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Preface

This thesis is based on publications [1] and [2]. The background in Chapter 1 is a review of

the standard procedure of going from classical Hamiltonian dynamics to hydrodynamics

via the Boltzmann transport equation.

Chapter 2 is a slightly rewritten version of [1], written by the author in collaboration

with Subhadip Chakraborti, Abhishek Dhar and P. L. Krapivsky.

Chapter 3 is a slightly rewritten version of [2], written by the author in collaboration

with Abhishek Dhar, Herbert Spohn and Anupam Kundu.
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Abstract

”To understand the world, one must not be limited to what is seen but seek to reveal the

hidden.”

– Aristotle

The macroscopic properties of many-particle systems are usually governed by phe-

nomenological laws, such as thermodynamics and hydrodynamics, which di!er notably

from their underlying microscopic dynamics. These macroscopic laws are usually not

rigorously derived from first principles. In this thesis, we investigate whether predictions

from these phenomenological laws can be validated through microscopic simulations in

both non-integrable and integrable systems.

The thesis consists of two parts. The first part [1] focuses on non-integrable systems,

specifically examining a hard-sphere gas in one and two dimensions. In one dimension, the

system is composed of alternating-mass hard rods, while in two dimensions, it is a hard-

disc gas. We compare the predictions of molecular dynamics with those of hydrodynamics

for a blast wave initial condition (in which a shock or discontinuity forms). We thus

test hydrodynamic predictions under conditions that challenge its assumptions of slow

field variation. Our findings reveal two distinct regions: one where dissipation plays a

major role and another dominated by Euler terms. Each region exhibits unique space-

time scaling behaviors in the hydrodynamic fields, which we explain using dimensional

analysis. We also show that these two di!erent scaling regions are connected by the rules

of asymptotic matching.

The second part [2] explores an interacting integrable system: an equal-mass hard-rod

gas in one dimension. Because it is an interacting system, its hydrodynamic equations

exhibit non-zero dissipation, which tends to drive the system toward a Generalized Gibbs

Ensemble (GGE). Interestingly, we identify certain initial conditions that do not go to

GGE, while other conditions do. For both cases, we find good agreement between hydro-

dynamic predictions and molecular dynamics simulations, demonstrating the applicability

of hydrodynamic theory in these integrable settings.
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”We have to remember that what we observe is not nature itself, but nature exposed to

our method of questioning.”

– Werner Heisenberg



Chapter 1

Introduction

”The more one approaches the truth, the more one finds that it is universal.”

-Nikola Tesla

When describing the large-scale behavior of many-particle systems, microscopic details

usually become irrelevant, and universal laws depending only on the symmetries emerge.

Thermodynamics is one such example of a universal theory. Considering that most of

the phenomena around us involve many-particle systems, one would think that only

macroscopic theories are relevant and useful. However, in many cases, there is a huge

time scale after which these macroscopic theories start to become valid, and the behavior

of the system during this time scale depends on the microscopic details. For example,

while thermodynamics predicts that entropy always increases with time, if one looks at

the plot of entropy vs time on a very short time scale, one would observe fluctuations

in the entropy curve if the system is finite. These fluctuations are of great importance

in fields such as quantum computation and biology, as they enable the harnessing of

quantum mechanics’ power in the former and the emergence of life in the latter. Another

example is that we as life forms rely on microscopic processes to stay alive and not reach

equilibrium. Thus, the physics at the intermediate scales is very important to study.

Thermodynamics tells us that all systems tend to a maximum entropy state on large

time scales, and this maximum entropy state is the equilibrium state, which is well

described by the rules of statistical mechanics. However, there is no general theory like

statistical mechanics for physics at the intermediate time scale, i.e., when the system

is in a non-equilibrium state. Hydrodynamics is one of the attempts to describe the

physics near local equilibrium. To first order, it assumes local equilibrium to get the

Euler equation, and to the next order, it treats deviations from local equilibrium in a

first-order approximation to get the Navier-Stokes equation. However, in some cases, the
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deviations from local equilibrium can be large, e.g., when shocks are formed, and we have

verified the prediction of hydrodynamics with simulations of Newtonian dynamics for this

case in [1].

Since equilibrium thermodynamics is a universal theory to some extent, it is expected

that near equilibrium theories like hydrodynamics are also universal, with the microscopic

details entering only in a few quantities, like the transport coe”cients and the equation

of state. Integrable systems are expected to have a di!erent structure of hydrodynam-

ics from non-integrable ones, since they have more conservation laws and symmetries.

Moreover, they also serve as minimal models to formulate theories for non-integrable

systems; e.g., Landau’s theory of Fermi liquid was inspired by studying non-interacting

electrons. Thus, it is important to study dynamics of integrable systems from the point of

view of classifying universality classes of many-body phenomena and also to understand

phenomena in other non-integrable systems. We studied integrable models in [2], where

we compared predictions of Newtonian dynamics with those of hydrodynamics, and we

found good agreement. Moreover, we found certain classes of initial conditions which do

not reach the Generalised Gibbs Ensemble (GGE).

1.1 Background

This thesis is concerned with classical Hamiltonian many-particle systems in d-dimensions:

H =
N∑

i=1

p2i
2m

+
∑

i<j

V (|ri → rj|). (1.1)

We set m = 1, thus the velocity of each particle ui equals the momentum pi. For

a generic form of the interaction potential V (r), the equations of motion are usually

intractable to solve for macroscopic values of N . Because one cannot track the time evo-

lution of the system in phase space, one talks about the time evolution of the probability

distribution of points in phase space ω(r1,p1, r2,p2, . . . , rN ,pN , t) through the Liouville

equation:

εω

εt
= {H, ω} =

N∑

i=1

(εH
εri

· εω

εpi
→ εH

εpi
· εω
εri

)
, (1.2)

where {, } is the Poission bracket and · is the dot product. Another reason to deal with

probability distributions is because when one is talking about coarse-grained macroscopic
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properties, the exact microscopic initial condition is irrelevant because of the apparent

equivalence between coarse-graining and ensemble averaging. In other words, the Liou-

ville equation acts as a bridge between the microscopic scale and the macroscopic scale.

Upon using the form of Hamiltonian (Eq. 1.1) in the Liouville equation (Eq. 1.2), we

have:
εω

εt
=

N∑

i=1

( εω

εpi
·
∑

j,j →=i

εVij

εri
→ ui ·

εω

εri

)
, (1.3)

where Vij = V (|ri → rj|).

1.1.1 From Hamiltonian to Boltzmann

We introduce a shorthand notation ϑi = (ri,pi) and integrate Eq. 1.3 over dϑ2dϑ3 . . . dϑN

and assuming that ω vanishes when either ri or pi are on the infinite surface in r- or

p-space respectively, we have:

εf (1)(ϑ1, t)

εt
+ u1 ·

εf (1)(ϑ1, t)

εr1
= N

∫
εV12

εr1
· εf

(2)(ϑ1, ϑ2, t)

εp1
dϑ2, (1.4)

where f (1) and f (2) are respectively the one- and two-particle distribution functions:

f (1)(ϑ1, t) =

∫
ω(ϑ1, ϑ2, . . . , ϑN , t) dϑ2 dϑ3 . . . dϑN , (1.5a)

f (2)(ϑ1, ϑ2, t) =

∫
ω(ϑ1, ϑ2, . . . , ϑN , t) dϑ3 dϑ4 . . . dϑN . (1.5b)

Similarly, the equation of the two-particle distribution f (2)(ϑ1, ϑ2, t) obtained from

Eq. 1.3 is:
df (2)(ϑ1, ϑ2, t)

dt
= N

∫ (εf (3)

εp1
· εV13

εr1
+

εf (3)

εp2
· εV23

εr2

)
dϑ3, (1.6)

where df (2)

dt is the total derivative in which ϑ1 = (r1,p1) and ϑ2 = (r2,p2) are treated

as functions of time satisfying equations of motion corresponding to the two-particle

Hamiltonian:

H =
p21
2

+
p22
2

+ V (|r1 → r2|), (1.7)

and f (3) is the three-particle distribution function. Proceeding in this way gives us

a series of equations relating f (n) to f (n+1). This is the so-called BBGKY (Bogoli-

ubov–Born–Green–Kirkwood–Yvon) hierarchy.

In the dilute limit, where the interparticle separation is much larger than the size
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of the particles, the terms on the right side of Eq. 1.6 are negligible compared to those

on left side, giving us df (2)(ω1,ω2,t)
dt = 0 [3], which breaks the BBGKY hierarchy. To solve

df (2)

dt = 0, a further assumption is needed, which is the statistical independence of two

colliding particles, which is also called the molecular chaos assumption. If t0 is some

instant much before the collision, then the molecular chaos assumption together with the

total time derivative being zero gives us:

f (2)(ϑ1, ϑ2, t) = f (1)(ϑ10, t0)f
(1)(ϑ20, t0). (1.8)

ϑ10, ϑ20, t0 can be related to ϑ1, ϑ2, t by solving the two body collision problem [3] giving

us the Boltzmann equation:

εf (1)(r,p, t)

εt
+ u · εf

(1)(r,p, t)

εr
= C(f (1)), (1.9)

where C(f) is the collision integral:

C(f (1)) =

∫
(f (1)(r,p↑↑, t)f(r,p↑↑↑, t)→ f (1)(r,p, t)f(r,p↑, t))|u→ u↑|dϖddp↑, (1.10)

where dϖ is the collision cross section and p↑↑ and p↑↑↑ are determined from the conservation

of momentum and energy of two colliding particles with momenta p and p↑.

1.1.2 From Boltzmann to hydrodynamics

The hydrodynamic assumption is that the densities of the conserved quantities, which

are the relevant fields, are slowly varying compared to the mean free path of collision and

thus local equilibrium is achieved to zeroth order in a perturbation theory:

f (1)(r,p, t) =
ϱ(r, t)

(2ςT (r, t))d/2
↓ e↓

|p→v(r,t)|2
2T (r,t) + corrections giving rise to dissipative terms,

(1.11)

where T (r, t) is the temperature field, v(r, t) is the local velocity field, ϱ(r, t) is the mass

density, and the Boltzmann constant is set to unity. We neglect the corrections which

will give rise to the dissipative terms. For a full treatment of these corrections, the reader

is referred to [3]. Plugging the ansatz Eq. 1.11 in the collision integral C(f (1)) gives us

C(f (1)) = 0, as collisions do not alter the local equilibrium form. Thus we have the

equation:

εtf
(1)(r,p, t) + εi(uif

(1)(r,p, t)) = 0, (1.12)

where εi denotes partial derivative with repsect to ith component of r and ui is the ith

component of u. After multiplying this equation by 1, pj or p2/2, integrating over p
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and using the local equilibrium form of f (1), we get respectively the following three Euler

equations:

εtϱ+ εi(ϱvi) = 0, (1.13a)

εt(ϱvi) + εj(ϱvivj) + εiP = 0, (1.13b)

εt(ϱe) + εi(ϱevi) + εi(Pvi) = 0, (1.13c)

where

ϱ(r, t) =

∫
f (1)(r,p, t)ddp, (1.14a)

ϱ(r, t)v(r, t) =

∫
pf (1)(r,p, t)ddp, (1.14b)

e(r, t) =

∫
p2

2
f (1)(r,p, t)ddp, (1.14c)

and P (r, t) = ϱ(r, t)T (r, t) is the equation of state relating pressure field with the density-

and temperature field, e is the energy per unit mass, e = v2/2 + dT/2.

1.1.3 Integrable systems

In going from microscopics to hydrodynamics in the previous sections, a key assumption

was the molecular chaos assumption. However, for one-dimensional integrable systems,

this assumption is no longer valid because the many-particle scattering is factorized into

two particle scattering [4], and when two equal mass particles collide in one-dimension,

they exchange their asymptotic velocities and the particles thus have ”memory” of previ-

ous collisions. A completely di!erent method is needed to derive the hydrodynamics for

these integrable systems. One of the first steps was taken by Percus and others [5, 6] for

the particlular case of equal mass hard rods in one-dimension in which they derived the

hydrodynamics exactly from the microscopic dynamics without any phenomenological

assumption such as the molecular chaos hypothesis, and later the derivation was made

mathematically rigorous in [7, 8]. Later, a general form of hydrodynamics was written

down for generic one-dimensional classical and quantum integrable systems using phe-

nomenological arguments (such as the assumption that the system reaches local GGE).

[9, 10].

In this thesis, we concern ourselves only with one-dimensional hard rods, and thus

review here Percus’s derivation of their hydrodynamics. The first step is the realiza-

tion that the hard rod dynamics can be mapped to the point particle dynamics via the
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following transformation:

x↑
i = xi → (i→ 1/2)a, v↑i = vi i = 1, 2, ..., N, (1.15)

where xi, vi are the position and velocity of the ith hard rod, and the x↑
i, v

↑
i are the

position and velocity of the ith point particle. One can verify that the hard rod constraint

xi+1→xi ↔ a transforms into the point particle constraint x↑
i+1→x↑

i ↔ 0, thus this indeed

maps the hard rod problem to the point particle problem.

Since the particles just exchange their velocities upon collision, the density of con-

served quantity is nothing but the single particle phase space distribution f(x, v, t), and

thus the hydrodynamics is a partial di!erential equation involving it. If we exchange the

labels of the two colliding particles after collision, and do this for every collision, then the

new labels describe what are called quasiparticles, and they move at fixed velocities. The

single particle phase space distribution f(x, v, t) is nothing but the density of quasiparti-

cles with velocity v. From now onwards, we denote the xi, vi as position and velocities of

the hard-rod quasiparticles and Xi, Vi as the quasiparticles in the mapped point particle

problem. Then the single particle phase space distribution is given by:

f(x, v, t) =
∑

i

↗φ(x→ xi)φ(v → vi)↘, (1.16)

where ↗· · · ↘ denotes average over the many-particle phase space distribution. We look at

the Fourier transform of f(x, v, t) with respect to x, i.e., fk(v, t) given by:

fk(v, t) =
∑

l

↗eikxlφ(v → vl)↘ (1.17)

The hard rod variables {xl, vl} can be written in terms of point particle variables {Xl, Vl}
given by:

xl = Xl + a
∑

j →=l

#(Xl →Xj) (1.18a)

vl = Vl (1.18b)

It is clear that the doublets {Xl, Vl} are independent and identically distributed doublets

if the distribution of these variables at t = 0 is independent and identically distributed,
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because the point particle gas is e!ectively a non-interacting gas. Thus

fk(v, t) =
∑

l

↗eikXleiak
∑

j ↑=l !(Xl↓Xj)φ(v → Vl)↘ (1.19a)

=

∫
dz

∑

l

↗eikzeiak
∑

j ↑=l !(z↓Xj)φ(z →Xl)φ(v → Vl)↘ (1.19b)

=

∫
dzeikz↗eiak!(z↓Xj)↘N↓1

Xj

〈∑

l

φ(z →Xl)φ(v → Vl)
〉

Xl,Vl

(1.19c)

=

∫
dzeikz↗1 + (eika → 1)#(z →Xj)↘N↓1

Xj

〈∑

l

φ(z →Xl)φ(v → Vl)
〉

Xl,Vl

(1.19d)

=

∫
dzeikz

(
1 + (eika → 1)

F 0(z, t)

N

)N↓1

f 0(z, v, t), (1.19e)

where ↗· · · ↘Xj denotes average with respect to the probability distribution ofXj, ↗· · · ↘Xl,Vl

denotes average with respect to the joint probability distribution of {Xl, Vl}, and we have

used that the phase space coordinates of the point particles {Xl, Vl} are independent

doublets, F 0(z, t) is the cumulative density of point particles (F 0(z, t) = N↗#(z→Xj)↘Xj)

and we have denoted the point particle phase space distribution by f 0(z, v, t). In the

N ≃ ⇐ limit, this gives us

fk(v, t) =

∫
dzeikze(e

ika↓1)F 0(z,t)f 0(z, v, t) (1.20)

If we assume hydrodynamic limit, i.e., only small k modes of fk(v, t) are dominant, then

we can write e(e
ika↓1)F 0(z,t) ⇒ eikaF

0(z,t), where we have expanded eika→ 1 to first non-zero

order. This will give us, upon inverse Fourier transforming fk(v, t) in Eq. 1.20, a relation

between f(x, v, t) and f 0(x↑, v, t) in the hydrodynamic limit:

f(x, v, t) =
f 0(x↑, v, t)

1 + aϱ0(x↑, t)
, (1.21)

where x = x↑ + aF 0(x↑, t), ϱ0(x↑, t) =
∫
f 0(x↑, v, t)dv. For the point particle gas, we know

that εtf 0(x↑, v, t) + εx↓f 0(x↑, v, t) = 0, which gives us, using Eq. 1.21, the hydrodynamics

of the hard-rod gas:

εtf(x, v, t) + εx(ve”(x, v, t)f(x, v, t)) = 0, (1.22)

where

ve”(x, v, t) =
v → aϱ(x, t)u(x, t)

1→ aϱ(x, t)
, (1.23)
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and

ϱ(x, t) =

∫
f(x, v, t)dv, (1.24a)

u(x, t) =
1

ϱ

∫
vf(x, v, t)dv. (1.24b)
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Chapter 2

Blast waves in a hard sphere gas

”Nature uses only the longest threads to weave her patterns, so that each small piece of

her fabric reveals the organization of the entire tapestry.”

