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ḟ = �10�9 Hz/s. The remaining amplitude parameters are fixed to the

fiducial values of cos ◆ = 0.5, �0 = 2.4 rad, and  = 1.1 rad. h0 here refers

to the scaled amplitude
p

|µ1(y)|h0. The vertical dashed lines in the 1-d

marginalized posteriors indicate the 5% and 95% credible limits, while the

blue lines in the posterior plots represent the injection value. . . . . . . . 85

10



4.2 Posterior of the amplitude parameter h0 and phase parameters {f, ḟ ,↵} re-
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Abstract

The observation of gravitational waves from the merger of two black holes by the Ad-

vanced LIGO detector in 2015 was a groundbreaking validation of Einstein’s theory of

General Relativity. Since then, the LIGO-Virgo-KAGRA collaboration has detected sev-

eral such compact binary coalescence events. Beyond these transient sources, other grav-

itational wave candidates also hold significant astrophysical potential. Among the most

promising are spinning, non-axisymmetric neutron stars in our Galaxy, which emit long-

lived, nearly monochromatic gravitational waves. Some of these neutron stars may reside

behind the galactic supermassive black hole, Sgr A*, resulting in strong gravitational

lensing of their continuous waves. Using various astrophysically motivated spatial distri-

butions for the Galactic neutron stars, we assess the probability of such lensing events.

Furthermore, we study the detectability of such lensed continuous gravitational waves

with third-generation detectors. These detections can serve as novel probes of the Galac-

tic Center’s properties, including independent measurement of the mass of Sgr A*. We

demonstrate how future observations of lensed continuous waves can be used to infer

the mass of Sgr A*, and estimate the precision of this measurement. Under favorable

conditions, we find that this method can be at par with the current electromagnetic

observation measurements.
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Chapter 1

Introduction

1.1 Gravitational Waves

For centuries, gravitation was understood to be a force between masses, governed by

Newton’s inverse-square law of gravitation. A major perspective change occurred with

Einstein’s theory of General Relativity (GR) in 1915, which depicted gravitation as the

curvature of spacetime caused by the concentration of mass and energy [11]. In the

Einstein formalism, the spacetime geometry was described by the field equations:

Rµ⌫ �
1

2
Rgµ⌫ =

8⇡GN

c4
Tµ⌫ . (1.1)

Here, Rµ⌫ and R are the Ricci tensor and Ricci scalar constructed out of the metric gµ⌫

1 and describe the curvature of the spacetime. GN , c are the Gravitational constant and

speed of light respectively. The stress energy tensor, Tµ⌫ , as evident from eqn 1.1, deter-

mine the spacetime curvature encapsulating how matter and energy e↵ect geometry. To

famously quote John Wheeler describing these equations, “Space-time tells matter how

to move; matter tells space-time how to curve”.

This paradigm shift wasn’t merely theoretical, but had major observational implications

right from the outset. Einstein had himself proposed a few practical tests of his theory in

subsequent works. For example, GR could explain the anomalous perihelion precession

of Mercury’s orbit [12, 13], accounting for an excess orbital precession of 43 arcseconds

per century previously observed [14,15]. Additionally, Einstein had accurately predicted

1and their derivatives.
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the apparent shift in star’s position behind the sun to be twice than that of Newton’s

estimation. It was soon confirmed by Eddington during the solar eclipse of 1919 [16].

The gravitational redshifting of light, a corollary of GR’s principle of equivalence, was

experimentally demonstrated by Pound and Rebka Jr. in 1959 by measuring the frequency

variation of gamma rays due to Earth’s gravitational field [17, 18].

1.1.1 Linearizing Einstein Field Equations

Another major prediction of GR was the existence of gravitational waves (GWs) – rip-

ples in spacetime caused by time-varying quadrupole and higher moments of the matter

distribution [19]. A straightforward understanding of emergence of GWs in GR can be

drawn from linearizing the Einstein field equations around a Minkowskian (flat) metric:

gµ⌫ ⌘ ⌘µ⌫ + hµ⌫ , where |hµ⌫ | ⌧ 1. (1.2)

For 4-dimensional spacetime, the symmetric metric perturbation, hµ⌫ , has 10 independent

components. Since GR is invariant under di↵eomorphic transformations, this allows us

to reduce these degrees of freedom by 4 with a suitable gauge choice, akin to a choice of

coordinates.

Constructing the Ricci tensor and scalar out of the metric to linear order in hµ⌫ in the

Lorentz gauge 2, and plugging it in the Einstein equations yields:

⇤h̄µ⌫ = �16⇡GN

c4
Tµ⌫ , (1.3)

where h = ⌘
µ⌫
hµ⌫ denotes the trace, h̄µ⌫ = hµ⌫ � 1

2⌘µ⌫h is the trace reversed metric and

⇤ ⌘ � 1
c2
@
2
t
+r2 is the d’Alembertian operator.

1.1.2 Vacuum Solutions and Transverse-Traceless Gauge

To study the propagation of metric perturbations away from the sources, we use Tµ⌫ = 0,

reducing equation (1.3) to:

⇤h̄µ⌫ = 0. (1.4)

2The gauge choice used here is @µh̄µ⌫ = 0. Since these are four constraints put on the 10 independent
components of the symmetric metric, hµ⌫ , in Lorentz gauge, the metric has only 6 independent degrees
of freedom. We refer the reader to sections 1.2 to 1.4 of [20] for the complete derivation.
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Here, one can further gauge fix 4 residual degrees of freedom corresponding with choice,

x
µ ! x

µ+ ⇠µ, as long as ⇤⇠µ = 0. Exploiting this, we can set the trace of hµ⌫ i.e. h = 0,

also implying h̄µ⌫ = hµ⌫ , and h0i = 0 where i = 1, 2, 3 are the spatial indices. The

Lorentz gauge condition, @µh̄µ⌫ = 0, along with h0i = 0 gives @0h00 = 0. Since we are

only interested in the time-dependent part when dealing with GWs, we can just set h00

to 0. This choice is called the transverse traceless (TT) gauge. In summary, the gauge

freedom in GR allows the choice of h0µ = 0 and @ihij = 0. The equation of motion for

h
TT

µ⌫
in the TT gauge then is:

⇤h
TT

µ⌫
= 0, (1.5)

where h
TT

µ⌫
has only two independent degrees of freedom as described above. This is

the familiar wave equation. Its solutions, GWs, can be written as plane waves or a

superposition of plane waves of di↵erent frequencies traveling at the speed of light:

h
TT

ij
= Aije

i(k.x�!t/c)
. (1.6)

Here, k ⌘ |k|n̂ is the wave-vector, x is the position vector, ! = c|k| is the angular

frequency, and n̂ denotes the direction of propagation. The gauge choice, @ihij = 0, for

plane waves implies n̂iAije
i(k.x�!t/c) = 0, revealing the transverse nature of GWs. For the

propagation along a definite z-direction, the metric solutions take the symmetric tracefree

form:

h(t) =

0

BBB@

h+ h⇥ 0

h⇥ �h+ 0

0 0 0

1

CCCA
cos(!(t� z/c)). (1.7)

The two degrees of freedom, h+ and h⇥, are called the “plus” and the “cross” polar-

isations respectively. As these are transverse metric perturbations to spacetime, they

cause stretching and squeezing of proper distances along the orthogonal directions to the

direction of propagation.

For example, let us consider two test particles at (t, 0, 0, 0) and (t, L, 0, 0). For a +

polarized GW along the z-direction, the proper distance between the two events, Dxx, to
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Figure 1.1: E↵ect of GW polarisations on a ring of test particles (exaggerated). Figure
taken from [1].

linear order in |h+| is:

Dxx =

Z
L

0

dx
p
g11

=
p

1 + h+cos(!t)

Z
L

0

dx

= L(1 +
h+

2
cos(!t)). (1.8)

Similarly, along the y-direction, the proper distance is:

Dyy = L(1� h+

2
cos(!t)). (1.9)

Notably, the two orthogonal direction change proper distances out of phase, and hence

there is e↵ectively a di↵erential arm length change along x and y axes. Figure 1.1 demon-

strates how a ring of test particles respond to the two polarization modes of GWs. These

free particles, by definition remain at rest indefinitely. What essentially changes by GWs

passing through is the proper distance, with a relative change of the order of the GW

strain, i.e. �L

L
⇠ h. The two vertical panels of the schematic are visualizations of the

e↵ect each of the two polarization modes have on the proper distance between the test

particles placed on a ring. We will discuss how this feature makes direct detection of

GWs possible in the section 1.2.
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1.1.3 Einstein Quadrupole Formula

The above exercise demonstrates the existence of planar GWs away from the source. Now

we want to see how the source dynamics a↵ect the amplitude of the emitted wave. In

order to do so, one needs to solve the Einstein’s field equation in Lorentz Gauge (see Eq.

1.3).

⇤h̄µ⌫ = �16⇡GN

c4
Tµ⌫ . (1.10)

We can use the Green’s function, G(x � x
0), of the d’Alembertian operator in this case,

which satisfies:

⇤G(x� x
0) = �

4(x� x
0), (1.11)

such that the trace reversed strain in the Lorentz gauge is

h̄µ⌫(x) = �16⇡GN

c4

Z
d
4
x
0
G(x� x

0)Tµ⌫(x
0). (1.12)

By imposing the boundary condition that no external radiation enters the system3, the

Green’s function takes the form:

G(x� x
0) = � 1

4⇡|~x� ~x0|
�(ct� |~x� ~x0|� ct

0). (1.13)

Here, ~x and ~x0 are the spatial position vectors. Plugging this in Eq. 1.12 and integrating

over the time coordinate, x00 , gives

h̄µ⌫(x) =
4GN

c4

Z
d
3~x0 1

|~x� ~x0|
Tµ⌫(t�

|~x� ~x0|
c

, ~x0). (1.14)

To evaluate the strain at a distance r far from the source of size R (i.e., r � R), we

approximate |~x� ~x0| ⇡ r. Under this assumption, Eq. 1.15 simplifies to:

h̄µ⌫(x) =
4GN

c4r

Z
d
3~x0 Tµ⌫(t�

r

c
, ~x0). (1.15)

Remember that away from the source, one has the freedom to work in the TT Gauge,

where only the spatial components of the strain are non-zero and purely transverse. We

3This is known as the Kirchho↵-Sommerfeld boundary condition.

21



will adapt this in two ways. First we evaluate the spatial components of the metric in the

Lorentz Gauge using the conservation of stress-energy momentum and next we project

this strain onto the plane orthogonal to the propagation direction. The conservation law

for the stress-energy momentum tensor, T µ⌫ in flat space is: 4

@µT
µ⌫ = 0, (1.16)

where @µ ⌘ @

@xµ denotes the partial derivative with respect to the coordinate xµ. From the

conservation law, the spatial components of the stress-energy tensor, T ij can be expressed

in terms of the time-time component as follows:

T
ij(t� r

c
, ~x0) =

1

2c2
@
2
t
(x0i

x
0j
T

00(t� r

c
, ~x0)) (1.17)

Using the perfect fluid model for GW source, one can further use:

T
µ⌫(t, ~x) = ⇢(t, ~x)uµ

u
⌫
, (1.18)

where u = (c,~v) is the four velocity.

Using Eqns. 1.17 and 1.18 in 1.15, we end up with:

h̄ij(x) =
2GN

c4r
@
2
t
Mij

⇣
t� r

c

⌘
,

Mij

⇣
t� r

c

⌘
=

Z
d
3~x0x0i

x
0j
⇢

⇣
t� r

c
, ~x0
⌘

(1.19)

Mij is the mass-quadrupole moment of the source. To express this in the TT Gauge, we

use the orthogonal projection operator, Pij = �ij � n̂in̂j, where n̂ is the unit vector along

the propagation direction. Since the strain in a rank-2 tensor, a rank two TT projection

operation �ij,kl can be constructed from Pij, where

�ij,kl = PikPjl �
1

2
PijPkl (1.20)

4This follows from the choice of the Lorentz gauge condition, @µhµ⌫ = 0.
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The TT Gauge metric strain is:

h
TT

ij
(x) = �ij,kl h̄kl(x)

=)h
TT

ij
(x) =

2GN

c4r
@
2
t
Qij

⇣
t� r

c

⌘
, where (1.21)

Qij is the TT component of the mass quadrupole expressed as:

Qij(t�
r

c
) =

Z
d
3~x0(x0i

x
0j � 1

3
r
2
�ij)⇢(t�

r

c
, ~x0) (1.22)

Eq. 1.21 reveals that to leading order an accelerating mass-quadrupole moment is essen-

tial for GW emission. This is famously known as the Einstein Quadrupole formula [19].

1.2 GW Detections

The small coe�cient in the Einstein quadrupole formula (See Eq. 1.21), 2GN
c4

⇠ O(10�44)

in SI units, is suggestive that GW strain amplitudes are incredibly weak and therefore

induce a minuscule change in distances as they pass through, making detections di�cult.

While we will discuss di↵erent GW sources in Section 1.3, but to illustrate the weakness:

a vanilla event from the merger of two black holes (BHs) of 30M� at a distance of 400

Mpc away from Earth would cause a typical metric perturbation of 10�21, and therefore

a corresponding arm length change of 10�18 m in a km long arm. Despite this, there have

been numerous attempts at observing the e↵ect of GW propagation.

1.2.1 Resonant Bar Detectors

The first attempt at detecting these distortions was by Weber, who designed resonant

bar detectors consisting of large cylindrical metal bars [21]. These were made of alu-

minum, designed to oscillate in response to passing GWs. If the GW frequency matched

the resonant frequency of the detector, the oscillations were amplified due to resonance.

In 1969, Weber claimed coincident detections from two facilities located at Argonne Na-

tional Laboratory and the University of Maryland, suggesting an astrophysical origin [22],

only to be later discarded by the wider scientific community. Since Weber’s work, many

more resonant bar detectors have been developed [23], such as ALLEGRO in the United
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Figure 1.2: Evidence of orbital decay in the Hulse and Taylor binary pulsar, PSR 1913+16
over three decades of observation since detection. Figure taken from [2].

States [24], NIOBE in Australia, and European projects like AURIGA, EXPLORER,

NAUTILUS [25, 26]. However, these detectors have significant limitations, such as ex-

tremely narrow bandwidth or poor noise sensitivity compared to the current state of art

interferometric detectors. It is also worth mentioning here that a future space mission

Lunar Gravitational Wave Antenna is in planning phase to use moon as an astronomi-

cal resonant bar using an array of inertial sensors on its surface to measure the Moon’s

vibrations caused by GWs [27].

1.2.2 The Binary Pulsar PSR 1913 + 16

Arguably the first significant breakthrough at detection, albeit indirect, was the orbital

shrinkage and corresponding increase in orbital frequency in the binary pulsar PSR 1913+

16 discovered by Hulse and Taylor in 1974 [28]. The orbital decay in this binary system

could be attributed to the energy lost through the emission of GWs [29]. Red markers

in figure 1.2 show the change in periastron time of the eccentric orbit of PSR1913 +

16 observed over three decades since its discovery, and the solid blue curve is the GR

prediction of decay from gravitational radiation, illustrating how the orbital dynamics is

driven by GW emission [2].
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Figure 1.3: The blue (BHs) and orange (NSs) points represent masses of the compact
objects discovered by the LVK collaboration until O3 run. The y-axis denotes the mass
of the component compact objects. The x-positions are merely for artistic e↵ect. For
comparison, the masses of the NSs (in yellow) and BHs (in red) from electromagnetic
observations are also depicted. (Credit: LVK / Aaron Geller / Northwestern)

1.2.3 LIGO-Virgo-KAGRA Detections

A pivotal point in GW astronomy was on 14 September 2015 when the two Laser In-

terferometer Gravitational Wave Observatory (LIGO) [3] detectors in the US observed

GW from the merger of two BHs of roughly 30 solar masses each [30]. Since then, the

LIGO-Virgo-KAGRA (LVK) [3, 31, 32] collaboration has detected around 90 transient

GW signals during their first three observing runs [33, 34], most of which are consistent

with GWs produced by coalescing binary BHs (BBHs). GWs from merging binary neu-

tron stars (BNSs) [35,36] and neutron star-black hole (NSBH) binaries [37] have also been

observed. The stellar graveyard, figure 1.3, shows the masses of all the events detected

by LVK until the third observing run, and how they already explore territories unchar-

tered by Electromagnetic observations. The ongoing fourth observing run has added and

continues to add such compact binary coalescence (CBC) events to the already rich cat-

alog [38]. With future upgrades to the detectors, improvements in noise sensitivity will

allow even fainter sources to be detected, increasing the reach. Additionally, the planned

LIGO-India observatory will expand the global GW detector network, improving sky

localization and enabling better parameter estimation of astrophysical sources [39].

These detections are made using highly sensitive Michelson interferometers that record
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Figure 1.4: The Michelson interferometer layout used in current ground-based interfer-
ometers. (Credit: Caltech/MIT/LIGO Lab)

the minute changes produced by passing GWs. As depicted in schematic 1.4, the current

ground-based interferometers consist of two very long arms arranged in an L-shaped con-

figuration. A laser beam is split using a beam splitter to maintain coherence and travels

along the two arms. The light then bounces o↵ test masses (mirrors) placed at the ends

of the arms and travels back to the beam splitter, where the beams interfere depending

on the phase shift. A photodiode at the output records the resulting interference.

In the natural state, the arm lengths are adjusted to cause destructive interference at the

beam splitter after the round trip. However, when GWs pass through the detector, they

cause di↵erential changes in the lengths of the two arms. This change produces a phase

shift between the two beams, resulting in non-destructive interference measured at the

photodiode. This is recorded as the photodiode voltage, and eventually translated to the

relative arm length change through calibration techniques [40–42].

1.2.4 GW strain time series

As an example, in section 1.1 we discussed how free particles respond to GW passing

orthogonal to the plane of the particles. However, in the more general case, GWs could
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Figure 1.5: Orientation of the detector frame coordinate system to the source frame
coordinates. n̂ is the direction of the source from the detector and is given by the
spherical polar angles ✓ and �.  denotes the polarization angle of the source. The ⇠
coordinates are attached to the source while the ones without ⇠ are in the detector frame.
n̂1 and n̂2 are the two arms of the detector placed symmetrically in the x� y plane with
an opening angle of ⇣. For current detectors with orthogonal arms, n̂1 and n̂2 coincides
with the x and y axes at the detector respectively.

originate from any direction in the sky. In that case, the strain in the detector proper

frame is no longer of the form in Eq. 1.7. Our treatment follows from [43] to understand

the response of the detector to GW originating from the sky location, n̂. In the coordinate

attached to the source, we choose the z̃-axis to align with the direction of propagation

and the spatial strain tensor takes the form:

H̃(t) =

0

BBB@

h+(t) h⇥(t) 0

h⇥(t) �h+(t) 0

0 0 0

1

CCCA
(1.23)

We will use ⇠ to denote strain and coordinates in the source frame. The strain tensor in

the detector frame can be obtained via a similarity transformation using the orthogonal

transformation matrix, M(t), which rotates the source frame onto the detector frame.

