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Abstract

The dynamics of fluids laden with suspended particles has been a subject of investigation

for decades. When the particles are extremely small and in great number, the term

“dusty flow” is appropriate. Dusty shear flows are ubiquitous: occurring in environmental

phenomena like dust storms, snow avalanches, and sediment transport in rivers, and in

industrial processes like the manufacture of fertilizers and various powders. Whether such

a flow will be laminar, turbulent, or in an unsteady transitional state is of great interest

for a variety of reasons, and the first step is to study the stability of the laminar base

state. Also, in practical applications, we know that it is extremely difficult to manufacture

a pipe or channel that is perfectly straight, and if a small departure from being absolutely

straight has such a profound effect on stability, this feature should surely be taken into

consideration while drawing conclusions about the transition to turbulence.

For decades, shear flows have thrown up surprises in their stability behaviour, and the

different mechanisms of instability, though not easy to predict, are crucial to unravel. In

my thesis, I address the following problems:

• The stability of channel flow with non-uniformly distributed dust particles.

• The stability of channel flow with non-uniformly distributed dust particles under

the influence of gravity.

• The stability of channel flow with slightly converging walls.

While these systems may appear similar, they are fundamentally distinct and exhibit

significantly different stability behaviours. Despite these differences, they share common

underlying physics, as their stability is governed by critical-layer dynamics, which I have

demonstrated in my studies. Below, I give a summary of the problems, the methodology,

and the findings in each case of study. It is essentially the synopsis of my thesis.

11



0.1 The stability of channel flow with non-uniformly

distributed dust particles

0.1.1 Description of the system

I investigate here a dilute suspension of particles in a pressure-driven channel flow, a

schematic of which is shown in Figure 1a . The impact of this suspension on the flow is

(a) (b)

Figure 1: Schematics of the flows under consideration. (a) The particles are concentrated
around y = ±ap within a band of size σ. (b) Quasi-steady state of particles settling under
gravity.

characterized by a two-way coupling, modeled using the formulation of Saffman [1962],

specifically through the application of Stokes drag, with the addition of viscosity variations

due to particle concentration. The viscosity variation terms are derived from Govindarajan

[2004]. The momentum balance and continuity equations for the fluid respectively are

ρf

(
∂ud

∂td
+ ud · ∇dud

)
= −∇dpd+∇d

[
µtot
d ·

(
∇dud + (∇dud)

T
)]

+KN (vd − ud) , (1)

∇d · ud = 0, (2)

while the particle suspension satisfies momentum balance and continuity respectively given

by

mN

(
∂vd

∂td
+ vd · ∇dvd

)
= −KN (vd − ud) , (3)

∂N

∂td
+∇d · (Nvd) = 0. (4)

Here, the subscript d represents a dimensional variable, and ρf is the dimensional density

of the fluid. The total dimensional viscosity µtot
d = µf + µp, where µf is the dimensional

viscosity of the fluid and µp is the contribution to viscosity due to the particles. m and

τ = m/K are the mass and relaxation time of a spherical dust particle, N is their number

density per unit volume. The quantity K is the drag coefficient given by 6πrµf for a
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sphere of radius r. The fluid velocity is given by u = (ux, uy, uz), in the coordinate system

shown in figure 1. The particles are assumed to be continuously distributed in the flow

and to have a continuous velocity variation in space and time, and their dynamics may

thus be described as a field, with v = (vx, vy, vz). My analysis thus precludes situations

of diverging number density and of particle collisions. The mass fraction of particles in

the suspension is f = mN/ρf = 4πNr3ρp/3ρf . The density of the solid making up the

particles is ρp. Unless otherwise specified, I work in the limit of ρp/ρf → ∞, so the volume

fraction occupied by the particles is negligible. Non-dimensionalizing equations (1–4) with

the channel-centerline velocity Um, the half-channel width, H, and the viscosity µf of the

fluid as scales, and with a mean dust mass-fraction profile

f̄(y) = fmax

[
exp

{
−(y − ap)

2

2σ2

}
+ exp

{
−(y + ap)

2

2σ2

}]
, (5)

with particles concentrated in two layers of thickness σ, but my numerical method is

general and suitable for any desired particle concentration profile. The location ap of the

maximum in particle concentration is an important parameter. If the same particles were

to be uniformly distributed across the channel, the loading would be fave ≃
√
2πfmaxσ.

The Reynolds and Stokes numbers are given respectively by

R ≡ HUm

µf/ρf
and S ≡ τ

ρfH2/µf

=
2

9

r2

H2

ρp
ρf
. (6)

These two quantities, along with the thickness σ of the particle-laden layer, the mass

loading for a given σ as measured by fmax, and the location ap of the maximum in particle

concentration, determine this problem.

0.1.2 Linear stability equations

After non-dimensionalising, we split all quantities into their basic and fluctuating parts, as

u = U+ û, v = U+ v̂, p = P + p̂, f = f̄ + f̂ and µtot = µ̄+ µ̂. Here, a hat represents a

perturbation quantity, while an upper case or overbar denotes a mean quantity. At steady

state, the particles follow the flow field, meaning that the particle and fluid phases share

the same mean velocity field, U. In parallel shear flows, we have U = U(y)ex, where ex

is a unit vector in the streamwise direction. The viscosity is non-dimensionalized by the

viscosity of the pure fluid, µf . The mean viscosity is then described as µ̄ = 1 + f̄/γ, and

the perturbation viscosity is µ̂ = f̂/γ, obtained from Einstein’s viscosity formula for small

particulate volume fraction. Here γ = 0.4ρp/ρf . In the limit of infinite γ, the dimensional

viscosity remains at µf everywhere.
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The perturbation quantities are linearised and written in normal mode form as

(û, v̂, f̂ , µ̂) =
1

2
[(u(y),v(y), f(y), µ(y)) exp {iα(x− ct) + iβz}+ c.c.] . (7)

Squire’s theorem applies here, allowing us to analyze two-dimensional systems that fully

describe the exponential growth of perturbations. After appropriate elimination and

reduction, the stability equations can be written in terms of the perturbation streamfunction

ψ(y) and the perturbation viscosity µ(y) as:[
(U∗ − c)(D2 − α2)− U ′′

∗

]
ψ +D(Jf̄ ′ψ) =

1

iαR

[
µ̄(D2 − α2)2 + 2µ̄′D3 + µ̄′′D2

− 2α2µ̄′D + α2µ̄′′
]
ψ +

1

R

[
U ′D2 + 2U ′′D + U ′′′ + α2U ′]µ, (8)

and

−(U − c)γµ+

[
− iαRSM2U ′f̄ ′ + (Mf̄)′

]
ψ = 0, (9)

where

U∗ ≡ U + Jf̄ , M =
1

1 + iα(U − c)SR
, J = (U − c)M, (10)

[ux, uy, vx, vy] =
[
Dψ,−iαψ,Mux − (M2SRU ′)uy,Muy

]
. (11)

The operator D is defined as D = d/dy, and a prime denotes a derivative in y of a mean

quantity. The velocities can be expressed in terms of ψ using equations (11). The boundary

conditions are:

ψ(y = ±1) = Dψ(y = ±1) = µ(y = ±1) = 0. (12)

For given mean flow U(y) streamwise wavenumber α, base particle loading f̄(y), particle

to fluid density ratio, and fixed Reynolds and Stokes numbers, equations 8 to 12 define

an eigenvalue problem, which yields a spectrum of eigenvalues c and corresponding

eigenfunctions, (ψ(y), µ(y)). If even one eigenvalue has a positive imaginary part, i.e.,

cim > 0, we have an exponential growing mode.

In the Orr-Sommerfeld equation, the stability equation for a clean fluid, it is seen

that the highest, i.e., fourth-order, derivative term in y is scaled by the inverse of the

Reynolds number. Now, even if the Reynolds number approaches infinity, this term may

not be dropped, because if it is, we will not be able to satisfy all four boundary conditions

associated with the equation. This is thus a classical singular perturbation problem

[Van Dyke, 1964], where the highest derivative term becomes as big as the terms on the

left-hand side in some portions of the flow. There are two layers [Lin, 1945a,b, 1946]

where viscous effects are important and gradients are large: the wall layer, of thickness

ϵw ∼ R−1/2, and the critical layer, of thickness ϵ ∼ R−1/3. It is the critical layer which is

of primary interest to us to explain the mechanism of the particle-driven instabilities we

14



(a) (b) (c)

Figure 2: Phase plot of the critical Reynolds number, shown in colour, in (a) and (b)
as a function of the Stokes number S and the particle loading strength fmax, and in (c)
as a function of the particle loading location ap, and fmax. (a) A case where there is
no overlap mechanism in operation, with ap = 0.40, and (b) where it is in operation,
with ap = 0.75. Note the difference in the colourbars in the two figures. In both
figures σ = 0.1, and the blue lines represent curves of constant particle number density
N . The value of N decreases from left to right, with the non-dimensional quantity
9
√
2H3N

√
ρf/ρp being [1.00× 107, 4.42× 105, 1.40× 104, and 1.25× 103] for plot (a), and

[1.00× 107, 8.94× 105, 1.12× 105, and 3.95× 104] for plot (b). The other parameters in
(c) are the same as in Figure(5). The green curve serves as a visual guide for observing the
sharp change in the critical Reynolds number due to a change in the mode of instability.
Some jitter in the colours is visible, and is due to the interpolation of results on a finitely
spaced grid.

find. This is a thin region centered around the critical point yc within the channel, where

U(yc) = c, and perturbation kinetic energy is produced primarily within this layer.

We employ the Chebyshev spectral collocation method to discretize the system given

by equations 8 to 12 at n = 81, 121, 141, 161 discrete points in the domain and solve them

using the LAPACK FORTRAN package.

0.1.3 Summary of results

The response of the flow to non-uniform particle loading may be divided into two broad

categories that we term overlap and non-overlap conditions. Under non-overlap conditions,

the particle-laden layer lies at some distance from the critical layer, and particles do not

significantly alter this process. However, when there is an overlap between these layers,

there is a dramatic alteration of stability behaviour, with two modes of instability apart

from the TS mode appearing. The fundamental difference between overlap and non-overlap

conditions is starkly visible in Fig. 2 . Though these modes have been observed in one

older study [Rudyak et al., 1997] at constant viscosity, they had not been explained before,

to my knowledge. The shortwave overlap mode occurs at much lower Reynolds number

than the TS mode, and supports wavelengths of the order of the channel width, see Fig.3 .

The longwave overlap mode appears over a wide range of Reynolds numbers and supports

wavelengths which could be as small as the channel width but become longer and longer

15



Figure 3: The three distinct modes of instability, shown by the shaded regions. A specific
choice of parameters is made here, where overlap conditions prevail: the peak of the mean
particle concentration profile has an amplitude fmax = 0.70, and is positioned at ap = 0.75.
The thickness of the particle-layer is σ = 0.1 and the Stokes number is S = 8× 10−4. This
figure is representative of a wide range of parameters under overlap conditions. The points
marked S, L, and T are representative of shortwave, longwave and Tollmien-Schlichting
modes respectively, and will be elaborated on.

with increasing Reynolds number. This mode is unusual because its wall-normal velocity

perturbation is antisymmetric (odd) about the channel centerline. In the classical, clean

channel flow, the primary instability corresponds to the symmetric (even) TS mode. Odd

modes are generally more stable and do not lose stability first, and therefore they are not

the modes that normally govern the onset of transition. The three modes of instability

show regimes of distinct existence, and go through interesting intersections and mergers

with changes in parameters.

In the critical layer the perturbation velocity may be expanded as uy =
∑∞

n=0 ϵ
nuy,n(ξ),

with ξ = (y − yc)/ϵ ∼ 1, Dξ = d/dξ, and ϵ = (αR)−1/3 ≪ 1. I derive the lowest-order

equations in the critical and wall layers as[
(1 + f̄)ξU ′

cD
2
ξ + i

1

αRϵ3
D4

ξ −
ϵ

σ
U ′
c(Dχf̄)(I − ξDξ)

]
uy,1 = 0, (13)

(14) [
−c

(
1 +

f̄

1− iαcSR

)
D2

ξ + i
1

αRϵ2w
D4

ξ −
ϵw
σ

(
cDχf̄

1− iαcSR

)
Dξ

]
uy,1 = 0, (14)

where ϵw = (αR)−1/2, (with subscripts ’w’ and ’c’ referring to wall and critical layers

respectively) for particulate parallel shear flow for dilute particle loading, and show how

they differ fundamentally from the classical equations for clean flow. This is combined

with an energy-budget analysis which brings out the consequences for stability. The reason

for the existence of two categories of behaviour is shown to lie in the dynamics within

the critical layer. Variations in the base particle concentration within the critical layer

significantly alter the production of disturbance kinetic energy. We note that despite the

16



(a) (b)

Figure 4: Comparison of contributions to the energy budget in the longwave (odd) mode
(a) at point ‘L’ in figure 3, where R = 3000 and α = 0.6, with that of the shortwave (even)
mode (b) at point ‘S’ in figure 3, i.e., R = 1000 and α = 1.6. In both, fmax = 0.70, σ = 0.1,
S = 8 × 10−4, and ap = 0.75. Both of these modes are unstable, with net production
beating dissipation by a small amount.

marked differences in the symmetry of the eigenstructures and the regime of exponential

growth between the two overlap modes S and L, they exhibit nearly identical energy

budgets, as shown in Fig.(4). This similarity underscores the significance of concentration

variations within the critical layer in driving instability. The wall layer is seen not to be a

major player, see Fig. 5. The lowest-order physics everywhere in the flow may be obtained

from a minimal composite equation

[
(U∗ − c)(D2 − α2)− U ′′]ψ − (J ′f̄ ′)ψ + (Jf̄ ′)Dψ =

1

iαR
D4ψ, (15)

which contains all the terms in the complete stability equations which contribute at

the leading order somewhere in the flow, i.e., in the outer, critical or wall layers. The

wall layer contributes no additional terms not present in the other two. The minimal

composite equation is shown (see Figure 5a) to contain the essential physics of the

overlap instabilities, in terms of trends in the critical Reynolds number and indeed in the

eigenfunction behaviour.

In the limit of heavy particles, the volume loading is negligible, so the viscosity is

constant. I then consider finite particle to fluid density ratios, where the volume loading

is finite but small. Now viscosity varies with particle concentration. The change in the

mean flow velocity profile effects a significant stabilisation as shown in Fig.6 whereas the

explicit viscosity gradient terms are shown to be non-players in this case. Whether this is

a consequence of the special viscosity profile that this loading produces, is being examined

in the following section, and hopefully will be answered in the thesis.
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(a) (b)

Figure 5: With a specified amplitude of fmax = 0.1, a peak width of σ = 0.1 for the mass
fraction profile, and a Stokes number of S = 2.5× 10−4, the purple curve and the black
curve in (a) illustrate the critical Reynolds number as a function of the position of the
peak, ap of the mass fraction profile for the full equation (8) without viscosity terms and
the minimal equation (15) respectively. The green, black, and red bands in (b) illustrate
the notional critical layer, the wall layer, and the particle-laden layer, respectively, as they
vary with ap.

,

Figure 6: Neutral boundaries of the shortwave and longwave modes of instability for
various density ratios ρp/ρf = 2.5γ. All other parameters are as in figure 3, where we had
γ → ∞.

18



0.1.4 The stability of channel flow with non-uniformly distributed

dust particles under the influence of gravity

This problem is an extension of the previous one, with the additional consideration of

gravity. Particles which are not neutrally buoyant settle toward the bottom or top wall

when their density is greater or less than that of the fluid, respectively. We assume the

Froude number, defined as Fr = U0/
√
gH, where U0, g, and H represent the centerline

velocity, gravitational acceleration, and half-channel width, respectively, is much greater

than 1. At high Froude numbers, gravitational effects on the fluid momentum equations

become negligible, and particle settling is slow. As a result, change in the mass fraction

and velocity profiles occur over long timescales. In instability analysis, we focus on much

shorter timescales, during which the mass fraction and velocity profiles can be considered

unchanged. This enables the base flow to be considered quasi-steady for stability analysis,

with gravitational effects influencing the stability problem solely through the mean mass

fraction profile. The mean mass fraction of the particles now follows

f̄ = 0.5fmax

[
1 + tanh

(
y − ap
σ

)]
. (16)

The particle concentration is zero far from the wall and increases to fmax near the wall,

with the transition occurring around y = ap within a band of width 2σ. A schematic of the

steady state of the problem is given in Figure (1b). The added mass term is now included

in the particle equation, so the linearized equations differ from those for the above study.

However, I find that this term has a minimal impact on stability.

We had seen above that the viscosity introduced by the suspension of particles has a

stabilizing effect. However, in this case, I find that the particle-induced viscosity has the

opposite effect on flow stability. I analyze that the origin of the instability is the alteration

in mean velocity U caused by particle-induced viscosity. To understand how the viscosity

causes destabilization, I compared the results with those of a one-peak Gaussian-shaped

mass fraction profile, f̄ = 0.5fmax

[
tanh

(
y−ap1

σ

)
− tanh

(
y−ap2

σ

)]
, inspired by the problem

in Section 0.1. I began with a set of parameters that preserved the instability modes

present in Figure 3 and gradually shifted the peak of the mass fraction profile toward a

wall to obtain a similar profile to what I have in this gravity case. The destabilization is

driven by changes in the mass fraction profile, as illustrated in Figure (7).

Further analysis reveals that the mass fraction profile has little direct impact through

the additional stratification terms, but it modifies stability majorly by altering the mean

velocity profile. As a result, the instability is primarily driven by the mean viscosity

profile, which exhibits higher viscosity near the wall. As explained by [Ranganathan and

Govindarajan, 2001, Govindarajan, 2004], the key mechanism is that a positive viscosity

gradient, with higher viscosity near the wall compared to the inner channel, induces a
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Figure 7: The parameters used are fmax = 0.903, S = 8 · 10−4, σ = 0.0968, and
ap2 = ap1 + 0.2. The color scale represents the base-10 logarithm of the critical Reynolds
number. For a fixed ap1 , the critical Reynolds number initially increases with the induced
viscosity (∝ 1/γ), reaches a peak, and then decreases. At a fixed induced viscosity, it
initially decreases as ap1 , the location of the rising arm of the mass fraction, shifts towards
the wall, reaching a minimum before increasing again and asymptotically approaching the
critical Reynolds number of the clean flow.

destabilizing effect, while a negative gradient promotes stabilization. The origin of this low

Reynolds number instability mode can be traced to the tendency of the velocity profile to

develop an inflection point. At low Reynolds numbers, this leads to a different lowest-order

governing equation than the one derived for the overlap mechanism for the earlier case

[Kumar and Govindarajan, 2024b], resulting in the observed instability modes.