-Richard Feynman

The non-equilibrium state of a fluid is usually described by hydrodynamics. However,

on a microscopic level, the individual particles follow Newton’s laws of motion. How does

hydrodynamics emerge from microscopic Newtonian dynamics? A rigorous derivation of

hydrodynamics starting from microscopic Newtonian dynamics is lacking. Phenomeno-

logical textbook derivations involve applying conservation of mass, momentum and energy

to a parcel of fluid, and there are also derivations based on the Boltzmann equation [3].

The latter assume that the hydrodynamic limit is achieved. More precisely, the spatial

variations of the coarse-grained variables are su”ciently slow, i.e., local equilibrium is

achieved, and the deviations from local equilibrium are small. Thus to zeroth order, one

assumes local equilibrium and gets the Euler equations which do not have dissipation. To

next order, one includes deviations from local equilibrium to get Navier-Stokes equations

which include dissipation as higher order derivative corrections to the Euler equations.

In some cases the hydrodynamic limit may not be achieved. For example, when there

is shock formation, there is a sharp variation in the hydrodynamic fields, and one may

expect hydrodynamics to break down. One situation where there can be shock formation

is when the energy released from a blast is left to propagate freely in an otherwise cold

gas. Also, the center of the blast is a low density region where collisions are rare and

local equilibrium is di”cult to reach. Thus the blast problem is a classic problem to test

the validity of hydrodynamics. It was first studied in the context of atomic explosions

and underlies the behavior of many astrophysical systems, see [11, 12, 13, 14, 15]. An

exploding star sends a blast wave into the stellar medium and later into the interstellar
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medium. The released energy is tremendous in astrophysical applications, and hence

the assumption of a zero temperature, zero pressure ambient gas, in which the explosion

propagates, is an excellent approximation.

One of the central problems is to determine how the shock wave advances and to

compute the hydrodynamic fields behind the shock. The blast problem is traditionally

studied in the framework of an ideal compressible gas neglecting the e!ect of dissipation.

Dimensional analysis [16, 17] allows one to express the radius R(t) of the shock wave

through the time t counted from the moment of explosion, the released energy E0 and

the density ϱ↔ in front of the shock

R(t) =

(
E0t2

Ad ϱ↔

) 1
d+2

. (2.1)

Here d is the spatial dimension. The amplitude Ad is a priori unknown, fixing it is a part

of the solution. It was shown by Taylor, von Neumann, and Sedov [18, 19, 20, 21, 16] that

at long times the hydrodynamic fields behind the shock front have a self-similar scaling

form that can be obtained from a solution of the Euler equations. This solution will be

referred to as the Taylor-von Neumann-Sedov (TvNS) solution. One of the main issues

that we address in this work is the e!ect of dissipation on the TvNS predictions.

By writing the Navier-Stokes (NS) equations, one can easily see that dissipation in

the flow behind the shock is indeed negligible, apart from the region near the center

of the explosion where the temperature obtained from ideal hydrodynamics, i.e., Euler

equations, diverges. This is physically impossible since the energy injected is finite.

Dissipation is thus expected to a!ect the flow in the region surrounding the origin which

we will refer to as the core region. Earlier studies of the influence of heat conduction [22,

23, 24, 25] and viscosity [26, 27, 28, 29] on the blast were performed in the realm of

atomic explosions.

Recently, a comparison was made between the results of Newtonian dynamics from

molecular dynamics (MD) simulations and that of hydrodynamics in the one-dimensional

(1D) alternating mass hard particle (AHP) gas for a blast-like [30, 31] and splash [32]

initial condition, and it was found that the TvNS solution describes, surprisingly accu-

rately, the results of MD simulations except in the core of the blast. As expected, due

to the e!ect of dissipation, the TvNS solution fails in the core. It was noted in [30, 31]

that the core has size X(t) ⇑ t38/93 which, at large times, is much smaller than the size

of the blast given from Eq. (2.1), for d = 1, by R(t) ⇑ t2/3. The core region does not

have a sharp boundary, unlike the shock wave front. An analysis of the hydrodynamic

equations including dissipative terms yields a di!erent scaling solution in the core which

was compared with results from MD. While dissipation kills the unphysical divergences
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of the Euler solution, the detailed agreement between simulations and dissipative hy-

drodynamics is not very good in the core region. One reason could be the presence of

anomalous heat transport in d = 1 [33, 34]. Fourier’s law in one dimension breaks down,

and it is replaced by a non-local law [35, 36]. Thus, we expect hydrodynamics to break

down in one dimension, and such a breakdown has indeed been observed in [37]. Thus,

the near-perfect agreement found between the TvNS solution and molecular dynamics

simulations in [30, 31] is quite surprising. It can only be speculated that since the dissi-

pative region is small in the 1D blast problem, much of the perturbed region in the gas

is described by dissipation-less Euler equations.

A natural question is to investigate the e!ect of dissipation in higher dimensions.

The first study [38] comparing the predictions of molecular dynamics with those of Euler

equations in two dimensions (2D) found a reasonable agreement between the two. Other

studies in two and three-dimensional hard-sphere gases [39, 40, 41] found disagreement

between the TvNS prediction and MD simulations (even away from the core region). It

turns out [42] that the reason for the observed discrepancy in [39] arose from an incorrect

estimation of the value of initial energy of the blast used in the simulation. We have

verified this in our MD simulations where we find perfect agreement with TvNS in the

outer region (see Fig. (2.4) .

We summarize here the plan of this chapter. In Sec. (2.1), we describe the model,

observables and intial condition we studied. In Sec. (2.2), we summarize our main results.

In Sec. (2.3.1), we review the TvNS solution. In Sec. (2.3.2), we discuss the e!ect of

dissipation and the new scaling solution that exists in the core. In Sec. (2.3.3), we present

numerical results of the NS equations which verify the core scaling forms. We also show

that MD simulations satisfy this scaling and point out the agreement between MD and

NS. In Sec. (2.4), we present results on the 2D gas when virial corrections in the equation

of state are ignored. In Sec. (2.5), we present results on hard rods. Sec. (2.6) contains a

brief discussion on the form of the inner and outer solutions in arbitrary dimensions. We

conclude in Sec. (2.7) with a discussion.

2.1 Models, observables and initial conditions

We consider hard-particle gases with particles that collide elastically. In 2D, it is impossi-

ble for a hard point particle gas to reach thermal equilibrium, since there are no collisions

for almost all initial conditions and thus the dynamics is trivial. Thus, it is necessary to

consider a gas where particles have a finite size. We consider the case where particles are

disc-shaped having a non-zero diameter a, and the particles collide elastically. Thus the
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Hamiltonian of such a system having N particles is given by:

H =
N∑

i=1

p2i
2mi

+
1

2

N∑

i,j=1

U(|ri → rj|) (2.2)

where the potential U is the hard core potential:

U(r) =





⇐, if r < a

0, otherwise
(2.3)

The downside of considering such a hard-disc gas is that the equation of state is no longer

given by the ideal gas equation gas state, but is replaced by a virial expansion.

In 1D, this is just a hard-rod gas. In 2D we consider all masses to be equal mi = m,

whereas in 1D, we consider masses mi which alternate between two values m and M (to

ensure non-integrability).

In this work, we consider the evolution of density ϱ(r, t), velocity field v(r, t), and the

energy density field e(r, t):

ϱ(r, t) =
∑

i

↗miφ(ri(t)→ r)↘, (2.4a)

ϱ(r, t)v(r, t) =
∑

i

↗mivi(t)φ(ri(t)→ r)↘, (2.4b)

ϱ(r, t)e(r, t) =
1

2

∑

i

↗mi|vi(t)|2φ(ri(t)→ r)↘. (2.4c)

where ri(t),vi(t) are respectively the position and velocity of ith particle, and ↗. . .↘
denotes an average over the ensemble of initial conditions having same values of total

number of particles, total momentum (zero in our case), total energy and the same initial

profiles of the macroscopic fields viz. ϱ(r, 0),v(r, 0) and e(r, 0). Since we study initial

conditions where the blast remains radially symmetric throughout time, ϱ(r, t) = ϱ(r, t),

v(r, t) = v(r, t)r̂, e(r, t) = e(r, t).

For the initial condition, we took a blast wave initial condition where all the energy is

localized in the central region. More specifically, the initial temperature profile was taken

to be T (r, 0) = (T0/
↑
2ςϖ2)e↓r2/2ε2

with T0 = E0/(
↑
2ςϱ↔ϖ), where E0 is the energy of

the blast, ϱ(r, 0) = ϱ↔ and v(r, 0) = 0.

In this work we first consider the blast in a 2D gas of hard discs and in a toy 2D gas

of point particles. We also consider a 1D gas of hard rods with alternating masses (to
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ensure non-integrability) to see if the finite rod size changes the remarkable agreement

between MD results and hydrodynamics seen in [30, 31].

2.2 Results

Our main results are:

• For the 2D system, we show that, as in 1D, the dissipative terms in the NS equations

introduce a new growing length scale which we denote by X(t). We find a new self-

similar solution in the core, di!erent from the TvNS scaling solution. This core

scaling solution is verified from the numerical solution of the NS equations. Thus

there are two scaling regions: the bulk region described by TvNS scaling and the

core region described by the dissipative scaling. We further show that the two

regions are connected by the rules of asymptotic matching.

• We find that NS results agree perfectly with TvNS in the bulk region and also agree

with the MD simulation results. The MD results satisfy TvNS scaling in the bulk

region and also the core scaling in the central region. However, the scaling functions

in the core region are di!erent from the predictions of hydrodynamics.

• For the gas of hard rods in 1D we find an excellent agreement between TvNS, NS

and MD simulations in the bulk region, including for the position of the shock front

and for the scaling functions. In the blast core, the NS scaling is observed in the

MD simulations, but the scaling functions do not agree with those obtained from

NS.

2.3 Blast in the 2D hard-disc gas

We first consider a gas of hard discs of diameter a, and mass m, whose only interaction is

via elastic collisions that conserve momentum and energy. Particles move with constant

velocities between collisions. The finite size of the particles implies that the equation of

state is no longer given by the ideal gas equation. This feature complicates the solution of

the hydrodynamic equations. At a microscopic level, the blast initial condition consists

of taking an infinite gas of discs that are distributed uniformly in the 2D plane with mass

density, ϱ↔, and all at rest. Particles inside a localized region are then excited such that

their total energy is E0, and the total momentum is zero. The excitation then evolves in

a radially symmetric way and we are interested, in particular, in how the three conserved
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fields of mass density, ϱ(r), momentum density, p(r), and energy density, e(r), evolve

with time. We first review the TvNS solution as presented in [39], and then we discuss

the e!ect of dissipation by considering the NS equations.

2.3.1 TvNS solution

The classic TvNS solution was first obtained for a 3D ideal gas using Euler equations and

ignoring any virial corrections caused by the finite cross sectional area of the colliding

molecules. A similar analysis was done in [39] for hard-disc gas, but by including the

virial corrections in the equation of state.

The first step in finding TvNS solution is to find how the shock front R(t) grows

as a function of time. As discussed above this can be found from purely dimensional

analysis. The only variables that the shock front can depend on at large times are time

t, energy injected E0, and the ambient density ϱ↔. Applying dimensional analysis, we

get R(t) = [E0t2/(Adϱ↔)]
1

d+2 , where Ad is an unknown dimensionless constant, that only

depends on the volume fraction (ϱ↔/m)Vdad, where Vd = 2↓dςd/2/$(d/2+1) is the volume

of a d-dimensional sphere of unit diameter. The Euler equations in any dimension are

given by:

εtϱ+ εi(ϱvi) = 0, (2.5a)

εt(ϱvi) + εj(ϱvivj) + εiP = 0, (2.5b)

εt(ϱe) + εi(ϱevi) + εi(Pvi) = 0, (2.5c)

where P is the pressure, which can be related to the other hydrodynamic fields via

equation of state, and e is the energy per unit mass, e = v2/2 + dT/2. Henceforth, in

most of the discussions here we set a = kB = m = 1, unless otherwise specified.

For the 2D hard-disc gas, the equation of state at low densities is given by the virial

equation of state:

P = ϱT
(
1 +

↔∑

n=2

Bnϱ
n↓1

)
. (2.6)

Following [39], we only take terms up to n = 10. The values of the constants Bn are

given in [39]. According to TvNS, the blast wave initial condition evolves, at long times

to a self-similar scaling form. We define the following scaling variable:

↼ =
r

R(t)
. (2.7)

In terms of this dimensionless variable, one again uses dimensional analysis to make the
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following ansatz for the long time solution of Eqs. (2.5) for the density, velocity and

temperature fields:

ϱ = ϱ↔G(↼), (2.8a)

v =
r

t
V (↼), (2.8b)

T =
r2

t2
Z(↼). (2.8c)

Putting these scaling forms into the Euler equations, we get the following ODEs for the

scaling functions:

↼
(
V → 1

2

)
G
dV

d↼
+ ↼

d

d↼
[ZGB(G)]→GV +GV 2 + 2GZB(G) = 0, (2.9a)

↼
(
V → 1

2

)dG
d↼

+ ↼G
dV

d↼
+ 2GV = 0, (2.9b)

→ ↼B(G)

G

dG

d↼
+

↼

Z

dZ

d↼
+ 2

(V → 1)

(V → 1/2)
= 0, (2.9c)

where

B(G) = 1 +
↔∑

n=2

Bnϱ
n↓1
↔ Gn↓1. (2.10)

Under the dynamics of the Euler equations, energy is conserved, and this gives us the

further constraint: ∫ R(t)

0

dr 2ςrϱe = E0, (2.11)

which, in terms of the scaling functions becomes:

2ς

∫ 1

0

d↼ ↼3G(↼)
(V 2(↼)

2
+ Z(↼)

)
= A2. (2.12)

The boundary conditions required to solve these ODEs are provided by the Rankine-

Hugoniot conditions which specify the discontinuity of the fields across the shock:

ϱ(R)v(R)

ϱ(R)→ ϱ↔
= Ṙ, (2.13a)

ϱ(R)v2(R) + P (R)

ϱ(R)v(R)
= Ṙ, (2.13b)

ϱ(R)v(R)e(R) + P (R)v(R)

ϱ(R)e(R)
= Ṙ. (2.13c)
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These, in terms of the scaling functions are given by:

1

G(1)

(
1 +

2

B[G(1)]

)
= 1, (2.14a)

V (1) =
1

G(1) B[G(1)]
, (2.14b)

Z(1) =
1

2
V 2(1). (2.14c)

These equations can be solved numerically to find the values of the scaling functions at the

shock front, which can be used as boundary values to solve the ODEs. The dimensionless

constant A2 can be found using Eq. (2.12).

2.3.2 E!ect of dissipation on scaling in the blast core

In the Euler framework, it is assumed that the hydrodynamic fields satisfy the Euler

equations throughout the blast and that dissipative terms can be neglected. This as-

sumption is valid only if the dissipative terms corresponding to the TvNS solution are

small compared to the Euler terms. The TvNS solution predicts a divergence Z(↼) ⇑ ↼↓4

for small ↼ which means that the temperature field will have a steep spatial variation.

Since the spatial derivatives in the dissipative terms in the NS equations are of one order

higher than the Euler terms, this signals that the dissipative terms corresponding to the

TvNS solution are much larger than the Euler terms, thus suggesting that dissipation

becomes important near the core. However, far from the core, the slopes of the various

scaling functions are not steep, so dissipation is not important in those regions. Since

dissipation terms far from the core are not important, we expect the ODEs to still hold

in the bulk region.

