
Influence of Particle Geometry on
Hydrodynamic and Electrostatic

Interactions

A Thesis

Submitted to the
Tata Institute of Fundamental Research, Mumbai

Subject Board of Physics
for the degree of Doctor of Philosophy

by

Harshit Joshi

International Centre for Theoretical Sciences
Tata Institute of Fundamental Research

Bengaluru, India
December, 2025



DECLARATION

This thesis is a presentation of my original research work. Wherever contribu-
tions of others are involved, every effort is made to indicate this clearly, with due
reference to the literature, and acknowledgement of collaborative research and
discussions.

The work was done under the guidance of Professor Rama Govindarajan at
the International Centre for Theoretical Sciences, Tata Institute of Fundamental
Research, Bengaluru. Prof. Samriddhi Sankar Ray served as co-supervisor.

Harshit Joshi

In my capacity as supervisor of the candidate’s thesis, I certify that the above
statements are true to the best of my knowledge.

Rama Govindarajan

Date:

ii

23 December 2025

iPad Pro 11" 4



In loving memory of my father.

i



Acknowledgements

I once came across a perspective that I find both amusing and deeply humbling:
the sheer improbability of existing as an individual. Every past event leading to
our existence is fragile, hinging on countless possibilities. What if just one of our
ancestors had taken a different path? When you reflect on this, it feels even more
extraordinary to have met the people who shape our lives. With this thought in
mind, I pause to express my gratitude to all the wonderful people who are part of
my life, and to those whose memories I continue to carry with me.

To the academic family...

I considermyself incredibly fortunate to have had ProfessorRama Govindarajan
and Professor Samriddhi Sankar Ray as my advisors. Their academic brilliance,
coupled with their humility, understanding, and empathy, has profoundly shaped
my outlook on both research and life. I owe this thesis to their invaluable guidance,
encouragement, and belief in me.

I will always miss the Monday morning discussions with Professor Rama,
where she would grasp my thoughts even before I finished scribbling on the board.
This kind of intuitive compatibility with an advisor is something every student
wishes for. I admire how she formulates research problems with a strong sense of
practical relevance, a reflection of her genuine societal responsibility.

Professor Samriddhi is an artist when it comes to numerical simulations and
data interpretation. His ability to build a narrative, connect seemingly unrelated
ideas, and match it with boundless energy and unpredictability reminds me of
artists who begin with random marks only to eventually reveal a stunning image.
He is also one of the kindest people I have met, though he always shies away from
hearing that.

Both Professor Rama and Professor Samriddhi have stood by me through
difficult times with unwavering kindness, for which I am forever indebted.

ii



It was a privilege to collaborate with Rahul Chajwa, Professor Sriram Ra-
maswamy, Professor Narayanan Menon, and Professor Anubhab Roy during my
PhD. Rahul was always accessible and helpful in our discussions, and I am espe-
cially grateful for the brilliant experiments he performed during his PhD. While I
had heard of Professor Sriram’s genius, I had the fortune of witnessing it firsthand
when he pointed out a subtle detail I had overlooked in an approximation.

Meeting Professor Narayanan during one of his visits to ICTS was an absolute
delight. His patience to work together for an entire day and the enthusiasm he
brought to our discussions played a vital role in completing our project.

I learned a great deal from Professor Anubhab’s methodical and effective
approach, from framing a research problem to identifying a compact parametric
space to explore, and seeing it through to completion. I am also thankful to him
for organizing a wonderful conference at IIT Madras and for kindly inviting me
to participate even after the official deadline.

I am grateful to have met Dr. Brato during the final years of my PhD. His wis-
dom and humility have been truly inspiring. I am thankful for all the discussions
we shared; they enriched my knowledge and rekindled my curiosity.

It has been a great pleasure to be part of the fluid dynamics group at ICTS. The
weekly group meetings helped us connect better, support one another, and gain
fresh perspectives on our work. Divya has been a constant source of inspiration
through her perseverance, and I am especially thankful for her help with postdoc
opportunities. I regard Saumav as someone with the most brilliant intuition I
have encountered. I am particularly grateful to him for spending an evening with
me, drawing flutterer shapes on my laptop using just a mouse! Anup’s resilience
and cheerful spirit, even in the face of challenges, have always been admirable. I
appreciate Rajarshi’s style of explanations, which can turn a summary into a feature
film. I have truly enjoyed every interaction with Aditya Pujari, Saumyakanta,
Ritwick, and Mrinal, each one filled with joy and good cheer. Despite her brief
stay at ICTS, I am grateful to count Sumithra as a good friend. Siddhartha’s ability
to bring out visual art from data is nothing short of awe-inspiring. Sharath’s calm
and humble presence will always remain in my memory. Debating finite-𝑅𝑒 effects
with Arun was both fun and intellectually enriching. Prateek’s friendship and
support have meant a lot, especially in introducing me to souls-like games, which
allowed me to feel miserable not just in research but also in video games. I am
glad to know that Dylan, Anjali, and Durbar will carry forward the group’s legacy.
I thank Ritwick, Mrinal, Sandip, Anikat, Swapan, Answesha, Rukmani, Arun, and
Prateek for making the Hyderabad trip so memorable.

iii



To my friends...

One of the many beauties of ICTS is the absence of boundaries between different
groups, which naturally fosters collaborations and, more importantly, meaningful
friendships. Ankush’s humor and endless chatter have been a constant source of
entertainment throughout my PhD journey. Sparsh’s impulsive actions, coupled
with the occasional deep life talks, made him an incredibly fun and engaging
presence. Aditya Rajput, the all-knowing, has been a dependable source of both
academic and non-academic advice. I consider myself very fortunate that my
batchmates, Ankush and Aditya, were also my office mates. I will always cherish
our 4 PM breaks, Prateek entering office G109 with an apple in hand, ready for
some gupshup with Aditya, Ankush, and me, with Sparsh occasionally joining in
for laughs. Shivam’s quick wit and sharp, funny remarks will be sorely missed.
With his calmness and few yet wise words, Bhanu has always been delightful
company. The late-night Grand Theft Auto sessions, where Akash led heists
as the boss and Prateek and I acted as bodyguards, remain some of my fondest
memories. Mahaveer’s humor, pairedwithhis ever-equivocalopinions, was always
entertaining. Udeepta, with his polite nature and exceptional badminton skills,
has become a truly memorable friend. I’ve also been lucky to have such wonderful
batchmates in Priyadarshi, Souvik, Mukesh, Tuneer, and Omkar. The intense
PES matches with Ashik were not just competitive but immensely fun. Dinner
conversations with Aditya Thorat were often engaging and thought-provoking.
As a member of the TIFR family, I’m grateful for access to the sports and canteen
facilities at NCBS. The memories of playing badminton with friends from both
ICTS and NCBS will stay with me forever. Special thanks to Soumyadeep, Udeepta,
Anup, Ankush, Sparsh, Aishwariya, Kaustubh, Seema, and Swapan from the ICTS
side for showing up and making the matches so much fun. From the NCBS side,
it was an absolute joy to play with and against Reuben, Jitesh, Rashmi, Debosmita,
Shruti, Shivani, Meghana, Sudhanand, Anantu, Rakesh, Arnab, Sweety, Ajay, and
Bhushan. I will surely miss all the action on the badminton court!

I also thank all my school and undergraduate friends who stayed in touch
over the years, especially Lokesh, Pranav, Rohan, Himanshu, Devender, Tanuj,
and Naaz. Meeting and talking with them always felt like reconnecting with my
younger self.

To my family...

If it were not for my family, I would not be here writing any of this. The
sacrifices my parents have made so that I can live a comfortable life, the sacrifices

iv



my sisters have made so that their brother gets the best, these have kept me going
through the hardest times.

My father was calm, decisive, and deeply responsible. He taught me the
value of discipline and of owning one’s actions and decisions. I remember our
evening walks just after I finished school, when I would share fascinating stories
of scientific discoveries I had learned from the show Cosmos. Perhaps, through
those stories, he sensed my passion, for he was happy when I chose the path of
scientific research. He supported me throughout this long PhD marathon; I only
wish he could see me cross the finish line. His qualities will always inspire me to
become a better person, and I will forever cherish his memory.

My mother has always been the most loving and overprotective person in my
life. Being the youngest and only son, she was always hesitant to send me away
from home. Even today, she worries if she doesn’t hear from me in the morning or
by late evening. Yet she understands the paradox of sacrificing comfort in order
to earn comfort. Her unconditional love and support, and my sisters’ willingness
to shoulder responsibilities, are the reasons I was able to continue and finish my
PhD after the loss of my father.

My eldest sister, Kunnu Di, has always been as overprotective of me as our
mother, making sure I didn’t get even a scratch as a kid. Neetu Di, on the other
hand, is the tough one, never hesitating to scold or even smack me if needed,
just to make sure I didn’t get spoiled! I commend Bhawana Di for her hard work,
earning a great job, and helping our family move to Dehradun. I have the happiest
memories from that time and place. I am grateful to Suman and my cute, talkative
niece Shivansh for staying with our mother and taking care of her when she needed
it the most. I also cherish the little fights Suman and I had as kids. Our beloved
dog Tuffy joined our family when I began school and stayed until I finished it. His
memory inspires me to create a life where I can care for both my family and the
dogs yet to come. My brother-in laws: Anil Jĳaji, Prafull Jĳaji, Ravindra Jĳaji, and
Ujjawal Jĳaji have been very helpful and supportive at all times. I am grateful for
each one of my family members.

I extend my heartfelt thanks to my family and extended family for their encour-
agement throughout this journey. Though I may not be able to list every name,
I carry deep gratitude for each of you. I’m especially happy to see our youngest
cousin, Rahul, becoming so responsible and mature; it fills me with pride.

It is only through my family’s unwavering support and countless sacrifices that
I have made it this far. I will forever be indebted to them.

To the stars shining in the background...

v



I extend my heartfelt gratitude to the working force of ICTS, the administrative
and academic staff, housekeeping staff, security personnel, and all others, whose
efforts have created a warm and supportive environment, much like a family. I am
also thankful to the Department of Atomic Energy, Government of India, for the
stipend and contingency grants, which not only facilitate research but also affirm
the value of research scholars. My thanks also go to the Infosys International
Exchange Program at ICTS for funding my visit to a conference in France, where I
had the opportunity to present my work and learn from others.

I would also like to thank the developers of the NovaThesis template for their
effort in making it so well-designed and accessible [1].

This thesis is not mine alone; it is woven from the guidance, encouragement,
and generosity of many. They have lifted me onto their shoulders, allowing me to
see a little farther into the vast expanse of the unknown and the undiscovered.

vi



„ “And medicine, law, business, engineering,
these are noble pursuits and necessary to

sustain life. But poetry, beauty, romance, love,
these are what we stay alive for. To quote from
Whitman, "O me! O life!... of the questions of

these recurring; of the endless trains of the
faithless... of cities filled with the foolish; what
good amid these, O me, O life?" Answer. That
you are here - that life exists, and identity; that

the powerful play goes on and you may
contribute a verse.

What will your verse be?”

— Dead Poets Society (1989), dir. Peter Weir
(written by Tom Schulman)

vii



List of Figures

1.1 Redrawn from Purcell’s “Life at low Reynolds number" [9]. (a) shows
the definition of the Reynolds number for a body moving in a fluid. (b)
shows how the Reynolds number decreases as one goes towards the
microscopic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Demonstration of reversibility ruling out rotation in a settling spheroid.
(a) A spheroid settles under gravity with linear velocity 𝑽 and angular
velocity Ω, dragging nearby fluid with it. The surrounding fluid veloc-
ity field is denoted by 𝒖 and gravity points in the direction of 𝒈 . (b)
Upon reversing the forces (i.e., 𝒈 → −𝒈), the flow and the dynamics
reverse. (c) Rotating the system by 180° restores the original geomet-
ric configuration, except for the sign of the angular velocity. By the
uniqueness of Stokes flow, it follows that 𝛀 = 0. . . . . . . . . . . . . . 6

1.3 Schematic illustrating the disruption of a one-dimensional lattice of
sedimenting (a) spheres and (b) discs upon perturbation. Adapted
from Chajwa et al. [48]. (a) The sphere near the center sediments
faster due to the downward flow induced by neighboring spheres.
As a valley forms, spheres on either side are drawn inward (black
arrows) by hydrodynamic interactions, leading to clustering. (b) Similar
hydrodynamic interactions promote clustering at valleys (black arrows).
However, for discs, orientation-dependent lateral drift (green arrows)
counteracts this clustering, allowing escape from the valley. . . . . . . 12

viii



1.4 Experiments showing different types of clustering following lattice
disruption of sedimenting discs. Experiments by Rahul Chajwa. (a)
For lattice spacings smaller than the critical value, discs cluster at the
valleys due to dominant Crowley-type instability. (b) For spacings
larger than the critical value, discs separate into pairs away from the
valleys, as the orientation-induced drift mechanism dominates over
the Crowley mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The domain of interest, 𝒟, with normal vectors 𝒏̂ pointing towards
𝒟. Fluid velocity at any point in the domain 𝒟 can be obtained by
integrating over the boundary of the domain, 𝜕𝒟, which, in the case
of an unbounded domain, includes the ‘surface at infinity’ 𝑆∞. . . . 29

2.2 Streamlines of the velocity fields produced by various singularities at
the origin. (a) Stokeslet centered at the origin with the force on the
fluid indicated by the black arrow. (b) Rotlet centered at the origin,
with the torque on the fluid indicated by the black arrow. The red
arrows represent two equal and opposite forces, which, in the limit
of vanishing separation and increasing magnitude, produce a point
torque. (c) Stresslet centered at the origin. The red arrows show two
equal and opposite forces that, in the same limit, give rise to the stresslet
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Redrawn from Kim & Karilla [10]. Schematic of the velocity stream-
lines due to double-layer potential. The double-layer potential consists
of two contributions: (a) from point sources (black arrows), and (b)
from stresslets (force bilayer, shown as black arrows), both distributed
along the boundaries of the domain (taken here to be the x-axis). (a)
Point sources contribute to a discontinuity in the normal component
of the velocity field across the boundary. (b) Stresslets contribute to a
discontinuity in the tangential component of the velocity field across
the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



2.4 Depiction of the method of reflections, adapted from Kim & Karilla [10]
(a) Two sample surfaces 𝑆1 and 𝑆2 with their typical size 𝑎, and their
separation 𝑅. (b) The two surfaces create fields 𝜙1 and 𝜙2, respectively,
each of which satisfies the boundary condition on its surface. The field
𝜙2 acts as an incident field on 𝑆1, which in response creates a reflected
field 𝜙21, and vice versa. These reflected fields then act as new incident
fields on the opposite surfaces, continuing the process iteratively. This
results in a perturbative series of the form 𝜙1 + 𝜙2 + 𝜙21 + 𝜙12 + ...,
which, in the 𝑎 ≪ 𝑅 regime, converges to a solution that simultaneously
satisfies the boundary conditions on both surfaces. . . . . . . . . . . 50

2.5 (a) The compact domain 𝒟𝐵 ⊂ R3 with the normal vector to the bound-
ary 𝜕𝒟𝐵 indicated by 𝒏. (b) The modified domain 𝒟̃𝐵 which is union
of 𝒟𝐵 and the region inside the hemisphere 𝑆↑𝜀 of radius 𝜀 centered at
𝒙0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 The multiply connected domain of interest, 𝒟, with normal vectors
𝒏̂ pointing towards 𝒟. The boundary of the domain, 𝜕𝒟, is formed
by the boundary of the compact region 𝒟𝐵 ⊂ R3 and the ‘surface at
infinity’ 𝑆∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 (a) A body with two mutually perpendicular planes of symmetry, and
the coordinate systems. (b) Showing that 𝒑1 − 𝒑3 is not a plane of
symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Phase portraits of the 𝒑𝑦 dynamical system. Red, green, and black dots
denote unstable, stable, and centre fixed points, respectively, and blue
lines with arrows are sample trajectories. (a) Settlers and (b) drifters
ultimately align their 𝒑2 axis along and obliquely to gravity, respectively.
The beige plane in (b) represents a particular 𝐻. (c) Flutterers rotate
forever. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 (a) Contour plot of the conserved quantity 𝐻 for flutterers. Closed
curves are of constant 𝐻, with 𝐻max shown by the black dots, and
𝐻 = 0 corresponding to the red heteroclinic orbits of the saddle points
(red dots). (b) Trajectories on the yellow surfaces with 𝑝1𝑦𝑝3𝑦 > 0 have
different translational chirality from those with 𝑝1𝑦𝑝3𝑦 < 0 on the blue
surfaces, as shown in the section 3.8.2. . . . . . . . . . . . . . . . . . . 75

3.4 Time period of the 𝒑𝑦 dynamics of flutterers for different 𝐻. As 𝐻 → 0,
𝑇𝑦 can increase without bound. A given ratio 𝛼𝑝/𝛼𝑟 and its inverse
yield the same curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



3.5 The 𝒑𝑥 dynamics of flutterers involves two frequencies, 𝛾 and 𝜔𝑦 . Their
ratio, shown here, is the rotation angle 𝜃/2𝜋 of the Poincaré map. The
black horizontal line is the lower limit 1 − 1/

√
2 of the ratio. . . . . . . 79

3.6 Sample 𝒑𝑥 trajectories shown as black curves on 𝒮2. (a) Period-5
trajectory. The red dots show the Poincaré map 𝒫 𝑡0+𝑇𝑦

𝑡0
which lie on

the great circle shown by the blue curve. This great circle lies normal
to 𝒑𝑦(𝑡0). (b) Quasi-periodic trajectory. The Poincaré map covers the
entire great circle lying normal to 𝒑𝑦(𝑡0). The filled black region has
the inversion symmetry 𝒑𝑥 → −𝒑𝑥 . . . . . . . . . . . . . . . . . . . . 79

3.7 For a given body, the mean vertical velocity is a function only of𝐻, and
two samples are shown here. . . . . . . . . . . . . . . . . . . . . . . . 82

3.8 Sample trajectories in the horizontal plane for (a) quasi-periodic and (b)
periodic orbits. The black arrows indicate the chirality of the settling
trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 a) A set of bodies is defined by the parameters 𝑎 and 𝑏. b) As 𝑎 and 𝑏
defined are varied, we obtain settlers (𝛼𝑝𝛼𝑟 < 0), drifters (𝛼𝑝𝛼𝑟 = 0),
and flutterers (𝛼𝑝𝛼𝑟 > 0). Increasing 𝑏 turns settlers into flutterers, but
increasing 𝑎 at fixed 𝑏 eventually turns flutterers back into settlers. . 85

xi



4.1 Competition between orientation-dependent drift and the Crowley
mechanism. Schematic showing that the drift mechanism can poten-
tially stabilize Crowley instability (adapted from Chajwa et al. [48]).
(a) A pair of spheres starting at different vertical heights maintains a
separation vector as it sediments. The pair falls downward faster than
an isolated sphere. This reduction in drag increases if the spheres are
started off closer. In addition to the velocity component in the gravity
direction, the pair also drifts horizontally, due to the line-of-center
forces 𝐹𝐿𝐶 . (b) 𝐹𝐿𝐶 along with reduced drag yield clumping instabil-
ity [47]. The dense region falls faster, which leads to a drift towards
the leading particle. (c) A settling spheroid with oblique orientation
drifts laterally, as shown by the green arrows. (d) Orientations of
the spheroids can rotate due to hydrodynamic interactions with the
neighboring particles, and can lead to splay in the lattice. The Crowley
mechanism, due to hydrodynamic interactions, is operative irrespec-
tive of the shape of the particles and tends to form clumps at valleys
or at density nodes. However, as the spheroids sediment, they drift
horizontally as a consequence of their orientation, as shown by the
green arrows. This orientation-dependent drift mechanism, operating
at the level of individual particles, can suppress the Crowley instability.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Experimental setup: (a) Shows the quasi-two-dimensional geometry
of the container with gravity axis pointing along −𝑧̂. The mechanism
simultaneously releases discs with controlled lattice spacing and per-
turbation wavenumber. (b) The bottom view of the release mechanism
shows the array of discs moments before they were released into the
fluid. The initial spacing is chosen to control the dimensional lattice
spacing 𝑑 and the dimensional perturbation wave-number 2𝜋/𝜆. . . 91

4.3 Comparison between experiments and simulations of pairs of discs
sedimenting close to each other. (a) A bounded periodic oscillation of
discs, categorized under ‘rocking dynamics’ in Chajwa, Menon, and
Ramaswamy [94]. (b) ‘Hydrodynamic screening’ where one falling
disc enters the ‘hydrodynamic shadow’ of the other, forming a ‘⊥’
structure. This ‘⊥’ configuration is often observed, both experimentally
and through simulations, in a one-dimensional lattice of sedimenting
discs. (c) Another case of ‘rocking dynamics’, arising from the linear
instability of an equilibrium configuration forming an ‘=’ shape. . . . 95

xii



4.4 The frequency of oscillations in the rocking dynamics about the verti-
cally stacked, or ‘=’ configuration, as a function of vertical separation
𝑧∗ at the fixed point. The aspect ratio here is 𝑏/𝑎 = 0.125, which is
close to our experimental discs. The black vertical line denotes 𝑧 = 𝑧𝑐

below which the point force approximation fails to predict the rocking
dynamics. The inset shows the dependence of the 𝑧𝑐 on the aspect
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Experiments [(a) and (c)], and simulations [(b) and (d)] showing clump-
ing due to the Crowley mechanism. [(a) and (c)] are aligned vertically,
as are [(b) and (d)], to highlight that the locations where the clumps
form correspond to the red ovals in (a) and (b). The lattice spacing and
the dominant perturbation wavenumber are 𝑑̃ = 1.875 and 𝑞 = 𝜋/6, re-
spectively. (a) and (b) show early evolution (𝑡 ∼ 5). The valleys, marked
by red ovals, represent regions where the discs begin to clump together.
(c) and (d) show late time evolution (𝑡 ∼ 15). Clumps, occurring at the
valleys, consist of three or more discs. . . . . . . . . . . . . . . . . . . 101

4.6 Experiments [(a) and (c)], and simulations [(b) and (d)] showing pairing
due to the drift mechanism. [(a) and (c)] are aligned vertically, as are
[(b) and (d)], to highlight that the locations where the pairs form
correspond to the red boxes in (a) and (b). The lattice spacing and the
perturbation wavenumber are 𝑑̃ = 3.75 and 𝑞 = 𝜋/2 respectively. (a)
and (b) show initial evolution (𝑡 ∼ 20). The valleys are highlighted with
green ovals, while the discs that ultimately pair up are enclosed within
red rectangular boxes and are seen to be located away from the valleys.
(c) and (d) show late time evolution (𝑡 ∼ 45). There is pairing but no
clumping, and pairing dynamics is characterized by two discs coming
together in the form of a ‘⊥’, or inverted ‘T’. . . . . . . . . . . . . . . . 102

4.7 Contour plot of the log of the growth rate 𝜎 (the only positive real part
among the eigenvalues of 𝒜𝑅1) for aspect ratio 𝑏/𝑎 = 0.125. The red
curve denotes the critical lattice spacing 𝑑̃𝑐 above which the point force
approximation [48] predicts neutral stability. The nonlinear evolution
corresponding to the red dot, where (𝑞, 𝑑̃) = (𝜋/6, 1.875) and the green
dot, where (𝑞, 𝑑̃) = (𝜋/2, 3.75), were shown to support clustering and
pairing respectively (figures 4.5 and 4.6). . . . . . . . . . . . . . . . . . 103

xiii



4.8 (a) Perturbation growth rate 𝜎 as a function of the lattice spacing for
a wavenumber 𝑞 = 𝜋/6 and aspect ratio 𝑏/𝑎 = 0.125. For large lattice
spacing 𝑑̃, the growth rate shows a power law behaviour 𝜎 ∼ 𝑑̃𝛾 with
𝛾 ≈ −4.5. (b) The variation of the exponent 𝛾 with wavenumber 𝑞.
Note that for a lattice of spheres, the growth rate decays much more
slowly, as 𝜎 ∼ 𝑑̃−2 for all wavenumbers. . . . . . . . . . . . . . . . . . 103

4.9 𝜀-pseudospectrum 𝜎𝜀(𝒜𝑝𝑡) of 𝒜𝑝𝑡 for the aspect ratio 𝑏/𝑎 = 0.125. The
blue dots denote the eigenvalues of 𝒜𝑝𝑡 and the black dots denote
the eigenvalues of 𝒜𝑅1 . The matrix perturbation size 𝜀 leads to the
spreading of eigenvalues inside the yellow regions. The values of 𝜀 are
chosen so that the black dots lie at the boundary of the yellow regions,
indicating that the first reflection corrections to 𝒜𝑝𝑡 are of the order
of 𝜀. a) 𝜀 = 4.8 × 10−3 for the set of parameters (𝑞, 𝑑̃) = (𝜋/2, 3.75)
(green dot in figure 4.7) b) 𝜀 = 1.2 × 10−2 for the set of parameters
(𝑞, 𝑑̃) = (𝜋/6, 1.875) (red dot in figure 4.7). Note that the pseudospectra
are much larger than 𝜖. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 (a) Time evolution of the matrix norm of 𝑒𝒜𝑅1 𝑡 and the exponential
growth 𝑒2𝜎𝑡 for the aspect ratio 𝑏/𝑎 = 0.125. The non-normal nature
of 𝒜𝑅1 leads to transient growth of non-modal perturbations, which
can be much larger than the exponential growth. The parameters (𝑞, 𝑑̃)
used to calculate 𝒜𝑅1 correspond to the green dot in figure 4.7. The
non-modal growth reaches its maximum at time 𝑡 = 𝑡∗. (b) Contour
plot of the log10 of 𝐺𝑟 defined in equation (4.33). In regimes of small
log10(𝐺𝑟), the growth is exponential but very slow. Large values of
log10(𝐺𝑟) indicate that transient algebraic growth will dominate. . . 105

4.11 Probability distribution 𝑃𝑠(𝑡) as a function of non-dimensional time for
different aggregate size 𝑠, in the Crowley regime (𝑞, 𝑑̃) = (𝜋/6, 1.875).
𝑃𝑠(𝑡) is calculated as the ensemble average of the fraction of discs
forming an aggregate of size 𝑠 relative to the total number of discs in
each ensemble. Discs that are within the distance of 0.5𝑎 are considered
to be aggregated or clustered. The error bars represent the standard
deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.12 Probability distribution 𝑃𝑠(𝑡) as a function of non-dimensional time for
different aggregate size 𝑠, in the drift regime (𝑞, 𝑑̃) = (𝜋/2, 3.75). 𝑃𝑠(𝑡)
is calculated as the ensemble average of the fraction of discs forming an
aggregate of size 𝑠 relative to the total number of discs in each ensemble.
The pairs of discs separate out in a ‘⊥’ configuration from the rest and
keep on settling together, maintaining their orientations. . . . . . . . 108

xiv



4.13 Probability density plot of orientations of pairs of discs in the drift
regime (𝑞, 𝑑̃) = (𝜋/2, 3.75). 𝒑1 refers to the orientation of disc 1, which
is below disc 2, and 𝒈 is the gravity unit vector. The black-green dots
are experimentally observed orientations, and the background colour
indicates the frequency of occurrence of a given pair of orientations in
the simulations. A predominance of the ‘⊥’ formation is seen in both
experiments and simulations. The orientation statistics are acquired
when the pairs start forming in the simulations, at a non-dimensional
time of 𝑡 ∼ 45 . This time is later than 𝑡∗, the time at which the non-
normal growth reaches its maximum, as shown in Figure 4.10. The
black-green dots, indicating experimental samples, are taken when pair
formation is observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.14 Stable orientations with both vorticity and strain-rate contributing to a
disc’s rotation: with a force monopole at the origin. Blue double-ended
arrows and red-dashed lines are stable and unstable alignments of
the thin side of the disc, respectively. The angle between stable and
unstable orientations is 𝜋/2 − 2𝛽. The shaded grey region represents
the range of angles 𝜙 where there are no stable orientations, with
Ω = arctan(1/𝜁). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 A schematic illustrating the geometric setup forelectrostatic pair interac-
tions between a spheroid and a sphere in a generic, non-axisymmetric
configuration. The unit vector 𝒑 represents the orientation of the
spheroid, 𝑎 denoting the size of the spheroid, 𝜅 denoting its aspect
ratio, 𝛾 denoting the size ratio of sphere to spheroid. a) A prolate
spheroid and a sphere. b) Oblate spheroid and a sphere. . . . . . . . 116

5.2 Elements of the potential matrix Φ𝑀 (see (5.1)) as a function of dimen-
sionless minimum separation between the two spheres, 𝑠21 = |𝒙21|/𝑎−2.
The second reflection is decent up to the separations of the order of the
size of the spheres. The exact result in terms of an infinite series can be
found in [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 A schematic showing the point of contact 𝒙∗, the minimum distance 𝑑∗ =
𝑑min(𝜓), and other relevant quantities for the case of a prolate spheroid
and a sphere. The relative sizes of the conductors are proportional to
their respective scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



5.4 Elements of the potential matrix Φ𝑀 (see (5.1)) as a function of di-
mensionless separation between the a prolate spheroid and a sphere,
𝑠21 = (|𝒙21|− 𝑑min(𝜓))/𝑎. Here 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑑min is the dimen-
sionless center-to-center distance between the prolate spheroid and the
sphere when they are just in contact. . . . . . . . . . . . . . . . . . . . 126

5.5 Elements of the potential matrix Φ𝑀 (see (5.1)) as a function of di-
mensionless separation between the an oblate spheroid and a sphere,
𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎. Here 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑑min is the di-
mensionless center-to-center distance between the oblate spheroid and
the sphere when they are just in contact. . . . . . . . . . . . . . . . . . 127

5.6 Dimensionless force on the second sphere as a function of dimension-
less minimum separation between the two spheres, 𝑠21 = |𝒙21|/𝑎 − 2.
Note that the force is attractive in the case of unequal charges (𝑭2 · 𝒙12 >

0). The filled dots are obtained using the lubrication approximation
(see equation (5.20)) with 𝛿 obtained using BIM through equation (5.21).
The inset shows 𝛿 as a function of 𝜖, with the dots indicating the range
of values over which 𝛿 is averaged to approximate it as a constant. . . 128

5.7 Dimensionless force on the second sphere as a function of dimension-
less separation between the prolate spheroid and the sphere, 𝑠21 =

|𝒙21|/𝑎 − (1 + 𝛾), in the axisymmetric configuration (𝒑 = 𝒙̂21). Note
that the force is attractive in the case of unequal charges (𝑭2 · 𝒙12 > 0).
The lubrication approximation is obtained using equation (5.20) with
𝛿 obtained using BIM through equation (5.21). The inset shows 𝛿 as a
function of 𝜖, with the dots indicating the range of values over which
𝛿 is averaged to approximate it as a constant. . . . . . . . . . . . . . . 128

5.8 Dimensionless force on the second sphere as a function of dimension-
less separation between the oblate spheroid and the sphere, 𝑠21 =

|𝒙21|/𝑎 − (1 + 𝛾), in the axisymmetric configuration (𝒑 = 𝒙̂21). Note
that the force is attractive in the case of unequal charges (𝑭2 · 𝒙12 > 0).
The lubrication approximation is obtained using equation (5.20) with
𝛿 obtained using BIM through equation (5.21). The inset shows 𝛿 as a
function of 𝜖, with the dots indicating the range of values over which
𝛿 is averaged to approximate it as a constant. . . . . . . . . . . . . . . 129

5.9 Contourplotofdimensionless force along the separation vector, 4𝜋𝜀0𝑎
2𝑞−2𝑭2·

𝒙̂21, as a function of 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎.
The white dotted lines are due to the second reflections. The spheroid
has charge 𝑄1 = 𝑞 and the sphere has charge 𝑄2. (a) 𝑄2 = 𝑞, 𝜅 = 4. (b)
𝑄2 = 2𝑞, 𝜅 = 4. (c) 𝑄2 = 𝑞, 𝜅 = 0.25. (d) 𝑄2 = 2𝑞, 𝜅 = 0.25. . . . . . . 130

xvi



5.10 Contour plot of dimensionless torque on spheroids about their centre,
4𝜋𝜀0𝑎𝑞

−2𝑻1 · 𝒌̂, as a function of 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑠21 = (|𝒙21| −
𝑑min(𝜓))/𝑎, where 𝒌̂ is a unit vector along (𝒑 × 𝒙̂21). The white dotted
lines are due to the second reflections. The green curves in (b) and
(d) separate the repulsive and the attractive regions. The spheroid has
charge 𝑄1 = 𝑞 and the sphere has charge 𝑄2. (a) 𝑄2 = 𝑞, 𝜅 = 4. (b)
𝑄2 = 1.5𝑞, 𝜅 = 4. (c) 𝑄2 = 𝑞, 𝜅 = 0.25. (d) 𝑄2 = 1.5𝑞, 𝜅 = 0.25. . . . . 131

5.11 Dimensionless torque on the prolate spheroid 4𝜋𝜀0𝑎𝑞
−2𝑻1 · 𝒌̂ for 𝑄1 =

𝑞, 𝑄2 = 2𝑞, as a function of separation 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎 for a
fixed 𝜓 ≡ arccos(𝒙̂21 · 𝒑) = 𝜋/4, where 𝒌̂ is a unit vector along (𝒑 × 𝒙̂21).
The method of reflection aligns well with the BIM in the far field.
The sign change in the torque at close range indicates an attractive
electrostatic force due to induction. While the first reflection fails to
predict this sign change, the second reflection captures it but loses
accuracy in this close range. . . . . . . . . . . . . . . . . . . . . . . . . 132

5.12 Dimensionless torque on the prolate spheroid 4𝜋𝜀0𝑎𝑞
−2𝑻1 · 𝒌̂ for 𝑄1 =

𝑄2 = 𝑞, as a function of 𝜓 ≡ arccos(𝒙̂21 · 𝒑) for fixed 𝑠21 = (|𝒙21| −
𝑑min(𝜓))/𝑎 = 2, where 𝒌̂ is a unit vector along (𝒑 × 𝒙̂21). The change
in the sign of the torque shows a stable configuration of the prolate
spheroid and sphere system about 𝜓 = 𝜋/2, as indicated in the insets. 133

xvii



5.13 Schematic showing the favorable orientations ofa sedimenting spheroid
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and hydrodynamic interactions in the far-field regime. In the case of
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spheroid to align along the extensional axis of the locally disturbed
strain field (indicated by blue arrows). When electrostatic interac-
tions are included, the electrostatic torque can either compete with
or reinforce the hydrodynamic alignment, depending on whether the
spheroid is in a trailing or leading position. The black-shaded spheroids
represent the favorable orientations due to electrostatic effects, while
the light blue-shaded spheroids indicate those due to hydrodynamic
effects. (a) For like-charged spheroids, the electrostatic torque com-
petes with the hydrodynamic alignment for a trailing spheroid, as
indicated by the arrows, while it reinforces the alignment for a leading
spheroid. (b) For oppositely charged spheroids, the effects are reversed:
the electrostatic torque competes with the hydrodynamic alignment
for a leading spheroid and reinforces it for a trailing spheroid. This has
implications for changing the stability of dilute suspensions of charged
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6.1 Energy vs time. Kinetic energy, 1/2
∑
𝑘 |𝒖̂𝑘|2, as a function of non-

dimensional time for different values of mass loading 𝜙𝑚 , after the
system has reached statistically steady state. The data gathered for
statistical analysis is in the time range 𝑡 ∈ [34, 170]𝜏𝜂, as indicated by
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6.2 Schematic of dual cascade in 2D turbulence. Energy injected at an
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6.3 Statistics of the Okubo-Weiss parameter. (a) The probability distribu-
tion of the Okubo-Weiss parameter Λ computed at the location of the
tracer particles. This is equivalent to the Eulerian computation of Λ.
The positive skewness of the PDF shows that the fluid field is vorticity
dominated. (b) The probability distribution of the Okubo-Weiss pa-
rameter Λ computed at the location of the inertial particles with Stokes
number 𝑆𝑡 = 0.67. Since inertial particles sample strain-dominated re-
gions, the PDF shows negative skewness. The error bars for the kurtosis
values in the insets of (a) and (b) are obtained via bootstrapping. . . . 143

6.4 One point Eulerian Vorticity Statistics. Vorticity fields 𝜔(𝒙) for mass
loading (a) 𝜙𝑚 = 0 and (b) 𝜙𝑚 = 0.125 with 𝑁𝑝 = 2.5 × 105 particles of
Stokes numbers 𝑆𝑡 = 0.67. (c) The probability distribution functions
(PDF) of 𝜔(𝒙), normalized with its variance, for 𝜙𝑚 = 0, 𝜙𝑚 = 0.0625,
and 𝜙𝑚 = 0.25. The black dashed Gaussian curve is a guide to the eye.
In the inset, we plot the kurtosis 𝜅𝜔 as a function of 𝜙𝑚 . The error bars
for the kurtosis values in the inset of (c) are obtained via bootstrapping. 144
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𝑟 = |𝒓|, and for 𝜙𝑚 = 0 and 𝜙𝑚 = 0.125. (b) We show plots of the kurto-
sis 𝜅(𝑟) of such distributions, as a function of 𝑟, for different values of
𝜙𝑚 . In the inset, we show the values of the kurtosis 𝜅(𝜙𝑚)|𝑟∗ at a fixed
𝑟∗ as a function of 𝜙𝑚 . The separations 𝑟 are all chosen in the forward
cascade inertial range. The error bars for the kurtosis values in the inset
of (b) are obtained via bootstrapping. . . . . . . . . . . . . . . . . . . . 145

6.6 Second-order vorticity structure function. (a) Scaling of second-order
vorticity structure function with 𝑟/𝜂 for various values of 𝜙𝑚 . The
vertical lines indicate the inertial range over which structure function
exponents are computed. (b) We show the scaling exponent 𝜁2 as a
function of 𝜙𝑚 , fitted using local slopes computed between the two
vertical lines in the main plot. The error bars for the 𝜁2 values are
obtained via local slope analysis. . . . . . . . . . . . . . . . . . . . . . 146
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6.7 Compensated energy spectra. (a) Energy spectra compensated by 𝑘3.92

for various values of 𝜙𝑚 , revealing two distinct scaling regimes. In
the first regime (green shaded region), corresponding to wavenumbers
𝑘 ∈ [6, 15], the energy spectrum exhibits a scaling close to 𝑘−4 across all
values of 𝜙𝑚 . In the second regime (red shaded region), for 𝑘 ∈ [15, 50],
the spectral slope varies significantly with 𝜙𝑚 . (b) Scaling exponent
𝜉 as a function of 𝜙𝑚 for the two regimes. In the range 𝑘 ∈ [6, 15], 𝜉
shows minimal dependence on 𝜙𝑚 . In contrast, for 𝑘 ∈ [15, 50], the
exponent decreases steadily from 𝜉 ≈ −3.9 at 𝜙𝑚 = 0 to 𝜉 ≈ −2.2 at
𝜙𝑚 = 0.25. The error bars for the 𝜉 values are obtained via standard
deviation across 400 samples. . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 (a) Cumulative energy flux Π𝑢(𝑘) ≡ ⟨∑𝑚≤𝑘 𝒖̂𝑚 · �(𝒖 · ∇𝒖)−𝑚⟩ scaled by
the energy dissipation rate 𝜖, for various values of 𝜙𝑚 . The inset
shows the cumulative energy flux for wavenumbers greater than the
forcing wavenumber 𝑘 𝑓 = 4. (b) Cumulative enstrophy flux Π𝜔(𝑘) ≡
⟨∑𝑚≤𝑘 𝜔𝑚

�(𝒖 · ∇𝜔)−𝑚⟩ scaled by the enstrophy dissipation rate 𝛽, for
various values of 𝜙𝑚 . The error bars for the flux values in (a) and (b)
are obtained via bootstrapping. . . . . . . . . . . . . . . . . . . . . . . 147

B.1 Choosing any points 𝒚(0)
𝛼 and 𝒚(0)

𝛽 on the discs, one can reach the closest
points iteratively by following the algorithm described in the text. The
panels a) to d) show the candidate points obtained for the closest points
after two iterations. The dark plane in the figures defines the confocal
disc at the midplane of the oblate spheroid. . . . . . . . . . . . . . . . 175
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Abstract

This thesis investigates the role of geometry in shaping the interactions and dynam-
ics of particles in fluid and electrostatic environments. Motivated by asymmetric
geometries and the resulting adaptive motion in nature, particularly in sedimenta-
tion in the viscosity-dominated regime, we use a theoretical and simulation-based
framework to study the dynamical behaviour of both single and multiple particles.

