence of an
EM counterpart. Hence previous work [143] in GW time-delay cosmography relied on
the existence of an EM counterpart. This requires at least one of the compact objects in
the binary to be a neutron star, and the mass ratio to be moderate, effectively restricting
this method to low-mass binaries only. The horizon distance of 3G detectors to such
low-mass binaries is modest (z . 2). Further, even with the best EM telescopes 1, the
detectability of faint EM counterparts such as kilonovae is restricted to smaller redshifts
(z . 0.5) [110]. These limitations would make this essentially a probe of cosmology at
low redshifts.

In this work, we propose a statistical probe of cosmology that uses population-
level properties of a catalog of lensed GW detections to constrain cosmology. This
method is related to previous proposals to statistically infer cosmological parameters
from distributions of image separations [152–155] and time delays [156–159] in lensed
quasars. Although the theory of lensing of GWs is essentially similar to the lensing of EM
waves, there are some important practical differences. Thanks to their short wavelengths,
EM observations will allow us to spatially resolve the multiple images of strongly lensed
objects. However, multiple images of strongly lensed GW sources cannot be spatially
resolved due to their poor sky localisation. In contrast, compact binary mergers produce
transient GW signals, which can be temporally localised to milliseconds. This means
that the time delay between the lensed images of the same merger can be measured
with exquisite precision using GW observations, which is hard to do in EM lensing
(e.g. in quassar lensing, using the quasar light curves). Moreover, GWs are unaffected
by issues such as extinction (which is a potential source of systematic error for quasar

1Different optical surveys such as The Sloan Digital Sky Survey (SDSS; [144]), Dark Energy Survey
(DES; [145]), Zwicky Transient Facility (ZTF; [146]), The Large Synoptic Survey Telescope (LSST; [147]),
Wide-Field Infrared Survey Telescope (WFIRST; [148]), Swift-Burst Alert Telescope (Swift-BAT; [149]) and
Fermi-Gamma-ray Burst Monitor (Fermi-GBM; [150]), Canadian Hydrogen Intensity Mapping Experiment
(CHIME; [151]) and various others transient surveys [110]
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cosmography [160]) and in general have a much simpler and well-modeled selection
function. In principle this method would probe the cosmology using data from redshifts
(z ∼ 2− 15) that are not probed by the CMB or other EM observations.

The idea of the new method is that the precise number of strongly lensed GW events
and the distribution of their lensing time delay depends on the cosmological model and
parameters, apart from the distribution of GW sources and lenses [57]. If the latter two
are known, then this will provide a new means of probing the cosmological parameters.
The distribution of GW sources can be accurately determined by the large number of
un-lensed signals that will dominate the data (see, e.g., [161]). The knowledge of the
distribution of large gravitational lenses should come from cosmological simulations
and EM observations 2. However, we will also show that the cosmological parameters
and the model of the distribution of the lenses have sufficiently different imprints on the
number of strong lensed events and their time delays, so that it is possible to disentangle
these effects to a very good extent.

Our statistical method, based on the observation of a large number of strongly lensed
BBH events, does not require the presence of EM counterparts to the mergers. A com-
plementary approach, presented in [143, 162, 163], makes use of a much smaller number
of strongly lensed mergers having an EM counterpart. The concurrent observation of
lensed EM and GW signals will allow us to measure cosmological parameters from even
a single event. However, due to the limited observing horizon of EM telescopes, such
observations will be able to probe only low-redshift (z . 0.5) cosmology3.

This chapter is organised as follows: In Section 4.2 we briefly review the Bayesian
method that we use to constrain the cosmological parameters from the observation of a
population of strongly lensed GW signals. Section 4.3 addresses the modeling of time
delay distributions and expected lensed event counts across cosmological parameters.
Section 5.5 presents forecasted constraints on cosmological parameters. Section 4.5.1
explores these constraints under various astrophysical models for the redshift distribu-
tion of BBH mergers. In the remaining sections we investigate the various sources of
systematic errors in our analysis, and show that it is possible to bring them sufficiently
small so that interesting measurements are possible in the future. In particular, in Sec-
tion 4.5.2, we explore how the errors in the measurement of the luminosity distance of
individual GW events will limit our ability to reconstruct the true redshift distribution
of GW sources, hence biasing our cosmological inference. In Section 4.5.3, we investigate
how our inaccurate understanding of the lens distributions will bias our cosmological
inference. In Section 4.5.4 we will explore how we can deal with contaminated data –
that is, we develop a formalism deal with the presence of a small number of unlensed
GW signals in our lensing data, that are misidentified as lensed events due to our limited
ability to distinguish between lensed and unlensed GW signals.

2See [135] for a complementary approach to constrain the distribution of the GW sources and lenses
from the lensing rate and time delay distribution, assuming a cosmology.

3Combing GW lensing observations with lenses detected in EM surveys (e.g., Euclid, CSST and JWST)
could probe cosmology at moderate redshifts (z . 2) [141, 164]. However, the exact method for this
approach is yet to be developed.
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4.2 Bayesian inference of cosmological parameters

We assume that N lensed BBH mergers have been detected within an observation period
Tobs. In this work, we assume a SIS lens model. Thus, each will produce two lensed
copies of the GW signal. We also assume that these two images are detected, from
which the lensing time delays have been measured accurately. Since the time delays are
measured with millisecond precisions we can take them as point estimates, which we
denote as {∆ti}N

i=1. Given N and {∆ti}N
i=1, we wish to compute the posterior distribution

of the cosmological parameters ~Ω ≡ {H0, Ωm} assuming a flat ΛCDM cosmological
model. Using Bayes’ theorem:

p
(
~Ω | N, {∆ti}, Tobs,M

)
=

p
(
~Ω | M

)
p
(

N, {∆ti} | ~Ω, Tobs,M
)

p (N, {∆ti} | Tobs,M)
, (4.1)

where p
(
~Ω | M

)
is the prior distribution of ~Ω given some modelM while

p
(

N, {∆ti} | ~Ω, Tobs,M
)

is the likelihood of observing N lensed events with time

delays {∆ti}N
i=1 given the set of cosmological parameters ~Ω and modelM. The normali-

sation constant p (N, {∆ti} | M) is the evidence of the assumed modelM.

p (N, {∆ti} | Tobs,M) =
∫

p
(
~Ω | M

)
p
(

N, {∆ti} | ~Ω, Tobs,M
)

d~Ω. (4.2)

Above, M denotes a variety of model assumptions that we employ, including the
cosmological model, models of the mass distribution of DM halos that act as lenses, lens
models, etc. From here onwards, we will dropM from the expressions, for simplicity of
notation.

Since N and {∆ti} are independent data, the likelihood can be written as a product
of likelihoods of measuring N lensed events and the set of time delays {∆ti}N

i=1.

p
(

N, {∆ti} | ~Ω, Tobs

)
= p

(
N | ~Ω, Tobs

)
p
(
{∆ti}N

i=1 | ~Ω, Tobs

)
. (4.3)

Here, the likelihood of observing N lensed BBH mergers can be described by a Poisson
distribution with mean Λ(~Ω, Tobs).

p
(

N | ~Ω, Tobs

)
=

Λ(~Ω, Tobs)
N e−Λ(~Ω,Tobs)

N!
. (4.4)

Above, Λ(~Ω, Tobs) is the expected total number of lensed events within the observation
period as predicted by the cosmological model with parameters ~Ω. Assuming that BBH
mergers are independent events, the likelihood for observing the set of time delays
{∆ti}N

i=1 can be written as the product of individual likelihoods.

p
(
{∆ti}N

i=1 | ~Ω, Tobs

)
=

N

∏
i=1

p
(

∆ti | ~Ω, Tobs

)
. (4.5)



76 Souvik Jana

Above, p(∆ti | ~Ω, Tobs), can be thought of as a “model” time-delay distribution p(∆t | ~Ω, Tobs)

evaluated at the measured ∆ti of a lensed merger. The shape of the model distribution
is governed by the cosmological parameters ~Ω. The model distribution p(∆t | ~Ω, Tobs)

is obtained from the expected (intrinsic) time delay distribution p(∆t | ~Ω), after apply-
ing the condition that we can not observe the time delays which are greater than the
observation time Tobs:

p
(

∆t | ~Ω, Tobs

)
∝ p

(
∆t | ~Ω

)
(Tobs − ∆t)Θ(Tobs − ∆t), (4.6)

where Θ denotes the Heaviside step function.

4.3 Modelling the expected number of lensed events and lensing time de-
lays

The Bayesian inference presented in Section 4.2 essentially involves comparing the
observed number of lensed events N and the distribution of their time delays {∆ti}N

i=1
with the theoretical prediction of the expected number of lensed events Λ(~Ω, Tobs) and
their time delay distribution, p(∆t | ~Ω), as a function of the parameters ~Ω. Here we
describe how these quantities can be modelled using a cosmological model. We assume
the flat ΛCDM model. However, similar calculations can be performed using more
general cosmological models as well.

4.3.1 Expected number of lensed events:

To compute the expected number of lensed binaries, we convolve the redshift distribu-
tion of merging binaries with the strong lensing probability at that source redshift.

Λ(~Ω, Tobs) = S(Tobs) × R
∫ zmax

s (~Ω)

0
pb(zs|~Ω) P`( zs|~Ω) dzs, (4.7)

Above, R is the BBH detection rate, pb(zs|~Ω) is the redshift distribution (probability
density) of merging binaries and P`(zs|~Ω) is the strong lensing probability for the source
redshift zs. Here we assume that the GW detectors are able to detect all the merging
binaries out to zmax. For XG detectors, this is a good assumption for the zmax values that
we use 4. S(Tobs) denotes the selection effects due to the finite observing time

S(Tobs) =
∫ Tobs

∆t=0
p(∆t|~Ω) (Tobs − ∆t) d∆t. (4.8)

This takes into account the fact that if the lensing time delay ∆t is comparable to the
observing time Tobs the second (first) image will be be missed unless the first (second)

4The zmax predicted by a source population model (e.g., [165]) assumes the standard cosmology ~Ωtrue.
For the population models that we consider, zmax ' 20. When we consider other values of ~Ω, we rescale
zmax appropriately.
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image arrives at the beginning (end) of the observing run.
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Figure 4.1: Left Panel: The redshift distribution of BBH mergers from [165] converted
to a luminosity distance distribution, assuming standard cosmology [106]. Middle
Panel: Source redshift distributions, converted from the aforementioned luminosity
distance distribution, assuming different values of ~Ω. Right Panel: The source redshift
distribution pb(zs | ~Ω) from [165], and the lensing probability P`(zs | ~Ω) assuming the
halo mass-function described in [93]. The competing effects of a decreasing probability
of sources and increasing probability of lensing at high redshifts is reflected in the
shifted peak of the distribution of lensed sources p(zs | ~Ω) to higher redshifts. Here
~Ω = {H0 = 67.3 km s−1Mpc−1, Ωm = 0.316}.

We expect that the rate R of the BBH mergers and their redshift distribution pb(zs|~Ω)

will be accurately measured from the large (∼ 106) number of unlensed events that
will dominate the data. What we measure from GW observations is the distribution
pb(dL) of luminosity distance of the sources, which can then be converted into a redshift
distribution pb(zs|~Ω) assuming a set of cosmological parameters ~Ω. For the forecast
analysis presented here, we create a luminosity distance distribution from a redshift
distribution model, assuming standard cosmological parameters ~Ωtrue. By varying ~Ω,
we can then obtain different redshift distributions which we use to model the time
delay distribution for that specific value of ~Ω. This is demonstrated in Figure 4.1. Since
these quantities are currently poorly constrained, we rely on theoretical models of
pb(zs|~Ω) to forecast the expected precision in measuring cosmological parameters. We
present results for several BBH detection rates, R. In Section 4.5, we extend this analysis
by considering various theoretical models to predict the precision of cosmological
parameter measurements.