We can estimate the size of the core where dissipation becomes important. The

Navier-Stokes equations in d-dimensions are given by:

εtϱ+ εi(ϱvi) = 0, (2.15a)

εt(ϱvi) + εj(ϱvivj) + εjϖij = 0, (2.15b)

εt(ϱe) + εi(ϱevi) + εi(ϖijvj) + εi(→↽εiT ) = 0, (2.15c)

with the stress tensor ϖ given by:

ϖij = P φij → µ[εivj + εjvi →
2

d
(⇓ · v)φij]→ ⇀(⇓ · v)φij, (2.16)

where µ is the shear viscosity, ⇀ is the bulk viscosity and ↽ is the heat conductivity.
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Kinetic theory predicts that µ = Dµ

↑
T , ↽ = Dϑ

↑
T and ⇀ = 0 for a monoatomic gas

in the low density limit [3, 43], where Dϑ and Dµ are some constants. However, we

emphasize that these results are only first order terms in a virial expansion [3]. For a

radially symmetric blast, all the hydrodynamic fields are radially symmetric. Using this

fact, the NS equations become (for d = 2):

εtϱ+
ϱv

r
+ εr(ϱv) = 0, (2.17a)

ϱ(εtv + vεrv) + εrP =
1

r2
εr[r

2µ(εrv → r↓1v)], (2.17b)

ϱ(εte+ vεre) +
1

r
εr(rPv) = µ(εrv →

v

r
)2 +

v

r2
εr[r

2µ(εrv →
v

r
)] +

1

r
εr(r↽εrT ). (2.17c)

It is known [39], that the TvNS solution predicts (in 2D) that for small ↼, G ⇑ ↼2,

V →1/4 ⇑ ↼4 and Z ⇑ ↼↓4 [see also Sec. (3.4)]. Using this small ↼ behaviour predicted by

TvNS solution, we can estimate if the dissipation terms are indeed small, e.g, by looking

at the ratio of the terms on the right and left hand sides of Eq. (2.17b). This shows that

dissipation is small for r ↭ D1/5
µ E1/5

0 ϱ↓2/5
↔ t2/5, thus verifying the assumption leading to

the TvNS solution. However, for r ↫ D1/5
µ E1/5

0 ϱ↓2/5
↔ t2/5, dissipation terms are larger than

Euler terms, and thus the assumption leading to TvNS solution breaks down. Hence, we

expect TvNS solution not to be valid for r ↫ D1/5
µ E1/5

0 ϱ↓2/5
↔ t2/5. This introduces a new

length scale, which is an estimate of the size of the core,

X(t) =
D1/5

µ E1/5
0

ϱ2/5↔
t2/5, (2.18)

and which grows with time as t2/5. From this length scale, we can find an estimate for the

density, velocity and temperature in the core, which we denote respectively by ϱ↗, v↗ and

T ↗. This will give us new density, velocity and temperature scales (here ↼↗ = X(t)/R(t)

is the scaled size of the core):

ϱ↗ = ϱ↔↼2↗ = bϖt
↓1/5, (2.19a)

v↗ =
X(t)

t
= bvt

↓3/5, (2.19b)

T ↗ =
X2(t)

t2
↼↓4
↗ ⇑ bT t

↓4/5, (2.19c)

where bϖ = A1/2D2/5
µ ϱ7/10↔ E↓1/10

0 , bv = D1/5
µ ϱ↓2/5

↔ E1/5
0 and bT = A↓1D↓2/5

µ ϱ↓1/5
↔ E3/5

0 . From
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these scales, we can construct a new scaling form for the various hydrodynamic fields:

ϱ = t↓
1
5 G̃(⇁), (2.20a)

v = t↓
3
5 Ṽ (⇁), (2.20b)

T = t↓
4
5 Z̃(⇁), (2.20c)

where we have defined the new scaling variable

⇁ =
r

t2/5
, (2.21)

and the constants have been absorbed into the scaling functions G̃, Ṽ and Z̃.

To get the ODEs satisfied by the core scaling functions G̃(⇁), Ṽ (⇁) and Z̃(⇁), we plug

the scaling ansatz (Eqs. (2.20)) into the NS equations and take the long time limit. We

get the following coupled ODEs:

→ G̃

5
→ 2⇁G̃↑

5
+

(⇁G̃Ṽ )↑

⇁
= 0, (2.22a)

(Z̃G̃)↑ = 0, (2.22b)

→ 4

5
Z̃G̃→ 2⇁G̃Z̃ ↑

5
+ G̃Ṽ Z̃ ↑ +

Z̃G̃Ṽ

⇁
+ (G̃Ṽ Z̃)↑ =

DϑZ̃1/2Z̃ ↑

⇁
+

2

3
(DϑZ̃

3/2)↑↑. (2.22c)

We note the following: (a) The virial corrections do not appear in these equations because

they vanish in the long time limit; (b) only the thermal conductivity term makes an

appearance [this is true also if we consider the form of transport coe”cients in Eq. (2.32)].

These ODEs are first order in G̃ and Ṽ and second order in Z̃. Thus, we need 4 boundary

values: two for each G̃ and Ṽ , and two for Z̃. Two of the boundary conditions can be

determined using the radial symmetry of the problem. Because of radial symmetry, there

is no flow velocity and heat flow in the origin. This gives Ṽ (⇁ = 0) = 0 and Z̃ ↑(⇁ = 0) = 0.

The rest two boundary conditions can be determined from the asymptotic matching

condition, which is given by:

h(⇁ ≃ ⇐) = h(↼ ≃ 0), (2.23)

where h is some hydrodynamic field.

We call the solution obtained from the ODEs in Eqs. (2.9) for the TvNS scaling

functions as the outer solution, and those obtained from the ODEs in Eqs. (2.22) for the

core scaling functions as the inner solution. We have not succeeded in finding analytical

expressions for the inner solution. However, approximate solutions can be found in the
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small ⇁ region, as we now show. Since Ṽ (0) = 0 and Z̃ ↑(0) = 0 we can take for small ⇁:

Ṽ (⇁) ⇒ V0⇁
ϱ, α > 0, (2.24)

Z̃ ↑(⇁) ⇒ F0⇁
ς, β > 0. (2.25)

Thus,

Z̃(⇁) = F0
⇁1+ς

1 + β
+ C1, for small ⇁. (2.26)

Using these and Eq. (2.22b), we have

G̃ =
C2

Z̃
⇒ C2

C1

(
1→ F0⇁1+ς

C1(1 + β)

)
, for small ⇁. (2.27)

Putting these into Eq. (2.22a) and comparing powers and taking small ⇁ limit, we get

α = 1, V0 = 1/10. Using these values for α and V0 and Eq. (2.22c), we get:

→3C2

5
→ 2⇁C2F0

5C1

(
⇁ς → F0⇁1+2ς

C1(1 + β)

)
+

C2F0

10C1

(
⇁1+ς → F0⇁2+2ς

C1(1 + β)

)

→F0Dϑ

√
C1

(
⇁ς↓1 +

F0⇁2ς

2C1(1 + β)

)
→Dϑ

√
C1F0β⇁

ς↓1 = 0. (2.28)

Since β > 0, the equation above can only be satisfied when β = 1 and

F0 = → 3C2

10Dϑ

↑
C1

. (2.29)

The only unknown constants are C1 and C2, which can be fixed from boundary values

determined from either asymptotic matching or the data from the numerical solution of

the full NS Eqs. (2.17).

Thus to first non-zero order in ⇁, we have:

G̃(⇁) =
C2

C1

(
1 +

3C2⇁2

20DϑC
3/2
1

+ . . .
)
, (2.30a)

Ṽ (⇁) =
⇁

10
+ . . . , (2.30b)

Z̃(⇁) = C1 →
3C2⇁2

20Dϑ

↑
C1

+ . . . . (2.30c)

2.3.3 Numerical results

From the discussions in the previous two subsections, we expect two di!erent scaling form

for the hydrodynamic fields, namely the TvNS scaling form given by Eqs. (2.8) in the
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: MD simulations of hard discs: The three hydrodynamic fields, ob-
tained from MD simulation data of Ref. [39], plotted in (a,b,c) according to the expected
TvNS scaling form [Eqs. (2.8)] and in (d,e,f) according to the expected core scaling form
[Eqs. (2.20)]. We can see that in (a,b,c) there is a very good collapse of data everywhere
except near the core, where the scaling is not very good, especially for the temperature
field. On the other hand in (d,e,f) we see excellent data collapse near the core. Thus MD
simulations exhibit the expected core and bulk scaling forms.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: NS solution for hard discs: The three hydrodynamic fields, obtained from
numerical solution of NS equations in Eq. (2.17), are plotted in (a,b,c) according to the
expected TvNS scaling form [Eqs. (2.8)] and in (d,e,f) according to the expected core
scaling form [Eqs. (2.20)]. We can see that in (a,b,c) there is a very good collapse of
data everywhere except near the core. On the other hand in (d,e,f) we see excellent data
collapse near the core. Thus the NS solutions exhibit the expected core and bulk scaling
forms. In (a,b,c) we also see a good fit of the scaled data to the TvNS scaling functions,
(G, V, Z), also obtained from a numerical solution of Eqs. (2.9). In (d,e,f) we see a
reasonable fit in the core region to the core scaling functions, (G̃, Ṽ , Z̃), obtained from
a numerical solution of Eqs. (2.22) with boundary conditions obtained from the solution
of the NS equations in Eqs. (2.17). The parameter values were taken as E0 = 4.0,
ϱ↔ = 0.382, and the Henderson equation of state was used.
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bulk region X(t) ↫ r < R(t), and the core scaling form given by Eqs. (2.20) in the region

0 < r ↫ X(t)). We now check if these predictions for the bulk and core scaling forms

can be verified in data obtained from MD simulations and from numerical solutions of

the NS equations.

We use the MD simulation results from Ref. [39]. They considered a gas of hard discs

with diameter a = 1, E0 = 2.0 and ϱ↔ = 0.382. The initial condition was chosen with

a Gaussian temperature profile, v(r, t = 0) = 0 and ϱ(r, t = 0) = ϱ↔. The parameters

of the Gaussian temperature profile were chosen such that the initial total energy is E0.

We note here that the long-time scaling solution does not depend on the width of the

Gaussian chosen as long as it corresponds to energy E0. For the numerical solution of the

NS equations in Eqs. (2.17), we considered initial conditions that correspond to the ones

used in the MD simulations. In all our computations involving hard-disc gas, we use the

Henderson equation of state (EOS) [44] instead of the truncated virial expansion for the

ease of computation. The Henderson EOS is given by:

p = ϱT
128 + ς2ϱ2a4

8(4→ ςϱa2)2
. (2.31)

The MacCormack method [45] was used to solve the PDEs, with discretization given

by dx = 0.05, dt = 10↓5. The boundary conditions we have used are v(0, t) = 0,

εrϱ(r, t)|r=0 = 0 , εrT (r, t)|r=0 = 0. The initial temperature profile was taken to be a

Gaussian: T (r, 0) = (T0/
↑
2ςϖ2)e↓r2/2ε2

, with T0 = E0/(
↑
2ςϱ↔ϖ) and ϖ = 0.5. We note

that the lowest order non-zero term of the Enskog expansion for the transport coe”cients

gives [46, 47, 43, 48]

↽ =
2

aς1/2
T 1/2, µ =

1

2aς1/2
T 1/2, ⇀ =

8▷2

ς3/2
T 1/2 =

ς1/2a3

2
ϱ2T 1/2, (2.32)

where ▷ = ςa2ϱ/4 is the volume fraction. An important general property of monoatomic

gases is the vanishing of the bulk viscosity in the dilute regime, ▷ ≃ 0. This, together

with relation ◁ = 1 + 2/d, is the crucial input coming from kinetic theory [3, 43, 48];

phenomenological hydrodynamics is compatible with arbitrary ◁ > 1 and ⇀ ↔ 0. When

▷ > 0, the bulk viscosity becomes positive, and Eq. (2.32) gives its leading asymptotic

for small ▷. We note here that the ϱ-dependence of the bulk viscosity will not change the

core scaling, as the core is a low density region where bulk viscosity is negligible.

In our NS numerics we followed Ref. [41] and chose (with a = 1) the values ↽ = µ =

(
↑
ς/8)

↑
T and ⇀ = 0, which are di!erent from those in Eqs. (2.32). We have verified that

our main conclusions remain unchanged on using Eqs. (2.32) for the transport coe”cients.

MD simulations: In Fig. (2.1) we show the results of MD simulation data and check
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(a) (b) (c)

Figure 2.3: Asymptotic matching in hard discs: Figure comparing the inner solution
and outer solution with the full solution of NS equations. The boundary values for finding
the inner solution were taken from the full solution of the NS equations. Also shown in the
middle plot is the line with height 0.25 which is the near core value of V (↼) predicted by
the TvNS solution. We see that the near core asymptotic of the outer solution matches
with the far core asymptotic of the inner solution, which is nothing but the rule of
asymptotic matching.

if they satisfy the predicted scaling. In Figs. (2.1a,2.1b,2.1c), following Eqs. (2.8), we plot

the scaled fields (ϱ, t1/2v, tT ) as a function of r/t1/2, at di!erent times, and find that this

gives a very good data collapse in the region far from the core. However, as expected,

the data collapse near the core is not quite good. In Figs. (2.1d,2.1e,2.1f), we follow

Eqs. (2.20) and plot the scaled fields (t1/5ϱ, t3/5v, t4/5T ) as a function of r/t2/5 and see

that this scaling gives a much better data collapse in this region. This establishes that

there are two di!erent regions with di!erent scaling.

NS equations: We now discuss the results obtained from the numerical solution of

NS equations. In Fig. (2.2), we plot the hydrodynamic fields obtained from the numerical

solution of the NS equations. In Figs. (2.2a,2.2b,2.2c) we verify that these satisfy the

TvNS scaling form in the bulk region and agree very well with the TvNS scaling functions.

However, in the core we see a clear departure from TvNS scaling. In Figs. (2.2d,2.2e,2.2f)

we see that the core scaling form is satisfied in the core region. We also plot the solution

of Eqs. (2.22) and we see that they agree with the numerical solution of NS equations in

the core region.

Asymptotic matching: In Fig. (2.3), we verify the rules of asymptotic matching by

using the inner and outer solutions. Once we have the inner solution G̃, Ṽ and Z̃, we can

find the corresponding hydrodynamic fields for density, velocity and temperature. We

can then compare how they match with the outer solution. In Fig. (2.3), we show this

comparison and find that the ↼ ≃ 0 limit of the outer solution has the same asymptotic

as the ↼ ≃ ⇐ of the inner solution. Thus we verify the rule of asymptotic matching.
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(a) (b) (c)

Figure 2.4: 2D hard discs: Comparison of the NS solution and TvNS with MD simula-
tions. We see that the MD data matches with both the NS or TvNS solution in the bulk
region.

Finally in Fig. (2.4), we compare MD data of [39] (with the same value of E0) with

NS solution and TvNS solution. We see that NS and TvNS solutions agree with MD

data. The only discrepancies are in the near core behavior for the scaling functions.

2.4 Blast in 2D ideal gas

In this section, we consider the hydrodynamics of a toy model of a 2D gas, where we

ignore the virial corrections in the equation of state, and take it to be that of an ideal

gas. This amounts to considering point particles which in two dimensions would mean

a non-interacting gas. So naively we would not expect any evolution. However, one can

work in the Boltzmann-Grad limit, that is, a ≃ 0 and ϱ ≃ ⇐ keeping ϱa finite (in 2D). In

this situation, one expects finite transport coe”cients predicted by kinetic theory, while

still preserving the ideal gas equation of state (since the volume fraction ςϱa2/4 ≃ 0).

This system would be very di”cult to simulate but we can still analyze the NS equations.

