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Abstract

Inspired by real-time computations in AdS black holes, this thesis proposes a geometric

method to obtain the influence phase of a cosmological observer by calculating the on-shell

action on a doubled spacetime geometry. The influence phase is the effective action for

an open system: for a dS static patch observer coupled to scalar/electromagnetic fields, it

incorporates the radiation reaction due to the bulk fields and their dS Hawking radiation.

For a general extended source in dS, we describe how to account for finite-size effects. In

the long-time limit, we get a Markovian open quantum system susceptible to cosmological

fluctuations, whereas the short-time limit reproduces the worldline theory of flat-space

radiation reaction. We also present a fully covariantised form for the cubic corrections to

the radiation reaction in even spacetime dimensions, including Hubble contributions, and

find an intriguing recursive structure across dimensions for the scalar radiation reaction.

The self-force is rendered finite through holographic renormalisation applied to the dS

static patch connecting two otherwise unrelated regularisation procedures. We also review

and extend many properties of vector spherical harmonics(VSHs) in arbitrary dimensions,

explain the relation between spherical and cartesian VSH, and derive an addition theorem

for VSHs, in order to facilitate the discussion on arbitrary dimensional electromagnetism

in both dS as well as flat spacetime.
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Chapter 1

Introduction

Over the last few decades, many independent lines of evidence have converged on the fact

that our universe has a positive cosmological constant [1–4]. This has presented a difficult

conundrum for those who want to think about the relation between gravity and quantum

mechanics [5,6]. Among the most fruitful ideas coming out of research in quantum gravity

has been holography, i.e. the statement that a gravitational theory is equivalent to a

quantum system living on its boundary. However, spacetimes with a positive cosmological

constant do not have any time-like boundaries for a dual quantum system to live in. Thus,

it seems that gravity in such spacetimes cannot have a holographic dual theory (or at

least they cannot have a dual which is a conventional quantum dynamical system).

One attempt to overcome this obstacle is as follows [7, 8]: imagine a lone observer

probing such a spacetime. The worldline of such an observer can then be thought of as a

time-like boundary where a possible holographic description might reside. This is the idea

of solipsistic holography, which posits that a quantum system1 living on such a worldline

encodes the quantum theory of gravity that describes the universe. To claim that the

information about the entire universe can be gleaned from a single worldline within it

might seem speculative, but it is pertinent to remember that all existing knowledge about

our universe can be traced ultimately to measurements around the earth. Thus, we might

want to assess the viability of such a proposal by examining it further.2

1Perhaps a large N matrix model as in BFSS duality [9] (See [10,11] for a review).
2Another alternative approach is to focus not on the observables but rather on meta-observables

like the global wave-function of the universe [12–19]. As has been emphasised in these references, this
approach is especially suited to model the physics of inflation, with us serving as meta-observers to some
extent. How the spacetime dynamics get encoded in the proposed dual is not yet entirely clear, though
much progress has been achieved over the past few years [20–23].
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Any object in a dynamical spacetime influences and is influenced by its surroundings.

In this sense, any gravitational observer should be thought of as an open quantum system

constantly interacting with the rest of the universe. On the quantum mechanical side,

we hope, a similar distinction emerges between the observer’s degrees of freedom(which

acts as a probe) from the other degrees of freedom, in some appropriate limits. The

open system then emerges by integrating out everything except the observer’s degrees of

freedom. This is the cosmological analogue of the fluid-gravity correspondence [24], as we

will demonstrate in this thesis by establishing this analogy further3. In the context of the

Anti-de Sitter/Conformal Field Theory(AdS/CFT) correspondence, on the gravity side,

fluid dynamics emerges by integrating out the physics in the radial direction, whereas on

the gauge theory side, it is a consequence of coarse-graining quarks and gluons. There

is, by now, non-trivial evidence supporting this statement, including precise matching of

anomalous effects on both sides [26, 27]. In a similar vein, one might ask how we could

go about checking the cosmological version of this statement.

The central challenge in answering this question is twofold: first, to derive an open

quantum system on the worldline from the ambient dynamics. As we shall see, a precise

definition of this first step already involves some work.4 More precisely, what we need is

a cosmological analogue of the Gubser-Klebanov-Polyakov-Witten(GKPW) prescription

[32, 33] in AdS/CFT that will allow us to derive the open system for an observer. This

thesis is aimed at addressing this issue.

The second step would be to construct a dual unitary quantum system that, after

integrating out appropriate degrees of freedom, leads to the same open theory as gravity.

This might be a hard undertaking: after all, even in the fluid-gravity correspondence, to

derive the fluid dynamics from a strongly coupled gauge theory is practically impossible.

But, since we are dealing with a quantum mechanical system here, there is reason for hope.

One immediate goal would be to check whether the putative open quantum system derived

in the first step shows the right structural features to admit a solipsistic interpretation.

We will postpone further thoughts on this issue to the discussion section.

3An earlier work interpreting worldline holography in terms of incompressible Navier-Stokes can be
found in [25].

4Systematic description of observers in the middle of a spacetime (as opposed to asymptotic observers)
is well-known to be a hard problem. Some of the approaches to the AdS version of this question, starting
from the CFT side, can be found in [28–31]. It would be interesting to extend these ideas to take into
account the open nature of the observer, as we do here.
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Let us return now to the issue of constructing the open system on the gravitational

side. Imagine a universe described by a dynamical spacetime along with a variety of

fields living on it. A local observer in such a theory may be modelled as a source for

these fields: a source that emits/radiates as well as a source that absorbs/detects. Any

autonomous motion of the observer is then accompanied by an outgoing radiation and an

associated radiation reaction. This results in the dissipation of the observer’s energy, and

we seek an open quantum system that describes this physics. The open quantum theory

on the world line should also describe the influence of the incoming radiation from the

rest of the universe. As we shall elaborate on later, this incoming radiation also includes

the Hawking radiation from the Hubble horizon.5

Quite independently of such holographic quests, the worldline open quantum theory

under question shows up in a variety of concrete physical questions. As an example,

worldline effective field theory has emerged as a useful way to organise the post-newtonian

expansion of a binary system radiating gravitational waves [39–43]. The basic idea in such

approaches is to systematically integrate out the short-distance gravitational physics that

binds the binaries to get an effective theory that describes the inspiral process. Due to the

radiation of gravitational waves, ultimately such a binary is also an open system of the

type described above. These ideas can be generalised into a cosmological setting where,

for example, a worldline effective field theory(EFT) which takes also the expansion of

the universe into account might be useful in studying the dynamics of galactic formation,

cooling and mergers.6 A motivation of this thesis is to describe an approach that might

help us systematically derive such an EFT.

In section §1.1, we begin by describing the basic geometric set-up used in deriving the

open quantum mechanics associated with the cosmological observer. The prescription

we propose is inspired by the recent developments in real-time AdS/CFT [45–54] that

have led to systematic derivation of open quantum systems by integrating out a thermal

holographic CFT bath. The essential idea here is a real-time version of Gibbons-Hawking

procedure [55]: one proposes an appropriate semi-classical geometry only containing the

5See [34] for an analysis of the dS observer from the point of view of von Neumann algebras. It would
be interesting to link such an analysis to the ideas discussed in this thesis, e.g., one may ask how the
physics of radiation reaction is encoded within von Neumann algebras. Another algebraic statement of
potential interest is the ‘time-like tube theorem’ [35–38], but, again, it is unclear to us how such formal
statements relate to the description of dS observer as an open system.

6See [44] for the role played by worldline methods in the effective field theory(EFT) of large scale
structure(LSS).
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relevant region (BH exterior for Gibbons-Hawking, dS static patch in the current prob-

lem), and computes the path integral in a saddle-point approximation by evaluating

on-shell action. We will argue that such a prescription leads to an answer which correctly

encodes both the radiation reaction and Hawking radiation from the Hubble horizon.

The problem of cosmological observer exhibits broad structural similarities to the

AdS case, which we exploit. But we also find significant differences: for one, much of

the standard holographic machinery (e.g. GKPW prescription, counter-term procedure)

available on the AdS side is simply absent. We outline a regularisation procedure that

gives finite answers.

1.1 The cosmological influence phase SCIP

Our goal is to describe the experience of an observer in an expanding spacetime. This,

in turn, will help us in understanding the spacetime itself. In particular, we want to ask

how to construct the open quantum system that describes the cosmological observer. In

its full generality, this is a difficult problem, but we can start with a simple model for the

observer. We can think of the observer as a single worldline undergoing absorption and

emission processes. So the observer is privy to 3 kinds of data:

• Outgoing radiation: Emission data, along with the outgoing propagator, tells us

the field values at a later time in the spacetime.

• Incoming radiation: The fields in the past can be reconstructed by using an incom-

ing propagator, given the absorption data.

• Fluctuations: The observer will also be sensitive to cosmic noise, which shows up

in the absorption data.

This is reminiscent of the motion of a Brownian particle in Langevin theory. A pollen

grain in water is sensitive not only to coarse-grained currents in the water (analogous

to the incoming radiation) but also to fluctuations arising from the motion of water

molecules. Finally, the motion of the Brownian particle can influence the dynamics of

water as well (analogous to outgoing radiation).

The dynamics of such open quantum systems can be derived by the path integral

prescription of Feynman and Vernon [56] describing the density matrix evolution. Ac-

4



Emission Absorption

incoming
propagator noise

outgoing
propagator

Figure 1.1: A cosmological observer can access 3 kinds of data: radiation due to its own
emissions, incoming radiation from sources in the environment and noise.

cording to the authors of [56], the effective description of the open system can be derived

starting from two non-interacting copies of each of the system as well as the environment

(describing the combined density matrix). Integrating out two copies of the environment

then induces new interactions between the copies of the system, resulting in a non-unitary

evolution of the system state. These terms constitute the influence phase, which encodes

completely the effect of the environment on the system. Applying this insight to the

question at hand, we conclude that all cosmological effects on an observer(the system)

are succinctly summarised in a cosmological influence phase SCIP.

What does SCIP depend on? It should depend on how effective the observer is at

emitting/absorbing radiation of a given frequency ω and a given multipole type L7. Say we

have two sets of functions JA(ω,L) and JD(ω,L) characterising the emission/absorption

efficiency of the observer. From the Feynman-Vernon viewpoint, JA(ω,L) and JD(ω,L)

have the following interpretation: to begin with, we have two copies of the observer

(left/right), each probing their copy of the universe via their respective multipole moments

JL(ω,L) and JR(ω,L) respectively. The influence phase, which results from integrating

out the universe, then depends on the average

JA(ω,L) ≡
1

2
[JR(ω,L) + JL(ω,L)] ,

as well as the difference

JD(ω,L) ≡ JR(ω,L)− JL(ω,L) ,

7The symbol L is used as a placeholder for various kinds of multipole moments corresponding to scalar,
vector, and tensor harmonics on the sphere. For the usual scalar case, L takes the form {ℓ, m⃗} corre-
sponding to scalar spherical harmonics. Vector and tensor spherical harmonics on arbitrary-dimensional
spheres come with additional labels.
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of these two multipole moments. The fact that the average/difference sources characterise

its emissive/absorptive properties is a well-known feature of the Feynman-Vernon formal-

ism [57–60]: this fact can ultimately be traced to the past/future boundary conditions on

the two copies imposed within this formalism. To conclude, the cosmology as seen by an

observer with multipole moments JA(ω,L) and JD(ω,L) is encoded in a single influence

functional SCIP [JA(ω,L), JD(ω,L)]. In terms of the Schwinger-Keldysh path integral of

quantum gravity, we can write

eiSCIP ≡
∫

[dφR][dφL] e
iSg [φR,JR]−iSg [φL,JL] , (1.1)

where φL,R denote the bra/ket copy of the bulk quantum fields in cosmology (including

the spacetime metric) and Sg[φ, J] is the full gravitational action in the background of an

observer with multipole moments J. The above path integral should then be interpreted

in a wilsonian sense: we want to integrate out the fast modes of quantum gravitational

theory, while freezing the slow degrees of freedom of the observer, and obtain an effective

action which describes the open dynamics of such an observer.

The cosmological influence phase SCIP is a direct observable. Given an expanding

universe, assuming we have a sufficiently long-lived observer with arbitrary multipole

moments in some region, the force on an observer due to radiation reaction as well as

radiation reception can be directly measured. This force serves to determine all terms in

the ‘effective action’ SCIP that encodes the influence of the ambient universe. All the real

observables of astrophysics and cosmology, e.g. the sky maps at different frequencies, can

be incorporated this way into the absorptive part of SCIP.

From this viewpoint, all cosmological calculations should, in principle, be recast in

terms of SCIP to connect them with observations. This is already implicit in the ex-

isting approaches to cosmology: for example, the final step in cosmic microwave back-

ground(CMB) power spectrum computation is to expand it in spherical harmonics centred

around us. Phrasing observables in terms of SCIP makes explicit this observer-dependence

(which is probably essential for defining observables within a quantum spacetime). Talk-

ing in terms of a single functional SCIP may also be convenient for effective field theory

(EFT) based approaches to cosmology based on direct observables (e.g. those based on

classifying sources in the red-shift space [61–63]). More ambitiously, one may conceive of

a bootstrap program based on the cosmological influence phase that complements existing
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proposals for cosmological bootstrap [17,19–21,23,64].

What are the general principles that constrain SCIP? First of all, when JD(ω,L) is

set to zero, SCIP should vanish. This statement arises from the microscopic unitarity

of the environment: if the two copies of the observer in Feynman-Vernon formalism

introduce identical perturbations into the environment, their effect cancels out of all

correlators [59]. From the viewpoint of the observer, the above condition is equivalent

to the conservation of the observer density matrix’s trace. Apart from this, there are

also constraints on SCIP coming from causality. For example, causality implies that the

coefficient of J∗D(ω,L)JA(ω,L) is analytic in the upper half plane of complex ω : this

coefficient is the retarded correlator on the worldline of the observer [57–60, 65, 66]. A

similar statement holds for the coefficients of any term of the form J∗D(ω,L)
∏

k JA(ωk,Lk).

Evaluation of the influence phase requires us to know the real-time or Schwinger-

Keldysh (SK) propagators of the environment. It is unclear how to perform such com-

putations in generic cosmological spacetimes, especially if gravity is also to be quantised.

We will show that for an observer in dS, this computation can be geometrised roughly

akin to recent implementations of SK path integrals in case of AdS black holes [45–54].

The hope then is that one can later generalise it beyond dS to incorporate full FRW

cosmology.

Specifically, in the case of dS, we conjecture that the computation of cosmological

influence phase SCIP is dominated by a geometric saddle point built out of two copies of

the static patch stitched together at their horizons. We will call this doubled geometry,

the dS Schwinger-Keldysh(dS-SK) spacetime. In the rest of this subsection, we will

describe this geometry in more detail before moving to the evidence for our conjecture in

the subsequent sections.

Let us begin by setting up the basic notation required: consider a (d+1)-dimensional

de Sitter spacetime dSd+1 whose Penrose diagram is shown in Fig.1.2. A horizontal slice

(i.e., a constant time slice) in this diagram denotes the prime-meridian on a spatial sphere

Sd, with the two ends denoting the poles. Each point in the horizontal slice corresponds

to a sphere Sd−1, which shrinks to a point near the poles. The first example we will

consider is a co-moving dS observer whom we place at the south pole. Our focus will

be on the static patch of such an observer, i.e., the patch between the past and future

cosmological horizons of the observer. We will later describe a more general class of

7
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r = rc

Figure 1.2: Penrose diagrams of dS with the static patch of the south pole observer shown
in green. Constant u slices are shown in blue. Left : a localised observer at the south pole
whose worldline is thickened to a world-tube(orange) of radius rc. Right : an extended
observer modelled as a sequence of spherical shells of radius ri with i = 1, . . . , N . [67]
shows how the Penrose diagram is obtained through conformal compactification and how
various slicings look like on the diagram.

observers spread arbitrarily over this static patch, modelled as a sequence of spherical

shells around south pole (Fig.1.2).

We will find it convenient to work with outgoing Eddington-Finkelstein coordinates

on the static patch. The metric in this coordinate system takes the form

ds2 = −(1− r2H2) du2 − 2dudr + r2dΩ2
d−1 . (1.2)

Here H is the Hubble constant of dS spacetime, r is the radial distance from the observer,

u denotes the outgoing time labelling the outgoing waves and dΩ2
d−1 is the line element

on a unit Sd−1 sphere. The south-pole observer sitting at r = 0 sees a future horizon at

r = 1/H where the outgoing coordinates are well-behaved. In most of what follows, we

will set H = 1 for convenience and restore it later when we examine the flat space (i.e.

H → 0) limit.

We now turn to the model of the observer: Conceptually, the simplest model is that

of a point particle with specified multipole moments sitting at r = 0. However, such a

model needs to be regulated with appropriate counter-terms to allow the computation of

radiation reaction effects. To this end, we will take the observer to be a small sphere of

radius rc and thicken its worldline into a time-like ‘world-tube’. The point particle limit

then corresponds to taking rc → 0 limit after the addition of counter-terms: both the

Green functions and required counter-terms can be determined exactly for a dS observer
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coupled to generalised free scalar fields. The radius rc then acts like a UV regulator for

the problem.

Apart from the formal requirements of regularisation, we are also interested in the

actual problem of an extended observer of a finite size. In such a case, there are no

divergences. Nevertheless, finite counter-terms are needed to renormalise the bare pa-

rameters into the physically measured properties of the observer. As mentioned before,

a simple model of the extended observer is a sequence of spherical shells of radius ri with

i = 1, . . . , N : their complement in the static patch is then the rest of the universe to be

integrated out. We can define multipole moments for such extended observers and still

write down a cosmological influence phase as a function of those multipole moments. The

locality in radial direction gets obscured in such a description: this is however natural

in the solipsistic viewpoint where radial locality is an approximate/emergent property of

the dual quantum mechanics.

L
R

Horizon

ζ = 0

ζ = 1

Figure 1.3: The two sheeted complex dS-SK geometry can be thought of as two static

patches smoothly connected at the future horizon. The radial contour along an outgoing

Eddington-Finkelstein slice (i.e., a constant u slice) is shown in blue. The radial contour

has an outgoing R branch and an incoming L branch.

We now turn to our conjecture for the de Sitter-Schwinger Keldysh(dS-SK) geometry,

i.e., the semi-classical saddle point that dominates the quantum gravity path integral for

SCIP. What we seek is a real-time analogue of the Gibbons-Hawking construction [68] as

well as gr-SK construction in AdS [45–49, 52], which would compute for us the cosmo-

logical influence phase. Here is the geometry we propose: take two copies of the static

patch and stitch them together smoothly at the future horizon (Fig.1.3). To parametrise
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this geometry, we complexify the radial coordinate and think of dS-SK as a co-dimension

one contour in the complex r plane (Fig.1.4). To make this precise, let us define a mock

tortoise coordinate ζ as follows:

ζ(r) =
1

iπ

0−iϵ∫
r

dr′

1− r′2
=

1

2πi
ln

(
1− r
1 + r

)
. (1.3)

Re(r)

Im(r)

ζ(0− iϵ) = 0

ζ(0 + iϵ) = 1
r = H−1

R

L

Figure 1.4: The branch cut structure of ζ(r) in the complex r plane at fixed u: branch-cut

shown as a wiggly line. We also show the clockwise dS-SK radial contour running from

ζ = 1 to ζ = 0 (the blue curve in this figure and in Fig.1.3). The Im r > 0 branch is

the time-ordered/right branch, whereas the Im r < 0 branch is the anti-time-ordered/left

branch.

This integral has logarithmic branch points at r = ±1 and we choose its branch-cut

to be over the interval r ∈ [−1, 1] on the real line. As shown in Fig.1.4, our normalisation

is such that, if we begin from 0+ iϵ (i.e., just above the midpoint of the branch-cut) and

then go clockwise around the branch cut to 0 − iϵ (i.e., just above the midpoint of the

branch-cut), we pick up a discontinuity in ζ equal to negative unity. The choice of the

overall constant in (1.3) is such that the real part is 1 on the R static patch (the r + iϵ

contour), and the real part falls to zero as we move clockwise and turn to traverse the

L boundary(the r − iϵ contour)8. The horizon in this geometry then becomes the entire

circle around r = H−1 of the contour, sometimes referred to as the ‘horizon cap’.

We are now ready to state our prescription:

Cosmological influence phase =

On-shell gravitational action of the dS-SK geometry .
(1.4)

8The reader should note the use of clockwise contours in the complex r plane for dS, in contrast to
the counter-clockwise contours used in the AdS black-brane case. This fact means that we need to be
careful to add appropriate minus signs whenever we use the residue theorem, but this inconvenience
seems unavoidable given the standard time orientations of the Schwinger-Keldysh contour.
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To be clear, on both sides of this equality, we treat observer(s) as prescribed sources,

viz., we take it off-shell by freezing its dynamics. Both sides can then be thought of as

functionals of the observer multipole moments that emit/detect fields. In the dual quan-

tum mechanics, these multipole moments should be thought of as the ‘slow macroscopic

degrees of freedom’ whose influence phase is computed by integrating out the ‘fast mi-

croscopic degrees of freedom’. The solipsistic holography would then imply that we can

replace the LHS in the above equality with such an influence phase computed in the dual

quantum mechanics. The above statement can then be thought of as giving a GKPW-like

prescription [32,33] for solipsistic holography. The primary aim of this note is to exhibit

simple example systems where we can show that the above prescription yields sensible

answers.

Before we turn to examples, we would like to comment on an interesting philosoph-

ical point: In this geometric picture, the cosmology reduces entirely to the static patch

accessible to the observer, bypassing questions about the rest of the universe (or multi-

verse as the case may be). We think of this focus on actual observables as a desirable

feature of our proposal, in contrast to traditional descriptions of quantum gravity in

dS spacetime phrased in terms of global questions. In the AdS black-brane case, grav-

itational Schwinger-Keldysh geometry (and its Gibbons-Hawking predecessor) divorces

the phenomenology of the exterior from speculations about singularity and BH inte-

rior. In a similar vein, our geometric proposal aims at isolating the physics of the static

patch from speculations about super-horizon modes, side-stepping the measure problem

in cosmology. Our saddle point geometry can be thought of as a way to implement the

causal-diamond-based cosmological measures ala Bousso [69,70].

1.2 Radiation reaction in de Sitter

The experimental detection of gravitational waves has brought renewed attention to the

problem of radiation reaction and self-force in classical field theories. The standard puzzle

is easily stated: given a point charge in arbitrary motion, the self-force due to its own

electromagnetic fields seems naively infinite. Both experimental evidence as well as the

momentum flux at infinity suggest that this conclusion is plainly wrong! There is a finite

electromagnetic force on the particle due to a renormalised field.
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Radiative Multipole moments
Two-point function

Figure 1.5: Radiation reaction computation has two main ingredients: radiative multipole
moments and a two-point function describing how one multipole moment affects another.
The black solid line denotes the trajectory of the source.

Over the past century, many successful proposals have been made to address the issue

mentioned above. The main idea is twofold: we first solve for the field produced by a

charge with outgoing boundary conditions far away. Next, we identify and remove the

divergent pieces from this field near the charge to get a finite answer.

It is instructive to contrast this procedure against the holographic prescription in

AdS/CFT to compute thermal CFT correlators. As described by Son and Starinets [71],

the AdS/CFT computation proceeds again in two steps: first, we take a bulk black hole

and impose infalling boundary conditions at its horizon. Next, we look at this solution

near the conformal boundary of AdS, put counter-terms and read off the renormalised

CFT correlators [33, 72, 73]. This similarity suggests that we can think of holography as

a kind of radiation reaction9. Taking such a slogan seriously might give us a way to

generalise holographic insights to spacetimes other than AdS.

The EM radiation reaction problem, of course, has a long and rich history10, but we

shall see that our ‘dS holographic perspective’ adds new elements to this story. We will

see how the counterterm procedure in the radiation reaction(RR) problem mirrors the

one used in AdS holography. We would also like to point out how the RR problem in de

Sitter is somewhat better behaved than one in flat spacetime. We will show how almost

all memory/tail effects in the scalar RR problem go away at cosmologically long times.

This is true even in the case of odd-dimensional spacetimes, where the flat spacetime RR

problem has serious memory/tail effects. We will see that the dS version of the EM RR

problem is also better behaved in this sense.

9See [74,75] for how absorption processes also have holographic features.
10See, e.g., references [76–83] for the 3 + 1 dimensional version. For higher dimensions, we refer the

reader to [84–91].
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In essence, the charge always forgets its past at cosmological time scales, and the long-

time physics is always that of a Langevin particle executing Brownian motion within dS

thermal bath. For fast motions/short time scales, the dS RR problem should approach

the flat spacetime answers. Thus, de Sitter provides a nice infrared cut-off for the RR

problem.11 This statement can be made mathematically precise at the level of Fuchsian

ODEs that control free theory radial functions. In flat spacetime, these are Bessel-

like functions with one regular singularity at r = 0 and another irregular singularity at

r = ∞. Once we move to de Sitter, the irregular singularity at r = ∞ splits into two

regular singularities. The consequence is that radial functions in dS are hypergeometric

functions with three regular singularities. Our goal in this work is to generalise all these

above statements to the case of scalar and electromagnetic fields.

1.3 Outline

We will conclude the introduction with a brief outline of the thesis.

Chapter §2 computes the influence phase for an observer interacting with a generic

class of scalar fields. First, we will describe the outgoing solutions for these scalars in

the de Sitter static patch in detail (§2.1). We will then use the outgoing solutions and

their time reversal to obtain the solutions on the doubled dS-SK geometry §2.2. These

solutions are substituted back into the scalar action. The on-shell action is regulated,

which provides the correct influence phase. Finally, we will verify this claim by computing

the correct radiation reaction experienced by the observer by reproducing the known flat

space results for scalar radiation reaction as well as the cosmological corrections to it in

§2.3.

Chapter §3 describes the electromagnetic observer’s influence phase. There, we will

follow a similar path to that of the scalar case: retarded solutions, dS-SK solutions,

influence phase and its regularisation (§3.1) and finally, the cosmological corrections to

the Abraham-Lorentz-Dirac force obtained from our influence phase(§3.2). This further

establishes that ideas of holographic renormalisation can be fruitfully adapted to the

self-force regularisation problem.
11We are used to thinking of AdS as a good IR cutoff, but the fact that AdS is a confining spacetime

makes the AdS RR problem non-markovian (i.e., it is expected to have even worse memory problems
than the flat spacetime version). Consequently, one does not expect a local description of the self-force
at long times, unlike what happens in de Sitter.

13



We end the main chapters of the thesis with a summary and discussion in chapter §4.

We develop most of our notation in de Sitter in a manner that can be easily com-

pared with flat space results in the zero curvature limit. To facilitate such a comparison,

we review the flat space radiation reaction problem extensively in the appendices. Ap-

pendix A discusses scalar multipole radiation and radiation reaction in flat spacetime.

The additional technical complication in electromagnetism is the appearance of vector

spherical harmonics (VSHs) both in their spherical and cartesian avatars. We found that

the existing literature on VSHs had many gaps that need to be addressed to solve our

problem. We face this challenge head-on in our appendix B, where the reader can find

many new results about VSHs in arbitrary dimensions. They include a VSH version of

the addition theorem, the relation between cartesian and spherical VSHs, and a set of

toroidal operators in higher dimensions, which generalise the famous −r⃗×∇⃗ operator in

R3. Apart from these new results, we also review existing approaches to VSHs based on

symmetric trace-free(STF) tensors as well as weight-shifting operators.

Once the technical machinery of VSHs is in place, the next step is to take the flat space

EM multipole expansion and then see how it extends to de Sitter. Here we encounter our

next obstacle. The existing literature on EM multipole expansions can be divided into

two disjoint sets, one focused on spherical harmonic methods and the other on cartesian

STF tensor methods. We found that the de Sitter problem requires an efficient mix of

both these methods. Even in flat spacetime, the conversion between these two methods

is not clearly explained in the current literature. We address this lacuna in appendix C,

which consolidate our knowledge about EM multipole expansions in flat spacetime.
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Chapter 2

Designer scalar in dS

In this chapter, we will evaluate the on-shell action on the dS-SK geometry described

above and show that we get meaningful semi-classical results for the cosmological influence

phase SCIP. We will do this in three parts: First, in the following section, we will describe

a class of systems where observers act as sources for scalar fields. We will describe how

the on-shell action can be computed for these systems to yield SCIP. Next, in section§2.3,

we will argue how SCIP does indeed capture the physics of radiation reaction for a moving

dS observer. Finally, in section §2.4, we will describe how field interactions could be taken

into account.

The general class of scalar fields we will analyse in this section, deemed ‘designer

scalars’, are a two parameter {N, µ} family that extends the usual Klein-Gordon field.

These designer scalars, for specific values of N and µ, encode the physics of electromag-

netic fields as well as linearised gravitational perturbations [92, 93] (see table 2.1). As

such, the gauge field and gravity problems have their own peculiarities that should be

addressed when computing the corresponding SCIP. Yet, several results from the de-

signer scalar analysis can be directly borrowed when analysing electromagnetic fields and

linearised gravity, and hence we analyse the full class of such scalars.

2.1 Green functions, regularisation and renormalisa-

tion

We begin with the description of the scalar Green functions in dS spacetime in some

amount of detail. Our focus will be on a point-like observer sitting on the south pole,
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and our Green functions are all hence ‘boundary-to-bulk’ with the boundary being the

world line at the south pole. The point-like nature necessitates a careful discussion of

regularisation, counter-terms etc.: our discussion will closely parallel the flat spacetime

discussion in the appendix A.3 as well as the dS discussion in [7,94]. We will also confine

ourselves to a single copy of the static patch in this section, relegating the applications

to dS-SK to the next section.

We will work with outgoing Eddington Finkelstein(EF) coordinates [67] describing the

static patch of dS spacetime dSd+1. This spacetime is a solution of the Einstein equations

with a positive cosmological constant

Λ =
1

2
d(d− 1) . (2.1)

We have chosen units where the Hubble constant is unity. The spacetime metric is

ds2 = −2 du dr − (1− r2) du2 + r2dΩ2
d−1 . (2.2)

Here dΩ2
d−1 denotes the metric on a unit Sd−1. The outgoing Eddington Finkelstein time

u is related to the more commonly used time t via u = t − r∗ where r∗ is the tortoise

coordinate defined via

r∗ ≡ −iπζ ≡
∫ r

0

dρ

1− ρ2
=

1

2
ln

(
1 + r

1− r

)
. (2.3)

The radial coordinate r is centred around a static observer sitting at r = 0. We will

mostly work with the frequency domain where the time dependence of fields1 is taken to

be ∼ e−iωu. Further, we will decompose everything into appropriate spherical harmonics

on Sd−1. The spherical harmonics are labelled by the eigenvalue of the sphere Laplacian

∇2
Sd−1 which is −ℓ(ℓ+ d− 2).

As described in the main text, we will consider a class of designer scalar systems in

1We note a slight inconsistency in our definitions when compared to definitions in the appendix A.
In appendix A, we fourier-transformed with respect to standard time slices, whereas here in dS we are
fourier-transforming with respect to outgoing EF time u. Since in flat spacetime u = t − r, this means
that all the flat space radial functions in appendix A should be multiplied with a pre-factor of e−iωr

before they can be compared against the dS results described here.

16



Table 2.1: N, µ values for different massless fields: massless Klein Gordon scalar, electric
and magnetic parity sectors of electromagnetism and gravity as well as the additional
tensor sector that arises for d > 3 linearised gravity.

KG Sca EM Mag EM Elec Grav Tens Grav Mag Grav Elec
N d− 1 d− 3 3− d d− 1 1− d 3− d
µ d

2
d
2
− 1 d

2
− 2 d

2
d
2
− 1 d

2
− 2

dS with an action

S = −1

2

∫
dd+1x

√
−g rN+1−d

{
∂µΦN ∂µΦN

+
Φ2

N

4r2
[
(d+N − 3)(d−N − 1)− r2

(
4µ2 − (N + 1)2

)] }
.

(2.4)

After we strip out the harmonic dependence in time/angles, the above action results in

a radial ODE of the form

1

rN
D+[r

ND+φN
] + ω2φ

N

+
1− r2

4r2

{
(N − 1)2 − (d+ 2ℓ− 2)2 + [4µ2 − (N + 1)2]r2

}
φ

N
= 0 .

(2.5)

Here φ
N
(r, ω, ℓ, m⃗) is the radial part of the field, the derivative operatorsD± ≡ (1−r2)∂r±

iω, and the equation depends on the parameters {µ,N, ℓ} whose physical interpretation

will be clear momentarily.

The combination (N+1)2−4µ2 can be interpreted as a mass term 4m2 for the scalar in

Hubble units. The exponent N describes the auxiliary radial varying dilaton. The index

ℓ is associated with the eigenvalue of the sphere laplacian. The expressions involved

simplify considerably if we use, instead of ℓ, the following parameter:

ν ≡ d

2
+ ℓ− 1 . (2.6)

For example, in terms of ν, the eigenvalue of the sphere laplacian becomes (d
2
− 1)2− ν2.

Since we will be concerned with the cases where d > 2 and ℓ ≥ 0, ν is a positive number.

We can then rewrite the above ODE as

1

rN
D+[r

ND+φN
] + ω2φ

N

+
1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ

N
= 0 .

(2.7)
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It is instructive to rewrite the above ODE in terms of a new field ψ ≡ r
N
2 φ

N
as

(D2
+ + ω2)ψ +

1− r2

4r2

{
1− 4ν2 + [4µ2 − 1]r2

}
ψ = 0 . (2.8)

The absence of N in this ODE shows that N merely controls the overall pre-factor. We

also note a symmetry under ν 7→ −ν and µ 7→ −µ: either of these sign changes should

map one solution to the other.

2.1.1 Outgoing Green function

The above second-order radial ODE can be exactly solved in terms of hypergeometric

functions. The worldline to bulk outgoing Green function is given by [7, 94,95]

GOut
N (r, ω, ℓ) = rν−

N
2 (1 + r)−iωΓ

(
1+ν−µ−iω

2

)
Γ
(
1+ν+µ−iω

2

)
Γ(1− iω)Γ (1 + ν)

× 2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1− iω; 1− r2

]
.

(2.9)

Here we have fixed the overall normalisation by an appropriate boundary condition to be

described below. We will devote this subsection to a detailed study of the above Green

function.

We remind the reader that the hypergeometric function always has a nice series ex-

pansion around the point where its last argument vanishes. It then follows that the

above solution is manifestly regular at the future horizon r = 1 without any branch cuts

or poles. An alternate form for the same function that emphasises the small r behaviour

near the observer’s worldline is

GOut
N = r−ν− 1

2
(N−1)(1 + r)−iω

×
{

2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
−(1 + i cot νπ)K̂Out

r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]}
.

(2.10)
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Here K̂Out is the worldline retarded Green function given by the expression [7, 94].

K̂Out(ω, ℓ) ≡ 2
Γ
(
1+ν−µ−iω

2

)
Γ
(
1+ν+µ−iω

2

)
Γ (1− ν)

Γ
(
1−ν+µ−iω

2

)
Γ
(
1−ν−µ−iω

2

)
Γ (ν) (1 + i cot νπ)

= −eiνπ 2πi

Γ(ν)2
Γ
(
1+ν−µ−iω

2

)
Γ
(
1+ν+µ−iω

2

)
Γ
(
1−ν+µ−iω

2

)
Γ
(
1−ν−µ−iω

2

) . (2.11)

The reason for choosing the normalisation of K̂Out this way will become clear eventu-

ally. The above equation is the dS analogue of the Hankel function decomposition into

Neumann and Bessel functions. As in Eq.(A.63), when d is even and ν is an integer,

the above expression should be understood as a limit, with the cot νπ divergence exactly

cancelling the divergence in the first term of Eq.(2.10).

The hypergeometric identity used for the above decomposition is

Γ(a)Γ(b)

Γ(c)Γ(a+ b− c)
za+b−c

2F1(a, b; c; 1− z)

= 2F1(c− a, c− b; 1 + c− a− b; z)

+ za+b−c Γ(a)Γ(b)

Γ(c)Γ(c− a− b)
Γ(c)Γ(a+ b− c)
Γ(c− a)Γ(c− b)2

F1(a, b; a+ b− c+ 1; z) ,

(2.12)

where we have taken

a =
1 + ν − µ− iω

2
, b =

1 + ν + µ− iω
2

, c = 1− iω , z = r2 . (2.13)

In all these identities, we take the branch cuts of hypergeometric functions as well as

(1 + r)−iω to be outside the open unit disk in the complex r plane. Thus, all these

functions are analytic within the open static patch and in turn, on the dS-SK contour.

With this new form for the outgoing Green function, it is straightforward to obtain a

near-origin expansion to all orders. The explicit expressions are given by

2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
=

∞∑
k=0

r2k

(2k)!

(ν − µ− iω − 1 + 2k)!!

(ν − µ− iω + 1)!!

(ν + µ− iω − 1 + 2k)!!

(ν + µ− iω − 1)!!

(2ν)!!(2k − 1)!!

(2ν + 2k)!!
,

(2.14)
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as well as

2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
=

∞∑
k=0

(−r2)k

(2k)!

(ν − µ+ iω − 1)!!

(ν − µ+ iω − 1− 2k)!!

(ν + µ+ iω − 1)!!

(ν + µ+ iω − 1− 2k)!!

(2ν − 2− 2k)!!(2k − 1)!!

(2ν − 2)!!
.

(2.15)

The second expansion can be interpreted literally only for d odd (i.e., when ν ∈ Z + 1
2
).

For d even, the above expansion (and most of the discussion below) should be understood

in a dimensionally regularised sense.

The near-origin form of the outgoing Green function shows the normalisation

lim
r→0

rν+
N−1
2 GOut

N = 1 . (2.16)

This condition can be thought of as the dS analogue of the condition on the AdS

boundary-to-bulk Green function. As in that case, the above condition along with outgo-

ing property/analyticity at the future horizon uniquely determines GOut
N . Extending this

analogy to AdS, we can roughly read off the retarded worldline Green function K̂Out by

looking at the ratio of coefficients of the sub-dominant solution to the dominant solution

in the outgoing solution GOut
N . This is essentially the Son-Starinets prescription [71] of

AdS/CFT adapted to the present dS context. Such analogies have been noted before

in [7]: our aim here is to give a more systematic derivation of these statements, taking

into account the subtleties associated with divergences, regularisation, finite size effects,

etc.

To this end, let us begin with a physical interpretation of the outgoing Green function

GOut
N . If we are given that φ

N
behaves at small r near the worldline as

φ
N
(r, ω, ℓ, m⃗) =

J(ω, ℓ, m⃗)

rν+
1
2
(N−1)

+ . . . , (2.17)

where SL is a spherical harmonic on Sd−2, we then have a unique outgoing solution

φ
N
(r, ω, ℓ, m⃗) = GOut

N (r, ω, ℓ)J(ω, ℓ, m⃗) ,

describing the field that is radiated out of the worldline. This is the dS analogue of the
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outgoing Hankel Green function in flat space.2

The alternate form we have written down above in Eq.(2.10) is then the dS version of

the familiar statement3 that the outgoing Hankel Green function can be written as the

sum of a Neumann Green function (which diverges near the origin) and a Bessel J function

(which is regular at the origin). Such a decomposition of the outgoing Green function

into a singular Green function and a regular solution is a first step in Dirac’s approach

to the self-force [79] (the curved space version is sometimes also termed as the Detweiler-

Whiting decomposition [96]). We will later show in section §E.2 that our answer matches

in dS4 with the regular part quoted in [97, 98] using the rules of Deitweiler-Whiting

decomposition.

2.1.2 Renormalised conjugate field and KOut

We will now turn to the question of deriving the worldline Green function KOut from

the outgoing Green function GOut
N . As we will describe in detail below, the physics here

is that of radiation reaction and the main subtlety is how to deal with divergences.

Our main strategy here will be to define a renormalised conjugate field which reduces to

KOut near the source worldline. The idea here is philosophically similar to other radiation

reaction computations in the literature [39–43,96] as well as the counter-term subtraction

in AdS/CFT [72]. The implementation is however sufficiently different that we provide

a detailed analysis below.

The radial ODE Eq.(2.7) can be derived by extremising the action

S = −1

2

∑
L

∫
dω

2π

∮
rNdr

1− r2
[
(D+φN

)∗D+φN
− ω2φ∗

N
φ

N

−1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ∗

N
φ

N

]
+ Sct .

(2.18)

Here Sct denotes the counter-term action to be determined later. The integration over

r ranges over the regulated dS-SK contour (clockwise from the right static patch to the

left static patch) and, in addition, we have indicated an integration over all frequencies

and a sum over spherical harmonics. The reality condition in the Fourier domain takes

2More precisely, in outgoing EF coordinates the corresponding Green functions in flat space are the
outgoing Hankel Green functions given in Eq.(A.63) multiplied with a prefactor of e−iωr. See footnote
1 for an explanation for this pre-factor.

3We review this statement, for the benefit of the reader, around Eq.(A.63).
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the form

φ∗
N
(r, w, ℓ, m⃗) = φ

N
(r,−ω, ℓ,−m⃗) . (2.19)

Here m⃗ denotes the additional labels appearing in the spherical harmonic decomposition.

The canonical conjugate field for radial evolution is obtained by varying the above

action with respect to ∂rφ∗
N

which yields −rND+φN
after we take into account the fact

that φ∗
N

and φ
N

are related by the reality condition quoted above. The minus sign in the

canonical conjugate is because we are looking at evolution along a space-like direction.

Taking into account the powers of r multiplying the multipole moment J in Eq.(2.17),

the canonical conjugate of J should be defined with the opposite power, viz., we should

consider instead

−r−ν− 1
2
(N−1)

[
rND+φN

]
. (2.20)

The canonical conjugate field of the radial evolution at the two regulated boundaries is

given by evaluating the above expressions at r = rc± iε. Naively the rc → 0 limit should

then yield the required canonical conjugate that couples to the right/left point multipole

source. This limit however does not work: on a generic solution, the rc → 0 limit is

beset with divergences. Appropriate counter-terms need to be added to the above bare

expression before a sensible rc → 0 limit can be taken. The counter-terms arise from

adding in a worldline counter-term action

Sct = −
1

2

∑
L

∫
dω

2π
rN−1CN(r, ω, ℓ)φ

∗
N
φ

N
|Bnd . (2.21)

Here |Bnd refers to the fact that we add such a contribution at every boundary. Being

a boundary contribution, this addition does not change the equations of motion for the

scalar field. If the original variational principle was defined with a Dirichlet boundary

condition δφ
N
|Bnd = 0, the counterterm above does not change that boundary condition.

In the above expression, we should take CN(r, ω,L) to be a real and even function of ω

to get a real counter-term action. Addition of this worldline action modifies the canonical
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conjugate evaluated at the radial boundaries to

r−ν− 1
2
(N−1)πN ≡ −r−ν− 1

2
(N−1)

[
rND+ + rN−1CN

]
φ

N
. (2.22)

The CN should then be chosen such that this object evaluated at r = rc ± iε has a

well-defined rc → 0 limit.

We will now determine CN by studying the outgoing Green function (the counter-

terms determined using a generic enough solution should work for every other solution).

As we shall see, the boundary value of the renormalised conjugate field in this case is

the boundary Green function KOut. Before going into the details of the computation, it

might be useful to situate it in a familiar physical context.

In the case of electromagnetism, the worldline Green function KOut for a charged par-

ticle encodes the radiation reaction or self-force due to the particle’s EM fields acting on

itself. While this statement is broadly true, it is clear that this idea has to be interpreted

with some care. If we take the bare electric field produced by the point charge and try to

compute the self-force on it naively, the calculation will be dominated by the Coulomb

divergence at the origin yielding an infinite answer.

A little bit of thought however reveals that these divergences merely serve to relate

the bare properties (e.g., mass) of the fictitious charge-free particle to the properties of

the actual physical particle. What we should do instead is to compute the renormalised

electric field felt by the particle after adding counter-terms which shift the mass to the

experimentally measured value. This renormalised field associated with the radiation is

determined from the near field by imposing the outgoing boundary condition and can

then be used to compute the self-force of the particle.

With this physical example in mind, we can interpret the first term in Eq.(2.10) as

analogous to the Coulomb field in the near region whose divergent contributions need to

be removed by using counter-terms. It is only after this is done that we can extract K̂Out

as the renormalised worldline Green function.

We will now demand that the renormalised conjugate field computed over the first
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term in Eq.(2.10) vanish. This fixes the counter-term function CN to be

CN

1− r2
≡ −r d

dr
ln
{
r−ν− 1

2
(N−1)(1− r2)−

iω
2

× 2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]}
.

(2.23)

Here we take the branch cut of (1− r2)− iω
2 to be away from the open unit disc |r| < 1 in

the complex r plane and, with this choice, CN is analytic everywhere inside each copy of

the static patch, and has no discontinuity across the dS-SK branch-cut. While it is not

obvious from the expression above, we can invoke the Euler transformation formula for

the hypergeometric function which states that

2F1

[
1± ν + µ+ iω

2
,
1± ν − µ+ iω

2
; 1± ν; r2

]
= (1− r2)−iω

2F1

[
1± ν + µ− iω

2
,
1± ν − µ− iω

2
; 1± ν; r2

]
,

(2.24)

to conclude that CN is a real and even function of ω. Here we have taken the function

to be analytic in static patch again and hence CN has a well-behaved small r expansion.

The first few terms in this expansion are given by

CN = (1− r2)
(
ν +

1

2
(N − 1)

)
+ r2

(ν − µ− 1)(ν + µ− 1)− ω2

2ν − 2

+ r4
[(ν − µ− 1)2 + ω2][(ν + µ− 1)2 + ω2]

(2ν − 2)2(2ν − 4)

+ r6
[(ν − µ− 1)2 + ω2][(ν + µ− 1)2 + ω2]

(2ν − 2)3(2ν − 4)(2ν − 6)

× [(2ν − 2)(2ν − 4)− 2(ν − µ− 1)(ν + µ− 1) + 2ω2] + . . . .

(2.25)

Note that all terms in the above expansion are indeed real and even functions of ω as

claimed. Note that all the r and ω factors appear in the numerator implying that this

counter-term is local in time/radial direction.

Now that we have the expression for the counter-term, it is straightforward to compute

the renormalised conjugate field evaluated over the outgoing Green function. We obtain
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the following answer

πOut
N ≡ −

[
rND+ + rN−1CN

]
GOut

N

= (1 + i cot πν)K̂OutZN(r, ω)r
ν+ 1

2
(N−1)(1 + r)−iω

2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
,

(2.26)

where ZN(r, ω) is a function given by the expression

ZN

1− r2
≡ 1− r

2ν

d

dr
ln

{
2F1

[
1−ν−µ−iω

2
, 1−ν+µ−iω

2
; 1− ν; r2

]
2F1

[
1+ν+µ−iω

2
, 1+ν−µ−iω

2
; 1 + ν; r2

]} . (2.27)

This is also a real and even function of ω with a well-behaved series expansion near

the origin. We thus see that the renormalised conjugate field of the outgoing wave is

essentially its regular part, obtained after dropping its singular part and then renormalised

by a factor of ZN. Taking the r → 0 limit yields

lim
r→0

r−ν− 1
2
(N−1)πOut

N ≡ − lim
r→0

r−ν− 1
2
(N−1)

[
rND+ + rN−1CN

]
GOut

N = (1 + i cotπν)K̂Out .

(2.28)

This then justifies our original definition for K̂Out.

If d is odd and ν ≡ d
2
+ ℓ − 1 ∈ Z + 1

2
, we can set ν to its actual value everywhere

(i.e., remove dim-reg.) in our result: the value of the renormalised conjugate field at the

world line (which we shall henceforth refer to by the symbol KOut) is then finite. We can

then write

KOut|Odd d = (1 + i cotπν)K̂Out|Odd d = −eiνπ 2πi

Γ(ν)2
Γ
(
1+ν−µ−iω

2

)
Γ
(
1+ν+µ−iω

2

)
Γ
(
1−ν+µ−iω

2

)
Γ
(
1−ν−µ−iω

2

) . (2.29)

For the massless case in odd d, we have µ, ν ∈ Z + 1
2

for all values of interest given in

table 2.1. If we further assume that µ ̸= 1 + ν ≡ d
2
+ ℓ, the above expression is, in fact,

an odd polynomial of iω with degree 2ν (see table 2.2 for an illustration). An interesting

example is that of a conformally coupled scalar in odd d, where we have a closed-form

expression

KOut

∣∣∣
µ= 1

2

=
(−1)ν− 1

2

(2ν − 2)!!2

2ν∏
k=1

[
ν +

1

2
− k − iω

]
. (2.30)
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In all such cases, for every multipole moment, the Hubble corrections for the radiation

correction terminate. Hence, we get a completely markovian influence phase with no

memory/tail terms. Further, as we shall explain in detail in the section 2.3, for an

arbitrarily moving point-like source, all the multipole contributions add up nicely into a

local generally covariant expression for the radiation reaction force.

Table 2.2: KOut
−iω

for µ ∈
{

d
2
− 1, d

2
− 2
}

(gauge/gravity scalar/vector sectors)

µ = d
2
− 1 ℓ = 0 ℓ = 1 ℓ = 2

d = 3 1 ω2 + 1 ω4

9
+ 5ω2

9
+ 4

9

d = 5 ω2 + 4 ω4

9
+ 10ω2

9
+ 1 ω6

225
+ 7ω4

75
+ 28ω2

75
+ 64

225

d = 7 ω4

9
+ 20ω2

9
+ 64

9
ω6

225
+ 7ω4

45
+ 259ω2

225
+ 1 ω8

11025
+ 19ω6

3675
+ 8ω4

105
+ 3088ω2

11025
+ 256

1225

µ = d
2
− 2 ℓ = 0 ℓ = 1 ℓ = 2

d = 3 1 ω2 + 1 ω4

9
+ 5ω2

9
+ 4

9

d = 5 ω2 + 1 ω4

9
+ 5ω2

9
+ 4

9
ω6

225
+ 14ω4

225
+ 49ω2

225
+ 4

25

d = 7 ω4

9
+ 10ω2

9
+ 1 ω6

225
+ 7ω4

75
+ 28ω2

75
+ 64

225
ω8

11025
+ 13ω6

3675
+ 19ω4

525
+ 1261ω2

11025
+ 4

49

For the minimally coupled massless scalar (µ = d
2
), we still obtain a polynomial KOut

for all multipoles except the monopole (ℓ = 0) contribution. The monopole has an extra

1/ω correction in addition to the polynomial terms odd in ω (See tables 2.3 and 2.4). An

explicit expression for ℓ = 0 contribution is given by

KOut|µ=1+ν= d
2
=

(d− 2)2

iω
cosh

πω

2

Γ
(
d−iω
2

)
Γ
(
d+iω
2

)
Γ
(
d
2

)2 (2.31)

The inverse omega that appears in the front of this expression suggests that the correct

variable for a low-frequency expansion in this case is the time integral of the scalar

source rather than the source itself. Such a mild non-markovianity for minimally coupled

scalars in dS has been noted before [97,99], and we will review its physical interpretation

in section 2.3.
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Table 2.3: iωKOut

µ = d
2

ℓ = 0

d = 3 ω2 + 1

d = 5 ω4 + 10ω2 + 9

d = 7 ω6

9
+ 35ω4

9
+ 259ω2

9
+ 25

Table 2.4: KOut
−iω

µ = d
2

ℓ = 1 ℓ = 2

d = 3 ω2 + 4 ω4

9
+ 10ω2

9
+ 1

d = 5 ω4

9
+ 20ω2

9
+ 64

9
ω6

225
+ 7ω4

45
+ 259ω2

225
+ 1

d = 7 ω6

225
+ 56ω4

225
+ 784ω2

225
+ 2561

25
ω8

11025
+ 4ω6

525
+ 94ω4

525
+ 12916ω2

11025
+ 1

For generic values of (µ, ν), a small ω expansion of KOut is easy to obtain by expanding

out the gamma functions in terms of polygamma functions. We get

KOut|Odd d = −eiνπ
2πi

Γ(ν)2
Γ
(
1+ν−µ

2

)
Γ
(
1+ν+µ

2

)
Γ
(
1−ν+µ

2

)
Γ
(
1−ν−µ

2

)
× exp

{
∞∑
k=0

(−iω
2

)k+1

(k + 1)!

[
ψ(k)

(
1 + ν − µ

2

)
+ ψ(k)

(
1 + ν + µ

2

)
−ψ(k)

(
1− ν − µ

2

)
− ψ(k)

(
1− ν + µ

2

)]}
,

(2.32)

where ψ(k)(z) ≡ dk+1

dzk+1 ln Γ(z) is the polygamma function. When both ν + µ or ν − µ

are non-negative integers, the terms in the above expressions become indeterminate and

should instead be interpreted as a limit. In such cases, explicit computations show that

the above exponential terminates, yielding an odd polynomial in ω when ν is a half-

integer.

We will now comment on the even d/integer ν case. The cotπν diverges in this limit,

and we need the analogue of Eq.(A.79) to figure out the counter-terms needed to remove
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this divergence. The analogous expansion is given by

(1 + i cot(πν))K̂Out =
(−)n

Γ(n)2
Γ
(
1+n−µ−iω

2

)
Γ
(
1+n+µ−iω

2

)
Γ
(
1−n+µ−iω

2

)
Γ
(
1−n−µ−iω

2

)[ 2

ν − n

+ ψ(0)

(
1 + n− µ− iω

2

)
+ ψ(0)

(
1 + n+ µ− iω

2

)
+ ψ(0)

(
1− n− µ− iω

2

)
+ ψ(0)

(
1− n+ µ− iω

2

)
− 4ψ(0)(n) +O(ν − n)

]
.

(2.33)

As in the flat spacetime, we can counter-term away the first two terms, and change the

n back to ν. This yields the renormalised worldline Green function as [7, 94]

KOut|Even d = ∆N(ν, µ, ω)

[
ψ(0)

(
1 + ν − µ− iω

2

)
+ ψ(0)

(
1 + ν + µ− iω

2

)
+ψ(0)

(
1− ν − µ− iω

2

)
+ ψ(0)

(
1− ν + µ− iω

2

)
− 4ψ(0)(ν)

]
,

(2.34)

where the function ∆N is defined below in Eq.(2.36). To get this answer, we add to the

counterterm in Eq.(2.21), further terms of the form

Sct,Even =
∑

L

1

ν − n

∫
dω

2π
rN−1+2n∆N(n, µ, ω)φ

∗
N
φ

N
|rc , (2.35)

where n = ℓ+ d
2
− 1 and we have defined

∆N(n, µ, ω) ≡
(−)n

Γ(n)2
Γ
(
1+n−µ−iω

2

)
Γ
(
1+n+µ−iω

2

)
Γ
(
1−n+µ−iω

2

)
Γ
(
1−n−µ−iω

2

)
=

1

Γ(n)2

n∏
k=1

[
ω2

4
+

1

4
(µ− n+ 2k − 1)2

]
= ∆∗

N(n, µ, ω) .

(2.36)

Note that the explicit product form we give above is valid for n ∈ Z+. This form shows

that ∆N is a real and even function of ω, which is an essential condition for such a

counterterm to be admissible. With this counterterm, Eq.(2.34) is the dS generalisation

of the radiation reaction influence phase in flat spacetime described by Eq.(A.80). The

simple logarithmic running in flat spacetime is now replaced by a more complicated RGE

with the Hubble constant playing the role of the IR cutoff. A low-frequency expansion
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Table 2.5: Residues of KOut in even d for µ ∈
{

d
2
, d
2
− 1, d

2
− 2
}
at ω = −i(µ+ ν + 1).

µ = d
2

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 24i −192i 720i −1920i 4200i

d = 6 −320i 1440i −4480i 11200i −24192i
d = 8 2520i −8960i 25200i −60480i 129360i

µ = d
2
− 1 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 16i −96i 288i −640i 1200i

d = 6 −192i 720i −1920i 4200i −8064i
d = 8 1440i −4480i 11200i −24192i 47040i

µ = d
2
− 2 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 8i −32i 72i −128i 200i

d = 6 −96i 288i −640i −1200i −2016i
d = 8 720i −1920i 4200i −8064i 14112i

KOut can be obtained by using the polygamma series expansion

ψ(0)

(
1 + ν − µ− iω

2

)
+ ψ(0)

(
1 + ν + µ− iω

2

)
+ ψ(0)

(
1− ν − µ− iω

2

)
+ ψ(0)

(
1− ν + µ− iω

2

)
=

∞∑
k=0

(−iω
2

)k+1

(k + 1)!

[
ψ(k)

(
1 + ν − µ

2

)
+ ψ(k)

(
1 + ν − µ

2

)
+ψ(k)

(
1− ν − µ

2

)
+ ψ(k)

(
1− ν + µ

2

)]
,

(2.37)

which is well-defined except when any one of the polygamma arguments is a negative

integer. These results agree with the dS expressions derived in [7].

We will now add a remark about the poles of KOut in the complex frequency plane.

These are sometimes termed ‘de-Sitter quasi-normal modes’ although we think this is a

misleading terminology for the following reason. The adjective ‘quasi-normal’ is usually

applied to poles of Green functions that have a real as well as an imaginary part: as the

name suggests, these are ‘almost’ normal modes that characterise the physics of ring-

down. The dS horizon does not ring down and has no quasi-normal modes in this sense.

The poles of KOut, when present, are more akin to Matsubara modes of thermal Green

functions in that they lie along the imaginary axis in the complex frequency plane. As

is evident from Tables 2.2,2.3 and 2.4, for d odd and µ ∈
{

d
2
, d
2
− 1, d

2
− 2
}
, KOut is
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Table 2.6: Residues of KOut in even d for µ ∈
{

d
2
, d
2
− 1, d

2
− 2
}
at ω = −i(5 + ν − µ).

µ = d
2

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 24i −192i 720i −1920i 4200i

d = 6 0 0 0 0 0

d = 8 0 0 0 0 0

µ = d
2
− 1 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 48i −576i 2880i −9600i 25200i

d = 6 −192i 720i −1920i 4200i −8064i
d = 8 0 0 0 0 0

µ = d
2
− 2 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 72i −1152i 7200i −28800i 88200i

d = 6 −576i 2880i −9600i 25200i −56448i
d = 8 720i −1920i 4200i −8064i 14112i

Table 2.7: Residues of KOut in even d for µ ∈
{

d
2
, d
2
− 1, d

2
− 2
}
at ω = −i(7− ν + µ).

µ = d
2

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 120i −960i 720i 0 0

d = 6 −1440i 1440i 0 0 0

d = 8 2520i 0 0 0 0

µ = d
2
− 1 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 96i −576i 288i 0 0

d = 6 −960i 720i 0 0 0

d = 8 1440i 0 0 0 0

µ = d
2
− 2 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 72i −288i 72i 0 0

d = 6 −576i 288i 0 0 0

d = 8 720i 0 0 0 0
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Table 2.8: Residues of KOut in even d for µ ∈
{

d
2
, d
2
− 1, d

2
− 2
}
at ω = −i(11− ν − µ).

µ = d
2

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 120i −960i 720i 0 0

d = 6 −320i 0 0 0 0

d = 8 0 0 0 0 0

µ = d
2
− 1 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 160i −1920i 2880i −640i 0

d = 6 −960i 720i 0 0 0

d = 8 0 0 0 0 0

µ = d
2
− 2 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d = 4 200i −3200i 7200i −3200i 200i

d = 6 −1920i 2880i −640i 0 0

d = 8 720i 0 0 0 0

a polynomial function of ω and has no poles whatsoever. For d even, the polygamma

functions appearing in Eq.(2.34) have simple poles when their arguments become negative

integers (this happens only along the negative imaginary axis in the complex frequency

plane). The kernel KOut inherits these poles except when they get cancelled by the zeroes

of ∆N(n, µ, ω) given in Eq.(2.36). We exhibit the residues of some of these poles in the

table 2.5,2.6,2.7 and 2.8: the ones with zero residues correspond to cancelled poles. The

presence of these poles indicates that the small-frequency Langevin description might fail

beyond a certain cut-off frequency.

We will conclude this section with a comment on the flat spacetime limit of the

expressions derived in this section. Intuitively, we expect that the high-frequency modes

with ω ≫ 1 would be insensitive to the cosmological constant, and would behave like

Minkowski modes. This intuition can indeed be made precise by examining the high-

frequency expansion of KOut. Using Stirling approximation for the Gamma functions, we

can indeed check the following statement valid for ω ≫ 1:

KOut ≈


2πi

Γ(ν)2

(
ω
2

)2ν for d odd ,
1

Γ(ν)2

(
ω
2

)2ν
ln
(

ω4

H4

)
for d even .

(2.38)

Comparing these limits with Eqs.(A.78) and (A.80), we conclude KOut is indeed the dS

generalisation of the radiation reaction kernel.
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2.2 SK Green functions and the cosmological influence

phase

We now turn to the problem of constructing the solution on the dS-SK spacetime contour.

The construction here closely parallels corresponding derivation in AdS [45–47,49,50] and

we include a concise summary here mainly for completeness. The reader is encouraged to

see these references for a more extensive discussion and interpretation of the expressions

quoted below.

Our discussion in this section is structured as follows: we begin by extending our

discussion of counter-terms, etc., to the incoming Green functions. Physically, such

Green functions are relevant while describing the effect of a distant source on the past of

the observer. As will be derived below, even if there are no sources present, an observer

in dS spacetime sees cosmic background radiation at the dS temperature. We will need

the incoming Green function to describe these waves.

2.2.1 Time reversal, incoming waves and their branch-cut

We would now like to argue that the renormalised conjugate field continues to be finite

for the Green function describing incoming waves. The incoming Green function can be

computed from the answers we already have by using the time reversal isometry of the dS

spacetime. The only non-trivial step involved is to realise how the time reversal isometry

acts on EF coordinates.

The action of time reversal is achieved by the diffeomorphism

u 7→ 2πiζ − u , ω 7→ −ω , (2.39)

where ζ is the mock tortoise coordinate introduced in Eq.(1.3). One can check that

this diffeomorphism preserves the metric in Eq.(2.2) and is hence an isometry. The map

ω 7→ −ω is necessary maintain the ∼ e−iωu factor in Fourier domain. The time reversal

is hence achieved by reversing ω and then multiplying all Fourier domain functions by a

factor e−2πωζ .

Using the time reversal isometry, the bulk to worldline Green function with incoming
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boundary condition takes the form

GIn
N (r, ω, ℓ) = e−2πωζGOut∗

N (r, ω, ℓ) (2.40)

Unlike GOut
N , the Green function GIn

N has a branch-cut on the dS-SK contour, taking

different values in the left vs. right static patches. The near origin expansion of GIn
N can

be obtained by using the Euler transformation in Eq.(2.24):

GIn
N (r, ω, ℓ) ≡ e−2πωζGOut∗

N = e−2πωζ

(
1− r
1 + r

)−iω

× r−ν− 1
2
(N−1)(1 + r)−iω

×
{

2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
−(1− i cotπν)K̂In

r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]}
.

(2.41)

The branch cuts of the explicit (1± r)−iω are chosen to lie outside the open unit disc in

the complex r plane, and a careful evaluation of the pre-factor above yields

e−2πωζ

(
1− r
1 + r

)−iω

=

1 L contour

e−2πω R contour .
(2.42)

This shows explicitly the branch-cut and jump in the incoming Green function. In the

above equation, the symbol K̂In denotes the worldline advanced Green function given by

the expression

K̂In(ω, ℓ) ≡ [K̂Out(ω, ℓ)]
∗ = −e−2πiνK̂Out(−ω, ℓ)

= e−iνπ 2πi

Γ(ν)2
Γ
(
1+ν−µ+iω

2

)
Γ
(
1+ν+µ+iω

2

)
Γ
(
1−ν+µ+iω

2

)
Γ
(
1−ν−µ+iω

2

) . (2.43)

The comments made in the context of K̂Out below Eq.(2.11) apply also in this case.

The decomposition in Eq.(2.41), just like the outgoing case, makes explicit the small r

behaviour and helps read off the K̂In easily.

Given the above definition of GIn
N , it is now straightforward to compute the renor-

malised conjugate field. Since the incoming mode has a branch cut, it behaves differently

at the two boundaries. Adding in the counterterm in Eq.(2.23), we get the renormalised
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conjugate field as

πIn
N ≡ −

[
rND+ + rN−1CN

]
GIn

N

= −e−2πωζ
[
rND− + rN−1CN

]
GOut∗

N

= e−2πωζπOut∗
N .

(2.44)

Here we have used D± ≡ (1 − r2)∂r ± iω as well as the property that D+[e
−2πωζ#] =

e−2πωζD−[#]. Using Eq.(2.26), we obtain

πIn
N = (1− i cot πν)K̂Ine

−2πωζ

(
1− r
1 + r

)−iω

ZN(r, ω)

× rν+
1
2
(N−1)(1 + r)−iω

2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
.

