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A B S T R A C T

The observation of gravitational lensing of light and the detection of gravitational waves
(GWs) stand as remarkable confirmations of Einstein’s theory of General Relativity (GR),
both of which provide powerful tools for probing the universe. Recent GW observations by
LIGO and Virgo have probed the astrophysical properties of black holes and neutron stars,
enabled stringent tests of GR in the strong-field regime and contributed to the independent
measurement of the cosmological parameters, among others. With the advent of the next
generation (XG) GW detectors, ⇠ 105 � 106 compact binary coalescence (CBC) events will be
detected per year, a considerable number of which will be lensed.

Unlike the gravitational lensing of electromagnetic (EM) waves, lensing of GWs can exhibit
lensing effects in the wave optics regime, where their wavelengths are comparable to the size
of the lens. This phenomenon, known as GW microlensing, leads to characteristic frequency-
dependent modulations in the observed waveform. Due to their much shorter wavelengths,
such wave optics effects are virtually unobservable in EM waves.

Microlensing of GWs in the LVK frequency band occurs for lenses whose masses lie in the
range ⇠ 102 � 104M�. Potential lenses in this mass window include (but are not limited to)
intermediate-mass black holes (IMBHs) and other exotic compact objects such as primordial
black holes, boson stars, and gravastars. Such wave optics effects enable the exploration of
lensing effects at scales beyond the reach of optical or radio observations. The anticipated
observations of gravitationally lensed GWs in the future observation runs will open up a
plethora of unexplored avenues in astrophysics, cosmology, and fundamental physics.

In this thesis, we explore various aspects of developing GW microlensing observations as an
astrophysical tool. We begin in Chapter 1 with an overview of GWs – their sources, detectors,
and the broad scientific insights they offer. Chapter 2 introduces gravitational lensing. In this
chapter, we discuss the theory behind the propagation of GWs as perturbations on a curved
spacetime background, and highlight the physical regimes of wave-optics and geometric-optics.
We also introduce the various lens models that are relevant to the microlensing scenarios
considered in the later chapters. In Chapter 3, we explore the possibility of constraining the
effective charge of compact objects using GW microlensing observations. In addition to the EM
charge, this effective charge can arise from various alternative theories of gravity. Chapter 4
investigates the efficacy of the current microlensing searches that idealize the compact object
lens as an isolated point mass. This is motivated by the expectation that such microlenses are
likely to be a part of the lensing potential of their host galaxy, which will modify the lensing
effects. Chapter 5 focuses on the development of efficient methods to compute microlensed
GW waveforms using surrogate modeling techniques. These models generate fast and accurate
microlensed waveforms, making them viable for parameter estimation. Finally, Chapter 6
summarizes the findings of this thesis and discusses future directions for research in this field.
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1
G R AV I TAT I O N A L WAV E S

Gravitational waves (GWs) are disturbances in spacetime that propagate at
the speed of light. The existence of GWs was first predicted by Einstein in
1916 [127] as a consequence of his theory of General Relativity (GR). The
landmark direct detection [3] of GWs by the Advanced Laser Interferometer The first indirect

evidence for the
existence of GWs
came from the
Hulse-Taylor binary
star system (PSR
1913+16), whose
observed orbital
decay matched GR’s
predictions for
energy loss via
gravitational
radiation [281,
305].

Gravitational-Wave Observatory (LIGO) [2] marked the beginning of GW
astronomy, enabling the observation and study of astrophysical systems that
were previously beyond our reach. In this chapter, we provide an overview of
the theoretical foundations of GWs, describe their sources and the detectors.
We also discuss the various scientific insights enabled by their observation.

1.1 linearized theory of gravity

In regimes where gravitational fields are weak and typical velocities of matter
sources are much smaller than the speed of light, Einstein’s field equations
can be linearized around flat spacetime. This approximation, known as the
linearized theory of gravity, provides a powerful framework for understand-
ing gravitational waves as small perturbations propagating on a Minkowski
background. We begin by expressing the spacetime metric as We work in units

where G = c =
1/(4pe0) = 1.
Greek indices
(µ, n, . . . ) denote
spacetime
components, and
Latin indices
(i, j, . . . ) refer to
spatial components.
Throughout this
thesis, we use the
mostly-positive
metric signature:
hµn =

diag(�1,+1,+1,+1).

gµn = hµn + hµn, |hµn| ⌧ 1 , (1.1)

where hµn is the Minkowski metric and hµn represents the perturbation. By
retaining only terms linear in hµn, the Einstein equations simplify significantly,
yielding a set of wave-like equations for the metric perturbations in vacuum.

Imposing the Lorenz gauge condition

∂nh̄µn = 0 , (1.2)

where ∂n denotes partial derivatives with respect to the coordinate xn, while
h̄µn is the trace-reversed perturbation defined as

h̄µn = hµn �
1
2

hµnh, h = habhab , (1.3)

the linearized Einstein equations in vacuum reduce to the familiar wave
equations1 1See Misner,

Thorne, and
Wheeler [226] for a
detailed derivation.
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2 gravitational waves

2h̄µn = 0 , (1.4)

where 2 ⌘ �∂2
t +r2 is the flat spacetime d’Alembertian operator. The so-

lutions to Eq. (1.4) are GWs which can be written as superposition of plane
waves

h̄µn(t, x) = Re
Z

d3k Aµn(k)ei(k·x�wt) , (1.5)

where the four-vector kµ = (w, k), w is the wave frequency and k is the wave
vector with |k| = w. The amplitude Aµn(k) is a symmetric tensor that encodes
the polarization states of the GW and is subject to the constraint kn Aµn = 0,
which follows from the Lorenz gauge condition (Eq. (1.2)).

In globally vacuum spacetimes, the Lorenz gauge does not fix the gauge
completely.2 This residual gauge freedom can be used to further impose the2See Chapter 1

of Maggiore [208]
for details.

conditions

h00 = h0i = 0 and h i
i = 0 (1.6)

to completely fix all the local gauge freedom. The resultant metric perturba-
tions contain only the physical degrees of freedom. For plane waves prop-
agating along the direction n̂ ⌘ k/|k|, from Eqs. (1.2) and (1.6), we have

∂jhTT
ij = 0 =) n̂jhTT

ij = 0 . (1.7)

This implies that the non-zero components of hTT
ij are in the plane transverse to

n̂. Eqs. (1.6) and (1.7) constitute the transverse-traceless (TT) gauge conditions.In the TT gauge,
perturbations are

denoted as hTT
µn , and

satisfy h̄TT
µn = hTT

µn .

While Eq. (1.6) imposes five constraints on the perturbed metric, Eq. (1.7)
introduces three additional constraints, reducing the number of independent
components of hµn from ten to two - the two physical polarization modes
of GWs. Consider a monochromatic GW propagating in the z-direction, the
non-zero components of the metric perturbation can be expressed as

hTT
ab (t, z) =

0

@h+ h⇥
h⇥ �h+

1

A

ab

sin [w(t � z)] , (1.8)

where a, b = 1, 2 are indices denoting the transverse (x, y) plane; h+ and h⇥
are the two independent polarization states of the GW, known as the plus and
cross polarizations, respectively. These two polarizations can be visualized
as stretching and squeezing of a ring of test masses (maroon dots) in the
transverse plane, as shown in Fig. 1.1. The plus polarization (h+) stretches
and compresses these particles along the axes, while the cross polarization
(h⇥) induces distortions along the diagonal directions.
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Figure 1.1: Defor-
mation of a ring
of test masses (ma-
roon dots) by a
passing GW, show-
ing the effect of two
polarizations: h+
(top panel) and h⇥
(bottom panel).

1.2 generation of gravitational waves in linearized theory

Consider a source of GWs whose gravitational field is sufficiently weak such
that the background spacetime can be approximated as flat. In this case, the
linearized theory of gravity (Sec. 1.1) remains valid, and the presence of matter
can be included through a source term on the right hand side of Eq. (1.4) as

2h̄µn = �16pTµn , (1.9)

where Tµn is the stress-energy tensor which describes the matter and energy
content of the source. Note that the Lorenz gauge condition (Eq. (1.2)) is
still valid. In addition, the flat-space energy-momentum conservation law
guarantees

∂nTµn = 0 . (1.10)

Eq. (1.9) can be solved using a Green’s function approach. The Green’s function
for the d’Alembertian operator in flat spacetime is given by3 3See, e.g., Jackson

[178]

G(t, x; t0, x
0) = �d (t0 � [t � |x � x

0|])
4p|x � x0| . (1.11)

It represents the field at point (t, x) due to a unit point source located at x
0

and active at the retarded time t0 = t � |x � x
0|.

With this Green’s function, the solution to Eq. (1.9) can be expressed as

h̄µn(t, x) = �16p
Z

d4x0 G(t, x; t0, x
0) Tµn(t0, x

0)

=) h̄µn(t, x) = 4
Z

d3x0
Tµn(t � |x � x

0|, x
0)

|x � x0| . (1.12)

The metric perturbation h̄µn includes gauge-dependent, radiative and non-
radiative components. While a full TT gauge cannot generally be imposed, the
perturbation can be uniquely decomposed. Only the radiative part satisfies
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the TT gauge conditions and represents GWs, while the non-TT parts are
governed by Poisson equations and are non-radiative.44See Flanagan and

Hughes [144] for a
discussion.

Given a plane wave solution hµn (or equivalently h̄µn) in the Lorenz gauge
propagating along n̂, the corresponding TT components outside the source
can be extracted with the help of the tensor

Lij,kl(n̂) = PikPjl �
1
2

PijPkl , (1.13)

where Pij(n̂) ⌘ dij � n̂in̂j is the projection operator onto the plane orthogonal
to n̂. The TT part of the metric perturbation is then given by

hTT
ij (t, x) = Lij,kl(n̂)hkl(t, x) = Lij,kl(n̂)h̄kl(t, x) . (1.14)

Since we are interested in hTT
ij at large distances r from the source (i.e., in

the wave zone where detectors are located), we approximate |x � x
0| ⇡ r.

Furthermore, if the internal motions of the source are non-relativistic, we
can use the approximation Tµn(t � |x � x

0|, x
0) ⇡ Tµn(t � r, x

0). Applying
Eq. (1.14) to Eq. (1.12) along with the simplifications above, we can write the
TT components of the metric perturbation as

hTT
ij (t, x) =

4
r

Lij,kl(n̂)
Z

d3x0 Tkl(t � r, x
0) , (1.15)

which corresponds to the leading-order term in a multipole expansion of the
radiation field. For slow moving sources, T00 ⇡ r, the mass density. Using
Eq. (1.10) and assuming the source to be spatially localized, we find

Z
d3x0 Tij =

1
2

d2 Iij

dt2 , (1.16)

where the second mass moment tensor Iij is defined as

Iij =
Z

d3x0 x0i x
0
j r(t, x

0) . (1.17)

Since only the traceless part of Iij contributes to Eq. (1.15), we define the
quadrupole moment tensor:

Iij = Iij �
1
3

dij I k
k . (1.18)

Combining Eqs. (1.15), (1.16) and (1.18), the leading-order TT metric perturba-
tion is given by

hTT
ij (t, x) =

2G
c4r

Lij,kl(n̂)Ïkl(t � r/c) , (1.19)

where Ïkl is the second time derivative of the quadrupole moment tensor
and we have reinstated G and c for physical clarity. This expression shows
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that GWs are generated by the acceleration of mass distributions, and their
strength decreases with distance as 1/r. The GW energy flux — the energy
dE crossing an area element dA on a sphere of radius r during a time interval
dt — is given by5 5See Chapters 1

and 3 of Maggiore
[208] for details.dE

dt dA
= � c3

32pG
hḣTT

ij ḣij
TTi = � c3

16pG
hḣ2

+ + ḣ2
⇥i , (1.20)

where h· · · i represents a temporal average over several characteristic periods
of the GW. The GW luminosity in the quadrupole approximation is then6 6This formula was

first derived
by Einstein [128] in
1918 and is often
referred to as the
quadrupole
formula.

LGW ⌘ �dE
dt

=
G

5c5 h
...
I ij

...
I iji , (1.21)

where the time derivatives are evaluated at the retarted time t � r/c.
The quadrupole approximation is valid for weak-field, slow-motion systems

where the typical internal velocity v ⌧ c. For highly relativistic or strongly
gravitating sources, this approximation breaks down. Relativistic corrections
due to large v/c can be systematically incorporated using the post-Newtonian
(PN) formalism – an expansion in powers of v/c. Meanwhile, strong-field
effects arising from nonlinearities in the gravitational interaction (i.e., large
G) are addressed by the post-Minkowskian (PM) formalism – an expansion in
powers of G.7 7Refer to Blanchet

[78] for a
comprehensive
review of the
state-of-the-art
post-Newtonian
calculations.

1.3 sources of gravitational waves

As discussed in Sec. 1.2, GWs are generated by time-varying quadrupole mo-
ments of mass distributions. However, terrestrial sources are far too weak to be
detectable. Detectable GWs typically originate from astrophysical systems in-
volving massive, compact objects undergoing rapid, asymmetric accelerations.
The characteristic frequency of such waves is determined by the system’s
dynamical timescale.

transient persistent

modeled Compact binary coalescence Continuous
unmodeled Burst Stochastic

Table 1.1: Categories of possible GW sources.

Table 1.1 summarizes the broad categories of GW sources based on their du-
ration and whether their waveforms can be reliably modeled. In the following
subsections, we discuss each of these sources in more detail.
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1.3.1 Compact binary coalescences

This is the class of GW signals that has been routinely detected by the current
ground-based observatories. Compact binary coalescences (CBCs) involve
two compact objects, such as black holes (BBH), neutron stars (BNS), or
a combination thereof, in a close binary system that loses energy via GW
emission and eventually merges.

The inspiral phase, during which the orbit shrinks gradually due to radiation
losses, is accurately modeled using the PN formalism. During this stage, both
the amplitude and frequency of the waveform increase as the two bodies
spiral closer. The system evolves through a sequence of quasi-circular orbits
until the binary either reaches the innermost stable circular orbit (ISCO) or
the two bodies make contact. At this point, the binary enters the merger phase,
forming a single, highly distorted remnant. This phase marks the peak of
GW emission and is modeled using full numerical relativity (NR), which
solves Einstein’s equations without approximations8 . The final ringdown8For an in-depth

review of NR
methods applied to

compact binary
systems,

see Baumgarte and
Shapiro [68].

phase describes the relaxation of the remnant - typically a Kerr black hole - via
damped oscillations known as quasi-normal modes (QNMs), radiating away
residual distortions9 . The spectrum of these QNMs can be computed using

9Refer to Kokkotas
and Schmidt [192]

for a comprehensive
overview of the

theory of QNMs.

black hole perturbation theory (BHPT)10 . In the case of neutron star mergers,

10 Vishveshwara
[299] in 1970

demonstrated that
GWs scattered off a

black hole have
characteristic

waveforms, which
led to the discovery

of QNMs.

however, the post-merger dynamics are far more complex and sensitive to the
underlying microphysics (e.g. the equation of state of dense nuclear matter).
Accurately modeling this phase requires detailed numerical simulations that
incorporate relativistic hydrodynamics and nuclear physics. The top panel of
Fig. 1.2 shows these phases of the binary coalescence process for a BBH.

We now use results from Sec. 1.2 to estimate the GW strain amplitude from
a compact binary system in the quadrupole approximation. Consider two
masses m1 and m2 in a quasi-circular orbit located at a distance r from the
observer. At Newtonian order, the orbital angular frequency W is given by
Kepler’s third law

W =

r
GM
R3 , (1.22)

where M ⌘ m1 + m2 is the total mass of the system and R is the orbital
radius. For this system, assuming that the motion is in the x � y plane, the
non-vanishing components of the quadrupole moment tensor evaluated at the
retarted time tret ⌘ t � r/c are

I11 =
1
2

µR2 [1 + cos(2Wtret)] , (1.23a)

I22 =
1
2

µR2 [1 � cos(2Wtret)] , and (1.23b)

I12 =
1
2

µR2 sin(2Wtret) , (1.23c)
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Figure 1.2: Top:
Time evolution of
a binary black hole
(BBH) coalescence
illustrating the
inspiral, merger
and ringdown
phases. Middle:
simulated GW
strain amplitude
from GW150914 as
predicted by numer-
ical relativity (red)
and reconstructed
from observed data
using a waveform
template (gray).
Bottom: relative
velocity (in units of
c) and separation
(in Schwarzschild
radii of the total
mass) of the black
holes over time.
Credits: Abbott
et al. [3]

where µ ⌘ m1m2/M is the reduced mass of the system. Let the normal of the
orbital plane be inclined at an angle i with respect to the line of sight. The GW
strain predicted by the quadrupole formula (Eq. (1.19)), is then given by11 11Refer to Chapter

3 of Creighton and
Anderson [114] for
a detailed
derivation.hTT

ij = h

0

BBB@

1+cos2 i
2 cos(2Wtret) cos i sin(2Wtret) 0

cos i sin(2Wtret) � 1+cos2 i
2 cos(2Wtret) 0

0 0 0

1

CCCA
, (1.24)

with the amplitude

h =
4GµR2W2

c4r
=

4G5/3µM2/3W2/3

c4r
. (1.25)

Here, G and c are explicitly included to emphasize that h is dimension-
less. From Eq. (1.24) we see that the GW frequency is twice the orbital fre-
quency in the Newtonian order, that is, f = 2 forb ⌘ W/p. For a binary with
m1 = m2 = 30M� at a distance of 400 Mpc, the strain amplitude at the peak
orbital frequency of 100 Hz is h ⇡ 10�21. Such binaries are detectable by the
current ground-based detectors. Similarly, supermassive black hole (SMBH)
binaries (with component masses ⇠ 107M� each) with orbital periods of a few
hours at ⇠ 1 Gpc distance can be detected by the planned space-based Laser
Interferometer Space Antenna (LISA). The middle panel of Fig. 1.2 displays
the strain amplitude of GW150914, the first detected BBH event. The red curve
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shows the numerical relativity prediction, while the gray curve represents the
signal reconstructed from observed data using a waveform template.

The GW luminosity can be computed from Eq. (1.21) by substituting the
quadrupole moment tensor components given in Eq. (1.23), yielding1212The

corresponding
expression for

elliptic Keplerian
orbits is due

to Peters and
Mathews [248].

LGW =
32
5

G
c5 µ2R4W6 =

32
5

c5

G
h2
⇣v

c

⌘10
, (1.26)

where h ⌘ µ/M is the symmetric mass ratio and v ⌘ RW is the characteristic
orbital velocity. The energy carried away by GWs results in a loss of orbital
energy, Eorb = µv2/2, leading to a gradual inspiral of the binary13 . Equating13We assume that

the energy radiated
per orbit is small
compared to the

total orbital energy
Eorb, allowing the

binary to be treated
as evolving through

a sequence of
approximately

Keplerian orbits.

the GW luminosity to the rate of change of orbital energy gives the evolution
of the orbital velocity as

d
dt

⇣v
c

⌘
=

32
5

hc3

GM

⇣v
c

⌘9
. (1.27)

Using the Newtonian relation v =
p

GM/R, we can also express the evolution
of the orbital separation R in terms of the dimensionless ratio R/RS, where
RS ⌘ GM/c2 is the Schwarzschild radius of the total mass M

d
dt

✓
R
RS

◆
= �64

5

 
Gµ

R2
Sc

!✓
R
RS

◆�3
. (1.28)

The evolution of the orbital velocity and separation as the binary spirals in
and eventually merges is shown in the bottom panel of Fig. 1.2. Moreover,
Eq. (1.27) can be recast in terms of the GW frequency using the relation
v = (pGM f )1/3 leading to the frequency evolution equation

d f
dt

=
96
5

p8/3
✓

GMc

c3

◆5/3
f 11/3 , (1.29)

where Mc ⌘ h3/5M is the chirp mass of the binary system. The frequency
increases rapidly as the binary approaches merger, leading to the character-
istic chirp signal. Note that with the inclusion of higher PN corrections, the
evolution equations become more complex, but the qualitative features of the
inspiral remain unchanged.

The detection and analysis of CBC signals require accurate modeling of
the full inspiral-merger-ringdown (IMR) waveform. With increasing detector
sensitivity, minimizing systematic biases from waveform inaccuracies becomes
essential. Modern waveform models, such as those in the phenomenological
(Phenom) [44] and effective-one-body (EOB) [85] families, use semi-analytical
techniques that combine inputs from PN theory, NR, and BHPT to describe
the entire coalescence. In parallel, data-driven surrogate models [141] are built
by interpolating over a set of NR waveforms and offer highly accurate and
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computationally efficient waveform generation for specific regions of the
parameter space.

Throughout this thesis, we will be concerned with CBC signals only.

1.3.2 Continuous waves

Continuous gravitational waves (CWs) are long-lasting, nearly monochromatic
signals. Unlike the transient CBC signals, CWs persist over observational
timescales, making their detection a problem of long-term signal accumu-
lation and coherence tracking. CW signals are typically modeled as nearly
monochromatic sinusoids but require accounting for phase variations over
long timescales.

A rotating neutron star in our galaxy can emit detectable continuous GWs if
it has non-zero ellipticity, that is, a deviation from perfect axisymmetry,14 such 14Even an

axisymmetric
neutron star can
emit GWs if its
symmetry axis is
misaligned with its
spin axis;
see Zimmermann
and Szedenits
[316].

as a crustal deformation or internal deformations caused by non-axisymmetric
trapped magnetic fields or fluid oscillations or exotic states of matter. A
non-axisymmetric neutron star can be modeled as a triaxial ellipsoid. The
characteristic strain amplitude of CWs from such a source at a distance r is
given by [1]

h =
4p2GI3 f 2

c4r
e , (1.30)

where e ⌘ (I1 � I2)/I3 is the ellipticity, I3 is the principal moment of inertia
about the rotation axis, I1 and I2 are the other two principal moments of
inertia, and f is the GW frequency (which is twice the rotation frequency). For
a typical neutron star of radius 10 km and a mass of 1.4M� rotating at 0.5 kHz
with an ellipticity of e ⇠ 10�6 at a galactic distance of 10 kpc, Eq. (1.30) gives
a strain amplitude

h ' 10�25
⇣ e

10�6

⌘✓ I3

1038 kg m2

◆✓
10 kpc

r

◆✓
f

1 kHz

◆2
. (1.31)

which is much smaller than the CBC strain amplitude.
Known pulsars provide ‘targeted search’ opportunities [18, 33] since their

sky positions and rotational frequencies are well determined from electro-
magnetic observations. There are also ‘all-sky searches’ [9, 32, 283] that target
unknown neutron star sources across a broad parameter space, demanding
significant computational effort. ‘Directed searches’ [12, 28] target known sky
locations (e.g., supernova remnants like Cassiopeia A [306]) where a neu-
tron star is suspected but its spin frequency is unknown. By fixing the sky
position, these searches reduce computational cost and can achieve greater
sensitivity than all-sky searches. Despite no confirmed detections so far, upper
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limits from CW searches have placed meaningful constraints on neutron star
deformations and internal physics.