0.2 The stability of channel flow with slightly con-

verging walls

0.2.1 Description of the system

The laminar flow through channels whose walls converge or diverge at a constant angle

is described by the Jeffery-Hamel (JH) equations (Jeffery [1915], Hamel [1917]). Eagles

[1966] calculated the critical Reynolds number, Rcrit, at which the first linear instability is

seen, for diverging channel flow. They noticed that Rcrit falls steeply compared to that

in a straight channel. For a straight channel, Rcrit = 5772.2 (see Orszag [1971]) whereas

with a wall divergence of only 0.04 degree, Rcrit ∼ 2000. Note that this divergence is so

small that a channel built with such a divergence would be indistinguishable visually from

a straight one. The reason for this sharp fall is an open question, with some beginnings

having been made by Swaminathan et al. [2011]. On the other hand are channels with a
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small angle of convergence. The stability of this flow, to my knowledge, was first studied

by Fujimura [1982]. A sharp increase in the critical Reynolds number with the smallest

convergence was seen. The sensitivity to convergence angle is even more stark than to

divergence.

The Jeffery-Hamel (JH) equation provides the steady state of two-dimensional laminar

flow of an incompressible fluid within an infinite wedge, driven by a source/sink located at

the intersection of the rigid planes forming the wedge, a schematic is shown in Figure 8 .

Figure 8: Schematic illustrating a convergent channel flow with a Type III1 velocity
profile. I emphasise that the angle of convergence is grossly exaggerated for clarity of
viewing, compared to the range I study here. The x-axis is oriented along the channel
centerline and the y-axis intersects the channel walls at an angle of π/2− θ. The lengths
are non-dimensionalized using the local half-channel width H, placing the walls at y = ±1.
Note that θ is negative.

It is a similarity equation given by

U ′′′ + 2S0UU
′ + 4θ2U ′ = 0, (17)

with the boundary conditions

U(+1) = U(−1) = 0; U(0) = 1, (18)

where U is the streamwise velocity nondimensionalised by the centerline velocity Um.

The angle made by the rigid walls with respect to the channel centerline (the x-axis)

is denoted by θ, as illustrated in Figure(8). An important parameter in this problem

is S0 ≡ θR. Note that in convergent flow, θ, and therefore S0, are negative. The

Reynolds number R ≡ |Q|
ν
, where Q = Um(xd)H(xd)MU is the net mass flux through

the channel, where H(xd) is the local channel half-width, or the distance of the wall

from the centerline, and ν is the kinematic viscosity. The non-dimensional mass flux is

given by MU =
∫ +1

−1
U(y)dy. For a constant tilt angle, we may approximate flow in the

convergent channel to that going towards a sink at a location xL, which lies extremely

far downstream, so H = (xL − xd) tan |θ| and Um ∝ 1/H. A prime denotes a derivative
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with respect to a similarity coordinate y, which is the coordinate normal to the centerline

non-dimensionalized by H(x). Given that the net mass flux must be constant through

all x, the Reynolds number too is constant throughout. It will become useful to define

another Reynolds number, RSC = Um(x)H(x)/ν. The Reynolds numbers are related as

R = RSC |MU |.
Numerically, I get the mean velocity U by solving the equations (17,18), with an

initial guess for U ′′(0), and iterating by the Newton-Raphson method until the boundary

conditions are met. A few of the computed velocity profiles are illustrated in Figure 9

. The stability analysis is carried out as described before, and the relevant equation is

Figure 9: Laminar velocity profiles of type IIIn for n = 1, 2, 3, 4, 5, 6, and 7. The top
half of the profiles are shown. The Reynolds number is 100, and the angle θ = −0.6o.

simply the Orr-Sommerfeld.

0.2.2 Summary of results

My basic aim has been to show why an extremely small angle of wall convergence can

drastically and fundamentally change the flow through a two-dimensional channel. The

answer lies in a fundamental shift in the dynamics of the critical layer. For the one-lobed

profile of type III1, I have obtained the lowest-order equation (19)[
−iU

′
cξ

ϵ
D2

ξ − U ′′
c − 1

iαRϵ4
D4

ξ

]
ψ0 = 0. (19)

in the critical layer, where ϵ = (−αS0R)
−1/4, following the traditional approach. I have

shown how the dominant (lowest-order) balance in the critical layer is altered fundamentally

by convergence, with the second derivative of the velocity profile entering the balance at

even very low angles of convergence and ousting out the inviscid term which normally

balances the dominant viscous effect.

This study also reveals that at small Reynolds numbers, of O(10), we can have multiple

stable laminar flow solutions through convergent channels, which is shown in Fig. 10

. Since multiple velocity profiles are stable at low Reynolds number, they can all, in

principle, be observed experimentally. The ease of experimentally obtaining a given profile,

will however, depend on the size of its basin of attraction in phase space and the ability to

access that basin.
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(a) (b)

Figure 10: The instability growth rate (indicated by color) is presented for velocity profiles
of type III2 and III3 in (a) and (b) respectively, as a function of perturbation wave number
α and Reynolds number R. The black line denotes the neutral curve. The wall convergence
angle θ is −0.6o.
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Chapter 1

Introduction

The instability of a clean fluid through a straight channel has been a topic of interest for

many decades. In this thesis I study two departures from this flow: of dusty flow through

a straight channel, and of clean flow through a convergent channel. Due to each of these

departures, remarkable changes in stability occur.

The dynamics of fluids laden with suspended particles has been a subject of investigation

for decades. When the particles are extremely small and in great number, the term “dusty

flow” is appropriate. Dusty shear flows are ubiquitous: occurring in environmental

phenomena like dust storms, snow avalanches and sediment transport in rivers, and in

industrial processes like the manufacture of fertilizers and various powders. Whether such

a flow will be laminar, turbulent or in an unsteady transitional state is of great interest for

a variety of reasons, and the first step is to study the stability of the laminar base state.

The study of the onset of instability in a laminar flow, which often leads to turbulence,

provides valuable insights into the turbulent state.

To discuss the second departure, namely the effect of geometry, we know that it is

extremely difficult to manufacture a pipe or channel that is perfectly straight. Now a small

departure from being absolutely straight has a profound effect on stability, this feature

should therefore be taken into consideration while drawing conclusions about the transition

to turbulence. I explore the stability of shear flow under the parallel flow approximation.

For decades, shear flows have thrown up surprises in their stability behaviour, and the

different mechanisms of instability, though not easy to predict, are crucial to unravel. I

address the following problems:

• The stability of channel flow with non-uniformly distributed dust particles.

• The stability of channel flow with non-uniformly distributed dust particles under

the influence of gravity.

• The stability of channel flow with slightly converging walls.
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While these systems may appear similar, they are fundamentally distinct and exhibit

significantly different stability behaviours. Despite these differences, they share common

underlying physics, as their stability is governed by critical-layer dynamics, which I have

demonstrated in my studies.

We conduct linear stability analysis of steady-state flows. This analysis involves

examining the eigenspectrum of linearised governing equations to understand both modal

and non-modal stability characteristics. In modal stability, perturbations either grow or

decay exponentially over time, leading to instability or stability, respectively. Non-modal

stability, on the other hand, considers transient algebraic growth of perturbations, even

if they ultimately decay exponentially over long timescales. When this transient growth

becomes sufficiently large, despite all eigenvalues indicating eventual decay, nonlinear

effects can take over and destabilize the flow, a phenomenon known as subcritical transition.

Although my thesis focuses exclusively on modal stability, our findings provide valuable

insights and potential directions for future investigations into non-modal stability.

The stability equation of parallel shear flow was first given by Orr [1907] and Sommerfeld

[1909] independently. The equation appears as a generalized eigenvalue problem AX =

cBX where A and B are the linear operators, X and c are the eigenfunction and the

eigenvalue respectively. This involves a fourth-order homogeneous differential equation,

which remains challenging to solve analytically and requires a good computational scheme,

such as the pseudo-spectrum method, to numerically solve this stiff equation. The first

semi-analytical solution, specific to boundary-layer flow, was provided by Tollmien [1930],

with experimental validation following later by Schubauer and Skramstad [1947]. Orszag

[1971] subsequently provided accurate numerical results for plane channel flows. Despite

the early establishment of the Orr–Sommerfeld equation, its solutions remain difficult to

obtain, with progress in the field often spanning decades. The challenge lies in the singular

perturbation nature of the problem, where viscosity introduces singularities in viscous flow

stability.

In the absence of viscosity, the problem reduces to that of inviscid flow stability,

governed by the Rayleigh equation formulated in 1880. Several theorems guide the

analysis of inviscid flow stability. For instance, the Rayleigh inflexion-point theorem

states that instability is possible only if the velocity profile has at least one inflexion

point. Fjørtoft extended this condition, asserting that the velocity profile must have an

inflexion point coinciding with a vorticity maximum for instability to occur. Additionally,

Howard’s semicircle theorem constrains the complex phase speed of perturbations within a

semicircular region in the complex plane. While these theorems provide valuable insights

into inviscid stability, similar results for viscous flows remain elusive. Nonetheless, inviscid

results often inform viscous stability analyses. For example, velocity profiles with inflexion

points often exhibit inviscid instabilities even in viscous flows, and Howard’s semicircle
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theorem provides a broad guideline for phase speeds, and helps filter unphysical modes in

numerical solutions of the Orr–Sommerfeld equation. In the case of pressure or gravity-

driven channel flow of a single clean viscous fluid, the velocity profile lacks inflexion points,

implying stability under inviscid conditions. Of course we may not apply theorems derived

for inviscid flow directly to the viscous problem. Historically, it was believed that viscosity

would only have a stabilising effect across all Reynolds numbers due to its dissipative

nature. However, this assumption was disproved when it was shown that laminar channel

flow is linearly stable only up to a critical Reynolds number R=5772.2 and unstable

thereafter, though it contains no inflexion point and is inviscidly stable. This discrepancy

arises because viscosity exhibits dual effects: it dissipates perturbation energy, which has

a stabilizing effect, but also contributes to perturbation energy production, which can

be destabilizing. In channel flows, dissipation predominantly occurs near the walls due

to maximum wall resistance, while perturbation energy production is significant in the

critical layer, a region centered around a critical point yc where the perturbation phase

speed matches the mean flow velocity. As the Reynolds number increases, production in

the critical layer surpasses wall dissipation, leading to instability. Thus, the critical layer

dynamics govern the onset of instability. Lin [1945a,b, 1946] was the first to propose a

theory for channel flow instability based on critical layer dynamics. His asymptotic theory

provided a scaling law for the critical layer thickness and a simplified equation capturing its

behavior. My work builds on Lin’s framework and extends it to explore novel mechanisms

of instability in three problems of interest. Specifically, I have examined how critical

layer dynamics, differing from Lin’s original theory, drive instabilities in cases involving

dust particles and wall tilts. Dust particles in channel flows are often non-uniformly

distributed due to inertial migration (e.g., Segre and Silberberg [1961, 1962]; Ho and Leal

[1974]). While earlier studies assumed uniform particle distributions, which primarily have

a stabilizing effect, our findings reveal significant destabilization caused by non-uniform

distributions. The magnitude and location of clustered particles play critical roles, and

particle viscosity introduces complex effects: slight stabilization in the absence of gravity

but destabilization when gravity is considered. Wall tilts or convergent/divergent channel

geometries further complicate the flow dynamics. These flows, known as Jeffery–Hamel

flows, possess infinitely many steady-state profiles categorized into five types by Fraenkel

and Squire [1962]. Although most of these profiles are unstable and seldom observed

experimentally, our study identifies at least three stable velocity profiles at low Reynolds

numbers.

This thesis explores these intricate stability mechanisms, emphasizing critical layer

dynamics and their modulation by dust particle distribution, wall tilts, and other flow con-

figurations. These findings contribute to a better understanding of shear flow instability.
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Chapter 2

Mechanism of instability in

non-uniform dusty channel flow

This work presented in this chapter has been published in our Journal of Fluid Mechanics

article Kumar and Govindarajan [2024b].

2.1 Introduction

Saffman [1962] was the first to propose a formulation for the stability of a pressure-driven

laminar channel flow, of a fluid containing dust particles in dilute suspension. The dust

particles were uniformly distributed across the channel width. Subsequently, Michael

[1964] conducted numerical computations, validating the conclusions of Saffman [1962].

Isakov and Rudnyak [1995] extended the study of Michael [1964] with improved numerical

accuracy. Boronin and Osiptsov [2008] studied uniform particle loading with a finite volume

fraction modeled by a corrected Stokes drag including the effects of viscosity variations

due to perturbations in particle concentration, and found destabilization compared to

the dusty-gas results of Isakov and Rudnyak [1995]. In a later study, Klinkenberg et al.

[2011] noted that the critical Reynolds number increases to high levels with strengthening

of loading in a uniform particle distribution. Nevertheless, at a Reynolds number of a

few thousand, loading of particles can enhance the transient growth for three-dimensional

perturbations. Nath et al. [2024] found that in simple shear flow, non-uniformly distributed

particles destabilize the flow through an inviscid mechanism. This is in contrast to our

system of plane channel flow, where we show that destabilization is by a viscous mechanism.

Small particles suspended in channel or pipe flow normally do not occur with uniform

probability everywhere [Matas et al., 2004]. They tend to concentrate in certain relatively

thin regions of the flow. The location of concentration depends on different flow and

loading conditions, and examples are available in the experiments of Snook et al. [2016].

The early experiments of Segre and Silberberg [1961, 1962] showed that particles, when
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homogeneously distributed in a pipe, undergo inertial cross-stream migration, caused by

lift forces and the wall, and tend to accumulate within an annular region, located at a

certain radial distance. Saffman [1965] calculated the lift force for a small solid particle in

unbounded linear shear. Cox and Brenner [1968] included considerations of the wall, and

of shear variation. The review of Cox and Mason [1971] provides the equilibrium radial

variation of particle concentration in a range of conditions in a pipe. For two-dimensional

channel flow, studied here, Ho and Leal [1974] offered the first theoretical explanation for

non-uniform particle loading, due to the wall-induced lift force and the shear-gradient lift

force. For neutrally buoyant particles, they found two equilibrium points: an unstable

point at the channel centerline and stable points located ±0.6 times the half-channel

width from the center. Their calculations were for creeping flow in the channel, namely

for channel Reynolds number R ≪ 1, as well as the particle Reynolds number Rep being

significantly smaller than R. Schonberg and Hinch [1989], Asmolov [1999] revealed a

wallward shift of the stable equilibrium points for increasing R. For particles of a finite

size relative to the channel width, Anand and Subramanian [2023] found an additional

equilibrium point closer to the centerline.

Thus an inhomogeneous equilibrium particle distribution with a relatively thin particle-

containing layer is natural in channel flow, though its location depends on several factors.

The question is whether this arrangement remains stable to an accumulation of particles, or

whether such accumulation, when sufficiently high, can cause the laminar flow to undergo

instability. We adopt a gaussian particle distribution profile to model experimental

observations and theoretical findings. Following the findings of Klinkenberg et al. [2011]

and the calculations of many, we may take the lift force at the equilibrium location, on a

sufficiently small particle, to be negligibly small compared to the Stokes drag.

Rudyak and Isakov [1996], Rudyak et al. [1997] investigated the effects of inhomogeneous

gaussian particle loading and found low Reynolds number instabilities of the kind we

discuss here. A channel loaded with particles where particle concentration tapers off

towards the walls was shown by Boronin [2009] to support instability at zero Reynolds

number. Incidentally we found the instabilities of Rudyak and Isakov [1996], Rudyak et al.

[1997] independently, since we only learned about that work recently. They noticed that

the critical layer lies close to the particle-laden layer in these instabilities, but did not

provide the mechanism which generates the new instabilities. The mechanism is the subject

of the present chapter. Along the lines of the famous classical derivation of Lin [1945a,b,

1946] for a clean fluid, we derive the critical-layer and wall-layer equations for dusty

parallel shear flow. The critical layer equations make it obvious how the inhomogeneity of

particle loading enters the leading-order physics. We derive a minimal composite equation

containing all the leading-order terms and show that it contains the essential overlap

physics. Our energy budget study and the eigenfunctions support our findings, and directly
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show how production of perturbation kinetic energy is altered in the critical layer. Our

study demarcates two distinct classes of stability behaviour: one where the critical layer

overlaps the layer where the particle concentration is non-constant, and another where the

two layers lie away from each other. Two modes of overlap instability occur in the former.

Incidentally the earlier study on inhomogeneous particle loading only briefly mentions

the numerical method, but provides no details of the discretisation, or the level of accuracy

of the solutions. In order to achieve reasonable accuracy, we find that a high grid-resolution

is needed within the particle-laden layer.

Introducing particles into the flow exacerbates the complexity of the transition to

turbulence [Mueller et al., 2010]. Matas et al. [2003a,b], in pipe flow experiments, observed

that adding particles at a significant volume fraction can delay or advance the transition

to higher or lower Reynolds number, based on whether the particles are extremely small

or somewhat larger, with a minimum in the transition Reynolds number being attained at

a particular volume fraction. Numerical and experimental studies conducted by Matas

et al. [2003a], Yu et al. [2013], Lashgari et al. [2014], Wen et al. [2017] demonstrate that

transition to turbulence occurs smoothly, with velocity and pressure fluctuations increasing

gradually. This suggests that particles can alter the nature of the transition and the

resulting turbulence state.

Whether or not the transition occurs due to exponentially growing modes, the first

step in understanding the transition to turbulence is to understand the mechanism causing

linear stable and unstable eigenmodes to exist. We conduct this study below.