One advantage of this toy model is that we can find an exact TvNS solution.
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: NS solution for 2D hard point gas: The three hydrodynamic fields,
obtained from numerical solution of NS equations in Eq. (2.17) with ideal gas equation of
state, are plotted in (a,b,c) according to the expected TvNS scaling form in Eqs. (2.33)
and in (d,e,f) according to the expected core scaling form [Eqs. (2.20)]. We can see
that in (a,b,c) there is a very good collapse of data everywhere except near the core.
On the other hand in (d,e,f) we see excellent data collapse near the core. Thus the NS
solutions exhibit the expected core and bulk scaling forms. In (a,b,c) we also see a good
fit of the scaled data to the TvNS scaling functions (G, V, Z), obtained from the exact
solution [ Eqs. (2.35,2.37). In (d,e,f) we see a reasonable fit in the core region to the
core scaling functions G̃, Ṽ , Z̃, obtained from a numerical solution of Eqs. (2.22) with
boundary conditions obtained from the solution of the hard point NS equations (PDEs).
The parameter values were taken as E0 = 4.0, ϱ↔ = 0.382.
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2.4.1 TvNS solution

For this toy model, our first aim is to find the TvNS solution. To this end we take the

following scaling ansatz for the form of the hydrodynamic fields at long times:

ϱ = ϱ↔G(↼), (2.33a)

v =
r

t
V (↼), (2.33b)

T =
r2

t2
Z(↼), (2.33c)

where ↼ = r/R, R(t) = (E0t2/(A2ϱ↔))1/4 and A2 is some dimensionless constant that

we will determine later. Using these scaling ansatz, the Euler equations can be reduced

to the following equations

(
V → 1

2

)
G↼

dV

d↼
+ ↼

d

d↼
(ZG)→GV +GV 2 + 2GZ = 0, (2.34a)

(
V → 1

2

)
↼
dG

d↼
+ ↼G

dV

d↼
+ 2GV = 0, (2.34b)

→
(
V → 1

2

) ↼

G

dG

d↼
+
(
V → 1

2

) ↼

Z

dZ

d↼
+ 2(V → 1) = 0. (2.34c)

As a result of the scaling form we see that the total energy in the region 0 < r < ↼R(t)

is conserved. This leads to the following integral of motion (see also Ref. [17] for an

alternate derivation):

Z =
V 2(1→ 2V )

2(4V → 1)
. (2.35)

The Rankine-Hugoniot boundary conditions give us

G(1) = 3, V (1) =
1

3
, Z(1) =

1

18
. (2.36a)

These equations can be solved to give

↼4 =
|4V → 1|

108V 2
(
V → 1

2

)2 , (2.37a)

G =
3
↑
3
√
|4V → 1|e↓

1
2V →1

e3
. (2.37b)

Together with Eq. (2.35), these provide a complete solution of Eqs. (2.34), except that

the value of the constant A2 is still undetermined. This can be found easily by using the
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conservation of energy, exactly as it was done in [30, 31] for the case of 1D ideal gas:

A2 = 2ς

∫ 1

0

G(↼)
(V 2(↼)

2
+ Z(↼)

)
↼3d↼. (2.38)

Plugging the exact solution for G, V , Z, we will obtain an expression for A2 as an integral

which cannot be evaluated exactly, but can be evaluated numerically. After doing the

full calculation we obtain A2 = 0.3519359068.

Using the exact solution, one finds that the following ↼ ≃ 0 behaviour of the various

scaling functions:

V → 1

4
⇑ ↼4, G ⇑ ↼2, Z ⇑ ↼↓4. (2.39)

2.4.2 Core scaling solution

Just like we observe a new scaling in the core region for hard discs, we expect a simi-

lar new scaling in the core region for our toy model. Following the same argument as in

Sec. (2.3.2), and using the fact that the ↼ ≃ 0 behaviour of the TvNS solution, Eq. (2.39),

remains the same as for hard discs, we see immediately that again the size of the dissi-

pative core grows with time as t2/5. It is clear also that the core scaling form will again

be exactly as in Eq. (2.20). Finally, we note that the higher order terms, in the virial

expansion for pressure in the hard-disc gas, do not appear in the equations for the scaling

functions G̃(⇁), Ṽ (⇁), Z̃(⇁) in Eq. (2.22). Hence we have the same ODE equations in the

core as for our 2D point particle gas. As before we need two boundary conditions to be

determined either from NS data, or from the asymptotic matching condition, which is

given by Eqs. (2.23). The boundary conditions are di!erent for the hard point gas and

will lead to a di!erent solution for the scaling functions.

2.4.3 Numerical results

In Fig. (2.5), we compare results from NS solutions with the predicted TvNS and core

scaling forms. In Fig. (2.5)(a,b,c), we see that the NS shock front matches with the TvNS

prediction. We also see a clear TvNS scaling in the bulk region but significant departures

in the core. Plotting the exact TvNS scaling functions, we notice that they agree with

the bulk NS results. In Fig. (2.5)(d,e,f), we verify that the NS solutions satisfy the core

scaling. The comparison between the numerical solution of the core scaling ODEs in

Eqs. (2.22) and that of the full NS equations is also good in the collapsed region. For the
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(a) (b) (c)

Figure 2.6: 2D hard point gas: In this figure, the inner core scaling solution, the exact
TvNS solution and the solution obtained from the full NS equations are plotted together.
The boundary values for finding the inner solution were taken from the full solution of
the NS equations. We see that the near core asymptotics of outer solution matches with
the far core asymptotics of inner solution, which is nothing but the rule of asymptotic
matching.

solution of Eqs. (2.22), we took the boundary conditions from the full solution of the NS

equations.

In Fig. (2.6) we plot the exact TvNS solution, the core scaling functions and the

solution from the full NS equations. We see a very good verification of the rules of

asymptotic matching.

2.5 Blast in the hard-rod gas

In this section, we consider the blast problem in the 1D hard-rod gas, and compare the

predictions of MD simulations with those of NS equations and TvNS solution.

We consider a gas of hard rods of length a. If all the hard rods are of equal masses,

the particles simply exchange velocities during collisions, hence the system would be

integrable and never reach local equilibrium. Thus, as in [30, 31], we consider the alternate

mass hard-rod gas where successive rods on the line have masses m and M > m with

mean mass m̄ = (m+M)/2 = 1. In units where kB = 1, the equation of state for this

hard-rod gas is given by:

P =
ϱT

1→ ϱa
. (2.40)
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2.5.1 TvNS solution

The shock front in 1D grows with time as R(t) =
(

E0t2

A1ϖ↔

) 1
3
, where ϱ↔ is the background

density. As usual, we choose this growing length scale to define the TvNS scaling variable

↼ = x/R(t) and the following scaling forms for the hydrodynamic fields:

ϱ = ϱ↔G(↼), v =
x

t
V (↼), T =

x2

t2
Z(↼). (2.41)

Plugging these into the Euler equations, we get the following ODEs for the scaling func-

tions:

→ 2

3
↼G↑ + ↼(GV )↑ +GV = 0, (2.42a)

→ V + V 2 → 2↼V ↑

3
+ ↼V V ↑ +

↼ZG↑

G(1→ ▷G)2
+

2Z

1→ ▷G
+

↼Z ↑

1→ ▷G
= 0, (2.42b)

→ 2Z → 2↼Z ↑

3
+ 2ZV + ↼V Z ↑ +

2ZV

1→ ▷G
+

2↼ZV ↑

1→ ▷G
= 0, (2.42c)

where ▷ = ϱ↔a is the background packing fraction. As a result of the scaling form we

see that the total energy in the region 0 < r < ↼R(t) is conserved. This leads to the

following integral of motion [17]:

Z =
V 2(1→ 3V/2)

3V/2 + 3V (1→ ▷G)↓1 → 1
. (2.43)

The Rankine-Hugoniot conditions give the following boundary values needed to solve

Eqs. (2.42):

G(1) =
2

1 + ▷
, V (1) =

1→ ▷

3
, Z(1) =

(1→ ▷)2

9
. (2.44)

These equations have to be solved along with the equation which specifies the total energy,

which will fix the constant A1. For point particles, Eq. (2.43) makes it possible to solve

the TvNS equations in any dimensions. However, for the case of hard rods we have not

been able to find a closed form solution. We have verified numerically that the numerical

solution of the ODEs above have the same behaviour near the core as the TvNS solution

of ideal gas obtained in [30, 31], i.e.,

G(↼) ⇑ |↼|1/2, V (↼) = 2/9, Z(↼) ⇑ |↼|↓5/2, (2.45)

for small ↼. This is expected as the small ↼ region is a region of low density making the

virial corrections almost negligible and the gas ideal.
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: Hard rods: Plot checking the TvNS scaling in (a,b,c) and the new scaling
in the core (obtained by including the dissipative e!ects) in (d,e,f) from the results of
MD simulation. We can see that there is a nice collapse of data at two di!erent times
in the bulk region in (a,b,c) and in the core region in (d,e,f). We have taken ϱ↔ = 0.4,
E0 = 0.4.

2.5.2 Core scaling solution

Following Refs. [30, 31], we take for the heat conductivity in NS to be of the form

↽ = Dϑϱ1/3T 1/2. An analysis similar to the one we did in Sec. (2.3.2) leads us then to a

core growing as X(t) ⇑ t38/93 and the following forms for the scaling near the core:

ϱ = t↓
4
31 G̃(⇁), (2.46a)

v = t↓
55
93 Ṽ (⇁), (2.46b)

T = t↓
50
93 Z̃(⇁), (2.46c)

where ⇁ = xt↓38/93.

We can solve for the core scaling functions similar to the way we did it for hard discs.

Since the virial corrections to the equation of state are negligible in the core and the gas
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: Hard rods: Plot checking the TvNS scaling in (a,b,c) and the new scaling in
the core (obtained by including the dissipative e!ects) in (d,e,f) from numerical solution
of the NS equations. Also shown are the outer solution in (a,b,c) and the inner solution in
(d,e,f). We can see that there is a nice collapse of data at two di!erent times in the bulk
region in (a,b,c) and in the core region in (d,e,f). We can also see that the outer solution
matches with the NS data in the bulk region in (a,b,c) and the inner solution matches
with the NS data in the core region in (d,e,f). We have taken ϱ↔ = 0.4, E0 = 0.4.
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is almost ideal, we directly take the equations for the core scaling functions from [31]:

→ 4

31
G̃→ 38

93
⇁G̃↑ + (G̃Ṽ )↑ = 0, (2.47a)

(G̃Z̃)↑ = 0, (2.47b)

→ 25

93
G̃Z̃ → 19

93
⇁G̃Z̃ ↑ +

G̃Ṽ Z̃ ↑

2
+ G̃Z̃Ṽ ↑ = (G̃1/3Z̃1/2Z̃ ↑)↑. (2.47c)

As for the 2D case in Eqs. (2.22) we observe again that the change in the equation of

state does not a!ect these equations and only the thermal conductivity term makes an

appearance in the core scaling equations.

2.5.3 Numerical results

In our simulations, we have taken m = 4/5 and M = 6/5. We verify the core scaling and

bulk scaling from MD data in Figs. (2.7).

We solved the TvNS ODEs numerically, and we solved the NS equations following the

method of [30, 31]. The plots comparing the two solutions are shown in Figs. (2.8a, 2.8b,

2.8c). We can see that the shock fronts predicted by the two solutions matches. Also

there is a nice data collapse in the bulk for the NS solutions at two di!erent times.

We solve Eqs. (2.47) (with boundary conditions taken from the NS data) and compare

the resulting solution with the full numerical solution of the NS equations in Figs. (2.8d,

2.8e, 2.8f). We see that there is agreement in the core, and that there is data collapse in

the core of the NS solutions at two di!erent times.

While solving the NS equations, we take (following [30, 31]) heat conductivity ↽ =

Dϑϱ1/3T 1/2, with Dϑ = 1 and also a finite bulk viscosity ⇀ = DφT 1/2, with Dφ = 1

(setting this to zero does not change any of our conclusions). We also compared our NS

numerical solution and TvNS solution with MD simulations (Fig. (2.9)) and find that

the shock front position agrees quite well with that obtained from MD simulations. Near

the core, there are some discrepancies, possibly due to anomalous heat conduction in 1D,

or due to large deviations from local equilibrium (also observed for the case for point

particles in [30, 31]).

41



(a) (b) (c)

Figure 2.9: Hard rods Plot comparing the NS solution and TvNS solution with the MD
simulations. We see that the shock front matches. We have taken ϱ↔ = 0.4, E0 = 0.4.

2.6 Hard point gas in d→dimensions: Inner and outer

solutions

In this section, we briefly discuss some features of the inner and outer solutions for the

point particle gas in arbitrary dimensions. As in Sec. (3.4), we consider the limit of

ϱ↔ ≃ ⇐ and a ≃ 0 such that one has an ideal gas with finite transport coe”cients. We

first discuss the outer solution given by the TvNS-type analysis of the Euler equations.

Then we discuss the inner solution where one has to write the full NS equations including

dissipation terms.

2.6.1 Outer solution

Euler equations in d→dimensions

From dimensional analysis we have in this case the shock front positionR(t) =
(

E0t2

Adϖ↔

) 1
d+2

.

Behind the shock, 0 ⇔ r < R(t), the radial velocity v(r, t), density ϱ(r, t) and pressure

P (r, t) satisfy the Euler equations

εtϱ+ εr(ϱv) +
d→ 1

r
ϱv = 0, (2.48a)

(εt + vεr) ln
P

ϱ↼
= 0, (2.48b)

ϱ(εt + vεr)v + εrP = 0, (2.48c)
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where ◁ is the adiabatic index.

The velocity of the shock wave is

U =
dR

dt
= φ

R

t
, φ ↖ 2

d+ 2
. (2.49)

The Rankine-Hugoniot conditions [17] describing the jump of the hydrodynamic variables

on both sides of the shock wave read

P (R)

ϱ↔U2
=

2

◁ + 1
,

ϱ(R)

ϱ↔
=

◁ + 1

◁ → 1
,

v(R)

U
=

2

◁ + 1
, (2.50)

in the case of the infinitely strong blast.

Self-similar solution

Dimensional analysis assures that the hydrodynamic variables acquire a self-similar form

v = φ
r

t
V, ϱ = ϱ↔ G, c2 = φ2

r2

t2
Z. (2.51)

Here c2 = ◁P/ϱ = ◁T is the square of the speed of sound and we have introduced

constant factors of φ and φ2 in the definition of the scaling functions to simplify subsequent

computations. The dimensionless quantities V,G, Z depend on the single variable

↼ =
r

R
. (2.52)

One seeks the behavior of V (↼), G(↼) and Z(↼) behind the shock wave, 0 ⇔ ↼ ⇔ 1.

The Rankine-Hugoniot conditions Eqs. (2.50) become

V (1) =
2

◁ + 1
, (2.53a)

G(1) =
◁ + 1

◁ → 1
, (2.53b)

Z(1) =
2◁(◁ → 1)

(◁ + 1)2
. (2.53c)

Using energy conservation, one expresses Z through the scaled velocity V to give [17]:

Z =
◁(◁ → 1)(1→ V )V 2

2(◁V → 1)
. (2.54)
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Plugging the ansatz Eqs. (2.51–2.52) into Eq. (2.48a) gives

dV

d0
+ (V → 1)

d lnG

d0
= →dV, (2.55a)

where 0 = ln ↼. Similarly we transform Eq. (2.48b) into

d ln(Z/G↼↓1)

d0
=

d+ 2→ 2V

V → 1
. (2.55b)

Equations (2.55a–2.55b) can be solved for arbitrary d and ◁ > 1. Having solved the

problem, one can compute the energy

E =

∫ R

0

dr %d r
d↓1 ϱ

[
v2

2
+

c2

◁(◁ → 1)

]

= n↔ %d φ
2 R

d+2↓a

t2

∫ 1

0

d↼ ↼d+1 (◁ → 1)V 3

2(◁V → 1)
G.

Here %d = 2ςd/2/$(d/2) is the surface area of the unit sphere and we have used Eq. (2.54).

Substituting Eq. (2.1) into the above expression for the energy we fix the dimensionless

constant Ad:

Ad(◁) = %d φ
2 ◁ → 1

2

∫ 1

0

d↼ ↼d+1 V 3

◁V → 1
G. (2.56)

In the following we limit ourselves to a monoatomic gas where ◁ = 1 + 2/d. The

adiabatic index generally depends only on the spatial dimension and independent of the

interaction between particles [49, 50]. The monoatomic gases are relevant in astrophysics

where even diatomic molecules are extremely rare. For the monoatomic gas, the Rankine-

Hugoniot conditions Eqs. (2.53a–2.53c) become

V (1) =
d

d+ 1
, G(1) = d+ 1, Z(1) =

d+ 2

(d+ 1)2
, (2.57)

and Eq. (2.54) reduces to

Z =
(1 + 2/d)(1→ V )V 2

(d+ 2)V → d
. (2.58)

Using Eq. (2.55a) and Eq. (2.55b) with ◁ = 1 + 2/d and Z given by Eq. (2.58) we

express dV/d0 and d(lnG)/d0 through the scaled velocity V :

dV

d0
= V

X

2D
, (2.59a)

d lnG

d0
=

V

V → 1

Y

2D
, (2.59b)
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where we write in short

X = [(d+ 2)V → d](d+ 2→ 4V ),

D = d→ 2(d+ 1)V + (d+ 1)(1 + 2/d)V 2,

Y = (2→ d)d+ (d→ 2)(2 + 3d)V + 2(d+ 2)(1→ d)V 2.

Integrating Eq. (2.59a) yields an implicit solution for the scaled velocity

↼ = cd[(d+ 2)V → d]
2

d2+4 V ↓ 2
d+2 (d+ 2→ 4V )↓↽d , (2.60)

with

cd =

(
d

d+ 1

) 2
d+2↓

2
d2+4

(
d2 → d+ 2

d+ 1

)↽d

,

1d =
8 + 4d+ 10d2 → d3 + d4

2d(2 + d)(4 + d2)
.