At the single-particle level, we show that geometric asymmetries give rise
to couplings between translation and rotation, leading to settling behaviours as
complex as quasi-periodic motion with chiral trajectories. At the collective level, we
explore how interparticle interactions mediated by hydrodynamic fields can lead
to instabilities and clustering. The mathematical analogy between electrostatics
and microhydrodynamics is used to derive a set of generalized Faxén’s laws,
enabling a unified treatment of interactions across physical domains through the
method of reflections. A unifying simulation framework based on the boundary-
integral method is used to study problems in both microhydrodynamics and
electrostatics. We also investigate how particle–fluid momentum coupling shapes
two-dimensional turbulence.

The results shed light on fundamental mechanisms underlying aperiodic dy-
namics that can lead to enhanced mixing at low Reynolds number, instabilities
that result in pattern and cluster formation due to hydrodynamic and electrostatic
interactions in soft matter systems, and provide theoretical foundations for future
experimental and computational studies in microfluidics and colloidal science.

Keywords: Quasi-periodic sedimentation, Chiral trajectories, Non-modal insta-
bility, Pseudospectrum, Generalized Faxén’s laws, Electrostatic torque, Dusty
turbulence, Intermittency, Energy & Enstrophy cascade

xxv



1

Introduction

“I went to the woods because I wished to live deliberately,
to front only the essential facts of life,
and see if I could not learn what it had to teach,
and not, when I came to die, discover that I had not lived.”
— Henry David Thoreau, Walden (1854)

The challenge of modeling nature’s complexity is vividly captured in the
opening lines of Mandelbrot’s The Fractal Geometry of Nature [2]: “Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line.” Despite the intricate and irregular shapes
found in nature, simple and symmetrical geometries have long been the go-
to choice for mathematical models, primarily due to their analytical tractability.
Spheres, for instance, have served as idealized representations in problems ranging
from the theory of gravitation and electromagnetism to fluid dynamics, offering
mathematical clarity and solvable forms. While such simplifications often provide
valuable first-order insights, they also risk conveying the impression that shape
is merely a passive detail when, in many systems, from the self-assembly of
nanocrystals [3, 4] and the phase behaviour of bent-core liquid crystals [5, 6], to
the mechanical response of granular media [7] and the deformation dynamics of
atomic nuclei [8], shape actively determines the underlying physics.

A common setting where geometry plays a central role is in how objects interact
with their surrounding environment, such as a fluid, or with one another. Striking
examples of this arise in the realm of microhydrodynamics. Before exploring these
examples, let us first build some intuition about this regime, which forms the
central focus of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 The essence of microhydrodynamics

Microhydrodynamics refers to fluid dynamics at microscales. The Reynolds number
governs the physics of fluid flow and the motion of objects within it. For bodies
moving in a fluid, it is defined as the ratio of inertial forces to the viscous forces
(see Figure 1.1):

𝑅𝑒 =
𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝑓𝑣𝑖𝑠𝑐𝑜𝑢𝑠
=

𝜌 𝑓𝑉2𝑎2

𝜇𝑎𝑉
=

𝜌 𝑓𝑉𝑎

𝜇
. (1.1)

Here, 𝜌 𝑓 is the density of the fluid,𝑉 is the speed of the moving body, 𝑎 is the size
of the body, and 𝜇 is the dynamic viscosity of the fluid.

For a human swimming in water, the Reynolds number can be on the order of
105. This high-𝑅𝑒 regime is the one we are most familiar with in everyday life. To
experience a low Reynolds number, one would have to swim very slowly in a fluid
like honey (where very slowly is relative to the typical human swimming speed of
about 1m/s). Another way to reduce 𝑅𝑒 is by decreasing the characteristic length
scale 𝑎. Fishes, for instance, swim at relatively lower Reynolds numbers, around
𝑅𝑒 ≈ 102. Microorganisms, on the other hand, operate at extremely low Reynolds
numbers, on the order of 𝑅𝑒 ≈ 10−4. This is the essence of microhydrodynamics: it
concerns length scales so small that inertial effects become negligible, and viscous
forces dominate. To put this into perspective, if you were to shrink down to about
100𝜇m, moving through water would feel like swimming through a pool of honey!
In this thesis, we explore the realm of microhydrodynamics, a viscosity-dominated
regime characterized by negligible Reynolds numbers.

A lot of flow features can be understood by looking at the governing equations
of the fluid. We delay the detailed mathematical derivations to the next chapter
and discuss only the qualitative features of the subject. The fluid flow in the
negligible 𝑅𝑒 regime is governed by the steady Stokes equation, given by

𝜇∇2𝒖 − ∇𝑝 + 𝒇 = 0, ∇ · 𝒖 = 0. (1.2)

Here 𝜇 is the dynamic viscosity, 𝒖 is the velocity field, 𝑝 is the pressure field,
and 𝒇 is an external force per unit volume acting on the fluid. Contrasting
this with the Navier-Stokes equation, which has finite 𝑅𝑒 effects in the form of
convection terms 𝜕𝑡𝒖 and 𝒖 · ∇𝒖, it is clear that the Stokes equation is a linear
partial differential equation. The absence of the convective terms has the following
important implications:

2
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(a)

(b)

Figure 1.1: Redrawn from Purcell’s “Life at low Reynolds number" [9]. (a) shows
the definition of the Reynolds number for a body moving in a fluid. (b) shows
how the Reynolds number decreases as one goes towards the microscopic scale.
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CHAPTER 1. INTRODUCTION

1.1.1 Linearity

This is the most important feature of the flow in microhydrodynamics. It says that
the fluid velocity field depends linearly on the external forcings. It further implies
that the linear velocity 𝑽 and the angular velocity 𝛀 of a body are linearly related
to the hydrodynamic force 𝑭 ℎ and torque 𝑻 ℎ acting on the body [10–14],[

𝑽

𝛀

]
= −𝜇−1

𝓜 ·
[
𝑭 ℎ

𝑻 ℎ

]
. (1.3)

The proportionality constant 𝓜 is called the mobility matrix, which only depends
on the size and geometry of the body. Note that we have assumed zero back-
ground flow while writing equation (1.3). Thus, the idea that geometry influences
dynamics arises naturally in the realm of microhydrodynamics. As we shall see,
the geometric symmetries of a body can be used to determine the structure of its
mobility matrix [14, 15].

This linearity of the Stokes equation enables powerful analytical techniques,
including the use of Green’s functions, singularity solutions, the principle of
superposition, and boundary integral formulations [10, 16]. These four tools form
the foundation on which this thesis is built.

In contrast, the nonlinear term 𝒖 · ∇𝒖 in the Navier-Stokes equation is respon-
sible for transferring energy and momentum across different length scales, as can
be examined using the Fourier transform of the equation. The absence of this
nonlinear term in the Stokes equation implies that the flow structures at different
length scales remain decoupled. This is in contrast to our intuition from high
Reynolds-number flows, where structures at one length scale can give rise to
structures at other scales, for example, the wake behind a moving object [17, 18].

1.1.2 Instantaneity

The absence of a time-derivative term in the Stokes equation implies that the fluid’s
response is instantaneous: the state of the fluid at any moment depends only on
the instantaneous configuration of the immersed bodies, not on their history. As
a result, any motion of a body is immediately reflected in the entire velocity
field. Physically, however, the propagation of flow disturbances in a viscous fluid
occurs via diffusion of momentum. For a disturbance to reach a distance 𝑙, the
characteristic time scale is the diffusive time 𝜏𝑑 ∼ (𝑙2/𝜈), where 𝜈 is the kinematic
viscosity. Instantaneity is a valid assumption only when this time scale is smaller
than other relevant dynamical time scales, most notably, the convective time scale
𝜏𝑐 ∼ (𝑙/𝑉), where 𝑉 is a typical velocity of the body.
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1.1. THE ESSENCE OF MICROHYDRODYNAMICS

Since 𝜏𝑑 grows quadratically with 𝑙 while 𝜏𝑐 grows linearly, there exists a
critical length scale 𝑙𝑐 beyond which this assumption breaks down. Setting 𝜏𝑑 = 𝜏𝑐
gives

𝑙𝑐 =
𝜈
𝑉

=
𝑎

𝑅𝑒
, (1.4)

where 𝑎 is the size of the body and 𝑅𝑒 is the Reynolds number based on that scale.
This shows that even in flows with very small 𝑅𝑒, the assumption of instantaneity
eventually fails at distances much larger than the body size. Thus, in unbounded
domains, one must be cautious: finite-𝑅𝑒 effects become important at distances of
order 𝑎/𝑅𝑒. In this thesis, we will work in the theoretical limit of 𝑅𝑒 = 0, where
such effects are formally absent.

While the absence of the nonlinear convective term precludes the formation
of wakes with multiple interacting length scales, the instantaneity of Stokes flow
further rules out phenomena like vortex shedding, commonly seen in high-𝑅𝑒
flows. Nevertheless, recirculation zones can still occur behind asymmetric or bluff
bodies [19, 20], though they remain steady and fixed relative to the body rather
than evolving or shedding downstream.

1.1.3 Reversibility

The Stokes equation possesses a key symmetry: under the transformation 𝑝 → −𝑝,
𝒇 → − 𝒇 , and 𝒖 → −𝒖, the equations remain unchanged. This implies that the
reversed flow field −𝒖 is also a valid solution, provided the pressure and force
fields are simultaneously reversed. This property is known as reversibility and
has powerful consequences when combined with the geometric symmetries of a
system [11, 12].

For instance, it can be shown that a pair of identical spheres sedimenting
under gravity will maintain their relative positions during descent [11]. Similarly,
a sphere sedimenting near a rigid wall cannot drift toward or away from the
wall [12]. A spheroid cannot change its orientation as it settles, as illustrated in
Figure 1.2. More broadly, a body undergoing a reciprocal (time-reversible) cyclic
deformation cannot achieve net locomotion, an insight formalized in Purcell’s
scallop theorem [9, 21, 22]. These results illustrate how far one can go by exploiting
the symmetries of the governing equations, even without solving them explicitly.

Importantly, such reversibility and the constraints it imposes break down at a
finite Reynolds number. In high-𝑅𝑒 regimes and unsteady Stokes regimes, history
matters, and such symmetry-based arguments no longer suffice.

While we have highlighted some key properties of Stokes flow and contrasted
them with the finite 𝑅𝑒 effects, the discussion here has focused selectively on
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CHAPTER 1. INTRODUCTION

Figure 1.2: Demonstration of reversibility ruling out rotation in a settling
spheroid. (a) A spheroid settles under gravity with linear velocity 𝑽 and angular
velocity Ω, dragging nearby fluid with it. The surrounding fluid velocity field
is denoted by 𝒖 and gravity points in the direction of 𝒈 . (b) Upon reversing the
forces (i.e., 𝒈 → −𝒈), the flow and the dynamics reverse. (c) Rotating the system
by 180° restores the original geometric configuration, except for the sign of the
angular velocity. By the uniqueness of Stokes flow, it follows that 𝛀 = 0.

aspects most relevant to the thesis. For a broader and pedagogically rich treatment
of fluid mechanics, the National Committee for Fluid Mechanics Films (NCFMF)
released an excellent series of educational videos and accompanying texts in
the 1960s, available online at MIT’s website. Despite their age, the concepts are
conveyed through remarkably clear demonstrations and remain invaluable. In
particular, the film by G.I. Taylor on Low Reynolds Number Flow beautifully illus-
trates many features of microhydrodynamics discussed here, and more. Another
excellent source is EM Purcell’s classic lecture, Life at Low Reynolds number [9],
which captures the essence of how strikingly different our experience would be if
we lived in a low 𝑅𝑒 world, especially in the context of swimming.

1.2 Asymmetric Geometries and Adaptive Motion in
Nature

As seen in the last section, the physics of fluid flow changes fundamentally with
the Reynolds number. In the high-𝑅𝑒 regime, the motion of objects through
a fluid depends crucially on the wake structures they generate. For example,
by simply flapping their tails, fish can transfer momentum backward into the
wake, thereby propelling themselves forward [23, 24]. However, this strategy
fails in the low-Reynolds-number regime: as stated by the scallop theorem [9,
21, 22], a fish cannot achieve net propulsion by simply flapping its tail in such
highly viscous environments. This constraint was elegantly demonstrated by G.
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I. Taylor through his classic experiments on low Reynolds number flows. At low
𝑅𝑒, inertial effects are negligible, and viscous forces dominate. To overcome this,
microorganisms have evolved remarkably clever strategies to achieve directed
motion by exploiting shape asymmetry. Bacteria, for instance, possess filament-
like appendages called flagella, each of which adopts a helical shape and rotates like
a rigid corkscrew to generate propulsion through viscous drag [13, 21]. In contrast,
eukaryotic cells such as spermatozoa use flexible flagella, which they deform in
the form of travelling waves to achieve propulsion [13, 21]. This type of drag-based
propulsion can be understood through the concept of drag anisotropy, which refers
to the directional dependence of viscous drag on an elongated body (such as a
slender rod). Unlike a sphere, which experiences a drag force directly opposite
to its direction of motion, an anisotropic body encounters drag forces that vary
with orientation, resulting in a net force that is not necessarily aligned opposite
to its motion. This principle of drag anisotropy is beautifully illustrated in [13]
for microorganisms that use flagella for propulsion. Each segment of a flagellum
can be treated as a slender rod that experiences a local drag force with a nonzero
component in the axial direction. These axial components add up constructively
along the length of the flagellum, resulting in a net propulsive force.

Another interesting example where shape asymmetry plays a crucial role in
dynamics is that of plankton. Plankton are a diverse group of organisms that
inhabit the ocean and, being unable to swim against the current, typically drift
along with the surrounding flow. Among them, Phytoplankton, which rely on
photosynthesis, perform dielverticalmigration, descending to nutrient-richdeeper
layers at night and ascending to well-lit surface waters during the day for light [25,
26]. However, turbulence in the upper layers of the surface can be harmful to these
organisms [27–29]. A recent study [30] showed that certain phytoplankton, upon
sensing turbulent conditions, can alter their migration strategies by changing
their shape. Specifically, phytoplankton with fore-aft asymmetry, shapes that
allow them to swim upward against gravity, can transition to fore-aft symmetric
shapes and begin migrating downward, along gravity. The stable orientation of
the body in flow is determined by a balance between the gravitational torque and
the hydrodynamic torque about the geometric center. The latter is influenced
by the position of the hydrodynamic center of resistance, which in turn depends
sensitively on the shape of the organism. By modulating their shape, these
organisms effectively tune the hydrodynamic torque, demonstrating the critical
role that particle geometry plays in governing dynamics in fluid environments.

Plankton play a foundational role in the oceanic carbon cycle by converting

7
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atmospheric CO2 into organic matter via photosynthesis [31, 32]. As these or-
ganisms die or are consumed, their remains, along with fecal pellets and other
detritus, form marine snow that sinks into the deep ocean. This sedimentation is
central to the biological carbon pump, by which carbon is effectively sequestered for
periods ranging from months to millennia [33, 34]. Understanding the physical
mechanisms that govern the sedimentation of such anisotropic and often irreg-
ularly shaped particles is crucial, not just for marine ecology, but also for global
climate models.

1.3 Role of geometry in single body sedimentation

Although the ecological significance of sedimentation in marine environments has
only been realized relatively recently, sedimentation itself has long been exploited
in practical applications, particularly for separating particles based on their size or
density. It is also a ubiquitous natural process, evident in phenomena such as the
descent of raindrops and dust in the atmosphere, or the deposition of sediments in
rivers. Consequently, the sedimentation behaviour of bodies ranging from spheres
to ellipsoids has been the subject of extensive study for many decades [12, 14, 35,
36].

As previously discussed, the Reynolds number (𝑅𝑒) plays a crucial role in
their settling behaviours. However, another key parameter is the density ratio
𝜌𝑟 between the particle and the surrounding fluid. As we shall see in Chapter
2, if 𝜌𝑟𝑅𝑒 ≪ 𝒪(1), the particle inertia becomes negligible. This, along with
𝑅𝑒 ≪ 𝒪(1), defines the so-called overdamped limit, in which the external forces and
torques acting on the body are instantaneously balanced by the corresponding
hydrodynamic resistances. The steady sedimentation of a single sphere in the
overdamped limit has been understood since Stokes’ seminal solution in 1851, over
170 years ago. The simplicity of the overdamped limit as well as the geometry of
the sphere allows one to determine its linear velocity 𝑽 and angular velocity 𝛀
analytically, given by the well-known Stokes law:

𝜇

[
𝑽

𝛀

]
= −

[
(6𝜋𝑎)−11 0

0 (8𝜋𝑎3)−11

]
·
[
𝑭𝒉

𝑻 ℎ

]
=

[
(6𝜋𝑎)−11 0

0 (8𝜋𝑎3)−11

]
·
[
𝑭 𝒈

0

]
, (1.5)

where 𝑭 𝒈 is the buoyancy corrected weight of the sphere, 𝑎 is the radius of the
sphere, 𝜇 is the dynamic viscosity of the fluid. In writing the second equality in
equation (1.5), we have used the fact that in the overdamped limit, hydrodynamic
force and torque are always balanced by external force and torque. Here external
force is due to gravity, i.e., 𝑭 ℎ+𝑭 𝑔 = 0, and the gravitational torque about the centre
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of a sphere of uniform density is zero, i.e., 𝑻 ℎ = 0. Comparing this with equation
(1.3), we see that the structure of 𝓜 consists of only diagonal submatrices, which
are proportional to the 3 × 3 identity matrix 1. This simplicity in the structure of
𝓜 of a sphere is a result of its geometric symmetries.

We emphasize an important feature of the overdamped limit: the linear rela-
tionship between external forces and the velocity of a body, unlike the Newtonian
regime, where external forces are proportional to the rate of change of velocity.
Thus, one can think of the overdamped limit as the Aristotelian world where force
is needed to maintain motion.

This overdamped limit may seem uneventful since a sphere settling in this limit
falls with its terminal velocity. However, a sphere possesses numerous geometric
symmetries. If one instead considers an ellipsoid, it can drift horizontally as it
settles vertically [10, 13, 14], a consequence of the drag anisotropy, as mentioned
before. The mobility matrix𝓜 of an ellipsoid is a diagonal matrix in the coordinate
axes aligned with its principal axes frame. Drag anisotropy manifests itself as
the diagonal elements being unequal [10, 14]. It can be shown (see Chapter 3)
that any shape with an inversion symmetry (𝒙 → −𝒙) simply settles without
rotating, in the absence of any external torque. In other words, the off-diagonal
terms in the mobility matrix of a body with inversion symmetry are zero. This
includes a wide range of shapes from spheres to ellipsoids. To achieve rotation
upon sedimentation without an external torque, and hence non-trivial settling
patterns, one needs to break the inversion symmetry. The translation-rotation
coupling arises when the mobility matrix 𝓜 of a body has non-zero off-diagonal
elements, which couples hydrodynamic force and torque. Note that lack of
inversion symmetry is a necessary but not sufficient condition for translation-
rotation coupling; additional symmetries like rotational symmetry about an axis
can further restrict the translation-rotation coupling [14].

An intriguing example of translation–rotation coupling in a geometrically
symmetric object was proposed by Lord Kelvin in 1871 [14, 37], in the form
of the isotropic helicoid, a chiral body resembling a sphere with fins that remains
isotropic in its resistance properties. With the widespread occurrence of chirality in
microorganisms, the dynamics of chiral bodies and the resulting coupling between
translation and rotation have attracted considerable interest [38–41]. More recently,
it has been observed that even achiral bodies can exhibit chiral settling trajectories,
revealing unexpected richness in sedimentation dynamics [42, 43]. While there
have been studies addressing the settling behaviourof arbitrarily shapedbodies [38,
44–46], their abstract formulations often obscure specific dynamical features that
emerge in more structured cases, particularly those that admit translation–rotation
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coupling while preserving certain geometric symmetries. One such feature is the
presence of a conserved quantity that governs the dynamics of bodies with two
planes of symmetry, a feature absent in the fully general case of asymmetric bodies.
Chapter 3 is dedicated to the study of such bodies with two planes of symmetry,
which we refer to as di-bilaterals. These can be viewed as a natural generalization
of ellipsoids, which possess three planes of symmetry. Thus, di-bilaterals help
bridge the gap between the well-understood case of ellipsoids and the general
category of arbitrarily shaped bodies. The study presented in Chapter 3 offers
a systematic and predictive framework for classifying and understanding their
settling dynamics.

1.4 Role of geometry in collective sedimentation

In most of the practical scenarios, multiple bodies are involved in the sedimentation
process. While each body may exhibit intricate settling patterns due to its complex
geometry, the presence of nearby bodies can significantly alter its dynamics. Even
highly symmetric bodies such as spheres or spheroids can experience translation-
rotation coupling as a result of hydrodynamic interactions [10–12, 14].

A helpful way to conceptualize these interactions is by adapting a quote from
John Archibald Wheeler to the context of fluid dynamics: fluid tells particles how
to move; particles tell fluid how to flow. In this way, the fluid acts as a mediator
of the coupling between bodies. This mediation is conceptually similar to other
physical systems: spacetime mediates interactions between massive bodies in
general relativity, while electromagnetic fields mediate forces between charged
particles. There exists a close mathematical analogy between microhydodynamics
and electrostatics, an analogy that is explored in detail in Chapter 5 of this thesis.

Hydrodynamic interactions between multiple bodies in a viscous fluid play a
central role in shaping their collective behaviour. These interactions arise because
each body disturbs the surrounding fluid, and this disturbance, in turn, influences
the motion of neighbouring bodies. Hydrodynamic interactions between two
force-driven bodies are long-range interactions that decay as 1/𝑅 in an unbounded
domain, where 𝑅 is the dimensionless separation between the two bodies [10–12,
14]. Therefore, in the context of sedimentation, where the external flow field is
typically absent, these long-range interactions play a dominant role in determining
the dynamics.

There is a natural way to generalize the concept of the mobility matrix for
multiple bodies. In the overdamped limit, for two hydrodynamically interacting
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bodies in an otherwise quiescent fluid, the mobility formulation looks like


𝑽1

𝑽2

𝛀1

𝛀2


= 𝜇−1



[
𝒂11 𝒂12

𝒂12 𝒂22

] [
𝒃11 𝒃21

𝒃12 𝒃22

]
[
𝒃11 𝒃12

𝒃21 𝒃22

] [
𝒄11 𝒄12

𝒄12 𝒄22

]

·


𝑭 𝑒1
𝑭 𝑒2
𝑻 𝑒1
𝑻 𝑒2


. (1.6)

Note that we have used the fact that the mobility matrix is symmetric [10–12] while
writing equation (1.6). Hydrodynamic interactions manifest both as couplings
in the off-diagonal elements and as corrections to the diagonal elements of the
mobility matrix. These couplings and corrections not only depend on the relative
positions of the bodies but also on the orientations of their principal axes, an
aspect not explicitly highlighted in equation (1.6) for notational clarity. In the far
field regime, the mobility matrix can be computed using the method of reflections,
as demonstrated in Chapter 2. It is straightforward to generalize the mobility
formulation to more than two interacting bodies.

An interesting example of viscosity-driven instability was demonstrated by
Crowley [47] in 1971. Through both theoretical analysis and experiments, he
showed that a one-dimensional lattice of spheres sedimenting in a viscous fluid
is unstable to perturbations in particle positions. Hydrodynamic interactions
between the spheres reinforce clustering in regions where the spheres are initially
closer together, leading to the formation of valley-like regions of concentrated
particles, as shown in Figure 1.3. We refer to this clustering mechanism as Crowley
mechanism.

A more recent study by Chajwa et al. [48] investigated a similar setup, replacing
spheres with discs arranged in a one-dimensional lattice. This problem, explored
both theoretically and experimentally, highlights yet another important role of
particle geometry in sedimentation dynamics. Due to drag anisotropy, each disc
experiences lateral drift during settling, depending on its orientation. As with
the spheres, hydrodynamic interactions drive clustering; however, the orientation-
dependent drift allows discs to escape the clustering process (see Figure 1.3). We
refer to this counter-mechanism as the drift mechanism.

A linear stability analysis revealed that beyond a critical lattice spacing, the
fixed point becomes neutrally stable rather than unstable. Interestingly, despite
this neutral stability, experiments showed a different form of lattice disruption:
the discs formed pairs and separated, rather than aggregating in valleys (see
Figure 1.4). This behaviour was explained by non-modal growth of perturbations,
a feature often missed by classical eigenvalue-based stability analyses.
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Figure 1.3: Schematic illustrating the disruption of a one-dimensional lattice of
sedimenting (a) spheres and (b) discs upon perturbation. Adapted from Chajwa
et al. [48]. (a) The sphere near the center sediments faster due to the downward
flow induced by neighboring spheres. As a valley forms, spheres on either side are
drawn inward (black arrows) by hydrodynamic interactions, leading to clustering.
(b) Similar hydrodynamic interactions promote clustering at valleys (black arrows).
However, for discs, orientation-dependent lateral drift (green arrows) counteracts
this clustering, allowing escape from the valley.

Figure 1.4: Experiments showing different types of clustering following lat-
tice disruption of sedimenting discs. Experiments by Rahul Chajwa. (a) For
lattice spacings smaller than the critical value, discs cluster at the valleys due to
dominant Crowley-type instability. (b) For spacings larger than the critical value,
discs separate into pairs away from the valleys, as the orientation-induced drift
mechanism dominates over the Crowley mechanism.
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The far-field model used to describe hydrodynamic interactions loses accuracy
as the discs approach one another to form clusters. To capture the close-range
dynamics more accurately and to quantify the nature of these clusters, it was
necessary to improve the interaction model. Beyond quantification, an improved
model also has implications for the system’s stability. In the neutrally stable regime,
all eigenvalues lie precisely on the imaginary axis, making the system structurally
unstable. Small changes in the interaction model can shift the eigenvalues off
the axis, thereby altering the qualitative nature of the stability. Moreover, since
the original system was shown to be non-normal, and a hallmark of non-normal
operators is that their eigenvalues are highly sensitive to small perturbations [49],
stability analysis using the improved interaction model becomes essential. These
issues are addressed in detail in Chapter 4 of this thesis.

1.5 Connections to Electrostatics

Ice crystals in atmospheric clouds often grow into complex hexagonal shapes,
but for many modeling purposes, particularly in fluid and electrostatic interac-
tions, they are effectively approximated as spheroids due to their elongated or
flattened forms [50–52]. This simplification captures their essential anisotropy
while allowing analytical or semi-analytical approaches to their dynamics and
interactions.

In turbulent storm clouds, ice crystals undergo frequent collisions and interac-
tions with supercooled water droplets. These collisions, especially in the presence
of differential terminal velocities and turbulent flow, result in the separation and
transfer of electrical charges [53–57]. The process, known as non-inductive charg-
ing, is one of the primary mechanisms believed to be responsible for charge
separation in thunderstorms, eventually leading to lightning. This naturally leads
to the question of how anisotropic charged bodies like spheroids interact electro-
statically. Unlike spheres, the interaction between charged spheroids depends not
only on their separation but also on their relative orientations, adding a layer of
geometric complexity. These considerations motivate the study of electrostatic in-
teractions between anisotropic bodies, such as spheroids, to better understand the
role of shape in the collective dynamics of charged particles in both atmospheric
and synthetic systems.

The equations governing electrostatics are one tensorial level lower than those
of Stokes flow. To draw a direct analogy: the electric potential, which satisfies
the Poisson equation, corresponds to the fluid velocity field in Stokes flow, which
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also satisfies a Poisson-like equation, with the pressure field acting as a Lagrange
multiplier enforcing incompressibility [11]. The electric field, being the gradient
of the potential, corresponds to the stress tensor in Stokes flow. Similarly, charge
density in electrostatics is analogous to force density in Stokes flow. Thus, at
the level of governing equations and their associated physical quantities, a direct
correspondence can be made between the two systems. From the perspective of
boundary conditions, the no-slip condition on the surface of a rigid body in Stokes
flow requires specifying the rigid body velocity on the surface. This is analogous
to specifying the total charge (or, equivalently, constant potential) on the surface
of a perfect conductor in electrostatics.

With this analogy in place, one can see that the mobility formulation in Stokes
flow has an electrostatic counterpart, known as the potential matrix formulation
[58]. In the electrostatic setting, two perfect conductors carrying charges 𝑄1 and
𝑄2 interact such that constant potentials𝑉1 and𝑉2 are maintained on their surfaces.
The charges and potentials are linearly related through the potential matrix 𝚽𝑀 ,
in direct analogy with how forces and velocities are related via the mobility matrix
in Stokes flow. This linear relation is given by,[

𝑉1

𝑉2

]
= 𝚽𝑀 ·

[
𝑄1

𝑄2

]
, 𝚽𝑀 =

1
4𝜋𝜖0𝑎

[
Φ11 Φ12

Φ12 Φ22

]
, (1.7)

where we have used the fact that the potential matrix is symmetric. Here 𝜖0 is the
permittivity of the free space and 𝑎 is the typical size of the conductor. One can
compare equation (1.7) with the equation (1.6) to see the similarities between the
two formulations. Since the length scale is factored out, the elements of 𝚽𝑀 only
depend on the geometry of the conductors. In the far field regime, the potential
matrix can be computed by extending the idea of the method of reflections from
microhydrodynamics to electrostatics, as demonstrated in Chapter 2.

Since electrostatic systems are conservative, the energy of a given configuration
of two conductors can be expressed as [59, 60]

𝑊 = 𝑸𝑇 ·𝚽𝑀 ·𝑸 , (1.8)

where 𝑸 = (𝑄1, 𝑄2) is the vector of charges. By differentiating this energy with
respect to the positions and orientations of the conductors, one can compute the
electrostatic forces and torques acting on them. This formulation naturally extends
to systems with more than two conductors using the potential matrix approach.

While spheroids serve as effective models for ice crystals, detailed analyses of
electrostatic interactions between anisotropic bodies remain limited [61–65]. In
contrast, electrostatic interactions between charged spheres have been studied
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extensively using methods of images and bi-spherical coordinates since the time
of Maxwell [66–72]. Notably, it has been shown that even like-charged spheres can
attract each other due to induced polarization effects [67, 73–75]. Such induction-
driven forces have important implications for the collision efficiency of charged
sedimenting particles [74–76]. However, these studies are largely confined to pairs
of spheres.

For anisotropic bodies such as spheroids, the lack of symmetry and absence
of convenient coordinate systems limit the applicability of analytical or semi-
analytical methods. Chapter 5 of this thesis addresses this challenge by applying
ideas from microhydrodynamics to the electrostatic context, providing both an-
alytical insights and numerical solutions to capture the anisotropic effects in
electrostatic interactions.

1.6 Dusty 2D Turbulence: A Leap into the Inertial
World

Up to this point, we have focused on the overdamped limit, where both particle and
fluid inertia are negligible. The central theme has been how particle geometry can
give rise to novel dynamical features through hydrodynamic coupling between
the body and the surrounding fluid. These discussions have primarily addressed
the dynamical features of either a single body or small collectives. When a large
numberof particles are involved, geometry continues to affect individual dynamics,
but collective interactions can also modify the macroscopic behaviour of the fluid
itself, as seen, for instance, in how the rheology of a suspension differs from that
of the pure solvent [77–80]. Considerable effort has gone into understanding such
complex fluids through their underlying microstructure [10–12, 81].

In many practical scenarios, such as protoplanetary disks [82], clouds [53],
and aeolian processes [83], we encounter dusty flows, a term used to describe
fluids laden with suspended particles. In most of these contexts, the fluid is
air, and the particle-to-fluid density ratio is large. In this limit, particle inertia
can no longer be neglected. One key consequence of including particle inertia
is preferential concentration, where inertial particles tend to avoid vortical regions
and accumulate in strain-dominated zones [84–86]. This mechanism has been
proposed as a potential explanation for the droplet-growth bottleneck in clouds
[87].

Despite significant attention, most studies of particles in turbulence have
considered one-way coupling [88], where the particles respond to the fluid but do

15



CHAPTER 1. INTRODUCTION

not influence it. However, this assumption breaks down at high particle number
densities. For instance, the streaming instability in protoplanetary disks [89, 90],
believed to play a crucial role in planet formation, relies on two-way momentum
coupling. A natural question that arises is: how does the presence of dust affect the
universal properties of turbulence, such as energy spectra or structure functions?

Simulating fully coupled dusty turbulence in three dimensions is computa-
tionally prohibitive, especially with a large number of particles. As an alternative,
two-dimensional turbulence provides a more tractable setting to explore the ef-
fects of particle-fluid momentum exchange. A notable study by Pandey et al. [91]
used the point-particle approximation to investigate this problem. They reported
a suppression of clustering and the emergence of a dusty scaling regime in the
energy spectra, though these effects were found to be non-universal, depending
on parameters like the Stokes number and dust concentration.

The point-particle approximation assumes that particle size is much smaller
than the smallest eddy scale (the Kolmogorov scale 𝜂), thereby ignoring geometric
effects of the particles. Investigating such effects would require going beyond the
point-particle model, but computational techniques like the immersed boundary
method [92, 93] become increasingly expensive with large particle counts. Before
tackling geometric effects, several unexplored questions remain even under the
point-particle framework. For instance, how does intermittency in the vorticity
and velocity fields vary with dust concentration? How is the flow topology, as
characterized by the Okubo-Weiss parameter, influenced by dust? These are
among the questions addressed in Chapter 6 of this thesis, which presents results
from an ongoing investigation into dusty two-dimensional turbulence.

1.7 Thesis Outline & Main results

With the context, motivation, and problem statements discussed in the previous
sections, we now outline the structure of the thesis and summarize its main
contributions.

Chapter 2 presents the mathematical background essential for analyzing arbi-
trarily shaped bodies in both microhydrodynamics and electrostatics. It introduces
the foundational tools and techniques that underpin the rest of the thesis. These in-
clude analytical methods based on singularity solutions, perturbative approaches
for many-body interactions, and numerical schemes that enable high-accuracy
simulations. A key aspect of this chapter is the development and extension of
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these tools, originally designed for hydrodynamics, into the context of electrostat-
ics, thereby establishing a unified framework. The major components discussed
in this chapter are:

• Singularity solutions of the Stokes and Laplace equations, which serve as
the building blocks for constructing solutions around spheres and spheroids,
are reviewed.

• Faxén’s laws, which relate the structure of singularity solutions to hydro-
dynamic resistance tensors, are discussed and systematically extended to
electrostatics, offering a new perspective on how conductors respond to
arbitrary background electric fields.

• The method of reflections, a perturbative technique for computing the
mobility matrix of multiple interacting bodies in viscous flow, is revisited and
generalized to electrostatic interactions between conductors, demonstrating
the strength of the hydrodynamic-electrostatic analogy.

• Boundary integral formulations using the double-layer potential are devel-
oped for both Stokes and Laplace equations. Particular attention is given
to the spectral properties of the electrostatic double-layer operator, drawing
insights from its hydrodynamic counterpart.

The method of reflections provides a tractable analytical framework in the far-field
regime, whereas the boundary integral method allows for uniformly accurate treat-
ment of near-field and far-field interactions in both hydrodynamic and electrostatic
settings.

Chapter 3 bridges the gap between the well-understood sedimentation dy-
namics of single ellipsoids and the more complex behaviour of arbitrarily shaped
bodies. It focuses on a specific class of geometries, bodies with two planes of
symmetry, referred to as di-bilaterals. These bodies exhibit a rich spectrum of sedi-
mentation dynamics, ranging from simple vertical settling to persistent drifting,
periodic spiraling, and quasi-periodic fluttering. The main findings of this chapter
are summarized below:

• Conserved quantity: Di-bilaterals possess a conserved quantity that plays a
central role in governing their sedimentation dynamics.

• Shape-based classification: Di-bilaterals can be grouped into three distinct
classes based solely on a shape factor:

1. Settlers - bodies that settle vertically without rotation.
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2. Drifters - bodies that drift and settle obliquely without rotating.

3. Flutterers – bodies that rotate indefinitely, exhibiting periodic or quasi-
periodic motion.

• Origin of quasi-periodicity: For flutterers, the dynamics decouple into a
periodic driving component and a response (Floquet) component, leading
to either periodic or quasi-periodic behaviour.

• Geometric realization: Using boundary integral methods, we show that all
three dynamical classes can be realized from a continuous family of shapes
constructed by bending a prolate spheroid and modifying its cross-section
from convex to concave.