(2.45)

As in the case of outgoing waves, we see again that the renormalised conjugate field is

the regular part of the incoming waves renormalised with the same factor ZN(r, ω). We

can then take the r → 0 limit above and below the branch cut to get

lim
r→0

r−ν− 1
2
(N−1)πIn

N =

(1− i cotπν)K̂In L boundary ,

e−2πω(1− i cot πν)K̂In R boundary .
(2.46)

This shows that the counter-term we derived also works for the incoming waves. When d

is odd and cot πν = 0, we can remove the dimensional regularisation without any further

counterterms. The analogue of Eq.(2.29) for the incoming waves is

KIn|Odd d = (1− i cotπν)K̂In|Odd d = (KOut)
∗|Odd d

= e−iνπ 2πi

Γ(ν)2
Γ
(
1+ν−µ+iω

2

)
Γ
(
1+ν+µ+iω

2

)
Γ
(
1−ν+µ+iω

2

)
Γ
(
1−ν−µ+iω

2

) . (2.47)

All our statements about KOut in odd d apply mutatis mutandis to KIn.

When d is even and ν approaches an integer, there are additional divergences due

to cot πν. We already encountered such divergences and countertermed them away for

outgoing waves. We have to check now that the counterterms in Eq.(2.35) added to cancel

such divergences out of outgoing waves, work also for the incoming waves. To see this,
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we examine the expansion

(1− i cotπν)K̂In(ν) = ∆N(n, µ, ω)

[
2

ν − n

+ ψ(0)

(
1 + n− µ+ iω

2

)
+ ψ(0)

(
1 + n+ µ+ iω

2

)
+ ψ(0)

(
1− n− µ+ iω

2

)
+ ψ(0)

(
1− n+ µ+ iω

2

)
− 4ψ(0)(n) +O(ν − n)

]
,

(2.48)

where ∆N(n, µ, ω) is given by Eq.(2.36). Here, we have used crucially the fact that ∆N is

a real, even function of ω.

From the above expression, we can see that the incoming conjugate field in Eq.(2.45)

is also rendered finite by the same counterterms as before. Crucially, the monodromy

factors of e−2πωζ work out correctly to cancel the divergences near both the left/right

world lines. We get the final renormalised advanced worldline Green function as

KIn|Even d = ∆N(ν, µ, ω)

[
ψ(0)

(
1 + ν − µ+ iω

2

)
+ ψ(0)

(
1 + ν + µ+ iω

2

)
+ψ(0)

(
1− ν − µ+ iω

2

)
+ ψ(0)

(
1− ν + µ+ iω

2

)
− 4ψ(0)(ν)

]
,

(2.49)

To conclude, we have demonstrated a set of counterterms which result in finite answers

for conjugate fields evaluated over both outgoing as well as incoming waves. The final

renormalised conjugate field is given by

lim
r→0

r−ν− 1
2
(N−1)πIn

N =

KIn L boundary ,

e−2πωKIn R boundary .
(2.50)

Since the most general solution on the dS-SK geometry is a linear combination of outgo-

ing/incoming waves, it follows that our counterterm prescription will yield a finite answer

for the cosmological influence phase.
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2.2.2 Point-like sources and Green functions on dS-SK contour

In this subsection, we solve for the unique combination of outgoing and incoming waves

corresponding to a point source placed at the centre(s) of left/right static patches in dS-

SK geometry. As we will describe subsequently, with some more effort, arbitrary extended

sources on the dS-SK background can also be dealt with.

We describe the point source problem first to introduce, within a simpler setting, the

ingredients needed for the extended sources. As we shall see, in analogy with AdS, we

can think of the problem of point sources placed at the centre of the static patch as

one involving boundary-to-bulk Green functions. In contrast, the problem of extended

sources is that of bulk-to-bulk Green functions, and it is hence fairly more involved.

We begin with the most general linear combination of outgoing/incoming modes for

the radial part

φ
N
(ζ, ω, ℓ, m⃗) = −GOut

N (r, ω, ℓ)JF̄ (ω, ℓ, m⃗) + e2πω(1−ζ)GOut∗
N (r, ω, ℓ)JP̄ (ω, ℓ, m⃗) . (2.51)

Here the subscripts F and P denote the sources that radiate to the future and detectors

that absorb from the past respectively. We use ζ to indicate the radial argument of φ
N

to emphasise that this general linear combination takes two different values in the two

branches of dS-SK geometry.

The coefficients JF̄ , JP̄ appearing above can be linked to the left/right sources via the

double Dirichlet condition, i.e., at the left/right copy of the worldlines, we impose

JL(ω, ℓ, m⃗) ≡ lim
ζ→0

rν+
N−1
2 φ

N
= −JF̄ (ω, ℓ, m⃗) + e2πωJP̄ (ω, ℓ, m⃗) ,

JR(ω, ℓ, m⃗) ≡ lim
ζ→1

rν+
N−1
2 φ

N
= −JF̄ (ω, ℓ, m⃗) + JP̄ (ω, ℓ, m⃗) .

(2.52)

Our use of the symbol J here is a deliberate allusion to the observer’s multipole moments.

Inverting the above relations, we obtain

JF̄ (ω, ℓ, m⃗) ≡ −
{
(1 + nω)JR(ω, ℓ, m⃗)− nωJL(ω, ℓ, m⃗)

}
= −JA(ω, ℓ, m⃗)−

(
nω +

1

2

)
JD(ω, ℓ, m⃗)

JP̄ (ω, ℓ, m⃗) ≡ −nω

{
JR(ω, ℓ, m⃗)− JL(ω, ℓ, m⃗)

}
= −nω JD(ω, ℓ, m⃗) .

(2.53)
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Here we have introduced the average/difference sources JA ≡ 1
2
JR+

1
2
JL and JD ≡ JR−JL.

We note here the natural appearance of the Bose-Einstein factor

nω ≡
1

e2πω − 1
. (2.54)

Such a factor arises naturally by solving the detailed-balance constraint 1+ nω = e2πωnω

which equates the probability of spontaneous/stimulated emission by the source to the

absorption probability. The appearance of such a factor is evidence that dS-SK contour

naturally incorporates the thermality of Hawking radiation emitted from the dS horizon

[68].

The solution for the bulk field produced by point-like sources is given by Eq.(2.51).

Using Eq.(2.53), we then have

φ
N
= gRJR − gLJL , (2.55)

where we have defined

gL ≡ nω

(
GOut

N − e2πω(1−ζ)GOut∗
N

)
,

gR ≡ (1 + nω)
(
GOut

N − e−2πωζGOut∗
N

)
.

(2.56)

These are the dS analogues of the left/right boundary-to-bulk Green functions which tell

us how left and right sources affect the solution on the dS-SK geometry(see Figure 2.1).

They obey the Kubo-Martin-Schwinger (KMS) relation gR(ζ) = e2πωgL(1 + ζ) as well as

the following boundary conditions on the dS-SK contour:

lim
ζ→0

rν+
N−1
2 gL = −1 , lim

ζ→0
rν+

N−1
2 gR = 0 ,

lim
ζ→1

rν+
N−1
2 gL = 0 , lim

ζ→1
rν+

N−1
2 gR = 1.

(2.57)

This result can be derived directly from the boundary condition in Eq.(2.16). The above

conditions imply that the Green function gL,R are two different smooth interpolations

between the homogeneous solution regular at the origin on one side and a Green function

with a source singularity on the other side. Thus, gR is regular near the left boundary

whereas gL is regular near the right boundary.
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G

Figure 2.1: Propagators in dS-SK geometry: the boundary to bulk propagators are de-
noted in red and the bulk to bulk propagator is denoted in brown.

The Green functions gL,R can be written down explicitly. Substituting Eqs.(2.10) and

(2.41) into Eq.(2.56), we get the following expressions:

gL = nωr
−ν− 1

2
(N−1)(1 + r)−iω

×
{[

1− e2πω(1−ζ)

(
1− r
1 + r

)−iω
]

× 2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
− i cotπν

[
K̂Out + e2πω(1−ζ)

(
1− r
1 + r

)−iω

K̂In

]

× r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
−

[
K̂Out − e2πω(1−ζ)

(
1− r
1 + r

)−iω

K̂In

]

× r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]}
,

(2.58)
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and

gR = (1 + nω)r
−ν− 1

2
(N−1)(1 + r)−iω

×
{[

1− e−2πωζ

(
1− r
1 + r

)−iω
]

× 2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
− i cot πν

[
K̂Out + e−2πωζ

(
1− r
1 + r

)−iω

K̂In

]

× r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
−

[
K̂Out − e−2πωζ

(
1− r
1 + r

)−iω

K̂In

]

× r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]}
.

(2.59)

These equations describe the Dirac-Deitweiler-Whiting [79, 96] type decomposition of

the left/right Green functions into a singular solution which does not contribute to the

radiation reaction, and a regular solution (the terms in the last line of each equation)

which contributes to the finite influence phase.

Having said that, the reader should note that the expressions above are fairly com-

plicated, with an elaborate branch cut structure that cannot be easily guessed a priori

without the dS-SK prescription. These formulae are more complicated by the fact that

we are forced to work with dimensional regularisation for even d. We will simplify the

expressions for these dS boundary-to-bulk propagators in the next subsection when we

describe extended sources. For present purposes, it is, however, sufficient to note the

following: despite the complexity of expressions, given that we have a counterterm pro-

cedure that works both for outgoing and incoming waves, we are guaranteed a finite

renormalised conjugate field.

To see this explicitly, we construct the corresponding renormalised conjugate field

πN(ζ, ω, ℓ) = −πOut
N (r, ω, ℓ)JF̄ + e2πω(1−ζ)πOut∗

N (r, ω, ℓ)JP̄

= πR(ζ, ω, ℓ)JR − πL(ζ, ω, ℓ)JL ,
(2.60)
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with the left/right boundary-to-bulk Green functions for the conjugate field defined by

πL(ζ, ω, ℓ) ≡ −
[
rND+ + rN−1CN

]
gL(ζ, ω, ℓ)

= nω

(
πOut
N (r, ω, ℓ)− e2πω(1−ζ)πOut∗

N (r, ω, ℓ)
)
,

πR(ζ, ω, ℓ) ≡ −
[
rND+ + rN−1CN

]
gR(ζ, ω, ℓ)

= (1 + nω)
(
πOut
N (r, ω, ℓ)− e−2πωζπOut∗

N (r, ω, ℓ)
)
.

(2.61)

The equality here follows from a logic similar to that used in Eq.(2.44). The explicit forms

of πOut
N and e−2πωζπOut∗

N are given in Eqs.(2.26) and (2.45) respectively. Substituting them

in, we get

πL = nω

[
(1 + i cot πν)K̂Out − e2πω(1−ζ)

(
1− r
1 + r

)−iω

(1− i cotπν)K̂In

]
ZN(ω, r)

× rν+
1
2
(N−1)(1 + r)−iω

2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
,

πR = (1 + nω)

[
(1 + i cot πν)K̂Out − e−2πωζ

(
1− r
1 + r

)−iω

(1− i cotπν)K̂In

]
ZN(ω, r)

× rν+
1
2
(N−1)(1 + r)−iω

2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
.

(2.62)

This picks out the regular part of the solution on dS-SK contour renormalised by ZN(ω, r),

as expected.

For ν ∈ Z, we should subtract the cotπν divergences using further counterterms in

Eq.(2.35): once this is done, we can relax the dimensional regularisation and effectively

replace

(1 + i cotπν)K̂Out → KOut , (1− i cot πν)K̂In → KIn .

After this is done, we can take r → 0 limit on both sides of the dS-SK contour to get

lim
r→0

r−ν− 1
2
(N−1)πN =

KLRJR −KLLJL L boundary ,

KRRJR −KRLJL R boundary ,
(2.63)
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where we have defined the Schwinger-Keldysh worldline Green functions defined via

KLL ≡ nωKOut − (1 + nω)KIn , KLR ≡ (1 + nω)
(
KOut −KIn

)
,

KRL ≡ nω

(
KOut −KIn

)
, KRR ≡ (1 + nω)KOut − nωKIn .

(2.64)

These are exactly the expressions for the Schwinger-Keldysh two-point functions of a

bosonic system coupled to a thermal bath [56,57,65].

Now that we have the near origin values of both the generalised free scalar system

as well as its renormalised conjugate field, we are ready to compute the influence phase

of the observer in the saddle point approximation by evaluating the on-shell action. We

want to compute the action given in Eq.(2.18) along with the counter-term in Eqs.(2.21)

and (2.35) over the dS-SK solution we found in Eq.(2.55). We begin with the full-action

S = −1

2

∑
L

∫
dω

2π

∮
rNdr

1− r2
[
(D+φN

)∗D+φN
− ω2(1− r2)φ∗

N
φ

N

− 1

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ∗

N
φ

N

]
+ Sct ,

(2.65)

integrate by parts over the bulk terms and then use the equation of motion in Eq.(2.7).

This results in an on-shell action written purely in terms of boundary terms:

SOn-Shell =
1

2

∑
L

∫
dω

2π
φ∗

N
πN|Bnd

= −1

2

∑
L

∫
dω

2π

{
J∗R[KRRJR −KRLJL]− J∗L[KLRJR −KLLJL]

}
,

(2.66)

where πN is the renormalised conjugate field defined in Eq.(2.22). Here, we have used the

fact that the integrand in the first step can be written as a product

[rν+
1
2
(N−1)φ

N
]∗r−ν− 1

2
(N−1)πN , (2.67)

and each factor in this product has a finite limit as we remove the regulator at the

boundary (i.e. take rc → 0 limit). The dS-SK contour integral
∮

runs clockwise from the

right static patch to the left static patch, thus resulting in the sign of the final expression

above.

We can further simplify the above expression using the reality properties of the mul-
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tipole sources as well as 1 + nω + n−ω = 0. We will now argue that the fluctuations

also admit a small ω expansion. To this end, we use 1 + nω + n−ω = 0 to rewrite the

cosmological influence phase as

SCIP = −
∑

L

∫
dω

2π

[
KOut(ω, ℓ) J

∗
DJA +

1

2

(
nω +

1

2

)
[KOut(ω, ℓ)−KOut(−ω, ℓ)] J∗DJD

]
.

(2.68)

Since ω nω has a regular small ω expansion, we conclude from the above expression that

SCIP has a regular small frequency expansion provided KOut has such an expansion. Up

to 1st order in ω, we have

KOut = KOut|ω=0 − i ω τdS + . . . (2.69)

where τdS can be interpreted as the cosmological decay time-scale for slowly varying

multipole moments in dS.4 Due to the dS version of the fluctuation-dissipation theorem,

this is also proportional to the variance of the Hubble Hawking noise. This fact can be

gleaned from the leading J∗DJD term in the cosmological influence phase:

SCIP ⊃ i
∑

L

τdS
2π

∫
dω

2π
J∗DJD . (2.70)

Using the Hubbard-Stratonovich transformation, we can think of this term arising from

integrating out a noise field with a time-domain action:

∑
L

∫
du

[
i

2

π

τdS
N2(u) + JD(u)N(u)

]
. (2.71)

The first term here then shows that N(u) behaves like a Gaussian noise field with variance
τdS
π

.

The important fact to note about the influence phase is that, for all values of µ

appearing in table 2.1 except µ = d
2
, we get a nice small ω expansion. For µ = d

2
, we

still get a small ω expansion for all ℓ > 0: only the ℓ = 0 term has a 1/ω behaviour at

small ω. The physical interpretation of these statements is this: in all these cases except

ℓ = 0, µ = d
2
, one obtains a Markovian open system at small ω, i.e., a cosmically old

4We tabulate τdS for various cases of interest in tables 2.9, 2.10 and 2.11.
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observer in dS does not retain any memory of its past.5 This is an interesting observation,

especially in even d where the corresponding flat spacetime problem has memory terms

[86]. This suggests that the radiation reaction problem in an expanding spacetime is

perhaps better behaved than the one in flat spacetime. In dual quantum mechanics, this

predicts that a clean separation of slow/fast degrees of freedom should be possible, at

least in the leading large N approximation.

Table 2.9: τdS for µ = d
2

(Massless KG scalar, Gravity tensor sector)

µ = d
2

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

d = 3 4 1 64
225

4
49

256
11025

d = 4 9π2

16
1 25π2

1024
1
16

441π2

262144

d = 5 64
9

1 256
1225

4
81

16384
1334025

d = 6 225π2

256
1 1225π2

65536
1
25

3969π2

4194304

d = 7 256
25

1 16384
99225

4
121

65536
9018009

d = 8 1225π2

1024
1 3969π2

262144
1
36

9801π2

16777216

d = 9 16384
1225

1 65536
480249

4
169

1048576
225450225

d = 10 99225π2

65536
1 53361π2

4194304
1
49

1656369π2

4294967296

d = 11 65536
3969

1 1048576
9018009

4
225

4194304
1329696225

5The mild breakdown of small ω expansion in µ = d
2 gives a tail term in the radiation reaction. This

has been previously noted in [97]. This tail term can be avoided either by turning off the monopole
moment or by giving the scalar a small mass.
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Table 2.10: τdS for µ = d
2
− 1 (EM/Gravity vector sector)

µ = d
2
− 1 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

d = 3 1 1 4
9

4
25

64
1225

64
3969

d = 4 π2

4
1 9π2

256
1
9

225π2

65536
1

100

d = 5 4 1 64
225

4
49

256
11025

64
9801

d = 6 9π2

16
1 25π2

1024
1
16

441π2

262144
1

225

d = 7 64
9

1 256
1225

4
81

16384
1334025

64
20449

d = 8 225π2

2566
1 1225π2

65536
1
25

3969π2

4194304
1

441

d = 9 256
25

1 16384
99225

4
121

65536
9018009

64
38025

d = 10 1225π2

1024
1 25π2

1024
1
16

441π2

262144
1

225

d = 11 16384
1225

1 65536
480249

4
169

1048576
225450225

64
65025

Table 2.11: τdS for µ = d
2
− 2 (EM/Gravity scalar sector)

µ = d
2
− 2 ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

d = 3 1 1 4
9

4
25

64
1225

64
3969

d = 4 1 π2

16
1
4

9π2

1024
1
36

225π2

262144

d = 5 1 4
9

4
25

64
1225

64
3969

256
53361

d = 6 1 9π2

256
1
9

225π2

65536
1

100
1225π2

4194304

d = 7 1 64
225

4
49

256
11025

64
9801

16384
9018009

d = 8 1 25π2

1024
1
16

441π2

262144
1

225
2025π2

16777216

d = 9 1 256
1225

4
81

16384
1334025

64
20449

65536
81162081

d = 10 1 1225π2

65536
1
25

3969π2

4194304
1

441
245025π2

4294967296

d = 11 1 16384
99225

4
121

65536
9018009

64
38025

1048576
2606204601

2.2.3 Regularisation for Neumann scalars

This section gives a procedure for obtaining the boundary 2-point function KOut for the

designer scalar with the scalar satisfying Neumann boundary conditions at the r = 0
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boundary. It is slightly tangential to the route we were following but becomes useful

for the treatment of the electromagnetic problem considered in the next chapter, so this

chapter can be safely skipped if the reader without losing continuity.

The action (E.1) describes the dynamics of the designer scalar field with two param-

eters N and µ. For the specific case of the electric Debye potential, for which we use the

results of this section, these parameters take the values N = d− 3 and µ = d
2
− 2.

The conjugate field for radial evolution for φ
N

is given by π
N

= −rND+φN
. For

a Neumann boundary condition, we will fix the value of π
N

to some source multipole

moment. The boundary 2-point function is then specified by the behaviour of the φ
N

at

r → 0. Naively, this limit yields a divergence similar to the divergence of the Coulomb

field of a point charge at r = 0. We would like to regulate this divergence by the usual

QFT technique of adding appropriate counterterms to our action. To this end, let’s first

look at the divergent behaviour of the φ
N

at as we take the limit r → 0.

We require φ
N

to satisfy outgoing boundary conditions at the horizon, which is equiva-

lent to demanding analyticity at r = 1 in the outgoing Eddington-Finkelstein coordinates.

The Neumann boundary condition at r = 0 is imposed as:

lim
r→0

rν+
N+1
2

{
−rND+φN

}
= Jℓm⃗(ω) (2.72)

Given these boundary condition, φ
N

can be written as:

φ
N
=

GOut
N

ν + N−1
2

Jℓm⃗ (2.73)

where GOut
N is given by:

GOut
N = r−ν− 1

2
(N−1)(1 + r)−iω

×
{

2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
−(1 + i cot νπ)K̂Out

r2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]}
.

(2.74)

As one can see from the above formula, φ
N

has a term with leading behaviour of r−ν−N−1
2

as r → 0 that diverges and needs to be countertermed away.
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The renormalised field (φ
Nren) is given by:

φ
Nren = φ

N
+

r

CN

D+φN
(2.75)

where CN is the same function that appears in the counterterming of the conjugate field

in the corresponding Dirichlet problem. In particular,

CN

1− r2
≡ −r d

dr
ln

{
r−ν− 1

2
(N−1)(1− r2)−

iω
2

× 2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]}
.

(2.76)

We showed previously that CN is an even function in ω and has a well-behaved small

r expansion. Let’s see how 1
CN

behaves at small r:

1

CN

=
2

2ν +N − 1

{
1 + r2 − (ν − 1)2 − µ2 − ω2

(ν − 1)(2ν +N − 1)
r2 + . . .

}
(2.77)

Even in this case, the counterterm is local in time, which can be verified by further

expanding the above function. Given this definition of the renormalised field, its boundary

behaviour becomes:

lim
r→0

r−ν+N−1
2 φ

Nren = −1 + i cot νπ(
ν + N−1

2

)2 K̂Out (2.78)

Renormalising the φ
N

in this manner is equivalent to adding the following counterterm

to the action:

Sct =
1

2

∑
ℓm⃗

∫
dω

2π
rN+1 1

CN(r, ω, ℓ, m⃗)
(D+φN

)∗D+φN
|Bnd . (2.79)

For the case of even d, one needs an additional counterterm to make the action finite.

This counterterm is the same as the one required in the Dirichlet case:

Sct,Even =
∑
ℓm⃗

1

ν − n

∫
dω

2π
rN−1+2n∆N(n, µ, ω)φ

∗
N
φ

N
|Bnd . (2.80)
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2.2.4 Extended sources on dS-SK contour I : bulk-to-bulk prop-

agator

In this section, we will describe the problem of a finite size observer within dS spacetime.

One motivation for such an exercise is to give a more physical version of the regularisation,

counter-terms and renormalisation described in the previous sub-sections. We will see

that indeed a finite size observer has a renormalised cosmological influence phase, which,

as its size is reduced, approaches the result for a point-like observer. Apart from this

formal motivation, we are also interested in checking whether the conjectured dS-SK

saddle point correctly reproduces the finite size physics in dS. As we shall see, this is also

a way to naturally generalise our construction to a non-co-moving observer with a peculiar

velocity as well as to describe observers made of multiple worldlines (or equivalently the

case of a string or a membrane in dS).

The main physics in all the above cases is that of relative time-delays: for an extended

source, its effective radiative multipole moments have to be computed by adding up

source strengths at various points with different time-delays. This is necessary because

the emitted wave takes a finite amount of time to cross an extended source, and this

wave-crossing time has to be accounted for when adding up emissions from two farther

ends of the source. For spherical sources in flat space, this translates to modulating the

source with an appropriate Bessel J function in frequency domain. We will see below that

an analogous statement in dS emerges naturally out of dS-SK saddle-point geometry.

Let us begin by describing our setup. Consider an extended source of the gener-

alised/designer scalar field in dS spacetime. This means modifying the radial ODE in

Eq.(2.7) by a source term of the form

1

rN
D+[r

ND+φN
] + ω2φ

N

+
1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ

N
+ (1− r2)ϱN(ζ, ω, ℓ, m⃗) = 0 .

(2.81)

In the context of dS-SK contour, we will let ϱN be a general function over the saddle-

point geometry, allowing it to even take completely different values in the two copies of

the static patch (i.e., as a function of complex r, it is allowed to have a branch-cut along

the static patch). The (ω,L) arguments of ϱN imply that we also allow the most general

47



time/angle dependence.

The solution for the above ODE can then be written in terms of an appropriate dS-SK

contour-ordered, bulk-to-bulk Green function:

φ
N
(ζ, ω, ℓ, m⃗) =

∮
rN0 dr0 G(ζ|ζ0, ω, ℓ)ϱN

(ζ0, ω, ℓ, m⃗) . (2.82)

Here
∮

refers to the integral over clockwise dS-SK contour and G is the radial Green

function satisfying the appropriate boundary conditions (which we will detail below).

According to our proposal in this note, the influence phase of the extended source can

be computed by solving the above ODE everywhere on dS-SK and then substituting the

solution into the action corresponding to the above ODE, viz., by evaluating

S = −1

2

∑
L

∫
dω

2π

∮
rNdr

1− r2
[
(D+φN

)∗D+φN
− ω2φ∗

N
φ

N

−1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ∗

N
φ

N

]
+
∑

L

∫
dω

2π

∮
rNdr φ∗

N
ϱ

N
+ Sct[ϱN

]

(2.83)

on the Green function solution above. The last line in the action above gives the source

term and the counter-term parts of the action.6 For a truly extended source, counter-

terms are not necessary for finiteness, and their job is to provide the finite renormalisation

of the conservative part of the action.

Using the radial ODE above, on-shell action can be reduced to the following simple

form

S|On-shell =
1

2

∑
ℓm⃗

∫
dω

2π

∮
rNdr ϱ∗

N
φ

N
|On-shell + Sct[ϱN

]

=
1

2

∑
ℓm⃗

∫
dω

2π

∮
rNdr

∮
rN0 dr0 [ϱ

N
(ζ, ω, ℓ, m⃗)]∗G(ζ|ζ0, ω, ℓ)ϱN

(ζ0, ω, ℓ, m⃗)

+ Sct[ϱN
] .

(2.84)

Thus, once we solve for the bulk-to-bulk Green function G, we can substitute it into the

above expression to obtain the dS-SK saddle point answer for cosmological influence phase
6The reader should note that the counterterms used here for extended sources need not (and, indeed,

will not) match with the counterterms used for point sources in the previous subsections.
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SCIP. While it is not immediately evident, we will demonstrate in the next subsection

that the dissipative part of the influence phase for the extended sources computed from

the expression above, when written in terms of appropriate multipole moments, takes a

form identical to that for a point source derived before. In addition to this radiation

reaction, for extended sources, we also expect conservative interactions between their

different internal parts.

Let us now derive an explicit expression for the bulk-to-bulk Green function G. The

construction here is analogous to the one in vacuum AdS [33], as well as the contour-

ordered bulk-to-bulk Green function in the SK contour corresponding to planar AdS black

holes [54,100]. We will demand that this Green function be regular at the edges of dS-SK

contour, viz., we require that

lim
ζ→0

rν+
N−1
2 G = lim

ζ→1
rν+

N−1
2 G = 0. (2.85)

Further, to be a Green function, it should obey the ODE

1

rN
D+[r

ND+G] + ω2G

+
1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
G +

1

rN
(1− r2)δc(r − r0) = 0 .

(2.86)

Here δc(r − r0) is the contour-ordered delta function on the dS-SK contour. The above

ODE implies that G is a solution of the homogeneous radial ODE for ζ ̸= ζ0 with a unit

discontinuity in the conjugate field at ζ = ζ0. We have already solved the homogeneous

radial ODE for point sources to construct the left and right boundary-to-bulk Green

functions in Eq.(2.56). These are solutions characterised by the boundary conditions

specified in Eq.(2.57).

Looking at Eq.(2.57), we conclude that we should take G ∝ gR near the left boundary

and G ∝ gL near the right boundary since these are the solutions that satisfy the necessary
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regularity conditions in Eq.(2.85). Demanding continuity, we surmise that

G(ζ|ζ0, ω, ℓ) =
1

WLR(ζ0, ω, ℓ)
gR(ζ≻, ω, ℓ)gL(ζ≺, ω, ℓ)

≡ 1

WLR(ζ0, ω, ℓ)

gR(ζ, ω, ℓ)gL(ζ0, ω, ℓ) if ζ ≻ ζ0

gL(ζ, ω, ℓ)gR(ζ0, ω, ℓ) if ζ ≺ ζ0

.

(2.87)

Here, the symbols ≻ and ≺ denote comparison using the radial contour ordering of the

dS-SK contour. The unit discontinuity condition on the conjugate field fixes the function

WRL to be the Wronskian between right and left boundary-to-bulk Green functions, viz.,

WRL(ζ, ω, ℓ) ≡ gLπR − gRπL = (1 + nω)e
−2πωζ

(
GOut

N πOut∗
N −GOut∗

N πOut
N

)
= (1 + nω)e

−2πωζ
[
(1− i cot πν)K̂In − (1 + i cotπν)K̂Out

]
.

(2.88)

Here, the equality in the first line follows from Eqs.(2.56) and (2.61). The last equality

follows by substituting the expressions for GOut
N and πOut

N from Eqs.(2.10) and (2.26), and

then invoking the following hypergeometric Wronskian identity

ZN(r, ω)r
ν+ 1

2
(N−1)(1 + r)−iω

2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
=

(
1− r
1 + r

)iω
rν+

1
2
(N−1)(1 + r)iω

2F1

[
1−ν+µ−iω

2
, 1−ν−µ−iω

2
; 1− ν; r2

] . (2.89)

This identity expresses a combination of the derivatives of hypergeometric functions

in terms of the hypergeometric functions, and such an identity can be derived from a

wronskian-like argument associated with the corresponding radial ODE.

The reader should note an important subtlety in the statement above: the Wronskian

here is not a constant function along radial direction, but rather varies as we traverse

the dS-SK contour. A similar subtlety was already noted in the AdS context by [54].

As we shall eventually see, the extra e−2πωζ factor is here for a good physical reason: it

ensures that multipole moments that enter into cosmological influence phase are computed

using source distributions in standard time-slices, instead of source distributions along

Eddington-Finkelstein null time-slices.

To proceed further, we should now substitute the explicit forms of dS-SK boundary-

to-bulk propagators given in Eqs.(2.58) and (2.59) into the expression for the bulk-to-bulk
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propagator in Eq.(2.87), and then perform the dS-SK contour integral in Eq.(2.84). To

this end, we first regroup the expressions for gL and gR into somewhat more tractable

expressions with clear branch-cut structures. For what follows, we will find it convenient

to separate out the solutions into a singular (non-normalisable) part Ξnn vs a regular

(normalisable) part Ξn, using the renormalised world line Green functions instead of the

bare ones from the start. The adjectives singular/regular refer here to their behaviour

near the worldline (i.e., near r = 0). To this end, let us begin by defining two functions

Ξnn,Ξn implicitly via

(
1− r
1 + r

)− iω
2

GOut
N (r, ω, ℓ) ≡ Ξnn(r, ω, ℓ)−KOut Ξn(r, ω, ℓ) ,(

1− r
1 + r

) iω
2

GOut∗
N (r, ω, ℓ) ≡ Ξnn(r, ω, ℓ)−KIn Ξn(r, ω, ℓ) ,

(2.90)

where KOut and KIn are the final renormalised world line Green functions. The above

equality should be thought of as defining the functions Ξn(r, ω, ℓ) and Ξnn(r, ω, ℓ) as

analytic functions on the open static patch 0 < r < 1, viz., in the equations above, we

align all the potential branch cuts away from the unit disc in complex radius plane. The

above equations can be inverted to give a direct definition of these functions

(KIn −KOut) Ξn ≡
(
1− r
1 + r

)− iω
2

GOut
N −

(
1− r
1 + r

) iω
2

GOut∗
N ,

(KIn −KOut) Ξnn ≡
(
1− r
1 + r

)− iω
2

KInG
Out
N −

(
1− r
1 + r

) iω
2

KOutG
Out∗
N .

(2.91)

Since KIn(ω, ℓ) = KOut(−ω, ℓ) and GOut∗
N (ω, ℓ) = GOut

N (−ω, ℓ), the above expressions

imply that both Ξn and Ξnn are even functions of ω. Explicit expressions can be written

down for these two functions using Eq.(2.10). We have

Ξn ≡
1

2ν
rν−

1
2
(N−1)(1− r2)−

iω
2
(1 + i cot νπ)K̂Out − (1− i cot νπ)K̂In

KOut −KIn

× 2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
,

(2.92)
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for the normalisable/regular mode and

Ξnn ≡ r−ν− 1
2
(N−1)(1− r2)−

iω
2

{
2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]
− KIn(1 + i cot νπ)K̂Out −KOut(1− i cot νπ)K̂In

KIn −KOut

×r
2ν

2ν
2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]} (2.93)

for the non-normalisable/singular mode. One advantage of working with such renor-

malised functions is that we can safely remove the dimensional regularisation in the above

expressions, resulting in a finite limit. When d is odd and ν ≡ ℓ+ d
2
− 1 ∈ Z + 1

2
, we can

simply set cot νπ = 0 and take K̂Out → KOut and K̂In → KIn. All the K’s then drop out

of the above expression, and Ξnn and Ξn become proportional to single hypergeometric

functions.

When d is even and ν → n ∈ Z, we can use Eqs.(2.33) and (2.48) to write

(1 + i cot νπ)K̂Out =
2

ν − n
∆N(n, µ, ω) +KOut +O(ν − n) ,

(1− i cot νπ)KIn =
2

ν − n
∆N(n, µ, ω) +KIn +O(ν − n) .

(2.94)

Using these expansions, the Ks cancel out again and we are left with the following limits:

Ξn|Even d ≡ lim
ν→n

1

2ν
rν−

1
2
(N−1)(1− r2)−

iω
2 2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]
,

Ξnn|Even d ≡ lim
ν→n

r−ν− 1
2
(N−1)(1− r2)−

iω
2

{
2F1

[
1− ν + µ− iω

2
,
1− ν − µ− iω

2
; 1− ν; r2

]

− r2ν

ν(ν − n)
∆N(n, µ, ω) 2F1

[
1 + ν − µ− iω

2
,
1 + ν + µ− iω

2
; 1 + ν; r2

]}
.

(2.95)

One can explicitly check that these limits exist and result in finite expressions for both

regular/singular modes when d is even. To summarise, Eq.(2.90) decomposes the outgo-

ing/incoming Green functions into renormalised pieces in any d.

We will now rewrite the full bulk-to-bulk propagator in Eq.(2.87) in terms of these

renormalised modes. We begin by rewriting the boundary-to-bulk propagators: using
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Eq.(2.56), we obtain

gL = nω

(
1− r
1 + r

) iω
2

{[
1− e2πω(1−ζ)

(
1− r
1 + r

)−iω
]
Ξnn

−

[
KOut −KIne

2πω(1−ζ)

(
1− r
1 + r

)−iω
]
Ξn

}
,

gR = (1 + nω)

(
1− r
1 + r

) iω
2

{[
1− e−2πωζ

(
1− r
1 + r

)−iω
]
Ξnn

−

[
KOut −KIne

−2πωζ

(
1− r
1 + r

)−iω
]
Ξn

}
.

(2.96)

Substituting them back into Eq.(2.87), we get an explicit expression for the bulk-to-bulk

propagator of the form

G(ζ|ζ0, ω, ℓ) =
1

WLR(ζ0, ω, ℓ)
gR(ζ≻, ω, ℓ)gL(ζ≺, ω, ℓ)

=
nωe

2πωζ0

KIn −KOut

(
1− r
1 + r

) iω
2
(
1− r0
1 + r0

) iω
2

×

{[
1− e−2πωζ≻

(
1− r≻
1 + r≻

)−iω
]
Ξnn(r≻)

−

[
KOut −KIne

−2πωζ≻

(
1− r>
1 + r≻

)−iω
]
Ξn(r≻)

}

×

{[
1− e2πω(1−ζ≺)

(
1− r≺
1 + r≺

)−iω
]
Ξnn(r≺)

−

[
KOut −KIne

2πω(1−ζ≺)

(
1− r≺
1 + r≺

)−iω
]
Ξn(r≺)

}
.

(2.97)

Here, since all quantities are already renormalised, we have removed the dimensional

regularisation7 in the Wronskian given in Eq.(2.88). To conclude, given an arbitrary

extended source on the dS-SK geometry, the above bulk-to-bulk propagator, we can

get the bulk field by substituting the above bulk-to-bulk Green function into Eq.(2.82).

Further, we can also compute the on-shell action Eq.(2.84), which, according to our

prescription, should yield the influence phase of that extended source.

7For odd d, we set cot νπ = 0 and remove the hats on Ks. For even d, we use Eq.(2.94).
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2.2.5 Extended sources on dS-SK contour II: Radiative multi-

poles

In this subsection, we would like to evaluate both the field and the influence of an extended

source. We will find it convenient to discretise the source into a set of spherical shells

around the centre of the right/left static patches. Let ζ = 1 + ζi characterise the radial

position of the ith spherical shell in the right patch, the same radial position in the left

patch is then characterised by ζ = ζi. We will let the i vary over 1 to Ns, where Ns is the

number of shells in each copy of the static patch. We will take the strength of the scalar

source on these spherical shells to be

rNϱ
N
(ζ, ω, ℓ, m⃗) =

∑
i

σR
i (ω, ℓ, m⃗) δc(ζ|1 + ζi)−

∑
i

σL
i (ω, ℓ, m⃗) δc(ζ|ζi) . (2.98)

Here, as before, we work in frequency domain/orthonormal spherical harmonic basis

and allow arbitrary time/angle dependence. Any arbitrary source distribution confined

within the open static patch can be approximated to any desired accuracy as being built

from such spherical shell sources. As we shall see, such a discrete model regularises the

divergences associated with the self-interactions.

ζ = 0

ζ = 1
1 + ζ1

ζ1

1 + ζ31 + ζ2

ζ2 ζ3

Re(r)

Im(r)

r = H−1

R

L

Figure 2.2: Spherical shell sources centred around the right/left static patches shown in

the complex r plane. Their positions on the L contour are related to their position on

the R contour by the branch cut discontinuity in ζ.

We will begin by writing down the bulk field due to the spherical shell sources de-

scribed above. We have, using Eq.(2.82), a superposition of fields produced by each shell
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source, i.e.,

φ
N
(ζ, ω, ℓ, m⃗)

=

∮
rN0 dr0 G(ζ|ζ0, ω, ℓ)ϱN

(ζ0, ω, ℓ, m⃗)

=
∑
i

1

WLR(ζi, ω, ℓ)



e2πωgL(ζ, ω, ℓ)
[
gR(1 + ζi, ω, ℓ) σ

R
i − gL(1 + ζi, ω, ℓ) σ

L
i

]
if ζ ≺ 1 + ζi ,

gR(ζi, ω, ℓ)
[
gR(ζ, ω, ℓ) σ

R
i − gL(ζ, ω, ℓ) σL

i

]
if 1 + ζi ≺ ζ ≺ ζi ,

gR(ζ, ω, ℓ)
[
gR(ζi, ω, ℓ) σ

R
i − gL(ζi, ω, ℓ) σL

i

]
if ζ ≻ ζi .

(2.99)

We remind the reader that ≺ and ≻ are comparisons using the radial contour ordering of

the dS-Sk contour. We also remind the reader that ζ changes from 1 to 0, as we traverse

the clockwise dS-SK contour, starting from the right static patch (See Fig.2.2.5). The

reader should note that the above superposition of fields is continuous everywhere, but

its derivative (and hence the conjugate field) is discontinuous at each spherical shell, with

the discontinuity being determined by the strength of the scalar source at that shell. This

is expected since the bulk-to-bulk Green function was constructed in the last subsection

with precisely these boundary conditions in mind.

Given the above field, computing the on-shell action is straightforward. We use

Eq.(2.84) to write

S|On-shell =
1

2

∑
L

∫
dω

2π

∮
rNdr ϱ∗

N
φ

N
|On-shell

=
1

2

∑
ijL

∫
dω

2π

gR(ζi, ω, ℓ)

WLR(ζi, ω, ℓ)

{
σR∗
j

[
gR(1 + ζj, ω, ℓ)σ

R
i − gL(1 + ζj, ω, ℓ)σ

L
i

]
−σL∗

j

[
gR(ζj, ω, ℓ)σ

R
i − gL(ζj, ω, ℓ)σL

i

]}
.

(2.100)

Even though we are working with distributional sources/fields, given the continuity of

φ
N
, the computation above is unambiguous. Next, we substitute explicit forms of the

boundary-to-bulk Green functions as well as the Wronskian in terms of renormalised
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quantities. We have, using Eqs.(2.96) and (2.42), the following set of equalities:

WLR(ζi, ω, ℓ) = −(1 + nω)

(
1− ri
1 + ri

)iω

[KOut −KIn] ,

gR(ζi, ω, ℓ)

WLR(ζi, ω, ℓ)
=

(
1− ri
1 + ri

)− iω
2

Ξn(ri, ω, ℓ) ,

gL(ζi, ω, ℓ) = −
(
1− ri
1 + ri

) iω
2

{
Ξnn(ri, ω, ℓ) + [nωKOut − (1 + nω)KIn] Ξn(ri, ω, ℓ)

}
,

gL(1 + ζi, ω, ℓ) = −nω

(
1− ri
1 + ri

) iω
2

[KOut −KIn] Ξn(ri, ω, ℓ) ,

gR(ζi, ω, ℓ) = −(1 + nω)

(
1− ri
1 + ri

) iω
2

[KOut −KIn] Ξn(ri, ω, ℓ) ,

gR(1 + ζi, ω, ℓ) =

(
1− ri
1 + ri

) iω
2

{
Ξnn(ri, ω, ℓ)− [(1 + nω)KOut − nωKIn] Ξn(ri, ω, ℓ)

}
.

(2.101)

Substituting these expressions back into the on-shell action yields the following double

sum:

S|On-shell =
1

2

∑
ij

∑
ℓm⃗

∫
dω

2π

(
1− ri
1 + ri

)− iω
2
(
1− rj
1 + rj

) iω
2

×
{
Ξn(ri, ω, ℓ) Ξnn(rj, ω, ℓ) [σ

R∗
j σR

i − σL∗
j σL

i ]

− Ξn(ri, ω, ℓ) Ξn(rj, ω, ℓ) KOut(σ
R
j − σL

j )
∗[(1 + nω)σ

R
i − nωσ

L
i ]

−Ξn(ri, ω, ℓ) Ξn(rj, ω, ℓ) KIn(σ
R
i − σL

i )[(1 + n−ω)σ
R∗
j − n−ωσ

L∗
j ]
]
.

(2.102)

Let us begin by interpreting the terms in the above double sum. We first note that

the last two lines in the above expression are related by the relabelling ω → −ω and

are hence equal. The physical meaning of the last two lines is clarified by defining the
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radiative multipole moments :

JR(ω, ℓ, m⃗) ≡
∑
i

(
1− ri
1 + ri

)− iω
2

Ξn(ri, ω, ℓ) σ
R
i

≡
∫
R

dr rNΞn(r, ω, ℓ)

(
1− r
1 + r

)− iω
2

ϱ
N
(ζ, ω, ℓ, m⃗) ,

JL(ω, ℓ, m⃗) ≡
∑
i

(
1− ri
1 + ri

)− iω
2

Ξn(ri, ω, ℓ) σ
L
i

≡ −
∫
L

dr rNΞn(r, ω, ℓ)

(
1− r
1 + r

)− iω
2

ϱ
N
(ζ, ω, ℓ, m⃗) .

(2.103)

The integrals here are performed over right/left half of the dS-SK contour respectively.

We will also find it convenient to define the average/difference multipole moments via

JA(ω, ℓ, m⃗) ≡ 1

2
[JR(ω, ℓ, m⃗) + JL(ω, ℓ, m⃗)] ,

and

JD(ω, ℓ, m⃗) ≡ JR(ω, ℓ, m⃗)− JL(ω, ℓ, m⃗)

Here we deliberately use the same notation as we did for multipole moments in flat

spacetime (see Eq.(A.73)) and for point-like dS sources (See Eq.(2.52)). One reason for

this is as follows: the last two lines of Eq.(2.102) can be recast in terms of the above

definitions, into the cosmological influence phase of a point-source

SPt
CIP ≡ −

∑
ℓm⃗

∫
dω

2π
KOut(JR − JL)

∗[(1 + nω)JR − nωJL]

= −
∑
ℓm⃗

∫
dω

2π
KOut J

∗
D

[
JA +

(
nω +

1

2

)
JD

]
.

(2.104)

We recognise here the exact influence phase derived for a point-like dS observer in

Eq.(2.68), using a detailed counterterm procedure. More evidence for this identifica-

tion will be presented in section 2.3, where we describe how these multipole moments

correctly reproduce the flat space answers with Hubble corrections.

For now, we turn our attention to the remaining terms, viz., the first double sum in

Eq.(2.102). The presence of the singular Green solution Ξnn, as well as the right/left

factorised form of this sum, indicates that these terms incorporate non-dissipative self-
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energy corrections of the extended source. The final on-shell action can then be written as

S|On-shell = SPt
CIP + SInt, where SInt denotes the internal potential energy of the spherical

shells:

SInt ≡
1

2

∑
i ̸=jL

∫
dω

2π

(
1− ri
1 + ri

)− iω
2
(
1− rj
1 + rj

) iω
2

Ξn(ri, ω, ℓ) Ξnn(rj, ω, ℓ) [σ
R∗
j σR

i − σL∗
j σL

i ] .

(2.105)

Another instructive way to rewrite this potential energy contribution is to define radially

averaged mean fields on the right/left static patch via

φR,Int(ω, ℓ, m⃗) ≡
∑
i

(
1− ri
1 + ri

)− iω
2

Ξnn(ri, ω, ℓ) σ
R
i

≡
∫
R

dr rNΞnn(r, ω, ℓ)

(
1− r
1 + r

)− iω
2

ϱ
N
(ζ, ω, ℓ, m⃗) ,

φL,Int(ω, ℓ, m⃗) ≡
∑
i

(
1− ri
1 + ri

)− iω
2

Ξnn(ri, ω, ℓ) σ
L
i

≡ −
∫
L

dr rNΞnn(r, ω, ℓ)

(
1− r
1 + r

)− iω
2

ϱ
N
(ζ, ω, ℓ, m⃗) .

(2.106)

We can then rewrite the potential energy as that of multipole moments placed in such

an average field, viz.,

SInt =
1

2

∑
L

∫
dω

2π
[J∗RφR,Int − J∗LφL,Int] . (2.107)

2.2.6 Neumann designer scalar on the dS-SK Geometry

In paper I [101], we analysed extended sources in de Sitter coupled to designer scalars

through Dirichlet boundary conditions. In this section, we will solve for the designer scalar

fields in the presence of extended sources but obeying Neumann boundary conditions.

This will be relevant to our study of the electric Debye scalar.

For a generic bulk source ρN, the Neumann boundary condition arises from a coupling
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of ρN to the conjugate field πN = −rND+φN
.

S = −1

2

∑
ℓm⃗

∫
dω

2π

∮
rNdr

1− r2
[
(D+φN

)∗D+φN
− ω2φ∗

N
φ

N

−1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ∗

N
φ

N

]
+
∑

L

∫
dω

2π

∮
dr π∗

NϱN
+ Sct[ϱN

]

(2.108)

The inhomogeneous equation of motion satisfied by such a Neumann scalar is given by:

1

rN
D+[r

ND+φN
] + ω2φ

N
+

1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
φ

N

+
1

rN
D+

[
rN(1− r2)ϱN(ζ, ω, ℓ, m⃗)

]
= 0 .

(2.109)

Notice that the equation is the same as the inhomogeneous equation of motion for the

Dirichlet scalar with the inhomogeneous term replaced with the radial derivative of the

source: 1
rN
D+

[
rN(1− r2)ϱN(ζ, ω, ℓ, m⃗)

]
. In such a case, we can use the same bulk-to-bulk

Green function derived in the previous section8, convolved with the appropriate Neumann

source, to write the solution. In particular:

φ
N
(ζ, ω, ℓ, m⃗) =

∮
dr0

G(ζ|ζ0, ω, ℓ)
1− r20

D0
+

[
rN0 (1− r20)ϱN

(ζ0, ω, ℓ, m⃗)
]
. (2.110)

The bulk-to-bulk Green’s function G is given by:

G(ζ|ζ0, ω, ℓ) =
1

WLR(ζ0, ω, ℓ)
gR(ζ≻, ω, ℓ)gL(ζ≺, ω, ℓ)

≡ 1

WLR(ζ0, ω, ℓ)

gR(ζ, ω, ℓ)gL(ζ0, ω, ℓ) if ζ ≻ ζ0

gL(ζ, ω, ℓ)gR(ζ0, ω, ℓ) if ζ ≺ ζ0

.

(2.111)

where ≻ and ≺ respectively mean ‘succeeds ’ and ‘precedes ’ on the dS-SK contour. In

(2.110), one can use integration by parts to rewrite it in the more conventional definition

of the bulk-to-bulk Green function:

φ
N
(ζ, ω, ℓ, m⃗) = −

∮
dr0 r

N
0D

0
−G(ζ|ζ0, ω, ℓ)ϱN

(ζ0, ω, ℓ, m⃗) . (2.112)

8The corresponding bulk-to-bulk two-point functions in the case of black holes can be found in [102].
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If we now repackage this new Green function into a ‘Neumann’ Green function defined

by:

φ
N
(ζ, ω,L) =

∮
dr0 G̃(ζ|ζ0, ω, ℓ)ϱN

(ζ0, ω,L) , (2.113)

we find the expression for the Neumann Green function in terms of bulk to boundary

propagators as:

G̃(ζ|ζ0, ω, ℓ) = −rN0D0
−

[
1

WLR(ζ0, ω, ℓ)
gR(ζ≻, ω, ℓ)gL(ζ≺, ω, ℓ)

]

=
1

WLR(ζ0, ω, ℓ)

gR(ζ, ω, ℓ)πL(ζ0, ω, ℓ) if ζ ≻ ζ0

gL(ζ, ω, ℓ)πR(ζ0, ω, ℓ) if ζ ≺ ζ0

.

(2.114)

In going from the first line of the equation to the second, we have used the fact that for

any function f(r):

D−

[
f(r)

WLR

]
=
D+f(r)

WLR

. (2.115)

This Neumann Green function then solves the following differential equation:

1

rN
D+[r

ND+G̃] + ω2G̃ +
1− r2

4r2

{
(N − 1)2 − 4ν2 + [4µ2 − (N + 1)2]r2

}
G̃

+
1

rN
D+

[
rN(1− r2)δc(r − r0)

]
= 0 .

(2.116)

Spherical shell influence phase with Neumann boundary condi-

tions

In this section, we will derive the influence phase of an extended source for scalar fields

that obey Neumann boundary conditions. We will discretize the extended source into

a set of spherical shells, centered at the origin, on both left and right static patches.

The discontinuity in the field is given by the surface density σR
i for the sphere placed at

ζ = 1+ζi on the right patch and by the surface density σL
i for the sphere placed at ζ = ζi

on the left patch. One can think of such a source in terms of the bulk source ρ defined

in the previous section as being given by:

rNϱ
N
(ζ, ω, ℓ, m⃗) =

∑
i

σR
i (ω, ℓ, m⃗) δc(ζ|1 + ζi)−

∑
i

σL
i (ω, ℓ, m⃗) δc(ζ|ζi) . (2.117)

60



The crucial difference from the Dirichlet case is that when this source enters the inhomo-

geneous differential equation for φ, it is acted upon by a D+ operator. The solution is

given by:

φ
N
=

∑
i

1

WLR(ζi, ω, ℓ)



e2πωgL(ζ, ω, ℓ)
[
πL(1 + ζi, ω, ℓ) σ

L
i − πR(1 + ζi, ω, ℓ) σ

R
i

]
if ζ ≺ 1 + ζi ,

πR(ζi, ω, ℓ)
[
gL(ζ, ω, ℓ) σ

L
i − gR(ζ, ω, ℓ) σR

i

]
if 1 + ζi ≺ ζ ≺ ζi ,

gR(ζ, ω, ℓ)
[
πL(ζi, ω, ℓ) σ

L
i − πR(ζi, ω, ℓ) σR

i

]
if ζ ≻ ζi .

(2.118)

We can substitute this solution into the action to obtain the effective action in terms

of the surface charge densities of the shells. This yields the following:

S|On-shell =
1

2

∑
ℓm⃗

∫
dω

2π

∮
rNdr ϱ∗

N
D+φN

|On-shell

=
1

2

∑
i,j,ℓ,m⃗

∫
dω

2π

πR(ζi, ω, ℓ, m⃗)

WLR(ζi, ω, ℓ, m⃗)

×
{
σR∗
j

[
πR(1 + ζj, ω, ℓ, m⃗)σR

i − πL(1 + ζj, ω, ℓ, m⃗)σL
i

]
−σL∗

j

[
πR(ζj, ω, ℓ, m⃗)σR

i − πL(ζj, ω, ℓ, m⃗)σL
i

]}
.

(2.119)

We can now use explicit expressions for the bulk to boundary propagators and rewrite
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the action in a convenient form. We make use of the following equations:

WLR(ζi, ω, ℓ) = −(1 + nω)

(
1− ri
1 + ri

)iω

[KOut −KIn] ,

πR(ζi, ω, ℓ)

WLR(ζi, ω, ℓ)
=

(
1− ri
1 + ri

)− iω
2

(1− r2i )∂riΞn(ri, ω, ℓ) ,

πL(ζi, ω, ℓ) = −
(
1− ri
1 + ri

) iω
2

(1− r2i )

× ∂ri

{
Ξnn(ri, ω, ℓ) + [nωKOut − (1 + nω)KIn] Ξn(ri, ω, ℓ)

}
,

πL(1 + ζi, ω, ℓ) = −nω

(
1− ri
1 + ri

) iω
2

[KOut −KIn] (1− r2i )∂riΞn(ri, ω, ℓ) ,

πR(ζi, ω, ℓ) = −(1 + nω)

(
1− ri
1 + ri

) iω
2

[KOut −KIn] (1− r2i )∂riΞn(ri, ω, ℓ) ,

πR(1 + ζi, ω, ℓ) =

(
1− ri
1 + ri

) iω
2

(1− r2i )

× ∂ri

{
Ξnn(ri, ω, ℓ)− [(1 + nω)KOut − nωKIn] Ξn(ri, ω, ℓ)

}
.

(2.120)

Substituting these expressions in the above action yields the following:

S|On-shell =
1

2

∑
ℓm⃗

∫
dω

2π

∮
rNdr ϱ∗

N
D+φN

|On-shell

=
1

2

∑
i,j,ℓ,m⃗

∫
dω

2π

(
1− ri
1 + ri

)− iω
2
(
1− rj
1 + rj

) iω
2

(1− r2i )∂riΞn(ri, ω, ℓ)

{
σR∗
j

[
(1− r2j )∂rj

{
Ξnn(rj, ω, ℓ)− [(1 + nω)KOut − nωKIn] Ξn(rj, ω, ℓ)

}
σR
i

+ nω [KOut −KIn] (1− r2j )∂rjΞn(rj, ω, ℓ)σ
L
i

]
−σL∗

j

[
−(1 + nω) [KOut −KIn] (1− r2j )∂rjΞn(rj, ω, ℓ)σ

R
i

+ (1− r2j )∂rj

{
Ξnn(rj, ω, ℓ) + [nωKOut − (1 + nω)KIn] Ξn(rj, ω, ℓ)

}
σL
i

]}
.

(2.121)
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Simplifying the above equation further leads to:

S|On-shell =
1

2

∑
ijℓ

∫
dω

2π

(
1− ri
1 + ri

)− iω
2
(
1− rj
1 + rj

) iω
2

×
{
(1− r2i )∂riΞn(ri, ω, ℓ)(1− r2j )∂rjΞnn(rj, ω, ℓ) [σ

R∗
j σR

i − σL∗
j σL

i ]

− (1− r2i )∂riΞn(ri, ω, ℓ)(1− r2j )∂rjΞn(rj, ω, ℓ)

×KOut(σ
R
j − σL

j )
∗[(1 + nω)σ

R
i − nωσ

L
i ]

− (1− r2i )∂riΞn(ri, ω, ℓ)(1− r2j )∂rjΞn(rj, ω, ℓ)

×KIn(σ
R
i − σL

i )[(1 + n−ω)σ
R∗
j − n−ωσ

L∗
j ]
}
.

(2.122)

The last two lines of the above expression are related by relabelling ω → −ω. These two

terms can be interpreted physically by defining the radiative multipole moments:

JR(ω, ℓ, m⃗) ≡
∑
i

(
1− ri
1 + ri

)− iω
2

(1− r2i )∂riΞn(ri, ω, ℓ) σ
R
i

≡
∫
R

dr rN(1− r2)∂rΞn(r, ω, ℓ)

(
1− r
1 + r

)− iω
2

ϱ
N
(ζ, ω, ℓ, m⃗) ,

JL(ω, ℓ, m⃗) ≡
∑
i

(
1− ri
1 + ri

)− iω
2

(1− r2i )∂riΞn(ri, ω, ℓ) σ
L
i

≡ −
∫
L

dr rN(1− r2)∂rΞn(r, ω, ℓ)

(
1− r
1 + r

)− iω
2

ϱ
N
(ζ, ω, ℓ, m⃗) .

(2.123)

This now allows us to recast the last two lines of the action into the cosmological influence

phase we obtained for the point source:

SPt
CIP ≡ −

∑
ℓm⃗

∫
dω

2π
KOut(JR − JL)

∗[(1 + nω)JR − nωJL]

= −
∑
ℓm⃗

∫
dω

2π
KOut J

∗
D

[
JA +

(
nω +

1

2

)
JD

]
.

(2.124)

where we have defined the average and difference multipole moments as

JA(ω, ℓ, m⃗) ≡ 1

2
[JR(ω, ℓ, m⃗) + JL(ω, ℓ, m⃗)] ,

and

JD(ω, ℓ, m⃗) ≡ JR(ω, ℓ, m⃗)− JL(ω, ℓ, m⃗) .
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2.3 Radiation reaction due to light scalar fields

In this section, we will evaluate the radiation reaction force on a dS point particle coupled

to a scalar field. We will do this in a small curvature approximation, i.e., we begin with

the leading order result in flat spacetime [85, 86] and then systematically correct it for

curvature effects. In dS, Hubble constant H parametrises the deviation from flat space-

time, so the small curvature expansion is an expansion in H. We will also work within

a non-relativistic expansion and a multipole expansion, and then eventually covariantise

the final answer for the radiation reaction(RR).

To this end, consider a point-like source moving along a time-like worldline x(τ) in

dS, where τ denotes the proper time of the source. We will assume that the particle

trajectory is close to the south pole (rH ≪ 1) and the radiation wavelength is taken

to be much larger than the length scale of the particle trajectory (ωr ≪ 1), but much

smaller than the curvature length scale (ω ≫ H). Further, we work in a non-relativistic

limit (v ≪ 1). Thus, we consider the following hierarchy of scales (See Fig.2.3):

H ≪ ω ≪ 1/r . (2.125)

In analogy with flat spacetime, we will refer to this expansion as the post-newtonian(PN)

expansion in dS.

The source density for a moving source in dS is given by

ρ̃(x′) =

∫
δd+1(x− x′)dτ =

√
1−H2r2 − ṙ2

1−H2r2
+ ṙ2 − v2 δd(x⃗− x⃗′) , (2.126)

where we have defined v =
√∑d

i=1 ẋ
2
i . Here the dots denote the derivative with respect to

the standard time t. The time-dilation/length-contraction factor for the particle worldline

can then be expanded as follows:√
1−H2r2 − ṙ2

1−H2r2
+ ṙ2 − v2

= −
∑
n,s,k

(
n

k

)
(2s+ 2n+ 2k − 5)!!(2s+ 2k − 5)!!

2n+s−1(2s+ 4k − 5)!! n!(s− 1)!
(Hr)2nṙ2kv2s−2 .

(2.127)

Here the sum is over all non-negative integers, and the binomial coefficient vanishes

for all values of k outside the range 0 ≤ k ≤ n. This expansion describes the red-shift
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←r→

2π

ω

1

H

v⃗

Figure 2.3: The RR is given in a post-newtonian expansion: the velocity is taken to be
small (v ≪ 1) and the trajectory is centred about the south pole (ωr ≪ 1) while the
near-flat expansion requires that the curvature effects are small(i.e. H ≪ ω and rH ≪ 1).

of the particle within dS spacetime in a slow-motion approximation, assuming that both

the cosmological redshift Hr as well as the Doppler red-shifts due to peculiar motions

(proportional to ṙ and v) are small. Our strategy below will be to use the above expansion

to compute the symmetric trace-free(STF) multipole moments of the source, which can

then be fed into the cosmological influence phase to compute the RR force.

We caution the reader that the source form given in Eq.(2.126) is specific to the

KG scalar case with N = d − 1. This is not the correct form of the source for the

scalar/vector/tensor sectors of EM field and gravity. For such cases, the explicit form

of sources involves extra velocity/time-dilation factors, e.g., EM vector sector source is

the electric current carried by the particle which has additional velocity dependence not

captured by Eq.(2.126). Another related comment on EM/gravity sources is that the

RR force coming from just one of the sectors is not expected to be covariant [86]: one

should add in the contributions from all sectors to derive a covariant force expression.

To do this for EM/linearised gravity, we need a theory of vector/tensor STF expansions

(i.e., a formalism analogous to the one described in appendix A). We will derive such a

formalism in the next chapter on electromagnetism: in this chapter, we will limit our RR

force analysis to KG scalars.

In the dS-SK geometry, the above source will be doubled to a ρ̃L and a ρ̃R coming

from left/right trajectories xL(τL) and xR(τR). The degrees of freedom of our open

system are thus two copies of the position of the particle and its time derivatives:

{xL, xR, ẋL, ẋR, ẍL, ẍR, . . . }. The scalar ALD force and its post-newtonian corrections

only require expressions linear in xD, ẋD, ẍD, . . . which are the difference in the positions
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and their derivatives. We will also keep terms up to cubic powers of xD. In this approx-

imation, the average and difference functions of the sources can be written in a simple

way. Consider for illustration, the average and difference functions of just the position:

1

2

[
f
(
xA +

xD
2

)
+ f
(
xA −

xD
2

)]
= f(xA) +

x2D
4

∂2f

∂x2A
+O(x4D) (2.128)

f
(
xA +

xD
2

)
− f
(
xA −

xD
2

)
= xD

∂ f

∂xA
+
x3D
24

∂3 f

∂x3A
+O(x4D) (2.129)

In general, the sources will be functions not only of the positions but also their time

derivatives: in such cases, the above formula should be interpreted as a multi-variable

Madhava-Taylor expansion.

We will now substitute the particle source Eq.(2.126) into the multipole moments

defined in Eq.(2.103) and obtain the lagrangian for RR force in PN expansion. We begin

by expressing the influence phase in terms of STF moments of the particle density: we

proceed similarly to how we rewrote the RR influence phase in flat spacetime (Eq.(A.74))

in terms of STF multipole moments (Eq.(A.78)). Using the STF addition theorem in

Eq.(A.50), we can rewrite the dissipative part of Eq.(2.104) in time-domain as:

SOdd d
RR =

∑
ℓ

∫
dω

2π

KOut

Nd,ℓ|Sd−1|
1

ℓ!
Q∗<i1i2...iℓ>
D,STF Q

A,STF
<i1i2...iℓ>

. (2.130)

where we have defined the time-domain STF multipole moments in dS as

Qi1...iℓ
A,STF (t) ≡ Π<i1i2...iℓ>

<j1j2...jℓ>

∫
rd−1dr r̂j1 r̂j2 . . . r̂jℓ Ξn(i∂t, r)ρ̃A(t, r⃗) ,

Qi1...iℓ
D,STF (t) ≡ Π<i1i2...iℓ>

<j1j2...jℓ>

∫
rd−1dr r̂j1 r̂j2 . . . r̂jℓ Ξn(i∂t, r)ρ̃D(t, r⃗) .

(2.131)

We will now use the PN expansion for ρ̃D in Eq.(2.127), the expansion for KOut from

Eq.(2.160) and the expansion for Ξn from Eq.(2.143) respectively. Keeping all terms in

the action up to quartic order in amplitudes (i.e. in position x) and quartic order in
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Hubble constant H, we get an effective lagrangian of the form

|Sd−1|(d− 2)!!× (−1)
d−1
2 L =− [xi]DD1[x

i]A +
1

2

[
xixj −

x2

d
δij

]
D

D2

[
xixj − x2

d
δij

]
A

−
{
1

2
(xi)DDX

1 [x
ix2]A +

1

2
(x2xi)DDX

1 [x
i]A

}
+

{
1

2
(xi)DDV

1 [x
iv2]A +

1

2
(v2xi)DDV

1 [x
i]A

}
+

1

2d
[x2]DDXX

0 [x2]A +
1

4
[v2]DDV V

0 [v2]A

− 1

4
[x2]DDXV

0 [v2]A −
1

4
[v2]DDXV

0 [x2]A .

(2.132)

Here, we have the seven differential operators, each built out of a finite number of time-

derivatives with constant coefficients, and labelled by {D1,D2,DX
1 ,D

V
1 ,D

XX
0 ,DV V

0 ,DXV
0 }.

We use the subscripts of these operators to denote the multipole number, whereas the

superscripts are used to distinguish between different structures occurring at the same

multipole number. The explicit form of these operators is tabulated in table 2.12. We

note that terms beyond the quadrupole moment do not contribute to the quartic influence

phase.