To compute the expected number of lensed events using Equation 5.14, we also need
to know the probability P`( zs|~Ω) that a source at redshift zs is strongly lensed. This will
depend on the distribution of lenses as well as cosmological parameters. We assume
that the lenses are modelled by the SIS model. Multiple images are produced when the
projected location of the source in the lens plane is within the Einstein radius of the lens,
given by

rE(σ, z`, zs, ~Ω) = 4π
(σ

c

)2 D∆t

1 + z`

(
D`s

Ds

)2

(4.9)
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where σ is the line-of-sight velocity dispersion of the lens, D∆t ≡ (1 + z`)
DsD`
D`s

is called
the time delay distance where D`, Ds and D`s are the angular diameter distance to
the lens, to the source, and between the lens and the source, respectively and σ is the
velocity dispersion of the lens. The strong lensing probability is given by integrating the
differential optical depth for strong lensing by different lenses

P`(zs, ~Ω) =
∫ zs

0

∫ σmax

σmin

dτ

dz`dσ
(zs, z`, σ, ~Ω) dz`dσ, (4.10)

where the differential optical depth for strong lensing by a lens with velocity dispersion
σ located at a redshift z` is given by the fraction of the full sky covered by lenses

dτ

dz`dσ
(zs, z`, σ, ~Ω) =

dVc

dz`
(z`, ~Ω) × dN`

dVcdσ
(z`, σ, ~Ω) × πr2

E(σ, z`, zs, ~Ω)

4πD2
` (z`, ~Ω)

, (4.11)

where
dVc

dz`
(z`, ~Ω) =

4πc
H0

(1 + z`)2 D2
` (z`, ~Ω)

E(z`, ~Ω)
(4.12)

is the differential comoving volume and

dN`

dVcdσ
(z`, σ, ~Ω) = nc(z`, ~Ω) pσ(σ, z`) (4.13)

is the comoving number density of lenses with velocity dispersion σ at redshift z`.
Here, pσ(σ, z`) is the probability density of the dispersion velocity of the lenses at a
redshift z` and nc(z`) is the comoving number density of lenses at z`. In Equation 4.12,
E(z`, ~Ω) =

√
ΩM[(1 + z`)3 − 1] + 1 assuming a flat ΛCDM cosmology with radiation

density parameter, Ωr = 0.
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Figure 4.2: The left panel shows the distribution of lens velocity dispersions along
the line of sight evaluated at different redshifts for two different halo mass models,
“Behroozi” [93] (solid lines) and “Jenkins” [94] (dashed lines). The right panel shows the
corresponding mass functions.
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In order to compute the distribution of lenses at a given redshift, we need to use
some models of structure formation.

dN`

dVcdσ
(z`, σ, ~Ω) =

dN`

dVcdM
(z`, M, ~Ω) × dM

dσ
, (4.14)

where the first term denotes the comoving number density of DM halos with mass M
at redshift z` predicted by the cosmological model with parameters ~Ω. We consider
several models of the HMF calibrated to cosmological simulations. The second term is a
Jacobian to convert the distribution of the halo mass to that of the dispersion velocity. To
compute the Jacobian, we assume that the halos are spherically symmetric and virialised,
with uniform density ρ and radius R. Thus,

σ '
√

GM
R

, M =
4
3

πR3ρ ⇒ dM
dσ

=
3M
σ

. (4.15)

We also need to use some minimum and maximum cutoff for σ to compute the total
optical depth defined in Equation 4.10. The natural choices are σmin = σ(Mmin) and
σmax = σ(Mmax). We assume Mmin = 1010 M� and Mmax ' 1015 M�, since this the
mass range of validity of most of the HMF models that we use. Figure 4.2 plots velocity-
dispersion distributions for two different HMF models at different redshifts. Notice the
non-trivial difference between the distributions pertaining to the different halo mass
models. Such differences could potentially lead to biases in the estimation of ~Ω, if
the true halo-mass model is not known. See the Section 4.5 for an illustration of such
systematic errors.

Now combining all these pieces together we obtain (not showing the dependence on
~Ω to simplify the notation)

dτ

dz`dσ
=

16π3

E(z`)
c

H0

(σ

c

)4
[D∆t(z`, zs)]

2
(

D`s

Ds

)4

pσ(σ, z`)nc(z`). (4.16)

It is now easy to see from Equation 4.11 why the cosmological parameters affect the
lensing optical depth and hence the number of detected lensed events. The first term
describes a purely geometrical effect of how the comoving volume at a given redshift
varies with a change in cosmological parameters. The second term describes the change
in the distribution of lenses due to changes in the structure formation. Third shows
how the fractional area covered by lenses at a given redshift varies due to the geometric
effect.

4.3.2 Expected distribution of lensing time delays:

In the SIS lens model, the time delay between the two images is given by (see, e.g. [166]):

∆t(z`, σ, zs, y, ~Ω) =
D∆t

c
32π2

(σ

c

)4
y
(

D`s

Ds

)2

. (4.17)
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where y is the projected location of the source on the lens plane (in units of rE). We
compute the expected time delay distribution p(∆t | ~Ω) for different values of the
cosmological parameters ~Ω by marginalising the distribution of time delay over all other
parameters~λ ≡ {y, σ, z`, zs} on which the time delay depends.

p
(

∆t | ~Ω
)
=
∫

p
(

∆t |~λ, ~Ω
)

p(~λ | ~Ω) d~λ, (4.18)

where p(~λ | ~Ω) denotes the expected distribution of the source position y, lens velocity
dispersion σ, lens redshift z` and source redshift zs, given the set of cosmological
parameters ~Ω. If we assume isotropy of space, the distribution of y is independent of
the cosmological parameters. Hence

p(~λ | ~Ω) = p(y) p(σ, z`, zs | ~Ω). (4.19)

Here, all distributions are conditioned on strong lensing, where p(y) ∝ y with y = (0, 1].
Above, p(z`, σ, zs | ~Ω) can be further split as

p(σ, z`, zs | ~Ω) = p(σ, z` | zs, Ω) pb(zs | ~Ω), (4.20)

where pb(zs | ~Ω) is the expected/measured distribution of source redshifts, while
p(σ, z` | zs, Ω) is computed from the differential optical depth (Equation 4.11)

p(σ, z` | zs, ~Ω) ∝
dτ

dz`dσ
(zs, ~Ω). (4.21)

Figure 4.3 illustrates the imprint of cosmology on the number of lensed events
observable for a period of ten years as well as the distribution of time delays. The
time delay distribution and the number of lensed events are governed by two primary
factors. First, the geometry of the universe, which affects the relation between redshift
and distance measures. Second, lens properties: their number density, velocity disper-
sion distribution, and redshift evolution. All these quantities depend on cosmological
parameters, and their combined influence determines how both the time delay distribu-
tion and the total number of lensed events vary with different values of cosmological
parameters. The number of lensed events increase with increasing H0 and Ωm. The
peak of the distribution shifts towards smaller time-delay values with increasing H0,
and towards larger values with increasing Ωm. While these cosmological effects on the
time delay distribution may appear subtle, the Bayesian approach effectively captures
these imprints to achieve O(1%) constraints. Here we assume a BBH merger rate of
R = 5× 105 yr−1 with an observation period of Tobs = 10 yrs. The redshift distribution
of BBH mergers follows the population model from [165], while the lens distributions
are derived using the HMF from [93].
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Figure 4.3: Left: Expected number of lens pairs for different values of ~Ω in flat ΛCDM
model, assuming a detection rate R = 5 × 105 yr−1 and observation time period
Tobs = 10 yrs. Right: The strong-lensing time-delay distributions for different val-
ues of cosmological parameters: Increasing H0 (Ωm) shifts the peak of the distribution
towards smaller (larger) time-delay values. Dashed lines show the actual distributions
p(∆t | ~Ω) while the solid lines show the distribution of time delays observable in a
period of 10 yrs.

4.4 Expected constraints on cosmological parameters

To assess the ability of our method to constrain cosmological parameters, we choose a
“true” cosmology ~Ωtrue = {H0 = 67.3, Ωm = 0.316}. We further assume that the “true”
halo mass model is described by [167], as implemented in the HMFCALC package [95],
and the “true” source distribution is given by [168]5. We assume a total observing period
Tobs = 10 yrs and a BBH merger rate R = 5× 105 yr−1. We neglect the selection effects
in the detection as 3G detectors are expected to detect all the BBHs out to large distances
(dL ∼ 1000 Gpc). We compute the expected number Λ of lensed events making use of
Equation 5.14. To simulate one observational scenario where N events are detected, we
draw one sample from a Poisson distribution with mean Λ. Further, we draw samples
{∆ti}N

i=1 from p(∆t | ~Ωtrue, Tobs) (see Equation 5.13).

Using N and {∆ti}N
i=1, we evaluate the posterior described in Equation 4.1 for

different values of ~Ω. We assume uniform priors on H0 and Ωm, so that the final
posterior is given by the product of the likelihoods p(N | ~Ω, Tobs) and p(∆ti | ~Ω, Tobs).
Figure 4.4 shows these two likelihoods as well as the posterior on H0 and Ωm obtained

5Dominik et al. (2013) predicts BBH merger rate densities by using the StarTrack population synthesis
code [169, 170] to model the complete evolution of isolated binary stars from the Zero Age Main Sequence
through mass transfer episodes to compact object formation and final merger. Their analysis incorporates
an initial mass function adopted from Kroupa et. al. (1993 & 2003) [171, 172], assumes a flat logarithmic
distribution for initial binary separations, and adopts the cosmic star formation rate history from Strolger et.
al. (2004) [173]. The resulting merger rates as a function of redshift are strongly influenced by metallicity-
dependent stellar evolution, common envelope efficiency parameters, and supernova kick physics, with
these factors determining how the merger rate density evolves across cosmic time.
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Figure 4.4: Left panel: Expected posterior distributions (68% and 95% credible regions) of
H0 and Ωm computed from the time delay distribution and the number of lensed events
separately, along with the combined posterior (shown in orange). We assume a BBH
merger rate R = 5× 105 yr−1 and total observation time period Tobs = 10 yrs. The “true”
cosmology (dashed cross-hairs) is recovered within the 68% credible interval (orange
shade), with H0 = 67.8± 1.1 km s−1Mpc−1 and Ωm = 0.3142± 0.0056. Right panel: A
comparison of the the combined posterior obtained from GW lensing with the same
obtained from CMB observations by Planck. While the orange contours assume that the
σ8 parameter is well-measured from other observations, the grey contour corresponds
to 95% credible region of the posterior marginalized over σ8 parameter.

from combining these two likelihoods. We find that the posteriors are centred around
the true values of cosmological parameters. Further, the constraints on ~Ω are found
to be H0 = 67.8± 1.1 and Ωm = 0.314± 0.006 (68% credible intervals of marginalised
posteriors). These constraints are comparable to those derived from the CMB [106] 6.
Additionally, they probe a very different redshift regime (z ∼ 10 as compared to z ∼ 1000
probed by the CMB) and have different systematics.

While we have assumed a BBH detection rate of R = 5 × 105 yr−1, the actual
detection rate is uncertain as of now. Hence we repeat these calculations assuming
a more moderate detection rate of R = 5× 104 yr−1 and a pessimistic rate of R =

2.5× 104 yr−1. This will, in turn reduce the observed number of lensed events over
the observational period of Tobs = 10 yrs. The expected posteriors on cosmological
parameters assuming the three different merger rates is shown in Figure 4.5. As expected,
a smaller merger rate (resulting in a smaller number of lensed events) increases the
width of the posteriors, although the true cosmology continues to be recovered within

6Note that we have set all other parameters of the ΛCDM model to the best fits values provided by
[106]. In order to make a fair comparison, we do the same for the Planck posteriors as well. However,
the uncertainty in some of the other parameters, in particular σ8, will have an imprint on the precision
with which H0 and Ωm could be constrained. Therefore, in addition, we show the posteriors that are
marginalized over σ8 as well in Figure 4.4. The marginalized constraints are significantly worse, so we
need a complimentary probe to achieve better constraining power.
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the 68% credible interval.
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Figure 4.5: Expected posterior distributions of H0 and Ωm from a 10-year observation
period, assuming different values for the merger rate R (shown in the legend). A lower
merger rate (producing a smaller number of lensed events) will result in less precise
estimates of the cosmological parameters.

We also illustrate the ability of this method to constrain parameters of some more
general cosmological models. In particular, we consider wCDM model [106] with
two parameters ~Ω = {Ωm, w0}. In this part, we fix the Hubble constant H0 to its
“true” value, mimicking a situation where it will be well measured from low-redshift
observations. As done earlier, we compute the expected number of lensed events and
model time delay distributions using Equations 5.14 and 5.13. We choose a “true"
cosmology ~Ωtrue = {Ωm = 0.203, w0 = −1.55}. We assume a halo mass model
described in [167] and the source distribution given in [168]. Now considering a BBH
merger rate R = 5× 105 yr−1 and total observing time period Tobs = 10 yrs, we draw
one value of N and one set of{∆ti}N

i=1 from p(N | ~Ωtrue, Tobs) and p(∆t | ~Ωtrue, Tobs).
From these simulated observation data we evaluate the posteriors on these Ωm and
w0 (see Figure 4.6). The expected constraints from GW lensing (w0 = −1.52+0.16

−0.12 and
Ωm = 0.203± 0.001) compare favorably to those obtained from Planck (w0 = −1.55+0.18

−0.33
and Ωm = 0.203+0.018

−0.058), albeit with the caveat that we are exploring only a subset of
parameters.
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Figure 4.6: Expected posterior distributions (68% and 95% credible regions) of Ωm and
w0 of the wCDM model computed from the time delay distribution and the number
of lensed events (jointly). We assume a BBH merger rate R = 5× 105 yr−1 and total
observation time period Tobs = 10 yrs. The “true” cosmology (dashed cross-hairs) is
recovered within the 68% credible interval (orange shade), with w0 = −1.52+0.16

−0.12 and
Ωm = 0.203± 0.001.

4.5 Cosmography systematics

In this section, we investigate various systematic effects that influence the precision of
cosmological parameter measurements using the Bayesian framework delineated in
Section 4.2. We have seen in Section 4.3 that, the essential ingredients for modelling the
expected number of lensed events and their time delay distribution are:

• The redshift distribution of GW sources: We expect that this can be measured with
sufficient precision from the large number ∼ 106 of unlensed events that will
dominate the data (see, e.g., [161]). In Section 4.5.1 we forecast the prospective
constraints on cosmological parameters assuming various theoretical models
of the source redshift distribution (Figure 4.7). In Section 4.5.2 we study how
uncertainties and errors in inferring the source redshift distribution can affect the
constraints on cosmological parameters (Figure 4.8).

• A HMF model: This will need input from cosmological simulations. We show in
Section 4.5.3 that a wrong choice of the HMF model can bias our inference of
cosmological parameters. However, if the right HMF model is one among the
many models that we consider, Bayesian model selection can be used to identify
the right model.

We maintain the same assumptions used in our previous analyses. The key assump-
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tions are as follows: we adopt halo mass limits of Mmin = 108 M� and Mmax ' 1015 M�,
which are essential for evaluating Equation 4.10. To investigate systematic effects arising
from the lens distribution, we employ several HMFs in addition to the Behroozi model
[93], enabling us to assess potential biases in cosmological parameter estimation. For
analyzing effects related to the source distribution, we consider multiple theoretical
source redshift distributions beyond the model presented in the previous section.