2.2 The governing equations and their solution

2.2.1 Description of the system

We investigate here a dilute suspension of particles in a pressure-driven channel flow, a

schematic of which is shown in figure 2.1. The impact of this suspension on the flow is

characterized by a two-way coupling, modeled using the formulation of Saffman [1962],

specifically through the application of Stokes drag, with the addition of viscosity variations

due to particle concentration. The viscosity variation terms are derived from Govindarajan

[2004]. The particulate suspension is treated as a continuous medium whose dynamics is

describable by a field equation. The momentum balance and continuity equations for the

fluid respectively are

ρf

(
∂ud

∂td
+ ud · ∇dud

)
= −∇dpd +∇d

[
µtot
d ·

(
∇dud + (∇dud)

T
)]

+KN (vd − ud) ,

(2.1)

∇d · ud = 0, (2.2)
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Figure 2.1: Schematic of the flow under consideration. The walls are situated at y = ±1,
with the green curve and red arrows representing the mean velocity profile, U(y) = 1− y2.
The particles are concentrated around y = ±ap within a band of size σ. The mean particle
mass fraction, f̄ , given by equation (2.6) is depicted on the right. Note that the volume
fraction that heavy particles occupy will be much less.

while the particle suspension satisfies momentum balance and continuity respectively given

by

mN

(
∂vd

∂td
+ vd · ∇dvd

)
= −KN (vd − ud) , (2.3)

∂N

∂td
+∇d · (Nvd) = 0. (2.4)

Here, the subscript d represents a dimensional variable and ρf is the dimensional density

of the fluid. The total dimensional viscosity µtot
d = µf + µp, where µf is the dimensional

viscosity of the fluid and µp is the contribution to viscosity due to the particles. m and

τ = m/K are the mass and relaxation time of a spherical dust particle, N is their number

density per unit volume. The quantity K is the drag coefficient given by 6πrµf for a sphere

of radius r. We establish the x-axis to be aligned with the channel centerline, the y-axis

to be oriented in the wall-normal direction, and the z-axis to be oriented perpendicular

to the plane of the figure. The fluid velocity is given by u = (ux, uy, uz). The particles

are assumed to be continuously distributed in the flow, and to have a continuous velocity

variation in space and time, and their dynamics may thus be described as a field, with

v = (vx, vy, vz). Our analysis thus precludes situations of diverging number density and of

particle collisions. The mass fraction of particles in the suspension is

f = mN/ρf =
4πNr3

3

ρp
ρf
. (2.5)

32



The density of the solid making up the particles is ρp. Unless otherwise specified, we assume

a small particle volume fraction f/(ρp/ρf ) and a large density ratio ρp/ρf . In Section 2.5,

however, we will instead vary the density ratio to control the volume fraction. In practical

experiments, since the density ratio is finite, the volume fraction is typically controlled

by adjusting the mass fraction or the particle number density. We non-dimensionalize

equations (2.1-2.4) using the channel-centerline mean velocity Um (i.e., the steady-state

fluid velocity at the center of the channel), the half-channel width, H, and the viscosity

µf of the fluid as scales. In dimensionless coordinates, the channel walls are positioned at

y = ±1, with the suspended particles concentrated in around y = ±ap. We prescribe a

mean dust mass-fraction profile

f̄(y) = fmax

[
exp

{
−(y − ap)

2

2σ2

}
+ exp

{
−(y + ap)

2

2σ2

}]
, (2.6)

with particles concentrated in two layers of thickness σ, but our numerical method is

general and suitable for any desired particle concentration profile. The location ap of the

maximum in particle concentration is an important parameter. If the same particles were

to be uniformly distributed across the channel, the loading would be given by

fave =

∫ +1

−1
f̄(y;σ, ap)dy∫ +1

−1
dy

≃
√
2πfmaxσ. (2.7)

The Reynolds and Stokes numbers, which will emerge out of the non-dimensionalisation,

are given respectively by

R ≡ HUm

µf/ρf
and S ≡ τ

ρfH2/µf

=
2

9

r2

H2

ρp
ρf
. (2.8)

In terms of the average density in the flow, we may also define an effective Reynolds

number Reff = (1 + f̄ave)R. These two quantities, the Reynolds number R and the Stokes

number S, along with the thickness σ of the particle-laden layer, the mass loading for a

given σ as measured by fmax, and the location ap of the maximum in particle concentration

are the parameters which determine this problem.

2.2.2 Linear stability equations

After non-dimensionalising, we split all quantities in equations (2.1–2.4) into their basic

and fluctuating parts, as u = U+ û, v = U+ v̂, p = P + p̂, f = f̄ + f̂ and µtot = µ̄+ µ̂.

Here a hat represents a perturbation quantity, while an upper case or overbar denotes a

mean quantity. In parallel shear flows, we have U = U(y)ex, where ex is a unit vector in

the streamwise direction, and f̄ = f̄(y). For small particulate volume fraction, the local
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Figure 2.2: The mean viscosity, mean velocity, and their derivatives for the particle-laden
flow (black) are compared to those for the clean flow (red dots). The parameters are as
follows: the mean particle concentration profile has an amplitude of fmax = 0.70 and its
peak is located at ap = 0.75. The particle layer thickness is σ = 0.1, with γ = 3.4, and the
Stokes number is S = 8× 10−4.

viscosity is linearly related to the local particle concentration, as

µtot
d = µf

[
1 +

f

γ

]
, (2.9)

where γ ∝ ρp/ρf . In accordance with Einstein’s law, we take the proportionality constant

to be 0.4. In the limit of infinite γ, the dimensional viscosity remains at µf everywhere.

The viscosity is non-dimensionalized by the viscosity of the pure fluid, µf . The mean

viscosity is described as µ̄ = 1 + f̄/γ, and the perturbation viscosity is µ̂ = f̂/γ, obtained

from equation (2.9).

We assume that the particles are sufficiently small such that with a small lag time,

they attain the same velocity as the surrounding fluid, so in the steady state, both the

flow and particles move together with a common mean velocity, U. The mean flow profile,

U(y), satisfies the equation:

(µ̄U ′)′′ = 0, (2.10)

with the boundary conditions U(±1) = 0, and U(0) = 1. When the particles are infinitely

denser than the fluid (i.e., γ → ∞ ), they do not occupy any significant volume fraction

of the flow, and so do not introduce any change in viscosity. The mean viscosity thus

remains constant, µ̄ = 1. In this case, the mean velocity profile is parabolic, U = 1− y2,

identical to the particle-free case. For particles with finite density, however, the mean

velocity profile is modified, as shown in Figure (2.2).
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Upon linearization of equations (2.1-2.4) we have(
∂û

∂t
+ û · ∇U+U · ∇û

)
= −∇p̂+ 1

R

[
∇µ̄ ·

(
∇û+ (∇û)T

)
+∇µ̂ ·

(
∇U+ (∇U)T

)
+ µ̂∇2U+ µ̄∇2û

]
+

f̄

SR
(v̂ − û) ,

(2.11)

∇ · û = 0, (2.12)(
∂v̂

∂t
+ v̂ · ∇U+U · ∇v̂

)
= − 1

SR
(v̂ − û) , (2.13)

∂f̂

∂t
+∇ · (f̄ v̂) +∇ · (f̂ U) = 0. (2.14)

We start by performing a normal mode analysis, considering single Fourier modes for

the perturbation quantities (û, v̂, p̂, f̂ , µ̂) in both the x-direction and z-direction, as well

as in time. In other words, the perturbation quantities are written in normal mode form,

with each mode given by

(û, v̂, f̂ , µ̂) =
1

2
[(u(y),v(y), f(y), µ(y)) exp {iα(x− ct) + iβz}+ c.c.] . (2.15)

We may now express the particle velocity in terms of the flow velocity using equations

(2.13), to get

(vx, vy, vz) = (Mux − SRM2U ′uy,Muy,Muz) (2.16)

where

M =
1

1 + iαSR(U − c)
. (2.17)

Additionally, by taking the divergence of equation (2.11), we write the pressure laplacian

in terms of the velocity field as

−∇2p = 2iαU ′uy −
[
2µ̄′∇2uy + 2µ̄′′Duy + 2iαU ′Dµ+ 2iαU ′′µ

]
− 1

SR

[
f̄ ′(M− 1)uy + f̄M′uy − iαSRM2U ′f̄uy

]
.

(2.18)

We apply the operator ∇2 to the y component of the vector equation (2.11), use equations

(2.16) and (2.18), and divide throughout by −iα2 to express the resulting equation in
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terms of the variables uy and µ:

−ic∇2 uy
−iα

= i
[
U ′′ − U∇2

] uy
−iα

+
1

αR

[
µ̄′′ (−∇2 + 2D2

)
+ 2µ̄′D∇2 + µ̄∇4

] uy
−iα

+
1

αR

[
U ′′′ + 2U ′′D − U ′∇2 + 2U ′D2

]
µ

+ i

[
(M2U ′f̄)′ − (U − c)Mf̄ ′D − (U − c)Mf̄∇2

]
uy
−iα

(2.19)

Using equation (2.16) and the continuity equation (2.12), we can convert equation (2.4)

into an expression that includes the variables uy and µ, leading, after dividing throughout

by −iα, to

(U − c)γµ+

[
−RSM2U ′f̄ ′ +

(Mf̄)′

iα

]
uy = 0. (2.20)

Equations (2.19) and (2.20) represent the linear stability equations for three-dimensional

perturbations. For a clean parallel shear flow without particles, Squire [1933] had shown

that for every three-dimensional perturbation mode satisfying the stability equations,

there exists a corresponding two-dimensional perturbation mode at a lower Reynolds

number, displaying the same growth rate. Saffman [1962] had shown that Squire’s theorem

applies in the case of a dusty channel with uniform particle loading. If we substitute

(α2 + β2) = α2
2D, αR = α2DR2D, and uy/α = uy,2D/α2D into the aforementioned equations

(2.19) and (2.20), these equations become equivalent to those of a two-dimensional system

with the wave number denoted as α2D, the Reynolds number as R2D and the velocity

eigenfunction uy,2D. We thus show that Squire’s theorem may be extended to dusty

channels with inhomogeneous loading, including viscosity variation as well. Thus for

two-dimensional perturbations, these equations become (2.21) and (2.22). Therefore, while

a nonmodal study would require us to study three-dimensional perturbations, since our

purpose is to obtain linear instability at low Reynolds number, it is sufficient to perform

a two-dimensional calculation, by setting β = 0 in equation 2.15. In fact results for

any given three-dimensional single mode may be obtained directly from an equivalent

two-dimensional one by simple rescaling.

The two-dimensional equations for linear perturbations, after appropriate elimination

and reduction, can be written in terms of the perturbation streamfunction ψ(y) and the

perturbation viscosity µ(y) as:[
(U∗ − c)(D2 − α2)− U ′′

∗

]
ψ +D(Jf̄ ′ψ) =

1

iαR

[
µ̄(D2 − α2)2 + 2µ̄′D3 + µ̄′′D2

− 2α2µ̄′D + α2µ̄′′
]
ψ +

1

R

[
U ′D2 + 2U ′′D + U ′′′ + α2U ′]µ, (2.21)
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and

−(U − c)γµ+

[
− iαRSM2U ′f̄ ′ + (Mf̄)′

]
ψ = 0, (2.22)

where

U∗ ≡ U + Jf̄ , M =
1

1 + iα(U − c)SR
, J = (U − c)M, (2.23)

uy = −iαψ (2.24a)

ux = Dψ (2.24b)

vx = Mux − (M2SRU ′)uy (2.24c)

vy = Muy (2.24d)

The operator D is defined as D = d/dy, and a prime denotes a derivative in y of a

mean quantity. Note that vx and vy in equations (2.24c, 2.24d) can be expressed in terms

of ψ using equations (2.24a, 2.24b). The boundary conditions are:

ψ(y = ±1) = Dψ(y = ±1) = µ(y = ±1) = 0 (2.25)

For given mean flow U(y) streamwise wavenumber α, base particle loading f̄(y), particle

to fluid density ratio, and fixed Reynolds and Stokes numbers, equations 2.21 to 2.25

define an eigenvalue problem, which yields a spectrum of eigenvalues c and corresponding

eigenfunctions, (ψ(y), µ(y)). If even one eigenvalue has a positive imaginary part, i.e.,

cim > 0, we have an exponential growing mode.

In the limit of γ → ∞, we have µ̄ = 1 and µ = 0, so equation (2.21) becomes

[
(U∗ − c)(D2 − α2)− U ′′

∗
]
ψ + (Jf̄ ′)′ψ + (Jf̄ ′)Dψ =

1

iαR
(D2 − α2)2ψ (2.26)

and is now decoupled from equation (2.22). When there is no particulate suspension, we

have f̄ = 0, and the system (2.26) reduces to the well-known Orr-Sommerfeld equation[
U(D2 − α2)− U ′′ +

i

αR
(D2 − α2)2

]
ψ = c

(
D2 − α2

)
ψ. (2.27)

In the case of a homogeneous suspension (f̄ = constant) along with γ → ∞, the system

reduces to that of Saffman [1962].
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2.2.3 Balance of perturbation kinetic energy

Whenever the flow is unstable, there is an exponential increase in perturbation kinetic

energy. It is useful to derive the positive and negative contributors to this quantity. To do

this, we multiply the linear equations for the fluid flow (in û) and for the particulate flow

(in v̂), given as equations (2.11) and (2.13), by the respective complex conjugates û∗ and

v̂∗. Upon averaging over a wavelength in the streamwise direction, we derive the evolution

of perturbation kinetic energy Ê to be described by

∂t

∫
Ê dV =−

∫
∂Ui

∂xj
ûiû

,
jdV − 1

R

∫
µ̄ |∂iûj|2 dV

−
∫
f̄
∂Ui

∂xj
v̂iv̂jdV − 1

SR

∫
f̄ |ûi − v̂i|2 dV

− 1

R

∫
∂2µ̄

∂xj∂xi
ûiûjdV − 1

R

∫
∂Uj

∂xi
µ̂(∂jûi + ∂iûj)dV

(2.28)

where

Ê =
1

2
(û2i + f̄ v̂2i ), (2.29)

and V indicates a volume of fluid extending from wall to wall and over one perturbation

wavelength in the streamwise direction. We then introduce the normal-mode forms of

the perturbations, given by equation (2.15), into equation (2.28), and average over the

streamwise direction x, to get

2αcim

∫
E dy =− 1

4

∫
∂Ui

∂xj

(
uiu

∗
j + u∗iuj

)
dy − 1

2R

∫
µ̄ |∂iuj|2 dy

− 1

4

∫
f̄
∂Ui

∂xj

(
viv

∗
j + v∗i vj

)
dy − 1

2SR

∫
f̄ |ui − vi|2 dy

− 1

4R

∫
∂2µ̄

∂xj∂xi

(
u∗iuj + uiu

∗
j

)
dy

− 1

4R

∫
∂Uj

∂xi
{µ(∂ju∗i + ∂iu

∗
j) + µ∗(∂jui + ∂iuj)}dy

≡
∫

(W+ −W− +Wp+ −Wp− +Wµ,1 +Wµ,2)dy,

(2.30)

where

E(y) =
1

4
(ui(y)

2 + f̄vi(y)
2), (2.31)

and W+(y) and W−(y) respectively are the production and dissipation of perturbation

kinetic by the fluid, while Wp+(y) and Wp−(y) respectively give the production and

dissipation of perturbation kinetic energy of the particles. The last two terms Wµ,1 and

Wµ,2 arise due to viscosity stratification.
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Figure 2.3: Validation for the case of uniform particle loading, in the form of neutral
stability curves, with f̄ = 0.05, S = 5× 10−5, and S = 2.5× 10−4. Symbols correspond
to Klinkenberg et al. [2011], while solid lines are from present computations. The region
within the curves is unstable. The black dotted vertical line marks the minimum Reynolds
number for S = 5 · 10−5 at which instability is seen, termed the critical Reynolds number
Rcrit.

2.2.4 Numerical method

We employ the Chebyshev spectral collocation method to discretize the system given by

equations 2.21 to 2.25 at n discrete points in the domain. The Chebyshev collocation

points, defined as yCheb,j = cos[πj/(n−1)], j = 0, 1, 2, 3, ...., n−1, are naturally clustered

close to the walls. Such a discretisation would resolve the near-wall region well, where

variations are large. But, for a small number of collocation points it would leave the

particle layer, where too variations are large, not well resolved. In order to get results

insensitive to the number of collocation points, we employ a stretching function to cluster

a sufficient number of grid points into the particle-laden layer. Such a stretching function

was used in Govindarajan [2004] in a different context, and works well in the present

situation as well. It is given by

yj =
a

sinh (byb)
[sinh {(yCheb,j − yb) b}+ sinh (byb)] , (2.32)

where

yb =
1

2b
log

[
1 +

(
eb − 1

)
a

1 + (e−b − 1) a

]
is a constant, a signifies the location around which clustering is desired, and b serves to

determine the level of clustering. Once written in discrete form, each boundary condition
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may be applied by replacing one row of the discrete system appropriately. To solve

equation (2.26) after discretisation, we utilize the LAPACK FORTRAN package. For our

all simulations, we use n = 81, and verify our answers with n = 121. At this resolution,

the results are insensitive to the number of grid points, as well as to whether stretching is

employed or not. But stretching improves the physical appearance of the eigenfunctions.

Since the chosen mass fraction profile corresponds to the clustering of particles in the

vicinity of y = ±ap, we select a to be equal to ±ap and set b to the value of 2 or 4 in

equation (2.32). We obtain eigenvalues correct to five decimal places for the most part,

and at least to four places everywhere. At Stokes number of 10−2 or higher, however, the

accuracy drops to three decimal places, and we do not venture into this regime to make

our conclusions.

To validate our approach, we first perform computations using a uniform particle

profile across the channel. Figure 2.3 shows neutral stability boundaries provided by

Klinkenberg et al. [2011], compared to present computations. The agreement is excellent

for two different particle Stokes numbers as well as for the clean channel. The mode of

instability which appears in all these cases is the traditional Tollmien-Schlichting (hereafter

TS) instability, which is modified by the introduction of particles.

We are now in a position to study the instability mechanism. In the following section

we derive a minimal equation set which allows us to highlight the basic physics.