Chapter4 explores the collective sedimentation behaviourof a one-dimensional
lattice of discs. This work develops an improved hydrodynamic interaction model
that accurately accounts for close-range dynamics, enabling quantitative insights
into cluster formation and lattice disruption. The main findings are summarized
below:

• Limitations of the Stokeslet model: The Stokeslet or point-particle approxi-
mation fails to capture certain close-range behaviours of sedimenting discs,
such as the experimentally observed rocking orbits [94]. Including first
reflection corrections qualitatively captures these dynamics and aligns well
with experimental observations.

• Impact on stability: Incorporating first reflections alters the qualitative na-
ture of fixed points. Neutral modes seen under the Stokeslet approximation
become unstable. Despite the exponential instability across all lattice spac-
ings 𝑑̃, at large 𝑑̃ the perturbation amplitude is dominated by more rapid
algebraic growth, which ultimately leads to lattice disruption.

• Growth rate scaling: The instability growth rate follows a power-law scaling
of 𝑑̃−4.5 at large spacings, significantly steeper than the 𝑑̃−2 scaling observed
for spheres [47].

• Cluster morphology: At large lattice spacings, sedimenting disc pairs pre-
dominantly form an inverted ‘T’ or ⊥ configuration. This geometry is ex-
plained through an analysis that builds on Koch and Shaqfeh (1989) [95].
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Chapter 5 applies ideas from microhydrodynamics to electrostatics, focusing
on the interaction between a sphere and a spheroid. This minimal configura-
tion is sufficient to reveal anisotropic effects such as electrostatic torque between
conductors. The main findings are summarized below:

• Accuracy of method of reflections: Electrostatic forces and torques com-
puted using the second reflection approximation remain accurate down to
separations comparable to the size of the conductors, as validated against
results from the boundary integral method.

• Near-contact asymptotics: In axisymmetric configurations, boundary inte-
gral results can be extrapolated to near-contact regimes using lubrication
approximations, enabling accurate predictions at vanishingly small separa-
tions.

• Like-charge attraction via induction: The boundary integral method cap-
tures attractive interactions between like-charged bodies arising from in-
duced charges, which become significant at separations below one-tenth of
the conductor size. Although the method of reflections predicts like-charge
attraction, it becomes unreliable at very small separations.

• Competing alignment mechanisms: Electrostatic torques can either rein-
force or counteract hydrodynamic alignment of spheroids, depending on
the configuration. This suggests that electrostatic effects could influence the
onset of instabilities in dilute suspensions of sedimenting spheroids [95].

Chapter 6 explores inertial effects in the context of two-dimensional dusty tur-
bulence. Building on a recent study by Pandey et al. [91], this work investigates the
implications of mass loading, a dimensionless parameter quantifying the influence
of dust on the flow, on intermittency and flow topology. The key findings are
summarized below:

• The skewness of the Okubo–Weiss parameter retains its negative sign across
varying mass loading values, suggesting that the underlying flow regions
remain vorticity-dominated. The increase in the extreme values of the Okubo-
Weiss parameter with the mass loading shows more intense vorticity and
strain-dominated regions.

• The one-point Eulerian vorticity statistics show intense values of vorticity
become more frequent as the mass loading is increased.
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• The probability distribution function of two-point Eulerian vorticity dif-
ferences lacks scale invariance, signaling intermittency regardless of mass
loading. Increased mass loading leads to a loss of spatial correlation in
the vorticity field, and the corresponding second-order structure function
exponents tend toward zero.

• No negative energy flux is observed at large wavenumbers, indicating that
dust feedback cannot be captured by a simple small-scale forcing model.

Chapter 7 brings together the insights from the preceding chapters, offering
an outlook on future directions and open problems emerging from this thesis.
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2

Mathematical Background

“Mathematics is the art of giving the same name to different things.”
— Henri Poincaré

In this chapter, we develop the mathematical framework used to study hydro-
dynamic and electrostatic interactions between bodies in three dimensions. Two
principal approaches are employed: a perturbative technique known as the method
of reflections, and a numerical approach based on the boundary integral method.

The method of reflections yields semi-analytical expressions for multi-body
interactions, provided the solution for each body in isolation is known. While
applicable to a range of shapes, it is most commonly used for canonical geometries
such as spheres and spheroids. In contrast, the boundary integral method enables
accurate computation of interactions between arbitrarily shaped bodies, and its
key advantage lies in dimensionality reduction: only the surfaces of bodies must be
discretized, not the surrounding fluid domain. This makes it especially well-suited
for problems in unbounded domains.

We begin in Section 2.1 with a review of basic concepts in microhydrodynamics.
This is followed by a focused overview of electrostatics in Section 2.2, emphasizing
concepts relevant to the implementation of the two methods. We then present
singularity solutions in electrostatics in Section 2.3 and extend Faxén’s laws, orig-
inally derived in the context of hydrodynamics, to electrostatics for arbitrarily
shaped bodies in Section 2.4.

Subsequently, we revisit the singularity solutions and Faxén’s laws specifically
for spheroidal bodies in microhydrodynamics in Sections 2.5 and 2.6. With
these tools in hand, including multipole expansions, singularity solutions, and
generalised Faxén’s laws, we introduce the method of reflections in Section 2.7.

Finally, we describe the boundary integral method, with particular attention
to its formulation in electrostatics in Section 2.9. The presentation draws heavily
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from analogous formulations in microhydrodynamics, particularly those found
in the work of Pozrikidis [16], which we briefly review in the last Section 2.10.

2.1 A Quick Review of Microhydrodynamics

The equation of motion for a fluid can be obtained using mass, momentum, and
energy conservation. For an incompressible fluid, momentum conservation leads
to the Navier-Stokes equation, given by,

𝜌 𝑓 𝜕𝑡𝒖 + 𝜌 𝑓 𝒖 · ∇𝒖 = −∇𝑝 + 𝜇∇2𝒖 + 𝒇 , ∇ · 𝒖 = 0. (2.1)

Here 𝒖 is the fluid velocity field, 𝑝 is the fluid pressure field, 𝜇 is the dynamic
viscosity, 𝜌 𝑓 is the fluid density, and 𝒇 is the force per unit volume acting on the
fluid. To solve for a flow field, one needs to supplement the Navier-Stokes equation
with an initial condition and boundary conditions.

The fluid stress tensor 𝜎𝑖 𝑗 describes internal stresses within the fluid, where
(𝝈 · 𝒏̂)𝑖 = 𝜎𝑖 𝑗𝑛 𝑗 gives the 𝑖-th component of the force per unit area acting on a
surface with normal 𝒏̂, exerted by the fluid on the side facing the 𝒏̂ direction.
The Navier-Stokes equation (2.1) describes a Newtonian fluid, for which the stress
tensor is given by

𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜇[𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗]. (2.2)

This is a constitutive relation derived using the assumptions of isotropy and a
gradient expansion of the velocity field [81, 96]. Certain fluids, such as blood,
colloidal suspensions, and polymer solutions, violate this relation and are known
as complex fluids. In this thesis, we will restrict our attention to Newtonian fluids
satisfying the equation (2.2).

The Navier-Stokes equation (2.1) is capable of describing a wide variety of
fluid flows around us, from the laminar regime to the turbulent regime. Most of
the cases require numerical solutions, owing to the non-linearity of the Navier-
Stokes equation. Since we are interested in the realm of microhydrodynamics, a
significant simplification is possible, which can allow us to ‘ignore’ the nonlinear
effects. To estimate the relative importance of each term in the equation (2.1), let us
non-dimensionalize the equation. Let 𝑉 be the fluid velocity scale, 𝑎 be the fluid
length scale, 𝜏 𝑓 be the fluid time scale. We denote the dimensionless quantities
with a dash. Thus, we have 𝒖′ = 𝒖/𝑉 , 𝒙′ = 𝒙/𝑎, 𝑡′ = 𝑡/𝜏 𝑓 , 𝑝′ = 𝑝/(𝜇𝑎−1𝑉) and
𝒇 ′ = 𝒇 /(𝜇𝑎−2𝑉). Note that we have defined pressure and force scales based on the
dynamic viscosity 𝜇, consistent with the viscosity-dominated regime, where the
internal pressure scales with the dominant viscous forces. Using the dimensionless
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quantities in equation (2.1) gives

𝜌 𝑓𝑉

𝜏 𝑓
𝜕𝑡′𝒖′ +

𝜌 𝑓𝑉2

𝑎
𝒖′ · ∇𝒙′𝒖′ = −𝜇𝑉

𝑎2 ∇𝒙′𝑝
′ + 𝜇𝑉

𝑎2 ∇2
𝒙′𝒖

′ + 𝜇𝑉

𝑎2 𝒇 ′ (2.3a)

=⇒ 𝑅𝑒(𝑆𝑙 𝜕𝑡′𝒖′ + 𝒖′ · ∇𝒙′𝒖′) = −∇𝒙′𝑝
′ + ∇2

𝒙′𝒖
′ + 𝒇 ′, (2.3b)

where
𝑅𝑒 ≡

𝜌 𝑓𝑉𝑎

𝜇
, 𝑆𝑙 ≡ 𝑎

𝑉𝜏 𝑓
. (2.4)

The two non-dimensional numbers are the Reynolds number 𝑅𝑒 and the Strouhal
number 𝑆𝑙, which compares the inertia to the viscous effects. In the viscosity-
dominated regime of microhydrodynamics, we have 𝑅𝑒 ≪ 1 and 𝑆𝑙 ≪ 1. There-
fore, to the leading order, we have

∇𝒙′𝑝
′ + ∇2

𝒙′𝒖
′ + 𝒇 ′ = 0.

In the dimensional form, we get the steady Stokes equation,

∇𝑝 + ∇2𝒖 + 𝒇 = 0, ∇ · 𝒖 = 0. (2.5)

Note that the lack of a time derivative and non-linear term considerably simplifies
the problems in microhydrodynamics. Solving the steady Stokes equation requires
appropriate boundary conditions. Throughout this thesis, we will be looking at
the dynamics of rigid bodies in an unbounded fluid domain. The surface of
the rigid bodies and the surface at infinity act as boundaries, with the boundary
conditions given by,

𝒖(𝒙) = 𝑽 +𝛀 × (𝒙 − 𝒙𝑐), 𝒙 ∈ 𝑆 (2.6a)

𝒖(𝒙) → 0 as |𝒙| → ∞. (2.6b)

Here𝑽 and𝛀 denote linear and angular velocities of the rigid body with its surface
denoted by 𝑆, and 𝒙𝑐 is the centre of mass of the rigid body. For multiple bodies
in the flow, the no-slip boundary condition is imposed on the surface of each of
the rigid bodies.

The force and torque acting on a body immersed in the fluid can be computed
using the stress tensor as:

𝑭 ℎ =
∮
𝑆

𝝈 · 𝒏̂ 𝑑𝑆, 𝑻 ℎ =

∮
𝑆

(𝒙 − 𝒙𝑐) × (𝝈 · 𝒏̂) 𝑑𝑆, (2.7)

where 𝒏̂ is the normal vector pointing out of the surface, towards the fluid.
Some of the interesting properties of the steady Stokes equation are discussed

in Chapter 1. The linearity of the steady Stokes equation allows powerful analytical
techniques that are discussed in the subsequent sections.
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2.1.1 Lorentz Reciprocal Theorem

This is one of the most useful theorems for obtaining integral representations of
Stokes flow, as well as for computing the force and torque on a body without
solving the complete flow field. Consider two flow fields 𝒖(1) and 𝒖(2) with their
respective stress tensors 𝝈(1) and 𝝈(2) in the same fluid domain 𝒟. Then, using
the divergence theorem and the incompressibility condition, we have∮
𝜕𝒟

𝒖(1)·(𝝈(2)·𝒏) 𝑑𝑆−
∮
𝜕𝒟

𝒖(2)·(𝝈(1)·𝒏) 𝑑𝑆 =

∫
𝒟
𝒖(1)·(∇·𝝈(2)) 𝑑𝑉−

∫
𝒟
𝒖(2)·(∇·𝝈(1)) 𝑑𝑉.

(2.8)
Here 𝒏 is the normal vector to the boundary of the fluid domain, denoted by
𝜕𝒟, pointing away from the fluid domain 𝒟. The equation (2.8) is called the
generalised reciprocal theorem. If we further require that the two velocity fields
satisfy the steady Stokes equation, we have∮

𝜕𝒟
𝒖(1) · (𝝈(2) · 𝒏) 𝑑𝑆 =

∮
𝜕𝒟

𝒖(2) · (𝝈(1) · 𝒏) 𝑑𝑆. (2.9)

One of the corollaries of the reciprocal theorem is the linear relationship
between force and velocity acting on a rigid body in Stokes flow. Following Kim &
Karilla [10], consider two separate configurations, each involving a homogeneous,
steady Stokes flow generated by a rigid body moving through an otherwise
quiescent fluid. The bodies move with velocities 𝑽 ′ and 𝑽 ′′, and experience total
forces 𝑭 ′ and 𝑭 ′′, respectively. Let 𝑭 = 𝒇 (𝑽 ) be the relation between force and
velocity. Using the reciprocal theorem (2.9), we have

𝑽 ′ · 𝑭 ′′ = 𝑽 ′′ · 𝑭 ′ =⇒ 𝑽 ′ · 𝒇 (𝑽 ′′) = 𝑽 ′′ · 𝒇 (𝑽 ′).

We have used the fact that the velocity fields decay at infinity, so the only contri-
bution from the boundary is due to the surface of the particle, where the fluid
velocity is constant. The above relation implies that

𝒇 (𝑽 ) = ( 𝒇 (𝑽 ) · 𝒆𝑖)𝒆𝑖 = ( 𝒇 (𝒆𝑖) · 𝑽 )𝒆𝑖 = (𝒆𝑖 𝒇 (𝒆𝑖)) · 𝑽 , (2.10)

where 𝒆𝑖 is the 𝑖-th basis vector and the summation convention is used in the
equation (2.10). This shows that the function 𝒇 (𝑽 ) is linear in the velocity. This
idea can be generalised for a rigid body moving with linear velocity𝑽 and angular
velocity 𝛀, in which case the motion is linearly related to the hydrodynamic force
𝑭 ℎ and hydrodynamic torque 𝑻 ℎ as[

𝑽

𝛀

]
= −𝜇−1

[
𝒂 𝒃̃

𝒃 𝒄

]
·
[
𝑭 ℎ

𝑻 ℎ

]
= −𝜇−1

𝓜 ·
[
𝑭 ℎ

𝑻 ℎ

]
. (2.11)
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The matrix 𝓜 in the equation (2.11) is called the mobility matrix, which depends
only on the size and geometry of the rigid body. It can be further shown using
the reciprocal theorem that the mobility matrix is symmetric [10–13, 16], i.e.,
𝒂𝑇 = 𝒂 , 𝒃̃ = 𝒃𝑇 , 𝒄𝑇 = 𝒄. It should be noted that equation (2.11) is written for a
zero background flow field. In the presence of an external flow, equation (2.11)
has to include the background velocity, background vorticity, and background
strain-rate. We will restrict ourselves to zero background flow in this thesis; for
extensions of mobility formulation to incorporate background flow, see [10–13].

2.1.2 Equation of Motion of Rigid Bodies in Overdamped Limit

The equation of motion of a rigid body in the presence of gravity 𝒈 , fluid, and
some other external force 𝑭other is given by:

𝜌𝑝𝑉𝑝
𝑑𝑽
𝑑𝑡

= 𝑭 ℎ + (𝜌𝑝 − 𝜌 𝑓 )𝑉𝑝𝒈 + 𝑭other, (2.12)

where 𝜌𝑝 is the density of the body and𝑉𝑝 is the volume enclosed by the body. The
buoyancy force is separated from the hydrodynamic force 𝑭 ℎ since it comes from
the hydrostatic part of the pressure, 𝜌 𝑓 𝒈 · 𝒙. Similarly, the angular momentum 𝑳

of the body about its centre of mass 𝒙𝑐 satisfies

𝑑𝑳
𝑑𝑡

= 𝑻 ℎ − 𝜌 𝑓𝑉𝑝[𝒙𝑏 − 𝒙𝑐] × 𝒈 + 𝑻other, (2.13)

where 𝒙𝑏 ≡ 𝑉−1
𝑝

∫
𝑉
𝒙𝑑𝑉 is the geometric centre of the body, and 𝑻other is some

other external torque acting on the body. In the viscosity-dominated regime, the
equations (2.12) and (2.13) can be simplified as follows. In the viscosity-dominated
regime, the hydrodynamic force 𝑭 ℎ scales with viscosity as 𝜇𝑎𝑉 , where 𝑎 = 𝑉1/3

𝑝

is the length scale based on the size of the body, and 𝑉 is the velocity scale of
the body. Moreover, the relevant flow time scale in case of a body moving with
speed 𝑉 in the fluid is 𝜏 𝑓 = 𝑎/𝑉 , and 𝑔 = |𝒈| provides an acceleration scale. Thus,
we define the dimensionless quantities as 𝑽 ′ = 𝑽/𝑉 , 𝒙′ = 𝒙/𝑎, 𝑡′ = 𝑡𝑉/𝑎, and
𝒈 ′ = 𝒈/|𝒈|. Using these to non-dimensionalize equation (2.12), we get

𝜌𝑝

𝜌 𝑓

𝜌 𝑓 𝑎𝑉

𝜇
𝑑𝑽 ′

𝑑𝑡′
=

1
𝜇𝑎𝑉

(𝑭 ℎ + 𝑭other) +
𝜌 𝑓 𝑎𝑉

𝜇

𝑔𝑎

𝑉2 (𝜌𝑝/𝜌 𝑓 − 1)𝒈 ′.

This defines three non-dimensional numbers, namely the Reynolds number 𝑅𝑒,
the Stokes number 𝑆𝑡 and the Froude number 𝐹𝑟, given by

𝑅𝑒 ≡
𝜌 𝑓𝑉𝑎

𝜇
, 𝑆𝑡 ≡ (𝜌𝑝/𝜌 𝑓 )𝑅𝑒, 𝐹𝑟2 ≡ 𝑉2

𝑔𝑎
. (2.14)
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The non-dimensional force balance is

𝑆𝑡
𝑑𝑽 ′

𝑑𝑡′
=

1
𝜇𝑎𝑉

(𝑭 ℎ + 𝑭other) + 𝑅𝑒

𝐹𝑟2 (𝜌𝑝/𝜌 𝑓 − 1)𝒈 ′. (2.15)

Equation (2.15) suggests that the Stokes number 𝑆𝑡 can be interpreted as the
dimensionless measure of inertia of the particle, while equation (2.14) shows
that the Froude number 𝐹𝑟 compares inertia with gravity. We shall work in the
overdamped limit where particle inertia and fluid inertia are negligible, i.e., 𝑅𝑒 ≪ 1
and 𝑆𝑡 ≪ 1. Moreover, we are interested in the regime where the dominant
viscous forces balance gravity, i.e., 𝐹𝑟2 ∼ 𝒪(𝑅𝑒). Then, the leading order physics
in the overdamped limit is governed by the right-hand side of equation (2.15)
equated to zero. Returning to dimensional form, this implies

𝑭 ℎ + (𝜌𝑝 − 𝜌 𝑓 )𝑉𝑝𝒈 + 𝑭other = 0.

A similar argument for the angular momentum equation (2.13) leads to

𝑻 ℎ − 𝜌 𝑓𝑉𝑝[𝒙𝑏 − 𝒙𝑐] × 𝒈 + 𝑻other = 0.

Using the mobility formulation, one can then obtain the equation of motion of a
rigid body falling under gravity in otherwise quiescent fluid as:[

𝑽

𝛀

]
= 𝜇−1

𝓜 ·
[

(𝜌𝑝 − 𝜌 𝑓 )𝑉𝑝𝒈 + 𝑭other

−𝜌 𝑓𝑉𝑝[𝒙𝑏 − 𝒙𝑐] × 𝒈 + 𝑻other

]
, (2.16)

where we have used equation (2.11) to rewrite hydrodynamic forces and torques.
Therefore, given the mobility matrix 𝓜 for a given geometry of a rigid body, one
can obtain the dynamics of the rigid body. The extension of this to multiple bodies
is straightforward, with the mobility matrix of a multi-body system depending not
only on the individual geometry of the bodies but also on their relative positions
and orientations [10, 11].

2.1.3 Free Space Green’s Functions for Steady Stokes Flow

Consider the fundamental solution of the steady Stokes equation

−∇𝑝 + 𝜇∇2u + F𝛿(𝒙 − 𝒙0) = 0, ∇ · u = 0, (2.17)

where 𝑝 is the pressure field, u is the velocity field, and F𝛿(𝒙 − 𝒙0) is the force per
unit volume acting on the fluid at 𝒙0. The linearity of the Stokes equation allows
us to write the velocity field as

𝑢𝑖(𝒙) =
1

8𝜋𝜇𝒢𝑖 𝑗(𝒙 , 𝒙0)𝐹𝑗 . (2.18)
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Here 𝒙 is the target point, 𝒙0 is the source point, and 𝓖 is the velocity Green’s
function of the Stokes equation. Similarly, the pressure field and the stress tensor
can be written in terms of their Green’s function as:

𝑝(𝒙) = 1
8𝜋𝒫𝑗(𝒙 , 𝒙0)𝐹𝑗 , 𝜎𝑖 𝑗(𝒙) =

1
8𝜋𝒯𝑖 𝑗𝑘(𝒙 , 𝒙0)𝐹𝑘 . (2.19)

There are different types of Green’s functions based on the domain of the flow.
We are interested in the unbounded domain, which requires the velocity field of
equation (2.17) to decay at infinity. Taking the divergence of equation (2.17) gives

∇2𝑝 = 𝑭 · ∇𝛿(𝒙 − 𝒙0) = −𝑭 · ∇∇2
[

1
4𝜋𝑟

]
, 𝒓 ≡ 𝒙 − 𝒙0, 𝑟 ≡ |𝒓|,

where we have used the free space Green’s function of the Laplace equation to
rewrite the 𝛿(𝒓) function in three dimensions. Requiring that the pressure goes to
zero at infinity, we get

𝑝(𝒙) = 1
8𝜋𝑭 · 2𝒓

𝑟3 =⇒ 𝓟 (𝒙 , 𝒙0) =
2𝒓
𝑟3 . (2.20)

Using this solution for pressure in equation (2.17), we have

𝜇∇2𝒖 =
1

4𝜋𝑭 ·
[
𝜹∇2 − ∇∇

] 1
𝑟
.

Note that 𝜹 denotes the identity tensor. Since 𝑟−1 = ∇2(𝑟/2), we have

𝜇∇2𝒖 =
1

4𝜋𝑭 ·
[
𝜹∇2 − ∇∇

] 1
2∇

2𝑟

The Laplacian can be factored out from the above equation, given that the velocity
field decays at infinity. Therefore, the Stokeslet, or the velocity Green’s function,
is given by

𝒖(𝒙) = 1
8𝜋𝜇𝑭 ·𝓖(𝒙 , 𝒙0), 𝓖(𝒙 , 𝒙0) =

𝜹
𝑟
+ 𝒓𝒓
𝑟3 . (2.21)

The velocity field due to a point force is commonly referred to as Stokeslet, and is
shown in Figure 2.2. By construction, we have

𝜕𝑗𝒢𝑖 𝑗(𝒙 , 𝒙0) = 0. (2.22)

Note that 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗+𝜇(𝜕𝑗𝑢𝑖+𝜕𝑖𝑢𝑗), which gives the Green’s function of the stress
tensor as

𝒯𝑖 𝑗𝑘(𝒙 , 𝒙0) = −𝒫𝑘𝛿𝑖 𝑗 + 𝜕𝑗𝒢𝑖𝑘 + 𝜕𝑖𝒢𝑗𝑘 = −
6𝑟𝑖𝑟 𝑗𝑟𝑘
𝑟5 . (2.23)

Using (2.20) and (2.21) in (2.17) we have

−𝜕𝑖𝒫𝑗 + ∇2𝒢𝑖 𝑗 = −8𝜋𝛿𝑖 𝑗𝛿(𝒙 − 𝒙0). (2.24)
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Using (2.23) and (2.24) gives

𝜕𝑗𝒯𝑖 𝑗𝑘(𝒙 , 𝒙0) = −8𝜋𝛿𝑖𝑘𝛿(𝒙 − 𝒙0). (2.25)

Equations (2.25) will be used in proving integral properties of the Green’s function
of the stress tensor.

2.1.4 Integral Representation of the Steady Stokes Equation

We want to represent the velocity field, satisfying the steady Stokes equation,
outside a rigid body in an unbounded domain in terms of integrals over the
surface of the body. Recall the generalised reciprocal theorem given by equation
(2.8). Let us use (𝒖(1), 𝝈(1)) = (𝒖 , 𝝈) as the desiredfields satisfying the homogeneous
steady Stokes equation in the fluid domain 𝒟, and (𝒖(2), 𝝈(2)) as the auxiliary fields
due to a point force 𝑭 located at 𝒙0, either inside the open fluid domain 𝒟 or
outside the domain R3\𝒟, but not at the boundary 𝜕𝒟. Note that 𝒟 denotes
closure of the open domain 𝒟, i.e. 𝒟 = 𝒟 ∪ 𝜕𝒟. Therefore, the auxiliary fields
satisfy

∇ · 𝝈(2)(𝒙) = −𝑭𝛿(𝒙 − 𝒙0), (2.26a)

𝒖(2)(𝒙) = 1
8𝜋𝜇𝑭 ·𝓖(𝒙 , 𝒙0), 𝝈(2)(𝒙) = 1

8𝜋𝑭 · 𝓣 (𝒙 , 𝒙0). (2.26b)

Using equation (2.26) in the generalised reciprocal theorem (equation (2.8)), and
factoring out the arbitrary force 𝑭 , we have

− 1
8𝜋

∮
𝜕𝒟

𝑢𝑗(𝒙)𝒯𝑖 𝑗𝑘(𝒙0, 𝒙)𝑛̂𝑘(𝒙) 𝑑𝑆(𝒙)

− 1
8𝜋𝜇

∮
𝜕𝒟

𝒢𝑖 𝑗(𝒙0, 𝒙)𝜎𝑗𝑘(𝒙)𝑛̂𝑘(𝒙) 𝑑𝑆(𝒙) =

𝑢𝑖(𝒙0), 𝒙0 ∈ 𝒟 ,

0, 𝒙0 ∉ 𝒟 .
(2.27)

Here we have used the fact that 𝓖(𝒙 , 𝒙0) = 𝓖(𝒙0, 𝒙), 𝓣 (𝒙 , 𝒙0) = −𝓣 (𝒙0, 𝒙), and
𝒏̂ = −𝒏 is the normal vector pointing towards the fluid domain 𝒟, as shown in
Figure 2.1. The integral representation of the Stokes equation, given by (2.27),
states that the velocity field inside any point in the fluid domain 𝒟 can be obtained
using the information on the boundary of the domain 𝜕𝒟.

The above integral equation (2.27) can be simplified for the case of a rigid body
in Stokes flow. We note that for the Stokes flow outside a rigid body, the boundary
𝜕𝒟 consists of the particle surface 𝑆𝑝 and the surface ‘at infinity’ 𝑆∞. Moreover,
the boundary condition for the fluid velocity is

𝒖(𝒙) = 𝑽 +𝛀 × (𝒙 − 𝒙𝑐) = 𝒗RBM(𝒙), 𝒙 ∈ 𝑆𝑝
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Figure 2.1: The domain of interest, 𝒟, with normal vectors 𝒏̂ pointing towards 𝒟.
Fluid velocity at any point in the domain 𝒟 can be obtained by integrating over
the boundary of the domain, 𝜕𝒟, which, in the case of an unbounded domain,
includes the ‘surface at infinity’ 𝑆∞.

and 𝒖(𝒙) → 0 as |𝒙| → ∞. Here 𝑽 and 𝛀 are respectively the linear and angular
velocity of the rigid body with centre of mass at 𝒙𝑐 . Therefore, we have

𝑢𝑖(𝒙0) = − 1
8𝜋

∮
𝑆𝑝

𝑣RBM
𝑗 (𝒙)𝒯𝑖 𝑗𝑘(𝒙0, 𝒙)𝑛̂𝑘(𝒙) 𝑑𝑆(𝒙)

− 1
8𝜋𝜇

∮
𝑆𝑝

𝜎𝑗𝑘(𝒙)𝑛̂𝑘(𝒙)𝒢𝑖 𝑗(𝒙0, 𝒙) 𝑑𝑆(𝒙), 𝒙0 ∈ 𝒟 . (2.28)

The contribution from 𝑆∞ is zero because the velocity field decays to zero at
infinity. Note that the rigid body velocity also satisfies the steady Stokes equation
with stress tensor given by a constant isotropic pressure 𝑝0. Using the integral
representation for 𝒗RBM inside the rigid body, we have

0 = − 1
8𝜋

∮
𝑆𝑝

𝑣RBM
𝑗 (𝒙)𝒯𝑖 𝑗𝑘(𝒙0, 𝒙)𝑛̂𝑘(𝒙) 𝑑𝑆 + 𝑝0

8𝜋𝜇

∮
𝑆𝑝

𝑛̂ 𝑗(𝒙)𝒢𝑖 𝑗(𝒙0, 𝒙) 𝑑𝑆, 𝒙0 ∈ 𝒟

(2.29)
Owing to the incompressibility of the Stokeslet (equation (2.22)), the second term
on the right-hand side of equation (2.29) is zero. Therefore, equation (2.28) reduces
to

𝑢𝑖(𝒙0) = − 1
8𝜋𝜇

∮
𝑆𝑝

𝜎𝑗𝑘(𝒙)𝑛̂𝑘(𝒙)𝒢𝑖 𝑗(𝒙0, 𝒙) 𝑑𝑆(𝒙), 𝒙0 ∈ 𝒟 . (2.30)

The generalization of equation (2.30) to multiple bodies in the presence of external
steady Stokes flow is straightforward. The complete solution in this case is
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given by the sum of the Stokeslet integrals over the surfaces of each rigid body,
supplemented by the external flow velocity [10].

It is easy to interpret equation (2.30). The term on the right-hand side of
equation (2.30) is called the single-layer potential, and it denotes the velocity field
due to a ‘single layer’ of forces of strength 𝝈 · 𝒏̂ distributed on the surface of the
rigid body.

Returning to the general form of integral representation given by equation
(2.27), the second term on the left-hand side of equation (2.27) is called the double-
layer potential. The interpretation of the double-layer potential is more subtle, as
discussed below.

2.1.5 Interpretation of The Double-Layer Potential

Recall from equation (2.23) we have,

𝒯𝑖 𝑗𝑘 = −𝒫𝑘𝛿𝑖 𝑗 + (𝜕𝑗𝒢𝑖𝑘 + 𝜕𝑖𝒢𝑗𝑘).

Let us understand each of the terms on the right-hand side in more detail.

2.1.5.1 The Potential Source

Consider a potential flow due to a point source, described by 𝒖 = ∇𝜙, with
∇ · 𝒖 = ∇2𝜙 = 𝑄𝛿(𝒙), where 𝑄 > 0 denotes the strength of the point source. The
solution is simply given by

𝜙(𝒙) = − 𝑄

4𝜋|𝒙| , 𝒖(𝒙) = 𝑄𝒙
4𝜋|𝒙|3 . (2.31)

Comparing the flow due to a source to the Green’s function of the pressure 𝓟 , it
is clear that 𝓟 (𝒙 , 𝒙0) represents fluid flow at point 𝒙, due to a point source of unit
strength located at 𝒙0.

2.1.5.2 The Rotlet and the Stresslet

Consider steady Stokes fluid flow due to two point forces of equal and opposite
strength |𝑭|, acting at 𝒙0 + 𝒅/2 and 𝒙0 − 𝒅/2, on the fluid. The velocity field for
such a flow is given by

𝒖(𝒙) = 1
8𝜋𝜇𝑭 · [𝓖(𝒙 , 𝒙0 + 𝒅/2) −𝓖(𝒙 , 𝒙0 − 𝒅/2)].

Taking the limit |𝑭| → ∞, |𝒅| → 0, such that 𝐹𝑗𝑑𝑘 ≡ −𝐷𝑗𝑘 remains constant, we
get flow due to a force dipole as

𝑢𝑖(𝒙) = − 1
8𝜋𝜇𝐷𝑗𝑘

𝜕

𝜕𝑥0𝑘
𝒢𝑖 𝑗(𝒙 , 𝒙0) =

1
8𝜋𝜇𝐷𝑗𝑘𝜕𝑘𝒢𝑖 𝑗(𝒙 , 𝒙0). (2.32)
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(b) (c)

Figure 2.2: Streamlines of the velocity fields produced by various singularities at
the origin. (a) Stokeslet centered at the origin with the force on the fluid indicated
by the black arrow. (b) Rotlet centered at the origin, with the torque on the fluid
indicated by the black arrow. The red arrows represent two equal and opposite
forces, which, in the limit of vanishing separation and increasing magnitude,
produce a point torque. (c) Stresslet centered at the origin. The red arrows show
two equal and opposite forces that, in the same limit, give rise to the stresslet field.

Since 𝜕𝑗𝒢𝑖 𝑗 = 0, the isotropic part of the dipole 𝐷𝑗𝑘 does not contribute to the
velocity field. Therefore, we will only deal with the traceless part of 𝐷𝑗𝑘 given by
𝐷𝑗𝑘 − (1/3)𝐷𝑛𝑛𝛿 𝑗𝑘 . We can further decompose the traceless dipole into symmetric
part 𝑆 𝑗𝑘 = 𝑆𝑘 𝑗 and antisymmetric part 𝑇𝑗𝑘 = −𝑇𝑘 𝑗 as

𝐷𝑗𝑘 −
1
3𝐷𝑛𝑛𝛿 𝑗𝑘 = 𝑇𝑗𝑘 + 𝑆 𝑗𝑘 . (2.33)

Note that by construction, 𝑇𝑗 𝑗 = 0, 𝑆 𝑗 𝑗 = 0. Using equation (2.33) in equation (2.32),
we have

𝑢𝑖 =
1

8𝜋𝜇
𝑇𝑗𝑘

2 (𝜕𝑘𝒢𝑖 𝑗 − 𝜕𝑗𝒢𝑖𝑘)︸                       ︷︷                       ︸
Rotlet

+ 1
8𝜋𝜇

𝑆 𝑗𝑘

2 (𝜕𝑘𝒢𝑖 𝑗 + 𝜕𝑗𝒢𝑖𝑘)︸                        ︷︷                        ︸
Stresslet

. (2.34)

The antisymmetric dipole contribution to the velocity field is called the rotlet, and
the symmetric dipole contribution is called the stresslet [10, 11], as shown in Figure
2.2.

To understand the stresslet and the rotlet in more detail, it is informative to
look at the force density due to the dipole 𝐷𝑗𝑘 . The velocity field in equation (2.32)
corresponds to the stress tensor 𝜎𝑖 𝑗 which satisfies

𝜕𝑗𝜎𝑖 𝑗(𝒙) = − lim
|𝑭|→∞
|𝒅|→0

𝐹𝑖[𝛿(𝒙 − 𝒙0 − 𝒅/2) − 𝛿(𝒙 − 𝒙0 + 𝒅/2)] = −𝜕𝑗(𝐷𝑖 𝑗𝛿(𝒙 − 𝒙0)).

Therefore, the dipole 𝐷𝑖 𝑗 can be thought of as the point stress acting on the fluid
due to the dipole. Rewriting the antisymmetric part of the dipole 𝑇𝑖 𝑗 in terms of a
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(a) (b)

Figure 2.3: Redrawn from Kim & Karilla [10]. Schematic of the velocity stream-
lines due to double-layer potential. The double-layer potential consists of two
contributions: (a) from point sources (black arrows), and (b) from stresslets (force
bilayer, shown as black arrows), both distributed along the boundaries of the
domain (taken here to be the x-axis). (a) Point sources contribute to a discontinuity
in the normal component of the velocity field across the boundary. (b) Stresslets
contribute to a discontinuity in the tangential component of the velocity field
across the boundary.

pseudo-vector 𝑇𝑘 , we have

𝑇𝑖 𝑗 =
1
2𝜖𝑖 𝑗𝑘𝑇𝑘 =⇒ 𝑇𝑘 = 𝜖𝑘𝑖𝑗𝑇𝑖 𝑗 = lim

|𝑭|→∞
|𝒅|→0

(𝒅 × 𝑭)𝑘 , (2.35)

where 𝜖𝑖 𝑗𝑘 is the Levi-Civita symbol. Therefore, the antisymmetric part𝑇𝑖 𝑗𝛿(𝒙−𝒙0)
can be understood in terms of a point torque 𝑇𝑘𝛿(𝒙 − 𝒙0) acting on the fluid. Using
the decomposition (2.33), the steady Stokes equation in the presence of a force
dipole reads,

∇ · 𝝈(𝒙) + ∇ · [𝑺𝛿(𝒙 − 𝒙0)] +
1
2∇ × [𝑻𝛿(𝒙 − 𝒙0)] + ∇

[
1
3𝐷𝑛𝑛𝛿(𝒙 − 𝒙0)

]
= 0. (2.36)

Since 𝑺 represents a symmetric stress acting on the fluid, the flow associated with
𝑺 is called a stresslet. Similarly, 𝑻 represents the torque due to a dipole on the fluid,
and the associated flow is called a rotlet. The last term on the right-hand side of
equation (2.36) appears as an isotropic stress acting radially outwards on the fluid.
This isotropic stress is balanced by the pressure to enforce incompressibility and
does not lead to any flow field, as seen by its absence from equation (2.34).

Now that we understand each part that makes up 𝒯𝑖 𝑗𝑘 = −𝒫𝑖𝛿𝑘 𝑗+(𝜕𝑗𝒢𝑖𝑘+𝜕𝑘𝒢𝑖 𝑗)
(see equation (2.23)), we can see why the first term on the right-hand side of
equation (2.27) is called the double layer potential. The term 𝑢𝑗𝒯𝑖 𝑗𝑘 𝑛̂𝑘 represents
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the flow due to a point source of strength 𝑢𝑗 𝑛̂ 𝑗 and the stresslet of strength 𝑢𝑗 𝑛̂𝑘 .
The integral of these quantities over the boundaries represents point sources and
force dipoles (two layers of forces) distributed on the surface of the body, as shown
in Figure 2.3. This interpretation highlights an important point about the double-
layer potential. The flow due to the double-layer potential is discontinuous across
a boundary, as shown in Figure 2.3. This fact plays a central role in the boundary
integral formulation in terms of the double-layer potential, yielding a second-kind
integral equation.