Here we show that the precision of the estimation of the cosmological parameters
does not have a strong dependance on the assumed BBH redshift distribution model.
Using the large number of unlensed mergers, XG detectors are expected to measure
the BBH redshift distribution with sufficient precision for the cosmological inference.
However, a biased inference of the BBH redshift distribution will bias the estimation
of cosmological parameters. An incorrect model for the distribution of lens properties
can also lead to a biased cosmological inference. However, Bayesian model selection
can assist in selecting the right model from a set of available parametric models for the
lens distribution. We also present a way to incorporate the effect of contamination in the
data due to the limited efficiency of lensing identification methods, so that it will not
bias the cosmological inference.

4.5.1 Effect of source distribution models

The redshift distribution of sources is a significant input for our method. The precision
of estimation of cosmological parameters depends on the redshift distribution of sources
because lensing optical depth increases with redshift (Equation 4.10). To examine how
the source population affects the precision in estimating the cosmological parameters, we
conduct a recovery test similar to the one done in [57]. We examine various models for
the redshift distribution of mergers, including those predicted by population synthesis
models such as [118, 165, 174], as well as a model in which the merger rate is uniform
in comoving volume. Additionally, we explore merger distribution models obtained
from a star formation rate given in [175] using different delay time distributions as
presented in [161]. We consider two different models for the distribution of time delays
between the formation of the binary and its merger: an exponential distribution with a
characteristic time scale τ = 0.1 Gyr and a distribution uniform in logarithmic of time
delay (see Equations 6 and 7 of [161]). Apart from these two models, we also consider
the scenario where there is no time delay between formation and merger, which implies
that black hole mergers follow the same redshift distribution as the star formation rate.

The left panel of Figure 4.7 displays the redshift distributions of BBH mergers which
we consider. We consider a “true” cosmology ~Ωtrue = {Ωm = 0.316, H0 = 67.3}. The
true distributions of lens redshift and parameters are calculated using a HMF model as
described by [93], implemented in HMFCALC package [176] as described in Section 4.3.
We assume a merger rate of R = 5× 105 yr−1 for BBHs, with an observation time period
Tobs = 10 yrs.

To simulate one observational scenario where N lensed events with time delays
{∆ti}i=N

i=1 are detected, we draw one sample from a Poisson distribution with mean
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Figure 4.7: Left: Different models for the distributions of redshifts for BBH mergers.
These include prediction from population synthesis studies by Dominik [165] and
Belczynski [118, 174], as well as uniform in comoving volume. Other models are based
on Madau-Dickinson star formation rate [175] and consider different distributions of
the time delay between formation and merger. Middle: The distributions of time delay
between two lensed images of a source for different models of redshift distribution
of BBH mergers shown in the left panel. Dashed lines represent the actual time delay
distributions p(∆t | ~Ω) while solid lines represent time delay distributions p(∆t | ~Ω, Tobs)

that will be observable in 10 yrs. Time delay distributions are calculated for ~Ω = {Ωm =
0.316, H0 = 67.3}. Right: Posteriors (95% credible region) on cosmological parameters
(Ωm, H0) for different models of redshift distributions. This is done considering a BBH
merger rate of 5 × 105 yr−1 with observation time period of 10 yrs. Dashed cross
represents true cosmological parameters.

Λ
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)
and then draw samples {∆ti}i=N

i=1 from p
(

∆t | ~Ωtrue, Tobs = 10 yrs
)

.
We neglect the selection effects of XG detectors, as XG detectors are expected to detect
all the BBHs out to very high redshifts. Time delay distributions considering different
models of redshift distribution for BBH mergers are shown in the middle panel of Figure
4.7 (for ~Ω = ~Ωtrue).

Dominik Belczynski Uniform flatlog τ = 0.1Gyr zero-delay
Λ (Ωtrue) 37700 20594 36698 20448 22098 23433
Ωm(68%) 0.315+0.006

−0.006 0.314+0.007
−0.008 0.316+0.006

−0.006 0.317+0.008
−0.009 0.314+0.008

−0.008 0.320+0.007
−0.008

Ωm(95%) 0.315+0.012
−0.011 0.314+0.016

−0.015 0.316+0.012
−0.012 0.317+0.017

−0.016 0.314+0.016
−0.015 0.320+0.016

−0.014
H0(68%) 67.6+1.1

−1.1 67.9+1.4
−1.4 67.2+1.2

−1.2 67.2+1.4
−1.4 67.7+1.4

−1.4 66.7+1.3
−1.3

H0(95%) 67.6+2.1
−2.0 67.9+2.7

−2.7 67.2+2.4
−2.3 67.2+2.9

−2.7 67.7+2.7
−2.6 66.7+2.5

−2.5

Table 4.1: Expected number of lensed events Λ for ~Ω = ~Ωtrue and expected constraints
(68% and 95% credible intervals) on Ωm and H0 for different models of redshift distribu-
tion of BBH mergers considering a merger rate of 5× 105 yr−1 with an observation time
of 10 yrs.

Using the method outlined in Section 4.2, we compute the posteriors on the cos-
mological parameters ~Ω from the different observing scenarios corresponding to the
different source redshift distributions. We also assume that the redshift distribution
of the sources is measured with sufficient precision from the observation of unlensed
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events. Posteriors for the cosmological parameters are shown in the right panel of Figure
4.7. When the source populations extend to high redshift (e.g., Dominik, Uniform), the
precision is better in comparison to populations where the merger redshift does not
have support at high redshift (e.g., Belczynski, flatlog, etc.). This is because the lensing
optical depth increases with redshift, and therefore, populations that extend to high
redshift are expected to have a larger number of lensed events than the populations that
do not extend to high redshift. The expected 95% credible intervals in the posteriors of
the cosmological parameters are summarised in Table 4.1, for different source redshift
distribution models.

4.5.2 Effect of errors in measuring the source redshift distribution
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Figure 4.8: Left panel: The red curve shows the redshift distribution model based on
the Madau-Dickinson star formation rate, with an exponential delay-time distribution
with τ = 0.1 Gyr. Light cyan curves show the reconstructed (posterior predictive)
distributions as shown in Figure 5 of [161], while the solid cyan curve shows their
average. Middle Panel: The 95% credible regions of the posteriors of Ωm and H0. The
lensed events are simulated using the red curve in the left panel. The cosmological
inference is done with the ‘true’ redshift distribution (red contour), as well as with 100
reconstructed source redshift distributions (light cyan contours, corresponding to the
light cyan curves in the left panel). The cyan posteriors are biased due to the biased
reconstruction of the source redshift distribution. Right Panel: This panel shows the
effect of the marginalisation over the source redshift distribution uncertainties. Here, the
lensed events are simulated using the solid cyan curve in the left panel, so that there is
no systematic bias. The solid cyan contour shows the posterior estimated using the same
redshift distribution. The dashed blue contour shows the posterior that is marginalised
over the source redshift distribution uncertainties. The broadening of the posterior due
to this effect is minimal.

In Section 4.5.1, we assumed that the true redshift distribution of the sources is
accurately known from the observation of unlensed events. However, this is not an
entirely valid assumption as uncertainties and errors in the measurement of luminosity
distance could bias our estimation of the redshift distribution, leading to systematic
errors as well as additional statistical uncertainties in the estimation of cosmological
parameters. Here we investigate the severeness of this effect.

Combining the inferred luminosity distance posteriors from a number of BBH events
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and assuming a cosmology, we will be able to reconstruct the redshift distribution of
BBH mergers in the universe. This can be done either using a parametric model of
the population properties of BBHs (such as their mass and redshift distribution) or
using non-parametric methods [177]. The errors in the reconstruction of the redshift
distribution of BBH mergers using XG detectors were studied in [161], using a parametric
model. We use the results of their study for characterising the corresponding errors
in cosmological inference. As done in [161], we use a ‘true’ redshift distribution given
by a model based on Madau-Dickinson star formation rate and exponential delay time
distribution with a time scale, τ = 0.1 Gyr (red curves in Figures 4.7 and 4.8).

We use the posterior predictive distributions of the merger rate density from [161],
which was derived from the posteriors on the parameters of the redshift distribution
model (Figures 4 and 5 of [161]). We take ∼ 100 samples of the merger rate density
distributions and convert them into source redshift distributions. In the left panel
of Figure 4.8, the light cyan curves represent these posterior predictive distributions
while the solid cyan curve shows their average. These reflect the uncertainties in
the measurement of the redshift distribution, while the red curve shows the ‘true’
distribution.

Now we simulate lensed events using the ‘true’ redshift distribution and infer
cosmological parameters using different posterior predictive redshift distributions (cor-
responding to different light cyan lines in the left panel of Figure 4.8). The middle panel
of Figure 4.8 shows the posteriors of the cosmological parameters inferred using the
‘true’ redshift distribution (red line) and 100 sampled redshift distributions (thin cyan
lines). It is evident that there is a systematic bias in the recovery, which is attributed to
the biased reconstruction of the merger rate density as seen in the left panel of Figure
4.8.

We also explore a scenario in which the redshift distribution of BBHs is estimated
without any systematic biases, but with some statistical uncertainty. In order to simulate
such a scenario, we use the average of 100 sampled redshift distributions as the ‘true’
distribution (cyan curve in the left panel of figure 4.8). We then use this ‘true’ distri-
bution to simulate lensed events and to infer cosmological parameters (right panel of
figure 4.8). Here, the solid cyan contour represents the posterior (95% credible region)
of cosmological parameters using the new ‘true’ redshift distribution, showing no sys-
tematic bias. When we factor in the uncertainties in the estimation of source redshift
distribution making use of the posterior predictive distributions (light cyan curves in
the left panel of 4.8), the posteriors of the cosmological parameters will have a scatter
similar to the light cyan curves in the middle panel of Figure 4.8. The dashed dark blue
contour shows the posterior that is marginalised over the uncertainties in the estimation
of the source redshift distribution. We can see that the broadening of the posterior is
minimal.

In summary, the expected statistical uncertainties in the estimation of the source
redshift distribution have a negligible effect on cosmological inference. However, the
redshift distribution needs to be estimated without any systematic bias. In this prelimi-
nary investigation, we have neglected the correlation of the parameters of the source
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distribution model with the cosmological parameters. We anticipate that this oversight
will not significantly broaden the posteriors on cosmological parameters, as the expected
measurement error on the merger rate density is small [161]. Our future plans include
conducting a comprehensive analysis that considers all the parameters of the source
redshift distribution along with the cosmological parameters and marginalising over
them.

4.5.3 Effect of lens distribution
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Figure 4.9: Posteriors (95% credible regions) of cosmological parameters that illustrate
the bias in the inference due to the use of wrong models of the HMF. In the legends,
BB, BJ, BS and BT denote different scenarios when our simulated observation of lensed
signals is produced using Behroozi model, and then cosmological parameters are recov-
ered using Behroozi, Jenkins, SMT and Tinker08 models, respectively. Left panel: Results
corresponding to a merger rate 5× 105 yr−1. We can see that true cosmology is not
recovered within 95% credible region except for the case of BB. However, the precision
for all cases remains almost the same. Right panel: Results corresponding to a merger
rate 5× 104 yr−1. Here, we can see that the amount of bias is relatively small due to the
decreased precision of the cosmological parameters.

The distribution of the redshift and other parameters of the lenses are determined
using the HMF models (see Section 4.3). Here we investigate how selecting the incor-
rect model for the lens distribution (both redshift and other parameters) can affect the
inference of cosmological parameters. We broadly follow the same steps as outlined
in Section 4.5.1. However, here we assume the redshift distribution given by Dominik
[165] to be the one presented by nature, and we will vary the lens distribution while
keeping the other parameters fixed. We consider four different models of HMF, namely
Behroozi [93], Jenkins [94], SMT [178], and Tinker08 [179]. We simulate N lensed events
with time delays {∆ti}N

i=1 using the Behroozi model. N is drawn from a Poisson distribu-
tion with mean Λ(~Ωtrue, Tobs), where ~Ωtrue is the assumed “true” value of cosmological
parameters. This is our simulated observational data. We then estimate the cosmological
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parameters using all of these HMF models.

We observe that there is a bias in the inference of cosmological parameters when we
choose the wrong model of lens distribution. The bias appears in both the posterior
distributions derived from number of lensed events and the time delay distribution.
As a result, the combined inference becomes biased. Figure 4.9 shows an example set
of posteriors (95% credible regions) on the cosmological parameters when different
HMF models are used in the parameter estimation. The left (right) panel shows results
corresponding to an assumed merger rate R = 5 × 105 yr−1 (5 × 104 yr−1) for an
observation time of 10 yrs. In the left panel the true cosmology is not recovered within
95% credible region except when the true HMF is used in the parameter estimation,
while the amount of bias is relatively small in the right panel due to the decreased
precision.