H(t) = M(t) · H̃(t) ·M(t)T (1.24)

Let us try to now derive the form of the transformation matrix, M(t), which is essential
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to write the strain tensor in the Cartesian frame attached to the detector. Any general

rotation in 3 dimensions can be achieved by a set of three Euler-Rotations about the Z-

Y-Z axes. From the fig. 1.5, the three Euler angles of rotation for the Z-Y-Z rotations are

 , ⇡� ✓ and �� respectively, where  ,�, ✓ are the polarization, azimuthal and spherical

polar angles respectively. The orthogonal transformation matrix, M , is thus given by:

M = R(ẑ,��) ·R(ŷ, ⇡ � ✓) · R(ẑ, )

=

0

BBB@

cos� sin� 0

�sin� cos� 0

0 0 1

1

CCCA
·

0

BBB@

cos(⇡ � ✓) 0 sin(⇡ � ✓)

0 1 0

�sin(⇡ � ✓) 0 cos(⇡ � ✓)

1

CCCA
·

0

BBB@

cos �sin 0

sin cos 0

0 0 1

1

CCCA

=

0

BBB@

�cos� cos✓ cos + sin� sin cos� cos✓ sin + sin� cos cos� sin✓

sin� cos✓ cos + cos� sin �sin� cos✓ sin + cos� cos �sin� sin✓

�sin✓ cos sin✓ sin �cos✓

1

CCCA

(1.25)

A detector placed symmetrically in the x� y plane with opening angle ⇣ has arms along:

n̂1 =

2

6664

cos(⇡4 � ⇣

2)

sin(⇡4 � ⇣

2)

0

3

7775
and n̂2 =

2

6664

sin(⇡4 � ⇣

2)

cos(⇡4 � ⇣

2)

0

3

7775

The GW scalar strain measured in the detector is given by the di↵erence of the projection

of the detector frame strain tensor along the two arms [43]:

h ⌘ �L

L
=

1

2
n̂
T

1 ·H · n̂1 �
1

2
n̂
T

2 ·H · n̂2 (1.26)

Using the rotation matrix derived in Eq. 1.25 and the detector frame strain tensor (Eq.

1.24), the scalar strain (Eq. 1.26) takes the form:

h(t) = F+(t; ✓,�, , ⇣)h+(t) + F⇥(t; ✓,�, , ⇣)h⇥(t), (1.27)
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where,

F+(✓,�, , ⇣) = sin⇣


1

2
(1 + cos2✓)cos(2�)cos(2 )� cos✓sin(2�)sin(2 )

�
, (1.28)

FX(✓,�, , ⇣) = sin⇣


1

2
(1 + cos2✓)cos(2�)sin(2 ) + cos✓sin(2�)cos(2 )

�
. (1.29)

F+(✓,�, , ⇣) and F⇥(✓,�, , ⇣) are called the antenna pattern functions, and characterize

the response of the interferometers to GWs originating from the di↵erent positions in the

sky at any given point of time. The time dependence of the antenna pattern function

is implicit here because in the frame attached to the detector, the angular position of

the source (✓,�) changes due to the detector motion. To explicitly denote the time

dependence, Jaranowski-Krolak-Schutz [43] express this antenna pattern function in the

ecliptic coordinates attached to the Solar System Barycenter(SSB) where the sky angles

are given by the right ascension (↵) and declination(�).

F+(t) = sin⇣ [a(t)cos(2 ) + b(t)sin(2 )] (1.30)

F⇥(t) = sin⇣ [b(t)cos(2 )� a(t)sin(2 )] , (1.31)

a(t) and b(t) can be read from Eq. (12) and (13) of [43], and explicitly indicate the daily

and yearly variation for a source at n̂ due to the detectors motion. The time dependence

of the antenna pattern function is usually ignored for short duration signals, but should

be accounted for in order to search for signals in longer stretches of the data. The above

exercise encapsulates the form that the scalar output at a detector assumes in the presence

of a GW signal, with the key Eq. being 1.27.

1.2.5 Noise a↵ecting GW detectors

While these detectors are capable of measuring very small arm length changes – several

orders smaller than the size of an atomic nuclei – there exists several scientific and en-

gineering challenges. The major are the terrestrial noise sources that can pollute strain

output of the detectors and even at times mimic GWs. These noise sources span a broad-

band of frequencies where the astrophysical sources emit actual GW signals. Much like

GW strain output, h(t), the noise also has its time series strain, n(t). The signal in the
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detector is a linear superposition of noise and GW strain.

s(t) = n(t) + h(t) (1.32)

Under the Gaussianity and stationary approximation of the noise, the performance of the

detector is quantified entirely using the noise power spectral density (PSD), Sn(fGW)

hñ(f)ñ⇤(f 0)i = 1

2
�(f � f

0)Sn(f). (1.33)

Here ñ(f) is the Fourier transform of the noise time series n(t) and ñ
⇤(f) denotes its com-

plex conjugate. h·i indicates an ensemble average, which, by the assumption of ergodicity,

can be replaced by a time average over di↵erent noise samples.. Also, since the noise time

series is real, ñ(�f) = ñ
⇤(f), implying Sn(f) = Sn(�f). We can therefore represent the

noise budget using a one-sided PSD. A lower PSD means better performance and less

noise contamination. The PSD has contribution from several fundamental and technical

noise sources. Figure 1.6 shows the individual and cumulative contribution from vari-

ous noise sources to the Advance LIGO amplitude spectral density (ASD),
p

Sn(f). We

discuss some of these fundamental noise sources below:

Seismic and Newtonian Noise

Seismic noise arises from the persistent and variable ground vibrations of the Earth.

These could be due to earthquakes, wind, oceanic movements, human activity, etc. and

a↵ect the noise PSD between 0.1–10Hz [44]. It couples to the GW detectors through the

suspension systems that hold the test masses in place. Thus, use of advanced isolation

systems helps tackle the e↵ect of seismic noise. Below 10 Hz, another major contribution

to the PSD comes from the Newtonian noise. They exist due to the local variation

of gravitational potential from moving masses near the detector, atmospheric pressure

gradients, etc. Since Newtonian noise couples to the test masses via gravity, it is di�cult

to shield against. Active noise cancellation currently employed by LIGO monitor a noise

source through dedicated sensors and apply linear filters to subtract the correlated noise.

For future ground based detectors, excavating cavities near detector test mass to reduce

local density fluctuations are also proposed strategies to reduce Newtonian noise.
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Thermal Noise

These are mid-frequency noise (tens to hundreds of Hz) arising from the Brownian motion

of atoms in interferometric components, such as suspension fibers and mirror coatings

[45, 46]. Mirror coating su↵er mechanical dissipation due to thermal fluctuations, while

there are energy damping losses to the suspension fibers at their attachment points. Low-

loss optical coating, use of high purity substrate such as fused silica and cryogenic cooling

(proposed for future detectors) helps to significantly lower this noise.

Quantum Noise

Quantum noise results from the quantum nature of the light used in the interferometer

and has two major components: radiation pressure noise at low frequency and shot noise

at high frequency [47]. Radiation pressure noise results from the quantum uncertainty

in the momentum transfer of photons striking the mirror, leading to fluctuations in its

position. This leads to phase uncertainty in the light arriving at the output photodiode.

At high frequency, the dominant noise contribution comes from shot noise due to Poisson

fluctuation in the number of photons arriving at the photodiode, resulting in amplitude

uncertainty. Use of high power LASER reduces the shot noise in detectors, but simulta-

neously increases the radiation pressure noise due to the Heisenberg uncertainty principle.

To mitigate this, squeezed states of light are used in the interferometer to reduce either

the phase or the amplitude uncertainty at the expense of other [48]. Future generation

of detectors also plan to use frequency-dependent squeezing to reduce the shot noise and

radiation pressure noise in their dominant frequency ranges [49].

Transient Glitches

Transient glitches arise from occasional short-duration terrestrial aberrations that mimic

GW signals. These can a↵ect any frequency range depending on the origin, such as seismic

activities, power line fluctuations, local pressure gradients, instrumental malfunction, etc.

They appear in the detector as either blips (very short and sharp spike), chirps (increasing

frequency with time) or as narrow band noise lines. Glitch subtraction techniques that

relies on modeling and removing these [50], citizen science projects such as Gravity Spy

[51], tracking the auxiliary channels in the interferometer [52] are methods used to deal
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Figure 1.6: The noise budget for the high power mode of Advanced LIGO. Figure credit:
Reference [3].

with these noise artifacts.

1.2.6 Future generation of GW detectors

In addition to continuous upgrades to current detectors, there are also plans to build

future generation of GW detectors with two primary objectives: (a) Improve sensitiv-

ity by lowering the noise budget (b) Expand the detection bandwidth to detect new

classes of GW sources that don’t populate the current detector bandwidth. These future

generations of detectors include:

Einstein Telescope

The Einstein Telescope (ET) [53–55] is a planned third-generation underground detector

with triangular configuration of 10 km arms. Being underground will provide it significant

cushion against the low frequency seismic noise extending its sensitivity down to 1 Hz,

compared to the 10 Hz limit of current detectors. To minimize thermal noise and enhance

mid-frequency sensitivity, ET will also employ cryogenic cooling facilities for the mirrors.

Additionally, to suppress high-frequency quantum noise, it will utilize quantum-squeezed
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high-power lasers. With better performance across the frequency bandwidth, ET promises

to be around 10 times more sensitive than the current GW detectors.

Cosmic Explorer

The Cosmic Explorers (CEs) [56] are essentially an upgraded and larger version of current

Advanced LIGO detectors. At present, the plan includes to build two such interferometers

with respective arm lengths of 40 and 20 kms in the United States. In addition to

this, further advancements in mirror coating, quantum noise suppression and seismic

isolation for CE will enable broader frequency range of detection, along with improved

noise sensitivity as compared to current facilities.

Laser Interferometer Space Antenna

Laser Interferometer Space Antenna (LISA) [57] is a space mission planned to be launched

in 20300s by the European Space Agency in collaboration with National Aeronautics

and Space Administration. This will make use of LASER interferometry between free

falling test masses in an equilateral triangle configuration of around 2.5 million kms in

length. Free from terrestrial noise sources, such as seismic noise, LISA will operate in the

milli-hertz range making it a complementary mission to ground-based interferometers.

The detection frequencies of LISA will be populated by supermassive and intermediate

mass BH binaries, galactic white dwarf binaries and extreme mass ratio inspirals, as

well as cosmological sources from early universe [58]. Additionally, LISA will be able to

observe the early inspiral phases of sources detectable by the contemporary ground based

detectors like ET and CE, providing early warnings for multimessenger follow-ups. Plans

for similar space missions like TianQin [59] by China and DECIGO [60] by Japan are

also in place.

1.3 Sources of GWs

In the previous section, we discussed how GWs are generated by accelerating mass

quadrupole and how they interact with interferometric detectors. In principle, any mass

quadrupole acceleration produces GWs. But those produced by terrestrial activities

are insignificant to be detected. We need energetic astrophysical processes to produce
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observable GWs. These processes typically fall into four categories: Compact Binary Co-

alescences (CBCs), Bursts, Stochastic GW Background (SGWB) and Continuous GWs

(CWs). In this section, we discuss these astrophysical sources and the relevant data

analysis tools that will come in handy in later chapters. 5

1.3.1 Compact Binary Coalescences

Compact objects in binaries, such as NSs and BHs, that have orbital separation so as

to merge within the age of the universe produce GWs detectable by the current and

future GW observatories. The binary loses energy and angular momentum through the

emission of GWs during their inspiral phase, driving their orbits to shrink. The GW

signal from CBCs during inspiral exhibit characteristic “chirp” where both their GW

frequencies (which are tied to their orbital frequency) and GW amplitude increase as

they come closer. Eventually, the components plunge toward each other in what is called

the merger phase. If the remnant is a BH, it undergoes a ringdown phase, emitting the

asymmetries as quasi normal GW modes and finally settles in a stable configuration.

For the current ground based detectors operating between 10� 2000 Hz, these transients

spend around a fraction of a second to a few seconds within the detector band, depending

on the nature and mass of the binary components. Lighter BHs or NSs that are only

tens of kms in radii achieve very close orbital separation allowing their GW frequencies

to sweep through the entire bandwidth. These could therefore be a several seconds long

in duration. Heavier BH binaries on the other hand, merge at larger orbital separation,

creating shorter transients. Mass solely isn’t decisive. For instance, white dwarf binaries

with components of the length-scale of few thousand kms would come in contact and

therefore merge well before their GW emission frequencies reach the sensitivity range of

current detectors.

Although CBCs fall under the category of “well understood” class of signals, modeling

their GW waveform is a complicated task. The two-body problem in GR, unlike Newto-

nian gravity doesn’t have closed form analytical solutions. One needs to rely on either

perturbative methods, such as post-Newtonian (PN) expansion [61–64] or numerical rel-

ativity (NR) solutions [65–67] to extract the orbital dynamics and the GW waveforms.

5While we briefly introduce CBCs, Bursts and SGWBs in this section, we will dedicate the next
section to provide detailed summary of CWs as they form the central theme of this thesis
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PN expansion in velocity v/c is a reasonable approximation for the early inspiral phase

when the binary components are well separated and their velocities are non-relativistic.

But as the objects come close, their velocities become relativistic, i.e. v/c ⇠ 1, causing

the perturbation series to break down. For this merger phase, one has to rely on full NR

simulations to model the signal, which are computationally expensive. After the merger,

the remnant radiates the unstable asymmetry as quasi-normal modes [68]. This ringdown

phase is well modeled by BH perturbation theory (BHPT) [68]. And eventually, in order

to construct computationally feasible and accurate waveform, phenomenological methods

to stitch the waveform together from PN, NR and BHPT [69], and e↵ective one body

formalism [70] have been a successful strategies.

One major challenge when searching for GW strain in the detector output is that the

signal time series is buried deep within the noise, i.e. |h(t)| ⌧ |n(t)|, making it a classic

needle in a haystack problem. However, precise knowledge of the waveform enables cross-

correlation of the data to these modeled waveforms to dig the faint signal. The optimal

strategy to look for signals in Gaussian noise is the match-filtering technique [71,72]. The

output is a noise weighted inner product of the data with the known templates that GR

predicts:

hs|h(~✓)i = 4Re

Z
fmax

fmin

s̃
⇤(f)h̃(f ; ~✓)

Sn(f)
df. (1.34)

Here,

• s̃(f) and h̃(f ; ~✓) are the Fourier transforms of the data and template, respectively.

• ~✓ is the parameter value at which waveform h̃(f ; ~✓) is evaluated, e.g. component

masses, spins, etc.

• Sn(f) is the one-sided PSD of the detector noise.

• The asterisk (⇤) denotes complex conjugation.

The detection statistics, match filter signal-to-noise ratio (SNR), ⇢, is then defined as:

⇢ =
hs|hip
hh|hi

. (1.35)

However, even in presence of a signal, a-priori we don’t know the signal parameters them-

selves. Searches therefore rely on creating template banks across the parameter space of
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interest [73–75]. The data is match-filtered against theoretical templates h(~✓) where ~✓ 2

template bank. The maximum output SNR is compared against a predefined threshold

value to generate event triggers.

A GW trigger from searches recover the maximum SNR and the corresponding best fit

template. The more refined inference of the source properties traditionally make use

of Bayesian Parameter Estimation (PE) techniques [76–78]. The posterior probability

distribution on the source property given data s, p(~✓|s), is constructed using Bayes’

theorem.

p(~✓|s,H) =
L(s|~✓, H)⇡(~✓|H)

Z(s|H)
(1.36)

where:

• H is the hypothesis: here that a GW signal is present and the signal model is

defined precisely by the templates used.

• p(~✓|s,H) is the posterior distribution, i.e. probability of the parameters ~✓ given

the data s.

• L(s|~✓, H) is the likelihood function, which essentially is the probability distri-

bution of the data given parameters ~✓.

• ⇡(~✓|H) is the prior distribution, based on astrophysical knowledge or constraints

on ~✓.

• Z(s|H) is the evidence (or marginal likelihood), given by:

Z(s|H) =

Z
L(s|~✓, H)⇡(~✓|H)d~✓. (1.37)

The likelihood function of ~✓ is constructed by demanding that if the signal template, h(~✓)

is removed from the data, s, the stationary noise should follow a Gaussian distribution,

therefore:

L(s|~✓) / exp

✓
�1

2
hs� h(~✓)|s� h(~✓)i

◆
, (1.38)
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where the inner product is defined in Eq.1.34. The parameters are described by 15(17)

dimensional space in case of BBHs (BNSs), such as intrinsic parameters like component

masses, spins (also tidal defomability in case of NSs), and extrinsic parameters such as

inclination, polarization angle, distances, etc. To e↵ectively sample the high dimensional

parameter space, stochastic sampling methods such as nested sampling are employed [79].

A bunch of random walkers are initialized following the prior distributions, and at each

step the walkers aim to maximize the likelihood function. Eventually, the histogram of

the sampled parameters after convergence represent the posterior distribution.

1.3.2 Bursts

These are short-duration, broadband transients that could arise from catastrophic astro-

physical events, such as core-collapse supernovae, post-merger remnants of BNS mergers,

and pulsar glitches. Core-collapse supernovae, for instance, generate GWs due to the

asymmetric motion of mass accompanying the explosion [80, 81]. BNS mergers, on the

other hand, could lead to hypermassive (and therefore unstable) NS remnants [82], which

eventually collapse into BHs, producing GWs in the process [83].

Unlike CBCs, however, little is known about the signal model for such events due to the

chaotic, nonlinear physics such as turbulent fluid instabilities, neutrino transport, etc.

essential to describing them [84]. While the match-filtering techniques discussed in the

previous section prove to be optimal for well-modeled signals buried in Gaussian noise,

they are an unviable strategy for burst searches. To mitigate the reliance on waveform

templates for bursts, the usual strategy involves a time-frequency analysis searching for

excess coincident power in multiple detectors [85, 86]. Assuming that terrestrial noise

across detectors are uncorrelated, a multiple-detector search suppresses the e↵ects of

glitches in individual detectors that could mimic such short, unmodeled transients.