1.3.3 Bursts

Neutron stars and black holes can form from the collapse of massive stars or
accreting white dwarfs. If the collapse is not perfectly spherical (often due to
rapid rotation) it can emit GWs violently within a very short duration, carrying
away some of the system’s energy and angular momentum. These transient
GW signals, commonly referred to as bursts, are expected from a wide variety
of poorly-modeled or complex astrophysical scenarios. Examples include core-
collapse supernovae, neutron star quakes, magnetar flares, cosmic string cusps,
highly eccentric compact binary encounters or other unanticipated sources.
Since the exact waveform of such events is not known a priori, burst searches
in GW data rely on minimally modeled or unmodeled algorithms that look for
coherent excess power across detectors without requiring detailed templates.

The characteristic strain amplitude h of GWs emitted by a source at distance
r, releasing energy E over a duration T with dominant frequency f , can be
estimated as [263]

h ⇠ 1
p f r

r
GE
c3T

. (1.32)

As an example, consider a galactic supernova explosion that emits gravi-
tational radiation with emitted energy equivalent of 10�7M� centered at
a frequency of 1 kHz and lasting for 1 ms. The resulting strain amplitude
received at a distance of 10 kpc would be

h ⇠ 6 ⇥ 10�21
✓

E
10�7M�c2

◆1/2 ✓ T
1 ms

◆�1/2 ✓1 kHz
f

◆✓
10 kpc

r

◆
. (1.33)

While the amplitudes are within the reach of current detectors, no confirmed
detections have been made. Nonetheless, upper limits from burst searches -
especially for nearby galaxies - are beginning to probe interesting astrophysical
regimes [16, 23, 24].

1.3.4 Stochastic background

The stochastic gravitational wave background (SGWB) is a random superpo-
sition of numerous unresolved GW signals from a variety of sources, both
astrophysical and cosmological. Unlike transient or continuous signals, the
SGWB is characterized by its statistical properties rather than individual
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waveforms. It is often described in terms of the dimensionless energy density
parameter WGW( f ), defined as

WGW( f ) ⌘ 1
rc

drGW

d ln f
, (1.34)

where rc = 3c2H2
0 /(8pG) is the critical energy density of the universe, H0

is the Hubble constant, and rGW is the GW energy density per logarithmic
frequency interval.

Astrophysical contributions to the SGWB arise from unresolved popula-
tions of CBCs, core-collapse supernovae, rotating neutron stars, stellar core
collapses, superradiance of axion clouds around black holes etc. Cosmological
contributions to the SGWB originate from processes in the early universe,
such as inflation, phase transitions, cosmic strings, and pre-Big Bang scenarios.
These sources can produce GWs across a wide range of frequencies, with some
extending to the nanohertz regime probed by pulsar timing arrays (PTAs) or
the millihertz band targeted by space-based detectors like LISA.

Detection of the SGWB relies on cross-correlating data from multiple de-
tectors to extract the weak stochastic signal from uncorrelated instrumental
noise15 . The sensitivity of this method depends on the overlap reduction func- 15 Allen and

Romano [47] is a
key early paper that
explains how to use
cross-correlation to
detect the SGWB.

tion, which encodes the relative orientation and separation of the detectors.
Assuming the SGWB is a Gaussian, isotropic, unpolarized, and stationary ran-
dom process, current observations from ground-based detectors have placed
upper limits on the energy density spectrum WGW( f ) . 10�9 in the frequency
band accessible to the detector network [31]. PTAs have recently reported
evidence for a nanohertz SGWB, potentially of astrophysical origin [42].

1.4 overview of the gravitational wave detectors

GW detectors are broadly classified into two categories: beam detectors and
resonant mass detectors. Beam detectors - including both ground-based and
space-based instruments - operate on the principle of laser interferometry
to measure differential changes in arm lengths caused by passing GWs. In
contrast, resonant mass detectors, such as bar and spherical detectors, rely on
the mechanical response of massive bodies to incident gravitational waves.

1.4.1 Resonant mass detectors

Resonant bar detectors consist of large, cryogenically cooled metal bars that
vibrate when a GW excites their fundamental longitudinal mode. These tiny
oscillations, typically at kHz frequencies, are converted into electrical signals
using sensitive transducers. However, bar detectors are inherently narrowband,
limiting their sensitivity to a small frequency range around their resonance.
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Resonant spherical detectors improve upon this by offering broader directional
sensitivity and isotropic sky coverage.

However, with the advent of laser interferometers that offer broad-band
sensitivity, significantly improved strain resolution, and superior source local-
ization capabilities, resonant mass detectors have become largely obsolete.1616The resonant bar

detector concept
was first introduced

by Weber [303].
However, no

resonant bar or
spherical detectors

are currently
operational.

Interferometric detectors can monitor a wide frequency range simultaneously
and are better suited for detecting a variety of transient and continuous sig-
nals from astrophysical sources. As a result, resonant detectors have been
phased out from active use, though they played a foundational role in the
early development of the field and in demonstrating the feasibility of GW
detection.

1.4.2 Beam Detectors

Laser interferometers are the most sensitive and widely used GW detectors.
These detectors employ two long, perpendicular arms with a laser beam split
and sent down each arm. The beams reflect off highly isolated mirrors (test
masses) placed at the ends of the arms and recombine at the beam splitter
producing an interference pattern at the output. A passing GW induces
differential length changes in the arms, producing a measurable time-varying
interference pattern that encodes the GW signal.

The fundamental observable in such detectors is the dimensionless strain
amplitude

h =
DL
L

, (1.35)

where DL is the GW-induced change in arm length, and L is the nominal
arm length. For an interferometer with kilometer-scale arms using infrared
lasers (llaser ⇠ 1 µm), GW strain of the order h ⇠ llaser/L = 10�9 can, in
principle, be detected. To enhance sensitivity, Fabry-Pérot cavities with low-
transmittivity mirrors are used in each arm, causing the laser to bounce ⇠ 103

times - effectively increasing the optical path. This improves strain sensitivity
to h ⇠ 10�12. Fig. 1.3 shows the schematic optical layout of the Advanced
LIGO detector. A stabilized laser passes through an input mode cleaner before
entering the main interferometer, where it is split into two 4 km perpendicular
arms. Multiple reflections in the Fabry-Pérot cavities extend the effective arm
length.

To further improve the sensitivity, shot noise - random quantum fluctuations
in the number of detected photons - must be reduced. This can be achieved
using high-power lasers and highly sensitive photodetectors. The effective
power inside the interferometer can be increased by adding a power recycling
mirror between the laser and the beam splitter. This mirror reflects light
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Figure 1.3: Simpli-
fied optical layout
of the Advanced
LIGO detectors
in the fourth ob-
serving run (O4).
Credits: Cahillane
and Mansell [86].

that would otherwise leave the interferometer back into the arms, where it
constructively interferes with incoming light. The resulting resonant buildup
of optical power enhances the detector’s strain sensitivity, allowing it to reach
levels as low as h ⇠ 10�20.

However, at high laser powers, quantum fluctuations in light intensity
apply varying forces on the mirrors, leading to radiation pressure noise. This
effect can be reduced by using heavier mirrors, which are less affected by
these tiny forces. The two main quantum noise sources - shot noise and
radiation pressure noise - are constrained by the Heisenberg uncertainty
principle. Shot noise decreases with laser power, while radiation pressure
noise increases, resulting in a trade-off that defines the standard quantum limit
(SQL) for strain sensitivity. To surpass the SQL, squeezed light is injected into
the interferometer. Squeezing redistributes quantum uncertainty to reduce
noise without increasing laser power. For optimal performance across a wide
frequency band, frequency-dependent squeezing is used. This requires a filter
cavity that rotates the squeezing angle as a function of frequency - reducing
shot noise at high frequencies and radiation pressure noise at low frequencies.

The output beam then passes through a Faraday isolator, which prevents
light from re-entering the interferometer. It then passes through an output
mode cleaner, which removes unwanted light modes before the signal reaches
the detectors. For more details, see Capote et al. [87].

Apart from the noise sources mentioned earlier, the interferometer is also
sensitive to seismic noise and Newtonian noise at low frequencies. Thermal noise
from the optics and suspension systems become dominant at intermediate
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Figure 1.4: Am-
plitude spectral

density (ASD) of
the total strain

noise for the LIGO-
Hanford (red),

LIGO-Livingston
(blue) and Virgo
(violet) detectors,
representative of
their best sensi-
tivities during

the third observ-
ing run(O3).

Adapted from Ab-
bott et al. [26]
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frequencies. These disturbances are mitigated through advanced seismic iso-
lation systems, multi-stage suspensions, and, in some upcoming detectors,
cryogenic cooling of the optical components.

Current generation of interferometers, such as the Advanced LIGO in the
USA, and the Advanced Virgo [38] in Italy are capable of measuring strain
amplitudes ⇠ 10�22 or even smaller. Fig. 1.4 shows the amplitude spectral
density (ASD) of the strain sensitivity for the two LIGO detectors (Hanford
and Livingston) and the Virgo detector during the third observing run. The
ASD quantifies the detector’s noise level as a function of frequency, with lower
values indicating better sensitivity.

1.4.3 Detector response functions of ground-based interferometers

The sensitivity of a GW detector depends not only on the strain amplitude but
also on its orientation and position relative to the source. The detector response
functions, also known as antenna pattern functions, quantify how the detector
responds to GWs from different sky positions and polarizations.

For a GW propagating along n̂ direction, the TT strain tensor hTT
ij (t) (see

Eq. (1.19)) can be written as a linear combination of the two polarizations,
h+(t) and h⇥(t) as

hTT
ij (t) = h+(t) e+ij (n̂) + h⇥(t) e⇥ij (n̂) , (1.36)

where e+ij and e⇥ij are the polarization basis tensors orthogonal to the propaga-
tion direction. A laser interferometric detector responds to the GW through the
contraction of the TT metric perturbation with the detector tensor Dij, which
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Figure 1.5: Nor-
malized detector
response functions
for an interferomet-
ric ground-based
detector with or-
thogonal arms
along the x- and
y-axes.

encodes the geometry and orientation of the detector arms. The measured
strain is given by

h(t) = DijhTT
ij (t) = F+(n̂) h+(t) + F⇥(n̂) h⇥(t) , (1.37)

where F+ ⌘ Dije+ij and F⇥ ⌘ Dije⇥ij are the detector’s response functions to
the + and ⇥ polarizations, respectively. These functions are independent of
the signal frequency in the long-wavelength approximation, but depend on
the direction of the source n̂ and the polarization angle y, which defines the
rotation of the polarization axes about n̂.

To make this dependence explicit, we introduce the angles (J, j) to specify
the source location in a detector-centered (Earth-fixed) spherical coordinate
system: J is the polar angle measured from the detector’s zenith (the z-axis),
and j is the azimuthal angle measured in the x–y plane. The antenna pattern
functions then take the form [208]

F+(J, j, y) =
1
2
(1 + cos2 J) cos 2j cos 2y � cos J sin 2j sin 2y , (1.38a)

F⇥(J, j, y) =
1
2
(1 + cos2 J) cos 2j sin 2y + cos J sin 2j cos 2y . (1.38b)

Fig. 1.5 shows the antenna pattern functions for y = 0. While GW interferome-
ters exhibit broad sky coverage, they also possess blind spots - directions from
which signals cannot be detected effectively. Importantly, a single detector
cannot localize a GW source on the sky, as it lacks directional sensitivity.
To overcome this, a network of detectors is essential. The observed signal
depends on four unknowns: h+, h⇥, J and j. Resolving all four parameters
requires at least three non-aligned detectors.

1.4.4 Current and future gravitational wave detectors

The current LIGO-Virgo-KAGRA (LVK)17 detector network has detected ⇠ 90 17KAmioka
GRAvitational
wave detector
(KAGRA) [45] is a
detector in Japan.

CBC events across its first three observing runs (O1, O2 and O3) [10, 25, 26,
37], with independent reanalyses identifying additional candidates [221, 241,



16 gravitational waves

Figure 1.6: Cur-
rent and projected

number of GW
detections with fu-
ture ground-based
detectors. Adapted

from Broekgaar-
den, Banagiri,

and Payne [83].

244, 300]. The ongoing fourth observing run (O4) has already expanded the
catalog of candidate CBC events by ⇠ 200, with more detections expected
as the run progresses18 . Operating in the ⇠ 10 Hz � 10 kHz band, these18Public alerts from

O4 can be viewed at
GraceDB

detectors are primarily sensitive to stellar-mass compact binaries. The addition
of the planned LIGO-Aundha detector [290], in India, to the network is
expected to significantly enhance the sky localization of GW events, improve
polarization disentanglement, increase the detection rate and yield better
parameter estimation (PE) due to improved sky coverage and duty cycle [261].

Next-generation ground-based detectors (often referred to as ’XG’ or ’3G’Refer to Bailes et al.
[54] for a review on

the future GW
detectors and

science prospects.

detectors) such as the Einstein Telescope (ET) [254] in Europe and the Cosmic
Explorer (CE) [17] in the USA aim to achieve an order-of-magnitude improve-
ment in strain sensitivity and extend the accessible frequency band to lower
frequencies (⇠ 1 Hz). LIGO Voyager [40], a proposed upgrade to the Advanced
LIGO detectors, can potentially serve as a test bed for technologies required
for ET and CE. Additionally, the Neutron Star Extreme Matter Observatory
(NEMO) [39] proposed in Australia, is a detector optimized for neutron star
science with target sensitivity comparable to ET and CE above 2 kHz. These
advancements will enable high signal-to-noise ratio (SNR) detections out to
cosmological distances, probing the population of compact objects throughout
the universe and offering a window into previously inaccessible aspects of
fundamental physics [132, 209]. Fig. 1.6 shows the current and projected num-
ber of detections with the ground-based detectors. Voyager (A#) is expected
to detect ⇠ 100 times more sources as compared to the current detectors,
while ET and CE are expected to push the detection rate to an astonishing
⇠ 105 � 106 events per year.

Space-based detectors, such as the LISA [49], will operate in the millihertz
frequency band (⇠ 0.1 mHz � 100 mHz), targeting intermediate-mass and
SMBH binaries (102 � 107M�), extreme mass-ratio inspirals (EMRIs, binaries
with mass ratios as small as ⇠ 10�6), and a variety of cosmological sources
out to redshifts z ⇠ 20 or more. LISA will also enable multiband observa-

https://gracedb.ligo.org/superevents/public/O4/
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tions by detecting early inspiral stages of stellar-mass binaries much before
they enter the detectable band of the ground-based detectors. Additionally
it will uncover new population of galactic binaries including white dwarf
binaries allowing a population census and mapping the structure of the Milky
Way [269]. Several complementary missions are in planning and development,
including the Chinese-led TianQin [202] and Taiji [171] constellations. Both
are based on LISA-like designs with modified orbital and instrumental pa-
rameters. Looking beyond, next-generation space-based observatories aim
to extend sensitivity above and below LISA’s band. In particular, DECihertz
Interferometer Gravitational wave Observatory (DECIGO) [187], a proposed
Japanese mission, targets the range of 0.1 � 10 Hz and is designed to probe
primordial GWs.

PTAs [182, 195, 211, 212] are sensitive to ⇠ 1 nHz � 1 µHz GWs. They
measure correlated variations in the timings of highly stable millisecond
pulsars caused due to spacetime distortions from passing GWs. These vari-
ations follow a characteristic angular correlation across the sky known as
the Hellings-Downs curve [165]. Monitoring an array of pulsars across the
sky allows PTAs to probe the nanohertz GW background, primarily from
SMBH binaries. Future PTAs plan on improving the sensitivity by deploying
better receivers on telescopes. Further, the advent of Square Kilometer Array
(SKA) is expected to greatly expand the pulsar population and enhance timing
precision [181].

Together, ground-based detectors, space-based missions and PTAs provide
a complementary and comprehensive coverage of the GW spectrum – from
nHz to kHz frequencies. This multi-band approach will not only expand the
catalog of GW events but also deepen our understanding of astrophysics,
cosmology and fundamental physics.

Although future detectors promise major scientific gains, they also introduce
significant challenges. The large number of high-SNR detections will substan-
tially increase the computational cost of PE including hierarchical inference of
population parameters, and will necessitate more flexible population models.
Accurate waveform modeling will become even more crucial, particularly
for systems exhibiting precession, eccentricity and higher modes [257]. For
long-duration signals, strategies such as reduced data rates [227] or hetero-
dyning [109, 315] can help manage computational demands. While machine
learning has demonstrated rapid parameter inference for signal durations of
a few seconds [115], the increasing data volume will require efficient data
compression and scalable, reliable computational platforms (e.g. Inference-as-
a-Service [157]). Enhanced sensitivity will also amplify subtle noise features,
such as glitches, making their modeling and subtraction essential. In future
detectors, noise may need to be estimated concurrently with signals [252],
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particularly for space-based observatories where ’off-source’ data may not
exist.

1.5 science with gravitational waves

A decade since the very first detection of GWs (GW150914) [3] from the
merger of two black holes with masses ⇠ 36 M� and ⇠ 29 M� observed
on September 14, 2015, GW astronomy has grown into a powerful tool for
exploring the universe. It provides direct access to the dynamics of strong-
field gravity and enables detailed studies of compact object populations.
While the majority of detections till O3 are BBH mergers, the catalog also
includes two BNS (GW170817 [6] and GW190425 [15])19 and two neutron star19The nature of

GW190425 remains
uncertain owing to
large chirp-masses;

either or both
components may be

black holes.

- black hole (NSBH, GW200105 and GW200115 [27]) mergers. The following
sections highlight some of the ways in which GWs serve as unique probes of
fundamental physics, astrophysics and cosmology.

1.5.1 Fundamental physics

GW detections have enabled testing the nature of gravity in the strong-field,
highly dynamical regime. Remarkably, GW150914 alone has placed an up-
per bound on the graviton mass of mg < 1.2 ⇥ 10�22 eV/c2 [4], improving
previous constraints obtained from Solar System and binary pulsar tests.2020Bounds on the

graviton mass have
improved by an

order of
magnitude [29],

with further gains
expected from 3G

detectors.

On August 17, 2017, the first BNS merger, GW170817, with associated EM
counterparts, confirmed upto an unprecedented accuracy that GWs propagate
at the speed of light to within one part in 1015 [7]. This result effectively
rules out parameter spaces of large class of modified gravity models that
predict significant deviations between the speeds of gravity and that of light.
This detection has also constrained the number of space-time dimensions [13,
246]. Theory agnostic tests have been extensively applied [14, 29, 30], with
no statistically significant departure from GR observed. Future detectors will
be able to extend these tests across a wide range of curvature and length
scales, enhancing sensitivity to potential deviations from GR [147, 314]. The
ringdown signal of GW150914 has been used to test the black hole area theo-
rem [173], finding consistency with GR. GW observations also allow putting
constraints on additional polarization modes predicted by alternative theories
of gravity [19, 174].

GW observations offer new ways to investigate the nature of dark matter
(DM). One possibility is that DM is partly composed of primordial black holes
(PBHs) of masses ⇠ 0.1 � 100 M� [74, 106, 262]. GW detections of binaries
with sub-solar mass components or an unexpected excess in specific mass
ranges could indicate the presence of PBHs [11]. Observing sources at very
high redshift would further support this scenario [194]. GWs also test particle
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DM models beyond the Standard Model. In such cases, BBHs in dense DM
environments may experience dynamical friction and accretion, altering their
inspiral dynamics and leaving detectable imprints on the GW signal [89, 126,
203].

Compact binary mergers also allow us to test the nature of compact objects.
In particular, they provide insights into the equation of state (EOS) of dense
matter at supranuclear densities, probing regimes inaccessible to laboratory
experiments. Matter effects leave imprints on the waveform during tidal
disruption in NSBH systems and the merger and post-merger phases of
BNS events [55, 196]. GW170817 ruled out several stiff EOS models and
constrained the radii of the neutron star components to be within 9� 13 km [6,
214]. 3G detectors are expected to improve these constraints to within a
few hundred metres and may allow measurements of central densities and
pressures inside neutron stars [264]. Additionally, GWs can help identify exotic
compact objects (ECOs) that differ from black holes due to their non-zero tidal
deformability [183]. Signatures in the ringdown phase or the presence of GW
"echoes" may provide evidence for non-standard compact object interiors [71].

1.5.2 Astrophysics

The detection of GW170817 marked the dawn of GW multi-messenger astron-
omy, being the first event observed with EM counterparts across the spectrum,
including a gamma-ray burst (GRB170817a) and a kilonova [8]. It provided the
first direct confirmation that BNS mergers are progenitors of short gamma-ray
bursts (GRBs) [7, 150], enabled the first unambiguous detection of a kilo-
nova [51, 112, 113, 133, 273, 292], and offered compelling evidence that BNS
mergers are a primary site for the synthesis of heavy elements via r-process
nucleosynthesis [123, 185, 186, 249, 302].

GWs provide a unique window into the origin and evolution of compact
object binaries. They enable detailed survey of black hole demographics,
including their mass and spin distributions. Uncertainties in the BBH mass
distribution directly affect the inferred merger rates, which currently range
between 16 � 61 Gpc�3yr�1 at the present epoch. However, there is strong
evidence suggesting that the merger rate increases with redshift [35]. GWs
also probe the binary formation channels. Broadly, BBHs can originate either
from an isolated binary evolution or dynamical formation through interactions
in dense stellar environments.21 21For a

comprehensive
review on the
formation channels
of single and binary
black holes,
see Mapelli [213].

Events such as GW190814 - the merger of a ⇠ 23 M� black hole with a
compact object of mass ⇠ 2.6 M� - challenge our understanding of the so-
called "lower mass gap" between neutron stars and black holes, traditionally
expected to lie between ⇠ 2 � 5 M� [21]. Similarly, GW190521 resulted in the
formation of the first observed intermediate-mass black hole (IMBH, black
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holes in the mass range 102 � 104 M�) with a remnant mass of ⇠ 142M� [20].
The primary component of this system, with a mass of ⇠ 85 M�, falls within
the predicted "pair-instability mass gap", implying a possible hierarchical
coalescence of smaller black holes or a stellar merger between a massive
evolved star and a main-sequence companion [22].

These discoveries highlight the transformative potential of GW observations
in astrophysics. As detector sensitivities improve and event catalogs grow, we
anticipate uncovering eccentricity and precession in compact object mergers,
refining models of stellar evolution, and probing environments previously
inaccessible to traditional EM astronomy.