The posteriors in Figure 4.9 show one realisation of the observation scenario. Each
of the posterior could be randomly shifted due to the finite number of observed events
(Poisson fluctuations). To get the statistical nature of the biases, we perform this analysis
using ∼ 103 catalogs of observations of same statistical nature. The so-called probability-
probability (p-p) plots show in what fraction of the simulated observations, the true
values are recovered within a given credible interval (Figure 4.10). If the theoretical
models agree with the data, the p-p plot should show a diagonal line. We see that
diagonal p-p plots are obtained only when the simulated HMF model is used in the
parameter estimation.
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Figure 4.10: The cumulative distribution of the quantiles (p-p plots) in which the true
cosmological parameters are recovered from ∼ 103 recovery tests. The legend box
shows the scenarios considered (same as Figure 4.9). Any deviation from the diagonal
line suggest there is a bias in the recovery. The larger the deviation, the greater is the
bias in the inference. Solid (dashed) lines show the recovery for Ωm (H0). In the left
panel, the results corresponding to a merger rate of 5× 105 yr−1 show that there are
biases, except in the BB scenario. In the right panel, the results for a merger rate of
5× 104 yr−1 indicate that there is relatively lower bias due to the decreased precision in
the estimation of the cosmological parameters.
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While this is a cause of concern, we show below that Bayesian model selection
generally allows us to identify the correct model of the HMF. We compute the ratios
of Bayesian evidences (Equation 4.2) of different HMF models and show that the right
HMF model is almost always preferred. We simulate lensed events with time delays
using model B (Behroozi) and then recover the cosmological parameters using all these
models. We observe that for the model that consistently shows bias in its parameter
estimates, the evidence is smaller than the “true” model. The ratio of the evidences
(the Bayes factor) between the true and false models is greater than one for most of
the simulations. For instance, in the parameter estimation using the J (Jenkins) model
typically causes large bias in the estimated parameters (see Figure 4.9) . However,
the Bayes factor between B and J models is higher than one over ∼ 80% of the time,
indicating that the true model is generally preferred (Figure 4.11). In the parameter
estimation using the T (Tinker) model, the true model is preferred only for ∼ 50% of
the time; however, the bias in the estimated parameters using the T model is generally
smaller.

In order for this model selection to work, the space of models that we consider should
include the true model also. A more powerful method would be to create parametrised
models of the HMF that also incorporate modelling errors as extra parameters. These
could be treated as nuisance parameters in the cosmological parameter estimation and
marginalised over. A combination of EM observations and cosmological simulations
can be used to further improve our models of the distribution of lens properties.

There are similarity transformation degeneracies that prevent us from reconstructing
the lens mass and redshift simultaneously from a single event [68, 69, 180, 181]. This is
why the GW observations of individual lensed events, in the absence of EM observations,
will not enable any measurement of cosmological parameters [182]. However, this
doesn’t affect our method in a serious way, since we assume the knowledge of the
distribution of the lens properties in the form of a HMF. Even if we don’t know the
“true” HMF, if the true HMF is in the list of models that we use, it will have the highest
Bayes factor statistically. The reason is that the change in the time delay distribution
due to a different HMF model cannot be exactly mimicked by a change in cosmology,
i.e., the degeneracy between cosmology and HMF is not an exact one.
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Figure 4.11: The cumulative distribution of log10 (Bayes factor) between the “right” (B)
and “wrong” (J, S or T) HMF models, computed from ∼ 103 simulated catalogs. The
results correspond to merger rates of 5× 105 yr−1 (left) and 5× 104 yr−1 (right). We can
see that HMF models that cause significant bias in the parameter estimation have low
Bayes factors most of the time.

4.5.4 Effect of contamination

Any data analysis method that is used to identify strongly lensed signals in GW data
will have a true positive probability ε and a false positive probability α (see, e.g., [140,
183, 184]). This means that some unlensed GW signals will be incorrectly identified
as lensed signals and some lensed signals will be missed, thus biasing the detected
number of lensed events and their time delay distribution. In this section we develop a
strategy that can incorporate this effect, thus evading systematic biases in the estimation
of cosmological parameters.

We assume that the total number Ntot of detected BBH mergers observed follows a
Poisson distribution of mean Λtot while the detected number of strongly lensed mergers
N follows a Poisson distribution of mean Λ. We define the contamination fraction κ as
the ratio between the expected number of falsely identified lensed pairs and the number
of truly identified lensed pairs

κ ' αΛ2
tot

2
1

εu Λtot
=

α

ε

Λtot

2u
, (4.22)

where u ≡ Λ/Λtot is the expected lensing fraction. Note that κ is a function of cosmo-
logical parameters and the observing period Tobs as the lensing fraction depends on ~Ω
and the total number of observed events depends on Tobs. For simplicity of notation, we
don’t explicitly write down its dependence on ~Ω and Tobs. The contamination fraction
also depends on k0 ≡ α/ε, which depends on the receiver operating characteristic (ROC)
of a given lensing identification method. This can be estimated by performing the same
analysis on simulated lensed and unlensed GW events (see, e.g. [140]). To keep the
contamination fraction low (about 10%), we would need α ∼ 10−9 for ε ∼ 0.5, Λ ∼ 106
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and u = 0.01. This is likely to be achievable in future GW observations due to the
increased precision of measurements.

It is easy to see that, with a contamination fraction κ, the expected number of lensed
events will change to

Λc(~Ω, Tobs) = ε [1 + κ]Λ(~Ω, Tobs). (4.23)

Thus, once k0 is known from simulations, it is possible to model the effect of contamina-
tion on the expected number of lensed events. Similarly, the time delay distribution of
the detected events will be a mixture of the lensed and unlensed time delays. We model
the effect of contamination on the time delay distribution as:

pc(∆t | ~Ω, Tobs) =
κ

1 + κ
punlens(∆t | Tobs) +

1
1 + κ

plens(∆t | ~Ω, Tobs), (4.24)

and use them for the cosmological parameter estimation. Above, plens(∆t | ~Ω, Tobs) is
given by Equation 4.6, while

punlens(∆t | Tobs) ∝ (Tobs − ∆t)Θ(Tobs − ∆t). (4.25)

To gauge the effect of contamination on the cosmological parameter inference, we
simulate lensed events following the Dominick redshift distribution, assuming the true
cosmology Ωtrue = {Ωm = 0.316, H0 = 67.3}, with R = 5× 105 and Tobs = 10 yrs.
This corresponds to a true expected detection of Λtot = 5× 106 binaries. We assume
that the lensing identification method has a false positive probability of α = 10−9. We
assume different true positive probabilities: ε = 0.4, 0.5, 0.6, 0.8, corresponding to k0 ≡
α/ε = [2.5, 2, 1.67, 1.25]× 10−9. Figure 4.12 shows the posteriors on the cosmological
parameters from an analysis that takes into the effect of contamination. When there is
no contamination k0 = 0, we reproduce the results from Figure 4.7. Additionally, data
contamination only worsens the precision of our measurement, without causing any
systematic biases (see p-p plot in Figure 4.12). Table 4.2 tabulates the expected precision
in the measurement of cosmological parameters with different levels of contamination.

No contamination k0 = 2.5 k0 = 2 k0 = 1.67 k0 = 1.25
Λc (Ωtrue) 37700 27580 31350 35120 42660
Ωm(68%) 0.315+0.006

−0.006 0.311+0.012
−0.012 0.317+0.011

−0.011 0.317+0.009
−0.009 0.312+0.008

−0.008
Ωm(95%) 0.315+0.012

−0.011 0.311+0.025
−0.023 0.317+0.022

−0.020 0.317+0.019
−0.018 0.312+0.016

−0.015
H0(68%) 67.6+1.1

−1.1 68.3+2.2
−2.2 67.3+1.8

−1.8 67.6+1.6
−1.6 67.9+1.4

−1.4
H0(95%) 67.6+2.1

−2.0 68.3+4.4
−4.3 67.3+3.7

−3.5 67.6+3.3
−3.1 67.9+2.8

−2.8

Table 4.2: Expected number Λc of lensed events after considering contamination for
~Ω = ~Ωtrue and expected constraints (68% and 95% credible intervals) on Ωm and H0 for
different values of the true positive probability ε for the the data analysis method that
is used to identify lensed events (assuming a false positive probability α = 10−9). We
assume a merger rate of 5× 105 yr−1 and an observation time of 10 yrs.
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Figure 4.12: Left panel: Posteriors on the cosmological parameters (95% credible regions)
when we assume different amounts of data contamination. The legends show k0 ≡ α/ε
in units of 10−9, where α (ε) is the false (true) positive probability of the lensing iden-
tification algorithm. Data contamination only worsens the precision of the posteriors,
without causing any systematic biases. Right panel: p-p plot obtained from ∼ 103 recov-
ery tests for α = 10−9 and ε = 0.5. This indicates no systematic bias in cosmological
parameter recovery when we account for contamination.

4.6 Conclusions

We expect the lensing cosmography to provide a complementary measurement of
cosmological parameters that are comparable to those derived from other cosmological
probes, and at the same time using data from an intermediate regime in redshift (z ∼ 10)
that is rarely explored by other probes. The apparent tension that exists between
the current low and high redshift measurements underlines the need of additional
measurements – especially the ones probing an intermediate redshift regime.

The major sources of systematic errors that affect quasar cosmography [160] are
unlikely to affect GW lensing cosmography: GWs are unaffected by extinction, and
selection effects in GW searches are better modelled thanks to their intrinsic simplicity.
Nevertheless, there are several challenges to overcome before this method can be used
to provide reliable measurements of cosmological parameters. The number of lensed
events as well as the distribution of their time delays depend on the properties of the
astrophysical sources and lenses, apart from the cosmological parameters. Properties
of the GW source distribution could be measured accurately from the large number
(∼ 106) of unlensed GW signals that will dominate the data. Since the distribution of
the GW source properties is currently largely unknown, we considered a few different
astrophysical models for the same, and showed that the expected constraints don’t vary
significantly. We also showed that the statistical uncertainties in the reconstruction of
source properties from GW observations will not significantly affect the inference of
cosmological parameters, as long as the source redshift distribution can be reconstructed
in an unbiased manner. We also showed that the limited ability of our data analysis
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algorithms to distinguish between lensed and unlensed GW events, resulting in some
amount of contamination in the sample of lensed GW events, will not bias our inference.
This can be avoided by incorporating the effect of data contamination in our Bayesian
likelihood models.

One of the major sources of error in our analysis is likely to come from the uncertainty
in the distribution of gravitational lenses. In this work, we assumed that the properties
of the lens distribution can be extracted from theoretical HMF models. We used several
HMFs that model the expected mass distribution of DM halos at different redshifts. We
then assumed that these halos are spherical symmetric and used a simple prescription
to map the mass of the DM halo to the velocity dispersion of the lens in the SIS model. If
the HMF model that we use is significantly different from the “true” model, that can bias
the estimation of cosmological parameters. However, in such situations, Bayesian model
selection involving several HMF models should enable us to identify the “true” model
of the HMF. In the future, we could improve this method by employing parametric
models of HMFs that include modelling errors, which can be marginalised over in the
Bayesian inference. A combination of EM observations and cosmological simulations
can be used to further improve our models of the distribution of lens properties. More
complex and realistic lens models incorporate various parameters beyond mass, such
as axis ratio and core radius. Modelling the distributions of these parameters and their
redshift evolution introduces additional complexities. We plan to explore our analysis
using these more sophisticated lens models in future studies. In our current analysis,
we have utilized only the time delay and number count information of lensed events.
We have not yet incorporated magnification ratio information, which could improve
the constraints. While magnification ratio information is limited by luminosity distance
measurement errors, it still contains valuable information for lens reconstruction. These
additional constraints will be included in our upcoming series of analyses on strong
lensing cosmography.

While we have focused on BBH mergers, strongly lensed BNS could be powerful
for probing low-redshift cosmology, given their potential EM counterparts and better
measured properties due to longer signal duration, despite their smaller lensing optical
depth.

We have considered the flat ΛCDM cosmological model and demonstrated that
our method can also constrain cosmological parameters within the wCDM framework.
The time delay distribution and lensing optical depth are also sensitive to the spatial
curvature of the universe. Hence, Strongly lensed GW events could provide a viable
probe cosmic curvature. This is a potential extension of our current method, which we
intend to pursue in future studies.
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5 | Probing the nature of dark
matter using strongly lensed
gravitational waves from binary
black holes

5.1 Introduction

A variety of astronomical observations have established that ∼ 25% of the mass energy
in the universe is in the form of some non-baryonic DM [185]. Particle physicists and
cosmologists have come up with several candidates for DM, spanning a wide mass
range. The list of candidates ranges from extremely light elementary particles [185, 186]
to supermassive primordial black holes (BHs) [187].

DM candidates can be classified according to their velocity dispersion, which defines
a free streaming length scale. Below this length scale all the cosmological density
perturbations are wiped out, so no structure can form in the universe below this length
scale. Cold DM (CDM), such as the weakly interacting massive particles [188], axions
[189] and primordial BHs [190], has small free streaming length scales and does not affect
the cosmological structure formation. On the other hand, hot DM such as neutrinos is
highly relativistic. Free streaming of such relativistic particles would erase perturbations
in the matter density even on the scale of galaxy clusters (∼ 1015M�). The very existence
of such large scale structures has ruled out hot DM [191]. In between there exists another
class, called warm DM (WDM), such as gravitino [192] and sterile neutrino [193]. They
are non-relativistic but still have non-negligible velocity dispersion. They have shorter
free streaming length than regular neutrinos, and can erase structure on galaxy scales.
Thus the existence of galaxies can put some (rather weak) constraints on the mass of the
WDM particle.

In the past decades, the cosmological constant dominated CDM model known
as ΛCDM has emerged as the standard model of cosmology [194–196]. However,
despite decades of effort, neither direct laboratory experiments nor indirect astronomical
observations have been able to detect any CDM candidates so far. In addition, though
ΛCDM predictions match with observed large scale structure, sub-galactic observations
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might be in conflict with the CDM predictions. One is the apparent under-abundance
of satellites in the Milky Way, as compared to the earlier CDM simulations, called the
“missing satellite problem” [197–200] 1. The second, known as the “core-cusp problem,”
is the observed discrepancy between the inferred DM density profiles of low-mass
galaxies and that predicted by CDM simulations [202]. Simulations typically predict
“cuspy” profiles (steep density profiles at the center) while observations suggest the
existence of “cores” (softer density profiles at the center).