(2.61)

We then divide Eq. (2.59b) by Eq. (2.59a) and integrate in V to give

G = Cd [(d+ 2)V → d]
d2

d2+4 (1→ V )↓
2d
d→2 (d+ 2→ 4V )#d , (2.62)

with

Cd = (d+ 1)
d2

d2+4
↓ 2d

d→2 d↓
d2

d2+4

(
d2 → d+ 2

d+ 1

)↓#d

,

&d =
8 + 4d+ 10d2 → d3 + d4

2(d→ 2)(4 + d2)
.

(2.63)

Finally, Z = Z(V ) is given by Eq. (2.58).

Singular behavior

Using Eq. (2.60) and Eq. (2.62), one extracts the asymptotic behaviors near the center

of the explosion (↼ ↙ 1):

G ⇑ ↼
d2

2 , Z↓1 ⇑ V → d
d+2 ⇑ ↼

d2+4
2 . (2.64)

In terms of the original coordinates

ϱ ⇑ r
d2

2 t↓
d2

d+2 , T ⇑ r↓
d2

2 t
d(d→2)
d+2 . (2.65)
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This physically dubious behavior (the density vanishes, while the temperature diverges

at r = 0) indicates that the framework we have employed so far becomes incomplete near

the center of the explosion. We rectify it by including dissipation.

2.6.2 Inner solution

Navier-Stokes equations

Here we are considering the hard-point gas in the Boltzmann-Grad limit. Notice however

that, even if we were to take the model of hard sphere gas to ensure that there are

collisions, our core analysis would not change. This would mean virial corrections in the

equation of state and corrections to the transport coe”cients. However, since the core is

a region of low density, these corrections are negligible, and the core equations would be

the same as that of an ideal gas.

The continuity equation is not a!ected by dissipative processes [17]. Thus for our

radial flow Eq. (2.48a) remains valid. The momentum equation is generally a!ected by

viscosity—adding an extra term ⇓ · ω to the Euler equation yields the Navier-Stokes

equation. The viscous stress tensor is given by

ω = µ

⇓v + (⇓v)T → 2

d(⇓ · v)I

+ ⇀(⇓ · v)I,

where I is the unit tensor and the coe”cients of shear and bulk viscosity are denoted by

µ and ⇀. Little is known about bulk viscosity. Fortunately, for dilute monoatomic gases

the coe”cient of bulk viscosity vanishes [49]. Thus for the dilute hard sphere (HS) gas

ω = µ

⇓v + (⇓v)T → 2

d(⇓ · v)I

. (2.66)

According to kinetic theory [49, 50], transport coe”cients exhibit similar behavior. For

the dilute HS gas, these coe”cients are proportional to
↑
T . This is the classical prediction

of kinetic theory. More precisely, the coe”cient of shear viscosity for the dilute hard

sphere (HS) gas reads

µ = Md a
↓(d↓1)

↑
mT, (2.67)

where m and a denote spheres’ masses and radii. The dimensionless amplitude M3 is

known only approximately [49, 50]. The coe”cient of thermal conductivity for the dilute

HS gas is given by a similar formula

↽ = Kd a
↓(d↓1)

↑
mT, (2.68)
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which di!ers from the expression Eq. (2.67) only by the dimensionless amplitude, Kd

instead of Md.

The entropy equation is a!ected by heat conduction and viscous dissipation. To

estimate the size of the core region where dissipative e!ects matter it su”ces to keep

heat conduction and ignore viscous dissipation. In this situation Eq. (2.48b) is replaced

by equation

ϱT (εt + vεr)s = r↓(d↓1) εr(r
d↓1↽εrT ), (2.69)

for the entropy per unit mass

s =
d

2
ln

(
T

ϱ2/d

)
. (2.70)

Using Eqs. (2.70–2.68) we recast Eq. (2.69) into

ϱ1+2/d (εt + vεr)
T

ϱ2/d
=

1

rd↓1
εr

rd↓1T 1/2 εrT


. (2.71)

We have set Kda↓(d↓1)
↑
m = 1 in Eq. (2.71) to avoid cluttering the formulas; this factor

can be always restored in the final results on dimensional grounds.

Heuristic analysis for core scaling

Using 2.71 we deduce an estimate

ϱ
T

t
⇑ T 3/2

r2
, (2.72)

which is combined with 2.65 to give an estimate of the growth of the radius X of the core

where the heat transfer plays significant role

X ∝ Rhd , hd =
4 + 3d2

8 + 3d2
. (2.73)

According to Eq. (2.65), the density vanishes and the temperature diverges at the

center of the explosion. Heat conduction rectifies these predictions. Indeed, instead of

using Eq. (2.65) at r = 0, one should substitute r = X into Eq. (2.65). This allows us to

estimate the density, temperature and pressure in the core region including the center of

the explosion

ϱ↗ ∝ R↓⇀d , T ↗ ∝ R↓(d↓⇀d) , p↗ ∝ R↓d, (2.74)

with 2d = 2d2/(8 + 3d2).
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2.7 Discussion

In this chapter, we presented the results of numerical solutions of the Navier-Stokes (NS)

equations of dissipative hydrodynamics for a 2D hard-disc gas, a 2D hard point gas, and

a 1D hard-rod gas. We revealed that the long-time solution has a double scaling form

— it consists of an outer solution described by the well-known TvNS scaling form, and

an inner solution described by di!erent scaling functions. For the 2D gas, the inner

solution is valid in the region 0 < r ↫ t2/5 while the outer solution is valid in the region

t2/5 ↫ r < R(t), with R(t) ⇑ t1/2 known quite precisely. The inner solution arises due

to the dominance of dissipative terms (namely, the viscosity and thermal conductivity

terms in the NS equations) in the core of the blast.

We also pointed out that molecular dynamics (MD) simulation data for both the 1D

and 2D gases agree with the results from the solution of NS equations, except in the core.

The MD data does satisfy the scaling forms corresponding to the inner and outer scaling

solutions, however, the scaling functions di!er. This mismatch in the core occurs also for

1D point particles [30, 31] and a possible reason could be that transport coe”cients are

anomalous in low dimensional systems.

In the alternating mass point-particle gas studied in [31], the equation of state is

that of an ideal gas, whereas in the alternating mass hard-rod gas it departs from the

ideal-gas law. In contrast to hard spheres in two and three dimensions—where only virial

expansions of the equation of state are known—the equation of state for hard rods in

one dimension can be written down exactly. Another important di!erence is that for

the point-particle gas one can obtain an exact solution of the Euler equations for the

blast problem; this is not possible for the hard-rod gas because its equation of state is

non-ideal.

Note that the ratio of the size of the core to the size of the blast X(t)/R(t) in 1D

(t38/93/t2/3 ⇑ t↓24/93 [30, 31]) is much smaller than in 2D (t2/5/t1/2 ⇑ t↓1/10). This ratio

is even larger in 3D (t62/175/t2/5). Despite the ratio being larger in 2D than in 1D, we

find that dissipative corrections in the core do not a!ect the position of the shock front

in 2D. In general d-dimensions (d ↔ 2), the shock front position, R(t), and the core size,

X(t), grow as [see Sec. (2.6) for the details of the derivation]:

R(t) ⇑ t
2

(d+2) , X(t) ⇑ t
2(4+3d2)

(d+2)(8+3d2) . (2.75)

We present below a table showing the size of the shock front and the core, the hydrody-

namic fields in the core and the ratio of the core energy (E↗) to the total energy in 2D
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and 3D [the details of the derivation are given in Sec. (2.6)].

d R X ϱ↗ T ↗ p↗ v↗ E↗/E0

2 t1/2 t2/5 t↓1/5 t↓4/5 t↓1 t↓3/5 t↓1/5

3 t2/5 t62/175 t↓36/175 t↓174/175 t↓6/5 t↓113/175 t↓24/175

The core is the region where deviations from local equilibrium are large (see also [39]),

and treating the deviation as a first order approximation (which is what is done in the

NS framework) may not su”ce. Apart from this, there is the issue of long time tails

of correlation functions and the divergence of transport coe”cients in dimensions d ⇔
2 [51, 43, 34, 52]. This can be also be a reason for the mismatch between hydrodynamics

and microscopic simulations observed in the core. Finally, another reason for the failure

of hydrodynamics in the core could be the fact that the Knudsen number (which is the

ratio of the mean free path to the length scale of variation of the hydrodynamic fields)

in the core for the 2D case has a very slow decay than that in the bulk. In the core, the

Knudsen number is ⇑ ϱ↗↓1t↓2/5 ⇑ t↓1/5, while that in the bulk is ⇑ ϱ↓1
↔ t↓1/2 ⇑ t↓1/2.

This reason is connected to the reason mentioned before, as the Knudsen number is a

measure of the deviation from local equilibrium and how well the hydrodynamic limit is

reached.

Interesting open problems would be to resolve the observed disagreement between

hydrodynamics and microscopic dynamics in the core for the blast problem, and to see

if this disagreement disappears in higher dimensions.
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Chapter 3

Interacting Integrable system

”The miracle of the appropriateness of the language of mathematics for the formulation

of the laws of physics is a wonderful gift which we neither understand nor deserve.”

-Eugene Wigner

A classical Hamiltonian many-body system will generally thermalize at long times in

the sense that macroscopic obeservables can be described by the Gibbs Ensemble (GE).

However, there may exist systems that do not thermalize to GE, because of the existence

of macroscopic number of extra conservation laws which restrict their motion in the

phase space. Such systems are often known as integrable many-body systems, which are

believed to thermalize to the Generalized Gibbs Ensemble (GGE)[53, 54, 55, 56]. They

have been realized experimentally in one-dimensional trapped atoms [57, 58]. Their

non-equilibrium dynamics close to local GGE is described by generalised hydrodynamics

(GHD) [9, 59, 60, 4, 10]. Integrable systems are very fine-tuned systems in the sense that

the smallest of perturbations (which are always present in any experimental setup) can

break integrability. However, in the presence of integrability breaking perturbations, it

is expected that the system will still remain integrable for short times [57, 58, 61, 62],

and so integrable dynamics may still play an improtant role. Integrable systems are

also important from the point of view of studying exact dynamics of systems far from

equilibrium. Since they rekindle the hope of obtaining exact solutions to many-body

systems out of equilibrium, it is possible to use them to study far from equilibrium states,

which cannot be treated using hydrodynamics (for non-integrable case) or generalised

hydrodynamics (for integrable case) because hydrodynamics (HD) can only handle states

near local equilibrium (or local GGE).

It is useful to make a distinction between interacting and non-interacting integrable

systems [63]. In non-interacting integrable systems, the quasiparticles move in straight
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lines at constant velocity. For example, in one dimensional hard point particle gas, the

collisions happen at a point and two particles simply exchange velocity after colliding,

and thus the system can be mapped to non-interacting one by interchanging the labels of

the two colliding particles after the collision. In the mapped non-interacting problem, the

new particles moving with a fixed velocity are called quasi-particles, and they move in

straight lines at constant velocities, like in a non-interacting gas. This is not the case for

interacting integrable systems. In the hard rod case, a quasiparticle will have a straight

line motion interrupted by sudden jumps (of the size of rod length) owing to the collisions.

This e!ectively leads to dissipation in the hydrodynamics of the hard-rod gas, which can

get manifested by the spreading of a tagged quasiparticle. On the other hand, for the point

particle case, the system has no dissipation term in its hydrodynamics and consequently

no spreading in the position of a tagged quasiparticle. Such spreading was studied, from

microscopic calculations, by Lebowitz, Percus and Sykes [64] and demonstrated the e!ect

of dissipation. Such dissipation terms appearing as Navier-Stokes (NS) corrections to the

HD equation of hard rods was later established by Spohn [65], Boldrighini and Suhov [8]

and recently discussed by Doyon and Spohn [66] and Ferrari and Olla [67]. Due to

the presence of the dissipation term, one generally expects that the hard-rod gas would

approach to a GGE state starting from a non-equilibrium initial condition.

The question of approach to the GGE state in integrable systems has been widely

discussed in the quantum context [53, 68, 69, 70] and the e!ect of dissipation was demon-

strated in the context of evolution of a domain wall in the quantum Heisenberg spin chain

[71]. However, to the best of our knowledge, this has not been observed for classically

integrable systems. Neither has the e!ect of the Navier-Stokes correction to the Euler

GHD solutions been demonstrated in any study. In the context of the classical system

of hard rods, the questions on evolution and e!ect of dissipation were addressed in [66]

for the specific case of domain wall initial condition. This study demonstrated that the

evolution from such initial condition can be very well accurately described by the solution

of the Euler GHD equations. Although the corrections from the Navier-Stokes terms were

discussed in [66], this could not be unambiguously established from the numerics. The

aims of this work are: (i) to study the evolution of non-equilibrium initial states and see

if they approach GGE at large times; (ii) to demonstrate the e!ect of dissipation in such

an evolution.

This chapter is organized as follows. In Sec. (3.1) we define the model and the dif-

ferent initial conditions used in the study, and summarize the main results in Sec. (3.2).

In Sec. (3.3), we define hydrodynamics of the hard-rod gas and explain how the Euler

equation can be solved. We investigate the equilibration and the e!ect of dissipation in

Sec. (3.4) by comparing the predictions of hydrodynamics with those of MD simulations
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for di!erent initial conditions. In Sec. (3.5) we provide discussions of our results and

conclude. Some details of the calculations are provided in the appendix.

3.1 Model, observables and initial conditions

We consider a system of N hard rods each of length a and unit mass, moving inside a one

dimensional box of size L. The rods move with constant velocity in between collisions.

Two rods exchange their velocities at collisions with each other whereas at collisions

with the walls at x = 0 and x = L the rods flip their velocities. This implies reflecting

boundary conditions at x = 0 and x = L. This model with a ′= 0 is an example of

an interacting integrable system, while for a = 0, it becomes non-interacting integrable

system.

The microscopic dynamics of hard rods can be mapped to that of hard point particles

as follows [6, 5, 64]: Let xi, i = 1, 2, ..., N denote the ordered positions (xi < xi+1→a with

x1 > a/2 and xN < L→a/2) and vi, i = 1, 2, ..., N denote velocities of the rods. For each

microscopic configuration {xi, vi} of hard rods, one can construct a configuration {x↑
i, v

↑
i}

of hard point particles by removing the inaccessible spaces between rods and, between

rods and the walls. More precisely the mapping can be written as

x↑
i = xi → (i→ 1/2)a, v↑i = vi i = 1, 2, ..., N, (3.1)

and consequently one has a set of hard point particles moving inside a box of length

L↑ = L → Na. The dynamics of hard point particles can be further mapped to non-

interacting point particles by the Jepsen mapping [72]. This mapping has earlier been

used to find several analytical results, such as quasiparticle distribution [64], free expan-

sion problem [5] and sound and shock propagation [6]. This mapping also allows one

to simulate the hard rod dynamics e”ciently and accurately. Throughout this paper, we

represent configurations of the point particles by primed variables ({x↑
i, v

↑
i}) and those of

the rods by un-primed variables ({xi, vi}).

In this paper we study the evolution of the single particle phase space distribution,

f(x, v, t), of the hard rods defined as

f(x, v, t) =


N∑

i=1

φ(x→ xi)φ(v → vi)


, (3.2)

where ↗...↘ denotes an average over the ensemble of initial conditions corresponding to

fixed forms of the initial density profile and single particle velocity distribution. We
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investigate the possible approach to GGE and the e!ect of NS terms, for the following

three di!erent initial conditions:

A The particles on each of the two halves, (0, L/2) and (L/2, L), are separately dis-

tributed uniformly at a finite density ϱ0 = N/L. We assign all particles on the left

half [x ∞ (0, L/2)] with velocity v0(= 1), while the velocities of all particles on the

right half [x ∞ (L/2, L)] are chosen from a Maxwell distribution with temperature

T = 1

h(v) =
1↑
2ς

exp

(
→v2

2

)
, for →⇐ ⇔ v ⇔ ⇐. (3.3)

In this initial condition, one has two components of the gas – for the first component,

each particle has velocity v0 = 1, while in the second (which we call the background

particles), the particles have velocity distributed according to h(v).

B Next we consider an initial condition where we first place a particle with a given

velocity v0(=1) at the origin. The rest of the box is then filled with particles dis-

tributed uniformly in space with a density ϱ0 = N/L. These background particles

have velocities chosen from the Maxwell velocity distribution h(v). This case is

more analytically tractable than the previous case in (A) and was first studied by

Lebowitz, Percus, Sykes (LPS) in [64]. In this case, the initial single particle phase

space distribution has the form f(x, v, t = 0) = φ(x)φ(v → v0) + ϱ0h(v).