1.3.3 Stochastic GW Background

SGWB can arise from a cocktail of several astrophysical and cosmological processes. Early

universe phenomena like inflation, phase transition, cosmic strings may have left GW

imprints, much like the cosmic microwave background [87]. Additionally, an astrophysical

foreground of CBCs that are too weak or distant to be individually detected and resolved

can contribute to the SGWB [88, 89]. In individual detectors, they would deposit excess
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power in the frequency bins, resembling terrestrial noise sources which dominate the PSD.

This makes it essential to cross correlate strain time series from multiple detectors to

pick up SGWB contribution, with the assumption that noise is uncorrelated [90]. While,

LVK hasn’t detected SGWB, the Pulsar Timing Array collaboration has presented some

evidence for GW background in the nano-hertz band by monitoring the variation in pulse

arrival time from known millisecond pulsars [89, 91, 92].

1.4 Continuous GWs

CWs are signals that last in the detector bandwidth for a very long duration. While there

isn’t a clear demarcation on how long, a useful criteria is that the temporal dependence

of antenna pattern function (see Eq. 1.30) becomes important for these, whereas they

can be approximated to be constant for transients. The specific nature of astrophysical

sources that could give rise to such signals depend on the detector’s frequency band-

width. For example, GWs from very early inspirals of stellar mass binaries will spend

much longer duration in the LISA band making them CW sources for that detector,

whereas they spend only up to a few seconds and appear as transients in current Earth

based observatories. In this section, we focus exclusively on CW sources for present and

upcoming ground-based facilities, excluding early inspirals of CBCs from our discussion.

For our case, the most promising source of CWs are rapidly spinning non-axisymmetric

NSs within our galaxy. Therefore, we provide brief summary of NS physics, CW emission

mechanisms, signal model and the implications of current CW searches on NS properties

in this section.

1.4.1 Neutron Stars

Originally proposed by Baade and Zwicky, NSs are the stellar graves of massive stars.

When massive stars run out of lighter elements to fuel fusion and counteract gravity, they

collapse under their own gravitational field, leading to a core-collapse supernova [93,94].

With the infall of matter within a confined core, the high density achieved results in rapid

neutronization by an inverse beta decay process that converts protons and electrons to

neutrons and neutrinos. For progenitor stars roughly in the mass range of 6� 15M�, the

resultant neutron degeneracy pressure, due to the Pauli exclusion principle, can prevent
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further collapse of the remnant core [93, 95].

Heavier progenitors lead to a core that can’t be sustained through neutron degeneracy

pressure and collapse to BHs, while lighter progenitors will settle to an iron-rich white

dwarf core supported by electron degeneracy pressure. Remnant NSs remain in a stable

state for masses less than the Tolman–Oppenheimer–Volko↵ mass limit, estimated to be

in the range of 2.2�2.9M� depending on the equation of state [96]. The heaviest observed

NS is PSR J0952� 0607, with a mass of 2.35± 0.17M� [97]. The infalling outer layer of

the progenitor bounces o↵ the sti↵ NS core and is energized by the outgoing neutrinos,

resulting in an explosion. The ejecta eventually settles as the supernova remnant nebula.

Even for a fraction of angular momentum and energy retained by the progenitor core, the

young remnant NS can have extreme properties, like high temperature, rotation frequency,

and magnetic fields (in extreme cases leading to magnetars with magnetic field strengths

greater than 1014 G). The remnant, however, rapidly cools through neutrino and thermal

emission [98], and spins down through di↵erent channels, like pulsar wind, magnetic

dipole emission, GW emission, etc. See section 2.1.2 in [99] for detailed discussion on NS

spin down phenomenology.

NSs have been observed across the electromagnetic spectrum. For example, young hot

NSs emit thermal radiation from their surface across infrared to X-ray band [100]. Non-

thermal emissions have also been observed, such as from isolated magnetized pulsars in

the radio band, X-ray emission in low-mass X-ray binaries through Roche-lobe overflow,

and radio and gamma-ray emission from recycled old millisecond pulsars which have been

spun up over time through accretion from a binary companion. To date, approximately

3,300 NSs have been observed by electromagnetic observations, primarily as radio pulsars,

with some also detected through X-ray and Gamma-ray observations [8, 101].

1.4.2 GW radiation

In this section, we explore the mechanisms responsible for CW emission from NSs. There

are three principle channels for such emissions:

• Mass quadrupole emission.

• Mass-current quadrupole emission.

• Free Precession.
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Mass quadrupole emission

Among the aforementioned, the most widely studied CW emission mechanism for NSs is

the non-axisymmetric mass distribution, akin to the presence of mountain on the oth-

erwise spherical configuration [43, 102]. According to the Einstein quadrupole radiation

formula (Eq. 1.21), the typical GW strain amplitude for NS spinning with frequency, f?,

moment of inertia I about its rotation axis, at a distance r from the detector is given by:

h0 =
16⇡GN

c4

I✏f
2
?

r
, (1.39)

where ellipticity ✏ quantifies the degree of mass asymmetry 6:

✏ =
Ixx � Iyy

I
. (1.40)

Ixx and Iyy are the moment of inertia along the two principal axes orthogonal to the

rotation axis. This is commonly known as the triaxial ellipsoid model for NSs. NSs

exhibiting such mass deformability emit quasi-monochromatic GWs at twice the rotation

frequency of the star, i.e., fGW = 2f .

However, both the maximum degree of asymmetry theoretically allowed for NSs and their

likely values from various physical processes remain uncertain. For conventional NSs, the

estimate of maximum ellipticity sustained is given by [102] as:

✏  5⇥ 10�7
⇣

�

10�2

⌘
, (1.41)

where � is the breaking strain. � could in principle be as high as 10�1 for pure crystalline

structures [103]. [104] suggests a maximum ellipticity limit of ✏max = 7.4 ⇥ 10�6. For

more exotic composition, the theoretically allowed limits are higher due to higher shear

modulus. For example, stars with solid strange matter core can withstand a maximum

ellipticity up to 10�4 [105], while a hybrid star with quark core can sustain ✏ ⇠ 10�5

[106, 107]. More recent estimates, [108], show that these compositions could sustain

ellipticities of 10�3(10�1) for hybrid (purely quark) cores.

A more pressing question is what physical processes drive mass asymmetry in NSs. For

younger NSs, it could be a result of the residual asymmetries from the core collapse

6This is not to be confused with the ellipticity of the binary orbits for CBCs
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supernova [109]. Magnetized NSs on the other hand can have ✏ ⇠ 10�6 if the magnetic

dipole moment is not aligned with the rotation axis [110]. For older NSs with a history

of accretion from a binary companion, the accreted mass may lead to mass asymmetry.

Furthermore, in the presence of magnetic field, the accreted matter is funneled to “hot-

spots” on the NS surface, creating a magnetically confined mountain where ✏ can achieve

values close to the breaking limit [111]. Regardless of the mass asymmetry mechanism,

higher ellipticities are essential to detectable GWs from rotating NSs.

Substituting the constants in Eq. 1.39, the strain is:

h0 ⇡ 4.4⇥ 10�26

✓
I

1038 kg m2

◆⇣
✏

10�6

⌘✓
f?

100Hz

◆2✓1kpc

r

◆
. (1.42)

Evidently, even for Galactic source the strain is orders below the typical CBC strain.

The saving grace is that these signals would last in the detector band for long duration.

This is due to low spin-down of NSs. For example, if we consider NSs losing energy and

momentum only through gravitational mass-quadrupole radiation, the spin down rate is:

ḟGW =
�32⇡4

G

5c5
I✏

2
f
5
GW. (1.43)

For a kHz GW source with ✏ = 10�6, the spin-down magnitude is O(10�9
s
�2). In

practice, the rotation energy of the NS can be lost through additional channels such as

pulsar wind, magnetic dipole etc. further increasing the spin-down rate. Nevertheless,

despite these losses, NSs can remain within the detector’s sensitivity band for long periods,

making them promising candidates for CW detection. It is also useful to highlight that

the frequency evolution is a distinguishing feature of di↵erent CW emission channels.

For mass-quadrupole radiation, ḟGW = Kf
n

GW, where the braking index n is 5, as evident

from Eq. 1.43.

Mass-Current Quadrupole Emission

Rotating NSs can have dynamical instability due to crustal fluid counter-rotating with

respect to the rotating frame of the star. If the star emits GW due to initial non-

axisymmetric mass current modes, the back-reaction from the gravitational radiation

can amplify these oscillation modes rather than dampen them, commonly known as the

Chandrashekhar-Friedmann-Schutz instability [112]. Such toroidal fluid oscillations in
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rotating stars, known as “r-modes”, however are dampened dominantly by the shear vis-

cosity at lower temperature and by bulk viscosity at high temperature [113] 7. The pres-

ence of stellar magnetic field also counteracts r-modes, since gravitational back-reaction

alone cannot e�ciently counteract the magnetic energy to sustain the instability [114].

Therefore, the time-scale for radiation cannot be certainly established. For example, in

newborn NSs these modes could decay over the time-scale of months, while for actively

accreting system these could last for thousands of years [115, 116]. Regardless of these

uncertainties, r-mode oscillations are expected to be CW emitters at GW frequency of

about 4
3f? for these newborn or accreting NSs. The strain amplitude and spin-down due

to r-mode oscillation is given by [117] as:

h0 =

r
512⇡7

5

GN

c5r
f
3
GW↵MR

3
J̃ , (1.44)

ḟGW = �4096⇡7
GN

225 c7
M

2
R

6
J̃

I
↵
2
f
7
GW, (1.45)

where ↵ is the dimensionless r-mode amplitude, M and R are the mass and radius of the

star respectively, and J̃ is the dimensionless functional of the stellar equation of state

(see [117] for details). The braking index of n = 7 for r-mode radiation is evident in Eq.

1.45.

Free Precession

NSs with rotation axis misaligned with the principal moment of inertia axis are freely

precessing systems [118, 119]. In this case, the stars emit GWs at close to the rotation

frequency and its higher harmonic at twice the rotation frequency [120]. The expansion

parameter is the wobble (misalignment) angle (✓w) of the two axes, with typical strain of

the order:

h0 ⇠ 10�27

✓
✓w

0.1 rad

◆✓
1 kpc

r

◆✓
f?

500 Hz

◆2

, (1.46)

7Other unstable modes such as fundamental(f)-mode and pressure(p)-mode are also excited for higher
rotation rates close to the breaking limit.
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1.4.3 Signal Morphology

Throughout the thesis, we will deal with just the mass quadrupole radiation from NSs.

But irrespective of the emission channel, one feature common to CWs is their weakness

and quasi-monochromatic nature. This section is therefore generic to all the above men-

tioned mechanisms. For simplicity however, we adapt the triaxial phase model form of

fGW = 2f?.8 We will further just consider NSs which are isolated or in wide binaries such

that the revolution around the binary barycenter is negligible. Since we are interested to

learn about the phase evolution at the detector, we will start with writing the waveform

at the source, then evaluate the time when the wavefront reaches the SSB, and finally

the time when it reaches the detector.

In the frame attached to the NS, the GW frequency can be Taylor expanded, i.e.

fGW(tNS) =
kmaxX

k=0

f
(k)
GW

t
k

NS

k!
, (1.47)

where the the superscript k denotes the k-th instantaneous time derivative at reference

time of tNS = 0. The GW phase at NSs, �(t) can be evaluated by the time integral of the

frequency Taylor series, and therefore:

�(tNS) = 2⇡
kmaxX

k=0

f
(k)
GW

t
k+1
NS

(k + 1)!
(1.48)

To evaluate the time at the SSB for the arrival of the same wavefront, we can get away

with just including the distance from the isolated NSs to SSB. 9

For an isolated, non-relativistic source at a distance r, the time at which the same wave-

front reaches the SSB is given by: 10:

tSSB = tNS +
r

c
(1.49)

8For any other emission mechanism the following discussion holds with the understanding of fGW =
Cf⇤ where C = 4

3 , 1 and 2 for r-modes and the dual harmonics of free precession, respectively.
9We neglect the time shift due to binary motion of the source such as the Rømer, Einstein and Shapiro

delays since they are either 0 or negligible for isolated sources. See section 2.2 in [121] where these terms
are included.

10There are possibilities of additional redshift/blueshift due to radial motion of the star, but those can
be accounted for by just re-parameterizing the Taylor-expansion coe�cients of frequency at the SSB and
doesn’t alter the signal model itself.
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Since r

c
is a constant, we can define a time shift t0, allowing us to use tSSB and tNS

interchangeably.

Next, we convert this to the time at which this phase is measured at the detector. For a

standard celestial sphere reference frame at the SSB, the sky location (n̂) for the source

is related to the right ascension (↵) and the declination (�) angles as:

n̂ = (cos↵ cos�, sin↵ cos�, sin�) (1.50)

With this choice, the time of arrival of the same wavefront at the SSB and the detector

is related by:

tSSB = tdet +�R�(tdet) +�E�(tdet)��S�(tdet), (1.51)

where:

• Rømer Delay: �R� = ~r(tdet)·n̂
c

accounts for the propagation delay from the SSB to

the detector. Here ~r(tdet) denotes the position vector of the detector with respect

to the SSB.

• Einstein and Shapiro Delays: �E� and �S� account for gravitational time

dilation e↵ects due to celestial bodies in the Solar System.

From the expressions 1.49 and 1.51, we have:

tNS = tdet � t0 +�R�(tdet) +�E�(tdet)��S�(tdet) (1.52)

The phase at the detector at time tdet is therefore equal to the phase emitted at the source

at time tNS(tdet).

�(tdet;~�) = 2⇡
kmaxX

k=0

f
(k)
GW

tNS(tdet)k+1

(k + 1)!
(1.53)

~� is introduced here to denote all the phase parameters; which in case of isolated sources

ar {f (k)
GW,↵, �}, where k 2 {0, 1, 2, ...kmax}.

The strain measured at the detector then can be expressed as a linear combination of
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the antenna pattern function (F+, F⇥) and the two polarisations (h+, h⇥). We will here

consider the special case of a non-precessing triaxial NS to write the strain scalar at the

detector.

h(t; ~A,~�) = F+(t;↵, �, )A+ cos(�0 + �(t;~�)) + F⇥(t;↵, �, )A⇥ sin(�0 + �(t;~�)).

(1.54)

~A is the amplitude parameters vector {h0, ◆, ,�0} 11. Here the two polarization ampli-

tudes (A+, A⇥) are related to the typical strain (Eq. 1.39) and the inclination angle, ◆,

between the spin axis of the source and the line of sight direction n̂:

A+ =
1

2
h0(1 + cos2◆)

A⇥ = h0 cos◆ (1.55)

The strain expressed in Eq. 1.54 has a few salients feature that are worth noting here.

In the detector frame, the amplitude of the signal is modulated by the time dependent

antenna pattern functions, a feature unique to long lasting signal.

Furthermore, since the phase at the detector has Solar System Rømer delay of the form

�R� = ~r(tdet).n̂
c

, it is Doppler modulated, mainly due to two reasons.

• At the timescale of a day, the position vector of the detector, ~r(tdet), changes

periodically due to rotation of the Earth around its own axis.

• At longer timescales, ~r(tdet) changes due to the revolution of Earth around the SSB.

The discussion above highlights the key features of CW signals, emphasizing their quasi-

monochromatic nature, phase evolution, and amplitude modulation due to detector mo-

tion. Despite their intrinsic weakness, CW signals allow for coherent integration over

extended periods due to slow variation in their frequency. However, this also necessitates

precise modeling of phase evolution and Doppler shifts to maintain phase coherence. In

the next section, we present di↵erent searches tailored for CW signals and the current

status of observation.

11Notice that the reference phase �0 is conventionally treated as an amplitude parameter since it can
be factored out of the phase that appears in Eq. 1.54
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1.4.4 Status of current CW searches

CW searches typically have to cover phase parameter space of {f (k)
GW,↵, �} 12, while the

amplitude parameters can be analytically maximized over [43,122]. At first glance, since

the dimensionality of the parameter space is less than CBC and the signal model is sim-

pler, it might create an illusion to the reader that this shouldn’t be a problem. However,

since CWs are intrinsically weak, one needs to integrate over longer period to gain any

significant detection statistics. Such long integration would also come at the cost of fine

sampled Doppler parameters exploding the number of “templates” one needs to search for.

The optimal match-filtering technique for all the phase parameters wouldn’t be feasible

given computational limitations. One trade-o↵ made is to compromise search sensitivity,

or in other words compute sub-optimal detection statistics, in order to search for wide

parameter space. Generally, the strain time-series is divided into smaller chunks. The

optimal/coherent statistics are evaluated for each chunk individually and then incoher-

ently summed across the entire search duration. This also forms the basis for categorizing

di↵erent CW searches, based on prior understanding of the desired search parameters.

The di↵erent searches by the LVK and other CW groups are:

(a) Upper limit on strain from directed search
towards the Galactic Center in O3 run of LVK
at confidence level of 95%

(b) Corresponding 95% upper limit on elliptic-
ity ✏ assuming a distance of 8 kpc. The shaded
region correspond to the range of moment of
Inertia 1� 5⇥ 1038kg.m2

Figure 1.7: Strain upper limit plots, taken from [4]

12Additionally binary orbit parameters for NSs orbiting a companion
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Targeted searches towards known pulsars

For pulsars, whose frequency, spin-downs and sky location are already known from elec-

tromagnetic observation, the GW search parameter is then just one template [123, 124].

In this case, it is possible to do a fully match-filtering search over the entire observa-

tion period with the assumption that CW signals are phase locked with electromagnetic

emission.

Narrow-band searches

These searches also traditionally target known pulsars, but relaxes the assumption of

phase locking between electromagnetic signal and the GW counterpart [125]. While the

sky position is fixed towards the target, they cover a small width around the known spin

parameters {f (k)
GW} for robustness.

Directed searches

Certain hot-spots in the sky, such as the Galactic Center which can host multiple un-

observed NSs [4], low mass X-Ray Binaries such as Scorpius-X1 with unknown spin

[126–128], Globular Clusters [129], or central compact objects, likely NSs, born in core

collapse supernova [130–133] make for interesting regions to look for CWs. Therefore, a

widely used approach is to fix the sky location to these sources and search across the spin

parameters.

All Sky Searches

These are completely blind searches over the entire parameter space {f (k)
GW,↵, �} for iso-

lated NSs and additional binary orbital parameters for NSs with companions [134–136].

As pointed earlier, to establish such large breadth of search parameters, these need to

compromise on search sensitivity.

We have only broadly classified searches above without detailing the di↵erent search

algorithms employed. We suggest the reader to refer to cited articles to learn about

searches in detail.