2.3 A minimal composite theory for particulate shear

flow stability

It is useful to begin this section by defining the critical layer, since the physics therein

dominate this discourse. It is a relatively thin layer centered around the critical point

yc in the channel, where the mean-flow velocity is the same as the phase speed of the

dominant normal-mode perturbation, i.e., U(yc) = c [Lin, 1945a,b, 1946]. The particle

layer on the other hand, as seen from equation (2.6), is centered around y = ap. If yc

and ap are in close proximity, such that both layers overlap, we term it as the ‘overlap’

condition, and when these layers are distinct and well-separated, we term it a ‘non-overlap’

condition. The channel comprises the critical layer, the wall layer, the particle laden layer

and the inviscid outer layer; and different physics can appear in each. The first three are

shown schematically in figure 2.4, under overlap and non-overlap conditions. The need for

asymptotic analyses in the different layers is motivated below.

In the dilute particle limit, whether or not the particles are far denser than the fluid, it

can be worked out that the viscosity variation terms will not enter the dominant balance,

so we may work with the single equation 2.26.
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(a) (b)

Figure 2.4: Schematic of layers within which there are rapid variations in one or more
physical quantities. The perturbation stream function ψ and the perturbation suspension
velocities vx and vy display critical layers of thickness ϵ and δ respectively around y = yc.
Additionally, the swift transition in the suspension mass fraction profile occurring at y = ap
within a small region characterized by size σ is seen. This depiction shows only the top
half of the channel; the other half being symmetric. (a) condition where the layers are
distinct, (b) overlap condition.

2.3.1 Motivation

We saw in figure 2.3 that in the case of constant particle loading, the TS mode of instability

is modified by particles. Even with non-uniform particle loading, under non-overlap

conditions, the same is observed. On the other hand, under overlap conditions, the picture

is very different, and an example is shown in figure 2.5. Here the TS mode is seen as a minor

blip on the right of the figure. Two other modes of instability are now seen, which occur at

much lower Reynolds number. The fact that these modes are distinct from the TS mode

is evident from the separate regions in α−R space they occupy. To distinguish between

them, the two lower Reynolds number modes of instability will be termed shortwave and

longwave respectively, while remembering that the so-called shortwave mode actually has

perturbation wavelengths of O(1), i.e., comparable to the channel width (a wavelength of

α = 1 is 2π times the half-width). The longwave modes extend from O(1) to far lower

wavenumbers. The shortwave mode of overlap instability occurs over the smallest Reynolds

numbers, ranging from a few hundreds to a few thousands, while the longwave mode spans

decades in the Reynolds number, with the instability Reynolds number and the typical

wavelength increasing together. In the following section we show that both of these are

overlap modes of instability, caused by the variation of particle concentration within the

critical layer. In section 2.3.3 we perform a similar analysis for the wall layer.

In explaining the mechanism for the low Reynolds number instabilities, we may pursue

one of two approaches. For both of them, we must begin by deriving the dominant

balance in the critical layer. Once we have the lowest order equations in the critical layer,
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Figure 2.5: The three distinct modes of instability, shown by the shaded regions. A specific
choice of parameters is made here, where overlap conditions prevail: the peak of the mean
particle concentration profile has an amplitude fmax = 0.70, and is positioned at ap = 0.75.
The thickness of the particle-layer is σ = 0.1 and the Stokes number is S = 8× 10−4. This
figure is representative of a wide range of parameters under overlap conditions. The points
marked S, L and T are representative of shortwave, longwave and Tollmien-Schlichting
modes respectively, and will be elaborated on.
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we could solve the equations in the inner (critical) layer, and perform a matching with

the outer layer (inviscid) solutions to obtain the full solutions. But this would yield no

extra information, since we can already solve the full solutions. We therefore follow a

second approach: of writing down a minimal composite theory for particulate shear flow.

This theory [Narasimha and Govindarajan, 2000, Govindarajan and Narasimha, 2001,

Bhattacharya et al., 2006] will obtain a reduced set of equations describing the stability

problem. The reduced equations will contain all terms in the complete stability equations

(2.55) which participate in the dominant balance somewhere in the flow, and none of the

terms which do not participate in this anywhere.

2.3.2 Dominant balances in the critical layer

We first summarise existing knowledge in the context of a clean fluid, and then derive

dominant balances within the critical layer in particulate shear flow.

In the Orr-Sommerfeld equation (2.27) for a clean fluid, it is seen that the highest, i.e.,

fourth-order, derivative term in y is scaled by the inverse of the Reynolds number. Now

even if the Reynolds number approaches infinity, this term may not be dropped, because

if it is, we will not be able to satisfy all four boundary conditions associated with equation

(2.27). This is thus a classical singular perturbation problem [Van Dyke, 1964], where

the highest derivative term becomes as big as the terms on the left-hand side in some

portions of the flow. There are two layers [Lin, 1945a,b, 1946] where viscous effects are

important and gradients are large: the wall layer, of thickness ϵw ∼ R−1/2, and the critical

layer, of thickness ϵ ∼ R−1/3 where, as defined above, U ∼ c. It is the latter which is of

primary interest to us to explain the mechanism of the overlap instabilities. To perform

a similar analysis for particulate shear flow, we limit ourselves here to the regime where

RS ∼ O(1), which is reasonable for dilute particle suspensions at high Reynolds number.

A similar analysis may be carried out for any order of magnitude of this quantity. There

are three layers we pay attention to on each side of the centreline, and these are shown

in Fig. (2.4) for one half of the channel. There is also a wall layer shown, which will be

discussed separately in section 2.3.3. There are now two critical layers: for the fluid and

for the particle flow, of thickness ϵ and δ respectively, and the layer where the particles

are concentrated, of thickness σ, which is pre-specified. The scales ϵ≪ 1 and δ ≪ 1 are

as yet unknown, and will be determined below. Fig. (2.4a) is a schematic for conditions

where the particle layer and the critical layer are distinct, which we shall refer to as the

non-overlap condition, and Fig. (2.4b) depicts the overlap condition.

We derive equations within the critical (inner) layer in the inner variables ξ and λ,

defined as

ξ =
y − yc
ϵ

, and λ =
y − yc
δ

(2.33)
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and will select ϵ and δ to ensure that the derivatives of the fluid velocity components in ξ

and the particle velocity components in λ are O(1). In addition, it is useful to define

χ =
y − ap
σ

. (2.34)

To derive the dominant balances we write the relevant variables in the form of series

expansions within the critical layer as

uy =
∞∑
n=0

ϵnuy,n(ξ), vy =
∞∑
n=0

δnvy,n(λ) and vx =
∞∑
n=0

δnvx,n(λ). (2.35)

In this layer the mean flow may be written in the following expansion:

U(y)− c = (y − yc)U
′

c +
(y − yc)

2

2
U

′′

c + · · · . (2.36)

The relative magnitudes within the critical layer of the two components of flow can be

established from the continuity equation. We have

∞∑
n=0

ϵn
[
iαux,n +

1

ϵ
Dχuy,n

]
= 0. (2.37)

Constructing hierarchies of equations of different powers of ϵ yields

uy,0 = 0 (2.38)

and shows that the coefficient of a particular power of ϵ in ux is related to that which is

one order higher in uy. This is in fact a natural consequence of incompressibility. For the

particle field, from the equation (2.24), and using equations (2.35) and (2.36), we get[
U − c− i

αSR

]
vx = i

U ′

α
vy +

1

α2SR
Duy. (2.39)

At the next two orders, using equation (2.39) as well as the incompressibility condition

Dξuy,1 = −iαux,0 in the critical layer, we get

vx,0 = ux,0, vx,1 =
ϵ

δ

{
i

α
Dξuy,2 − iαSRU

′

cξvx,0

}
− SRU

′

cvy,1. (2.40)

This yields δ ∼ ϵ, and without loss of generality, we choose δ = ϵ. The critical layer

thickness as perceived by the fluid and the particles is thus identical.

Using the third row of the matrix equation (2.26) along with equations (2.35) and
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(2.36), and collecting terms at the lowest order in the expansion, we obtain

vy,0 = uy,0, (2.41)

which we know to be 0 from equation (2.38). In other words, the expansions for the normal

velocity components for the particles too begin one order higher than the streamwise

component. At the next two orders, from the equation (2.24)[
U − c− i

αSR

]
vy = − i

αSR
uy (2.42)

we get

vy,1 = uy,1, and vy,2 = uy,2 − iαSRU
′

cξvy,1. (2.43)

From equations (2.35), (2.40), and (2.43), we can see that the components of v and u differ

from each other only at order ϵ relative to their largest value in the critical layer. This

is consistent with the expectation that the particle velocity field must closely follow the

fluid velocity field for low Stokes numbers. This analysis yields a measure of the difference

between the two.

Finally, we may derive the dominant balance for fluid velocity in the critical layer from

the equation (2.24), along with (2.35) and (2.36), and the Taylor expansion

f̄ =

f̄c + (y − yc)f̄
′
c +

(y−yc)2

2
f̄ ′′
c + · · · , overlap case

f̄c, non-overlap case
(2.44)

and under overlap conditions we may rewrite this in the relevant variable χ. Now there

are different choices possible for the small parameters. We therefore apriori retain all

terms which may participate in the dominant balance, and after some algebra obtain the

following composite lowest-order equation[
(1 + f̄)ξU ′

cD
2
ξ + i

1

αRϵ3
D4

ξ −
ϵ

σ
U ′
c(Dχf̄)(I − ξDξ)

]
uy,1 = 0, (2.45)

where I is the identity operator. We will have one of the following four distinct cases

arising. Case 1 includes the non-overlap case, while the others are for overlap conditions.

Case-1: Either the particle layer and critical layer are well separated, or they overlap, but

1 ∼ 1
αRϵ3

≫ ϵ
σ
, i.e., the size of the particle layer significantly exceeds that of the critical

layer. The third term in equation (2.45) now becomes negligible and in both cases this

equation simplifies to: [
−iU ′

cξD
2
ξ +D4

ξ

]
uy,1 = 0. (2.46)

The balance, with ϵ = αR−1/3, is identical to the case with no particles, for the following
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reasons. When the particle layer and critical layer are well separated, the mass fraction f̄

and its derivative (Dχf̄) / σ practically negligible or much less than O(1) in the critical

layer, regardless of how small the particle layer σ is.

Case-2: 1 ≪ 1
αRϵ3

∼ ϵ
σ
, i.e., the particle-laden layer is markedly smaller than the

critical layer. The scaling that emerges is ϵ ∼ ( σ
αR

)1/4, and upon replacing ∼ by equality,

equation (2.45) simplifies to:

[
D4

ξ + i
{
(Dχf̄)cU

′
c

}
(I − ξDξ)

]
uy,1 = 0. (2.47)

The variation in particle concentration is as important as the largest viscous effects in the

critical layer.

Case-3: 1 ∼ ϵ
σ
≫ 1

αRϵ3
. The size of the particle layer is comparable to that of the

critical layer, and the critical layer is much wider than that dictated by the scaling on

the inverse Reynolds number. This case is a mathematical possibility, but is unlikely to

occur physically, since the critical layer at large Reynolds will normally be influenced by

the Reynolds number, and become thinner as Reynolds number increases. Under these

hypothetical conditions, viscous effects appear only at higher order, since equation (2.45)

simplifies to: [
(1 + f̄)ξU ′

cD
2
ξ − (Dχf̄)U

′
c(I − ξDξ)

]
uy,1 = 0, (2.48)

where we have set ϵ = σ.

Case-4: 1 ∼ ϵ
σ
∼ 1

αRϵ3
. The size of the particle layer is comparable to that of the critical

layer, and viscosity plays a significant role as well. Equation (2.45) now becomes

[
U ′
c(1 + f̄)ξD2

ξ + iD4
ξ − κ(Dχf̄)U

′
c(I − ξDξ)

]
uy,1 = 0, (2.49)

Here, we define ϵ = (αR)−1/3 and ϵ
σ
≡ κ.

Equation (2.49) completely describes the critical layer for the thickness σ we consider.

Cases 2 to 4 correspond to overlap conditions, and the variation of the particle concentration

within the critical layer, estimated by Dχf̄ is an important player in the critical-layer

balance, altering it fundamentally. We have thus established that the concentration profile

will alter the fundamental nature of shear flow instability, only under overlap conditions.

This effect would be absent with uniform particle loading, where only under case 4, we

will have a factor (1 + f̄) which merely rescales the Reynolds number.

2.3.3 Dominant balance in the wall layer

In shear flows, the critical and wall layers are often not well-separated, and the overlap

mode of instability presents such a case. We conduct the exercise below only to confirm

that wall effects are not bringing in new physics into the instability. As before we define
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inner variables

ξ =
y − yw
ϵw

, and λ =
y − yw
δw

(2.50)

where yw = ±1 are the wall locations. Also, we have Uw ≡ U(yw) = 0 and U
′
w ≡ U ′(yw).

We expand the variables in the form

uy =
∞∑
n=0

ϵnwuy,n(ξ), vy =
∞∑
n=0

δnwvy,n(λ) and vx =
∞∑
n=0

δnwvx,n(λ). (2.51)

At the lowest order, uy,0 = 0, and vy,0 is proportional to this quantity and thus vanishes.

At the next order, after some algebra, we obtain the scaling δw = ϵw, and we can use

the incompressibility condition Dξuy,1 = −iαux,0. Additionally, we have the following

equations:

vx,0 =
ux,0

1− iαcSR
, (2.52)

vx,1 =
ux,1

1− iαcSR
−

(
SRU ′

w

1− iαcSR

)
vy,1, and vy,1 =

uy,1
1− iαcSR

. (2.53)

We can express the dominant-balance composite equation for the flow as follows:[
−c

(
1 +

f̄

1− iαcSR

)
D2

ξ + i
1

αRϵ2w
D4

ξ −
ϵw
σ

(
cDχf̄

1− iαcSR

)
Dξ

]
uy,1 = 0 (2.54)

The structure of equation (2.54) in the wall layer is the same as (2.45) in the critical

layer. There are changes in the coefficients, which change the scaling of ϵw to be (αR)−1/2.

Again, when ϵw ∼ σ, along with significant overlap of the wall layer and the particle layer,

the first derivative of the particle concentration profile is among the biggest terms at the

lowest order. In our range of study, the wall layer is always very thin and well-separated

from the critical layer. All three terms are important when ϵw ∼ (αR)−1/2. In our

investigation, we always positioned the particle layer at a considerable distance from the

wall layer. Consequently, the mass fraction f̄ and its derivative become negligible in the

wall layer, and the dominant balance (2.54) is unaffected by the presence of particles.

2.3.4 Construction of the minimal composite theory

In the rest of the channel, a particle-laden counterpart of the Rayleigh equation, where

all viscous effects are neglected in the stability operator, is valid. We now construct a

reduced equation which includes every term in the complete equations (2.26) from which

any of the dominant terms in the three layers originates, and neglects all other terms.

The final minimal composite equation is

[
(U∗ − c)(D2 − α2)− U ′′]ψ − (J ′f̄ ′)ψ + (Jf̄ ′)Dψ =

1

iαR
D4ψ, (2.55)
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with, as before,

U∗ ≡ U + Jf̄ J ≡ U − c

1 + iα(U − c)SR
. (2.56)

The terms that are not included in the above equation compared to the full equation

(2.26) are: −J ′′
f̄ψ − (1/iαR)(−2α2D2 + α4)ψ, apart from all the viscosity stratification

effects which vanish from the minimal physics in a dilute suspension. This is because the

derivative of the mean viscosity is O(fmax/[γσ]), which is small for a dilute suspension.

Moreover, since J is a function of y, we see that (2.55) represents a significant reduction

of the complete stability operator. It comprises the inviscid stability operator of Rayleigh

and the highest order derivative in the viscous operator. For a constant particle loading,

the only effect due to particles would come from the modified effective mean flow profile

U∗. Besides these, terms appear are due to variations in the particle concentration profile

which are critical. Note importantly that the minimal equation does not reduce to the

Orr-Sommerfeld equation in any limit.

It remains to be seen whether the essential physics is contained in the minimal composite

equation. The best parameter to make this explicit is the location, ap, of the maximum in

particle concentration. In figure 2.6 we show how the critical Reynolds number (the lowest

Reynolds number for instability), Rcrit, changes with ap. The purple line with particles

represents the full solution to equation (2.26), whereas the black line is the solution of the

minimal composite equation (2.55). As ap increases, the particle-laden layer shifts towards

the wall. We see that below ap ∼ 0.6, there is a continuous increase in the critical Reynolds

number. But beyond this, we see a sudden and large drop in Rcrit, going down to values

less than half of that a clean channel (Rcrit = 5772.2). At large ap, however, i.e., when

the particle-laden layer is very close to the wall, the trend is reversed again and a large

stabilization is seen. The complete trend is captured by the minimal composite equation,

although, as is to be expected, the agreement with the full solution is only qualitative.

The sensitivity of the critical Reynolds number with the location of the particle-laden

layer is now seen to have its root in the dynamics within the critical layer of the dominant

disturbance. The critical layer is shown in the inset of figure 2.6, as a function of a0. A

notional thickness of R−1/3 is shown in this sketch. Shown in the same figure is the linear

movement of the particle-laden layer with ap. The large changes in stability occur in the

regime of ap when the two layers overlap. A major portion of the disturbance kinetic

energy is known to be produced within the critical layer in clean channel flow. We shall

see that this is true of particulate flow too. Note that the wall layer (also shown in the

figure) is unimportant in the dominant balance. A sufficiently steep gradient in the number

density gives rise to these new types of instabilities, as illustrated in figure (2.7).
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(a)

(b)

Figure 2.6: With a specified amplitude of fmax = 0.1, a peak width of σ = 0.1 for the mass
fraction profile, and a Stokes number of S = 2.5× 10−4, the purple curve and the black
curve in (a) illustrate the critical Reynolds number as a function of the position of the
peak, ap of the mass fraction profile for the full equation (2.26) and the minimal equation
(2.55) respectively. The green, black, and red bands in (b) illustrate the notional critical
layer, the wall layer, and the particle-laden layer, respectively, as they vary with ap.
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Figure 2.7: The critical Reynolds number is very sensitive to size of the particle layer.
The parameters for this plot are fmax = 0.1, S = 2.5× 10−4, and ap = 0.75.

2.3.5 Summary of instability features in the overlap and non-

overlap contitions

Before we discuss the energy budget, we summarise some additional features of the modes

of instability. The maximum, fmax, in the particle concentration and the thickness, σ, of

the particle-laden layer, have a quantitative, rather than qualitative, effect. We fix σ at

0.1.