We can expand out the average and the difference multipole moments in terms of the

average/difference in the particle position by using the following identities:

[Z]d[Y
3]a = ZdY

3
a +

1

4
Zd (3Y 2

d Ya)

[Z2]d[Y
2]a = (2ZdZa)Y

2
a +

1

4
(2ZdZa)Y

2
d

[Z3]d[Y ]a = (3Z2
aZd)Ya +

1

4
Z3

dYa .

(2.133)

After integration by parts, the above lagrangian can be cast into the form:

L =
(−1) d−1

2

|Sd−1|(d− 2)!!

[
Fi(xA)x

i
D +

1

4
Ni(xD)x

i
A

]
(2.134)

where F i are the Euler-Lagrange derivatives of the terms linear in xD with respect to xiD.

Similarly, N i are the Euler-Lagrange derivatives of the terms linear in xA with respect to

xiA.

The terms in the lagrangian which are cubic in xD give rise to noise terms N i. These
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terms are different from pure noise terms, i.e. those quartic in xD. The N i contribute to

the radiation reaction with a xiA dependent term. It should be noted that this noise is not

thermal in origin. Rather, the origin of this noise can be understood as follows: Despite

the scalar field coupling linearly to the multipole moments, the moments themselves

are non-linear functions of the positions. Hence, the open system described in terms of

position has extra noise terms.

Both the F i and the N i can be written in terms of the operators given in table 2.12

as:

F i =− D1[x
i] + xjD2[x

ixj]− xi

d
D2[x

2]

−
{
1

2
DX

1 [x
ix2] +

1

2
x2DX

1 [x
i] + xixjDX

1 [xj]

}
+

{
1

2
DV

1 [x
iv2] +

1

2
v2DV

1 [x
i]− ∂t

(
vixjDV

1 [xj]
)}

+
xi

d
DXX

0 [x2]− 1

2
∂t
(
viDV V

0 [v2]
)
+

{
1

2
∂t
(
viDXV

0 [x2]
)
− 1

2
xiDXV

0 [v2]

}
,

(2.135)

as well as

N i(x) =xjD2[x
ixj]− xi

d
D2[x

2]

+

{
1

2
DX

1 [x
ix2] +

1

2
x2DX

1 [x
i] + xixjDX

1 [xj]

}
−
{
1

2
DV

1 [x
iv2] +

1

2
v2DV

1 [x
i]− ∂t

(
vixjDV

1 [xj]
)}

+
xi

2d
DXX

0 [x2]− 1

2
∂t
(
viDV V

0 [v2]
)
+

{
1

2
∂t
(
viDXV

0 [x2]
)
− 1

2
xiDXV

0 [v2]

}
(2.136)

Given the near flat expansion of the action, we can, in a controlled fashion, calculate

the curvature corrections to the RR force. This force is given by the variation of the

lagrangian with respect to xD. The leading term in the PN expansion of the flat space

RR is a scalar version of the Abraham-Lorentz-Dirac force and stems from the dipole

moment of the particle. This term, in arbitrary d, with the first Hubble correction, we

find to be:

F i
ALD =

(−1) d+1
2

|Sd−1|d!!(d− 2)!!

{
∂dt x

i −H2d

6

(
d2 − 1

)
∂d−2
t xi

}
. (2.137)

This expression gives an equation of motion that is third-order in derivative for dS4.
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Even higher time derivatives show up if we include higher-order post-newtonian correc-

tions. This is a known effect in flat space calculations.

The overall sign of the leading term in the force agrees with the fact that this force is

dissipative rather than anti-dissipative. To understand this, consider a 1d oscillator with

an RR force of the form
d2x

dt2
+ ω2

0x = λ(−1)
d+1
2
ddx

dtd
, (2.138)

where we will assume that d is odd and λ > 0. We would now like to argue that

the RR force is dissipative. To see this, we note that the above equation is equivalent

to a dispersion relation ω2 = ω2
0 − iλωd, which can be solved approximately to give

ω ≈ ω0 − iλωd
0 . Since the imaginary part of ω is negative, we conclude that the above

force is indeed dissipative.

As noted in [86], the terms in the flat space PN expansion of the RR force add up to

give a Poincare covariant expression. This is a non-trivial check for the accuracy of the

result as both the structure of the multipole PN expansion and the requirement that it

sums up to a covariant result leave little room for error. We similarly find that the cur-

vature corrections obtained along with the flat space results are also tightly constrained:

the contributions from our influence phase non-trivially sum up to expressions covariant

under dS metric.

The final RR force then takes the form

F µ
RR ≡

(−) d−1
2

|Sd−1|(d− 2)!!
fµ

where fµ has an expansion of the form

fµ
d = 0fµ

d −
H2

4× 3!
ch

0fµ
d−2

+
H4

8× 6!
[5c2h − 40(d+ 2)ch + 32(d+ 2)(d2 − 1)] 0fµ

d−4 +O(H6) .

(2.139)

Here ch ≡ 12µ2 + d2 − 4 contains the information about the mass of the scalar, and the
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combinations 0fµ
d ’s for odd values of d are :

0fµ
1 ≡ −vµ ,

0fµ
3 ≡

P µν

3!!

{
−a(1)ν

}
− H2

3!!
{vµ} ,

0fµ
5 ≡

P µν

5!!

{
−a(3)ν + 5 (a · a) a(1)ν + 10 (a · a(1)) aν

}
−H2P

µν

5!!

{
a(1)ν

}
+
H4

5!!
{−vµ} ,

0fµ
7 ≡

P µν

7!!

{
−a(5)ν + 14 (a · a) a(3)ν + 70 (a · a(1)) a(2)ν + 84 (a · a(2)) a(1)ν + 42 (a · a(3)) aν

+
224

3
(a(1) · a(1)) a(1)ν + 105 (a(1) · a(2)) aν +O(a5)

}
−H2P

µν

7!!

{
a(3)ν + 15 (a · a) a(1)ν + 37 (a · a(1)) aν

}
+H4P

µν

7!!

{
−a(1)ν

}
− H6

7!!
{vµ} .

(2.140)

Here vµ = dxµ

dτ
is the proper velocity of the particle computed using dS metric, aµ ≡ D2xµ

Dτ2
is

its proper acceleration, and P µν ≡ gµν +vµvν is the transverse projector to the worldline.

We use a(k)µ ≡ Dkaµ

Dτk
to denote the proper-time derivatives of the acceleration. All the

spacetime dot products are computed using the dS metric.

One remarkable feature of the above formula for radiation reaction is the recursive

nature of the Hubble corrections. One can see that the O(H2k) correction to the force

in d dimensions is related to the RR force in d− 2k dimensions. It would be interesting

to see whether there are specific quantum mechanical models which can reproduce such

a recursive structure.

One of the consequences of this recurrence is that the Hd−1 terms in dSd+1 resembles

the RR effects in d = 1 flat space. The flat space d = 1 massless scalar RR was explored

in [99]. However, as noted there, it is inconsistent to assume a constant coupling for a

particle coupled to a massless scalar in 2D flat space. Similar issues emerge at O(H2) in

d = 3 dS [97] and in general in any d at O(Hd−1) due to the aforementioned recurrence

relation. This is, in turn, related to the breakdown of the small ω expansion of the KOut

noted in footnote 5: an issue that can be cured by turning on a small mass for the scalar.

We have checked that the flat limit of the RR force coincides with the covariant

expressions derived in [86]. However, there are sign mismatches with expressions of [87]9.

The expressions at order H2 do not match the general curved space force in [87] restricted

to dS. Since our methods differ significantly from [87], we are unable to comment further

9This sign mismatch was noted by [86] as well.
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on the specific source of disagreement.

We have not yet succeeded in finding similar covariant expressions for the N i.

2.3.1 Near flat expansions for odd d

In this subsection, we will describe how normalisable modes of the generalised scalar

equation in dS can be thought of as perturbations of the corresponding Bessel J modes

in the flat spacetime. In the context of radiation reaction problems, these modes are

essential in defining the radiative multipole moments: their role is to appropriately smear

the sources to take into account time-delay effects. Once such an expansion is obtained, it

is easy to find the flat space expansion of the non-normalisable mode for even-dimensional

dS just by analytical continuation.

The solution of the generalised scalar wave equation, regular at r = 0, is given by

Ξn ≡
1

2ν
rν−

d
2
+1+ 1

2
(d−1−N)(1−H2r2)−

iω
2H

× 2F1

[
1

2

(
1 + µ+ ν − iω

H

)
,
1

2

(
1− µ+ ν − iω

H

)
, 1 + ν,H2r2

]
.

(2.141)

Here we have made all H factors explicit so that the H → 0 limit can readily be taken.

In such a limit, the above expression reduces to a Bessel J function. More explicitly, we

will find it convenient to define a sequence of scaled Bessel J functions of the form

Bk ≡
rν−

d
2
+1+ 1

2
(d−1−N)+2k

2ν(ν + 1) . . . (ν + k)
0F1

[
1 + k + ν,−ω

2r2

4

]
=

Γ(ν) r
1
2
(1−N)+k

2(ω/2)k+ν
Jk+ν(ωr) (2.142)

in flat spacetime. In terms of these functions, the dS wavefunction Ξn has a small H

expansion

Ξn =
∞∑
k=0

pk(ν,H
2, ω2)Bk , (2.143)

with pk(H
2, ω2) being a homogeneous polynomial of degree k in the variables H2 and ω2.
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An explicit expression is given by

pk ≡
H2k

k!

k∑
m=0

(−)m
(
k

m

) m∑
n=0

(−)n
(
m

n

)
σ2k−2m Γ(α +m)Γ(1 + ν +m)

Γ(α +m− n)Γ(1 + ν +m− n)

× Γ(α + iσ +m− n)Γ(α− iσ +m− n)
Γ(α + iσ)Γ(α− iσ)

,

(2.144)

where we have defined the variables

α ≡ 1

2
(1 + ν − µ) , σ =

ω

2H
. (2.145)

A useful fact about these polynomials is the leading H scaling at small H of these poly-

nomials, given by

p3n−2 , p3n−1 , p3n ∝ H2n . (2.146)

Thus, to obtain an answer accurate up to H2n, we only need the polynomials till p3n.

We will now outline a derivation for the above expansion as follows: first, we use the

Euler transformation on the hypergeometric functions to write

Ξn =
1

2ν
rν−

d
2
+ 1

2
(d−1−N)(1−H2r2)−α

2F1

[
α + iσ, α− iσ, 1 + ν,− H2r2

1−H2r2

]
, (2.147)

where the variables α and σ are as defined above. In the next step, we employ the

Mellin-Barnes representation of the hypergeometric function, viz. [103],

2F1 [a, b, c, x] =

∫ i∞

−i∞

dz

2πi
(−x)zΓ(−z)Γ(a+ z)Γ(b+ z)Γ(c)

Γ(a)Γ(b)Γ(c+ z)
. (2.148)

and expand the resultant integrand using

(1−H2r2)−α−z
(
H2r2

)z
=

∞∑
k=0

(H2r2)k+z

k!

Γ
[
k + z + 1

2
(1 + ν − µ)

]
Γ
[
α + z + 1

2
(1 + ν − µ)

] . (2.149)

Shifting the Mellin-Barnes integration variable, we get the following Mellin-integral rep-

resentation for Ξn:

Ξn =
1

2ν
rν−

d
2
+ 1

2
(d−1−N)

∫ i∞

−i∞

dz

2πi

(ωr
2

)2z
Γ(−z) Γ(c)

Γ(c+ z)
Ξ̃(z) , (2.150)
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where the Mellin-transform

Ξ̃(z) ≡
(
2H

ω

)2z ∞∑
k=0

(−)k
(
z

k

)
Γ(a+ z − k)Γ(b+ z − k)Γ(c+ z)

Γ(a)Γ(b)Γ(c+ z − k)
Γ(z + α)

Γ(z − k + α)

=

(
2H

ω

)2z
Γ(a+ z)Γ(b+ z)

Γ(a)Γ(b)
3F2

 1− c− z, −z, 1− α− z

1− a− z , 1− b− z
; 1

 .

(2.151)

Here, α ≡ 1
2
(1 + ν − µ) and a, b, c denote the parameters of the hypergeometric function

appearing in Eq.(2.147). The Mellin-transform Ξ̃(z) evaluated at integer z is, in fact, a

polynomial of degree z in the variable (H/ω)2: this can be gleaned from the fact that the

series above truncates in this case with polynomial coefficients.

To determine the polynomials pn, we should compare the polynomials Ξ̃(n) against the

Mellin-transform of
∑

k pkBk. This can be done using the Mellin-Barnes representation

of 0F1, viz. [103],

0F1 [c, x] =

∫ i∞

−i∞

dz

2πi
(−x)zΓ(−z) Γ(c)

Γ(c+ z)
. (2.152)

This, in turn, yields an expression of the form

Ξ̃(z) =
∞∑
k=0

(
2

ω

)2k

pk(ν,H
2, ω2)

Γ(k − z)
Γ(−z)

. (2.153)

This series also truncates for integer z, and the above relation can then be inverted to

give

pk =
1

k!

(ω
2

)2k k∑
m=0

(−)m
(
k

m

)
Ξ̃(m) . (2.154)

The explicit expression quoted before follows from this equation. The first few polyno-

73



mials are given by

p0 = 1 ,

p1 =
H2

22
(1 + ν + µ)(1 + ν − µ) ,

p2 =
H2

23

{
−ω2(2ν + 3) +

H2

22
(1 + ν + µ)(1 + ν − µ)(3 + ν + µ)(3 + ν − µ)

}
,

p3 =
H2

22 × 3!

{
ω4 +

H2ω2

22
[3µ2(2ν + 5)− (103 + 132ν)− 3(17ν2 + 2ν3)] +H4(. . .)

}
,

(2.155)

The polynomials p4 and higher are proportional to H4 and, hence the above expressions

are sufficient to obtain an answer accurate up to order H2 terms. To get terms accurate

up to order H4, we also need the leading terms of the next three polynomials:

p4 =
H4

25 × 4!

{
ω4[−4µ2 + 8ν(2ν + 13) + 157] +H2(. . .)

}
,

p5 =
H4

22 × 5!

{
ω6(5ν + 18) +H2(. . .)

}
,

p6 =
H4

27 × 32

{
ω8 +H2(. . .)

}
.

(2.156)

The polynomials p7 and higher are proportional to H6, and hence can be ignored at this

order.

For odd values of d, the function Ξnn is related to Ξn simply by the transformation:

ν → −ν. This allows us to also obtain the flat space expansion for Ξnn in odd d:

Ξnn|Odd d =
∞∑
k=0

pk(−ν,H2, ω2)Gk , (2.157)

where the functions Gk are related to the Bk by ν → −ν:

Gk ≡
r−ν− d

2
+ 1

2
(d−1−N)+2k

(−ν + 1) . . . (−ν + k)
0F1

[
1 + k − ν,−ω

2r2

4

]
= −2νΓ(−ν) r

1
2
(1−N)+k

2(ω/2)k−ν
Jk−ν(ωr) .

(2.158)

We will conclude by giving the near-flat/high-frequency expansion of KOut in odd d.
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This can be achieved using Stirling approximation, i.e.,

Γ (z) ∼ exp

{(
z − 1

2

)
ln z − z + 1

2
ln (2π) +

∞∑
k=1

B2k

2k(2k − 1)z2k−1

}
, (2.159)

an approximation valid as long as z → ∞ away from the negative real axis. We then

obtain the following expansion for KOut in odd d:

KOut|Odd d =
2πi

Γ(ν)2

(ω
2

)2ν [
1 + (ν2 + 3µ2 − 1)

ν

3!!

H2

ω2

+
5ν4 − 4ν3 + (30µ2 − 14)ν2 − (60µ2 − 16)ν + (45µ2 − 90µ2 + 21)

2× 3

× ν(ν − 1)

5!!

H4

ω4
+O

(
H6

ω6

)]
.

(2.160)

This expression describes how the radiation reaction kernel gets corrected due to the

non-zero cosmological constant.
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Symbol 0fµ
d

0fµ
d−2

0fµ
d−4

D1
∂d
t

d!!

∂d−2
t

(d−2)!!

∂d−4
t

(d−4)!!

D2
∂d+2
t

(d+2)!!
− H2

3!
(d+ 1)

∂d
t

d!!
+ H4

5!
7
3
(d2 − 1)

∂d−2
t

(d−2)!!

∂d
t

d!!
− H2

3!
(d− 1)

∂d−2
t

(d−2)!!
+ H4

5!
7
3
(d− 1)(d− 3)

∂d−4
t

(d−4)!!

∂d−2
t

(d−2)!!

DX
1

∂d+2
t

(d+2)!!
+ H2

3
(d− 2)

∂d
t

d!!
− H4

45
(d2 − 1)

∂d−2
t

(d−2)!!

∂d
t

d!!
+ H2

3
(d− 4)

∂d−2
t

(d−2)!!
− H4

45
(d− 1)(d− 3)

∂d−4
t

(d−4)!!

∂d−2
t

(d−2)!!

DV
1

∂d
t

d!!

∂d−2
t

(d−2)!!

∂d−4
t

(d−4)!!

DXX
0

d+2
2

∂d+2
t

(d+2)!!
+ H2

4!
2(5d2 − 15d− 2)

∂d
t

d!!
d+2
2

∂d
t

d!!
+ H2

4!
2(5d2 − 25d+ 2)

∂d−2
t

(d−2)!!
d+2
2

∂d−2
t

(d−2)!!

+H4

6!
(67d3 − 526d2 + 833d− 14) +H4

6!
(67d3 − 794d2 + 2125d+ 42)

DV V
0

∂d−2
t

(d−2)!!
+ H2

3!
(d− 1)

∂d−4
t

(d−4)!!
+ H4

5!
(d− 1)(d− 3)

∂d−6
t

(d−6)!!

∂d−4
t

(d−4)!!
+ H2

3!
(d− 3)

∂d−6
t

(d−6)!!
+ H4

5!
(d− 3)(d− 5)

∂d−6
t

(d−6)!!

∂d−6
t

(d−6)!!

DXV
0

∂d
t

d!!
+ H2

2!
(d− 3)

∂d−2
t

(d−2)!!
+ H4

4!
(d− 1)(d− 7)

∂d−4
t

(d−4)!!

∂d−2
t

(d−2)!!
+ H2

2!
(d− 5)

∂d−4
t

(d−4)!!
+ H4

4!
(d− 3)(d− 9)

∂d−6
t

(d−6)!!

∂d−4
t

(d−4)!!

Table 2.12: The differential operators that appear in dS radiation reaction (for d odd). We have divided up the sum into three columns
where each column combines into an expression covariant under dS isometries. The entries in the second column must be multiplied by a
relative factor of − H2

4×3!
ch with ch ≡ 12µ2+d2− 4 and then added to the first column. Similarly, the third column should be multiplied by

a relative factor of H4

8×6!
[5c2h−40(d+2)ch+32(d+2)(d2−1)] and then added to the first two contributions. The sum of these contributions

should be further multiplied by a factor of (−1)
d−1
2

|Sd−1|(d−2)!!
.
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2.4 Interactions

In this section, we will describe how the computation of the on-shell action can be ex-

tended beyond the free-field examples. In particular, we would like to check that our

prescription in Eq.(1.4) equating the cosmological influence phase to on-shell action still

works after we include interactions. We will check this in a simple example: φ3
N

theory

in dS4. However, as will be clear below, our arguments can be easily adapted to set up

perturbative diagrammatics for arbitrary interactions.

For φ3
N

theory in dS4, we should simply evaluate the bulk on-shell action with the

cubic interaction term. At leading order in perturbation theory, the cubic contribution

to SCIP is obtained by substituting the free field solutions into interaction terms of the

action.10 The interaction term should then be integrated over the full dS-SK geometry:

this is the dS version of a Witten diagram vertex.

We saw in Sec§1.1 that the SCIP we derived satisfies constraints due to SK collapse

and KMS conditions. That this should be true for interacting theories as well is not clear

a priori, but we will now show that these constraints are still satisfied at least at the

level of contact diagrams. This is most easily seen in terms of the P − F basis multipole

moments defined in Eq.(2.53). In terms of these multipole moments, SK collapse and

KMS conditions are equivalent to showing that there are no terms in the action with

only JF̄ or only JP̄ [104].

To check these conditions, we use Eq.(2.51) and write the vertex contribution to the

on-shell action as

−λ3
3!

∫
d3+1x φ3

N
=
∑
ℓi,mi

Gaunt(ℓi,mi)

∫
ω1,ω2,ω3

δ(ω1 + ω2 + ω3)

× [IFFF (ωi, ℓi,mi) + IFFP (ωi, ℓi,mi) + IFPP (ωi, ℓi,mi) + IPPP (ωi, ℓi,mi)] .

(2.161)

Here the index i runs over {1, 2, 3} and Gaunt(ℓi,mi) are the Gaunt coefficients coming

from the integral of 3 spherical harmonics over the sphere (see equation 34.3.22 of [103]).

Time-translation invariance implies that the three frequencies ω1, ω2 and ω3 are con-

strained by an energy-conserving δ function. The contributions to the cubic influence
10The argument here is similar to the one given in appendix C of [50] for gr-SK geometry.
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phase are given by radial contour integrals, viz.,

IFFF (ωi, ℓi,mi) ≡
λ3
3!

∮
ζ

GOut
N (ζ, ω1, ℓ1) G

Out
N (ζ, ω2, ℓ2) G

Out
N (ζ, ω3, ℓ3)

× JF̄ (ω1, ℓ1)JF̄ (ω2, ℓ2)JF̄ (ω3, ℓ3) ,

IFFP (ωi, ℓi,mi) ≡ −
λ3
2!

∮
ζ

e2πω3(1−ζ) GOut
N (ζ, ω1, ℓ1) G

Out∗
N (ζ, ω2, ℓ2) G

Out∗
N (ζ, ω3, ℓ3)

× JF̄ (ω1, ℓ1)JP̄ (ω2, ℓ2)JP̄ (ω3, ℓ3) ,

IFPP (ωi, ℓi,mi) ≡
λ3
2!

∮
ζ

e2π(ω2+ω3)(1−ζ) GOut
N (ζ, ω1, ℓ1) G

Out∗
N (ζ, ω2, ℓ2) G

Out∗
N (ζ, ω3, ℓ3)

× JF̄ (ω1, ℓ1)JP̄ (ω2, ℓ2)JP̄ (ω3, ℓ3) ,

IPPP (ωi, ℓi,mi) ≡ −
λ3
3!

∮
ζ

e2π(ω1+ω2+ω3)(1−ζ)

×GOut∗
N (ζ, ω1, ℓ1) G

Out∗
N (ζ, ω2, ℓ2) G

Out∗
N (ζ, ω3, ℓ3)

× JP̄ (ω1, ℓ1)JP̄ (ω2, ℓ2)JP̄ (ω3, ℓ3) .

(2.162)

We now note that, since GOut
N is analytic, the integrands in IFFF and IPPP are analytic

(to see the latter, we use energy conservation). This, in turn, implies that these integrals

evaluate to zero by Cauchy’s theorem. It is now evident that this argument generalises

to all contact diagrams of φn
N

type, thus demonstrating our claim about SK collapse and

KMS conditions. A similar argument in the AdS blackhole case has been checked also for

exchange diagrams [54,100] and it would be interesting to check whether a similar claim

holds here. Further, it would also be interesting to study the correction to the radiation

reaction due to such non-linear interactions [105].

This concludes our technical treatment of the influence phase of an observer coupled

to scalar fields. We will discuss some implications and applications of our calculations in

this section further in section 4. In the next section, we will move on to understanding the

electromagnetic influence phase, and we will connect the analysis to that of our designer

scalar for particular values of N and µ from this section.
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Chapter 3

Electromagnetic Observers

This chapter extends the analysis of the previous chapter to understand the electromag-

netic influence phase of an observer modelled as a localised current density. The path

followed is quite similar to the previous chapter, but interesting features coming from the

vector nature of the fields, as well as from the gauge invariance properties, will become

manifest as we proceed through it. Much of the notation used here has been developed

for flat spacetime and compared with textbook treatments of flat space electromagnetism

in the appendix C for the reader’s convenience.

3.1 EM point source in dS

In this section, we will describe the EM fields of a comoving point source in dSd+1.

The discussion here is straightforward and mainly provides information to establish our

conventions about multipole moments in dS. We will also frame our discussion in a way

that the similarities to holographic renormalisation [33,72,73] are obvious. Our discussion

here also closely parallels the discussion of EM fields around planar AdS black holes [52]

but with crucial differences. Some other authors have also studied electromagnetic fields

in de Sitter in various settings, such as [93,106–111]

Consider then a classical point particle placed at the south pole of global de Sitter,

at the centre of the southern static patch. We will characterise this point particle by its

electric and magnetic multipole moments, which we take to be time-dependent. We will

give a precise definition of these moments below for particles in dS, using how EM fields

behave as we approach the particle. Our goal would be to characterise the radiative loss
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suffered by the particle in terms of these moments.

Our definition of near-zone multipole moments is strongly guided by the principle that

they should simply extend the corresponding flat spacetime definitions. This fact should

be contrasted with far-zone multipole moments defined, say, using asymptotic behaviour

at future time-like infinity. As we shall see, given the different asymptotics of dS, such

far-zone moments do not have any simple relation to their flat-space counterparts [112].

Let Cµν denote the EM field-strength due to the particle in the frequency domain

corresponding to outgoing time u. In the outgoing coordinates of the static patch, we

will expand each component of this field strength into appropriate scalar/vector spherical

harmonics as follows:

Cru(r, ω,Ω) ≡
∑
ℓm⃗

Er(r, ω, ℓ, m⃗)Yℓm⃗(Ω) = Cur(r, ω,Ω) ,

CrI(r, ω,Ω) ≡
∑
ℓm⃗

Brs(r, ω, ℓ, m⃗)DIYℓm⃗(Ω) +
∑
αℓm⃗

Brv(r, ω, α, ℓ, m⃗)Vαℓm⃗
I (Ω)

= r2γIJC
Ju(r, ω,Ω) ,

CIu(r, ω,Ω) =
∑
ℓm⃗

Es(r, ω, ℓ, m⃗)DIYℓm⃗(Ω) +
∑
αℓm⃗

Ev(r, ω, α, ℓ, m⃗)Vαℓm⃗
I (Ω) ,

CIJ(r, ω,Ω) ≡
∑
αℓm⃗

Hvv(r, ω, α, ℓ, m⃗)
[
DIV

αℓm⃗
J (Ω)−DJVαℓm⃗

I (Ω)
]

= r4γIKγJLC
KL(r, ω, α, ℓ, m⃗) .

(3.1)

Here Ω denotes the angular co-ordinates on the sphere Sd−1, indices I, J,K denote vector

indices on the sphere, γIJ denotes the unit-sphere metric and DI is its associated covariant

derivative. We have also indicated the relation to the tensor Cµν with raised indices for

future convenience. Another useful combination is

r2γIJC
rJ(r, ω,Ω) = (1− r2)CrI(r, ω,Ω) + CIu(r, ω,Ω)

≡
∑
ℓm⃗

Hs(r, ω, ℓ, m⃗)DIYℓm⃗(Ω) +
∑
αℓm⃗

Hv(r, ω, α, ℓ, m⃗)Vαℓm⃗
I (Ω) ,

(3.2)

where we have defined

Hs ≡ (1− r2)Brs + Es , Hv ≡ (1− r2)Brv + Ev . (3.3)

Our definitions here closely parallel the spherical harmonic expansion in flat space de-
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scribed in the appendix C. We use calligraphic letters here to encode the fact that the

above quantities are defined in the frequency domain conjugate to u, which differ, in the

flat limit, from frequency domain expressions conjugate to t by an additional factor of eiωr.

We use subscripts s and v to denote sphere vector indices in the scalar/vector sector, re-

spectively. The time-reversal covariant combinations are {Es,Ev,Er} and {Hs,Hv,Hvv},

with the intrinsic time-reversal parity being even and odd for the two sets, respectively.

Given the spherical harmonic decomposition given above, we can recast the Maxwell

equations in terms of the above components. The source-free Maxwell equations (or

equivalently the Bianchi identity of electromagnetism ∂[µCνλ] = 0) take the following

form:

Ev = iω Hvv , Brv = ∂rHvv , Er = ∂rEs − iω Brs , (3.4)

or an equivalent time-reversal covariant form

Ev = iω Hvv , Hv = D+Hvv , (1− r2)Er = D+Es − iω Hs , (3.5)

where D+ ≡ (1− r2)∂r + iω. As usual, these equations can be solved by the introduction

of a vector potential in some gauge. While we will indeed chose a gauge eventually, it is

more illuminating to first analyse this system via gauge invariant observables (i.e., EM

fields).

The sourced Maxwell equations outside the particle take the form ∂µ

[√
−g Cµν

]
= 0,

which when written out in terms of the components become

−iω Er +
ℓ(ℓ+ d− 2)

r2
Hs = 0 (r-Eqn) ,

1

rd−1
∂r
[
rd−1Er

]
+
ℓ(ℓ+ d− 2)

r2
Brs = 0 (u-Eqn) ,

1

rd−3
∂r
[
rd−3Hs

]
+ iω Brs = 0 (I-Eqn scalar) ,

1

rd−3
D+

[
rd−3Hv

]
− iω Ev −

(ℓ+ 1)(ℓ+ d− 3)

r2
Hvv = 0 (I-Eqn vector) .

(3.6)

Here, we have indicated the equation coming from each component. As is well-known,

these equations are not all independent: the r-equation above is the Gauss constraint for

radial evolution, which is preserved by the next two equations with radial derivatives.
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Alternatively, the u-equation above is the Gauss constraint for u evolution, which is

preserved by the first/third equations with time derivatives. Since our goal is to examine

how the near zone data is given in terms of multipole moments of the particle, we will

take the radial evolution perspective.

In terms of time reversal covariant quantities, we can recast the above equations in

the form

ℓ(ℓ+ d− 2)

r2
Hs = iω Er ,

1

rd−1
D+

[
rd−1Er

]
=
ℓ(ℓ+ d− 2)

r2
Es ,

1

rd−3
D+

[
rd−3Hs

]
= iω Es ,

1

rd−3
D+

[
rd−3Hv

]
= iω Ev +

(ℓ+ 1)(ℓ+ d− 3)

r2
Hvv .

(3.7)

To conclude, the set of seven equations in Eqs.(3.5) and (3.7) define the Maxwell system

in dSd+1.

Examining them as a set of coupled radial ODEs for the six quantities

{Es,Ev,Er,Hs,Hv,Hvv}, we note the following structure: we can first solve the two

equations with no radial derivatives to express {Ev,Hs} in terms of rest four quantities.

Once this is done, one of the radial equations involving D+

[
rd−3Hs

]
is also solved for

‘free’. Among the seven equations, we are then left with four first-order radial evolution

equations (one each for {Es,Er,Hv,Hvv}). Thus, given the near zone values of these four

fields, one can radially evolve the above set of equations to get the EM fields far away

from the particle.

Among all possible near-zone data, it is intuitively clear that roughly half would give

rise to outgoing EM waves, whereas the other half would result in incoming EM waves.1

More generally, if we wanted to also impose boundary conditions far away (or in the case

of dS-SK on the near zone of the other branch), the correct thing to do is to constrain

only two out of the four quantities. Motivated by the above heuristic argument, we will

1We say roughly since this argument ignores time-independent solutions, which are neither incoming
nor outgoing. But such zero frequency solutions are a set of measure zero in the space of all solutions of
the Maxwell equations and can hence be justifiably ignored in this counting.
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seek EM fields that satisfy the following boundary conditions at r = 0:

JE(ω, ℓ, m⃗) ≡ − lim
r→0

rℓ+d−2Es(r, ω, ℓ, m⃗) ,

JB(ω, α, ℓ, m⃗) ≡ lim
r→0

rℓ+d−3Hvv(r, ω, α, ℓ, m⃗) .
(3.8)

Here JE,B are the electric/magnetic multipole moments of the particle, and we have chosen

here the appropriate powers of r to agree with the flat space definitions in Eqs.(C.58)

and (C.122). We then expect the near-zone behaviour of the form

Er ∼ (ℓ+ d− 2)
JE

rℓ+d−1
, Es ∼ −

JE

rℓ+d−2
, Ev ∼

iωJB

rℓ+d−3
,

Hs ∼
iωJE

ℓrℓ+d−3
, Hv ∼ −(ℓ+ d− 3)

JB

rℓ+d−2
, Hvv ∼

JB

rℓ+d−3
.

(3.9)

Here, the terms without iω correspond exactly to the standard static multipole solutions

in flat spacetime. The iω terms represent the leading quasi-static correction in flat space-

time: the component Ev is the induced EMF due to changing magnetic moment, whereas

the component Hs is the magnetic field due to Maxwell’s displacement current. This fact

gives a physical justification of why we treat the pair {Ev,Hs} as being derived from the

other four: at a given order in quasi-static expansion, these components can be obtained

from the other four at one less order.

For a given multipole moment JE,B, we should then arrange the sub-leading near zone

behaviour of the other two fields {Er,Hv} to get an outgoing wave solution: the powers

that need to be controlled happen to be 1/rℓ−1 terms in Er and 1/rℓ terms in Hs. In fact,

as we shall show below, the near zone behaviour of these two other fields, appropriately

renormalised, actually encodes the radiation reaction on the particle corresponding to

these multipole moments. More precisely, we will show that

lim
r→0

r1−ℓ [Er + (counter-term proportional to Es)] = Radiation reaction on JE ,

lim
r→0

r−ℓ [Hv + (counter-term proportional to Hvv)] = Radiation reaction on JB .
(3.10)

This statement relates the sub-dominant behaviour in the near zone to radiation reaction.

To make these statements precise, it is convenient to express the ℓ ̸= 0 EM field
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strengths in terms of electric/magnetic Hertz-Debye scalars, i.e., we write

Er(r, ω, ℓ, m⃗) =
ℓ(ℓ+ d− 2)

rd−1
ΦE(r, ω, ℓ, m⃗) ,

Es(r, ω, ℓ, m⃗) =
1

rd−3
D+ΦE(r, ω, ℓ, m⃗) , Ev(r, ω, α, ℓ, m⃗) = iωΦB(r, ω, α, ℓ, m⃗) ,

Hs(r, ω, ℓ, m⃗) =
iω

rd−3
ΦE(r, ω, ℓ, m⃗) , Hv(r, ω, α, ℓ, m⃗) = D+ΦB(r, ω, α, ℓ, m⃗) ,

Hvv(r, ω, α, ℓ, m⃗) = ΦB(r, ω, α, ℓ, m⃗) ,

Brs(r, ω, ℓ, m⃗) = − 1

rd−3
∂rΦE(r, ω, ℓ, m⃗) , Brv(r, ω, α, ℓ, m⃗) = ∂rΦB(r, ω, α, ℓ, m⃗) .

(3.11)

The reader is encouraged to check that this form automatically satisfies the Maxwell equa-

tions in Eqs.(3.5) and (3.7), provided the Hertz-Debye scalar fields satisfy the following

radial ODEs:

1

r3−d
D+

[
r3−dD+ΦE

]
+ ω2ΦE − (1− r2)ℓ(ℓ+ d− 2)

r2
ΦE = 0 ,

1

rd−3
D+

[
rd−3D+ΦB

]
+ ω2ΦB − (1− r2)(ℓ+ 1)(ℓ+ d− 3)

r2
ΦB = 0 .

(3.12)

In terms of the scalar fields, the Maxwell system reduces to a set of decoupled radial

ODEs. An alternate route to get the same results is to write down the gauge potentials

Vµ in the Hertz-Debye gauge, i.e., we take

Vu(r, ω,Ω) = r3−d
∑
ℓm⃗

D+ΦE(r, ω, ℓ, m⃗) Yℓm⃗(Ω) ,

Vr(r, ω,Ω) = r3−d
∑
ℓm⃗

∂rΦE(r, ω, ℓ, m⃗) Yℓm⃗(Ω) ,

VI(r, ω,Ω) =
∑
αℓm⃗

ΦB(r, ω, α, ℓ, m⃗) Vαℓm⃗
I (Ω) .

(3.13)

In this gauge, we essentially set all the electric sector gauge fields to be normal to the

sphere directions. The magnetic sector is gauge invariant due to the divergencelessness

of the Vαℓm⃗. It can then be checked that the field strengths derived from these potentials

turn out to be the expressions in Eq.(3.11).

The radial ODEs for the Debye potentials can be solved with appropriate boundary

conditions inherited from the corresponding boundary conditions on the field strengths
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defined in (3.9), which are:

− lim
r→0

rℓ+1D+ΦE(r, ω, ℓ, m⃗) = JE(ω, ℓ, m⃗) ,

lim
r→0

rℓ+d−2ΦB(r, ω, α, ℓ, m⃗) = JB(ω, α, ℓ, m⃗) .
(3.14)

We can now solve the fields in terms of bulk to boundary propagators for the two scalars.

These propagators are special cases of the propagators we found for the generic class of

scalars in chapter §2. We will review some of the properties of these propagators that we

need in our analysis here, but we refer the reader to chapter §2 for a much more extensive

discussion. One writes the Debye potentials as:

ΦE(r, ω, ℓ, m⃗) =
1

ℓ
GOut

E (r, ω, ℓ)JE(ω, ℓ, m⃗) ,

ΦB(r, ω, α, ℓ, m⃗) = GOut
B (r, ω, ℓ)JB(ω, α, ℓ, m⃗) .

(3.15)

The extra factor of ℓ is a convenient normalisation for the ΦE Debye scalar because the

scalar satisfies a Neumann boundary condition at the origin.

The boundary to bulk propagators can be written explicitly in terms of Gauss hyper-

geometric functions, given as follows:

GOut
E (r, ω, ℓ) =

rℓ+d−2(1 + r)−iω

Γ(1− iω)Γ
(
ℓ+ d

2
− 1
)Γ(ℓ+ 2− iω

2

)
Γ

(
ℓ+ d− 2− iω

2

)
× 2F1

[
ℓ+ 2− iω

2
,
ℓ+ d− 2− iω

2
; 1− iω; 1− r2

]
,

GOut
B (r, ω, ℓ) =

rℓ+1(1 + r)−iω

Γ(1− iω)Γ
(
ℓ+ d

2
− 1
)Γ(ℓ+ 1− iω

2

)
Γ

(
ℓ+ d− 1− iω

2

)
× 2F1

[
ℓ+ 1− iω

2
,
ℓ+ d− 1− iω

2
; 1− iω; 1− r2

]
.

(3.16)

The above hypergeometric functions, for odd values of d, are polynomials in r that gen-

eralise the reverse Bessel polynomials one obtains in the study of outgoing radiation in

3 + 1 dimensional spacetime2. Later in this section, we show how the GOut
E/B gives Hub-

ble corrections to the reverse Bessel polynomials in flat spacetimes with odd values of d.

Much like the case in the corresponding flat spacetimes, for even values of d, the functions

don’t reduce to a polynomial form in r.

2In appendix C, we have generalised the reverse Bessel polynomials to arbitrary even-dimensional
spacetimes.
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The hypergeometric functions are defined by a series expansion about the points where

the last argument goes to zero. This tells us that the above retarded boundary-to-bulk

propagators have a nice expansion at the horizon r = 1. On the other hand, to obtain

their behaviour at r = 0, the following equivalent form is instructive:

GOut
E = r−ℓ(1 + r)−iω

×
{

2F1

[
−ℓ− iω

2
,
4− d− ℓ− iω

2
; 2− d

2
− ℓ; r2

]
−(1 + i cot νπ)K̂Out

E (ω, ν)
r2ν

2ν
2F1

[
2 + ℓ− iω

2
,
d+ ℓ− 2− iω

2
;
d

2
+ ℓ; r2

]}
,

GOut
B = r3−d−ℓ(1 + r)−iω

×
{

2F1

[
1− ℓ− iω

2
,
3− d− ℓ− iω

2
; 2− d

2
− ℓ; r2

]
−(1 + i cot νπ)K̂Out

B (ω, ν)
r2ν

2ν
2F1

[
1 + ℓ− iω

2
,
d+ ℓ− 1− iω

2
;
d

2
+ ℓ; r2

]}
.

(3.17)

Here, ν = ℓ+ d
2
− 1 as defined in the previous sections. The functions K̂Out are given by:

K̂Out
E (ω, ν) = −eiνπ 2πi

Γ(ν)2

Γ
(

3− d
2
+ν−iω

2

)
Γ
(

−1+ d
2
+ν−iω

2

)
Γ
(

3− d
2
−ν−iω

2

)
Γ
(

−1+ d
2
−ν−iω

2

) ,

K̂Out
B (ω, ν) = −eiνπ 2πi

Γ(ν)2

Γ
(

2− d
2
+ν−iω

2

)
Γ
(

d
2
+ν−iω

2

)
Γ
(

2− d
2
−ν−iω

2

)
Γ
(

d
2
−ν−iω

2

) .

(3.18)

When d is odd, ν takes half-integer values, and the above expression is well-defined.

For even-dimensional spacetimes, the above expressions for the propagators should be

treated as a limit as ν takes the desired integer value. This will play a role when we

obtain renormalised boundary correlators on the worldline next.

Now that we have the fields satisfying the prescribed boundary conditions, we want

to understand the self-force on the multipole moments due to the radiation, i.e. we

would like to ask how the fields cause the multipole moments to dissipate energy. We

claim that the radiation reaction is encoded in the boundary behaviour of renormalised

components of the electric and magnetic fields Er and Hv. These field components exert

a radial force on a spherical shell current density. One can think of the point source

as the zero radius limit of such a shell. In this limit, the radial force naively diverges,
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but if one focuses on purely dissipative parts of the force, they are regular. One would

like to remove the conservative pieces containing all the divergences by systematically

subtracting them from the Er and Hv. This is accomplished by subtracting from the

fields, terms proportional to Es and Hvv as follows:

− lim
r→0

r−ℓ

[
rEr +

ℓ(ℓ+ d− 2)

C3−d

Es

]
=
ℓ+ d− 2

ℓ
(1 + i cotπν)K̂Out

E JE ,

− lim
r→0

r−ℓ

[
Hv +

Cd−3

r
Hvv

]
= (1 + i cot πν)K̂Out

B JB
(3.19)

where the C ’s are :

Cd−3

1− r2
≡ −r d

dr
ln

{
r3−d−ℓ(1− r2)−

iω
2 2F1

[
1− ℓ− iω

2
,
3− d− ℓ− iω

2
; 2− d

2
− ℓ; r2

]}
,

C3−d

1− r2
≡ −r d

dr
ln

{
r−ℓ(1− r2)−

iω
2 2F1

[
−ℓ− iω

2
,
4− d− ℓ− iω

2
; 2− d

2
− ℓ; r2

]}
.

(3.20)

The C ’s are special cases of the counterterm CN that we obtained in chapter §2 for the

generic class of scalars. The essential difference here is in the case of the electric sector,

where the Debye scalar ΦE satisfies a Neumann boundary condition. We review this

counterterming procedure for the same generic class of scalars discussed in chapter §2,

now satisfying Neumann boundary conditions, in section 2.2.3.

The radiation reaction kernel is encoded in the boundary values of the renormalised

fields, which we will call KOut
E/B. For odd values of d(half-integer values of ν), they are

given by:

KOut
E |Odd d = (1 + i cotπν)K̂Out

E |Odd d = −eiνπ 2πi

Γ(ν)2

Γ
(

3− d
2
+ν−iω

2

)
Γ
(

−1+ d
2
+ν−iω

2

)
Γ
(

3− d
2
−ν−iω

2

)
Γ
(

−1+ d
2
−ν−iω

2

) ,

KOut
B |Odd d = (1 + i cotπν)K̂Out

B |Odd d = −eiνπ 2πi

Γ(ν)2

Γ
(

2− d
2
+ν−iω

2

)
Γ
(

d
2
+ν−iω

2

)
Γ
(

2− d
2
−ν−iω

2

)
Γ
(

d
2
−ν−iω

2

) ,

(3.21)

The table 2.2 lists explicit expressions for this function in even-dimensional spacetimes up

to quadrupole. The KOut
E/B for odd values of d are polynomials which signify the markovian

nature of the electromagnetic radiation reaction. This is the same ‘boundary two-point
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function’ whose poles are used to analyse the quasinormal mode spectrum of the static

patch [7, 94, 113].

Table 3.1: KOut
−iω

for Electromagnetic radiation

Magnetic ℓ = 0 ℓ = 1 ℓ = 2

d = 3 1 ω2 + 1 ω4

9
+ 5ω2

9
+ 4

9

d = 5 ω2 + 4 ω4

9
+ 10ω2

9
+ 1 ω6

225
+ 7ω4

75
+ 28ω2

75
+ 64

225

d = 7 ω4

9
+ 20ω2

9
+ 64

9
ω6

225
+ 7ω4

45
+ 259ω2

225
+ 1 ω8

11025
+ 19ω6

3675
+ 8ω4

105
+ 3088ω2

11025
+ 256

1225

Electric ℓ = 0 ℓ = 1 ℓ = 2

d = 3 1 ω2 + 1 ω4

9
+ 5ω2

9
+ 4

9

d = 5 ω2 + 1 ω4

9
+ 5ω2

9
+ 4

9
ω6

225
+ 14ω4

225
+ 49ω2

225
+ 4

25

d = 7 ω4

9
+ 10ω2

9
+ 1 ω6

225
+ 7ω4

75
+ 28ω2

75
+ 64

225
ω8

11025
+ 13ω6

3675
+ 19ω4

525
+ 1261ω2

11025
+ 4

49

On the other hand, for even values of d, the cot πν diverges and one needs additional

counterterms to obtain the correct radiation reaction kernel. These can be obtained by

adding the following counterterm action to our electromagnetic action:

Sct,Even =
∑
ℓm⃗

1

ν − n

∫
dω

2π

[
rd−4+2n∆

(
n,
d

2
− 1, ω

)
Φ∗

BΦB|rc

+ ℓ(ℓ+ d− 2)r2−d+2n∆

(
n,
d

2
− 2, ω

)
|D+ΦE|2|rc

]
,

(3.22)

where n = ℓ+ d
2
− 1 and,

∆(n, µ, ω) ≡ (−)n

Γ(n)2
Γ
(
1+n−µ−iω

2

)
Γ
(
1+n+µ−iω

2

)
Γ
(
1−n+µ−iω

2

)
Γ
(
1−n−µ−iω

2

) =
1

Γ(n)2

n∏
k=1

[
ω2

4
+

1

4
(µ− n+ 2k − 1)2

]
= ∆∗(n, µ, ω) .

(3.23)

With this counterterm, we obtain the following form of the radiation reaction kernel
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for even-dimensional spacetimes:

KOut
E |Even d = ∆N

(
ν,
d

2
− 2, ω

)[
ψ(0)

(
3− d

2
+ ν − iω
2

)
+ ψ(0)

(
−1 + d

2
ν − iω
2

)

+ψ(0)

(
3− d

2
− ν − iω
2

)
+ ψ(0)

(
−1 + d

2
− ν − iω
2

)
− 4ψ(0)(ν)

]
,

KOut
B |Even d = ∆N

(
ν,
d

2
− 1, ω

)[
ψ(0)

(
2− d

2
+ ν − iω
2

)
+ ψ(0)

(
d
2
ν − iω
2

)

+ψ(0)

(
2− d

2
− ν − iω
2

)
+ ψ(0)

(
d
2
− ν − iω

2

)
− 4ψ(0)(ν)

]
(3.24)

Unlike the case for odd values of d, we see that these functions don’t reduce to polynomials

in ω, which is expected from the non-markovian nature of radiation reaction in odd

spacetime dimensions [84].

In the limit where the Hubble constant is small, i.e. we are looking at sources moving

much more rapidly compared to the cosmological time scales, the radiation reaction kernel

reduces to its flat space analogues, which have the same behaviour for both magnetic and

electric sectors [85, 86]:

KOut
E/B ≈


2πi

Γ(ν)2

(
ω
2

)2ν for d odd ,
1

Γ(ν)2

(
ω
2

)2ν
ln
(

ω4

H4

)
for d even .

(3.25)

The procedure we just illustrated provides us with a dS version of the famous Son-

Starinets prescription [71] in AdS/CFT: in this prescription, the field’s value ( Vµ in

our case) is fixed at the boundary and an outgoing boundary condition is imposed at the

horizon. This corresponds to imposing a Dirichlet boundary condition on the ΦB, whereas

the ΦE satisfies a Neumann boundary condition at r = 0. Then one takes the boundary

limit of the conjugate field Crµ and renormalises it to obtain the radiation reaction kernel

KOut.

Given this procedure of obtaining the radiation reaction, we will now justify it as an

on-shell action computation on the dS-SK geometry described in detail in 1.1. This is

the de Sitter version of the real-time GKPW prescription: We specify boundary data as

the observer’s multipole moments, and the dS-SK saddle computes the effective action of
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the observer’s dynamics.

We will begin by reviewing some useful geometric details required in our analysis

here. We take the de Sitter static patch and complexify the radial coordinate. Then, we

consider a hypersurface defined by a contour in the complex r plane. The following mock

tortoise coordinate is useful to make this notion precise:

ζ(r) =
1

iπ

0−iϵ∫
r

dr′

1− r′2
=

1

2πi
ln

(
1− r
1 + r

)
(3.26)

This integral has logarithmic branch points at r = ±1, and we pick the branch cut to

run from r = −1 to r = 1. If we start from r = 1 + iϵ and go around the branch cut to

r = 1 − iϵ, the ζ coordinate is normalised to go from 1 to 0 in its real part. We define

ζ = 0 as the left boundary and ζ = 1 as the right boundary. Given this geometry, we

will now turn to the question of obtaining the electromagnetic fields on it.

We need ingoing counterparts of the outgoing propagators to define the correct bound-

ary to bulk propagator on the dS-SK geometry. We can obtain the ingoing propagator

simply by time-reversing the outgoing one:

GIn
E/B(r, ω, ℓ) = e−2πωζGOut∗

E/B (r, ω, ℓ) (3.27)

The boundary-to-bulk propagators on the dS-SK geometry then turn out to be:

g
E/B
L (r, ω, ℓ) ≡ nω

[
GOut

E/B(r, ω, ℓ)− e2πω(1−ζ)GOut∗
E/B (r, ω, ℓ)

]
,

g
E/B
R (r, ω, ℓ) ≡ (1 + nω)

[
GOut

E/B(r, ω, ℓ)− e−2πωζGOut∗
E/B (r, ω, ℓ)

]
.

(3.28)

where nω = 1
e2πω−1

, is the Bose-Einstein factor. Essentially, the gL connects the sources

on the left boundary to the fields on the dS-SK geometry, whereas gR does the same

for the sources on the right boundary. These boundary-to-bulk propagators are hence
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defined so as to satisfy the following boundary conditions:

lim
ζ→0

rℓgEL = −1 , lim
ζ→0

rℓgER = 0 ,

lim
ζ→1

rℓgEL = 0 , lim
ζ→1

rℓgER = 1,

lim
ζ→0

rd−3+ℓgBL = −1 , lim
ζ→0

rd−3+ℓgBR = 0 ,

lim
ζ→1

rd−3+ℓgBL = 0 , lim
ζ→1

rd−3+ℓgBR = 1.

(3.29)

Hence, the gL/R is defined to be regular on the right/left boundary and to have a source

singularity on the other boundary3.

Using these boundary-to-bulk propagators, we can write down the solutions for ΦE

and ΦB as:

ΦE(ζ, ω, ℓ, m⃗) =
1

ℓ

{
gER(ζ, ω, ℓ)J

E
R(ω, ℓ, m⃗)− gEL (ζ, ω, ℓ)JEL (ω, ℓ, m⃗)

}
,

ΦB(ζ, ω, α, ℓ, m⃗) = gBR(ζ, ω, ℓ)J
B
R(ω, α, ℓ, m⃗)− gBL (ζ, ω, ℓ)JBL (ω, α, ℓ, m⃗) ;

(3.30)

where J
E/B
L and J

E/B
R are the electric/magnetic multipole moments on the left and the

right boundary, respectively. The ΦE satisfies Neumann boundary conditions, whereas

ΦB satisfies Dirichlet boundary conditions at both the R and L boundaries of the dS-SK

geometry. Correspondingly, we can also write the conjugate fields to πE/B in the following

manner:

πE(ζ, ω, ℓ, m⃗) =
1

ℓ

{
πE
L (ζ, ω, ℓ)J

E
L (ω, ℓ, m⃗)− πE

R(ζ, ω, ℓ)J
E
R(ω, ℓ, m⃗)

}
,

πB(ζ, ω, α, ℓ, m⃗) = πB
L (ζ, ω, ℓ)J

B
L (ω, α, ℓ, m⃗)− πB

R(r, ω, ℓ)J
B
R(ω, α, ℓ, m⃗)

(3.31)

where we have defined πE/B
L/R = D+g

E/B
L/R . These fields are fixed such that they satisfy the

following boundary conditions:

lim
ζ→0

rℓ+d−2πE = JEL , lim
ζ→1

rℓ+d−2πE = JER ,

lim
ζ→0

rℓ+d−3ΦB = JBL , lim
ζ→1

rℓ+d−3ΦB = JBR

(3.32)

Given the solutions with appropriate boundary conditions, one can now substitute

3In chapter §2, we give a more detailed analysis of these boundary-to-bulk propagators, along with
explicit expressions, which the reader can refer to for further details.
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them into the action to obtain the boundary Schwinger-Keldysh action:

S = −1

4

∫
dSSK

dd+1x
√
−gC

µν
Cµν + Sct

=
1

2

∫
dSSK

dd+1x
[
Vν∂µ

(√
−gC

µν
)
− ∂µ

(√
−gC

µν
Vν

)]
+ Sct

=
(On-Shell)

[
−1

2

∫
rd−1dt dΩd−1C

rµ
Vµ

]rc−iϵ

rc+iϵ

+ Sct

(3.33)

Here, the first term on the second line can be set to zero using the equations of motion,

and the second one evaluates to a boundary term. We can compute this boundary term

using the dS-SK solutions:

lim
ζ→1

rd−1Cru
renV

∗
u = lim

ζ→1

1

rℓ−1
Cru

ren × lim
ζ→1

rℓ+d−2V∗
u

= −(ℓ+ d− 2)

ℓ
JE∗
R

{
KE

LRJ
E
R −KE

LLJ
E
L

}
,

lim
ζ→0

rd−1Cru
renV

∗
u = lim

ζ→0

1

rℓ−1
Cru

ren × lim
ζ→0

rℓ+d−2V∗
u

= −(ℓ+ d− 2)

ℓ
JE∗
L

{
KE

RRJ
E
R −KE

RLJ
E
L

}
,

lim
ζ→1

rd−1CrI
renV

∗
I = lim

ζ→1

1

rℓ−2
CrI

ren × lim
ζ→1

rℓ+d−3V∗
I

= −JE∗
R

{
KB

LRJ
B
R −KB

LLJ
B
L

}
,

lim
ζ→0

rd−1Cru
renV

∗
u = lim

ζ→0

1

rℓ−2
Cru

ren × lim
ζ→0

rℓ+d−3V∗
u

= −JB∗
L

{
KB

RRJ
B
R −KB

RLJ
B
L

}
.

(3.34)

We have defined these combinations of the wordline two-point functions:

K
E/B
LL ≡ nωK

Out
E/B − (1 + nω)K

Out∗
E/B , K

E/B
LR ≡ (1 + nω)

(
KOut

E/B −KOut∗
E/B

)
,

K
E/B
RL ≡ nω

(
KOut

E/B −KOut∗
E/B

)
, K

E/B
RR ≡ (1 + nω)K

Out
E/B − nωK

Out∗
E/B .

(3.35)

Given the above expressions on the boundaries of dS-SK, we can write down the on-shell

action as follows:

SCIP = −
∑
αℓm⃗

∫
dω

2π
KOut

B (ω, ℓ) JB∗
D

[
JBA +

(
nω +

1

2

)
JBD

]
−
∑
ℓm⃗

(ℓ+ d− 2)

ℓ

∫
dω

2π
KOut

E (ω, ℓ) JE∗
D

[
JEA +

(
nω +

1

2

)
JED

]
,

(3.36)
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where we have defined the average and difference combinations of the source multipole

moments:

J
E/B
A ≡ 1

2
J
E/B
R +

1

2
J
E/B
L , J

E/B
D ≡ J

E/B
R − J

E/B
L . (3.37)

This is otherwise known as the Keldysh basis, which is convenient for extracting the

physics from these expressions. The average-difference terms capture the dissipative piece:

they encode the physics, as we will see in the next section, of the Abraham-Lorentz-Dirac

force in dS. The difference-difference term encodes the Hawking fluctuations. This can be

seen through a Hubbard-Stratonovich transformation of the difference moments, which

will induce a noise field whose fluctuations are controlled by the Hawking temperature4.

The thermality of the correlators is encoded in the fact that the fluctuations are propor-

tional to the dissipation, as can be seen from our action.

Lastly, we will show how the Sct can be written gauge-invariantly. The counterterm

lagrangian can be written in a gauge-invariant manner in the following way:

Sct =

[
1

2

∫
rd−1du dΩd−1

r

CN=3−d

{
(D ICuI)Vu

}
−1

2

∫
rd−1du dΩd−1

 CN=d−3 − r2∂2
u

CN=3−d

(ℓ+ 1)(ℓ+ d− 3)
rDJC

IJ
+

r

CN=3−d

∂uC
I

u

VI

rc−iϵ

rc+iϵ

=

[
1

2

∫
rd−1du dΩd−1

r

CN=3−d

{
(D ICuI)Vu − (∂uC

I

u )VI

+
r2

(ℓ+ 1)(ℓ+ d− 3)
(∂2uDJC

IJ
)VI

}
−1

2

∫
rd−1du dΩd−1

rCN=d−3

(ℓ+ 1)(ℓ+ d− 3)
(DJC

IJ
)VI

]rc−iϵ

rc+iϵ

=

[
1

2

∫
rd−1du dΩd−1

r

CN=3−d

{
CuIC

I

u −
1

2

r2

(ℓ+ 1)(ℓ+ d− 3)
(∂uC

IJ
)(∂uCIJ)

}
−1

4

∫
rd−1du dΩd−1

rCN=d−3

(ℓ+ 1)(ℓ+ d− 3)
C
IJ
CIJ

]rc−iϵ

rc+iϵ

(3.38)

As we can see, the counterterm action is local in time and gauge invariant. This concludes

our analysis of constructing a regularised effective action for a point source observer.

4See chapter §2 for a proper derivation of the fluctuating field in the long time limit.
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3.1.1 Energy flux through the horizon

The Electromagnetic stress tensor, in our notation, is given by:

T
µν

EM = C
µα
C
ν

α −
1

4
gµνCαβC

αβ
(3.39)

We want to calculate the electromagnetic energy flux that exits through the horizon. This

is encoded in the T r
u component of the stress tensor, which we integrate over the sphere

to obtain the total flux:

∫
Sd−1
r

rd−1(TEM) r
u = −

∑
ℓm⃗

∫
ω

rd−3

[∑
α

E∗
vHv + ℓ(ℓ+ d− 2)H∗

sEs

]

=
∑
ℓm⃗

∫
ω

iω

[∑
α

rd−3 Φ∗
BD+ΦB + r3−d ℓ(ℓ+ d− 2)Φ∗

ED+ΦE

] (3.40)

Here, we have expressed the stress tensor in terms of the Debye scalars. In [112], the

authors compute using covariant phase space formalism, the flux through I + given by:

F =

∫
I +

dVI + gµν
[
CuµCuν − (1− r2)CuµCrν

]
(3.41)

Which matches our expression for the flux through a constant r slice.

The boundary to bulk retarded Green’s functions in the de Sitter static patch for the

Debye scalars are:

GOut
E (r, ω, ℓ) = H2νrℓ+d−2(1 +Hr)−

iω
H

Γ
(

ℓ+2− iω
H

2

)
Γ
(

ℓ+d−2− iω
H

2

)
Γ(1− iω

H
)Γ
(
ℓ+ d

2
− 1
)

× 2F1

[
ℓ+ 2− iω

H

2
,
ℓ+ d− 2− iω

H

2
; 1− iω

H
; 1− r2H2

]
,

GOut
B (r, ω, ℓ) = H2νrℓ+1(1 +Hr)−

iω
H

Γ
(

ℓ+1− iω
H

2

)
Γ
(

ℓ+d−1− iω
H

2

)
Γ(1− iω

H
)Γ
(
ℓ+ d

2
− 1
)

× 2F1

[
ℓ+ 1− iω

H

2
,
ℓ+ d− 1− iω

H

2
; 1− iω

H
; 1−H2r2

]
.

(3.42)

This form of writing the propagators, allows us to easily read off the horizon behaviour
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as the hypergeometric function goes to 1. We have:

lim
r→H−1

GOut
E = 2−

iω
H Hℓ

Γ
(

ℓ+2− iω
H

2

)
Γ
(

ℓ+d−2− iω
H

2

)
Γ(1− iω

H
)Γ
(
ℓ+ d

2
− 1
) ≡ H3−dfE(ω) ,

lim
r→H−1

GOut
B = 2−

iω
H Hℓ+d−3

Γ
(

ℓ+1− iω
H

2

)
Γ
(

ℓ+d−1− iω
H

2

)
Γ(1− iω

H
)Γ
(
ℓ+ d

2
− 1
) ≡ fB(ω) .

(3.43)

where we have defined the fE to have the same mass dimension as fB. Similarly, we can

also obtain the following:

lim
r→H−1

D+G
Out
E = iωH3−d fE ,

lim
r→H−1

D+G
Out
B = iω fB .

(3.44)

To find the flux of outgoing radiation, we simply substitute the outgoing solutions evalu-

ated at the horizon. Substituting this relation back into (3.40) evaluated at the horizon,

we have:

lim
r→H−1

∫
Sd−1
r

rd−1(TEM) r
u = −

∑
ℓm⃗

∫
ω

iω

[∑
α

KOut
B |JB|2 +

ℓ+ d− 2

ℓ
KOut

E |JE|2
]

(3.45)

From the above expressions, we can obtain the behaviour of the electromagnetic fields at

the horizon:

lim
r→H−1

Er = (ℓ+ d− 2)H2 fE JE , lim
r→H−1

Es = iω fE
JE

ℓ
, lim

r→H−1
Hs = iω fE

JE

ℓ
,

lim
r→H−1

Hvv = fB JB , lim
r→H−1

Ev = iω fB JB , lim
r→H−1

Hv = iω fB JB .

(3.46)

We can see that these expressions reproduce the flat space expressions as H → 0 with r

set to 1
H

. To see this, we give the flat space limits of the fE/B(for odd values of d):

lim
H→0

H
3−d
2 fE = lim

H→0
H

3−d
2 fB =

(−iω)ν− 1
2

(2ν − 2)!!
. (3.47)

For generic values of d we have:

lim
H→0

H
3−d
2 fE = lim

H→0
H

3−d
2 fB =

√
π

Γ (ν)

(
−iω

2

)ν− 1
2

. (3.48)
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3.2 Extended EM sources in dS and radiation reaction

In this section, we want to describe in detail the results about extended EM sources

in de Sitter that were alluded to in the main text. Our goal here is twofold: first, we

want to describe radiative multipole expansion in de Sitter with correct normalisations

for multipole moments, etc., which in the H → 0 limit reproduces the flat space analysis.

The second goal is to compute the analogue of the ALD force in de Sitter (they also have

a H → 0 limit). One main difference to our flat spacetime analysis is the following: the

analysis in this section uses retarded time u instead of the Schwarzschild time t.

Magnetic Multipole Radiation

We will begin by describing the magnetic multipole radiation due to toroidal currents in

dSd+1. These currents are identically conserved; hence, conservation equations play no

role in this sector, making the analysis conceptually simpler. One begins with decompos-

ing the currents in terms of vector spherical harmonics on the sphere.

J̄u(r, u, r̂) = J̄r(r, u, r̂) = 0 , J̄ I(r, u, r̂) =
∑
αℓm⃗

∫
ω

Jαℓm⃗
V (r, ω)VI

αℓm⃗(r̂) . (3.49)

As in the flat space as well as the point source analysis, we will use a convenient param-

eterisation of the gauge field in terms of the magnetic Debye scalar:

Vu(r, u, r̂) = Vr(r, u, r̂) = 0 , VI(r, u, r̂) =
∑
αℓm⃗

∫
ω

e−iωuΦB(r, ω, α, ℓ, m⃗) Vαℓm⃗
I (r̂) .

(3.50)

We will remind the reader that due to the orthogonality of the VSH with DIYℓm⃗, the elec-

tromagnetic fields due to toroidal currents completely decouple from those due to charge

densities and poloidal currents. Hence, we can proceed with independently analysing the

effects of toroidal current distributions.

Given the above parametrisation of the sources and the gauge fields, the electromag-

netic field equations reduce to the following inhomogeneous equation for the magnetic
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Debye potential:

1

rd−3
D+

[
rd−3D+ΦB

]
+ ω2ΦB−

(ℓ+ 1)(ℓ+ d− 3)(1− r2)
r2

ΦB + r2(1− r2)Jαℓm⃗
V = 0 .