Although no confident detection for CWs have thus far been reported, non-detections

are generally used to put upper limit on the strain amplitude h0 and subsequently on
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ellipticity parameter ✏. For illustration, figure 1.7 shows the latest upper limits placed on

CW strain from the inner parsec regions of the Galactic Center. We will abide by these

upper limits even when choosing optimistic amplitude parameters in this thesis.

1.5 Outline

The remaining thesis is structured as follows. Chapter 2 gives a brief summary of Grav-

itational Lensing of GWs. Chapter 3 discusses the prospects of observing CWs from

spinning non-axisymmetric NSs lensed by the Galactic Supermassive BH, Sgr A*. In

Chapter 4, we employ Bayesian parameter estimation and the Fisher matrix technique to

forecast our ability to extract properties of Sgr A*, including its mass and the proper mo-

tion velocity of the source, using future observations of lensed CWs. Chapter 5 presents

a summary of the thesis and scope for future work. It also discusses certain limitations

of our analysis and challenges in detecting lensed CWs, particularly phase and amplitude

modulation due to interference from multiple copies of the signal, leading to mismatches

in conventional CW searches.
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Chapter 2

Gravitational lensing of gravitational

waves

2.1 Introduction

While discussing the foundational principles for GWs in the previous chapter, we re-

stricted ourselves to the framework of linearized theory with a flat background metric,

⌘µ⌫ . In the current chapter, we extend our discussion to the e↵ect of the background

curvature on GW propagation. This extension is motivated by the fact that GWs, while

traveling from the source to detector, may encounter massive astronomical objects along

their paths and be a↵ected by the spacetime curvature they produce. This interaction

results in a phenomenon called gravitational lensing which can deflect, magnify, and delay

the propagating waves. In the case of strong lensing, this also leads to multiple copies of

the same signal where their wavefronts arrive with a time delay.

We discuss the framework for these e↵ects step by step. First, we derive the equation

of motion for hµ⌫ in a general curved background, ḡµ⌫ , adopting the choice of Lorentz

gauge. Consequently, we learn that lensing preserves the transverse nature of individual

GW polarizations and parallel-transport them, allowing us to describe these propagation

e↵ects using scalar waves. We then formulate the problem in terms of the governing

lens equation in the geometric optics limit, which provides the framework for analyzing

the deflection and magnification of GWs as they propagate through curved spacetime.

Next, we focus on a specific model for the intervening mass — the point mass model

— which is particularly relevant to this thesis. We derive its governing equation and
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associated lensing e↵ects. Finally, we comment on the current observational status of

strong lensing of GWs and science case for such detections. This chapter is based on

discussions in [20, 137,138].

2.2 Gravitational Lensing in GR: Theory

Similar to our treatment in section 1.1.1, we begin by writing the spacetime metric but

now around a general metric ḡµ⌫ instead of ⌘µ⌫ ,

gµ⌫ = ḡµ⌫ + hµ⌫ . (2.1)

As a first specification, we restrict ourselves to the macroscopic description of the system

by assuming the following hierarchy of scales in the problem.

h ⌧ �̄

LB

⌧ 1, (2.2)

where h is the trace of the metric perturbation and represents the approximate strain

amplitude. �̄ = �

2⇡ denotes the reduced wavelength of the perturbation, hµ⌫ , and LB is

the length scale of the background curvature. In this regime, the background curvature

is not significantly influenced by the microscopic metric perturbations themselves (e.g.,

see Section 1.5 of [20]).

Our goal is to derive a wave equation analogous to Eq. 1.5, but in a curved background.

One major di↵erence here is the need for covariant formalism. We use the a�ne connec-

tions (Christo↵el symbols) to define derivatives instead of the partial derivatives, as in

the Minkowskian metric where the Christo↵el symbols vanish. The covariant derivative

is defined as:

r�Xµ⌫ = @�Xµ⌫ � ��

�µ
X�⌫ � ��

�⌫
Xµ�, (2.3)

where the Christo↵el symbol takes the form:

��

µ⌫
=

1

2
g
�� (@µg�⌫ + @⌫g�µ � @�gµ⌫) (2.4)

To leading order in h and next-to-leading order in �̄

LB
, the Ricci tensor outside the matter
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sources again vanishes, i.e., Rµ⌫ = 0. This leads to the equation: [20]

ḡ
⇢�
�
r̄⇢r̄⌫hµ� + r̄⇢r̄µh⌫� � r̄⌫r̄µh⇢� � r̄⇢r̄�hµ⌫

�
= 0. (2.5)

Note that both the covariant derivative, r̄, and the index contraction are with the metric

ḡµ⌫ .

Similar to section 1.1.1, working with the trace-reversed metric h̄µ⌫ ⌘ hµ⌫ � 1
2 ḡµ⌫h with

trace h ⌘ ḡ
µ⌫
hµ⌫ and imposing the Lorentz Gauge condition:

r̄µ
h̄µ⌫ = 0, (2.6)

we obtain the wave equation:1

r̄⇢r̄⇢h̄µ⌫ = 0. (2.7)

This is the generalization of the linearized wave equation 1.5, but with the d’Alembert

operator, ⇤ ⌘ @
⇢
@⇢, replaced by r̄⇢r̄⇢. This generalization should however be treated

with caution, and is not true for all background spacetime —particularly for those where

the scale hierarchy in Eq. 2.2 is not satisfied. In these cases, where the perturbation wave-

length �̄ is not well separated from the background curvature scale LB, the distinction

between the background and GWs become ambiguous. In such regimes, the leading-order

approximation that led to Eq. 2.7 breaks down, and the wave equation cannot be reliably

written in the same form as in flat spacetime with @µ@µ ! rµrµ.

To study propagation e↵ects on the metric tensor, hµ⌫ , we make the Eikonal approxima-

tion for GWs under the assumption that the amplitude, wavelengths, and the polarization

of the wave vary on a larger scale as compared to its phase which varies on the scale of

the wavelength �̄, i.e.

h̄µ⌫(x) = [Aµ⌫(x) + "Bµ⌫(x) + . . . ] ei✓(x)/". (2.8)

Here, ✏ ⌘ �̄

LB
, is a fictitious parameter to denote the di↵erence in scale over which

amplitudes and phase change. We define the wave vector, kµ ⌘ @µ✓ and express the

1Here, we have ignored higher-order h
L2

B
and h

�̄2 terms of the Ricci Tensor, in line with the hierarchy

of scales in Eq. 2.2.
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tensor amplitude Aµ⌫ as a product of a scalar amplitude A and polarization tensor eµ⌫ ,

i.e., Aµ⌫ = Aeµ⌫ . Using this ansatz in the Lorentz gauge condition (Eq. 2.6) and the

wave equation (Eq. 2.7), we obtain:

k
µ
eµ⌫ = 0 (2.9)

k
µr̄eµ⌫ = 0 (2.10)

Equations 2.9 and 2.10 imply that GW polarizations remain transverse and are parallel

transported along null geodesics. Therefore, lensing does not alter the polarization tensor,

which allows us to express the perturbation as:

hµ⌫ = � eµ⌫ , (2.11)

and solely study lensing e↵ects on the scalar wave, �. The wave equation for the scalar

�, derived from Eq. 2.7, is:

@µ

�p
�ḡ ḡ

µ⌫
@⌫�
�
= 0 (2.12)

2.3 The amplification factor

Assuming a weak-field approximation of the background metric,

ḡµ⌫ =

2

4�(1 + 2U) 0

0 (1� 2U)�ij

3

5 , (2.13)

where U is the Newtonian potential (U ⌧ 1), the frequency domain equation for �̃(f, r)

to leading order in U is given by:

(�+ !
2)�̃(f, r) = 4!2

U �̃(f, r), (2.14)

where � is the Laplacian operator and ! = 2⇡f . In the absence of the lens (U = 0),

this simplifies to the standard wave equation in Euclidean space. The e↵ect of lensing

can be quantified by using the amplification F (f, r) = �̃(f, r)

�̃0(f, r)
, where �̃0(r) represents the
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Figure 2.1: Schematic representation of gravitational lensing in the thin-lens approxima-
tion. The diagram illustrates the bending of GWs or electromagnetic waves due to an
intervening mass, referred to as the lens. The optical axis passes through the observer
and the lens. The source is located in the source plane (blue) and the lens in the lens
plane (orange). The true position of the source is at an angular position �, while the
lensing causes the observed image to appear at an angular position ✓ due to the deflection
by an angle ↵̂. Distances between the observer and the lens (DL), the lens and the source
(DLS), and the observer and the source (DS) are indicated in the diagram.

unlensed solution (U = 0). The thin-lens approximation is commonly used to compute

F (f). This assumes that the lens is localized in a 2D plane rather than being extended

in three dimensions. This assumption is reasonable because astrophysical lenses, such as

galaxies or compact objects, are much smaller compared to the distances between the

observer, the lens, and the source. An illustrative case is shown in Figure 2.1.

Under this scheme, the amplification factor F (f) can be written using the Kirchho↵

di↵raction integral [137]:

F (f) = �◆DLDS

cDLS

f

Z
d
2~✓ e

2⇡◆ftd(~✓,~�). (2.15)

Here, ~� and ~✓ are the angular positions of the source and the image, respectively, defined

relative to the optical axis. The integral sums over all image positions in the lens plane,

incorporating the phase delays introduced by the lens. The term td(~✓, ~�) represents the
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time delay and is given by:

td(~✓, ~�) =
DLDS

cDLS

"
(~✓ � ~�)2

2
�  (~✓)

#
. (2.16)

The first term corresponds to the geometric time delay due to the path di↵erence between

the lensed and unlensed rays. The second term arises from the two-dimensional deflection

potential caused by the gravitational field of the lens and is often referred to as the Shapiro

delay.

The deflection potential  (~✓) is the projection of the Newtonian potential U onto the lens

plane. It is related to the two-dimensional surface mass density of the lens, ⌃(~✓), by:

 (~✓) =
1

⇡⌃cr

Z
d~✓

0⌃(~✓0) ln |~✓ � ~✓
0| (2.17)

Here, ⌃cr =
c
2
DS

4⇡GNDLSDL
represents the critical mass density. The significance of the thin-

lens approximation becomes evident at this stage, as it allows us to work with the surface

mass density rather than the full three-dimensional mass distribution, ⇢.

⌃(~✓) =

Z 1

0

dz ⇢(z, ~✓), (2.18)

where z is the line of sight distance along the optical axis. Equation 2.15 represents the

full wave optics solution, and in principle, solves for the amplification factor given a source

at an angular position ~�, a lens with a surface mass distribution ⌃(~✓), and the distances

between the observer and the lens (DL), the lens and the source (DLS), and the observer

and the source (DS).2 For a point-mass lens, the integral has a closed-form solution.

However, for more general lens models without analytical solutions, traditional numerical

integration techniques often fail due to the highly oscillatory nature of the integrand.

In the next section, we discuss the geometric optics approximation for computing the

amplification factor.

2For cosmological distances, an additional factor of (1 + zL) appears in Equations 2.15 and 2.16, and
the distances are defined as angular diameter distances. However, since this thesis focuses on lensing
within our galaxy, we assume zL = 0.
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2.4 Geometric optics limit

As discussed earlier, the amplification factor in the wave optics regime, given by the

Kirchho↵ di↵raction integral, doesn’t have a closed-form solution in general. However, in

the geometric optics limit, when wavelength � is much smaller than the lens’ characteristic

size — such as its Schwarzschild radius, 2GNM

c2
— the integral is dominated by stationary

points of the exponent, @~✓td(
~✓, ~�) = 0, also known as the Fermat principle of least time.

In this regime, waves behave like rays that are deflected by the lens. For ground based

GW observatories, where wavelengths lie between O(104) and O(107) m, the geometric

optics approximation holds for lens masses exceeding 104M�.3 This consideration leads

us to the lens equation:

@~✓td(
~✓, ~�) = 0 (2.19)

=) ~� = ~✓ � @~✓ . (2.20)

Equation 2.20 can also be derived from the schematic diagram (Figure 2.1). The image

position ~✓ is related to the source position ~� and the scaled deflection angle ~↵ as follows:

~✓ = ~� + ~↵(~✓), (2.21)

where the scaled deflection angle is defined as

~↵ ⌘ DLS

DS

↵̂. (2.22)

From Eqs. 2.20 and 2.21, it follows that

~↵(~✓) = @~✓ . (2.23)

For strong lensing, the lens equation (Eq. 2.20) may admit multiple solutions for ~✓,

meaning that a single source at ~� can produce multiple images, where the wavefronts

arrive with a time delay. Often in the case of transients, the time delay between the images

3For electromagnetic waves, which have much shorter wavelengths, the geometric optics approximation
remains valid for significantly smaller lens masses. This transition from wave optics to geometric optics
is an important distinction between the lensing of GWs and electromagnetic waves.
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is greater than the in-band time of the events, leading to two or more temporally resolved

copies of the same signal. Another consequence of strong lensing in the geometric optics

limit is that individual images have di↵erent magnifications, given by the inverse Jacobian

of the lens mapping in Eq. 2.20. For the i-th image at location ~✓i, the corresponding

magnification is:

µi =

�����
@~�

@~✓i

�����

�1

. (2.24)

In the geometric optics limit, the Kirchho↵ di↵raction integral picks up the contribution

from individual images:

F (f) =
X

i

|µi|
1
2 e
(2⇡◆ftd(~✓i,~�)� sign(f)ni⇡). (2.25)

Here, ni is the Morse index with ni = 0, 0.5, 1 for the minima, saddle point and maxima

of the time delay, respectively. We have laid out the formalism for discussing lensing for

a general lens model characterized by their surface mass density. The image positions,

magnifications, and time delays are dictated by the specific mass distribution of the lens.

In the next section, we derive the lensing properties of the point mass model in geometric

optics limit.

2.5 Point Mass Model

The point mass model [139–141] is commonly used for lensing by compact objects, such

as black holes, where the surface density for a ML mass lens is well represented by the

Dirac-delta function:

⌃(~✓) = ML�
(2)(~✓). (2.26)

This is one of those cases where the Kirchho↵ di↵raction integral has an analytical solution

for the amplification factor [137]. In this section, we derive the geometric optics solution

for the model. Using the Dirac delta mass profile in Equations 2.17 and 2.23, the scaled

deflection angle is given by:

~↵ =
4GNMLDLS

c2DLDS

~✓

✓2
. (2.27)
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The angular scale
q

4GNMLDLS
c2DLDS

is known as the Einstein angle, denoted by ✓E. Using

the expression for the scaled deflection angle, the lens equation for the point mass lens

becomes:

~� = ~✓ � ✓
2
E

✓2
~✓ (2.28)

It is conventional to express the lens equation in terms of dimensionless image and source

location on the lens plane, ~x ⌘ ~✓

✓E
and ~y ⌘ ~�

✓E
, respectively. This leads to:

~y = ~x� ~x

x2
(2.29)

A notable feature in Equation 2.28 is that ~� and ~✓ are collinear, meaning the images lie

along the same direction as the source position on the lens plane. Using this, we can

solve for the image location given the source location following the scalar equation:

� = ✓ � ✓
2
E

✓
(2.30)

Since this is a quadratic equation in ✓, it has two solutions, denoting the image positions

of two images formed due to lensing by a point mass,

✓1
2
=
�

2

2

41±

s

1 +
4✓2

E

�2

3

5 . (2.31)

The individual magnifications of the two images, computed as the inverse Jacobian of

transformation between ~� and ~✓ (Equation 2.24), are given by:

µ1
2
=

2

41�
 
✓E

✓1
2

!4
3

5
�1

. (2.32)

To emphasize strong lensing by a point mass lens, we re-express the magnification in

terms of the dimensionless variable, y ⌘ �

✓E
,

µ1
2
=

1

4

 
yp

y2 + 4
+

p
y2 + 4

y
± 2

!
. (2.33)
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The magnifications of the individual images are monotonically decreasing functions of y,

implying higher magnifications for sources aligned close to the optical axis. As y ! 1,

µ1 ! 1 and µ2 ! 0. At y = 1, the magnification of the second image, |µ2| falls below

0.17, making the signal considerably weaker. Therefore, y < 1 or � < ✓E, is often used

to demarcate the strong lensing regime for point mass lenses. We will utilize this feature

in Chapter 3 to discuss strongly lensed sources.

The point mass lens model su�ces to describe lensing by BHs and serves the purpose for

this thesis. To characterize lensing by extended sources such as galaxies or dark matter

halos, the Singular Isothermal Sphere and Singular Isothermal Ellipsoid are commonly

used models [142]. For further discussions on these models, we refer the readers to

[143–147].

2.6 Strong lensing of GWs

Arthur Eddington’s 1919 solar eclipse expedition provided one of the earliest observations

of gravitational lensing by measuring the deflection of starlight weakly lensed by the Sun

and significantly contributing to the early acceptance of GR. The first confirmed case of

gravitational lensing by a galaxy was reported by Walsh, Carswell, and Weymann in 1979,

who observed the doubly imaged quasar Q0957+561A,B during an optical follow-up of a

radio source [148]. Shortly thereafter, in 1980, a quadruply imaged quasar, PG 1115+080,

was discovered at a redshift of 1.72, with its lensing galaxy at z = 0.31 [149]. Since

then, electromagnetic observations have identified several such lensed systems, where the

background galaxies or quasars appear as distinct images or are distorted as arcs or

Einstein rings. Similar to electromagnetic signals, GWs can also be lensed by intervening

masses. In case of transient events from CBCs, strong lensing by galaxies or galaxy

clusters can form multiple temporally separated copies of the same event. As discussed

earlier, in the geometric optics regime, these images will have similar phase evolution, but

di↵erent amplitudes due to the varying magnifications. Moreover, unlike electromagnetic

sources, which are well localized, our ability to localize GW transients is not good enough

to distinguish their sky positions 4. This also forms basis for many searches for lensed

CBCs, which rely on overlapping sky area and consistent phase evolution across events

4This is not always the case for CWs, where the angular resolution for long integration time are much
better than CBCs
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to classify or reject them as lensed images. For example, the Posterior Overlap method

performs hypothesis tests for the unlensed vs lensed hypothesis by comparing the Bayesian

posterior distributions across pairs of events [150]. Another pipeline, the joint PE method,

samples the joint likelihood across two data streams to estimate the lensing probability

[151, 152]. Machine learning methods, such as those in [153], search for identical phase

evolution with the time-frequency maps (Q-transforms [154]) and the Bayestar skymaps

[155] of the events.