C Finally we consider the set-up of free expansion from a half filled box. In this

case the rods are uniformly distributed in the left half of the box at a constant

density, 2ϱ0, and the velocities are again chosen from the Maxwell distribution,

h(v). The right half of the box is empty. This problem of free expansion was pre-

viously investigated in [5], where the evolution of various hydrodynamic variables

was computed using a microscopic approach and with certain approximations that

e!ectively amount to solving the Euler equations. For both the classical and quan-

tum cases, the free expansion problem for point particles has recently been studied

in the context of entropy growth [30, 73, 74].

For the three initial conditions mentioned above, we study the evolution of the density

profile, ϱ(x, t), and the velocity profile, u(x, t) (or equivalently, the momentum density
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profile p(x, t) = ϱ(x, t)u(x, t)), defined as

ϱ(x, t) =

∫
f(x, v, t)dv, (3.4a)

u(x, t) =
1

ϱ

∫
vf(x, v, t)dv. (3.4b)

We investigate the e!ect of dissipation by comparing the profiles obtained from simulation

with those predicted from the solution of Euler GHD. We also check if the system reaches

GGE at long times. A simple test for GGE would be to check if the density and velocity

profiles become time stationary, i.e., independent of time and uniform in space. Note

that the velocity distribution is invariant under the integrable dynamics and specifies the

GGE.

3.2 Results

We summarize here our main results:

• For initial condition (A), we find that the predictions for the evolution of the densi-

ties, from the solution of the Euler GHD, describe the profiles obtained from numer-

ical simulations quite well almost everywhere except at the locations of the shocks

where we observe clear discrepancies. These discrepancies appear due to the e!ect

of dissipation described by the NS term. This leads to the width w(t) of the shock

growing as w(t) ⇑
↑
t at early times, and saturating to a value w(t ≃ ⇐) ⇑

↑
N

at large times. Thus the initial density of either of the components (v0 = 1 and the

thermal ones) never become homogeneous over the full system and each of the two

components move inside the box with a constant e!ective speed ve” (see Eq. (3.38))

at large times. Hence the system never reaches GGE.

• This spreading is more prominent in the case of initial condition (B). For this case

we provide an analytical understanding of the spreading based on the solution of

the NS equation. In this case also the system never reaches GGE.

• For the case (C) of free expansion we find that the evolution of the density and

momentum density profiles is completely described by Euler GHD and, since the

discontinuity in the initial density profile disappears already at very early times,

any e!ects of the NS corrections are too small to be observed. In this case, the

system at long times evolves to a state consistent with GGE.
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3.3 Hydrodynamic equations for hard rods and so-

lution of the Euler equation

The hydrodynamic equation for the single particle phase space distribution f(x, v, t) for

the hard-rod gas is given by [66]:

εtf(x, v, t) + εx (ve”(x, v, t)f(x, v, t)) = εxN (x, v, t), where (3.5a)

ve”(x, v, t) =
v → aϱ(x, t)u(x, t)

1→ aϱ(x, t)
, (3.5b)

N (x, v, t) =
a2

2(1→ aϱ(x, t))

∫
dw |v → w| (f(x, w, t)εxf(x, v, t)→ f(x, v, t)εxf(x, w, t))

(3.5c)

and ϱ(x, t), u(x, t) are given in Eq. (3.4a) and (3.4b). The term εxN represents the NS

correction to the Euler equations [66, 8].

We now discuss the solution of the Euler equation

εtf + εx(ve”f) = 0, (3.6)

for general initial condition. As shown previously [5, 6], the Euler equation for hard rods

can be solved exactly for general initial conditions by mapping it to a non-interacting

point particle problem. For completeness, we show below how the mapping to the non-

interacting Euler equation can be obtained using the GHD approach. For this one defines

a new function,

f 0(x↑, v, t) =
f(x, v, t)

1→ aϱ(x, t)
, (3.7)

where

x↑ = x→ aF (x, t), F (x, t) =

∫ x

B

ϱ(y, t)dy, (3.8)

and B is the position of the left end of the container in which the hard rod fluid is

contained. Note that F (x, t) is the cumulative density corresponding to ϱ(x, t). We

observe that

f 0(x↑, v, t) dx↑dv = f(x, v, t) dxdv, (3.9)

which implies that f 0(x↑, v, t) is also a phase space distribution function. We now show

that f 0(x↑, v, t) satisfies the Liouville equation of free ballistic particles and hence de-

scribes the single particle phase space distribution of the point particles. The first step
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towards this demonstration [4] is to define the function

fn(x, v, t) =
f(x, v, t)

1→ aϱ(x, t)
. (3.10)

Using Eq. (3.6) and the relation εtϱ = →εx(ϱu) [for the fields defined in Eqs. (3.4a,3.4b)],

it readily follows that

εtfn + ve”εxfn = 0. (3.11)

Now, from Eq. 3.7, we have

fn(x, v, t) = f 0(x→ aF (x, t), v, t). (3.12)

Taking the time derivative with respect to t on both sides of Eq. (3.12) and using

εtF (x, t) + ϱu = 0 one finds

εtfn(x, v, t) = εtf
0(x↑, v, t) + aϱ(x, t)u(x, t)εx↓f 0(x↑, v, t). (3.13)

On the other hand taking derivative with respect to x on both sides of Eq. (3.12) one has

εxfn(x, v, t) = (1→ aϱ)εx↓f 0(x↑, v, t). (3.14)

Inserting the forms from Eq. 3.13 and Eq. 3.14 in Eq. 3.11, one finds that the phase space

distribution function f 0(x↑, v, t) satisfies the Liouville equation for the non-interacting

particles

εtf
0 + vεx↓f 0 = 0. (3.15)

This equation can be easily solved for arbitrary time and any initial condition f 0(x↑, v, 0).

For example on the infinite line one has f 0(x↑, v, t) = f 0(x↑ → vt, v, 0) while in the box

one has to solve the single particle problem with repeated collisions with the walls [5, 30].

From f 0(x↑, v, t) one can find the solution for the phase space distribution f(x, v, t) of

hard rods. To get the solution explicitly, we first note from Eq. (3.7) that

ϱ(x, t) =
ϱ0(x↑, t)

1 + aϱ0(x↑, t)
, where ϱ0(x↑, t) =

∫
dv f 0(x↑, v, t). (3.16)

Hence inverting Eq. (3.7) and using Eq. (3.16), one finds

f(x, v, t) =
f 0(x↑, v, t)

1 + aϱ0(x↑, t)
. (3.17)

The variable transformation x ≃ x↑ can be inverted as

x = x↑ + aF 0(x↑, t), (3.18)
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using F (x, t) = F 0(x↑, t) which can be shown easily from Eq. (3.9).

While, as demonstrated above, the Euler equation can be solved exactly, it is di”cult

to solve the NS equation (3.5b) for arbitrary initial conditions. We expect that the

di!erence between the solutions of the Euler and the NS equations are large at places

where the spatial derivative of the Euler solution is large.

3.4 Results from numerical simulations for the three

initial conditions

3.4.1 Initial condition A

In this case the initial condition can be written explicitly as

f(x, v, 0) = g(x, 0)φ(v → 1) + fb(x, v, 0), with fb(x, v, 0) = ϱb(x, 0)h(v), for
a

2
⇔ x ⇔ L→ a

2
,

(3.19)

where h(v) is given in Eq. (3.3) and

g(x, 0) = ϱ0 #(x→ a/2)#(L/2→ x) (3.20)

ϱb(x, 0) = ϱ0 #(x→ L/2)#(L→ a/2→ x), (3.21)

with ϱ0 =
N

L↓a and #(x) being Heaviside theta function. Note that we will be working in

the thermodynamic limit N ≃ ⇐ L ≃ ⇐ such that N/L ≃ ϱ0.

As discussed in the previous section, solution to the Euler equation can be obtained by

mapping to point particles. It is easy to show that initial phase space density f 0(x↑, v, 0)

also has two components, the special component with velocity v = 1 and the background

particles having velocity distributed according to Maxwell distribution. It is given ex-

plicitly as

f 0(x↑, v, 0) = g0(x↑, 0)φ(v → 1) + f 0
b (x, v, 0), with f 0

b (x, v, 0) = ϱ0b(x, 0)h(v), for 0 ⇔ x↑ ⇔ L↑,

(3.22)
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where L↑ = L→Na and

g0(x↑, 0) =
ϱ0

1→ aϱ0
#(x↑)#(L↑/2→ x↑) (3.23)

ϱ0b(x
↑, 0) =

ϱ0
1→ aϱ0

#(x↑ → L↑/2)#(L↑ → x↑). (3.24)

The evolution of f 0 for any arbitrary initial distribution f 0(x↑, v, 0) = ω(x↑)p(v) is given

by [see Appendix A of [30]]

f 0(x↑, v, t) =

∫ L↓

0

dy ω(y)

∫ ↔

↓↔
du p(u)

↔∑

n=↓↔
[φ(x↑ → y → ut+ 2nL↑)φ(v → u)

+ φ(x↑ + y + ut→ 2nL↑)φ(v + u)],

(3.25)

Since the Euler Equation (3.15) for point particles is linear, the distribution f 0(x↑, v, t)

at time t still can be written as a sum of two components as

f 0(x↑, v, t) = g0(x↑, t)φ(v → 1) + f 0
b (x

↑, v, t). (3.26)

The first term in this expression can be obtained by putting ω(y) = g0(y, 0) and p(u) =

φ(u→ 1) and performing the integration over v, yielding

g0(x↑, t) =
ϱ0

1→ aϱ0

↔∑

n=↓↔
(#(x↑ → t+ 2nL↑)→#(x↑ → t+ 2nL↑ → L↑/2)

+#(→x↑ → t+ 2nL↑)→#(→x↑ → t+ 2nL↑ → L↑/2)),

(3.27)

where, recall L↑ = L → Na. For the background component we set ω(y) = ϱ0b(y, 0) and

p(u) = h(u) to get:

ϱ0b(x
↑, t) =

∫ ↔

↓↔
dvf 0

b (x
↑, v, t),

=
ϱ0

1→ aϱ0

1↑
2ςT

↔∑

n=↓↔

∫ L↓

L↓/2

dy

∫ ↔

↓↔
dv e↓v2/2T [φ(x→ y → vt+ 2nL) + φ(x+ y → vt→ 2nL)] ,

=
ϱ0

1→ aϱ0

1↑
2ςT

↔∑

n=↓↔

∫ L↓

L↓/2

dy
1

t

[
exp


→(2nL↑ + x→ y)2

2Tt2


+ exp


→(2nL↑ → x→ y)2

2Tt2

]
,

=
ϱ0

2(1→ aϱ0)

↔∑

n=↓↔

[
erf

(
x+ L↑/2 + (2n→ 1)L↑

↑
2Tt

)
→ erf

(
x→ L↑/2 + (2n→ 1)L↑

↑
2Tt

)]
.

(3.28)

=
ϱ0

2(1→ aϱ0)

↔∑

n=↓↔

[
erf

(
x→ L↑/2 + 2nL↑

↑
2Tt

)
→ erf

(
x+ L↑/2 + 2nL↑

↑
2Tt

)]
. (3.29)

Using the Poisson resummation formula, this can be rewritten in the alternative series
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form:

ϱ0b(x
↑, t) =

ϱ0
2(1→ aϱ0)

+
2ϱ0

(1→ aϱ0)

↔∑

k=1

1

ςk
cos

(
kς(L↑ → x)

L↑

)
sin

kς

2
e↓

ω2k2t2

2L↓2 . (3.30)

Note that shifting the origin to L↑/2 (i.e., x↑ ≃ z↑ = x↑ → L↑/2) and taking L↑ ≃ ⇐, one

obtains the solution of Euler GHD on the infinite line as

g0(z↑, t) =
ϱ0

1→ aϱ0
#(z↑ → t),

ϱ0b(z
↑, t) =

ϱ0
2(1→ aϱ0)

[
1 + erf

(
z↑↑
2Tt

)]
,

(3.31)

where T = 1. The corresponding densities of the hard rods for the two components,

respectively g(x, t) and ϱb(x, t), can be obtained using the inverse mapping Eq. 3.16 and

Eq. (3.18) along with ϱ0(x↑, t) = g0(x↑, t) + ϱ0b(x
↑, t). We show in Fig. 3.1 the evolution of

g(x, t) and ϱb(x, t) obtained from the solutions of the Euler GHD equation as well as the

results from direct MD simulations.

(a) (b)

Figure 3.1: Comparing solution of Euler equation with MD simulation for initial
condition A: Plot comparing the solution of the Euler equation with those of molecular
dynamics for (a) the density of v = 1 particles, denoted by g(x) and (b) the density of
background particles, denoted by ϱb(x). Dashed lines are MD simulations and solid lines
are solutions of Euler equation. We have taken times t = 0 (dark blue), t = 40 (orange),
t = 80 (green), t = 160 (red), t = 240 (violet), t = 320 (brown), t = 400 (pink), t = 480
(grey), t = 560 (mud green) and t = 640 (cyan). We see that even for very long time like
t = 640, the profile obtained from MD does not relax to GGE, i.e., it does not become
uniform. We also see that there is a discrepancy between MD and Euler solutions at the
shock front due to dissipative e!ects. We have taken length of the box L = 2500, total
number of particles N = 2000 and length of rod a = 1.0. We have performed ensemble
averaging over 5000 realizations while doing MD.

For the solutions of the Euler GHD, we make the following observations:
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a. There is always a shock at the front of the density profiles for both the components.

On the infinite line, the shocks for the two components move in opposite directions.

Note that the density profiles g0(x↑, t) and ϱ0(x↑, t) in the point particle gas evolve

independently of each other. Consequently, g0(x↑, t) will move with constant speed

v0 = 1 keeping the initial shape unchanged, i.e., with two discontinuities at L/2

separation. Hence the total density, ϱ0(x↑, t) = g0(x↑, t) + ϱ0b(x
↑, t) will also have

discontinuities. Consequently, the density profiles g(x, t) and ϱ(x, t) of the hard

rods, obtained through the transformation in Eq. (3.16) also exhibits discontinuities,

i.e., shocks.

b. At early times the evolution of these density profiles correspond to that on an

infinite line and can be described by g(x, t) and ϱb(x, t) obtained after transforming

the solutions given in Eqs. (3.31) for the Euler equation of the point particles.

c. At later times, each component of the gas gets reflected from the walls of the box

which are described, in the point particle picture, by various terms in the series in

Eq. (3.27) and Eq. (3.29).

d. At the longest times both density profiles g(x, t) and ϱb(x, t) stop broadening fur-

ther and settle to piece-wise flat profiles which move between the walls with some

constant e!ective velocity ve” (see Fig. 3.2). The details of this solution will be

discussed below. Since the density profile does not become time stationary even at

the largest times, this indicates that for initial condition A, the hard rod system

will never reach a GGE state ( which should be time stationary).

While we see a very good overall agreement between Euler solution and MD simu-

lations, there are clear di!erences. If we zoom near the shocks in Figs. 3.1a and 3.1b,

we notice that the simulation data for the hard rod density profile g(x, t) (dashed lines)

shows a slight discrepancy with the Euler prediction. One observes similar discrepancy

for ϱb(x, t) also. The simulated profiles display spreading at the locations of the shock

in the Euler solutions. This is demonstrated in Figs. (3.3(a),3.4), where the density pro-

files are zoomed near the shock location after shifting appropriately so that the shock

positions coincide. This spreading is a signature of the dissipation characterised by the

Navier-Stokes term in Eq. (3.5). We observe that the width of the shock increases with

time and scales as
↑
t as can be seen from Fig. 3.3(a) where profiles for di!erent times

collapse under the scaling of x by
↑
t. Microscopically the spreading originates from the

fluctuations in the number of the background rods (having Maxwell velocity distribution)

that a shock, of the Euler solution for g(x, t), encounters till time t. This fluctuations

arise from the fluctuations in the initial conditions. For a given initial configuration of

the positions and velocities of the rods, the shock remains sharp and does not widen.
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Figure 3.2: Lack of thermalization to GGE: Plot of g(x, t) vs. x at di!erent (late)
times. The dashed lines are obtained from molecular dynamics and the solid lines repre-
sents the solutions of the Euler equations. We observe that the profiles at t = 1000, 1100
and t = 1200 have moved by a displacement ’x ⇒ 300, implying ve” ⇒ 3, in agreement
with Eq. (3.38). The width of the pulse at the times t = 1000, 2000 are the same, thus in-
dicating that it saturates and the whole profile does not become uniform, i.e., it does not
relax to a GGE form. The inset shows a zoom of the shock at the two times t = 1000 and
t = 2000, where we see that its width has saturated. We chose t = 1000 and t = 2000 as
times for which the profiles coincided for the particular parameter values (i.e., a,N, L).
Here N = 2000, L = 2500, a = 1 and ensemble averaging over 100 realizations were
performed while doing MD. The values of g1, ϱb, ϱ̄b and ve” agree with the predictions in
Sec. 3.4).