(3.51)

We will construct a Green function for solving the above inhomogeneous differential

equation, such that it satisfies the following equation:

1

rd−3
D+

[
rd−3D+GB(r, r0; ℓ)

]
+ ω2GB(r, r0; ℓ)−

(ℓ+ 1)(ℓ+ d− 3)(1− r2)
r2

GB(r, r0; ℓ)

+ (1− r2)δ(r − r0)
rd−3

= 0 .

(3.52)

One interprets this green function as the field generated by a single shell of unit toroidal

current placed at r = r0. The appropriate boundary conditions for this problem are that

the field should be outgoing at the horizon, i.e. at r = 1 and that it should be finite

at r = 0. The field is also required to satisfy the correct jump condition at the sphere

obtained by integrating the above equation about r = r0:

rd−3D+GB

∣∣∣r0−
r0+

= 1 . (3.53)

We have already analysed the homogeneous solution to this equation that satisfies the

outgoing boundary condition: GOut
B , which dictates the field outside the sphere. We also

need a homogeneous solution normalisable at the origin to obtain the appropriate Green

function for the inhomogeneous solution. This normalisable solution is given by:

(
1− r
1 + r

) iω
2

ΞB
n (r, ω, ℓ) ≡

1

2ℓ+ d− 2
rℓ+1(1 + r)−iω

× 2F1

[
ℓ+ 1− iω

2
,
ℓ+ d− 1− iω

2
; ℓ+

d

2
; r2
]
.

(3.54)

The function ΞB
n (r, ω, ℓ) is the corresponding normalisable solution in the Schwarzschild

time t [7]. ΞB
n (r, ω, ℓ) reproduces the flat space normalisable solution (the Bessel function)

(C.34) in the H → 0 limit(see section 3.2.1). Given these solutions to the homogeneous

equation satisfying appropriate boundary conditions, we can construct the Green function
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for the above inhomogeneous equation such that the solution takes the form:

ΦB(r, ω, α, ℓ, m⃗) =

∫
dr0r

d−1
0 GB(r, r0;ω, ℓ)J

αℓm⃗
V (r0, ω) (3.55)

Imposing these boundary conditions and the appropriate jump condition at r = r0, we

can write the form of the Green function as follows:

GB(r, r0;ω, ℓ) =
1

WB(r0, ω, ℓ)

(
1− r<
1 + r<

) iω
2

ΞB
n (r<, ω, ℓ)G

Out
B (r>, ω, ℓ) , (3.56)

where the Wronskian WB(r0, ω, ℓ) is given by:

WB(r0, ω, ℓ) =

(
1− r0
1 + r0

)iω

(3.57)

and

r> ≡ Max(r, r0) , r< ≡ Min(r, r0) . (3.58)

We have now solved for the Debye potential ΦB given a poloidal current distribution.

Given the potential, we can now use (3.11) to obtain the solutions for the fields:

Ev = iω ΦB =

∫
r⃗0

iω GB(r, r0;ω, ℓ)V
αℓm⃗
I (r̂0)J

I(r⃗0, ω) ,

Hv = D+ΦB =

∫
r⃗0

D+GB(r, r0;ω, ℓ)V
αℓm⃗
I (r̂0)J

I(r⃗0, ω) ,

Hvv = ΦB =

∫
r⃗0

GB(r, r0;ω, ℓ)V
αℓm⃗
I (r̂0)J

I(r⃗0, ω) .

(3.59)

These equations are analogous to the equations (C.57) in flat space. As pointed out in the

flat space analysis, the time-dependent toroidal currents give rise not only to a magnetic

field but also to an induced electric field. Given the expressions of the fields, we can now

describe the fields outside the sources. We identify the magnetic multipole moment to
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be:

JB(ω, α, ℓ, m⃗) =

∫
r⃗0

(
1− r0
1 + r0

)− iω
2

ΞB
n (r0, ω, ℓ)V

αℓm⃗
I (r̂0)J

I(r⃗0, ω)

=
1

2ℓ+ d− 2

∫
r⃗0

rℓ+1
0 (1− r0)−iω

× 2F1

[
ℓ+ 1− iω

2
,
ℓ+ d− 1− iω

2
; ℓ+

d

2
; r20

]
Vαℓm⃗
I (r̂0)J

I(r⃗0, ω) .

(3.60)

We can rewrite the multipole moment in Schwarzschild time to obtain a formula that

can be compared directly with the corresponding flat space expression(C.58). For this,

we need to convert our expressions in the Fourier transform of the outgoing time to

expressions in terms of Schwarzschild time t. This can be achieved by first recognising

that:

J I(r⃗, ω) =

∫
du eiωuJ̄ I(r⃗, t) =

∫
dt eiωt

(
1− r
1 + r

) iω
2

J̄ I(r⃗, t) . (3.61)

This allows us to rewrite our expression for JB as:

JB(ω, α, ℓ, m⃗) =

∫
dt eiωt

∫
r⃗0

ΞB
n (r0, i∂t, ℓ)V

αℓm⃗
I (r̂0)J

I(r⃗0, t) (3.62)

Electric Multipole Radiation

Charge density and poloidal currents source the ‘electric’ multipole radiation. Unlike

toroidal currents, which are conserved identically and hence carry no constraint coming

from conservation equations, poloidal currents are interlinked with the temporal change

of charge density. One can rewrite the current density in a form where the conservation

equation is manifest:

J̄u(r, u, r̂) =
∑
ℓm⃗

∫
ω

[
ℓ(ℓ+ d− 2)

r2
J2(r, ω, ℓ, m⃗)− 1

rd−1
∂r
{
rd−1J1(r, ω, ℓ, m⃗)

}]
Yℓm⃗(r̂) ,

J̄r(r, u, r̂) = −
∑
ℓm⃗

∫
ω

iωJ1(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

J̄ I(r, u, r̂) = −
∑
ℓm⃗

∫
ω

iω

r2
J2(r, ω, ℓ, m⃗)D IYℓm⃗(r̂) .

(3.63)
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The electric parity multipole radiation has a gauge redundancy in its description tied to

the above conservation equation. Due to such a gauge redundancy, one cannot impose

the same gauge conditions as we did for free electromagnetic fields in the presence of

extended sources. In particular, the gauge field parametrisation, in terms of the Debye

scalar, requires modification with additional source-local terms to satisfy the sourced

Maxwell equations. The gauge field parametrisation then becomes:

Vu(r, u, r̂) =
∑
ℓm⃗

∫
ω

e−iωu
[
r3−dD+ΦE(r, ω, ℓ, m⃗)− (1− r2)J2

]
Yℓm⃗(r̂) ,

Vr(r, u, r̂) =
∑
ℓm⃗

∫
ω

e−iωu
[
r3−d∂rΦE(r, ω, ℓ, m⃗)− J2

]
Yℓm⃗(r̂) ,

VI(r, u, r̂) =
∑
αℓm⃗

∫
ω

e−iωuΦB(r, ω, ℓ, m⃗) Vαℓm⃗
I (r̂) .

(3.64)

One can check the consistency of this gauge choice by plugging it into the Maxwell

equations, which are satisfied contingent on the fact that the Debye scalar is a solution

to second-order inhomogeneous differential equations:

1

r3−d
D+

[
r3−dD+ΦE

]
+ ω2ΦE−

ℓ(ℓ+ d− 2)(1− r2)
r2

ΦE

−rd−3
[
D+

[
(1− r2)J2

]
− (1− r2)J1

]
= 0 .

(3.65)

The particular combination of the source parameters J1 and J2 that appears on the RHS

of the EOM of ΦE can be considered the ‘radiative’ source combination. This combination

is solely responsible for the radiative energy loss.

Given the above parametrisation of the gauge field, the electromagnetic field strengths

in the presence of sources can be computed to give:

Er =
ℓ(ℓ+ d− 2)

rd−1
ΦE − J1 ,

Es =
1

rd−3
D+ΦE − (1− r2)J2 ,

Hs =
iω

rd−3
ΦE .

(3.66)

One can think of the above formulae alternatively as being obtained from the gauge
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field parametrisation in terms of the electromagnetic fields:

Vu(r, u, r̂) =
∑
ℓm⃗

∫
ω

e−iωuEs(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

Vr(r, u, r̂) =
∑
ℓm⃗

∫
ω

e−iωu

1− r2
[Es(r, ω, ℓ, m⃗)−Hs(r, ω, ℓ, m⃗)]Yℓm⃗(r̂) ,

VI(r, u, r̂) = 0.

(3.67)

Given the inhomogeneous equations of motion for ΦE, one can solve for the electro-

magnetic fields in de Sitter by finding the corresponding Green’s functions. The natural

boundary condition to impose in de Sitter is the outgoing boundary condition at the

horizon. The outgoing Green’s functions can be written as:

GE(r, r0;ω, ℓ) =
1

W (r0, ω, ℓ)

(
1− r<
1 + r<

) iω
2

ΞE
n (r<, ω, ℓ)G

Out
E (r>, ω, ℓ) . (3.68)

where the GOut
E is the boundary-to-bulk outgoing propagator defined in the previous

section and ΞE
n is the normalisable mode:

ΞE
n (r, ω, ℓ) ≡

1

2ℓ+ d− 2
rℓ+d−2(1− r2)−

iω
2

× 2F1

[
ℓ+ 2− iω

2
,
ℓ+ d− 2− iω

2
; ℓ+

d

2
; r2
]
.

(3.69)

For odd values of d, the above expressions are well-defined, but for even values of d, one

should evaluate the expressions as a limiting case. With these Green’s functions, we can

write the Debye scalars as:

ΦE(r, ω, ℓ, m⃗) =

∫
dr0GE(r, r0;ω, ℓ)

×
[
J1(r0, ω, ℓ, m⃗)− 1

1− r2
D0

+

{
(1− r2)J2(r0, ω, ℓ, m⃗)

}]
.

(3.70)

The above solutions in terms of the source parameters J1 and J2 can be rewritten in
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terms of the source currents to give:

ΦE =− 1

iω

∫
dr0

∫
dΩd−1[

Y ∗
ℓm⃗J

rGE(r, r0;ω, ℓ)−
1

ℓ(ℓ+ d− 2)
r20J

IDIY
∗
ℓm⃗D

0
−GE(r, r0;ω, ℓ)

]
Hs =−

1

rd−3

∫
dr0

∫
dΩd−1[

Y ∗
ℓm⃗J

rGE(r, r0;ω, ℓ)−
1

ℓ(ℓ+ d− 2)
r20J

IDIY
∗
ℓm⃗D

0
−GE(r, r0;ω, ℓ)

]

Er =
1

rd−1

∫
dr0

∫
dΩd−1Y

∗
ℓm⃗r

2
0

[
J tD0

−GE(r, r0;ω, ℓ) + iωJrGE(r, r0;ω, ℓ)

]
(3.71)

The expression for Es can be obtained from the above by integrating the first Bianchi

as we did in flat space. The first Bianchi in EF coordinates in dS is:

D+Es = (1− r2)Er + iωHs (3.72)

To integrate this equation, we will rewrite it as:

∂r
(
eiωr∗Es

)
= eiωr∗

[
Er +

iω

(1− r2)
Hs

]
= eiωr∗

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r, r0;ω, ℓ)

{
iω
r20 − r2

1−r2

rd−1
Jr(r⃗0, ω)

− 1

1− r20
D0

+

[
(1− r20)r20
rd−1

J t(r⃗0, ω) + iω
(1− r20)r20
rd−3

DIJ
I(r⃗0, ω)

ℓ(ℓ+ d− 2)

]} (3.73)

where r∗ is the tortoise coordinate. We can now integrate this equation to write an

expression for Es as follows:

Es = e−iωr∗

∫
dr1e

iωr1∗

[
Er(r1) +

iω

(1− r21)
Hs(r1)

]

= e−iωr∗

∫
dr1e

iωr1∗

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r1, r0;ω, ℓ)

{
iω
r20 −

r21
1−r21

rd−1
1

Jr(r⃗0, ω)

− 1

1− r20
D0

+

[
(1− r20)r20
rd−1
1

J t(r⃗0, ω) + iω
(1− r20)r20
rd−3
1

DIJ
I(r⃗0, ω)

ℓ(ℓ+ d− 2)

]}
(3.74)
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Action reduction

We must evaluate the on-shell action on the dS-SK geometry to obtain the effective action

describing the extended observer. Although the explicit derivation specific to the dS-SK

geometry is treated in the next section, we want to simplify the sourced Maxwell action

in this section after imposing the equations of motion to bring it to a simpler form. We

begin with the Maxwell action:

SEM = −
∫
dd+1x

[
1

4
C̄µνC̄

µν − V̄µJ
µ

]
(3.75)

We perform, as before, an expansion in the spherical harmonics and a Fourier transform

on the outgoing time to obtain, in terms of the field strengths:

SEM = −1

2

∑
ℓm⃗

∫
ω

∫
dr

rd−1

1− r2

[
(1− r2)|Er|2 −

ℓ(ℓ+ d− 2)

r2
{
|Hs|2 − |Es|2

}
+ 2iωHsJ

∗
1

+ Es

{
1

rd−1
D−(r

d−1J∗
1 )−

ℓ(ℓ+ d− 2)

r2
(1− r2)J∗

2

}]
(3.76)

Using integration by parts and the ΦE EOM:

Son-shell =
1

2

∑
ℓm⃗

∫
dω

2π

[
∂r
{
−r2(D+ΦE)

∗J1 + r2(1− r2)ℓ(ℓ+ d− 2)Φ∗
EJ2 + rd+1J1J

∗
2

}
+ℓ(ℓ+ d− 2)Φ∗

E

{
1

1− r2
D+

[
(1− r2)J2

]
+ J1

}
−rd−1|J1|2 − rd+1ℓ(ℓ+ d− 2)(1− r2)|J2|2

]
(3.77)

To obtain the parameters J1 and J2 given a current density, we invert the equations
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in (3.63) to obtain:

J1(r, ω, ℓ, m⃗) =

∫
dΩd−1Y

∗
ℓm⃗(r̂)

Jr(r, ω, r̂)

−iω
,

J2(r, ω, ℓ, m⃗) = −
∫
dΩd−1Y

∗
ℓm⃗(r̂)

r2

−iωℓ(ℓ+ d− 2)
DIJ

I(r, ω, r̂)

=

∫
dΩd−1Y

∗
ℓm⃗(r̂)

1

ℓ(ℓ+ d− 2)

1

1− r2

[
1

−iωrd−3
D+

(
rd−1Jr

)
− r2Ju

]
.

(3.78)

Here we have rewritten the DIJ
I term using the conservation equation:

DIJ
I = − 1

1− r2

[
iωJu +

1

rd−1
D+

(
rd−1Jr

)]
. (3.79)

3.2.1 Radiative multipole moments on dS-SK

We will use the result of the previous section and identify the average/difference electro-

magnetic radiative multipole moments on the dS-SK geometry. The equation of motion

for ΦE shows that the J2 acts like a ‘Neumann’ source, i.e., the ΦE is sourced by a deriva-

tive operator acting on J2. On the other hand, J1 acts like a ‘Dirichlet’ source. For the

‘Neumann’ case, we identify ρ with J2
r3−d . Consider the contribution to the ‘R’ electric

multipole moment from the J2 source takes the form:

−ℓ
∫
R

dr

(
1− r
1 + r

)− iω
2

(1− r2)∂rΞE
n (r, ω, ℓ) J2(r, ω, ℓ, m⃗)

=
1

ℓ+ d− 2

∫
R

dr

(
1− r
1 + r

)− iω
2

∂rΞ
E
n (r, ω, ℓ)∫

dΩd−1Y
∗
ℓm⃗(r̂)

[
r2Ju +

1

iωrd−3
D+

(
rd−1Jr

)]
.

(3.80)

We can use integration by parts on the Jr term along with the following identity for

Ξn:

D−

[(
1− r
1 + r

)− iω
2

r3−d(1− r2)∂rΞE
n

]

= −
{
ω2 − ℓ(ℓ+ d− 2)

r2
(1− r2)

}(
1− r
1 + r

)− iω
2

r3−dΞE
n .

(3.81)
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The full radiative multipole moment then becomes:

JER(r, ω, ℓ, m⃗) =
1

2ν(ℓ+ d− 2)

∫
R

ddx Y ∗
ℓm⃗(r̂)

1

rd−3

(
1− r
1 + r

)− iω
2

×

[
∂rΞ

E
n (r, ω, ℓ)Ju(r, ω, r̂) + iω ΞE

n (r, ω, ℓ)J
r(r, ω, r̂)

]

JEL (r, ω, ℓ, m⃗) =
1

2ν(ℓ+ d− 2)

∫
R

ddx Y ∗
ℓm⃗(r̂)

1

rd−3

(
1− r
1 + r

)− iω
2

×

[
∂rΞ

E
n (r, ω, ℓ)Ju(r, ω, r̂) + iω ΞE

n (r, ω, ℓ)J
r(r, ω, r̂)

]
.

(3.82)

The computation of the magnetic multipole moments on the dS-SK geometry, on the

other hand, is straightforward, as there is no ambiguity due to conservation equations.

We find:

JBR(ω, α, ℓ, m⃗) =

∫
R

ddr

(
1− r0
1 + r0

)− iω
2

ΞB
n (r0, ω, ℓ)V

αℓm⃗
I (r̂0)J

I(r⃗0, ω) ,

JBL (ω, α, ℓ, m⃗) =

∫
L

ddr

(
1− r0
1 + r0

)− iω
2

ΞB
n (r0, ω, ℓ)V

αℓm⃗
I (r̂0)J

I(r⃗0, ω) .

(3.83)

Corresponding to these multipole moments, we can write down the STF moments,

which are better suited for a post-newtonian expansion:

EQi1...iℓ
A,STF (ω) ≡

1

(ℓ+ d− 2)
(ΠS)<i1i2...iℓ>

<j1j2...jℓ>

∫
ddr r̂j1 r̂j2 . . . r̂jℓ

× 2ν

rd−3

[
∂rΞ

E
n (r, ω, ℓ)Ju(r, ω, r̂) + iω ΞE

n (r, ω, ℓ)J
r(r, ω, r̂)

]
,

EQi1...iℓ
D,STF (ω) ≡

1

(ℓ+ d− 2)
(ΠS)<i1i2...iℓ>

<j1j2...jℓ>

∫
ddr r̂j1 r̂j2 . . . r̂jℓ

× 2ν

rd−3

(
1− r
1 + r

)− iω
2

[
∂rΞ

E
n (r, ω, ℓ)Ju(r, ω, r̂)

+ iωΞE
n (r, ω, ℓ)J

r(r, ω, r̂)

]
.

(3.84)
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Similarly, the magnetic multipole moments on dS-SK can be written as:

BQi<i1...iℓ>
A ≡ (ΠV )i<i1i2...iℓ>

j<j1j2...jℓ>

∫
ddx xj1xj2 . . . xjℓ

2ν

rℓ+1

(
1− r
1 + r

)− iω
2

ΞB
n (r, ω, ℓ)J

j
A

BQi<i1...iℓ>
D ≡ (ΠV )i<i1i2...iℓ>

j<j1j2...jℓ>

∫
ddx xj1xj2 . . . xjℓ

2ν

rℓ+1

(
1− r
1 + r

)− iω
2

ΞB
n (r, ω, ℓ)J

j
D

(3.85)

The dissipative part of the on-shell action in terms of these STF multipoles can then be

written as:

SOdd d
RR = −

∑
ℓ

∫
dω

2π

1

4ν2Nd,ℓ|Sd−1|
1

ℓ!

[
KOut

E

ℓ+ d− 2

ℓ
EQ∗<i1i2...iℓ>

D,STF
EQ

A,STF
<i1i2...iℓ>

+KOut
B

BQ∗i<i1i2...iℓ>
D,STF

BQ
A,STF
i<i1i2...iℓ>

]
.

(3.86)

Near Flat Expansion

In the next section, we will calculate the radiation reaction of a point particle moving

along an arbitrary trajectory. This result is obtained in a Hubble expansion about flat

spacetime up to order H4 terms. To facilitate this calculation, we quote the Hubble

expansions of some useful quantities in this section5. Since the radiation reaction force is

well defined only in dSd+1 for odd d, we will restrict our analysis to that particular case.

The radiation reaction kernels KOut
E/B have the following expansions in the small H

limit:

KOut
B |Odd d =

2πi

Γ(ν)2

(ω
2

)2ν [
1 +

{
ν2 +

3

4
d(d− 4) + 2

}
ν

3!!

H2

ω2

+ cB
ν(ν − 1)

5!!

H4

ω4
+O

(
H6

ω6

)]
.

(3.87)

KOut
E |Odd d =

2πi

Γ(ν)2

(ω
2

)2ν [
1 +

{
ν2 +

3

4
d(d− 8) + 11

}
ν

3!!

H2

ω2

+ cE
ν(ν − 1)

5!!

H4

ω4
+O

(
H6

ω6

)]
.

(3.88)

5The expressions quoted here are special cases of those derived in 2.3.1. There, one can find a detailed
derivation of these formulae.
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Here, we have defined the coefficients

cB ≡
1

2× 3

[
5ν4 − 4ν3 +

{
15d(d− 4) + 32

2

}
ν2

− {15d(d− 4) + 44} ν + 45

16
d2(d− 4)2 − 24

]
,

cE ≡
1

2× 3

[
5ν4 − 4ν3 +

{
15d(d− 8) + 212

2

}
ν2

− {15d(d− 8) + 224} ν + 45

16
d(d− 8) {d(d− 8) + 24}+ 381

]
.

(3.89)

These expressions can be obtained using the Stirling approximation. In the flat limit,

the combination appearing in the influence phase evaluates to

KOut|Odd d

4ν2Nd,ℓ

=
ω2ℓ+d−2

(d− 2)!!(2ℓ+ d− 2)!!
, (3.90)

so that the above expressions can be used to give an explicit expression for the influence

phase in a small H expansion.

The smearing functions for the multipole moments ΞE/B
n can also be expanded about

small H in the following manner:

ΞE/B
n =

∞∑
k=0

p
E/B
k (ν,H2, ω2)B

E/B
k , (3.91)

where,

BE
k ≡

rν+
d
2
−1+2k

2ν(ν + 1) . . . (ν + k)
0F1

[
1 + k + ν,−ω

2r2

4

]
=

Γ(ν) r
d−2
2

+k

2(ω/2)k+ν
Jk+ν(ωr) ,

BB
k ≡

rν−
d
2
+2+2k

2ν(ν + 1) . . . (ν + k)
0F1

[
1 + k + ν,−ω

2r2

4

]
=

Γ(ν) r2−
d
2
+k

2(ω/2)k+ν
Jk+ν(ωr) ,

(3.92)

and

p
E/B
k ≡ H2k

k!

k∑
m=0

(−)m
(
k

m

) m∑
n=0

(−)n
(
m

n

)
σ2k−2m Γ(αE/B +m)Γ(1 + ν +m)

Γ(αE/B +m− n)Γ(1 + ν +m− n)

×
Γ(αE/B + iσ +m− n)Γ(αE/B − iσ +m− n)

Γ(αE/B + iσ)Γ(αE/B − iσ)
.

(3.93)
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The electric vs magnetic parity smearing function only differs in the α parameter in the

above formula:

αE ≡
1

2
(3− d

2
+ ν) , αB ≡

1

2
(2− d

2
+ ν) , σ =

ω

2H
. (3.94)

This expansion was derived for the generic case of the designer scalar in chapter §2,

which we have used for the specific cases of {N = 3 − d, µ = d
2
− 2} for the electric and

{N = d− 3, µ = d
2
− 1} for the magnetic smearing function.

3.2.2 Non-relativistic expansion

We will now derive the Abraham-Lorentz-Dirac force in arbitrary dimensions and find

curvature corrections in dS spacetime. We will also find terms, up to cubic order in

amplitude, contributing to the full radiation reaction(RR) force. We will follow the

technique used in the previous chapter with some crucial differences for a charged particle

interacting with electromagnetic fields.

Let us start with a point source travelling along a worldline x(τ). We will evaluate

the RR force in a non-relativistic approximation. We will also take the particle to move

close to the south pole, i.e. rH ≪ 1. The wavelength of the radiation is much larger

than the ‘amplitude’ of the trajectory about the south pole(ωr ≪ 1) but much smaller

than the Hubble constant (ω ≫ H). In [101], we referred to these approximations as the

post-newtonian(PN) approximations adapted to dS.

The 4-current density associated with a charged particle in dS is given by,

J̄µ(x′) =

∫
dxµ

dτ
δd+1(x(τ)− x′)dτ =

dxµ

dt
δ(x⃗− x⃗′) (3.95)

In the doubled dS-SK geometry, this source will also be doubled, i.e. given by two

worldlines xL(τ) and xR(τ). Correspondingly, they will source the electromagnetic fields

by current densities J̄L and J̄R. The particle degrees of freedom, on which the effective

action of radiation reaction is defined, are the positions of the two particles on either

side of the geometry, as well as their time derivatives i.e. {xL, xR, ẋL, ẋR, ẍL, ẍR, . . . }.

In the RR lagrangian, we will retain only up to quartic terms in the x’s. The RR

force is determined by the terms linear in the difference of their positions as well as
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time derivatives, i.e. {xD, ẋD, ẍD, . . . }. The terms cubic in xD give rise to non-thermal

fluctuations, which will be discussed later. The fact that there are only linear and cubic

xD terms in the lagrangian follows from the fact that the action is odd under R − L

exchange.

Such an amplitude expansion of the lagrangian allows us to evaluate the forces and

fluctuations in a straightforward way by Taylor expanding the lagrangian about the point

where xD and its time derivatives are zero. As an illustration, consider a given function

f of position. Its corresponding average and difference are obtained as:

1

2

[
f
(
xA +

xD
2

)
+ f
(
xA −

xD
2

)]
= f(xA) +

x2D
4

∂2f

∂x2A
+O(x4D) (3.96)

f
(
xA +

xD
2

)
− f
(
xA −

xD
2

)
= xD

∂ f

∂xA
+
x3D
24

∂3 f

∂x3A
+O(x4D) (3.97)

In general, we will need to expand functions which are not just functions of positions

but also depend on the time derivatives of the positions, in which case one uses a multi-

variable Madhava-Taylor expansion.

The electric sector on-shell action gives the following RR lagrangian:

|Sd−1|(d− 2)!!× (−1)
d+1
2 LE

=(d− 1)[xi]DD1[x
i]A −

d

4

[
xixj −

x2

d
δij

]
D

D2

[
xixj − x2

d
δij

]
A

+

{
1

2
(xi)DDX

1 [x
ix2]A +

1

2
(x2xi)DDX

1 [x
i]A

}
−
{
(xi)DDV

1 ∂t[(x⃗ · v⃗)xi]A + ((x⃗ · v⃗)xi)DDV
1 ∂t[x

i]A
}
.

(3.98)

Only the dipole and quadrupole terms contribute to this order. The differential operators

used in the above expressions {D1,D2,DX
1 ,D

V
1 } are given explicitly in table 3.2. The num-

ber on the differential operator indicates which multipole contributes to that particular

term, whereas the subscripts signify the structure on which this operator acts. Similar

to the scalar case, the magnetic sector action gives the following RR lagrangian:

|Sd−1|(d− 2)!!× (−1)
d+1
2 LB =

1

4
(xivj − xjvi)DDV[x

ivj − xjvi]A . (3.99)

In this case, only the dipole contributes to the quartic lagrangian, and we only have one

differential operator. The full lagrangian is just a sum of these two contributions.
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Given the lagrangian, we can use integration by parts to rewrite it in a way that one

can read off the RR force:

L =
(−1) d−1

2

|Sd−1|(d− 2)!!

[
fi(xA)x

i
D +

1

4
Ni(xD)x

i
A

]
. (3.100)

Here, f i are the Euler-Lagrange derivatives of the terms linear in xD with respect to xiD.

Similarly, N i are the Euler-Lagrange derivatives of the terms linear in xA with respect to

xiA. The f i’s can be written as:

f i =− (d− 1)D1[x
i] +

d

2
xjD2[x

ixj]− xi

2
D2[x

2]

−
{
1

2
DX

1 [x
ix2] +

1

2
x2DX

1 [x
i] + xixjDX

1 [xj]

}
+
{

DV
1 ∂t

(
xi(xjv

j)
)
+ (xjv

j)DV
1 [v

i] + (xjvi)DV
1 [vj]− ∂t

(
xixjDV

1 [vj]
)}

+ vjD
V
1 [x

jvi − xivj] + 1

2
xjD

V
1 [x

jai − xiaj] ,

(3.101)

Symbol fµ
d

D1
∂d
t

d!!
− H2

3!
(d2 − 6d+ 11)

∂d−2
t

(d−2)!!
+ H4

5!
(d−1)(d−3)

3
(5d2 − 48d+ 127)

∂d−4
t

(d−4)!!

D2
∂d+2
t

(d+2)!!
− H2

3!
(d2 − 5d+ 12)

∂d
t

d!!
+ H4

5!
(d−1)(d−2)

3
(5d2 − 43d+ 132)

∂d−2
t

(d−2)!!

DX
1 (d+ 1)

∂d+2
t

(d+2)!!
− H2

3!
(d− 3)(d2 − 4d+ 1)

∂d
t

d!!
+ H4

5!
(d−1)

3
(5d4 − 78d3 + 420d2 − 946d+ 711)

∂d−2
t

(d−2)!!

DV
1

∂d
t

d!!
− H2

3!
(d2 − 6d+ 11)

∂d−2
t

(d−2)!!
+ H4

5!
(d−1)(d−3)

3
(5d2 − 48d+ 127)

∂d−4
t

(d−4)!!

DV
1

∂d
t

d!!
− H2

3!
(d− 1)(d− 2)

∂d−2
t

(d−2)!!
+ H4

5!
(d−1)(d−3)(d−4)(5d+2)

3

∂d−4
t

(d−4)!!

Table 3.2: The differential operators that appear in de Sitter electromagnetic radiation

reaction (for d odd).
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3.2.3 dS covariantisation

The f i’s can be obtained from the following de Sitter covariant vectors:

fµ
3 ≡

P µν

3!!

{
− 2a(1)ν

}
,

fµ
5 ≡

P µν

5!!

{
− 4a(3)ν + 10(a · a)a(1)ν + 30(a · a(1))aν

}
−H2P

µν

5!!

{
16a(1)ν

}
,

fµ
7 ≡

P µν

7!!

{
− 6a(5)ν + 42(a · a)a(3)ν + 210(a · a(1))a(2)ν + 224(a · a(2))a(1)ν

+
574

3
(a(1) · a(1))a(1)ν + 126(a · a(3))aν + 280(a(1) · a(2))aν +O(a5)

}
+H2P

µν

7!!

{
120a(3)ν − 342(a · a)a(1)ν − 978(a · a(1))aν

}
−H4P

µν

7!!

{
384a(1)ν

}
.

(3.102)

Here vµ = dxµ

dτ
is the proper velocity of the particle computed using dS metric, aµ ≡

D2xµ

Dτ2
is its proper acceleration and P µν ≡ gµν + vµvν is the transverse projector to the

worldline. We use a(k)µ ≡ Dkaµ

Dτk
to denote the proper-time derivatives of the acceleration.

All the spacetime dot products are computed using the dS metric.

The problem of flat space electromagnetic radiation reaction in 3+1 dimensions has

been discussed in textbooks of classical electrodynamics (see for reference [114, 115]).

The corresponding RR force in higher dimensions has been treated in many works [85–

87,89–91]. In [86], the authors compute the electromagnetic radiation reaction action in

arbitrary dimensions. The flat space limit of our action matches the one they obtained.

We match their post-newtonian expansion of the RR force with ours for the cases d = 3

and d = 5 given in their paper. We also match the flat limit of our covariant expressions

to those given in previous works. Our expressions match the flat space results from [86]

and [87] for d = 3 and d = 5. Galakhov [88] gives covariant expressions up to d = 7,

which match ours up to signs of certain terms. We disagree with the curved space results

of [87] at the H2 order and higher, even though we match the flat space result. The

source of this disagreement is unclear due to the very different nature of our derivations.
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Chapter 4

Summary and Discussion

In this thesis, we have proposed a de Sitter-Schwinger Keldysh(dS-SK) geometry formed

by two copies of the static patch stitched together at their future horizons. We then

showed how the influence phase of a dS observer could be obtained by evaluating the on-

shell action on this geometry. Our proposal yields results that pass a variety of checks:

first, from a broad structural point of view, it satisfies the constraints imposed on it

from bulk unitarity (SK collapse) and the dS version of Kubo-Martin-Schwinger (KMS)

conditions.

Another check is the flat space limit, where we showed that, for point-like sources, the

dissipative part of the action correctly produces the flat space radiation reaction. This

also allows us to calculate Hubble corrections to the radiation reaction in odd spatial

dimensions, and show that they combine into generally covariant expressions on the dS

background, which serves another non-trivial check on our computation. As a technical

aside, we have also shown how we can counter-term the influence phase for localised

sources with multipole moments by using a Dirac-Deitweiler-Whiting type decomposition

of the dS Green functions.

Here, we have focused on the scalar and the electromagnetic self-force. But we hope

that many of these ideas directly generalise to the gravitational case. In particular, we

hope that the method of covariant counterterms introduced for the gauge field analysis can

be extended to linearised gravitational perturbations. This might be a useful alternative

to existing methods to regularise the self-field [84, 96, 116–118]. We intend to explore

some of this in our upcoming work [119].

The more challenging analysis is considering gravitational non-linearities. We hope it
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will be possible to have a well-defined perturbation theory analogous to the multipolar-

post-minkowskian (MPM) analysis in flat spacetime. A much simpler analysis is to

consider scalar interactions in this setup, which might provide insights into the more

complicated problem of gravity. Our analysis can readily be extended to interactions,

following techniques invented in the AdS context [50, 54, 102, 120, 121], as we sketched

in section §2.4. This aspect will be explored in detail elsewhere [105]. It would also be

interesting to explore whether the familiar tools of conformal invariance, e.g., conformal

block decomposition, can shed more light on the structure of radiation reaction at a non-

linear level. On the face of it, the presence of the observer breaks the dS isometries to just

rotations/time-translations around the observer’s worldline. But the re-emergence of the

full dS isometry in the effective action that we described above suggests that conformal

techniques could be fruitfully exploited to understand the structure of Hubble corrections

to the radiation reaction.

In this work, we have advocated a point of view that real-world cosmology is fruit-

fully framed in terms of a cosmological influence phase SCIP for an observer’s worldline.

It is interesting to ask whether realistic FLRW cosmology from Λ-CDM and the CMB

phenomenology can indeed be rewritten in these terms. To this end, it would be in-

teresting to extend our analysis to time-varying cosmological spacetimes: perhaps, one

should begin by extending our framework to simpler time-dependent extensions involving

sudden/adiabatic approximations.

More broadly, we can enquire about the role played by radiation reaction in cosmology.

Given the enhanced electromagnetic dissipation any given radiative source experiences

due to the presence of the cosmological constant, one could ask if there are any as-

trophysical/cosmological phenomena where such a dissipation would be relevant. The

time(length) scales associated with such phenomena would be of the order of billions of

(light-)years. This may rule out many sub-galactic-cluster scales but would contribute

to intergalactic and large-scale structure dynamics. Understanding the gravitational ra-

diation reaction at the galactic/extra-galactic scales might be crucial to predicting the

stochastic gravitational wave background [122–124].

Even though our analysis focuses on the dissipative terms obtained in the effective

action for the extended source, the conservative effects often dominate the dynamics of

astrophysically/cosmologically relevant phenomena; e.g., the presence of a cosmological
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constant plays an important role in the relative dynamics of the local group with respect to

the Virgo cluster [125]. This motivates the study of the orbital dynamics of two interacting

bodies in dS, which can be solved using the conservative pieces in our effective action

for extended sources. The actual problem of galactic dynamics requires the gravitational

effective action, but the scalar/electromagnetic counterpart serves as a simpler toy model

to understand the binary problem. We hope to explore this avenue in upcoming work1.

Real world cosmology is tied to the standard model(SM) of particle physics through

several observationally relevant questions: CMB, nucleosynthesis, neutrino masses, baryo-

genesis, etc. Indeed, any proposed holographic dual needs to be rich enough to encode the

SM fields in appropriate physical regimes. At a formal level, this leads one to think about

how the solipsistic observer interacts with such fields and if a similar langevin description

emerges when these fields are integrated out. At the quadratic order, one would expect

the non-abelian gauge theory to have similar features to the electromagnetic influence

phase we have obtained in this thesis. On the other hand, one expects the fermionic

fields to have qualitative differences: the Hawking fluctuations will be subject to Pauli

exclusion and would follow a Fermi-Dirac distribution (see [127,128] for the correspond-

ing analyses of fermions in the context of AdS blackholes). But such expectations need

to be verified through proper calculations.

Much of what we say about dS radiation reaction can readily be adapted to the AdS

case, with a change of signs. This statement is expected to be true at short times, where

the cosmological constant can be treated perturbatively, and its sign does not result

in any qualitatively new features. Thus, at short times, we expect generally covariant

expressions for the radiation reaction felt by an AdS observer, very similar to the ones we

derive in this work. However, we expect qualitative differences at long time scales due to

reflection at AdS asymptotia, resulting in long-time tails in radiation reaction. Further,

we do not expect an analogue of dS Hawking radiation in AdS. It might be worthwhile to

make these intuitions more precise and understand the dual CFT interpretation of these

statements. This would be a good test of the existing proposals describing bulk observers

within AdS/CFT [29–31].

We began this thesis by motivating our work in the context of solipsistic holography.

We see the results here as a first step towards constructing an open system whose details

1A similar question has been addressed in the case of pure AdS in the newtonian limit [126] where it
can have interesting reflections upon the dual CFT.
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can be compared against proposed dual quantum mechanical models. Following the

examples like BFSS matrix model [9]2, it is natural to expect some sort of a largeN matrix

quantum mechanics to give rise to the same influence phase as what we derive here.3 To

check this, it would be good to construct a formalism for computing the influence phase of

slow macroscopic observables in a large N matrix model: our computations suggest that

a clean separation of slow/fast modes is possible at least when there is a dual gravity

description. These slow observables describing the dS observer should not be entirely

gauge-invariant but rather have the structure of partially gauge-fixed probes [141–143].

Whether this is so is yet to be seen.

2See [10,11] for a review and [129,130] for matrix model proposals in dS.
3An especially interesting avenue is to cleverly use known AdS/CFT to derive dS duals: this can

be done either by embedding a dS bubble within AdS [131–135] or by TT -like deformation of the dual
CFT [136–140]. It would be interesting to see how the radiation reaction viewpoint we advocate here
fits within such proposals. We thank the referee for bringing some of these works to our attention.
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Appendix A

STF tensors and multipole expansion

We will begin by reviewing the notion of symmetric trace-free tensors, which are the ap-

propriate tools to discuss multipole expansion. The d = 3 version of this story is discussed

in a variety of places.1 The generalisation to arbitrary dimensions is straightforward, if

somewhat involved. In the course of this work, we had to use a variety of identities in-

volving STF tensors in arbitrary dimensions scattered across these references. The goal

of this section is to review this theory for the reader’s benefit.

We will begin with a more traditional account of electrostatic multipole expansion in

Rd via orthonormal spherical harmonics on Sd−1. This is the generalisation of familiar

multipole expansion in d = 3, and we will use it to set the stage for a more modern

account of multipole expansion using symmetric, trace-free (STF) tensors in the later

subsections. We conclude this appendix with a discussion of radiation reaction in flat

spacetime using these tools.

A.1 Orthonormal Spherical harmonics on Sd−1

Let us begin by considering the problem of electrostatics in Rd. Our goal in this subsection

would be to describe the multipole expansion in this case, given an orthonormal basis of

spherical harmonics on Sd−1. Later in this subsection, we will give an explicit construction

of such an orthonormal basis, which can, in principle, be used in explicit computations.

Given a charge distribution ρ(r⃗), the electric potential produced by such a distribution

1See [144] for a textbook discussion. We will refer the reader to [85, 86, 145–150] for a discussion of
STF tensors in general dimensions.
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is given in terms of the Newton-Coulomb integral

ϕ(r⃗) =

∫
ddr0

ρ(r⃗0)

(d− 2)|Sd−1||r⃗ − r⃗0|d−2
. (A.1)

Here, we have denoted the volume of a unit sphere Sd−1 via

|Sd−1| ≡ 2π
d
2

Γ(d
2
)
, (A.2)

and have fixed our normalisations such that the Poisson equation takes the form ∇2ϕ =

−ρ. While the above integral is indeed correct, a more useful answer is obtained by

performing a multipole expansion of the Newton-Coulomb potential in terms of Legendre

polynomials. In d = 3, this is a well-known statement from undergraduate physics

courses, and we will now describe a quick way to generalise this statement to arbitrary

dimensions.

To this end, consider a simple problem where the answer due to multipole expansion is

straightforward: we imagine a spherical shell of radius R in Rd carrying a surface charge

density σℓm⃗(r̂) proportional to a spherical harmonic Yℓm⃗(r̂), i.e., a spherical harmonic

which under the sphere laplacian has an eigenvalue −ℓ(ℓ+d−2) and we use m⃗ to denote

the additional labels required to furnish an orthonormal basis within this eigenspace.

The above eigenvalue follows from demanding that rℓYℓm⃗(r̂) be a harmonic function

annihilated by the Laplacian operator

∇2
Rd ≡

1

rd−1

∂

∂r
rd−1 ∂

∂r
+

1

r2
∇2

Sd−1 . (A.3)

By symmetry, the potential due to such a problem should also be proportional to the

same spherical harmonic as the charge distribution. The potential should be a harmonic

function for r ̸= R, regular at the origin, vanishing at infinity, be continuous at r = R, but

have a derivative discontinuity at the shell equal to the charge density. These requirements

uniquely determine the solution to be

Rσℓm⃗(r̂)

(2ℓ+ d− 2)

{
Θ(r < R)

rℓ

Rℓ
+Θ(r > R)

Rℓ+d−2

rℓ+d−2

}
. (A.4)

This answer can be generalised to an arbitrary charge distribution, once it is realised that
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any distribution can be built shell by shell and ℓ by ℓ. Using an orthonormal basis of

spherical harmonics to do the projection to every ℓ, we can then write the potential for

an arbitrary charge distribution as

∫
ddr0 ρ(r⃗0)

∑
ℓm⃗

Yℓm⃗(r̂)Y ∗
ℓm⃗(r̂0)

(2ℓ+ d− 2)rd−2
0

{
Θ(r < r0)

rℓ

rℓ0
+Θ(r > R)

rℓ+d−2
0

rℓ+d−2

}
. (A.5)

Comparing this against the Newton-Coulomb integral, we obtain the multipole expansion

formula in Rd :

1

(d− 2)|Sd−1||r⃗ − r⃗0|d−2

=
∑
ℓm⃗

Yℓm⃗(r̂)Y ∗
ℓm⃗(r̂0)

(2ℓ+ d− 2)rd−2
0

{
Θ(r < r0)

rℓ

rℓ0
+Θ(r > R)

rℓ+d−2
0

rℓ+d−2

}
.

(A.6)

If we define the spherical multipole moments of the charge distribution ρ(r⃗) by

q
ℓm⃗
≡ 1

2ℓ+ d− 2

∫
ddr0 ρ(r⃗0) r

ℓ
0Y

∗
ℓm⃗(r̂0) , (A.7)

we can write the potential far outside the charge distribution as

∑
ℓm⃗

1

rℓ+d−2
q
ℓm⃗

Yℓm⃗(r̂) . (A.8)

This is the basic content of multipole expansion in electrostatics. However, to actually

compute these multipole moments for a give charge distribution ρ(r⃗), we will need the

explicit form of the spherical harmonics Yℓm⃗(r̂) on Sd−1: we will now proceed to address

this in the rest the subsection.

The first step in constructing the spherical harmonics is to derive the most symmetric

among them: the Legendre polynomials. We will do this by recasting the above expansion

in terms of the Legendre polynomial. In the formula above, the sum over orthonormal

spherical harmonics of a given ℓ can be performed through a higher-dimensional general-

isation of the addition theorem for spherical harmonics, viz.,

∑
m⃗

Yℓm⃗(r̂)Y
∗
ℓm⃗(r̂0) =

NHH(d, ℓ)

|Sd−1|
Pℓ(d, r̂ · r̂0) . (A.9)

Here NHH(d, ℓ) is the number of orthonormal spherical harmonics of degree ℓ, with the
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notation here inspired by the fact that it is also the number of linearly independent,

homogeneous, harmonic polynomials (HHPs) of degree ℓ in Rd. We will elaborate on this

and get an explicit expression for NHH(d, ℓ) below. For now, we move on to note that

Pℓ(d, x) is the generalisation of the Legendre polynomial to Rd: it is the unique spherical

harmonic invariant under SO(d− 1) rotations which keep two poles of Sd−1 fixed and is

normalised to unity at the north pole, i.e., Pℓ(d, x = 1) ≡ 1.

With the above definitions, we can argue for the above addition theorem as follows:

first of all, the sum over orthonormal spherical harmonics of a given ℓ should be a spherical

harmonic which only depends on the relative orientation of r̂ and r̂0 and hence, the above

sum should be proportional to Pℓ(d, r̂ · r̂0). The constant of proportionality can then be

fixed by setting r̂ = r̂0 and integrating over the sphere Sd−1 using orthonormality.

As a corollary of the above addition theorem, we note the following formula for the

inner product between Legendre harmonics of two different orientations:

∫
Sd−1

Pℓ(d, r̂ · r̂0)Pℓ′(d, r̂ · r̂′0) = δℓℓ′
|Sd−1|

NHH(d, ℓ)
Pℓ(d, r̂0 · r̂′0) . (A.10)

This statement follows directly by the use of addition theorem followed by the fact that

Yℓm⃗(r̂) are assumed to be orthonormal.For r̂0 = r̂′0, we get the Legendre orthogonality

relation

∫ π

0

dϑ sind−2 ϑ Pℓ(d, cosϑ)Pℓ′(d, cosϑ) = δℓℓ′
|Sd−1|

|Sd−2|NHH(d, ℓ)
. (A.11)

With the addition theorem, we can recast the multipole expansion in terms of the

Legendre polynomial as2

1

(d− 2)|r⃗ − r⃗0|d−2

=
∑
ℓ

NHH(d, ℓ)Pℓ(d, r̂ · r̂0)
(2ℓ+ d− 2)rd−2

0

{
Θ(r < r0)

rℓ

rℓ0
+Θ(r > R)

rℓ+d−2
0

rℓ+d−2

}
.

(A.13)

2This expansion is often used to define Gegenbauer polynomials Cµ
ℓ (z), which differ from the gener-

alised Legendre polynomials introduced here merely by an overall normalisation. These polynomials are
also proportional to the associated Legendre functions. The explicit relations are given by

C
d
2−1

ℓ (z) ≡ (d− 2)
NHH(d, ℓ)

2ℓ+ d− 2
Pℓ(d, z) , P−µ

λ (z) ≡
(√

1− z2
)µ

2µµ!
Pλ−µ(2µ+ 3; z) . (A.12)

120



As is well-known in d = 3 case, this series expansion can be used to derive an explicit

expression for Pℓ(d, x).

The steps involved are as follows: we take the case r0 < r, set t = r0
r
< 1 and x = r̂ · r̂0

to write

NHH(d, ℓ)Pℓ(d, x) = (2ℓ+ d− 2)× Coefficient of tℓ in
1

(d− 2)(1− 2xt+ t2)
d
2
−1

.

(A.14)

To extract the tℓ coefficient, we use

(2ℓ+ d− 2)

(d− 2)(1− 2xt+ t2)
d
2
−1

=
ℓ+ d

2
− 1

Γ(d
2
)

∫ ∞

0

ds s
d
2
−2 e−s+2xst−st2 , (A.15)

expand the exponentials involving t and integrate to obtain

NHH(d, ℓ)Pℓ(d, x) =
ℓ+ d

2
− 1

Γ(d
2
)

∑
k

∫ ∞

0

ds s
d
2
−2 e−s (2xs)

ℓ−2k

(ℓ− 2k)!

(−s)k

k!

=
2ℓΓ

(
ℓ+ d

2

)
Γ(d

2
)

∑
k

Γ
(
ℓ+ d

2
− 1− k

)
Γ(ℓ+ d

2
− 1)

(−)k

22kk!

xℓ−2k

(ℓ− 2k)!
.

(A.16)

Here, the sum over k runs from k = 0 until the combination ℓ − 2k is non-negative.

Defining the normalisation factor3

Nd,ℓ ≡
Γ(d

2
)

2ℓΓ
(
ℓ+ d

2

) , ν ≡ d

2
+ ℓ− 1 , (A.18)

we finally obtain an explicit expression for the generalised Legendre polynomial as

Nd,ℓNHH(d, ℓ)Pℓ(d, x) =
∑
k

Γ (ν − k)
22kk!Γ(ν)

(−)kxℓ−2k

(ℓ− 2k)!
. (A.19)

Incidentally, the same expansion at x = 1 also gives the number of orthonormal spherical

3The interpretation of this ubiquitous normalisation factor will become clearer when we describe STF
tensors in the next subsection. For now, we will note that Nd,ℓ is an inverse integer which has the
following alternate forms

Nd,ℓ ≡
|Sd+2ℓ−1|
|S1|ℓ|Sd−1|

=
(d− 2)!!

(d+ 2ℓ− 2)!!
. (A.17)
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harmonics of degree ℓ as

NHH(d, ℓ) =
2ℓ+ d− 2

d− 2
× Coefficient of tℓ in

1

(1− t)d−2

=
2ℓ+ d− 2

d− 2

(
ℓ+ d− 3

ℓ

)
.

(A.20)

Next, we will give a recursive construction of a complete orthonormal basis of spherical

harmonics on Sd−1, just using the Legendre polynomials constructed above. We begin

with an explicit spherical coordinate system in Rd given by

x1 = r sinϑd−2 sinϑd−3 . . . sinϑ2 sinϑ1 cosφ ,

x2 = r sinϑd−2 sinϑd−3 . . . sinϑ2 sinϑ1 sinφ ,

x3 = r sinϑd−2 sinϑd−3 . . . sinϑ2 cosϑ1 ,

x4 = r sinϑd−2 sinϑd−3 . . . cosϑ2 ,

. . . ,

xd−2 = r sinϑd−2 sinϑd−3 cosϑd−4 ,

xd−1 = r sinϑd−2 cosϑd−3 ,

xd = r cosϑd−2 .

(A.21)

Here the radius r varies from 0 to ∞ whereas the allowed values of angles is ϑi ∈ [0, π]

and φ ∈ [0, 2π). In these coordinates, we can write the metric of Sd−1 as

dΩ2
d−1 = dϑ2

d−2 + sin2 ϑd−2dΩ
2
d−2

= dϑ2
d−2 + sin2 ϑd−2dϑ

2
d−3 + sin2 ϑd−2 sin

2 ϑd−3dϑ
2
d−4 + . . .

+
d−2∏

k=j+1

sin2 ϑk dϑ
2
j + . . .+

d−2∏
k=1

sin2 ϑk dφ
2.

(A.22)

The volume form

∫
Sd−1

(. . .) ≡
∫
dϑ1 ∧ dϑ2 . . . dϑd−2 ∧ dφ

d−2∏
k=1

sink ϑk (. . .) . (A.23)

We are interested in constructing an orthonormal basis of spherical harmonics in these

coordinates. As we described above, the simplest spherical harmonic is the Legendre
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harmonic Pℓ(d, cosϑd−2) which depends only on ϑd−2. It obeys the second-order ODE

[
1

sind−2 ϑ

d

dϑ
sind−2 ϑ

d

dϑ
+ ℓ(ℓ+ d− 2)

]
Pℓ(d, cosϑ) = 0 . (A.24)

The function Pℓ(d, cosϑ) is the unique ℓth degree polynomial in cosϑ that solves the above

ODE and is normalised to Pℓ(d, cosϑ = 1) = 1. In general, spherical harmonics of degree

ℓ obey the eigenvalue equation
[
∇2

Sd−1 + ℓ(ℓ+ d− 2)
]
Sℓ(Ωd−1) = 0, or in more detail

[
1

sind−2 ϑd−2

∂

∂ϑd−2

sind−2 ϑd−2
∂

∂ϑd−2

+
1

sin2 ϑd−2

∇2
Sd−2 + ℓ(ℓ+ d− 2)

]
Sℓ(Ωd−1) = 0 .

(A.25)

This equation can be solved via a separation of variables ansatz

Sℓ = (sinϑd−2)
mPℓ−m(d+ 2m, cosϑd−2)Ŝm(Ωd−2) , (A.26)

for a non-negative integer 0 ≤ m ≤ ℓ. Substituting this ansatz into the equation above

yields the eigenvalue equation
[
∇2

Sd−2 +m(m+ d− 3)
]
Ŝm(Ωd−2) = 0 in the lower dimen-

sional sphere, i.e., the function Ŝm(Ωd−2) is actually a spherical harmonic of degree m on

Sd−2. This gives rise to

ℓ∑
m=0

NHH(d− 1,m) = NHH(d, ℓ) (A.27)

number of spherical harmonics of degree ℓ on Sd−1 (to get the above equality, we have

used Eq.(A.20)). Recursing this construction, we get a set of spherical harmonics of the

form

Yℓm⃗(r̂) ≡ Cℓm⃗ e±im1φ

[
d−2∏
k=1

(sinϑk)
mkPmk+1−mk

(k + 2 + 2mk, cosϑk)

]
md−1=ℓ

, (A.28)

one for every non-decreasing sequence of non-negative integers

0 ≤ m1 ≤ m2 . . . ≤ md−2 ≤ md−1 = ℓ . (A.29)

Here Cℓm⃗ is a normalisation constant which we shall determine below.
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We will now argue that these spherical harmonics form an orthonormal set: any two

harmonics with distinct eiφ factors are evidently orthogonal. Thus, we need to address

only the case where eiφ factors are the same. Without loss of generality, let us assume

that the dependences on ϑk for all k < i are also the same between the two spherical

harmonics for some i < d − 1, and they differ first on their ϑi dependence, i.e., we

consider two spherical harmonics in the above set with mk = m′
k for all k ≤ i, but have

mi+1 ̸= m′
i+1. The inner product between these two spherical harmonics then has a factor

∫ π

0

dϑi(sinϑi)
i+2miPmi+1−mi

(i+ 2 + 2mi, cosϑi)Pm′
i+1−mi

(i+ 2 + 2mi, cosϑi) , (A.30)

which then vanishes using Legendre orthogonality (see Eq.(A.11)) on Si+2mi+1. The

mutual orthogonality along with the counting in Eq.(A.27) proves then that we have

indeed constructed a complete set of spherical harmonics of degree ℓ on Sd−1.

To reiterate our construction so that its application to later construction of VSHs is

clearer, the SSHs written in Eq.(A.28) are simultaneous eigenfunctions of the laplacian

on lower spheres Sd−1,Sd−2, . . . ,S1 respectively. The lower spheres are obtained by suc-

cessively dropping the angles ϑd−2, ϑd−3, . . .. In fact, the set of mi’s in this construction

are indeed related to the lower sphere laplacians, viz.,

−D2
SI+1Yℓm⃗(r̂) = −γII

I∑
J=0

1
√
γ

∂

∂θJ

{
√
γ γJJ

∂

∂θJ
Yℓm⃗(r̂)

}
= mI+1(mI+1 + I) Yℓm⃗(r̂) .

(A.31)

We will conclude this discussion by normalising the spherical harmonics constructed

above. The norm computation reduces to a product integral like the one above, which can

then be evaluated using Eq.(A.11). Thus, the normalisation of the spherical harmonic

given in Eq.(A.28) is given by

|Cℓm⃗|−2 ≡ 2π
d−2∏
i=1

∫ π

0

dϑi(sinϑi)
i+2miP 2

mi+1−mi
(i+ 2 + 2mi, cosϑi)

= 2π
d−2∏
i=1

|Si+2mi+1|
|Si+2mi |NHH(i+ 2mi + 2,mi+1 −mi)

,

(A.32)

With this, we have a concrete realisation of the orthonormal spherical harmonics Yℓm⃗(r̂),

using which multipole moments could be computed for a given charge distribution.
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We will conclude this section with a comment on the counting of SSHs. We will can

obtain a formula for NHH(d, ℓ) by an explicit counting of the number of m⃗ satisfying the

condition given in Eq.(A.29), i.e.,

NHH(d,md−1) =

md−1∑
md−2=0

md−2∑
md−3=0

· · ·
m3∑

m2=0

{
1 +

m2∑
m1=1

2

}
. (A.33)

As a check, setting d = 3 yields the well-known result that there are 2m2 +1 SSHs on S2

corresponding to the eigenvalue −m2(m2+1). We can perform this sum as follows: first,

we note that the above identity implies a recursion relation of the form

NHH(d, ℓ) =
ℓ∑

m=0

NHH(d− 1,m) . (A.34)

Using this relation, we can get the number of SSHs on Sd−1 by starting from the count

in S2 and then recursively summing the answer to obtain (A.20).

A.2 STF tensors in Rd and cartesian multipole mo-

ments

Till now, we have described the multipole expansion in terms of an orthonormal basis of

spherical harmonics Yℓm⃗(r̂) and the corresponding spherical multipole moments q
ℓm⃗

. We

will now describe an alternate formalism based on a more symmetric, but over-complete

basis of spherical harmonics made of Legendre polynomials about arbitrary directions (we

will call this basis an STF basis). A general spherical harmonic in STF basis is naturally

described by symmetric trace-free (STF) tensors with constant cartesian components.

For definiteness, we consider spherical harmonics of the form

Nd,ℓNHH(d, ℓ)Pℓ(d, κ̂ · r̂) =
∑
k

Γ (ν − k)
22kk!Γ(ν)

(−)k(κ̂ · r̂)ℓ−2k

(ℓ− 2k)!

=
1

ℓ!
κ̂i1κ̂i2 . . . κ̂iℓ r̂

<i1 r̂i2 . . . r̂iℓ>

=
1

ℓ!
κ̂i1κ̂i2 . . . κ̂iℓ r̂

j1 r̂j2 . . . r̂jℓΠ<i1i2...iℓ>
<j1j2...jℓ>

,

(A.35)

where κ̂ is an arbitrary unit vector, and in the last line we have written the spherical
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harmonic as a projected contraction of two tensors. The angular bracket here denotes the

symmetric trace-free (STF) projection and Π is the STF-projector. An explicit expression

that follows from the above definition is

r̂<i1 r̂i2 . . . r̂iℓ> =
∑
k

(−)kΓ (ν − k)
2kΓ(ν)

×
{
r̂i1 r̂i2 . . . r̂iℓ−2kδiℓ+1−2kiℓ+2−2k . . . δiℓ−1iℓ + distinct index permutations

}
.

(A.36)

Here the sum within the curly braces sums over all index permutations of the set

{i1, . . . , iℓ} which give distinct answers. The number of such distinct permutations can

be counted as follows: there are
(

ℓ
2k

)
ways of choosing the subset of indices that go into

Kronecker deltas, and (2k)!
2kk!

= (2k− 1)!! distinct ways of pairing a given subset.4Thus, the

total number of distinct permutations is (2k − 1)!!
(

ℓ
2k

)
= ℓ!

2kk!(ℓ−2k)!
. With this counting

of distinct permutations, it is then easy to check that contracting r̂<i1 r̂i2 . . . r̂iℓ> with
1
ℓ!
κ̂i1κ̂i2 . . . κ̂iℓ does give Nd,ℓNHH(d, ℓ)Pℓ(d, κ̂ · r̂). The STF projector can also be given a

closed-form expression as:

(ΠS
d,ℓ)

<i1i2...iℓ>
<j1j2...jℓ>

=
∑
k

(−)kΓ (ν − k)
2kk!(ℓ− 2k)!Γ(ν)

× δ(i1(j1
δi2j2 . . . δ

iℓ−2k

jℓ−2k
δiℓ+1−2kiℓ+2−2k . . . δiℓ−1iℓ)δjℓ+1−2kjℓ+2−2k

. . . δjℓ−1jℓ) ,

(A.37)

where the (i1 . . . iℓ) denotes a symmetric projection. To elucidate the arguments above,

we will now write down the explicit expressions of r̂<i1 r̂i2 . . . r̂iℓ> for ℓ ≤ 5. We have

r̂<i1> ≡ r̂<i1> , r̂<i1 r̂i2> ≡ r̂i1 r̂i2 − 1

d
δi1i2

r̂<i1 r̂i2 r̂i3> ≡ r̂i1 r̂i2 r̂i3 − 1

d+ 2

(
r̂i1δi2i3 + r̂i2δi1i3 + r̂i3δi1i2

)
,

(A.38)

4The number of pairings can be counted as follows: the (2k)! ways to permute the subset of indices on
Kronecker deltas. Exchanging an index within a pair, as well as permuting the pair as a whole does not
change the final resultant pairings, i.e., there is a (Z2)

k × Sk automorphism group which acts freely and
transitively on the equivalence class of permutations which result in a given pairing. We hence obtain
the number of distinct pairings by dividing out the cardinality of the automorphism group.
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for ℓ ≤ 3. For ℓ = 4, we have

r̂<i1 r̂i2 r̂i3 r̂i4> ≡ r̂i1 r̂i2 r̂i3 r̂i4

− 1

d+ 4

(
r̂i1 r̂i2δi3i4 + r̂i1 r̂i3δi2i4 + r̂i1 r̂i4δi2i3 + r̂i2 r̂i3δi1i4 + r̂i2 r̂i4δi1i3 + r̂i3 r̂i4δi1i2

)
+

1

(d+ 4)(d+ 2)

(
δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3

)
,

(A.39)

and for ℓ = 5, we get

r̂<i1 r̂i2 r̂i3 r̂i4 r̂i5> ≡ r̂i1 r̂i2 r̂i3 r̂i4 r̂i5

− 1

d+ 6

(
r̂i1 r̂i2 r̂i3δi4i5 + r̂i1 r̂i2 r̂i4δi3i5 + r̂i1 r̂i3 r̂i4δi2i5 + r̂i2 r̂i3 r̂i4δi1i5 + r̂i2 r̂i4 r̂i5δi1i3

+r̂i5 r̂i1 r̂i2δi3i4 + r̂i5 r̂i1 r̂i3δi2i4 + r̂i5 r̂i1 r̂i4δi2i3 + r̂i5 r̂i2 r̂i3δi1i4 + r̂i5 r̂i3 r̂i4δi1i2
)

+
1

(d+ 6)(d+ 4)

(
r̂i1δi2i3δi4i5 + r̂i1δi2i4δi3i5 + r̂i1δi2i5δi3i4

+ r̂i2δi1i3δi4i5 + r̂i2δi1i4δi3i5 + r̂i2δi1i5δi3i4 + r̂i3δi1i2δi4i5 + r̂i3δi1i4δi2i5 + r̂i3δi1i5δi2i4

+r̂i4δi1i2δi3i5 + r̂i4δi1i3δi2i5 + r̂i4δi1i5δi2i3 + r̂i5δi1i2δi3i4 + r̂i5δi1i3δi2i4 + r̂i5δi1i4δi2i3
)
.

(A.40)

The reader can check that the expressions in the RHS are completely symmetric under

permutations of indices, and vanish if we take a trace over any two indices. Further, our

counting of distinct permutations can also be checked for every term written above.

A more succinct way to summarise the permutations/symmetrisations described above

is to work instead with the homogeneous harmonic polynomials (HHPs) in cartesian

coordinates

x<i1xi2 . . . xiℓ> ≡ rℓ r̂<i1 r̂i2 . . . r̂iℓ>

=

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1

xi1xi2 . . . xiℓ .
(A.41)
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The relation to generalised Legendre polynomials then follows from

1

ℓ!
κi1κi2 . . . κiℓx

<i1xi2 . . . xiℓ> ≡

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1

(κ⃗ · r⃗)ℓ

ℓ!

=

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(
−κ

2r2

4

)k
(κ⃗ · r⃗)ℓ−2k

(ℓ− 2k)!


ν= d

2
+ℓ−1

= Nd,ℓNHH(d, ℓ)(κr)
ℓPℓ (d, κ̂ · r̂) ,

(A.42)

where, in the last step, we have used Eq.(A.19). The STF basis for multipole expansion in

flat spacetime is often introduced in terms of these cartesian HHPs (See e.g. [144]). In dS

spacetime (and more generally in cosmology), the absence of global cartesian coordinates

limits their scope. The STF basis for spherical harmonics is, however, a useful tool for

multipole expansion in such spacetimes, since isotropy is still a true symmetry.

We will now describe how the STF basis relates to the description of spherical har-

monics given before. For any given ℓ, we can form

NH(d, ℓ) ≡
(
ℓ+ d− 1

ℓ

)
(A.43)

number of STF harmonics of the form r̂<i1 r̂i2 . . . r̂iℓ>. The above binomial coefficient

counts the number of ways d directions can be filled into ℓ indices. The combinatorics here

is identical to the Bose counting problem familiar from elementary statistical mechanics,

where one counts the ways in which d bosons could be filled into ℓ degenerate energy levels.