Although there has yet to be a confident detection of the gravitational lensing of GWs

[156] 5, there is a growing consensus in the literature that lensed GWs from merging

BBHs are likely to be detected in the upcoming observing runs of LIGO, Virgo, and

KAGRA (see e.g., [158]). Observing such events will provide additional insights into

various aspects of astrophysics, cosmology and fundamental physics. Apart from being

the very first detection of gravitational lensing involving a new messenger, they will enable

accurate localization of the host galaxy of the merger [159], provide unique constraints

on the constituents of dark matter [160–162], on models of the populations of galaxies

and galaxy clusters [163], and on alternative theories of gravity [164–166]. Even the non-

observation of lensing signatures has been instrumental in placing several astrophysical

constraints, such as limits on abundance of compact objects as dark matter [162, 167],

formation channels of BBH mergers [168], and the CBC merger rate density at high

redshifts [169].

5Note, however, that some tantalizing candidates of lensed GW signals have been proposed; see, e.g.,
[157].
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Chapter 3

Prospects for detecting lensed

continuous gravitational waves

3.1 Introduction

Gravitational lensing has been a powerful tool in electromagnetic astronomy, o↵ering in-

sights into dark matter distribution in the universe [170,171], cosmic expansion [172,173],

and structure of distant galaxies [174] and clusters [175]. Additionally, it has also emerged

as a novel test of GR [176]. As discussed in chapter 2, similar to light, GWs are also

lensed by the intervening masses [137, 177–179]. Recent estimates suggest that a small

fraction (< 1%) of BBH mergers may be strongly lensed by intervening galaxies [158].

The LVK collaboration has detected O(100) events until their O3 run, while the current

observing run (O4) has already observed 200 more events. In the third-generation (3G)

era, the BBH detection rate is projected to reach 105� 106 per year [180]. As the catalog

of GW events continues to grow with increasing sensitivity of the detectors, the first ob-

servations of strongly lensed GWs —likely from merging binaries —are expected in the

near future. Such detections will mark a new era of astronomy, complementing the cur-

rent probes from the electromagnetic front. These scenarios have already been explored

extensively in research on lensing of CBCs (see, e.g., [166, 181–184] for tests of GR with

lensed GWs, [185–187] for precision cosmology with strongly lensed GWs, and [159] for

accurate localization of lensed events).

However, lensing of CWs —long lived monochromatic signals such as from spinning non-
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axisymmetric NSs —remain almost unexplored in the literature. This is mostly a con-

sequence of the horizon distance for CWs being limited to within our Galaxy or its im-

mediate vicinity, unlike the loud transient CBCs originating from cosmological distances.

Despite strong lenses being scarce in our galaxy, one promising lens is the Galactic su-

permassive BH (SMBH), Sgr A*, discovered as a radio source by Balick and Brown in

1974 [188]. Follow up studies on periodic stellar orbits around the Galactic center ascer-

tained its nature as a supermassive compact object [189,190], and estimated its mass to

be around 4.15⇥ 106M� [191]. More recently, the Event Horizon Telescope provided the

first direct image of Sgr A*, revealing its shadow and surrounding accretion flow [192].

Searches for CWs directed towards the Galactic center [4] probe a region where strong

gravitational lensing could play an important role as some of the NSs beyond Sgr A*

may lie close to the optical axis —the line connecting the Earth and the lens (Sgr A*)

—making them strong lensing candidates. Motivated by this, we explore the prospects

of observing the gravitational lensing of CWs from spinning NSs by the Galactic SMBH

in this chapter.

3.2 Method

In this section, we outline the method adopted in this chapter and then discuss them in

more detail in the following sections. Focusing exclusively on strong lensing, we expect

the CWs to be lensed if the source NS resides within the Einstein angle of the lens, as

discussed in section 2.5. Assuming the SMBH to be a point mass lens, strong lensing will

produce two copies of a CWs, with a time delay between them 1. This arises because,

in the geometric optics limit, the lens equation for a point mass lens has a quadratic

form and admits two solutions (see Eq. 2.30), corresponding to two distinct images. The

copies will have di↵erent amplitudes, although their time-dependent phase will be identi-

cal. Unlike CBCs, where the time delay results in separate events, the lensed CW images

are persistent, and the time delay results in a phase shift between the two images. The

image waveforms will therefore appear in the detector as one superposed CW, whose am-

plitude will depend on the magnifications of the images as well as the time-delay between

1CWs from rapidly spinning NSs, with spin frequencies spanning ⇠ 10� 1000 Hz, have wavelengths
that are O(102�104) times smaller than the Schwarzschild radius of the Galactic SMBH. The geometric
optics approximation therefore holds for the lensing scenario considered here.
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the two copies of the signal at the detector2.

The number of NSs that are expected to lie within the Einstein angle of the SMBH will

depend on the (poorly known) spatial distribution of NSs in the galaxy. We consider

various astrophysically motivated distributions presented in the literature, and evaluate

the distribution of the number of NSs that fall within the Einstein angle, assuming a

total of 109 NSs in the galaxy [193]. We find that up to 6 NSs will be within the Einstein

angle of the SMBH, so their CWs, if detected, will be strongly lensed.

We further assess the detectability of these signals by 3G GW detector network consisting

of two Cosmic Explorers [194] and one Einstein Telescope [55], incorporating the e↵ects

of lensing magnification and time delays. The detectability, characterized by the signal-

to-noise ratio (SNR), is proportional to their amplitude, as well as the square root of the

observation time [43]. The CW amplitude, in turn, is proportional to the ellipticity, the

moment of inertia, and the square of the spin frequency of the NS apart from extrinsic

parameters such as the location and orientation (see discussion in section 1.4.2).

We assume an ellipticity of 10�7, which is an order of magnitude smaller than the best

upper limits obtained from a directed search for NSs towards the Galactic center, for a

fiducial moment of inertia of 1038 kgm2 [195]. Spin frequencies are drawn from the spin

distribution of known pulsars [8]. The signal amplitude is averaged over the inclination

angle of the NS’s rotation axis with respect to the line of sight, over the angle between

the rotation axis and the axis of symmetry, as well as the polarization angle. Using a

single template search (i.e., assuming that the source parameters are known a priori) the

probability of detecting at least one lensed CW signal at 1% false alarm rate (FAR) is

⇠ 0 � 15% (2 � 53%) in LIGO-Virgo (third generation detectors). For a more realistic,

directed search towards the Galactic center using ⇠ 1012 templates [196], the correspond-

ing probability is ⇠ 0 � 2% (2 � 51%). Note that the ellipticity of most NSs could be

2Proper motion of NSs induces distinct phase evolution for the individual images, producing beating
patterns in the superposed signal. Additionally, the spin-down of the NS during the time delay can also
introduce a slight frequency di↵erence between the two images, resulting in similar beating patterns.
However, for time delays of orderO(10)–O(100) seconds, the contribution from spin-down is subdominant
compared to the e↵ect of the source’s proper motion. Since this chapter focuses specifically on the
astrophysical viability of detection, we defer a detailed discussion of these waveform modulations to later
chapters.
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much lower. For a more conservative assumption of ✏ = 10�8, LIGO-Virgo detectors

are unlikely to detect any lensed signals. In 3G detectors the detection probability is

⇠ 1 � 36% (⇠ 0 � 18%) at 1% FAR for single template search (1012 templates). If the

ellipticity is lower than 10�8, the detection probability will be even smaller, as would

prospects for CW searches in general.

We detail these steps in the rest of the chapter. Section 3.3 revisits gravitational lensing

by a point mass lens and describes the spatial distributions of NSs assumed, as well as the

resulting estimate of the number NSs strongly lensed by the Galactic SMBH. Section 3.4

delineates the calculation of the SNR and provides the (SNR-threshold-dependent) prob-

ability of detecting a lensed CW in the 3G era. Section 3.5 summarizes the chapter,

discusses potential waveform modulations of lensed CW signals, and outlines the possible

astrophysical measurements that can be performed from such an observation.

3.3 Number of strongly lensed neutron stars

In section 2.5, we discussed lensing by a point mass lens in the geometric optics limit.

Here, we first revisit some key aspects from that discussion. The strong lensing of GWs,

in the geometric optics limit, is identical to that of the lensing of electromagnetic waves,

and applies in general to null geodesics (see e.g. [197]). Thus, as with the gravitational

lensing of light, the fundamental equation that governs strong lensing of GWs is the so-

called lens equation, which relates the source location ~�, with the image location ~✓, via

a deflection angle ~↵(~✓)

~� = ~✓ � ~↵(~✓). (3.1)

Note that ~�, ~✓ are angles measured with respect to the line connecting the Earth and the

lens, called the optical axis. A natural angular scale that emerges in the lensing by a point

mass ML is the Einstein angle, ✓E =
q

4GNMLDLS
DSDL

, such that the deflection angle ~↵ =
✓
2
E
✓2
~✓.

Here, DS, DL are the distances (from Earth) to the source and the lens, respectively, and

DLS = DS�DL.3 The Einstein angle can also be used to define dimensionless parameters,

like the impact parameter, y ⌘ �

✓E
. With this parameterization, the magnifications of the

3Since the distances considered in this work are Galactic, cosmological e↵ects are negligible. These
distances can therefore be approximated to be Euclidean.
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Figure 3.1: Schematic diagram of the distribution of NSs (blue dots) projected onto in
our Galactic plane. The Einstein cone of the central SMBH is shown by the gray region
(highly exaggerated). The NSs within the Einstein cone will be strongly lensed by the
SMBH.

individual images can be expressed solely in terms of y:

µ1
2
=

1

4

 
yp

y2 + 4
+

p
y2 + 4

y
± 2

!
. (3.2)

For y > 1 i.e. � > ✓E, the second image exists for the point mass model but is highly

demagnified. Thus, we conservatively define the strong lensing regime as � < ✓E. Inves-

tigating the prospects of detecting lensed CWs therefore involves counting the expected

number of NSs within the Einstein angle of the SMBH and assessing the detectability

of CWs produced by them. This requires assumptions on the total number of NSs in

our galaxy and their spatial distribution. While it is generally believed that ⇠ 109 NSs

reside in the our galaxy [193], only ⇠ 103 have been detected so far through electromag-

netic observations. Thus, little is known about the statistical properties of Galactic NSs,

including their spatial distribution.

We consider three types of spatial distribution of NSs in the galaxy. One assumes that NSs

have the same distribution of stars in the young Galactic disk. Following [5], we write the
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probability distributions in galactocentric cylindrical coordinates system (R,�, z), where

the z axis corresponds to the rotation axis of the Milky Way, as:

dP

dR
= aR

R

R
2
0

exp

✓
�R

R0

◆
, (3.3)

dP

dz
=

1

2z0
exp

✓
�|z|
z0

◆
, (3.4)

where R0 = 4.5 kpc and z0 = 0.07 kpc are scaling constants. We call this the “progenitor”

model.

This will be a good approximation of the spatial distribution of the NSs if their natal

kicks are small or when the NSs are young. However, the distribution of NSs can di↵er

from that of stars depending on the NS birth velocities, which remains largely uncertain.

To mimic the e↵ect of natal kicks on the spatial distribution of NSs, some authors have

considered di↵erent choices of z0 in Eq.(3.4). For example, [7] uses a range of z0 values

out of which we choose four di↵erent values (z0 = 0.1, 0.2, 0.5, 1 kpc) in Eq.(3.4) along

with a Gaussian-like distribution in R.

dP

dR
=

R

�
2
R

exp

✓
�R

2

2�2
R

◆
, (3.5)

where �R = 5 kpc. We refer to this class of models as Reed (z0) models.

Several studies also have evolved populations of NSs in the Galactic potential by consid-

ering di↵erent models of the birth velocity to predict the expected distribution of NSs

in the present epoch. [6] assumes that the NSs are born in the galaxy with a constant

birth rate, at locations given by the progenitor distribution presented in Eqs.(3.3)-(3.4).

They evolved this distribution under several di↵erent assumptions on their birth veloc-

ities (indicated by 1A, 1B, 1C, 1D, and 1E), and two di↵erent models of the Galactic

potential (models with and without a “*”). By fitting their simulation data, [6] presented

the following fitting functions:

dP

dR
/ R exp

�
a0 + a1R + a2R

2 + a3R
3 + a4R

4
�
, (3.6)

dP

dz
/ 1

b0b
z

1 + b2
, (3.7)

where the fitting coe�cients are tabulated in Tables A.1 and A.2 of [6].
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For these models, we finally construct the 3-dimensional distribution

dP

dRd�dz
= C

dP

dR

dP

d�

dP

dz
, (3.8)

where all models assume axial symmetry around the rotation axis of the galaxy (dP/d� =

1/2⇡). The distributions in [5] and [7] are already normalized; hence C = 1. For [6]

models, the normalization constant C is determined by the condition that a certain

fraction of the NSs presently resides in the disk of the galaxy.

Z
Rdisk

R=0

dR

Z 2⇡

�=0

d�

Z
zdisk

z=�zdisk

dz
dP

dRd�dz
= fdisk. (3.9)

Above, Rdisk = 20 kpc and zdisk = 0.2 kpc, while fdisk is given in Table 4 of [6].

One could distribute the entire population of NSs in the galaxy following the 3-dimensional

distribution and search for lensed sources within the population. However, it is computa-

tionally expensive to simulate several realizations for such a large number of NSs. Since

this is essentially a number-counting problem, we can use Poisson statistics to evaluate

the distribution of lensed NSs. We therefore need to evaluate the average number of NSs

that would be strongly lensed (producing multiple images) for each of the assumed distri-

butions. In order to estimate that, we numerically integrate the probability dP

dR,d�,dz
over

a cone-like region around the optical axis with a radius of rE ⌘ ✓EDs (shaded region in

Fig. 3.1), and multiply it by the total expected number of NSs in the galaxy (N ⇠ 109).

We refer to this average as N̄✓E .

N̄✓E = N

Z

lensing cone

dRd�dz
dP

dRd�dz
. (3.10)

Depending on the distribution N̄E varies from 0.1 to 5.6. Assuming no spatial clustering

of NSs, the actual number, N✓E , of NSs that will be strongly lensed by the SMBH will

be distributed according to a Poisson distribution with mean N̄✓E :

P (N✓E = n|N̄✓E) =
(N̄✓E)

n
e
�N̄✓E

n!
. (3.11)

Figure 3.2 shows the distribution of N✓E for various models of the NS spatial distribution

and Galactic potential. We see that the probability of at least one NS being inside the
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Figure 3.2: (Reverse) Cumulative distribution of the expected number of NSs within
the Einstein angle of the Galactic SMBH as predicted by di↵erent models of the NS
spatial distribution and Galactic potential. “Progenitor” model assumes that the spatial
distribution of NSs follows that of the stars in the galaxy [5]. Models 1A, 1B, 1C, 1D
and 1E are predicted by [6] assuming di↵erent models of NS birth velocities. The dashed
curves correspond to the models 1A*, 1B*, 1C* and 1D* of [6] which assumes the same
NS birth velocities but a di↵erent model for the Galactic potential. For the [7] models,
we consider di↵erent values of z0 (shown in brackets, in kpc). The probability of at least
one NS being inside the lensing cone, P (N✓E � 1), is ⇠ 0.1� 1, depending on the model.

lensing cone is significant ⇠ 0.1� 1, depending on the model.

3.4 Lensed continuous GWs and their detectability

We model NS as a triaxial ellipsoid (see, e.g: [198]). Its ellipticity is defined in terms of

the moments of inertia around the rotation axis (I) and in the plane perpendicular to

the principal axis (I1, I2):

✏ =
|I1 � I2|

I
. (3.12)

For a triaxial ellipsoid NS with moment of inertia about rotation axis, I, and ellipticity ✏,

the resulting time-varying mass quadrupole moment will produce GWs whose amplitude

is proportional to ✏, I, as well as the squared rotation frequency f?:

h0 =
16⇡2

GN

c4

✏ I f
2
?

r
, (3.13)
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Figure 3.3: Histogram of GW emission frequencies (i.e., twice the rotation frequency) of
known pulsars from the ATNF catalogue [8]. Vertical dashed lines indicate the inverse
cumulative distribution function evaluated at 5 Hz, 10 Hz, and 100 Hz, illustrating the
fraction of pulsars emitting above those frequencies. The ASD curves of the ET and CE,
from the “optimal” curves presented in Fig. 2 of [9], are overlaid (refer to the right y-axis)
highlighting the frequency ranges where these detectors are sensitive.

where r is the distance to the NS. For the mass quadrupole radiation considered here,

we consider the monochromatic signal at twice the rotation frequency of the star (fGW =

2f?). As in the discussion of section 1.4.2, other mechanisms such as the r-mode instabili-

ties or free precession in NSs can radiate at di↵erent harmonics (43f? and f? respectively).

The corresponding GW polarizations are given by:

h+(t) = A+ h0 cos (2⇡fGW t+ ') , (3.14)

h⇥(t) = A⇥ h0 sin (2⇡fGW t+ ') , (3.15)

where A+ = sin2
�

1+cos2 ◆
2 , A⇥ = sin2

� cos ◆. Here, ◆ is the inclination angle between the

total angular momentum vector of the star and the line of sight, � is called the wobble

angle, and ⇡

2 �� is the misalignment angle of the total angular momentum to the rotation

axis, and ' is a constant phase o↵set. 4

4For � 6= ⇡
2 , free precession of the system also leads to emission at fGW = f⇤. We only consider the

second harmonic, fGW = 2f⇤ here.
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The measured GW strain at a detector depends on its response to the GWs. This

response, characterized by the time-dependent antenna pattern functions F+(t), F⇥(t),

depends on the relative orientation and location of the detector with respect to the

source location:

h(t) = F+(t)h+(t) + F⇥(t)h⇥(t). (3.16)

CWs lensed by the Galactic SMBH (modeled as a point-mass lens with mass ML), will

produce exactly two images with magnification µ1
2
and time delay �t1

2
. As we established

in chapter 2, lensing doesn’t alter polarisations of GWs. The lensed strain for “plus” and

“cross” polarisations of the two images can be written as:

h
L

j,
+
⇥
(t;µj,�tj) =

q
|µj|hj,

+
⇥
(t��tj) (3.17)

where the subscript j 2 {1, 2} denotes the two images, µj is their respective magnifications

and �tj their time delays. Without loss of generality, one can set the �t1 = 0 such that

�t2 (hereafter just �t) denotes the arrival time delay of the second image with respect

to the first. For a point mass lens, in the strong lensing regime, i.e., � < ✓E, the time

delay between the two images is approximately given by:

�t ' 2
DLDS

cDSL
✓E�. (3.18)

For a lens mass of 4.15 ⇥ 106 M�, corresponding to Sgr A*, the time delay between the

two images varies approximately between 16 and 160 seconds as � ranges from 0.1 ✓E to

✓E. The resulting strain measured at the detector will therefore be a superposition of the

two copies of CWs:

htot(t) =
p

µint [F+(t)h+(t) + F⇥(t)h⇥(t)] . (3.19)

Here, µint is an amplification factor that results from the interference of the two lensed
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signals, and is given by 5

µ
int = |µ1|+ |µ2|+ 2

p
|µ1µ2| cos(2⇡fGW�t). (3.20)

In order to assess the detectability of such signals, we evaluate an averaged SNR ⇢ of

the composite image given in Eq. 3.19 (which depends on an averaged h
2
tot), where the

average is taken over the period of rotation of the NS (for h+,⇥), the sidereal day (for

F+,⇥), as well as the inclination angle (◆), polarization angle ( ), and wobble angle (�).