While some of these apparent discrepancies between CDM models and observations
could be attributed to astrophysical reasons (such as the effect of baryons), several
new DM candidates have also been proposed to address them. WDM is the simplest
departure from CDM, endowing the DM with a small velocity dispersion. Thermal
velocity dispersion enables DM particles to move freely across regions, creating a free
streaming effect that smooths out density fluctuations. This process establishes a critical
length threshold that inhibits the growth of DM perturbations below this critical scale,
effectively preventing structure formation at these smaller scales. For more details on
free streaming and the suppression of small-scale structures, see Section 3.4. WDM
particle with a mass in keV range predicts the suppression of structures at small scales
(∼ 100 kpc) without affecting the large scales (∼ Mpc), thus explaining the missing
satellites. Another model, called “self-interacting DM" [203], adds a self-interaction
cross-section to the DM. The resulting elastic scattering between the DM particles in the
inner galactic regions redistributes energy, producing the effect of a core. Fuzzy DM
(FDM) particles are ultralight bosons (mass ∼ 10−22 eV), with de Broglie wavelength
larger than the inter-particle separation. The resulting wave-like behaviour leads to
formation of solitonic cores at the center of haloes and density granules on scales smaller
than ∼ kpc are erased, while large scale structure is indistinguishable from CDM [204].

The observation of Lyman-α forest — absorption lines in the distant quasar spectra
induced by neutral hydrogen along the line of sight — provides the strongest lower
limit (mWDM > 3− 5 keV) on the WDM mass [205–208]. Combining this with strong
gravitational lensing [209] and the abundance of Milky Way satellites has resulted in
a joint constraint mWDM > 6 keV [210]. Recent JWST observations of lensed quasars
suggest mWDM > 6.1 keV [211]. Different cosmological datasets puts upper bound
mψ ≥ 10−22 eV on the mass of FDM [212–215]. Stronger constraints are obtained from
the survival of an old star cluster in an ultra-faint dwarf galaxy Eridaus II (mψ ≥
10−19 eV) [216] and from the sizes and stellar kinematics of ultrafaint dwarf galaxies
(mψ ≥ 3× 10−19 eV) [217].

Gravitational-wave (GW) observations offer new probes of DM (see, e.g., [218]).
The presence of a DM overdensity surrounding a BH can have impact on the GWs
emitted during the inspiral and merger with another compact object. The upcoming
LISA observatory [219] will be able to detect the effect of the DM on the GW signal,
offering a powerful probe of the nature of particle DM [218, 220, 221]. Ultralight bosons,
such as axions, can affect the mass and spin of BHs by forming gravitationally bound

1However, with better simulations and more careful characterisation of the observational selection
effects, this discrepancy might been already resolved [201].
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states around them [222]. GW emission from such objects could be detected by various
GW detectors [223–226]. FDM can also be indirectly detected using pulsar timing arrays
if the oscillation frequency falls within their detection band [227].

Gravitational lensing of GWs offer yet another avenue to probe the nature of DM
(see, e.g. [228–235], for some recent work). The next-generation (XG) ground-based
GW detectors will detect millions of binary BH mergers (BBH) out to high redshifts
(z ∼ 10− 100) [236]. About 0.1− 1% [48, 57, 135–139, 141, 237] of them will be strongly
lensed by the galaxies and clusters hosted in these DM halos, producing multiple
copies of the GW signals. The time delay between the lensed copies of these GW
signals can be accurately measured. The exact fraction of lensed mergers and the
distribution of lensing time delay will depend on the mass distribution of lenses at
various redshifts [238] as well as cosmological parameters [57]. In this chapter, we
propose a statistical probe to constrain the mass of the WDM particle using a catalogue
of strongly lensed GW detections. If the DM is warm, this will hinder the formation of
low-mass halos. This suppression in the the abundance of low-mass halos will result in
a reduction in the number of lensed events with small time delays, as small time delays
are mostly produced by low mass lenses.

Our proposal is to look for the imprints of WDM on the number of lensed signals, as
well as on the distribution of their time delays. This approach is closely connected to the
work presented in Chapter 4 on constraining the cosmological parameters from strongly
lensed GW signals. Our method does not rely on the accurate knowledge of the source
location of the individual signals or the properties of the corresponding lenses. Indeed,
the number of lensed events as well as the time delay distribution will also depend
on the distribution of source properties (e.g., mass and redshift distribution of BBHs
[237, 239, 240]) as well as the lens properties (e.g., the mass function of the DM halos
[241] and the lens model [242, 243]). If the distributions of the source and lens properties
are known from other observations or theoretical models (e.g., from the observation of
unlensed GW signals and cosmological simulations), then the mass of the WDM can be
inferred from the observed number of lensed events and their time delay distribution.

We forecast that BBH observations during 10 yrs of operation of XG detectors [244,
245] will be to provide constraints (m−1

WDM < 0.035− 0.056 keV−1) that are significantly
better than the current constraints (mWDM > 6 keV). We simply translate the constraints
on mWDM to mass of FDM particle (mψ). An optimistic assumption of merger rate will
give us the constraint mψ > 7× 10−19eV, which is an improvement over existing bounds
(mψ > 3× 10−19eV).

We also examine the effects of various systematic errors that can affect the inference
of the nature of DM. We find that uncertainties in source redshift distributions do not
significantly affect our conclusions about the nature of DM. Additionally, constraints
do not drastically depend on the assumed models of the source populations. However,
using an incorrect model for the distributions of lens parameters can introduce bias;
hence, we recommend computing Bayesian evidence to accurately identify the true
model. We observe no strong correlation between DM particle mass and cosmological
parameters. Our analysis incorporates the effects of misidentified lensed events, allow-
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ing us to recover the nature of DM without systematic biases, as long as the level of
contamination is not excessive. Finally, we consider the existence of a core in the central
region of the lenses, potentially due to the thermal nature of DM particles, and show
that this aspect enhances the effectiveness of our method for inferring the nature of DM.

5.2 Warm dark matter
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Figure 5.1: Left: The power spectrum of linear perturbations as predicted by the CDM
model as well as the WDM model with different values of mWDM (in keV). Half-mode
scales for different mWDM are shown by the filled circles. Middle: HMF for CDM and
WDM at redshift z = 0. Solid and dashed lines represent the Behroozi [167] and
Jenkins [246] HMF models, respectively. Note the suppression in the number density
of lower mass halos in the WDM model. Filled circles with different colours denote
the half mode mass scale for different mWDM. Right: The distribution of the velocity
dispersion of lenses produced by the CDM and WDM halos. Here also the solid and
dashed lines represents the Behroozi and Jenkins HMF models. Reduction in number
density is reflected as reduction of the low σ halos. Filled circles denote the velocity
dispersion of the corresponding half mode mass.

Free streaming of WDM particles suppress primordial perturbations at scales smaller
than the free streaming scale. Fitting functions for modelling the WDM transfer function
have been proposed in different studies [200, 247, 248]. They give us a prescription to
convert the power spectrum PCDM(k) of linear perturbations in the CDM model to the
same in the WDM model [PWDM(k)]. We use the transfer function given in [248],

T(k) =
[

PCDM(k)
PWDM(k)

]1/2

=
[
1 + (αk)2µ

]−5/µ
, (5.1)

where µ = 1.12 and

α = 0.049
(mWDM

keV

)−1.11
(

ΩWDM

0.25

)0.11 ( h
0.7

)1.22

h−1Mpc (5.2)

is called the effective free streaming scale. Above, ΩWDM is the energy density in the form
of WDM and h is the Hubble constant in units of 100 km/s/Mpc. We can introduce
another length scale, the half mode length scale λhm, where the WDM transfer function
becomes half: λhm = 2πα (2µ/5 − 1)−1/2µ. This length scale introduces a half mode mass
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scale Mhm = 4π
3 ρ̄ (λhm/2)3, where ρ̄ is the averaged density of the halo. Abundances of

DM haloes with mass below the Mhm will be suppressed compared to CDM, while the
masses above Mhm are unaffected.

We use different HMFs that model the comoving number density dnCDM/dM of
CDM halos in different mass ranges. Given a HMF in CDM, the same in WDM model
for a particular mWDM is obtained using the fitting formula given in [249]

dnWDM/dM
dnCDM/dM

=

(
1 +

Mhm(mWDM)

M

)−β

, (5.3)

where β = 1.16. The dependence on mWDM comes through Mhm. To obtain HMF in
WDM model, we use HMFCALC package [95]. For our main analysis we consider
the Behroozi [167] model of the CDM HMF. In order to estimate the effect of using
an incorrect CDM HMF model, we also consider the Jenkins [246] model of the same
implemented in the same package.

These DM halos host galaxies and clusters, which act as gravitational lenses that
deflect light as well as GWs. In this chapter, we are concerned about the strong lensing
of GWs that produces multiple copies of the GW signals. We approximate these lenses
as SISs [59], parameterised by their dispersion velocity σ. We assume that the halos are
spherically symmetric and virialised, with average density ρ̄ and radius R. This allows
us to compute the dispersion velocity of the SIS lens from the halo mass

σ '
√

GM
R

, M =
4
3

πR3ρ̄. (5.4)

Figure 5.1 shows the the power spectrum, the HMF and the σ distribution of lenses
derived from the HMF, as predicted by the CDM model as well as the WDM model
corresponding to different WDM masses. These can be use to compute the expected
number of strongly lensed GW signals and the distribution of the time delay between
the lensed copies of GW signals.

5.3 Bayesian inference of mWDM

We assume that we have confidently detected N strongly lensed BBH events within an
observation period of Tobs, each producing two observable copies (lensed images). We
aim to compute the posterior distribution of m−1

WDM , using the time delays {∆ti}N
i=1 from

the N detected lensed events.

We can write the likelihood p(N, {∆ti}
∣∣ m−1

WDM, Tobs) as a product of two likelihoods
as N and {∆ti} are uncorrelated. The likelihood of observing N events can be described
as a Poisson distribution

p
(

N
∣∣ m−1

WDM, Tobs

)
=

Λ
(

m−1
WDM, Tobs

)N
e−Λ(m−1

WDM ,Tobs)

N!
, (5.5)
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where Λ
(

m−1
WDM, Tobs

)
is the expected number of lensed events for a given value of

m−1
WDM and observation time period Tobs (Section 5.4.1) .

The likelihood of observing a set of time delays {∆ti} can be written as

p
(
{∆ti}

∣∣ m−1
WDM, Tobs

)
=

N

∏
i=1

p
(

∆ti
∣∣ m−1

WDM, Tobs

)
. (5.6)

Here we assume each BBH merger to be an independent event and that the time delays
are measured accurately and precisely. Above, p(∆ti | m−1

WDM, Tobs) is the “model" time
delay distribution (Section 5.4.2), evaluated at the measured time delay ∆ti.

5.4 Modeling the expected number of lensed events and time delay distri-
bution

Here we describe the modeling of the expected number of lensed events and the expected
distribution of lensing time delay corresponding to different masses mWDM for the WDM
particle. This is mostly done in Section 4.3 in the context of cosmography where
we modelled time delay distribution and number of lensed events as a function of
cosmological parameters. Here we choose to parametrise these in terms of the inverse
mass m−1

WDM since it has a convenient lower bound of zero (the limit of CDM).

5.4.1 Expected number of lensed events

The expected number of lensed events, Λ(m−1
WDM), is given by Equation (5.14). However,

due to the finite observing time Tobs, the number of observed events willl be reduced to

Λ(m−1
WDM, Tobs) = S(Tobs, m−1

WDM) Λ(m−1
WDM), (5.7)

where S(Tobs, m−1
WDM) is the effective observation time that takes into accounts the selec-

tion effects introduced by the finite observation time:

S(Tobs, m−1
WDM) =

∫ Tobs

∆t=0
p(∆t | m−1

WDM) (Tobs − ∆t) d∆t. (5.8)

This selection function ensures that, for a time delay ∆t, the first image must arrive at
the detector within Tobs − ∆t from the start of observation. Otherwise, the second image
will arrive outside the observation window, rendering it undetectable.

5.4.2 Expected distribution of lensing time delays

We compute the expected time delay distribution p(∆t | m−1
WDM) by marginalising the

distribution of time delay over all other parameters~λ ≡ {y, σ, z`, zs} that influence the
time delay (see Equation 5.16). We discuss here the choice of p(~λ | mWDM).
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Assuming isotropy of space, the distribution of y becomes independent of both
cosmological parameters and m−1

WDM, leading to:

p(~λ | m−1
WDM) = p(y) p(σ, z`, zs | m−1

WDM), (5.9)

where p(y) ∝ y with y = (0, 1]. The term, p(z`, σ, zs | m−1
WDM) can be further split as

p(σ, z`, zs | m−1
WDM) = p(σ, z` | zs, m−1

WDM) pb(zs), (5.10)

where pb(zs) is the expected/measured distribution of source redshifts, while p(σ, z` | zs, m−1
WDM)

is computed from the differential optical depth (Equation 11 in [250])

p(σ, z` | zs, m−1
WDM) ∝

dτ

dz`dσ
(zs, m−1

WDM). (5.11)

Given the differential optical depth, we can obtain the strong lensing optical depth by
integrating over velocity dispersion and lens redshift

P`(zs, m−1
WDM) =

∫ zs

0

∫ σmax

σmin

dτ

dz`dσ
(zs, z`, σ, m−1

WDM) dz`dσ, (5.12)

where σmin = σ(Mmin) and σmax = σ(Mmax). Mmin and Mmax are the minimum and
maximum mass of the halo mass range we consider.