1.5.3 Cosmology

GWs offer an independent measurement of cosmological parameters. From
the GW signal alone, it is possible to infer the luminosity distance to the source,
without relying on a cosmic distance ladder. This concept, originally proposed
by Schutz [266], was spectacularly realized with GW170817. The combination
of the GW-inferred distance and the redshift obtained from its EM counterparts
enabled a direct measurement of the Hubble constant, inaugurating the use
of GWs as standard sirens [5].

Even in the absence of EM counterparts, statistical association with galaxy
catalogs allows for cosmological inference by cross-matching the localization
volumes of GW events with galaxy redshift surveys [34, 154]. With a sufficient
number of such events, this method becomes increasingly powerful and can
yield competitive constraints on cosmological parameters.

GW measurements also have the potential to address the current tension
in Hubble constant measurements between the local distance ladder and
cosmic microwave background (CMB) inference. By providing an independent
distance-redshift relation, GWs can help determine whether this tension arises
from unknown systematics or signals new physics [137].

Beyond the Hubble constant, GWs can be used to probe deviations from
GR on cosmological scales through modified GW propagation effects [142,
210]. Additionally, cross-correlating the spatial distribution of GW events with
galaxy surveys - leveraging the fact that compact binaries trace the underlying
large-scale structure - can provide constraints on the matter density, bias of
GW host environments, and the growth of cosmic structure [230, 231].

As the number of detected events increases and localization accuracy im-
proves, especially with next-generation GW detectors, GW cosmology is
expected to become a cornerstone of precision cosmology.
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The 1919 observation of the bending of star-light around the Sun during a
total solar eclipse marked the first experimental confirmation of GR [124],
measuring a deflection twice as large as predicted by Newtonian gravity.
This bending of light - referred to as gravitational lensing - occurs when the
curvature of spacetime around massive objects, or lenses, alters the path of the
incident radiation. Over the past century, gravitational lensing of EM radiation
has established itself as a powerful tool in astrophysics and cosmology, with
applications ranging from mapping the dark matter distribution in galaxy
clusters [107], constraining compact dark matter [297], discovering exoplan-
ets [148], observing distant galaxies and clusters [190, 287], to measuring the
Hubble constant [258, 288].

Analogous to EM radiation, GWs also experience lensing when they propa-
gate near massive compact objects or mass distributions. However, GW lensing
exhibits distinct features depending on the ratio between the GW wavelength,
lGW, and the characteristic gravitational length scale of the lens. When the
wavelength is significantly smaller than the gravitational radius of the lens,
i.e., lGW ⌧ GML/c2,1 lensing can be described using the geometric-optics 1 ML is the mass of

the lens.approximation [80, 265]. Furthermore, if the angular separation between the
source and the lens in the sky plane is sufficiently small, multiple lensed
copies of the signal can form [120, 134, 135, 151, 162, 200, 301]. These copies
will arrive at the detectors at different times - ranging from minutes to months
for galaxy-scale lenses and days to years for cluster-scale lenses2 . This phe- 2GWs are

temporally
well-resolved but
lack spatial
resolution. Hence,
the primary GW
lensing observables
are relative
magnifications and
time delays between
the signal copies.

nomena is referred to as strong lensing, and has a similar phenomenology as
EM lensing. While the phase evolution of the lensed signals remains nearly
identical, they can exhibit relative magnifications and constant phase shifts,
which encode information about the lensing geometry.

On the other hand, if lGW ⇠ GML/c2, wave-optics effects become signif-
icant and a single frequency-modulated, diffracted signal is produced [119,
233, 234, 279]3 . This regime is referred to as microlensing. It is almost im-

3Note that there
could also be
wave-optics effects
due to interference
since GWs from
compact binaries
are coherent. See,
e.g. Leung et al.
[198].

possible to observe diffraction effects due to lensing in EM waves, owing
to their small wavelengths. Gravitational microlensing of GWs in the LVK
frequency band occurs for microlenses (or compact objects) whose masses
lie in the range ML 2⇠

⇥
102 � 104⇤M�. Examples of candidate microlenses

include, but are not limited to, IMBHs [197] and other exotic compact objects
such as boson stars [199] and gravastars [218]. Such wave-optics signatures
enable the exploration of lensing effects at scales beyond the reach of optical

21
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Figure 2.1: Com-
parison of lensed

and unlensed GW
waveforms lensed

by a point mass
lens in the wave-

optics regime
(left) and the

geometric-optics
regime (right).
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or radio telescopes, offering a unique avenue for discovering previously unob-
served lens populations. However, detection rates with current ground-based
detectors remain highly uncertain due to uncertainty in the abundance and
mass distribution of such lenses [104, 197, 268]. Beyond probing compact
object population, diffraction effects play a crucial role in modeling signals
originating near the critical curve(s) of a lens such as a galaxy.

Fig. 2.1 illustrates gravitational lensing of GWs in the wave-optics (left
panel) and geometric-optics (right panel) regimes due to a point mass lens
(see Sec. 2.4.1 for details) of mass 5 ⇥ 102 M� and 5 ⇥ 105 M�, respectively.
The unlensed waveforms (strain amplitude h(t)) are shown in grey and the
lensed waveforms in brown. In the left panel, characteristic diffraction-induced
modulations caused by microlensing are visible while multiple signals arriving
at different times with relative magnifications are evident in the right panel.

In addition to microlensing and strong lensing, GWs can also undergo weak
lensing due to the large-scale structures in the Universe [117]. In this regime,
cumulative deflection by numerous low-amplitude potentials (e.g. galaxies,
groups and filaments) introduces subtle distortions in the observed signal.
Although these distortions leave the intrinsic shape of the waveform essentially
unchanged, they introduce a small bias in the inferred luminosity distance [169,
243]. These effects become particularly relevant at high redshifts, z & 1. For
current ground-based detectors which typically observe binary mergers at
z . 0.8, weak lensing noise remains subdominant compared to instrumental
and calibration errors [168]. However, 3G detectors will be sensitive to sources
beyond z = 10, making weak lensing a significant contributor to distance
uncertainty.

While no confirmed detections of strong lensing or microlensing have been
reported in the LVK data to date [36, 160]4 , a small yet significant fraction4The current

non-observation of
lensed events is

consistent with the
low expected

lensing rate of
. 0.05% for

current detector
sensitivities. See,

e.g., Ng et al. [239]
and Wierda et al.

[307]

(⇠ 0.1 � 1%) [242, 309] of GW events detected by future ground-based detec-
tors are expected to be strongly lensed. This increase is primarily driven by the
extended detection horizon and improved sensitivity of future observatories,
which boost the likelihood of intervening lensing structures. These anticipated
lensing observations will open up a plethora of new opportunities, including
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novel tests of GR [105, 108, 136, 143, 152, 153, 232, 236] and providing fresh
insights into a number of key questions in astrophysics [67, 207, 272] and
cosmology [66, 161, 179, 180]. In the coming years, gravitational lensing of
GWs is expected to evolve into a cornerstone observational channel, comple-
menting traditional EM lensing and advancing the frontier of multi-messenger
astrophysics.

In this chapter, we present a brief overview of the propagation of GWs in
the presence of a lens. We then look at the theory of wave-optics lensing before
moving on to the geometric-optics approximation. Finally, we introduce the
lens models relevant for this thesis.

2.1 propagation of gravitational waves in general spacetimes

In Sec. 1.1 we obtained the equations governing propagation of gravitational
perturbations on a Minkowski background (see, Eq. (1.4)). However, in realistic
settings, these perturbations traverse curved spacetimes. This necessitates a
more general treatment in which the perturbation hµn is defined on a non-flat
background metric ḡµn. The full spacetime metric is then written as

gµn(t, r) = ḡµn(t, r) + hµn(t, r) . (2.1)

Such a clear separation between the spacetime background and the GW
perturbations is valid under the following assumptions:

1. the amplitude of perturbation is small, i.e., |hµn| ⌧ 1, and

2. the characteristic length scale of the perturbation - which is the reduced
GW wavelength, l ⌘ lGW/(2p) - is much smaller than the typical
curvature scale LB of the background as measured in a local inertial
frame, i.e., l ⌧ LB.

This hierarchy of scales justifies a perturbative expansion of the Einstein
equations, where the background evolves on large scales and the GW modes
represent high-frequency perturbations superposed on it. In this regime, the
background determines the geometric optics behavior of wave propagation,
while the GWs follow transport equations along null geodesics.

To proceed, we define the trace-reversed metric perturbation analogous to
Eq. (1.3) as

h̄µn ⌘ hµn �
1
2

ḡµnh, h = ḡµnhµn , (2.2)

and impose the Lorenz gauge as well as the transverse traceless condition

r̄nh̄µn = 0, h̄µ
µ = 0 , (2.3)
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where r̄ denotes the covariant derivative operator defined with respect to the
background metric. Under these conditions, the linearized Einstein equations
in curved spacetime take the form [226]

ḡabr̄ar̄bh̄µn = 0 . (2.4)

Here we retain terms of order O(|hµn|l�2) while neglecting terms of order
O(|hµn|L�2

B ) and higher. This yields a wave equation for the perturbation h̄µn

on the curved background, the solution to which can be written as [60]

h̄µn(t, r) = Aµn(t, r) exp [iq(t, r)] , (2.5)

where we have assumed that the amplitude Aµn is slowly varying (on a scale
l . LB) while the phase q varies rapidly (on a length scale l)5 .5This is referred to

as the short-wave
(WKB)

approximation or
the Eikonal

approximation.

2.2 diffraction effects in gravitational lensing

Consider GWs propagating through a static, weak-field spacetime of a gravita-
tional lens described by the metric

ds2 ⌘ ḡµn dxµ dxn = �
✓

1 +
2U
c2

◆
c2dt2 +

✓
1 � 2U

c2

◆
dr

2 , (2.6)

where U(r) ⌧ c2 is the Newtonian potential associated with the lens. In this
background, the trace-reversed metric perturbation h̄µn given in Eq. (2.5) can
be expressed as

h̄µn(t, r) = A(t, r) exp [iq(t, r)] eµn = f(t, r) eµn , (2.7)

where eµn is the normalized polarization tensor, and the scalar function f ⌘
A exp[iq] captures the leading order behaviour of the perturbation. It can
be shown that the polarization tensor is parallel-transported along the null
geodesics [226]. Since the parallel-transport induces changes of order U/c2 in
eµn, and given that U/c2 ⌧ 1, these changes are negligible in the weak-field
lensing regime. We therefore treat eµn as constant along the GW trajectory.
Under this assumption, the propagation equation, Eq. (2.4), reduces to a scalar
wave equation for f, given by

∂µ
�p

�ḡḡµn∂nf(t, r)
�
= 0 , (2.8)

where ḡ ⌘ det(ḡµn). For the weak-field metric in Eq. (2.6), the scalar wave
equation above takes the form

r2f(t, r)� [1 � 4U(t, r)] ∂2
t f = 0 , (2.9)
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Figure 2.2: Lens-
ing geometry for a
source (a compact
binary merger) at
redshift zS, the lens
(a compact object
within thin lens
approximation) at
redshift zL, and
the ground-based
detector. The dotted
line denotes the op-
tical axis while the
dashed line denotes
the deflected path
of the incoming
signal.

with r2 denoting the flat-space Laplacian operator. Here we have supressed
the factors of c for notational clarity. Expressing f(t, r) as a Fourier integral

f(t, r) =
Z •

�•
f̃(w, r)e�iwt dw , (2.10)

and substituting into Eq. (2.9) results in the frequency-domain equation

�
r2 + w2� f̃(w, r) = 4w2 U(r) f̃(w, r) . (2.11)

Fig. 2.2 illustrates the geometry of gravitational lensing involving a GW
source located at redshift zS, a lens at redshift zL and a detector. The corre-
sponding angular diameter distances from the observer are DS and DL for the
source and the lens, respectively, while DLS is the angular diameter distance
between the lens and the source.

We adopt the thin lens approximation, which assumes that the physical extent
of the lens along the optical axis6 is much smaller than its distances from both 6Optical axis is the

line connecting the
observer to the
center of the lens

the source and the observer. Under this approximation, all lensing effects are
localized to a two-dimensional lens plane perpendicular to the optical axis. As
seen in Fig. 2.2, the transverse position vectors h and x represent coordinates
in the source and the lens planes, respectively.

The central quantity of interest is the lensing magnification function or amplifi-
cation factor defined as

F (w, h) ⌘
f̃L

det(w, h)

f̃0
det(w, h)

, (2.12)

where f̃L
det is the Fourier-domain waveform observed at the detector in the

presence of lensing, whereas f̃0
det is the corresponding waveform in the absence
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of any lens (i.e., for U = 0). Both quantities are solutions to the scalar wave
equation in the weak field regime as given by Eq. (2.11). This magnification
function can be computed using either the Kirchhoff diffraction integral [81, 265]
or the path integral approach [198, 234] giving

F (w, h) =
DS

DLDLS

w

2pic

Z
d2x exp [iwtd(x, h)] , (2.13)

normalized such that |F | = 1 in the unlensed case. Here td is the arrival time
of the GW at the detector from the source position h and going through x on
the lens plane, given by [265]

ctd(x, h) =
DLDS

2DLS

✓
x

DL
� h

DS

◆2
� Ŷ(x) + f̂m(h) , (2.14)

where the first term denotes the geometric time delay which is obtained from the
path difference between the deflected and the undeflected rays. The second
term is the gravitational time delay or Shapiro delay and is represented by the
deflection potential Ŷ. This is solely determined by the lens model. The third
term, f̂m, can be chosen such that the minimum value of the arrival time is
zero.

The difference between the directions of the incoming and outgoing rays
before and after undergoing lensing is given by the deflection angle â. Assuming
that this deflection angle is small, we can invoke the Born approximation, which
allows us to evaluate the deflection along the unperturbed path of the ray.
Under this approximation, the deflection angle is given by

â(x) =
2
c2

Z •

�•
dz

∂U(x, z)
∂x

, (2.15)

where the lens is assumed to be at z = 0, with z being the optical axis coor-
dinate, perpendicular to the lens plane. We can then compute the deflection
potential by solving

∂Ŷ(x)
∂x

= â(x) . (2.16)

Though the background metric in Eq. (2.6) does not explicitly include cosmic
expansion, the results are applicable to cosmological scenarios because GW
wavelengths are much smaller than the horizon scale [60]. In such cases the
magnification function becomes

F (w, h) =
DS

DLDLS

w(1 + zL)
2pic

Z
d2x exp [iwtd(x, h)] . (2.17)
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To proceed further, it is convenient to define the dimensionless vectors:

x ⌘ x

x0
, y ⌘ DL

DS

h

x0
, (2.18)

where x0 is a characteristic lensing length scale, often set to be the Einstein
radius of the lens. The source position y and the impact parameter x are measured
from the optical axis. Moreover, we also introduce the dimensionless frequency

w ⌘ DS

cDLDLS
x2

0 (1 + zL)w , (2.19)

as well as the dimensionless time delay

T(x, y) ⌘ cDLDLS

DSx2
0(1 + zL)

td (x0x, h(y)) =
1
2
|x � y|2 � Y(x) + fm(y) , (2.20)

where

Y(x) =
DLDLS

DSx2
0

Ŷ(x0x) , (2.21)

is the scaled deflection potential or the lensing potential, and fm is the dimension-
less counterpart of f̂m given by fm(y) = (DLDLS/DS)x

�2
0 f̂m(h(y)). In terms

of these dimensionless quantities, the magnification function now becomes

F (w, y) =
w

2pi

Z
d2

x exp [iwT(x, y)] . (2.22)

The frequency-domain lensed GW waveform, ehL, can then be obtained from
the unlensed waveform, eh, as (see, Eqs. (2.12) and (2.7))

ehL
µn(w, y) = F (w(w) , y)⇥ ehµn(w) . (2.23)

In the case of axially symmetric lenses, where Y(x) depends only on x = |x|,
the magnification function can be further simplified and expressed in terms
of the Bessel function of zeroth-order, J0, as [234]

F (w, y) = �iw eiwy2/2
Z •

0
dx x J0(wxy) exp


iw
✓

x2

2
� Y(x) + fm(y)

◆�
(2.24)

where y = |y|.
Thus, obtaining lensed GW waveforms boils down to computing F (w) for

a given lens model. Closed-form analytic solutions exist only for simple lenses
(see Sec. 2.4 for details) while for any general lens configuration, Eqs. (2.22) and
(2.24) are computationally expensive. This is primarily due to the integrand
being highly oscillatory, particularly for large values of w. In Chapters 3 and 5,
we introduce two numerical approaches to efficiently compute F (w).
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Figure 2.3: Com-
parison of magni-
fication function
in the full wave-

optics and the
geometric-optics
limit. Lensing is

due to a point mass
lens with source

located at y = 0.1.
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2.3 the geometric-optics approximation

In the geometric-optics limit, w � 1/T, the integrand in Eq. (2.22) becomes
highly oscillatory. The dominant contribution to F (w), in this regime, comes
from the stationary points of T(x, y) (see, Eq. (2.20))7 . These stationary points7T(x, y) can be

identified as the
Fermat potential.

correspond to image positions on the lens plane and can be determined by
invoking Fermat’s principle, which is stated in mathematical form as

∂T(x, y)
∂x

= 0 =) y = x � a(x) , (2.25)

where the scaled deflection angle a is given by

a(x) ⌘ DLDLS

DS x0
â(x0x) =

∂Y(x)
∂x

. (2.26)

Eq. (2.25) defines the lens equation and its solutions x(y) give the location of
the images.

We then expand T(x, y) in a Taylor series around the j-th image position xj

as

T(x, y) = T(xj, y) +
1
2 Â

a,b

∂2T(xj, y)

∂xa∂xb
x̃ax̃b +O(x̃3) , (2.27)

where x̃ = x � xj and a, b = 1, 2 are indices representing lens plane coordi-
nates x1, x2. We assume that all images satisfy w|∂2T|3 � |∂3T|2, w|∂2T|2 �
|∂4T|, . . . and so on. We can then neglect the third and higher order terms in
the expansion. Substituting Eq. (2.27) for T(x, y) in Eq. (2.22), we get

FGO(w, y) = Â
j
|µ(xj, y)|1/2 exp

⇥
iwT(xj, y)� ipnj

⇤
, (2.28)

where µ(xj, y) is the magnification of the j-th image obtained from

µ(xj, y) = det
⇥
H(xj, y)

⇤�1 , where Hab(xj, y) =
∂2T(xj, y)

∂xa∂xb
(2.29)
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Figure 2.4: Criti-
cal curves (dashed)
and caustics (solid)
for a point mass
lens perturbed by
an external shear,
g = 0.1 (left) and
g = 0.25 (right).

is the Hessian matrix of the time delay surface and nj is the Morse index which
takes values 0, 1/2 or 1 depending on whether xj is a minimum, saddle or
maximum point of T(x, y), respectively.

Fig. 2.3 compares the amplitude (left panel) and phase (right panel) of the
magnification function F (w) in wave-optics with its geometric-optics approxi-
mation FGO(w). The lens is modeled as a point mass (see Sec. 2.4.1) with the
source8 located at y = 0.1. At low frequencies (small w), the geometric-optics 8For our purposes,

we shall always
consider the source
to be a
non-extended or
point source.

approximation breaks down, but it converges to the geometric-optics result as
w increases. Corrections to the geometric-optics limit at large w regime (i.e.,
in powers of 1/w) can be obtained by including higher order terms in the
expansion of the time delay in Eq. (2.27) [278]. In the opposite limit, as w ! 0,
F (w) approaches unity. This is because, in this regime, lGW ⌧ ML and the
wave propagates essentially unperturbed by the lens. Corrections to FGO(w)

in the low-w region (i.e., in powers of w) can be obtained by expanding the
exponential in powers of Y(x) [280].

In geometric-optics, the magnification map µ(x, y) is unbounded when
det [H(x, y)] = 0. The set of points in the lens plane (x-plane) satisfying this
condition defines the critical curve. The corresponding set of points in the
source plane (y-plane), mapped via Eq. (2.25), forms the caustic. When a
source lies near a caustic, some of its images lie close to a critical curve and
exhibit formally infinite magnification. This divergence is an artifact of the
geometric-optics approximation. In such cases, the magnification function is
decomposed into a diffraction part, from images near critical curves, and a
geometric part, from the remaining images.

Fig. 2.4 shows the critical curves (dashed lines) and caustics (solid lines) for
a point mass lens perturbed by an external shear (see Sec. 2.4.5). The external shear,
denoted by g, models the tidal influence of nearby masses. As g increases
from 0.1 (left panel) to 0.25 (right panel), the diamond-shaped caustic expands
and eventually encloses the source. This leads to a transition in the number of
images - from two images when the source is outside the caustic to four when
it lies within. Thus, caustics delineate regions of different image multiplicity.
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2.4 lens models

In this section, we introduce the lens models relevant for this thesis, namely,
isolated point mass lens (PML), point mass lens with charge (PMQ) singular
isothermal sphere (SIS), Navarro-Frenk-White lens (NFW) and point mass
lens perturbed by external potential (PMX).9 All models except the last are9A catalog of

various lens models
are available

in Keeton [188].

axially symmetric. For such lenses, the lensing configuration requires that the
source and the images lie on the same radial line. Consequently, the lensing
behaviour depends only on the scalar source position y ⌘ |y|, reducing the
problem by one-dimension.

2.4.1 Isolated point mass lens

This is the simplest gravitational lens model that is analytically tractable.
Isolated point mass lens (PML) describes stars and compact objects such as
black holes, neutron stars and other exotic objects, which have a Schwarzschild
spacetime exterior. The Schwarzschild metric in standard spherical coordinates
(t, R, J, j) is given by

ds2 = �
✓

1 � Rs

R

◆
c2dt2 +

✓
1 � Rs

R

◆�1
dR2 + R2dW2 , (2.30)

where Rs ⌘ 2GML/c2 is the Schwarzschild radius of a lens of mass ML, and
dW2 ⌘ dJ2 + sin2 Jdj2 is the metric on the 2-sphere. To express the metric
in isotropic coordinates (t, r, J, j) we perform a coordinate transformation
defined by

R(r) = r
✓

1 +
Rs

4r

◆2
. (2.31)

In these coordinates, the Schwarzschild metric becomes

ds2 = �
✓

1 � Rs/4r
1 + Rs/4r

◆2
c2dt2 +

✓
1 +

Rs

4r

◆4
dr

2 , (2.32)

where dr
2 ⌘ dr2 + r2dW2. In the weak-field limit, that is, keeping terms only

upto O(G), the isotropic Schwarzschild metric simplifies to

ds2 = �
✓

1 � Rs

r

◆
c2dt2 +

✓
1 +

Rs

r

◆
dr

2 +O(G2) . (2.33)

Comparing Eq. (2.33) with Eq. (2.6), we identify the effective Newtonian
potential as

U(r) = �GML

r
= � GMLp

x2 + z2
, (2.34)
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where we have written the radial coordinate r =
p

x2 + z2, with x being the
transverse position in the lens plane, and x ⌘ |x|.