All the STF harmonics are not, however, linearly independent; they obey NH(d, ℓ − 2)

number of conditions of the form

δi1i2 r̂
<i1 r̂i2 . . . r̂iℓ> = 0 . (A.44)

They hence span a vector space of spherical harmonics of dimension

NH(d, ℓ)−NH(d, ℓ− 2) = NHH(d, ℓ) , (A.45)

where the equality folows by using the explicit forms in Eqs.(A.20) and (A.43). This

shows that the harmonics r̂<i1 r̂i2 . . . r̂iℓ> indeed form an overcomplete basis of spherical
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harmonics of degree ℓ.

The completeness means the following: say we are given a spherical harmonic Yℓ(r̂)

of degree ℓ on Sd−1. We can then define a symmetric trace-free (STF) tensor Yi1i2...iℓ of

rank ℓ in Rd such that

Yℓ(r̂) =
1

ℓ!
Yi1i2...iℓ r̂

<i1 r̂i2 . . . r̂iℓ> . (A.46)

The orthonormal basis of spherical harmonics constructed in the previous subsection then

defines an orthonormal set of STF tensors

Yℓm⃗(r̂) =
1

ℓ!
Y (ℓm⃗)

i1i2...iℓ
r̂<i1 r̂i2 . . . r̂iℓ> . (A.47)

Further, the inner product on the space of STF tensors is induced from the standard

inner product on the space of functions on Sd−1. To get an explicit expression, consider

the following integral∫
r̂∈Sd−1

1

ℓ!
κi1κi2 . . . κiℓ r̂

<i1 r̂i2 . . . r̂iℓ> × 1

ℓ!
κ̄j1κ̄j2 . . . κ̄jℓ r̂

<j1 r̂j2 . . . r̂jℓ>

= [Nd,ℓNHH(d, ℓ)]
2(κκ̄)ℓ

∫
r̂∈Sd−1

Pℓ(d, κ̂ · r̂)Pℓ(d, ˆ̄κ · r̂)

= N2
d,ℓNHH(d, ℓ)|Sd−1|(κκ̄)ℓPℓ(d, κ̂ · ˆ̄κ)

= Nd,ℓ|Sd−1| 1
ℓ!
κ<i1κi2 . . . κiℓ>κ̄

<i1κ̄i2 . . . κ̄iℓ> .

(A.48)

For example, the STF tensors corresponding to the orthonormal spherical harmonics have

an inner product given by

Nd,ℓ|Sd−1|
ℓ!

Y ∗<i1i2...iℓ>
(ℓm⃗′) Y (ℓm⃗)

<i1i2...iℓ>
= δm⃗m⃗′ . (A.49)

We recognise Nd,ℓ|Sd−1| here as the conversion factor between the STF tensor inner prod-

uct and the standard functional inner product between the spherical harmonics. The

same factor also appears in the statement of spherical harmonic addition theorem, stated

in terms of STF tensors:

Nd,ℓ|Sd−1|
ℓ!

∑
m⃗

Y ∗<i1i2...iℓ>
(ℓm⃗) Y (ℓm⃗)

<j1j2...jℓ>
= (ΠS

d,ℓ)
<i1i2...iℓ>
<j1j2...jℓ>

. (A.50)
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This important relation can be proved in many ways: one way is to use Eq.(A.35) to

convert the standard addition theorem into STF tensors. Another ab initio derivation is

to first argue that LHS should be proportional to RHS for symmetry reasons and then

fix the normalisation by using the orthonormality relation Eq.(A.49).

Given any two vectors r⃗ and κ⃗, we define the following projected contraction

ΠS
d,ℓ(r⃗|κ⃗) ≡ ΠS

d,ℓ(κ⃗|r⃗) ≡
1

ℓ!
κi1 . . . κiℓ(ΠS

d,ℓ)
<j1...jℓ>
<i1...iℓ>

rj1 . . . rjℓ

= Nd,ℓNHH(d, ℓ)(κr)
ℓPℓ (d, κ̂ · r̂)

=

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(
−κ

2r2

4

)k
(κ⃗ · r⃗)ℓ−2k

(ℓ− 2k)!


ν= d

2
+ℓ−1

.

(A.51)

This is an ℓth degree homogeneous polynomial in both r⃗ and κ⃗, and it is harmonic in

both these variables, viz.,

∇2ΠS
d,ℓ(r⃗|r⃗0) = ∇2

0Π
S
d,ℓ(r⃗|r⃗0) = 0 . (A.52)

It is, in fact, the unique polynomial which satisfies these properties up to an overall

normalisation. The STF projector itself can then be obtained by differentiating this

polynomial to strip off the xi and κi factors.

Another representation of the STF projector, derived from the standard addition

theorem for orthonormal SSHs, is

(ΠS
d,ℓ)

<i1i2...iℓ>
<j1j2...jℓ>

=
Nd,ℓ|Sd−1|

ℓ!

∑
m⃗

Y ∗<i1i2...iℓ>
ℓm⃗ Y ℓm⃗

<j1j2...jℓ>
, (A.53)

where Y (ℓm⃗)
<i1i2...iℓ>

are the STF tensors which convert between the orthonormal basis and

the STF basis. Equivalently, by contracting the STF indices with arbitrary vectors, we

can write

ΠS
d,ℓ(r̂0|r̂) = Nd,ℓ|Sd−1|

∑
m⃗

Y ∗
ℓm⃗(r̂0)Y

ℓm⃗(r̂) . (A.54)

The above expression relates the STF projector to the standard inner product on

SSHs: one gets an extra factor of Nd,ℓ|Sd−1| relative to an orthonormal basis because of

the overcompleteness of the STF basis. The same factor appears in the inner product
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computed in the STF basis:

∫
Sd−1

[
1

ℓ!
Y<i1i2...iℓ>r̂

<i1 . . . r̂iℓ>
] [

1

ℓ!
Y <j1j2...jℓ>r̂

<j1 . . . r̂jℓ>
]

=
Nd,ℓ|Sd−1|

ℓ!
Y <i1i2...iℓ>Y <i1i2...iℓ> .

(A.55)

This is, in fact, necessary for the sum in Eq.(A.53) to be a projector, i.e., for the idem-

potent property

(ΠS
d,ℓ)

<i1i2...iℓ>
<k1k2...kℓ>

(ΠS
d,ℓ)

<k1k2...kℓ>
<j1j2...jℓ>

= (ΠS
d,ℓ)

<i1i2...iℓ>
<j1j2...jℓ>

(A.56)

to hold. This concludes our brief overview of SSHs in the language of STF tensors. We

will refer the reader to Appendix (A.2) of [101] for a more detailed exposition with explicit

expressions and derivations. We will generalise these ideas to VSHs on Sd−1 in appendix

B.

A.3 Green functions in Minkowski spacetime

We will begin by briefly reviewing the Green functions of the wave operator (i.e., the

massless scalar operator) in Rd,1. This theory is standard, although the notations and

normalisations for Green functions in d ̸= 2, 3 are non-standard. Thus, this subsection

mainly serves to establish our notation. We will state our results with an eye towards

their generalisation to dS Green functions.

We begin with the unique spherically symmetric eigenfunction of the Laplacian in Rd

with eigenvalue −ω2 :

J0(d, ωr) ≡ 0F1

[
d

2
,−ω

2r2

4

]
. (A.57)

We can construct a whole tower of descendants from this eigenfunction by taking an STF

derivative

Yℓ(−∇⃗)J0(d, ωr) ≡ ωℓ Jℓ(d, ωr) Yℓ(n⃗) = ων− d
2
+1 Jℓ(d, ωr) Yℓ(n⃗) , (A.58)
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where we have defined (we remind the reader that ν ≡ ℓ+ d
2
− 1)

Jℓ(d, ωr) ≡ Γ

(
d

2

)(ωr
2

)1− d
2
Jν(ωr) ≡

Γ(d/2)

Γ(1 + ν)

(ωr
2

)ν− d
2
+1

0F1

[
1 + ν,−ω

2r2

4

]
.

(A.59)

The notation is motivated by the fact that the functions that appear here generalise the

Bessel J functions in the d = 2 version of the above problem. We can also define the

functions analogous to Neumann and Hankel functions. We will define the Neumann

Green function via

Nℓ(d, ωr) ≡ −
1

4

Yν(ωr)

(2πωr)
d
2
−1

=
Γ(ν)

(4π)d/2

(ωr
2

)−ν− d
2
+1

×

{
0F1

[
1− ν,−ω

2r2

4

]
− π cot νπ

Γ(ν)Γ(1 + ν)

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
.

(A.60)

In the above definition, for half-integer ν (i.e., for d odd), we can set cot νπ = 0, whereas

for integer ν, the divergence in the cot νπ cancels the divergence in the first term and

this formula should be interpreted as a limit. Green functions are normalised such that

−(∇⃗2 + ω2)[ων+ d
2
−1Nℓ(d, ωr)Yℓ(n⃗)] = Yℓ(−∇⃗)δd(r⃗) . (A.61)

Since the RHS here is a multipole source, the combination ων+ d
2
−1Nℓ(d, ωr)Yℓ(n⃗) should

then be interpreted as the amplitude of standing wave sourced by such a multipole source.

We term this a standing wave since it is an even function of frequency. In contrast, the

outgoing/ingoing waves are denoted by ων+ d
2
−1H±

ℓ (d, ωr) respectively. We will refer to

them as Hankel Green functions. Given a spherical harmonic Yℓ(n⃗) of degree ℓ on Sd−1,

both these Green functions satisfy

−(∇⃗2 + ω2)[ων+ d
2
−1H±

ℓ (d, ωr)Yℓ(n⃗)] = Yℓ(−∇⃗)δd(r⃗) . (A.62)

The outgoing/ingoing conditions are imposed by taking H±
ℓ (d, ωr) to be analytic in the

upper/lower half plane of complex frequency, respectively. The notation here is again

motivated by the fact that these functions generalise the Hankel functions in d = 2 (up
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to normalisations). Their explicit forms are given by

H±
ℓ (d, ωr) ≡

±i
4

H1,2
ν (ωr)

(2πωr)
d
2
−1
≡ Nℓ(d, ωr)±

iπ

Γ(d/2)(4π)d/2
Jℓ(d, ωr)

=
Γ(ν)

(4π)d/2

(ωr
2

)−ν− d
2
+1
{

0F1

[
1− ν,−ω

2r2

4

]

± (1± i cot νπ) 2πi

Γ(ν)2
1

2ν

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
.

(A.63)

As in the case of Neumann Green functions, for half-integer ν (i.e., for d odd), we can

set cot νπ = 0, whereas for integer ν the above expression is indeterminate and should

be interpreted as a limit.

As in the case of Bessel J functions, these Green functions could also be obtained by

STF-differentiating their corresponding primary eigenfunction at ℓ = 0, viz.,

Yℓ(−∇⃗)N0(d, ωr) = ωℓ Nℓ(d, ωr) Yℓ(n⃗) = ων− d
2
+1 Nℓ(d, ωr) Yℓ(n⃗) ,

Yℓ(−∇⃗)H±
0 (d, ωr) = ωℓ H±

ℓ (d, ωr) Yℓ(n⃗) = ων− d
2
+1 H±

ℓ (d, ωr) Yℓ(n⃗) .
(A.64)

A related statement is the multipole-expansion of these Green functions, which, in our

normalisations, takes the following form:

J0(d, ω|r⃗ − r⃗0|) =
∑
ℓm

|Sd−1| Yℓm⃗(r̂)Yℓm⃗(r̂0)
∗Jℓ(d, ωr)Jℓ(d, ωr0) ,

N0(d, ω|r⃗ − r⃗0|) =
∑
ℓm

|Sd−1| Yℓm⃗(r̂)Yℓm⃗(r̂0)
∗

×
{
Θ(r < r0)Jℓ(d, ωr)Nℓ(d, ωr0) + Θ(r > r0)Jℓ(d, ωr0)Nℓ(d, ωr)

}
,

H±
0 (d, ω|r⃗ − r⃗0|) =

∑
ℓm⃗

|Sd−1| Yℓm⃗(r̂)Yℓm⃗(r̂0)
∗

×
{
Θ(r < r0)Jℓ(d, ωr)H

±
ℓ (d, ωr0) + Θ(r > r0)Jℓ(d, ωr0)H

±
ℓ (d, ωr)

}
.

(A.65)

Here, the set of functions Yℓm⃗(r̂) for different m⃗ denote an orthonormal basis of Sd−1

spherical harmonics of degree ℓ. Further, in the equation above, the symbol

|Sd−1| ≡ 2π
d
2

Γ
(
d
2

) (A.66)

denotes the volume of the unit sphere. The argument for the above expansion is well-
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known within the theory of Green functions: we first expand the LHS in terms of eigen-

functions and then fix the coefficients by demanding continuity and a unit jump in the

radial derivative. The jump can be readily evaluated using the Wronskian formulae5

W[Nℓ(d, z), Jℓ(d, z)] = W[H±
ℓ (d, z), Jℓ(d, z)] =

1

|Sd−1|zd−1
. (A.67)

We will be interested here in the multipole expansion of the retarded/outgoing Green

function ωd−2H+
0 (d, ω|r⃗ − r⃗0|), which, using the relations quoted earlier, we can rewrite

entirely in terms of 0F1 functions:

ωd−2H+
0 (d, ω|r⃗ − r⃗0|) = ωd−2H+

0 (d, ω|r⃗0 − r⃗|)

=
iπ

2

∑
ℓm⃗

(rr0)
ν− d

2
+1

Γ(1 + ν)2

(ω
2

)2ν
Yℓm⃗(r̂)Yℓm⃗(r̂0)

∗
0F1

[
1 + ν,−ω

2r2

4

]
0F1

[
1 + ν,−ω

2r20
4

]

+
∑
ℓm⃗

1

2ν

r
ν− d

2
+1

<

r
ν+ d

2
−1

>

Yℓm⃗(r̂)Yℓm⃗(r̂0)
∗

0F1

[
1 + ν,−ω

2r2<
4

]

×

{
0F1

[
1− ν,−ω

2r2>
4

]
− π cot νπ

Γ(ν)Γ(1 + ν)

(ωr>
2

)2ν
0F1

[
1 + ν,−ω

2r2>
4

]}
.

(A.68)

Here we have used a commonly used notation in such expansions, viz.,

r> ≡ Max(r, r0) , r< ≡ Min(r, r0) . (A.69)

Further, we have also separated out the real and the imaginary parts of the radial func-

tions.

Consider double integrals of the form

∫
ddr ρ1(r⃗, ω)

∫
ddr0 ρ2(r⃗0, ω) f(d, ω|r⃗ − r⃗0|) (A.70)

where f could be any one of the functions discussed above. Using the multipole expansion,

such a double integral can be decomposed into an infinite sum of factorised integrals, one

for every spherical harmonic. For the practical computation of radiation reaction, it is

then convenient to convert the spherical harmonic sum into an STF expression using

5Our Wronskian convention is W[f(z), g(z)] ≡ f∂zg − g∂zf .
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eq.(A.50).

Let us illustrate the above remarks by computing the flat spacetime scalar radiation

reaction, which, in a slightly different notation, is explained in detail in references [85,86].

Say we have an extended scalar source whose emissive part at frequency ω is the average

source ρA(ω, r⃗), and whose absorptive part is the difference source ρD(ω, r⃗). Ignoring all

fluctuation effects, the flat spacetime influence phase for this source, after integrating out

the massless scalar field about the vacuum, can be written down as

Sbare
RR =

∫
dω

2π

∫
ddr0

∫
ddr [ρD(r⃗0, ω)]

∗ ρA(r⃗, ω) ω
d−2H+

0 (d, ω|r⃗0 − r⃗|) . (A.71)

Here ωd−2H+
0 (d, ω|r⃗0 − r⃗|) is the outgoing Green function for the scalar field, and the

superscript ‘bare’ indicates that this expression is divergent and has to be counter-termed

before it makes sense. We do not give here a derivation of the above influence phase except

for the heuristic that the above action describes the causal propagation of a free scalar

about the Minkowski vacuum. The above influence phase is also natural if one applies

the original Feynman-Vernon argument in [56] for harmonic oscillators to each Minkowski

mode of the scalar field and sums the result. A more proper derivation should involve

a careful discussion of the fall-offs near space-like, time-like, and null asymptotia. We

do not attempt such a discussion here because, as we shall see later, dS-SK geometry

naturally incorporates such boundary conditions. Our dS answer in an appropriate limit

will reduce to the above result.

We substitute the multipole expansion Eq.(A.68) into the influence phase Sbare
RR . For

simplicity, we will take the number of spatial dimensions (i.e., d) to be odd, so that

ν ≡ ℓ + d
2
− 1 is a half-integer (and cot νπ = 0). The above action then has two sets of

terms: the first set of terms, odd under time reversal, are

∑
ℓm⃗

∫
dω

2π

iπ

2

(ω
2

)2ν 1

Γ(1 + ν)2

×
∫
ddr0

{
ρD(r⃗0, ω)r

ν− d
2
+1

0 Yℓm⃗(r̂0) 0F1

[
1 + ν,−ω

2r20
4

]}∗

×
∫
ddr

{
ρA(r⃗, ω)r

ν− d
2
+1Yℓm⃗(r̂) 0F1

[
1 + ν,−ω

2r2

4

]}
.

(A.72)

The combinations appearing in the second and the third line are the Bessel-smeared
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radiative multipole moments6 of the sources, i.e.,

JA(ω, ℓ, m⃗) ≡ 1

2ν

∫
ddr ρA(r⃗, ω) r

ν− d
2
+1Yℓm⃗(r̂) 0F1

[
1 + ν,−ω

2r2

4

]
,

JD(ω, ℓ, m⃗) ≡ 1

2ν

∫
ddr ρD(r⃗, ω) r

ν− d
2
+1Yℓm⃗(r̂) 0F1

[
1 + ν,−ω

2r2

4

]
.

(A.73)

We can then write the time reversal of odd terms in the form

∑
ℓm⃗

∫
dω

2π

2πi

Γ(ν)2

(ω
2

)2ν
J∗D(ω, ℓ, m⃗)JA(ω, ℓ, m⃗) . (A.74)

Given that 0F1 functions are completely regular when their first argument is positive

(i.e., when 1 + ν = ℓ + d
2
> 0), we conclude that these multipole moments are finite,

even for point-like sources. Hence, each term in Eq.(A.72) is finite. The reader should

contrast this with the second set of terms, even under time reversal:

∑
ℓm⃗

∫
dω

2π

∫
ddr

∫
ddr0 [ρD(r⃗, ω)]

∗ ρA(r⃗, ω)

× 1

2ν

r
ν− d

2
+1

<

r
ν+ d

2
−1

>

Yℓm⃗(r̂)Yℓm⃗(r̂0)
∗

0F1

[
1 + ν,−ω

2r2<
4

]
0F1

[
1− ν,−ω

2r2>
4

]
.

(A.75)

which are divergent due to the Green functions 0F1(1 − ν, . . .). Fortunately, since these

are all even under time reversal, one can counter-term away these terms. In other words,

these terms in the influence phase serve to renormalise the non-dissipative terms already

present in the action of the source.

Let us return to the terms in Eq.(A.72): they are odd in ω, and hence cannot be

countertermed or absorbed into the non-dissipative action. We can simplify these re-

maining terms by substituting the STF definition of spherical harmonics (see Eq.(A.47))

and invoking the STF addition theorem in Eq.(A.50). We then get the radiation-reaction

6The reader should compare this definition against electrostatic multipole moments defined in
Eq.(A.7), remembering ν ≡ ℓ+ d

2 − 1.
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influence phase as

SOdd d
RR =

∑
ℓ

∫
dω

2π

iπ

2Nd,ℓ|Sd−1|

(ω
2

)2ν 1

Γ(1 + ν)2
1

ℓ!
(ΠS

d,ℓ)
<i1i2...iℓ>
<j1j2...jℓ>

×
∫
ddr0

{
ρD(r⃗0, ω)x

j1
0 x

j2
0 . . . x

jℓ
0 0F1

[
1 + ν,−ω

2r20
4

]}∗

×
∫
ddr

{
ρA(r⃗, ω)xi1xi2 . . . xiℓ 0F1

[
1 + ν,−ω

2r2

4

]}
.

(A.76)

Here, we recognise the STF multipole moments of the sources’ absorptive and emissive

parts. We will find it convenient to define our STF multipole moments as

Qi1...iℓ
A,STF (ω) ≡

1

2ν
Π<i1i2...iℓ>

<j1j2...jℓ>

∫
ddr ρA(r⃗, ω)x

j1xj2 . . . xjℓ 0F1

[
1 + ν,−ω

2r2

4

]
,

Qi1...iℓ
D,STF (ω) ≡

1

2ν
Π<i1i2...iℓ>

<j1j2...jℓ>

∫
ddr ρD(r⃗, ω)x

j1xj2 . . . xjℓ 0F1

[
1 + ν,−ω

2r2

4

]
.

(A.77)

In terms of these STF multipole moments, the action for radiation reaction takes the

form

SOdd d
RR =

∑
ℓm⃗

∫
dω

2π

2πi

Γ(ν)2

(ω
2

)2ν
J∗D(ω, ℓ, m⃗)JA(ω, ℓ, m⃗)

=
∑
ℓ

∫
dω

2π

2πi

Γ(ν)2

(ω
2

)2ν 1

Nd,ℓ|Sd−1|
1

ℓ!
Q∗<i1i2...iℓ>
D,STF Q

A,STF
<i1i2...iℓ>

.

(A.78)

In the first line, we have quoted the answer in terms of the spherical multipole moments

for comparison. The multipole action above could also be derived entirely by using

Cartesian STF harmonics from the very beginning (See [151] for a detailed derivation).

Given the absence of Cartesian coordinates valid everywhere on the static patch, we will

employ a judicious mix of spherical harmonic and STF harmonic expansions to compute

the influence phase. The flat spacetime derivation we have given here closely mimics the

strategy we will eventually use for dS.

Let us conclude this flat spacetime discussion by commenting on the case where d is

even and ν ∈ Z. We will tackle this case by a dimensional regularisation via analytic

continuation in ν. From our discussion of multipole expansion, it is clear that the time

reversal of even terms in Eq.(A.75) is the same for any ν and can be counter-termed away

similarly.

The terms in Eq.(A.72), on the other hand, get multiplied by a factor of (1+ i cotπν)
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for a general ν: this can be seen, e.g., in Eq.(A.68). The cotπν factor leads to novel

divergences as ν approaches an integer, necessitating further counter-terms.

To compute the counter-terms as ν → n ∈ Z, we need the following expansion:

(1 + i cotπν)
2πi

Γ(ν)2

( ω

2H

)2ν
=

1

Γ(n)2

( ω

2H

)2n
{

2

ν − n
− 4ψ(0)(n) + ln

( ω

2H

)4
+O(ν − n)

}
.

(A.79)

Here H is the characteristic scale for dimensional regularisation and ψ(0)(x) ≡ d
dx

ln Γ(x)

is the di-gamma function. Using a version of modified minimal subtraction, we counter-

term away the first two terms inside the bracket of RHS. Thus, the influence phase due

to radiation reaction for even spatial dimensions is

SEven d
RR =

∑
ℓ

∫
dω

2π

1

Γ(ν)2

(ω
2

)2ν
ln

(
ω4

H4

)
1

Nd,ℓ|Sd−1|
1

ℓ!
Q∗<i1i2...iℓ>
D,STF Q

A,STF
<i1i2...iℓ>

, (A.80)

where we have reset n again everywhere to the variable ν. What we have here is a classical

renormalisation group running of the multipole couplings present in the world line action,

i.e., an RGE induced by the classical radiation reaction. Such classical RGE is, in fact,

common in many radiation reaction problems (See e.g. discussions in [39,40,86,152]). We

will see later how this non-local influence phase gets further modified in dS spacetime.
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Appendix B

Theory of vector spherical harmonics

In this chapter, we will give explicit expressions for the vector spherical harmonics(VSH)

on Sd−1. We will construct higher-dimensional analogues of the standard and well-known

expressions for S2 [153–155], which we refer to as orthonormal VSH. Past discussions of

vector spherical harmonics on higher dimensional spheres appear in [145,146,156–158]. In

particular, Higuchi [145] gives a recursive construction for an arbitrary tensor harmonic

on Sd−1 in terms of tensor harmonics on Sd−2. In what follows, we will write explicit

forms for the VSHs on Sd−1, which agree with his recursion.

Along with the usual orthonormal VSH expressed in spherical polar coordinates, one

can also construct them in terms of symmetric trace-free(STF) tensors on the ambient

Rd. Their construction in cartesian coordinates helps in the post-newtonian expansions

of multipole moments, and hence, they find their natural home in the literature on grav-

itational waves [159,160]. Their higher-dimensional analogues can be found in [161,162].

We will construct these cartesian STF VSH in all dimensions and show how they connect

to previous constructions on S2 as well as for higher-dimensional spheres.
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We begin with an explicit spherical coordinate system in Rd given by

x1 = r sinϑd−2 sinϑd−3 . . . sinϑ2 sinϑ1 cosφ ,

x2 = r sinϑd−2 sinϑd−3 . . . sinϑ2 sinϑ1 sinφ ,

x3 = r sinϑd−2 sinϑd−3 . . . sinϑ2 cosϑ1 ,

x4 = r sinϑd−2 sinϑd−3 . . . cosϑ2 ,

. . . ,

xd−2 = r sinϑd−2 sinϑd−3 cosϑd−4 ,

xd−1 = r sinϑd−2 cosϑd−3 ,

xd = r cosϑd−2 .

(B.1)

Here the radius r varies from 0 to ∞ whereas the allowed values of angles is ϑi ∈ [0, π]

and φ ∈ [0, 2π). We will set ϑ0 ≡ φ and denote the coordinates on Sd−1 as ϑI with

I = 0, 1, . . . , d− 2. The sphere metric in these coordinates takes the form

dΩ2
d−1 ≡ γIJdϑIdϑJ = dϑ2

d−2 + sin2 ϑd−2dΩ
2
d−2 = . . .

= dϑ2
d−2 + sin2 ϑd−2dϑ

2
d−3 + . . .+

d−2∏
K=J+1

sin2 ϑK dϑ2
J + . . .+

d−2∏
K=1

sin2 ϑK dφ2.

(B.2)

In other words, the explicit metric coefficients are given by

γIJ =


∏d−2

K=I+1 sin
2 ϑK when I = J ,

0 otherwise.
(B.3)

Since the metric is diagonal, its inverse is given by inverting the diagonal entries, i.e.,

γII = γ−1
II . Another result we will need is the volume measure on the sphere √γ =∏d−2

J=1 sin
J ϑJ . By integrating this measure, we obtain the volume of Sd−1 as

|Sd−1| ≡ 2π
d
2

Γ(d
2
)
, (B.4)

We will denote the covariant derivative associated with the unit sphere metric as DI .

For some of the conversions between partial derivatives in the spherical coordinates to
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cartesian coordinates, the following formula is useful:

∂

∂ϑI

= −r
d−2∏
j=I

sinϑj
∂

∂x
I+2

+
cosϑI

sinϑI

I+1∑
j=1

xj
∂

∂xj

=
1∏d−2

j=I sinϑj

I+1∑
j=1

xj

{
x

I+2

∂

∂xj
− xj

∂

∂x
I+2

}
.

(B.5)

This is the push-forward of the coordinate basis vector fields on Sd−1 to Rd.

B.1 Toroidal derivatives and VSHs

We will now move on to the subject of vector spherical harmonics (VSHs), i.e., divergence-

free vector fields on Sd−1, which are also eigenvectors of the sphere laplacian. From

the cartesian viewpoint, these correspond to homogeneous, harmonic, divergence-free,

polynomial vector fields on Rd that have no radial component.

Harmonic vector fields in Rd

We will now construct such harmonic vector fields by applying an appropriate derivative

operator on homogeneous harmonic polynomials x<i1xi2 . . . xiℓ>. Such a construction is

well-known in d = 3 where the toroidal operator r⃗ × ∇⃗ will do the job. Given that

there is no cross-product for d > 3, this statement does not generalise as stated: there

is, in fact, no one derivative operator that constructs all Vector polynomials from scalar

polynomials in d > 3. However, we will now show that if we allow for two derivatives, we

can indeed construct a full set of toroidal derivative operators for d > 3. The standard

d = 3 construction will then be recovered as a degenerate special case. As far as we are

aware, such a construction of toroidal operators for general dimensions has not appeared

elsewhere and is entirely new.

Let Lij ≡ xi∂j − xj∂i be the rotation Killing vectors of Rd obeying SO(d) Lie-algebra

[Lij,Lkl] = δikLlj − δjkLli − δilLkj + δjlLki . (B.6)
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These operators obey relations of the form

xkLij + xiLjk + xjLki = 0 = ∂kLij + ∂iLjk + ∂jLki . (B.7)

A useful corollary of the above relations is a sum of the form

∑
ik

xiLjkLik =
1

2
xj
∑
ik

LikLik ,
∑
ik

∂iLjkLik =
1

2
∂j
∑
ik

LikLik , (B.8)

where the sums over i and k are performed over the same subset of indices. These

properties motivate the following definition of the toroidal operators

∆(α)
i,α+2f ≡


∑α+1

k=1 Lk,α+2Lkif for 1 ≤ i ≤ α + 1 ,

−1
2

∑α+1
j,k=1 LjkLjkf for i = α + 2 ,

0 for i > α+ 2 ,

(B.9)

acting on an arbitrary function f on Rd. Here, α takes on values α = 1, 2, . . . , (d − 2),

and the reason for our notation will become clear shortly. Equations Eq.(B.8) imply that

the vector field ∆(α)
i,α+2f is tangential to the sphere and is divergence-free for any f , viz.,

∂i∆
(α)
i,α+2f = 0 , xi∆(α)

i,α+2f = 0 . (B.10)

Further, since Lijs commute with the laplacian in Rd, ∆(α)
i,α+2f is a harmonic vector field if

f is harmonic. We can then take f to be any homogeneous harmonic polynomial in Rd to

get a homogeneous harmonic vector field. Thus, an overcomplete basis of homogeneous

harmonic vector fields of degree ℓ can be constructed by taking

∆(α)
i,α+2[x

<i1xi2 . . . xiℓ>]
∂

∂xi
(B.11)

for α = 1, 2, . . . , (d−2). Such vector fields, when restricted to Sd−1, yield a vector spherical

harmonic (VSH). In the next subsection, we will construct an orthonormal basis for such

VSHs.

The above set of toroidal operators can be generalised as follows. Say we are given

a subspace Rα+2 ⊆ Rd. We can then define a toroidal operator corresponding to this
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subspace and a direction j within that subspace via

∆(α)
ij f ≡

{ ∑
k∈Rα+2

LkjLki −
1

2
δij

∑
k,l∈Rα+2

LklLkl

}
i,j∈Rα+2

f . (B.12)

This formula should be interpreted as follows: first of all, we get a non-zero answer only

if i, j directions are tangent to the subspace Rα+2 under question. Further sums indicated

inside the bracket are over directions within Rα+2. If we take the subspace Rα+2 spanned

by the cartesian directions {x1, x2, . . . , xα+2} and choose j to be equal along xα+2, and

using

α+2∑
k=1

Lk,α+2Lki =
α+1∑
k=1

Lk,α+2Lki for 1 ≤ i ≤ α + 1 ,

α+2∑
k=1

Lk,α+2Lk,α+2 −
1

2

α+2∑
j,k=1

LjkLjk = −
1

2

α+1∑
j,k=1

LjkLjk ,

(B.13)

we get back the toroidal operators defined before in Eq.(B.9).

A couple of remarks about the above form: first, if the function f is invariant under

the SO(α+1) that rotates {x1, x2, . . . , xα+1} , all the Lijs in Eq.(B.9) annihilates f , and

we get a vector field that is identically zero. Thus, the toroidal operators we have defined

above have non-trivial kernels which become smaller as α increases. Relatedly, at a given

α, the harmonic vector field should necessarily break SO(α + 1). A second remark is

that, for α = 1, the Eq.(B.9) reduces to

∆(α=1)
i,3 f ≡



−L23L12f for i = 1 ,

−L31L12f for i = 2 ,

−L2
12f for i = 3 ,

0 for i > 3 .

(B.14)

We recognise in RHS the familiar 3d toroidal operator−r⃗×∇⃗ acting on L12f . As remarked

above, the kernel of the above operator is the largest among all the toroidal operators:

it is the set of SO(2) invariant functions, where the SO(2) rotates the 12 plane. But, in

this special case of α = 1 (and only in this case), we can improve our toroidal operator
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by dropping an L12 and defining

∆(α=1)
i,3 |Newf ≡



−L23f for i = 1 ,

−L31f for i = 2 ,

−L12f for i = 3 ,

0 for i > 3 .

(B.15)

The kernel of this ‘improved’ toroidal operator is smaller and is the set of SO(3) invariant

functions, where the SO(3) rotates the x1, x2 and x3, i.e., the kernel is of the same size

as the α = 2 toroidal operator. The usual 3d toroidal operator is improved in this sense.

Vector spherical harmonics on Sd−1

We now turn to a description in spherical coordinates. The toroidal double-derivative

operators on Sd−1 take the following form:

∆α
I f ≡

√
γαα ×


1

sinα−2 ϑα

∂
∂ϑα

∂
∂ϑI

[
sinα−1 ϑα f

]
for 0 ≤ I ≤ α− 1 ,

− 1
sinϑα

D2
Sαf for I = α ,

0 for I > α .

(B.16)

Here, f is an arbitrary function on the sphere, the index α takes values from 1 to (d− 2),

thus defining (d−2) different derivative operators. The index I = 0, 1, . . . , (d−2) denotes

the vector directions on Sd−1, D2
SI+1 is the lower sphere laplacian defined in Eq.(A.31), and

γIJ are the sphere metric coefficients defined in Eq.(B.3). The above derivative operators

exhibit the following useful properties, as can be established via direct computation:

• For an arbitrary function f on Sd−1, the corresponding vector field ∆α
I f is diver-

genceless.

• The derivative operators ∆α
I obey the following commutation relation with the

sphere laplacian:

[D2,∆α
I ]f = ∆α

I f . (B.17)

If we distinguish between the scalar and the vector laplacians on the sphere by

subscripts S and V respectively, the relation above can also be stated as D2
V ∆α

I f =
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∆α
I (D

2
S + 1)f .

• These vector fields are mutually orthogonal in the following sense: for any two

functions f and g on Sd−1, we have

∫
Sd−1

γIJ (∆α
I f) (∆

α′

J g) = 0 for α ̸= α′. (B.18)

When α = α′, the same inner product evaluates to

∫
Sd−1

γIJ (∆α
I f) (∆

α
Jg) =

∫
Sd−1

(D2
Sαf)

(
D2

Sα+1g + (1− α)g
)
. (B.19)

Once these statements are established, the ∆α
I operators can be used to give an explicit

form for the vector spherical harmonics (VSHs).

To this end, consider the vector fields defined1 by acting ∆α
I ’s on the orthonormal

SSHs of Eq.(A.28):

Vαℓm⃗
I ≡ CV

αℓm⃗∆α
I Yℓm⃗(r̂)

= CV
αℓm⃗

√
γαα ×


1

sinα−2 ϑα

∂
∂ϑα

∂
∂ϑI

[
sinα−1 ϑα Yℓm⃗(r̂)

]
for 0 ≤ I ≤ α− 1 ,

1
sinϑα

mα(mα + α− 1) Yℓm⃗(r̂) for I = α ,

0 for I > α .

(B.20)

Here, we have simplified the I = α component by using Eq.(A.31), and CV
αℓm⃗ is a con-

venient normalization factor to be determined shortly. Using the first two properties ∆α
I

enumerated above, we conclude that VI
αℓm⃗ is a divergence-free vector field satisfying

[
D2 + ℓ(ℓ+ d− 2)− 1

]
VI
αℓm⃗ = 0 . (B.21)

Eq.(B.18) then ensures the orthogonality of VI
αℓm⃗ and VI

α′ℓ′m⃗′ for α ̸= α′. For α = α′, we

1Our definitions here are consistent with the recursive construction by Higuchi [145]. See also appendix
A.2 of [14] where Higuchi’s construction is reviewed).
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use Eq.(B.19) and Eq.(A.31) to get∫
Sd−1

γIJVαℓm⃗
I Vαℓ′m⃗′∗

J

= CV
αℓm⃗C

V ∗
αℓ′m⃗′mα(mα + α− 1)(m′

α+1 + 1)(m′
α+1 + α− 1)

∫
Sd−1

Yℓm⃗(r̂)Y
∗
ℓ′m⃗′(r̂) .

(B.22)

From this, we conclude that VI
αℓm⃗ and VI

α′ℓ′m⃗′ are orthogonal unless α = α′, ℓ = ℓ′ and

m⃗ = m⃗′. The above computation also determines the normalisation factor CV
αℓm⃗ via

|CV
αℓm⃗|−2 ≡ (mα+1 + α− 1)(mα+1 + 1)mα(mα + α− 1) . (B.23)

We note that this normalization factor diverges if mα = 0, or if α = 1 and mα+1 =

m2 = 0. This means that, unless the function multiplying this normalisation factor

in Eq.(B.20) goes to zero in these cases, we have to discard the result for being non-

normalisable. If instead, in any of these cases, all the components in Eq.(B.20) vanish,

it is possible to get a finite result by taking a limit. We have to decide which case

corresponds to which possibility. A careful analysis leads to the following conclusions:

• For α > 1, the above expression yields a normalised VSH only if mα > 0. Thus, in

this case, we should exclude the possibility that mα = 0.

• For α = 1, mα = m1 can be taken to be zero and Eq.(B.20) gives a finite answer

when understood as a limit, provided mα+1 = m2 > 0.

As an example to illustrate the second point, consider the following α = 1 VSH on S4:

V1ℓm⃗
I |S4 ≡ sinϑ3 sinϑ2

m1

√
m2(m2 + 1)


sinϑ1

∂
∂ϑ1

∂
∂φ

Yℓm⃗(r̂) for I = 0 ,

1
sinϑ1

m2
1 Yℓm⃗(r̂) for I = 1 ,

0 for I = 2, 3 .

(B.24)

From Eq.(A.28), we can write ∂
∂φ

Yℓm⃗(r̂) = ±im1 Yℓm⃗(r̂). It is then clear that we get a

finite result in the expression above as we take m1 → 0 (provided m2 > 0):

lim
m1→0

(∓i)V1ℓm⃗
I |S4 ≡ sinϑ3 sinϑ2 sinϑ1√

m2(m2 + 1)

 ∂
∂ϑ1

Yℓm⃗(r̂)|m1=0 for I = 0 ,

0 for I = 1, 2, 3 .
(B.25)
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Alternately, we can avoid this subtlety for α = 1 altogether, by redefining the derivative

operator ∆α=1
I by stripping off a ∂

∂φ
from it, i.e., we define

∆α=1
I f |new ≡

√
γ11 ×


− sinϑ1

∂f
∂ϑ1

for I = 0 ,

1
sinϑ1

∂f
∂φ

for I = 1 ,

0 for I > 1 .

(B.26)

This corresponds exactly to the ‘improvement’ of α = 1 toroidal operator described before

in the cartesian language. Since ∂
∂φ

is an isometry, this redefinition does not change any

of the properties of ∆α=1
I except for its overall normalisation (a factor of m1 has to be

dropped). The orthogonality Eq.(B.18) still holds, whereas Eq.(B.19) becomes

∫
Sd−1

γIJ (∆α=1
I f)New (∆α=1

J g)New = −
∫

Sd−1

f D2
S2g . (B.27)

With this norm, the VSH quoted above then becomes

V1ℓm⃗
I |S4,New ≡

sinϑ3 sinϑ2√
m2(m2 + 1)


− sinϑ1

∂
∂ϑ1

Yℓm⃗(r̂) for I = 0 ,

1
sinϑ1

∂
∂φ

Yℓm⃗(r̂) for I = 1 ,

0 for I = 2, 3 .

(B.28)

The expression appearing here is, in fact, the standard VSH on S2 constructed via the

toroidal operator r⃗×∇⃗: rewritten in this form, no subtle limiting procedure is necessary

to deal with the m1 = 0 case. Adopting this new definition, we give in table B.1 the

explicit form of VSHs in S2,S3,S4 and S5.

Before we conclude, it is often convenient to have a simple VSH for any given ℓ

written down explicitly, on which computations can be done with ease. We will end this

subsection by providing two such examples. The first example is the VSH corresponding

to

α = 1 , m1 = 0 , m2 = m3 = . . . = md−2 = 1 ≤ md−1 ≡ ℓ . (B.29)
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VSHs on S2

V1ℓm⃗
I |New ≡

1√
ℓ(ℓ+ 1)

{
− sinϑ1

∂
∂ϑ1

Yℓm⃗(r̂) for I = 0 ,
1

sinϑ1

∂
∂φ Yℓm⃗(r̂) for I = 1 .

VSHs on S3

V2ℓm⃗
I ≡ 1

(ℓ+ 1)
√
m2(m2 + 1)

{
∂

∂ϑ2

∂
∂ϑI

[sinϑ2 Yℓm⃗(r̂)] for I = 0, 1 ,
1

sinϑ2
m2(m2 + 1) Yℓm⃗(r̂) for I = 2 .

V1ℓm⃗
I |New ≡

sinϑ2√
m2(m2 + 1)


− sinϑ1

∂
∂ϑ1

Yℓm⃗(r̂) for I = 0 ,
1

sinϑ1

∂
∂φ Yℓm⃗(r̂) for I = 1 ,

0 for I = 2 .

VSHs on S4

V3ℓm⃗
I ≡ 1√

(ℓ+ 1)(ℓ+ 2)m3(m3 + 2)

{
1

sinϑ3

∂
∂ϑ3

∂
∂ϑI

[
sin2 ϑ3 Yℓm⃗(r̂)

]
for I = 0, 1, 2 ,

1
sinϑ3

m3(m3 + 2) Yℓm⃗(r̂) for I = 3 .

V2ℓm⃗
I ≡ sinϑ3

(m3 + 1)
√
m2(m2 + 1)


∂

∂ϑ2

∂
∂ϑI

[sinϑ2 Yℓm⃗(r̂)] for I = 0, 1 ,
1

sinϑ2
m2(m2 + 1) Yℓm⃗(r̂) for I = 2 ,

0 for I = 3 .

V1ℓm⃗
I |New ≡

sinϑ3 sinϑ2√
m2(m2 + 1)


− sinϑ1

∂
∂ϑ1

Yℓm⃗(r̂) for I = 0 ,
1

sinϑ1

∂
∂φ Yℓm⃗(r̂) for I = 1 ,

0 for I = 2, 3 .

VSHs on S5

V4ℓm⃗
I ≡ 1√

(ℓ+ 1)(ℓ+ 3)m4(m4 + 3)

{
1

sin2 ϑ4

∂
∂ϑ4

∂
∂ϑI

[
sin3 ϑ4 Yℓm⃗(r̂)

]
for I = 0, 1, 2, 3 ,

1
sinϑ4

m4(m4 + 3) Yℓm⃗(r̂) for I = 4 .

V3ℓm⃗
I ≡ sinϑ4√

(m4 + 1)(m4 + 2)m3(m3 + 2)


1

sinϑ3

∂
∂ϑ3

∂
∂ϑI

[
sin2 ϑ3 Yℓm⃗(r̂)

]
for I = 0, 1, 2 ,

1
sinϑ3

m3(m3 + 2) Yℓm⃗(r̂) for I = 3 ,

0 for I = 4 .

V2ℓm⃗
I ≡ sinϑ4 sinϑ3

(m3 + 1)
√
m2(m2 + 1)


∂

∂ϑ2

∂
∂ϑI

[sinϑ2 Yℓm⃗(r̂)] for I = 0, 1 ,
1

sinϑ2
m2(m2 + 1) Yℓm⃗(r̂) for I = 2 ,

0 for I = 3, 4 .

V1ℓm⃗
I |New ≡

sinϑ4 sinϑ3 sinϑ2√
m2(m2 + 1)


− sinϑ1

∂
∂ϑ1

Yℓm⃗(r̂) for I = 0 ,
1

sinϑ1

∂
∂φ Yℓm⃗(r̂) for I = 1 ,

0 for I = 2, 3, 4 .

Table B.1: Explicit expressions for vector spherical harmonics (VSHs).
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The normalised SSH for this m⃗ is given by Eq.(A.28) as

Yℓm⃗(r̂) =

√
2π

NHH(d+ 2, ℓ− 1)

|Sd+1|
Pℓ−1(d+ 2, cosϑd−2) cosϑ1

d−2∏
J=2

sinϑJ (B.30)

The corresponding VSH is given by

VI =

∏d−2
J=2 sinϑJ√

m2(m2 + 1)|m2=1

 − sinϑ1
∂

∂ϑ1
Yℓm⃗(r̂) for I = 0 ,

0 for I = 1, 2, 3, . . . , d− 2 .

=

√
π
NHH(d+ 2, ℓ− 1)

|Sd+1|
Pℓ−1(d+ 2, cosϑd−2)


∏d−2

J=1 sin
2 ϑJ for I = 0 ,

0 for I = 1, . . . , d− 2 .

(B.31)

We can also present this as a vector field on Sd−1 by raising the sphere index, viz.,

VI ∂

∂ϑI

=

√
π
NHH(d+ 2, ℓ− 1)

|Sd+1|
Pℓ−1(d+ 2, cosϑd−2)

∂

∂φ
. (B.32)

This vector-field can be pushed-forward to Rd using Eq.(B.5): we then get a vector field

which varies as

Pℓ−1

(
d+ 2,

xd
r

){
x1

∂

∂x2
− x2

∂

∂x2

}
. (B.33)

It is then evident that this vector field is invariant under the SO(2) rotations of x1 − x2
plane as well as SO(d − 3) rotations of x3, x4, . . . , xd−1. This is, hence, a simple VSH

with a large group of symmetries, and we found it to be a convenient example to check

our computations.

The second example we discuss is a VSH with an even bigger symmetry of SO(d− 2)

that rotates x1, x2, . . . , xd−2. This is the most symmetric of all VSHs (for d > 4) and

will play an important role when we discuss the VSH addition theorem. The SO(d− 2)-

invariant VSH is obtained by taking

α = d− 2 , m1 = m2 = m3 = . . . = md−3 = 0 , md−2 = 1 ≤ md−1 ≡ ℓ . (B.34)
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The normalised SSH in this case is

Yℓm⃗(r̂) = (d− 1)

√
1

2π

NHH(d+ 2, ℓ− 1)

|Sd+1|
sinϑd−2Pℓ−1(d+ 2, cosϑd−2) cosϑd−3 . (B.35)

The corresponding VSH has the following form

VI ∂

∂ϑI

=
(d− 1)√

(d− 2)(ℓ+ 1)(ℓ+ d− 3)

√
1

2π

NHH(d+ 2, ℓ− 1)

|Sd+1|

×
{
(d− 2) cosϑd−3Pℓ−1(d+ 2, cosϑd−2)

∂

∂ϑd−2

− sinϑd−3

sind−2 ϑd−2

d

dϑd−3

[sind−2 ϑd−2Pℓ−1(d+ 2, cosϑd−2)]
∂

∂ϑd−3

}
.

(B.36)

Stripping of the normalization pre-factor, its push-forward to Rd at radius r ( computed

via Eq.(B.5)) yields

1

d− 1
rℓ−1Pℓ−1

(
d+ 2,

xd
r

){
xd

∂

∂xd−1

− xd−1
∂

∂xd

}
+

(ℓ− 1)(ℓ+ d− 1)

(d+ 1)(d− 1)(d− 2)
rℓ−2Pℓ−2

(
d+ 4,

xd
r

) d−2∑
j=1

xj

{
xd−1

∂

∂xj
− xj

∂

∂xd−1

}
.

(B.37)

Here, we have used the identity

d

dz
Pℓ(d, z) =

ℓ(ℓ+ d− 2)

d− 1
Pℓ−1(d+ 2, z) (B.38)

to compute the derivative of the generalised Legendre polynomials.

Addendum: Counting of VSHs

Our explicit construction can be used to count the total number of VSHs for a given

ℓ = md−1: we will denote this by NV
HH(d, ℓ) = NV

HH(d,md−1). To begin with, if there

were no constraints on m⃗, all VSHs are obtained by acting (d−2) derivative operators on

NHH(d,md−1) number of SSHs and NV
HH(d,md−1) should just be (d − 2)NHH(d,md−1).

But given the constraints on m⃗ described above, this is an overcounting, and a more

careful counting is needed.
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For a given α > 1, the number of VSHs we obtain is given by

N
V,α
HH(d,md−1) =

md−1∑
md−2=1

md−2∑
md−3=1

· · ·
mα+1∑
mα=1

mα∑
mα−1=0

mα−1∑
mα−2=0

. . .

{
1 +

m2∑
m1=1

2

}

=

md−1∑
md−2=1

· · ·
mα+1∑
mα=1

NHH(α + 1,mα) .

(B.39)

Here, we have imposed the constraint that md−1 ≥ md−2 ≥ . . .mα ≥ 1 and have used

Eq.(A.33) in the second line. In the next steps, we should systematically subtract out

the forbidden mi’s, e.g., the next few steps are given by

N
V,α
HH(d,md−1) =

md−1∑
md−2=1

· · ·
mα+2∑

mα+1=1

{NHH(α + 2,mα+1)− 1}

=

md−1∑
md−2=1

· · ·
mα+3∑

mα+2=1

{NHH(α + 3,mα+2)− 1−mα+2}

=

md−1∑
md−2=1

· · ·
mα+4∑

mα+3=1

{
NHH(α + 4,mα+3)− 1

−
(
mα+3

1

)
−
(
mα+3 + 1

2

)}
.

(B.40)

We can show that, after k steps, the above expression generalises to

N
V,α
HH(d,md−1) =

md−1∑
md−2=1

· · ·
mα+k+1∑
mα+k=1

{
NHH(α + k + 1,mα+k)−

k−1∑
j=0

(
mα+k + j − 1

j

)}
.

(B.41)

This follows from the recursive use of the binomial identity

j∑
m=1

(
m+ k − 1

k

)
=

(
j + k

k + 1

)
. (B.42)

The recursion terminates when k = d− 1− α and we get

N
V,α>1
HH (d,md−1) = NHH(d,md−1)−

d−2−α∑
j=0

(
md−1 + j − 1

j

)
. (B.43)

For α = 1, we have to take md−1 ≥ md−2 ≥ . . .m2 ≥ 1, but m1 is allowed to vanish. This
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is identical to the α = 2 case of the counting above. Thus, we get

N
V,α=1
HH (d,md−1) = N

V,α=2
HH (d,md−1) = NHH(d,md−1)−

d−4∑
j=0

(
md−1 + j − 1

j

)
. (B.44)

We can now sum over α to obtain the the total number of VSHs on Sd−1 as

NV
HH(d,md−1) =

d−2∑
α=1

N
V,α
HH(d,md−1) = (d− 2)NHH(d,md−1)−NHH(d− 2,md−1 + 1)

(B.45)

As we shall describe in more detail later, NV
HH(d, ℓ) counts the number of transverse,

divergence-free, homogeneous harmonic polynomial vector fields of degree ℓ in Rd. We

have the following explicit expression [146,147]

NV
HH(d, ℓ) =

ℓ(ℓ+ d− 2)

(ℓ+ 1)(ℓ+ d− 3)
(d− 2)NHH(d, ℓ) = (2ℓ+ d− 2)

ℓ

ℓ+ d− 3

(
ℓ+ d− 2

ℓ+ 1

)
.

(B.46)

The first expression shows that (d − 2)NHH(d, ℓ) is actually a good approximation to

NV
HH(d, ℓ) at large ℓ. We also see that in d = 3, the number of VSHs is identical to the

number of SSHs.

There is also a VSH analogue of the recursion relation Eq.(A.34) given by

NV
HH(d, ℓ) =

ℓ∑
m=1

[NV
HH(d− 1,m) +NHH(d− 1,m)] , (B.47)

which can be shown using the above formula. Such a recursion relation is automatic in

Higuchi’s recursive construction of VSHs [145], whereby VSHs in Sd−1 are constructed

from VSHs and SSHs in Sd−2.

B.2 VSH projector and addition theorem

Till now, we have described vector spherical harmonics in terms of an orthonormal basis.

While such a basis is ideal for defining a set of linearly independent multipole moments

associated with an extended source distribution, it is often convenient to shift to a different

basis based on symmetric trace-free (STF) tensors. While the set of harmonics defined

152



this way is overcomplete, it is often easier to compute the multipole moments in this basis.

This is especially so for moving particle sources, where convoluting the orthonormal VSHs

against the world line would be a tedious exercise, resulting in unwieldy expressions. We

will also prove in this subsection the addition theorem for vector spherical harmonics, a

crucial tool in going back and forth between the spherical vs the cartesian description.2

We will begin by recasting our results on orthonormal VSHs in terms of STF tensors.

We will proceed in analogy with our description of SSHs. The orthonormal VSHs defined

in Eq.(B.20) can be pushed-forward into Rd as follows:

1

r

(
∂xi
∂ϑJ

)
VJ
αℓm⃗(r̂) ≡

1

ℓ!
Vαℓm⃗
i<i1i2...iℓ>

r̂<i1 r̂i2 . . . r̂iℓ> . (B.48)

Note that we have already indicated here the STF structure of the cartesian tensor in

RHS. This can be justified as follows: we begin with the observation that the vector field

rℓVI
αℓm⃗(r̂) is a divergence-free harmonic vector field in Rd. This means that each cartesian

component should be harmonic separately: in fact, they should all be homogeneous

harmonic polynomials of degree ℓ. This means that the vector field

−→
V αℓm⃗(r⃗) ≡ 1

ℓ!
êiV

αℓm⃗
i<i1i2...iℓ>

x<i1xi2 . . . xiℓ> , (B.49)

defined using the tensor above should be harmonic in every cartesian component. This

is possible if and only if the collection of indices i1i2 . . . iℓ is symmetric and trace-free as

indicated.

Since this vector field
−→
V αℓm⃗ is obtained by a push-forward of a divergence-free vector

field on Sd−1, we conclude that
−→
V αℓm⃗ is a divergence-free vector field in Rd, transverse to

the radial direction, i.e.,

−→
∇ ·
−→
V αℓm⃗ = 0 , −→r ·

−→
V αℓm⃗ = 0 . (B.50)

The first condition implies the vanishing of the following contraction

δii1Vαℓm⃗
i<i1i2...iℓ>

= 0 , (B.51)

2VSH addition theorem for d = 3 are discussed in [163–165]. This should not be confused with the
conceptually completely different ‘translational’ addition theorems [166–169].
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whereas the second one indicates the vanishing of the full symmetrisation:

Vαℓm⃗
i<i1i2...iℓ>

xixi1xi2 . . . xiℓ = 0 . (B.52)

These properties imply that Vαℓm⃗
i<i1i2...iℓ>

is a irreducible cartesian tensor of SO(d) corre-

sponding to the Young tableaux

i1 i2 i3 . . . iℓ−1 iℓ

i

.

The theory of VSHs then becomes equivalent to the study of cartesian tensors with such

symmetry.

Many of the results of SSHs directly generalise. For example, the inner product

formula in Eq.(A.55) implies a similar formula for VSHs:

∫
Sd−1

[
1

ℓ!
Vi<i1i2...iℓ>r̂

<i1 . . . r̂iℓ>
] [

1

ℓ!
Vi<j1j2...jℓ>r̂

<j1 . . . r̂jℓ>
]

=
Nd,ℓ|Sd−1|

ℓ!
Vi<i1i2...iℓ>Vi<i1i2...iℓ> ,

(B.53)

true for arbitrary V and V with constant cartesian components. It then follows that the

orthonormality of VI
αℓm⃗ can then be cast in terms of STF tensors as

Nd,ℓ|Sd−1|
ℓ!

V∗i<i1i2...iℓ>
αℓm⃗′ Vβℓm⃗

i<i1i2...iℓ>
= δαβ δ

m⃗
m⃗′ . (B.54)

Note the same extra factor of Nd,ℓ|Sd−1| which appears in this inner product, as in the

STF inner product for SSHs. With this extra factor, we can then define a vector STF

projector analogous to the scalar STF projector defined in Eq.(A.53):

(ΠV
ij)

<i1i2...iℓ>
<j1j2...jℓ>

≡ Nd,ℓ|Sd−1|
ℓ!

∑
αm⃗

V∗i<i1i2...iℓ>
αℓm⃗ Vαℓm⃗

j<j1j2...jℓ>
. (B.55)

Given the above definition, the orthonormality relation then guarantees the idempotence

of ΠV , i.e., we have

(ΠV
ik)

<i1i2...iℓ>
<k1k2...kℓ>

(ΠV
kj)

<k1k2...kℓ>
<j1j2...jℓ>

= (ΠV
ij)

<i1i2...iℓ>
<j1j2...jℓ>

. (B.56)

As we shall see later, this vector STF projector plays a crucial role in the vector multipole
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expansion for moving particle sources in dS. For this reason, in the rest of this subsection,

we will provide a detailed treatment of this projector. Specifically, we seek explicit

expressions to allow quick computations, as well as a catalogue of useful properties.

As we did for the scalar STF projector, it is convenient to define a projected contrac-

tion

ΠV
ij(r⃗|κ⃗) ≡ ΠV

ji(κ⃗|r⃗) ≡
1

ℓ!
κi1 . . . κiℓ(ΠV

ij)
<j1...jℓ>
<i1...iℓ>

rj1 . . . rjℓ . (B.57)

Using Eq.(B.55), this projected contraction can equivalently be defined via an addition

theorem for VSHs

Nd,ℓ|Sd−1|
∑
αm⃗

V∗α
iℓm⃗(r̂0)V

α
jℓm⃗(r̂) = ΠV

ij(r̂0|r̂)d,ℓ = ΠV
ji(r̂|r̂0)d,ℓ . (B.58)

This is equivalent to the following addition theorem for orthonormal VSHs:

Nd,ℓ|Sd−1|
∑
αm⃗

V∗α
Iℓm⃗(r̂0)V

α
Jℓm⃗(r̂) = ΠV

IJ(r̂0|r̂)d,ℓ = ΠV
JI(r̂|r̂0)d,ℓ . (B.59)

An appropriate push-forward relates these two formulae:

ΠV
ij(r̂0|r̂)d,ℓ =

1

rr0

∂x0i
∂θI0

∂xj
∂θJ

ΠIJ
V (r̂0|r̂)d,ℓ . (B.60)

The vector STF projector satisfies the following equations:

∇2←→Π V (r⃗|r⃗0) = ∇2
0

←→
Π V (r⃗|r⃗0) = 0 ,

←−
∇0 ·

←→
Π V (r⃗|r⃗0) =

−→
∇ ·
←→
Π V (r⃗|r⃗0) = 0 ,

r⃗ ·
←→
Π V (r⃗|r⃗0) =

←→
Π V (r⃗|r⃗0) · r⃗0 = 0 ,

(B.61)

where the cartesian tensor
←→
Π V (r⃗|r⃗0) is defined via

←→
Π V (r⃗|r⃗0) ≡ ΠV

ij(r̂|r̂0)êi ⊗ êj, and left

arrow signifies vector dot product acting on the second index. Upto an overall normali-

sation,
←→
Π V (r⃗|r⃗0) is the unique tensor that is homogeneous of degree ℓ in both r⃗ and r⃗0,

as well as satisfying the above equations. We will now argue that the normalisation of
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ΠV can be fixed via the following relation:

δijΠV
ij(r⃗|r⃗0) =

NV
HH(d, ℓ)

NHH(d, ℓ)
ΠS(r⃗|r⃗0)d,ℓ =

ℓ(ℓ+ d− 2)

(ℓ+ 1)(ℓ+ d− 3)
(d− 2)ΠS(r⃗|r⃗0)d,ℓ . (B.62)

First, for purely symmetry reasons, we should have δijΠV
ij ∝ ΠS. The reason is as follows:

the combination δijΠV
ij is a ℓth degree harmonic polynomial in r⃗ and r⃗0, invariant under

simultaneous rotation of r⃗ and r⃗0 and any such object should be proportional to ΠS. The

constant of proportionality can then be fixed by comparing the integral

1

Nd,ℓ|Sd−1|

∫
Sd−1

δijΠV
ij(r̂|r̂) =

∑
αm⃗

∫
Sd−1

V∗α
iℓm⃗(r̂)V

iα
ℓm⃗(r̂) = NV

HH(d, ℓ) , (B.63)

against the integral

1

Nd,ℓ|Sd−1|

∫
Sd−1

ΠS
d,ℓ(r̂|r̂) =

∑
m⃗

∫
Sd−1

Y ∗
ℓm⃗(r̂)Yℓm⃗(r̂) = NHH(d, ℓ) . (B.64)

With this normalisation fixed, we have established Eqs.(B.61) and (B.62), which then

serve to uniquely define ΠV . With this normalisation, we also have the following over-

completeness relation for STF VSHs:

1

Nd,ℓ|Sd−1|

∫
r̂∈Sd−1

ΠV
ij(r̂1|r̂)ΠV

jk(r̂|r̂2)

= Nd,ℓ|Sd−1|
∑
α1m⃗1

∑
α2m⃗2

V∗iα1

ℓm⃗1
(r̂1)V

iα2

ℓm⃗2
(r̂2)

∫
r̂∈Sd−1

Vα1

iℓm⃗1
(r̂)V∗iα2

ℓm⃗2
(r̂)

= Nd,ℓ|Sd−1|
∑
αm⃗

V∗iα
ℓm⃗ (r̂1)V

iα
ℓm⃗(r̂2) = ΠV

ik(r̂1|r̂2) .

(B.65)

We will now use the above properties to explicitly construct ΠV . To this end, we re-

mind the reader of our construction of the orthonormal VSHs via second-order differential

operators on orthonormal SSHs. We will now employ a similar construction to derive the

vector STF projector in terms of the scalar STF projector. We will start with the ansatz

that ΠV
ij(r⃗|r⃗0) = ∆ijΠ

S(r⃗|r⃗0)d,ℓ with ∆ij being a 2-derivative operator in r⃗. Since both

ΠS(r⃗|r⃗0)d,ℓ as well as ΠV
ij(r⃗|r⃗0) have the same homogeneity (i.e., they are both of degree

ℓ in r⃗), the derivative should not change the number of x’s in each term. This leaves us
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with four possibilities:

δij , xj∂i , xi∂j , x
2∂i∂j . (B.66)

Here, we have used the fact that when acting on a homogeneous polynomial, the operator

xi∂i reduces to a number.

Next, we impose the constraint that xiΠV
ij(r⃗|r⃗0) = 0, which in turn implies that only

the following two combinations can occur in ∆ij:

ℓδij − xj∂i , (ℓ− 1)xi∂j − x2∂i∂j . (B.67)

Finally, imposing that ΠV
ij(r⃗|κ⃗)d,ℓ should be divergence-free in its first index, we conclude

that only one combination is admissible, viz.,

∆ij ∝
{
ℓ δij − xj∂i −

1

ℓ+ d− 3
[(ℓ− 1) xi − x2∂i]∂j

}
. (B.68)

As a consistency check of our ansatz, one may also check that this yields a harmonic

tensor in r⃗. Fixing the normalisation via Eq.(B.62), we then obtain

ΠV
ij(r⃗|r⃗0)d,ℓ ≡ ∆ijΠ

S(r⃗|r⃗0)d,ℓ

≡ 1

ℓ+ 1

{
ℓ δij − xj∂i −

1

ℓ+ d− 3
[(ℓ− 1) xi − x2∂i]∂j

}
ΠS

d,ℓ(r⃗|r⃗0) .
(B.69)

The ∆ij is also a toroidal operator similar to the ones described in §§B.1. Using the series

form of ΠS, and performing the derivatives, we obtain the following form for the VSH

projector:

ΠV
ij(r⃗|r⃗0)d,ℓ ≡

1

(ℓ+ 1)(ℓ+ d− 3)

⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(
−r

2
0r

2

4

)k

×
{
δij
[
ℓ(ℓ+ d− 2)− (ℓ− 2k)2

] (r⃗0 · r⃗)ℓ−2k

(ℓ− 2k)!
− (d− 2) x0ixj

(r⃗0 · r⃗)ℓ−2k−1

(ℓ− 2k − 1)!

+
[
−(xix0j + x0ixj)(r⃗0 · r⃗) + δij(r⃗0 · r⃗)2 + r20xixj + r2x0ix0j

] (r⃗0 · r⃗)ℓ−2k−2

(ℓ− 2k − 2)!

}
.

(B.70)

A more useful form is obtained by grouping together the terms above to make transver-
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sality manifest:

ΠV
ij(r⃗|r⃗0)d,ℓV j =

1

ℓ+ 1

{
(r⃗0 · r⃗)ℓ−1

(ℓ− 1)!
[x · (x0 ∧ V )]i

− [r2V⊥i − xi(r⃗ · V⃗⊥)]
ℓ+ d− 3

⌊ ℓ
2
⌋−1∑

k=0

Γ (ν − k)
k! Γ (ν)

(
−r

2
0r

2

4

)k
(r⃗0 · r⃗)ℓ−2k−2

(ℓ− 2k − 2)!