Figure 2.8 (a) and (b) summarise the variation of the critical Reynolds number (given

in colour with contour lines) with the Stokes number and the particle loading. We examine

two situations: at ap = 0.4, where the overlap mechanism is not in operation, and at

ap = 0.75, where it is. It is evident that both in quality and quantity the two situations

are very different. Under non-overlap conditions, i.e., where the particle-laden layer lies in

a different part of the channel from the critical layer (figure 2.8(a)), we see stabilization as

particle loading is increased. The stabilisation is enormous in some portions of the regime,

with the critical Reynolds number being extremely sensitive to either the particle loading

or the Stokes number or both. The qualitative dependence of the critical Reynolds number

on Stokes number is essentially the same as that for uniformly distributed particles shown

in Fig.(2.3) and in Fig.(1) of Rudyak et al. [1997]. At low Stokes number, the particles are

sufficiently small that they follow the fluid motion closely. In this regime, they mainly act

to increase the effective density of the suspension, so the decrease in the critical Reynolds

number relative to the clean flow is minimal. For moderate Stokes number, particle–fluid

coupling becomes significant and the drag dissipation increases, leading to a rise in the

critical Reynolds number. At high Stokes number, the particles are large and barely

interact with the flow, and therefore the critical Reynolds number approaches that of the
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(a) (b)

(c)

Figure 2.8: Phase plot of the critical Reynolds number, shown in colour, in (a) and
(b) as a function of the Stokes number S and the particle loading strength fmax, and
in (c) as a function of the particle loading location ap, and fmax. (a) A case where
there is no overlap mechanism in operation, with ap = 0.40, and (b) where it is in
operation, with ap = 0.75. Note the difference in the colourbars in the two figures. In
both figures σ = 0.1, and the blue lines represent curves of constant particle number
density N . The value of N decreases from left to right, with the non-dimensional quantity
9
√
2H3N

√
ρf/ρp being [1.00× 107, 4.42× 105, 1.40× 104, and 1.25× 103] for plot (a), and

[1.00× 107, 8.94× 105, 1.12× 105, and 3.95× 104] for plot (b). The other parameters in (c)
are the same as in Figure(2.6). The green curve serves as a visual guide for observing the
sharp change in the critical Reynolds number due to a change in the mode of instability.
Some jitter in the colours is visible, and is due to the interpolation of results on a finitely
spaced grid.
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clean fluid. We now turn to figure 2.8(b), where completely the opposite trend is seen in

response to increase in loading. For small to moderate Stokes number, with increase in

loading, the flow is highly destabilised, with a sharp drop in critical Reynolds number. At

high Stokes number, we see a reduction in the effect of particle loading, and a stabilization

this time. The reason for this non-monotonicity could be as follows. Holding fixed the

mass fraction fmax of particles, as we increase the Stokes number, we are increasing the

size of individual particles (from equation 2.8 we see that the particle radius r scales as

the square-root of the Stokes number) and therefore reducing the number of particles.

Thus, beyond a certain Stokes number, the forcing of the fluid by the particles comes

down, and so does the effect of particle loading. We can check the consistency of this

argument by examining the effect of Stokes number and mass loading on stability while

holding the number density N in equation (2.5) constant. Representative lines of constant

N are shown in figure 2.8. Following these lines from low S and fmax upwards, we again

see different trends under overlap and non-overlap conditions. When the critical and

particle-laden layers are distinct (figure 2.8(a)), and the particle number density is low

(the two blue lines to the right of the figure), under non-overlap conditions, the critical

Reynolds number is practically insensitive to changes in Stokes number and loading, i.e.,

the lines of constant N appear parallel to lines of constant Rcrit. This indicates that at

small particle number density the critical Reynolds number is practically a function of N .

At higher number densities (the two blue lines to the left of the figure) we see a strong

stabilising effect with increase in S while N is held constant. This is in sharp contrast to

the stability response under overlap conditions, where we see that the effect of increasing

Stokes number (and at the same time, mass loading) and constant N is monotonically

and strongly destabilising.

Figure 2.8 (c) shows the variation of the critical Reynolds number with ap and fmax.

A sharp contrast between the high critical Reynolds numbers of the TS mode and the far

lower ones of the overlap mode is evident. At higher levels of fmax the critical layer moves

away from the wall, and Rcrit attains values as low as 200 in this range.

Figure 2.9 shows the dependence of the neutral boundaries on fmax and ap. A similar

figure appears in Rudyak and Isakov [1996] as well. The longwave mode is absent for

smaller particle loading. The longwave mode is odd in uy whereas the shortwave and

TS modes are even. The two even modes can go through merging bifurcations, as seen

in figure 2.9(b) at ap ∼ 0.695. After merger it is not easy to distinguish the boundary

between the TS and the shortwave modes. The entire range of ap shown in this figure is

small, underlining the sensitivity of the stability boundaries to this parameter. The even

and odd overlap modes do not merge, but instead show a region of intersection, while

each mode retains its character. They may always be distinguished by stipulating for

the desired centerline conditions in the numerics. The longwave instability is particularly
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(a)

(b)

Figure 2.9: (a) Stability boundaries for different amplitude of particle loading, with
ap = 0.75 and S = 8× 10−4. (b) Sensitive dependence of the stability boundaries on the
location ap of the particle concentration peak. Here fmax = 0.4, S = 2.5 × 10−4, and
σ = 0.1. The shortwave overlap mode undergoes a merger with the TS mode just past
ap = 0.695. Also there is significant intersection between the longwave and shortwave
modes.
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(a) ûx(x, y) (b) ûy(x, y)

(c) v̂x(x, y) (d) v̂y(x, y)

Figure 2.10: Typical eigenfunctions of the TS mode in the x− y plane. This mode depicts
point ‘T’ in figure 2.5 at R = 14000, α = 1.0. A streamwise extent of two wavelengths is
shown here and for all following eigenfunctions.

(a) ûx(x, y) (b) ûy(x, y)

(c) v̂x(x, y) (d) v̂y(x, y)

Figure 2.11: Typical eigenfunctions of the shortwave mode shown at point ‘S’ in figure 2.5,
where R=1000, α = 1.6.

interesting because in channel flows, the most unstable perturbations are widely believed

to be those which are even, with a maximum at the centreline, in the normal perturbation

uy. This assumption is so widespread that instability computations are often performed

in the half-channel by imposing this symmetry at the centreline. Note that we use the

terminology ‘odd’ mode going by the normal perturbation uy.

The very fact that the longwave mode is odd and the shortwave even means that their

eigenfunctions are completely different in character, as seen in figures 2.10 to 2.14. The

eigenfunctions have been normalised to set the maximum value of the stream function

ψ to unity. The shortwave instability in Figure 2.11 exhibits much stronger streamwise

velocity fluid perturbations compared to the TS mode throughout most of the channel,

except in a narrow region where the TS streamwise velocity perturbations are pronounced.

Also the near-wall structure of the streamwise velocity presents a distinct, wider and

more symmetric reverse arrowhead shape than the TS. The eigenfunctions in the particle

perturbation velocity components are strikingly different in the shortwave and the TS
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(a) ûx(x, y) (b) ûy(x, y)

(c) v̂x(x, y) (d) v̂y(x, y)

Figure 2.12: Characteristic eigenfunctions of the shortwave mode, obtained from the
minimal composite equation (2.55) using identical parameters as those employed for Figure
2.11.

(a) ûx(x, y) (b) ûy(x, y)

(c) v̂x(x, y) (d) v̂y(x, y)

Figure 2.13: Typical eigenfunctions of the longwave mode, at point ‘L’ in figure 2.5, where
R=3000, α = 0.6.

(a) ûx(x, y) (b) ûy(x, y)

(c) v̂x(x, y) (d) v̂y(x, y)

Figure 2.14: Characteristic eigenfunctions of the longwave mode obtained from the minimal
composite equation (2.55) using identical parameters as those employed for Figure 2.13.
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(a) (b)

Figure 2.15: Contributions to the perturbation kinetic energy balance at a Reynolds
number of 1000 and a streamwise wavenumber of α = 1.56, with fmax = 0.30, σ = 0.1 and
S = 2.5 ∗ 10−4. The kinetic energy production W+ due to the fluid is net negative in (a),
where ap = 0.40, but net positive in (b) which is under overlap conditions, with ap = 0.75.
The kinetic energy production has a noticeable contribution within the critical layer from
particles, Wp+, in (b) but not in (a). The dissipation W− in the flow is similar in the two
figures. The location y = yc is shown by the dashed pink lines.

modes. In the shortwave mode, the particle dynamics is seen to follow the dynamics of

the fluid, especially as seen in the streamwise velocity components. The normal velocity

component is more peaky for the particles and more rounded for the flow. In contrast,

the particles in the TS mode show a thinner region of strong streamwise velocity, but

their wall-normal velocity is everywhere weak. The fact that the relevant portions of the

eigenfunction profiles are thicker for the shortwave than for the TS mode is a consequence

of the lower Reynolds numbers in the former, and we expect this from our critical-layer

analysis above. For the shortwave mode, we compare the eigenfunctions from the full

solution in figure 2.11 to those from the minimal composite equation in figure 2.12. Though

the arrowhead shape is now distorted, the overall similarity in the eigenfunction structure

between the two is striking. This is strong visual evidence that the dominant physics is

contained in the minimal composite theory.

The eigenstructure of the longwave instability is shown in figure 2.13 from the full

equation. Again the eigenfunctions from minimal composite theory, given in figure 2.14,

are strikingly similar to those of the complete solution. The energy budgets in the following

section will be rendered very surprising, given how different the odd and even modes are

in their eigenstructure.
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(a) (b)

Figure 2.16: Comparison of contributions to the energy budget in the odd mode (a) at
point ‘L’ in figure 2.5, where R = 3000 and α = 0.6, with that of the even mode (b)
at point ‘S’ in figure 2.5, i.e., R = 1000 and α = 1.6. In both, fmax = 0.70, σ = 0.1,
S = 8 × 10−4, and ap = 0.75. Both of these modes are unstable, with net production
beating dissipation by a small amount.

2.4 Energy production and the critical layer

Figure 2.15 shows the profiles across the channel of the four quantities that contribute

to the growth of perturbation kinetic energy, written down in equation 2.30. In the

heavy particle limit, the two quantities Wµ1 and Wµ2 are zero. The parameters are all

identical in figures 2.15(a) and 2.15(b), except for ap, which corresponds to non-overlap

conditions in (a) and overlap conditions in (b). The quantities plotted, when combined

in the form given in equation 2.30, and integrated over y across the channel, in case (a)

give a negative number, i.e., the perturbation is highly damped, whereas this results in a

positive number in case (b), indicating an exponentially growing mode. The dissipation

quantities W− and Wp− are positive definite by definition. The striking difference between

the two figures is in the production of perturbation kinetic energy by the fluid (W+). In

the non-overlap case, the net production is clearly negative, i.e., W+ is feeding back kinetic

energy from the perturbations to the mean flow, and contributing to the decay of the

perturbations. Under overlap conditions on the other hand, the production is sharply

peaked and positive in the critical layer, leading to the instability. Thus we establish

that moving the the particle-laden layer from non-overlap to overlap conditions has a

remarkable effect on the solutions to the linear stability problem. Also noticeable is that

under non-overlap conditions, there is effectively no contribution to energy production

from the particles, i.e., Wp+ is too small to matter. But in the overlap case, particles

contribute directly to the instability as well as by triggering the fluid production. In both

cases, Wp− is small, and concentrated in the particle-laden layer, while in both cases the

fluid dissipates perturbation kinetic energy primarily near the walls (see W−), i.e., displays
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Figure 2.17: Neutral boundaries of the shortwave and longwave modes of instability for
various density ratios ρp/ρf = 2.5γ. All other parameters are as in figure 2.5, where we
had γ → ∞.

classical behaviour.

Figure 2.16, comparing the energy budgets of the odd and even mode of overlap

instability, holds a surprise. Note that by equation (2.30) this plot is constructed entirely

from the eigenfunctions depicted in figures 2.11 and 2.13. The eigenfunctions are completely

different in structure, but the energy budgets are very close to each other. Closer observation

reveals that the two eigenfunctions are indeed very similar in the neighborhood of the

critical and wall layers, which explains the similarity in the production and dissipation.

This finding begs the question of the possibility of different eigenstructures in the bulk in

different flows yielding critical-layer driven instabilities. We are not aware of any other

such situation in shear flows.

2.5 Viscosity stratification

Thus far we have worked in the heavy particle limit, where the mass fraction is finite

and the volume fraction of the particles is negligible. We now relax this, and impose a

finite particle to fluid density ratio, thereby allowing viscosity to vary in accordance with

equation (2.9). The stability equation (2.21) is now applicable, and the mean flow profile

U(y) is given by:

(µ̄U ′)′′ = 0, (2.57)
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(a) (b)

Figure 2.18: Energy budget for γ = 15. Profiles of the quantities in equation 2.30 are
shown. (a) R=1000, α = 1.6, see point ‘S’ in Fig. 2.17, and (b) R=3000, α = 0.6, i.e.,
point ‘L’ in that figure. At this γ, both ‘S’ and ’L’ are still unstable.

with the boundary conditions U(±1) = 0, and U(0) = 1. The effect on the neutral

boundaries of the viscosity variation is seen in Fig. 2.17 to be uniformly stabilizing in this

flow, with both stability boundaries shrinking significantly as γ is decreased. The longwave

mode vanishes below γ = 10, while a small region of instability persists in the shortwave

mode up to γ = 3.4. The maximum particle volume fraction we have considered occurs for

this γ, which is 8 percent at the maximum in the particle layer and lower elsewhere. We

ask why this large change happens, since in the critical layer analysis told us that viscosity

stratification should not enter the dominant balance at these modest volume fractions.

The energy budget for the two modes S and L, which are unstable, is shown for γ = 15 in

Fig. 2.18. We note that the production is very similar to what is seen for no viscosity

stratification in Fig. 2.16. But there is practically no contribution from the viscosity

variation terms Wµ1 and Wµ2 . The change in stability is entirely due to the change in the

mean profile U .

2.6 Summary and outlook

For decades, shear flows have thrown up surprises in their stability behaviour, and the

different mechanisms of instability, though not easy to predict, are crucial to unravel. This

is an important reason why these flows are appealing to study. We have persevered to

show that the inclusion of particles in a Poiseuille flow is such a case, where we present

the mechanism of low Reynolds number instability.

We have shown that the response of the flow to non-uniform particle loading may be

divided into two broad categories that we term overlap and non-overlap conditions. Under

non-overlap conditions, the particle-laden layer lies at some distance from the critical layer,

59



where perturbation kinetic energy is produced, and particles do not significantly alter

this process. However, when there is an overlap between these layers, there is a dramatic

alteration of stability behaviour, with two modes of instability apart from the TS mode

appearing. The fundamental difference between overlap and non-overlap conditions is

starkly visible in Fig. 2.8 and has been discussed above. Though these modes have been

observed in one older study Rudyak et al. [1997] at constant viscosity, they had not been

explained before, to our knowledge. The shortwave overlap mode occurs at much lower

Reynolds number than the TS mode, and supports wavelengths of the order of the channel

width. The longwave overlap mode appears over a wide range of Reynolds numbers and

supports wavelengths which could be as small as the channel width but become longer and

longer with increasing Reynolds number. This mode is rather unusual in that it is odd in

the wall-normal component of the perturbation velocity. The three modes of instability

show regimes of distinct existence, and go through interesting intersections and mergers

with changes in parameters.

We derive the lowest-order critical and wall layer equations for particulate parallel

shear flow for dilute particle loading, and show how they differ from the classical equations

for clean flow. This is combined with an energy-budget analysis which brings out the

consequences for stability. The reason for the existence of two categories of behaviour

is shown to lie in the dynamics within the critical layer. Variations in the base particle

concentration within the critical layer significantly alter the production of disturbance

kinetic energy. The result is a large destabilisation for this loading profile under a range

of conditions. The wall layer is seen not to be a major player. To directly evaluate the

lowest-order physics, we derive a minimal composite equation, which contains all the terms

in the complete stability equations which contribute at the leading order somewhere in

the flow, i.e., in the outer, critical or wall layers. The wall layer contributes no additional

terms not present in the other two. The minimal composite equation is shown to contain

the essential physics of the overlap instabilities, in terms of trends in the critical Reynolds

number and indeed in the eigenfunction behaviour.

In the limit of heavy particles, the volume loading is negligible, so the viscosity is

constant. We then consider finite particle to fluid density ratios, where the volume loading

is finite but small. Now viscosity varies with particle concentration. The change in the

mean flow velocity profile effects a significant stabilisation, whereas the explicit viscosity

gradient terms are shown to be non-players in this case. Whether this is a consequence

of the special viscosity profile that our loading produces remains to be studied in the

future. This question is interesting because in the case of viscosity variations produced

by temperature or solute concentration, an overlap mode of instability was predicted by

Ranganathan and Govindarajan [2001], Govindarajan [2004] and seen in experiments such

as those of Hu and Cubaud [2018]. Related overlap physics can change the nature of
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turbulence and the transition to turbulence in heated flow [Giamagas et al., 2024].

The important next question therefore is whether the location of particle loading

can affect the transition to turbulence in shear flows. Non-modal linear effects might be

important for certain ranges of parameters in this process, and need further attention, in

the overlap and non-overlap regimes. Interestingly, when the Reynolds number is about

two thousand, nonhomogeneous loading shows exponential growth whereas homogeneous

loading [Klinkenberg et al., 2014] shows merely transient growth, indicating that the route

to turbulence in the two can be different. Direct numerical simulations are needed to

determine the route to turbulence and the possibility of multiple routes due to the different

modes of instability. Finally, any theoretical treatment of particulate flow is almost always

rife with assumptions whose validity needs to be established by detailed experiments.

The effects of geometry are not obvious either, and need investigation. For example, in

pipe flow experiments by Matas et al. [2003a,b], at small particle volume fraction, an

increase in volume fraction has a destabilising effect in a pipe, whereas for a channel we see

stabilisation. It is worth noting that pipe flow differs from channel flow in many aspects.

Notably, Squire’s theorem, which we have shown here to hold true for channel flow, is not

applicable there, so helical modes are often the least stable.
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Chapter 3

Horizontal channel flow with slowly

sinking particles

3.1 Description of the system and governing equations

This problem is an extension of the previous chapter, with the additional consideration of

gravity. Particles which are not neutrally buoyant settle toward the bottom or top wall

when their density is greater or less than that of the fluid, respectively. In this study, we

assume that the particle is denser than the fluid, with gravity acting in the y-direction.