With this potential in hand, the deflection angle can be computed using
Eq. (2.15) as10 10This deflection

angle predicted by
GR in the
weak-field is a
factor of two larger
than that predicted
by Newtonian
gravity. For a
derivation see, e.g.,
Appendix A
of Bartelmann [65].
The full deflection
angle in the
strong-field of
Schwarzschild
spacetime is
discussed
in Weinberg [304].

â(x) = �2GML

c2

Z •

�•
dz

∂

∂x

1p
x2 + z2

=
4GML

c2
x

x2 . (2.35)

Using Eq. (2.26), the scaled deflection angle is then given by

a(x) =
4GMLDLDLS

c2DS x2
0

x

x2 =
x

x2 , (2.36)

where x ⌘ |x|, and in the second equality we have chosen the length scale x0

to be the Einstein radius of the lens,

x0 = RE ⌘

s
4GMLDLDLS

c2DS
. (2.37)

The corresponding lensing potential Y(x), related to the scaled deflection
angle by Eq. (2.26), is then

Y(x) = ln(x) . (2.38)

As mentioned earlier, for axially symmetric lenses, including PML, all lensing
quantities depend only on the radial coordinate, and hence are effectively
one-dimensional. The dimensionless time delay map is given by Eq. (2.20) as

T(x, y) =
1
2
(x � y)2 � ln(x) + fm(y) , (2.39)

where

fm(y) =
(x+ � y)2

2
� ln x+, with (2.40a)

x+ =
y +

p
y2 + 4

2
, (2.40b)

are the arrival time of the global minima image, and its location for a given
source position y, respectively. With these ingredients, the integral in Eq. (2.22)
for PML can be analytically computed [247] and is given by

F (w, y) = exp
hpw

4
+ i

w
2

⇣
ln
⇣w

2

⌘
� 2fm(y)

⌘i

⇥ G
✓

1 � i
2

w
◆

1F1

✓
i
2

w, 1;
i
2

wy2
◆

, (2.41)

where G denotes the standard gamma function, 1F1 is Kummer’s confluent
hypergeometric function of the first kind. The dimensionless frequency w
can be expressed in terms of the redshifted lens mass MLz ⌘ ML(1 + zL),
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Figure 2.5: Lo-
cations (left),

magnifications
(center) and the

relative time delay
between the images

(right) as a func-
tion of the source

location for PML.
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by substituting x0 from Eq. (2.37) into the definition in Eq. (2.19), yielding
w = (4GMLz/c3)w.

In addition to the minima image at x+, the lens equation in Eq. (2.25) also
gives a saddle image. Solving the one-dimensional lens equation

y = x � 1
x

, (2.42)

gives the second solution at

x� =
y �

p
y2 + 4

2
. (2.43)

As seen from the left panel in Fig. 2.5, the minima image traces the source as
it moves away from the lens, while the saddle image moves closer towards
the lens. At y = 0, the image appears to form a ring of radius x = 1, which is
known as the Einstein ring. The corresponding magnifications of these images
with respect to the unlensed signal are obtained using Eq. (2.29) as

µ± =
1
2
± y2 + 2

2y
p

y2 + 4
, (2.44)

where µ+ corresponds to the minima and µ� to the saddle image. These
are plotted on the center panel in Fig. 2.5. As the source moves far away
from the lens (y ! •), the magnifications asymptote to µ+ ! 1 and µ� !
0, indicating that the minima image becomes indistinguishable from the
unlensed source, while the saddle image becomes highly demagnified and
contributes negligibly to the observed signal. At the Einstein radius (x = 1),
the magnifications diverge. Thus, it forms a critical curve. The corresponding
caustic is at y = 0.

The lensing time delay of the saddle image with respect to the minima
image can be found to be

DT =
1
2

y
q

y2 + 4 + ln

 p
y2 + 4 + yp
y2 + 4 � y

!
, (2.45)
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which is plotted on the right panel in Fig. 2.5.
In the geometric-optics limit, from Eq. (2.28), we have

FGO(w, y) = |µ+|1/2 � i|µ�|1/2 exp (iwDT) . (2.46)

The comparison between the wave-optics magnification function (Eq. (2.41))
and the geometric-optics magnification function (Eq. (2.46)) for PML is shown
in Fig. 2.3.

2.4.2 Point mass lens with charge

In this section, we determine the various lensing quantities associated with a
charged point mass lens (PMQ). The lens is modeled as a non-rotating, charged
compact object described by the Reissner-Nordström (RN) metric, param-
eterized by its mass ML, and charge Q. The spacetime metric in spherical
coordinates (t, R, J, j) is given by

ds2 = �
 

1 � Rs

R
+

R2
Q

R2

!
c2dt2 +

 
1 � Rs

R
+

R2
Q

R2

!�1

dR2 + R2dW2 , (2.47)

where dW2 ⌘ dJ2 + sin2 J dj2 is the element of the solid angle on a 2-sphere,
Rs ⌘ GML/c2 is the Schwarzschild radius of the lens, RQ ⌘

p
Q2G/(4pe0c4)

is the characteristic length scale associated with the charge term, and e0 is the
permittivity of free space.

To arrive at the metric in isotropic coordinates (t, r, J, j), we perform the
following coordinate transformation

R(r) = r

 
1 +

Rs

2r
�

R2
Q

4r2 +
R2

s
16r2

!
. (2.48)

Under this transformation, the RN metric becomes

ds2 =�
"

1 �
✓

Rs

4r

◆2
+

✓
RQ

2r

◆2
#2 "✓

1 +
Rs

4r

◆2
�
✓

RQ

2r

◆2
#�2

c2dt2

+

"✓
1 +

Rs

4r

◆2
�
✓

RQ

2r

◆2
#2

dr
2 , (2.49)

where dr
2 ⌘ dr2 + r2dW2. Since, we are interested in the weak-field limit, we

expand the factors in the above metric in powers of G and keep terms upto
O(G). This simplifies the isotropic RN metric to

ds2 = �
 

1 � Rs

r
+

R2
Q

r2

!
c2dt2 +

 
1 +

Rs

r
�

R2
Q

2r2

!
dr

2 +O(G2) , (2.50)
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which is of the form

ds2 = �
✓

1 +
2V(r)

c2

◆
c2dt2 +

 
1 � 2eV(r)

c2

!
dr

2 +O(G2) , (2.51)

where

V(r) = �
 

Rs

r
�

R2
Q

r2

!
c2

2
, and eV(r) = �

 
Rs

r
�

R2
Q

2r2

!
c2

2
. (2.52)

In order to determine the effective Newtonian potential, we begin by com-
puting the gravitational refractive index n, which contains information about
the coordinate speed of propagation. For massless particles such as gravitons,
the spacetime interval satisfies ds2 = 0. The refractive index in the weak-field
isotropic RN metric is then obtained as

n ⌘ c
dr/dt

=

s
1 � 2eV(r)/c2

1 + 2V(r)/c2 ⇡ 1 � V(r) + eV(r)
c2 . (2.53)

Similarly, the refractive index for the general static weak-field metric in Eq. (2.6)
can be computed to get n ⇡ 1 � (2U/c2). Equating this with Eq. (2.53) gives
the effective Newtonian potential as

U(r) =
V(r) + eV(r)

2
= �GML

r
+

3Q2G
32pe0c2r2 , (2.54)

We are now in a position to compute the deflection angle for the PMQ lens.
Using Eq (2.15), and plugging r =

p
x2 + z2, the deflection angle is found to

be,1111The weak field
deflection angle

obtained here,
accurate to O(G),

is in agreement
with the result

of Eiroa, Romero,
and Torres [129],

who computed the
full deflection angle

in the strong-field
regime.

â(x) =

✓
4GML

c2x
� 3GQ2

16e0c4x2

◆
x

x
. (2.55)

The scaled deflection angle is computed using Eq. (2.26) as

a(x) =
4GMLDLDLS

c2DSx2
0


1
x
� 3Q2

64e0c2x0ML

1
x2

�
x

x

=) a(x) =
x

x2 � eQ x

x3 . (2.56)

where we set x0 to be the Einstein radius of the PML as given in Eq.(2.37), and
introduce the dimensionless effective charge

eQ ⌘ 3Q2

64e0c2x0ML
. (2.57)

The first term in Eq. (2.56) can be identified with the PML result (Eq. (2.36))
and the second term is the correction due to the presence of the charge
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parameter Q. Note that the effect of the charge is suppressed by the Einstein
radius x0.

Using the two-dimensional deflection angle, the corresponding lensing
potential, Y is obtained from Eq. (2.26) as

Y(x) = ln(x) +
eQ
x

. (2.58)

The lensing potential depends only on the radial coordinate x ⌘ |x| on the
lens plane, reflecting the axial symmetry of the system. As expected, in the
limit eQ ! 0, we reproduce the PML results.

The image locations can be obtained by solving the lens equation given in
Eq. (2.25). For PMQ lens, this becomes

y = x �
 

1 �
eQ
x

!
x

x2 . (2.59)

Chapter 3 provides further details about the image locations. Unlike PML,
PMQ doesn’t have a closed-form expression for the magnification function,
which necessitates its numerical evaluation.

2.4.3 Singular isothermal sphere

The singular isothermal sphere (SIS) is a widely used model for the mass dis-
tribution of galaxies acting as gravitational lenses. It assumes a spherically
symmetric system in which the constituent particles (e.g., stars or dark matter)
behave like an ideal gas in thermal and hydrostatic equilibrium, and follow an
isotropic, Maxwellian velocity distribution. The resulting mass density profile
falls off as [235]

r(r) =
s2

v
2pGr2 , (2.60)

where sv is the one-dimensional velocity dispersion along the line of sight and
r is the distance from the center of the lens. Since, r(r) µ r�2, mass M(r) µ r,
which gives the rotational velocity of test particles in circular orbits as

v2
rot(r) =

GM(r)
r

= 2s2
v , (2.61)

which is a constant. Therefore, although the density profile is singular at r = 0,
it is remarkable in reproducing the flat rotation curves of spiral galaxies, and
hence is thought to be a good model for galaxy lenses.
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The Newtonian potential for the SIS model can be obtained by solving the
Poisson’s equation

r2U(r) = 4pGr(r) =) 1
r2

∂

∂r

✓
r2 ∂U(r)

∂r

◆
=

2s2
v

r2 (2.62a)

=) U(r) = 2s2
v ln

✓
r
r0

◆
, (2.62b)

where r0 is an arbitrary reference radius.
We can obtain the two-dimensional projected surface mass density by

integrating the three-dimensional density profile, given in Eq. (2.60), along
the line of sight, z, giving

S(x) = 2
Z •

0
r

✓q
x2 + z2

◆
dz =

s2
v

2Gx
(2.63a)

=) S(x) =
s2

v
2Gx0x

, (2.63b)

where we have used x = x/x0.
The length scale x0 can be chosen as the Einstein radius for SIS

x0 = RE = 4p
⇣sv

c

⌘2 DLDLS

DS
. (2.64)

With this choice, and defining the critical surface mass density as

Scr ⌘
c2

4pG
DS

DLDLS
, (2.65)

the surface mass density in Eq. (2.63) becomes

S(x) =
1

2x
Scr . (2.66)

The dimensionless surface mass density or the convergence can then be obtained
as

k(x) ⌘ S(x)
Scr

=
1

2x
. (2.67)

We define the characteristic mass scale of the SIS lens as the mass contained
within x0, and is given by

ML =
4p2s4

v
c2G

DLDLS

DS
. (2.68)

The deflection angle for the SIS lens can be computed using Eq. (2.15):

â(x) = 4p
⇣sv

c

⌘2 x

x
. (2.69)
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The scaled deflection angle from Eq. (2.26) is then

a(x) =
x

x
, (2.70)

and the lensing potential is

Y(x) = x . (2.71)

The lens equation for the SIS model is then

y = x � x
|x| , (2.72)

which, for y < 1, yields two images - a minima image at x+ = y + 1 and a
saddle image at x� = y � 1. For y � 1, only one image exists at x+ = y + 1.
The corresponding magnifications are

µ± = 1 ± 1
y

, (2.73)

where µ� exists only for y < 1. In this region, the two images arrive at a time
delay of

DT = T(x�, y)� T(x+, y) = 2y , (2.74)

in dimensionless units. The corresponding dimensionless frequency is ob-
tained from Eqs. (2.19), (2.64) and (2.68) as

w =

✓
4p

s2
v

c2

◆2 DLDLS

DS
(1 + zL)

w

c
=

4GMLz

c3 w . (2.75)

With this, in the geometric-optics limit, the magnification function can be
written as

FGO(w, y) =

8
><

>:

|µ+|1/2 � i|µ�|1/2 exp [iwDT] , y < 1

|µ+|1/2, y � 1
(2.76)
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In the wave-optics regime, the magnification function for the SIS lens can
be expressed as a series expansion [217]:

F (w, y) = exp
✓

i
2

wy2
◆ •

Â
n=0

1
n!

G
⇣

1 +
n
2

⌘
(2w)n/2

⇥ exp
✓

3pin
4

◆
1F1

✓
1 +

n
2

, 1;� i
2

wy2
◆

. (2.77)

Here, G is the gamma function and 1F1 is the confluent hypergeometric func-
tion of the first kind. Fig. 2.6 shows the comparison between the magnifica-
tion functions evaluated using the wave-optics series expansion truncated at
n = 200 terms, with that obtained from the geometric-optics approximation.

2.4.4 Navarro-Frenk-White lens

The Navarro-Frenk-White (NFW) profile is a model for describing the density
distribution of dark matter halos, as inferred from large-scale cosmological N-
body simulations [237, 238]. Unlike the SIS model, which assumes a singular
r�2 density profile, the NFW profile captures the gradual transition from
a steep inner cusp to a shallower outer slope, providing a more realistic
description of dark matter halos that act as gravitational lenses.

The three-dimensional density profile of the NFW halo is given by

r(r) =
rs

(r/rs) (1 + r/rs)
2 , (2.78)

where r is the radial distance from the halo center, rs is the scale radius, and
rs is the characteristic density. The total mass diverges logarithmically at large
radii, so the profile is typically truncated at the radius r200, defined as the
radius within which the mean density is 200 times the critical density of the
Universe.

Setting x = x/rs, the projected surface mass density can be found from r(r)
as [64]

S(x) = 2
Z •

0
r(
q

x2 + z2)dz =
2rsrs

x2 � 1
f (x) , (2.79)

where

f (x) =

8
>>>>><

>>>>>:

1 � 2p
1�x2 arctanh

q
1�x
1+x , x < 1

1 � 2p
x2�1

arctan
q

x�1
x+1 , x > 1

0, x = 1

(2.80)
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Introducing the dimensionless normalization parameter ks ⌘ rsrs/Scr, the
convergence for an NFW profile takes the form

k(x) = 2ks
f (x)

x2 � 1
, (2.81)

where Scr is the critical surface mass density defined in Eq. (2.65). Fig. 2.7
illustrates a comparison of the convergence profiles for the SIS and NFW
models over a range of ks values. The distinct radial behavior reflects the
inherent difference in their three-dimensional mass density slopes.

In this thesis, the NFW profile will not be treated as a lensing potential
itself but rather as a macroscopic mass distribution from which microlens
populations are sampled (see Chapter 4 for further details).

2.4.5 Point mass lens perturbed by external potential

In realistic astrophysical scenarios, a point mass lens (such as a compact object)
is rarely truly isolated. Instead, it is often embedded within a larger-scale mass
distribution, such as a galaxy or a cluster, which can exert additional tidal
forces and contribute a smoothly varying gravitational potential. To account
for these environmental effects, the lensing potential is commonly augmented
by including a constant external shear, g, and a uniform convergence, k.

The external shear g = (g1, g2) characterizes the quadrupolar tidal gravi-
tational field due to the external mass distribution, while the convergence k

respresents the local isotropic modification to the projected mass density. The
external potential can be written as a Taylor expansion about the position of
the PML [70, 99, 191]:

Yext(x) = Y0 + a · x +
1
2

kx2 +
1
2

g1(x2
1 � x2

2) + g2x1x2 +O(x3) (2.82)
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where Y0 is a constant (irrelevant for lensing observables), and a is a constant
vector which can be absorbed into a redefinition of the source position. The
quadratic terms represent the lowest-order nontrivial effects. The shear vector

g can be equivalently written in terms of its magnitude g =
q

g2
1 + g2

2 and
orientation jg as g1 = g cos 2jg, g2 = g sin 2jg. The total lensing potential
for the point mass in an external perturbation (PMX) then reads

Y(x) = ln(x) +
1
2

kx2 +
1
2

g cos 2jg(x2
1 � x2

2) + g sin 2jgx1x2 . (2.83)

Lens equation for this model becomes

y = x � x

x2 � kx � G · x (2.84)

where G is the shear matrix defined as

G = g

0

@cos 2jg sin 2jg

sin 2jg � cos 2jg

1

A (2.85)

Fig. 2.8 illustrates the influence of k and g on the lensing potential of a
PML. In the left panel, increasing k induces an isotropic compression of the
potential contours, effectively enhancing the focusing strength of the lens.
In contrast, the right panel shows that the shear g introduces anisotropic
distortions, stretching the potential along specific axes determined by the
shear orientation. The dashed black line denotes a reference isopotential
contour of the isolated PML, while the red lines show the corresponding
isocontours in the presence of k or g, highlighting the deformation.

The constant convergence and shear approximation is valid when the scale
of variation of the external mass distribution is much larger than the typical
Fresnel zone radius of the PML, which is of the order ⇠ RE/

p
w [311], where

RE is the Einstein radius of the lens and w is the dimensionless frequency.
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Table 2.1 summarizes the analytic forms of the lensing potentials Y(x)

for the lens models discussed in this Chapter. These potentials determine
the deflection and time delay properties of each lens, and serve as the key
input for computing the lensing magnification function in both wave- and
geometric-optics regimes.

lens model lensing potential relevant chapter(s)

PML ln(x) Chapters 3, 4 & 5

PMQ ln(x) +
eQ
x

Chapter 3

SIS x Chapters 4 & 5

PMX ln(x) +
1
2

kx2 +
1
2

g1(x2
1 � x2

2) +
g2x1x2

Chapter 4

Table 2.1: Summary of lensing potentials corresponding to different lens models with references to the
chapters where each model is applied.
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P R O B I N G T H E C H A R G E O F
C O M PA C T O B J E C T S U S I N G
M I C R O L E N S I N G

Microlensing produces characteristic frequency-dependent modulations in
the unlensed GW signal (see, e.g., Fig. 2.1). These diffraction signatures can
potentially be used to probe the properties of the compact object acting as the
lens. Most existing searches for microlensing signatures in GW events assume
a point mass lens (PML) model [36, 66, 160], where the observed modulations
depend solely on the (redshifted) mass of the lens and the source position (see
Sec. 2.4.1). However, if the compact object possesses additional properties (or
“hairs”), such as electric charge, these features will also imprint themselves on
the lensed GW waveform, potentially leading to observable deviations from
the standard PML predictions.

Beyond mass, the most natural additional property for a static, spherically
symmetric compact object is the EM charge Q. The presence of charge mod-
ifies the spacetime metric at order O(Q/r2), where Q ⌘ Q2 (see Sec. 2.4.2).
Although astrophysical compact objects are generally expected to be electri-
cally neutral due to efficient charge neutralization and screening processes [82,
125, 139, 251], similar charge-like corrections to the metric can arise in several
well-motivated extensions of GR. Notable examples include braneworld sce-
narios, f (T) gravity, Einstein-Gauss-Bonnet gravity, and certain scalar-tensor
theories such as Horndeski gravity [46, 52, 53, 63, 118, 163, 206, 271]. In these
contexts, the effective “charge” parameter may not correspond to EM charge,
but instead encodes new gravitational degrees of freedom or couplings.

In this Chapter, we investigate the prospects for constraining the effective
charge parameter of astrophysical compact objects via GW microlensing ob-
servations. We model the spacetime exterior to the lens as a static, spherically
symmetric geometry described by a Reissner–Nordström (RN) metric, which
incorporates a charge-like parameter Q in addition to the mass ML. We analyze
how a nonzero charge modifies the lensing potential, introducing corrections
at order O( eQ/x), as detailed in Eq. (2.58). The dimensionless effective charge
parameter, eQ µ Q/(x0ML), is defined in terms of the lens mass ML and the
Einstein radius x0 = RE (see Eqs. (2.57) and (2.37)). We numerically compute
the resulting frequency-dependent magnification function, F ( f ), for a range

42
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of lens masses, source positions, and values of eQ, thereby quantifying the
impact of charge on the microlensed GW waveform.

To assess the detectability and measurability of the effective charge parame-
ter eQ, we quantify the distinguishability between two microlensed GW signals:
one corresponding to a true charge eQtr and another to a trial value eQ. This is
achieved by computing the match, defined as the normalized, noise-weighted
inner product between the two waveforms, where the weighting is determined
by the detector’s power spectral density (PSD). The match serves as a proxy for
the statistical distinguishability of the two signals in the presence of detector
noise. By evaluating the match across a range of eQ values, we construct an
approximate likelihood function over the lens parameters, thereby enabling a
quantitative parameter estimation of eQ.

The remainder of this Chapter is organized as follows. In Sec. 3.1, we review
several beyond-GR theories that predict RN-like metric. Sec. 3.2 analyzes the
modifications to the lensing time delay and image properties induced by a
nonzero charge parameter. In Sec. 3.3, we present the numerical method for
computing the frequency-dependent magnification function and the resulting
lensed GW waveform. Sec. 3.4 discusses the prospects for constraining the
effective charge parameter through GW microlensing observations, based
on simulated signals and projected detector sensitivities. Finally, Sec. 3.5
summarizes our main findings and outlines potential directions for future
work.

3.1 emergence of charge in modified gravity

In this section, we review several well-motivated extensions of GR that predict
the appearance of a nonzero effective charge in the spacetime metric, even in
the absence of EM charge. Notable examples include:

• Braneworld gravity: In these models, our universe is a four-dimensional
hypersurface (the “brane”) embedded in a higher-dimensional spacetime.
The effective gravitational field equations on the brane take the form [118,
271]

Gµn + Eµn = 0 , (3.1)

where Gµn is the four-dimensional Einstein tensor and Eµn is the pro-
jection of the five-dimensional Weyl tensor onto the brane. Due to the
traceless property of Eµn, the resulting static, spherically symmetric solu-
tion has the form �gtt = gRR = 1 � (2ML/R)�

�
|Q|/R2�, with Q < 0.