⇢ =

"
h(htot)2i(fGW)Tobs

Sn(fGW)

#1/2
. (3.21)

Here, Sn(fGW) is the detector’s noise PSD at the GW frequency, and Tobs is the obser-

vation time. Since the signal is periodic during the observation time, the SNR can be

evaluated using a time average. While doing so, it is important to note that the two

polarizations of the signal are periodic over the much shorter half-rotation period of NS

while the antenna pattern function is periodic over a sidereal day. The time average

h(htot)2i can therefore be separated into an average over the NS period for h(h+)2i and

h(h⇥)2i, and a sidereal day average for hF 2
+i and hF 2

⇥i.

We simulated populations of NSs within the lensing cone, distributed according to di↵er-

ent models. For each NS, we computed the lensing magnifications and time delays using

Eqs. (3.2) and (3.18). The single-detector SNR (defined in Eq. (3.21)) was evaluated

for the superposed images after accounting for interference (cf. Eqs. 3.19, 3.20). We set

the sky location of the lensed sources to coincide with the location of the SMBH (Sgr

A*), which is a good approximation given that the Einstein angle extends to within an

arcsecond centered at that location. We assume an ellipticity of ✏ = 10�7, and frequencies

drawn from the frequency distribution of pulsars in the ATNF catalog [8].

The network SNR is the quadratic sum of the individual detector SNRs.

5Note that in addition to this amplification, lensing will add a constant phase 'int to the signal that
depends on the magnifications of the images, and the time delay. This can be absorbed into the phase
constant '. However, proper motion of the source with respect to the optical axis will make µint and 'int

time-dependent, introducing amplitude and phase modulations in the lensed signal. We discuss these
implications in later chapters.
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Figure 3.4: (Reverse) Cumulative distribution of the SNRs of the lensed NSs for di↵erent
spatial distributions (same as Fig.3.2). The SNR threshold of 4.5 corresponding to a false
alarm probability of 1% and false dismissal probability of 10% using a single-template
search is shown by the vertical line. The fraction of lensed NSs crossing the threshold is
approximately reflects fraction of the pulsar population above rotation frequency of 50
Hz (fGW = 100 Hz) as seen in Fig. 3.3

The fraction of detectable NSs within the Einstein angle is

N
det
✓E

= N✓E ↵(⇢thresh), ↵(⇢thresh) =

Z 1

⇢thresh

dP

d⇢
d⇢, (3.22)

where the SNR distribution dP/d⇢ for each model is estimated from simulations (see

Fig. 3.4). We reference our SNR threshold choice based on the formulation developed

by Jaranowski, Krolak & Schutz [43], which defines a detection statistic, known as F-

statistic, by analytically maximizing log-likelihood over the amplitude parameters. It

has been shown that X = 2F follows a chi-squared (�2) distribution with 4 degrees of

freedom and a non-centrality parameter equal to square of the SNR, ⇢2, i.e.

P (X) = �
2(X|4, ⇢2) (3.23)

The false alarm probability (FAP) and the false dismissal probability (FDP) can be used
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to set the threshold on ⇢ by using:

FAP =

Z 1

Xthresh

�
2(X|4, ⇢2 = 0)dX (3.24)

FDP =

Z
Xthresh

0

�
2(X|4, ⇢2)dX (3.25)

Choosing a FAP of 1% with a FDP of 10% sets Xthresh = 13.27 and corresponding

⇢thresh = 4.5. Figure 3.5 shows the distribution of detectable number of NSs within

the Einstein cone based on this choice of threshold. Depending on the model and the

assumptions of the NS properties, the probability of detecting at least one strongly lensed

NS is ⇠ 2� 53% 6.

We also investigated the detection probability of lensed NSs in the fifth observing run

(O5) of LIGO, Virgo and KAGRA [199], and find that the range of detection probabilities

is ⇠ 0 � 15% 7. However, a realistic search for such signals would require a bank of

templates, since the intrinsic parameters of the NSs are not known a priori. Assuming

a directed search towards the Galactic center involving ⇠ 1012 templates [196], the SNR

threshold corresponding to the FAP and FDP mentioned above, but now also accounting

for the trials factor due to the template bank, becomes ' 9.6. With this threshold, the

detection probability in O5 drops to ⇠ 0�2%. In 3G detectors, this probability continues

to be non-trivial, with a range of ⇠ 2� 51%. If we make a more pessimistic assumption

of ellipticity ✏ = 10�8, LIGO-Virgo detectors are unlikely to detect any lensed signals.

In 3G detectors, the detection probability is ⇠ 1� 36% for a single template search and

⇠ 0� 18% for a directed search involving 1012 templates. Smaller values of ✏ will reduce

the detection probability further.

These estimates are consistent with the non-detection of CWs by the directed searches

towards the Galactic center using LIGO-Virgo data from the third observing run [195].

Using the spatial and frequency distribution models that we employed to study the de-

tectability of lensed signals, we estimate the detection probability of (all) CWs to be

⇠ 0 � 2% with ✏ = 10�7 and coherent integration time of 1 yr 8. For the coherent in-

6We assume a three-detector network consisting of two CE detectors and one ET. The expected PSDs
are generated from the “optimal” curves presented in Fig. 2 of [9].

7We assume a five-detector network involving three LIGO detectors (including LIGO-India), Virgo
and KAGRA. The expected PSDs are generated using aLIGOAPlusDesignSensitivityT1800042,

AdvVirgo, KAGRALateSensitivityT1600593 functions of the PyCBC PSD package [200].
8Here we assume that the search is directed towards NSs located in a cone that has its apex on the

Earth and has a base radius equal to the Einstein radius of the SMBH for a source at DLS = 15 kpc.
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Figure 3.5: (Reverse) Cumulative distribution of the detectable number of strongly lensed
events by 3G detectors with SNR threshold of 4.5. The probability of detecting at least
one NS inside the lensing cone, P (Ndet

✓E
� 1), is ⇠ 2 � 53%, depending on the model.

The gray histogram shows the results computed using a simulation using the progenitor
model, while the di↵erent lines are analytical calculations using Poisson distributions.

tegration times of a few hours employed in [195], the expected detection probability is

almost zero.

3.5 Discussion

In this chapter, we explored the possibility of detecting CWs from spinning NSs strongly

lensed by the Galactic SMBH. Treating the SMBH as a point-mass lens, we consider

a source to be lensed if it lies within the Einstein angle of the SMBH. To assess the

prospects of detecting such lensed CWs, we considered several spatial distributions of

NSs presented in the literature. We find that up to 6 out of 109 NSs lie within the Ein-

stein angle. Accounting for the lensing magnification and time delays as well as the re-

sulting interference between the two images, we evaluate the detectability of such sources.

Unlike the lensing of GW transients such as CBCs, which gives temporally resolved copies

of signals whose morphology can be compared to determine whether they are lensed,

lensed CWs would show-up in the data as a single, interfering signal. However, they
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might be resolved as two di↵erent sources in the sky, if the integration time used in the

CW search is su�ciently large to attain a su�ciently large sky resolution. This is studied

in Chapter 4. Further, if lensing introduces a constant time delay, the interfered signal

would be indistinguishable from an unlensed CW with the same amplitude, except for a

constant phase shift.

However, if the relative transverse motion between the NS and the lensing optical axis

(axis connecting the Earth and the SMBH) is su�ciently large, the time delay �t be-

tween the lensed copies of the CW itself becomes a function of time. This will result in

the modulation of the amplitude and phase of the lensed CW signals. Generically, we

expect some relative motion between the NS and the optical axis. This could be caused

by the proper motion of the NS in the galaxy (e.g., due to the natal kicks; v ⇠ 100 km/s),

due to the motion of the Earth around the Sun (v ⇠ 30 km/s), or due to the di↵erential

motion of the solar system in the Galactic potential (v ⇠ 10 km/s). A simple, back-

of-the-envelope calculation can give an estimate of the degree of this modulation. From

Eq.(3.18), the accumulated change in the lensing time delay over an observational time T

can be estimated as ' 2DLDS
cDSL

✓E
d�

dt
T ' 2 DL

cDSL
✓E v T . This can cause several modulation

cycles in the amplitude and phase of the CW signal over the course of a year.

Lensed CWs, if detected, would enable unique probes of astrophysics and gravity. For

example, the lensing time delay, image separation and the amplitude of the images de-

pend on the mass of the lens. Such an observation would therefore be a unique and

independent way of measuring the mass of Sgr A*. We explore this in the next chapter.

In addition, compact objects and stars in the Galactic center could produce additional

microlensing e↵ects on the GW signal, which are potentially measurable [201–203]. This

would be a powerful means of probing the astrophysical environment of the Galactic

center. Unlike electromagnetic radiation, GWs do not su↵er from extinction, and can

potentially provide an uncontaminated picture. For example, radio pulsars are predomi-

nantly discovered away from the Galactic plane. Pulsars close to the galactic center are

a↵ected by strong radio-wave scattering, dispersion and absorption of the waves by the

free electrons, dust and ionized gas in the interstellar medium of the plane [204]. The
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nearest observed pulsar to the Galactic Center is PSR J1745-2900, which is still 0.1 pc

away from the Sgr A* along the line of sight, and even it is heavily broadened [205].

As such, lensed radio pulsar signals —which require pulsars to be aligned along the

line of sight to the Galactic SMBH —would be subject to these additional propagation

e↵ects, diminishing their observational viability. Lensed CW signals can, in principle,

also contain signatures of additional properties of the SMBH, such as its spin angular

momentum [206], and more speculatively, other possible “hairs” [207].
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Chapter 4

Inferring the mass of Sgr A* using

lensed continuous gravitational

waves

4.1 Introduction

The advent of GW astronomy has enriched our understanding of compact objects, such

as BHs and NSs. GW signals carry imprints of their source properties, such as their

component masses and spins in the case of CBCs. We discussed in Chapter 1, how

Bayesian PE techniques infer these properties post the detection of a GW signal. In

contrast, estimating the properties of galaxies however still relies on electromagnetic

observations. For example, studying the stellar kinematics through velocity dispersion

curves provides insights into the mass-profile of galaxies [208, 209]. Similarly, studying

Doppler shifts of 21 cm emission lines from neutral hydrogen have been used to study

rotation curves and map out mass distributions of galaxies. The galactic rotation curves

have also played a crucial role in confirming the presence of dark matter [210–212]. Such

galaxy-scale features are not yet accessible through GW events currently detected by the

LVK collaboration. The observation of lensed GWs in upcoming years will change this

scenario. These GWs will not only have information about the source properties, but also

carry information on the mass density profile of the lens galaxies and their substructure

through key observables, such as relative magnifications, time delay between multiple

images, and wave-optics e↵ects like frequency-dependent waveform modulations.
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Similarly, the SMBH at the center of the Milky Way Galaxy has been extensively studied

through electromagnetic observations. High resolution tracking of stellar orbits —partic-

ularly that of the star S2 —around the Galactic center, such as by the Keck Telescope,

Very Large Telescope, and more recently by the GRAVITY collaboration, have played es-

sential role in establishing that Sgr A* is a supermassive compact object and subsequently

estimating its mass to be around 4.15 ⇥ 106M� [10, 190, 191, 213]. The Event Horizon

Telescope image of Sgr A* has further strengthened claims of this compact object being

a SMBH [192].

In the previous chapter, we discussed the possibility that CWs from some non-axisymmetric

NSs could be lensed by the presence of the Galactic SMBH and detected by the next gen-

eration of detectors, such as the ET and CEs. Since lensed signals, as noted earlier,

carry additional imprints of the lens property, this chapter is dedicated to how such an

observation can be used to probe the mass of Sgr A*, independent of the electromagnetic

tracers.

4.2 Method

In this section, we outline the methods used in this chapter. As discussed in section

1.4, CWs are described by their amplitude and phase parameters. We first study how

gravitational lensing by a point mass, such as Sgr A*, a↵ects these parameters for the

two images. We focus the discussion on three observables: relative amplitude of the two

images which is determined by their respective magnifications, the shift in their phase

parameters due to the time delay 1, and their sky positions. The imprint of lensing

on signal morphology suggests that precise measurement of these parameters can help

us reconstruct the lens (Sgr A*) mass. To infer the precision on these parameters, we

employ the Bayesian PE technique to recover the posterior distributions of the individual

image parameters, and subsequently the lens parameters. While Bayesian PE is a robust

inference framework, performing it across the parameter space for di↵erent observation

times is computationally expensive. To address this, we then conduct a Fisher matrix

analysis to get error estimates and posterior distribution for di↵erent source and lens

parameters. In doing so, we also establish the consistency between the Bayesian PE and

1We also consider the case of a moving source, resulting in a time-dependent time delay
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the Fisher matrix method. We then resample the lens parameters from the amplitude

and phase parameter posteriors obtained for the two images.

The rest of the chapter is structured as follows: Section 4.3 details how the lens prop-

erties a↵ect the parameters of the two images. We note that the two images have their

amplitudes scaled with their respective magnifications, shift their sky position as well as

their inferred spin parameters. In Section 4.4, we detail the Bayesian PE technique used

to sample the image parameters. We then discuss an approximate and computationally

cheaper method of estimating these parameters using the Fisher matrix in Section 4.5.

The inference of the lens parameters from the image amplitude and phase is discussed in

Section 4.6. Section 4.7 summarizes the chapter.

4.3 Signal Morphology

In Chapter 3, to assess the detectability of the lensed signal, we averaged over the signal

phase to calculate the SNR. Inferring the posteriors on these parameters requires a more

careful treatment of how they enter the signal model. We therefore revisit our discussion

of Section 1.4 and explicitly write the phase of the signal measured at both the Solar

system barycenter (SSB) and at the detector’s location. For a nearly monochromatic

emission from the source, the GW phase can be expressed as a Taylor series:

�(tNS; {f (k)
GW}) = 2⇡

kmaxX

k=0

f
(k)
GW

t
k+1
NS

(k + 1)!
, (4.1)

where f (k)
GW represents the k-th derivative of the GW frequency at reference time tNS = 0.

In this chapter we adopt the quadrupole emission model from a triaxial NS, in which case

the GW frequency fGW = 2f , where f is the rotational frequency of the star. In terms

of the rotational frequency parameters {f (k)}, the phase of the signal at the NS can be

expressed as 2:

�(tNS; {f (k)}) = 4⇡
kmaxX

k=0

f
(k) t

k+1
NS

(k + 1)!
, (4.2)

2From hereon, unless explicitly stated as GW frequency, {f (k)} refers to the rotation spin parameters
of the star.
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For an isolated source, the time taken by a wavefront emitted by a non-relativistic NS at

a distance r to reach the SSB is a constant, r

c
. This allows us to treat the emission time

at the NS and the arrival time at the SSB as equivalent. The phase at the SSB can be

written as equivalent to the phase at the NS3:

�(tSSB; {f (k)}) = 4⇡
kmaxX

k=0

f
(k) t

k+1
SSB

(k + 1)!
, (4.3)

To write the phase at the detector, one needs to take into account the Doppler shift due

to the Earth’s rotation about its own axis as well as its revolution around the SSB. Based

on Eq. 1.53, the CW phase for a NS with intrinsic spin parameters {f (k)} at the detector

is approximately written as [43] 4:

�(t; {f (k)
, n̂}) = 4⇡

kmaxX

k=0

f
(k)

(k + 1)!
t
k+1 +

4⇡

c
n̂ · ~rd(t)

kmaxX

k=0

f
(k)
t
k

k!
, (4.4)

where n̂ denotes the sky position of the source measured at the frame attached to the

SSB. The total phase at the detector, (t; {f (k)}), includes a reference phase, �0 and is

given by:

 (t; {f (k)
, n̂}) = �0 + �(t; {f (k)

, n̂}). (4.5)

The key takeaway is that, since the phase at the SSB is expressible as a Taylor series

in terms of the NS spin parameters (Eq. 4.3), we can express the corresponding phase

measured at the detector incorporating the Doppler modulation terms as Eq. 4.4.

We can now write the GW strain time series measured at the detector as:

h(t) = F+(t;↵, �, )h+(t; {f (k)
, n̂})+

F⇥(t;↵, �, )h⇥(t; {f (k)
, n̂}), (4.6)

h+(t) = h0
1 + cos2 ◆

2
cos
⇥
 (t; {f (k)

, n̂})
⇤
, and (4.7)

h⇥(t) = h0 cos ◆ sin
⇥
 (t; {f (k)

, n̂})
⇤
. (4.8)

3The additional phase shift associated with the travel time can be absorbed in the reference phase,
�0.

4We ignore the Einstein and Shapiro time delay due to the local gravitational potential of the Solar
System
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Here, F+ and F⇥ denote the antenna pattern function for the two GW polarizations, ◆ is

the inclination angle of the source,  is the polarization angle, and h0 is the quadrupole

amplitude of radiation from a triaxial NS, given by Eq. 3.13.

Having studied the strain for a typical (unlensed) CW signal, we can examine how lensing

e↵ects the intrinsic amplitude and phase parameters for the individual images. There are

three features associated with a lensed signal in the geometric optics regime:

• Magnification of the individual images,

• Angular separation of the images,

• Time delay between the images.

As discussed earlier, for a source strongly lensed by a point mass, the magnification,

angular separation, and the time delay are given by:

µ1
2
=

1

4

 
yp

y2 + 4
+

p
y2 + 4

y
± 2

!
, (4.9)

� ~✓ = ~�

0

@
s

1 +
4 ✓2

E

�2

1

A , (4.10)

� t =
2DL DS

(DS � DL)
✓E � =

2DL DS

(DS � DL)
✓
2
E
y. (4.11)

Here, ~y =
~�

✓E
is the dimensionless impact parameter, ~� is the angular position with

respect to the optical axis, and ✓E is the Einstein angle.