However, the same analysis also applies to a particle that is less dense than the fluid. We

work in the limit where the Froude number, defined as Fr = U0/
√
gH, where U0, g, and

H represent the centerline velocity, gravitational acceleration, and half-channel width,

respectively, is much greater than 1. At high Froude numbers, gravitational effects on

the fluid momentum equations are negligible. Also, the particle settling is slow, which

means that transient variations in the mass fraction profile occur over long timescales. As

the instability analysis focuses on much shorter timescales, these transient effects can be

neglected, allowing the base flow to be treated as quasi-steady for stability analysis. We

find in this limit that gravitational effects appear in the stability problem solely through

the mean mass fraction profile. The model mean mass fraction of the particles is given by

f̄ = 0.5fmax

[
1 + tanh

(
y − ap
σ

)]
. (3.1)

The particle concentration is zero away from the bottom wall and reaches fmax near this

wall, with the transition occurring around y = ap within a band of size 2σ. The schematic

of the quasi-steady state of the problem is shown in Figure (3.1). The added mass term is
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Figure 3.1: Schematic illustrating the flow under study: particles in a quasi-steady
state settling under the influence of gravity. For finite-size particles, the mean particle
distribution leads to a change in viscosity in the region where particles are present. This
viscosity variation affects the mean velocity profile. A representative profile is shown in
Figure (3.2).

now included in the particle equation 2.3. Consequently, the linearized equations (3.2-3.5)

−iαc(D2 − α2)ψ =iα
[
U ′′ − U(D2 − α2)

]
ψ +

1

R

[
µ̄
(
D2 − α2

)2
+ µ̄′′ (D2 + α2

)
+ 2µ̄′ (D3 − α2D

)]
ψ

− 1

SR

[
f̄ ′D + f̄(D2 − α2)

]
ψ +

1

R

[
U ′′′ + 2U ′′D − U ′(D2 − α2) + 2U ′D2

]
µ

+
1

SR

[
(f̄ ′ + f̄D)vx − iαf̄vy

]
(3.2)

−iαcvy + α2cQψ = −
(
iαU +

3−Q
3SR

)
vy − iα

(
iαUQ+

3−Q
3SR

)
ψ (3.3)

− iαcvx + iαcQDψ = −
(
iαU +

3−Q
3SR

)
vx − U ′vy

+

(
iαUQ+

3−Q
3SR

)
Dψ − iαQU ′ψ (3.4)

αcγµ = αUγµ− i
(
f̄ ′ + f̄D

)
vy + αf̄vx (3.5)

where Q = 3/(5γ + 1), with all terms involving Q corresponding to added–mass effects,

and the boundary conditions

ψ(±1) = Dψ(±1) = vx(±1) = vy(±1) = µ(±1) = 0 (3.6)

differ from those in the previous chapter solely due to the addition of the added mass term,

while the mean velocity equation remains as it is, as given in 2.57. The mean velocity

profile and the mean viscosity caused by the dilute particle suspension are given in Figure

(3.2). We observe that the velocity profile becomes inflexional for sufficiently small particle

density ratios.
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Figure 3.2: From left to right, the first plot shows the mean viscosity for the finite particle
volume fraction (black curve) and the uniform viscosity case (red curve). The resulting
viscosity stratification causes slight deviations in the velocity profile and its first and
second derivatives (black curves) compared to the uniform viscosity case (red curves), with
noticeable differences appearing in the region of viscosity variation. The parameters used
for the plot are S = 8 · 10−4, fmax = 0.1, σ = 0.0578, and ap = 0.80.
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3.2 Results and summary

The stability result of a quasi-steady state is presented in Fig.3.3, revealing that for finite
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Figure 3.3: The critical Reynolds number decreases monotonically with increasing mass
loading for particles with a finite particle-induced viscosity, as shown by the green curve. In
contrast, for particles with a negligible contribution to viscosity, it increases monotonically,
as depicted by the purple curve. The black dashed line indicates the critical Reynolds
number of the clean flow. The parameters are fmax = 0.1, S = 8 · 10−4, ap = 0.85, and
σ = 0.0578.

particle-induced viscosity, these states are more unstable than the clean flow. In contrast,

when particle-induced viscosity is negligible, large stabilization occurs. This difference

becomes more pronounced as the particle loading strength increases. Note that for a given

mass fraction profile, a large particle-to-fluid density ratio (∝ γ) results in a negligible

volume fraction, making the particle-induced change to viscosity insignificant. However,

for a finite particle-to-fluid density ratio, the induced effect on viscosity becomes finite,

and its stratification occurs at the same location as the transition region of the mass

fraction profile (i.e. ap). Figure (3.4) further illustrates that flow destabilization occurs

when the region of the viscosity stratification is close to the wall.

From Figure (3.5), we make an interesting observation: the particle-induced viscosity

stratification, in itself, through the terms it contributes to the linearised equations (3.2-3.5),

has only a partial direct impact on stability. The same is true for the added-mass terms.

A big reason for the destabilization is the alteration in the mean velocity U caused by

particle-induced viscosity stratification. The profile shows a tendency toward developing

an inflection point.

We had seen in chapter 2 that viscosity variation introduced by the suspension of

particles had a stabilizing effect when the particles were concentrated away from the

channel walls. However, in the present case, when particles occupy the region close to the

bottom wall, I find that particle-induced viscosity stratification has the opposite effect on

flow stability. To understand why a viscosity variation of this kind causes destabilization,

I compared the results with those of a one-peak Gaussian-shaped mass fraction profile
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Figure 3.4: Significant stabilization occurs when particle-induced viscosity is negligible, as
shown by the blue curve. However, for a finite particle volume, destabilization arises when
the viscosity stratification region, represented by ap, is near the wall, as indicated by the
red curve. The black dashed line indicates the critical Reynolds number of the clean flow.
The parameters are fmax = 0.1, S = 8 · 10−4, and σ = 0.0578.

Figure 3.5: Key instability-inducing terms in the governing equations are examined.
The instability arises due to changes in the mean velocity profile caused by particle-
induced viscosity stratification. The critical Reynolds number decreases monotonically
with increasing viscosity strength when solving the full equation, represented by curve T0.
Dropping the added mass terms results in minimal change, as shown by curve T1. Similarly,
when viscosity terms are removed except in the mean velocity, the change remains minimal,
represented by curve T2. However, when viscosity is omitted only in the mean velocity,
the critical Reynolds number remains nearly constant with viscosity strength, as seen in
curve T3. Finally, removing the mass fraction and particle viscosity terms except in the
mean velocity leads to a further decrease in the critical Reynolds number, which continues
to decrease with increasing viscosity strength, represented by curve T4.The parameters are
fmax = 0.1, ap = 0.87, S = 8 · 10−4, and σ = 0.0578.
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f̄ = 0.5fmax

[
tanh

(
y−ap1

σ

)
− tanh

(
y−ap2

σ

)]
, inspired by the problem in chapter 2. I begin

with a set of parameters, similar to those in Figure 2.5, that preserve the instability modes

observed there. Then gradually a parameter of the mass fraction profile is varied to obtain

a profile similar to what I have in this gravity case; f̄ ≈ 0.5fmax

[
tanh

(
y−ap1

σ

)
+ 1

]
for

ap2 ≫ 1 + σ. From Figure (3.6), we observe that destabilization occurs due to viscosity

Figure 3.6: The parameters used are fmax = 0.903, S = 8 · 10−4, σ = 0.0968, and
ap2 = ap1 + 0.2. The color scale represents the base-10 logarithm of the critical Reynolds
number. For a fixed ap1 , the critical Reynolds number initially increases with the induced
viscosity (∝ 1/γ), reaches a peak, and then decreases. At a fixed induced viscosity, it
initially decreases as ap1 , the location of the rising arm of the mass fraction, shifts towards
the wall, reaching a minimum before increasing again and asymptotically approaching the
critical Reynolds number of the clean flow.

stratification near the wall (see around ap1 = 0.90) is high. When the peak is close to

the wall, as in the case ap1 = 0.90, the mass fraction profile exhibits a strictly increasing

trend across the channel. In contrast, when the peak is farther from the wall, the profile

contains both increasing and decreasing regions. The peak of the profile can be shifted

further towards the wall to approximate the form given in equation (3.1). However, this

adjustment leads to a substantial reduction in average mass loading, eventually rendering

it negligible.

To determine whether destabilization arises from changes in the shape of the mass

fraction profile or the viscosity profile, we examine a scenario where the particle terms

are removed from the governing linearized equations while maintaining the same mean

velocity profile (i.e. the mean velocity contains the particle’s effect). Interestingly, this

modification results in even greater destabilization, as illustrated in Figure 3.5. This

observation strengthens the suggestion that the change in the velocity profile arising out

of the particle-induced viscosity stratification plays a crucial role in the destabilization.

The effect of viscosity profile changes on instability can be further understood by
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analyzing its neutral curves. To assess this impact, we examine the shape, location, and

strength of the largest viscosity variation. In Figure 3.7, the mass fraction used for the
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Figure 3.7: The shortwave mode disappears when viscosity variation regions are shifted
sufficiently toward the wall. The parameters used are fmax = 0.903, S = 8·10−4, σ = 0.0968,
γ = 1000, and ap2 = ap1 + 0.2.

black curve is similar to that in Figure 2.5 of Chapter 2, with the key distinction being

the presence of a single peak instead of two. The neutral curves exhibit a similar pattern,

featuring identical shortwave and TS modes, but with the longwave mode absent. As the

mass fraction peak shifts closer to the nearest wall while keeping other parameters fixed,

both modes become stabilized; the S-mode shrinks and quickly disappears. Consequently,

the critical Reynolds number is later determined by the TS mode. Meanwhile, in Figure

3.8, when the particles have a finite size, the induced viscosity stabilizes both modes,

with the S-mode rapidly shrinking. This outcome resembles the results obtained for the

two-peaked mass fraction profile, as shown in Figure 2.17.

Suppose the peak of the mass fraction profile is shifted further toward the wall, to

the extent that the decaying arm nearest to the wall extends beyond the domain and

is no longer present in the mass fraction. In that case, the resulting profile represents

the model mass fraction under the influence of gravity. The neutral curves for such

mass fraction profiles are shown in Figure 3.9. It can be observed that only the TS

mode remains, and it becomes destabilized due to the induced particle viscosity. The

destabilization caused by induced viscosity can be attributed to the increase in particle

volume fraction as the particle density γ decreases, leading to higher viscosity. This

behavior contrasts with the two-peak Gaussian profile discussed in Chapter 2. When the

viscosity variation reaches the wall, the mechanism is different, as explored by Ranganathan

and Govindarajan [2001], Govindarajan [2004]. The key mechanism is that a positive

viscosity gradient, where viscosity is higher near the wall than in the inner channel, induces

a destabilizing effect, while a negative gradient promotes stabilization. The origin of this
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Figure 3.8: For sufficiently high viscosity variation with both increasing and decreasing
regions in the profile, the shortwave mode disappears. The TS mode also stabilizes but
persists, ultimately determining the instability. The parameters used are fmax = 0.903,
S = 8 · 10−4, σ = 0.0968, ap1 = 0.65, and ap2 = ap1 + 0.2.
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Figure 3.9: Enhanced destabilization of the TS mode with increasing induced viscosity.
The parameters are fmax = 0.903, S = 8 ·10−4, σ = 0.0968, ap1 = 0.90, and ap2 = ap1 +0.2.
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low Reynolds number instability mode can be attributed to the tendency of the velocity

profile to develop an inflection point. As the induced viscosity varies, the maximum

of U ′′ approaches zero (see figure 3.10). Near this point, the mean velocity profile is
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Figure 3.10: Variation of mean velocity and its second derivative with γ is shown in (a)
and (b) respectively. The parameters used are fmax = 0.903, S = 8 · 10−4, σ = 0.0968,
ap1 = 0.90, and ap2 = ap1 + 0.2.

governed by −2 = µ̄U ′′ + µ̄′U ′ ≈ µ̄′U ′ for a high viscosity gradient. Since µ̄′ ∼ O(1/ϵ),

where ϵ≪ 1, and U ′′ → 0 with µ̄ ∼ O(1), it implies that U ′ ∼ O(ϵ). This scaling for U ′

under viscosity stratification, i.e., U ′ ∼ O(ϵ), differs significantly from the case without

stratification, where U ′ ∼ O(1). Consequently, at low Reynolds numbers, this leads to

a different lowest-order governing equation compared to the one derived for the overlap

mechanism in chapter 2, giving rise to the observed instability modes.

When the induced viscosity becomes sufficiently strong, the mean velocity profile

becomes inflectional, leading to the emergence of an additional instability mode, referred

to as the ”inviscid mode”. This mode overlaps with the Tollmien-Schlichting (TS) mode,

as shown in Figure 3.11. In this figure, the lower curve corresponds to the TS mode,

while the upper curve represents the inviscid mode. For ap1 = 0.75, the TS mode is more

stable and does not appear within this Reynolds number range, leaving only the inviscid

mode. As the mass fraction peak shifts toward the wall, or as ap1 increases, the TS mode

emerges, whereas the inviscid mode curve remains largely unchanged. In this case, the

critical Reynolds number is determined by the inviscid mode. With a further shift of the

mass fraction peak toward the wall, the TS mode moves toward lower Reynolds numbers,

with its inner portion merging into the inviscid mode curve, while the outer portion of

the inviscid mode remains nearly unchanged. When the mass fraction peak moves even

closer to the wall, making the mass fraction profile resemble the model profile for the

gravity-driven case, the instability Reynolds number is ultimately determined by the TS

mode. In summary, the destabilizing influence of viscosity in this case is not the opposite
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Figure 3.11: The emergence of a distinct instability mode, the inviscid mode, at relatively
high particle-induced viscosity, along with the TS mode which appears, merges, and
becomes dominant as the peak location shifts toward the wall. The parameters are
fmax = 0.903, S = 8 · 10−4, σ = 0.0968, γ = 0.5, and ap2 = ap1 + 0.2.

of its role in the zero-gravity situation discussed in chapter 2. The destabilization observed

here occurs because the particles are sufficiently close to the wall. Thus, viscosity acts

in two ways: it stabilizes the flow when particles are far from the wall, and destabilizes

it when particles are near the wall. These trends are independent of the specific model

mass-fraction profile; a Tanh, Gaussian, or any other profile that captures the qualitative

distribution of particles yields the same behavior.
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Chapter 4

On the intense sensitivity to wall

convergence of instability in a channel

This work presented in this chapter has been published in our Physics of Fluids article

Kumar and Govindarajan [2024a].

4.1 Introduction

In this study we return to the classical problem of linear instability in channel flow, ask why

we see dramatic effects with a small tilt of the walls, and offer a partial answer. In doing

this, we hope to encourage future close examination of a problem which has fundamental

questions as well as immediate applications. In practical applications, we know that it

is extremely difficult to manufacture a pipe or channel that is perfectly straight, and if

a small departure from being absolutely straight has such a profound effect on stability,

this feature should surely be taken into consideration while drawing conclusions about the

transition to turbulence.

The laminar flow through channels whose walls converge or diverge at a constant angle

is described by the Jeffery-Hamel (JH) equations (Jeffery [1915], Hamel [1917]). Eagles

[1966] calculated the critical Reynolds number, Rcrit, at which the first linear instability is

seen, for diverging channel flow. They noticed that Rcrit falls steeply compared to that

in a straight channel. For a straight channel, Rcrit = 5772.2 (see Orszag [1971]) whereas

with a wall divergence of only 0.04 degree, Rcrit ∼ 2000. Note that this divergence is so

small that a channel built with such a divergence would be indistinguishable visually from

a straight one. The reason for this sharp fall is an open question, with some beginnings

having been made by Swaminathan et al. [2011]. On the other hand are channels with a

small angle of convergence. The stability of this flow, to our knowledge, was first studied

by Fujimura [1982]. A sharp increase in the critical Reynolds number with the smallest

convergence was seen. The sensitivity to convergence angle is even more stark than to
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divergence.

The focus of this chapter is on converging channel flow, and the scope is three-fold.

First, it is known that the Jeffery-Hamel equations support non-unique laminar flow

solutions in the channel. One solution is just a profile very close to parabolic, but the

others have more than one extremum. We investigate a few of these for their stability, and

we show that at low Reynolds numbers, we may have more than one stable laminar flow

velocity profile in convergent JH flow. Incidentally, Drazin [2002] found multiple stable

solutions in a related flow: of a geometry with converging and diverging sections separated

by a straight section. We hope our findings about JH flow will motivate low Reynolds

number experiments to see if several velocity profiles can be displayed under identical

conditions with very minor tilt of the walls. Second, we focus on the one-lobed profile

which reduces to the parabolic for a straight channel, and show how the extreme sensitivity

to changes in the mean flow arises out of an alteration in the lowest-order balance within

the critical layer of the dominant perturbation. In other words, a fundamental change in

the nature of stability takes place. We also discuss the relevance of our findings in the

context of our earlier study by Jotkar and Govindarajan [2017, 2019] on transient growth

in convergent and divergent channels. A related system is studied by Jotkar et al. [2016].

A third aspect is that a pipe and of a channel are usually thought to be very different

in their linear stability. A pipe is often likened to a plane-Couette flow, since both of

these are stable at any Reynolds number to perturbations consisting of individual linear

eigenmodes, whereas a channel goes unstable at a finite Rcrit, as stated above. But with a

small tilt of the walls, a broad similarity between the two is seen.