This differs from the standard RN solution by the sign of the charge
term [46, 163, 206].
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• Einstein–Gauss–Bonnet gravity: In higher-dimensional spacetimes, this
theory also admits RN-like solutions with a negative effective charge term
(Q < 0), where the charge originates from the Gauss–Bonnet coupling
constant [206].

• f (T) gravity: Modifications to GR involving torsion can yield similar
metric structures, but with a positive effective charge term (Q > 0) [88].

• Horndeski gravity: Certain subclasses of Horndeski theories, which
include non-minimal couplings between scalar fields, gravity, and matter,
also lead to RN-like metrics with a positive effective charge [53]. The
magnitude of the charge depend on the specific coupling parameters.

In summary, a positive effective charge in the metric can arise from (a)
standard EM charge, (b) f (T) gravity, or (c) scalar-tensor couplings as in
Horndeski theories. Negative charge terms typically originate from higher-
dimensional scenarios, such as braneworld models or Einstein–Gauss–Bonnet
gravity. The ubiquity of RN-like metrics in these diverse contexts makes the
charged lens an ideal probe for testing both standard and exotic physics with
microlensed GWs.

The possibility of measuring eQ have been extensively studied in various
astrophysical and gravitational contexts, including: (a) weak-field tests in the
Solar System [73, 88, 95, 172, 229], (b) EM signatures from accreting black
holes (BHs) [56, 58, 215, 276], (c) GW observations from binary mergers [50,
61, 93, 94, 97, 156, 159, 222, 223, 286], and (d) strong-field lensing and BH
shadow measurements [57, 59, 96, 291].

Our results show that, if the lens is actually neutral, microlensing observa-
tions can constrain the effective charge parameter to | eQ| . 10�3. For typical
astrophysical configurations, the Einstein radius scales as x0 ⇠ (MLDL)1/2,
where DL is the angular diameter distance to the lens. This leads to a constraint
on the dimensionless charge: Q/M2

L . O(10�3pDL/ML). While these bounds
are much weaker than the extremal limit for a charged BH (Q/M2

L = 1), they
can still rule out certain exotic compact objects (such as naked singularities)
and place meaningful limits on alternative gravity theories that predict large
values of Q.

3.2 lens mapping for the charged lens

The lensing potential for a charged lens is given in Eq. (2.58), leading to the
following dimensionless time delay:

T(x, y) =
(x � y)2

2
� ln(x)�

eQ
x

, (3.2)



3.2 lens mapping for the charged lens 45

�2 0 2
x1

�2

�1

0

1

2

x 2
y = 1.0, �Q = �0.5

source
saddle

minima

�2 0 2
x1

�2

�1

0

1

2

x 2

y = 1.0, �Q = 0.1

source
saddle

minima
maxima

�1 0 1
x1

�1

0

1

x 2

y = 1.0, �Q = 0.5

source
saddle

minima

0.0 10.0 20.0 30.0
T

0.0 2.0 4.0 6.0
T

0.0 1.5 3.0 4.5
T

Figure 3.1: Con-
tours of the time
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T = 0 at the global
minimum) as a
function of the lens
plane coordinates
(x1, x2).

where fm is omitted, since the minimum time delay can be determined
numerically.

To restore physical units, we express the dimensional time delay using the
Einstein radius (see Eq. (2.20)):

td(x, y) =
DS x2

0 (1 + zL)

c DL DLS
T (x, y) =

4GMLz

c3 T (x, y) , (3.3)

where MLz ⌘ ML(1 + zL) is the redshifted lens mass.
Figure 3.1 displays contours of the dimensionless time delay T(x, y) on the

lens plane, with coordinates x1 and x2, for a fixed source position y. The left,
center, and right panels correspond to eQ = �0.5, 0.1, and 0.5, respectively.
For each case, the image locations and their types are indicated. The image
positions are determined by solving the lens equation (Eq. (2.59)) for x

1 . Due 1This setup differs
from the black hole
shadow analyses in
the strong-field
regime, though our
results reproduce
their weak-field
limit [129–131].

to axial symmetry, this reduces to a one-dimensional problem, which can be
solved using standard root-finding algorithms.

For eQ  0, the lens equation yields two solutions: one corresponding to
a saddle point image and the other to a minima image, as shown in the left
panel of Fig. 3.1. Interestingly, for certain positive values of eQ and source
positions y, the lens equation can have up to four solutions, resulting in four
images, including a maxima image. This behavior is illustrated in Fig. 3.2 and
the middle panel of Fig. 3.1. For sufficiently large eQ, no images are formed, as
the images are located directly behind the lens and become unresolvable.

The occurrence of multiple images can be understood in terms of caustics
in the lensing potential. For eQ  0, there are no caustics (except at the lens
location), so two images always form. For eQ > 0, a caustic appears at a finite
value of y, which decreases as eQ increases. If eQ is small enough, the source
can lie within the caustic, producing four images. As eQ increases further, the
caustic moves to smaller y, and for sufficiently large eQ, the caustic shrinks to
y ⇠ 0, so the source lies outside the caustic and only two images are produced.
For even larger eQ, the images become unresolvable. This is demonstrated in
Fig. 3.2.
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Figure 3.2: Num-
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3.3 computing the magnification function

In this section, we describe how to compute the magnification function for a
charged lens and analyze its impact on the lensed GW waveform. Unlike the
PML, the charged lens does not admit a closed-form analytical expression for
the magnification function. As a result, we must rely on numerical methods
to evaluate the relevant diffraction integral.

Direct numerical integration of Eq. (2.22) is challenging due to the highly
oscillatory nature of the integrand, which renders standard quadrature tech-
niques both computationally expensive and potentially inaccurate. To address
this, we have developed a new numerical scheme that is both efficient and
robust, enabling accurate computation of the magnification function even in
complex lensing scenarios.2 Our approach builds upon the methods used2Earlier studies

have relied on
methods like Levin’s

algorithm [158,
228],

Picard-Lefschetz
theory [138, 184],

and FFT-
convolution [155],

which have been
validated primarily

for simple lensing
configurations.

in Diego et al. [121], which themselves are extensions of the foundational
work by Ulmer and Goodman [289].

Below, we outline the key steps of our numerical procedure for computing
the frequency-dependent magnification function in the presence of a charged
lens. The new ingredient is the use of a histogram-based approach to efficiently
evaluate the diffraction integral in time domain.

1. Time-domain magnification function: As mentioned, direct computation
of F (w) requires evaluating a highly oscillatory integral, which is nu-
merically challenging. To circumvent this, we instead compute the time-
domain magnification function eF (t) defined in terms of the Fourier trans-
form as:

eF (t) ⌘ 1
2p

Z •

�•
dw

2pi
w

F (w) exp [�iwt] (3.4a)

=
Z

dx

Z •

�•

dw
2p

exp [iw (T(x)� t)] (3.4b)

=
Z

dx d [T(x)� t] . (3.4c)
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Physically, d eF (t)/dt represents the lensed response of a delta-function
pulse emitted by a point source. For a given time t and a source location
y, the set of lens-plane positions satisfying T(x) = t forms a closed
contour. The area enclosed between contours at t and t + dt gives the
contribution to eF (t) dt. This leads to an intuitive expression,

eF (t) =
dS
dt

, (3.5)

where dS is the area between adjacent time delay contours. Thus, by
measuring how the area between two infinitesimal closed time delay
contours changes with t, we can determine the magnification function
eF (t).

2. Histogram of the time delay map: To find the area between the contours
of constant time delay, we place a uniform grid over the lens plane
and evaluate the time delay function, given in Eq. (3.2), at each grid
point (see, e.g., Fig. 3.1 for an illustration of the time delay surfaces).
The resulting distribution of time delay values is then binned into a
histogram. The height of each histogram bin is proportional to the area
between t and t + dt, with dt being the bin width. After normalization,
this histogram gives the time-domain magnification function eF (t), with
two conventions:

• The global minimum of the time delay is shifted to t = 0, and

• eF (t) asymptotically approaches 1 as t ! •

This histogram-based method efficiently captures both smooth and
singular features in eF (t).

Fig. 3.3 shows the time-domain magnification function computed for
a charged lens. The panels from left to right correspond to cases with
eQ = �0.5, 0.1 and 0.5, respectively. Within each panel, curves for source

position values y = 0.5, 1.0 and 2.0 are shown.

The structure of eF (t) reflects the nature and number of images:
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Figure 3.4: Ampli-
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varying eQ (lines)
and y (colors).
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• logarithmic peaks in eF (t) arise from saddle point images, where
the corresponding t gives their time delay relative to the global
minimum image.

• Step-like discontinuities are associated with local minima or maxima
images.

Assuming that the source is not exactly at the caustic, the analytic
contribution from these singular features is given by [289]

eFsingular(t) = 2p Â
nj=0,1

(�1)nj µ1/2
j H(t � Tj)� 2 Â

nj=1/2
|µj|1/2 ln |t � Tj| ,

(3.6)

where nj is the morse index of the j-th image (0 for minima, 1/2 for
saddle, and 1 for maxima), µj is the corresponding magnification of the
image, Tj is the image’s time delay and H is the Heaviside step function.

In the left and right panels of Fig. 3.3, we always observe two images
– a minima and a saddle image. In the middle panel ( eQ = 0.1), for
y = 0.5, there are four images - a global minima, two saddle images
and a maxima image, which can clearly be identified from the multiple
discontinuities. For larger y, the number of images reduces to two.
However, as seen in the right panel, some additional smooth bumps
appear in eF (t), which are purely wave-optics features.

3. Frequency-domain magnification function: Once eF (t) is computed, it is
straightforward to determine F (w). We perform an inverse Fourier
transform of eF (t) and multiply it by the prefactor w/(2pi):

F (w) =
w

2pi
⇥
Z •

�•
dt exp (iwt) eF (t) . (3.7)

From Eqs. (2.19) and (2.37), the dimensionless frequency w can be related
to the GW frequency f as

w =
8pGMLz

c3 f . (3.8)
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Figure 3.5: Ampli-
tude of microlensed
GW signals for
a 500M� com-
pact object at
zL = 0.5 with
eQ = �0.5, 0.1, 0.5

(top to bottom)
and various source
positions (colors).
Left: frequency do-
main; right: time
domain. Gray lines
show unlensed
waveforms.

While the time-domain magnification function eF (t) is purely real valued,
its Fourier transform F ( f ) is generally complex. In Fig. 3.4 we show
both the amplitude |F ( f )| and the phase arg[F ( f )]. As expected, the
amplitude of F ( f ) is highest for negative eQ, and decreases as eQ becomes
more positive. Additionally, the magnification effect weakens as the
source position y increases.

4. Lensed waveform: Finally, the lensed GW signal is obtained by applying
the magnification function to the unlensed waveform. Specifically, we
use Eq. (2.23) to obtain

ehL( f ; q, l) = F ( f ; l) ehU( f ; q) , (3.9)

where q is the set of intrinsic and extrinsic source parameters, l =

{MLz, eQ, y} is the set of lensing parameters, and

ehU( f ) = F+eh+( f ) + F⇥eh⇥( f ) (3.10)

is the unlensed waveform written in terms of the ‘+’ and ‘⇥’ polariza-
tions, and the detector antenna pattern functions F+ and F⇥ (discussed
in Sec. 1.4.3).

Fig. 3.5 shows the microlensed GW signals in both the frequency (left
panel) and time (right panel) domains, compared with the corresponding
unlensed waveforms. The plots illustrate different values of the effective
charge eQ and source positions.
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From the time-domain plots, we observe that the lensed waveform for
eQ < 0 as well as for eQ > 0 with four images show the largest deviation
from the unlensed waveform. In contrast, for positive eQ with two image
configuration, the lensed waveforms remain closer in morphology to
the unlensed one. A similar trend for the phase relationship can also be
seen.

These distinct features in both amplitude and phase, make it easier to
detect and constrain negative and small positive values of eQ, compared
to larger positive values, where the lensing effect is more subtle.

To validate our numerical method, we apply it to the case of a point
mass lens (without charge), for which the magnification function is known
analytically (see, Eq.(2.41)). We then compute the mismatch (see Sec. 3.4 for
a definition) between the lensed waveforms obtained using the analytical
magnification and those computed numerically with eQ = 0. The mismatch was
found to be well within acceptable limits (. 10�5), confirming the accuracy of
our approach.

3.4 prospective constraints on the effective charge

In this section, we estimate how well future microlensed GW observations
could constrain the charge of a compact object. To do this, we use simulated
microlensed GW signals and compute approximate Bayesian posteriors for the
effective charge parameter eQ. Given some observed data d, the joint posterior
probability for the source parameters (q) and lensing parameters (l) under
the microlensing hypothesis is given by Bayes’ theorem:

p (q, l|d) = p (d|q, l,HML) p (q, l)
p (d|HML)

, (3.11)

where p(q, l) is the prior on the source and lens parameters, p(d|q, l,HML) is
the likelihood of observing the data d given the parameters and the microlensing
hypothesis HML, and p(d|HML) is the evidence, i.e., the likelihood integrated
over all possible parameter values.

The posterior distribution of the effective charge, p( eQ|d), can be computed
by marginalizing p(q, l|d) over all parameters except eQ. For simplicity, we
assume that the lens parameters l are largely uncorrelated with the source pa-
rameters q. Hence we need to compute the likelihood only on l for estimating
prospective constraints on eQ. This is a reasonable assumption although recent
work has identified possible correlations between microlensing modulations
and modulations induced by spin-induced precession [224]. An uncharged
point mass lens in the gravitational field of a macro lens (e.g., a galaxy) could
also introduce more complex modulations in the GW signal [102, 121, 220,
225], potentially mimicking some of the effects of a charged lens. Also, note
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Figure 3.6: Joint
likelihood for
SNR = 25 GW sig-
nals microlensed by
a 500M� charged
compact object at
zL = 0.5. Top:
likelihood in y- eQ
space. Bottom: like-
lihood in ML- eQ
space. Red markers
indicate true val-
ues. eQ is largely
uncorrelated with
ML and y.

that currently, we assume nonspining compact object lenses. There could be
some correlations between the charge and the spin of a compact object (see,
e.g., [93]). For the time being, we ignore these additional complexities.

It turns out that the lens parameters ML, y are also largely uncorrelated with
the charge eQ (see, Fig. 3.6 for an illustration). Thus, to compute the expected
bounds on eQ, to a good approximation one needs to compute the likelihood
in eQ only. Assuming large SNR values for the future detectors3 , we employ 3SNR values can

go up to several
hundred for future
detectors. Refer
to [209, 250] for
details.

the following approximation of the expectation value of the likelihood (see
Appendix A):

L( eQ) ⌘ hp(d| eQ,HML)i ' exp
h
�r2

⇣
1 �M( eQtr, eQ)

⌘i
, (3.12)

which is valid upto a constant factor. Here r is the optimal SNR of the signal4 4For the purpose of
our study, SNR is a
constant number.

and M is the match which measures the degree of similarity between the two
waveforms with injected (true) charge eQtr and template waveform with charge
eQ, defined in Eq. (A.8).

When we assume a flat prior in eQ, the expectation value of the posterior
distribution p( eQ|d) is the same as the likelihood L( eQ). Hence we present
L( eQ) and its 90% credible upper limits in Fig. 3.7 and Fig. 3.8. In these
figures, we have assumed the PSD of the advanced LIGO targeted for the
O5 observing run (A+ configuration) [2]. Additionally, the unlensed signal
is assumed to be due to a nonspinning equal mass black hole binary with
component masses 20M� each. We compute the likelihood assuming true
values of ( eQtr/ML) = 0,�0.1 and � 0.5 in Fig. 3.7 and for the following true
values of ( eQtr/ML) = 0, 0.1 and 0.25 in Fig. 3.8.

Equation (3.12) shows that the likelihood decreases rapidly when the mis-
match (1 �M) between the true charge eQtr and the trial value eQ is large (i.e.,
when the two waveforms differ significantly), or when the SNR is high. This
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Figure 3.7: Pos-
teriors with 90%

credible bounds on
eQ using aLIGO

PSD, for various
values the source

position y (colors).
Panels from left to

right correspond
to SNR values of

25, 50 and 100,
respectively. In
the top, middle

and bottom panels,
the GW signal is

lensed by a BH of
effective charge

eQtr = �0.5,�0.1
and 0, respectively
(indicated by hori-

zontal dashed black
lines). Here, we use

the prior eQ  0.
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behavior is clearly visible in the figures. As expected, the precision with which
eQ can be measured improves at higher SNRs and for larger lens masses. Fig-
ure 3.9 summarizes the upper limits on | eQ| for the case of an uncharged lens.
Our ability to constrain various exotic scenarios will depend on these bounds.
The improvement of the bounds with increasing SNR is straightforward. The
tighter constraints at higher lens masses (ML ⇠ 1000M�) arise because such
masses induce stronger wave optics effects in the GW signal. In general, the
bounds are weaker for larger source positions y, since lensing effects diminish
as the source moves farther from the lens axis. Interestingly, the bounds also
become weaker for very small y, with the strongest constraints occurring near
y ' 1.

As mentioned earlier, if astrophysical objects were found to have large
negative effective charge, it would be a tell-tale signature of the existence of
extra dimensions. In particular, such a feature arises naturally in braneworld
scenarios, where our four-dimensional universe (brane) is embedded in a
higher dimensional space (bulk). Even though an exact analytic description
of how the brane is embedded in the bulk is not available, the size of the
extra dimension, c, can be estimated by numerically integrating Einstein’s
equations along the extra dimension, together with appropriate boundary (or
junction) conditions [98].

For cases where |Q/M2
L| ⇠ O(1), the influence of the higher-dimensional

bulk on the brane is significant. In such scenarios, the size of the extra di-
mension c cannot be arbitrarily small and is typically bounded by the ratio
(G5/G4), where G5 and G4 are the Newton’s constants in the five-dimensional
bulk and four-dimensional brane, respectively. If G5 is at the electroweak
scale5 , then the size of the extra dimension is constrained to be smaller than 5Large Hadron

Collider (LHC)
searches exclude
extra spatial
dimensions at
energies below the
electroweak scale
(⇠ few TeV). With
optimal sensitivity,
the constraint can
improve by an order
of magnitude.

about O(10�18 m).
The induced tidal charge on the brane, Q, is expected to depend expo-

nentially on the geometry of the extra dimension. Specifically, numerical
and perturbative studies suggest a relation of the form (Q/M2

L) ⇠ exp(`/c),
where ` is the AdS curvature radius of the extra dimension. So, for typical
negative values of eQ that we will be able to constrain, that is | eQ| . 10�3,
this would imply an upper bound Q/M2

L . 108. 6 . Using this exponential

6This estimate
assumes typical
lens and source
parameters
including mass and
distance.

scaling, this translates to a lower bound on the size of the extra dimension:
(c/`) & 0.1, or equivalently, c & 0.1(G5/G4), assuming ` ⇠ G5/G4. This
estimate is motivated by studies of brane-localized black holes for which
Q/M2

L ⇠ O(1) corresponds to c/` ⇠ O(1), and we assume a similar relation-
ship holds for larger values of the charge. If G5 corresponds to the electroweak
scale, this lower bound becomes c & 10�19 m. Such a bound is complementary
to small-scale tests of Newton’s law [201, 216, 277, 310], which provide upper
limits on the size of extra dimensions.
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Figure 3.9: Left:
90% upper bounds

on negative eQ
as a function of

lens mass ML for
various y (colors)

and SNRs (line
styles). Right:

same for positive
eQ, assuming an
uncharged lens.
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3.5 summary and outlook

Upcoming GW detectors are expected to detect gravitationally lensed GWs.
Possible lenses include compact objects including BHs. When the gravitational
radii of these lenses are comparable to the wavelength of GWs, lensing will
produce wave optics effects, producing characteristic deformations in the
observed signals. The exact nature of these deformations will depend on
the precise spacetime geometry (lensing potential) of the lens. Thus, lensing
observations can potentially probe the detailed nature of these lenses.

In this Chapter, we derived the lensing potential for a point mass lens
carrying an effective charge. Although the charge Q can have an EM origin,
in which case it is a positive definite quantity (Q is the square of the electric
charge Q), it can also arise in (at least) four different situations, all of which
are beyond GR. These include

• Braneworld gravity, where the presence of an extra spatial dimension
modifies Einstein’s equations, and introduces a charge term Q that is
negative,

• Gauss–Bonnet theory in higher dimensions, which leads to an effective
four-dimensional spacetime with a negative charge,

• f (T) theories of gravity, and

• Certain class of Horndeski theories which brings in a positive charge
term in the spacetime metric.

Thus, negative values of the charge definitely hint at the presence of extra
dimensions, while positive values of the charge can have an EM origin, or can
also arise from modified theories of gravity. If one can detect the charge hair
of a compact object spacetime, it is possible to comment on the fundamental
questions, e.g., the existence of extra dimension, as well as tell-tale signature
of gravity theories beyond GR.

Using the lensing potential of charged point mass lens that we derived, we
computed the deformation of the lensed GW signals considering wave optics
effects. This was done using a numerical scheme that we developed. This
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scheme is capable of computing the frequency-dependent lensing magnifica-
tion for arbitrary lensing potentials. We noticed interesting new observables
in the case of charged lenses. Owing to the axial symmetry of the lensing
potential, the images and the source always lie on a line on the lens plane
(same as the case of uncharged lens). For a negatively charged lens there
are always two images (same as the uncharged lens), while for a positively
charged lens, there can be two or four images, depending on the value of the
charge and the source position. This new feature can be understood in terms
of the (numerically computed) structure of the caustics of charged lenses. This
introduces rich and complex effects in the lensed GW signals which are absent
in those lensed by uncharged BHs. These additional features would help us
to identify the presence of positively charged compact object lenses, if they
exist. On the other hand, negatively charged lenses produce features very
similar to those of uncharged BHs, making it difficult to distinguish them
from uncharged BHs.

We then explored the ability of future lensing observations to constrain
the charge of the lens. We consider lensing observations by a single LIGO
detector with sensitivity anticipated in the O5 observing run. We showed that
modest constraints on the charge can be obtained using observation of lensed
GWs. Our ability to constrain the charge parameter is weakened by the fact
that the charge-dependent term in the lensing potetial has a coefficient that is
O(ML/DL)1/2, which is very small (⇠ 10�10) in typical astrophysical lensing
scenarios (here, ML is the mass of the lens and DL is the angular diameter
distance between the lens and the observer). Even for a maximally charged
BH, the effect of electric charge is too weak to be measurable in the foreseeable
future. Thus, any measurable charge will be of modified gravity origin; not
electric charge. If the GW lensing confirms a positive value of charge, it is
very likely that the lens describes a naked singularity. On the other hand, if a
negative charge is confirmed, the lens could be a BH in an alternative theory
of gravity (e.g., braneworld scenario).