The magnification factor µ modifies the observed strain amplitude of each lensed image,

scaling the intrinsic amplitude h0 by
p

|µ|. Consequently, the strain for the i-th image

becomes h0,i =
p

|µi|h0, where µi is the magnification of that image. Additionally,

lensing shifts the apparent angular position of the source, altering the sky location n̂ in

the detector-frame phase (Eq. 4.4). To understand the contribution of the time delay, we

note that the phase arriving at the SSB has an additional delay of �t for the second image

with respect to the first image. Henceforth, we restrict our treatment to the instantaneous

frequency, f (0) ⌘ f , and the first spin-down term, f (1) ⌘ ḟ . Therefore, while expressing

the phase of the two images at the SSB, �1 and �2, the second image should be time
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shifted by �t, i.e.,

�1(tSSB; {f, ḟ}) = 4⇡

✓
ftSSB +

1

2
ḟ t

2
SSB

◆
, (4.12)

�2(tSSB; {f, ḟ}) = 4⇡

✓
f(tSSB ��t) +

1

2
ḟ(tSSB ��t)2

◆
. (4.13)

If we consider a source to be moving with a constant transverse velocity ~v ⌘ v�̂, the

source position changes over time.

~�(t) = ~�(t0) +
~v

DS

(t � t0). (4.14)

Here, without loss of generality, we can set the reference time t0 = 0. Since, the expression

for time delay depends on the angular position of the source, ~�, movement of the source

introduces a time-dependent time delay. We can expand Eq. 2.16, for the moving source,

and compute the time delay of the second image with respect to the first at the SSB as:

�t(tSSB) = �t0 +  tSSB, (4.15)

 =
DL (~v · �̂)(2 ✓E)

cDSL

r
1 +

⇣
y

2

⌘2
. (4.16)

Here, �t0 represents the time delay at the reference time, t0 = 0. We now expand the

phase of the second image at the SSB in Eq. 4.13 accounting for the temporal dependence

of �t:

�2(tSSB; {f, ḟ}) = 4⇡

✓
f(tSSB ��t0 �  tSSB) +

1

2
ḟ(tSSB ��t0 �  tSSB)

2

◆
, (4.17)

= 4⇡

✓h
f(1� )� ḟ(1� )�t0

i
tSSB +

1

2

h
ḟ(1� )2

i
t
2
SSB

◆

� 4⇡f�t0 + 2⇡ḟ�t
2
0. (4.18)

Eq. 4.18 reveals that the phase of the second image at the SSB for spin parameters {f, ḟ}

is equivalent to the first image but with apparent spin parameters {f̃ , ˜̇f} in the Taylor
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expansion of the phase, i.e.

�2(tSSB; {f, ḟ}) ⌘ �1(tSSB; {f̃ , ˜̇f}) � �̃0, where (4.19)

f̃ = f(1� ) � ḟ(1� )�t0 (4.20)

˜̇
f = ḟ(1� )2 ⇡ ḟ(1� 2) (4.21)

�̃0 = �4⇡f�t0 + 2⇡ḟ�t
2
0 (4.22)

Consider a source with f = 500 Hz, ḟ = �10�9 Hz/s, y = 0.5, velocity =100 km/s and

DLS = 1 kpc. In this case, the frequency shift between the two images, f̃�f ⇡ �9⇥10�6

Hz. The resolution achieved in frequency as a function of coherent time T goes as 5:

�f ⇠ 1

T 3/2
. (4.23)

For full PE done with year long observation time, this resolution is su�cient to distinguish

the two images in frequency. This holds true for even the angular separation and frequency

derivative, and sets our premise to recover two lensed copies of the CW signal using

standard CW templates with di↵erent values for the frequency f , the spin down parameter

ḟ , reference phase �0 and the sky location (n̂).

It is noteworthy that even for no proper motion, i.e.,  = 0, there is a frequency shift

between the two images due to the intrinsic spin down of the source within the constant

time delay interval, �t0. We have now established the relation between the amplitude (h0)

and phase parameters (f, ḟ , n̂) of the images, and the lens parameters, (y,ML, DLS, v).

6 Although the reference phase is also shifted (see Eq. 4.22), it can only be measured

modulo 2⇡. For the typical time delay of O(10–100) s for strong lensing by Sgr A*, the

phase shift is much larger than 2⇡, and measurement of �̃0 cannot be used to infer the

lens parameters. We discuss inference of (h0, f, ḟ , n̂) next.

51/T comes from the resolution of frequency grid and 1/T 1/2 is the SNR scaling with time. This
is only to denote the order of magnitude of the resolution achieved, but PE methods used later in the
chapter recover these with more robust techniques.

6We consider the distance to the Sgr A*, DL = 8 kpc, known in our analysis.
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4.4 Bayesian Parameter Estimation

Eqs. 4.9, 4.10, 4.20, and 4.21 establish relations between the intrinsic parameters of the

two images, and therefore carry information about the lens mass, ML, impact parameter,

y, distance, DLS, and transverse velocity, v, of the source. To estimate the precision with

which these properties can be measured, we need a handle on how well we can recover the

intrinsic phase and amplitude parameters of the images themselves. In this section, we

use a time-domain Bayesian PE technique based on [214] to recover these parameters. As

discussed in Section 1.3.1, Bayes’ theorem can be used to recover the posterior probability

distribution of the source parameter:

p(~✓|s,H) =
L(s|~✓, H)⇡(~✓|H)

Z(s|H)
, (4.24)

In the expression above, L(s|~✓, H) is the likelihood function, and gives the probability

distribution of the data, s, given the choice of parameters ~✓ under hypothesis H, while

⇡(~✓|H) is the prior. Under the assumption of Gaussian noise, the likelihood function for

source parameters ~✓ given a GW model, h (see Eqs. 4.6, 4.7, and 4.8), takes the form:

L(s|~✓, H) / exp

✓
�1

2
(s� h|s� h)

◆
, (4.25)

where for an observation time, T , and a quasi monochromatic source of frequency, fGW ,

the brackets (.|.) denote the following time-domain inner product:7

(x|y) ⇡ 1

Sn(fGW )

Z 0

�T

x(t)y(t)dt. (4.26)

Constructing the Bayesian posteriors for the source parameters requires sampling over the

parameter space of ~✓ and computing the corresponding likelihood function L(s|~✓, H). To

explore the large parameter space, stochastic sampling methods, such as [79], are used.

The sampler makes a choice of parameters ~✓i from the prior, computes the likelihood

function L(s|~✓i, H), and jumps to another ~✓i+1. The new sample is selected as the next

initial stage with a probability, min
⇣

L(s|~✓i+1,H)

L(s|~✓i,H)
, 1
⌘
. This is repeated till the sampler con-

7The convention for the limits of the integral is so chosen because the reference time for Bayesian
analysis was set at the end.
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Parameters Range

f 100 Hz to 1000 Hz (in steps of 100 Hz)
ḟ �10�9 Hz/s
y 0.1, 0.5, 1.0

DLS 0.1, 1, 10 kpc
v 10, 100, 300 km/s

Table 4.1: Parameters used for Bayesian PE runs using CWInPy. The first images were
injected with the f and ḟ values listed here, while the second images were injected with
the corresponding shifted values given by Eqs. 4.20 and 4.21. The sky position of the two
images were shifted along the RA, ↵, by their respective deflection. The amplitude of
the two images, h0 is set as

p
|µ1|h0 and

p
|µ2|h0, respectively. The lens model assumes

a point lens with Sgr A* mass, 4.15⇥ 106M�.
.

verges near the parameter values that maximize the likelihood function. The histogram

of the sampled parameters, {~✓}, represents the posterior distribution of the parameters.

We employ the Bayesian PE strategy discussed above using the CWInPy python pack-

age [214], and construct the posterior distribution on the amplitude parameter h0 and

the phase parameters {f, ḟ ,↵}. Note that we shift the image location along the right

ascension (RA) angle for both the images8. CWInPy is a bilby [215] based package, fine

tuned to doing CW inference. One major di↵erence is the computation of the likelihood

integral in Eq. 4.26. Since for transients, the integral is performed on O(1) s long data,

working with a high sampling rate, typically 4096 Hz, is feasible. However, for longer

integration time demanded for CW PE, 4096 Hz of sampling rate makes the data volume

prohibitively large to compute the integral across the parameter space. To tackle this

issue of large volume of data, CWInPy uses a PE optimization technique called hetero-

dyning, described in [216]. The PE is done using nested sampling [79] on the data for

all the relevant parameters, {h0, f, ḟ ,↵}, required for lens property reconstruction. We

perform this for 3 years of observation period, for ellipticities of ✏ = 10�6,�7 across a

range of di↵erent intrinsic and lens parameters tabulated in 4.1. We also list the choice

of priors in Table 4.2.

For illustration, Figure 4.1 presents the posterior parameter recovered for image 1 given

a set of injection parameters, {✏ = 10�7
, f = 500 Hz, ḟ = �10�9 Hz/s, y = 0.5, DLS =

1 kpc, v = 100 km/s}. Also, notice that the resolution in the parameters achieved here

8We restrict sampling of the angular position, n̂, to the RA angle ↵ for the Bayesian PE due to
the computational limitation of running PE for the various source parameters on the set of two lensed
images.
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Figure 4.1: Posterior of the amplitude parameter h0 and phase parameters {f, ḟ ,↵} for
image 1 of injection done with: ellipticity ✏ = 10�7, source-lens distance DLS = 1 kpc,
impact parameter at reference time y = 0.5, transverse velocity v = 100 km/s, intrinsic
frequency f = 500 Hz, and spin-down ḟ = �10�9 Hz/s. The remaining amplitude
parameters are fixed to the fiducial values of cos ◆ = 0.5, �0 = 2.4 rad, and  = 1.1 rad.
h0 here refers to the scaled amplitude

p
|µ1(y)|h0. The vertical dashed lines in the 1-d

marginalized posteriors indicate the 5% and 95% credible limits, while the blue lines in
the posterior plots represent the injection value.
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Parameter Prior (Uniform)

h0 U(hinj
0 /10, 10hinj

0 )
f U(f inj � 10�7

, f
inj + 10�7) Hz

ḟ U(ḟ inj(1 + 10�7), ḟ inj(1� 10�7)) Hz/s
↵ U(↵inj � 10�6

, ↵
inj + 10�6) rad

Table 4.2: Priors used for the Bayesian PE runs. Here, h0 again represents the intrinsic

amplitude scaled with the magnification factor
q
|µ1

2
|. U(x, y) denotes a uniform proba-

bility distribution between x and y. The superscript (inj) denotes the injection value.

are much smaller than the shift values, as claimed earlier.

While CWInPy implements optimization techniques such as heterodyning to make the

likelihood computation e�cient, running the analysis for di↵erent observation times, and

various source and lens parameters of the signal is still computationally expensive. To

tackle this, we will discuss a method based on Fisher matrix analysis to obtain approxi-

mate posteriors in the next section.

4.5 Fisher Matrix Approximation

Given a parametrized model of the waveform, Fisher matrix � provides a computationally

cheap method of approximating the expected posterior distributions [217]. For a signal

model, h(~✓), the Fisher matrix components �ij are given by the expectation value of the

derivatives of the log-likelihood with respect to the parameters ✓i, ✓j, i.e.,

�ij = E
"
�@ log(L(s|~✓, H))

@✓i @✓j

#
. (4.27)

For high SNR, where the log likelihood can be expanded around a maximum likelihood

point, ~✓ML, often equal to true parameters of the signal ~✓tr, the Fisher matrix can be

written as the following inner product:

�ij =

✓
@h

@✓i

����
@h

@✓j

◆
, (4.28)
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such that the likelihood function is Gaussian with the covariance matrix given by the

inverse of the Fisher matrix:

L(s|~✓, H) ⇡ N exp

✓
�1

2
�ij(✓i � ✓

tr

i
)(✓j � ✓

tr

j
)

◆
, (4.29)

where N is the normalization. The inner product for the CW signal model is given by

the Eq. 4.26.

To compute the Fisher matrix components for CW model, it is useful to express the

signal model in the well-known JKS factorization introduced in [43]. The signal model

described in Eqs. 4.6, 4.8 and 4.7 reads out:

h(t; ~A,~�) =F+(t;↵, �, )h0
1 + cos2 ◆

2
cos
h
�0 + �(t;~�)

i
+

F⇥(t;↵, �, )h0 cos ◆ sin
h
�0 + �(t;~�)

i
. (4.30)

Here, ~A denotes the amplitude parameters ⌘ {h0, , cos ◆,�0} and ~� denotes the phase

parameters⌘ {f, ḟ ,↵, �}. Explicitly using the expression for the antenna pattern function

(see Eq. 1.30), we can rewrite the signal model in the following form [43]:

h(t; ~A,~�) =
4X

µ=1

A
µ
hµ(t;~�), (4.31)

where the basis waveforms, hµ(t;~�) have the form:

h1(t;~�) = a(t) cos�(t;~�), (4.32)

h2(t;~�) = b(t) cos�(t;~�), (4.33)

h3(t;~�) = a(t) sin�(t;~�), (4.34)

h4(t;~�) = b(t) sin�(t;~�), (4.35)
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and the time-independent expansion coe�cients Aµ are:

A
1 = h0

1 + cos2 ◆

2
cos�0 cos 2 � h0 cos ◆ sin�0 sin 2 , (4.36)

A
2 = h0

1 + cos2 ◆

2
cos�0 sin 2 + h0 cos ◆ cos�0 cos 2 , (4.37)

A
3 = �h0

1 + cos2 ◆

2
sin�0 cos 2 � h0 cos ◆ cos�0 sin 2 , (4.38)

A
4 = �h0

1 + cos2 ◆

2
sin�0 sin 2 + h0 cos ◆ cos�0 cos 2 . (4.39)

In this new basis, we can now compute the Fisher matrix components for the amplitude

parameters ~A and phase parameters ~�. Previous works have demonstrated that these

amplitude and phase parameters are practically uncorrelated [218]. We therefore treat

them separately. We use the indices µ⌫ when writing the amplitude components of the

Fisher matrix and indices i, j to express the phase components.

For the signal model, Eq. 4.31, the amplitude component of the Fisher matrix, �µ⌫ =

(hµ|h⌫), where hµ and h⌫ are the basis vectors in Eq. 4.32.

(hµ|h⌫) = TS
�1
n

(fGW) ·

1

T

Z 0

�T

hµ(t,~�)h⌫(t,~�)dt

�
. (4.40)

The term in the square bracket denotes the time average over the observation period

hhµh⌫i ⌘
h
1
T

R 0

�T
hµ(t,~�)h⌫(t,~�)dt

i
. Let’s now derive the expression for µ = 1, ⌫ = 1

component [218].

�µ=1,⌫=1 = TS
�1
n

(fGW)ha(t) cos�(t,~�) · a(t) cos�(t,~�)i,

⇡ TS
�1
n

(fGW)ha2(t)ihcos2�(t,~�)i. (4.41)

In the second step, we have used the approximation that for fGW � 1/day, the antenna

pattern function remains almost constant over the GW period. Using hcos2�(t,~�)i = 1
2 ,

the Fisher matrix component can be written as

�µ=1,⌫=1 =
1

2
TS

�1
n

(fGW)ha2(t)i. (4.42)

It is straightforward to similarly compute all the other components, giving us:
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Figure 4.2: Posterior of the amplitude parameter h0 and phase parameters {f, ḟ ,↵}
recovered with the Fisher matrix analysis for image 1 of injection done with: ellipticity
✏ = 10�7, source-lens distance DLS = 1 kpc, impact parameter at reference time y =
0.5, transverse velocity v = 100 km/s, intrinsic frequency f = 500 Hz, and spin-down
ḟ = �10�9 Hz/s. The remaining amplitude parameters are fixed to the fiducial values
of cos ◆ = 0.5, �0 = 2.4 rad, and  = 1.1 rad. h0 here refers to the scaled amplitudep

|µ1(y)|h0. The vertical dashed lines in the 1-d marginalized posteriors indicate the 5%
and 95% credible limits, while the blue lines in the posterior plots represent the injection
value. For comparison the recovered posteriors (as in Figure 4.1) from the CWInPy PE
run are also shown in black. The bias in h0 is due to statistical fluctuation due to noise,
and not a systematic bias across CWInPy runs.
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�µ⌫ =
1

2
TS

�1
n

(fGW)

0
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ha2(t)i ha(t)b(t)i 0 0

ha(t)b(t)i hb2(t)i 0 0
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0 0 ha(t)b(t)i hb2(t)i

1

CCCCCCA
(4.43)

We now move our attention to the phase parameters. The expected errors in measuring

the phase parameters can be calculated using the so-called phase metric [218, 219].

gij =

*
@�(t;~�)

@�i

@�(t;~�)

@�j

+
�
*
@�(t;~�)

@�i

+*
@�(t;~�)

@�j

+
. (4.44)

The phase parameters considered are again the spin (f), spin-down (ḟ), and angular

positions (↵, �). The Fisher matrix on the phase parameter can be then computed as:

�ij = ⇢
2
gij, (4.45)

where, ⇢ is the SNR for the perfectly matched template.

Considering ~� ⌘ {f, ḟ ,↵, �}, we can now construct the Fisher matrix for the 8�dimensional

parameter space { ~A,~�}, and therefore the covariance matrix ��1. The diagonal elements

of this covariance matrix represents the 1�� error on the corresponding parameter, while

the o↵ diagonal terms represent the correlation between them. Under the assumption of

flat priors, we use the derived covariance expression to draw posteriors on the parameters

h0, f, ḟ ,↵
9. Using the same injection parameters as in Figure 4.1, which presents results

from the CWInPy PE, Figure 4.2 shows the corresponding posteriors obtained from the

Fisher matrix analysis. In order to validate the consistency of the Fisher approximation

across parameter space, we compare its 1 � � error estimates with that obtained from

CWInPy PE for all parameters tabulated in Table 4.1 for the observation time of 3 years

in Figure 4.3. We fix the velocity value to v = 100 km/s for this comparison because

velocity doesn’t a↵ect errors of intrinsic parameters, but only shifts the injection values.