It is recognized that laminar-flow solutions to the JH equation are not unique [Drazin,

2002]. Interestingly, multiple solutions exist which satisfy the same third-order differential

equation and all its boundary conditions in the same geometry, and these have been

classified into five distinct types by Fraenkel and Squire [1962]. Of these, Type III1 is

a one-lobed profile, which for small tilt angles, θ, is very close to a parabolic velocity

profile. The naming convention of the mean flows is described in Section III A. The linear

stability of parallel shear flows is described by the Orr-Sommerfeld equation [Schlichting

and Gersten, 2016, Drazin and Reid, 2004]. Fujimura [1982] analyzed the stability of

this type of mean flow by employing a local turning point approximation. On the other

hand, we use a direct numerical technique to solve the Orr-Sommerfeld (OS) equation for

the III1, III2, and III3 types of profiles. We accurately compute the mean flow using a

4th-order Runge-Kutta method combined with a Newton-Raphson algorithm to converge

on the right boundary conditions.
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4.2 The governing equations and their solution

4.2.1 Base flow

The JH equation provides the steady state of two-dimensional laminar flow of an incom-

pressible fluid within an infinite wedge, driven by a source/sink located at the intersection

of the rigid planes forming the wedge, a schematic is shown in Figure 4.1 . It is a similarity

Figure 4.1: Schematic illustrating a convergent channel flow with a Type III1 velocity
profile. We emphasise that the angle of convergence is grossly exaggerated for clarity of
viewing, compared to the range we study here. The x-axis is oriented along the channel
centerline and the y-axis intersects the channel walls at an angle of π/2− θ. The lengths
are non-dimensionalized using the local half-channel width H, placing the walls at y = ±1.
Note that θ is negative.

equation given by

U ′′′ + 2S0UU
′ + 4θ2U ′ = 0, (4.1)

with the boundary conditions

U(+1) = U(−1) = 0; U(0) = 1, (4.2)

where U is the streamwise velocity nondimensionalised by the centerline velocity Uce. The

angle made by the rigid walls with respect to the channel centerline (the x-axis) is denoted

by θ, as illustrated in Figure(4.1). An important parameter in this problem is S0 ≡ θR.

Note that in convergent flow, θ, and therefore S0, are negative. The Reynolds number

R ≡ |Q|
ν
, where Q = Uce(xd)H(xd)MU is the net mass flux through the channel, where

H(xd) is the local channel half-width, or the distance of the wall from the centerline, and

ν is the kinematic viscosity. For a constant tilt angle, we may approximate flow in the

convergent channel to that going towards a sink at a location xL, which lies extremely far

downstream, so H = (xL − xd) tan |θ| and Uce ∝ 1/H. A prime denotes a derivative with
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respect to a similarity coordinate y, which is the coordinate normal to the centerline non-

dimensionalized by H(x). The non-dimensional mass flux is given by MU =
∫ +1

−1
U(y)dy.

Given that the net mass flux must be constant through all x, the Reynolds number

too is constant throughout. It will become useful to define another Reynolds number,

RSC = Uce(x)H(x)/ν. The Reynolds numbers are related as R = RSC |MU |. Upon

integrating Equation (4.1), we get

U ′′ − U ′′
w = −S0U

2 − 4θ2U, (4.3)

where the subscript w indicates a quantity at the wall, i.e. at y = ±1. Another integration

yields

U ′2 − U ′2
w = −2

3
S0U

3 + 2U ′′
wU − 4θ2U2. (4.4)

The quantities at the wall are as yet unknown, and will be arrived at by our numerical

procedure.

4.2.2 Stability analysis

At the tiny wall tilt-angles imposed here, the streamwise change in the base flow is

extremely small, and for all practical purposes we may treat the flow as being parallel. In

other words, we neglect the mean wall-normal velocity. Under this assumption, the flow

stability is described by the Orr-Sommerfeld equation,

LOSψ = −iω
(
D2 − α2

)
ψ, (4.5)

where

LOS = −iαU
(
D2 − α2

)
+ iαU ′′ +

1

R

(
D2 − α2

)2
, (4.6)

D ≡ d/dy and the boundary conditions are

ψ(y = ±1) = Dψ(y = ±1) = 0. (4.7)

The perturbation stream function has been represented as

ψ̂ =
1

2

[
ψ(y) exp [i(αx− ωt)] + ψ∗(y) exp [−i(αx− ωt)]

]
, (4.8)

where c = ω/α denotes the complex phase speed, and the perturbation velocity components

are ûy = −iαψ̂ and ûy = Dψ̂. An application of Squire’s 1933 theorem [Squire, 1933] has

enabled us to write a two-dimensional version of this problem, since all three-dimensional

perturbations will go unstable at higher Reynolds numbers than a corresponding two-

dimensional one.
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We numerically solve equation (4.5) by employing the Chebyshev spectral collocation

method to discretize it at n collocation points in the domain of y within (-1,1). Subsequently,

the discretized eigenvalue matrix equation is solved using the LAPACK package. We

choose the values of n to be 81, 101, 121, and 161 in order to achieve accuracy of at least

6, but most often 8, decimal places.

4.2.3 Energy budget

When the flow becomes unstable, there is exponential growth in perturbation kinetic

energy. We can separate the positive and negative factors contributing to this growth. To

do this, the linearized Navier-Stokes equation for the fluid flow (in û) can be multiplied

by the complex conjugate velocity û∗. By averaging over a wavelength in the streamwise

direction, we can obtain the evolution of perturbation kinetic energy Ê as described by:

∂t

∫
ÊdV = −

∫
∂Ui

∂xj
ûiûj, dV − 1

R

∫
|∂iûj|2 dV (4.9)

where

Ê =
1

2
û2i , (4.10)

and V indicates a volume of fluid extending from wall to wall and over one perturbation

wavelength in the streamwise direction. We then introduce the normal-mode forms of the

perturbations, given by equation (4.8), into equation (4.9), and average over the streamwise

direction x, to get

2αcim

∫
E dy =− 1

4

∫
∂Ui

∂xj

(
uiu

∗
j + u∗iuj

)
dy − 1

2R

∫
|∂iuj|2) dy

≡
∫
(W+ −W−)dy,

(4.11)

where

E(y) =
1

4
|ui(y)|2, (4.12)

and W+(y) and W−(y) are the production and dissipation of perturbation kinetic energy,

respectively.

4.3 Results

4.3.1 Mean velocity profiles and anticipated stability behaviour

We solve for equation (4.1) with the boundary conditions (4.2) to obtain the base velocity

U . There are infinite solutions possible, which have been categorized into five types by
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Figure 4.2: Type III1 velocity profiles (for a convergent channel, S0 < 0) and their variation
with S0. The black solid curve shows the parabolic profile for a straight channel (S0 = 0),
while the dashed curve shows the corresponding one-lobed profile for a divergent channel
(S0 > 0).

Fraenkel and Squire [1962]: In, IIn, IIIn, IVn and Vn. Diverging flows encompass In,

IIn IVn, while converging flows fall under IIIn, IVn and Vn. Types In, IIn and IIIn are

symmetric velocity profiles, while IVn and Vn are asymmetric, and mirror images of each

other. The subscript n indicates the number of zeroes within the flow: 2n−2 for symmetric

and 2n− 1 for asymmetric profiles.

We restrict our investigation here to symmetric flows falling under the category IIIn.

These solutions are obtained numerically, and the first in the series, i.e., profiles of type

III1, are shown in Figure 4.2 for convergent and divergent channels. Here we have used

the small-angle approximation, wherein the quadratic term in θ is neglected, resulting

in the mean velocity depending solely on the single parameter S0. We see that as the

magnitude of S0 increases in the convergent channel (S0 < 0), the mean velocity profile

becomes progressively broader. Conversely, in the divergent channel, the profile becomes

increasingly sharp as S0 increases, and in fact we get flow separation at higher S0. The

qualitative features of the mean velocity profile are further understood by examining their

second derivatives, shown in Figure (4.3) . All the variation moves progressively closer to

Figure 4.3: Dependence of the second derivative of mean velocity (U ′′) on S0. Note that
as S0 becomes large and negative, U ′′

w ∼ S0.
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the walls as S0 becomes more negative.

The next few members of the type III series of velocity profiles, obtained by solving

the complete equation (4.1), are presented in Figure 4.4 . We begin the solution at

Figure 4.4: Laminar velocity profiles of type IIIn for n = 2, 3, 4, 5, 6, and 7. The top half
of the profiles are shown. The Reynolds number is 100, and the angle θ = −0.6o.

the centreline, with the conditions U(0) = 1, U ′(0) = 0, and an initial guess for U ′′(0).

Equation (4.1) then provides U ′′′(0) = 0. We march up to the wall using the Runge-

Kutta fourth order method. The obtained solution may not satisfy the wall boundary

conditions (4.7). Therefore, we iterate for U ′′(0) using the Newton-Raphson method until

the boundary conditions are met. In figure 4.4 the net flow in each case is from left to

right, namely the channel is converging downstream, but in each case we have a significant

portion in reverse flow, accompanied in alternate cases by a flow separation at the walls.

This is somewhat unexpected for convergent channel flow.

Before we move on to the stability of the type III velocity profiles, it is useful to

summarise what may be gleaned from the laminar flow velocity profiles about their

stability. The Rayleigh-Fjørtoft theorem [Rayleigh, 1880, Fjφrtoft, 1950] tells us that at

infinite Reynolds number, a velocity profile which contains a point of inflexion (where U ′′

goes through a 0) will be unstable. While there is no corresponding theorem for viscous

flows, it is commonly expected, and most often found, that flows with inflexional velocity

profiles are far more unstable than those without a point of inflexion. Often a low Reynolds

number instability is seen with inflexional profiles. So profiles of Type III2 and higher n

are expected to be much more unstable than a profile of type III1. The question we ask

below is, can the inflexional profiles be stabilized at any Reynolds number. If this would

be the case, we would have more than one stable laminar solution possible for the same

conditions.

Another aspect we may anticipate is the importance of the critical layer. By the

Rayleigh-Fjørtoft theorem, type III1 profiles must be always stable. But we know that

viscosity can introduce an instability in this case. The Orr-Sommerfeld equations present

a singular perturbation problem at high Reynolds numbers, where viscous effects become

important in two (or more) layers within the channel: the critical layer (there could be

more than one, as we shall see) and the wall layer. The critical layer is a layer of thickness

ϵ ∼ (αR)−1/3 centered around the critical point yc where the mean flow velocity equals the

phase speed of the dominant disturbance, i.e., U(yc) = c. This layer is where most of the
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disturbance kinetic energy is produced. In other words, the critical layer is instrumental

for generating viscosity-driven instability, which is the only way the channel flow can go

unstable for a type III1 profile. The wall layer is of thickness ϵw ∼ (αR)−1/2, and as the

name implies, lies next to the wall. Viscous effects are important here too, in the form of

dissipation. Thus perturbation energy is produced in the critical layer, gets transported

to the wall layer and gets dissipated there. If the net production is larger than the net

dissipation, the perturbation grows, i.e., the flow is unstable. We shall see below that the

critical layer is key to the high sensitivity of the stability to the tile angle of the walls.

In section 4.3.2, we study the stability of such solutions. We follow this with a detailed

discussion on the stability of type III1 in section 4.3.3.

4.3.2 Stability of type III2 and III3 mean profiles

The parabolic velocity profile of laminar plane channel flow is known to be unique. On

the other hand, we have seen that a slight change in wall angle compared to the plane

channel results in an infinite number of laminar flow profiles which satisfy the JH equations

and their boundary conditions. For the slightly convergent flow, we study the stability

behaviour of the three laminar velocity profiles denoted as III1, III2, and III3. This section

focuses on III2 and III3. To our knowledge, the stability boundaries for these two have not

been obtained before, and that of the first profile obtained by Fraenkel and Squire [1962]

by an approximate method.

We numerically solve the Orr-Sommerfeld equation (4.5) with boundary conditions

(4.7) for the given mean profile. The flow is deemed linearly stable at a specific Reynolds

number if the imaginary part of the eigenvalue ω from the OS equation (4.5) is negative

for all wave numbers α. The critical Reynolds number is defined as the value below which

the flow remains stable, and above which the flow becomes unstable for at least one wave

number α.

In the stability boundary of the III2 profile shown in figure 4.5 , the color represents

the growth rate, or the imaginary part of ω. The black contour represents the neutral

curve where the growth rate is zero, signifying that perturbations will neither grow nor

decay along this curve. Perturbations inside this neutral curve will experience positive

growth rates, indicating exponential growth. Outside the curve, growth rates are negative,

indicating decay of perturbations. For this flow Rcrit = 40. At the unstable condition of

R = 100 and α = 2.0, Fig. (4.6) displays the mean flow and energy budget, while Fig.

(4.7) illustrates the eigenfunction ψ̂. The mean profile U(y) in Fig. (4.6a) and the phase

speed of the dominant perturbation cr = −0.75, yielding two solutions for U(yc) = cr in

the half channel, i.e., pointing to the existence of two critical layers in each half of the

channel, at yc1 = ±0.93 and yc2 = ±0.65. Note that the phase propagates upstream in

this case. The production of perturbation energy W+ occurs only in one of the critical
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(a) (b)

Figure 4.5: (a) Growth rate of instability (shown in colour) for velocity profiles of type
III2 for perturbation wave number α and Reynolds number R. The black line denotes
the neutral curve. The wall convergence angle θ is −0.6o. (b) Zoomed-in view of the low
Reynolds number region in (a) highlighting the stable behaviour at low Reynolds numbers.

(a) (b)

Figure 4.6: (a) The steady laminar velocity profile III2 and (b) the energy budget for a
typical unstable condition R = 100, α = 2 in Figure (4.5). Production is shown in red,
and dissipation in blue. The two critical layer locations lying in this half of the channel
are shown by the dashed lines.
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Figure 4.7: Perturbation streamfunction ψ̂ for a typical unstable point at R = 100 and
α = 2 corresponding to the type III2 mean profile. Critical layer locations in the upper
half of the channel are indicated by thin dashed lines.

layers, centered around yc2 . A plausible reason for this is that the critical layer thickness ϵ

being ∼ (αR)−1/3 ∼ 0.17, and the wall layer thickness ϵw = (αR)−1/2 ∼ 0.07, the critical

layer centered around yc1 = 0.93 overlaps with the wall layer, where dissipation is expected

to be high. There is significant dissipation taking place away from the wall, and this is

anomalous.

In Figure (4.8) , the stability of III3 is demonstrated, with the neutral curve represented

(a) (b)

Figure 4.8: (a) Growth rate of instability (shown in colour) for velocity profiles of type
III3 for perturbation wave number α and Reynolds number R. The black line denotes
the neutral curve. The wall convergence angle θ is −0.6o. (b) Zoomed-in view of the low
Reynolds number region in (a) highlighting the stable behaviour at low Reynolds numbers.

by a black line. This velocity profile is different from the one above in that there is no flow

separation at the wall, and instead there is a significant region of reverse flow somewhere

in the channel. The critical Reynolds number is Rcrit = 15. At Reynolds number R = 100

and the wavenumber α = 2.0, the mean flow and the energy budget are depicted in Fig.

(4.9) , and the eigenfunction ψ̂ is illustrated in Fig. (4.10) . The phase speed of the

dominant eigenmode is cr = 0.48, and there are now three critical layers in the half channel,
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(a) (b)

Figure 4.9: (a) The steady laminar velocity profile III3 and (b) the energy budget for a
typical unstable condition R = 100, α = 2 in Figure (4.8). Production is shown in red,
and dissipation in blue. The three critical layer locations lying in this half of the channel
are shown by the dashed lines.

Figure 4.10: Perturbation streamfunction ψ̂ for a typical unstable point R = 100 and
α = 2 corresponding to the type III3 mean profile. The three critical layer locations lying
in the top half of the channel are shown by the thin dashed lines.
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located at yc1 = 0.95, yc2 = 0.61, and yc3 = 0.17. The thickness of the critical layers and

the wall layer depend only on the Reynolds number and wavenumber, which therefore

remain the same as for III2. In this case the maxima in kinetic energy production W+ do

not coincide with the critical layer locations, and this is most unusual in shear flow. The

reason is that viscous effects are not absent anywhere due to the existence of multiple

critical layers. Equally interesting, the dissipation W− is not maximum at the walls but

peaks around y ∼ 0.4. This too is most unusual. The critical layer at yc1 = 0.95 overlaps

with the wall layer, probably resulting in minimal kinetic energy production as well as

small dissipation near the wall. The eigenfunction structure in Figs. (4.10) and (4.7) are

qualitatively different from those of the one-lobed profile (not shown).

The main finding in this section is that there are multiple stable solutions at low

Reynolds number which are stable. While to our knowledge this has not been established

before for JH flow, multiple stable laminar flow solutions, all asymmetric about the channel

centreline, have been obtained in a related flow by Sobey and Drazin [1986]. So we may

ask whether a variety of laminar flows can be obtained in experiment for the same JH

geometry and same Reynolds number. If they are, that could have interesting implications

for small-scale flows, where JH flows are of interest, see e.g. Rezaee [2024].

(a) R=10 (b) R=20 (c) R=60

Figure 4.11: Schematic of a portion of the phase space of laminar solutions at low Reynolds
number in a convergent channel. Three steady (attractive) laminar states, labeled as
III1, III2, and III3, are depicted as black, red, and green points, respectively. Sample
trajectories leading to, or emanating from, each, are shown in the same colour, and basin
boundaries are indicated by the blue curves. In (a), for a Reynolds number R = 10, all
three laminar states are stable. In (b), with R = 20, III1 and III2 remain stable. In (c),
for R = 60, only the III1 laminar state remains stable. The wall angle is set to θ = −0.6o.

Since multiple velocity profiles are stable at low Reynolds number, they can all, in

principle, be observed experimentally. The ease of experimentally obtaining a given profile,

will however, depend on the size of its basin of attraction in phase space and the ability to

access that basin. A schematic depiction in figure 4.11 shows a portion of the phase space,

containing three possible laminar velocity profiles at low Reynolds number. The complete

84



phase space is much larger, and contains a multitude of other solutions. The phase space is

depicted in two dimensions, whereas it is in fact infinite dimensional, since U is continuous

function of y. The solutions III1, III2 and III3, being steady solutions, are fixed points in

this phase space. At low Reynolds numbers, we know that solution III1 remains stable. At

Re = 10, we can glean from figures (4.5,4.8) that each is an attractive (stable) fixed point.

The simultaneous existence of multiple attractors means that each has its corresponding

basin of attraction, so profiles near each one, when generated experimentally, will fall into

them. At Re = 20, we see from figures (4.8) that III3 is now unstable, and so its basin of

attraction has vanished. Trajectories now emerge out of this fixed point and will approach

one of the stable fixed points. At Re = 60, we know from figures (4.5) that III2 has gone

unstable as well, leaving behind III1 as the only attractor. The basin boundaries are shown

schematically here but future computations are needed determine the size of each basin of

attraction. The fact that the pressure gradients for a given flow rate are different for the

different profiles could provide a clue to experimenters on how to design for them.