Note that the expected constraints presented here are based on an approx-
imate likelihood. We neglect possible correlations between lensing-induced
modulations in GW signals and those produced by other physical effects,
such as orbital eccentricity of the binary source. We also ignored the possible
degeneracy between a GW signal lensed by a charged BH and a GW signal
lensed by an uncharged point mass lens in the presence of a macro lens
(e.g., a galaxy; see Chapter 4), which can introduce more complex features.
Additionally, we also neglected the effect of the spin of the BH lens. While we
expect these broad conclusions to hold, the precise forecasts of the prospective
constraints need to be revisited in the future considering these additional
complexities.
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The numerical scheme that we employ to compute lensing magnification for
arbitrary lensing potentials is too expensive to employ in actual GW parameter
estimation which will require a large number of likelihood evaluations. In
order to employ in GW parameter estimation, we need to develop some surro-
gate (see Chapter 5) or semianalytical models that interpolate the numerically
computed lensing magnifications over the parameter space of interest.

In this Chapter, we have worked with static and spherically symmetric
spacetimes so far, and hence it would be interesting to generalize the same to
rotating spacetimes, as all astrophysical objects are, in general, rotating. One
could explore the possibility of measuring the spin of the compact object from
lensing observations. One could also explore more general spacetimes: here
we have considered the cases where �gtt = grr; it will be useful to understand
how to derive the lensing potential for spacetimes, with �gtt 6= grr. Another
possibility is probing the astrophysical environment of BHs using lensing
observations.

Note that some of the modifications to GR that induce an effective charge on
BHs could also cause other effects in the generation and propagation of GWs,
which we neglect here. Our proposal should be seen as a way of effectively
checking the consistency of the GW signal that is lensed by a BH in GR (in
this case the Schwarzschild metric). Any observed inconsistency with the
Schwarzschild lens will need to be investigated further in order to ascertain
the nature of the charge. This is similar in spirit to various other tests of GR
using GW observations. In any case, future observations of lensed GWs are
very likely to offer new ways of probing the nature of compact objects.



4
I N V E S T I G AT I N G T H E
E F F I C A C Y O F M I C R O L E N S I N G
S E A R C H E S U S I N G P M L
M O D E L S

Dark matter (DM) accounts for a significant fraction of the mass-energy in the
Universe [43, 69, 282]. Presence of DM is required to explain a wealth of obser-
vations ranging from galaxy rotation curves [274] and cluster dynamics [48]
to Cosmic Microwave Background (CMB) anisotropies [170]. Cosmoogical
N-body simulations incorporating DM also successfully conform with the
observed morphology of large-scale structures and non-linear clustering [275].

Despite its clear gravitational imprint, the nature of DM remains elusive.1 1See Bertone and
Hooper [72] for a
comprehensive
review on dark
matter candidates
and their
observational
status.

Two of the prominent DM candidate classes include weakly interacting mas-
sive particles (WIMPs) and massive astrophysical compact object halos (MA-
CHOs). WIMPs consist of a number of fundamental particles beyond the
Standard Model of particle physics. Another related class of candidates in-
clude axions and axion-like particles, which emerge from solutions to the
combination of charge conjugation and parity (CP) transformation symmetry
problem in quantum chromodynamics and are also predicted in various ex-
tensions of the Standard Model. None of these particles have been detected so
far [260, 267]. MACHOs consist of baryonic objects (e.g., planets, white dwarfs,
neutron stars etc.) and black holes – with primordial black holes (PBHs)2 2Carr and Hawking

[90] proposed in
1974, that black
holes could have
formed from dense
regions in the early
Universe.

being potentially promising candidates of DM.
The abundance of PBHs is tightly constrained across a broad mass range.

These limits arise from the absence of expected signals in various astrophysical
and cosmological observations. PBHs with masses below ⇠ 10�16 M� would
have evaporated via Hawking radiation, and the resulting g-ray and positron
fluxes are strongly limited by measurements of the extragalactic background
and the galactic 511 keV line. Gravitational microlensing surveys in EM regime
rule out PBHs in the range ⇠ 10�11 � 1 M� as the dominant DM component.
More massive PBHs can accrete matter during the cosmic dark ages, injecting
energy that alters the ionization history and leaves imprints on the CMB.
These are constrained by Planck and Far Infrared Absolute Spectrophotometer
(FIRAS) data. LVK observations limit PBH abundances in the 1� 100 M� range
based on observed event rates and the non-detection of sub-solar mass binaries

57



58 investigating the efficacy of microlensing searches using pml models

(10�1 � 1 M�). Dynamical constraints from disruption of wide binaries in the
Milky Way halo, the stability of ultra-faint dwarf galaxies, tidal heating of
globular clusters, and survival of stars in dense environments all place upper
bounds on PBH densities at higher masses (M > 100M�). Additional limits
arise from large-scale structure formation, early-Universe nucleosynthesis
(BBN), and the preservation of the Lyman-a forest.33Refer to Carr et al.

[91] and Carr and
Kuhnel [92] for a

detailed review on
these constraints.

GW microlensing in the ground-based detectors can arise from compact mi-
crolenses in the mass range ⇠ 102 � 105M�. There has not been any confirmed
detection of wave-optics effects in the detected CBC events till date [36, 160].
These searches commonly employ a Bayesian model comparison framework,
using the Bayes factor to distinguish between the lensed and unlensed hypothe-
ses. Non-observation of microlensing signatures in the LVK data has been used
to place upper bounds on the fraction of dark matter as MACHOs ( fDM) within
the aforementioned mass range [66]. This mass regime is particularly relevant
for PBHs, which are typically modeled as isolated point mass lenses. How-
ever, in realistic astrophysical scenarios, compact lenses are not truly isolated;
they often reside within larger structures such as galaxies. Consequently, the
isolated PML may be an oversimplification, potentially introducing biases in
the microlensing analyses.4 In this Chapter, we investigate how the presence4Diego et al. [121]

and Mishra et al.
[225] study the

effects of a
population of

microlenses
embedded in an

external potential
on strongly lensed

GWs.

of an external galactic potential modifies the lensing signatures and impacts
the efficiency of current microlensing searches. Specifically, we quantify the
degradation in the Bayes factor due to the background galaxy in a statistical
sense, which can weaken the constraints on fDM from the non-observation of
microlensing events.

The remainder of this Chapter is organized as follows. In Sec. 4.1 we
introduce the lens model which incorporates the external potential effects. In
Sec. 4.2 we sample a realistic population of lensing configurations. Sec. 4.3
highlights the methods employed in computing the lensed waveforms. Sec. 4.4
discusses the primary results where we quantify the loss in Bayes factor due
to non-consideration of host galaxy effects in microlensing. Finally, in Sec. 4.5
we summarize our findings and highlight possible future work.

4.1 microlens in a galactic potential

PBHs as microlenses (or atleast a fraction of them) are expected to reside
within the DM halos of galaxies. In this work, we assume these host galaxies
as having a spherically symmetric mass distribution modeled by a singular
isothermal sphere (SIS) profile. This profile effectively captures the flat rotation
curves observed in galaxies via a constant velocity dispersion, sv (see Sec. 2.4.3).
The gravitational influence of the host galaxy on the microlens is incorporated
as an external tidal field. This effect is quantified through the convergence field
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k and the shear field g (see Sec. 2.4.5). For an SIS galaxy, k and g ⌘ {g1, g2}
are related to each other as follows [193]

g1 = �k cos 2jg (4.1a)

g2 = �k sin 2jg (4.1b)

where jg is the position angle defining the orientation of the external shear.
For SIS, the convergence field is given by Eq. (2.67).

The characteristic distance scale over which wave effects are significant for
microlensing is set by the Fresnel scale rF of the microlens, given by [204]

rF ⌘
✓

DLDLS

DS

c
2p f (1 + zL)

◆1/2
=

REp
w

, (4.2)

where RE is the Einstein radius defined in Eq. (2.37) and w is the dimensionless
frequency given in Eq. (3.8). To check for the variation of k in the vicinity
of the microlens, we partition the radial coordinate x (since SIS is axially
symmetric) on the lens plane (centered on the galactic core) into segments
of size rF. We fix rF to the largest possible value considered in this study. We
find that within each segment, k can be treated as effectively constant. This
is justified by the fact that the fractional variation dk/k across a Fresnel-scale
region is typically below 10�4 (based on the median). The left plot of Fig. 4.1
shows the fractional variation dk/k as a function of the projected distance
x from the galactic centre, expressed in units of the Einstein radius of the
SIS lens xSIS

0 (see Eq. (2.64)), assuming sv = 200 km/s, DL = 500 Mpc and
DS = 1000 Mpc. The right plot of Fig. 4.1 shows the cumulative distribution
of dk/k. Even though dk/k can be as large as ⇠ 1 for very small values of
x, the number of microlenses expected in this region is very small (see the
left plot of Fig. 4.4), thus, validating that k is effectively constant around the
microlenses.
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Figure 4.2: Con-
tours of the time
delay T (in units

of 4GMLz/c3,
with T = 0 at the
global minimum)

as a function of
the lens plane co-

ordinates (x1, x2)
for the PMX lens.
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With this setup, the dimensionless time delay function for the point lens
embedded in an external potential (PMX) can be obtained from Eqs. (2.83) and
(2.20) as

T(x, y) =
|x � y|2

2
� ln(|x|)

� k

2
|x|2 + k

2
cos 2jg(x2

1 � x2
2) + k sin 2jg x1x2 , (4.3)

where k and jg denote the local values, evaluated at the position of the
microlens. Fig. 4.2 displays the time delay maps corresponding to several
representative lens configurations. The source is fixed at y = 0.5,5 while5We exploit the

coordinate degree of
freedom to fix the

source position
along the y1-axis by

setting y2 = 0
henceforth.

convergence takes values k = {0.01, 0.1, 0.4}, with the shear orientation set
to jg = p/3. As evident from the figure, the first two configurations (left
and center panels) give rise to two images (a minima and a saddle image),
whereas the third (right panel) results in four distinct images (two minima
and two saddle images) under the geometric-optics approximation.

The shaded regions in Fig. 4.3 delineate the subset of the k-y parameter
space that yields four images in the geometric-optics limit. Outside of this
region, only two images are produced. As the plot indicates, the number of
images increases with both increasing convergence k and source offset y. This
behavior is consistent with the image configurations observed in the time
delay maps of Fig. 4.2, thereby reinforcing the interpretation based on caustic
structure in the PMX model.

4.2 generating a population of microlenses

The spatial distribution of microlenses within the galaxy is modeled according
to the Navarro-Frenk-White (NFW) profile [237, 238], which is a widely
adopted model for the DM density profile of galactic halos in the cold dark
matter (CDM) paradigm. This profile emerges naturally from cosmological
N-body simulations [84] and captures the nearly universal density profile of
virialized halos across a wide range of mass scales (see Sec. 2.4.4 for details).
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While baryonic components (e.g., stars, gas) dominate the inner regions of
galaxies, compact objects such as PBHs are expected to trace the underlying
DM distribution. Consequently, if microlenses constitute a fraction of the DM,
their spatial distribution should follow that of the host halo and be reasonably
described by the NFW profile.

In our setup, we assume a Milky Way-like halo with virial mass Mvir =

1012M� and concentration parameter cvir = 12 [79, 219]. Mvir is defined as the
mass within the virial radius rvir, which marks the extent within which the
halo is in approximate dynamical equilibrium. The concentration parameter
is defined as cvir ⌘ rvir/rs. Given these parameters, the scale radius rs and the
characteristic density rs can be determined. We use the Colossus library [122]
to compute these quantities, yielding rs ' 17 kpc and rs ' 107 M�/kpc3.

Accordingly, we distribute the microlenses following the projected NFW
surface density. The probability of finding a microlens between radial distances
x and x + dx on the lens plane is given by

dp = SNFW(x) 2px dx , (4.4)

where SNFW is the surface density of the NFW profile (see Eq. (2.79)). Mi-
crolenses are sampled out to the virial radius of the halo (⇠ 200 kpc). At each
sampled position, k is computed using the SIS form (Eq. (2.67)). The shear
angle jg is drawn from a uniform distribution U [0, p). The source positions
are sampled from a radial distribution p(y) µ y, with a cutoff y 2 [0.1, 3]. We
assume a monochromatic mass spectrum for the microlenses in the range of
redshifted mass MLz 2 [102, 105]M�.

Fig. 4.4 shows the resulting distribution of microlens locations measured
from the galactic centre (left panel) and the corresponding distribution of k

values (right panel). As seen from the figure, the median value of k ⇡ 0.02.
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Figure 4.4: (Left)
Probability distri-

bution of microlens
location from the

centre of the galaxy.
(Right) Correspond-

ing distribution
of k computed at

those locations.
10�5 10�3 10�1 101

�[kpc]

10�6

10�5

10�4

10�3

10�2

dp
(�

)/
d�

10�2 10�1 100

�

0

20

40

60

80

100

dp
(�

)/
d�

median � =1.33e-02

Figure 4.5: Time-
domain magnifi-
cation function
eF (t) for a PMX

lens as a function
of t (in units of

4GMLz/c3), where
the global minima

lies at t = 0.
10�1 100 101

t

1.0

1.5

2.0

2.5

3.0

� F
(t)

� =0.01, �� = �/3

y =0.5
y =1.0
y =2.0

10�1 100 101

t

1

2

3

4

� F
(t)

� =0.10, �� = �/3

y =0.5
y =1.0
y =2.0

100 101

t

2

3

4

5

6

7

� F
(t)

� =0.40, �� = �/3

y =0.5
y =1.0
y =2.0

4.3 computing microlensed waveforms

The microlensed waveforms pertaining to the PMX model can be obtained
by computing the magnification function (Eq. (2.22)), with the time delay
function defined in Eq. (4.3). This integral, however, needs to be evaluated
numerically and is computationally expensive owing to the oscillatory nature
of the integrand. Therefore, we make use of the algorithm detailed in Sec. 3.3
to compute the time-domain magnification functions eF (t)6 , which are then6Throughout this

chapter we restrict
our analysis to

k < 0.5, since the
PMX model does

not produce closed
time delay contours
for k � 0.5, making

the computation
strategy of eF (t)

unreliable. In
addition, Fig. 4.4
shows negligible
support for such
high values of k.

used to compute the frequency-domain magnification functions F ( f ).
Fig. 4.5 shows the morphology of eF (t) for various values of convergence k =

{0.01, 0.1, 0.4} and source positions y = {0.5, 1.0, 2.0}, for a fixed jg = p/3.
The contribution from the saddle images can be clearly identified from the
logarithmic divergent peaks on the left and center panels. For the parameters
in these two panels, there are always two images with the global minima
image being at t = 0. The right panel also showcases two-image scenarios
except for y = 0.5, which gives two minima and two saddle images. The
saddle peaks can again be identified by their logarithmic signatures. The
second minima appears as a jump discontinuity in eF (t) but has a time delay
very similar to one of the saddle images, making it difficult to visually identify
from the eF (t) plot. Interestingly, as t ! •, eF (t) ! 1/

p
1 � 2k. This implies

that the asymptotic behavior of eF (t) in the case of PMX lens is different
from that of the PML, where the eF (t) plots always asymptote to 1 at large t.
This feature is attributed solely to the non-zero convergence of the external
potential in PMX.

By Fourier transforming eF (t) and applying Eq. (3.7), we obtain F (w). The
conversion from the dimensionless frequency w to the physical frequency f is



4.3 computing microlensed waveforms 63

100 101 102 103

f [Hz]

0

1

2

3

4

5
|F

(f
)|

y =0.5
y =1.0
y =2.0

100 101 102 103

f [Hz]

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

ar
g(
F

(f
))

� = 0.01
� = 0.10
� = 0.40

Figure 4.6: Ampli-
tude and phase
of F ( f ) for a
500M� lens at
zL = 0.5, with
varying k (lines)
and y (colors),
fixing jg = p/3.

102

f [Hz]

10�27

10�26

10�25

10�24

|� h(
f)
|

y =0.5, �� = �/3

� =0.01
� =0.10
� =0.40

unlensed
PML

102

f [Hz]

y =1.0, �� = �/3

� =0.01
� =0.10
� =0.40

unlensed
PML

102

f [Hz]

y =2.0, �� = �/3

� =0.01
� =0.10
� =0.40

unlensed
PML

Figure 4.7: Am-
plitudes of mi-
crolensed GWs for
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binary of total mass
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performed using Eq. (3.8), given a redshifted lens mass MLz for the microlens.
Fig. 4.6 displays the amplitude and phase of the magnification function for a
PMX lens with ML = 500M� at redshift zL = 0.5. Different colors correspond
to varying source positions while line styles distinguish between different
convergence values. As evident from the figure, higher convergence leads to
more pronounced modulations at lower frequencies. Moreover, a non-zero k

introduces an overall magnification offset, which increases with increasing k.
Finally, we compute the lensed waveforms via Eq. (3.9), which requires

an underlying unlensed GW signal specified by a set of source parameters
qb = {Mc, h, ceff, cp}. These parameters are defined as

h ⌘ m1m2

(m1 + m2)2 (4.5a)

Mc ⌘ (1 + zS)h
3/5(m1 + m2) (4.5b)

ceff ⌘
c1zm1 + c2zm2

m1 + m2
(4.5c)

cp ⌘ max
✓

c?
1 ,

4q + 3
4 + 3q

q c?
2

◆
, (4.5d)

where m1 and m2 are the component masses of the binary, c1z and c2z their
spin projections along the orbital angular momentum, c?

1 and c?
2 the corre-

sponding spin projections perpendicular to the orbital angular momentum, h

the symmetric mass ratio, q ⌘ m2/m1  1 the mass ratio, Mc the redshifted
chirp mass, ceff the effective aligned spin, and cp the effective precession
spin. For generating the unlensed GW waveform, we employ the frequency-
domain approximant IMRPhenomXPHM [253] which self-consistently includes
both spin-induced orbital precession and higher order multipole corrections.
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Fig. 4.7 illustrates the impact of microlensing by a PMX lens on the ob-
served waveforms. For reference, the unlensed waveforms (in grey) and the
PML-lensed waveforms (in dashed black) are also plotted. We consider a
non-spinning, equal mass binary source with m1 + m2 = 40M�. The lens
parameters and configuration are the same as in Fig. 4.6. Across all panels,
the microlensed waveforms deviate noticeably from the unlensed case. The
deviation from PML is also prominent for large k values. As the dimensionless
source offset y increases, the strength of microlensing decreases as expected.
At the same time, the introduction of an overall magnification offset due to a
non-zero k raises the baseline amplitude in each curve.

4.4 results

Given observational data d that contains a GW signal, the evidence for mi-
crolensing can be evaluated by computing the Bayes factor between the two
competing hypotheses: the microlensed (PML-lensed) hypothesis HPML, and
the unlensed hypothesis HU. The Bayes factor is defined as

BPML
U ⌘ p(d|HPML)

p(d|HU)
, (4.6)

where p(d|HPML) and p(d|HU) are the Bayesian evidences (i.e., marginalized
likelihoods) under the PML-lensed and unlensed hypotheses, respectively
(see Eq. (B.3)). A Bayes factor BPML

U > 1 indicates that the data favor the
microlensed scenario over the unlensed one, while values less than unity
suggest greater support for the unlensed hypothesis. Current GW microlensing
searches employ this Bayes factor as a statistical discriminator to infer the
presence of microlensing signatures, and, in the absence of such signatures, to
place upper bounds on fDM.

Similarly, we define the Bayes factor BPMX
U to compare the PMX-lensed

and unlensed hypotheses, thereby enabling the assessment of microlensing
signatures when host galaxy effects on the microlens are included:

BPMX
U ⌘ p(d|HPMX)

p(d|HU)
. (4.7)

Suppose the true signal is microlensed by a PMX lens with parameters
qtr,7 but the inference is carried out using the simplified PML model and the7qtr includes both

source as well as
lensing parameters
MLz, y, k, and jg.

corresponding Bayes factor BPML
U . We aim to investigate whether neglecting

the influence of the host galaxy, that is, using an incorrect lensing model,
significantly degrades the Bayes factor, hence reducing the sensitivity to
microlensing.
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To this end, we define the loss factor as the ratio of Bayes factors (see Eq.(B.7))

L.F. ⌘ BPMX
U

BPML
U

' exp
⇥
�r2(1 � FF)

⇤
, (4.8)

where the last equality holds only in the high SNR (r) limit (see Appendix B
for a detailed derivation). The fitting factor FF is defined as

FF ⌘ max
qPML

M(qtr, qPML) , (4.9)

where the match M is computed between the true PMX-lensed waveform
and the best-fit waveform from the PML template family. The maximization
of match is performed over the full parameter space qPML, encompassing both
lens and intrinsic source parameters.

We compute the loss factor following the steps outlined below:

1. Generate lensed injection signals: We simulate a set of PMX-lensed injec-
tion (or true) signals in a grid spanning k 2 [10�3, 10�1], y 2 [0.1, 3.0]
and MLz 2 [102, 105]M�. The shear angle jg is drawn uniformly from
U [0, p). The source parameters include Mc = {20, 30, 40}M� and
h = {0.2, 0.25}, with all systems assumed to be non-spinning, that
is, ceff = cp = 0. These define the true parameters qtr for each simulated
signal.

2. Fitting factor computation: For each of these true signals, we compute the
fitting factor by maximizing the match over the PML parameter space,
including MLz, y,Mc, h, ceff and cp. We use the PSD pertaining to the
advanced LIGO targeted for the O5 observing run (A+ configuration) [2].

3. Re-weighting and marginalization: The computed fitting factors are re-
weighted and marginalized over the true lensing parameters (ktr, ytr)
using their probability distributions (see Sec. 4.2 for details on these
distributions.) as

hFFi =
Z Z

dktr dytr p(ktr) p(ytr) FF(qtr) . (4.10)

This gives the average FF over the microlens population.

4. Loss factor estimation: Inserting hFFi into Eq. (4.8), gives the corresponding
average loss factor.

Fig. 4.8 presents the average loss factor pertaining to the microlens pop-
ulation as a function of the redshifted microlens mass for different chirp
mass Mc and symmetric mass ratio h values. The SNR increases from left
to right panels. The plots show that the degradation in Bayes factor becomes
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Figure 4.8: Loss
factor as a func-

tion of redshifted
microlens mass.

The panels show
various SNR val-
ues, colors denote
different Mc and
h are denoted by

different line styles.
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significant for higher microlens masses, whereas the simplified PML model
remains an adequate approximation at lower lens masses.