2.1.6 Multipole Expansion

Returning to the case of a rigid body in steady Stokes flow, we have the integral
form for the fluid velocity outside the rigid body given by equation (2.30). Since
the integral is evaluated over the surface of the body, the resulting velocity field
inherently depends on the geometry of the rigid body. However, at distances
much larger than the characteristic size of the body, the influence of these geo-
metric details diminishes, and the velocity field exhibits universal features. This
asymptotic behaviour is systematically captured through a multipole expansion.
Multipole expansion relies on the idea that the evaluation point 𝒙0 of the velocity
field is far away from the source point 𝒙, i.e., |𝒙| ≪ |𝒙0|, with the origin located
somewhere inside the rigid body. One can then use the Taylor expansion to write

𝒢𝑖 𝑗(𝒙0, 𝒙) =
∞∑
𝑛=0

1
𝑛!(𝒙 · ∇𝒙)𝑛 𝒢𝑖 𝑗(𝒙0, 𝒙)

����
𝒙=0

=

∞∑
𝑛=0

(−1)𝑛
𝑛! (𝒙 · ∇𝒙0)𝑛 𝒢𝑖 𝑗(𝒙0, 0).

Using this in equation (2.30), we get the far-field fluid velocity outside the rigid
body as

𝑢𝑖(𝒙0) = − 1
8𝜋𝜇

∮
𝑆𝑝

𝜎𝑗𝑘(𝒙)𝑛̂𝑘(𝒙)
∞∑
𝑛=0

(−1)𝑛
𝑛! (𝒙 · ∇𝒙0)𝑛 𝒢𝑖 𝑗(𝒙0, 0) 𝑑𝑆(𝒙)

= − 1
8𝜋𝜇𝐹

ℎ
𝑗 𝒢𝑖 𝑗(𝒙0, 0) +

1
8𝜋𝜇𝐷𝑗𝑘

𝜕

𝜕𝑥0𝑘
𝒢𝑖 𝑗(𝒙0, 0) + ..., (2.37)

where
𝐹ℎ𝑗 =

∮
𝑆𝑝

𝜎𝑗𝑘(𝒙)𝑛̂𝑘(𝒙) 𝑑𝑆(𝒙), (2.38a)

𝐷𝑗𝑘 =

∮
𝑆𝑝

𝑥𝑘𝜎𝑗𝑚(𝒙)𝑛̂𝑚(𝒙) 𝑑𝑆(𝒙). (2.38b)

Therefore, the far field velocity from a body can be written in terms of a Stokeslet
with strength equal to the hydrodynamic force on the body 𝑭 ℎ which decays as

33



CHAPTER 2. MATHEMATICAL BACKGROUND

|𝒙0|−1, a force dipole with strength 𝑫 which decays as |𝒙0|−2 and higher order
multipole moments which decays faster than |𝒙0|−2. From our previous discussion,
we can decompose the force dipole 𝑫 into a symmetric traceless part 𝑺 with the
associated flow called a stresslet and an antisymmetric part 𝑻 with the associated
flow called a rotlet. Using equations (2.33) and (2.35), we have

𝑇𝑗𝑘 =
1
2(𝐷𝑗𝑘 − 𝐷𝑘 𝑗) =

1
2

∮
𝑆𝑝

[𝝈 · 𝒏̂)𝑗𝑥𝑘 − (𝝈 · 𝒏̂)𝑘𝑥 𝑗] 𝑑𝑆(𝒙) (2.39a)

𝑇𝑖 = 𝜖𝑖 𝑗𝑘𝑇𝑗𝑘 = 𝜖𝑖 𝑗𝑘

∮
𝑆𝑝

(𝝈 · 𝒏̂)𝑗𝑥𝑘 𝑑𝑆(𝒙) = −𝑇ℎ𝑖 , (2.39b)

𝑆 𝑗𝑘 =
1
2(𝐷𝑗𝑘 + 𝐷𝑘 𝑗) −

1
3𝐷𝑚𝑚𝛿 𝑗𝑘 =

1
2

∮
𝑆𝑝

[𝝈 · 𝒏̂)𝑗𝑥𝑘 + (𝝈 · 𝒏̂)𝑘𝑥 𝑗] 𝑑𝑆(𝒙)

− 1
3𝛿 𝑗𝑘

∮
𝑆𝑝

(𝝈 · 𝒏̂)𝑚𝑥𝑚 𝑑𝑆(𝒙). (2.39c)

Note that equation (2.39b) shows that the antisymmetric part of the force dipole 𝑫

corresponds to the negative of the hydrodynamic torque𝑻 ℎ on the body. Therefore,
the far-field velocity due to a body can be written in terms of Stokeslet, rotlet, and
stresslet as

𝑢𝑖(𝒙0) =
1

8𝜋𝜇


−𝐹ℎ𝑗 𝒢𝑖 𝑗(𝒙0, 0)︸          ︷︷          ︸

Stokeslet

+ 1
2𝜖 𝑗𝑚𝑘𝑇

ℎ
𝑚

𝜕

𝜕𝑥0𝑘
𝒢𝑖 𝑗(𝒙0, 0)︸                       ︷︷                       ︸

Rotlet

+ 𝑆 𝑗𝑘
𝜕

𝜕𝑥0𝑘
𝒢𝑖 𝑗(𝒙0, 0)︸                ︷︷                ︸

Stresslet


+ ...

(2.40)
In the overdamped limit, the hydrodynamic force 𝑭 ℎ and hydrodynamic torque
𝑻 ℎ are negative of the external force and torque acting on the body. Therefore, for a
body under an external force, like gravity, the leading order flow field is produced
due to the Stokeslet. For neutrally buoyant bodies experiencing no external torque,
the leading-order contribution to the flow field arises from the stresslet. This is
typically the case for many microorganisms [11, 13]. As discussed previously, the
stresslet contributes to the symmetric stress tensor in the fluid (see equation (2.36)).
Thus, a suspension of neutrally buoyant particles leads to a change in the viscosity
of the fluid.

2.2 A Quicker Review of Electrostatics

The governing equation for the electric field 𝑬 in the realm of electrostatics is given
by [59, 60, 97]

∇ · 𝑬(𝒙) = 𝜌(𝒙)/𝜖0, ∇ × 𝑬(𝒙) = 0 (2.41a)
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=⇒ 𝑬(𝒙) = −∇𝜙(𝒙), ∇2𝜙(𝒙) = −𝜌(𝒙)/𝜖0. (2.41b)

Here 𝜌 is the charge density, 𝜖0 is the permittivity of the free space, and 𝜙(𝒙) is
the scalar potential. The charge density on the surface 𝑆𝑝 of a perfect conductor
can be obtained in terms of the potential outside its surface as [59, 60, 97]

𝜎(𝒙) = −𝜖0𝒏̂(𝒙) · ∇𝜙(𝒙), 𝒙 ∈ 𝑆𝑝 .

The normal vector 𝒏̂ points outside the surface of the conductor. Therefore, the
total charge on the surface is given by

𝑄 =

∮
𝑆𝑝

𝜎(𝒙)𝑑𝑆(𝒙) = −𝜖0

∮
𝑆𝑝

𝒏̂(𝒙) · ∇𝜙(𝒙) 𝑑𝑆(𝒙), 𝒙 ∈ 𝑆𝑝 . (2.42)

We shall exclusively work with the scalar potential, which is sufficient to describe
various phenomena in electrostatics.

2.2.0.1 Free Space Green’s Function in Electrostatics

Consider the fundamental solution of the electrostatic potential in an unbounded
domain

∇2𝜙(𝒙) = −𝑄
𝜖0

𝛿(𝒙 − 𝒙0); 𝜙(𝒙) → 0 as |𝒙| → ∞, (2.43)

where 𝑄𝛿(𝒙 − 𝒙0) is the point charge density located at 𝒙0. This can be easily
solved either using Fourier transforms or by noting that ∇2|𝒙|−1 = −4𝜋𝛿(𝒙). The
fundamental solution is given by [59, 60, 98]

𝜙(𝒙) = 𝑄

4𝜋𝜖0
𝒢(𝒙 , 𝒙0), 𝒢(𝒙 , 𝒙0) ≡

1
|𝒙 − 𝒙0|

. (2.44)

Here 𝒙 is the target point, 𝒙0 is the source point, and 𝒢 is the Green’s function for
the electrostatic potential. Note that the Green’s function satisfies

∇2𝒢(𝒙 , 𝒙0) = −4𝜋𝛿(𝒙). (2.45)

2.2.1 Green’s Reciprocal Theorem in Electrostatics

The Lorentz reciprocal theorem in microhydrodynamics has an analog in elec-
trostatics, known as Green’s reciprocal theorem. Both theorems are based on
the same principle of relating the integrals of two fields over a common domain.
Consider two electrostatic potentials 𝜙(1) and 𝜙(2) in the same domain 𝒟. Using
the divergence theorem, we have∮

𝜕𝒟
𝜙(1)[𝒏 · ∇𝜙(2)] 𝑑𝑆 −

∮
𝜕𝒟

𝜙(2)[𝒏 · ∇𝜙(1)] 𝑑𝑆

=

∫
𝒟
𝜙(1)∇2𝜙(2) 𝑑𝑉 −

∫
𝒟
𝜙(2)∇2𝜙(1) 𝑑𝑉. (2.46)
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Here 𝒏 is the normal vector to the boundary of the domain, denoted by 𝜕𝒟,
pointing away from the domain 𝒟. Equation (2.46) is called the generalised
reciprocal theorem in electrostatics.

A corollary of the reciprocal theorem is the linear relationship between total
charge and the potential on the surface of a perfect conductor. Consider two
separate configurations, each involving a single perfect conductor. The electrostatic
potentials 𝜙1(𝒙) and 𝜙2(𝒙) correspond to conductors carrying charges 𝑄1 and 𝑄2,
and held at surface potentials 𝑉1 and 𝑉2, respectively. Since the potential field
satisfies the homogeneous Laplace equation outside the conductor in both cases,
the reciprocal theorem yields

𝑉1

∮
𝑆𝑝

[𝒏 · ∇𝜙2] 𝑑𝑆 = 𝑉2

∮
𝑆𝑝

[𝒏 · ∇𝜙1] 𝑑𝑆 =⇒ 𝑉1𝑄2 = 𝑉2𝑄1.

The fact that 𝑄/𝑉 is identical in both cases implies that it depends solely on
the surface geometry, which remains unchanged between the two configurations.
This proportionality constant 𝐶 = 𝑄/𝑉 , which relates charge to potential on a
conductor, is called capacitance of a conductor, which only depends on the geometry
of the conductor. The concept of capacitance, or its inverse called the potential
matrix, straightforwardly generalises to multiple conductors. The potential matrix
is thoroughly used in Chapter 5 of this thesis.

2.2.2 Integral Representation of Electrostatic Potential

Let 𝜙(1) = 𝜙(𝒙) be the desired electrostatic potential satisfying the homogeneous
Laplace equation in the domain 𝒟. Let 𝜙(2) be the auxiliary electrostatic potential
due to a point charge 𝑄 located at 𝒙0, either in the domain 𝒟, or outside the
domain R3\𝒟, but not at the boundary 𝜕𝒟. The auxiliary potential satisfies

∇2𝜙(2)(𝒙) = −𝑄
𝜖0

𝛿(𝒙 − 𝒙0), 𝜙(2)(𝒙) = 𝑄

4𝜋𝜖0
𝒢(𝒙 , 𝒙0).

Using the reciprocal theorem for electrostatics (2.46) and factoring out the arbitrary
charge 𝑄, we have

1
4𝜋

∮
𝜕𝒟

𝜙(𝒙)𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙)

− 1
4𝜋

∮
𝜕𝒟

𝒢(𝒙 , 𝒙0)𝒏̂(𝒙) · ∇𝜙(𝒙) 𝑑𝑆(𝒙) =

𝜙(𝒙0), 𝒙0 ∈ 𝒟 ,

0, 𝒙0 ∉ 𝒟 .
(2.47)

Here 𝒏̂ again points towards the domain of interest 𝒟 (see figure 2.1). The first
term on the left-hand side of equation (2.47) is called the double-layer potential,
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and the second term is called the single-layer potential. The nomenclature is clear
as they represent potential due to a dipole layer and a single layer of charges
distributed over the boundaries of the domain.

The integral representation for the potential outside a perfect conductor can be
simplified using the fact that the potential inside a perfect conductor is constant
and equal to its surface value, 𝑉0. This is similar to the single-layer representation
of rigid bodies in Stokes flow. Applying the reciprocal theorem inside the surface
of the conductor with the target point 𝒙0 lying in the domain 𝒟, which is outside
the conductor, we have

0 =
1

4𝜋

∮
𝑆𝑝

𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙), 𝒙0 ∈ 𝒟 (2.48)

Equation (2.48) can also be interpreted as stating that the flux of fluid through a
closed surface, due to a source located outside the enclosed volume, is zero. Using
equation (2.48) in the equation (2.47) and noting that, as the potential fields decay
to zero at infinity, the boundary contribution comes only from the surface of the
conductor, we have

𝜙(𝒙0) = − 1
4𝜋

∮
𝑆𝑝

𝒢(𝒙0, 𝒙)𝒏̂(𝒙) · ∇𝜙(𝒙) 𝑑𝑆(𝒙), 𝒙0 ∈ 𝒟 . (2.49)

2.2.3 Multipole Expansion in Electrostatics

Similar to the case in Stokes flow, one can obtain the universal structure of the
potential field outside a conductor at distances much larger than the typical size
of the conductor using the multipole expansion. For simplicity, we assume that
the origin is located somewhere inside the conductor and |𝒙| ≪ |𝒙0|. Using the
Taylor expansion

𝒢(𝒙0, 𝒙) =
∞∑
𝑛=0

1
𝑛!(𝒙 · ∇𝒙)𝑛𝒢(𝒙0, 𝒙)

����
𝒙=0

=

∞∑
𝑛=0

(−1)𝑛
𝑛! (𝒙 · ∇𝒙0)𝑛𝒢(𝒙0, 0),

in equation (2.49), we have

𝜙(𝒙0) = − 1
4𝜋

∮
𝑆𝑝

𝒏̂(𝒙) · ∇𝜙(𝒙)
∞∑
𝑛=0

(−1)𝑛
𝑛! (𝒙 · ∇𝒙0)𝑛𝒢(𝒙0, 0) 𝑑𝑆(𝒙)

=
𝑄

4𝜋𝜖0
𝒢(𝒙0, 0) −

𝒅
4𝜋𝜖0

· ∇𝒙0𝒢(𝒙0, 0) + ..., (2.50)

where 𝑄 is the total charge on the conductor and 𝒅 is the dipole moment of the
conductor, given by

𝑄 = −𝜖0

∮
𝑆𝑝

𝒏̂(𝒙) · ∇𝜙(𝒙) 𝑑𝑆(𝒙), (2.51a)
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𝒅 = −𝜖0

∮
𝑆𝑝

𝒙[𝒏̂(𝒙) · ∇𝜙(𝒙)] 𝑑𝑆(𝒙). (2.51b)

The higher-order multipole moments can be computed by taking higher-order
moments of the surface charge density−𝜖0𝒏̂ ·∇𝜙. Note that for a charged conductor,
the leading order contribution to the potential decays as |𝒙0|−1. For an uncharged
conductor, the dipole moment contributes to the leading-order potential field,
which decays as |𝒙0|−2.

The main ideas covered up to now for both microhydrodynamics and elec-
trostatics will help in studying the hydrodynamic and electrostatic interactions
between multiple rigid bodies and conductors, respectively. Comprehensive
details on these topics can be found in [10, 59, 60].

2.3 Singularity Solutions in Electrostatics

We are interested in obtaining the electrostatic potential outside a perfect conductor
in an unbounded domain. Let 𝑆𝑝 denote the surface of the conductor. This requires
solving the boundary value problem given by

∇2𝜙(𝒙) = 0, (2.52a)

𝜙(𝒙) = 𝜙0, 𝒙 ∈ 𝑆𝑝 , (2.52b)

𝜙(𝒙) → 0 as |𝒙| → ∞. (2.52c)

Here 𝜙0 is the constant potential over the surface of the conductor. Note that
any linear functional of the electrostatic Green’s function, whether an integral or
a differential operator, satisfies the homogeneous Laplace equation outside the
region 𝑆𝑝 , provided the source of the Green’s function lies outside the domain, i.e.,
within the conductor. This forms the basis of singularity solutions. A singularity
solution to a given boundary value problem consists of a superposition of such
linear functionals of the Green’s function, constructed to satisfy the prescribed
boundary conditions. We now review singularity solutions for spherical and
spheroidal conductors [99].

2.3.1 Charged Sphere

Consider a sphere with radius 𝑎, centered at the origin. The singularity solution
is simply given by the point charge placed at the centre of the sphere as

𝜙(𝒙) = 𝑎𝜙0𝒢(𝒙 , 0) = 𝜙0
𝑎

|𝒙| . (2.53)
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It is easy to see that the solution satisfies the Laplace equation outside the sphere
and the boundary conditions given by equation (2.52). The total charge 𝑄 on the
surface of the sphere is given by

𝑄 = −𝜀0

∮
𝑆𝑝

𝒏̂ · ∇𝜙 𝑑𝑆 = − 𝜀0

∫
𝑉𝑝

∇2𝜙 𝑑𝑉 = (4𝜋𝑎𝜖0)𝜙0. (2.54)

Consequently, the capacitance of the sphere is given by 𝐶 = 𝑄/𝜙0 = 4𝜋𝑎𝜖0 [60, 64,
97, 100].

2.3.2 Charged Prolate Spheroid

Any point 𝒙 on a prolate spheroid 𝑆𝑝 with semi-major axis 𝑎 and aspect ratio
𝜅(> 1), oriented along the unit vector 𝒑 and centered at origin is given by

𝒙 ·
[

1
𝑎2 𝒑𝒑 + 1

𝑎2𝜅−2 (𝜹 − 𝒑𝒑)
]
· 𝒙 = 1, 𝒙 ∈ 𝑆𝑝 . (2.55)

The singularity solution to equation (2.52) can be represented in terms of a uniform
charge distribution located along the symmetry axis of 𝑆𝑝 as [99]

𝜙(𝒙) = 𝜙0

{
1

2 arctanh 𝑒

∫ 𝑎𝑒

−𝑎𝑒
𝒢(𝒙 , 𝜉𝒑) 𝑑𝜉

}
, (2.56)

where 𝑒 =
√

1 − 𝜅−2 is the eccentricity. The total charge 𝑄 on the surface of 𝑆𝑝 is
given by

𝑄 = −𝜀0

∮
𝑆𝑝

𝒏̂ · ∇𝜙 𝑑𝑆 = − 𝜀0

∫
𝑉𝑝

∇2𝜙 𝑑𝑉 =

[
4𝜋𝑎𝜀0𝑒

arctanh 𝑒

]
𝜙0, (2.57)

Consequently, the capacitance 𝐶 ≡ 𝑄/𝜙0 of the perfectly conducting prolate
spheroid 𝑆𝑝 is given by [60, 64, 97, 100]

𝐶 =
4𝜋𝑎𝜀0𝑒

arctanh 𝑒 . (2.58)

Note that as lim𝑒→0 𝐶 = 4𝜋𝑎𝜀0, which is the capacitance of a sphere of radius 𝑎.

2.3.3 Charged Oblate Spheroid

The singularity solution of an oblate spheroid can be derived from that of a prolate
spheroid using the eccentricity transformation [101]

𝑒 → 𝑖𝑒√
1 − 𝑒2

. (2.59)
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Therefore, the potential field due to an isolated oblate spheroid described by
equation (2.55) with 𝜅 < 11 is given by:

𝜙(𝒙) = 𝜙0

{
1

2 arcsin 𝑒

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅
𝒢(𝒙 , 𝑖𝜉𝒑) 𝑑𝜉

}
. (2.60)

Note that for cartesian coordinates aligned such that the unit vector 𝒑 is along the

z-axis, 𝒢(𝒙 , 𝑖𝜉𝒑) gives rise to a term 1√
𝑥2 + 𝑦2 + (𝑧 − 𝑖𝜉)2

which is singular on the

disk of radius 𝜉 in the 𝑥 − 𝑦 plane (𝑧 = 0), which corresponds to the singularity
distribution for an oblate spheroid [10].

Correspondingly, the capacitance of an isolated oblate spheroid is given by [60,
64, 97, 100]

𝐶 =
4𝜋𝑎𝜀0𝑒

𝜅 arcsin 𝑒 . (2.61)

2.3.4 Grounded Prolate Spheroid in Presence of a Uniform
Electric Field

The potential field in this case can be divided into two parts as 𝜙 = 𝜙𝑑 + 𝜙∞.
Here 𝜙𝑑 is the disturbance potential produced by the grounded prolate spheroid
to maintain zero potential on its surface, and 𝜙∞ = −𝑬∞ · 𝒙, with 𝑬∞ being the
ambient uniform electric field. The boundary value problem to be solved for 𝜙𝑑(𝒙)
outside 𝑆𝑝 in this case is

∇2𝜙𝑑(𝒙) = 0, (2.62a)

𝜙𝑑(𝒙) = 𝑬∞ · 𝒙 , 𝒙 ∈ 𝑆𝑝 , (2.62b)

𝜙𝑑(𝒙) → 0 as |𝒙| → ∞. (2.62c)

The singularity solution can be represented as [99]

𝜙𝑑(𝒙) = 𝑬∞ ·
{

3𝑋𝐶
𝑝

2𝑒3 𝒑
∫ 𝑎𝑒

−𝑎𝑒
𝜉𝒢(𝒙 , 𝜉𝒑) 𝑑𝜉

−
3𝑌𝐶𝑝
4𝑒3 (𝜹 − 𝒑𝒑) · ∇

∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2)𝒢(𝒙 , 𝜉𝒑) 𝑑𝜉

}
, (2.63)

where

𝑋𝐶
𝑝 ≡ 𝑒3

3 (arctanh 𝑒 − 𝑒)−1, 𝑌𝐶𝑝 ≡ 2𝑒3

3

(
𝑒

1 − 𝑒2 − arctanh 𝑒
)−1

. (2.64)

1the eccentricity is now given by
√

1 − 𝜅2
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The first integral term in equation (2.63) represents a linear charge distribution
along the symmetry axis, whereas the second integral term represents the parabolic
distribution of dipole moments pointing perpendicular to the symmetry axis. Note
that the charge distribution in the first integral term has a non-zero dipole moment
but zero net charge. The induced dipole moment 𝒅 is given by (see equation (2.51b))

𝒅 = −𝜀0

∮
𝑆𝑝

𝒙 𝒏̂ · ∇𝜙 𝑑𝑆 = −𝜀0

∫
𝑉𝑝

[∇𝜙 + 𝒙 ∇2𝜙] 𝑑𝑉 (2.65)

The volume integral of the gradient term doesn’t contribute since 𝜙 = 0 on 𝑆𝑝 and∫
𝑉𝑝

∇𝜙 𝑑𝑉 =

∮
𝑆𝑝

𝜙 𝒏̂ 𝑑𝑆 = 0. (2.66)

Therefore, the dipole moment is given by

𝒅 = −𝜀0

∫
𝑉𝑝

𝒙 ∇2𝜙𝑑 𝑑𝑉 = 4𝜋𝑎3𝜀0[𝑋𝐶
𝑝 𝒑𝒑 + 𝑌𝐶𝑝 (𝜹 − 𝒑𝒑)] · 𝑬∞. (2.67)

Note that lim𝑒→0 𝑋
𝐶
𝑝 = lim𝑒→0𝑌

𝐶
𝑝 = 1, resulting in lim𝑒→0 𝒅 = 4𝜋𝑎3𝜀0𝑬∞ and we

get the dipole moment of a sphere of radius 𝑎. We can rewrite equation (2.63) in
terms of the dipole moment 𝒅 as

𝜙𝑑(𝒙) = 3
8𝜋𝑎3𝑒3𝜀0

𝒅 · 𝒑
∫ 𝑎𝑒

−𝑎𝑒
𝜉𝒢(𝒙 , 𝜉𝒑) 𝑑𝜉

− 3
16𝜋𝑎3𝑒3𝜀0

𝒅 · (𝜹 − 𝒑𝒑) · ∇𝒙

∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2) 𝒢(𝒙 , 𝜉𝒑) 𝑑𝜉. (2.68)

2.3.5 Grounded Oblate Spheroid in Presence of a Uniform
Electric Field

We again use the eccentricity transformation (2.59) to obtain the dipole moment
𝒅 and disturbance potential field 𝜙𝑑(𝒙) due to a grounded oblate spheroid in the
presence of a uniform background electric field 𝑬∞. The dipole moment is given
by

𝒅 = 4𝜋𝑎3𝜀0[𝑋𝐶
𝑜 𝒑𝒑 + 𝑌𝐶𝑜 (𝜹 − 𝒑𝒑)] · 𝑬∞, (2.69)

where

𝑋𝐶
𝑜 ≡ 𝑒3

3 [𝑒(1 − 𝑒2) − (1 − 𝑒2)3/2 arcsin 𝑒]−1, (2.70a)

𝑌𝐶𝑜 ≡ 2𝑒3

3
[
𝑒(1 − 𝑒2)2 − (1 − 𝑒2)3/2 arcsin 𝑒

]−1
. (2.70b)
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The disturbance potential field is given by:

𝜙𝑑(𝒙) = 3𝜅3

8𝜋𝑎3𝑒3𝜀0

{
𝒅 · 𝒑

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅
−𝑖𝜉𝒢(𝒙 , 𝑖𝜉𝒑) 𝑑𝜉

− 1
2𝒅 · (𝜹 − 𝒑𝒑) · ∇𝒙

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

(
𝑎2𝑒2

𝜅2 − 𝜉2
)
𝒢(𝒙 , 𝑖𝜉𝒑) 𝑑𝜉

}
. (2.71)

2.4 Faxén’s Laws for Arbitrarily Shaped Conductors
in Electrostatics

Once the singularity solutions are known for a given conductor geometry, Faxén’s
laws can be used to determine the induced multipole moments on the conductor
due to an arbitrary background potential field. This approach enables analytical
expressions for the electrostatic potential outside a collection of conductors, as
each conductor induces multipole moments in response to the others. The power
of the reciprocal theorem lies in its ability to relate these induced multipole
moments to the singularity solutions. Faxén’s laws for electrostatics can be derived
analogously to those in microhydrodynamics [10], using the reciprocal theorem.
The electrostatic counterpart for spheres is detailed in [58], and we extend this
framework to arbitrarily shaped conductors.

2.4.1 Faxén’s Law for Total Charge and Potential on a Conductor

We follow the approach of [10] to relate the total charge 𝑄 on the surface of
a conductor to its surface potential 𝑉 in presence of an arbitrary background
potential field 𝝓∞(𝒙), such that 𝜙∞(𝒙) ∼ 𝒪(1/|𝒙|) as 𝒙 goes to infinity. Let us
denote the surface of an arbitrary-shaped conductor by 𝑆𝑝 . Note that total charge
on 𝑆𝑝 due to a potential 𝜙(𝒙) outside it, is given by

𝑄 = −𝜀0

∮
𝑆𝑝

∇𝜙 · 𝒏̂ 𝑑𝑆, (2.72)

where 𝒏̂ is the outward pointing normal vector to 𝑆𝑝 and 𝜀0 is the permittivity of
free space.

We use the reciprocal theorem with the details of the two fields as follows:

1. Take 𝜙1 to be the potential field satisfying the Laplace equation outside the
isolated conductor with 𝜙1 = 𝜙10 on 𝑆𝑝 , where 𝜙10 is some constant and 𝜙1

goes to zero at infinity. This is a case of an isolated conductor with some
charge 𝑄1 on its surface given by 𝑄1 = 𝐶𝜙10, where 𝐶 is the capacitance of
the conductor.
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2. Take𝜙2 to be the potentialfieldgiven by the solution of∇2𝜙2(𝒙) = −𝑄′𝜀−1
0 𝛿(𝒙−

𝒚), where 𝒚 ∈ 𝐷, with 𝜙2 = 𝑉 on 𝑆𝑝 . Here, the ambient potential field 𝜙∞
2 (𝒙)

is given by a point charge located at 𝒚, and the conductor produces a dis-
turbance field in order to satisfy the boundary condition on its surface. Let
𝑄2 be the charge on the conductor, which is to be determined using the
reciprocal theorem.

Using equations (2.46) and (2.72), we have2,

𝑄′𝜙1(𝒚) = 𝑄1𝑉 −𝑄2𝜙10

=⇒ 𝑄2𝜙10 = 𝐶𝜙10𝑉 −𝑄′𝜙1(𝒚). (2.73)

Now, 𝜙1(𝒚) can be represented in terms of singularity solution as

𝜙1(𝒚) = 𝜙10ℱ𝑉{𝒢(𝒚, 𝝃)} = 𝜙10ℱ𝑉{𝒢(𝝃, 𝒚)}. (2.74)

Here ℱ𝑉 is the corresponding linear functional and 𝝃 represents the region inside
the conductor over which the singularities are distributed. Using equations (2.4.1)
and (2.74), we have

𝑄2 = 𝐶𝑉 −𝑄′ℱ𝑉{𝒢(𝝃, 𝒚)} = 𝐶𝑉 − 4𝜋𝜖0ℱ𝑉{𝜙∞
2 (𝝃)}. (2.75)

Here we have used the fact that 𝑄′𝒢(𝝃, 𝒚) = 4𝜋𝜖0𝜙∞
2 (𝝃). However, all ambient

fields 𝜙∞(𝒙) that decay at infinity and satisfy the Laplace equation can be con-
structed using an appropriate set of point charges. Therefore, equation (2.75)
applies to a general ambient field 𝜙∞(𝒙). Thus, the relation between charge𝑄 on a
conductor and the potential𝑉 on its surface in presence of a background potential
field 𝜙∞(𝒙) is given by

𝑄 = 𝐶𝑉 − 4𝜋𝜖0ℱ𝑉{𝜙∞(𝝃)}. (2.76)

This result can be directly applied to the bodies with a known singularity
solution of the form given in equation (2.74). In particular, for a prolate spheroid
with semi-major axis 𝑎, eccentricity 𝑒, and orientation vector 𝒑, we have the
singularity representation given by equation (2.56) and capacitance by equation
(2.58). Therefore, the charge 𝑄 on the prolate spheroid in the presence of a
background potential field 𝜙∞ is given by

𝑄 =
4𝜋𝑎𝜀0𝑒

arctanh 𝑒

{
𝑉 − 1

2𝑎𝑒

∫ 𝑎𝑒

−𝑎𝑒
𝜙∞(𝒙𝑐 + 𝜉𝒑) 𝑑𝜉

}
, (2.77)

2We have used the fact that the fields involved in the problems decay fast enough far from the
conductor to have zero contribution from the surface “at infinity”.
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where 𝑐 = 𝑎𝑒 and 𝒙𝑐 denotes the centre of the prolate spheroid.
Similarly, the charge relation for an oblate spheroid with semi-major axis 𝑎 and

orientation vector 𝒑 in the presence of a background potential field 𝜙∞ is given by

𝑄 =
4𝜋𝑎𝜀0𝑒

𝜅 arcsin 𝑒

{
𝑉 − 𝜅

2𝑎𝑒

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅
𝜙∞(𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉

}
, (2.78)

2.4.2 Faxén’s Law for Induced Dipole Moment on a Conductor

To relate the induced dipole moment 𝒅 on a conductor in the presence of an ambient
potential field 𝜙∞(𝒙), we again use the reciprocal theorem with the details of the
two fields as follows:

1. Take 𝜙1 to be the potential field satisfying the Laplace equation outside the
isolated conductor with 𝜙1 = 𝑬∞

10 · 𝒙 on 𝑆𝑝 , where 𝑬∞
10 is a constant electric

field and 𝜙1 goes to zero at infinity. This is a case of the disturbance potential
produced by a grounded isolated conductor placed in a uniform ambient
field 𝑬∞

10.

2. Take𝜙2 to be the potentialfieldgiven by the solution of∇2𝜙2(𝒙) = −𝑄′𝜀−1
0 𝛿(𝒙−

𝒚), where 𝒚 ∈ 𝐷, with 𝜙2 = 0 on 𝑆𝑝 . The goal is to determine the induced
dipole moment 𝒅2 in this case.

Applying the reciprocal theorem in these two fields gives

𝑄′𝜙1(𝒚) = 𝜀0𝑬∞
10 ·

∮
𝑆𝑝

𝒙∇𝜙2 · 𝒏̂ 𝑑𝑆 = −𝑬∞
10 · 𝒅2, (2.79)

where we have used the fact that the surface charge density on the conductor
is given by 𝜎2 = −𝜀0∇𝜙2.𝒏̂ and dipole moment 𝒅2 is simply the first moment of
this charge density on the conductor. Now, 𝜙1(𝒚) can be represented in terms of
singularity solution as

𝜙1(𝒚) = 𝑬∞
10 · 𝓕 𝐸{𝒢(𝒚, 𝝃)} = 𝑬∞

10 · 𝓕 𝐸{𝒢(𝝃, 𝒚)}. (2.80)

Here 𝓕 𝐸 is the corresponding linear functional and 𝝃 represents the region inside
the conductor over which the singularities are distributed. Using this in equation
(2.79) and factoring out 𝑬∞

10, we have

𝒅2 = −𝓕 𝐸{𝑄′𝒢(𝝃, 𝒚)} = −4𝜋𝜖0𝓕 𝐸{𝜙∞
2 (𝝃)}, (2.81)

where 𝜙∞
2 is the ambient potential field in the second case. Again, for the general

ambient field 𝜙∞(𝒙) constructed using an appropriate set of point charges, the
dipole moment 𝒅 on the conductor is simply given by

𝒅 = −4𝜋𝜖0𝓕 𝐸{𝜙∞(𝝃)}. (2.82)
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This result can be directly applied to the bodies with a known singularity solu-
tion of the form given in equation (2.80). In particular, for a prolate spheroid with
semi-major axis 𝑎, eccentricity 𝑒, and orientation vector 𝒑 we have the singularity
representation given by equation (2.63). Therefore, the induced dipole moment
on the prolate spheroid in the presence of a background potential field 𝜙∞ is given
by

𝒅 = −4𝜋𝑎3𝜀0

[
3

2𝑎3𝑒3𝑋
𝐶
𝑝 𝒑

∫ 𝑎𝑒

−𝑎𝑒
𝜉 𝜙∞(𝒙𝑐 + 𝜉𝒑) 𝑑𝜉

+ 3
4𝑎3𝑒3𝑌

𝐶
𝑝 (𝜹 − 𝒑𝒑) · ∇𝒙𝑐

∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2)𝜙∞(𝒙𝑐 + 𝜉𝒑) 𝑑𝜉

]
. (2.83)

Similarly, the dipole moment of an oblate spheroid with semi-major axis 𝑎 and
orientation vector 𝒑 in the presence of a background potential field 𝜙∞ is given by

𝒅 = −4𝜋𝑎3𝜀0
3𝜅3

2𝑎3𝑒3

[
𝑋𝐶
𝑜 𝒑

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅
𝑖𝜉 𝜙∞(𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉

+ 𝑌𝐶𝑜
2 (𝜹 − 𝒑𝒑) · ∇𝒙𝑐

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

(
𝑎2𝑒2

𝜅2 − 𝜉2
)
𝜙∞(𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉

]
. (2.84)

2.5 Singularity Solutions in Microhydrodynamics

We are interested in solving for the fluid velocity field outside a rigid body moving
in otherwise quiescent fluid. Let 𝑆𝑝 denote the surface of the rigid body. This
requires solving the boundary value problem given by

𝜇∇2𝒖(𝒙) − ∇𝑝(𝒙) = 0, (2.85a)

𝒖(𝒙) = 𝑽 +𝛀 × (𝒙 − 𝒙𝑐), 𝒙 ∈ 𝑆𝑝 , (2.85b)

𝒖(𝒙) → 0, |𝒙| → ∞. (2.85c)

Here 𝑽 and 𝛀 are the linear and angular velocity of the rigid body, and 𝒙𝑐 is
the centre of mass of the rigid body. The singularity solutions for spherical and
spheroidal rigid bodies are well established. In this thesis, we require only the
singularity solutions in the absence of an imposed background flow. Accordingly,
we present the solutions in a quiescent fluid and refer the reader to Kim & Karrila
[10] for the treatment of singularity solutions in the presence of a background
flow.
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2.5.1 Rigid Body Motion of a Sphere

Consider a sphere with radius 𝑎, centred at 𝒙𝑐 , moving with velocity𝑽+𝛀×(𝒙−𝒙𝑐).
The singularity solution corresponding to (2.85) involves a Stokeslet and a potential
doublet (Laplacian of the Stokeslet), given by [10]

𝒖(𝒙) = 6𝜋𝜇𝑎𝑽 ·
(
1 + 𝑎2

6 ∇2
)
𝓖(𝒙 , 𝒙𝑐)

8𝜋𝜇 + 1
28𝜋𝜇𝑎3(𝛀 × ∇) · 𝓖(𝒙 , 𝒙𝑐)

8𝜋𝜇 . (2.86)

The structure of this singularity solution is richer than in the case of electrostatics
(see equation (2.86)). One can understand the potential doublet term as follows.
We saw that 𝓟 (𝒙 , 𝒙0) represents flow due to a point source of unit strength (see
equation (2.31)). Therefore, 𝒒 · ∇𝓟 (𝒙 , 𝒙0) represents flow due to a source-sink
dipole, i.e., source and sink placed at 𝒙0 and displaced along 𝒒/|𝒒| infinitesimally.
This flow is called the potential doublet and occurs in many singular solutions in
Stokes flow. One can use the steady Stokes equation to see that 𝒒 · ∇𝓟 (𝒙 , 𝒙0) =
𝜇𝒒 · ∇2𝓖(𝒙 , 𝒙0) for 𝒙 ≠ 𝒙0. Therefore, the structure of the singularity solution
of a sphere consists of a Stokeslet, a potential doublet, and a rotlet (last term in
equation (2.86)).