This differential optical depth is derived from a HMF that depends on the nature of
DM, making the time delay distribution sensitive to the value of m−1

WDM. We obtain the
model time delay distribution p(∆ti

∣∣ m−1
WDM, Tobs) from intrinsic time delay distribution

p(∆ti
∣∣ m−1

WDM) after applying a selection condition that excludes time delays longer than
the observation period Tobs:

p(∆t | m−1
WDM, Tobs) ∝ p(∆t | m−1

WDM) (Tobs − ∆t)Θ(Tobs − ∆t), (5.13)

5.5 Expected constraints on warm dark matter

We first ask the question: if the DM is actually cold, how well can we constrain mWDM us-
ing future obervations of lensed GWs. In order to answer this, we simulate a population
of BBH mergers with redshift distribution given by [168]. We assume a BBH detection
rate R = 5× 105 yr−1 and an observation period Tobs = 10 yrs. We neglect the selection
effects in detection, as XG detectors are anticipated to detect all the BBH mergers out to
large red shifts (zs ∼ 10− 100). The mass distribution of the lenses at various redshifts
are described by the CDM HMF model of [167], converted to the WDM HMF using
Equation (5.3). We consider DM halos in the mass range 108− 1015 M� (These halos can
potentially host galaxies). Lenses as modelled using the SIS model, using Equation 5.4
for converting the halo mass M to the velocity dispersion σ of the lens. This allows
us to compute the the strong lensing optical depth P`( zs|mWDM) for sources located
at different redshifts zs (See Subsection 5.4.1 for details). This is convolved with the
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redshift distribution pb(zs) of the BBH mergers to to compute the expected number Λ
of lensed events.

Λ(mWDM) = R
∫ zmax

s

0
pb(zs) P`( zs|mWDM) dzs. (5.14)

Above, zmax
s ' 15 is the redshift horizon of the detector.

In the SIS lens model, the time delay between the two images is (see, e.g. [59]):

∆t =
32 π2 y

c

(σ

c

)4
(1 + z`)

D` D`s

Ds
, (5.15)

where z` is the lens redshift, y is the projected location of the source on the lens plane
(in units of Einstein radius), while D`, Ds, and D`s are the angular diameter distances to
the lens, to the source, and between the lens to the source, respectively. The mass of the
WDM particle will also have an imprint on the lensing time delay distribution, since the
distribution of σ is a function of mWDM (see Eqs. 5.3, 5.4). We compute the expected time
delay distribution p(∆t | mWDM) by marginalising the distribution of time delay over all
other parameters~λ ≡ {y, σ, z`, zs} that influence the time delay (See Subsection 5.4.2 for
details).

p(∆t | mWDM) =
∫

p(∆t |~λ, mWDM)p(~λ | mWDM) d~λ, (5.16)

where p(~λ | mWDM) is the expected distribution of ~λ, given mWDM and the cosmo-
logical parameters. We assume the following values of cosmological parameters:
Ωm = 0.316, H0 = 67.3, σ8 = 0.816 [106].
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Figure 5.2: Expected distributions of time delay between strongly lensed GW signals,
corresponding to different values of mWDM. Note the suppression in number of lensed
events compared to CDM, especially for lower time delays, which is the reflection of
absence of the lower mass halos for smaller mWDM. Here, we assume an observation
period of 10 yrs and BBH detection rate of 5× 105 yr−1. The time delay distributions
measurable from an observation period of 10 yrs are shown by dashed curves.

Figure 5.2 shows the expected number of lensed events Λ(mWDM) and the time delay
distribution p(∆t|mWDM) as a function of mWDM. We see that Λ decreases with decreasing
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mWDM, due to the fact that there will be a smaller number of low-mass halos for smaller
mWDM. The absence of lower mass halos is reflected in the time delay distribution as
the reduction in the of lower time delays. Using these differences in the time delay
distribution and total number of lensed events, we will be able to either measure the
mass of the WDM particle, or put a lower bound on mWDM. In practice, we put an
upper bound on m−1

WDM since it has a convenient lower bound of zero (in the limit of
CDM, mWDM � keV). Note that, both Λ(mWDM) and p(∆t | mWDM) are altered by
the finite observing time Tobs. The calculation of these quantities, Λ(m−1

WDM, Tobs) and
p(∆t | m−1

WDM, Tobs) are detailed in Section 5.4.
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Figure 5.3: Left: Posterior distribution of m−1
WDM computed from the number of lensed

events and time delay distribution separately, along with the combined posterior. The
simulated observations assume a BBH detection rate of R = 5× 105 yr−1 and Tobs =
10yrs. Gray shaded region represents the 90% quantile of the combined posterior,
yielding an upper limit of m−1

WDM ≤ 0.035. Middle: Combined constraints from GW
lensing on m−1

WDM assuming different detection rates, but with Tobs = 10 yrs. Right: 38%,
50% and 68% credible intervals (denoted by different shades) of the distributions of 90%
upper limit of m−1

WDM obtained from ∼ 1000 simulated observations each for different
values of R and Tobs.

To simulate an observing scenario with N detections of lensed events, we draw
one sample of N from a Poisson distribution with mean Λ(m−1

WDM, Tobs). Further, we
draw N samples of lensing time delay, {∆ti}N

i=1, from p(∆t | m−1
WDM ' 0, Tobs). Using N

and {∆ti}N
i=1 we evaluate the likelihoods p(N | m−1

WDM, Tobs) and p({∆ti} | m−1
WDM, Tobs).

We assume uniform priors on m−1
WDM, so final posterior is given by the product of two

likelihoods. Details of these calculations are presented in Section 5.3.

Figure 5.3 (left panel) shows the two likelihoods and the posteriror obtained from
combining these two likelihoods. The 90% quantile of combined posterior is shown in
the shaded region, yielding an upper limit m−1

WDM < 0.035 keV−1, for R = 5× 105 yr−1

and Tobs = 10 yrs. The middle panel shows the combined posteriors, assuming different
values of the BBH detection rates. The right panel shows the upper limit of m−1

WDM for
different observation time periods and merger rates, including the Poisson uncertainties
in the estimation.

The FDM also predicts a cut-off in the HMF at small scales, through a mechanism
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that is dependent on the de Broglie wavelength rather than a free-streaming length. We
translate the constraints on the mWDM to the mass of the FDM particle mψ (Figure 5.4).
For this, we simply equate the half mode length scale of both. We use the expression
of half mode length scale of FDM as given in [213] which considers a transfer function
given in [204]. We calculate half mode length scale for WDM using the HMFCALC

package [95] which uses the formula given in [249] and a transfer function given in [248].
This is just a simple translation, in order to be more rigorous, one needs to use the HMF
in FDM. Even though approximate, this gives us an idea of the prospective constraints
on FDM using future observations of GW strong lensing.
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Figure 5.4: The relation between mψ and m−1
wdm obtained by equating the half mode

length scale of FDM and WDM. Dashed vertical line shows the constraints on m−1
wdm and

corresponding dashed horizontal lines show the translated constraints on mψ. Different
dashed lines are for different detection rates R, assuming Tobs = 10 yrs.

We also check whether we will be able to measure the mass of the DM particle when
it is actually warm. To check this, we simulate an observing scenario using the HMF of
the WDM model with mass mWDM = 9 keV. Other details of the analysis are kept the
same. As seen in Figure 5.5, the true value of mWDM is recovered within 68% credible
interval.
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Figure 5.5: Posterior distribution of mWDM assuming that the true nature of the DM
is described by the WDM model with mWDM = 9 keV (the yellow solid line in the
middle). The plot shows the expected posteriors for Tobs = 10yrs assuming optimistic
(R = 5× 105 yr−1) and pessimistic (R = 5× 104 yr−1) detection rates. Vertical dashed
lines represent the 90% credible region of the posteriors.

5.6 Systematic errors

Here we examine the systematic errors that can affect measurements of the DM particle
mass. These systematic errors are largely similar to those encountered in measurements
of cosmological parameters that we discussed in Chapter 4. Apart from cosmological
parameters two essential key ingredients for the computation of lensing optical depth
and time delay distribution are:

Redshift distribution of sources This can be obtained with exquisite precision through
observations of numerous (∼ 106) unlensed events in XG detectors[161]. To assess the
sensitivity of DM constraints to source population choices, we consider the population
synthesis models of isolated binaries presented in [118, 165, 174], as well as models
assuming that the BBH merger distribution follows the Madau-Dickinson star forma-
tion rate [175], supplemented by a few different delay time distributions (that model
the delay time between the star formation and BBH merger). We also explore how
uncertainties in source redshift distribution measurements affect the DM particle mass
constraints. Based on the analysis in [161], which demonstrates the precision of source
redshift distribution measurements using ∼ 50000 BBHs in the era of XG detectors,
we find that these measurement errors, as reported in [161], do not significantly affect
the DM mass limits derived using our method. Our analysis results are presented in
Subsections 5.6.1 and 5.6.2.
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lens distribution The distribution of lenses is a key component in calculating the time
delay distribution and number of lensed events. Computing the differential optical
depth requires lens mass and redshift distributions, obtained from the HMF. Since
the HMF depends on DM properties, it influences both the time delay distribution
and lensed event counts. We demonstrate in [58] that the inference becomes biased
when using incorrect HMF models for the inference. Through analysis of various HMF
models, we find that the correct models exhibit substantially higher Bayes factors than
the incorrect ones. This suggests that pairwise Bayes factor computation can mitigate
this systematic error and help to select the appropriate HMF model from available
choices. These findings are presented in Subsection 5.6.3.

5.6.1 Effect of source distribution models

The DM mass constraint, derived from lensed event abundances and time delay distri-
bution, depends on source population assumptions. Lensing probability varies with
source redshift, with high-redshift sources more likely to be lensed compared to low-
redshift sources. Source populations with higher redshift support will generate more
lensed events than those without high-redshift extension, consequently yielding tighter
DM particle mass limits. We investigate the sensitivity of WDM mass constraints to
underlying source population assumption. LIGO-Vigo-KAGRA observations have re-
vealed the universe up to redshift ∼ 1 through GWs [251, 252]. While we understand
BBH source distribution across this range, the information cannot be extrapolated to
very high redshifts. The limited number (∼ 100) of detections also limits the precision.
Planned upgrades of LIGO (A#, Voyager) and XG detectors will enable precise source
distribution mapping across higher redshifts[161, 253]. Given our current lack of knowl-
edge about source distribution at very high redshift (∼ 15), we consider various redshift
distribution models. These include predictions from population synthesis [118, 165, 174],
uniform merger rate in comoving volume and Madau-Dickinson star formation [175]
with different delay time distributions[161], such as flat in log and exponential time
delay distribution with a timescale τ = 0.1 Gyr. All models are consistent with cur-
rent low redshift GW observations. Figure 5.6 displays the considered source redshift
distributions and their corresponding time delay distributions.

In our analysis we assume that we know the true source redshift distribution and
use it to model template time delay distributions. We address the effect of measurement
uncertainties in source redshift distribution reconstruction in Section 5.6.2. Here, we
focus specially on how source population variations impact limit on m−1

WDM. Given
the uncertainty in merger rates, we consider both optimistic (R = 5× 105 yr−1) and
pessimistic (R = 5× 104 yr−1) scenarios. Assuming CDM as the true model, we simulate
lensed events in a CDM universe and perform parameter inference with WDM templates
to determine an upper bound on m−1

WDM. Figure 5.7 presents the constraints derived for
various source populations at different merger rates. Source populations extending to
high redshifts (Dominik and Uniform) yield tighter m−1

WDM bounds due to their higher
number of lensed events as compared to populations with limited high-redshift extent.
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Figure 5.6: Left: Source populations models: Population synthesis models from ’Dominik’
[165] and ’Belczynski’ [118, 174]. Uniform comoving volume distribution (’uniform’).
Madau-Dickinson star formation rate [175], with three delay time distributions: flat in
log (’flatlog’), exponential with characteristic time scale, τ = 0.1 Gyr, and immediate
merger (’zero-delay’). Right: Corresponding strong lensing time delay distributions.

Table 5.1 summarizes the results of our analysis: m−1
WDM upper bounds and expected

lensed events (Λ) for different source populations.

Detection
rate

(R in yr−1)

Dominik
Λ=37372

Belczynski
Λ=20553

Uniform
Λ=36626

Flatlog
Λ=20407

τ = 0.1 Gyr
Λ=22054

zero-delay
Λ=23386

5× 105 0.039 0.058 0.033 0.058 0.056 0.053
1× 105 0.053 0.081 0.045 0.079 0.078 0.075
5× 104 0.062 0.095 0.053 0.094 0.093 0.087

Table 5.1: Upper bounds (95% limit) on m−1
WDM across various redshift distribution

models, analyzed for three BBH detection rates ranging from optimistic to pessimistic
scenarios. Dominik and Uniform source distributions yield stronger constraints due to
their extended high-redshift support, resulting in more lensed events. Expected lensed
events (Λ) shown for R = 5× 105 yr−1; values for other rates can be obtained through
linear scaling.

The results of our analysis demonstrates that while the upper bound on m−1
WDM

exhibits sensitivity to source population variations, this dependence remains relatively
moderate. Even source populations with limited high-redshift support achieve bounds
comparable to those from distributions extending to high redshifts. Specifically, the
m−1

WDM constraints differ by less than a factor of two between these populations. This
indicates that our approach maintains its effectiveness in constraining m−1

WDM regardless
of the source population’s high-redshift support, thus validating its broader applicability
across various source redshift distributions.
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Figure 5.7: Posterior distributions of m−1
WDM, for different source distribution models

shown in figure 5.6, considering merger rates R = 5 × 105 yr−1(left) and R = 5 ×
104 yr−1(right).

5.6.2 Effect of measurement errors in reconstructing the source redshift distribution

In the preceding section, we explored the sensitivity of m−1
WDM constraints to source

population variations using a known true redshift distribution. Here, we investigate how
measurement errors in source redshift distribution reconstruction propagate to m−1

WDM

limits. The population analysis method presented in [161] demonstrates constraining
merger rate density using approximately 50,000 BBH merger events. Their approach
employs a parametric model with free parameters, based on the Madau-Dickinson
star formation rate and a delay time distribution. The free parameters are estimated
from simulated BBH events detected using XG detectors. Their study [161] presents
posteriors of those parameters in Figure 5 and predicted merger rate density in Figure 4.