4.5 summary and outlook

In this work, we looked at the impact on microlensing due to the presence of
an external potential – specifically, a galaxy parameterized by the convergence
and shear modeled by the SIS lens – on the detectability of microlensing
signatures in GW observations. To assess the effect of using an incorrect
lens model, we defined the loss factor as the ratio of Bayes factors computed
under the PMX and PML lensing models. In the high-SNR limit, this quantity
depends on the mismatch between the true and best-fit waveforms.

Our analysis involved generating a set of PMX-lensed injection signals over
a broad parameter space of lens and source properties. We computed the
fitting factor between these signals and their best-fitting counterparts from
the PML model. Lower values of the fitting factor reflects the inability of the
PML model to capture waveform distortions introduced by the host galaxy’s
gravitational field.

By marginalizing the fitting factors over astrophysically motivated distribu-
tions of convergence and source position, we obtained the population-averaged
loss factor, which quantifies the expected degradation in Bayes factor across
realistic lens populations. The results, presented in Fig. 4.8, demonstrate that
the use of an incomplete model leads to a systematic underestimation of the
Bayes factor in the high lens-mass and high-SNR regime. This degradation
becomes more pronounced for sources with higher symmetric mass ratios
(comparable mass binaries).

These findings underscore the importance of including host galaxy effects
in waveform models when searching for microlensed GW signals. Neglecting
such effects may result in reduced sensitivity to microlensing events in current
and future GW datasets. In addition, this can potentially affect the existing
constraints on the compact dark matter fraction fDM.

Note that our current study suffers from some limitations. First, the macro-
model of the host galaxy was assumed to be modeled by SIS, which, while an-
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alytically convenient, does not fully capture the diversity of galactic potentials.
In particular, elliptical galaxy profiles may introduce different distributions of
shear and convergence, thereby altering the PMX parameter space. Second,
our analysis assumes a high-SNR approximation to the Bayes factor, which
may not hold for all observed events.

A more rigorous treatment would require assessing model evidences within
a full Bayesian framework, rather than relying on the large-SNR approximation
adopted here. It also involves using more realistic models for the background
galaxy (e.g., singular isothermal ellipsoid - SIE). Since a full Bayesian analysis
using more complex lens models is computationally prohibitive using current
techniques, we defer such an analysis for future work. The surrogate modeling
techniques introduced in Chapter 5 might provide a resolution to this issue.
We will also re-derive the upper limits on fDM in the future.



5
S U R R O G AT E M O D E L I N G O F
M I C R O L E N S E D
G R AV I TAT I O N A L WAV E S

Gravitational microlensing of GWs offers a unique window into both funda-
mental physics and compact object populations. Examples of potential mi-
crolenses for LVK sources include (but are not limited to) isolated intermediate-
mass black holes (IMBHs), whose masses lie in the range M 2⇠ [102, 104]M�.
Currently, searches for microlensing/wave-optics patterns (see, e.g., [36]) in
detected CBC events assume a point mass lens. This assumption is made for
two reasons. The first is that an exact, analytical form of the frequency-domain
microlensing magnification function, F ( f ), is known (see Eq. (2.41)1 ), which1The conversion

between w and f is
given in Eq. (3.8).

facilitates the creation of an interpolation table for F ( f ). The evaluation of this
interpolant, for arbitrary GW frequencies and lens parameters (viz., lens mass
and source position), is sufficiently rapid to attempt large-scale parameter es-
timation runs without prohibitively taxing computational resources [160]. The
second is that IMBHs as microlenses have been argued to be well-modelled
by the point mass lens [197].

However, other models of microlenses exist, many of which do not currently
have any known analytical form for F ( f ). An example of particular astrophys-
ical relevance is microlens(es) embedded in a macro potential (see, Chapter 4).
It has been argued that a microlens, such as a massive compact object, lying in
the halo of an intervening galaxy that provides the macro-potential, could re-
sult in the production of resolvable images with wave-optics effects imprinted
on each of them [220]. Moreover, multiple microlenses in the macropotential
would additionally produce interference patterns between the images [102,
121, 225, 245]. The resulting magnification function F ( f ), containing beating,
diffraction and interference patterns, has no known analytical form to date.

Constructing such realistic F ( f )’s requires solving the diffraction integral,
with the appropriate superposition of lensing potentials, numerically. This
has been achieved (see, e.g., [225, 270]) using the method described in [289].
However, producing these F ( f )’s, for a single set of lens parameters, typi-
cally takes several seconds or longer per waveform, making large-scale GW
parameter estimation (PE) of such lens configurations unfeasible.

In this Chapter, we adopt a widely used interpolation technique, called
“surrogate modeling”. This technique has found its application in modeling

68
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waveforms in the context of CBCs [76, 77, 141, 149, 175–177, 259, 295, 296, 312,
313]; see Sec. 5 of Ref. [41] for a summary of recent CBC applications. In addi-
tion, a recent study has demonstrated the application of surrogate modeling
to describe waveforms for hyperbolic encounters between black holes [145].
The main appeal of surrogate modeling lies in the fact that one can obtain a
fast and accurate prediction of a high-dimensional, complicated function at
arbitrary points in parameter space, interpolating from a finite (and usually
small) set of points in that space where the function is known. To achieve
this, surrogate models take advantage of the underlying similarity among
the numerical solutions across the parameter space. Surrogate models thus
provide a drastic increase in the evaluation speed of the function, compared
to slow numerical solutions, while only negligibly deviating from them. We
apply surrogate modeling, for the first time, to the rapid and accurate construc-
tion of time-domain lensing magnification functions eF (t). We benchmark the
accuracy and production speeds of the surrogate microlensed GWs in the
frequency-domain.

As a proof of principle, we consider the following lens models: point mass
lens (PML) and singular isothermal sphere (SIS). We numerically evaluate the
time-domain magnification function eF (t) at a few discrete points in the lensing
parameter space. From these, we construct surrogate magnification functions
eFS(t) for each of the lensing configurations. After Fourier transforming and

producing microlensed GW waveforms in the frequency-domain, we evaluate
the production-time and accuracy of the surrogate microlensed waveforms.
We find that we are able to achieve mismatches of the order of O(10�7 � 10�3)

with respect to the waveforms evaluated numerically, with evaluation times of
O(10�1 � 10�2)s. These benchmarking tests showcase the efficacy of surrogate
modeling applied to microlensed GWs. They also suggest that surrogate
modeling can be feasibly used for GW parameter estimation in the context of
GW microlensing.

The rest of the Chapter is organized as follows. Sec. 5.1 introduces the
basics of surrogate modeling and its application in the construction of time-
domain lensing magnification functions. Sec. 5.2 presents the results which
demonstrate the accuracy and evaluation speed of the surrogate microlensed
waveforms. Finally, Sec. 5.3 summarizes the results and suggests future work.

5.1 method

The integrand of the diffraction integral given in Eq. (2.22) can be highly
oscillatory. As mentioned in Chapter 3, it is computationally expensive to
evaluate the diffraction integral using conventional numerical schemes for
astrophysically relevant lens models. Moreover, it is difficult to model oscil-
latory functions using surrogates. Therefore, we compute the magnification
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Figure 5.1: Top row: The time-domain magnification function eF (t), and its regularized version (defined
in Eq. (5.2)) eF(t), due to a PML for various source positions y as a function of time t (in units of
4GMLz/c3, where the global minima lies at t = 0). Bottom left: Amplitude of the lensed waveforms
considering a GW150914-like source. Bottom right: amplitude and phase of the frequency-domain
magnification function F ( f ) for corresponding values of source locations computed numerically (solid
lines) and with the surrogate models (dashed lines) for a lens of mass ML = 103 M� at redshift
zL = 0.05.

function in time-domain, following the idea described in Sec. 3.3. Surrogate
models of eF (t) are then generated using numerically obtained eF (t) as the
training data. The strategy is then to arrive at F (w) or F ( f ) using Eq. (3.7).
This is also useful in generalizing the procedure to more complicated lenses.
In this work, we construct surrogate lensing waveforms for the PML and SIS
lens models, which are described in Sec. 2.4.

In this study, we focus on the lens parameter space that generates multiple
images in the geometric-optics regime. The lens models considered here
can produce at most two images. Cases with a single image are excluded
as their corresponding eF (t) has a straightforward functional form, making
them trivial to model. We emphasize that the geometric-optics quantities,
such as, image time delays and image magnifications, are used in Sec. 5.1.1
and Sec. 5.1.2 solely to improve the modeling of eF (t). This is because the
primary contribution to F ( f ) comes from the images, making it essential
to capture them accurately. However, we do not apply the geometric-optics
approximation to F ( f ) anywhere in this study.22 Image parity

produces a Morse
phase in the

geometric-optics
magnification (see,
Sec. 2.3). Without

that approximation,
the same phase is
implicitly present

in F ( f ).

In this section, we outline the key steps in constructing the surrogate mi-
crolensed waveforms. We start by introducing the peak reconstruction proce-
dure in Sec. 5.1.1, an essential step to accurately model the contribution of the
region in the lens plane near the saddle point images to the time-domain mag-



5.1 method 71

10�2 10�1 100 101

t

2.5

5.0

7.5

10.0

12.5

� F
(t)

Impact parameter y
y=0.03
y=0.05
y=0.10

y=0.26
y=0.50
y=0.95 Figure 5.2: eF (t)

for an SIS lens
at various y,
comparing nu-
merical (solid)
and surrogate
(dashed) results.
Time is in units of
4GMLz/c3, with
t = 0 at the global
minimum.

nification function. We then describe the amplitude regularization technique
in Sec. 5.1.2 to assist the surrogate to better interpolate between waveforms.
Finally, in Sec. 5.1.3 we present the details of the surrogate modeling approach.

5.1.1 Peak reconstruction

Fig. 5.1 shows the magnification function in both the time-domain (top right
panel) and frequency-domain (bottom right panel) for various source posi-
tions y, computed numerically (solid lines) and using the surrogate model
(dashed lines) for PML (see Sec. 5.2 for details). The corresponding lensed GW
waveforms are shown in the bottom left panel. The logarithmic peaks in eF (t)
(top right panel) occur at t = DT (see Eq. (2.45) for PML and Eq. (2.74) for
SIS), a feature characteristic of the saddle image. Similarly, Fig. 5.2 illustrates
the time-domain magnification function, eF (t), computed for various source
locations using both the numerical method (solid lines) and the surrogate
model (dashed lines) for SIS.

Accurate computation of the time-domain magnification function via Eq. (3.4)
demands sufficiently high resolution in the numerical integration. Nonethe-
less, even at high resolution, the numerical solution may struggle to capture
the peak of eF (t) due to the logarithmic divergence at the peak. This limitation
can impact the accuracy (especially at large w) of the frequency-domain mag-
nification function F (w), as defined in Eq. (3.7) (see Fig. 5.3 for an illustration).
Since w increases with ML (refer to Eq. (3.8)), accurate modeling of the peak
becomes even more important for large ML values.

To overcome the limitation of numerical methods in resolving the peak
feature, we utilize the analytical expressions for the peak location and the
behavior of eF (t) in the vicinity of the peak is given by (see Eq. (3.6)),

eFapprox(t) = 2p
p

µ+ � 2
q
|µ�| ln (|t � DT|) , (5.1)
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Figure 5.3: Illustration of improvement in the accuracy of F ( f ) with peak reconstruction. Top: Time-
domain magnification function with and without peak reconstruction for PML lens for y = 0.1 as
a function of time t (in units of 4GMLz/c3). The dashed vertical lines denote the window in which
peak correction is applied. Bottom: Amplitude of the frequency-domain magnification function with and
without peak reconstruction for the same lens with mass ML = 1000M� at zL = 0.5. Additionally, the
analytically computed |F ( f )| is shown for comparison.
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where the values of µ± and DT are given by Eqs. (2.44), (2.45) for PML, and
Eqs. (2.73), (2.74) for SIS lenses. We use the following steps to reconstruct
the peak features by smoothly hybridizing the numerical and analytical
approximation on either side of the peak:

(a) Identify the peak location, DT, using the analytic expression given in
Eq. (2.45) for PML and Eq. (2.74) for SIS.

(b) Split the numerical eF (t) at DT into a left segment, eF l
num(t), and a right

segment, eF r
num(t).

(c) Using the analytical approximation of eF (t) near the peak (Eq. (5.1))
evaluate the left and right approximations, eF l

approx(t) for t < DT and
eF r

approx(t) for t > DT.

(d) Define a reconstruction window, [tl
match, tr

match], around DT to match and
reconstruct the peak. The window span is empirically chosen: a larger
span reduces accuracy of the approximation in Eq. (5.1) as it moves away
from the peak, while a smaller window span depends on the accuracy
of the numerical method near the saddle image. A window spanning a
time interval equal to 5% on each side of DT is found to be effective.

(e) Rescale the approximated segments eF l
approx(t) and eF r

approx(t) to match
the numerical eF (t) values at tl

match and tr
match, respectively.

(f) Replace the portion of the numerical eF (t) within the reconstruction
window with the rescaled approximated segments.

Following the above procedure results in a reconstructed time-domain
magnification function,

eF (t) =

8
>>>>>>>><

>>>>>>>>:

eF l
num(t), t  tl

match

eF l
approx(t), tl

match < t < tpeak

eF r
approx(t), tpeak < t < tr

match

eF r
num(t), t � tr

match

,

which is a continuous, but non-smooth, function. Fig. 5.3 shows that recon-
structing the peak in the eF (t) (top panel) consistently provides a better match
(bottom panel) with the analytic expression (Eq. (2.41)) as compared to the
vanilla numerical eF (t). As seen in the figure, the difference between the
various methods becomes more pronounced at higher frequencies, primarily
due to limited resolution near the peak. However, as discussed in Sec. 5.2,
the peak-reconstruction method has been calibrated to ensure a maximum
mismatch of 10�4 within the parameter space. Increasing the resolution can
improve accuracy at high frequencies, though this comes at the cost of longer
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generation times for the training data. Importantly, this does not impact the
evaluation speed of the surrogate model.

5.1.2 Amplitude regularization

The logarithmic singularity at DT presents a challenge for accurately modeling
the region near the peak of eF (t) using a surrogate. To address this, we apply
a regularization procedure to the reconstructed eF (t) (see Sec. 5.1.1 for details
on the reconstruction) and construct a surrogate model based on this peak-
reconstructed, regularized time-domain magnification function, eF(t). The
following transformation suppresses the peak contribution:

eF(t) = 1 � exp

2

4�p

⇣
eF (t)� 1

⌘

p
µ�

3

5 , (5.2)

where µ� is the magnification due to the saddle image, given by Eq. (2.44)
for PML and (2.73) for SIS lens models. The regularization effectively elimi-
nates the singularity and makes the derivative of the magnification function
continuous. The top left panel in Fig. 5.1 compares the regularized eF(t) for
PML computed for various source locations using the numerical method
and the surrogate model for PML. After evaluating the surrogate, an inverse
transformation is applied to obtain the time-domain magnification function
eF (t) from eF(t).

5.1.3 Surrogate modeling

In this section, we introduce the basics of surrogate modeling, its application
in computing the lensing magnification function for lensed GW waveforms
and the setup used in this work. Surrogate modeling has been used extensively
in building fast and accurate GW waveforms, especially in building surrogate
models for Numerical Relativity (NR) waveforms [75, 141, 285]. Surrogate
modeling is particularly advantageous in situations where the number of
available waveforms is limited due to the prohibitively large computation time
required to generate them, such as when solving partial differential equations,
which results in a sparse training dataset. It is also highly beneficial when a
data analysis study demands millions of waveform evaluations, requiring ex-
ceptionally rapid model evaluation times to meet the computational demands
efficiently. For example, effective-one-body surrogates [111, 146, 189, 255, 256,
284] are extensively used as part of LVK parameter estimation efforts.

In the following, we will briefly discuss how surrogate modeling reduces
the dimensionality of the problem by using reduced basis and empirical
interpolation methods. These two methods ensure that with only a limited
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number of waveforms (chosen appropriately), one can build an accurate model
for predicting solutions outside the training set of parameters. Because these
two steps can be precomputed, it also ensures that the model, evaluated
at arbitrary points in parameter space, is orders of magnitude faster than
numerical solutions.

5.1.3.1 Surrogate modeling basics

In the following, we briefly outline building a surrogate model.3 3We follow the
methods described
in Sec. II and III
of Field et al. [141]
and refer the reader
to it for a detailed
overview of
building a
surrogate model.

1. The first step is to find a minimal set of solutions called the reduced
basis (RB) [140] in terms of which solutions at other parameters can be
expressed. Given a known set of solutions (also called the training set),
the RB is found using a greedy search algorithm. For example, with a
RB with m basis elements, {ei}m

i=1, a solution eF(t; l) in the training set
at the lens parameter values l can be well approximated as:

eF(t; l) ⇡
m

Â
i=1

ci(l) ei(t). (5.3)

This approximation is also good at other parameters outside the training
set as long as the training set is dense enough. However, getting a dense
training set can be very expensive and sometimes prohibitive. In such
cases, one can build the training set using a greedy search method
to provide an optimal training set for a given desired accuracy of the
surrogate prediction. We come back to this in Sec. 5.1.3.3 where we
discuss the surrogate modeling setup specific to our problem.

Since the number of RB, m, is usually very small compared to the number
of solutions in the training set, say M, the dimensionality of the problem
reduces by a factor of m/M, which is usually ⌧ 1.

2. The next step is to find the most representative times, the empirical
times or nodes {Ti}m

i=1 to construct an interpolant in time using empirical
interpolant method (EIM) [62, 100, 141, 166, 205] for a given parameter l:

Im[eF](t; l) =
m

Â
i=i

Ci(l) ei(t). (5.4)

The coefficients Ci(l) are defined by requiring that the interpolant
becomes equal to the value of the solutions at the empirical nodes:

m

Â
i=i

Ci(l) ei(Tj) = eF(Tj; l), j = 1, ..., m (5.5)
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or equivalently,

m

Â
i=1

Vji Ci(l) = eF(Tj; l), j = 1, ..., m (5.6)

where the interpolation matrix is given by

V ⌘

0

BBBBBB@

e1(T1) e2(T1) . . . em(T1)

e1(T2) e2(T2) . . . em(T2)
...

... . . . ...

e1(Tm) e2(Tm) . . . em(Tm)

1

CCCCCCA
. (5.7)

The coefficients Ci(l) can be obtained by solving the above m-by-m
system:

Ci =
m

Â
j=1

(V�1)ij eF(Tj; l). (5.8)

Substituting Eq. (5.8) in Eq. (5.4), the empirical interpolant can be rewrit-
ten as:

Im[eF](t; l) =
m

Â
j=i

Bj(t) eF(Tj; l), (5.9)

with:

Bj(t) ⌘
m

Â
i=1

ei(t) (V�1)ij. (5.10)

The function Bj(t) is independent of l and can be precomputed offline
using only the information contained in the RB. Similar to the RB, the
empirical nodes – also independent of l and equal in number to the RB
functions – are determined using a separate greedy search algorithm.
Since the RB typically consists of only a few functions, the empirical
interpolant’s representation of the function, as expressed in Eq. (5.9),
requires only a sparse set of time points. This eliminates the need for
a dense, uniform temporal grid, which would otherwise significantly
increase computational cost. As a result, the temporal dimensionality
of the problem is reduced by a factor of m/L, where m is the number
of RB functions (and empirical nodes), and L is the number of points
required for interpolation on a uniform grid.

The use of RB and EIM reduces the dimensionality of the problem by a
factor of (m ⇥ m)/(M ⇥ L) ⌧ 1.

3. With the interpolant Im[eF](t; l) in Eq. (5.9) at hand, we need to know
the values of the solutions at the empirical nodes {Ti}m

i=1. Therefore, the
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third step is to construct parametric fits at each empirical node across
the parameter space.

4. Finally, the surrogate model prediction at a new parameter l⇤ outside
the training data set is computed by first using the parametric fits
(constructed in the third step) to evaluate the values of eF(t; l⇤) at the
empirical nodes {Ti}m

i=1 and then building the interpolant Im[eF](t; l)

using Eq. (5.9).

The first three steps are performed offline (i.e, precomputed), which drasti-
cally expedites the evaluation of the surrogate model at arbitrary points in
parameter space.

5.1.3.2 Surrogate for microlensed waveforms

We apply the technique of surrogate modeling to obtain a model of the GW
waveforms undergoing microlensing. However, since the effect of microlensing
is a frequency-dependent modulation of the GW amplitude, one needs only
to model this magnification function provided a fast, unlensed model exists
already. Therefore, instead of modeling the microlensed waveform directly,
we build a surrogate model eFS(t) for the regularized lens magnification
function eF(t) in the time-domain. We then obtain the frequency-dependent
magnification function FS( f ) by taking a Fourier transform of the back-
transformed eFS(t) (see Sec. 5.1.2). The surrogate microlensed waveform ehSL( f )
is then obtained from the unlensed waveform ehU( f ) using Eq. (2.23) as:

ehSL( f ) = FS( f )⇥ ehU( f ). (5.11)

5.1.3.3 Surrogate modeling setup

The RB is found by using a greedy algorithm that guarantees that the error

sm ⌘ max
l

min
ci2C

�����

�����
eF(.; l)�

m

Â
i=1

ci(l) ei(.)

�����

����� , (5.12)

associated with the approximation in Eq. (5.3) (minimized over the coefficients
ci and maximized over the parameter l) is less than a desired value, usually
called the basis tolerance. Here, we have defined the standard L2 norm as

���
���eF(.; l)

���
��� ⌘

sZ tmax

tmin

���eF(t; l)
���
2

dt . (5.13)

Using an optimal basis tolerance when building the RB is crucial in making a
surrogate model as fast as possible. Using a very small basis tolerance may
result in a larger number of bases, which in turn results in a larger number
of empirical time nodes. While evaluating the surrogate model, a significant
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portion of the computation time involves evaluating the fits at the empirical
nodes. Thus, a smaller basis tolerance is likely to make the surrogate model
slower. Therefore, we use an optimal basis tolerance of ⇠ 5⇥ 10�4 for building
the RB so that the surrogate models achieve the required accuracy compared
to the microlensed waveform computed using the numerical solutions without
causing any overfitting.

To obtain the training data set, we employ a greedy search algorithm as
described in [76]. In the greedy search, we start with an initial training set
consisting of only the corner points of the parameter range of interest. At each
step, we build the surrogate model with a specific basis tolerance (⇠ 5 ⇥ 10�4

in our case) and then validate it against a large number of numerical solutions
generated randomly within the parameter range. This validation set excludes
the parameters already in the training set. The validation involves measuring
the normalized L2 error between the surrogate prediction eFS(t) and the
numerical solution eF(t),

L2 =

r
R tmax

tmin

���eFS(t)� eF(t)
���
2

dt
r
R tmax

tmin

���eF(t)
���
2

dt
, (5.14)

where tmin and tmax denote the range of the time segment within which the
error is computed.