2.5.2 Rigid Body Motion of a Prolate Spheroid

Considera prolate spheroidwithsemi-majoraxis 𝑎 andaspect ratio𝜅(> 1), oriented
along the unit vector 𝒑 and centred at 𝒙𝑐 . The singularity solution corresponding
to equation (2.85) involves a uniform distribution of Stokeslets along the symmetry
axis of the spheroid, and a parabolic distribution of potential doublets and rotlets,
along with a more complex distribution of stresslets and a quadrupole moment.
The solution is given by [10]

𝒖(𝒙) = − 𝑭 ℎ

8𝜋𝜇 · 1
2𝑎𝑒

∫ 𝑎𝑒

−𝑎𝑒

{
1 + (𝑎2𝑒2 − 𝜉2)1 − 𝑒2

4𝑒2 ∇2
}
𝓖(𝒙 , 𝒙𝑐 + 𝜉𝒑) 𝑑𝜉

+ 1
2
(𝑻 ℎ × ∇)

8𝜋𝜇 · 3
4𝑎3𝑒3

∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2)𝓖(𝒙 , 𝒙𝑐 + 𝜉𝒑) 𝑑𝜉

+ (𝑺ℎ · ∇)
8𝜋𝜇 · 3

4𝑎3𝑒3

∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2)

{
1 + (𝑎2𝑒2 − 𝜉2)1 − 𝑒2

8𝑒2 ∇2
}
𝓖(𝒙 , 𝒙𝑐 + 𝜉𝒑) 𝑑𝜉,

(2.87)

where
𝑭 ℎ = −6𝜋𝜇𝑎[𝑋𝐴

𝑝 𝒑𝒑 + 𝑌𝐴𝑝 (𝜹 − 𝒑𝒑)] · 𝑽 (2.88a)

𝑻 ℎ = −8𝜋𝜇𝑎3[𝑋𝐶
𝑝 𝒑𝒑 + 𝑌𝐶𝑝 (𝜹 − 𝒑𝒑)] ·𝛀 (2.88b)
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𝑺ℎ ≡ 1
2

(
𝑒2

2 − 𝑒2

)
[(𝑻 ℎ × 𝒑)𝒑 + 𝒑(𝑻 ℎ × 𝒑)]. (2.88c)

Here, the resistance functions are given by [10]

𝑋𝐴
𝑝 ≡ 8

3 𝑒
3[−2𝑒 + (1 + 𝑒2)𝐿𝑒]−1, 𝑌𝐴𝑝 ≡ 16

3 𝑒
3[2𝑒 + (3𝑒2 − 1)𝐿𝑒]−1 (2.89a)

𝑋𝐶
𝑝 ≡ 4

3 𝑒
3(1− 𝑒2)[2𝑒−(1− 𝑒2)𝐿𝑒]−1, 𝑌𝐶𝑝 ≡ 4

3 𝑒
3(2− 𝑒2)[−2𝑒+(1+ 𝑒2)𝐿𝑒]−1, (2.89b)

with 𝐿𝑒 ≡ log𝑒

(
1 + 𝑒
1 − 𝑒

)
.

2.5.3 Rigid Body Motion of an Oblate Spheroid

The singularity solution of an oblate spheroid can again be obtained using the
eccentricity transformation given by equation (2.59). Therefore, for an oblate
spheroid described by

(𝒙 − 𝒙𝑐) ·
[

1
𝑎2 𝒑𝒑 + 𝜅2

𝑎2 (𝜹 − 𝒑𝒑)
]
· (𝒙 − 𝒙𝑐) = 1, 𝒙 ∈ 𝑆𝑝 ,

with 𝜅 < 1 and the eccentricity given by 𝑒 =
√

1 − 𝜅2, the singularity solution is
given by [10]

𝒖(𝒙) = − 𝑭 ℎ

8𝜋𝜇 · 𝜅
2𝑎𝑒

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

{
1 +

(
𝑎2𝑒2

𝜅2 − 𝜉2
)

1
4𝑒2∇

2
}
𝓖(𝒙 , 𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉

+ 1
2
(𝑻 ℎ × ∇)

8𝜋𝜇 · 3𝜅3

4𝑎3𝑒3

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

(
𝑎2𝑒2

𝜅2 − 𝜉2
)
𝓖(𝒙 , 𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉

+ (𝑺ℎ · ∇)
8𝜋𝜇 · 3𝜅3

4𝑎3𝑒3

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

(
𝑎2𝑒2

𝜅2 − 𝜉2
) {

1 +
(
𝑎2𝑒2

𝜅2 − 𝜉2
)

1
8𝑒2∇

2
}
𝓖(𝒙 , 𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉,

(2.90)
where

𝑭 ℎ = −6𝜋𝜇𝑎[𝑋𝐴
𝑜 𝒑𝒑 + 𝑌𝐴𝑜 (𝜹 − 𝒑𝒑)] · 𝑽 (2.91a)

𝑻 ℎ = −8𝜋𝜇𝑎3[𝑋𝐴
𝑜 𝒑𝒑 + 𝑌𝐴𝑜 (𝜹 − 𝒑𝒑)] ·𝛀 (2.91b)

𝑺ℎ ≡ −1
2

(
𝑒2

2 − 𝑒2

)
[(𝑻 ℎ × 𝒑)𝒑 + 𝒑(𝑻 ℎ × 𝒑)]. (2.91c)

Here, the resistance functions are given by [10]

𝑋𝐴
𝑜 ≡ 4

3 𝑒
3[(2𝑒2 − 1)𝐾 + 𝑒

√
1 − 𝑒2]−1, 𝑌𝐴𝑜 ≡ 8

3 𝑒
3[(2𝑒2 + 1)𝐾 − 𝑒

√
1 − 𝑒2]−1 (2.92a)

𝑋𝐶
𝑜 ≡ 2

3[𝐾 − 𝑒
√

1 − 𝑒2]−1, 𝑌𝐶𝑜 ≡ 2
3 𝑒

3(2 − 𝑒2)[𝑒
√

1 − 𝑒2 − (1 − 2𝑒2)𝐾]−1, (2.92b)

with 𝐾 ≡ arccot
(
𝑒−1

√
1 − 𝑒2

)
.

This singularity solution for an oblate spheroid will be used in Chapter 4 to
study hydrodynamic interactions between multiple discs.
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2.6 Faxén’s Laws in Microhydrodynamics

The Faxén’s laws relate the multipole moments, such as hydrodynamic force,
torque, and stresslet, on the rigid body to the structure of their singularity solutions.
The derivation of the Faxén’s laws in microhydrodynamics follows the same ideas
as discussed in Section 2.4, starting from the reciprocal theorem (2.8). With their
derivation outlined in [10], we shall simply state them here for the case of spheres
and spheroids. For a sphere with radius 𝑎 centred at 𝒙𝑐 and moving with velocity
𝑽 +𝛀 × (𝒙 − 𝒙𝑐) with a background Stokes flow 𝒖∞(𝒙), the Faxén’s laws give the
hydrodynamic force and torque on the sphere as [10]

𝐹ℎ𝑖 = 6𝜋𝜇𝑎
(
1 + 𝑎2

6 ∇2
) [
𝑢∞𝑖 (𝒙) −𝑉𝑖

]
𝒙=𝒙𝑐

(2.93a)

𝑇ℎ𝑖 = 8𝜋𝜇𝑎3
[
1
2𝜔

∞
𝑖 (𝒙𝑐) −Ω𝑖

]
, (2.93b)

where 𝝎(𝒙)∞ = ∇ × 𝒖∞(𝒙) is the background vorticity.
Similarly, for a prolate spheroid with semi-major axis 𝑎, aspect ratio 𝜅(> 1),

eccentricity 𝑒 =
√

1 − 𝜅−2, and symmetry axis along the unit vector 𝒑, the Faxén’s
laws give the hydrodynamic force and torque on the spheroid as [10]

𝐹ℎ𝑖 = 6𝜋𝜇𝑎[𝑋𝐴
𝑝 𝑝𝑖𝑝 𝑗 + 𝑌𝐴𝑝 (𝛿𝑖 𝑗 − 𝑝𝑖𝑝 𝑗)]

1
2𝑎𝑒

×
∫ 𝑎𝑒

−𝑎𝑒

{
1 + (𝑎2𝑒2 − 𝜉2)1 − 𝑒2

4𝑒2 ∇2
}
[𝑢∞𝑗 (𝒙𝑐 + 𝜉𝒑) −𝑉𝑗] 𝑑𝜉 (2.94a)

𝑇ℎ𝑖 = 8𝜋𝜇𝑎3[𝑋𝐶
𝑝 𝑝𝑖𝑝 𝑗 + 𝑌𝐶𝑝 (𝛿𝑖 𝑗 − 𝑝𝑖𝑝 𝑗)]

3
8𝑎3𝑒3

×
∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2)[𝜔∞

𝑗 (𝒙𝑐 + 𝜉𝒑) − 2Ω𝑗] 𝑑𝜉

− 8𝜋𝜇𝑎3𝜖𝑖 𝑗𝑙𝑝𝑙𝑝𝑘𝑌
𝐶
𝑝

(
𝑒2

2 − 𝑒2

)
× 3

4𝑎3𝑒3

∫ 𝑎𝑒

−𝑎𝑒
(𝑎2𝑒2 − 𝜉2)

{
1 + (𝑎2𝑒2 − 𝜉2)1 − 𝑒2

8𝑒2 ∇2
}
𝐸∞
𝑗𝑘(𝒙𝑐 + 𝜉𝒑) 𝑑𝜉. (2.94b)

Here 𝑬∞(𝒙) is the strain-rate associated with the background flow 𝒖∞(𝒙). The
resistance functions 𝑋𝐴

𝑝 , 𝑌
𝐴
𝑝 , 𝑋

𝐶
𝑝 , 𝑌

𝐶
𝑝 are given by equation (2.89).

One can use the eccentricity transformation (equation (2.59)) to obtain the
Faxén’s laws for an oblate spheroid with longer side 𝑎, aspect ratio 𝜅(< 1), eccen-
tricity 𝑒 =

√
1 − 𝜅2 and symmetry axis along the unit vector 𝒑. These are given by
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𝐹ℎ𝑖 = 6𝜋𝜇𝑎[𝑋𝐴
𝑜 𝑝𝑖𝑝 𝑗 + 𝑌𝐴𝑜 (𝛿𝑖 𝑗 − 𝑝𝑖𝑝 𝑗)]

𝜅
2𝑎𝑒

×
∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

{
1 +

(
𝑎2𝑒2

𝜅2 − 𝜉2
)

1
4𝑒2∇

2
}
[𝑢∞𝑗 (𝒙𝑐 + 𝑖𝜉𝒑) −𝑉𝑗] 𝑑𝜉 (2.95a)

𝑇ℎ𝑖 = 8𝜋𝜇𝑎3[𝑋𝐶
𝑜 𝑝𝑖𝑝 𝑗 + 𝑌𝐶𝑜 (𝛿𝑖 𝑗 − 𝑝𝑖𝑝 𝑗)]

3𝜅3

8𝑎3𝑒3

×
∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

(
𝑎2𝑒2

𝜅2 − 𝜉2
)
[𝜔∞

𝑗 (𝒙𝑐 + 𝑖𝜉𝒑) − 2Ω𝑗] 𝑑𝜉

+ 8𝜋𝜇𝑎3𝜖𝑖 𝑗𝑙𝑝𝑙𝑝𝑘𝑌
𝐶
𝑜

(
𝑒2

2 − 𝑒2

)
× 3𝜅3

4𝑎3𝑒3

∫ 𝑎𝑒/𝜅

−𝑎𝑒/𝜅

(
𝑎2𝑒2

𝜅2 − 𝜉2
) {

1 +
(
𝑎2𝑒2

𝜅2 − 𝜉2
)

1
8𝑒2∇

2
}
𝐸∞
𝑗𝑘(𝒙𝑐 + 𝑖𝜉𝒑) 𝑑𝜉. (2.95b)

The resistance functions 𝑋𝐴
𝑜 , 𝑌

𝐴
𝑜 , 𝑋

𝐶
𝑜 , 𝑌

𝐶
𝑜 are given by equation (2.92). The Faxén’s

laws and singularity solutions for an oblate spheroid will be used in Chapter 4 to
study hydrodynamic interactions between multiple discs.

2.7 The Method of Reflections

The methodof reflections is an iterative scheme widely used in micro-hydrodynamics
to calculate hydrodynamic interactions between widely separated bodies [10]. This
method produces a perturbation series in terms of the order 𝑎/𝑅 where 𝑎 is the
typical size of the objects and 𝑅 is their typical separation. The method is de-
scribed in [10] and is outlined for electrostatic interaction between two conductors
as follows.

The exact way to incorporate electrostatic interaction between conductors
would require obtaining a harmonic potential field that satisfies the constant po-
tential boundary conditions on the surface of each conductor. This problem is
barely tractable for two spheres, and hence we need to resort to some approxi-
mate methods, such as the method of reflections, for more complex shapes like
spheroids.

In the zeroth-order approximation, the solution for two conductors (denoted
𝑆1 and 𝑆2) that are far apart is obtained by simply adding the potential fields of
each isolated conductor, meaning the electrostatic interactions between them are
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Figure 2.4: Depiction of the method of reflections, adapted from Kim & Karilla
[10] (a) Two sample surfaces 𝑆1 and 𝑆2 with their typical size 𝑎, and their separation
𝑅. (b) The two surfaces create fields 𝜙1 and 𝜙2, respectively, each of which satisfies
the boundary condition on its surface. The field 𝜙2 acts as an incident field on 𝑆1,
which in response creates a reflected field 𝜙21, and vice versa. These reflected fields
then act as new incident fields on the opposite surfaces, continuing the process
iteratively. This results in a perturbative series of the form 𝜙1 +𝜙2 +𝜙21 +𝜙12 + ...,
which, in the 𝑎 ≪ 𝑅 regime, converges to a solution that simultaneously satisfies
the boundary conditions on both surfaces.

ignored. Let 𝜙1 and 𝜙2 be two potential fields such that

𝜙1(𝒙) = 𝑉1 𝒙 ∈ 𝑆1, (2.96a)

𝜙2(𝒙) = 𝑉2 𝒙 ∈ 𝑆2. (2.96b)

Note that these solutions can be obtained using the singularity solutions discussed
in Section 2.3. However, 𝜙 = 𝜙1 + 𝜙2 doesn’t satisfy the boundary conditions on
either of the surfaces. The error in the boundary condition on 𝑆𝛼 is 𝜙3−𝛼(𝒙), which
is of the order of 𝑎/𝑅. The fields 𝜙1(𝒙) and 𝜙2(𝒙) are called the first incident fields
on the conductors 𝑆2 and 𝑆1, respectively. Now, 𝑆1 produces a disturbance field
𝜙21 and 𝑆2 produces a disturbance field 𝜙12 such that

𝜙21(𝒙) = −𝜙2(𝒙) 𝒙 ∈ 𝑆1, (2.97a)

𝜙12(𝒙) = −𝜙1(𝒙) 𝒙 ∈ 𝑆2. (2.97b)

These disturbance fields are called the reflected fields, which account for the cor-
rection in the boundary conditions. Note that the fields are uniquely labeled by
augmenting the subscripts of the incident fields by the subscript corresponding
to the particle on which the reflection is taking place.

These fields can be determined using the multipole expansion discussed in
Section 2.2.3. The induced multipole moments are determined using the Faxén’s
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laws discussed in Section 2.4 Now, 𝜙 = 𝜙1+𝜙2+𝜙21+𝜙12 is a better approximation
to the complete solution because the error in the boundary conditions is now
𝒪(𝜙12) ∼ 𝒪(𝜙21) which takes contributions from higher multipole moments and
decays as 𝒪(𝑎4/𝑅4). This procedure can be iterated with the reflected fields from
one conductor being incident on the other conductor and producing subsequent
reflected fields, as shown in Figure 2.4.

For microhydrodynamics, the velocity fields take the place of the potential
fields in the method of reflections. A detailed outline of the method of reflections
in microhydrodynamics can be found in Kim & Karilla [10]. We shall apply the
method of reflections up to the first reflection in Chapter 4 of this thesis for the
case of multiple discs sedimenting in Stokes flow.

The method of reflections is applied up to the second reflection for the case
of a spheroidal and a spherical charged conductors in Chapter 5 of this thesis.
We demonstrate the method of reflection for the case of two spheroidal charged
conductors below.

2.7.1 Far Field Interaction of Two Charged Prolate Spheroids

Consider two prolate spheroids 𝑆1 and 𝑆2 with semi-major axes 𝑎1 and 𝑎2, eccentric-
ities 𝑒1 and 𝑒2, position vectors 𝒙1 and 𝒙2 and orientations 𝒑1 and 𝒑2, respectively.
Faxén’s laws (see equation (2.77)) can be used to relate the potentials 𝑉1 and 𝑉2

on the surfaces of the spheroids to their total charges 𝑄1 and 𝑄2, respectively.
The ambient field around the first spheroid is generated by the second spheroid
and can be expressed perturbatively using the method of reflections. The same
approach applies to the second spheroid, where its ambient field is influenced by
the first spheroid. Using equation (2.77), we have for the first spheroid

𝑉1 = 𝑄1
arctanh 𝑒1
4𝜋𝑎1𝜀0𝑒1

+ 1
2𝑎1𝑒1

∫ 𝑎1𝑒1

−𝑎1𝑒1

𝜙∞
2 (𝒙1 + 𝜉1𝒑1) 𝑑𝜉1, (2.98a)

𝑉2 = 𝑄2
arctanh 𝑒2
4𝜋𝑎2𝜀0𝑒2

+ 1
2𝑎2𝑒2

∫ 𝑎2𝑒2

−𝑎2𝑒2

𝜙∞
1 (𝒙2 + 𝜉1𝒑2) 𝑑𝜉1, (2.98b)

Using the method of reflections, we have

𝜙∞
1 (𝒚) = 𝜙1(𝒚) + 𝜙21(𝒚) + 𝜙121(𝒚)... (2.99a)

𝜙∞
2 (𝒚) = 𝜙2(𝒚) + 𝜙12(𝒚) + 𝜙212(𝒚)... (2.99b)

Here 𝜙1(𝒚) and 𝜙2(𝒚) are the zeroth-order disturbance fields, 𝜙21(𝒚) and 𝜙12(𝒚)
are the first reflection fields and 𝜙121(𝒚) and 𝜙212(𝒚) are the second reflection fields
produced by 𝑆1 and 𝑆2, respectively.
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The zeroth-order solution to the problem is

𝑉
(0)
1 = 𝑄1

arctanh 𝑒1
4𝜋𝑎1𝜀0𝑒1

, 𝑉
(0)
2 = 𝑄2

arctanh 𝑒2
4𝜋𝑎2𝜀0𝑒2

. (2.100)

Since 𝜙1 and 𝜙2 are the potentials due to isolated spheroids 𝑆1 and 𝑆2, they are
given by equations (2.56) and (2.57) as

𝜙1(𝒚) =
𝑄1

8𝜋𝜀0𝑎1𝑒1

∫ 𝑎1𝑒1

−𝑎1𝑒1

𝒢(𝒚, 𝒙1 + 𝜉1𝒑1) 𝑑𝜉1, (2.101a)

𝜙2(𝒚) =
𝑄2

8𝜋𝜀0𝑎2𝑒2

∫ 𝑎2𝑒2

−𝑎2𝑒2

𝒢(𝒚, 𝒙2 + 𝜉1𝒑2) 𝑑𝜉1. (2.101b)

The first-order correction comes through the first reflection as

𝑉
(1)
1 =

1
2𝑎1𝑒1

∫ 𝑎1𝑒1

−𝑎1𝑒1

𝜙2(𝒙1 + 𝜉1𝒑1) 𝑑𝜉1, (2.102a)

𝑉
(1)
2 =

1
2𝑎2𝑒2

∫ 𝑎2𝑒2

−𝑎2𝑒2

𝜙1(𝒙2 + 𝜉1𝒑2) 𝑑𝜉1, (2.102b)

with the first reflection fields 𝜙21 and 𝜙12 represented to the leading order in 𝑎/𝑅
by the dipole moments 𝒅(1)

1 and 𝒅(1)
2 . The explicit expression for the first reflection

field 𝜙12 by spheroid 𝑆2 is (see equation (2.68))

𝜙12(𝒚) =
3

8𝜋𝑎3
2𝑒

3
2𝜀0

[
𝒅(1)

2 · 𝒑2

∫ 𝑎2𝑒2

−𝑎2𝑒2

𝜉2 𝒢(𝒚, 𝒙2 + 𝜉2𝒑2) 𝑑𝜉2

−
𝒅(1)

2
2 · (𝜹 − 𝒑2𝒑2) · ∇𝒚

∫ 𝑎2𝑒2

−𝑎2𝑒2

(𝑎2
2𝑒

2
2 − 𝜉2

2) 𝒢(𝒚, 𝒙2 + 𝜉2𝒑2) 𝑑𝜉2

]
. (2.103)

The dipole moment 𝒅(1)
2 is given by the Faxén’s laws as (see equation (2.83))

𝒅(1)
2 = −4𝜋𝑎3

2
3

8𝜋𝑎3
2𝑒

3
2

[
𝑋𝐶
𝑝2𝒑2

∫ 𝑎2𝑒2

−𝑎2𝑒2

𝜉2 𝑑𝜉2

∫ 𝑎1𝑒1

−𝑎1𝑒1

𝑄1
2𝑎1𝑒1

𝒢(𝒙2 + 𝜉2𝒑2, 𝒙1 + 𝜉1𝒑1) 𝑑𝜉1

+
𝑌𝐶
𝑝2

2 (𝜹 − 𝒑2𝒑2) · ∇𝒙2∫ 𝑎2𝑒2

−𝑎2𝑒2

𝑑𝜉2 (𝑎2
2𝑒

2
2 − 𝜉2

2)
∫ 𝑎1𝑒1

𝑎1𝑒1

𝑄1
2𝑎1𝑒1

𝒢(𝒙2 + 𝜉2𝒑2, 𝒙1 + 𝜉1𝒑1) 𝑑𝜉1

]
, (2.104)

where we have used equation (2.101) for 𝜙1(𝒚) in place of 𝜙∞ in equation (2.83).
Here 𝑋𝐶

𝑝2 = 𝑋𝐶
𝑝 (𝑒2) and 𝑌𝐶

𝑝2 = 𝑌𝐶𝑝 (𝑒2) are given by equation (2.64). The correspond-

ing first reflection field 𝜙21(𝒚) and the dipole moment 𝒅(1)
1 is obtained by simply

switching the labels 1 and 2.
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The next order correction comes through the second reflection as

𝑉
(2)
1 =

1
2𝑎1𝑒1

∫ 𝑎1𝑒1

−𝑎1𝑒1

𝜙12(𝒙1 + 𝜉1𝒑1) 𝑑𝜉1, (2.105a)

𝑉
(2)
2 =

1
2𝑎2𝑒2

∫ 𝑎2𝑒2

−𝑎2𝑒2

𝜙21(𝒙2 + 𝜉1𝒑2) 𝑑𝜉1, (2.105b)

with the second reflection fields 𝜙121 and 𝜙212 represented to the leading order
in 𝑎/𝑅 by the dipole moments 𝒅(2)

1 and 𝒅(2)
2 . These dipole moments can again be

obtained using Faxén’s laws (equation (2.83)) with first reflection fields in place
on 𝜙∞.

Therefore, up to second reflections, the potentials on the surface of the
spheroids are related to their respective total charges as 𝑉𝛼 = 𝑉

(0)
𝛼 + 𝑉 (1)

𝛼 + 𝑉 (2)
𝛼 ,

𝛼 ∈ {1, 2}. These interaction potentials are accurate up to 𝒪(𝑎4/𝑅4).

2.8 Boundary Integral Formulation

We came across the integral representation of both the velocity field in Stokes
flow (equation (2.27)) and the electrostatic potential (equation (2.47)). These
convey an important idea that the velocity field and the electrostatic potential
at any point in the domain can be obtained by evaluating integrals over the
boundaries of the domain. This is the essential idea behind boundary integral
methods. The mathematical beauty of the formulation, which involves linear
functional theory, and the computational advantage of reduction in dimensions
of the problem by having to discretize only the boundaries rather than the whole
domain, make the boundary integral methods attractive. We shall discuss the
boundary integral formulation for the easier case of electrostatics, and briefly
outline it for microhydrodynamics. A detailed account of boundary integral
methods in microhydrodynamics can be found in the work of Pozrikidis [16].
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Figure 2.5: (a) The compact domain 𝒟𝐵 ⊂ R3 with the normal vector to the
boundary 𝜕𝒟𝐵 indicated by 𝒏. (b) The modified domain 𝒟̃𝐵 which is union of 𝒟𝐵

and the region inside the hemisphere 𝑆↑𝜀 of radius 𝜀 centered at 𝒙0.

2.9 Boundary Integral Method for Arbitrary-Shaped
Conductors in Electrostatics

Recall the integral representation of the electrostatic potential given by equation
(2.47) as

1
4𝜋

∮
𝜕𝒟

𝜙(𝒙)𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙)

− 1
4𝜋

∮
𝜕𝒟

𝒢(𝒙 , 𝒙0)𝒏̂(𝒙) · ∇𝜙(𝒙) 𝑑𝑆(𝒙) =

𝜙(𝒙0), 𝒙0 ∈ 𝒟 ,

0, 𝒙0 ∉ 𝒟 .

Recall that 𝒏̂ points towards the domain of interest 𝒟. The integral representation
shows that there is a jump discontinuity across the boundaries 𝜕𝒟. This jump
discontinuity comes from the double-layer potential, which represents the distri-
bution of dipoles over the boundaries. Let’s inspect the integral properties of the
double-layer potential in more detail.
Claim:

1
4𝜋

∮
𝜕𝒟𝐵

𝒏 · ∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙) =


−1, 𝒙0 ∈ 𝒟𝐵 ,

0, 𝒙0 ∈ R3\𝒟𝐵 ,

−1/2, 𝒙0 ∈ 𝜕𝒟𝐵 ,

(2.106)

where 𝒟𝐵 represents a compact volume in R3 and 𝒏 is the normal to the boundary
𝜕𝒟𝐵, pointing out of the bounded region of interest, as shown in Figure 2.5. Proof:
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For 𝒙0 ∈ 𝒟𝐵 or 𝒙0 ∈ R3\𝒟𝐵, we use the divergence theorem to get∮
𝜕𝒟𝐵

𝒏 · ∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙) =
∫
𝒟𝐵

∇2𝒢(𝒙 , 𝒙0) 𝑑𝑉 = −4𝜋
∫
𝒟𝐵

𝛿(𝒙 − 𝒙0) 𝑑𝑉.

This proves the first two cases of equation (2.106). Now consider the case 𝒙0 ∈ 𝜕𝒟𝐵.
Consider a hemisphere 𝑆↑𝜀 of radius 𝜀, centered at 𝒙0 ∈ 𝜕𝒟𝐵 as shown in Figure 2.5.
We now have a modified domain 𝒟̃𝐵 which is identical to 𝒟𝐵 in all the regions
except near 𝒙0 where it contains the region inside 𝑆↑𝜀 as shown in the Figure 2.5.
Since 𝒙0 ∈ 𝒟̃𝐵, we have

1
4𝜋

∮
𝜕𝒟̃𝐵(𝜀)

𝒏 · ∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙) = −1, 𝒙0 ∈ 𝒟̃𝐵(𝜀).

But

lim
𝜀→0

∮
𝜕𝒟̃𝐵(𝜀)

𝒏·∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙) =
∮ 𝑃𝑉

𝜕𝒟𝐵

𝒏·∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙)+lim
𝜀→0

∫
𝑆
↑
𝜀

𝒏·∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙)

where 𝑃𝑉 over the integral denotes principal value of the integral, which involves
integrating over the boundary 𝜕𝒟𝐵 except over a small disc of radius 𝜀 centered
at 𝒙0 and taking the limit 𝜀 → 0. Therefore, we have

−1 =
1

4𝜋

∮ 𝑃𝑉

𝜕𝒟𝐵

𝒏 · ∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙) −
∫ 𝜋/2

0

1
4𝜋𝜀2 𝜀

22𝜋 sin(𝜃)𝑑𝜃.

This finally gives
1

4𝜋

∮ 𝑃𝑉

𝜕𝒟𝐵

𝒏 · ∇𝒢(𝒙 , 𝒙0)𝑑𝑆(𝒙) = −1/2,

which completes the proof.

2.9.1 Boundary Integral Equation for Laplace Equation

We have an integral representation of the potential field in the domain 𝒟 given
by equation (2.47). To obtain an integral equation over the boundary, consider
taking the target point 𝒙0 to the boundary enclosing a compact region in R3. Let
𝒙̃0 ∈ 𝜕𝒟𝐵, as shown in the Figure 2.6. Note that when 𝒟 is multiply connected,
𝜕𝒟𝐵 forms one part of the boundary, with another part being ‘surface at infinity’.
The compact region in R3 enclosed by 𝜕𝒟𝐵 is denoted by 𝒟𝐵. We take 𝒙0 → 𝜕𝒟𝐵

such that 𝒙0 = 𝒙̃0 ± 𝜀𝒏̂(𝒙̃0), where 𝜀 > 0 and the plus and minus signs correspond
to approaching the boundary 𝜕𝒟𝐵 from outside and inside the enclosed region
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Figure 2.6: The multiply connected domain of interest, 𝒟, with normal vectors 𝒏̂
pointing towards 𝒟. The boundary of the domain, 𝜕𝒟, is formed by the boundary
of the compact region 𝒟𝐵 ⊂ R3 and the ‘surface at infinity’ 𝑆∞.

𝒟𝐵, respectively. Now, consider the integral

lim
𝜀→0+

∮
𝜕𝒟𝐵

𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0 ± 𝜀𝒏̂(𝒙̃0))𝜙(𝒙) 𝑑𝑆(𝒙)

= lim
𝜀→0+

∮
𝜕𝒟𝐵

[𝜙(𝒙) − 𝜙(𝒙̃0)]𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0 ± 𝜀𝒏̂(𝒙̃0)) 𝑑𝑆(𝒙)︸                                                                ︷︷                                                                ︸
𝐼1

+ 𝜙(𝒙̃0) lim
𝜀→0+

∮
𝜕𝒟𝐵

𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0 ± 𝜀𝒏̂(𝒙̃0)) 𝑑𝑆(𝒙). (2.107)

The second integral 𝐼2 on the right-hand side of equation (2.107) can be written
using equation (2.106) as

lim
𝜀→0+

1
4𝜋

∮
𝜕𝒟𝐵

𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0 ± 𝜀𝒏̂(𝒙̃0)) 𝑑𝑆(𝒙) = ±1
2 + 1

4𝜋

∮ 𝑃𝑉

𝜕𝒟𝐵

𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0) 𝑑𝑆(𝒙).
(2.108)

The limit in the first integral 𝐼1 on the right-hand side of equation (2.107) can be
taken inside the integral since the integrand is regular at 𝒙̃0, provided 𝜙(𝒙) has a
Taylor expansion at 𝒙̃0. This can be seen as follows. With 𝑟 ≡ |𝒙 − 𝒙̃0|, the integral
𝐼1 over a small patch of radius 𝑅 centred at 𝒙̃0 has the form

∼ ±
∫ 𝑅

0
𝑟

𝜀

(𝑟2 + 𝜀2)3/2 𝑟 =︸︷︷︸
𝑟=𝜀𝑡𝑎𝑛𝜃

±
∫

𝜀4 (sec𝜃)2
𝜀3| sec𝜃|3 (tan𝜃)2
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which goes to zero as 𝜀 → 0+. Therefore, the integral 𝐼1 is regular near 𝒙̃0. Using
lim𝜀→0 𝐼1 = 𝐼1(𝜀 = 0) and equation (2.108) in equation (2.107) we have

lim
𝜀→0+

1
4𝜋

∮
𝜕𝒟𝐵

𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0 ± 𝜀𝒏̂(𝒙̃0))𝜙(𝒙) 𝑑𝑆(𝒙) = ±1
2𝜙(𝒙̃0)

+ 1
4𝜋

∮ 𝑃𝑉

𝜕𝒟𝐵

𝜙(𝒙) 𝒏̂ · ∇𝒢(𝒙 , 𝒙̃0) 𝑑𝑆(𝒙).

Using this result in the integral representation (equation (2.47)), we have the
boundary integral equation

1
4𝜋

∮ 𝑃𝑉

𝜕𝒟
𝜙(𝒙)𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙)

− 1
4𝜋

∮
𝜕𝒟

𝒢(𝒙 , 𝒙0)𝒏̂(𝒙) · ∇𝜙(𝒙) 𝑑𝑆(𝒙) =
1
2𝜙(𝒙0), 𝒙0 ∈ 𝜕𝒟 . (2.109)

The boundary integral equation (2.109) relates quantities at the boundaries to
their surface integrals. Given a boundary condition, we have two types of integral
equations

1. Dirichlet condition: where 𝜙(𝒙) is given on 𝜕𝒟. This leads to a first-kind
integral equation, which is numerically ill-conditioned [16, 102].

2. Neumann condition: where 𝒏̂ · ∇𝜙(𝒙) is given on 𝜕𝒟. This leads to the
second-kind integral equation, which is desirable.

Unfortunately, in the case of conductors, the Dirichlet condition is more suitable,
where 𝜙(𝒙) is constant on the boundary 𝜕𝒟. Thus, the boundary integral equation
in its current form is not suitable for numerical implementation. In the following
sections, we shall see that an integral representation based on the double-layer
potential leads to a second-kind integral equation with the Dirichlet boundary
conditions.

2.9.2 The Double-Layer Operator

From now on, we will denote the boundary of a compact region 𝒟𝐵 using 𝑆𝑝 .
The domain of interest 𝒟 is still exterior to this boundary 𝑆𝑝 . Let us define the
double-layer operator on a surface 𝑆𝑝 as

ℒ𝑑[𝑞](𝒙0) ≡
1

2𝜋

∮ 𝑃𝑉

𝑆𝑝

𝑞(𝒙)𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙), 𝒙0 ∈ 𝑆𝑝 . (2.110)
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Here 𝑞(𝒙) ∈ 𝒱 and 𝒱 is Hilbert space of square-integrable functions defined on
𝑆𝑝 with the inner product given by

⟨𝑞1, 𝑞2⟩ ≡
∮
𝑆𝑝

𝑞1(𝒙)𝑞2(𝒙) 𝑑𝑆(𝒙),

Thus, ℒ𝑑 : ℋ → ℋ is an operator on this Hilbert space ℋ . It can be shown that
this double-layer operator is weakly singular for Lyapunov surfaces and hence is
a compact operator [10, 16, 102].

Using equation (2.108), we have the jump discontinuity result as

lim
𝜀→0+

1
2𝜋

∮
𝑆𝑝

𝑞(𝒙)𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0 ± 𝜀𝒏̂) 𝑑𝑆(𝒙) = (ℒ𝑑 ± 1)[𝑞](𝒙0), 𝒙0 ∈ 𝑆𝑝 , (2.111)

where 1 is the identity operator over 𝑆𝑝 . Let us look at the adjoint of ℒ𝑑, denoted
as ℒ𝑑†. For 𝑞1, 𝑞2 ∈ ℋ , we have

⟨𝑞1,ℒ𝑑𝑞2⟩ =
1

2𝜋

∮ 𝑃𝑉

𝑆𝑝

𝑞1(𝒙0)
( ∮ 𝑃𝑉

𝑆𝑝

𝑞2(𝒙)𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙)
)
𝑑𝑆(𝒙0)

= − 1
2𝜋

∮ 𝑃𝑉

𝑆𝑝

𝑞2(𝒙)𝒏̂(𝒙) ·
( ∮ 𝑃𝑉

𝑆𝑝

𝑞1(𝒙0) · ∇𝒙0𝒢(𝒙0, 𝒙) 𝑑𝑆(𝒙0)
)
𝑑𝑆(𝒙) = ⟨ℒ𝑑†𝑞1, 𝑞2⟩

Therefore,

ℒ𝑑†[𝑞](𝒙0) = − 1
2𝜋 𝒏̂(𝒙0) ·

∮ 𝑃𝑉

𝑆𝑝

𝑞(𝒙)∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙), 𝒙 ∈ 𝑆𝑝 . (2.112)

A jump discontinuity result similar to equation (2.111) follows for the adjoint
operator, given by

lim
𝜀→0+

−1
2𝜋 𝒏̂(𝒙0) ·

∮
𝑆𝑝

𝑞(𝒙)∇𝒢(𝒙 , 𝒙0 ± 𝜀𝒏̂) 𝑑𝑆(𝒙) = (ℒ𝑑†∓1)[𝑞](𝒙0), 𝒙0 ∈ 𝑆𝑝 . (2.113)

2.9.3 Spectrum of the Double-Layer Operator

Note that a constant function 𝑐0 over𝑆𝑝 when acted on by the double-layer operator,
gives

ℒ𝑑[𝑐0] =
𝑐0
2𝜋

∮ 𝑃𝑉

𝑆𝑝

𝒏̂(𝒙) · ∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙) = −𝑐0. (2.114)

Therefore, a constant function over 𝑆𝑝 is an eigenfunction of ℒ𝑑 with eigenvalue
-1.
Claim: The spectrum of ℒ𝑑, lies in the real interval [−1, 1).
Proof: Consider a function 𝑤(𝒙0) defined in R3, given by a single-layer potential as

𝑤(𝒙0) = − 1
2𝜋

∮
𝑆𝑝

𝑞′(𝒙)𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙), (2.115)
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where ℒ𝑑†[𝑞′] = 𝜆𝑞′, i.e., 𝑞′ is an eigenfunction of ℒ𝑑† with eigenvalue 𝜆. Take
𝒙0 ∈ 𝑆𝑝 and define

𝐸±
𝑛 (𝒙0) ≡ − lim

𝜀→0+
𝒏̂(𝒙0) · ∇𝒙0𝑤(𝒙0 ± 𝜀𝒏̂)

= − lim
𝜀→0+

1
2𝜋 𝒏̂(𝒙0) ·

∮
𝑆𝑝

𝑞′(𝒙)∇𝒢(𝒙 , 𝒙0 ± 𝜀𝒏̂) 𝑑𝑆(𝒙) = (ℒ𝑑† ∓ 1)[𝑞′](𝒙0), 𝒙0 ∈ 𝑆𝑝 .

This implies
𝐸±
𝑛 (𝒙0) = (𝜆 ∓ 1)𝑞′(𝒙0). (2.116)

Note that 𝐸±
𝑛 denotes normal components of the electric field associated with the

potential 𝑤, just outside and inside the surface 𝑆𝑝 . Now, for external flow in
domain 𝒟, we define 𝑬+(𝒙) ≡ −∇𝑤(𝒙) in the domain 𝒟, and

ℰ+ ≡ −
∮
𝑆𝑝

𝑤(𝒙)𝑬+(𝒙)·(−𝒏̂) 𝑑𝑆(𝒙) = −
∫
𝒟
∇·(𝑤𝑬+)𝑑𝑉 =

∫
𝒟
|∇𝑤|2 𝑑𝑉 ≥ 0, (2.117)

where we have used the divergence theorem, ∇2𝑤 = 0, and the fact that there is
no contribution from ‘surface at infinity’. Similarly, we define 𝑬− in the domain
𝒟𝐵, and

ℰ− ≡ −
∮
𝑆𝑝

𝑤(𝒙)𝑬−(𝒙) · 𝒏̂ 𝑑𝑆(𝒙) = −
∫
𝒟𝐵

∇ · (𝑤𝑬−)𝑑𝑉 =

∫
𝒟𝐵

|∇𝑤|2 𝑑𝑉 ≥ 0. (2.118)

Using equation (2.116) we have

ℰ± = ±
∮
𝑆𝑝

𝑤(𝒙)𝐸±
𝑛 𝑑𝑆(𝒙) = ±(𝜆 ∓ 1)

∮
𝑆𝑝

𝑤(𝒙)𝑞′(𝒙) 𝑑𝑆(𝒙). (2.119)

Therefore, we have
ℰ+

ℰ− = −(𝜆 − 1)
(𝜆 + 1) ≡ 𝛿 ≥ 0.