However, the place at which the shock appears at a given time fluctuates from one initial

microstate to another (see Fig. 3.3(b)). This happens because the number of background

rods that the special rods encounters is di!erent for di!erent initial microscopic configu-

rations. Hence, on an average the shock widens. At small times, these fluctuations are

independent as the rods have not realised the presence of boundaries of the box. The
↑
t

growth at small times can be explained by considering the evolution of the density profile

starting from initial condition A on an infinite line which is done in Appendix A.

The early time growth of the width of the shock stops after some time and saturates

to a O(
↑
N) value as demonstrated in Fig. 3.4. As time progresses the rods move back

and forth inside the box and consequently, the fluctuations in the number of background

rods inside the region of the special rods (having velocity v0) do not remain independent

and get correlated. Consequently, the spreading of the shock cannot continue to grow

as
↑
t and saturates to the observed O(

↑
N) value. Thus even in the thermodynamic

limit the pulse g(x, t) does not spread to the full extent of the system and remains in

the shape of a rectangular pulse that keeps on moving back and forth inside the box.

Consequently, the total density profile of the rods does not become homogeneous and
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stationary as one would expect in a GGE state. This implies that the a hard rod system

inside a box, starting from initial condition A, does not reach the GGE state even in the

thermodynamic limit.

(a) (b)

Figure 3.3: (a) Time dependence of the width and (b) the fluctuation in the
location of the shock: (a) This shows the structure of the shock for the initial condition
A at di!erent times for a given system size (N = 2000, L = 2500). The curves have been
shifted so that the shock fronts for all the curves coincide. While doing MD, ensemble
averaging over 5000 initial microstates were performed. We see that there is trend of
increasing width with time while in the inset (which shows curves for t = 20, 40, 80), we
see that there is a scaling collapse in the variable x/

↑
t for short times when the v = 1

pulse does not know about the boundaries of the system and hence behaves like it is in
an infinite system. We explain this

↑
t dependence in Appendix A. (b) This shows plot

of g(x, t) for two di!erent realizations (microstates) for initial condition A. We see that
in a single realization the shock remains sharp, while the positions of the shock front in
two realizations are di!erent. Consequently, ensemble averaging will lead to smearing of
the shock and thus is necessary to observe dissipation. Here we have chosen N = 8000,
L = 10000.

Euler solution in t ≃ ⇐ limit: We now find the solution of the Euler equation in the

t ≃ ⇐ limit. Recall that in the initial condition A, the rods are uniformly distributed in

each half with density ϱ0. The rods on the left half have velocity v = 1 and those on the

right half have velocities distributed according to Eq. (3.3). Using Eq. 3.16, one maps

this hard rod system to a point particle gas with uniform density ϱ0(x, 0) = ϖ0
1↓aϖ0

inside

a smaller box of size L↑ = L → Na. The velocity distribution remains unchanged as in

the hard-rod gas, i.e., φ(v → 1) in the left half and h(v) in the right half. In the point

particle gas the component with velocity v = 1 moves without changing its shape whereas

the particles on the right half (called the background particles) perform free expansion,

ignorant of the v = 1 particles since the gas is non-interacting. At long times, the

background point particles will expand into the full box of length L↑ and become uniform

with density half of their initial density, i.e., ϱ0(x, t ≃ ⇐) = ϖ0(x,0)
2 = ϖ0

2(1↓aϖ0)
. Thus at

62



Figure 3.4: System size dependence of the shock width for initial condition A:
This shows the structure of the shock at late times (when the width saturates) for the
initial condition A for di!erent system sizes. For all the curves we have chosen t = 10000
which is much longer than the time at which the width of the pulse g(x, t) and that of the
shock saturates. Even after this long time, the curve g(x, t) does not become uniform,
i.e., it does not relaxes to GGE. The curve has been shifted so that the shock fronts for
all the three curves coincide. We see that the shock broadens with system size, while in
the inset, we see that there is a scaling collapse in the variable x/

↑
N , thus showing that

the shock broadens with the system size as
↑
N . In this case ensemble averaging over

500 realizations was performed.

long times, one would observe the initial density pulse of the special point particles with

velocity v = 1 moving in the uniform background of thermal particles (with Maxwell

velocity distribution). Hence, at any instant, the total density profile has two regions: a

uniform high density region where the v = 1 pulse is present (we call it the pulse region)

and a uniform low density region in the remaining part of the box. Thus, the total

density profile in the long time limit becomes piece-wise uniform which we now proceed

to compute.

Let us denote the value of the density of the v = 1 particles inside the pulse by g↑1,

in the point particle picture, and by g1 in the hard rod picture. Similarly, we denote

the density of the background particles inside the pulse region by ϱ↑b and ϱb, respectively,

in the point particle and hard rod pictures. We also denote the density of background

particles outside the pulse region by ϱ̄↑b and ϱ̄b, once again, in the point particle and hard

rod pictures, respectively. The total density of point particles in the pulse region is g↑1+ϱ↑b
where g↑1 =

ϖ0
1↓aϖ0

and ϱ↑b =
ϖ0

2(1↓aϖ0)
. Hence the total density there is 3ϖ0

2(1↓aϖ0)
. The density

outside the pulse region is given by ϱ̄↑b = ϖ0
2(1↓aϖ0)

. Now using the inverse mapping in

Eq. (3.16) along with Eq. (3.18), one gets the late time densities in the hard rod picture.
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The density outside the pulse region is given by

ϱ̄b =
ϱ0

2→ aϱ0
, (3.32)

and the total density inside the pulse region is given by

g1 + ϱb =
3ϱ0

2 + aϱ0
. (3.33)

To find individual values of g1 and ϱb we use the conservation of the number of background

particles

ϱb ↓ L1 + ϱ̄b ↓ (L→ L1) =
N

2
, (3.34)

where L1 is the length of the pulse region at late times and L → L1 is the length of the

region outside the pulse. It is easy to see that L1 =
N
2g1

. Dividing both sides of Eq. (3.34)

by N , we get
ϱb
2g1

+ ϱ̄b
( 1

ϱ0
→ 1

2g1

)
=

1

2
. (3.35)

Solving Eq. (3.33) and Eq. (3.35), we finally get

g1 =
2ϱ0

2 + aϱ0
, (3.36)

ϱb =
ϱ0

2 + aϱ0
. (3.37)

The e!ective velocity with which the quasiparticles with v = 1 move at late times can be

computed easily. The total density at late times in the pulse region is ϱ = g1+ϱb =
3ϖ0

2+aϖ0
.

The velocity field u in the pulse region at late times is given by u = g1
g1+ϖb

= 2
3 . The

e!ective velocity is thus:

ve” =
v0 → aϱu

1→ aϱ
=

2→ aϱ0
2→ 2aϱ0

. (3.38)

In our MD simulations in Figs. (3.1,3.2), we have taken ϱ0 = 4/5, a = 1. Plugging these

values into the expressions above, we get ϱ̄b =
2
3 , ϱb =

2
7 , g1 = 4

7 and ve” = 3. We have

verified that these values match with our MD results at long times in Fig. 3.2. Note that

ve” is the late-time speed of quasiparticles with bare velocity v = 1.

3.4.2 Initial condition B

In this case there is a special rod at the origin (middle of the box) with a fixed velocity

v0 = 1 and the two halves of the box on either side of the special particle are initially

filled uniformly by hard rods. The velocities of all rods, except the special one, are
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distributed according to the Maxwell distribution h(v) given in Eq. (3.3). This initial

condition was studied by Lebowitz, Percus and Sykes (LPS) in [64]. The initial single

particle phase space density is f(x, v, t = 0) = φ(v → v0)φ(x) + ϱ0h(v). Since the initial

distribution of the background rods are already in equilibrium, it does not change with

time. However, the phase space distribution of the special rod (of velocity v0 = 1)

will change with time. At the Euler level the special rod moves ballistically with an

e!ective velocity ve” = v0
1↓aϖ0

. Hence the Euler solution (for an infinite box) is given

by f(x, v = v0, t) = φ(v → v0)φ(x → ve”t). However, by obtaining the exact microscopic

solution of the problem in the thermodynamic limit and by performing an ensemble

average, LPS showed that f(x, v0, t) spreads di!usively, along with a drift with velocity

ve” [64], i.e, at long times one has the form f(x, v0, t) = φ(v → v0)φϱ(x, t). They also

obtained an explicit expression of the di!usion constant. The results of LPS were used

in [66] to compute the current-current correlation and thus the Navier-Stokes (NS) term

using the Green-Kubo formula. In Fig. 3.5a we present simulation results for φϱ(x, t)

which displays the spreading predicted by LPS. We observe that the spreading of the

distribution increases with t and the data for di!erent time collapse into a single function

under scaling of space by
↑
t, as shown in Fig. 3.5b. This implies that the spreading

grows with time as
↑
t [at late times it saturates in a finite box, due to the same reason

for saturation in case (A)].

The origin of the growth of the width of the distribution at early times can be under-

stood heuristically from a microscopic computation of the fluctuations of particle number

as follows. Let Nt be the number of particles in the interval [0, xt], where xt is the position

of the quasiparticle (special rod) with v = v0 = 1 at time t. In the corresponding point

particle picture the special particle, with velocity v = v0 = 1, would move by a distance

v0t in time t. Hence, the position of the rod with velocity v = v0 = 1 is

xt = v0t+ aNt. (3.39)

where Nt, in the point particle picture, is the number of point particles that the special

particle has crossed during its evolution, starting from the origin to the position v0t at

time t. The number Nt fluctuates from one realisation to another in an ensemble of

initial conditions, and the fluctuation is proportional to
√
↗Nt↘. The spread in f(x, v0, t)

will also be proportional to the fluctuations, i.e., to
√

↗Nt↘. On an infinite line with

uniform background of thermal particles, ↗Nt↘ grows linearly as t which thus leads to the↑
t growth of the width in the distribution function. In a finite box, ↗Nt↘ cannot grow

without bound, because the number of particles in the box is finite. On the hydrodynamic

scale, the
↑
t spreading arises due to the Navier-Stokes terms in Eq. (3.5b) and we will now

demonstrate this by obtaining a analytic solution of the Navier-Stokes equation (3.5b)
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on the infinite line. For this we make the ansatz:

f(x, v, t) = φ(v → v0)φϱ(x, t) + ϱ0h(v), (3.40)

where h(v) is given in Eq. (3.3). This ansatz is motivated by the fact that the number of

particles with a given velocity is conserved, and that the distribution of the background

rods does not change with time. Plugging the ansatz into the Navier-Stokes equation, we

get the following drift-di!usion equation for φϱ(x, t) after ignoring the non linear terms

proportional to (φϱ)2:

εt(φϱ) + ve”εx(φϱ) =
nµ(v0)a2

2
ε2
x(φϱ), (3.41)

where ve” = v0
1↓aϖ0

, n = ϖ0
1↓aϖ0

, µ(v0) =
∫
dv|v → v0|h(v). The solution of this for the

LPS-like initial condition is given by:

φϱ(x, t) =
1√

2ςna2µ(v0)t
e
↓ (x→ve! t)2

2a2nµ(v0)t , (3.42)

which is exactly the solution that was obtained by LPS from a completely microscopic

analysis [64]. In Fig. 3.5b, we verify that the expression in Eq. (3.42) agrees with the

MD simulation results. Our numerical results thus provide a direct demonstration of an

observable e!ect of the NS terms in the hydrodynamic equations.

Why di!usion is not anomalous?

It was shown in [75], using fluctuating hydrodynamics and renormalization group (RG)

arguments, that in conventional one-dimensional momentum conserving system, di!usion

is anomalous. However, for the one-dimensional system of hard rods (which is also a

momentum conserving system), we have found normal di!usion. The reason for this

is that for conventional fluids considered in [75], there is no well defined quasiparticle

description and thus the noise ⇁(x, t) is uncorrelated in space:

↗⇁(x, t)⇁(x↑, t↑)↘ ∝ φ(x→ x↑)φ(t→ t↑), (3.43)

which forces the non-linear advective term to become relevant under the RG flow and thus

give rise to anomalous di!usion. However, for the one-dimensional system of hard rods,

the noise term is correlated in space because of the existence of well defined quasiparticles

with no x→ x↑ dependence in the form of the two-point correlation [67]:

↗⇁(x, t)⇁(x↑, t↑)↘ ∝ φ(t→ t↑). (3.44)
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(a) (b)

Figure 3.5: Verifying NS equation for LPS-like initial condition: (a) This figure
compares the results from MD simulation for the evolution of the density profile with
those obtained from the solution of the NS equation, for the LPS-like initial condition.
(b) We show the plot in terms of the scaling variables. We see that there is a good
scaling collapse, and a nice agreement with the solution of NS equation. We have taken,
N = 2 ↓ 106, L = 2.5 ↓ 106, a = 1.0, v0 = 1.0 (and so µ(v0) ⇒ 1.0). For MD, ensemble
averaging has been done over 10000 realizations. The times considered are much before
the pulse hits the boundary of the box, hence the system is e!ectively infinite.

Thus the non-linear term does not become relevant in this case and the di!usion is normal.

3.4.3 Euler vs MD for initial condition C

Finally we consider the free expansion set up in which the N hard rods are initially

confined to the left half of the box of size L and distributed uniformly in space with

density ϱ0 = N/L. The velocities of the rods are drawn from the Maxwell distribution

h(v) in Eq. (3.3). As in the previous cases, we have hard reflecting walls at x = 0 and

x = L. We now follow the same approach outlined in Sec. (3.4), to obtain a solution

of the Euler equation for this initial condition, via the mapping to hard point gas. The

solution in the point particle picture is similar to that obtained in [30], with the density

given by:

ϱ0(x↑, t) =
ϱ0

1→ aϱ0
+

4ϱ0
1→ 2aϱ0

↔∑

k=1

1

ςk
cos

( kςx↑

L→Na

)
sin

(ςk(L→ 2Na)

2(L→Na)

)
exp

( →ς2k2Tt2

2(L→Na)2

)
,

(3.45)

where ϱ0 = N/L and T = 1. In the a ≃ 0 limit, the above expression of the density profile

ϱ0(x, t) matches with those obtained in [30]. Using the inverse mapping in Eq. (3.16), the

density profile ϱ(x, t) of the rods can be found, where recall x = x↑ + aF 0(x↑, t) and the

cumulative density profile, F 0(x↑, t), can be computed from ϱ0(x↑, t). In Fig. 3.6(a), we
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(a) (b)

Figure 3.6: Comparing solution of Euler equation with MD simulation for initial
condition C: Plots of the density and momentum profiles and comparison of the exact
solution of Euler equation (solid lines) and the profiles obtained from MD (dashed lines)
for the free expansion problem. We have shown for times t = 0 (dark blue), t = 10
(orange), t = 20 (green), t = 40 (red), t = 100 (violet), t = 150 (brown), 200 (pink),
t = 300 (grey), t = 500 (muddy) and t = 1000 (light blue). We have taken N = 1000,
L = 2500 and averaged over 100 realizations.

compare the theoretically computed profiles of the rods at di!erent times with the density

profiles obtained from MD simulation, and we observe excellent agreement. From this

plot, we observe that with increasing time the density profile of the rods spreads to the

right half of the box in a monotonic fashion and finally approaches a time-independent

spatially uniform profile which is consistent with a GGE state.

In a similar way, the exact Euler expression for the momentum density field p(x, t)

can be obtained. First we compute the momentum field p0(x↑, t) in the point particle

picture and then transform to the momentum field for the hard rods using

p(x, t) =
p0(x↑, t)

1 + aϱ0(x↑, t)
. (3.46)

We find

p0(x↑, t) =
4tTϱ0

(1→ aϱ0)
(
1→ 2aϱ0

) 1

L

↔∑

k=1

exp


→ k2ς2Tt2

2L2(1→ aϱ0)2


sin

(
kς(1→ 2aϱ0)

2(1→ aϱ0)

)
sin

(
kςx↑

L(1→ aϱ0)

)
,

(3.47)

where T = 1. In Fig. 3.6(b) we compare this with the results obtained from the MD

simulations and we again see very good agreement. Here We observe that initially the

momentum profile was zero everywhere. Once the gas is released, the rods with positive

velocities near the middle of the box start moving to the right half. Thus the gas creates a

positive momentum profile near the centre of the box. As time progresses, more particles

move to the right half and consequently the momentum profile spreads on both halves of
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the box. After some time, of the order L/
↑
T , finite size e!ects start showing, and some

rods get reflected from the right walls. As a result, the motion of these rods start reducing

the momentum field. At very late times, each rod has undergone several collisions with

both the walls and the gas equilibrates. The time scale of equilibration is also of the

order L/
↑
T . At this stage, one has rods of opposite velocities with equal probabilities

at any point of the box which leads again to a zero momentum profile everywhere.