We pick the parameter where the L2 error is the maximum and add it to
the training set to be used in the next step and repeat the procedure until we
achieve the maximum L2 error to be smaller than a desired value, which in
our case is 10�2. With such a greedy search, we find our training data sets
that consist of ⇠ 35 � 100 data points depending on the particular microlens
model.

For constructing the fits at the empirical nodes, we use the Gaussian Process
Regression (GPR) method as described in the supplemental material of [296].

In a nutshell, the training data eF(t) is obtained by applying a peak recon-
struction followed by a regularization operation on eF (t). This training data is
used to build the surrogate eFS(t). Then an inverse transformation is applied
followed by a peak reconstruction to obtain eFS(t).

5.2 results

In order to validate our model, we compute the match M, defined in Eq. (A.8)
between the surrogate microlensed waveform model and the corresponding
numerical model used for training. We use pycbc.filter.matchedfilter

module from the PyCBC package [240] to compute the match. We make use
of the next-generation ground-based detector Einstein Telescope (ET) PSD,
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pertaining to the ET design sensitivity [167]. The reason for choosing this
particular PSD is two-fold: the frequency bin is larger than the current ground-
based detectors, giving rise to conservative mismatches, and statistically, we
expect to see a significant number of lensed GW events during the observing
runs of next-generation detectors such as ET.

Note that, the numerical magnification functions used to train the model for
PML and SIS are calibrated to the analytic form given in Eq. (2.41) for PML
and the summation form given in Eq. (2.77) for SIS, such that the maximum
mismatch (1 �M) between the numerically computed lensed waveform and
the analytically obtained lensed waveform is < 10�4 for all possible points in
the parameter space.

We present mismatches between the surrogate microlensed GWs and the
numerically evaluated microlensed GWs used to construct the surrogate
model. We ensure that the lensing parameters used for training the model,
and those used for testing (i.e, evaluating the mismatches), are different.
The lensing parameters are chosen over a grid, and the mismatches are
evaluated for each point on that grid, as well as different unlensed CBC
waveforms. Evaluation times per microlensed frequency-domain waveform are
also measured. These are then compared with corresponding times pertaining
to other methods, viz., a frequency-domain interpolation method employed
by the LVK collaboration to search for GWs microlensed by PMLs, as well
as numerical methods to acquire magnification function for the SIS lens. The
waveforms are sampled at frequencies with bin width, d f = 1/32, resulting in
the total number of waveform evaluation points in the frequency-domain to
range from ⇠ 1.3 ⇥ 104 (for total binary mass Mtot = 100M�) to ⇠ 6.5 ⇥ 104

(for total binary mass Mtot = 20M�).
The surrogate model for PML is created using 27 basis vectors with a basis

tolerance of 5 ⇥ 10�4, while for SIS, it is created using 15 basis vectors with
the same basis tolerance. We use the numpy.fft module from NumPy [164]
package to compute FFT. All computations related to creating and evaluating
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the surrogate model were performed on a 32-core workstation with Intel Xeon
E5-2650 v2 chip, OS: Linux. Note that no parallelization was used during the
evaluation; thus, the computations effectively used a single core.

point mass lens (pml): We create a surrogate model for the regularized
time-domain magnification function eF(t). It is a single-parameter model
parameterized by the source location y. Note that the lens mass ML sets
the time scale while converting the dimensionless angular frequency w to
the dimension-full frequency f (see Eq. (3.8)). Therefore, it can be factored
out while creating the model. We use the numerically computed eF(t) (as
shown in Fig. 5.1) to train our model. Fig. 5.4 shows the improvement in
the maximum L2 between the numerically obtained eF(t) and the surrogate
eFS(t) with an increase in the number of greedy parameters. The error versus
greedy parameters curve plateaus for greedy parameter counts greater than
approximately 30 for PML. Therefore, we use the first 35 greedy parameters
to construct the surrogate model. The greedy parameter space of y spans from
y = 0.1 to y = 2.

The current LVK microlensing analysis makes use of an interpolation table
(“lookup table”) in w � y plane to compute F (w) given in Eq. (2.41) for PML
and Eq. (2.77) for SIS (see, e.g., [308]). We compare the evaluation time of
the PML surrogate model with the lookup table to verify that it performs at
least as well as the lookup table for simple lensing cases. For the SIS surrogate
model, we compare with the numerical method, as our goal is to extend this
study to more complex lens models where interpolation tables may not be
feasible, and only direct numerical computations are possible.

Fig. 5.5 shows the evaluation time for the surrogate model compared to
the lookup table for the same number of evaluation points. We also indicate
the time taken to generate the numerically obtained F ( f ). As seen from
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the figure, the surrogate performs faster than the lookup table throughout
the parameter space. Note that a part of the lookup table evaluation uses
information from the geometric-optics approximation, whereas the numerical
method and therefore, the surrogate model is based completely on the wave-
optics computation.

Fig. 5.6 shows the mismatch between the surrogate microlensed waveform
and the microlensed waveform obtained using the numerical method for a
GW150914-like signal for various values of ML and y. The unlensed waveform
is generated using the IMRPhenomXP approximant [253]. As evident from the
figure, the mismatches are better than 0.03%.

Further, we show the dependence of the accuracy of our model on the
source mass of the binary by simulating equal component mass, non-spinning,
binary black hole (BBH) unlensed waveforms for different total binary masses
(Mtot = {20, 40, 60, 80, 100}M�) by computing mismatch in the ML � y grid
spanning 100  ML/M�  1000 and 0.1  y  2. We consider equal mass
binaries. The top left panel in Fig. 5.8 shows the histogram of mismatch values
for the different source masses between the lensed waveforms generated
using the numerical method and the surrogate model. As can be seen, the
mismatches are lower than 0.05%. Moreover, the top right panel compares the
evaluation times for the surrogate with the lookup table for the same grid and
source masses.

singular isothermal sphere (sis): Similar to the PML model, this
model is also a single-parameter model parameterized by y. As shown in
Fig. 5.7, the error versus greedy parameters curve plateaus for greedy pa-
rameter counts greater than approximately 85 for SIS. Therefore, to construct
the surrogate model for SIS, we use the first 100 greedy parameters. The
greedy parameter space of y spans from y = 0.01 to y = 0.95. We compute
mismatch and compare evaluation times between the numerically obtained
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microlensed waveforms and the surrogate microlensed waveforms. The bot-
tom left panel in Fig. 5.8 shows the histogram of mismatch values for various
source masses, similar to the case for PML. Here, we restrict the y values
between 0.01  y  0.95 because for y > 1 we are no longer in the two-image
regime. Similar to PML, the mismatch values are within 0.05%, showing very
promising results. The bottom right panel compares the evaluation times
for the surrogate with the numerically obtained microlensed waveform. The
surrogate model is evidently faster than the numerically obtained microlensed
waveforms by orders of magnitude.

5.3 summary and outlook

Probing for signatures of wave-optics-induced microlensing effects in detected
GW events requires large scale Bayesian PE runs, whose feasibility crucially
relies on accurate and rapidly producible microlensed waveforms. Apart from
GWs microlensed by a PML and a few other simplistic lensing models, no
closed form analytical solutions to the lensing equation exist. Numerical
methods are, therefore, the only recourse to generate microlensed waveforms
for most realistic lensing configurations.

Evaluating microlensed GWs numerically is time consuming, with wave-
form generation taking up to several seconds (per waveform). Indeed, even
efficient numerical methods (see, e.g. [280]) are likely to be too slow to enable
large-scale PE campaigns in a cost-effective manner. One way to mitigate this
issue is to use interpolation, where the microlensing magnification function
is evaluated at a few discrete points in the parameter space of the lens, and
then interpolated to any arbitrary point. This has been attempted for the
PML in the frequency domain, and found to be faster than directly evaluating
the complicated magnification function analytically [36]. It has also been at-
tempted for other spherically symmetric lensing configurations in the time
domain, where the magnification function is then Fourier transformed to the
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frequency domain [103]. Both these methods require reading-off precomputed
interpolation data from a table, and are referred to in this work as the “lookup
table” methods. For other efficient methods for rapid evaluation of lensing
magnification functions, we refer the reader to [298].
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Figure 5.8: Mismatch and evaluation time comparisons. Top panel: (Left) Histograms of mismatches
between surrogate and numerical microlensed waveforms for a PML lens, across sources with Mtot =
{20, 40, 60, 80, 100}M� evaluated over a grid 100  ML/M�  1000 and 0.1  y  2. (Right)
Evaluation time histograms for the surrogate (solid) and lookup table (dashed) over the same ML � y
grid for PML. Bottom panel: (Left) Same as top-left but for an SIS lens with 0.01  y  0.95. (Right)
Evaluation time histograms for the surrogate (solid) and numerical method (dashed) for SIS.

Given the impressive success of surrogate modeling to accurately and
rapidly produce (unlensed) CBC templates, in this work, we assess its applica-
bility in the context of generating microlensed GWs. We construct surrogate
models of GWs microlensed by a PML and SIS lens. We consider a range of
realistic lens masses and source locations. We achieve this by building time-
domain surrogate magnification functions, Fourier transforming them, and
then multiplying them with the unlensed frequency-domain GW waveform.

To assess the performance of the surrogate models, we compute mismatches
between the surrogate microlensed waveforms and the corresponding, nu-
merically evaluated, waveforms that were used to build the surrogate models,
ensuring that the mismatches are not evaluated at lens parameter values used
for surrogate construction. We do so over a grid of lens parameter values,
and find that we are able to achieve mismatches in the range ⇠ 10�8 � 10�4.
Moreover, we measure the evaluation times of the microlensed waveforms in
the frequency domain and find that they are typically O(10�2 � 10�1)s for
number of sample points ranging from ⇠ (1.3 � 6.5)⇥ 104. These benchmark-
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ing tests demonstrate the power of surrogate modeling applied to microlensed
GWs, suggesting that large-scale PE runs can be feasibly conducted using
surrogate magnification functions.

It is worth pointing out that the rate-determining step in the computation
of surrogate microlensed GWs in the frequency domain is, in fact, the Fourier
transform, for which we employ NumPy’s FFT package [164]. The evaluation
times of the time-domain surrogate waveforms are smaller than the FFT
compuation by a couple of orders of magnitude. We find that, for the PML,
the microlensed waveforms computed using the lookup table method in the
frequency domain are marginally worse than the corresponding surrogate
waveforms for large portions of the lensing parameter space considered.

The main advantage of surrogate modeling of microlensed GWs is that it
does not intrinsically rely on any symmetries of the lensing potential. Indeed, if
numerical solutions are able to provide time-domain magnification functions,
it should be possible to construct corresponding surrogate models. Thus,
in principle, our work should be readily extendable to asymmetric lensing
configurations that better model those found in nature, such as a microlens
embedded in a macropotential (e.g., an IMBH inside a galaxy-scale lens).
However, constructing surrogate models for realistic lenses needs to mitigate
an important problem.

Caustics – curves in the source plane where the image magnification for-
mally diverges – demarcate distinct regions in that plane. These regions differ
from each other in the number of images4 that will be produced if the source4 In the

geometric-optics
limit

is positioned in those regions. Abrupt changes in the number of images when
crossing over caustics correspond to non-smooth changes in the shape of the
time-domain magnification function as the source position changes. Indeed,
even in the case of SIS lens, we restricted ourselves to lens parameters that
ensure that exactly two images are produced. A possible workaround is to
build separate surrogate models for each region in the lens plane contain-
ing a fixed number of images. Modeling the shape of the caustics poses an
additional challenge. It is straightforward for symmetric lensing potentials
but difficult for asymmetric systems - especially when several microlenses
are embedded in a macropotential. We leave the surrogate modeling of such
lensing configurations for future work. In addition, the accuracy of the model
depends on the quality of the training data, which in turn relies on the nu-
merical method and the image-finding algorithm (for peak reconstruction and
amplitude regularization). Potential inaccuracies at high frequencies can be
mitigated by increasing the resolution near the peaks of eF (t). Future work
will focus on further refining these aspects for enhanced performance.



6
C O N C L U S I O N A N D F U T U R E
O U T L O O K

The direct detection of GWs by the current generation of ground-based interfer-
ometric detectors has advanced our understanding of astrophysics, cosmology
and fundamental physics. CBCs being the primary sources of GWs among
the current detections, have enabled exploration of compact binary properties,
population properties of the compact objects, as well as the nature of these
objects. Additionally, GWs provide access to extreme gravity regimes, thus,
allowing stringent tests of GR in strong field. GWs also serve as independent
cosmological probes at intermediate redshifts. The catalog of detected GWs
is expanding with the ongoing O4 observing run, and further rapid increase
in the number of detected events is expected with the addition of future
generations of detectors. As a result, the precision and diversity of science
that can be done with GWs will continue to grow.

Detection of lensed GWs promises to broaden this scientific reach even
further, potentially complementing EM lensing. Because the wavelength of
GW is typically much larger than EM waves, this allows us to explore lensing
in the diffraction regime (i.e., microlensing). These microlensing effects enable
the probe of previously unobserved lens populations. In this context, this
thesis develops and applies microlensing of GWs in probing the nature and
environment of compact objects. Moreover, GW microlensing allows testing
alternative theories of gravity and put upper limits on the fraction of dark
matter as compact objects. We also show the application of surrogate modeling
in generating faster microlensed waveforms, opening the window towards
large-scale parameter inference of astrophysical lenses.

In Chapter 3, we explore the potential of GW microlensing observations
to constrain the effective charge of compact objects. We derive the lensing
potential for a compact object lens whose external spacetime is described
by RN metric parameterized by the lens mass and an effective charge. The
effect of charge is incorporated in the wave-optics magnification function,
which we numerically compute using a newly developed method. The various
interpretations of this effective charge allows us to probe electric charge, naked
singularities and several classes of alternative theories of gravity. Although
detection of the electric charge of BHs via microlensing remains challenging,
our forecasts suggest that future observations will be able to place meaningful
constraints on the effective charge of exotic compact objects and on the
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various modified theories of gravity. These projections use an approximate
likelihood – necessitated by the lack of computationally efficient methods
for computing GW signals lensed by a charged lens – and assume a non-
spinning lens. We keep the development of faster and accurate microlensed
waveforms for charged lenses and probing the effect of spin as future works.
We also neglect possible correlations between microlensing and other physical
effects on GWs such as orbital eccentricity or precession of the binary source.
Moreover, we ignore the possible degeneracies between microlensing due to
other astrophysically relevant lens models. We leave tesing the validity of
these simplifications and refining the results for future.

Current microlensing searches, in general, assume the lens to be isolated.
Non-observation of GW microlensing is further used to put upper limits on
fDM (composed primarily of PBHs). Chapter 4 investigates the effects of this
assumption on microlensing searches. Specifically, we look at the effect on
microlensing signatures due to lenses embedded in a host galaxy. We model
the galaxy as SIS and assume that these PBH lenses follow the spatial distribu-
tion of the underlying galactic DM halo. We generate a mock distribution of
such lens configurations and find that statistically, the presence of the external
galaxy causes a loss in the Bayes factor, especially for large microlens masses.
This results in a degradation of the efficiency of the microlensing searches. We
expect that this effect will change the existing constraints on fDM. However, we
keep a detailed analysis for this as a future work. Incorporating realistic galaxy
models, such as those with elliptical mass distributions or substructures could
lead to additional modifications in the microlensed signals leading to further
loss of Bayes factor. Future studies will explore these effects.

Finally, Chapter 5 addresses the computational challenges of Bayesian pa-
rameter estimation for microlensed waveforms. We show that the technique
of surrogate modeling can be applied to model the regularized time-domain
magnification functions. This method evaluates the waveforms from the un-
derlying reduced basis in the lens parameter space and the empirical nodes in
time. We benchmark the efficiency of surrogate modeling in generating fast
and accurate microlensed waveforms for spherically symmetric lens config-
urations, viz., PML and SIS. The speedup is promising to enable large-scale
parameter inference of microlensed signals. Extending this work for compli-
cated and more realistic lenses will enable the search for a broader range of
lens model candidates in the GW data and subsequent parameter inference.



A
E X P E C T E D L I K E L I H O O D I N
T H E H I G H - S N R L I M I T

We assume the detector output is of the form

d( f ) = ehtr( f ) + en( f ) , (A.1)

consisting of a true signal ehtr( f ) ⌘ eh( f ; qtr) with signal parameters qtr, and
a specific realization of a stationary, zero-mean Gaussian noise en( f )1 . In 1 It satisfies

en(� f ) = en⇤( f ).this appendix, we summarize the key steps leading to the noise-averaged
likelihood in the limit of large signal-to-noise ratio (SNR).2 2Refer to Vallisneri

[293] for a detailed
study.

We define the noise-weighted inner product between any two complex
waveforms a( f ) and b( f ) as

(a|b) ⌘ 2
Z •

0

a( f )b⇤( f ) + a⇤( f )b( f )
Sn( f )

, (A.2)

where ⇤ denotes complex conjugation and Sn( f ) is the one-sided power
spectral density (PSD) defined as [116]

hen⇤( f ) en( f 0)in =
1
2

Sn( f ) d( f � f 0) . (A.3)

Here h. . . in is the ensemble average over many possible noise realizations3 . 3Assuming
ergodicity, the
ensemble average is
replaced by a time
average.

Under the hypothesis H that the data contain a signal eh(q) ⌘ eh( f ; q,H),
the likelihood can be defined in terms of inner product as (see, e.g. Maggiore
[208])

p(d|q,H) µ exp

�1

2

⇣
d � eh(q)

��� d � eh(q)
⌘�

, (A.4)

Evaluating the expectation value of the log-likelihood over noise realizations,
and using the properties of Gaussian noise, we obtain

hlog p(d|q,H)in = �1
2
h
⇣

d � eh(q)|d � eh(q)
⌘
in + const (A.5)

= �1
2

⇣⇣
ehtr � eh(q)|ehtr � eh(q)

⌘
+ h(n|n)in

⌘
+ const .

(A.6)

The noise term h(n|n)in is independent of q and can be absorbed into the
normalization.
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The optimal SNR for the true signal is defined as

r2 ⌘ (ehtr|ehtr) . (A.7)

The match M(qtr, q) between the normalized true signal and the normalized
template4 is given by (see e.g., Chatziioannou et al. [101])4Match is

maximized over the
arrival time and

orbital phase of the
signals.

M(qtr, q) ⌘ (ehtr|eh(q))q
(ehtr|ehtr) (eh(q)|eh(q))

. (A.8)

The match quantifies the similarity between two waveforms, with M = 1 indi-
cating perfect agreement. If the template is normalized such that (eh(q)|eh(q)) '
(ehtr|ehtr) = r2, then

(ehtr|eh(q)) = r2M(qtr, q) . (A.9)

Expanding the inner product,

(ehtr � eh(q)|ehtr � eh(q)) = (ehtr|ehtr) + (eh(q)|eh(q))� 2(ehtr|eh(q)) (A.10a)

= 2r2(1 �M(qtr, q)) . (A.10b)

Therefore, the expected likelihood becomes

hp(d|q,H)in µ exp
⇥
�r2(1 �M(qtr, q))

⇤
. (A.11)

This expression shows that, in the high-SNR limit, the likelihood is sharply
peaked around the maximum match between the template and the true signal,
with the width of the peak determined by the SNR.



B
L O S S O F B AY E S FA C T O R W I T H
I N C O R R E C T M O D E L S I N
H I G H - S N R L I M I T

In this appendix, we analyze how using an incorrect or alternative model,
instead of the true model, affects the Bayes factor in the context of microlensing
detection in GW signals.1 1Our calculations

follow the methods
described
in Cornish et al.
[110] and Vallisneri
[294].

Suppose a GW signal has been microlensed, and the true parameters of the
microlensed waveform are denoted by qtr = {qb

0, q`0}, where:

• qb
0 are the intrinsic binary parameters (such as masses and spins),

• q`0 are the lens parameters and the source position.

We consider two microlensing models, M1 and M2. For each model Mi

(i = 1, 2), the parameters are qi = {qb
i , q`i }.

Assuming the SNR r is large, the expected likelihood of observing data d
given model Mi and parameters qi is approximated by (see Eq. (A.11)):

p(d|qi,Hi) = exp
⇥
�r2 (1 �M(qtr, qi))

⇤
, (B.1)

upto a constant factor. Here M(qtr, qi) is the match (see Eq.(A.8)) between the
true waveform and the model waveform.

For the unlensed hypothesis HU, where the signal is assumed not to be
lensed, the likelihood is

p(d|qU,HU) µ exp
⇥
�r2 (1 �M(qtr, qU))

⇤
, (B.2)

where qU are the parameters of the unlensed waveform.
The evidence for each hypothesis is obtained by integrating the likelihood

over all possible parameters:

p(d|Hi) =
Z

dqi p(d|qi,Hi) ' exp
⇥
�r2 (1 � FFi)

⇤
, (B.3a)

p(d|HU) =
Z

dqU p(d|qU,HU) ' exp
⇥
�r2 (1 � FFU)

⇤
, (B.3b)
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where the fitting factor (FF) is defined as the maximum match between the
true waveform and the best-fit waveform from a given model:

FFi ⌘ max
qi

M(qtr, qi) , (B.4a)

FFU ⌘ max
qU

M(qtr, qU) . (B.4b)

A fitting factor of 1 means the model can perfectly reproduce the true signal.
The Bayes factor comparing the evidence for the lensed model to the unlensed

model2 is given by2Formally, model
comparison should

be based on the odds
– i.e., the Bayes

factor weighted by
the prior odds –
rather than the

Bayes factor alone.
However, in our

analysis we set the
prior odds to unity.

Bi
U ⌘ p(d|Hi)

p(d|HU)
' exp

⇥
�r2 (FFU � FFi)

⇤
. (B.5)

A higher Bayes factor indicates stronger preference for the lensed model.
Suppose M1 is the true model (Mtr), and M2 is an alternative (incorrect)

model (Malt). For the true model, FFtr = 1. This gives the Bayes factors:

lnBtr
U ' r2 (1 � FFU) , (B.6a)

lnBalt
U ' r2 (FFalt � FFU) , (B.6b)

where FFalt is the fitting factor for the alternative model.
To quantify the reduction in Bayes factor when using an alternative model,

we define the loss factor as

L.F. ⌘ Balt
U

Btr
U

' exp
⇥
�r2 (1 � FFalt)

⇤
. (B.7)

The loss factor measures how much the Bayes factor is reduced due to imper-
fect modeling. If FFalt is close to 1, the loss is small; if it is much less than 1,
the loss is significant, especially at high SNR.
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