−r
2

4

[(r⃗0 · r⃗)V⊥i − x0i(r⃗ · V⃗⊥)]
(ℓ+ d− 3)

×
⌊ ℓ
2
⌋∑

k=1

Γ (ν − k)
k! Γ (ν)

(
−r

2
0r

2

4

)k−1
(r⃗0 · r⃗)ℓ−2k−1

(ℓ− 2k − 1)!
(ℓ+ d− 3− 2k)

}
ν=ℓ+ d

2
−1

.

(B.71)

Here, we have used the notation

(x0 ∧ V )ij ≡ x0iVj − x0jVi , V⊥i ≡ [x0 · (x0 ∧ V )]i = r20Vi − (x0 · V )x0i (B.72)

to simplify our expressions. The formula above is manifestly transverse to r⃗ in the first

index and r⃗0 in the second index. The simplest case is where we take r⃗0 = êd and V⃗ = êd−1

where êi are the cartesian basis vectors in Rd. The above formula then simplifies to

ΠV
i,d−1(r⃗|êd)

∂

∂xi
= NV

HH(d, ℓ) Nd,ℓ

× 1

d− 1

[
rℓ−1Pℓ−1

(
d+ 2,

xd
r

){
xd

∂

∂xd−1

− xd−1
∂

∂xd

}
+
(ℓ− 1)(ℓ+ d− 1)

(d+ 1)(d− 2)
rℓ−2Pℓ−2

(
d+ 4,

xd
r

) d−2∑
j=1

xj

{
xd−1

∂

∂xj
− xj

∂

∂xd−1

}]
,

(B.73)

where NV
HH(d, ℓ) is the number of VSHs of degree ℓ on Sd−1 (See Eq.(B.46)). We recognise

here the appearance of the SO(d− 2) invariant harmonic vector field obtained by push-

forward of the most symmetric VSH (see Eq.(B.37)). This is then the vector analogue of

the statement that the scalar projector is proportional to the Legendre harmonic, i.e.,

ΠS
d,ℓ(r⃗|êd) = Nd,ℓNHH(d, ℓ)r

ℓPℓ

(
d,
xd
r

)
. (B.74)

This follows directly from Eq.(A.51).
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B.3 VSH projector using Young tableau methods

In the last section, we remarked that VSHs correspond to irreducible cartesian tensors of

SO(d) with the symmetry of their indices specified by the Young tableau

i1 i2 i3 . . . iℓ−1 iℓ

i

.

For SO(d), irreducible representations are obtained by Young tableaux with the number

of rows less than d
2
. This gives all irreducible tensor representations, except the SO(2n)

tensors with self-dual or anti-self-dual form indices (which correspond to reducible tableau

with exactly d
2

rows).

We remind the reader how such a tableau should be interpreted in the context of

SO(d): the rows of the tableau indicate symmetrisation+trace-removal, and the columns

indicate anti-symmetrisation. These two steps are done sequentially, then give an irre-

ducible tensor with an appropriate symmetry. Given a Young tableau, standard theorems

in SO(d) representation theory give formulae for dimension, character, Clebsh-Gordon

decomposition, etc., of the corresponding irreducible representation. As an example, if

nα is the number of boxes in the αth row, the dimension of the corresponding SO(d) irrep

is [170](eqns. (3.1) and (3.2))

⌊ d
2
⌋∏

α>β|α,β=1

(α− nα)− (β − nβ)

α− β
×

⌊ d
2
⌋∏

α≥β|α,β=1

d− (α− nα)− (β − nβ)

d− α− β
(B.75)

for odd d. For even d, a similar formula holds provided we drop all the α = β terms in

the second product. The structure of these products is such that only non-empty rows

contribute to β: if βth row is empty (i.e., if nβ = 0) so is the αth row (i.e., nα = 0), and

the contribution to the product is unity.

As an example, we can count the number of SSHs at a given d and ℓ by taking n1 = ℓ

and n2 = . . . = n⌊ d
2
⌋ = 0. The two product factors become

2− (1− ℓ)
1

3− (1− ℓ)
2

. . .
⌊d
2
⌋ − (1− ℓ)
⌊d
2
⌋ − 1

=

(
ℓ+ ⌊d

2
⌋ − 1

ℓ

)
, (B.76)
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and

d− 2(1− ℓ)
d− 2

d− 2− (1− ℓ)
d− 2− 1

d− 3− (1− ℓ)
d− 3− 1

. . .
d− ⌊d

2
⌋ − (1− ℓ)

d− ⌊d
2
⌋ − 1

=
2ℓ+ d− 2

d− 2

(
ℓ+ d− 3

ℓ

)(
ℓ+ ⌊d

2
⌋ − 1

ℓ

)−1

.

(B.77)

Here, we have indicated by red the α = β factor present only in odd d. The net product

then matches with the explicit count of SSHs given in Eq.(A.20). In a similar vein, we

can count spin-s spherical harmonics by taking

n1 = ℓ, n2 = s, n3 = . . . = n⌊ d
2
⌋ = 0 . (B.78)

A similar count as above, performed separately in odd vs even dimensions, gives the

number of spin-s spherical harmonics as

N
(s)
HH(d, ℓ) ≡

(2ℓ+ d− 2)(2s+ d− 4)(ℓ− s+ 1)(ℓ+ s+ d− 3)

(d− 2)(d− 4)(ℓ+ 1)(ℓ+ d− 3)

(
ℓ+ d− 3

ℓ

)(
s+ d− 5

s

)
=

(2s+ d− 4)(ℓ− s+ 1)(ℓ+ s+ d− 3)

(d− 4)(ℓ+ 1)(ℓ+ d− 3)

(
s+ d− 5

s

)
NHH(d, ℓ) .

(B.79)

As for VSHs, we can set s = 1 in the above formula and recover Eq.(B.46).

The Young tableau methods can also be used to derive the VSH projector (up to

an overall normalisation). In the rest of this subsection, we will review some of the

Young tableau based methods existing in the literature. No new results are derived here,

however, so an uninterested reader may safely skip this subsection.

Young-symmetriser

We will follow the recent works by Henry, Faye and Blanchet(HFB) [161] as well as

Amalberti, Larrouturou and Yang(ALY) [162] to construct the projector corresponding

to the above tableau. We begin with the following definition of the trace-free projector
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(see Eq.(A6) of ALY or 2nd line of Eq.(A4) of HFB):

TF[V ax<i1xi2 . . . xiℓ>] ≡ V ax<i1xi2 . . . xiℓ>

− ℓ(ν − 1)

(ℓ+ d− 3)ν
STFi1...iℓ [δ

aiℓVbx
<i1xi2 . . . xiℓ−1xb>]

≡ V ax<i1xi2 . . . xiℓ>

− ℓ(ν − 1)

(ℓ+ d− 3)ν
Symi1...iℓ

[δaiℓVbx
<i1xi2 . . . xiℓ−1xb>]

+
1

2

ℓ(ℓ− 1)

(ℓ+ d− 3)ν
Symi1...iℓ

[δiℓiℓ−1Vbx
<i1xi2 . . . xiℓ−2xaxb>] .

(B.80)

Here ν ≡ ℓ+ d
2
−1 and STF/Sym denote the STF/symmetric projector onto its subscript

indices, respectively. This trace-free projection is the first step in the construction of the

VSH projector.

To understand the relation of this trace-free projector in our language, we define the

following polynomial vector field

Ua ≡ 1

ℓ!
κi1 . . . κiℓTF[V ax<i1xi2 . . . xiℓ>]

≡ V aΠS
d,ℓ(κ⃗|r⃗)

− κa ν − 1

(ℓ+ d− 3)ν
× 1

(ℓ− 1)!
κi1 . . . κiℓ−1

Vbx
<i1xi2 . . . xiℓ−1xb>

+
κ⃗2

2

1

(ℓ+ d− 3)ν
× 1

(ℓ− 2)!
κi1 . . . κiℓ−2

Vbx
<i1xi2 . . . xiℓ−2xaxb>

= V b

{
δab −

ν − 1

(ℓ+ d− 3)ν
κa

∂

∂κb
+
κ⃗2

2

1

(ℓ+ d− 3)ν

∂2

∂κa∂κb

}
ΠS

d,ℓ(κ⃗|r⃗) .

(B.81)

We will now show that TF is indeed the trace-free projector as claimed by ALY, i.e., we

have

δaiℓTF[V ax<i1xi2 . . . xiℓ>] = 0 . (B.82)
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In our notation, this is equivalent to the assertion that ∂Ua

∂κa
= 0. From the

∂Ua

∂κa
= V b ∂

∂κa

{
δab −

ν − 1

(d+ ℓ− 3)ν
κa

∂

∂κb
+
κ⃗2

2

1

(d+ ℓ− 3)ν

∂2

∂κa∂κb

}
ΠS

d,ℓ(κ⃗|r⃗)

=

{
1− ν − 1

(d+ ℓ− 3)ν

(
κa

∂

∂κa
+ d

)
+

1

(d+ ℓ− 3)ν

(
κa

∂

∂κa

)}
V b ∂

∂κb
ΠS

d,ℓ(κ⃗|r⃗) .

(B.83)

We have used the harmonicity of ΠS
d,ℓ(κ⃗|r⃗) to simplify the last term in the last line. Since

V b ∂
∂κb

ΠS
d,ℓ is a homogeneous polynomial in κ of degree (ℓ− 1), we can use Euler’s homo-

geneous function theorem to replace all κa ∂
∂κa

above by (ℓ − 1). With this replacement,

the prefactor above vanishes, showing that TF is indeed the trace-free projector.

A similar computation yields

∇2
κU

a = V b

{
−2 ν − 1

(d+ ℓ− 3)ν

∂2

∂κa∂κb
+

1

(ℓ+ d− 3)ν

(
2κc

∂

∂κc
+ d

)
∂2

∂κa∂κb

}
ΠS

d,ℓ(κ⃗|r⃗)

= 0 .

(B.84)

Thus, the vector field Ua is a harmonic, divergence-free vector field in the κi variables.

This, in turn, implies that Ua is a linear combination of the gradient of HHPs and toroidal

vector fields. The gradient part has to be subtracted to get an irreducible tensor: as we

shall see shortly, removing this gradient is equivalent to anti-symmetrisation imposed by

the first column of the Young tableau.

The gradient part can be isolated by looking at the radial component

κaU
a = V b

{
κb −

κ⃗2

2ν

∂

∂κb

}
ΠS

d,ℓ(κ⃗|r⃗) . (B.85)

Removing this gradient then gives a toroidal vector field

Ua
⊥ ≡ (ℓ+ 1)Ua − ∂

∂κa
[κbU

b]

= V b

{
ℓδab − κb

∂

∂κa
− ℓ− 1

ℓ+ d− 3
κa

∂

∂κb
+

κ⃗2

ℓ+ d− 3

∂2

∂κa∂κb

}
ΠS

d,ℓ(κ⃗|r⃗)

= (ℓ+ 1)ΠV
ab(κ⃗|r⃗)V b ,

(B.86)

where we have used our formula for ΠV derived in Eq.(B.69). From the definition of Ua,
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we also have

Ua
⊥ ≡ (ℓ+ 1)Ua − ∂

∂κa
[κbU

b] = ℓUa − κb
∂U b

∂κa
= κb

(
∂Ua

∂κb
− ∂U b

∂κa

)
=

1

(ℓ− 1)!
κi1 . . . κiℓ−1

κb
(
δbiℓTF[V ax<i1xi2 . . . xiℓ>]− δaiℓTF[V bx<i1xi2 . . . xiℓ>]

)
=

1

(ℓ− 1)!
κi1 . . . κiℓ−1

κb Antiab
[
TF[V ax<i1xi2 . . . xiℓ−1xb>]

]
.

(B.87)

Comparing, we get

ℓ+ 1

ℓ
ΠV

ab(κ⃗|r⃗)V b =
1

ℓ!
κi1 . . . κiℓ Antiaiℓ

[
TF[V ax<i1xi2 . . . xiℓ>]

]
. (B.88)

Stripping off the dummy κ factors, we obtain the following relation

(ΠV )i<i1i2...iℓ>
j<j1j2...jℓ>

V jxj1xj2 . . . xjℓ =
1

ℓ+ 1
Antiii1

[
TF[V ix<i1xi2 . . . xiℓ>]

]
+

1

ℓ+ 1
Antiii2

[
TF[V ix<i1xi2 . . . xiℓ>]

]
+ . . .+

1

ℓ+ 1
Antiiiℓ

[
TF[V ix<i1xi2 . . . xiℓ>]

]
.

(B.89)

This is then the crucial relation we are after: it connects our vector projector to the

sequential process of trace-removal followed by anti-symmetrisation. This relation can

also be used to compare the results quoted in [161,162] against our expressions.

VSH projector via weight shifting operators

We will next describe a slightly different route to constructing the projector using Young

tableau- the method of weight-shifting operators [171, 172]. We will first state here the

general algorithm behind this method without proof, and then apply it to the special

case of vector projector.3

Say we need a projector for a representation corresponding to an arbitrary Young

tableau with h rows. Then we proceed as follows

• We first introduce h number of cartesian positions: say we denote them by xi,α

corresponding to the αth row. We will call xi,α as the αth row position.

3We would like to thank Arnab Rudra and Kushal Chakraborty for explaining this method to us and
sharing with us their notes on this subject.
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• Next, we construct a seed polynomial, which is a product of factors, one factor for

each column. The factor for a column is the completely anti-symmetric polynomial

of the row positions, made out of all the rows which contribute to that column (see

below for how this works for toroidal harmonic vector fields). The seed polynomial

of a tableau with n boxes is hence a polynomial of total homogeneity n. Further,

the degree of homogeneity in each row position is the number of boxes in that row.

• The third step is to apply a weight-shifting differential operator on this seed poly-

nomial. The weight-shifting differential operator is given by the matrix product of

derivative operators, one each for every row. The d × d matrix of derivatives for

αth row is given by

(
δjk −

xj,α
Nα

∂

∂xk,α

)
(B.90)

where Nα ≡ d− 1− h+ nh − α+ nα with nα denoting the number of boxes in αth

row. The only exception is the last row, for which we take a d × 1 column matrix

of derivatives of the form

(
δjp −

xj,h
Nh − 1

∂

∂xp,h

)
∂

∂xp,h
. (B.91)

The product of the square matrices with this column matrix then yields a d × 1

column matrix of derivative operators.

• The fourth step is to apply the projector corresponding to a Young tableaux with

one less box in the last row.

The claim is that the resultant polynomial gives a recursive construction for the required

projector (up to some overall normalisation). We will refer the reader to [172] for a

more detailed exposition of this algorithm with a variety of examples. Our interest is in

applying this to the Young tableaux

i1 i2 i3 . . . iℓ−1 iℓ

i

corresponding to VSHs. For this case, we have h = 2, nh = 1 so that d−1−h+nh = d−2

and the numbers N1 = ℓ+d−3 and N2 = d−3. Projector applied after the weight-shifting
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operator is determined by the tableau with the i box removed:

i1 i2 i3 . . . iℓ−1 iℓ

This is the tableau for symmetric trace-free tensors, and the final projector needed is just

the SSH projector ΠS.

Let us begin by assigning the row positions xi and yi corresponding to the two rows

of the tableaux above. The seed polynomial is then given by

x[i1yi]xi2 . . . xiℓ = (xi1yi − xiyi1)xi2 . . . xiℓ . (B.92)

Here, the first anti-symmetric factor corresponds to the first column, whereas the rest of

the monomials are contributions from the rest of the columns.

The weight shifting differential operator is a column of derivative operators given by

(
δjk −

xj

ℓ+ d− 3

∂

∂xk

)(
δkp −

yk

d− 4

∂

∂yp

)
∂

∂yp
. (B.93)

Since the seed polynomial in this case is linear in y, we can drop all the second derivatives

in y to simplify this to

(
δjk −

xj

ℓ+ d− 3

∂

∂xk

)
∂

∂yk
. (B.94)

The fourth step involves the projector of a smaller Young tableaux: in this case, this is

just the scalar projector that can be realised via STF projecting the differential operator

on xi. To summarise, the weight-shifting algorithm gives the following expression for the

VSH projector:

(ΠV )i<i1...iℓ>
j<j1...jℓ>

xj1xj2 . . . xjℓ

∝

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1(

δjp −
xj

ℓ+ d− 3

∂

∂xp

)
∂

∂yp
[x[i1yi]xi2 . . . xiℓ ].

(B.95)

We will now prove this relation and determine the proportionality constant. It is easier to

work with the form obtained by contracting the free STF indices with a dummy variable
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and differentiating, viz.,

1

ℓ!

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1(

δjp −
xj

ℓ+ d− 3

∂

∂xp

)
[δip(κ⃗ · r⃗)ℓ − xiκp(κ⃗ · r⃗)ℓ−1]

=
1

ℓ!

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1(

δij(κ⃗ · r⃗)ℓ − xiκj(κ⃗ · r⃗)ℓ−1 − (ℓ− 1)κixj

ℓ+ d− 3
(κ⃗ · r⃗)ℓ−1 + (ℓ− 1)

κ2xixj

ℓ+ d− 3
(κ⃗ · r⃗)ℓ−2

)
.

(B.96)

This form can be converted to a more familiar form by rewriting it in terms of κ derivatives

as  ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1

1

ℓ

(
ℓδij − κj

∂

∂κi
− (ℓ− 1)

ℓ+ d− 3
κi

∂

∂κj
+

κ2

ℓ+ d− 3

∂2

∂κi∂κj

)
(κ⃗ · r⃗)ℓ

ℓ!

=
1

ℓ

(
ℓδij − κi

∂

∂κj
− (ℓ− 1)

ℓ+ d− 3
κj

∂

∂κi
+

κ2

ℓ+ d− 3

∂2

∂κi∂κj

)
ΠS(κ⃗|r⃗) .

(B.97)

We recognise here the derivative operator mapping SSH projector to VSH projector (see

Eq.(B.69)). We have thus proved that

ℓ+ 1

ℓ
ΠV

ij(κ⃗|r⃗) =
1

ℓ!
κi1κi2 . . . κiℓ

×

 ⌊ ℓ
2
⌋∑

k=0

Γ (ν − k)
k! Γ (ν)

(r
2

)2k
(−∇2)k


ν= d

2
+ℓ−1(

δjp −
xj

ℓ+ d− 3

∂

∂xp

)
∂

∂yp
[x[i1yi]xi2 . . . xiℓ ].

(B.98)

This is an especially succinct formula for the VSH projector. The above derivation also

shows the crucial difference between the weight-shifting method vs the method of toroidal

operator acting on ΠS: in the weight-shifting case, the SSH projection is done at the very

end. Such an exercise can hopefully be generalised to give a closed-form expression for
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spin-s projectors.
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Appendix C

Electromagnetic Radiation in Flat

Spacetime

This appendix describes the multipole expansion for Maxwell’s theory in d+1 dimensional

flat space. Our primary motivation is to have a benchmark to compare the H → 0 limit of

our dS expressions. We will emphasise two ways to think about multipole expansion: first

in terms of orthonormal spherical harmonics, and second in terms of symmetric trace-free

(STF) cartesian tensors. Both these formalisms have their own advantage, and both of

them are necessary to compute radiation reaction in de Sitter.

The d = 3 version of orthonormal multipoles is standard and is described in clas-

sic textbooks and articles [114, 153–155, 173–178]. The normalisations and conventions,

however, differ from one reference to the other, and often even within the same text-

book between statics and radiation. Discussion in most references is also incomplete in a

variety of ways, e.g., they often do not describe what fields look like within sources.

The STF multipoles in EM are discussed mainly in gravitational wave literature [151,

160] where STF tensors are used widely. We did not find any reference systematically

describing the relation between these two kinds of multipoles, especially at the level of

detail needed for our work.1 Our goal here is to clearly describe the connection between

the two kinds of multipoles in flat space EM: corresponding objects in dS can then be

understood as a generalisation. For the convenience of the reader, we provide a detailed

1The relation is straightforward in electrostatics, where only scalar spherical harmonics are involved:
see Kip-Thorne’s review [159], appendix A of [179], the textbook by Poisson-Will [144]), or the book by
Soffel-Han [180].The references [181, 182] discuss applications to celestial mechanics, and [183] describe
the effects of gravitational vector moments. What we did not find is a similar discussion of the conversion
rules for magnetostatics and beyond.
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comparison between d = 3 normalisations in §C.9.

The discussion of multipoles for general dimensional EM can be found in [85,149,162].

The main novelty in general d is the fact that the magnetic field Bij is a 2-form and is

no more a pseudo-vector field. All references cited above emphasise the STF viewpoint.2

We will show here that the results of the previous appendix §B can be used to give a

description of both STF and orthonormal multipole moments in general d.

C.1 Multipole expansion in statics I : toroidal currents

Magnetic fields due to toroidal currents

Let us begin with the simpler setting of magnetostatics and then generalise to time-

dependent situations involving magnetic multipole radiation. Consider the following

problem in magnetostatics: imagine a steady toroidal charge current, i.e., a constant,

divergence-free current that flows everywhere tangentially to a thin spherical shell of

radius R. Explicitly, we take a charge current density of the form

J̄r = 0 , J̄ I(r⃗) = δ(r −R) KI(r̂) = δ(r −R)
∑
αℓm⃗

KI
αℓm⃗(r̂) , (C.1)

where the index I denotes the sphere directions and {α, ℓ, m⃗} label an orthonormal basis

of divergence-free vector fields on Sd−1 denoted by VI
αℓm⃗(r̂). We will find it convenient to

take VI
αℓm⃗(r̂) to be an orthonormal basis of Vector Spherical Harmonics(VSHs) on Sd−1,

i.e.,

[
D2 + ℓ(ℓ+ d− 2)− 1

]
VI
αℓm⃗ = 0 , DIV

I
αℓm⃗ = 0 ,

∫
Sd−1

γIJVI∗
α′ℓ′m⃗′VJ

αℓm⃗ = δα′αδℓ′ℓδm⃗′m⃗ .

(C.2)

Here γIJ is the standard metric on Sd−1 and DI is the corresponding covariant derivative.

We will also define VSH with lower indices as Vαℓm⃗
I ≡ γIJVJ

αℓm⃗, i.e., in our conventions,

the VSH indices will always be lowered using the unit sphere metric rather than the

spacetime metric. To avoid confusion, all other raising and lowering of sphere indices

will be written out explicitly using the unit sphere metric. We will also need the VSH

2The reference [149] takes a hybrid viewpoint, but its treatment of VSHs is closer to the cartesian
STF approach.
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addition theorem (see the discussion around Eq.(B.59))

Nd,ℓ|Sd−1|
∑
αm⃗

V∗αℓm⃗
I (r̂0) Vαℓm⃗

J (r̂) = ΠV
IJ(r̂0|r̂) = ΠV

JI(r̂|r̂0) , (C.3)

where |Sd−1| is the volume of Sd−1 and Nd,ℓ is an inverse integer given by

|Sd−1| ≡ 2π
d
2

Γ(d
2
)
, Nd,ℓ ≡

(d− 2)!!

(d+ 2ℓ− 2)!!
. (C.4)

Further details about VSHs are explained in appendix B, but they do not matter for

present purposes. It suffices to note that we can decompose the surface current KI into

terms proportional to VSHs, i.e., we assume KI
αℓm⃗(r̂) ∝ VI

αℓm⃗(r̂). The coefficients in these

decompositions can be determined using the orthonormality of VSHs:

KI
αℓm⃗(r̂) ≡ VI

αℓm⃗(r̂)

∫
r̂0∈Sd−1

[Vαℓm⃗
J (r̂0)]

∗KJ(r̂0) . (C.5)

The advantage of such a decomposition is that we can solve for the magnetic field due

to each component quite easily. The final answer is then obtained by superposition.

Since the symmetry properties of each VSH under SO(d) rotation is different, the vector

potential Vµ produced by KI
αℓm⃗ should be proportional to KI

αℓm⃗ upto an r dependent

pre-factor.

Further, since the equation for this radial pre-factor can only depend on the eigenvalue

of the spherical laplacian, the r-dependent factor can only depend on ℓ, i.e., we can take

Vr = 0 , VI =
∑
ℓ

fℓ(r)
∑
m⃗α

γIJK
J

αℓm⃗ . (C.6)

This vector potential automatically satisfies the Coulomb gauge condition. Using the

above ansatz, Maxwell equations can all be reduced to a single vector Poisson equation

of the form3

− 1

rd−1
∂r[r

d−3∂rVI ] +
1

r4
(−D2 + d− 2)VI = γIJ J̄

J . (C.7)

3We work in SI units and set the Maxwell coupling gEM =
√
µ0 = 1. While it is not relevant to the

magnetostatics discussion, we will also set c = 1 when we later discuss radiation.

171



For VI varying as ℓth VSH, we can replace −D2 by ℓ(ℓ+ d− 2)− 1. Since

ℓ(ℓ+ d− 2)− 1 + d− 2 = (ℓ+ 1)(ℓ+ d− 3) ,

we conclude that, away from the spherical shell, fℓ(r) should vary as rℓ+1 or as r−(ℓ+d−3).

We should stitch together these two solutions continuously with an appropriate derivative

discontinuity given by the current. We obtain the final answer

Vr = 0 , VI =
∑
ℓm⃗α

R3γIJK
J

αℓm⃗

2ℓ+ d− 2

[
rℓ+1

Rℓ+1
Θ(r < R) +

Rℓ+d−3

rℓ+d−3
Θ(r > R)

]
. (C.8)

It is instructive to rewrite this answer in terms of the original data, i.e., the currents

before decomposition into VSHs. This can be done by using Eq.(C.5). We get

VI =

∫
r̂0∈Sd−1

∑
ℓ

[
rℓ+1

Rℓ+1
Θ(r < R) +

Rℓ+d−3

rℓ+d−3
Θ(r > R)

] ∑
m⃗α Vαℓm⃗

I (r̂)Vαℓm⃗∗
J (r̂0)

2ℓ+ d− 2
R3K

J
(r̂0)

=
∑
ℓ

[
rℓ+1

Rℓ+1
Θ(r < R) +

Rℓ+d−3

rℓ+d−3
Θ(r > R)

]
1

Nd,ℓ|Sd−1|

∫
r̂0∈Sd−1

ΠV
IJ(r̂|r̂0)d,ℓ
2ℓ+ d− 2

R3K
J
(r̂0) .

(C.9)

Here, we have used the VSH addition theorem at the second step.

Equivalently, we can rewrite this expression in terms of the full current density of the

spherical shell, i.e.,

VI =

∫
r⃗0

∑
ℓ

GB(r, r0; ℓ)

Nd,ℓ|Sd−1|
ΠV

IJ(r̂|r̂0)d,ℓJ̄J(r⃗0) with

GB(r, r0; ℓ) ≡
1

2ℓ+ d− 2

{
rℓ+1

rℓ+d−3
0

Θ(r < r0) +
rℓ+1
0

rℓ+d−3
Θ(r > r0)

}
.

(C.10)

This expression is, in fact, applicable to a more general toroidal current distribution of

the form

J̄r = 0 , J̄ I =
∑
αℓm⃗

J̄V (r, α, ℓ, m⃗)VI
αℓm⃗(r̂) . (C.11)

As such, an arbitrary current distribution can be thought of as built from infinitely

many thin spherical current sheets. The principle of superposition implies then that the

resultant vector potential is still given by Eq.(C.10). The corresponding static magnetic
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fields are given by

CrI =

∫
r⃗0

∑
ℓ

∂rGB(r, r0; ℓ)

Nd,ℓ|Sd−1|
ΠV

IJ(r̂|r̂0)d,ℓJ̄J(r⃗0) ,

CIJ =

∫
r⃗0

∑
ℓ

GB(r, r0; ℓ)

Nd,ℓ|Sd−1|
D[IΠ

V
J ]K(r̂|r̂0)d,ℓJ̄K(r⃗0) .

(C.12)

Here we use the notation A[IBJ ] ≡ AIBJ − AJBI . For future comparison, we will also

write the decomposition into orthonormal VSHs:

Vr = 0 , VI ≡
∑
ℓm⃗α

Φ
B
(r, α, ℓ, m⃗)Vαℓm⃗

I (r̂) ,

CrI ≡
∑
ℓm⃗α

Hv(r, α, ℓ, m⃗)Vαℓm⃗
I (r̂) , CIJ ≡

∑
ℓm⃗α

Hvv(r, α, ℓ, m⃗)D[IV
αℓm⃗
J ] (r̂) .

(C.13)

Thus, knowing the scalar field Φ
B

for every spherical mode is sufficient to characterise

the magnetic field. We will call Φ
B

as the magnetic Debye field. The field strength can

then be determined via

Hv = ∂rΦB
, Hvv = Φ

B
. (C.14)

The magnetic Debye field for the most general static current contribution can then be

written as

Φ
B
≡
∫
r⃗0

GB(r, r0; ℓ)V
αℓm⃗∗
I (r̂0)J̄

I(r⃗0) =

∫ ∞

0

dr0 r
d−1
0 GB(r, r0; ℓ)J̄V (r0) , (C.15)

where we have defined J̄V (r0) ≡
∫
r̂0∈Sd−1 Vαℓm⃗∗

I (r̂0)J̄
I(r⃗0).

Multipole expansion outside the sources

The expressions above simplify considerably if we focus on the fields outside the currents.

Defining the spherical magnetic multipole moments via

J
B
(α, ℓ, m⃗) ≡ 1

2ℓ+ d− 2

∫
r⃗0

rℓ+1
0 Vαℓm⃗∗

J (r̂0)J̄
J(r⃗0) , (C.16)
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we can then write the magnetic Debye potential outside the currents as

Φ
Out
B

(r, α, ℓ, m⃗) =
J
B
(α, ℓ, m⃗)

rℓ+d−3
, (C.17)

and the corresponding magnetic field components are given by

H
Out
v (r, α, ℓ, m⃗) = −(ℓ+ d− 3)

J
B
(α, ℓ, m⃗)

rℓ+d−2
, H

Out
vv (r, α, ℓ, m⃗) =

J
B
(α, ℓ, m⃗)

rℓ+d−3
. (C.18)

These expressions constitute the magnetostatic multipole expansion in Rd. We will see

later that the dS multipoles reduce to these expressions in an appropriate limit.

The magnetostatic multipole expansion can also be recast into a cartesian STF form.

To do this, we will sum over the m⃗α indices, multiply by appropriate powers of r and

transform the spherical indices to get a harmonic vector field in Rd. Each cartesian

component of the vector field is then a ℓth degree homogeneous harmonic polynomial in

cartesian coordinates. Such a vector field is of the form

1

ℓ!
BQk<i1i2...iℓ>x

i1 . . . xiℓ , (C.19)

where BQk
<i1i2...iℓ>

is a constant irreducible tensor corresponding to the Young tableaux

i1 i2 i3 . . . iℓ−1 iℓ

k

.

The explicit relation between the magnetic multipole moment tensor and the spherical

magnetic moments is

1

ℓ!
BQk<i1i2...iℓ>x

i1 . . . xiℓ ≡ Nd,ℓ−1|Sd−1|
(
∂xk
∂ϑI

)∑
m⃗α

J
B
(α, ℓ, m⃗)rℓ−1VI

αℓm⃗(r̂) . (C.20)

We have followed here the steps outlined above and included an additional normalisation

factor of Nd,ℓ−1|Sd−1| = (2ℓ + d − 2)Nd,ℓ|Sd−1| for convenience. We will now convert

everything to cartesian basis using (B.60) and

r20γJK(θ0)J
K
(r⃗0) =

∂x0j
∂θJ0

J
j
(r⃗0) . (C.21)
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Further, we sum over (α, m⃗) by invoking addition theorem, and end up with

1

ℓ!
BQk<i1i2...iℓ>x

i1 . . . xiℓ ≡
∫
r⃗0

ΠV
kj(r⃗|r⃗0)J̄ j(r⃗0) , (C.22)

or equivalently,

BQk<i1i2...iℓ> ≡ (ΠV
kj)

<i1i2...iℓ>
<j1j2...jℓ>

∫
r⃗0

xj10 . . . x
jℓ
0 J̄

j(r⃗0) . (C.23)

This equation gives a way to directly compute the cartesian moments from the current

without going through orthonormal VSHs: we only need the vector STF projector con-

structed in Appendix§B.2. We will give explicit expressions for cartesian moments below.

The outside vector potential/magnetic field can be written in terms of the STF mag-

netic moment as4

V
Out
k =

∑
ℓ

1

ℓ!Nd,ℓ−1|Sd−1|
BQk<i1i2...iℓ>

xi1 . . . xiℓ

r2ℓ+d−2
,

C
Out
jk = Antijk

∑
ℓ

1

ℓ!Nd,ℓ−1|Sd−1|
BQj<i1i2...iℓ>[(2ℓ+ d− 2)xkxiℓ − r2ℓδkiℓ ]x

i1 . . . xiℓ−1

r2ℓ+d
.

(C.24)

These expressions give the cartesian multipole expansion for magnetostatics in Rd. It is

conventional in STF literature to rewrite the potential as a derivative of the Newton-

Coulomb potential using

∂i1∂i2 . . . ∂iℓ
{ 1

(d− 2)|Sd−1|rd−2

}
=

(−)ℓ

Nd,ℓ−1|Sd−1|
x<i1 . . . xiℓ>

r2ℓ+d−2
. (C.25)

This formula can be established by direct differentiation and using the harmonicity of

the Newton-Coulomb potential away from the origin. Using this, we can write the vector

potential as a series of derivatives acting on the Newton-Coulomb potential:

V
Out
k =

∑
ℓ

(−)ℓ

ℓ!
∂i1∂i2 . . . ∂iℓ

{ BQk<i1i2...iℓ>

(d− 2)|Sd−1|rd−2

}
. (C.26)

Our derivation here follows closely the EM multipole expansion in d = 3 described in

[86, 175] and the discussion in general d by [85]. The Cartesian multipole expansion in
4Here we use the notation Antijk[Tjk] ≡ Tjk − Tkj for the anti-symmetrisation operator.
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d = 3 can be derived directly without using orthonormal VSHs as shown in [151, 160](

See [162] for a recent generalisation to arbitrary dimensions). Such a method, however,

does not readily generalise to the de Sitter static patch, as there are no static Cartesian

coordinates in dS.

We will conclude our discussion with an explicit formula for STF magnetic moments
BQk<i1...iℓ>. Using the explicit form of the vector STF projector in Eq.(B.71), we can

write

1

ℓ!
BQj<i1...iℓ>κ

i1 . . . κiℓ =
1

ℓ+ 1

∫
r⃗

{
(κ · r)ℓ−1

(ℓ− 1)!
[κ · (x ∧ J̄)]j

− [κ2Īj − κj(κ · Ī)]
ℓ+ d− 3

⌊ ℓ
2
⌋−1∑

k=0

Γ (ν − k)
k! Γ (ν)

(
−κ

2r2

4

)k
(κ⃗ · r⃗)ℓ−2k−2

(ℓ− 2k − 2)!

−κ
2

4

[(κ · r)Īj − (κ · Ī)xj]
(ℓ+ d− 3)

×
⌊ ℓ
2
⌋∑

k=1

Γ (ν − k)
k! Γ (ν)

(
−κ

2r2

4

)k−1
(κ⃗ · r⃗)ℓ−2k−1

(ℓ− 2k − 1)!
(ℓ+ d− 3− 2k)

}
ν=ℓ+ d

2
−1

.

(C.27)

Here κi is a dummy variable introduced to simplify our expressions, and we have used

the notation

(x ∧ J̄)ij ≡ xiJ̄j − xjJ̄i , Īi ≡ [x · (x ∧ J̄)]i = r2J̄i − (x · J̄)xi (C.28)

to simplify our expressions. For the first few ℓs, the above formula evaluates to

BQki1κ
i1 =

1

2!

∫
r⃗

[κ · (x ∧ J̄)]k ,

1

2!
BQk<i1i2>κ

i1κi2 =
2

3!

∫
r⃗

{
(κ · r)[κ · (x ∧ J̄)]k − 1

d− 1
[κ2Īk − κk(κ · Ī)]

}
,

1

3!
BQk<i1i2i3>κ

i1κi2κi3 =
3

4!

∫
r⃗

{
(κ · r)2[κ · (x ∧ J̄)]k − 2

d
(κ · r)[κ2Īk − κk(κ · Ī)]

− d− 2

d(d+ 2)
κ2[(κ · r)Īk − (κ · Ī)xk]

}
,

(C.29)
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1

4!
BQk<i1i2i3i4>κ

i1 . . . κi4 =
4

5!

∫
r⃗

{
(κ · r)3[κ · (x ∧ J̄)]k

−3(d+ 4)(κ · r)2 − κ2r2

(d+ 1)(d+ 4)
[κ2Īk − κk(κ · Ī)]

−3 d− 1

(d+ 1)(d+ 4)
κ2(κ · r)[(κ · r)Īk − (κ · Ī)xk]

}
,

1

5!
BQk<i1i2i3i4i5>κ

i1 . . . κi5 =
5

6!

∫
r⃗

{
(κ · r)4[κ · (x ∧ J̄)]k

−4(d+ 6)(κ · r)3 − κ2r2(κ · r)
(d+ 2)(d+ 6)

[κ2Īk − κk(κ · Ī)]

−32d(d+ 4)(κ · r)2 − (d− 2)κ2r2

(d+ 2)(d+ 4)(d+ 6)
κ2[(κ · r)Īk − (κ · Ī)xk]

}
.

(C.30)

Explicit tensor expressions can then be obtained by repeatedly differentiating the above

formulae with respect to κi to yield explicitly symmetrised expressions. For example, the

STF magnetic dipole/quadrupole tensors are

BQki1 ≡
1

2

∫
r⃗

(x ∧ J̄)i1k ,

BQk<i1i2> ≡
1

3

∫
r⃗

{
(x ∧ J̄)i1kxi2 + (x ∧ J̄)i2kxi1 + 1

d− 1
(Ī i1δki2 + Ī i2δki1 − 2Īkδi1i2)

}
,

(C.31)

whereas the magnetic octopole tensor has the form

BQk<i1i2i3> ≡
1

4

∫
r⃗

{
(x ∧ J̄)i1kxi2xi3 + (x ∧ J̄)i2kxi3xi1 + (x ∧ J̄)i3kxi1xi2

− 3d+ 2

d(d+ 2)
Īk(xi1δi2i3 + xi2δi3i1 + xi3δi1i2) +

d− 2

d(d+ 2)
xk
(
Ī i1δi2i3 + Ī i2δi3i1 + Ī i3δi1i2

)
+
δki1

d
(Ī i2xi3 + Ī i3xi2) +

δki2

d
(Ī i3xi1 + Ī i1xi3) +

δki3

d
(Ī i1xi2 + Ī i2xi1)

}
.

(C.32)
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C.2 Magnetic multipole radiation

The expressions we found in our study of magnetostatics can be readily generalised to

time-dependent toroidal currents. This is best done in frequency domain. The vector

Poisson equation in (C.7) generalises to the vector Helmholtz equation

− 1

rd−3
∂r[r

d−3∂rVI ]− ω2VI +
1

r2
(−D2 + d− 2)VI = r2γ

IJ
JJ , (C.33)

where VI(r⃗, ω) and J I(r⃗, ω) are Fourier transforms of VI(r⃗, t) and J̄ I(r⃗, t) respectively.

More generally, we use overline for functions of time and remove them to denote the

Fourier transforms.

Homogenous spherical waves

Let us begin by finding the homogeneous solution for the above equation by separation of

variables. We are interested in solutions whose angular dependence is given by the VSH

Vαℓm⃗
I . As we will briefly review, the radial dependencies are then controlled by Bessel-like

functions.

For a given (α, ℓ, m⃗), there is a unique solution which is regular everywhere. It is

given by:

rν−
d
2
+2

0F1

[
1 + ν,−ω

2r2

4

]
Vαℓm⃗
I = Γ(1 + ν)

(ω
2

)−ν

r2−
d
2Jν(ωr)V

αℓm⃗
I , (C.34)

where we have defined ν ≡ ℓ + d
2
− 1 to denote the rank of the Bessel function. Here,

we have given two forms of the solution: one in terms of 0F1 and another in terms of the

Bessel function. Although the Bessel form is standard among textbooks, we find the 0F1

notation to be the most convenient. As we shall see below, the 0F1 function above becomes

the time-smearing function used to define multipole moments for extended sources. In

the gravitational wave literature, this 0F1 function often appears in the following integral

form [160,161]

0F1

[
1 + ν,−ω

2r2

4

]
=

∫ 1

−1

dz
Γ (1 + ν)

Γ
(
1
2

)
Γ
(
1
2
+ ν
)(1− z2)ν− 1

2 eiωzr ≡
∫ 1

−1

dz δν− 1
2
(z) eiωzr .

(C.35)

The ‘multipole delta function’ δν− 1
2
(z) gives an even, positive, normalised measure on the
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interval [−1, 1]. The above integral representation then interprets the 0F1 function as a

weighed superposition of time-delays.

There is another solution which is regular everywhere except the origin:

1

rν+
d
2
−2

{
0F1

[
1− ν,−ω

2r2

4

]
− π cot νπ

Γ(ν)Γ(1 + ν)

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
Vαℓm⃗
I

= −
(ω
2

)ν π r2− d
2

Γ(ν)
Yν(ωr)V

αℓm⃗
I .

(C.36)

Here, Yν is the Neumann function: when ν /∈ Z, this solution is obtained from the

regular solution by the replacement ν → −ν and adding an appropriate amount of the

regular solution. The expression in terms of 0F1 should, however be carefully interpreted

whenever ν ≡ ℓ+ d
2
− 1 is an integer (i.e., whenever the number of space dimensions d is

even). When ν is a positive integer, the hypergeometric series for 0F1[1−ν, z] is divergent,

and the cot νπ factor is also divergent. However, these two divergences cancel each other

in the above expression, so the limit ν → Integer exists and converges to the Neumann

function. These statements should be contrasted against the case when d is odd and ν is

a half-integer: in this case, the hypergeometric series for 0F1[1− ν, z] is convergent, and

the factor cot νπ evaluates to zero.

Alternately, one can characterise the solutions according to their behaviours at r =∞,

i.e. either as outgoing or ingoing solutions:

1

rν+
d
2
−2

{
0F1

[
1− ν,−ω

2r2

4

]
±(1± i cot νπ) 2πi

Γ(ν)2
1

2ν

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
Vαℓm⃗
I

= ±i
(ω
2

)ν π r2− d
2

Γ(ν)
H±

ν (ωr)V
αℓm⃗
I

(C.37)

Here, the solution with H+ denotes the outgoing waves, while the H− denotes the incom-

ing waves. Our comments regarding the case where d is even and ν is a positive integer

still apply. Using the identity

(+i)(1 + i cot νπ)

(−i)(1− i cot νπ)
= [e−iπ]2ν , (C.38)
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it can be seen that the two solutions here are related by time-reversal, i.e., under ω 7→

eiπω, the outgoing wave is mapped to the incoming wave, and under ω 7→ e−iπω the

incoming wave is mapped to the outgoing wave. For radiation reaction, we are mainly

interested in outgoing waves whose radial part is given by

GOut
B

(r, ω, ℓ) ≡ 1

rν+
d
2
−2

{
0F1

[
1− ν,−ω

2r2

4

]
+(1 + i cot νπ)

2πi

Γ(ν)2
1

2ν

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
.

(C.39)

When ν is a half-integer, the function GOut
B

can be greatly simplified by the use of

reverse Bessel polynomials. They are defined via

θν− 1
2
(z) ≡

√
π

2
ezzνKν(z)

=
2νΓ(ν)√

2π
ez
{

0F1

[
1− ν, z

2

4

]
+

Γ(−ν)
Γ(ν)

(z
2

)2ν
0F1

[
1 + ν,

z2

4

]}

=

ν− 1
2∑

n=0

zν−
1
2
−n

2nn!

(
ν − 1

2
+ n
)
!(

ν − 1
2
− n

)
!

(C.40)

Here Kν(z) is the Macdonald function, and the second line shows that θν− 1
2
(z) is a poly-

nomial of degree ν − 1
2

with positive integer coefficients, the coefficient of zν−
1
2 being

normalised to unity. Explicit forms of the first few reverse Bessel polynomials are tabu-

lated below:
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Table C.1: θν− 1
2
(z) for various values of ν

ν θν− 1
2
(z)

1
2

1

3
2

1 + z

5
2

3 + 3z + z2 + r2z

7
2

15 + 15z + 6z2 + z3

9
2

105 + 105z + 45z2 + 10z3 + z4

11
2

945 + 945z + 420z2 + 105z3 + 15z4 + z5

13
2

10395 + 10395z + 4725z2 + 1260z3 + 210z4 + 21z5 + z6

Another useful property of the reverse Bessel polynomials evident from the above

table is the value of the constant term in these polynomials

θν− 1
2
(0) = (2ν − 2)!! =

(d− 2)!!

Nd,ℓ−1

. (C.41)

The radial part of the outgoing waves can then be written in the form

GOut
B

(r, ω, ℓ) =
θν− 1

2
(−iωr)

θν− 1
2
(0)

eiωr

rν+
d
2
−2

= Nd,ℓ−1

θν− 1
2
(−iωr)

(d− 2)!!

eiωr

rν+
d
2
−2

(C.42)

for ν ∈ Z+ 1
2
. The large r asymptotics of this outgoing spherical wave is given by taking

the largest power in the reverse Bessel polynomial:

GOut
B

(r, ω, ℓ)→ Nd,ℓ−1
(−iω)ν− 1

2

(d− 2)!!

eiωr

r
d−3
2

as r →∞ . (C.43)

This asymptotic formula also holds for d even and ν ∈ Z, provided the double factorial

for even integers is defined recursively with the convention that 0!! ≡
√

2
π
. For general

ν, we can justify this via the asymptotic expansion of Hankel functions (see https:

//dlmf.nist.gov/10.17):

±i
(ω
2

)ν π r2− d
2

Γ(ν)
H±

ν (ωr)→
(
ω e∓iπ

2

2

)ν− 1
2
√
π

Γ(ν)

e±iωr

r
d−3
2

as r →∞ . (C.44)
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We will conclude this discussion with some useful identities: the raising and lowering

relations for Hankel functions lead to

−1

r

∂

∂r

[
GOut

B
(r, ω, ℓ)

Nd,ℓ−1rℓ+1

]
=
GOut

B
(r, ω, ℓ+ 1)

Nd,ℓrℓ+2
,

1

r

∂

∂r

[
GOut

B
(r, ω, ℓ)

Nd,ℓ−1 r3−d−ℓ

]
= ω2

GOut
B

(r, ω, ℓ− 1)

Nd,ℓ−2 r4−d−ℓ
.

(C.45)

These identities can be used to give the following formulae for the derivative of GOut
B

, i.e.,

∂rG
Out
B

(r, ω, ℓ) = −(ℓ+ d− 3)

r
GOut

B
(r, ω, ℓ) +

ω2

2ℓ+ d− 4
GOut

B
(r, ω, ℓ− 1)

= − (ℓ+ d− 3)GOut
B

(r, ω, ℓ+ 1) +
ℓ+ 1

2ℓ+ d− 2

ω2

2ℓ+ d− 4
GOut

B
(r, ω, ℓ− 1) .

(C.46)

Another useful identity arises from the cartesian version of Eq.(C.45):

−∂i
[
GOut

B
(r, ω, ℓ)

Nd,ℓ−1rℓ+1

]
= xi

GOut
B

(r, ω, ℓ+ 1)

Nd,ℓrℓ+2
, ∂i

[
GOut

B
(r, ω, ℓ)

Nd,ℓ−1 r3−d−ℓ

]
= ω2xi

GOut
B

(r, ω, ℓ− 1)

Nd,ℓ−2 r4−d−ℓ
.

(C.47)

By repeated application of the first identity, we get the following relation, which expresses

the radial part of ℓth spherical wave as a derivative of the ℓ = 0 wave:

(−1)ℓ∂<i1∂i2 . . . ∂iℓ>
{
GOut

B
(r, ω, ℓ = 0)

(d− 2)r

}
=
GOut

B
(r, ω, ℓ)

Nd,ℓ−1rℓ+1
x<i1 . . . xiℓ> . (C.48)

Here we work with the convention that Nd,−1 = (d − 2) which is the correct analytic

extension of Nd,ℓ to negative ℓs. In the above relation, the STF projection on the indices

ensures that the derivatives acting on xis always give zero at every step.

Green function for magnetic radiation

Now that we understand the homogeneous solutions, we can solve the full inhomogeneous

Helmholtz equation in Eq.(C.33) via Green functions. As we did in magnetostatics, we

will begin with an ansatz for the vector potential:

Vt(r⃗, t) = Vr(r⃗, t) = 0 , VI(r⃗, t) ≡
∑
αℓm⃗

∫
ω

e−iωtΦ
B
(r, ω, α, ℓ, m⃗)Vαℓm⃗

I (r̂) (C.49)
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where Φ
B

denotes the frequency domain magnetic Debye field. Substituting this ansatz

into Eq.(C.33), we get a sourced Helmholtz equation for Φ
B
:

− 1

rd−3
∂r[r

d−3∂rΦB
]− ω2Φ

B
+

1

r2
(ℓ+ 1)(ℓ+ d− 3)Φ

B
= r2JV (r, ω) , (C.50)

where the source appearing in the RHS is

JV (r, ω) ≡
∫
r̂∈Sd−1

Vαℓm⃗∗
I (r̂)J I(r⃗, ω) . (C.51)

We will posit a solution of the form

Φ
B
(r, ω, α, ℓ, m⃗) ≡

∫
r⃗0

GB(r, r0;ω, ℓ)V
αℓm⃗∗
J (r̂0)J

J(r⃗0, ω)

=

∫ ∞

0

dr0 r
d−1
0 GB(r, r0;ω, ℓ)JV (r0, ω) ,

(C.52)

which generalises the static expression in Eq.(C.15). The Green function GB obeys

−∂r[rd−3∂rGB]− ω2rd−3GB + (ℓ+ 1)(ℓ+ d− 3)rd−5GB = δ(r − r0) , (C.53)

and is built by stitching together the homogeneous solutions of the vector Helmholtz

equation. Our normalisations here are such that GB generalises the static Green function

defined in Eq.(C.10). The conditions on the Green function GB are that it should be

continuous, its derivative should have an appropriate discontinuity, and it should match

onto an outgoing wave far away from currents. These determine

GB(r, r0;ω, ℓ) =
1

2ν

r
ν− d

2
+2

<

r
ν+ d

2
−2

>

0F1

[
1 + ν,−ω

2r2<
4

]
×
{

0F1

[
1− ν,−ω

2r2>
4

]
+(1 + i cot νπ)

2πi

Γ(ν)2
1

2ν

(ωr>
2

)2ν
0F1

[
1 + ν,−ω

2r2>
4

]}
=

1

2ν
r
ν− d

2
+2

< 0F1

[
1 + ν,−ω

2r2<
4

]
GOut

B (r>, ω, ℓ) ,

(C.54)
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where we have defined:

r> ≡ Max(r, r0) , r< ≡ Min(r, r0) . (C.55)

The reader can check that the above expression reduces to Eq.(C.10) in the static (i.e.,

ω → 0) limit. Once we have the vector potential, we can compute the the corresponding

electric/magnetic field components. The VSH expansion of the field strengths takes the

form

Crt(r⃗, t) = 0 ,

CIt(r⃗, t) =
∑
αℓm⃗

∫
ω

e−iωtEv(r, ω, α, ℓ, m⃗) Vαℓm⃗
I (r⃗) ,

CrI(r⃗, t) =
∑
αℓm⃗

∫
ω

e−iωtHv(r, ω, α, ℓ, m⃗) Vαℓm⃗
I (r⃗) ,

CIJ(r⃗, t) =
∑
αℓm⃗

∫
ω

e−iωtHvv(r, ω, α, ℓ, m⃗) [DIVJαℓm⃗(r⃗)−DJVIαℓm⃗(r⃗)] ,

(C.56)

where the components are given by

Hv = ∂rΦB
=

∫
r⃗0

∂rGB(r, r0;ω, ℓ)V
αℓm⃗∗
J (r̂0)J

J(r⃗0, ω) ,

Hvv = Φ
B
=

∫
r⃗0

GB(r, r0;ω, ℓ)V
αℓm⃗∗
J (r̂0)J

J(r⃗0, ω) ,

Ev = iω Φ
B
= iω

∫
r⃗0

GB(r, r0;ω, ℓ)V
αℓm⃗∗
J (r̂0)J

J(r⃗0, ω) .

(C.57)

Note that apart from the magnetic fields, we have an induced electric field when toroidal

currents are time-dependent. These time-varying electric and magnetic fields sustain each

other as they escape the source and propagate far away as radiation.

Fields outside sources

To get a handle on the structure of multipole radiation, we will now focus on fields outside

the sources. We will generalise our definition of static magnetic multipole moment in

Eq.(C.16) as follows:

JB(ω, α, ℓ, m⃗) ≡ 1

2ν

∫
r⃗0

r
ν− d

2
+2

0 0F1

[
1 + ν,−ω

2r20
4

]
Vαℓm⃗∗
I (r̂0)J

I(r⃗0, ω) . (C.58)
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It is clear from our general solution that this is the magnetic moment that determines

the fields outside currents. The magnetic Debye field outside the currents is given by

ΦOut
B = GOut

B
(r, ω, ℓ) JB(ω, α, ℓ, m⃗) =

θν− 1
2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−3
JB(ω, α, ℓ, m⃗) . (C.59)

The value of field strength components are given explicitly in terms of JB by

HOut
vv = GOut

B
(r, ω, ℓ) JB(ω, α, ℓ, m⃗) =

θν− 1
2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−3
JB(ω, α, ℓ, m⃗),

HOut
v = −(ℓ+ d− 3)

r
GOut

B
(r, ω, ℓ) JB(ω, α, ℓ, m⃗)

+
ω2

2ℓ+ d− 4
GOut

B
(r, ω, ℓ− 1) JB(ω, α, ℓ, m⃗)

= − (ℓ+ d− 3)
θν− 1

2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−2
JB(ω, α, ℓ, m⃗)

+
ω2

2ℓ+ d− 4

θν− 3
2
(−iωr)

θν− 3
2
(0)

eiωr

rℓ+d−4
JB(ω, α, ℓ, m⃗),

EOut
v = iωGOut

B
(r, ω, ℓ) JB(ω, α, ℓ, m⃗) = iω

θν− 1
2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−3
JB(ω, α, ℓ, m⃗) .

(C.60)

Here we have used Eq.(C.46) for evaluating ∂rG
Out
B

. The large r asymptotics can be

worked out using Eq.(C.43):

HRad
vv = ΦRad

B
=

(−iω)ν− 1
2

(2ν − 2)!!

eiωr

r
d−3
2

JB(ω, α, ℓ, m⃗),

HRad
v = ∂rΦ

Rad
B

= − (−iω)ν+ 1
2

(2ν − 2)!!

eiωr

r
d−3
2

JB(ω, α, ℓ, m⃗),

ERad
v = iωΦRad

B
= − (−iω)ν+ 1

2

(2ν − 2)!!

eiωr

r
d−3
2

JB(ω, α, ℓ, m⃗).

(C.61)

We remind the reader that this holds even when d is even, provided the double factorial

for even integers is defined recursively with the convention that 0!! ≡
√

2
π
. We will see

later how these asymptotics get modified in dS (3.46).

We next turn to the description in terms of cartesian STF tensors. The STF ver-

sion of magnetic moment is still defined by Eq.(C.20) but now generalised to arbitrary
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frequency,i.e.,

1

ℓ!
[BQ(ω)]k<i1i2...iℓ> xi1 . . . xiℓ ≡ Nd,ℓ−1|Sd−1|

(
∂xk
∂ϑI

)∑
m⃗α

JB(ω, α, ℓ, m⃗)rℓ−1VI
αℓm⃗(r̂) .

(C.62)

Repeating the same logic as in magnetostatics, we can give a direct expression in terms

of the vector STF projector:

BQk<i1i2...iℓ>(ω) ≡ (ΠV
kj)

<i1i2...iℓ>
<j1j2...jℓ>

∫
r⃗0

xj10 . . . x
jℓ
0 0F1

[
1 + ν,−ω

2r20
4

]
J j(r⃗0, ω) . (C.63)

The tensor structure appearing here is exactly identical to that seen in statics (e.g., see

(C.31)). The main difference in the time-dependent situation is the smearing due to

time-delays: using Eq.(C.35), we can write

BQk<i1i2...iℓ> = (ΠV
kj)

<i1i2...iℓ>
<j1j2...jℓ>

∫ 1

−1

dz δν− 1
2
(z)

∫
r⃗0

xj10 . . . x
jℓ
0 e

iωzr0J j(r⃗0, ω) . (C.64)

where

δν− 1
2
(z) ≡ Γ (1 + ν)

Γ
(
1
2

)
Γ
(
1
2
+ ν
)(1− z2)ν− 1

2 =
(2ν)!!

2ν+
1
2

(
ν − 1

2

)
!
(1− z2)ν−

1
2 (C.65)

with ν ≡ ℓ + d
2
− 15. The interpretation in terms of time-delays is more transparent in

the time-domain where the above equation becomes

BQk<i1i2...iℓ>(t) = (ΠV
kj)

<i1i2...iℓ>
<j1j2...jℓ>

∫
r⃗0

xj10 . . . x
jℓ
0

∫ 1

−1

dz δν− 1
2
(z)J̄ j(r⃗0, t− zr0) . (C.66)

The time delay above is further compounded in fields by the standard retardation effect,

i.e., the field depends on BQk<i1i2...iℓ>(t− r) and hence on J̄ j(r⃗0, t− r− zr0). Thus, for a

source of size R spread around the origin, we get a time delay seen by a detector ranges

from r −R (in the near end of the source) to r +R (in the far end of the source). In an

expanding universe, there is a further effect due to redshifts, which have to be correctly

taken into account while defining multipole moments of cosmologically big sources.

With these comments, let us return to the task at hand: in terms of the magnetic

5For even d, we work with the convention that 0!! =
√

2
π .
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multipole tensor, the vector potential/EM fields outside the sources can be written as6

VOut
k (r⃗, ω) =

∑
ℓ

GOut
B

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
BQk<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+1
,

COut
kt (r⃗, ω) = iω

∑
ℓ

GOut
B

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
BQk<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+1
,

COut
jk (r⃗, ω) = Antijk

∑
ℓ

GOut
B

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
BQj<i1i2...iℓ>[(2ℓ+ d− 2)xkxiℓ − r2ℓδkiℓ ]x

i1 . . . xiℓ−1

rℓ+3

− ω2Antijk
∑
ℓ

GOut
B

(r, ω, ℓ− 1)

ℓ!Nd,ℓ−2|Sd−1|
BQj<i1i2...iℓ>

xkxi1 . . . xiℓ

rℓ+2
.

(C.67)

The field strengths here can also be derived by direct cartesian differentiation (using

Eq.(C.47) when needed). The multipole vector potential given here can be rewritten

using Eq.(C.48) as

VOut
k (r⃗, ω) =

∑
ℓ

(−1)ℓ

ℓ!
∂i1∂i2 . . . ∂iℓ

{
BQk<i1i2...iℓ>

GOut
B

(r, ω, ℓ = 0)

(d− 2)|Sd−1|r

}
. (C.68)

For odd d, we can write

GOut
B

(r, ω, ℓ = 0)

(d− 2)|Sd−1|r
=
θ d−3

2
(−iωr)

(d− 2)!!

eiωr

|Sd−1|rd−2
. (C.69)

The eiωr factor gives the standard retardation time-delay. Moving to time-domain, we

then have a simple statement in d = 3: the vector potential of a magnetic multipole is

obtained by multiplying the retarded STF magnetic tensor with the Couloumb potential,

followed by repeated differentiation. For odd d > 3, we should apply an additional

differential operator that depends on r and with maximum d−3
2

time-derivatives

θ d−3
2
(r∂t)

(d− 4)!!
, (C.70)

before the repeated differentiation [161]. Next, the large r asymptotics of both the vector

6Here we use the notation Antijk[Tjk] ≡ Tjk − Tkj for the anti-symmetrisation operator.
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potential as well as the field strengths can be obtained via Eq.(C.43). We get

VRad
k (r⃗, ω) =

eiωr

(d− 2)!!|Sd−1|r d−1
2

∑
ℓ

(−iω)ν− 1
2

ℓ!
BQk<i1i2...iℓ>n

i1 . . . niℓ ,

CRad
kt (r⃗, ω) = − eiωr

(d− 2)!!|Sd−1|r d−1
2

∑
ℓ

(−iω)ν+ 1
2

ℓ!
BQk<i1i2...iℓ>n

i1 . . . niℓ ,

CRad
jk (r⃗, ω) =

eiωr

(d− 2)!!|Sd−1|r d−1
2

× Antijk
{
nk
∑
ℓ

(−iω)ν+ 1
2

ℓ!
BQj<i1i2...iℓ>n

i1 . . . niℓ
}
,

(C.71)

where we have used the notation ni ≡ xi

r
. The infinite sum appearing in the field strengths

is the EM waveform or the light vector.

C.3 Multipole expansion in statics II : poloidal cur-

rents and charges

Magnetic fields due to poloidal currents

We can go further and generalise to any time-independent, divergence-free current distri-

bution. Such a current distribution, which not toroidal (i.e., not purely tangential to the

sphere directions), is said to be a poloidal current distribution. A poloidal current can

be expanded as

J̄r =
∑
ℓm⃗

J̄P (r, ℓ, m⃗)Yℓm⃗(r̂) , J̄ I =
∑
ℓm⃗

J̄Q(r, ℓ, m⃗)γIJDJYℓm⃗(r̂) , (C.72)

where Yℓm⃗(r̂) are orthonormal scalar spherical harmonics (SSHs) on Sd−1. They satisfy

[
D2 + ℓ(ℓ+ d− 2)

]
Yℓm⃗ = 0 ,

∫
Sd−1

Y ∗
ℓ′m⃗′Yℓm⃗ = δℓ′ℓδm⃗′m⃗ . (C.73)

We want to determine the vector potential and magnetic field due to such a poloidal

current distribution. With some hindsight, we will abandon the Coulomb gauge and use

instead a gauge where the vector potential is purely radial. The vector potential and
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magnetic field are then of the form

Vr ≡ −
∑
ℓm⃗

Hs(r, ℓ, m⃗)Yℓm⃗(r̂) , VI = 0 ,

CrI =
∑
ℓm⃗

Hs(r, ℓ, m⃗)DIYℓm⃗(r̂) , CIJ = 0 .
(C.74)

Using the sourced Maxwell equations7, we obtain the following relation between the

currents and the magnetic field:

J̄r = −
∑
ℓm⃗

ℓ(ℓ+ d− 2)

r2
Hs(r, ℓ, m⃗)Yℓm⃗(r̂) ,

J̄ I = −
∑
ℓm⃗

1

rd−1
∂r[r

d−3Hs(r, ℓ, m⃗)]γIJDJYℓm⃗(r̂) ,

(C.76)

These two equations are not independent: they are related by current conservation, viz.,

1

rd−1

∂

∂r
(rd−1J̄r) + DI J̄

I = 0 . (C.77)

Thus, it is enough to invert the first equation. Using the orthonormality of scalar spherical

harmonics, we can write

Hs(r, ℓ, m⃗) = − r2

ℓ(ℓ+ d− 2)

∫
r̂∈Sd−1

Y ∗
ℓm⃗(r̂)J̄

r(r⃗)

= − 1

ℓ(ℓ+ d− 2)

1

rd−3

∫
r⃗0

Y ∗
ℓm⃗(r̂0)δ(r − r0)J̄r(r⃗0) .

(C.78)

A few comments are in order: the result we have derived is valid if there is no ℓ = 0

component (i.e., there is no spherically symmetric component) in J̄r. A bit of thought

shows that this has to be true: a spherically symmetric radial current is inconsistent

with charge conservation in the static limit. The next comment is about the locality

in the radial direction: we see that if the poloidal current is confined within a radius

R, its magnetic field also never extends beyond R. In particular, the far field multipole

expansion we derived before does not get corrected by poloidal currents.

7They are of the form

−γIJDICJr = r2J̄r ,
1

rd−1
∂r[r

d−3CIr] +
1

r4
γJKDKCIJ = γIJ J̄

J . (C.75)
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When we move to time-varying currents, we will see that Hs part of the magnetic field

can in fact escape the currents and travel out as EM radiation. This suggests that, in the

full dynamical situation, Hs satisfies a wave equation with a source. Such an equation

should reduce to a Poisson-like equation in the static limit. To see how this works, we

combine the two equations of Eq.(C.76) into a Poisson-like equation:

rd−3∂r
(
r3−d∂r[r

d−3Hs]
)
− ℓ(ℓ+ d− 2)

r2
(rd−3Hs)

=

∫
r̂∈Sd−1

rd−3Y ∗
ℓm⃗(r̂)

{
J̄r(r⃗) +

1

ℓ(ℓ+ d− 2)
∂r
[
r2DI J̄

I(r⃗)
]}

.