The last inequality follows from equations (2.117) and (2.118). For ℰ± ≠ 0, 𝛿 ∈
(0,∞), which in turn gives

𝜆 =
1 − 𝛿
1 + 𝛿

∈ (−1, 1), for ℰ± ≠ 0. (2.120)

1. Consider the case ℰ− = 0. We have |∇𝑤(𝒙0)| = 0 for 𝒙0 ∈ 𝒟𝐵. This implies
that 𝑤 is constant in 𝒟𝐵. From equation (2.119) we have

−(𝜆 + 1)
∮
𝑆𝑝

𝑤(𝒙)𝑞′(𝒙) 𝑑𝑆(𝒙) = 0.

It follows that if 𝑤 ≠ 0 in 𝒟𝐵, then 𝜆 = −1. From equation (2.116), we have
𝑞′ = −𝐸+

𝑛/2. Therefore, 𝜆 = −1 is an eigenvalue of ℒ𝑑† with eigenfunction
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𝑞′ = −𝐸+
𝑛/2. Since 𝑤 is continuous across 𝑆𝑝 , and 𝑤 is constant over 𝑆𝑝 , 𝑤

represents the potential due to a perfect conductor with surface denoted by
𝑆𝑝 . We noted previously that ℒ𝑑[𝑐0] = −𝑐0 for a constant function 𝑐0 over
𝑆𝑝 . Therefore, the eigenfunction of ℒ𝑑 with eigenvalue −1 is just a constant
function.

2. Next, consider the case ℰ+ = 0, which implies 𝑤 is constant in 𝒟. But 𝑤 → 0
at infinity. Therefore, 𝑤 = 0 throughout 𝒟, which in turn implies 𝑞′ = 0 and
hence 𝜆 = 1 is not an eigenvalue of ℒ𝑑†.

Therefore, we conclude that the eigenvalues of ℒ𝑑 which are complex conjugate of
the eigenvalues of ℒ𝑑† lies in the range [−1, 1) with ℒ𝑑[𝑐0] = −𝑐0 and ℒ𝑑†[𝐸+

𝑛 ] =
−𝐸+

𝑛 . This completes the proof.
Claim: The eigenvalue 𝜆 = −1 of ℒ𝑑 is non-degenerate.
Proof: Let 𝜓 be a generalised eigenfunction of ℒ𝑑 such that

(ℒ𝑑 + 1)[𝜓] = 𝑐0, ℒ𝑑[𝑐0] = −𝑐0. (2.121)

Snice ℒ𝑑 is a compact operator, ℒ𝑑 + 1, is a Fredholm operator [10, 16, 102].
Therefore, existence of solution to equation (2.121) requires that ⟨𝑐0, 𝜒⟩ = 0, for
all 𝜒 such that (ℒ𝑑† + 1)[𝜒] = 0. Recall that 𝜒 = 𝐸+

𝑛 is the normal component
of the electric field just outside a perfect conductor with surface denoted by 𝑆𝑝 .
Therefore, existence of 𝜓 requires ⟨𝑐0, 𝐸

+
𝑛 ⟩ = 0. Let 𝑤 be the associated potential

outside this conductor such that 𝑤(𝒙) = 𝑐0 for 𝑥 ∈ 𝑆𝑝 . Then we have∫
𝒟
|∇𝑤|2 𝑑𝑉 =

∮
𝑆𝑝

𝑤𝐸+
𝑛 𝑑𝑆(𝒙) = ⟨𝑐0, 𝐸

+
𝑛 ⟩.

If ⟨𝑐0, 𝐸
+
𝑛 ⟩ = 0, then 𝑤 is constant in 𝒟 which along with the decay condition

of 𝑤 at infinity requires 𝑐0 = 0. Therefore, for 𝑐0 ≠ 0, no 𝜓 exists for which
(ℒ𝑑 + 1)[𝜓] = 𝑐0.

To summarize, we have the following two important results for the spectrum
of the double-layer operator

1. For the spectrum of double-layer operator 𝜎[ℒ𝑑], we have 𝜎[ℒ𝑑] ∈ [−1, 1).
Moreover, ℒ𝑑[𝑐0] = −𝑐0, where 𝑐0 is a constant function.

2. The eigenvalue −1 is non-degenerate; therefore, any accumulation point of
the spectrum must lie within the open interval (−1, 1). This point is useful
in projecting out the only eigenfunction with eigenvalue −1, as we shall see
shortly.
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2.9.4 The Range of the Double-Layer Operator

Consider
(ℒ𝑑 + 1)[𝑞] = 𝜒 (2.122)

We ask, what is the condition on 𝜒 for the solution 𝑞 to exist? From our previous
discussion, we saw that 𝜒 cannot be a constant function. Sinceℒ𝑑+1 is a Fredholm
operator, the existence of a solution requires ⟨𝜒, 𝐸+

𝑛 ⟩ = 0, where ℒ𝑑†[𝐸+
𝑛 ] =

−𝐸+
𝑛 , and 𝐸+

𝑛 represents the normal component of the electric field outside a
perfect conductor with surface denoted by 𝑆𝑝 . We apply the reciprocal theorem
(equation (2.46)) on two potentials 𝜙(1) = 𝜒 and𝜙(2) = 𝑐0 (constant), both satisfying
homogeneous Laplace equation in 𝒟. The corresponding normal components
of the electric field are denoted by 𝐸𝜒

𝑛 and 𝐸+
𝑛 , respectively. Using the reciprocal

theorem, we have,
⟨𝜒, 𝐸+

𝑛 ⟩ = ⟨𝑐0, 𝐸
𝜒
𝑛 ⟩,

Therefore, the existence of a solution to equation (2.122), requires ⟨𝑐0, 𝐸
𝜒
𝑛 ⟩ = 0,

where 𝐸𝜒
𝑛 = −𝒏̂ · ∇𝜒

����
𝑆+𝑝

and 𝑆+𝑝 denotes the outer limit of the normal derivative to

the surface. This is equivalent to the requirement that∮
𝑆𝑝

𝐸
𝜒
𝑛 𝑑𝑆 = 0,

which says that the net charge enclosed inside the surface must be zero. There-
fore, the double-layer operator can only represent potentials due to charge-free
conductors.

2.9.5 Representation of Solution by Double-Layer Potential

Consider the Dirichlet problem of a perfect conductor carrying total charge 𝑄,
placed in an unbounded domain 𝒟 in the presence of a background potential
field 𝜙∞(𝒙), as given by:

∇2𝜙(𝒙) = 0, 𝒙 ∈ 𝒟; 𝜙(𝒙𝑠) = 𝑉, 𝒙𝑠 ∈ 𝑆𝑝 ; 𝜙(𝒙) → 𝜙∞(𝒙) as |𝒙| → ∞,
(2.123)

where we have constant potential 𝑉 on the surface of the conductor 𝑆𝑝 . Rep-
resenting the solution in terms of double-layer potential in the domain 𝒟, we
have

𝜖0𝜙(𝒙0) = − 1
2𝜋

∮
𝑆𝑝

𝑞(𝒙)𝒏̂(𝒙)·∇𝒢(𝒙 , 𝒙0) 𝑑𝑆(𝒙)+
𝑄

4𝜋𝒢(𝒙 , 𝒙𝑐)︸       ︷︷       ︸
supplementary part

+𝜖0𝜙
∞(𝒙0), 𝒙0 ∈ 𝒟 ,

(2.124)
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where 𝜖0 is the permittivity of free space and 𝒙𝑐 is a point that lies inside the
conductor. Here, the supplementary part is needed because the double-layer
potential cannot represent the potential outside a charged body. Taking the target
point 𝒙0 to the surface 𝑆𝑝 from within the domain 𝒟, using the constant potential
boundary condition and equation (2.111), we have

(ℒ𝑑 + 1)[𝑞](𝒙0) = −𝜖0𝑉 + 𝑄

4𝜋𝒢(𝒙 , 𝒙𝑐) + 𝜖0𝜙
∞(𝒙0), 𝒙0 ∈ 𝑆𝑝 (2.125)

Now, the existence of a solution 𝑞 requires the right-hand side of equation (2.125)
to represent a charge-free potential field. Note that 𝑄 is a free parameter up to
now, and hence we can choose 𝑄 so that a solution exists. However, we do not
have a unique solution because if 𝑞 is a solution to equation (2.125), so is 𝑞 + 𝑐0

for any constant 𝑐0 ∈ R. This non-uniqueness comes from the fact that ℒ𝑑 has an
eigenvalue equal to −1. We can project out this eigenvalue from the left-hand side
of the equation (2.125) using the projection operator 𝒫 𝑐 , defined as

𝒫 𝑐[𝑞] ≡ 1
|𝑆𝑝|

∮
𝑆𝑝

𝑞 𝑑𝑆 =
1

|𝑆𝑝|
⟨1, 𝑞⟩. (2.126)

Here |𝑆𝑝| is the surface area of the conductor. Note that the projection operator
maps functions to constants over 𝑆𝑝 . Using this projection operator, we have

(ℒ𝑑 + 𝒫 𝑐 + 1)[𝑞](𝒙0) = −𝜖0𝑉 + 𝑄

4𝜋𝒢(𝒙 , 𝒙𝑐) + 𝜖0𝜙
∞(𝒙0) + 𝒫 𝑐[𝑞], 𝒙0 ∈ 𝑆𝑝

Since the constant eigenfunction with eigenvalue −1 has been projected out, the
spectrum of the operator ℒ𝑑 + 𝒫 𝑐 + 1 lies in (−1, 1), and hence the operator can
be inverted using the Neumann series. We choose the unique solution which
corresponds to 𝒫 𝑐[𝑞] = −𝜖0𝑉 . This additional constraint requires us to solve the
equation

(ℒ𝑑 + 𝒫 𝑐 + 1)[𝑞](𝒙0) =
𝑄

4𝜋𝒢(𝒙 , 𝒙𝑐) + 𝜖0𝜙
∞(𝒙0), 𝒙0 ∈ 𝑆𝑝 , (2.127)

which has a unique solution that can be obtained by inverting the operator on the
left-hand side using the Neumann series. Therefore, for problems where the total
charge on the conductor is given to be 𝑄, one can solve equation (2.127), which
gives the unique solution 𝑞. This solution can then be used to obtain the constant
potential on the surface of the conductor using 𝒫 𝑐[𝑞] = 𝜖0𝑉 .

2.9.6 Electrostatic Potential in the Presence of Multiple
Conductors

The previous formulation generalizes easily in the presence of multiple conductors.
The external Dirichlet problem of 𝑁 charged conductors in the presence of a
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background potential field 𝜙∞(𝒙) in an unbounded domain 𝒟 in electrostatics is

∇2𝜙(𝒙) = 0, 𝒙 ∈ 𝒟; (2.128a)

𝜙(𝒙𝑠) = 𝑉𝛼 , for 𝒙𝑠 ∈ 𝑆𝛼; (2.128b)

𝜙(𝒙) → 𝜙∞(𝒙) as |𝒙| → ∞, (2.128c)

where 𝑆𝛼 denotes surface of conductor 𝛼 and 𝛼 ∈ {1, 2, ...𝑁}. In our cases of
interest, the constant potentials 𝑉𝛼 are to be determined in terms of the known
total charges 𝑄𝛼 on each conductor. The potential field 𝜙(𝒙0) can be represented
in terms of a double layer potential as

𝜀0𝜙(𝒙0) = − 1
2𝜋

𝑁∑
𝛼=1

∮
𝑆𝛼

𝑞𝛼(𝒙)𝒏̂𝛼(𝒙) · ∇𝒙𝒢(𝒙 , 𝒙0) 𝑑𝑆𝛼(𝒙)

+
𝑁∑
𝛼=1

𝑄𝛼

4𝜋𝒢(𝒙0, 𝒙𝛼) + 𝜖0𝜙
∞(𝒙0), 𝒙0 ∈ 𝒟 . (2.129)

Recall that 𝒢(𝒙 , 𝒙0) is the Green’s function of the Laplace equation, given by

𝒢(𝒙 , 𝒙0) =
1

|𝒙 − 𝒙0|
.

In the equation (2.129), the first term denotes the double layer potential, 𝑞𝛼 is an
unknown double layer density, 𝒏̂𝛼 is outward normal to the surface 𝑆𝛼, 𝑄𝛼 is the
total charge on 𝑆𝛼 and 𝒙𝛼 is a point lying inside the conductor 𝑆𝛼. The unknown
double-layer densities 𝑞𝛼 are determined using the boundary conditions

lim
𝒙0→𝑆+𝛼

𝜙(𝒙0) = 𝑉𝛼 , 𝛼 ∈ {1, 2, ...𝑁}, (2.130)

where 𝒙0 → 𝑆+𝛼 denotes the approach to the surface 𝑆𝛼 is from the outside of the
surface, i.e., along 𝒏̂𝛼. Applying the boundary condition in equation (2.129), we
obtain a second-kind integral equation given by

𝑁∑
𝛽=1

(ℒ𝑑
𝛼𝛽 + 𝛿𝛼𝛽) [𝑞𝛽](𝒙𝑠) =

𝑁∑
𝛽=1

𝑄𝛽

4𝜋𝒢(𝒙𝑠 , 𝒙𝛼) − 𝜀0𝑉𝛼 + 𝜖0𝜙
∞(𝒙𝑠), 𝒙𝑠 ∈ 𝑆𝛼 , (2.131)

where 𝛼 ∈ {1, 2, ...𝑁} and ℒ𝑑
𝛼𝛽 is the double layer operator given by

ℒ𝑑
𝛼𝛽[𝑞𝛽](𝒙𝑠) ≡

1
2𝜋

∮
𝑆𝛽

𝑞𝛽(𝒙) 𝒏̂𝛽 · ∇𝒙𝒢(𝒙 , 𝒙𝑠) 𝑑𝑆𝛽(𝒙), 𝒙𝑠 ∈ 𝑆𝛼 . (2.132)

Given total charges𝑄𝛼’s on each conductor, we are required to obtain the potentials
𝑉𝛼’s on the surface of each conductor. Using ℒ𝑑

𝛼𝛽[𝑐] = −𝑐 𝛿𝛼𝛽 where 𝑐 is a constant
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function defined on the surface of 𝑆𝛽, we see that (2.131) has no unique solution.
Since 𝑉𝛼’s are unknown, one chooses the solutions 𝑞𝛼’s such that the projection
of 𝑞𝛼 onto the subspace of constant functions (which are eigenfunctions of ℒ𝑑

𝛼𝛽) is
exactly 𝑉𝛼. The corresponding projection operator is given by

𝒫 𝑐
𝛼𝛽[𝑞𝛽] ≡

1
|𝑆𝛼|

𝛿𝛼𝛽

∮
𝑆𝛽

𝑞𝛽(𝒙) 𝑑𝑆𝛽(𝒙), (2.133)

where |𝑆𝛼| is the surface area of conductor 𝑆𝛼. Therefore, choosing
∑𝑁

𝛽=1 𝒫 𝑐
𝛼𝛽[𝑞𝛽] =

𝑉𝛼 not only fixes the non-uniqueness problem but also determines 𝑉𝛼’s once
the solutions 𝑞𝛼’s are known. This leads to a well-defined second-kind integral
equation given by

𝑁∑
𝛽=1

(ℒ𝑑
𝛼𝛽 + 𝒫 𝑐

𝛼𝛽 + 𝛿𝛼𝛽) [𝑞𝛽](𝒙𝑠) =
𝑁∑
𝛽=1

𝑄𝛽

4𝜋𝒢(𝒙𝑠 , 𝒙𝛼) + 𝜖0𝜙
∞(𝒙0), (2.134)

𝛼 ∈ {1, 2, ...𝑁}, with the potential fields given by

𝜀0𝑉𝛼 =
1

|𝑆𝛼|

∮
𝑆𝛼

𝑞𝛼(𝒙) 𝑑𝑆𝛼(𝒙), 𝛼 ∈ {1, 2, ...𝑁}. (2.135)

Using the same arguments as discussed for a single conductor, it can be shown
that the spectrum of the grand operator

ℒ𝑑
11 + 𝒫 𝑐

11 ℒ𝑑
12 ... ℒ𝑑

1𝑁
ℒ𝑑

21 ℒ𝑑
22 + 𝒫 𝑐

22 ... ℒ𝑑
2𝑁

... ... ... ...

ℒ𝑑
𝑁1 ℒ𝑑

𝑁2 ... ℒ𝑑
𝑁𝑁

+ 𝒫 𝑐
𝑁𝑁


lies in the interval (−1, 1) and hence the equation (2.134) admits a unique so-
lution which can be obtained using the Neumann series [102]. To accurately
evaluate the double-layer operator, which becomes singular when the evaluation
point coincides with the quadrature point, we employ singularity subtraction as
ℒ𝑑[𝑞](𝒙0) = ℒ𝑑[𝑞 − 𝑞0](𝒙0) + ℒ𝑑[𝑞0](𝒙0) = ℒ𝑑[𝑞 − 𝑞0](𝒙0) − 𝑞0, where 𝑞0 = 𝑞(𝒙0)
and we have used the fact that ℒ𝑑[𝑞0] = −𝑞0.

2.10 Boundary Integral Formulation for Rigid Bodies
in Stokes Flow

The boundary integral formulation presented in detail has been borrowed from its
counterpart in microhydrodynamics, presented in detail in the works of Pozrikidis

64



2.10. BOUNDARY INTEGRAL FORMULATION FOR RIGID BODIES IN STOKES
FLOW

[16] andKim & Karilla [10]. Having understood the formulation for the electrostatic
case, we shall briefly present the formalism for Stokes flow, and refer the reader
to [10, 16] for a detailed in-depth discussion.

The external Dirichlet problem of 𝑁 rigid bodies in an unbounded medium in
Stokes flow is

−∇𝑝(𝒙) + 𝜇∇2𝒖(𝒙) = 0; ∇ · 𝒖(𝒙) = 0; (2.136a)

𝒖(𝒙𝑠) = 𝑽𝛼 +𝛀𝛼 × (𝒙𝑠 − 𝒙𝛼), for 𝒙𝑠 ∈ 𝑆𝛼; 𝒖(𝒙) → 𝒖∞(𝒙) as |𝒙| → ∞ (2.136b)

where 𝑆𝛼 denotes surface of rigid body 𝛼, 𝒙𝛼 is location of the centre of mass of
body 𝑆𝛼 and 𝛼 ∈ {1, 2, ...𝑁}. The velocity field at a point 𝒙0 in the exterior domain
𝒟 can be represented in terms of a double layer potential as [10, 16]

𝒖(𝒙0) = 𝒖∞(𝒙0)−
1

4𝜋

𝑁∑
𝛼=1

∮
𝑆𝛼

𝒒𝛼(𝒙)·𝓣 (𝒙 , 𝒙0)·𝒏̂𝛼 𝑑𝑆𝛼(𝒙)+𝓥 𝑠(𝒙0), 𝒙0 ∈ 𝒟 , (2.137)

where

𝓣 (𝒙 , 𝒙0) ≡ −6𝒓𝒓𝒓
|𝒓|5 , 𝒓 ≡ (𝒙 − 𝒙0), (2.138)

𝓖(𝒙 , 𝒙0) ≡
𝜹

|𝒓| +
𝒓𝒓
|𝒓|3 , 𝓡(𝒙 , 𝒙0) ≡

1
2∇ ×𝓖(𝒙 , 𝒙0), (2.139)

𝓥
𝑠(𝒙0) =

𝑁∑
𝛼=1

[−𝑭 ℎ𝛼 ·𝓖(𝒙0, 𝒙 𝑖𝑛𝛼 ) + 𝑻 ℎ
𝛼 ·𝓡(𝒙0, 𝒙 𝑖𝑛𝛼 )]. (2.140)

The first term in equation (2.137) denotes the double-layer potential, 𝒒𝛼 is an
unknown double-layer density, and 𝒏̂𝛼 is an outward normal to the surface 𝑆𝛼.
The second term 𝓥

𝑠(𝒙0, 𝒙𝑖𝑛) is the sum of supplementary flows produced by a
point force of magnitude 𝑭 ℎ𝛼 and a point torque of magnitude 𝑻 ℎ

𝛼 located at a point
𝒙𝛼, inside the rigid body 𝑆𝛼. For a body 𝑆𝛼 with its centre of mass located within
it, 𝒙 𝑖𝑛𝛼 is chosen to be the position of the centre of mass 𝒙𝛼. The unknown double
layer densities 𝒒𝛼 are determined using the boundary conditions

lim
𝒙0→𝑆+𝛼

𝒖(𝒙0) = 𝑽𝛼 +𝛀𝛼 × (𝒙0 − 𝒙𝛼), 𝛼 ∈ {1, 2, ...𝑁}, (2.141)

where 𝒙0 → 𝑆+𝛼 denotes the approach to the surface 𝑆𝛼 from outside of the surface,
i.e., along 𝒏̂𝛼

3.
In the mobility problem, the external forces and torques are known for each

body, which for overdamped systems are negative of the hydrodynamic forces
3The direction of approach matters because the double layer potential has a jump discontinuity

across the surface.
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𝑭 ℎ𝛼 and hydrodynamic torques 𝑻 ℎ
𝛼 . Thus, the supplementary flow 𝓥

𝑠 is known
and we are required to find velocities 𝑽𝛼 and 𝛀𝛼. Using boundary conditions and
projecting out the marginal eigenvalues ±1 [10, 16], we get a second kind integral
equation for 𝒒𝛼 as

𝑁∑
𝛽=1

(
𝓛
𝑑
𝛼𝛽 +𝓟

𝑟𝑏
𝛼𝛽 −

𝛿𝛼𝛽

|𝑆𝛼|
𝒏̂𝛼 𝒏̂𝛼 + 𝜹𝛼𝛽

)
[𝒒𝛽](𝒙𝑠) = 𝒖∞(𝒙𝑠) +𝓥

𝑠(𝒙𝑠), 𝒙𝑠 ∈ 𝑆𝛼 , (2.142)

where |𝑆𝛼| is the surface area of the body 𝑆𝛼, 𝓛𝒅
𝛼𝛽 is the double layer operator

given by

𝓛
𝑑
𝛼𝛽[𝒒𝛽](𝒙𝑠) ≡

1
4𝜋

∮
𝑆𝛽

𝒒𝛽(𝒙) · 𝓣 (𝒙 , 𝒙𝑠) · 𝒏̂𝛽(𝒙) 𝑑𝑆𝛽(𝒙), 𝒙𝑠 ∈ 𝑆𝛼 , (2.143)

and 𝓟
𝑟𝑏 is a projection operator given by

𝓟
𝑟𝑏
𝛼𝛽[𝒒𝛽] ≡ 𝛿𝛼𝛽

{ 1
|𝑆𝛼|

∮
𝑆𝛼

𝒒𝛼(𝒙) 𝑑𝑆(𝒙) +
(
𝑰−1
𝛼 ·

∮
𝑆𝛼

(𝒙 − 𝒙𝛼) × 𝒒𝛼(𝒙) 𝑑𝑆(𝒙)
)
× (𝒙 − 𝒙𝛼)

}
,

(2.144)
and 𝑰𝛼 is the inertia tensor of 𝑆𝛼, given by [93]

𝑰𝛼 ≡
∮
𝑆𝛼

[𝜹(𝑿𝛼 · 𝑿𝛼) − 𝑿𝛼𝑿𝛼] 𝑑𝑆(𝒙), 𝑿𝛼 ≡ 𝒙 − 𝒙𝛼 . (2.145)

Equation (2.142) has a unique solution 𝒒𝛼, 𝛼 ∈ {1, ..𝑁}. This solution is then used
to determine the unknown velocities as

𝑽𝛼 =
1

|𝑆𝛼|

∮
𝑆𝛼

𝒒𝛼(𝒙) 𝑑𝑆(𝒙), 𝛀𝛼 = 𝑰−1
𝛼 ·

∮
𝑆𝛼

(𝒙 − 𝒙𝛼) × 𝒒𝛼(𝒙) 𝑑𝑆(𝒙). (2.146)

It can be shown that the spectrum of the grand operator
𝓛

𝒅
11 +𝓟

𝑟𝑏
11 − |𝑆1|−1𝒏̂1𝒏̂1 𝓛

𝒅
12 ... 𝓛

𝒅
1𝑁

𝓛
𝒅
21 𝓛

𝒅
22 +𝓟

𝑟𝑏
22 − |𝑆2|−1𝒏̂2𝒏̂2 ... 𝓛

𝒅
2𝑁

... ... ... ...

𝓛
𝒅
𝑁1 𝓛

𝒅
𝑁2 ... 𝓛

𝒅
𝑁𝑁 +𝓟

𝑟𝑏
𝑁𝑁 − |𝑆𝑁 |−1𝒏̂𝑁 𝒏̂𝑁


lies in the interval (−1, 1) and hence equation (2.142) admits a unique solution
which can be obtained using the Neumann series [102]. To accurately evaluate
the double-layer operator, which becomes singular when the evaluation point
coincides with the quadrature point, we employ singularity subtraction, similar
to the approach used in electrostatics, as 𝓛

𝒅
𝛼𝛽[𝒒](𝒙0) = 𝓛

𝒅
𝛼𝛽[𝒒 − 𝒒0] − 𝒒0, where

𝒒0 ≡ 𝒒(𝒙0) and we have used the fact that the 𝓛
𝒅
𝛼𝛽[𝒒0] = −𝒒0.

66
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2.11 Numerical Solution of Boundary Integral
Equations

For the surfaces with known parametric equations, the boundary integral equa-
tions (2.134) and (2.142) can be solved numerically with spectral accuracy. Let
𝒙(𝜃, 𝜙) be a point lying on the surface 𝑆𝑝 of a body, with (𝜃, 𝜙) denoting polar and
azimuthal angle, respectively. The surface 𝑆𝑝 can be discretized using 𝑁 = 𝑛𝜃𝑛𝜙

grid points, with 𝑛𝜃 Gauss-Legendre nodes in the interval [0,𝜋] and 𝑛𝜙 uniformly
spaced nodes in the periodic azimuthal direction 𝜙 ∈ [0, 2𝜋). Integrating smooth
periodic functions using the trapezoidal rule over a periodic grid provides spectral
accuracy [103, 104]. Similarly, Gauss-Legendre points ensure spectral accuracy
for smooth functions in the domain [0,𝜋] [104, 105]. Let (𝜃𝑖 , 𝜙 𝑗) denote the grid
points in the parametric space, with 𝑖 ∈ {1, 2, .., 𝑛𝜃} and 𝑗 ∈ {1, 2, ..., 𝑛𝜙}. Then
we have [104]

𝜃𝑖 =
𝜋
2 (𝑠𝑖 + 1), 𝜙 𝑗 =

2𝜋
𝑛𝜙

(𝑗 − 1); 𝑖 ∈ {1, 2, .., 𝑛𝜃}, 𝑗 ∈ {1, 2, ..., 𝑛𝜙}. (2.147)

Here 𝑠𝑖 are the roots 𝑛𝜃 roots of the Legendre polynomial 𝑃𝑛𝜃(𝑠) of degree 𝑛𝜃. The
surface integrals of the form

𝐼 ≡
∮
𝑆𝑝

𝒇 (𝒙) · 𝒏̂(𝒙) 𝑑𝑆(𝒙) =
∫ 𝜋

0
𝑑𝜃

∫ 2𝜋

0
𝑑𝜙 𝒇 (𝒙(𝜃, 𝜙)) · 𝒏̂(𝜃, 𝜙) 𝐽(𝜃, 𝜙),

can be evaluated numerically as

𝐼 ≈
𝑛𝜃∑
𝑖=1

𝑛𝜙∑
𝑗=1

𝒇 (𝒙(𝜃𝑖 , 𝜙 𝑗)) · 𝒏̂(𝜃𝑖 , 𝜙 𝑗)𝐽(𝜃𝑖 , 𝜙 𝑗)𝑤𝜃
𝑖 𝑤

𝜙
𝑗
. (2.148)

Here 𝐽(𝜃, 𝜙) is the Jacobian, 𝑤𝜃
𝑖

and 𝑤𝜙
𝑗

are the quadrature weights, given by:

𝒏̂(𝜃, 𝜙)𝑊(𝜃, 𝜙) =
(
𝜕𝒙
𝜕𝜃

× 𝜕𝒙
𝜕𝜙

)
, 𝑤𝜃

𝑖 =
𝜋

(1 − 𝑠2
𝑖
)[𝑃′

𝑛𝜃(𝑠𝑖)]2
, 𝑤

𝜙
𝑗
=

2𝜋
𝑛𝜙
. (2.149)

We use the Nyström method [106] in which the collocation points, where the
boundary integral equations are imposed, are taken to be the same as the quadra-
ture points. The generalised minimal residual method (GMRES) [104, 107] is used
to converge on the solutions of equations (2.134) and (2.142).

To solve the integral equations for surfaces where parametric equations are
not known, one can triangulate the surface and evaluate the integrals either over
3-node flat triangles or 6-node curved triangles, as described by Pozrikidis [98].
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3

Fluttering Without Wind:
Stokesian Quasi-periodic

Settling

“The junior Bat asked the senior Bat
A question most profound:
‘How do the humans down below
Hang by their feet from the ground?’”
— Alphabet Zoop (1992), Dick Smithells and Ian Pillinger

This chapter is adapted from our article published in Physical Review Letters
titled "Sedimentation Dynamics of Bodies with Two Planes of Symmetry" [108]. I
gratefully acknowledge my advisor, Professor Rama Govindarajan, for her contri-
butions to this work. I also acknowledge Saumav Kapoor for his help in designing
the shape of flutterers.

3.1 Introduction

The complex and poetic dance of falling autumn leaves is a high Reynolds number
phenomenon, which depends crucially on vortex shedding [109–111], a feature
absent in Stokes flow. One would therefore expect settling at zero Reynolds
number to be uneventful, especially for a body shape of high symmetry. In fact, in
steady Stokes flow, the linear and angular motion of bodies with three planes of
symmetry, like ellipsoids, are completely decoupled, and without external torque
can only display linear motion [10, 12, 14, 38, 112]. But particles can have complex
shapes with fewer symmetries, and understanding their sedimentation is crucial
in diverse contexts, from marine snow sequestering atmospheric carbon to ice
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crystals in clouds and industrial powder production, like milk powder. Unlike
ellipsoids, bodies with fewer symmetries can couple translation and rotation,
opening up richer possibilities, e.g., chiral sedimenting trajectories of chiral objects
like helices and Kelvin’s isotropic helicoid [37, 40, 41]. The pioneering work of
Brenner [44] examined the different possible terminal sedimentation behaviours
allowed for various body symmetries. However, there are bodies that do not
attain a steady terminal state. Recent work on sedimentation of a U-shaped disk
[42] shows that achiral bodies can display quasi-periodic dynamics with chiral
trajectories, and provides theory for the pitch and roll dynamics. This study also
argues that the most complicated motion an arbitrary body can perform is quasi-
periodic, and not chaotic. We present a general theory for the sedimentation of
any body with two planes of symmetry, henceforth called di-bilaterals, and find
three kinds of dynamics, the most interesting being quasi-periodic. The body
shape allows for a priori classification in sedimentation behaviour. Our choice
of dynamical variables brings out a new conserved quantity which restricts the
dynamics of di-bilaterals. We explain the quasi-periodicity using Floquet theory.

Non-spherical particles are often modelled as ellipsoids to account for their
orientation degrees of freedom. But ellipsoids sediment with persistent horizontal
drift. We show that only a very narrow class of di-bilaterals, which includes
ellipsoids, can show persistent drift. Moreover, we prove that generic bodies
displaying quasi-periodic motion cannot show persistent drift. Our study is a
strong indication that di-bilaterals, which can exhibit settling, drifting, helical,
and quasi-periodic motion, are a far better model of achiral bodies than ellipsoids,
capable of explaining a range of sedimentation behaviour. Elastic fibers provide a
natural setting for observing di-bilateral sedimentation [113].

Our interest is in the sedimentation of a single achiral body in zero background
flow. We opt for di-bilaterals, which support simple translation-rotation coupling
(TRC), unlike ellipsoids. We show that all such bodies fall into one of three classes:
settlers, drifters, and flutterers. Settlers asymptotically align one of their principal
axes along gravity and fall vertically, while drifters fall obliquely at constant
speed. Flutterers are the most interesting, showing quasi-periodic or periodic,
but never chaotic, motion. We show that their motion is completely described
by an overlaying of Floquet dynamics in the horizontal direction, onto periodic
dynamics in the vertical direction. We design a set of di-bilaterals (see Figure 3.1)
and obtain their resistance matrices, which relate the external forces to particle
motion, numerically by the boundary integral method.
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CHAPTER 3. FLUTTERING WITHOUT WIND: STOKESIAN
QUASI-PERIODIC SETTLING

3.2 Reduction of mobility matrix through geometric
symmetries

As we discussed in Chapter 1 and Chapter 2 of this thesis, the mobility matrix, 𝓜,
of a body only depends on its size and geometry. For a generic-shaped body, the
mobility matrix relates the linear velocity 𝑽 and angular velocity 𝛀 of the body
to the hydrodynamic force 𝑭 ℎ and torque 𝑻 ℎ acting on it. This relationship is
expressed as [

𝑽

𝛀

]
= −𝜇−1

[
𝒂 𝒃𝑇

𝒃 𝒄

]
︸   ︷︷   ︸

𝓜

[
𝑭 ℎ

𝑻 ℎ

]
. (3.1)

The symmetry property, 𝓜
𝑇

= 𝓜, is guaranteed by the Lorentz reciprocal
theorem [10, 12, 14, 112]. Each sub-matrices 𝒂 , 𝒃, 𝒄 which compose 𝓜 are 3 × 3
matrices. Under a linear transformation, 𝑼 , the elements of the mobility matrix
transforms as [14]

𝒂 → 𝑼𝒂𝑼𝑇 , 𝒃 → (det𝑼 )𝑼𝒃𝑼𝑇 , 𝒄 → 𝑼𝒄𝑼𝑇 .

Note that since 𝒃 couples a vector and a pseudo-vector, one needs to take into
account for transformations that map right-handed coordinates to left-handed
coordinates via the determinant det𝑼 . For bodies with two planes of symmetry,
as indicated by Figure 3.1, there are two reflection transformations 𝑼1 and 𝑼2,
written in the body’s coordinate axes ({𝒑1, 𝒑2, 𝒑2}) as

𝑼1 =


−1 0 0
0 1 0
0 0 1

 , 𝑼2 =


1 0 0
0 1 0
0 0 −1

 . (3.2)

Note that 𝒑2 → −𝒑2 is not a plane of symmetry. Since𝑼1 and𝑼2 are the symmetry
transformations, they do not change the geometry of the body. Thus, the mobility
matrix is identical after the transformation. This implies

𝒂 = 𝑼1𝒂𝑼𝑇
1 = 𝑼2𝒂𝑼𝑇

2 , (3.3a)

𝒃 = −𝑼1𝒃𝑼𝑇
1 = −𝑼2𝒃𝑼𝑇

2 , (3.3b)

𝒄 = 𝑼1𝒄𝑼𝑇
1 = 𝑼2𝒄𝑼𝑇

2 . (3.3c)

Using equation (3.3), each sub-matrix of the mobility matrix gets reduced to the
following structure

𝒂 = 𝐿−1


𝐺1 0 0
0 𝐺2 0
0 0 𝐺3

 , 𝒃 = −𝐿−2


0 0 𝛼𝑝
0 0 0
𝛼𝑟 0 0

 , 𝒄 = 𝐿−3


𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

 . (3.4)
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Here 𝐿 is the typical size of the body, which has been scaled out to make the rest
of the parameters non-dimensional. The parameters of interest will be 𝛼𝑝 and 𝛼𝑟 ,
which couple the translation and rotation degrees of freedom.

3.3 Dynamics of vertical projections of the principal
axes

In the overdamped limit where we work, gravity is balanced by viscous drag. The
Stokesian dynamics is conveniently written in the body-fixed coordinate system
of unit vectors {𝒑1, 𝒑2, 𝒑3} (see Figure 3.1), as [14, 15, 42]:

©­­­­­­­­­«

𝑣1

𝑣2

𝑣3

Ω1

Ω2

Ω3

ª®®®®®®®®®¬
=

©­­­­­­­­­«

𝐺1 0 0 0 0 −𝛼𝑟
0 𝐺2 0 0 0 0
0 0 𝐺3 −𝛼𝑝 0 0
0 0 −𝛼𝑝 𝑐1 0 0
0 0 0 0 𝑐2 0

−𝛼𝑟 0 0 0 0 𝑐3

ª®®®®®®®®®¬︸                                     ︷︷                                     ︸
𝓜

©­­­­­­­­­«

𝐹1

𝐹2

𝐹3

0
0
0

ª®®®®®®®®®¬
, (3.5)

where 𝑭 = 𝐹1𝒑1 + 𝐹2𝒑2 + 𝐹3𝒑3 is the external force due to gravity, and 𝑽 = 𝑣1𝒑1 +
𝑣2𝒑2 + 𝑣3𝒑3 and 𝛀 = Ω1𝒑1 +Ω2𝒑2 +Ω3𝒑3 the translational and angular velocities
respectively. Equation 3.5 has been non-dimensionalized by characteristic length
and time scales 𝐿 and 𝜏 = 𝜇𝐿2/(𝑚𝑔𝑟), 𝜇 being the fluid’s dynamic viscosity, and
𝑚𝑔𝑟 the body’s buoyancy-corrected weight. Note that we have assumed that the
body’s geometric centre coincides with its center of mass, and hence no external
torque acts on the body. The non-dimensional mobility matrix 𝓜 depends only
on the body shape. The geometry allows for TRC of a particularly simple form,
with two independent entries 𝛼𝑝 and 𝛼𝑟 . The lab-fixed and body-fixed coordinate
axes are related by 𝒑𝑖 = 𝑹 𝑗𝑖𝒆 𝑗 , 𝑖 , 𝑗 ∈ {1, 2, 3} with 𝒆1 = 𝒙̂ , 𝒆2 = 𝒚̂ anti-parallel to
gravity, and 𝒆3 = 𝒛̂. So, in the lab frame

𝑹 =
©­­«
𝑝1𝑥 𝑝2𝑥 𝑝3𝑥

𝑝1𝑦 𝑝2𝑦 𝑝3𝑦

𝑝1𝑧 𝑝2𝑧 𝑝3𝑧

ª®®¬ , 𝑹𝑇𝑹 = 𝑹𝑹𝑇 = I. (3.6)

Rotational invariance in the body frame about the gravity axis provides, for any
arbitrary-shaped body, a decoupling of the dynamics of the vertical projections of
the body’s coordinate axes from that of their horizontal projections [38, 42, 45, 114].
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𝒑𝟑

𝒑𝟑

𝒑𝟐

𝒑𝟐

𝒑𝟏

𝒑𝟏
𝒙

𝒚

𝒛

a) b)
𝒈

Figure 3.1: (a) A body with two mutually perpendicular planes of symmetry, and
the coordinate systems. (b) Showing that 𝒑1 − 𝒑3 is not a plane of symmetry.