The most rigorous approach to incorporate measurement errors in our analysis
would involve jointly inferring all source redshift distribution model parameters with
m−1

WDM, then marginalizing over these parameters. This method is computationally
intensive and time consuming. Here, we adopt a simplified estimation strategy. We
construct a true redshift distribution using the Madau-Dickinson star formation rate
combined with an exponential delay time distribution with τ = 0.1 Gyr, selecting
parameter values from the true values corresponding to the posteriors in Figure 5 of
[161].We sample merger rate density using these posterior samples, convert them to
source redshift distributions, and infer the m−1

WDM posteriors for each scenario. The
average of these posteriors represents the m−1

WDM posterior that is marginalised over the
astrophysical parameters describing the source redshift distribution model. .

In the left panel of Figure 5.8, the red line represents the true source redshift distri-
bution used to simulate lensed events, assuming CDM as the underlying DM model.
The light cyan curves depict the reconstructed distributions obtained through popula-
tion analysis conducted in [161]. The deep cyan curve illustrates the average of these
reconstructed distributions. The right panel presents the strong lensing time delay
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distributions corresponding to these source redshift distributions.
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Figure 5.8: Left: Source redshift distributions. Red curve denotes the ’true’ redshift
distribution. Cyan curves show reconstructed redshift distributions through population
analysis in XG as performed in [161], with the thick bright cyan line representing their
average. Right: Strong lensing time delay distributions corresponding to these redshift
distributions.

Inference of m−1
WDM performed with the true (red) and reconstructed (cyan) source

redshift distributions yields posteriors shown in the left panel of Figure 5.9. The posterior
on m−1

WDM inferred using the reconstructed source distributions exhibits a slight shift
relative to posteriors from the true distribution. This deviation stems from the marginally
biased reconstruction of source redshift distributions (refer to Figure 4 in [161] and Figure
5.8), independent of our WDM mass inference. Upon correcting this reconstruction
bias by treating the average source redshift distribution (bright cyan) as the ’true’
distribution, WDM mass inference with both true (bright cyan) and reconstructed (light
cyan) distributions shows aligned posteriors ( right panel of Figure 5.9).

Our results demonstrates that statistical errors in source redshift distribution recon-
struction do not significantly modify the m−1

WDM constraint as the reconstruction error on
source redshift distribution is very small in XG detectors [161]. However, the results
emphasize the necessity of unbiased reconstruction of source redshift distribution for
accurate m−1

WDM posterior determination (Figure 5.9).

5.6.3 Lens distribution

The distribution of strong lensing time delays is governed by lens redshift and mass
distributions. Our analysis requires statistical distributions of lens parameters extending
to high redshifts (z ∼ 15). Current and forthcoming EM surveys including SDSS,
Euclid, LSST, DES, and JWST will characterize lens populations (galaxies and clusters)
at low redshifts (z ∼ 2) [254], informing our analysis within these redshift ranges.
While low-mass lenses (∼ 108 M�) remain difficult to detect electromagnetically due
to limited angular resolution of EM telescopes, GW detectors can precisely measure
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Figure 5.9: Left: Lensed events simulated with CDM using the source redshift distri-
bution (given in Figure 5.8 (left)). Bright and light red curves show posteriors using
true and reconstructed distributions respectively (red and cyan plots in Figure 5.8,
respectively). The systematic shift in posteriors is due to systematic bias in redshift
distribution reconstruction. Right: Events simulated using bright cyan distribution,
with light cyan curves showing unbiased reconstructions (Figure 5.8). Posteriors from
both distributions shown in corresponding colors, demonstrating that unbiased source
redshift reconstruction preserves the measurement accuracy of DM mass, despite of the
measurement uncertainties expected in XG detectors.

their time delays, enabling exploration of these populations. In this initial investigation,
we employ the HMF to derive lens distributions and their redshift evolution. HMF,
computed from DM-only cosmological simulations, characterizes the mass distribution
of DM halos spanning 108 − 1015 M�, which host the lensing structures. Given multiple
HMF models fitted to different simulations, we examine how an incorrect choice of
HMF model affects the derived constraints on DM particle mass.

We analyze three HMF models: Behroozi [93], Tinker08 [179], and Jenkins [94].
Assming CDM as the DM model, we simulate lensed events using one HMF model as
the ’true’ distribution. We then infer the posterior of m−1

WDM using both the ’true’ and
alternative HMF models, with results presented in Figure 5.10. The inference of m−1

WDM

with the ’true’ model (solid line) yields accurate results, whereas the Jenkins model
shows biased inference of the DM mass due to its significant deviation from the ’true’
model. The analysis is performed for two merger rates: R = 5× 105 and 1× 105 yr−1.

WDM mass inference using an incorrect HMF model that significantly differs from
the ’true’ model used in event simulation can lead to biased inference, as demonstrated
in Figure 5.10. This bias becomes less prominent at lower merger rates due to reduced
precision. We quantify this effect through pairwise Bayes factors (ratio of Bayesian
evidences between true and wrong HMF models). We compute Bayes factors from
∼ 1200 independent simulated catalogs. The true model consistently shows higher
Bayesian evidence (Bayes factor > 1), as shown in Figure 5.11. At R = 5× 105 yr−1,
Bayes factor consistently exceeds 1, favoring the true model. The Tinker08 model shows
smaller Bayes factor values than Jenkins, consistent with its unbiased inference and
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Figure 5.10: Left: Posteriors of m−1
WDM infererred using different HMF models. Lensed

events are simulated using the Behroozi model as ’true’. Solid lines show inference of
m−1

WDM using the ’true’ model, while dashed lines represent inference using alternative
models. Left and right panels show results for merger rates R = 5 × 105 yr−1 and
R = 1× 105 yr−1 respectively. Note the biased inference of m−1

WDM when the Jenkins
model is used in the WDM inference.

closer agreement with Behroozi (’true’). At a lower merger rate (1× 105 yr−1), reduced
bias is reflected in smaller Bayes factor values and the true model remains preferred.
These results indicate that Bayesian model selection can effectively identify the correct
HMF from a given set of available HMFs, helping to mitigate the systematic error due
to our lack of knowledge of the true HMF model.

5.6.4 Correlation with cosmological parameters

Apart from the nature of DM, time delay distributions are also sensitive to cosmologi-
cal parameters (See Chapter 4). We investigate the potential parameter degeneracy in
time delay distributions by systematically varying mWDM and cosmological parameters.
We conduct two independent analyses with free parameter sets: One set by varying
m−1

WDM, ΩM, H0 and another set by varying m−1
WDM, ΩM, σ8. We simulate lensed events

considering CDM as ’true’ model of DM and infer the parameters using WDM tem-
plates. Our results demonstrate recovery of injected (’true’) parameters within 95%
credible intervals and reveal no substantive correlation between mWDM and cosmological
parameters (Figure 5.12).

This shows that the distinctive signature of WDM in time delay distributions cannot
be simply replicated by changing cosmological parameters. This is due to different
imprints of these parameters on the time delay distribution: cosmological variations
modulate time delay distributions across all temporal scales, whereas the warm nature
of DM primarily influences small time delay regimes. Figure 5.12 and 5.13 shows the
capability to simultaneously constrain both m−1

WDM and cosmological parameters without
significant precision loss, due to absence of strong correlations between the parameters.
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Figure 5.11: Cumulative distribution of logarithmic Bayes factors comparing different
HMF models. Results shown for detection rates of 5× 105 yr−1 (left) and 1× 105 yr−1

(right). Legend entries (e.g., ’BJ’) indicate data simulated using the first model (B:
Behroozi) and recovered using the second model (J: Jenkins). Positive values of
ln(Bayes factor) favor the Behroozi model, which was used to generate the true under-
lying distribution. The analysis consistently identifies the true model for both optimistic
and pessimistic merger rates.

A comprehensive analysis requires us to analyze how all cosmological parameters
work together. However, due to computational constraints, we restrict our study to a
three-parameter analysis. This limited exploration nevertheless demonstrates that the
mass of DM is unlikely to exhibit strong correlations with cosmological parameters,
given their distinct effects on time delay distributions. A complete analysis incorporating
all parameters would require significant optimization of likelihood computations, which
we defer to future work.

5.6.5 Effect of contaminations

Identification of strongly lensed GW events poses significant challenges. Several compu-
tationally efficient and accurate methods have been developed [140, 255–263]. However,
no detection method achieves 100% accuracy, leading to both false positives (unlensed
pairs misidentified as lensed) and false negatives (missed lensed pairs). Consequently,
a catalog of lensed events contains a mixture of true lensed signals and misidentified
unlensed pairs. Each identification method is characterized by its false alarm probability
α (probability of misidentifying an unlensed pair as lensed) and detection efficiency ε

(probability of correctly identifying a true lensed pair) [184].

The treatment is already presented in Subsection 4.5.4 in the context of lensing
cosmography. We assume that the number of detected BBH mergers Ntot and strongly
lensed mergers N follow Poisson distributions of mean Λtot and Λ, respectively. We
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Figure 5.12: Simultaneous estimation of cosmological parameters and the WDM mass.
We perform parameter inference assuming two scenarios: 1) treating m−1

WDM, ΩM and
H0 as free paramters (left plots) and, 2) assuming m−1

WDM, ΩM and σ8 as free parameters
(right plots). The rest of the cosmological parameters are fixed to some fiducial true
values (shown by gray lines). Lensed events are simulated assuming CDM as ’true’
model of DM and injected (’true’) cosmological parameters are different for left and
right panel. Dashed cross indicates the ’true’ values of parameters. Credible intervals
at 68% (deep shade) and 95% (light shade). All parameters are recovered within 95%
credible intervals. Note that the m−1

WDM posteriors do not show any correlation with other
cosmological parameters.

define the contamination fraction κ as:

κ ' αΛ2
tot

2
1

εu Λtot
=

α

ε

Λtot

2u
, (5.17)

where u = Λ/Λtot is the expected lensing fraction. Note that κ depends on m−1
WDM and the

observing period Tobs through the lensing fraction and total event count respectively, we
suppress this notation for clarity. The ratio κ0 = α/ε characterizes the receiver operating
characteristic (ROC) of the lensing identification method (see, e.g., [140, 255, 262]).
Current methods (e.g., [262]) achieve ε ∼ 0.6 at α ∼ 10−6. To keep the contamination
fraction low (about 10%), we would need α ∼ 10−9 for ε ∼ 0.5, Λtot ∼ 106 and u = 0.01.
One hopes to achieve this in future GW observations due to the increased precision of
measurements.

We incorporate the contamination fraction following the methodology outlined in
[264]. The expected number of lensed events is modified by introducing a contamination
fraction κ as follows:

Λc(m−1
WDM, Tobs) = ε [1 + κ]Λ(m−1

WDM, Tobs). (5.18)

This formulation allows us to model contamination effects on the expected number
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Figure 5.13: Posterior of m−1
WDM when cosmological parameters are fixed (orange) and

when marginalised over the cosmological parameters (brown). The left panel shows
marginalisation over ΩM and H0, while the right panel shows marginalisation over ΩM
and σ8. These marginalised m−1

WDM posteriors correspond to the left and right corner
plots in Figure 5.12, respectively

of lensed events once κ0 is determined through simulations. The observed time delay
distribution comprises a mixture of lensed and unlensed delays. The contaminated time
delay distribution takes the form:

pc(∆t | m−1
WDM, Tobs)

=
κ

1 + κ
punlens(∆t | Tobs) +

1
1 + κ

plens(∆t | m−1
WDM, Tobs),

(5.19)

which we use for the estimation of m−1
WDM. Above, plens(∆t | m−1

WDM, Tobs) is given by
Equation 5.16, and the unlensed time delay distribution is given by:

punlens(∆t | Tobs) ∝ (Tobs − ∆t)Θ(Tobs − ∆t). (5.20)

We investigate the impact of contamination on the inference of m−1
WDM by simulating

lensed events with CDM as the underlying DM model. Our analysis considers different
BBH merger rates, from optimistic to pessimistic. We adopt Planck18 [72] cosmological
parameters, the source redshift distribution from Dominik [165], and the ’Behroozi’ [93]
HMF for lens distribution. For the detection method, we set a false probability per
pair of α = 10−9 and consider various detection efficiencies: ε = 0.4, 0.5, 0.6, 0.8,
corresponding to κ0 = [2.5, 2, 1.67, 1.25]× 10−9. These parameters yield contamination
fractions of approximately 84%, 67%, 56%, 42% respectively. Figure 5.14 illustrates
the evolution of m−1

WDM constraints as a function of κ0, and Table 5.2 presents the 95%
confidence limits on m−1

WDM for different κ0 values across our considered merger rates.

Figure 5.14 presents the expected posteriors on m−1
WDM assuming different amounts of



Systematic errors 117

0.00 0.03 0.06 0.09
m−1

WDM

[
keV−1]

0

10

20

30
p
( m
−

1
W

D
M

∣ ∣ N
,{

∆t
})

R = 5×105 yr−1

κ0 = 2.50
κ0 = 2.00
κ0 = 1.67
κ0 = 1.25
κ0 = 0.00

0.00 0.03 0.06 0.09 0.12 0.15
m−1

WDM

[
keV−1]

0

5

10

15

p
( m
−

1
W

D
M

∣ ∣ N
,{

∆t
})

R = 5×104 yr−1

κ0 = 2.50
κ0 = 2.00
κ0 = 1.67
κ0 = 1.25
κ0 = 0.00

Figure 5.14: Posterior distributions of m−1
WDM for different values of of κ0 = α/ε, where α

is the false alarm probability and ε is the efficiency of the lensing identification method.
Note that κ0 is in units of 10−9. The left and right panels correspond to merger rates
of 5 × 105 yr−1 and 5 × 104 yr−1 respectively, with an observation time period of
Tobs = 10 yrs. Here, κ0 = 0 represents the case without contamination, while increasing
values of κ0 indicate higher contamination fractions.