Since, the error estimates agree between the two analysis, we now proceed using the Fisher

matrix calculation to estimate errors on the lens parameters for di↵erent observation time

and injection parameters. For computational e�ciency in our comparative analysis, we

9To compute the posterior distribution of h0 from the amplitude parameters ~A, we apply a change
of variables using the Jacobian of the transformation for Eq. 4.36 that relates ~A to {h0, , cos ◆,�0}.
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Figure 4.3: Comparison of the 1 � � (denoted by ⌃) error bound on h0, f, ḟ ,↵ (top to
bottom panels of the plot respectively) obtained through Fisher matrix analysis with the
corresponding 1� � errors obtained in CWInPy PE run. All values for y,DLS, f, and ḟ

tabulated in Table 4.1 are chosen for the image 1 injection along with ellipticity, ✏ =
10�6,�7 for 3 years observation period to make this comparison. Velocity, v = 100 km/s
was used since error estimates on intrinsic amplitude and phase parameters aren’t a↵ected
by this choice. The solid line represents the Fisher matrix estimate, while the marker
of the same color is the CWInPy estimate on 1 � � error bounds for the corresponding
parameters.
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restricted the parameter space for each lensed image to {h0, f, ḟ ,↵}. Henceforth, with the

Fisher analysis method, we will include the declination (dec) angle � and sample all the

relevant parameters, {h0, f, ḟ ,↵, �} for each lensed image. Sampling � ensures accurate

estimation of sky localization error and therefore accurate error estimates on the lens

parameters.

4.6 Reconstruction of the lens properties

We noted in Section 4.3, how the amplitude parameter h0 and the phase parameters

f, ḟ , n̂ of the two lensed image are related. In the subsequent sections, we estimated the

precision with which these parameters for the individual copies can be measured given an

observed lensed event. Here, we use these to compute the errors on the lens parameters

(y,ML, DLS, v) sampled from the intrinsic parameters of the images. We will consider

two cases: 1) Static source (v = 0), 10 and 2) Moving source (v 6= 0).

For the case of no transverse motion of the source, the parameter  in Eq. 4.16 becomes

0. Therefore, the frequency shift �f = f̃ � f and spin-down shift �ḟ = ˜̇
f � ḟ derived

from Eq. 4.20 and 4.21 between the two images are given by:

�f = �ḟ�t0, (4.46)

�ḟ = 0. (4.47)

Furthermore, the ratio of the amplitude of the two images can be written as:

h0,1

h0,2
=

s
|µ1|
|µ2|

=
p

|µrel|,where (4.48)

p
µrel =

"
y
2 + y

p
y2 + 4 + 2

y2 � y

p
y2 + 4 + 2

#1/2
. (4.49)

The di↵erence in the image positions can also be expressed in terms of the dimensionless

impact parameter, y ⌘ �

✓E
and the Einstein Angle, ✓E. Following Eq. 4.10, we can write

the image separation as:

�✓ = ✓E

p
y2 + 4. (4.50)

10Static here refers to no transverse motion of the source with respect to the optical axis.
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Figure 4.4: Posterior distribution on the lens mass ML, impact parameter at reference
time y, and source distance DS (in units of lens distance DL). The injected signal has a
frequency of 500 Hz and a spin-down rate of ḟ = �10�9 Hz/s. The source has ellipticity
✏ = 10�7 located at y = 0.5 and DLS = 1 kpc behind the lens. The remaining amplitude
parameters are fixed to the fiducial values of cos ◆ = 0.5, �0 = 2.4 rad, and  = 1.1 rad.
The vertical dashed lines in the 1D marginalized posteriors indicate the 5% and 95%
credible limits, while the blue lines in the posterior plots represent the injection value.

93



Figure 4.5: Fractional 1� � uncertainty (normalized by the mass ML) on the lens mass
ML as a function of observation time for a static source. Each panel corresponds to a
di↵erent value of the impact parameter at reference time y = {0.1, 0.5, 1}, and curves
within each panel represent di↵erent combinations of frequency f and spin-down rate
ḟ . The distance of the source is fixed at DLS = 1 kpc behind the lens, and ellipticity
✏ = 10�7. The right vertical axes show the corresponding SNR for the de-magnified image
as a function of observation time for each configuration. The dash-dotted horizontal line
denotes the mass uncertainty of Sgr A* observed in [10] through 16 years monitoring of
stellar orbits around it.
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Here we just write the scalar shift because as noted in Section 2.5, the shift of the two

images are collinear with a point mass lens. In our analysis, we shift the images along

the RA, but the sky position is sampled in both RA and dec.

For this v = 0 case, we can now use the Fisher matrix posteriors on intrinsic parameters

to derive the posteriors on the lens parameters ML, y,DLS through the relations noted

above. For f = 500 Hz, ḟ = 10�9 Hz/s, ✏ = 10�7, y = 0.5 and DLS = 1 kpc, Figure

4.4 shows the inferred posterior distribution of the lens mass ML, impact parameter

at reference time y and source distance (in units of lens distance DL = 8 kpc) 11 for

observation period of 3, 5 and 10 years using ET PSD. To illustrate how the uncertainty

in the lens mass measurement scales with observation time, Figure 4.5 shows the 1 � �

fractional errors on theML posteriors for various values of f , ḟ , and y. We fix the distance

of the source from the lens to DLS = 1 kpc and the ellipticity to ✏ = 10�7.

The above treatment is based on the hypothesis that the source is static along the trans-

verse direction, and therefore doesn’t sample the velocity parameter. However, in more

realistic scenarios, we expect the source to move over the long observation period. We

therefore now consider the case of v 6= 0. The frequency shift and the spin-down shift

between the two images can be written as:

�f = �f � ḟ(1� )�t0, (4.51)

�ḟ = �2ḟ . (4.52)

We sample the entire lens parameter space of (ML, y, v,DLS) from the intrinsic parameter

posterior for individual images using the expressions for the frequency shift (Eq. 4.51),

spin-down shift (Eq. 4.52), relative amplitude (Eq. 4.48), and the angular separation (Eq.

4.50). As we now include the parameter  in the inference and subsequently derive the

transverse velocity v, it is important to highlight a key feature. From the spin-down shift

relation in Eq. 4.21, the uncertainty in  is related to the uncertainty in the fractional

shift of the spin down,

� ⇡ �

 
�ḟ

ḟ

!
⇡ ��ḟ

�ḟ
+
�ḟ

ḟ
. (4.53)

11The source distance is estimated from DLS posterior and known lens distance DL = 8 kpc.
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Figure 4.6: Posterior distribution on the lens mass ML, impact parameter at reference
time y, velocity v (in units of c), and source distance DS (in units of lens distance DL)
for a source moving with constant transverse velocity, v = 100 km/s. The injected signal
has a frequency of 500 Hz and a spin-down rate of ḟ = �10�8 Hz/s. The source has
ellipticity ✏ = 10�7 located at y = 0.5 and DLS = 1 kpc. The vertical dashed lines in the
1-d marginalized posteriors indicate the 5% and 95% credible limits, while the blue lines
in the posterior plots represent the injection value.
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Since�ḟ ⌧ ḟ and ��ḟ ⇠ �ḟ , the first term typically dominates, and we can approximate:

� ⇡ �ḟ

�ḟ
. (4.54)

A notable property of the spin-down measurement uncertainty �ḟ is that it only depends

on the SNR and the observation time, and not on the absolute spin-down value itself,

while �ḟ scales with ḟ linearly. As a result, for sources with a large intrinsic spin-down

rate ḟ , the relative shift �ḟ/ḟ is more easily detectable, leading to significantly smaller

errors on . Additionally, larger value of ḟ enhances contribution of term ḟ(1 � )�t0

in Eq. 4.51, leading to better measurements of the lens parameters 12. Observing a

signal from a highly spinning down source thus leads to better constraints on the lens

parameters as compared to a slowly spinning down source for all the other parameters

fixed. This feature is also seen in other analyses where the NS intrinsic properties like

ellipticity ✏, moment of inertia I, or braking index n from the typical CW amplitude and

phase measurements are better inferred for higher values of the spin-down terms (e.g.

see [220]).

We now present an illustrative case of the posterior on all the lens parameters for the

same choice of fiducial parameters as other corner plots, but a higher ḟ value of �10�8

Hz/s in Figure 4.6, and the fractional error estimate on the lens mass in Figure 4.7. Any

reasonable estimation of the lens mass for lower values of spin-down requires a high SNR

signal. To depict this, Figure 4.8 shows the trend of fractional ML error for an optimistic

choice of ✏ = 10�6 including the spin down �10�9 Hz/s. It also becomes evident in this

figure that higher spin-down results in better lens mass estimation. For the case of highly

spinning down source in Figure 4.8, ḟ = �10�8 Hz/s, lensed CW observation shows

comparable accuracy in the measurement of the lens mass to the current EM observation

measurement, such as through tracking the stellar orbits around Sgr A*, in [10]. The

error estimate on lens pass presented in Figure 4.8 depend loosely on other choices of

distance, DLS and transverse velocity, v considered.

12Reliable estimation from Eq. 4.51 requires O(ḟ(1� )�t0) > O(�(f))
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Figure 4.7: Fractional 1� � uncertainty (normalized by the lens mass ML) as a function
of observation time for a source moving with constant transverse velocity, v = 100 km/s.
Each panel corresponds to an impact parameter at reference time y = {0.1, 0.5, 1}, and
curves show di↵erent frequencies f . The source is located at DLS = 1 kpc behind the
lens, with ellipticity ✏ = 10�7. Right vertical axes show the corresponding SNR of the
de-magnified image for di↵erent frequencies. The dash-dotted horizontal line indicates
the fractional mass uncertainty of Sgr A* from [10] through 16 years monitoring of stellar
orbits around Sgr A* assuming known DL.
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4.7 Discussion

In this chapter, we demonstrate how the observation of CWs from lensed NSs can be used

as an independent probe of the mass of the Sgr A*. Using the point mass lens model for

Sgr A*, we show that the CW signals from the two lensed images lie in di↵erent amplitude

and phase parameter space of traditional CWs, but yet remain described by the quasi-

monochromatic model. This key insight enables the identification of lensing features

through detailed study of the image parameters. We use a Bayesian PE technique using

the python package CWInPy and Fisher matrix analysis to perform source property

inference for the two images. We then reconstruct the lens parameters for the case of

no transverse motion and another more realistic case of a source moving with a constant

transverse velocity. For the latter, we find that rapidly spinning NSs lensed by Sgr A*

—particularly those with high spin-down rates —can e↵ectively constrain the lens mass.

For example, a lensed NS with ellipticity ✏ = 10�7, rotation frequency, f > 300 Hz, and

spin-down ḟ = �10�8 Hz/s can be used to estimate the Sgr A* to an accuracy of better

than 10% for observation time greater than 5 years with ET (see Figure 4.7). While for

sources with smaller spin-down rate, such as ḟ = �10�9 Hz/s, one needs higher ✏. For

the optimistic choice of ✏ = 10�6, a source with rotation frequency f > 300 Hz attains

⇡ 10% precision in Sgr A* mass measurement after an observation period of 10 years (see

Figure 4.8). Notably for ✏ = 10�6, f > 300 Hz, and ḟ = �10�8 Hz/s, mass measurement

for Sgr A* using lensed CW match or exceed the electromagnetic precision from stellar

orbit monitoring (e.g. 16-year S2 observation [10]) in observation period of greater than

4 years with ET.

In this analysis, we have assumed the lens profile to be described by a point mass.

However, stellar objects in the vicinity of Sgr A* can perturb the potential and cause ad-

ditional distinct features in the lensed images. For example, a study which also discusses

lens property inference using lensed CWs indicates that stellar perturbers around the

lens can cause the image positions to no longer be collinear with the lens [221]. The lens

potential can also have additional contribution from the dark matter distribution in the

Galactic center [222]. Further, microlensing of long duration GWs by stellar objects lead

to transient features, such as increased magnifications for the period of a few days [223].

Going beyond the point mass lens model could reveal these substructure features. While
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these pose additional challenges, they also present brighter prospects for studying lensing

of CWs.

Figure 4.8: Same as Figure 4.7, but for a higher ellipticity ✏ = 10�6 and including spin-
down rate ḟ = �10�9 Hz/s.
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Chapter 5

Summary and Discussion

In Chapter 1, we provide an overview of GWs. We learn about their existence by lin-

earizing the Einstein field equations. They originate from sources with time-varying mass

quadrupole moments, described to leading order by the Einstein quadrupole formula. We

then present several milestones in GW astronomy: from the resonant bar detectors to

the indirect evidence via Hulse and Taylor pulsar orbital shrinkage, leading up to the

first direct detection of GWs by LIGO. We also discuss how the interferometric detectors

operate and the various noise sources that a↵ect them. Finally, we review the di↵erent

astrophysical sources that produce GWs detectable by current and future detectors, with

emphasis on CWs from spinning NSs.

In Chapter 2, we introduce the theory of gravitational lensing within the framework

of GR. We study the propagation of GWs in curved spacetime and learn that lensing

preserves the nature of GW polarizations. This allows us to study the propagation e↵ect

through scalar waves and quantify the e↵ect of lensing on GWs in terms of the scalar

amplification factor, given by the Kirchho↵ di↵raction integral. Within the thin-lens and

geometric optics approximation, we study the strong lensing of GWs, particularly for the

point mass lens model. Strong lensing by a point mass lens produces two images of the

signal with di↵erent magnifications and sky positions, and a time delay between them.

We then give a brief account of the science case for observing gravitational lensing of

GWs.

In Chapter 3, we study the prospects of observing gravitational lensing of CWs. Using

various astrophysical models describing the spatial distribution of NSs in our Galaxy,

we estimate that up to 6 NSs can be strongly lensed by Sgr A*. This results in two
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images of the signal. Unlike CBCs, CWs are not temporally resolved, and the two images

therefore interfere in the detectors. Accounting for the magnifications and time delays of

the lensed signals, we investigate their detectability by ground-based detectors. Modeling

the spin distribution of NSs based on that of known pulsars and assuming an ellipticity

of ✏ = 10�7, we report that lensed CWs are unlikely to be detectable by LIGO and Virgo.

However, 3G detectors have a 2 � 51% probability of detecting at least one lensed CW

signal. For a pessimistic choice of ✏ = 10�8, this probability diminishes to 0 � 18%.

Though rare, such an observation holds potential for interesting probes of the Galactic

SMBH.

We demonstrate this in Chapter 4, where we use Sgr A* as a point mass lens and con-

sider strongly lensed sources both with and without proper motion. We study the signal

morphology of the individual images and establish that they can be described by tra-

ditional CW models, but with di↵erent parameters. Under the assumption that these

images can be resolved over long observation periods, we employ Bayesian PE method

using CWInPy and Fisher matrix analysis to perform source property inference on in-

dividual images. The much lower errors recovered for the parameters compared to the

lensing shift validate our premise. We use these estimates to infer the lens parameters,

including the lens mass, the source velocity in the transverse direction to the optical axis,

the distance of the source from the lens, and the initial impact parameter. Among these,

the precise recovery of the lens mass is particularly exciting, indicating the potential of

lensed CWs as an independent probe of the Galactic SMBH. For favorable intrinsic pa-

rameters of the source, such as high spin, spin-down value, and ellipticity, we forecast

that error bounds on the mass of Sgr A* with ET can achieve accuracy comparable to

current electromagnetic probes.

Limitations and Future Work

Directed searches towards the Galactic center by the LVK [4] are motivated by the ex-

cess Gamma ray emission observed from the inner-parsec region of the Galactic cen-

ter [224–226]. Possible candidates responsible for such emission include, e.g., proposed

dark matter candidates such as weakly interacting massive particles [227], and a popula-

tion of millisecond pulsars [228]. These candidates provide motivation to extend beyond
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the point mass lens model assumed in this work. The dark matter profile extended in the

region around the Galactic center makes a compelling case for embedding the point mass

lens in a dark matter profile [229,230], whereas several unresolved NSs or stellar objects

motivates consideration of microlensing signatures and perturbations around point mass

lens potential in future work.

Moreover, in Chapter 3, we assumed the two images have the same frequency and there-

fore the interfered image appears as a monochromatic wave, with an overall amplification

and constant phase shift. This was done to learn about the astrophysical prospects of

detection, without accounting for the waveform systematics. However later in Chapter

4, we studied how the phase parameters of individual images change. In particular, the

frequency between the lensed images have a shift, dominantly due to the proper motion of

the source (see Eq. 4.20). These shifts are resolvable by long coherence integration which

can be performed as follow-ups on detected candidates and remain described by standard

CW templates, as shown in Chapter 4. However, directed searches without apriori knowl-

edge of the spin parameters do not integrate the data for the entire observation period

due to the prohibitive computational cost associated in doing so, and therefore won’t

resolve them. For all practical purposes, searches would see an interfered copy of the two

quasi-monochromatic signals with slightly di↵erent, but unresolved frequencies and sky

positions 1. These interfered signal, therefore, appear as beats with amplitude and phase

modulations. Since such modulations are not taken into account for conventional CW

searches, this can a↵ect their sensitivity to lensed signals, especially for sources moving

with large velocities where such modulations are large. In addition to this, the presence

of beating pattern could also a↵ect outlier follow-up strategies that rely on consistent

SNR build-up over time. In such cases, lensed signals with noticeable beating may be

incorrectly rejected as inconsistent with a standard CW signal hypothesis. This is part

of our ongoing investigation.

In Chapter 3, it is also important to note that the frequency distribution of NSs, as

drawn from that of known pulsars, has an underlying selection bias towards higher, more

detectable frequencies. Using this as a representative distribution for the NS population

provides us with an optimistic estimate for the SNR distribution and the detectable

1In directed search performed in O3, one sky bin is placed and covers 30-300 pc region around the
Galactic center depending on the frequency searched. This is much larger than the order arcsecond
angular separation of the two images [4].
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fraction of lensed NSs. For example, [231] depicts how spin-down over their lifetimes

drives most NSs out of the detectable frequency band, even for 3G-era detector networks,

providing a more pessimistic outlook for detectability. Moreover, while we considered

representative ellipticities on the order of ⇠ 10�8 —10�7 for our detection forecasts,

studies of the millisecond pulsar population suggest that typical values could be as low as

⇠ 10�9, which would further reduce the strain amplitude and, consequently, the detection

prospects [232].

Furthermore, in Chapter 4, while we focused on the phase evolution of the individual

images due to proper motion of the source, we treated the magnification factor as a

constant. This assumption introduces some caveats to the analysis. The magnifications

depend on y. Hence, as y changes due to proper motion of the source, the individual

magnifications would also change, especially at lower values of y where the gradient

of magnification with respect to impact parameter, y, is considerable. Standard CW

inferences do not factor such time variation of intrinsic amplitude into account. While this

departure from the standard CW signal model presents additional challenges, factoring

in a time varying amplitude could reveal characteristic lensing signatures on individual

images. This can therefore serve as tell-tale signatures of lensing and may also additionally

improve lens parameter estimation, potentially allowing for partial inference of the lens

parameters even when only one image is observable. We plan to include this e↵ect in

future work by parameterizing the signal model with the lens parameters themselves

while performing the Bayesian PE, and also deriving Fisher matrix estimates beyond the

standard treatment of constant amplitude parameters, ~A.
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