For the vertical projections, using equations (3.5), (3.6) and ¤𝒑𝑖 = 𝛀×𝒑𝑖 , 𝑖 ∈ {1, 2, 3},
we get

¤𝑝1𝑦 = 𝛼𝑟𝑝1𝑦𝑝2𝑦 , (3.7a)

¤𝑝2𝑦 = 𝛼𝑝𝑝
2
3𝑦 − 𝛼𝑟𝑝

2
1𝑦 , (3.7b)

¤𝑝3𝑦 = −𝛼𝑝𝑝3𝑦𝑝2𝑦 , (3.7c)

with the constraint |𝒑𝑦|2 = 1, where 𝒑𝑦 ≡ (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦), as required by equation
(3.6). Equation (3.7) admits a conserved quantity

𝐻 = |𝑝1𝑦|𝛼𝑝 |𝑝3𝑦|𝛼𝑟 . (3.8)

The relationship between 𝐻 and the continuous symmetries of (3.7) is discussed
in Section 3.6. Since 𝑝1𝑦 = 0 and 𝑝3𝑦 = 0 are invariant solutions of (3.7), the signs
of 𝑝1𝑦 and 𝑝3𝑦 are preserved. We have exploited this to define 𝐻 to be a positive
real number. The conserved quantities 𝐻 and |𝒑𝑦|2 = 1 render the system (3.7),
integrable, and restrict the solutions to go towards a fixed point or be periodic.
Solutions lie on the intersection of the unit sphere 𝒮2 with surfaces of constant
𝐻. 𝐻 is a generalisation to arbitrary di-bilaterals, of a conserved quantity shown
by [38, 45] for any body whose mobility centre coincides with the centre of mass,
which for di-bilaterals is those with 𝛼𝑝 = 𝛼𝑟 .

Earlier studies [38, 45, 114] on the possible sedimentation dynamics of bodies
of arbitrary shapes focused on the part of the dynamics described by the gravity
vector viewed in the body frame. This dynamical quantity is equivalent to our 𝒑𝑦 .
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They showed that the 𝒑𝑦 dynamics of a generic body can have stable, unstable,
saddle, and centre fixed points along with limit cycles. Our conserved quantity
𝐻 removes the possibility of a limit cycle in the 𝒑𝑦 dynamics of di-bilaterals, but
retains all other possible fixed points, as shown in figure 3.2.

𝑝1𝑦

𝑝2𝑦

𝑝3𝑦

a) b) c)

Figure 3.2: Phase portraits of the 𝒑𝑦 dynamical system. Red, green, and black
dots denote unstable, stable, and centre fixed points, respectively, and blue lines
with arrows are sample trajectories. (a) Settlers and (b) drifters ultimately align
their 𝒑2 axis along and obliquely to gravity, respectively. The beige plane in (b)
represents a particular 𝐻. (c) Flutterers rotate forever.

3.4 Classification of di-bilaterals based on their
rotational dynamics

Equation (3.7) supports the fixed points

𝒑∗𝑦 = {0,±1, 0} ∪
{
±
√

𝛼𝑝

𝛼𝑝 + 𝛼𝑟
, 0,±

√
𝛼𝑟

𝛼𝑝 + 𝛼𝑟

}
, (3.9)

and presents three different dynamics for bodies whose 𝛼𝑝𝛼𝑟 ⋚ 0, as seen in
their phase portraits in figure 3.2. This provides a systematic classification of
di-bilaterals based on their settling behaviours.
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3.4.1 Settlers

Di-bilaterals with 𝛼𝑝𝛼𝑟 < 0 are termed ‘settlers’, whose phase-portrait has one
globally attracting stable fixed point and an unstable fixed point. Asymptotically
in time, settlers orient their 𝒑2 parallel/anti-parallel to gravity and thence fall
vertically, without rotating. Similar behaviour occurs in bent achiral fibres [115]
and non-deformable chains [116]. Incidentally, a body lying in this class shows
settler-like dynamics at moderate Reynolds number [117]. One can show that
one of the fixed points of settlers is globally attracting, while the other is globally
repelling, as follows.

For settlers, which have 𝛼𝑟𝛼𝑝 < 0, a Lyapunov function exists that shows that
the stable fixed point is globally stable. Consider first the case where 𝛼𝑝 > 0 and
𝛼𝑟 < 0: here 𝒑∗1𝑦 = (0, 1, 0) is a non-hyperbolic fixed point corresponding to the
eigenvalues (0,−𝛼𝑝 ,−|𝛼𝑟|). The Lyapunov function is

𝑓1(𝒑𝑦) = 𝑝2
1𝑦 + 𝑝2

3𝑦 + (𝑝2𝑦 − 1)2. (3.10)

Clearly, 𝑓1(𝒑∗1𝑦 ) = 0 and 𝑓1(𝒑𝑦) > 0 for 𝒑𝑦 ≠ 𝒑∗1𝑦 . Now, ¤𝑓1 = −2(𝛼𝑝𝑝2
3𝑦 + |𝛼𝑟|𝑝2

1𝑦) < 0
for all 𝒑𝑦 ≠ 𝒑∗1𝑦 , showing 𝒑∗1𝑦 to be a globally attracting fixed point.

Similar arguments may be made for the other case, where 𝛼𝑝 < 0 and 𝛼𝑟 > 0,
using the Lyapunov function

𝑓2(𝒑𝑦) = 𝑝2
1𝑦 + 𝑝2

3𝑦 + (𝑝2𝑦 + 1)2, (3.11)

with 𝒑∗1𝑦 = (0,−1, 0) being the stable fixed point.

3.4.2 Drifters

The class we term ‘drifters’ has 𝛼𝑝𝛼𝑟 = 0. Their dynamics supports infinitely
many fixed points lying along the great circles 𝒜, of 𝑝1𝑦 = 0 if 𝛼𝑝 = 0 or 𝑝3𝑦 = 0 if
𝛼𝑟 = 0 (figure 3.2(b)). The dynamics occur in the intersection of 𝒮2 with the plane
of constant 𝑝3𝑦 (𝑝1𝑦), provided 𝛼𝑝 = 0 (𝛼𝑟 = 0). This invariant manifold (a circle)
intersects 𝒜 at a stable and an unstable fixed point. Drifters eventually fall with
their principal axes inclined at some constant angle to gravity and, like ellipsoids,
display persistent horizontal drift and no rotation.

3.4.3 Flutterers

A range of behaviour, all involving perpetual rotation, is displayed by ‘flutterers’,
whose 𝛼𝑝𝛼𝑟 > 0. Every fixed point here is either a centre or a saddle point, as for
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a U-shaped disk [43]. The maximum in 𝐻,

𝐻max =
|𝛼𝑝|𝛼𝑝/2|𝛼𝑟|𝛼𝑟/2

|𝛼𝑝 + 𝛼𝑟|𝛼𝑝/2+𝛼𝑟/2 , (3.12)

corresponds to centre fixed points, and the minimum, 𝐻min = 0, corresponds to
stable and unstable manifolds of the saddle points. The trajectory for a given initial
condition lies on a closed curve representing a constant 𝐻 surface (figure 3.3),
indicating periodic behaviour of 𝒑𝑦 . A similar periodic behaviour in the inclination

𝑝3𝑦

𝑝1𝑦

𝑝2𝑦

𝐻 = 𝐻𝑚𝑎𝑥

𝐻 = 0

b)a)

Figure 3.3: (a) Contour plot of the conserved quantity 𝐻 for flutterers. Closed
curves are of constant 𝐻, with 𝐻max shown by the black dots, and 𝐻 = 0 cor-
responding to the red heteroclinic orbits of the saddle points (red dots). (b)
Trajectories on the yellow surfaces with 𝑝1𝑦𝑝3𝑦 > 0 have different translational
chirality from those with 𝑝1𝑦𝑝3𝑦 < 0 on the blue surfaces, as shown in the section
3.8.2.

angles of a U-shaped disk relative to gravity has also been explained in the context
of its sedimentation [42]. The time period 𝑇𝑦 of orbits near the centre fixed points
can be obtained upon linearizing equation (3.7) about them: lim𝐻→𝐻max 𝑇𝑦 ≡ 𝑇𝑦𝑚 =

2𝜋/
√

2𝛼𝑝𝛼𝑟 . Also, 𝑇𝑦 everywhere can be obtained numerically, and is shown in
figure 3.4. Flutterers of different shapes show qualitatively similar trends in the
time period. Generically, displacing the mobility centre from the centre of mass
leads to bifurcation in 𝒑𝑦 dynamics [38, 46, 114]. However, such displacement
in our flutterers preserves the nature of fixed points. This can be understood as
follows.

We refer to the submatrix 𝒃 of the mobility matrix 𝓜 in equation (3.1) as the
coupling tensor. The elements of the coupling tensor 𝒃 depend on the origin of
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Figure 3.4: Time period of the 𝒑𝑦 dynamics of flutterers for different𝐻. As𝐻 → 0,
𝑇𝑦 can increase without bound. A given ratio 𝛼𝑝/𝛼𝑟 and its inverse yield the same
curve.

the coordinate system in which it is written. The mobility centre of a generic
body is that point about which the coupling tensor of the body is a symmetric
matrix [10, 14]. It has been reported [38, 114] that any body sedimenting with the
mobility centre coincident with its centre of mass (symmetric 𝒃 tensor) has six
fixed points in the 𝒑𝑦 dynamics. Two of these are saddles, and four are centre fixed
points. Typically, the centre fixed points undergo bifurcations and become stable
or unstable points when the coupling tensor 𝒃 departs from being symmetric, i.e.,
when the mobility centre of a body departs from its centre of mass. For flutterers,
however, we show that the stability properties of the centre fixed points do not
change even when the coupling tensor 𝒃 is asymmetric. The reason for this is
that the condition for the change in stability, as given in [46], is not met. This
condition is stated as follows: The centre fixed points undergo bifurcations if 𝒃 has
three distinct real eigenvalues, and the corresponding normalized eigenvectors 𝜼𝑘
satisfy

𝜼𝑖 · 𝜼 𝑗 ≠ (𝜼𝑖 · 𝜼𝑘)(𝜼 𝑗 · 𝜼𝑘) (𝑖 , 𝑗 , 𝑘 distinct),

forvalues of the index 𝑘 corresponding to the maximum and minimum eigenvalues.
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For di-bilaterals, the eigen-system of

𝒃 =


0 0 −𝛼𝑝
0 0 0

−𝛼𝑟 0 0


is given by 𝒃 · 𝜼𝑖 = 𝜆𝑖𝜼𝑖 , 𝑖 ∈ {1, 2, 3}, where:

𝜆1 = 0, 𝜼1 = (0, 1, 0),

𝜆2 = −
√
𝛼𝑝𝛼𝑟 , 𝜼2 =

(
−
√

𝛼𝑝

𝛼𝑝 + 𝛼𝑟
, 0,

√
𝛼𝑟

𝛼𝑝 + 𝛼𝑟

)
,

𝜆3 =
√
𝛼𝑝𝛼𝑟 , 𝜼3 =

(√
𝛼𝑝

𝛼𝑝 + 𝛼𝑟
, 0,

√
𝛼𝑟

𝛼𝑝 + 𝛼𝑟

)
.

Therefore,
𝜼1 · 𝜼2 = 0 = (𝜼1 · 𝜼3)(𝜼2 · 𝜼3), (3.13)

where 𝜆3 is the maximum eigenvalue of 𝒃. Thus, flutterers do not satisfy the
condition in [46], and there is no bifurcation in their centre fixed points.

3.5 Dynamics of horizontal projections of the
principal axes

For the remaining part of the dynamics, we write equations for the projection of
𝒑𝑖’s along the 𝑥-axis:

©­­«
¤𝑝1𝑥

¤𝑝2𝑥

¤𝑝3𝑥

ª®®¬ = 𝑨(𝑡)
©­­«
𝑝1𝑥

𝑝2𝑥

𝑝3𝑥

ª®®¬ , (3.14a)

𝑨(𝑡) ≡
©­­«

0 𝛼𝑟𝑝1𝑦(𝑡) 0
−𝛼𝑟𝑝1𝑦(𝑡) 0 𝛼𝑝𝑝3𝑦(𝑡)

0 −𝛼𝑝𝑝3𝑦(𝑡) 0

ª®®¬ . (3.14b)

Note that equation (3.6) provides three constraints:

|𝒑𝑦(𝑡)|2 = 1, (3.15a)

|𝒑𝑥(𝑡)|2 = 1, (3.15b)

𝒑𝑥(𝑡) · 𝒑𝑦(𝑡) = 0, ∀ 𝑡. (3.15c)

Equations (3.7), (3.14) and (3.15) fully describe the rotational dynamics of di-
bilaterals. Equation (3.14) shows that 𝒑𝑥 is driven by 𝒑𝑦 . Since the latter is
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time-periodic for flutterers, 𝒑𝑥(𝑡) can be solved using Floquet theory [118]. We
define a 𝑇𝑦 period Poincare map of the 𝒑𝑥 dynamical system as:

𝒫 𝑡0+𝑇𝑦
𝑡0

= 𝚽
𝑡0+𝑇𝑦
𝑡0

, (3.16a)
¤𝚽
𝑡
𝑡0 = 𝑨(𝑡)𝚽𝑡

𝑡0
; 𝚽𝑡0

𝑡0
= I, (3.16b)

where 𝚽𝑡
𝑡0

is the solution operator of equation (3.14), i.e., 𝒑𝑥(𝑡) = 𝚽𝑡
𝑡0
𝒑𝑥(𝑡0).

Since 𝑨𝑇(𝑡) = −𝑨(𝑡), equation (3.16) ensures that 𝚽𝑡
𝑡0
∈ 𝑆𝑂(3). Therefore, both

the solution operator and the Poincaré map correspond to some 3D rotations.
Consequently, the eigenvalues of the Poincaré map are given by 1 and 𝑒±𝑖𝛾𝑇𝑦 ,
where 𝛾 ∈ R is the Floquet exponent. The constraints of (3.15) restrict 𝒑𝑥(𝑡) to
lie normal to 𝒑𝑦(𝑡). Since 𝒑𝑦(𝑡0 + 𝑇𝑦) = 𝒑𝑦(𝑡0), the image set of the Poincare map
{𝒫 𝑡0+𝑛𝑇𝑦

𝑡0
𝒑𝑥(𝑡0)}𝑛∈N is a subset of the great circle lying normal to 𝒑𝑦(𝑡0). Thus,

the Poincare map 𝒫 𝑡0+𝑇𝑦
𝑡0

acting on 𝒑𝑥 corresponds to the rotation of 𝒑𝑥 by an
angle 𝜃 ≡ 𝛾𝑇𝑦 about the axis 𝒑𝑦(𝑡0). The appendix A shows that 𝜃 depends only
on 𝐻 and not on 𝑡0. By Floquet theory, any solution of equation (3.14) can be
decomposed as

𝒑𝑥(𝑡) = 𝑒 𝑖𝛾𝑡𝒃(𝑡), (3.17)

where 𝒃(𝑡) = 𝒃(𝑡 +𝑇𝑦) is some 𝑇𝑦-periodic function. Thus, if the driving frequency
𝜔𝑦 ≡ 2𝜋/𝑇𝑦 is incommensurate with the response frequency 𝛾, i.e., if𝜃/2𝜋 = 𝛾/𝜔𝑦

is an irrational number, flutterers’ motion is quasi-periodic, whereas if it is rational,
we have periodic dynamics. In the quasi-periodic case, the image set of the Poincaré
map fills up the entire great circle.

Figure 3.5 shows the dependence of the frequency ratio on 𝐻. There are
differences in detail for different flutterer shapes, but in all cases, the frequency
ratio varies continuously on [1 − 1/

√
2, 0.5], showing dense existence of periodic

and quasi-periodic orbits. Figure 3.6 shows phase trajectories and image sets of
Poincaré maps for a periodic and quasi-periodic case.

Another class of periodic orbits is obtained on the centre fixed points of the
𝒑𝑦 dynamics, characterized by 𝐻 = 𝐻max. In this case 𝑨(𝑡) = 𝑨∗ is a constant
matrix with the eigenvalues 0,±𝑖√𝛼𝑝𝛼𝑟 . The eigenvector corresponding to the
zero eigenvalue is not orthogonal to 𝒑𝑦 , and is dropped from the discussion since
it violates the constraints. In this case, the body simply rotates about gravity and
falls in a helical trajectory [38].
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Figure 3.5: The 𝒑𝑥 dynamics of flutterers involves two frequencies, 𝛾 and 𝜔𝑦 .
Their ratio, shown here, is the rotation angle 𝜃/2𝜋 of the Poincaré map. The black
horizontal line is the lower limit 1 − 1/

√
2 of the ratio.

𝒑𝒚(𝑡0)

𝒑𝒚(𝑡0)

𝑝1𝑥

𝑝2𝑥

𝑝3𝑥

a) b)

Figure 3.6: Sample 𝒑𝑥 trajectories shown as black curves on 𝒮2. (a) Period-5
trajectory. The red dots show the Poincaré map 𝒫 𝑡0+𝑇𝑦

𝑡0
which lie on the great circle

shown by the blue curve. This great circle lies normal to 𝒑𝑦(𝑡0). (b) Quasi-periodic
trajectory. The Poincaré map covers the entire great circle lying normal to 𝒑𝑦(𝑡0).
The filled black region has the inversion symmetry 𝒑𝑥 → −𝒑𝑥 .

3.6 Discrete and continuous symmetries of the
rotational dynamics of di-bilaterals

Before we analyze some important aspects of the dynamics of flutterers in more
detail in Section 3.8, it is useful to look at the discrete and continuous symmetries of
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the rotational dynamics. The discrete symmetry group of the rotational dynamical
equations (3.7) and (3.14) is 𝒢𝑅 = Z2 × Z2 × Z2. The group 𝒢𝑅 is an abelian group
containing 8 elements, which corresponds to the following eight transformations
of dynamical variables:

Element Action on (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 , 𝑝1𝑥 , 𝑝2𝑥 , 𝑝3𝑥)
𝑒 (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 , 𝑝1𝑥 , 𝑝2𝑥 , 𝑝3𝑥)

𝑎 = 𝑔 ∗ ℎ (−𝑝1𝑦 , 𝑝2𝑦 , −𝑝3𝑦 , 𝑝1𝑥 , −𝑝2𝑥 , 𝑝3𝑥)
𝑏 = 𝑎 ∗ 𝑐 (−𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 , 𝑝1𝑥 , −𝑝2𝑥 , −𝑝3𝑥)
𝑐 = 𝑎 ∗ 𝑏 (𝑝1𝑦 , 𝑝2𝑦 , −𝑝3𝑦 , 𝑝1𝑥 , 𝑝2𝑥 , −𝑝3𝑥)
𝑑 = 𝑎 ∗ 𝑓 (𝑝1𝑦 , 𝑝2𝑦 , −𝑝3𝑦 , 𝑝1𝑥 , −𝑝2𝑥 , −𝑝3𝑥)
𝑓 = 𝑏 ∗ ℎ (−𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 , −𝑝1𝑥 , 𝑝2𝑥 , 𝑝3𝑥)
𝑔 = 𝑎 ∗ ℎ (−𝑝1𝑦 , 𝑝2𝑦 , −𝑝3𝑦 , −𝑝1𝑥 , 𝑝2𝑥 , −𝑝3𝑥)
ℎ = 𝑐 ∗ 𝑑 (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 , −𝑝1𝑥 , −𝑝2𝑥 , −𝑝3𝑥)

Table 3.1: Discrete symmetries of rotational dynamics

The binary operations between the elements is shown in the first column of
table 3.1. The corresponding multiplication table of this group is isomorphic to
the group Z2 × Z2 × Z2. For the dynamics of flutterers, the group element ℎ is
used to establish that there is no persistent drift for quasi-periodic orbits, while
the element 𝑔 is used to show the dependence of the chirality on the sign of
𝑝1𝑦𝑝3𝑦 . Here we have restricted ourselves to transformations that only act on the
dynamical variables and not on time 𝑡.

The continuous Lie symmetries of the rotational dynamics are simply scal-
ing symmetries and time translational symmetries. The linearly independent
generators of these continuous symmetries are given by

𝑋1 = 𝒑𝑦 · ∇𝒑𝑦 − 𝑡𝜕𝑡 , 𝑋2 = 𝒑𝑥 · ∇𝒑𝑥 , (3.18a)

𝑋3 = ¤𝒑𝑦 · ∇𝒑𝑦 + ¤𝒑𝑥 · ∇𝒑𝑥 , 𝑋4 = 𝜕𝑡 . (3.18b)

The corresponding Lie algebra of these generators is:

[𝑋1, 𝑋2] = 0, (3.19a)

[𝑋1, 𝑋3] = 𝑋3, [𝑋1, 𝑋4] = 𝑋4, (3.19b)

[𝑋2, 𝑋3] = [𝑋2, 𝑋4] = [𝑋3, 𝑋4] = 0. (3.19c)

The generators 𝑋1 and 𝑋2 correspond to scaling symmetries:

𝑒𝜆𝑋1(𝒑𝑦 , 𝒑𝑥 , 𝑡) = (𝑒𝜆𝒑𝑦 , 𝒑𝑥 , 𝑒−𝜆𝑡), 𝑒𝜆𝑋2(𝒑𝑦 , 𝒑𝑥 , 𝑡) = (𝒑𝑦 , 𝑒𝜆𝒑𝑥 , 𝑡),

while the other two generators correspond to time translation. These Lie symme-
tries can be used to construct the conserved quantities or the first integrals of the
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rotational dynamics, as described in [119]. The four generators with three unique
transformations give three unique characteristics as:

𝑸1 = (𝒑𝑦 + 𝑡 ¤𝒑𝑦 , 𝑡 ¤𝒑𝑥), 𝑸2 = (0, 𝒑𝑥), 𝑸3 = ( ¤𝒑𝑦 , 𝒑𝑥). (3.20a)

The three co-characteristics are given by:

𝚲1 = (𝒑𝑦 , 0), 𝚲2 = (𝛼𝑝/𝑝1𝑦 , 0, 𝛼𝑟/𝑝3𝑦 , 0), 𝚲3 = (0, 𝒑𝑥). (3.21a)

The conserved quantity 𝐻 is obtained as a first integral using:

𝑸1 ·𝚲2 = 𝛼𝑝 + 𝛼𝑟 + 𝑡
𝑑

𝑑𝑡
log(𝑝𝛼𝑝1𝑦 𝑝

𝛼𝑟
3𝑦).

The otherscalarproducts of𝑸’s and𝚲’s yield the constraints (3.15) as the conserved
quantities.

3.7 Dependence of settling velocities on the
conserved quantity

The translational velocity of di-bilaterals can be obtained from equations (3.5) and
(3.6). In the lab frame

𝑣𝑥 = −𝐺1𝑝1𝑥𝑝1𝑦 − 𝐺2𝑝2𝑥𝑝2𝑦 − 𝐺3𝑝3𝑥𝑝3𝑦 , (3.22a)

𝑣𝑦 = −𝐺1𝑝
2
1𝑦 − 𝐺2𝑝

2
2𝑦 − 𝐺3𝑝

2
3𝑦 , (3.22b)

𝑣𝑧 = −𝐺1𝑝1𝑧𝑝1𝑦 − 𝐺2𝑝2𝑧𝑝2𝑦 − 𝐺3𝑝3𝑧𝑝3𝑦 , (3.22c)

where (𝑝1𝑧 , 𝑝2𝑧 , 𝑝3𝑧) ≡ 𝒑𝑧 ≡ 𝒑𝑥 × 𝒑𝑦 . Positive viscous dissipation rate requires
𝐺1, 𝐺2, 𝐺3 > 0 [10, 12, 14, 112]. Equation (3.22) shows the direct dependence
of the translational velocity on the orientation of the body. For 𝐻 = 0, the
settling velocity 𝑣𝑦 reaches 𝑣𝑦0 = −𝐺2 exponentially fast in time with the rate
|𝛼𝑝| or |𝛼𝑟|, depending on the initial condition, and for 𝐻 = 𝐻max, 𝑣𝑦 = 𝑣𝑦𝑚 ≡
−(𝐺1𝛼𝑝 + 𝐺3𝛼𝑟)/(𝛼𝑝 + 𝛼𝑟). The shape of the body determines whether the mean
vertical velocity ⟨𝑣𝑦⟩ (averaged over time period of 𝒑𝑦 dynamics) increases or
decreases with 𝐻, and a sample of each is shown in figure 3.7.

3.8 Details of dynamics of flutterers

Given that flutterers exhibit the most complex dynamical features, the following
sections are devoted to exploring two important aspects of their behaviour.
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Figure 3.7: For a given body, the mean vertical velocity is a function only of 𝐻,
and two samples are shown here.

3.8.1 Persistent horizontal drift

In this section, we ask if a di-bilateral, which is a flutterer, can ever show persistent
drift in the horizontal plane and answer the question separately for the quasiperi-
odic and the periodic cases. For the former, following Thorp & Lister [15], we
exploit the discrete symmetries of the rotational dynamical equations to rule out
persistent drift.
Claim: Flutterers can have persistent drift in the plane perpendicular to gravity only if

the driving frequency 𝜔𝑦 of the 𝒑𝑦 dynamics is exactly equal to the response frequency 𝛾

of the 𝒑𝑥 dynamics, i.e., 𝛾 = 𝜔𝑦 . In this case, the Poincare map 𝒫 𝑡0+𝑇𝑦
𝑡0

is just the identity
map.
Proof: The rotational dynamical equations (3.7) and (3.14) have a discrete symmetry
group 𝒢𝑅 = Z2 × Z2 × Z2. If a given rotational trajectory is invariant under 𝑔 ∈ 𝒢𝑅

and 𝑔(𝑣𝑖) = −𝑣𝑖 then there can be no persistent drift along the 𝑥𝑖 direction for
that trajectory, for the drift at one point is exactly cancelled by the other mapped
point. Note that 𝑔 : (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 , 𝑝1𝑥 , 𝑝2𝑥 , 𝑝3𝑥) → (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦 ,−𝑝1𝑥 ,−𝑝2𝑥 ,−𝑝3𝑥)
is a symmetry of equations (3.7) and (3.14) with 𝑔(𝑣𝑥) = −𝑣𝑥 and 𝑔(𝑣𝑧) = −𝑣𝑧 .
Thus, the invariance of trajectories of the rotational dynamical system under 𝑔 is
sufficient to rule out any persistent horizontal drift.

For quasi-periodic cases, any point 𝒑𝑥(𝑡) in a given trajectory will be mapped
to the point −𝒑𝑥 at time 𝑡 + 𝑘𝑇𝑦 , for some 𝑘 ∈ N. This is due to the fact that
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the Poincaré map 𝒫 𝑡+𝑇𝑦
𝑡 fills up the entire great circle with normal vector 𝒑𝑦(𝑡).

Since this great circle has an inversion symmetry, there exists a 𝑘 ∈ N such that
𝒑𝑥(𝑡 + 𝑘𝑇𝑦) = −𝒑𝑥 . Therefore, the region occupied by quasi-periodic orbits on
𝑆2 has inversion symmetry 𝒑𝑥 → −𝒑𝑥 . This rules out any persistent drift in the
horizontal plane owing to the discrete symmetry element 𝑔 ∈ 𝒢𝑅.

For the periodic case, we have closed trajectories subject to constraints (3.15)
which may not have the inversion symmetry 𝒑𝑥 → −𝒑𝑥 (see Figure 3.6). The
discrete symmetry argument to rule out persistent drift is inconclusive in this case.
A necessary condition for persistent drift can be obtained as follows: owing to
equation (3.17), each term on the right hand side of 𝑣𝑥 and 𝑣𝑧 in equation (3.22)
is of the form 𝑒 𝑖𝛾𝑡 𝑓 (𝑡), where 𝑓 (𝑡) = 𝑓 (𝑡 + 𝑇𝑦) is some 𝑇𝑦 periodic function. The
contribution of such terms to the displacement over one time period𝑇 of a periodic
trajectory is

Δ(𝑇) ≡ 1
𝑇

∫ 𝑇

0
𝑒 𝑖𝛾𝑡 𝑓 (𝑡) 𝑑𝑡 = 1

𝑇

∑
𝑘∈Z

𝑓𝑘

∫ 𝑇

0
𝑒 𝑖(𝛾+𝜔𝑦 𝑘)𝑡 𝑑𝑡, (3.23)

where we used the Fourier expansion: 𝑓 (𝑡) = ∑
𝑘∈Z 𝑓𝑘𝑒

𝑖𝜔𝑦 𝑡 with 𝜔𝑦𝑇𝑦 = 2𝜋. Now,
for the periodic case, 𝛾/𝜔𝑦 = 𝑛1/𝑛2 ∈ Q, where 𝑛1, 𝑛2 ∈ N and 𝑇 = 2𝜋𝑛2/𝜔𝑦 =

2𝜋𝑛1/𝛾. Using these in equation (3.23), we have

Δ(𝑇) =
∑
𝑘∈Z

𝑓𝑘

∫ 1

0
𝑒2𝜋𝑖(𝑛1+𝑘𝑛2)𝑞 𝑑𝑞 =

∑
𝑘∈Z

𝑓𝑘𝛿𝑛1+𝑘𝑛2 ,0, (3.24)

where 𝑞 = 𝑡/𝑇. Since 𝑘 ∈ Z, the contribution can be non-zero if 𝑛2 = 1 which
implies 𝛾/𝜔𝑦 ∈ N. Now, 𝛾 = 𝑘𝜔𝑦 for 𝑘 ∈ N implies 𝒑𝑥(𝑡 + 𝑇𝑥) = 𝒑𝑥(𝑡) with
𝑇𝑥 = 𝑇𝑦/𝑘. But ¤𝒑𝒙(𝑡 + 𝑇𝑥) = ¤𝒑𝒙(𝒑𝑦(𝑡 + 𝑇𝑥), 𝒑𝑥(𝑡)) ≠ ¤𝒑𝑥(𝒑𝑦(𝑡), 𝒑𝑥(𝑡)), unless 𝑇𝑦 = 𝑇𝑥 .
Thus, the 𝒑𝑥 trajectory cannot repeat itself after 𝑇𝑥 since the tangent vector ¤𝒑𝑥 at
time 𝑡 +𝑇𝑥 is different from what it was at time 𝑡, unless 𝑘 = 1. Therefore, the only
periodic trajectory for which Δ(𝑇) can be non-zero is the case 𝜔𝑦 = 𝛾.

For flutterers, numerics suggests that the ratio 𝛾/𝜔𝑦 is bounded between the
interval [1 − 1/

√
2, 0.5] (see Figure 3.5) in which case there is no persistent drift.

The lower limit of the ratio can be obtained by linearizing 𝒑𝑦 dynamics near
𝐻 = 𝐻max, in which case the time period of 𝒑𝑦 dynamics is periodic with time
period 𝑇𝑦𝑚 = 2𝜋/

√
2𝛼𝑝𝛼𝑟 . The 𝒑𝑥 dynamics up to the zeroth order in 𝐻 − 𝐻max is

given by ¤𝒑𝑥 = 𝑨∗𝒑𝑥 , where 𝑨∗ is the matrix in equation (3.14), evaluated at one of
the centre fixed points of the 𝒑𝑦 dynamics. Therefore, upto the zeroth order the
𝒑𝑥 dynamics is also periodic with the time period 𝑇𝑥𝑚 = 2𝜋/√𝛼𝑝𝛼𝑟 . Now, using
equation (3.17), 𝒑𝑥(𝑡 + 𝑇𝑦𝑚) = 𝒑𝑥(𝑡)𝑒 𝑖𝛾𝑇𝑦𝑚 ; and since 𝒑𝑥(𝑡) ∼ 𝑒±2𝜋𝑖𝑡/𝑇𝑥𝑚 , we have
𝑒±2𝜋𝑖𝑇𝑦𝑚/𝑇𝑥𝑚 = 𝑒 𝑖𝛾𝑇𝑦𝑚 , which gives 𝛾𝑇𝑦𝑚/2𝜋 = 1 − 1/

√
2.
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When 𝐻 = 𝐻max, we still have no persistent drift, since the valid solutions of
𝒑𝑥 : 𝒑𝑥(𝑡) = 𝑒𝑨

∗𝑡𝒑𝑥(0) are periodic with zero mean. This is because the eigenvector
of 𝑨∗ with zero eigenvalue does not satisfy the constraint 𝒑𝑥 · 𝒑𝑦 = 0 and thus
cannot be part of the solution.

Finally, for 𝐻 = 0, the body exponentially reaches one of the saddle points
𝒑∗𝑦 = (0,±1, 0) along its stable manifold as 𝑡 → ∞ and consequently the horizontal
drift goes to zero exponentially.

3.8.2 Chirality of translational trajectories

We discuss the chirality of the translational trajectories of flutterers, as shown
in Figure 3.8. As the body settles, its motion in the horizontal 𝑥 − 𝑧 plane is
either clockwise or anti-clockwise when viewed from below, corresponding to
negative or positive chirality, respectively. In Figure 3.3, regions on 𝒮2 with
𝑝1𝑦𝑝3𝑦 > 0 correspond to different chirality in translation motion from regions
with 𝑝1𝑦𝑝3𝑦 < 0. This can be seen as follows: for any given angular trajectory
(𝒑𝑦 , 𝒑𝑥) with 𝑝1𝑦𝑝3𝑦 > 0, the transformation 𝑔 : (𝑝1𝑦 , 𝑝1𝑥) → (−𝑝1𝑦 , −𝑝1𝑥) maps
the original trajectory to the trajectory in the region 𝑝1𝑦𝑝3𝑦 < 0 with the same 𝐻.
Thus, the mapped trajectory has the same time period 𝑇𝑦 in 𝒑𝑦 dynamics and the
same frequency ratio 𝛾/𝜔𝑦 in 𝒑𝑥 dynamics. However, 𝑔 : 𝑣𝑧 → −𝑣𝑧 , while the
other velocity components remain invariant. So the trajectory of the translational
dynamics (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is mapped to the trajectory (𝑥(𝑡), 𝑦(𝑡),−𝑧(𝑡)), i.e., the
original and mapped trajectories are of opposite chirality.

a) b)

Figure 3.8: Sample trajectories in the horizontal plane for (a) quasi-periodic and (b)
periodic orbits. The black arrows indicate the chirality of the settling trajectories.
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3.9 Constructing a set of di-bilaterals

It remains to obtain the mobility matrix 𝓜, and thence 𝛼𝑝 and 𝛼𝑟 , for a given
di-bilateral. We design a set of bodies with two parameters: the bending parameter
𝑎, and the concavity parameter 𝑏, as shown in Figure 3.9. The parametric equation

a

a) b)

2b

Figure 3.9: a) A set of bodies is defined by the parameters 𝑎 and 𝑏. b) As 𝑎 and 𝑏
defined are varied, we obtain settlers (𝛼𝑝𝛼𝑟 < 0), drifters (𝛼𝑝𝛼𝑟 = 0), and flutterers
(𝛼𝑝𝛼𝑟 > 0). Increasing 𝑏 turns settlers into flutterers, but increasing 𝑎 at fixed 𝑏

eventually turns flutterers back into settlers.

for a set of di-bilaterals is described in the following section.

3.9.1 Parametric equation of a set of di-bilaterals

A class of bodies ranging from settlers through drifters to flutterers can be con-
structed using a parameterization as described here. The centerline of the bodies
is a bent filament which is parameterized by a parameter 𝑠 as:

𝒓𝑐(𝑠) = 𝑎 cos(𝑘𝑠)𝒑2 + 𝑠𝒑3, 𝑠 ∈ [−1, 1], (3.25)

where the parameterization is in non-dimensional form with half the size of the
bent filament as the length scale, 𝑘 = 𝜋/2, and 𝑎 is the dimensionless bending
parameter (see red filament in Figure 3.9). To construct a 2D surface, cross sections
are drawn around this filament ranging from circular near the edges (𝑠 = ±1) to
concavo-convex near the centre 𝑠 = 0. The normal vector 𝒏𝑐 and binormal vector
𝒃𝑐 to the bent filament are given by

𝒏𝑐(𝑠) =
−𝒑2 − 𝑘𝑎 sin(𝑘𝑠)𝒑3√

1 + 𝑘2𝑎2 sin(𝑘𝑠)2
(3.26a)

𝒃𝑐(𝑠) = 𝒑1. (3.26b)

The cross-section of the body uses another parameter 𝜙 and can be constructed in
the plane spanned by 𝒏𝑐 and 𝒃𝑐 . The parametric equation of the set of bodies is
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given by

𝒓(𝑠, 𝜙) = 𝒓𝑐(𝑠) + 𝑅(𝑠){[(1 − 𝑏(𝑠)) cos(𝜙) + 𝑏(𝑠) cos(2𝜙)]𝒏𝑐(𝑠)
+[(1 + 𝑏(𝑠)) sin(𝜙) + 𝑏(𝑠)3 sin(2𝜙)]𝒃𝑐(𝑠)}, (3.27)

where 𝑅(𝑠) = 𝑅0
√

1 − 𝑠4 describes the dimensionless size of the cross-section and
𝑏(𝑠) ≡ 𝑏(1 − 𝑠2) describes the concavity of the cross-section (see Figure (3.9)).
The value of 𝑏 = 0 corresponds to a circular cross-section with the radius of the
circle given by 𝑅0 at the centre of the filament 𝑠 = 0. This corresponds to a bent
capsule, which is a settler. As 𝑏 is varied, the cross-section becomes more and
more concavo-convex. For a given 𝑏 > 0.2, increasing the bending parameter 𝑎
takes us from a settler to a flutterer, going through a drifter shape for a particular
value of 𝑎. Further increase in 𝑎, however, results in the flutterer going back to a
settler. The value of 𝑅0 is kept fixed to be 0.3 for the numerical evaluation of the
mobility matrix 𝓜.