Note that shifting the origin to L/2 → Na (i.e., x↑ ≃ z↑ = x↑ → L/2 + Na) in the

point particle problem, and taking L,N ≃ ⇐ with N/L = ϱ0, one obtains the solution

of Euler GHD on the infinite line for times t << L↘
T
as:

ϱ0(z↑, t) =
2ϱ0

2(1→ 2aϱ0)
erfc

( z↑↑
2Tt

)
,

p0(z↑, t) =
2ϱ0

↑
T

(1→ 2aϱ0)
↑
2ς

exp
(
→ z↑2

2t2T

)
,

(3.48)

where T = 1 and 2ϖ0
1↓2aϖ0

is the initial density for z↑ ∞ (→⇐, 0). The early time plots

(for t < 300) in Fig. (3.6) can be obtained by transforming the above simpler functions

to ϱ(x, t) and p(x, t) using transformations in Eq. (3.16), (3.46) and Eq. (3.18). The

distortions of the densities of the point particles are appearing due to the non-linear

transformations.

Domain line for initial condition C: For the point particle case, f 0(x↑, v, t) has

a discontinuity in x space (for a given v) for the free expansion problem. Since there is

a mapping between the point particle Euler equation and the hard rod Euler equation,

we expect that the Euler equation for hard rods will admit a similar discontinuity. We

call the line of discontinuity of f(x, v, t) in the single-particle phase space as the ”domain

line”. For the free expansion problem, the domain line can be found implicitly in the

following manner. For times before the particles hit the right end of the container, the

domain line for the point particle problem is given by x↑ = vt + L
2 → Na. For general

times (including times after the particles hit the right end of the container), we can do

an analysis similar to [30] to show that the single particle phase space distribution for

the point particle problem for general times is given by:

f 0(x↑, v, t) =
2ϱ0

1→ 2aϱ0

e↓v2/2T

↑
2ςT

↔∑

n=↓↔


#
(
x↑ → vt→ 2n(L→Na) +

L

2
→Na

)

→#
(
x↑ → vt+ 2n(L→Na)→ L

2
+Na

)
.

(3.49)
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(a) (b) (c) (d)

Figure 3.7: Evolution of the domain lines for initial condition C: Plot of the
phase space distribution of the rods (red dots) for the free expansion problem at times
(a) t = 0.05 (b) t = 0.5, (c) t = 0.7 and (d) t = 4. Solid blue lines represent the domain
lines obtained from the exact solution of the Euler equation. We see that the blue lines
lie at the edges of the red region and are curved in contrast to the straight lines for the
point particle [see [30]]. At late times, the distribution wraps around the allowed region
multiple times and thus creates fine structures. Here, N = 10000, L = 4, a = 0.0001

where n is an integer. From this, the domain line for the point particle problem can

be computed as zeros of the argument of the theta functions appearing in the equation

above. We know how x↑ maps to x (x = x↑+aF 0(x↑, t)) within the framework of the Euler

equation. Thus we can compute the domain line for the hard rod problem as predicted by

the Euler equation. We computed the domain line for the hard rod problem as predicted

by the Euler equation, and plotted it (blue line) along with the phase space plot for

the hard rods (red dots) predicted by the MD simulation. The plots are shown in Fig.

3.7. We see that the blue line lies at the edge of the region occupied by the red dots.

Thus the domain line predicted by Euler equation agrees with that predicted by MD

simulation. We observe some key di!erences between hard rods (interacting integrable),

alternate mass point-particle gas (non-integrable) and equal mass point particle gas (non-

interacting integrable). In the hard-rod gas, we see a sharp domain line which is not a

straight line at early times (Fig. 3.7). In equal mass point particle gas discussed in [30],

a sharp and straight domain line was observed. However, in the alternate mass point

particle gas, no sharp domain line was observed [73].

3.5 Conclusion

In this chapter, we studied the macroscopic evolution of a collection of hard-rods in one

dimension starting from three di!erent initial conditions: (A) A uniformly filled box with

an inhomogeneous velocity distribution — half of the box is in thermal equilibrium and

the other half has particles with a fixed velocity v = 1, (B) One special particle with

fixed velocity v0 at the origin in the presence of a spatially uniform background of other
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particles having thermal velocity distribution and (C) Free expansion from half of the

box filled uniformly with thermal velocity distribution. For initial conditions (A) and

(C) we find that the molecular dynamics results agree very well with the solutions of the

Euler equations. However, for (A) we observe shocks at all times and find discrepancies

from the Euler solutions at the location of the shocks which can be attributed to the

Navier-Stokes corrections to the Euler equations. For initial condition (B), the e!ect

of the Navier-Stokes terms is more dramatic and here we show that the e!ect can be

understood from the analytic solution of the Navier-Stokes equation.

Our second important finding is the absence of GGE for initial conditions (A) and

(B), whereas for initial condition (C) the system at late time approaches to a GGE state.

The absence of GGE in the initial conditions (A) and (B) are manifested by the fact the

density profile remains time dependent at all times.

We find that the e!ect of the Navier-Stokes terms is very weak and to observe its

e!ect one requires to have singular velocity distributions in the initial conditions such

that a shock in the density profile survives for macroscopic time scale. At the location

of the shock the large density gradient makes the contribution from the Navier-Stokes

terms significant and consequently the solution near the shock (in Euler solution) becomes

di!erent from the Euler solutions. This is also what is observed in non-integrable systems

[76, 77, 78].

Since the e!ect of dissipation is most noticeable near a shock, it is worth asking the

question that for which initial conditions are shocks formed. It is easy to see there will be

a shock only if the mapped point particle problem has a shock. This can be seen in the

following way. Let φx0 be the length scale over which the density is varying in the point

particle problem. Then, using Percus’ microscopic mapping, φx = φx0 + aφN , where φx

is the corresponding length scale in the hard rod problem, and φN is the number of point

particles in the length scale φx0. If the point particle problem has a shock, then φx0 will

be small and φN ⇑ O(1). Thus φx will be of the order of few rod lengths, and there

will be a shock in the hard rod problem also. If there is no shock in the point particle

problem, then both φx0 and φN will be large, and hence φx will also be large. Thus

there will not then be any shock in the hard rod problem. We find that shocks in density

profile of the point particles ( and hence of the hard rods) persists with time if they start

with singular velocity distributions [such as initial conditions (A) and (B)]. On the other

hand if the rods have smooth velocity distribution to start with, then even if there are

discontinuities in the density profile initially, the profiles at later times becomes smooth

[such as initial condition (C)].

For initial condition A, one may be curious what will happen if one chooses a Maxwellian
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distribution centered at v = 1 instead of a φ-function distribution [h(v) = φ(v → 1)] that

we have choosen for the left half of the particles. If one does that, then the correspond-

ing point particle problem will not have any shocks as both the halves will perform free

expansion independently and we do not observe shocks in free expansion. If the spread

of the Maxwellian is small enough, then one may observe a weak shock at small times,

however the shock will weaken with time and eventually give rise to a smooth density

profile. The time scale over which the shock will weaken will be inversely proportional

to the spread of the Maxwellian, hence the shock for our initial condition A is infinitely

long lived on the Euler level.

Observing the e!ect of the Navier-Stokes terms through the evolution of the den-

sity profile is di”cult. However, it should get strongly manifested in the evolution of

Boltzmann’s entropy [30, 73, 74], since the Euler solutions do not contribute to entropy

production. It would be interesting to study the entropy production for these initial con-

ditions. However, identifying the contribution of the Navier-Stokes terms in the entropy

production is still di”cult because it involves taking appropriate combination of the lim-

its of the coarse graining scale and the thermodynamic limit. This remains an interesting

and challenging open problem.
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Chapter 4

Summary and outlook

In this thesis, we have aimed to bridge the gap between microscopic dynamics and hy-

drodynamics of classical many-particle systems by following two complementary path-

ways: first, by exploring non-integrable systems—using hard-rod and hard-disc gases as

paradigms to study blast-wave propagation—and second, by examining interacting inte-

grable systems where additional conservation laws and memory e!ects alter conventional

thermalization. These studies address key questions regarding the validity of classical

phenomenological theories such as thermodynamics, hydrodynamics and statistical me-

chanics, and expose the subtle role of dissipation.

In doing so, we have faced the foundational assumption in conventional hydrodynamics—

that of scale separation, where microscopic details average out and decouple from macro-

scopic dynamics. However, many physical, biological, and socioeconomic systems exhibit

strong coupling across multiple scales, forcing us to use alternative frameworks. In this

chapter, we view our findings in the light of broader theoretical tools, namely the renor-

malization group (RG) and e!ective field theory (EFT), to discuss both the promise and

the limitations of conventional theories when applied to strongly coupled systems.

4.1 Synthesis of Key Findings

4.1.1 Insights from Non-integrable Systems

In the outer regions of a blast wave, our microscopic simulations and analytical treatments

confirm that the classical TvNS solution remains robust. Dimensional analysis gives us
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the following scaling forms for the density, velocity, and temperature fields:

ϱ ⇑ ϱ↔ G(↼), v ⇑ r

t
V (↼), T ⇑ r2

t2
Z(↼), (4.1)

where the self-similar variable is defined as ↼ = r/R(t) and the shock radius scales as

R(t) ⇑ t2/(d+2). (4.2)

Near the blast core, however, the large gradients predicted by the Euler equations

lead to divergent behavior (e.g., Z(↼) ⇑ ↼↓4), and so the Euler equations in the core are

not self-consistent as they have been derived under the assumption of small gradients.

Here, dissipative e!ects become important. By introducing a new core length scale

X(t) ⇑ t2/5 (in 2D), (4.3)

we derive modified scaling relations:

ϱ ⇑ t↓1/5 G̃(⇁), v ⇑ t↓3/5 Ṽ (⇁), T ⇑ t↓4/5 Z̃(⇁), (4.4)

with ⇁ = r/t2/5. These inner solutions reconcile the discrepancy between scaling of

molecular dynamics (MD) simulations and the predictions of inviscid theories in the core

region.

Our MD and NS simulations show excellent agreement in the bulk region, while in

the core region, the scaling exponent matches but there is a mismatch in the scaling

functions as we do not know the exact values of the transport coe”cients. The two dif-

ferent scaling regions are connected by the rules of asymptotic matching. These results

show that classical hydrodynamics (via the Euler equations) applies when gradients are

mild, and dissipation must be explicitly modeled in regions with strong spatial varia-

tions. Even though the shock front itself is a region of extremely strong gradients, the

Euler equations do successfully describe the bulk flow on either side of this discontinuity

through the Rankine-Hugoniot jump conditions. These conditions are derived from the

conservative form of the Euler equations and dictate the magnitude of the jump (e.g.,

density compression ratio) without needing to know the internal structure of the shock.

4.1.2 Insights from Integrable Systems

For one-dimensional integrable systems (e.g., hard-rod gases), the derivation of hydro-

dynamic equations cannot rely on the molecular chaos assumptions because of their
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integrable structure. Instead, a completely di!erent method is needed to derive their

hydrodynamics. For the hard-rod gas, the hydrodynamics can be derived rigorously

from microscopic dynamics, owing to the simple nature of their dynamics. However, for

other integrable systems with more complex interactions (such as the Toda model), some

phenomenological assumptions must be incorporated to derive their hydrodynamics.

We found that some initial conditions in the hard-rod gas do not relax toward a GGE.

This finding challenges the universality of conventional thermalization. An open question

is whether a similar failure of thermalization also occurs in other integrable systems which

have complicated dynamics, like the Toda model.

However, we found the predictions of hydrodynamics matches quite well with the

microscopic simulations for the hard-rod gas.

4.2 Connecting Hydrodynamics with the Renormal-

ization Group and E!ective Field Theory

The renormalization group provides a systematic methodology for understanding how

microscopic interactions give rise to macroscopic behavior by iteratively integrating out

short-scale degrees of freedom. In classical RG treatments of critical phenomena, many

microscopic details become irrelevant near a fixed point, leading to universal scaling laws.

In hydrodynamics, the underlying assumption is that scales are well separated: the

fast (microscopic) scales can be averaged out, yielding e!ective equations (such as the

Euler or NS equations) that govern the slow, large-scale behavior. However, in places

such as fully developed turbulence or in the blast core, the spatial gradients become so

large that microscopic (or dissipative) scales strongly couple with the macroscopic flow.

This is similar, though not exactly identical, to critical phenomena, where fluctuations

across many scales interact strongly. RG-based analyses in turbulence (e.g., Yakhot and

Orszag [79]) show that such coupling leads to anomalous scaling corrections not captured

by classical theories.

RG methods can be adapted to derive e!ective hydrodynamic equations that include

the influence of small-scale fluctuations without assuming a strict decoupling. In this

view, the “coarse-graining” process of RG is analogous to the averaging in e!ective field

theory (EFT), where non-renormalizable terms (representing microscopic details) are

suppressed but may still provide crucial corrections when scale separation is weak [80].
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4.2.1 E!ective Field Theory (EFT) and Multiscale Coupling

EFT provides a powerful framework for constructing models that are valid over a particu-

lar range of scales. By explicitly incorporating an energy (or length) cuto!, EFT captures

the essential physics at a given scale while systematically accounting for corrections from

higher-energy processes. In the context of hydrodynamics, conventional hydrodynamics

can be seen as an EFT valid when the wavelength of perturbations is much larger than

the mean free path. However, when this condition is violated—for example, in regions of

strong gradients—the hydrodynamic description must be augmented by additional (often

non-local) terms arising from integrating out short-scale fluctuations.

When multiple scales are strongly coupled (as in turbulence, neural dynamics, or fi-

nancial markets), the standard EFT approach may fail. Here, modern multiscale methods

such as universal di!erential equations (UDEs) provide alternative strategies that do not

strictly assume scale separation and can dynamically learn the interplay between scales

[81].

4.3 Limitations

Several limitations of the study in this thesis warrant discussion:

• Approximation of Dissipative Processes: Our treatment of dissipation in the

blast core is based on first-order corrections. In systems with large gradients, non-

local or higher-order dissipative e!ects may be significant. Incorporating these

e!ects requires extending current RG and EFT methods.

• Numerical Challenges: The application of RG-inspired methods and multiscale

numerical techniques is computationally intensive. Developing e”cient algorithms

that accurately integrate contributions from all scales remains an active area of

research.

• Other Integrable models: The lack of thermalization to GGE in the hard-rod gas

for certain initial conditions forces us to ask whether similar lack of thermalization is

also present in other integrable systems which cannot be directly treated analytically

using microscopic dynamics (such as the Toda model).

76



Appendix A

↑
t Behaviour of the Shock for Initial

Condition (A)

In this appendix, we explain the
↑
t broadening of the shock found in Fig. 3.3(a) for short

times for initial condition A. For su”ciently short times, the evolution of the density

profile is e!ectively the same as in an infinite box. We thus consider a box

→ L

2 ,
L
2



with large L and N with ϱ0 = N/L fixed. The hard rods are arranged in initial condition

A. This maps to a point particle problem in a box

→ L

2 ,
L
2 → Na


with the left half

having velocity v = 1 and the right half having Maxwellian velocity distribution with

unit temperature. Following the approach described in Sec. (3.4), it can be shown that

for short times:

g↑(x↑, t) =
ϱ0

1→ aϱ0
#
(
→ x↑ → Na

2
+ v0t

)
, (A.1)

ϱ↑b(x
↑, t) =

ϱ0
2(1→ aϱ0)

erfc
→x↑ → Na

2

t
↑
2


. (A.2)

where ϱ0 = N/L and v0 = 1. Following the same argument as in the Sec. 3.4.2, the width

of the shock ↼(t) is proportional to the fluctuation of number of background particles to

the left of the shock. Thus:

↼2(t) ∝ lim
N,L≃↔

aϱ0
2(1→ aϱ0)

∫ v0t↓Na/2

↓L/2

erfc
→x↑ → Na

2

t
↑
2


dx↑ (A.3)

= lim
N,L≃↔

aϱ0
2(1→ aϱ0)

∫ v0t

↓L/2+Na/2

erfc
 →u

t
↑
2


du (A.4)

=
aϱ0

2(1→ aϱ0)

∫ v0t

↓↔
erfc

 →u

t
↑
2


du (A.5)

=
aϱ0t

2(1→ aϱ0)

∫ ↔

↓v0

erfc
 y↑

2


dy. (A.6)
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where in going from second last line to last line, we have made a change of variable

y = →u/t. The integral term in the last line is just some constant number. Thus

↼(t) ∝
↑
t.
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