R [yr−1] No cont. κ0 = 1.25 κ0 = 1.67 κ0 = 2 κ0 = 2.5
5× 105 0.039 0.040 0.042 0.044 0.047
1× 105 0.053 0.055 0.06 0.062 0.066
5× 104 0.062 0.065 0.070 0.073 0.077

Table 5.2: The 95% confidence limits on m−1
WDM for different merger rates and different

values of κ0 = α/ε, where α is the false alarm probability and ε is the efficiency of the
lensing identification method. Note that κ0 is in units of 10−9. These limits are derived
from the posterior distributions shown in Figure 5.14.

contamination (the value of κ0 = α/ε is shown in the legend). Note that these posteriors
are estimated from one realisation of the observing sample (N and {∆t}), and will suffer
from Poisson fluctuations. To understand the spread in the m−1

WDM upper limits due to
Poisson fluctuations, we repeat the analysis from ∼ 1200 different simulated catalogs of
lensed events (i.e., ∼ 1200 different realisations of N and {∆t}) and compute the distri-
bution of the m−1

WDM upper limits. These are shown in Figure 5.15. In each independent
test, the total number of simulated lensed events and their corresponding time delays
are subject to distinct realizations of Poisson fluctuations, leading to variations in the
95% limit of m−1

WDM. We can see that increasing κ0 (corresponding to higher contamina-
tion) systematically shifts the 95% limits of m−1

WDM toward larger values, indicating a
weakening of constraints due to contamination. However, note the degradation due to
contamination is not significantly larger than the intrinsic Poisson fluctions in the upper
limits.
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Figure 5.15: Distribution of 95% confidence limits on m−1
WDM derived from 1200 in-

dependent catalogs of merger events, assuming merger rates 5× 105 yr−1 (left) and
5× 104 yr−1 (right) with observation time Tobs = 10 yrs. The systematic shift toward
higher values with increasing contamination illustrates the effect of contaminations on
the inference of m−1

WDM.

5.6.6 Effect of core

The impact of WDM extends beyond its well-known suppression of structure below
the free-streaming length scale, which reduces low-mass halo abundances relative to
CDM. WDM also fundamentally alters halo density profiles. While CDM halos exhibit
cuspy central density profiles, WDM halos are characterized by central cores. This
modification affects both time delay distributions and the number of lensed events.

Here we investigate the effect of presence of a central core in the lens on the time
delay distribution and total number of lensed events. The existence of a core inside a halo
formed in WDM scenario can be established through a phase space density argument,
originally proposed by Treamine and Gunn [265]. Liouville’s theorem states that in a
collisionless fluid, the fine-grained phase space density remains constant throughout
cosmic history. In the WDM model, the fluid is described by a Fermi-Dirac distribution.
The absolute value of the phase space density is fixed at the time of decoupling when
the fluid becomes collisionless. By comparing the initial maximum phase space density
with the phase space density after virialization, lower limits on the size of the core is
obtained [200, 265–268]. [200] argued that a thermal candidate with a mass of 1 keV
produces a typical core size of approximately 10 pc for a halo with velocity dispersion
of 100 km.s−1. Subsequent simulation results by [268] and [266] further support this,
suggesting that thermal DM candidates with masses of 1− 2 keV generate core sizes
∼ 10− 50 pc.

Following [200], we consider the following scaling relationship for the core radius
(rc) as a function of mWDM, local matter density parameter (Ωm0), and velocity dispersion
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of halo (σh):

rcore ' 10 pc
(

keV
mWDM

)2 ( 0.3
Ωm0

) 1
2
(

100 km s−1

σh

) 1
2

. (5.21)

For a given halo mass, σh is a redshift-dependent quantity, so the size of the core
for a given halo mass depends on the formation redshift. The scaling of the ratio of rc

and virial radius of halo with redshift is given in [268]. The equation for core radius
(Equation 5.21) which we consider has roughly the same scaling as presented in [268].
The prefactor can be larger than 10 [266, 267]. A larger core size would enhance the
effect of WDM on the time delay distribution and total number of lensed events. Thus,
the results obtained using Equation 5.21 can be considered a conservative limit.

We investigate the core-SIS model for gravitational lenses [269], where introducing
a core in the halo’s central region has two counteracting effects on the strong lensing
time delay distribution. The first effect is the reduction in time delay compared to
no-core case, which shifts the distribution towards smaller time delays, while the second
effect involves the reduction in lensing probabilities of low-mass halos due to decreased
Einstein radius, which shifts the distribution towards higher time delays. When the core
radius to Einstein radius ratio exceeds 0.5, multiple image formation becomes impossible,
significantly suppressing the lensing probability of low-mass halos at high redshifts.
The lensing probability of high-mass halos (> 1010 M�) remain largely unaffected due
to minimal core radius (from Equation 5.21, where high σh values yield small rcore). As a
result the core radius remains very small compared to the Einstein radius at all redshifts,
so larger time delays are mostly not affected by the presence of the central core. Due
to the dominance of the second effect, the overall time delay distribution effectively
shifts towards higher time delays (Figure 5.16). This effect amplifies the distinctions
observed in WDM scenarios when core density profile is not considered. Furthermore,
introduction of core reduces the total number of lensed events (Figure 5.16), thereby
enhancing the distinguishability between CDM and WDM.

Now We examine the impact of incorporating a core in the lens model on the
inference of m−1

WDM. Using lensed events simulated in CDM, we perform inference
of m−1

WDM with templates constructed using a core-SIS lens profile, results shown in
Figure 5.17. The results demonstrate that m−1

WDM is more tightly constrained compared
to inference using templates with coreless (SIS) lenses, consistent with our earlier
discussion that the presence of a core enhances the ability to distinguish WDM models
from CDM. With core lenses, we obtain constraints of m−1

WDM ≤ 0.011 and m−1
WDM ≤ 0.033

for merger rates of 5× 105 yr−1 and 5× 104 yr−1 respectively. In contrast, inference
with coreless lenses yields weaker constraints of m−1

WDM ≤ 0.039 and m−1
WDM ≤ 0.062 for

the same respective merger rates. All cases assume an observation time period of 10 yrs.

Here we assume the central core in the lens arises solely from the thermal motion of
DM particles. Simulation studies [266, 268] indicate that cores produced by the warm
nature of DM are quite small (approximately 10−3 of the virial radius at formation).
Their findings conclude that the core radii of halos observed at z ' 0 are expected to be
significantly smaller than the observed cores (∼ kpc) in nearby low surface brightness



120 Souvik Jana

0 5
log10[∆t(hrs)]

0.0

0.1

0.2

0.3

PD
F

mWDM = 6.0
mWDM = 10.0
mWDM = 15.0
mWDM = 50.6
mWDM = 100.0
CDM

0 5 10 15
zs

0.00

0.01

0.02

0.03

τ

mWDM = 6.0
mWDM = 10.0
mWDM = 15.0
mWDM = 50.6
mWDM = 100.0
CDM

Figure 5.16: Left: Effect of a central core in the lens on time delay distributions. Using
Equation 5.21, the results for different mWDM are presented. Increasing the core radius
shifts the time delay distribution towards higher time delays. The distinguishability
power has increased, as evidenced by the clear separation of mWDM = 50, 100 keV
from the CDM scenario, which was not apparent in the absence of a lens core. Right:
Impact of presence of core on the lensing optical depth. The suppression in lensing
optical depth with increasing core radius is shown, with the differences from CDM now
more pronounced compared to the no-core scenario.

galaxies (M ∼ 1010M�). These studies suggest that WDM alone cannot explain the
observed cores in dwarf galaxies, and if cores are required, baryonic feedback is likely
the dominant mechanism for core formation in halos. Therefore, proper core modeling
necessitates the inclusion of baryons and their effects (feedback, cooling) on DM, which
we plan to address in future work using improved high-redshift simulation results. Also
the presence of core produces a type-III lensed image near the centre of the lens which
is demagnified but if it has sufficient SNR can be detectable through its Morse phase
shift (by π) [270]. Which will help to model lens core.

Here we have investigated the impact of incorporating cores within lenses in WDM
model. Halos in FDM model similarly develop central cores [271]. These cores in FDM
manifest as solitonic cores, arising from the equilibrium between quantum pressure—a
consequence of the uncertainty principle—and gravity. The cores in FDM exhibit distinct
scaling relations compared to those in WDM. Implementation of FDM core profiles
in our framework could potentially enhance constraints on the FDM particle mass
parameter. We will explore this in our future study.

5.7 Conclusions

Because of their inherent simplicity, GWs are unaffected by extinction, and selection
effects in GW searches are well modelled. This makes GW strong lensing a cleaner
probe of the nature of DM, as compared to, e.g., optical lensing. Constraints on the mass
of the WDM/FDM particle expected from future GW strong lensing observations are
significantly better than the current bounds [211, 217].

In our observables there is no degeneracy between the DM properties and cos-
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Figure 5.17: Posterior distribution of m−1
WDM. Lensed events are simulated in CDM

and the inference of m−1
WDM using templates with a core-SIS lens profile where the core

radius is given by Equation 5.21. The left and right panels correspond to merger rates
of 5× 105 yr−1 and 5× 104 yr−1 respectively, both assuming an observation period
of 10 yrs. For comparison, dashed lines show the inference of m−1

WDM using templates
without a central core in the lens (SIS model).

mological parameters. This should allow us to constrain both the nature of DM and
cosmological parameters simultaneously from future observations. A wrong model
of the HMF can bias our measurements. However, we should be able to identify the
right HMF model from the data using Bayesian model selection. We discussed different
potential systematic errors in our analysis and ways to mitigate them in Section 5.6.

A number of obstacles need to be addressed before this technique can be applied to
real data. Properties of astrophysical sources and lenses determine both the number of
lensed events and the distribution of their time delays. Some of the relevant parameters,
such as the redshift distribution of BBH mergers, can be inferred from the large number
of unlensed GW signals as well as the stochastic GW background. For other param-
eters, such as the distribution of the lens properties, will need to rely on large-scale
cosmological simulations and galaxy surveys.

In this work, we have assumed that the lenses are modelled by simple SISs, whose
parameters are obtained from the HMF using a simple prescription. Our current analysis
neglects effects of halo substructure and baryonic effects. We are developing more
accurate lens models and methods to account for detector selection effects in upcoming
upgrades. False positives in strongly lensed signal identification can contaminate
the observational sample, but modeling contamination effects in the catalog enables
unbiased inference of DM properties. Additionally, strongly lensed BNS with EM
counterparts could allow detailed probing of lens galaxy profiles, potentially providing
tighter constraints on DM properties.
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6 | Conclusions and Future Direc-
tions

This thesis has explored two important aspects of GW strong lensing: its potential as
a cosmological probe and its ability to constrain the nature of DM. The planned XG
detectors with improved sensitivity will detect millions of GWs, with thousands being
strongly lensed. We have developed methods to use these strongly lensed GW events
for cosmography and to determine the nature of DM. Through detailed analysis, we
have demonstrated that GW lensing offers a promising new window into extracting
cosmological parameters, particularly valuable for probing the intermediate redshift
regime (z ∼ 10) that is rarely explored by other methods. This is important given the cur-
rent tension between low and high redshift measurements in cosmology. Our work has
shown that GW strong lensing can place better constraints on the mass of DM particles
than current bounds for both WDM and FDM models. We have also shown that there is
no strong degeneracy between the mass of DM particles and cosmological parameters in
our observables. Thus, GW lensing could, in principle, enable simultaneous constraints
on cosmological parameters and DM properties. The intrinsic simplicity of GW signals
provides significant advantages over traditional optical lensing studies, particularly in
terms of reduced systematic uncertainties and better-modeled selection effects.

Several important developments need to be completed before these methods can be
turned into a viable observational program. The SIS model we currently use for lenses
is an oversimplified model, and future work will focus on incorporating more realistic
lens models with halo substructure and baryonic effects, along with better prescriptions
for mapping the mass distribution of DM halos to lens properties [272]. Extension to
BNS systems offers unique advantages despite their lower redshift reach (z . 2 even for
XG detectors). While the lensing optical depth of BNS will be smaller compared to BBHs
which could be observed out to very large redshifts (z ∼ 10− 100), BNS mergers are
expected to be numerous (∼ 106 detections per year in XG [273]). Their long signal du-
ration in the detector band allows their properties to be measured with better accuracy,
and some will produce observable EM counterparts. These BNS with EM counterparts
could allow us to probe the detailed profile of the lensing galaxy, potentially enabling
better constraints on the nature of DM [274]. Data from EM observations and cosmolog-
ical simulations will improve our understanding of lens distributions. For upcoming
detector upgrades [275–277], we are working on forecasting expected constraints on
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cosmological parameters with proper modeling of detector selection functions [278].
Our Bayesian analysis framework requires computing template time delay distributions
for many points in the parameter space of cosmology, DM mass, and other astrophysi-
cal parameters. Currently, generating these template distributions is computationally
expensive. To address this challenge, we plan to develop surrogate models for faster
computation, enabling us to include more parameters and obtain reliable constraints.
These improvements will be valuable as detector sensitivity increases and our catalog of
lensed events grows, making our methods effective tools to study cosmology and the
nature of DM.
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