(C.79)

As we did for toroidal currents, we can solve this equation by thinking of the source as

made of spherical shells and then integrating. we end up with

rd−3Hs = −
∫
r⃗0

GE(r, r0, ℓ) r
1−d
0 Y ∗

ℓm⃗(r̂0)
{
J̄r(r⃗0) +

1

ℓ(ℓ+ d− 2)
∂r0
[
r20DI J̄

I(r⃗0)
]}

with GE(r, r0, ℓ) ≡
1

2ℓ+ d− 2

{
rℓ+d−2

rℓ0
Θ(r < r0) +

rℓ+d−2
0

rℓ
Θ(r > r0)

} (C.80)

The locality in the radial direction can be seen by rewriting the source part of the inte-

grand using the conservation of current:

J̄r(r⃗0) +
1

ℓ(ℓ+ d− 2)
∂r0
[
r20DI J̄

I(r⃗0)
]

= J̄r(r⃗0)−
1

ℓ(ℓ+ d− 2)
∂r0
[
r3−d
0 ∂r0(r

d−1
0 J̄r(r⃗0))

]
.

(C.81)

The radial differential operator here is the same as the one in Eq.(C.79), and after inte-

gration by parts, it acts on the Green function to give a delta function. We will see later

how this conclusion changes if the poloidal currents become time-dependent.

Electric fields due to static charges

We can repeat our magnetostatic analysis for electrostatics. Let us begin with a time-

independent surface charge density σ̄(r̂) spread out on a thin spherical shell of radius R.

Explicitly, we take a charge current density of the form

J̄ t = δ(r −R) σ̄(r̂) = δ(r −R)
∑
ℓm⃗

σ̄ℓm⃗(r̂) , (C.82)
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where we have expanded out the charge density in terms of orthonormal Scalar Spherical

Harmonics (SSHs) on Sd−1 labelled by {ℓ, m⃗}. Using such a decomposition, we can solve

for the electric field due to each component and then add it up to get the final answer.

Since the symmetry properties of each SSH under SO(d) rotation is different, the scalar

potential Vt produced by σ̄ℓm⃗ should be proportional to σ̄ℓm⃗. We take an ansatz of the

form

Vt =
∑
ℓ

fℓ(r)
∑
m⃗

σ̄ℓm⃗(r̂) , (C.83)

and impose the scalar Poisson equation

1

rd−1
∂r[r

d−1Crt] +
1

r2
γJKDKCIt =

1

rd−1
∂r[r

d−1∂rVt] +
1

r2
D2Vt = J̄ t . (C.84)

Replacing−D2 by ℓ(ℓ+d−2), we conclude that, away from the spherical shell, fℓ(r) should

vary as rℓ or as r−(ℓ+d−2). We should stitch together these two solutions continuously with

an appropriate derivative discontinuity given by the charge density. We obtain the final

answer

Vt = −
∑
ℓm⃗

Rσ̄ℓm⃗(r̂)

2ℓ+ d− 2

[
rℓ

Rℓ
Θ(r < R) +

Rℓ+d−2

rℓ+d−2
Θ(r > R)

]
. (C.85)

In terms of the original data, we have

Vt = −
∫
r̂0∈Sd−1

∑
ℓ

[
rℓ

Rℓ
Θ(r < R) +

Rℓ+d−2

rℓ+d−2
Θ(r > R)

] ∑
m⃗ Yℓm⃗(r̂)Y ∗

ℓm⃗(r̂0)

2ℓ+ d− 2
Rσ̄ℓm⃗(r̂0)

= −
∑
ℓ

[
rℓ

Rℓ
Θ(r < R) +

Rℓ+d−2

rℓ+d−2
Θ(r > R)

]
1

Nd,ℓ|Sd−1|

∫
r̂0∈Sd−1

ΠS
d,ℓ(r̂|r̂0)

2ℓ+ d− 2
Rσ̄ℓm⃗(r̂0)

= −
∫
r⃗0

∑
ℓ

{
rℓ

rℓ+d−2
0

Θ(r < r0) +
rℓ0

rℓ+d−2
Θ(r > r0)

}
1

Nd,ℓ|Sd−1|
ΠS

d,ℓ(r̂|r̂0)
2ℓ+ d− 2

J̄ t(r⃗0)

(C.86)

Here, we have used the SSH addition theorem at the second step. As we did in magne-

tostatics, we can expand the electrostatic potential as well as the electric fields in terms
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of spherical harmonics:

Vt =
∑
ℓm⃗

Es(r, ℓ, m⃗)Yℓm⃗(r̂) ,

Crt ≡
∑
ℓm⃗

Er(r, ℓ, m⃗)Yℓm⃗(r̂) , CIt ≡
∑
ℓm⃗

Es(r, ℓ, m⃗)DIYℓm⃗(r̂) ,
(C.87)

with Er = ∂rEs. The potential function then has a Green-function expression

Es = −
1

2ℓ+ d− 2

∫
r⃗0

{
rℓ

rℓ+d−2
0

Θ(r < r0) +
rℓ0

rℓ+d−2
Θ(r > r0)

}
Y ∗

ℓm⃗(r̂0)J̄
t(r⃗0) . (C.88)

Multipole expansion outside the electric sources

Unlike the poloidal currents, the static charge distributions do give rise to fields outside

them. The electric field outside the charges is then given by

E
Out
s (r, ℓ, m⃗) = −J

E
(ℓ, m⃗)

rℓ+d−2
, E

Out
r (r, ℓ, m⃗) = (ℓ+ d− 2)

J
E
(ℓ, m⃗)

rℓ+d−1
, (C.89)

where J
E

denotes the spherical electric multipole moments defined via

J
E
(ℓ, m⃗) ≡ 1

2ℓ+ d− 2

∫
r⃗0

rℓ0Y
∗
ℓm⃗(r̂0)J̄

t(r⃗0) . (C.90)

The corresponding cartesian multipole moment can be defined from the spherical mo-

ments via SSH addition theorem, viz.,

1

ℓ!
EQ<i1i2...iℓ>x

i1 . . . xiℓ ≡ Nd,ℓ−1|Sd−1|
∑
m⃗

J
E
(ℓ, m⃗)rℓYℓm⃗(r̂) =

∫
r⃗0

ΠS(r⃗|r⃗0)J̄ t(r⃗0) .

(C.91)

or equivalently, we have

EQ<i1i2...iℓ> ≡ (ΠS)<i1i2...iℓ>
<j1j2...jℓ>

∫
r⃗0

xj10 . . . x
jℓ
0 J̄

t(r⃗0) . (C.92)
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The scalar potential and the cartesian components of the electric field take the form

V
Out
t = −

∑
ℓ

1

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>

xi1 . . . xiℓ

r2ℓ+d−2

= −
∑
ℓ

(−)ℓ

ℓ!
∂i1∂i2 . . . ∂iℓ

{ EQ<i1i2...iℓ>

(d− 2)|Sd−1|rd−2

}
,

C
Out
jt =

∑
ℓ

1

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>[(2ℓ+ d− 2)xjxiℓ − r2ℓδjiℓ ]x

i1 . . . xiℓ−1

r2ℓ+d
.

(C.93)

All this is completely analogous to our discussion of magnetostatics in STF language.

As we did for magnetic STF moments, explicit expressions for the first few electric STF

moments can be written down by contracting against a dummy variable:

EQ =

∫
r⃗

J̄ t(r⃗) ,

EQ<i1>κ
i1 =

∫
r⃗

(κ · r) J̄ t(r⃗) ,

1

2!
EQ<i1i2>κ

i1κi2 =

∫
r⃗

[
(κ · r)2

2!
− κ2r2

2d

]
J̄ t(r⃗) ,

1

3!
EQ<i1i2i3>κ

i1κi2κi3 =

∫
r⃗

[
(κ · r)3

3!
− κ2r2

2(d+ 2)
(κ · r)

]
J̄ t(r⃗) ,

1

4!
EQ<i1i2i3i4>κ

i1κi2κi3κi4 =

∫
r⃗

[
(κ · r)4

4!
− κ2r2

2(d+ 4)

(κ · r)2

2!

+
κ4r4

8(d+ 4)(d+ 2)

]
J̄ t(r⃗) ,

1

5!
EQ<i1i2i3i4i5>κ

i1κi2κi3κi4κi5 =

∫
r⃗

[
(κ · r)5

5!
− κ2r2

2(d+ 6)

(κ · r)3

3!

+
κ4r4

8(d+ 6)(d+ 4)
(κ · r)

]
J̄ t(r⃗) .

(C.94)
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The corresponding STF tensors can be obtained by differentiating with respect to κi. Till

ℓ = 4, they are given as

EQ =

∫
r⃗

J̄ t(r⃗) ,

EQ<i1> =

∫
r⃗

xi1 J̄ t(r⃗) ,

EQ<i1i2> =

∫
r⃗

[
xi1xi2 − r2

d
δi1i2

]
J̄ t(r⃗) ,

EQ<i1i2i3> =

∫
r⃗

[
xi1xi2xi3 − r2

d+ 2

(
xi1δi2i3 + xi2δi1i3 + xi3δi1i2

)]
J̄ t(r⃗) ,

(C.95)

and

EQ<i1i2i3i4> =

∫
r⃗

[
xi1xi2xi3xi4

− r2

d+ 4

(
xi1xi2δi3i4 + xi1xi3δi2i4 + xi1xi4δi2i3

+ xi2xi3δi1i4 + xi2xi4δi1i3 + xi3xi4δi1i2
)

+
r4

(d+ 4)(d+ 2)

(
δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3

) ]
J̄ t(r⃗) .

(C.96)

C.4 Electric multipole radiation

We will now turn to the problem of radiation from time-varying charge distributions and

poloidal currents. Over and above the issues discussed above for the toroidal currents,

there are some new subtleties which show up in this case.

First, in the dynamical setting, poloidal currents inevitably accompany changes in

charge configurations, and the spacetime charge current J̄µ(r⃗, t) should satisfy the con-

servation equation

∂tJ̄
t +

1

rd−1

∂

∂r
(rd−1J̄r) + DI J̄

I = 0 . (C.97)

Maxwell equations are mathematically consistent only if the sources obey this constraint.

This means that to solve for the EM fields, we should characterise the class of currents

consistent with charge conservation. Second, we need to deal with Gauss law constraint

in this sector, i.e., one of the Maxwell equations serves to constrain the initial data of EM
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fields. Both these facts are intimately tied to gauge invariance in electromagnetism: since

the gauge parameter is a scalar function, it is expandable into scalar spherical harmonics

(SSHs), and its effect is visible in the scalar sector.

We will address the problem of conservation by imagining that the charge flow is

described well by a time-varying electric polarisation field, i.e., we take

J̄ t(r⃗, t) = − 1

rd−1

∂

∂r
[rd−1P̄ r(r⃗, t)]−DIP̄

I(r⃗, t) ,

J̄r(r⃗, t) = ∂tP̄
r(r⃗, t) , J̄ I(r⃗, t) = ∂tP̄

I(r⃗, t) ,

(C.98)

which automatically satisfies the conservation equation. Such a polarisation field can

always be defined by time integrating the current densities, i.e.,

P̄ r(r⃗, t) ≡
∫
dt J̄r(r⃗, t) , P̄ I(r⃗, t) ≡

∫
dt J̄ I(r⃗, t) . (C.99)

Such polarisation fields also help simplify Gauss law inside charged matter: it becomes

the statement of E⃗ + P⃗ being divergence-free. This parametrisation is not without its

subtleties, as we shall discuss in §§C.5. But, for now, we will take such time-varying

polarisation fields are given and proceed.

We will solve the Maxwell equations by passing to the frequency domain and ex-

panding all fields in terms of scalar spherical harmonics (SSHs). The expansion for the

polarisation fields is

P̄ r(r⃗, t) ≡
∑
ℓm⃗

∫
ω

e−iωtJ1(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

r2γ
IJ
P̄ J(r⃗, t) ≡

∑
ℓm⃗

∫
ω

e−iωtJ2(r, ω, ℓ, m⃗)DIYℓm⃗(r̂) .

(C.100)

Using the same notation/gauge as in statics, we take the scalar/vector potential to be

Vt(r⃗, t) ≡
∑
ℓm⃗

∫
ω

e−iωtEs(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

Vr(r⃗, t) ≡ −
∑
ℓm⃗

∫
ω

e−iωtHs(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

VI(r⃗, t) = 0 .

(C.101)

We aim to solve for Es, Hs in terms of J1 and J2. To this end, we first compute the EM
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fields corresponding to the above potential:

Crt(r⃗, t) =
∑
ℓm⃗

∫
ω

e−iωtEr(r, ω, ℓ, m⃗) Yℓm⃗(r̂) ,

CIt(r⃗, t) =
∑
ℓm⃗

∫
ω

e−iωtEs(r, ω, ℓ, m⃗) DIYℓm⃗(r̂) ,

CrI(r⃗, t) =
∑
ℓm⃗

∫
ω

e−iωtHs(r, ω, ℓ, m⃗) DIYℓm⃗(r̂) ,

CIJ(r⃗, t) = 0 ,

(C.102)

where Er = ∂rEs − iωHs . This relation giving Er in terms of Es and Hs can also be

directly obtained from the Bianchi identity (or the unsourced Maxwell equations).

Next, we write down the sourced Maxwell equations:

1

rd−1
∂r
(
rd−1[Er + J1]

)
− ℓ(ℓ+ d− 2)

r2
[Es + J2] = 0 (t-Eqn) ,

−ℓ(ℓ+ d− 2)

r2
Hs + iω[Er + J1] = 0 (r-Eqn) ,

− 1

rd−3
∂r
(
rd−3Hs

)
+ iω[Es + J2] = 0 (I-Eqn) .

(C.103)

We note how the electric field always shows up in the E⃗ + P⃗ combination. The above

set of coupled ODEs can be solved by introducing the electric Debye field ΦE(r, ω, ℓ, m⃗)

such that

Er + J1 =
ℓ(ℓ+ d− 2)

rd−1
ΦE , Es + J2 =

1

rd−3
∂rΦE , Hs =

iω

rd−3
ΦE . (C.104)

The relation Er = ∂rEs− iωHs then becomes the follow inhomogeneous Helmholtz equa-

tion for ΦE:

− 1

r3−d
∂r
(
r3−d∂rΦE

)
− ω2ΦE +

ℓ(ℓ+ d− 2)

r2
ΦE = rd−3 [J1 − ∂rJ2] . (C.105)

From hereon, the procedure here is similar to the one adopted for the magnetic Debye

field ΦB. The above equation is solved by finding an appropriate Green function GE such

that

ΦE(r, ω, ℓ, m⃗) =

∫ ∞

0

dr0 GE(r, r0;ω, ℓ) [J1(r0, ω, ℓ, m⃗)− ∂r0J2(r0, ω, ℓ, m⃗)] (C.106)
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The Green function GE then obeys

−∂r[r3−d∂rGE]− ω2r3−dGE + ℓ(ℓ+ d− 2)r1−dGE = δ(r − r0) , (C.107)

The magnetic Helmholtz equation in Eq.(C.53) can be mapped to the electric Helmholtz

equation through the replacements

d 7→ 6− d , ℓ 7→ ℓ+ d− 3 , ν 7→ ν (C.108)

where ν ≡ ℓ+ d
2
− 1. Through such a replacement, the results we derived in the magnetic

case can be recycled here. Given this, we will be content in stating just the final results

in what follows.

Homogeneous spherical waves

The homogenous solutions are as follows: the solution regular everywhere is

rν+
d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]
= Γ(1 + ν)

(ω
2

)−ν

r
d
2
−1Jν(ωr) , (C.109)

and this solution plays the role of the time-delay smearing function in the electric case.

The solution that is regular everywhere except the origin is given by

1

rν−
d
2
+1

{
0F1

[
1− ν,−ω

2r2

4

]
− π cot νπ

Γ(ν)Γ(1 + ν)

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
= −

(ω
2

)ν π r d
2
−1

Γ(ν)
Yν(ωr) .

(C.110)

The outgoing/ingoing solutions are

1

rν−
d
2
+1

{
0F1

[
1− ν,−ω

2r2

4

]
±(1± i cot νπ) 2πi

Γ(ν)2
1

2ν

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
Vαℓm⃗
I

= ±i
(ω
2

)ν π r d
2
−1

Γ(ν)
H±

ν (ωr)V
αℓm⃗
I

(C.111)

As in the magnetic case, when d is even and ν is a positive integer, these expressions

become indeterminate, and we should take a limit. The radial part of the outgoing waves
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is

GOut
E

(r, ω, ℓ) ≡ 1

rν−
d
2
+1

{
0F1

[
1− ν,−ω

2r2

4

]
+(1 + i cot νπ)

2πi

Γ(ν)2
1

2ν

(ωr
2

)2ν
0F1

[
1 + ν,−ω

2r2

4

]}
.

(C.112)

When ν is a half-integer, the function GOut
E

can be expressed in terms of reverse Bessel

polynomials as

GOut
E

(r, ω, ℓ) =
θν− 1

2
(−iωr)

θν− 1
2
(0)

eiωr

rν−
d
2
+1

for ν ∈ Z +
1

2
, (C.113)

whose large r asymptotic are given by

GOut
E

(r, ω, ℓ)→ Nd,ℓ−1
(−iω)ν− 1

2

(d− 2)!!

eiωr

r
3−d
2

as r →∞ . (C.114)

The raising and lowering relations become

−1

r

∂

∂r

[
GOut

E
(r, ω, ℓ)

Nd,ℓ−1rℓ+d−2

]
=
GOut

E
(r, ω, ℓ+ 1)

Nd,ℓrℓ+d−1
,

1

r

∂

∂r

[
GOut

E
(r, ω, ℓ)

Nd,ℓ−1 r−ℓ

]
= ω2

GOut
E

(r, ω, ℓ− 1)

Nd,ℓ−2 r1−ℓ
,

(C.115)

and the derivative of GOut
E

is

∂rG
Out
E

(r, ω, ℓ) = − ℓ
r
GOut

E
(r, ω, ℓ) +

ω2

2ℓ+ d− 4
GOut

E
(r, ω, ℓ− 1)

= −ℓ GOut
E

(r, ω, ℓ+ 1) +
ℓ+ d− 2

2ℓ+ d− 2

ω2

2ℓ+ d− 4
GOut

E
(r, ω, ℓ− 1) .

(C.116)

The cartesian version of raising/lowering relations is

−∂i
[
GOut

E
(r, ω, ℓ)

Nd,ℓ−1rℓ+d−2

]
= xi

GOut
E

(r, ω, ℓ+ 1)

Nd,ℓrℓ+d−1
, ∂i

[
GOut

E
(r, ω, ℓ)

Nd,ℓ−1 r−ℓ

]
= ω2xi

GOut
@

(r, ω, ℓ− 1)

Nd,ℓ−2 r1−ℓ
,

(C.117)
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and the electric analog of Eq.(C.48) is given by

(−1)ℓ∂<i1∂i2 . . . ∂iℓ>
{
GOut

E
(r, ω, ℓ = 0)

(d− 2)rd−2

}
=
GOut

E
(r, ω, ℓ)

Nd,ℓ−1rℓ+d−2
x<i1 . . . xiℓ> . (C.118)

Green function for electric radiation

The Green function GE can be constructed by stitching together the homogeneous solu-

tions continuously but with an appropriate discontinuity in its derivative. We have

GE(r, r0;ω, ℓ) =
1

2ν

r
ν+ d

2
−1

<

r
ν− d

2
+1

>

0F1

[
1 + ν,−ω

2r2<
4

]
×
{

0F1

[
1− ν,−ω

2r2>
4

]
+ (1 + i cot νπ)

2πi

Γ(ν)2
1

2ν

(ωr>
2

)2ν
0F1

[
1 + ν,−ω

2r2>
4

]}
=

1

2ν
r
ν+ d

2
−1

< 0F1

[
1 + ν,−ω

2r2<
4

]
GOut

E (r>, ω, ℓ) ,

(C.119)

where we have defined:

r> ≡ Max(r, r0) , r< ≡ Min(r, r0) . (C.120)

We can compute the the corresponding electric/magnetic field components as

Es + J2 =
1

rd−3
∂rΦE

=
1

rd−3

∫ ∞

0

dr0 ∂rGE(r, r0;ω, ℓ) [J1(r0, ω, ℓ, m⃗)− ∂r0J2(r0, ω, ℓ, m⃗)] ,

Er + J1 =
ℓ(ℓ+ d− 2)

rd−1
ΦE

=
ℓ(ℓ+ d− 2)

rd−1

∫ ∞

0

dr0 GE(r, r0;ω, ℓ) [J1(r0, ω, ℓ, m⃗)− ∂r0J2(r0, ω, ℓ, m⃗)] ,

Hs =
iω

rd−3
ΦE

=
iω

rd−3

∫ ∞

0

dr0 GE(r, r0;ω, ℓ) [J1(r0, ω, ℓ, m⃗)− ∂r0J2(r0, ω, ℓ, m⃗)] .

(C.121)

These time-varying electric and magnetic fields sustain each other and propagate outwards

as electric multipole radiation.
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Fields outside sources

We will now turn to fields outside the sources, determined by electric multipole moments.

For ℓ ̸= 0, we will define a dynamic version of the electric multipole moment via

JE(ω, ℓ, m⃗) ≡ ℓ

2ν

∫ ∞

0

dr0 r
ν+ d

2
−1

0 0F1

[
1 + ν,−ω

2r20
4

]
×
{
J1(r0, ω, ℓ, m⃗)− ∂r0J2(r0, ω, ℓ, m⃗)

}
.

(C.122)

We will justify this definition and generalise it to the ℓ = 0 case later. While this looks

very different from the electric multipole moments defined in the static case, we will later

see that it reduces to them in the appropriate limit.

The electric Debye field outside the sources is given by

ΦOut
E =

1

ℓ
GOut

E
(r, ω, ℓ) JE(ω, ℓ, m⃗) =

1

ℓ

θν− 1
2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ
JE(ω, ℓ, m⃗) . (C.123)

The corresponding field strength components are

EOut
r =

ℓ+ d− 2

rd−1
GOut

E
(r, ω, ℓ) JE(ω, ℓ, m⃗) = (ℓ+ d− 2)

θν− 1
2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−1
JE(ω, ℓ, m⃗),

EOut
s = − 1

rd−2
GOut

E
(r, ω, ℓ) JE(ω, ℓ, m⃗) +

1

rd−3

ω2

ℓ(2ℓ+ d− 4)
GOut

E
(r, ω, ℓ− 1) JE(ω, ℓ, m⃗)

= −
θν− 1

2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−2
JE(ω, ℓ, m⃗) +

ω2

ℓ(2ℓ+ d− 4)

θν− 3
2
(−iωr)

θν− 3
2
(0)

eiωr

rℓ+d−4
JE(ω, ℓ, m⃗),

HOut
s =

iω

rd−3

1

ℓ
GOut

E
(r, ω, ℓ) JE(ω, ℓ, m⃗) =

iω

ℓ

θν− 1
2
(−iωr)

θν− 1
2
(0)

eiωr

rℓ+d−3
JE(ω, ℓ, m⃗).

(C.124)

Here we have used Eq.(C.116) for evaluating ∂rGOut
E

. One check of our multipole moment

definition is that it reduces to the correct static expressions in ω → 0 limit, i.e., we get

E
Out
s (r, ℓ, m⃗) = −J

E
(ℓ, m⃗)

rℓ+d−2
, E

Out
r (r, ℓ, m⃗) = (ℓ+ d− 2)

J
E
(ℓ, m⃗)

rℓ+d−1
. (C.125)
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The radiative parts work out to be

ΦRad
E =

1

ℓ

(−iω)ν− 1
2

(2ν − 2)!!

eiωr

r
3−d
2

JE(ω, ℓ, m⃗) ,

ERad
r = (ℓ+ d− 2)

(−iω)ν− 1
2

(2ν − 2)!!

eiωr

r
d+1
2

JE(ω, ℓ, m⃗),

ERad
s = −1

ℓ

(−iω)ν+ 1
2

(2ν − 2)!!

eiωr

r
d−3
2

JE(ω, ℓ, m⃗),

HRad
s = −1

ℓ

(−iω)ν+ 1
2

(2ν − 2)!!

eiωr

r
d−3
2

JE(ω, ℓ, m⃗),

(C.126)

where we have used Eq.(C.114). Note the faster fall-off of the radial electric field: this is

consistent with the expectation that, at large r, EM fields can be thought of as transverse

plane waves travelling outwards radially.

We now turn to the formulation in terms of cartesian STF tensors. We convert

the orthonormal electric moments to STF electric moments by Eq.(C.91) generalised to

arbiitrary frequency, i.e.,

1

ℓ!
[EQ(ω)]<i1i2...iℓ> xi1 . . . xiℓ ≡ Nd,ℓ−1|Sd−1|

∑
m⃗

JE(ω, ℓ, m⃗) rℓYℓm⃗(r̂) . (C.127)

The cartesian form of the scalar/vector potential can be obtained by substituting

{EOut
s , HOut

s } into Eq.(C.101), and converting everything to cartesian coordinates. We

end up with

VOut
t (r⃗, ω) = −

∑
ℓ

GOut
E

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+d−2

+ ω2
∑
ℓ>0

1

ℓ

GOut
E

(r, ω, ℓ− 1)

ℓ!Nd,ℓ−2|Sd−1|
EQ<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+d−3
,

VOut
k (r⃗, ω) = −iω

∑
ℓ>0

1

ℓ

GOut
E

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>

xkxi1 . . . xiℓ

rℓ+d−2
.

(C.128)
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The field strengths are given by 8

COut
kt (r⃗, ω) =

∑
ℓ

GOut
E

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>[(2ℓ+ d− 2)xkxiℓ − r2ℓδkiℓ ]x

i1 . . . xiℓ−1

rℓ+d

− ω2
∑
ℓ

GOut
E

(r, ω, ℓ− 1)

ℓ!Nd,ℓ−2|Sd−1|
EQ<i1i2...iℓ>[x

kxiℓ − r2δkiℓ ]x
i1 . . . xiℓ−1

rℓ+d−1
,

COut
jk (r⃗, ω) = Antijk

∑
ℓ

(−iω)
GOut

E
(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ<ji1i2...iℓ−1>

xkxi1 . . . xiℓ−1

rℓ+d−2
.

(C.129)

These expressions can be derived by converting the spherical components to cartesian

components or by directly differentiating the potentials (using Eq.(C.117) when neces-

sary). Using Eq.(C.114), the large r asymptotics of the potentials work out to be

VRad
t (r⃗, ω) = − eiωr

(d− 2)!!|Sd−1|r d−3
2

∑
ℓ>0

1

ℓ

(−iω)ν+ 1
2

ℓ!
EQ<i1i2...iℓ>n

i1 . . . niℓ ,

VRad
k (r⃗, ω) =

eiωr

(d− 2)!!|Sd−1|r d−3
2

∑
ℓ>0

1

ℓ

(−iω)ν+ 1
2

ℓ!
EQ<i1i2...iℓ>n

kni1 . . . niℓ ,

(C.130)

where we have used the notation ni ≡ xi

r
. The fall-off here is slower than what might have

been naively expected, e.g., in d = 3, the potentials tend to a non-zero angle-dependent

constant as r →∞ instead of becoming zero. The corresponding field strengths, however,

have the correct asymptotic fall-off, viz.,

CRad
kt (r⃗, ω) = − eiωr

(d− 2)!!|Sd−1|r d−1
2

∑
ℓ

(−iω)ν+ 1
2

ℓ!
EQ<i1i2...iℓ>[δ

kiℓ − nkniℓ ]ni1 . . . niℓ−1 ,

CRad
jk (r⃗, ω) =

eiωr

(d− 2)!!|Sd−1|r d−1
2

× Antijk
{
nk
∑
ℓ

(−iω)ν+ 1
2

ℓ!
EQ<ji1i2...iℓ−1>n

i1 . . . niℓ−1

}
.

(C.131)

This suggests that there should be a (large) gauge transformation that brings the poten-

tials to the naively expected fall-offs. Such a gauge transformation can in fact be presented

explicitly. Consider the large gauge transformation that removes all the GOut
E

(r, ω, ℓ− 1)

8Here we use the notation Antijk[Tjk] ≡ Tjk − Tkj for the anti-symmetrisation operator.
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terms from the scalar potential. The new potentials are then given by

V
Out,New
t (r⃗, ω) = −

∑
ℓ

GOut
E

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+d−2
,

V
Out,New
k (r⃗, ω) = −iω

∑
ℓ>0

1

ℓ

GOut
E

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ<i1i2...iℓ>

xkxi1 . . . xiℓ

rℓ+d−2

+ ∂k

{
−iω

∑
ℓ>0

1

ℓ

GOut
E

(r, ω, ℓ− 1)

ℓ!Nd,ℓ−2|Sd−1|
EQ<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+d−3

}
= −iω

∑
ℓ>0

GOut
E

(r, ω, ℓ− 1)

ℓ!Nd,ℓ−2|Sd−1|
EQ<ki1i2...iℓ−1>

xi1 . . . xiℓ−1

rℓ+d−3
.

(C.132)

In the last step, we have evaluated the cartesian derivative using Eq.(C.117). We can

work out the large r behaviour for these new potentials using Eq.(C.114):

V
Rad,New
t (r⃗, ω) = − eiωr

(d− 2)!!|Sd−1|r d−1
2

∑
ℓ

(−iω)ν− 1
2

ℓ!
EQ<i1i2...iℓ>n

i1 . . . niℓ ,

V
Rad,New
k (r⃗, ω) =

eiωr

(d− 2)!!|Sd−1|r d−1
2

∑
ℓ>0

(−iω)ν− 1
2

ℓ!
EQ<ki1i2...iℓ−1>n

i1 . . . niℓ−1 .

(C.133)

These agree with what is expected. Further, potentials in this new gauge also have a nice

repeated STF derivative representation (see Eq.(C.118)):

V
Out,New
t (r⃗, ω) = −

∑
ℓ

(−)ℓ

ℓ!
∂i1∂i2 . . . ∂iℓ

{EQ<i1i2...iℓ>G
Out
E

(r, ω, ℓ = 0)

(d− 2)|Sd−1|rd−2

}
,

V
Out,New
k (r⃗, ω) = −iω

∑
ℓ>0

(−)ℓ−1

ℓ!
∂i1∂i2 . . . ∂iℓ−1

{EQ<ki1i2...iℓ−1>G
Out
E

(r, ω, ℓ = 0)

(d− 2)|Sd−1|rd−2

}
.

(C.134)

The gauge transformation which gives the correct fall-off can also be performed on

the full solution in the spherical coordinates. The new potentials are given by

V
New
t (r⃗, t) ≡

∑
ℓm⃗

∫
ω

e−iωt[Es(r, ω, ℓ, m⃗)− iωΛs(r, ω, ℓ, m⃗)]Yℓm⃗(r̂) ,

V
New
r (r⃗, t) ≡ −

∑
ℓm⃗

∫
ω

e−iωt[Hs(r, ω, ℓ, m⃗)− ∂rΛs(r, ω, ℓ, m⃗)]Yℓm⃗(r̂) ,

V
New
I (r⃗, t) ≡

∑
ℓm⃗

∫
ω

e−iωt Λs(r, ω, ℓ, m⃗)DIYℓm⃗(r̂) ,

(C.135)
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where the gauge transformation function is

Λs(r, ω, ℓ, m⃗) =
1

iωrℓ+d−3

∂

∂r

{
rℓΦE(r, ω, ℓ, m⃗)

}
. (C.136)

We can simplify the new potential using Eq.(C.105) to get

V
New
t (r⃗, t) ≡ −

∑
ℓm⃗

∫
ω

e−iωt

[
ℓ

rd−2
ΦE(r, ω, ℓ, m⃗) + J1(r, ω, ℓ, m⃗)

]
Yℓm⃗(r̂) ,

V
New
r (r⃗, t) ≡

∑
ℓm⃗

∫
ω

e−iωt

iω

[
ℓ

rℓ+d−2

∂

∂r

{
rℓΦE(r, ω, ℓ, m⃗)

}
− J1(r, ω, ℓ, m⃗) + ∂rJ2(r, ω, ℓ, m⃗)

]
Yℓm⃗(r̂) ,

V
New
I (r⃗, t) ≡

∑
ℓm⃗

∫
ω

e−iωt

iω

1

rℓ+d−3

∂

∂r

{
rℓΦE(r, ω, ℓ, m⃗)

}
DIYℓm⃗(r̂) .

(C.137)

C.5 ℓ = 0 and electrostatic limit

In our discussion of electric multipole radiation till now, we have avoided discussing the

static limit, i.e., the limit as ω → 0. We should expect the static limit to recover our

results on static poloidal currents/charges (see §§C.3). Unfortunately, this is not easy

to see right away from the expressions we have seen till now. The key complication is

the charge conservation that relates time-derivative of charge density to the currents.

In practice, this means that various factors of ω might be introduced or removed using

charge conservation. Some care is thus required in how we take the ω → 0 limit.

Another related complication is the applicability of our expressions to the ℓ = 0

electric multipole. Many formulae in our discussion of electric multipole radiation have 1
ℓ

factors, and just setting ℓ = 0 does not work. The issue here is again charge conservation:

the ℓ = 0 electric multipole is just the total electric charge, and it cannot have any time

variation. In the frequency domain, this means that ℓ = 0 mode always comes with a delta

function δ(ω), which should then be dealt with some care. The aim of this subsection is

twofold: first, we will rewrite the expressions for {Er, Es, Hs} in the last subsection in

terms of (Fourier transforms of) charge and current densities. Next goal is to describe

the ℓ = 0 and ω → 0 limits of such expressions.

In the last subsection, we parameterised the charge/current densities as (See Eq.(C.98)
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and Eq.(C.100))

J̄ t(r⃗, t) = − 1

rd−1

∂

∂r
[rd−1P̄ r(r⃗, t)]−DIP̄

I(r⃗, t) ,

J̄r(r⃗, t) = ∂tP̄
r(r⃗, t) , J̄ I(r⃗, t) = ∂tP̄

I(r⃗, t) ,

(C.138)

with the electric polarisation fields expanded as

P̄ r(r⃗, t) ≡
∑
ℓm⃗

∫
ω

e−iωtJ1(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

r2γ
IJ
P̄ J(r⃗, t) ≡

∑
ℓm⃗

∫
ω

e−iωtJ2(r, ω, ℓ, m⃗)DIYℓm⃗(r̂) .

(C.139)

These equations are equivalent to parameterising the Fourier transforms of charge and

current densities as

J t(r⃗, ω) =
∑
ℓm⃗

{
− 1

rd−1

∂

∂r
[rd−1J1(r, ω, ℓ, m⃗)] +

ℓ(ℓ+ d− 2)

r2
J2(r, ω, ℓ, m⃗)

}
Yℓm⃗(r̂) ,

Jr(r⃗, ω) = −iω
∑
ℓm⃗

J1(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

r2γ
IK
JK(r⃗, ω) = −iω

∑
ℓm⃗

J2(r, ω, ℓ, m⃗)DIYℓm⃗(r̂) .

(C.140)

For what follows, it is crucial to note that the SSH sum in the last equation has no ℓ = 0

contribution. Another observation is that the ℓ = 0 component of J2(r, ω, ℓ, m⃗) never

enters these expressions. Without loss of generality, we can thus set J2(r, ω, ℓ, m⃗)|ℓ=0 = 0

and assume that J I(r⃗, ω) has no spherically symmetric component.

We will now turn to writing the EM fields in terms of charge/current densities instead

of {J1, J2}. To this end, we use the above relations to derive the following identity

iωr2Jr(r⃗, ω)− ∂r[r2J t(r⃗, ω)]

=
∑
ℓm⃗

r3−dYℓm⃗(r̂)
{ 1

r3−d

∂

∂r

(
r3−d ∂

∂r

)
+ ω2 − ℓ(ℓ+ d− 2)

r2

}
[rd−1J1(r, ω, ℓ, m⃗)] ,

+
∑
ℓm⃗

ℓ(ℓ+ d− 2)[J1(r, ω, ℓ, m⃗)− ∂rJ2(r, ω, ℓ, m⃗)]Yℓm⃗(r̂) .

(C.141)

The combination here is chosen such that the differential operator in the first line of
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RHS is the one defining the electric Green function GE (See Eq.(C.107)). In the last line

of RHS, we recognise the {J1, J2} source for the electric Debye field ΦE in Eq.(C.106) .

Using these facts, we can then write

1

rd−1

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r, r0;ω, ℓ)

{
iωr20J

r(r⃗0, ω)− ∂r0 [r20J t(r⃗0, ω)]
}

= −J1(r, ω, ℓ, m⃗) +
ℓ(ℓ+ d− 2)

rd−1
ΦE(r, ω, ℓ, m⃗) .

(C.142)

We recognise here the combination that defines Er (c.f. Eq.(C.121)), i.e.,

Er(r, ω, ℓ, m⃗) =
1

rd−1

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r, r0;ω, ℓ)

×
{
iωr20J

r(r⃗0, ω)− ∂r0 [r20J t(r⃗0, ω)]
}
.

(C.143)

One corollary is a formula for electric multipole moment directly in terms of charges or

currents: we use Eq.(C.119) to evaluate GE outside the sources and compare the result

against Eq.(C.124). This yields

JE(ω, ℓ, m⃗) ≡ 1

2ν(ℓ+ d− 2)

∫ ∞

0

dr0

∫
r̂0∈Sd−1

r
ν+ d

2
−1

0 Y ∗
ℓm⃗(r̂0) 0F1

[
1 + ν,−ω

2r20
4

]
×
{
iωr20J

r(r⃗0, ω)− ∂r0 [r20J t(r⃗0, ω)]
}
.

(C.144)

This generalises our earlier definition in Eq.(C.122) to general source distributions. As a

bonus, we now have an expression where both ℓ = 0 and ω → 0 limits can be taken and

be seen to give a non-zero electric moment, as expected. In fact, the static limit coincides

with the electrostatics definition in §§C.3 as can be seen from

JE(ω = 0, ℓ, m⃗) = − 1

2ν(ℓ+ d− 2)

∫ ∞

0

dr0

∫
r̂0∈Sd−1

rℓ+d−2
0 Y ∗

ℓm⃗(r̂0) ∂r0 [r
2
0J

t(r⃗0, ω)]

=
1

2ν

∫ ∞

0

dr0

∫
r̂0∈Sd−1

rℓ+d−1
0 Y ∗

ℓm⃗(r̂0) J
t(r⃗0, ω = 0) .

(C.145)

The last line follows via integration by parts. The above expression for electric multipole
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moment can also be converted into an STF moment via

1

ℓ!
EQ(ω)<i1i2...iℓ>x

i1 . . . xiℓ

≡ Nd,ℓ−1|Sd−1|
∑
m⃗

JE(ω, ℓ, m⃗) rℓYℓm⃗(r̂)

=
1

ℓ+ d− 2

∫
r⃗0

ΠS(r⃗|r⃗0) 0F1

[
1 + ν,−ω

2r20
4

]{
iωr0J

r(r⃗0, ω)−
1

r0
∂r0 [r

2
0J

t(r⃗0, ω)]
}
.

(C.146)

Stripping off the xi’s on both sides, we get the STF electric multipole tensor as

EQ(ω)<i1i2...iℓ> =
(ΠS)<i1...iℓ>

<j1...jℓ>

ℓ+ d− 2

∫
r⃗

xj1 . . . xjℓ 0F1

[
1 + ν,−ω

2r2

4

]
×
{
iωrJr(r⃗, ω)− 1

r
∂r[r

2J t(r⃗, ω)]
}
.

(C.147)

We now turn to how the magnetostatics of the poloidal currents is recovered from our

expressions. We will do this by relating the current combination that sources the poloidal

magnetic field (Eq.(C.80)) to the source of electric Debye field, viz.,∫
r̂∈Sd−1

Y ∗
ℓm⃗(r̂)

{
Jr(r⃗, ω) +

1

ℓ(ℓ+ d− 2)
∂r
[
r2DIJ

I(r⃗, ω)
]}

= −iω[J1(r, ω, ℓ, m⃗)− ∂rJ2(r, ω, ℓ, m⃗)] .

(C.148)

This allows us to rewrite Hs in Eq.(C.121) in the form

Hs = −
1

rd−3

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r, r0;ω, ℓ)

×
{
Jr(r⃗0, ω) +

1

ℓ(ℓ+ d− 2)
∂r0
[
r20DIJ

I(r⃗0, ω)
]}

.

(C.149)

This form then has a straightforward static limit where it reduces to Eq.(C.80). If we

account for the fact that J I has no ℓ = 0 component, the above expression also has a

finite ℓ = 0 limit. The outside fields in Eq.(C.124) also work out provided

0 = iω JE(ω, ℓ, m⃗) +
ℓ

2ν

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) r

ν+ d
2
−1

0 0F1

[
1 + ν,−ω

2r20
4

]
×
{
Jr(r⃗0, ω) +

1

ℓ(ℓ+ d− 2)
∂r0
[
r20DIJ

I(r⃗0, ω)
]}

.

(C.150)

This seems to give a new expression for the electric multipole moment that is different
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from Eq.(C.144). But, using the conservation equation (in frequency domain)

iωJ t =
1

rd−1

∂

∂r
(rd−1Jr) + DIJ

I , (C.151)

the difference between the two JE definitions can be shown to be proportional to

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) r

ν+ d
2
−1

0 0F1

[
1 + ν,−ω

2r20
4

]
× r3−d

0

{
− 1

r3−d
0

∂

∂r0

(
r3−d
0

∂

∂r0

)
− ω2 +

ℓ(ℓ+ d− 2)

r20

}
[rd−1

0 Jr(r⃗0, ω)] .

(C.152)

This expression is zero since the derivative operator in the second line can be shifted onto

its homogeneous solution in the first line via integration by parts. Finally, we can get an

expression for Es in terms of charge and current densities by using

∂rEs = Er + iωHs

=

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r, r0;ω, ℓ)

×
{
iω
r20 − r2

rd−1
Jr(r⃗0, ω)− ∂r0

[
r20
rd−1

J t(r⃗0, ω) + iω
r20
rd−3

DIJ
I(r⃗0, ω)

ℓ(ℓ+ d− 2)

]}
.

(C.153)

The last line follows from Eqs.(C.143) and (C.149). As r → ∞ the field Es → Hs (see

Eq.(C.126)), and we can integrate the above equation to obtain

Es = Hs(r →∞) +

∫ r

∞
dr1

∫ ∞

0

dr0

∫
r̂0∈Sd−1

Y ∗
ℓm⃗(r̂0) GE(r1, r0;ω, ℓ)

×
{
iω
r20 − r21
rd−1
1

Jr(r⃗0, ω)− ∂r0
[
r20
rd−1
1

J t(r⃗0, ω) + iω
r20
rd−3
1

DIJ
I(r⃗0, ω)

ℓ(ℓ+ d− 2)

]}
.

(C.154)

In this form, we can easily take ω → 0 as well as ℓ = 0 limits (provided we remember

that J I has no ℓ = 0 component). Note that, for d > 3, we have Hs(r → ∞) = 0, and

we can drop the first term entirely.

C.6 Radiative power loss (Larmor’s formula)

Before moving to the influence phase, it is instructive to generalise the textbook descrip-

tion of radiative power loss in EM to arbitrary dimensions. The power carried away by
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the radiation can be computed using the EM energy-momentum tensor:

(EM)T
µν

= C
µα
Cα

ν − 1

4
ηµνCαβC

αβ
. (C.155)

The energy flux through a sphere at radial coordinate r enclosing the origin is then the

sphere integral of T r
t (i.e., the radial component of the Poynting vector in the frequency

domain). We are interested in the energy flux at large r, which can be computed using

radiative fields given in Eqs.(C.126) and (C.61). We obtain

P(ω) ≡ lim
r→∞

∫
Sd−1
r

rd−1 (EM)Tt
r(r, ω,Ω)

= lim
r→∞

rd−3

[∑
ℓm⃗

ℓ(ℓ+ d− 2)E∗
sHs +

∑
αℓm⃗

E∗
vHv

]

=
∑
ℓm⃗

ℓ+ d− 2

ℓ

ω2ν+1

[(2ν − 2)!!]2
|JE(ω, ℓ, m⃗)|2 +

∑
αℓm⃗

ω2ν+1

[(2ν − 2)!!]2
|JB(ω, α, ℓ, m⃗)|2 ,

(C.156)

where we have used the orthonormality of scalar/vector spherical harmonics to perform

the sphere integrals. The sum over ℓ ranges from ℓ = 1 to ℓ = ∞, since the monopole

moment at ℓ = 0 (the total electric charge) is always time-independent and does not

result in radiation.

When the number of spatial dimensions d is odd, the number ν ≡ ℓ+ d
2
− 1 is a half-

integer, and the power loss P(ω) is an even function of ω. This means that the power

loss is always non-negative and is invariant under time-reversal, i.e., time-reversing the

charges/currents still results in an irreversible loss of energy into radiation.

The situation is qualitatively different when d is even. We remind the reader that the

radiative fields of Eqs.(C.126) and (C.61) as well as the power loss formula Eq.(C.156) are

still valid with an appropriate definition of double factorials. The main difference now is

that the power loss above can be reversed by time-reversing the charges/currents. Such a

reversible change in energy can then be absorbed into a redefinition of energy. Physically,

when d is even, the radiation lingers on around the source, and its back reaction serves

to renormalise the source properties without any dissipative effects. We will see below

that Eq.(C.156) should really be interpreted as a beta function in classical EM.

Before proceeding, we would like to recast Eq.(C.156) in terms of cartesian multipole
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tensors. Using Eq.(C.144), we have

∑
m⃗

|JE(ω, ℓ, m⃗)|2 = 1

[2ν(ℓ+ d− 2)]2

×
∫ ∞

0

dr1

∫
r̂1∈Sd−1

r
ν+ d

2
−1

1 0F1

[
1 + ν,−ω

2r21
4

]
×
∫ ∞

0

dr2

∫
r̂2∈Sd−1

r
ν+ d

2
−1

2 0F1

[
1 + ν,−ω

2r22
4

]
×
{
iωr21J

r(r⃗1, ω)− ∂r1 [r21J t(r⃗1, ω)]
}∗{

iωr22J
r(r⃗2, ω)− ∂r2 [r22J t(r⃗2, ω)]

}
×
∑
m⃗

Yℓm⃗(r̂1) Y ∗
ℓm⃗(r̂2) .

(C.157)

The sum appearing in the last line can be performed by invoking the SSH addition

theorem (Eq.(A.54)), and the answer factorised via symmmetry/idempotence of the SSH

projector:

∑
m⃗

Yℓm⃗(r̂1) Y ∗
ℓm⃗(r̂2) =

1

Nd,ℓ|Sd−1|
ΠS(r̂1|r̂2)d,ℓ

=
1

ℓ!Nd,ℓ|Sd−1|
(ΠS)<i1...iℓ>

<j1...jℓ>
r̂j11 . . . r̂

jℓ
1 (ΠS)<i1...iℓ>

<k1...kℓ>
r̂k12 . . . r̂kℓ2 .

(C.158)

In the next step, we use the definition of STF electric moment in Eq.(C.147) to write

∑
m⃗

|JE(ω, ℓ, m⃗)|2 = 1

(2ν)2Nd,ℓ|Sd−1|
1

ℓ!

[
EQ(ω)<i1...iℓ>

]∗ [EQ(ω)<i1...iℓ>

]
. (C.159)

A similar derivation can be given for the magnetic moment. From Eq.(C.58), we have

∑
αm⃗

|JB(ω, α, ℓ, m⃗)|2

=
1

(2ν)2

∫
r⃗1

r
ν− d

2
+2

1 0F1

[
1 + ν,−ω

2r21
4

] ∫
r⃗2

r
ν− d

2
+2

2 0F1

[
1 + ν,−ω

2r22
4

]
×
{
J I(r⃗1, ω)

}∗{
JJ(r⃗1, ω)

}∑
αm⃗

Vαℓm⃗
I (r̂1) Vαℓm⃗∗

J (r̂2) .

(C.160)

We can relate the spherical components of the currents to cartesian ones by writing

J I(r⃗, ω) = J i(r⃗, ω)∂ϑ
I

∂xi . Applying the VSH addition theorem as well as the symme-
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try/idempotence of the VSH projector, we get

∂ϑI
1

∂xi1

∂ϑJ
2

∂xj2

∑
αm⃗

Vαℓm⃗
I (r̂1) Vαℓm⃗∗

J (r̂2)

=
1

Nd,ℓ|Sd−1|r1r2
ΠV

ij(r̂1|r̂2)

=
1

ℓ!Nd,ℓ|Sd−1|r1r2
(ΠV )k<k1...kℓ>

i<i1...iℓ>
r̂i11 . . . r̂

iℓ
1 (ΠV )k<k1...kℓ>

j<j1...jℓ>
r̂j12 . . . r̂

jℓ
2 .

(C.161)

We can then use the definition of BQ given in Eq.(C.63) to write

∑
αm⃗

|JB(ω, α, ℓ, m⃗)|2 = 1

(2ν)2Nd,ℓ|Sd−1|
1

ℓ!

[
BQ(ω)k<k1...kℓ>

]∗ [BQ(ω)k<k1...kℓ>

]
. (C.162)

Putting these results together and using the explicit formula for Nd,ℓ, we can rewrite the

power loss formula in Eq.(C.156) entirely in terms of STF moments:

P(ω) =
1

(d− 2)!!|Sd−1|

∞∑
ℓ=1

ℓ+ d− 2

ℓ

ω2ℓ+d−1

(2ℓ+ d− 2)!!

1

ℓ!

[
EQ(ω)<i1...iℓ>

]∗ [EQ(ω)<i1...iℓ>

]
+

1

(d− 2)!!|Sd−1|

∞∑
ℓ=1

ω2ℓ+d−1

(2ℓ+ d− 2)!!

1

ℓ!

[
BQ(ω)i<i1...iℓ>

]∗ [BQ(ω)i<i1...iℓ>

]
.

(C.163)

For odd d, the case where there is a dissipative power loss, the above expression can

be rewritten in the following suggestive form:∫ ∞

−∞

dω

2π
P(ω)

=

∫ ∞

0

ω
ωd−1dω

(2π)d2ω

∞∑
ℓ=1

ℓ+ d− 2

ℓ

Nd,ℓ|Sd−1|
ℓ!

[
ωℓ EQ(ω)<i1...iℓ>

]∗ [
ωℓ EQ(ω)<i1...iℓ>

]
+

∫ ∞

0

ω
ωd−1dω

(2π)d2ω

∞∑
ℓ=1

Nd,ℓ|Sd−1|
ℓ!

[
ωℓ BQ(ω)i<i1...iℓ>

]∗ [
ωℓ BQ(ω)i<i1...iℓ>

]
.

(C.164)

We recognise in front the Lorentz-invariant phase-space integral for a photon of energy

ω, as well as another factor of ω, indicating that we are computing its energy. Since this

is power loss, the remaining factor should be interpreted as the production rate of photon

by a given multipole moment. This can be made even more explicit if we recognise each

term in the sum as the inner product on the sphere for SSHs and VSHs: See Eq.(A.55)
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and Eq.(B.53). We then have the following integral representations:

∫
k̂∈Sd−1

[
1

ℓ!
EQ(ω)<i1...iℓ>k̂

i1 . . . k̂iℓ
]∗ [

1

ℓ!
EQ(ω)<j1...jℓ>k̂

j1 . . . k̂jℓ
]

=
Nd,ℓ|Sd−1|

ℓ!

[
EQ(ω)<i1...iℓ>

]∗ [EQ(ω)<i1...iℓ>

]
,∫

k̂∈Sd−1

[
1

ℓ!
EQ(ω)<pi1...iℓ−1>k̂

i1 . . . k̂iℓ−1

]∗ [
1

ℓ!
EQ(ω)<pj1...jℓ−1>k̂

j1 . . . k̂jℓ−1

]
=

1

ℓ2
Nd,ℓ−1|Sd−1|
(ℓ− 1)!

[
EQ(ω)<i1...iℓ>

]∗ [EQ(ω)<i1...iℓ>

]
,∫

k̂∈Sd−1

[
1

ℓ!
BQ(ω)p<i1...iℓ>k̂

i1 . . . k̂iℓ
]∗ [

1

ℓ!
BQ(ω)p<j1...jℓ>k̂

j1 . . . k̂jℓ
]

=
Nd,ℓ|Sd−1|

ℓ!

[
BQ(ω)i<i1...iℓ>

]∗ [BQ(ω)i<i1...iℓ>

]
.

(C.165)

These, along with the identity

1

ℓ2
Nd,ℓ−1

(ℓ− 1)!
− Nd,ℓ

ℓ!
=
ℓ+ d− 2

ℓ

Nd,ℓ

ℓ!
(C.166)

allows us to write the power loss as the Lorentz-invariant phase-space integral for the

with momentum k⃗ and energy ωk ≡ |⃗k|, i.e.,

∫ ∞

−∞

dω

2π
P(ω) =

∫
ddk

(2π)d2ωk

× ωk(δ
pq − k̂pk̂q)

×

{
∞∑
ℓ=1

[ωk

ℓ!
EQ(ωk)<pi1...iℓ−1>k

i1 . . . kiℓ−1

]∗ [ωk

ℓ!
EQ(ωk)<qj1...jℓ−1>k

j1 . . . kjℓ−1

]
+

∞∑
ℓ=1

[
1

ℓ!
BQ(ωk)p<i1...iℓ>k

i1 . . . kiℓ
]∗ [

1

ℓ!
BQ(ωk)q<j1...jℓ>k

j1 . . . kjℓ
]}

.

(C.167)

Here we have used the fact that BQp<i1...iℓ>k̂
pki1 . . . kiℓ = 0 due to the transversality. The

factor (δpq − k̂pk̂q) is the polarisation sum, summing over all transverse polarisations of

the photon. The power loss written above corresponds to the following photon emission

amplitudes by the multipoles:

i(−i)ν−
1
2
εp∗(k⃗)

ℓ!
EQ(ωk)<pi1...iℓ−1>ωkk

i1 . . . kiℓ−1 , i(−i)ν−
1
2
εp∗(k⃗)

ℓ!
BQ(ωk)p<i1...iℓ>k

i1 . . . kiℓ .

(C.168)
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Here εp(k⃗) is the polarisation for the photon with momentum k⃗ and energy ωk ≡ |⃗k|, and

we have fixed the overall phase by comparing against radiative fields in Eq.(C.133) and

Eq.(C.71).

C.7 EM influence phase in Flat Spacetime

We will now turn to the description of radiation reaction in flat spacetime. Our goal here is

to get some sort of effective action that captures the effect of radiation on charge/current

sources. Since radiation carries away energy in some cases (not always: see below), what

we need is an action that can describe dissipation. This implies that the correct language

here is that of influence phase ala Feynman-Vernon [56], i.e., an action that doubles the

system degrees of freedom to allow us to describe the evolution of density matrices, its

decoherence and dissipation into the environment. As described by Feynman-Vernon, the

influence phase is computed by doing a path integral over the doubled environment (here

the EM fields) coupled to a doubled system(here the charges/currents), with a specific

in-in boundary condition on the environment fields. As emphasised by us in [101], such

in-in boundary conditions are naturally implemented on the dS-SK geometry built by

connecting two static patches at the future horizon. In the subsequent appendices, we

will show that this works also for electromagnetism in dS. Coming back to the current

topic of flat space EM, there is no such simple geometric construction: the in-in boundary

conditions have to be imposed by hand.9 For d = 3, the reader can find such an analysis

in [184–186]. Given that we will be presenting a detailed derivation of the influence phase

in the dS case, we will be content here with a brief sketch.

We remind the reader that the current density can be parametrised in terms of two

9Strictly speaking, flat spacetime EM path integral also has a variety of infrared subtleties. We will
ignore them in what follows.
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functions such that it solves the conservation equations in the following manner:

J t(r⃗, ω) =
∑
ℓm⃗

{
− 1

rd−1

∂

∂r
[rd−1J1(r, ω, ℓ, m⃗)] +

ℓ(ℓ+ d− 2)

r2
J2(r, ω, ℓ, m⃗)

}
Yℓm⃗(r̂) ,

Jr(r⃗, ω) = −iω
∑
ℓm⃗

J1(r, ω, ℓ, m⃗)Yℓm⃗(r̂) ,

r2γ
IK
JK(r⃗, ω) = −iω

∑
ℓm⃗

J2(r, ω, ℓ, m⃗)DIYℓm⃗(r̂) + r2γ
IK

∑
αℓm⃗

JV (r, ω, α, ℓ, m⃗)VK
αℓm⃗ .

(C.169)

We will now consider two copies of these currents(JL and JR), which can be independently

specified for all cases except in the ℓ = 0 case.

∫
ω

∫
dr

∫
dr0{∑

ℓm⃗

ℓ(ℓ+ d− 2) [J1(r, ω, ℓ, m⃗)− ∂rJ2(r, ω, ℓ, m⃗)]∗D GE(r, r0, ω, ℓ)

× [J1(r0, ω, ℓ, m⃗)− ∂r0J2(r0, ω, ℓ, m⃗)]A

+
∑
αℓm⃗

[JV (r, ω, α, ℓ, m⃗)]∗DGB(r, r0, ω, ℓ)JV (r0, ω, α, ℓ, m⃗)A

}
(C.170)

For odd values of d, cot(νπ) is zero, and the renormalised action is given by:

∑
ℓm⃗

ℓ(ℓ+ d− 2)

∫
ω

πi

2Γ(ν + 1)2

(ω
2

)2ν
×
∫
dr0 r

ν+ d
2
−1

0 0F1

[
1 + ν,−ω

2r20
4

]
[∂r0J2(r0, ω)− J1(r0, ω)]

∗
D

×
∫
dr rν+

d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]
[∂rJ2(r, ω)− J1(r, ω)]A

(C.171)

This action for even values of d gets multiplied by a factor of (1+ i cot(νπ)) and hence

diverges. Further counterterms are needed for regularisation. These counterterms can be

computed by expanding the action around ν = n ∈ Z. Consider:

(1 + i cot πν)
2πi

Γ(ν)2

( ω

2H

)2ν
=

1

Γ(n)2

( ω

2H

)2n
×
{

2

ν − n
− 4ψ(0)(n) + ln

( ω

2H

)4
+O(ν − n)

}
.

(C.172)
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where H is the renormalisation scale. Following the same modified minimal subtraction

scheme proposed in [101], we will counterterm the first two terms in the RHS. Using this

scheme, the RR action becomes:

∑
ℓm⃗

ℓ(ℓ+ d− 2)

∫
ω

1

4Γ(ν + 1)2

(ω
2

)2ν
ln

(
ω4

H4

)
×
∫
dr0 r

ν+ d
2
−1

0 0F1

[
1 + ν,−ω

2r20
4

]
[∂r0J2(r0, ω)− J1(r0, ω)]

∗
D

×
∫
dr rν+

d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]
[∂rJ2(r, ω)− J1(r, ω)]A

(C.173)

A similar argument gives us the corresponding action for the magnetic parity action.

We have:

Svector, bare
RR =

∑
ℓm⃗

∫
ω

∫
rd−1dr

∫
rd−1
0 dr0J

∗
V D(r0, w, ℓ, m⃗)JV A(r0, w, ℓ, m⃗)GB(r, r0; ℓ, m⃗)

(C.174)

For odd values of d, the dissipative part of the action is given by:

∑
ℓm⃗

∫
ω

πi

2Γ(ν + 1)2

(ω
2

)2ν
×
∫
dr0 r

ν+ d
2
+1

0 0F1

[
1 + ν,−ω

2r20
4

]
J∗
V D(r0, w, ℓ, m⃗)

×
∫
dr rν+

d
2
+1

0F1

[
1 + ν,−ω

2r2

4

]
J∗
V A(r0, w, ℓ, m⃗)

(C.175)

Counterterming away the extra divergence for the case of even d in the same way as for

the electric sector, we obtain the action:

∑
ℓm⃗

ℓ(ℓ+ d− 2)

∫
ω

1

4Γ(ν + 1)2

(ω
2

)2ν
ln

(
ω4

H4

)
×
∫
dr0 r

ν+ d
2
+1

0 0F1

[
1 + ν,−ω

2r20
4

]
J∗
V D(r0, w, ℓ, m⃗)

×
∫
dr rν+

d
2
+1

0F1

[
1 + ν,−ω

2r2

4

]
J∗
V A(r0, w, ℓ, m⃗)

(C.176)

Given this reduced boundary action, we can write down an SK action for the EM
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radiation reaction as:

SRR =
∑
ℓm⃗

ℓ+ d− 2

ℓ

∫
ω

2πi

Γ(ν)2

(ω
2

)2ν {
JD∗
E JAE +

ℓ

ℓ+ d− 2
JD∗
B JAB

}
(C.177)

where we define:

JEA(ω, ℓ, m⃗) ≡ ℓ

2ν

∫
dr

[
JA
2 ∂r

{
rν+

d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]}

+ JA
1 rν+

d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]]
,

JED(ω, ℓ, m⃗) ≡ ℓ

2ν

∫
dr

[
JD
2 ∂r

{
rν+

d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]}

+ JD
1 rν+

d
2
−1

0F1

[
1 + ν,−ω

2r2

4

]]
,

JBA(ω, α, ℓ, m⃗) ≡ 1

2ν

∫
dr

{
JA
V (α, ℓ, m⃗)rν+

d
2
+1

0F1

[
1 + ν,−ω

2r2

4

]}
,

JBD(ω, α, ℓ, m⃗) ≡ 1

2ν

∫
dr

{
JD
V (α, ℓ, m⃗)rν+

d
2
+1

0F1

[
1 + ν,−ω

2r2

4

]}

(C.178)

Later, we will see that the influence phase obtained in de Sitter reduces to Eq.(C.177) in

the flat space limit.

To compute the radiation reaction of a single particle, it is much more convenient to

work with STF scalar harmonics. Corresponding to appendix A3 of [101], one can rewrite

the RR action in terms of STF moments Q<i1...iℓ>(ω) as:

EQ<i1...iℓ>
A (ω) ≡ 1

(ℓ+ d− 2)
(ΠS)<i1i2...iℓ>

<j1j2...jℓ>

∫
ddx xj1xj2 . . . xjℓ

×

[
1

rℓ+d−3
∂r

{
rℓ+d−2

0F1

[
1 + ν,−r

2ω2

4

]}
J t
A(r⃗, ω)

+ iωr 0F1

[
1 + ν,−r

2ω2

4

]
Jr
A(r⃗, ω)

]
,

(C.179)
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EQ<i1...iℓ>
D (ω) ≡ 1

(ℓ+ d− 2)
(ΠS)<i1i2...iℓ>

<j1j2...jℓ>

∫
ddx xj1xj2 . . . xjℓ

×

[
1

rℓ+d−3
∂r

{
rℓ+d−2

0F1

[
1 + ν,−r

2ω2

4

]}
J t
D(r⃗, ω)

+ iωr 0F1

[
1 + ν,−r

2ω2

4

]
Jr
D(r⃗, ω)

]
.

(C.180)

In terms of these STF multipole moments, we can write the RR action as follows:

SE
RR =

∑
ℓ

ℓ+ d− 2

ℓ

∫
dω

2π

πi

2Γ(ν + 1)2

(ω
2

)2ν 1

Nd,ℓ|Sd−1|
1

ℓ!
EQ∗<i1i2...iℓ>

D
EQA

<i1i2...iℓ>
.

(C.181)

The magnetic multipole moment can be written in terms of the vector STF projector:

BQi<i1...iℓ>
A ≡ (ΠV )i<i1i2...iℓ>

j<j1j2...jℓ>

∫
ddx xj1xj2 . . . xjℓ 0F1

[
1 + ν,−r

2ω2

4

]
J j
A

BQi<i1...iℓ>
D ≡ (ΠV )i<i1i2...iℓ>

j<j1j2...jℓ>

∫
ddx xj1xj2 . . . xjℓ 0F1

[
1 + ν,−r

2ω2

4

]
J j
D

(C.182)

Using the vector addition theorem (B.58), we can show that the magnetic part of the

influence phase can be written in terms of the STF multipole moments as:

SB
RR =

∑
ℓ

∫
dω

2π

πi

2Γ(ν + 1)2

(ω
2

)2ν 1

Nd,ℓ|Sd−1|
1

ℓ!
BQ∗i<i1i2...iℓ>

D,STF
BQ

A,STF
i<i1i2...iℓ>

. (C.183)
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C.8 Multipole expansion in d = 3

In d = 3, we can trade the magnetic field 2-form for an axial vector field B̄i ≡ 1
2
εijkCjk. It

is more convenient to deal with vectors than tensors, and the electric-magnetic duality is

easier to see. We will describe here how the multipole expansion and radiation reaction

formulae can be recast to make EM duality manifest.

At the level of orthonormal spherical harmonics, in d = 3, all vector spherical har-

monics can be replaced with the toroidal operator acting on scalar spherical harmonics,

viz.,

V1ℓm
I (r̂) =

1√
ℓ(ℓ+ 1)

εIJD
JYℓm(r̂) , (C.184)

where the spherical indices are raised using the unit sphere metric. However, if we do

this, we must contend with the irrational factors of
√
ℓ(ℓ+ 1) everywhere in the spherical

harmonic expansions. We will instead use the following strategy, motivated primarily by

EM duality. We use a rescaled basis of VSHs10

Uℓm
I (r̂) ≡

√
ℓ+ 1

ℓ
V1ℓm
I (r̂) =

1

ℓ
ε
IJ

DJYℓm(r̂) . (C.186)

Similarly, we scale the components appearing in the vector spherical harmonic expansions.