4.3.3 Stability of type III1 or one-lobed laminar velocity profiles

The parabolic velocity profile of laminar plane channel flow is linearly stable when the

Reynolds number is below the critical value of RSC = 5772.2. But even a minute departure

of the tilt and θ of the wall away from 0 results in a significant change in the critical

Reynolds number Rcrit. In this section, we use RSC , but refer to it simply as R. The

variation of the critical Reynolds number with tilt angle is depicted in Figure (4.12). This

figure is also available in Jotkar and Govindarajan [2017] and was produced by a closely

related numerical code. In the convergent channel, the critical Reynolds number increases

Figure 4.12: Sensitivity of critical Reynolds number to wall angle (θ in radians) . Negative
angles indicate convergent channels, positive angles indicate divergent channels, with the
straight channel represented by the vertical dotted black line at θ = 0. This curve can
also be found in Jotkar and Govindarajan [2017].

extremely rapidly with (|θ|). We wished to investigate whether the flow becomes stable
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at any Reynolds number beyond a certain convergence angle. We could however not

draw a definitive conclusion on this question due to the sharp loss in numerical accuracy

beyond the angles shown. The physical reasons for this will become clear in the following

section. As illustrated in figure 4.13a, with increase in |θ| the critical layer progressively

(a) (b)

Figure 4.13: (a) Variation of the critical layer location, ycrit, with wall angle. (b) Variation
of phase speed cr,crit of the dominant perturbation at the critical point (Rcrit, αcrit) with the
critical Reynolds number. The vertical dotted line in (a) represents θ = 0, and Rcrit = 5772
in (b) corresponds to the straight channel.

approaches the wall and becomes increasingly narrow due to the large magnitude of Rcrit.

The phase speed of the dominant perturbation at the critical point, (Rcrit, αcrit), decreases

and eventually flattens out at cr,crit = 0.183, as shown in figure 4.13b. Incidentally this

plateauing of the phase speed agrees with the turning-point approximation calculation of

Fujimura [1982]. In figure(4.14), the typical eigenfunctions at the critical point (Rcrit, αcrit)

of the convergent channel for θ = −0.01o are contrasted with the eigenfunctions of a

straight channel and a divergent channel. The contour of the convergent eigenfunction

or stream function appears more rectangular and distinct when compared to those of

the straight channel and the divergent channel. In figure (4.15) the neutral curve of a

convergent channel of θ = −0.01o is compared with the straight channel. The dramatic

difference of one hundredth of a degree wall tile is evident here. Higher wavenumber

modes are unstable in the convergent channel than in the straight channel. In figure

(4.16) we compare the energy budget at R = 5772, α = 1.02 (which represents the critical

point of the straight channel) of the convergent channel for θ = −0.018o with the straight

and the divergent channel. The net production in the straight channel (the integral of

the curve across the channel width) is equal to the net dissipation. In the convergent

channel, there is significant negative production, resulting in lower net production than

dissipation, while the production is positive and extends across the channel in the divergent

case. Again, the large differences due to small changes in tilt angle are highlighted. The

net production and dissipation are shown in Fig. (4.17) as functions of the tilt angle.

Variations in the dissipation are small but those in the production are large, highlighting

the importance of the critical or production layer. The difference of the integral increases
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(a) Straight channel: R = 5772, α = 1.02

(b) Convergent channel: R = 45506, α = 1.06

(c) Divergent channel: R = 2271, α = 1.13

Figure 4.14: Comparison of the eigenfunctions ψ̂ of straight, converging, and diverging
channels at the critical Reynolds number and critical perturbation wave number given in
the caption of the subplots (a),(b),and (c).

Figure 4.15: Neutral curves compared between a convergent channel with a wall angle
of θ = −0.01o (shown in blue, and partially available in Jotkar and Govindarajan [2017])
and a straight channel (shown in red).
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Figure 4.16: Budget of perturbation kinetic energy budget for R = 5772 and α = 1.02. The
angles θ = 0o, θ = 0.03o, and θ = −0.018o correspond to a straight channel, a divergent
channel and a convergent channel, respectively. Note the major changes in kinetic energy
production resulting from a mere change of a few percent of a degree in wall angle.

Figure 4.17: Variation of production and dissipation with wall angle θ at R = 5772 and
α = 1.02. Red curve: integral across the channel of the production W+, Blue curve:
integral of the dissipation W−, Black curve: net energy (integral of W+ −W−).
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with the convergence angle, leading to significant stabilization in the convergent channel.

4.3.4 Asymptotic analysis of the perturbation equation

In this section, we develop a framework that explains the mechanism behind the extremely

high sensitivity of the angle in convergent channel flow. After reviewing the current

understanding of parallel shear flow, we derive the dominant balances for convergent

channel flow. We have seen that for many-lobed mean flows there can be more than

one critical layer in each half of the channel, but we concentrate our discussion on the

one-lobed profile III1, since it is likely to be the easiest to achieve in experiment, it is

stable up to a higher Reynolds than the others, and it is closest to the flow through a

straight channel, and therefore remarkable in its highly modified behaviour at small |θ|.
In the Orr-Sommerfeld equation (4.5), the highest derivative term in y, which is the

fourth-order derivative, is scaled by the inverse of the Reynolds number. As the Reynolds

number approaches infinity, this term cannot be neglected because doing so would prevent

us from satisfying all four boundary conditions associated with the equation (4.7). This

scenario exemplifies a classical singular perturbation problem, where the highest derivative

term becomes comparable in magnitude to the terms on the left-hand side in certain

regions of the flow. As mentioned above, there are two layers where viscous effects are

significant and gradients are steep: the wall layer, with a thickness of ϵw ∼ R−1/2 , and

the critical layer, with a thickness of ϵ ∼ R−1/3. The critical-layer [Lin, 1945a,b, 1946]

is a thin region centered around the critical point yc in the channel, where the mean

flow velocity matches the phase speed of the dominant normal-mode perturbation, i.e.,

U(yc) = c. Our primary interest lies in the critical layer, which explains the mechanism of

huge stabilization in the convergent channel.

We follow the standard procedure to derive the critical layer equations, as done by Lin

Lin [1945a,b, 1946]. For details on singular perturbation methods, see Van Dyke [1964].

We define an inner variable ξ as

ξ =
y − yc
ϵ

(4.13)

and will select ϵ to ensure that the derivatives of the stream function in ξ are O(1).

To derive the dominant balances, we write the relevant variables in the form of series

expansions within the critical layer as

ψ =
∞∑
n=0

ϵnψn(ξ) (4.14)

In this layer, the mean flow may be written in the following expansion:

U(y)− c = (y − yc)U
′

c +
(y − yc)

2

2
U

′′

c + · · · . (4.15)
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We substitute the expansions (2.33,2.36) in equation (4.5). We apriori retain all terms that

may participate in the dominant balance and obtain the following composite lowest-order

equation: [
−iU

′
cξ

ϵ
D2

ξ − U ′′
c − 1

iαRϵ4
D4

ξ

]
ψ0 = 0. (4.16)

Here, the subscript c represents the value of the function at the critical point yc. In the

traditional critical layer balance of Lin, since ϵ≪ 1, the second term would be O(1), and

therefore drop out, and we would obtain a balance between the first and the third terms

which are much bigger, with ϵ ∼ (αR)−1/3. This changes with even a small convergence.

We now need an estimate of how high U ′′
c is compared to the other terms. From figure

(4.18), we see that as S0 becomes high, we have U ′′
w and therefore U ′′

c ∼ S0. Consequently,

Figure 4.18: Blue dots show the second derivative of the mean velocity at the wall U ′′
w as

a function of S0, approaching the red line defined by U ′′
w = S0 at large negative S0.

the contribution of the second term to the lowest-order equation (2.46) is higher at higher

S0. The first term will ultimately drop out, giving

−S0ψ0 =
1

iαRϵ4
D4

ξψ0 (4.17)

at high S0. We choose ϵ = (−αR2|θ|)−1/4, so the above equation becomes

ψ0 = −iD4
ξψ0. (4.18)

Equation (4.18) happens to be directly solvable, with a general solution given by

ψ0(ξ) = A1ψ
(1) + A2ψ

(2) + A3ψ
(3) + A4ψ

(4), (4.19)

where ψ(j) = eλjξ, λj = eiπ(4j−5)/8, j = 1, 2, 3, 4, and A1, A2, A3, and A4 are constants

that can be obtained by matching the inner solution with the outer solution. While

the analytical solution in the outer region is difficult to obtain, we have the complete

numerical solution which we use in the outer regime to fix the four constants, Aj . In figure
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(4.19) the critical layer (inner layer) solution of equation (4.18), with boundary conditions

Figure 4.19: Comparison of the critical layer (blue) and full numerical (red) solutions for
the convergent channel with θ = −0.01◦ at the critical point (R=45506, α = 1.06). The
solution for the straight channel at its critical point (R=5772, α = 1.02) is shown in green
for comparison. The top and bottom subplots show the real and imaginary parts of the
streamfunction amplitude respectively. The dashed line indicates the location of a critical
layer in this half of the channel.

derived from numerical data at two points is shown along with the complete solution. In

the inner layer, the analytical solution aligns well with the numerical solution of the full

system. This provides some evidence that the critical layer balance contains the physics

we seek. The primary finding is that the critical layer thickness scales differently from the

traditional case, and that the second derivative of the mean velocity profile is dominant

in balancing the highest viscous derivative. Thus a tiny change in geometry alters the

stability behaviour.

The critical layer analysis we carried out made the quasi-parallel approximation.

Govindarajan and Narasimha [1997] showed how the mean flow perpendicular to the

centreline can alter the critical-layer balance. This could become significant at higher

convergence angles.

4.3.5 Comparison with pipe flow

It is worth drawing an analogy between channel and pipe flow stability, and this is done in

figure 4.20 . While plane channel flow becomes linearly unstable beyond a finite Reynolds

number and pipe flow does not, we note that pipe flow goes unstable at a finite Reynolds

number for any non-zero divergence, and the critical Reynolds number goes down with

divergence angle as Rcrit = 10/θ (Sahu and Govindarajan [2005]). In other words, the

critical Reynolds number in a pipe diverges as 1/θ. While we were not able to establish

such a clear mathematical relationship in converging channel flow, nor indeed are we able

to say definitively whether the critical Reynolds number diverges at a finite convergence

angle, that remains a question for mere pedantry, given the orders of magnitude increase
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Figure 4.20: Comparison of the critical Reynolds number sensitivity to wall angle (θ in
radians) for the channel (red curve) and pipe (black curve) Sahu and Govindarajan [2005].

in the critical Reynolds number for a convergence angle of a merest fraction of a degree.

We note that due to Squire’s theorem, the critical Reynolds number is determined in the

channel by two-dimensional perturbations, while in pipe flow this theorem does not apply.

There the most unstable mode, whose behaviour is shown is of m = 1, i.e., it is the one

which supports one wave in the azimuthal direction.

4.4 Discussion

Our basic aim has been to underline the myriad ways in which an extremely small angle

of wall convergence can drastically and fundamentally change the flow through a two-

dimensional channel. This study reveals that at small Reynolds numbers, of O(10), we

can have multiple stable laminar flow solutions through convergent channels. While the

multiplicity of solutions was known since the time of Fraenkel, the stability at low Reynolds

for these very profiles had not been established, to our knowledge. We note that while

the multiple solutions have the same Reynolds number, they must have different pressure

gradients, and this will help experimenters attempting to obtain those flows.

As for the one-lobed profile of type III1, we have obtained the lowest-order equation in

the critical layer, following the traditional approach. We have shown how the dominant

(lowest-order) balance in the critical layer is altered fundamentally by convergence, with

the second derivative of the velocity profile entering the balance at even very low angles

of convergence and ousting out the inviscid term which normally balances the dominant

viscous effect.

We have discussed the direct analogy with pipe flow. Although convergent channel flow

and divergent pipe flow are physically and mathematically distinct systems, they exhibit

similar behavior in terms of linear stability, particularly in the sensitivity of the critical

Reynolds number to the wall tilt angle.
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In shear flows of this kind, we know that the transition to turbulence is subcritical,

there have already been a lot of studies almost a decade ago precisely demonstrating this.

The subcritical transition in pipe flow is highly sensitive to the wall divergence angle, as

shown by Shenoy et al. [2020] in their direct numerical simulation and by Lebon et al.

[2018] in their experiment on sudden wall expansion. We emphasise that we have only

conducted a modal analysis here, considering two-dimensional perturbations. The purpose

has been to elucidate some physics, and not to obtain quantitative anticipated growth.

A transient growth study including three dimensional perturbations was carried out by

Jotkar and Govindarajan [2017, 2019]. It indicated low levels of transient growth compared

to a straight channel. Further work is needed to address the question of even the starting

seeds of transition to turbulence. The recent work of Kant et al. [2022] indicates that

convergent channels are even more sensitive in this regard than divergent ones. And the

level of non-normality in a plane channel may be directly related to the sensitivity of

the modal critical Reynolds number to tilt angle, as done in a related study by Jose and

Govindarajan [2020] rotating plane channel flow. In other words, the sensitivity to tilt

angle may have its underpinnings in the non-normal nature of the stability operator for a

plane channel, and further study along these lines will provide a more complete answer.

We earlier studied non-modal perturbation growth in the one-lobed mean profile in

Jotkar and Govindarajan [2017] where we saw that a convergence of half a degree was

sufficient to reduce the optimal growth at high Reynolds number by an order of magnitude.

This suggests that while subcritical transition to turbulence may occur in the convergent

channel, there may be significant differences due to even a small angle of convergence,

including in raising the Reynolds number at which turbulence can be attained. There

is a need for studying these flows, including the exponential and algebraic growth of

disturbances that take place, the origin of nonlinearity, and the entire process of transition

to turbulence, in direct numerical simulations. The sensitive to small convergences and

divergences points to the possible role of wall roughness in influencing the transition

to turbulence through modified linear perturbation growth, which would form another

possibly fruitful direction of future study.

We hope the revelations of the present study on the multiple laminar flow solutions as

well as on the role of the critical layer in the one-lobed solution will make this an attractive

topic for future studies.

93



94



Summary

Shear flows exhibit complex stability characteristics, making them both important and

difficult to predict. In this study, we investigate the impact of non-uniform particle loading

on Poiseuille flow. We derive a stability characteristic equation for the two-way coupled

particulate flow system, incorporating Stokes drag and viscosity stratification induced by

dilute particles as interaction mechanisms. Additionally, we extend Squire’s theorem to

account for systems with non-uniform particle distributions and viscosity stratification.

This extension allows us to analyze a two-dimensional system without altering the overall

conclusions regarding exponential growth. The governing equations are solved numerically

using a pseudo-spectral method.

Our numerical results reveal that the stability response of the flow to non-uniform

particle loading falls into two distinct categories: overlap and non-overlap conditions. In

non-overlap conditions, the particle-laden layer remains separated from the critical layer,

exerting minimal influence on stability and primarily stabilizing the flow. This stabilization

occurs because particle-induced drag, arising from velocity differences between the particles

and the fluid, enhances perturbation energy dissipation. In contrast, in overlap conditions,

the interaction significantly modifies stability, predominantly destabilizing the flow. This

destabilization comes from a singularity introduced by a sharp change in particle mass

fraction, which alters the energy production mechanism in the critical layer, typically

enhancing perturbation energy production.

Furthermore, two new instability modes emerge alongside the Tollmien-Schlichting

(TS) mode: a shortwave mode (S-mode) at low Reynolds numbers and a longwave mode

(L-mode) persisting across a broad range of Reynolds numbers. These three instability

modes exhibit distinct regimes of existence and undergo intriguing interactions, including

intersections and mergers, as system parameters vary.

The mechanisms of these instabilities are rooted in critical-layer physics. We derive the

lowest-order critical and wall layer equations for particulate shear flow with dilute loading,

highlighting the presence of additional particle terms alongside viscosity, distinguishing

them from classical clean-flow equations where viscosity, however small, governs stability.

Since the viscosity term appears in clean flow, the instability is referred to as viscous

instability. With dilute particle loading, additional particle terms emerge, leading to what
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we can term particle-viscosity instability.

The lowest-order critical layer equation, combined with an energy-budget analysis,

reveals the consequences for stability. The distinction between overlap and non-overlap

conditions originates in the critical layer, where variations in base particle concentration

significantly influence the production of disturbance kinetic energy, resulting in strong

destabilization over a range of conditions. Although the wall layer equation includes

particle terms, it does not play a significant role in the energy budget.

In the above analysis, gravity was neglected. Now, taking it into account, considering

a horizontal channel with slowly settling particles, we analyze the stability of quasi-steady

particle distributions under small perturbations. While particles eventually settle at the

wall, each stage of their distribution stabilizes the flow. However, when finite particle to

fluid density ratios are considered, the particle concentration causes viscosity variations

that lead to significant destabilization, in contrast to the no-gravity case, where viscosity

stabilizes the flow. Our analysis shows that instability arises due to the mean velocity

profile modifications caused by the viscosity variation.

In the previous analysis, we assumed perfectly straight and parallel channel walls.

However, in experiments, achieving perfectly aligned walls is challenging. Now, we consider

slightly tilted walls for a clean flow, representing the classical Jeffery-Hamel system. It is

well known that this system exhibits multiple solutions for a given Reynolds number. Even

an extremely small wall convergence angle can significantly alter the flow behavior in a two-

dimensional channel. Our study reveals that in convergent channels at Reynolds numbers

below 10, at least three stable laminar flow solutions can exist. These multiple stable

solutions for the same Reynolds number could potentially be observed in experiments, as

they must correspond to different pressure gradients. For multi-lobed velocity profiles of

type III2 and III3 , multiple critical layers can exist, and dissipation does not necessarily

reach its maximum at the wall. This is particularly interesting because viscosity plays a

crucial role in only two regions: the critical layer, where production occurs, and the wall

layer, where dissipation takes place.

In the one-lobed velocity profile of type III1, the critical Reynolds number is extremely

sensitive to the wall tilt angle. We have shown that this sensitivity arises because the

dominant balance in the critical layer differs from the conventional balance found in a

plane channel.
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