We will add a ∨ symbol to all scaled components to avoid confusion. This rescaling factor

should also be included in orthonormality, addition theorem, etc. A rough thumb rule

is to replace all occurrences of VIs in our formulae with UIs, but replace V∗
I with ℓ

ℓ+1
U∗

I

(apart from adding ∨ symbol to the components). We will see an example of this below.

Toroidal magnetostatics in d = 3

Let us first see how this works in the simpler setting of magnetostatics: the generalisation

to the full dynamical situation is straightforward.

10In what follows, it is useful to remember that

dϑIUℓm
I (r̂) =

1

ℓ

(
dϑ

sinϑ

∂

∂φ
− sinϑ dφ

∂

∂ϑ

)
Yℓm(r̂) =

−→
dr ·

{
− êr

ℓ
× ∇⃗Yℓm(r̂)

}
. (C.185)

The last expression gives a cartesian form for our rescaled VSH.
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In terms of the rescaled VSH, the magnetostatic expansion in Eq.(C.13) becomes

Vr = 0 , VI ≡
∑
ℓm

Φ
∨
B
(r, ℓ,m)Uℓm

I (r̂) ,

CrI ≡
∑
ℓm

H
∨
v (r, α, ℓ, m⃗)Uℓm

I (r̂) = ε
IJ

∑
ℓm

1

ℓ
H

∨
v (r, ℓ,m)DJYℓm(r̂) ,

CIJ ≡
∑
ℓm⃗α

H
∨
vv(r, ℓ,m)D[IU

ℓm
J ] (r̂) = ε

IJ

∑
ℓm

(ℓ+ 1)H
∨
vv(r, ℓ,m)Yℓm(r̂) ,

(C.187)

where, in the last step, we have used the identity

D[IU
ℓm
J ] (r̂) = ε

IJ
εMNDMUℓm

N = (ℓ+ 1)Yℓm(r̂) εIJ . (C.188)

The vector magnetic field is obtained by stripping off the ε
rIJ

= r2ε
IJ

factors in Cij and

then lowering the indices. The spherical/radial components of the vector magnetic field

are

BI = r2γIJ ×
1

r2

∑
ℓm

1

ℓ
H

∨
v (r, ℓ,m)DJYℓm(r̂) =

∑
ℓm

1

ℓ
H

∨
v (r, ℓ,m)DIYℓm(r̂) ,

Br =
∑
ℓm

ℓ+ 1

r2
H

∨
vv(r, ℓ,m)Yℓm(r̂) .

(C.189)

The expression for the Debye field in Eq.(C.15) becomes

Φ
∨
B
(r, ℓ,m) ≡ ℓ

ℓ+ 1

∫
r⃗0

GB(r, r0; ℓ)U
ℓm∗
J (r̂0)J̄

J(r⃗0) =

√
ℓ

ℓ+ 1
Φ

B
(r, α = 1, ℓ,m) . (C.190)

In the first step, there is a rescaling pre-factor ℓ
ℓ+1

which multiplies Uℓm∗
J in accordance

with the thumb rule mentioned above. Similar factors appear in the definition of the

magnetic moment:

J
∨B

(ℓ,m) ≡ 1

2ℓ+ 1

ℓ

ℓ+ 1

∫
r⃗0

rℓ+1
0 Uℓm∗

J (r̂0)J̄
J(r⃗0) =

√
ℓ

ℓ+ 1
J
B
(α = 1, ℓ,m) . (C.191)

The magnetic Debye field and the magnetic field components outside the sources take
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the form

Φ
∨,Out
B

(r, ℓ,m) =
J
∨B

(ℓ,m)

rℓ
,

1

ℓ
H

∨Out
v (r, ℓ,m) = −J

∨B
(ℓ,m)

rℓ+1
,

ℓ+ 1

r2
H

∨Out
vv (r, ℓ,m) = (ℓ+ 1)

J
∨B

(ℓ,m)

rℓ+2
.

(C.192)

This should be compared against the electrostatic expressions written in terms of electric

multipole moments:

Φ
∨,Out
E

(r, ℓ, m⃗) =
J
E
(ℓ, m⃗)

rℓ
,

E
Out
s (r, ℓ, m⃗) = −J

E
(ℓ, m⃗)

rℓ+d−2
, E

Out
r (r, ℓ, m⃗) = (ℓ+ d− 2)

J
E
(ℓ, m⃗)

rℓ+d−1
.

(C.193)

We see that the forms of the outside electrostatic vs magnetostatic fields agree in d = 3.

In this normalisation, EM duality acts by mapping electric to magnetic fields and J
E

to J
∨B

. As to the cartesian moments, in analogy with electrostatic multipole tensors in

Eq.(C.91), we define11

1

ℓ!
BQ

∨
<i1i2...iℓ>

xi1 . . . xiℓ ≡ 4π

(2ℓ− 1)!!

∑
m

J
∨B

(ℓ,m)rℓYℓm(r̂)

=
1

ℓ+ 1

∫
r⃗0

[r⃗0 × ⃗̄J(r⃗0)] · ∇⃗0Π
S(r⃗|r⃗0)d=3,ℓ .

(C.194)

In the second line, we have used the expression for J
∨B

in Eq.(C.191), the explicit form of

UI , as well as the SSH addition theorem. The integral appearing here can be evaluated

as ∫
r⃗0

[r⃗0 × ⃗̄J(r⃗0)] · ∇⃗0Π
S(κ⃗|r⃗0) =

ℓ

ℓ!
κi1 . . . κiℓ(ΠS)<i1i2...iℓ>

<j1j2...jℓ>

∫
r⃗0

[r⃗0 × ⃗̄J(r⃗0)]
j1xj20 . . . x

jℓ
0 ,

(C.195)

thus yielding a direct cartesian definition

BQ
∨
<i1i2...iℓ>

≡ ℓ

ℓ+ 1

∫
r⃗0

[r⃗0 × ⃗̄J(r⃗0)]
<i1xi20 . . . x

iℓ>
0 . (C.196)

By construction, the normalisation here is fixed to ensure that EM duality maps the STF

11We use the result that Nd,ℓ−1|Sd−1| = 4π
(2ℓ−1)!! for d = 3.
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tensors EQ to BQ
∨
. The outside vector potential/magnetic field can be written in terms

of this STF magnetic moment as

V
Out
k = −εkijxi

∑
ℓ

BQ
∨
<ji1...iℓ−1>

xi1 . . . xiℓ−1

4πr2ℓ+1

(2ℓ− 1)!!

ℓ!

= −εkij
∑
ℓ

(−)ℓ

ℓ!
∂i∂i1∂i2 . . . ∂iℓ−1

{BQ
∨
<ji1...iℓ−1>

4πr

}
,

B
Out
j =

∑
ℓ

BQ
∨
<i1i2...iℓ>

[(2ℓ+ 1)xjxiℓ − r2ℓδjiℓ ]x
i1 . . . xiℓ−1

4πr2ℓ+3

(2ℓ− 1)!!

ℓ!
.

(C.197)

As expected from EM duality, the magnetic field here has the same form as the outside

electrostatic field in Eq.(C.93). The description in terms of the magnetic moment BQ
∨

can be related to ones in terms of BQ as follows: first, we begin by rewriting the VSH

projector as

ΠV
ij(κ⃗|r⃗)|d=3 =

[κ⃗× ∇⃗κ]i[r⃗ × ∇⃗]j
ℓ(ℓ+ 1)

ΠS(κ⃗|r⃗)|d=3 . (C.198)

This follows from the fact that, in d = 3, all the VSHs can be obtained by applying a

single toroidal operator [r⃗×∇⃗] on SSHs. To get orthonormal VSHs, we need to divide by

a factor
√
ℓ(ℓ+ 1). This means that the VSH addition theorem in d = 3 can be obtained

by sandwiching the SSH addition theorem between two toroidal operators [163–165]. The

relation between the two addition theorems then yields the above relation between the

projectors.

In the next step, we write

1

ℓ!
BQi<i1i2...iℓ>κ

i1 . . . κiℓ ≡
∫
r⃗0

ΠV
ij(κ⃗|r⃗0)J̄ j(r⃗0)

= −1

ℓ
[κ⃗× ∇⃗κ]i

1

ℓ+ 1

∫
r⃗0

[r⃗0 × ⃗̄J(r⃗0)] · ∇⃗0Π
S(κ⃗|r⃗0) .

(C.199)

In RHS, we recognise the integral that defines the BQ
∨
. Stripping off the κi’s, we get the

relation between the two kinds of moments as

BQi<i1i2...iℓ> =
1

ℓ

ℓ∑
p=1

BQ
∨
<ji1...ip...iℓ>

εijip . (C.200)

Here, the underlining on the ip index indicates that it should be dropped, i.e., the indices
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of BQ
∨

are ji1i2 . . . ip−1ip+1 . . . iℓ. We can invert this relation by rewriting Eq.(C.198) as

[κ⃗× ∇⃗κ]iΠ
V
ij(κ⃗|r⃗)|d=3 = −[r⃗ × ∇⃗]jΠS(κ⃗|r⃗)|d=3 . (C.201)

This is equivalent to the tensorial relation

ℓ∑
p=1

εiipn(Π
V )

i<ni1...ip...iℓ>

j<j1j2...jℓ>
= −

ℓ∑
p=1

εjjpn(Π
S)<i1i2...iℓ>

<nj1...jp...jℓ>
. (C.202)

Multiplying by xj10 x
j2
0 . . . x

jℓ
0 J̄

n(r⃗0) and integrating, we get

BQ
∨
<i1i2...iℓ>

= − 1

ℓ+ 1

ℓ∑
p=1

BQi<ji1...ip...iℓ> εijip . (C.203)

The relations Eq.(C.200) and Eq.(C.203) show that same information is contained in the

STF tensors BQ and BQ
∨
.

Multipole radiation in d = 3

We will now move to describing the full radiative fields in d = 3 outside the sources. The

decomposition of EM fields in terms of spherical harmonics has the form

EI(r⃗, ω) =
∑
ℓm

Es(r, ω, ℓ,m)DIYℓm(r̂) +
∑
ℓm

E∨
v (r, ω, ℓ,m)Uℓm

I (r̂) ,

Er(r⃗, ω) =
∑
ℓm

Er(r, ω, ℓ,m)Yℓm(r̂) ,

BI(r⃗, ω) =
∑
ℓm

1

ℓ
H∨

v (r, ω, ℓ,m)DIYℓm(r̂)−
∑
ℓm

ℓ Hs(r, ω, ℓ,m)Uℓm
I (r̂) ,

Br(r⃗, ω) =
∑
ℓm

ℓ+ 1

r2
H∨

vv(r, ω, ℓ,m)Yℓm(r̂) .

(C.204)
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We can write this succinctly as

E⃗(r⃗, ω) =
∑
ℓm

[
Er(r, ω, ℓ,m)Yℓmêr + Es(r, ω, ℓ,m) ∇⃗Yℓm + E∨

v (r, ω, ℓ,m) U⃗ℓm

]
,

B⃗(r⃗, ω) =
∑
ℓm

[
ℓ+ 1

r2
H∨

vv(r, ω, ℓ,m)Yℓmêr

+
1

ℓ
H∨

v (r, ω, ℓ,m) ∇⃗Yℓm − ℓHs(r, ω, ℓ,m) U⃗ℓm

]
,

(C.205)

where we have introduced

U⃗ℓm ≡ −
1

ℓ
êr × ∇⃗Yℓm , ∇⃗Yℓm = ℓ êr × U⃗ℓm . (C.206)

With this understanding, much of our description of EM fields in this section continue to

hold true. Explicit expressions for outside fields in terms of multipole moments can be

written down using Eq.(C.60) and Eq.(C.124). We have

E⃗Out(r⃗, ω) =
∑
ℓm

GOut
E

(r, ω, ℓ) JE(ω, ℓ,m)

[
ℓ+ 1

r2
Yℓmêr −

1

r
∇⃗Yℓm

]
+
∑
ℓm

ω2

ℓ(2ℓ− 1)
GOut

E
(r, ω, ℓ− 1) JE(ω, ℓ,m)∇⃗Yℓm

+ iω
∑
ℓm

GOut
B

(r, ω, ℓ) J∨B(ω, ℓ,m) U⃗ℓm ,

B⃗Out(r⃗, ω) =
∑
ℓm

GOut
B

(r, ω, ℓ) J∨B(ω, ℓ,m)

[
ℓ+ 1

r2
Yℓmêr −

1

r
∇⃗Yℓm

]
+
∑
ℓm

ω2

ℓ(2ℓ− 1)
GOut

B
(r, ω, ℓ− 1) J∨B(ω, ℓ,m)∇⃗Yℓm

− iω
∑
ℓm

GOut
E

(r, ω, ℓ) JE(ω, ℓ,m) U⃗ℓm .

(C.207)

In d = 3, the electric outgoing fields are the same as the magnetic ones, i.e.,

GOut
E

(r, ω, ℓ) = GOut
B

(r, ω, ℓ) ≡ r−ℓ
0F1

[
1

2
− ℓ,−ω

2r2

4

]
=
θℓ(−iωr)
(2ℓ− 1)!!

eiωr

rℓ
, (C.208)

where the θℓ(z) are the reverse Bessel polynomials (see Table C.1 for explicit expressions).

We remind the reader that the above function is essentially the outgoing, spherical Hankel
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function up to a frequency-dependent normalisation factor:

0F1

[
1

2
− ℓ,−ω

2r2

4

]
=

i(ωr)ℓ

(2ℓ− 1)!!
h
(1)
ℓ (ωr) . (C.209)

The above expressions for outgoing EM waves are consistent with EM duality, which

maps

(E⃗, JE) 7→ (B⃗, J∨B) , (B⃗, J∨B) 7→ (−E⃗,−JE) . (C.210)

The explicit expression for the spherical multipole moments are given by

JE(ω, ℓ, m⃗) ≡ 1

(2ℓ+ 1)(ℓ+ 1)

∫
r⃗∈R3

rℓ−1Y ∗
ℓm(r̂) 0F1

[
ℓ+

3

2
,−ω

2r2

4

]
×
{
iωr2Jr(r⃗, ω)− ∂r[r2J t(r⃗, ω)]

}
,

J∨B(ω, ℓ,m) ≡ 1

2ℓ+ 1

ℓ

ℓ+ 1

∫
r⃗∈R3

rℓ+1Uℓm∗
I (r̂)0F1

[
ℓ+

3

2
,−ω

2r2

4

]
J I(r⃗, ω)

=
1

(2ℓ+ 1)(ℓ+ 1)

∫
r⃗0∈R3

rℓ0F1

[
ℓ+

3

2
,−ω

2r2

4

]
[r⃗ × J⃗(r⃗, ω)] · ∇⃗Yℓm(r̂) .

(C.211)

Here, we have specialised the electric moment of Eq.(C.144) to d = 3, and we have

generalised the magnetic moment in Eq.(C.191) to dynamical situations. The 0F1 is

the time-delay smearing function and is essentially the spherical Bessel function up to a

normalisation:

0F1

[
ℓ+

3

2
,−ω

2r2

4

]
=

(2ℓ+ 1)!!

(ωr)ℓ
jℓ(ωr) =

(2ℓ+ 1)!!

2ℓℓ!

∫ 1

−1

(1− z2)ℓ e±iωzr . (C.212)

At large r, far away from sources, the EM fields given in Eq.(C.207) become

E⃗Rad(r⃗, ω) = −eiωr
∑
ℓm

(−iω)ℓ+1

ℓ(2ℓ− 1)!!

[
JE(ω, ℓ,m) ∇⃗Yℓm − J∨B(ω, ℓ,m) êr × ∇⃗Yℓm

]
,

B⃗Rad(r⃗, ω) = −eiωr
∑
ℓm

(−iω)ℓ+1

ℓ(2ℓ− 1)!!

[
JE(ω, ℓ,m) êr × ∇⃗Yℓm + J∨B(ω, ℓ,m) ∇⃗Yℓm

]
.

(C.213)

Here the sum runs over ℓ ≥ 1, and we recognise in these formulae the transverse, radially

outgoing EM waves with B⃗Rad = êr × E⃗Rad. The cartesian forms of these equations can
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be obtained by using the definitions

∑
m

JE(ω, ℓ,m)Yℓm(r̂) ≡
(2ℓ− 1)!!

ℓ!
EQ(ω)<i1i2...iℓ>

xi1 . . . xiℓ

4πrℓ
,

∑
m

J∨B(ω, ℓ,m)Yℓm(r̂) ≡
(2ℓ− 1)!!

ℓ!
BQ∨(ω)<i1i2...iℓ>

xi1 . . . xiℓ

4πrℓ
.

(C.214)

These generalise the relation between spherical and cartesian STF moments beyond stat-

ics. The explicit expression for the cartesian moments are given by

EQ(ω)<i1i2...iℓ> ≡
1

ℓ+ 1

∫
r⃗∈R3

x<i1xi2 . . . xiℓ> 0F1

[
ℓ+

3

2
,−ω

2r2

4

]
×
{
iωrJr(r⃗, ω)− 1

r
∂r[r

2J t(r⃗, ω)]
}
,

BQ∨(ω)<i1i2...iℓ> =
ℓ

ℓ+ 1

∫
r⃗0∈R3

0F1

[
ℓ+

3

2
,−ω

2r2

4

]
[r⃗ × J⃗(r⃗, ω)]<i1xi2 . . . xiℓ> .

(C.215)

It is then straightforward to see that Eq.(C.200) and Eq.(C.203) also generalise to time-

dependent situations.

The cartesian components of the EM fields can be worked out by directly substituting

the above definitions into Eq.(C.207). Alternately, we can take the cartesian Electric

fields in general dimensions (i.e. the sum of electric fields in Eq.(C.129) and Eq.(C.129)),

and specialise to d = 3. In either case, once the electric field has been figured out, the

magnetic field expressions follow from EM duality. The EM fields outside the sources

evaluate to

EOut
k (r⃗, ω) = eiωr

∑
ℓ

θℓ(−iωr)
ℓ!

EQ(ω)<i1i2...iℓ>[(2ℓ+ 1)nkniℓ − ℓδkiℓ ]n
i1 . . . niℓ−1

4πrℓ+2

+ ω2eiωr
∑
ℓ

θℓ−1(−iωr)
ℓ!

EQ(ω)<i1i2...iℓ>[δ
kiℓ − nkniℓ ]

ni1 . . . niℓ−1

4πrℓ

+ iωeiωrεkji1
∑
ℓ

θℓ(−iωr)
ℓ!

BQ∨(ω)<ji2...iℓ>
ni1 . . . niℓ

4πrℓ+1
,

BOut
k (r⃗, ω) = eiωr

∑
ℓ

θℓ(−iωr)
ℓ!

BQ∨(ω)<i1i2...iℓ>[(2ℓ+ 1)nkniℓ − ℓδkiℓ ]n
i1 . . . niℓ−1

4πrℓ+2

+ ω2eiωr
∑
ℓ

θℓ−1(−iωr)
ℓ!

BQ∨(ω)<i1i2...iℓ>[δ
kiℓ − nkniℓ ]

ni1 . . . niℓ−1

4πrℓ

− iωeiωrεkji1
∑
ℓ

θℓ(−iωr)
ℓ!

EQ(ω)<ji2...iℓ>
ni1 . . . niℓ

4πrℓ+1
.

(C.216)
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Here we have used a shorthand ni ≡ xi

r
. The reader might recognise the form appearing

in the first line of the fields from the EM fields outside static multipoles. Only the second

and the third line in each field contribute to the radiative part. These are again manifestly

duality invariant if we also take

EQ 7→ BQ∨ , BQ∨ 7→ −EQ . (C.217)

With some relabelling of indices, the radiative EM fields can be cast into the following

form

ERad
k (r⃗, ω) = −e

iωr

4πr

∑
ℓ

(−iω)ℓ+1

ℓ!

×

{
EQ(ω)<i1i2...iℓ>[δ

ki1 − nkni1 ] + εkji1
BQ∨(ω)<ji2...iℓ> ni1

}
ni2 . . . niℓ

BRad
k (r⃗, ω) = −e

iωr

4πr

∑
ℓ

(−iω)ℓ+1

ℓ!

×

{
BQ∨(ω)<i1i2...iℓ>[δ

ki1 − nkni1 ]− εkji1EQ(ω)<ji2...iℓ> ni1

}
ni2 . . . niℓ .

(C.218)

The scalar and vector potentials corresponding to the above EM fields can be written

down by choosing a gauge. Combining Eqs.(C.67) and (C.132), we can write

V
Out,New
t (r⃗, ω) = −

∑
ℓ

GOut
E

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
EQ(ω)<i1i2...iℓ>

xi1 . . . xiℓ

rℓ+d−2
,

V
Out,New
k (r⃗, ω) = −iω

∑
ℓ>0

GOut
E

(r, ω, ℓ− 1)

ℓ!Nd,ℓ−2|Sd−1|
EQ(ω)<ki1i2...iℓ−1>

xi1 . . . xiℓ−1

rℓ+d−3

+
∑
ℓ>0

GOut
B

(r, ω, ℓ)

ℓ!Nd,ℓ−1|Sd−1|
BQ(ω)k<i1i2...iℓ>

xi1 . . . xiℓ

4πrℓ+1
.

(C.219)
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Specialising to d = 3 and rewriting the magnetic moment part accordingly, we obtain

V
Out,New
t (r⃗, ω) = −eiωr

∑
ℓ

θℓ(−iωr)
ℓ!

EQ(ω)<i1i2...iℓ>
ni1 . . . niℓ

4πrℓ+1
,

V
Out,New
k (r⃗, ω) = −iωeiωr

∑
ℓ>0

θℓ−1(−iωr)
ℓ!

EQ(ω)<ki1i2...iℓ−1>
ni1 . . . niℓ−1

4πrℓ

+ eiωrεkji1
∑
ℓ>0

θℓ(−iωr)
ℓ!

BQ∨(ω)<ji2...iℓ>
ni1 . . . niℓ

rℓ+1
.

(C.220)

These outgoing solutions and their time-reversed counterparts are useful in quantising

electrodynamics in spherical coordinates. Far away from the sources, we get the radiative

fields

V
Rad,New
t (r⃗, ω) = −e

iωr

4πr

∑
ℓ

(−iω)ℓ

ℓ!
EQ(ω)<i1i2...iℓ>n

i1 . . . niℓ ,

V
Rad,New
k (r⃗, ω) =

eiωr

4πr

∑
ℓ>0

(−iω)ℓ

ℓ!

{
EQ(ω)<ki1i2...iℓ−1>

+ εkjiℓniℓ
BQ∨(ω)<ji1...iℓ−1>

}
ni1 . . . niℓ−1 .

(C.221)

Power loss in d = 3

We will now show how the power loss formulae in general dimension can be cast into

familiar forms when d = 3. The main point is to rewrite the magnetic multipole power

loss to make the EM duality manifest. In terms of spherical multipoles, this is easy: we

start with the power radiated in terms of our multipole moments is

P(ω) =
∑
ℓm⃗

2π

Γ(ν)2
ω2ν+1

22ν
ℓ+ d− 2

ℓ
|JE(ω, ℓ, m⃗)|2 +

∑
αℓm⃗

2π

Γ(ν)2
ω2ν+1

22ν
|JB(ω, α, ℓ, m⃗)|2,

(C.222)

and rewrite it in d = 3 using Eq.(C.191) to get

P(ω)d=3 =
∑
ℓm

ω2ℓ+2

[(2ℓ− 1)!!]2
ℓ+ 1

ℓ

[
|JE(ω, ℓ,m)|2 + |J∨B(ω, ℓ,m)|2

]
. (C.223)

This expression is now manifestly invariant under EM duality.

Power loss in terms of STF moments requires a bit more work: the d = 3 version of
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Eq.(C.163) is

P(ω)d=3 =
1

4π

∞∑
ℓ=1

ℓ+ 1

ℓ

ω2ℓ+2

(2ℓ+ 1)!!

1

ℓ!

[
EQ(ω)<i1...iℓ>

]∗ [EQ(ω)<i1...iℓ>

]
+

1

4π

∞∑
ℓ=1

ω2ℓ+2

(2ℓ+ 1)!!

1

ℓ!

[
BQ(ω)k<i1...iℓ>

]∗ [BQ(ω)k<i1...iℓ>

] (C.224)

We want to rewrite this formula in terms of BQ∨ tensor. Using Eq.(C.200), we can write

1

ℓ!
[BQk<i1i2...iℓ>]

∗[BQk<i1i2...iℓ>]|d=3

=
1

ℓ!

[
1

ℓ

ℓ∑
p=1

εkqip
BQ∨<qi1i2...ip...iℓ−1>

]∗ [
1

ℓ

ℓ∑
p′=1

εkq′ip′
BQ∨

<q′i1i2...ip′ ...iℓ−1>

]
.

(C.225)

In this product of sums made of ℓ2 terms, we get ℓ terms with p = p′ and ℓ(ℓ− 1) terms

with p ̸= p′. Here every p ̸= p′ term evaluates to

εkq1i1εkq2i2 [
BQ∨<q1i2i3...iℓ>]∗[BQ∨

<q2i1i3...iℓ>
]

= (δq1q2δi1i2 − δq1i2δq2i1)[BQ∨<q1i2i3...iℓ>]∗[BQ∨
<q2i1i3...iℓ>

]

= [BQ∨<i1i2i3...iℓ>][BQ∨
<i1i2i3...iℓ>

] .

(C.226)

Here, the second term evaluates to zero because of the trace-free condition on BQ∨. Every

p = p′ term evaluates to

εkq1i1εkq2i1 [
BQ∨<q1i2i3...iℓ>]∗[BQ∨

<q2i2i3...iℓ>
] = 2 [BQ∨<i1i2i3...iℓ>]∗[BQ∨

<i1i2i3...iℓ>
] . (C.227)

Adding up all the terms yields then a factor of ℓ(ℓ − 1) + 2ℓ = ℓ(ℓ + 1). Thus, we have

proved that

1

ℓ!
[BQk<i1i2...iℓ>]

∗[BQk<i1i2...iℓ>]|d=3 =
ℓ+ 1

ℓ
× 1

ℓ!
[BQ∨<i1i2i3...iℓ>]∗[BQ∨

<i1i2i3...iℓ>
] . (C.228)

This identity can be used to recast the power loss formula in Eq.(C.224) into a duality

228



invariant form:

P(ω)d=3 =
1

4π

∞∑
ℓ=1

ℓ+ 1

ℓ

ω2ℓ+2

(2ℓ+ 1)!!

× 1

ℓ!

{[
EQ<i1...iℓ>

]∗ [EQ<i1...iℓ>

]
+ [BQ∨<i1i2i3...iℓ>]∗[BQ∨

<i1i2i3...iℓ>
]

}
.

(C.229)

The first few terms here correspond to electric/magnetic dipole/quadrupole moments,

i.e., if we set

EQi1 ≡ dEi1 ,
EQ<i1i2> ≡ qE<i1i2>

, BQ∨
ki1
≡ dBi1 ,

BQ∨
<i1i2>

= qB<i1i2>
. (C.230)

The power loss formula then takes the form

P(ω)d=3 =
ω4

6π

∑
i

|dEi |2 +
ω6

80π

∑
ij

|qE<ij>|2 + . . .

+
ω4

6π

∑
i

|dBi |2 +
ω6

80π

∑
ij

|qB<ij>|2 + . . .

(C.231)

This agrees with the Larmor formula quoted in standard textbooks.12

C.9 Comparison of normalisations

In our discussion of multipole expansions, we have chosen our multipole moment def-

initions uniformly across statics and radiation, and we have tried to use the simplest

normalisations consistent with electric-magnetic duality. This is consistent with modern

treatments of gravitational multipole expansions based on STF tensors. Unfortunately,

our notations differ from popular textbooks on electromagnetism where radiative mul-

tipole moments are treated very differently from static multipole moments. This fact

complicates the comparison of our expression with those available in standard EM text-

books like that of Jackson [114] and Zangwill [178]. Our normalisations also differ slightly

from papers on STF multipole expansion [151,160,162]. Given this bewildering array of
12For example, Jackson defines his cartesian STF electric quadrupole moment to be three times our

quadrupole moment, and his definition of power loss in frequency domain is half of ours due to Fourier
transform conventions. So, in his textbook, he gives 2× 6π = 12π as the denominator for dipole power
loss and 2× 32 × 80π = 1440π as the denominator for quadrupole power loss.
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existent normalisations for EM multipoles, we will conclude this appendix by providing

the necessary dictionary for translation to the notations in such texts and papers. There

are no new results here, and a reader disinterested in notational fine-print may safely skip

what follows.

Our expressions can be converted to static moments appearing in textbooks via

J̄E(ℓ,m) =
1

2ℓ+ 1
qJackson
ℓm =

1

4π
AZangwill

ℓm =
Q

(e)LBP
ℓm√

4π(2ℓ+ 1)
,

J
∨B

(ℓ,m) = ℓ
µJackson
ℓm√

4π(2ℓ+ 1)
=

1

2ℓ+ 1
MZangwill

ℓm =
Q

(m)LBP
ℓm√

4π(2ℓ+ 1)
.

(C.232)

These factors can be figured out by comparing our static moments (i.e., Eqs.(C.90) and

(C.191)) against the definitions given in these texts.13 As indicated in the footnote,

Jackson does not define a magnetostatic multipole moment in his text. Instead, in Prob-

lem(5.8b) involving axi-symmetric currents of the form J⃗ = Jφ(r, θ)φ̂, Jackson defines

µJackson
ℓ,m=0 = − 1

ℓ(ℓ+ 1)

∫
R3

rℓP 1
ℓ (cosϑ)J̄φ(r, θ) =

1

ℓ+ 1

√
4π

2ℓ+ 1

∫
R3

rℓ+1U⃗∗
ℓ,m=0(r̂) · J̄(r⃗) ,

(C.233)

where we have used the fact that

r⃗ × ∇⃗Yℓ,m=0 = êφ

√
2ℓ+ 1

4π
P 1
ℓ (cosϑ) . (C.234)

We have generalised Jackson’s definition to general m to determine the relative normali-

sation quoted above. With this dictionary, we have checked that the multipole expansions

for static fields given in these texts agree with our expressions.

Moving on to radiative multipole moments, the relative normalisations are given by14

ΛE,Zangwill
ℓm (ω) =

1√
ℓ(ℓ+ 1)

aJackson
E (ω, ℓ,m) = −i ωℓ+2

ℓ(2ℓ− 1)!!
JE(ω, ℓ,m) ,

ΛM,Zangwill
ℓm (ω) =

1√
ℓ(ℓ+ 1)

aJackson
M (ω, ℓ,m) = i

ωℓ+2

ℓ(2ℓ− 1)!!
J∨B(ω, ℓ,m) .

(C.235)

13The static moments of Jackson [114] are defined in JEq(4.3) and Problem(5.8b), that of Zangwill
[178] are defined in ZEq.(4.87) and ZEq.(11.66), and of Lifshitz-Berestetskii-Pitaevskii [187] are given in
LBPEq.(46.7) and LBPEq(47.3).

14This follows from comparing Zangwill’s ZEq.(20.224),(20.225), as well as Jackson’s JEq.( 9.167),
(9.168) against our Eq.(C.211).
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Our normalisations are closer to that of Campbell-Macek-Morgan [175] with

QCMM
ℓm (ω) = (2ℓ+ 1)JE(ω, ℓ,m) , MCMM

ℓm (ω) = (2ℓ+ 1)J∨B(ω, ℓ,m) . (C.236)

With this dictionary, we have checked that the multipole expansions for radiative fields

as well as power loss given in these texts agree with our expressions.15

We now turn to STF multipole moments. In general d, the authors Amalberti-

Larrouturou-Yang (ALY) [162] define STF electric and magnetic moments. Their defini-

tions are related to ours by

EQ<i1i2...iℓ> = IALY
<i1i2...iℓ>

, BQi<i1i2...iℓ> =
2ℓ

ℓ+ 1
JALY
i<i1i2...iℓ>

. (C.237)

These normalisations can be fixed by comparing the Fourier transform of ALYEq(3.17)

against our definitions in Eq.(C.147) and Eq.(C.63). For the vector projector, ALY

seem to use Eq.(B.89), but their formula seems to omit the final symmetrisation. The

conversion rule quoted above assumes that such a symmetrisation is implicit in their

expressions.16

The rest of the references dealing with STF moments are specific to d = 3: Damour-

Iyer [160] and Ross [151]. We claim that the relative normalisation factors are

EQ<i1i2...iℓ> = QDamour-Iyer
<i1i2...iℓ>

= I<i1i2...iℓ>
Ross ,

BQ∨
<i1i2...iℓ>

=
ℓ

ℓ+ 1
MDamour-Iyer

<i1i2...iℓ>
=

ℓ

ℓ+ 1
J<i1i2...iℓ>

Ross .
(C.238)

Here, we have converted the time-domain expressions of [151, 160] into the frequency

domain. The Damour-Iyer definitions in DIeq(4.18) of [160] can be Fourier transformed

15Note that power loss formulae in Jackson’s chapter§9 are half of ours due to differences in Fourier
transform conventions.

16The reader should note that ALY’s anti-symmetric projection involves an additional factor of half
compared to our conventions here.
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to frequency domain as

QDamour-Iyer
<i1i2...iℓ>

=
1

ℓ+ 1

∫
R3

x<i1xi2 . . . xiℓ>
1∫

−1

dz
(2ℓ+ 1)!!

2ℓ+1ℓ!
(1− z2)ℓe−iωrz

×
[
(ℓ+ 1− iωrz)J t(r⃗, ω) + iωJr(r⃗, ω)

]
,

MDamour-Iyer
<i1i2...iℓ>

=
1

ℓ

∫
R3

1∫
−1

dz
(2ℓ+ 1)!!

2ℓ+1ℓ!
(1− z2)ℓe−iωrz x<i1xi2 . . . xiℓ>(r⃗ × ∇⃗) · J⃗(r⃗, ω) .

(C.239)

To relate it to Eq.(C.215), we perform an integration by parts:

QDamour-Iyer
<i1i2...iℓ>

=
1

ℓ+ 1

∫
R3

x<i1xi2 . . . xiℓ>
1∫

−1

dz
(2ℓ+ 1)!!

2ℓ+1ℓ!
(1− z2)ℓe−iωrz

×
{
iωrJr(r⃗, ω)− 1

r
∂r[r

2J t(r⃗, ω)]
}
,

MDamour-Iyer
<i1i2...iℓ>

=

∫
R3

1∫
−1

dz
(2ℓ+ 1)!!

2ℓ+1ℓ!
(1− z2)ℓe−iωrz [r⃗ × J⃗(r⃗, ω)]<i1xi2 . . . xiℓ> .

(C.240)

Invoking Eq.(C.212), we then obtain the normalisations claimed above.

As for Ross [151], his magnetic moment expressions are directly of the form Eq.(C.212).

After converting to frequency domain, his electric moment definition is

I(ω)<i1i2...iℓ>
Ross =

∫
R3

{
1F2

[
ℓ

2
;
ℓ

2
+ 1 , ℓ+

3

2
;−ω

2r2

4

]
J t(r⃗, ω) x<i1xi2 . . . xiℓ>

− iω ℓ

(ℓ+ 1)(ℓ+ 2)
1F2

[
ℓ

2
+ 1 ;

ℓ

2
+ 2 , ℓ+

3

2
;−ω

2r2

4

]
×
{
r2J<iℓ(r⃗, ω) x<i1xi2 . . . xiℓ−1> − xkJk(r⃗, ω) x<i1xi2 . . . xiℓ>

}}
.

(C.241)

From charge conservation, we have the following identity:

− iω
∫

R3

J0(r⃗, ω) r2px<i1xi2 . . . xiℓ> = −
∫

R3

∂kJ
k(r⃗, ω) r2px<i1xi2 . . . xiℓ>

=

∫
R3

r2p−2
[
ℓ J<iℓ(r⃗, ω) x<i1xi2 . . . xiℓ−1> + 2p xkJ

k(r⃗, ω) x<i1xi2 . . . xiℓ>
] (C.242)
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We use this to write

I(ω)<i1i2...iℓ>
Ross =

∫
R3

{
1F2

[
ℓ

2
;
ℓ

2
+ 1 , ℓ+

3

2
;−ω

2r2

4

]
J t(r⃗, ω) x<i1xi2 . . . xiℓ>

− ω2r2

(ℓ+ 1)(ℓ+ 2)
1F2

[
ℓ

2
+ 1 ;

ℓ

2
+ 2 , ℓ+

3

2
;−ω

2r2

4

]
J t(r⃗, ω) x<i1xi2 . . . xiℓ>

− 1

(ℓ+ 1)

{
1F2

[
ℓ

2
+ 1 ;

ℓ

2
+ 2 , ℓ+

3

2
;−ω

2r2

4

]
− ω2r2

(ℓ+ 4)(2ℓ+ 3)
1F2

[
ℓ

2
+ 2 ;

ℓ

2
+ 3 , ℓ+

5

2
;−ω

2r2

4

]}
xkJ

k(r⃗, ω) x<i1xi2 . . . xiℓ>

}
.

(C.243)

The above expression can then be further simplified to

I(ω)<i1i2...iℓ>
Ross =

1

ℓ+ 1

∫
R3

{
1

rℓ
∂r

(
rℓ+1

0F1

[
ℓ+

3

2
,−ω

2r2

4

])
J t(r⃗, ω) x<i1xi2 . . . xiℓ>

+ iω0F1

[
ℓ+

3

2
,−ω

2r2

4

]
xkJ

k(r⃗, ω) x<i1xi2 . . . xiℓ>

}
.

(C.244)

After an integration by parts, this matches with our definition. We have also checked that

the power loss formula and the radiative fields given by Ross agrees with our expressions.

Dimensional analysis

This section provides a list of scaling dimensions of various physical quantities defined in

our analysis for the reader’s convenience. This allows for easy checks on the dimensional

compatibility of all the equations. We work in units where the speed of light(c), the

permittivity of vacuum(ϵ0) and the reduced Planck’s constant(ℏ) are set to one. This

leaves us a single scaling dimension, which we pick to be mass [M ].

For our de Sitter analysis, we will also work with the Hubble’s constant, H, set to 1.

To check the dimensional consistency of equations in the following sections, one should

restore the H’s, after which they can be checked against the above table.
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Quantity Quantity Mass Dimension Quantity Mass Dimension
Debye potential [ΦE] −d−3

2
− 1 [ΦB]

d−3
2
− 1

EM field strength [Er]
d−3
2

+ 1 [Hvv]
d−3
2
− 1

[Es]
d−3
2

[Hs]
d−3
2

[Ev]
d−3
2

[Hv]
d−3
2

Gauge potential [Vt]
d−3
2

[Vr]
d−3
2

[VI ]
d−3
2
− 1

Charge/current density [J t] d−3
2

+ 2 [Jr] d−3
2

+ 2[
J I
]

d−3
2

+ 3

Spherical multipole moments [JE] −d−3
2
− (ℓ+ 1) [JB] −d−3

2
− (ℓ+ 1)

STF multipole moments
[
EQ<i1i2...iℓ>

]
−d−3

2
− (ℓ+ 1)

[
BQk<i1i2...iℓ>

]
−d−3

2
− (ℓ+ 1)

Outgoing waves
[
GOut

E

]
ℓ

[
GOut

B

]
(d− 3) + ℓ

EM Green fns. [GE] −(d− 3)− 1 [GB] (d− 3)− 1

Table C.2: Mass dimensions of various quantities in the frequency domain. The electric
quantities appear in the second and the third column, whereas the magnetic counterparts
appear in the third and the fourth. The time domain versions are denoted by a tilde over
the symbol, and their mass dimensions are 1 more than the dimensions quoted above.
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Appendix D

Summary of the formulae for dS4

In this appendix, we will summarise our results for both scalars and electromagnetic

fields for the most relevant case of d = 3. This should facilitate comparison with existing

literature in dS4 for the readers. We will section them into designer scalar formulae and

electromagnetism formulae.

D.1 Designer Scalar in dS4

The parameters used in the scalar analysis, {N, ν, µ}, have explicit dimensional depen-

dence. Amongst these, the parameter ν carries the information of the mode’s angular

momentum: ν = ℓ + d
2
− 1 which for the case of dS4 becomes ν = ℓ + 1

2
. The other two

parameters depend on the dimension according to the class of fields they encode. For the

light fields, the parameters take the values as given in table D.1.

Table D.1: N, µ values for different massless fields: massless Klein-Gordon scalar, electric

and magnetic parity sectors of electromagnetism and linearised gravity.

KG Sca EM Mag EM Elec Grav Mag Grav Elec

N 2 0 0 −2 0

µ 3
2

1
2

−1
2

1
2

−1
2

Since the equation of motion for these scalars is even in µ(2.5), we can explicitly see

that both electric and magnetic modes have the same equation of motion in d = 3. The

electric and magnetic parity gravitational perturbations(there is no extra tensor sector in
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d = 3) also have the same µ dependence and only differ in the value of N. This implies

that the functional behaviour of their solutions is the same as that of the electromagnetic

fields, only differing in their overall r powers. In fact, both electromagnetic and linearised

gravity fields map to the conformally coupled scalar in d = 3 (this was also pointed out

by [7]).

Let’s begin with the retarded boundary to bulk(i.e. r = 0 to bulk) Green’s function

that satisfies the outgoing boundary conditions at the horizon:

GOut
N = r−ℓ−N

2 (1 + r)−iω

×
{

2F1

[ 1
2
− ℓ+ µ− iω

2
,
1
2
− ℓ− µ− iω

2
;
1

2
− ℓ; r2

]
−KOut

r2ℓ+1

2ℓ+ 1
2F1

[
ℓ+ 3

2
− µ− iω
2

,
ℓ+ 3

2
+ µ− iω
2

; ℓ+
3

2
; r2
]}

.

(D.1)

where KOut, which encodes the radiation reaction kernel, is given by:

KOut = (−1)ℓ 2π

Γ(ℓ+ 1
2
)2

Γ
(

ℓ+ 3
2
−µ−iω

2

)
Γ
(

ℓ+ 3
2
+µ−iω

2

)
Γ
(

1
2
−ℓ+µ−iω

2

)
Γ
(

1
2
−ℓ−µ−iω

2

) . (D.2)

Given these formulae, we can define the ‘Schwarzschild time’ boundary to bulk Green’s

functions using (2.90):

Ξn =
1

2ℓ+ 1
rℓ+1−N

2 (1− r2)−
iω
2 2F1

[
ℓ+ 3

2
− µ− iω
2

,
ℓ+ 3

2
+ µ− iω
2

; ℓ+
3

2
; r2
]
,

Ξnn = r−ℓ−N
2 (1− r2)−

iω
2 2F1

[ 1
2
− ℓ+ µ− iω

2
,
1
2
− ℓ− µ− iω

2
;
1

2
− ℓ; r2

]
.

(D.3)

Using these and (2.103), one can derive the multipole moments for localised sources on

the dS-SK contour explicitly.

Finally, we will quote the full covariant ALD force for the massless Klein-Gordon

scalar:

F µ
RR =

1

4π

[
P µν

3!!

{
a(1)ν

}
−H2 {vµ}

]
, (D.4)

where P µν is the projector perpendicular to the 4 velocity, a(1)ν is the derivative of the

4-acceleration and vµ is the 4-velocity.
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D.2 Electromagnetism in dS4

In appendix C.8, we provide an analysis for 3+1-dimensional flat space electromagnetism.

Much of the analysis is similar for the spherical harmonics decomposition, but the bulk-

to-boundary propagators get modified for de Sitter.

The electric and magnetic sector boundary to bulk retarded Green’s functions in 4-

dimensional de Sitter are:

GOut
E = r−ℓ(1 + r)−iω

×
{

2F1

[
−ℓ− iω

2
,
1− ℓ− iω

2
;
1

2
− ℓ; r2

]
−KOut

E (ω, ν)
r2ℓ+1

2ℓ+ 1
2F1

[
2 + ℓ− iω

2
,
1 + ℓ− iω

2
;
3

2
+ ℓ; r2

]}
,

GOut
B = r−ℓ(1 + r)−iω

×
{

2F1

[
1− ℓ− iω

2
,
−ℓ− iω

2
;
1

2
− ℓ; r2

]
−KOut

B (ω, ν)
r2ℓ+1

2ℓ+ 1
2F1

[
1 + ℓ− iω

2
,
2 + ℓ− iω

2
;
3

2
+ ℓ; r2

]}
.

(D.5)

where we have defined the corresponding 3+1-dimensional radiation reaction kernels as

follows:

KOut
E = (−1)ℓ 2π

Γ(ℓ+ 1
2
)2
Γ
(
ℓ+2−iω

2

)
Γ
(
ℓ+1−iω

2

)
Γ
(
1−ℓ−iω

2

)
Γ
(−ℓ−iω

2

) ,

KOut
B = (−1)ℓ 2π

Γ(ℓ+ 1
2
)2
Γ
(
ℓ+1−iω

2

)
Γ
(
ℓ+2−iω

2

)
Γ
(−ℓ−iω

2

)
Γ
(
1−ℓ−iω

2

) .

(D.6)

Both of these are equal as a result of electric-magnetic duality in 4 spacetime dimensions.

The ‘Schwarzschild time’ normalisable modes required to define the electromagnetic

radiative multipole moments are:

ΞB
n (r, ω, ℓ) =

rℓ+1

2ℓ+ 1
(1− r2)−

iω
2 2F1

[
ℓ+ 1− iω

2
,
ℓ+ 2− iω

2
; ℓ+

3

2
; r2
]
,

ΞE
n (r, ω, ℓ) =

rℓ+1

2ℓ+ 1
(1− r2)−

iω
2 2F1

[
ℓ+ 2− iω

2
,
ℓ+ 1− iω

2
; ℓ+

3

2
; r2
]
.

(D.7)

These functions are again equal as a result of the electric-magnetic duality. Given these

equations, one can obtain the corresponding dS-SK multipole moments JE and JB using

equations (3.82) and (3.83).
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Finally, we will quote the covariant Abraham-Lorentz-Dirac force in de Sitter:

F µ
RR =

1

4π

P µν

3!!

{
− 2a(1)ν

}
. (D.8)

This takes the same form as in flat space, with the crucial difference being that the

expressions are de Sitter covariant four vectors instead of Poincare covariant four vectors.

This concludes our list of formulae specific to dS4 that can be compared easily with other

literature. In particular, [188] calculates the electromagnetic self-force in de Sitter for 4

spacetime dimensions.
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Appendix E

Miscellany

This appendix contains some computations that are useful to the results presented in the

thesis, but are mentioned here so as to make the main sections of the thesis easier to

read.

E.1 dS-Bessel Polynomials

In this section, we will generalise the flat space reverse Bessel polynomials [103, 18.34],

obtained in the study of outgoing radiation in 3 + 1 dimensions, to a generic class of

scalar fields in all even-dimensional de Sitter spacetimes. In chapter §2, we introduced a

system of ‘designer scalars’ that are governed by the action:

S = −1

2

∫
dd+1x

√
−g rN+1−d

{
(∂ΦN)

2 +
Φ2

N

4r2
[(d+N − 3)(d−N − 1)

−r2
(
4µ2 − (N + 1)2

)] }
.

(E.1)

where the N and µ parametrise the various scalar fields. The centrifugal and mass

terms are chosen in the action such that for appropriate values of N and µ, one can

obtain various scalar fields that are obtained in the study of massive Klein-Gordon fields,

electromagnetism, and linearised gravity.

In even dimensional de Sitter spacetimes, for massless fields, i.e., when 4µ2 = (N+1)2,

one finds that the outgoing boundary to bulk propagator GOut
N can be written in polyno-

mials in ωr and rH. These polynomials are the de Sitter analogues of the reverse Bessel

polynomials generalised to d + 1 dimensions and reproduce them in the zero curvature
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limit. To make this explicit, we will write the designer scalar EOM as follows:

1

r1−2ν
D+

(
r1−2νD+ψN

)
+ ω2ψN +H2(1− r2H2)

[
µ2 − (ν − 1)2

]
ψN = 0 . (E.2)

where we have scaled the designer scalar with a power of r for convenience:

ΦN(r, ω, ℓ) = r
1−N
2

−νψN(r, ω, ℓ) . (E.3)

We remind the reader that ν = ℓ+ d
2
− 1. One can write the solution for this equation in

the following form:

ψN =
∞∑
n=0

(r2H2)n
(
1−µ−ν

2

)
n

(
1+µ−ν

2

)
n

Γ(n+ 1) (1− ν)n
Θν− 1

2
−n(z) . (E.4)

Here,

(a)n =
k=n−1∏
k=0

(a− k) , (E.5)

is the falling factorial and Θν− 1
2

satisfies the µ independent equation of motion:

1

r1−2ν
D+

(
r1−2νD+Θν− 1

2

)
+ ω2Θν− 1

2
= 0 . (E.6)

Although this differential equation can be solved in terms of Hypegeometric functions,

that form is not particularly illuminating to extract out the polynomial nature of the

propagator. Instead, we will express the solutions in a Hubble expansion, which makes

the polynomial nature explicit.
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Table E.1: Θν− 1
2

for various values of ν (H = 1)

ν Θν− 1
2

1
2

1
3
2

1 + z
5
2

3 + 3z + z2 + r2z
7
2

15 + 15z + 6z2 + z3 + r2z (5 + 3z) + 3r4z
9
2

105 + 105z + 45z2 + 10z3 + z4 + r2z (35 + 26z + 6z2) + r4z (21 + 15z) + 15r6z

11
2

945 + 945z + 420z2 + 105z3 + 15z4 + z5 + r2z (315 + 255z + 80z2 + 10z3)
+r4z (189 + 170z + 45z2) + r6z (135 + 105z) + 105r8z

13
2

10395 + 10395z + 4725z2 + 1260z3 + 210z4 + 21z5 + z6

+r2z (3465 + 2940z + 1050z2 + 190z3 + 15z4)
+r4z (2079 + 2059z + 750z2 + 105z3) + r6z (1485 + 1470z + 420z2)

+r8z (1155 + 945z) + 945r10z

Taking z = −iωr, we can write the Hubble expanded solutions as:

Θℓ(z,Hr) =
ℓ∑

k=0

zℓ−k

2kk!

(ℓ+ k)!

(ℓ− k)!

+
H2r2

2!

ℓ−1∑
k=0

(ℓ− 1− k)z
ℓ−1−k

2kk!

(ℓ− 1 + k)!

(ℓ− 1− k)!

{
ℓ+

1

3
k
}

+
H4r4

4!

ℓ−2∑
k=0

(ℓ− 2− k)z
ℓ−2−k

2kk!

(ℓ− 2 + k)!

(ℓ− 2− k)!

×
{
ℓ(ℓ− 1)(3ℓ+ 3− k)− 1

15
k(k − 1)(25ℓ+ 5k − 3)

}
+
H6r6

6!

ℓ−3∑
k=0

(ℓ− 3− k)z
ℓ−3−k

2kk!

(ℓ− 3 + k)!

(ℓ− 3− k)!

×
{
15ℓ(ℓ2 − 1)(ℓ2 − 4) + kℓ(ℓ− 1)[(42 + 25ℓ− 15ℓ2)− (12 + 10ℓ)k]

+
1

63
k(k − 1)(k − 2)[−2− 441ℓ+ 350ℓ2 + 7(−9 + 35ℓ)k + 35k2]

}
+O(H8) .

(E.7)

We give explicit expressions for the retarded boundary to bulk propagators in tables

E.2, E.3, E.4 and E.5.
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Table E.2: rν+
d−4
2 GOut for magnetic Debye potentials (z = −iωr, H = 1).

µ = d
2
− 1 ℓ = 0 ℓ = 1

d = 3 1 1 + z

d = 5 1 + z + r2 1 + z2

3
+ r2 + r2z

3

d = 7 1 + z + z2

3
+ r2

(
z + 2

3

)
+ r4 1 + z + z2

15
(z + 6) + r2z

15
(3z + 5) + r4z

5

Table E.3: rν+
d−4
2 GOut for magnetic Debye potentials (z = −iωr, H = 1)

µ = d
2
− 1 ℓ = 2

d = 3 1 + z + z2

3
− r2

3

d = 5 1 + z + 2z2

5
+ z3

15
− r2

15
(6 + z − z2)− r4

15

d = 7 1 + z + 3z2

7
+ 2z3

21
+ z4

105
− r2

105
(45 + 10z + 8z2 + 3z3)− r4

35
(3 + z − z2)− r6

35

Table E.4: rν+
2−d
2 GOut for electric Debye potentials (z = −iωr, H = 1).

µ = d
2
− 2 ℓ = 0 ℓ = 1

d = 3 1 1 + z

d = 5 1 + z 1 + z + z2

3
− r2

3

d = 7 1 + z + z2

3
+ r2z

3
1 + z + z2

5
+ 2z3

15
− r2

15
(6 + z − z2)− r4

15

Table E.5: rν+
2−d
2 GOut for electric Debye potentials (z = −iωr, H = 1).

µ = d
2
− 2 ℓ = 2

d = 3 1 + z + z2

3
− r2

3

d = 5 1 + z + 2z2

5
+ z3

15
− r2(3

5
+ 4z

15
)

d = 7 1 + z + 3z2

7
+ 2z3

21
+ z4

105
− r2

105
(75 + 40z + 4z2 − z3)− 4r4z

105
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E.2 Detweiler-Whiting decomposition of the retarded

scalar Green function

We will begin by writing down the non-normalisable solution Ξnn and the normalisable

solution Ξn in the Schwarzschild time valid for odd d ( restoring all factors of H):

Ξnn ≡ r−ν− d
2
+ 1

2
(d−1−N)(1−H2r2)−

iω
2H

× 2F1

[
1

2

(
1 + µ− ν − iω

H

)
,
1

2

(
1− µ− ν − iω

H

)
, 1− ν,H2r2

]
,

Ξn ≡
1

2ν
rν−

d
2
+1+ 1

2
(d−1−N)(1−H2r2)−

iω
2H

× 2F1

[
1

2

(
1 + µ+ ν − iω

H

)
,
1

2

(
1− µ+ ν − iω

H

)
, 1 + ν,H2r2

]
,

KOut ≡ 2
Γ
(

1+ν−µ− iω
H

2

)
Γ
(

1+ν+µ− iω
H

2

)
Γ (1− ν)

Γ
(

1−ν+µ− iω
H

2

)
Γ
(

1−ν−µ− iω
H

2

)
Γ (ν)

.

(E.8)

We have also quoted above the retarded two-point function on the world line. The

outgoing Green function can then be decomposed intoKOut Ξn and Ξnn: we will now argue

that this should be thought of as the regular/singular Green functions ala Deitweiler-

Whiting(DW) [96] corresponding to dS spacetime.

The relation to DW decomposition is not prima facie clear, since DW formulated their

rules for general curved spacetimes in the time domain, whereas the above expressions

are quoted in the frequency domain. So, to substantiate our assertion, we need to Fourier

transform the complicated expressions above into the time domain, and then show that

the DW axioms are satisfied. Rather than do that exercise in general, we will content

ourselves with showing how this works in the particular example of a massless scalar field

in dS4, whose DW decomposition is described in [97,98].

The regular term for DW decomposition, in this case, was calculated by the authors

of [97] in FLRW-like coordinates as

GR =
ηη′

2|x− x′|
[δ(η − η′ − |x− x′|)− δ(η − η′ + |x− x′|)]

+
1

2
[θ(η − η′ − |x− x′|) + θ(η − η′ + |x− x′|)] ,

(E.9)

To check this expression against KOutΞn, we will convert it into static coordinates and
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then Fourier transform the result to the frequency domain.

The coordinate transformation between static and FLRW coordinates is given by

η = − e−Ht

√
1− r2H2

, ρ =
re−Ht

√
1− r2H2

. (E.10)

We will assume the source to be at the origin ρ′ = 0, so that only the ℓ = 0 term survives

by spherical symmetry. With this choice, GR becomes

GR =
eH(t−t′)

2r

×

[√
1−Hr
1 +Hr

δ

(
t′ − t− 1

H
ln

(√
1−Hr
1 +Hr

))

−
√

1 +Hr

1−Hr
δ

(
t′ − t− 1

H
ln

(√
1 +Hr

1−Hr

))]

+
1

2

[
θ

(
t′ − t− 1

H
ln

(√
1−Hr
1 +Hr

))

+θ

(
t′ − t− 1

H
ln

(√
1 +Hr

1−Hr

))]
.

(E.11)

This expression can be readily Fourier transformed with respect to t− t′ yielding

G̃R =
1

2r

[(
1−Hr
1 +Hr

)− iω
2H

−
(
1 +Hr

1−Hr

)− iω
2H

]
− H2

2iω

[(
1−Hr
1 +Hr

)− iω
2H

+

(
1 +Hr

1−Hr

)− iω
2H

]
.

(E.12)

Regularity near the origin is manifest in the frequency domain. Further, the above

expression is also an odd function of the frequency ω, signalling that these terms encode

the dissipation due to radiation reaction.

Similarly, we can consider the singular Green’s function quoted in [97]:

GS =
ηη′

2|x− x′|
[δ(η − η′ − |x− x′|) + δ(η − η′ + |x− x′|)]

+
1

2
[θ(η − η′ − |x− x′|)− θ(η − η′ + |x− x′|)]

(E.13)
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whose Fourier transform at ρ′ = 0 is

G̃S =
1

2r

[(
1−Hr
1 +Hr

)− iω
2H

+

(
1 +Hr

1−Hr

)− iω
2H

]
− H2

2iω

[(
1−Hr
1 +Hr

)− iω
2H

−
(
1 +Hr

1−Hr

)− iω
2H

]
.

(E.14)

This expression has a ∼ 1
r

behaviour near the origin and is an even function of ω. The

expressions in Eq.(E.12) and Eq.(E.14) can then be matched against KOut Ξn and Ξnn

respectively. This is done by taking Eq.(E.8), setting N = d − 1, µ = d
2
, ν = ℓ + d

2
− 1,

and then taking the limit d = 3 and ℓ = 0.

E.3 dS ALD forces in 10 and 12 spacetime dimensions

The scalar ALD forces in higher dimensions can be obtained using (2.139) and the fol-

lowing formulae:

0fµ
9 ≡

P µν

9!!

{
− a(7)ν + 30 (a · a) a(5)ν + 210 (a · a(1)) a(4)ν + 378 (a · a(2)) a(3)ν

+ 420 (a · a(3)) a(2)ν + 300 (a · a(4)) a(1)ν + 108 (a · a(5)) aν + 336 (a(1) · a(1)) a(3)ν

+ 1050 (a(1) · a(2)) a(2)ν + 960 (a(1) · a(3)) a(1)ν + 420 (a(1) · a(4)) aν

+ 675 (a(2) · a(2)) a(1)ν + 756 (a(2) · a(3)) aν +O(a5)

}

−H2P
µν

9!!

{
a(5)ν + 97 (a · a) a(3)ν + 433 (a · a(1)) a(2)ν + 408 (a · a(2)) a(1)ν

+ 199 (a · a(3)) aν + 339 (a(1) · a(1)) a(1)ν + 448 (a(1) · a(2)) aν +O(a5)

}

+H4P
µν

9!!

{
− a(3)ν + 157 (a · a) a(1)ν + 296 (a · a(1)) aν

}
+O(H6) ,

(E.15)
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0fµ
11 ≡

P µν

11!!

{
− a(9)ν + 55 (a · a) a(7)ν + 495 (a · a(1)) a(6)ν + 1188 (a · a(2)) a(5)ν

+ 1848 (a · a(3)) a(4)ν + 1980 (a · a(4)) a(3)ν + 1485 (a · a(5)) a(2)ν

+ 770 (a · a(6)) a(1)ν + 220 (a · a(7)) aν + 1056 (a(1) · a(1)) a(5)ν

+ 4620 (a(1) · a(2)) a(4)ν + 6336 (a(1) · a(3)) a(3)ν + 5775 (a(1) · a(4)) a(2)ν

+ 3520 (a(1) · a(5)) a(1)ν + 1155 (a(1) · a(6)) aν + 4455 (a(2) · a(2)) a(3)ν

+ 10395 (a(2) · a(3)) a(2)ν + 7700 (a(2) · a(4)) a(1)ν + 2970 (a(2) · a(5)) aν

+ 4928 (a(3) · a(3)) a(1)ν + 4620 (a(3) · a(4)) aν

}

−H2P
µν

11!

{
a(7)ν + 342 (a · a) a(5)ν + 2294 (a · a(1)) a(4)ν + 3826 (a · a(2)) a(3)ν

+ 3737 (a · a(3)) a(2)ν + 2066 (a · a(4)) a(1)ν + 622 (a · a(5)) aν + 3231 (a(1) · a(1)) a(3)ν

+ 8490 (a(1) · a(2)) a(2)ν + 5663 (a(1) · a(3)) a(1)ν + 1974 (a(1) · a(4)) aν

+ 3785 (a(2) · a(2)) a(1)ν + 3210 (a(2) · a(3)) aν +O(a5)

}

−H4P
µν

11!!

{
a(5)ν + 1340 (a · a) a(3)ν + 6108 (a · a(1)) a(2)ν + 6148 (a · a(2)) a(1)ν

+ 2599 (a · a(3)) aν + 5182 (a(1) · a(1)) a(1)ν + 5876 (a(1) · a(2)) aν +O(a5)

}
.

(E.16)

Here vµ = dxµ

dτ
is the proper velocity of the particle computed using dS metric, aµ ≡ D2xµ

Dτ2
is

its proper acceleration, and P µν ≡ gµν +vµvν is the transverse projector to the worldline.

We use a(k)µ ≡ Dkaµ

Dτk
to denote the proper-time derivatives of the acceleration. All the

spacetime dot products are computed using dS metric.
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Similarly, the electromagnetic ALD forces in dS10 and dS12 are given by:

fµ
9 ≡

P µν

9!!

{
−8a(7)ν + 132 (a · a) a(5)ν + 924 (a · a(1)) a(4)ν + 1512 (a · a(2)) a(3)ν

+1470 (a · a(3)) a(2)ν + 888 (a · a(4)) a(1)ν + 324 (a · a(5)) aν

+1344 (a(1) · a(1)) a(3)ν + 3570 (a(1) · a(2)) a(2)ν + 2640 (a(1) · a(3)) a(1)ν

+1092 (a(1) · a(4)) aν + 1830 (a(2) · a(2)) a(1)ν + 1890 (a(2) · a(3)) aν +O(a5)
}

−H2P
µν

9!!

{
448a(5)ν + 3488 (a · a) a(3)ν + 17240 (a · a(1)) a(2)ν + 18132 (a · a(2)) a(1)ν

+9944 (a · a(3)) aν + 15424 (a(1) · a(1)) a(1)ν + 21980 (a(1) · a(2)) aν +O(a5)
}

+H4P
µν

9!!

{
−784a(3)ν + 19286 (a · a) a(1)ν + 53770 (a · a(1)) aν

}
+O(H6) ,

(E.17)

fµ
11 ≡

P µν

11!!

{
− 10a(9)ν + 330(a · a)a(7)ν + 2970(a · a(1))a(6)ν + 6600(a · a(2))a(5)ν

+ 9240(a · a(3))a(4)ν + 8712(a · a(4))a(3)ν + 5610(a · a(5))a(2)ν

+ 2420(a · a(6))a(1)ν + 660(a · a(7))aν

+ 5940(a(1) · a(1))a(5)ν + 23100(a(1) · a(2))a(4)ν + 27324(a(1) · a(3))a(3)ν

+ 20790(a(1) · a(4))a(2)ν + 10120(a(1) · a(5))a(1)ν + 2970(a(1) · a(6))aν

+ 19140(a(2) · a(2))a(3)ν + 36960(a(2) · a(3))a(2)ν + 21560(a(2) · a(4))a(1)ν

+ 7260(a(2) · a(5))aν + 13706(a(3) · a(3))a(1)ν + 11088(a(3) · a(4))aν
}

+H2P
µν

11!

{
− 1200a(7)ν + 21460(a · a)a(5)ν + 149660(a · a(1))a(4)ν + 244048(a · a(2))a(3)ν

+ 236030(a · a(3))a(2)ν + 141308(a · a(4))a(1)ν + 50660(a · a(5))aν

+ 216186(a(1) · a(1))a(3)ν + 570000(a(1) · a(2))a(2)ν + 417254(a(1) · a(3))a(1)ν

+ 169692(a(1) · a(4))aν + 288650(a(2) · a(2))a(1)ν + 292932(a(2) · a(3))aν

+O(a5)
}

−H4P
µν

11!!

{
43680a(5)ν + 363860(a · a)a(3)ν + 1786540(a · a(1))a(2)ν

+ 1864072(a · a(2))a(1)ν + 1006750(a · a(3))aν

+ 1581920(a(1) · a(1))a(1)ν + 2218698(a(1) · a(2))aν +O(a5)
}

+O(H6) .

(E.18)
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