We use the Boundary Integral Method [10, 16, 93, 98, 120], as outlined in
the Chapter 2 of this thesis, to obtain 𝓜 numerically. The parameters 𝛼𝑝 and
𝛼𝑟 completely describe the rotational dynamics of di-bilaterals, with figure 3.9
showing their dependence on shape. For a given 𝑏, an optimal 𝑎 maximizes 𝛼𝑝𝛼𝑟 ,
resulting in the highest fluttering frequency.

3.10 Summary and Conclusions

To summarize, we have shown that di-bilaterals show three kinds of Stokesian
sedimentation, depending only on their shape, appearing through the parameter
𝛼𝑝𝛼𝑟 . Settlers and drifters asymptotically fall vertically and obliquely, respectively,
without rotating. In flutterers, periodic dynamics in 𝒑𝑦 drive a periodic or quasi-
periodic response of 𝒑𝑥 , based on the ratio 𝛾/𝜔𝑦 . Both time-scales depend only on
the conserved quantity𝐻. All three classes of bodies can be obtained by bending a
capsule about its central axis and making its cross-section concavo-convex. Previ-
ous studies on asymmetric bodies have well-understood 𝒑𝑦 dynamics, predicting
fixed points of differing character in [38, 45, 46, 114]. Among these, we rule
out limit cycles for di-bilaterals due to the conserved quantity, 𝐻. Except for a
qualitative argument which argues for non-chaotic dynamics [42], the 𝒑𝑥 dynam-
ics has not been studied before to our knowledge. The 𝒑𝑥 dynamics enables an
understanding and quantitative description of quasi-periodicity. In the appendix
A, we also extend the proof of no persistent drift of torque-free skewed bodies [45]
to any arbitrary body that performs periodic/quasi-periodic motion.
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4

Dynamics and Clustering of
Sedimenting Disc Lattices

"I wish I had acquired wisdom at less of a price."
— Hosea Matthews, Red Dead Redemption 2

This chapter is a verbatim reproduction of our published article in the Journal
of Fluid Mechanics [121]. Minor formatting and notational changes have been
made for consistency. I gratefully acknowledge all the co-authors in this work
for their contributions. The experimental results are due to Rahul Chajwa, who
conducted all the experiments. Figure 4.1, which explains the two instability
mechanisms, and Figure 4.14, with the corresponding stability analysis, are also
credited to Rahul Chajwa.

4.1 Introduction

Particle sedimentation through fluid is ubiquitous in natural and industrial pro-
cesses, such as the settling of clay particles onto a riverbed, precipitates in a
chemical reaction, diatoms in pelagic algal blooms, and ice crystals in cirrus
clouds. Collections of sedimenting spherical particles have a tendency to clump
[47], leading to the formation of large aggregates and thence to increased sedi-
mentation rates. In an otherwise quiescent fluid, clumping is a consequence of
hydrodynamic interactions between settling particles, which in turn depend on
the shape and relative orientation of particles and inter-particle separations.

Most particles in nature are not perfect spheres, and shape anisotropies in
sedimenting particles leads to qualitatively new dynamical features. Spheroids
offer a simple model to describe departures in particle shape from sphericity, and
exhibit much richer sedimentation dynamics than spheres, both because isolated
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spheroids can drift horizontally and pairs are coupled through their orientational
and translational degrees of freedom [94, 122–124]. These new elements in the
dynamics can affect particle collision rates and their tendency to form aggregates.

Spheroidal particles range from disc-like (oblate) to rod-like (prolate). The
Stokesian sedimentation of a suspension of slender fibres has been studied ex-
perimentally [125] and numerically [126, 127] with a focus on the dependence of
velocity fluctuations and structure factor on length scale and particle concentration.
In very low volume fractions, these studies report large-scale inhomogeneities,
with dense patches, termed streamers [128], in which the mean particle orientation
aligns with gravity, harbouring fast-settling clusters of fibres [127] that sponta-
neously form and break [125]. The formation of clusters and streamers from an
initially homogeneous suspension occurs in a highly nonlinear regime; how this
nonlinear state is arrived at from a linear instability [95] and what sets the typical
size of clusters, is unresolved [125]. Studies of sedimenting lattices of particles
[47, 48, 129] shed light on how particle-level interactions yield long-wavelength
collective modes, and offer a simple setting in which to study the clustering that
results from perturbations about a well-defined reference configuration.

In this article, we investigate numerically and experimentally the sedimenta-
tion of one-dimensional arrays of oblate spheroids in the limit of negligibly small
Reynolds number and Stokes number. Going beyond the linear stability analysis
of Chajwa et al. [48], we elucidate the detailed dynamics at the level of individual
particles, with emphasis on clustering due to hydrodynamic interactions. We
show that, unlike spheres, discs display two qualitatively different behaviours of
clustering depending on their initial spacing. At small initial spacing, clustering
is dictated by the Crowley mechanism, where clumps typically form at valleys
in the initial perturbation and consist of several particles. At larger spacing, the
drift mechanism becomes dominant, and in the non-linear regime, instead of
clumps, we obtain attracting pairs typically forming away from valleys in the
initial perturbation pattern, which then fall together in a ‘⊥’ configuration (see
figure 4.6). The two competing mechanisms are illustrated in Figure 4.1. Two
distinct forms of perturbation growth, arising from competing mechanisms, were
analyzed earlier [48] in the linearized dynamics. Chajwa et al. [48] assumes a
point particle approximation for hydrodynamic interactions and obtains a sharp
boundary between unstable and neutrally stable configurations. Here, we improve
the approximation by correcting the boundary conditions at each particle by the
method of reflections, and find that incorporating corrections of sub-leading order
in 𝑎/𝑟 (where 𝑎 is a typical particle size and 𝑟 the typical separation between parti-
cles), makes the system linearly unstable for all initial spacings and wavenumbers.
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For larger initial inter-particle spacing, the exponential growth rates are extremely
small, while transient algebraic growths of perturbations, driven by drift, are not,
and dictate clustering into pairs at the antinodes, rather than clumps at the nodes.

Figure 4.1: Competition between orientation-dependent drift and the Crowley
mechanism. Schematic showing that the drift mechanism can potentially stabilize
Crowley instability (adapted from Chajwa et al. [48]). (a) A pair of spheres starting
at different vertical heights maintains a separation vector as it sediments. The pair
falls downward faster than an isolated sphere. This reduction in drag increases
if the spheres are started off closer. In addition to the velocity component in the
gravity direction, the pair also drifts horizontally, due to the line-of-center forces
𝐹𝐿𝐶 . (b) 𝐹𝐿𝐶 along with reduced drag yield clumping instability [47]. The dense
region falls faster, which leads to a drift towards the leading particle. (c) A settling
spheroid with oblique orientation drifts laterally, as shown by the green arrows.
(d) Orientations of the spheroids can rotate due to hydrodynamic interactions
with the neighboring particles, and can lead to splay in the lattice. The Crowley
mechanism, due to hydrodynamic interactions, is operative irrespective of the
shape of the particles and tends to form clumps at valleys or at density nodes.
However, as the spheroids sediment, they drift horizontally as a consequence
of their orientation, as shown by the green arrows. This orientation-dependent
drift mechanism, operating at the level of individual particles, can suppress the
Crowley instability.

This chapter is organised as follows: the experimental setup and the theoretical
approach we adopt are described in sections 2 and 3, respectively. We write
down the evolution equations for the positions and orientations of the discs,
emerging from the velocities and gradients of the Stokes flows generated by their
gravitational force densities. The method of reflections is used to obtain the
background disturbed flow produced by each spheroid. Near-contact dynamics
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without considering lubrication forces can lead to overlapping spheroids. We
adopt a numerical procedure to avoid overlaps with a simple model for the
lubrication regime. In section 4, we validate the governing equations by comparing
them to our experimental results for the dynamics of a pair of discs. An interesting
rocking motion was noticed during our validation exercises: two discs stacked
in an ‘=’ formation represent an equilibrium system that is neutrally stable to
periodic perturbations. The stability analysis is conducted to understand the
rocking dynamics. This exercise also brings out the limitations of a point-force
approximation and justifies the use of the first-reflection approximation in our
theory. Section 5 describes the clustering behaviour of perturbations of a one-
dimensional array of sedimenting oblate spheroids. The clustering of spheroids
is analyzed in two regimes dominated by two different mechanisms: the Crowley
mechanism and a drift mechanism. The two regimes are explored numerically,
and we construct statistical measures that allow us to distinguish the two regimes.
Section 6 is devoted to the understanding of the long-lived inverted ‘T’ or ‘⊥’
structures that form in the algebraic growth regime. We summarise our work and
discuss the future avenues that emerge from it in Section 7.

4.2 Experiments

The sedimentation experiments were performed in a quasi-2D slab geometry (see
Fig. 4.2) with height 45 cm, width 90 cm, and thickness 5 cm filled with silicone
oil with density 0.98 g/cm3 and kinematic viscosity 5000 cSt. Discs of diameter
2𝑎 = 8 mm and thickness 2𝑏 = 1 mm were 3D-printed with resin of density 1.164
g/cm3. These discs are modelled in our theory as oblate spheroids of aspect ratio
𝑏/𝑎 = 0.125. The Reynolds number using the length scale set by the particle size
was measured to be ∼ 10−4, ensuring that we are in a Stokesian regime. The quasi-
2D geometry of the container has two effects: it leads to a modest reduction of
the single-particle sedimentation speed, and it cuts off hydrodynamic interactions
with neighbours beyond a length-scale set by the thickness.

Releasing multiple particles in a viscous fluid presents a challenge in synchro-
nizing release times and controlling initial orientations, as pointed out by Jung
et al. 2006, Chajwa 2020, and described in Chajwa [130]. Our release mechanism
consists of an array of slots where discs can be selectively placed to define the
initial (dimensional) lattice spacing 𝑑 and dimensional perturbation wave-number
2𝜋/𝜆 [see figure 4.2]. The release mechanism is centered along the thickness of
the slab and immersed in the fluid to remove bubbles attached to the discs. The
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Figure 4.2: Experimental setup: (a) Shows the quasi-two-dimensional geometry of
the container with gravity axis pointing along −𝑧̂. The mechanism simultaneously
releases discs with controlled lattice spacing and perturbation wavenumber. (b)
The bottom view of the release mechanism shows the array of discs moments
before they were released into the fluid. The initial spacing is chosen to control
the dimensional lattice spacing 𝑑 and the dimensional perturbation wave-number
2𝜋/𝜆.

discs are ejected from the slots simultaneously using a ‘comb’ that inserts into the
slots. This setup allows us to study the dependence of the particle dynamics on
𝑑 and 𝜆. A D-SLR camera is used to capture images of the discs every 3 seconds.
The images are thresholded, and an ellipse is fit to each disc to determine its
orientation and the location of its centroid. In the later stages, the thresholded
images had to be manually segmented to separate closely-clustered discs.

4.3 Governing equations

Our system consists of hydrodynamically interacting oblate spheroids (discs)
labeled by 𝛼 ∈ {1, ... 𝑁𝑑} sedimenting under gravity in an otherwise quiescent
unbounded fluid. The 𝛼th disc is described by semi-major and semi-minor axes 𝑎
and 𝑏, respectively, a centre position 𝒙𝛼, orientation unit vector 𝒑𝛼 which points
along the symmetry axis of the disc, and instantaneous velocity 𝑽𝛼. For particle
Reynolds number 𝑅𝑒𝑝 ≪ 1, every disc generates a disturbance field that satisfies
the Stokes equation [10, 124]. Moreover, when the particle relaxation time scale
𝜏𝑝 is much smaller than the time it takes to fall through its length, the Stokes
number 𝑆𝑡 ≡ (𝜏𝑝𝑉𝛼/𝑎) ≪ 1 for each disc, so that its buoyancy corrected weight
𝑭 𝑔 is instantaneously balanced by hydrodynamic drag 𝑭 ℎ𝛼 for each disc. The
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simplest approximation for the hydrodynamic interaction experienced by a given
disc would be to sum the flows due to the other discs, treating each disc as a force
monopole placed at its centroid. The resulting velocity, vorticity, and rate of strain
at the location of the disc in question translate, rotate, and align it, leading to the
equations of motion

𝑽
pt
𝛼 =

𝑭 𝑔

6𝜋𝜇𝑎 ·

[
𝒑𝛼𝒑𝛼

𝑋𝐴
+ (𝜹 − 𝒑𝛼𝒑𝛼)

𝑌𝐴

]
+

𝑁𝑑∑
𝛽≠𝛼

𝑭 𝑔

8𝜋𝜇 · 𝓖(𝒙𝛼𝛽), (4.1)

𝑑

𝑑𝑡
𝒑𝛼 =

𝑁𝑑∑
𝛽≠𝛼

(
𝑭 𝑔 × 𝒙𝛼𝛽
8𝜋𝜇|𝒙𝛼𝛽|3

)
× 𝒑𝛼

+ 3𝑒2

2 − 𝑒2

𝑁𝑑∑
𝛽≠𝛼

(
𝑭 𝑔 · 𝒙𝛼𝛽

8𝜋𝜇

) (
𝒑𝛼 · 𝒙𝛼𝛽
|𝒙𝛼𝛽|5

)
[𝒙𝛼𝛽 − 𝒑𝛼(𝒑𝛼 · 𝒙𝛼𝛽)], (4.2)

where
𝓖(𝒙) = 𝜹

|𝒙| +
𝒙𝒙
|𝒙|3 (4.3)

is the Green’s function of the steady Stokes equation. In (4.1) and (4.2), 𝒙𝛼𝛽 ≡ 𝒙𝛼−𝒙𝛽,
𝜇 is the dynamic viscosity of the fluid, 𝑒 =

√
1 − 𝑏2/𝑎2 is the eccentricity, and

𝑋𝐴 ≡ 4
3 𝑒

3[(2𝑒2 − 1)𝐾 + 𝑒
√

1 − 𝑒2]−1, (4.4)

𝑌𝐴 ≡ 8
3 𝑒

3[(2𝑒2 + 1)𝐾 − 𝑒
√

1 − 𝑒2]−1, (4.5)

with 𝐾 ≡ cot−1
√

1 − 𝑒2

𝑒
, (4.6)

are resistance functions for an oblate spheroid [10], which approximates the
experimental discs with an aspect ratio of 𝑏/𝑎 = 0.125, corresponding to 𝑒 = 0.992.
The first term in (4.1) is the sedimentation velocity of an isolated disc falling under
gravity, and the second is the sum of disturbance fields produced by other discs,
in the point-force approximation. The two terms in equation (4.2) respectively are
the contribution from the vorticity and the strain rate of the disturbance field on
the orientational dynamics of the disc.

The point-force approximation captures the essential features of the periodic
and unbounded dynamics of a pair of discs, and sharp transitions between these
states, as the initial condition is varied [94]. It also provides a basic framework to un-
derstand the linear instability and wave-like modes observed in a one-dimensional
array of sedimenting discs [48]. However, at late times, the initial lattice state is
disrupted, giving rise to the formation of configurations with small inter-particle
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separations, for which the point-force description is expected to be inadequate,
since this approximation is accurate only up to 𝑂(𝑎/𝑟) where 𝑟 = |𝒙𝛼𝛽|. Therefore,
for nearly touching disc configurations observed during the late stages of instabil-
ity in our experiments, we need to account for finite-size effects and to satisfy the
no-slip boundary conditions on each particle. We use the method of reflections to
study the close-range dynamics. This perturbative method is needed to iteratively
satisfy the boundary conditions on the surface of each disc, with each iteration
progressively correcting the errors from the previous one [10, 124]. At the 𝑛𝑡ℎ

reflection, the velocity at the location of particle 𝛼 satisfies the no-slip condition
on it due to the velocities induced by all other particles calculated calculated at the
(𝑛 − 1)𝑡ℎ reflection, and this corrected velocity of particle 𝛼 will induce a small slip
at the surfaces of all the other particles. As 𝑛 increases, the error goes to higher
and higher orders in the interparticle spacing. We find that the first reflection,
combined with a simple lubrication correction and near-contact repulsion, is suf-
ficient to predict the structural arrangement of discs observed in the experiments.
The first reflection is accurate up to 𝑂(𝑎3/𝑟3) in linear velocity and 𝑂(𝑎4/𝑟4) in the
angular velocity. The linear velocity 𝑽𝛼 and angular velocity 𝛀𝛼 of a disc 𝛼 can be
expressed in terms of the hydrodynamic force 𝑭 ℎ𝛼 and hydrodynamic torque 𝑻 ℎ

𝛼

acting on it, using the Faxén’s laws as [10]:
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−𝑭 ℎ𝛼
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����
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, (4.7)

and

𝛀𝛼 =
−𝑻 ℎ

𝛼

8𝜋𝜇𝑎3 ·

[
𝒑𝛼𝒑𝛼

𝑋𝐶
+ (𝜹 − 𝒑𝛼𝒑𝛼)

𝑌𝐶

]
+ 3

8𝑐3

∫ 𝑐

−𝑐
𝑑𝜉(𝑐2 − 𝜉2)∇ × 𝒖∞

𝛼

����
𝒙𝛼(𝜉)

− 3
4𝑐3

𝑒2

2 − 𝑒2

∫ 𝑐

−𝑐
𝑑𝜉

{
(𝑐2 − 𝜉2)

[
1 + (𝑐2 − 𝜉2) 1

8𝑒2∇
2
]}

𝒑𝛼 × [𝑬∞
𝛼

����
𝒙𝛼(𝜉)

· 𝒑𝛼]. (4.8)

Here 𝑐 ≡ 𝑎𝑒, 𝑬∞
𝛼 is the strain rate associated with 𝑢∞𝛼 and

𝑋𝐶 ≡ 2
3 𝑒

3[𝐾 − 𝑒
√

1 − 𝑒2]−1, (4.9)

𝑌𝐶 ≡ 2
3 𝑒

3(2 − 𝑒2)[𝑒
√

1 − 𝑒2 − (1 − 2𝑒2)𝐾]−1. (4.10)

In writing equations (4.7) and (4.8), we have used the fact that the singularity
distribution of an oblate spheroid (disc) can be written in terms ofa line distribution
placed along an imaginary focal length [101]. This requires us to evaluate the
background incidence field on disc 𝛼, 𝒖∞

𝛼 , at 𝒙𝛼(𝜉) ≡ 𝒙𝛼 + 𝑖𝜉𝒑𝛼. Up to the first
reflection correction, the background incidence field on disc 𝛼, 𝒖∞

𝛼 , is given by the
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superposition of the disturbance fields generated by all the other discs, treating
them as isolated and satisfying the no-slip boundary condition on their respective
surfaces. Thus, we have

𝒖∞
𝛼 (𝒙) ≈

𝑁𝑑∑
𝛽≠𝛼

[−𝑭 ℎ𝛽
8𝜋𝜇 ·

1
2𝑐

∫ 𝑐

−𝑐

{
1 + (𝑐2 − 𝜉2)

4𝑒2 ∇2
}
𝓖(𝒙 − 𝒙𝛽 − 𝑖𝜉𝒑𝛽) 𝑑𝜉

+ 1
2

𝑻 ℎ
𝛽 × ∇

8𝜋𝜇 ·
3

4𝑐3

∫ 𝑐

−𝑐
(𝑐2 − 𝜉2)𝓖(𝒙 − 𝒙𝛽 − 𝑖𝜉𝒑𝛽) 𝑑𝜉

−𝓢
ℎ
𝛽 · ∇ ·

3
4𝑐3

∫ 𝑐

−𝑐
(𝑐2 − 𝜉2)

{
1 + 𝑐2 − 𝜉2

8𝑒2 ∇2
}
𝓖(𝒙 − 𝒙𝛽 − 𝑖𝜉𝒑𝛽) 𝑑𝜉

]
, (4.11)

where 𝑁𝑑 is the total number of discs and

𝓢
ℎ
𝛽 ≡ 1

2

(
𝑒2

2 − 𝑒2

)
[(𝑻 ℎ

𝛽 × 𝒑𝛽)𝒑𝛽 + 𝒑𝛽(𝑻 ℎ
𝛽 × 𝒑𝛽)]. (4.12)

Substituting equation (4.11) into the equations (4.7) and (4.8), we get the far field
mobility matrix 𝓜

∞ which relates the generalized velocities 𝓥 to generalized
forces 𝓕 ℎ as:

𝓥 ≈ −𝓜∞
· 𝓕

ℎ ; 𝓥 ≡ [𝑽1...𝑽𝑁𝑑
𝛀1...𝛀𝑁𝑑

]𝑇 , 𝓕
ℎ ≡ [𝑭 ℎ1 ... 𝑭 ℎ𝑁𝑑

𝑻 ℎ
1 ...𝑻

ℎ
𝑁𝑑
]𝑇 (4.13)

As the discs approach each other, the far field mobility matrix has to be sup-
plemented with lubrication effects, which are dominant in the near contact con-
figurations of the discs. The lubrication effects are preserved in the resistance
formulation, which can be incorporated by inverting 𝓜

∞ and adding the near-
contact resistance matrix 𝓡

𝐿 [131, 132]. We use a simple model to compute the
localized lubrication interaction between the nearly touching discs [133–135]. The
hydrodynamic lubrication force on disc 𝛼, nearly touching another disc 𝛽, is given
by

𝑭𝐿𝛼𝛽 = −
6𝜋𝜇𝑎[(𝑽𝛼 − 𝑽𝛽) · 𝝐̂𝛼𝛽]

8
√

1 − (Γ𝒑𝛼 · 𝒑𝛽)2

(
𝑎

|𝝐𝛼𝛽|
− 1
Δ𝑐

)
𝝐̂𝛼𝛽 , Γ ≡ 𝑎2 − 𝑏2

𝑎2 + 𝑏2 , (4.14)

where Δ𝑐 = 2/3 is the critical value below which the lubrication forces (4.14) are
computed [134, 135]. Here 𝝐̂𝛼𝛽 = 𝝐𝛼𝛽/|𝝐𝛼𝛽| and 𝝐𝛼𝛽 is the minimum separation
vector between disc 𝛼 and 𝛽 which can be computed by a simple extension of the
method by [132], explained in the appendix C. The near-contact resistance matrix
𝓡
𝐿 is computed by summing over the lubrication forces between the discs for

which the minimum separation is less than Δ𝑐 . Therefore, the mobility matrix 𝓜

constructed by taking into account the far field hydrodynamic interactions and
near contact lubrication effects is given by

𝓥 ≈ 𝓜 · 𝓕 , 𝓜 ≡ [(𝓜∞)−1 +𝓡
𝐿]−1. (4.15)
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Here, 𝓕 = −𝓕 ℎ represents the generalized external force, which in our case con-
sists solely of buoyancy-corrected weights, 𝑭 𝑔 , for each disc, with zero torques.
Although the lubrication force mitigates violent particle approaches, numerical
time-stepping can still cause unphysical particle overlap, which is generally pre-
vented by incorporating repulsive near-contact forces [134, 136–139]. We therefore
use a generalized external force 𝓕 obtained by supplementing the buoyancy-
corrected weight 𝑭 𝑔 of each disc with a repulsive near-contact force [137, 139]

𝑭 𝑟𝛼𝛽 = 𝑓∗𝑒
−𝜏|𝝐𝛼𝛽|𝝐̂𝛼𝛽 . (4.16)

Based on test runs, we choose 𝜏 = 80/𝑎 and 𝑓∗ = 50 in the simulations. The choice
of a large coefficient in 𝜏 ensures that the repulsive force is only active when
two particles get extremely close, and, together with the choice of a large 𝑓∗, is
operational only to prevent overlap of particles.

4.4 Validation of the dynamics

Figure 4.3: Comparison between experiments and simulations of pairs of discs
sedimenting close to each other. (a) A bounded periodic oscillation of discs,
categorized under ‘rocking dynamics’ in Chajwa, Menon, and Ramaswamy [94].
(b) ‘Hydrodynamic screening’ where one falling disc enters the ‘hydrodynamic
shadow’ of the other, forming a ‘⊥’ structure. This ‘⊥’ configuration is often
observed, both experimentally and through simulations, in a one-dimensional
lattice of sedimenting discs. (c) Another case of ‘rocking dynamics’, arising from
the linear instability of an equilibrium configuration forming an ‘=’ shape.

The mobility matrix 𝓜 accounts for both far-field hydrodynamic interactions
and near-contact lubrication effects, but omits higher-order effects coming from
the second reflection and logarithmic corrections in the lubrication forces, which
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may not always be negligible. We also emphasize that while we use the Greens
function for an unbounded flow, we are comparing results from experiments
performed in a container. As mentioned before, the presence of walls is modelled
by cutting off the interaction range. The details of the cutoff are mentioned in
the subsequent sections. The current approximation adequately captures the
qualitative features of the cluster formation observed in our experiments. The
rationale for approximating the wall effects in a minimal way but accounting for
the method of reflections and lubrication comes from the fact that we are interested
in the nature of cluster formations, which involves close-range dynamics of discs.
One could account for wall effects by placing image singularities beneath the walls,
but those effects would come in at ∼ 𝑂(𝑎/𝐷), where 𝐷 ≈ 12.5𝑎 is the thickness of
the container. Therefore, as long as a given disc has neighbours within a distance of
𝐷/𝑎, the dominant contribution to the dynamics will be from the neighboring discs,
rather than the wall effects. We therefore expect that higher-order corrections and
wall effects would primarily improve quantitative aspects, such as sedimentation
velocities, but approaching such a precision is beyond the scope of this work. Our
simulation model does not completely capture all the late-time dynamics of cluster
evolution seen in our experiments. Specifically, while pairs of discs that settle
into a ‘⊥’ structure largely maintain this configuration thereafter in simulations,
experimental observations show that only a few discs retain the ‘⊥’ arrangement
for significantly longer after pairing. However, in experiments involving isolated
disc pairs, the long-term stability of the ‘⊥’ structure has been confirmed (see
figure 4.3)(b). In any case, our analysis focuses on cluster formation, and we
refrain from drawing conclusions about their late-time evolution based on our
simulations.

Figure 4.3(a) demonstrates that our model successfully captures near-contact
periodic oscillations, along with the phenomenon of ‘hydrodynamic screening’
shown in Figure 4.3(b), where one disc enters the ‘hydrodynamic shadow’ of
another, forming a ‘⊥’ structure. The initial configuration for figure 4.3(a) is:
𝒙21 = {0.68, 0, 1.18}, 𝒑1 = {−0.04, 0, 0.99} and 𝒑2 = {0.946, 0, 0.324}. Figure
4.3(b) has the initial configuration: 𝒙21 = {1.5, 0, 1.813}, 𝒑1 = {0.879, 0, 0.476}
and 𝒑2 = {0.965, 0,−0.26}. It may be noticed from the figure that quantitative
details, such as the time it takes for the discs to fall through the same distance
in experiments and simulations, differ. An interesting case is that of the ‘rocking
dynamics’ [94] shown in Figure 4.3(c). These dynamics can be viewed as the
evolution of perturbations from a steady-state configuration in which the discs
are vertically stacked, with their symmetry axes aligned along gravity, forming an
‘=’ shape. This enables a linear stability analysis of such a structural arrangement,
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which we shall perform in the following subsection, revealing that at least the
first reflection is essential to capture the periodic oscillations characteristic of the
rocking dynamics, a phenomenon that the point-force approximation (equations
(4.1) and (4.2)) fails to predict at small separations.

4.4.1 Stability analysis of the horizontal pair configuration

The configuration where both discs are horizontal, and one lies above the other at
a vertical distance of 𝑧∗ times the size of the disc 𝑎, is studied in this subsection
in some detail, because it is a canonical example of pair interactions, and because
it analytically demonstrates the inability of the point force approximation to
accurately capture close-range dynamics. The rocking dynamics shown in figure
4.3(c) are periodic oscillations in the orientations and positions of the pair of
discs about the ‘=’ configuration represented by (|𝒑1 · 𝒈|, |𝒑2 · 𝒈|) = (1, 1). Here
𝒈 is a unit vector along gravity (along the −𝑧 direction). The ‘=’ configuration
is a fixed point in the frame falling with the pair of discs. The system is non-
dimensionalized using the semi-major axis 𝑎 of the discs as the length scale and
𝜏𝑝 = 6𝜋𝜇𝑎2/𝐹 as the time scale, where 𝐹 is the buoyancy-corrected weight of the
spheroids. We shall henceforth work with dimensionless quantities, unless stated
otherwise. Let the position of the disc 2 (upper disc) relative to disc 1 (lower disc)
be given by (𝛿𝑥, 𝑧∗ + 𝛿𝑧) and their corresponding orientation vectors be given by:
𝒑1 = (cos(𝜋/2 + 𝛿𝜃1), sin(𝜋/2 + 𝛿𝜃1)) and 𝒑2 = (cos(𝜋/2 + 𝛿𝜃2), sin(𝜋/2 + 𝛿𝜃2));
with their fixed point position and orientations being (0, 𝑧∗) and 𝒑∗1 = 𝒑∗2 = (0, 1),
respectively. The dynamics of the pair, using the first reflection, leads to the
following linear stability analysis:

𝑑

𝑑𝑡

©­­«
𝛿𝑥

𝛿𝜃1

𝛿𝜃2

ª®®¬ = ℬ𝑅1

©­­«
𝛿𝑥

𝛿𝜃1

𝛿𝜃2

ª®®¬ ; ℬ𝑅1 =
©­­«

0 𝜅0(𝑒) −𝜅0(𝑒)
𝐽1 𝐽2 𝐽3

−𝐽1 −𝐽3 −𝐽2

ª®®¬ , (4.17)

where

𝜅0(𝑒) ≡
(

1
𝑌𝐴

− 1
𝑋𝐴

)
, (4.18)

𝐽1 ≡ −3
4

∫ 1

−1

3
8𝑑𝜉1

∫ 1

−1
𝑑𝜉2

1 − 𝜉2
1

𝜉̃3
0

{
1 − 𝑒2

2 − 𝑒2

[
−3 + 24𝜅1

𝜉̃2
0

]}
, (4.19)
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𝐽2 ≡ −3
4

∫ 1

−1

3
8𝑑𝜉1

∫ 1

−1
𝑑𝜉2

1 − 𝜉2
1

𝜉̃3
0

{
𝑖𝑒𝜉1 −

𝑒2

2 − 𝑒2

[
(𝑧∗ + 𝑖𝑒𝜉2)

(
−3 + 30𝜅1

𝜉̃2
0

)
− 6𝜅1(2𝑧∗ − 𝑖𝑒𝜉1 + 2𝑖𝑒𝜉2)

𝜉̃2
0

]}
, (4.20)

and

𝐽3 ≡ −3
4

∫ 1

−1

3
8𝑑𝜉1

∫ 1

−1
𝑑𝜉2

1 − 𝜉2
1

𝜉̃3
0

{
−1 + 𝑒2

2 − 𝑒2

[
−3 + 24𝜅1

𝜉̃2
0

]}
𝑖𝑒𝜉2. (4.21)

For shorthand notation, we define the following quantities appearing in inte-
grands:

𝜉̃0 ≡
√
(𝑧∗ + 𝑖𝑒(𝜉2 − 𝜉1))2 and 𝜅1 ≡

3/2 − 𝜉2
1 − 𝜉2

2
4 . (4.22)

The vertical perturbation 𝛿𝑧 appears only at second order in the algebra, and
therefore does not feature in the linear stability analysis. The corresponding
Jacobian matrix of the perturbation evolution in the point force limit, obtained
from equations (4.1) and (4.2), is given by

ℬ𝑝𝑡 =

©­­­­­«
0 𝜅0(𝑒) −𝜅0(𝑒)

−3
4𝑧3

[
1 + 3𝑒2

2−𝑒2

]
−3
4𝑧2

[
3𝑒2

2−𝑒2

]
0

3
4𝑧3

[
1 + 3𝑒2

2−𝑒2

]
0 3

4𝑧2

[
3𝑒2

2−𝑒2

]
.

ª®®®®®¬
(4.23)

Under the first reflection approximation, the eigenvalues of ℬ𝑅1 are purely
imaginary for any 𝑧∗ and hence the linear dynamics is periodic about the ‘=’
configuration. The oscillation frequency of this rocking dynamics is shown in
Figure 4.4. The point force approximation, on the other hand, leads us to the
incorrect conclusion that the fixed point ‘=’ is a saddle below a certain value of
𝑧 = 𝑧𝑐 , given by

𝑧𝑐 ≡
[
16
27

(
2 + 𝑒2

𝑒4 − 1
)
𝜅0(𝑒)

]−1
. (4.24)

A linear stability analysis using the point force approximation thus cannot predict
the rocking dynamics seen in the experiment for small disc separations, which
shows that the first reflection correction is crucial in this regime. Note that 𝑧∗ is
bounded below by 2𝑏/𝑎, which corresponds to the case where the discs just touch.

98



4.5. PLANAR DYNAMICS OF A ONE-DIMENSIONAL LATTICE OF SEDIMENTING
DISCS

Figure 4.4: The frequency of oscillations in the rocking dynamics about the
vertically stacked, or ‘=’ configuration, as a function of vertical separation 𝑧∗

at the fixed point. The aspect ratio here is 𝑏/𝑎 = 0.125, which is close to our
experimental discs. The black vertical line denotes 𝑧 = 𝑧𝑐 below which the point
force approximation fails to predict the rocking dynamics. The inset shows the
dependence of the 𝑧𝑐 on the aspect ratio.

4.5 Planar dynamics of a one-dimensional lattice of
sedimenting discs

In this section, we study the sedimentation dynamics of a regular one-dimensional
lattice of identical spheroids, with their symmetry axes aligned with the horizon-
tal. The corresponding problem for spheres was studied by Crowley [47], who
established that any arbitrary perturbation in the initial positions of the spheres
will always grow exponentially, i.e., the system is always unstable. Crowley also
proposed a mechanism to explain the growth of perturbations, which leads to the
formation of clumps of spheres. Chajwa et al. [48] investigated the planar sedimen-
tation dynamics of a regular one-dimensional lattice of identical spheroids, both
experimentally as well as theoretically, and showed, in contrast to spheres, that a
system of spheroids is not always exponentially unstable: there is a regime where
linear perturbations display algebraic rather than exponential growth. In the alge-
braically growing regime, Chajwa et al. [48] found that the modal perturbations
are neutrally stable.

The analysis presented in Chajwa et al. [48] was based on the point force
approximation (see equations (4.1) and (4.2)) with nearest-neighbour interactions.
In this section, we show that this picture is crucially modified when we take into
account more accurate hydrodynamic interactions through the first reflection. We
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find that the qualitative behaviour of modes changes from pure oscillations to
weak exponential growth – the sharp boundary between these two regions is
lifted, and the growth rate changes smoothly over the entire regime rather than
becoming strictly zero.

For ease of distinguishing, we refer to clusters of three or more spheroids as
clumps, and clusters of two spheroids as pairs. Visuals of disc clusters reveal that
when clustering occurs, clumping takes place in the valleys when the Crowley
mechanism dominates over the drift mechanism (figure 4.5). However, when the
drift mechanism is stronger than the Crowley mechanism, there are no clumps,
but pairing occurs away from the valley. Pairs typically take on a ‘⊥’ shape, see
figure 4.6.

To numerically investigate the distinction between clumps and pairs, as ob-
served in the experiments, we use two different lattice spacings and wavenumbers,
as indicated by the two coloured dots in the figure 4.7. The simulations are con-
ducted by solving equation (4.15) as a system of ordinary differential equations
using the Runge-Kutta-Fehlberg method for time integration [140]. Adaptive
time stepping is employed with an error tolerance of 10−4 and a maximum step
size of 0.1. In the Crowley-mechanism-dominated regime with lattice spacing
𝑑̃ = 1.875 and dominant perturbation wavenumber 𝑞 = 𝜋/6 (red dot in figure
4.7), the resulting clumps formed at the valleys are shown in figure 4.5. In the
drift-mechanism-dominated regime with lattice spacing 𝑑̃ = 3.75 and dominant
perturbation wavenumber 𝑞 = 𝜋/2 (green dot in figure 4.7), pairwise clumping is
observed as shown in figure 4.6.

There are three degrees of freedom per disc: the horizontal position 𝑥𝛼 of
disc 𝛼, its vertical position 𝑧𝛼, and its orientation angle 𝜃𝛼 with respect to the
horizontal (𝑥) axis. About the fixed point 𝑑̃(Z, 0, 0)1, 𝑑̃ being the dimensionless
lattice spacing, non-dimensionalized using the disc radius 𝑎, an infinitesimal
perturbation of the disc 𝛼 ∈ Z is given by (𝑥̂𝑞(𝑡), 𝑧̂𝑞(𝑡), 𝜃̂𝑞(𝑡))𝑒 𝑖𝑞𝛼, where 𝑞 is the
dimensionless perturbation wavenumber. Under the first reflection and nearest-
neighbour interactions, this perturbation evolves as

𝑑

𝑑𝑡


𝑥̂𝑞

𝑧̂𝑞

𝜃̂𝑞


= 𝒜𝑅1


𝑥̂𝑞

𝑧̂𝑞

𝜃̂𝑞


; 𝒜𝑅1 ≡


0 𝐼12 𝜅0(𝑒) + 𝐼13

𝐼21 0 0

𝐼31 0 0


, (4.25)

1This fixed point is in the frame of reference falling with the average terminal velocity of the
undisturbed lattice.
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Figure 4.5: Experiments [(a) and (c)], and simulations [(b) and (d)] showing
clumping due to the Crowley mechanism. [(a) and (c)] are aligned vertically, as
are [(b) and (d)], to highlight that the locations where the clumps form correspond
to the red ovals in (a) and (b). The lattice spacing and the dominant perturbation
wavenumber are 𝑑̃ = 1.875 and 𝑞 = 𝜋/6, respectively. (a) and (b) show early
evolution (𝑡 ∼ 5). The valleys, marked by red ovals, represent regions where
the discs begin to clump together. (c) and (d) show late time evolution (𝑡 ∼ 15).
Clumps, occurring at the valleys, consist of three or more discs.

where 𝜅0 is given by equation (4.18). The terms in the matrix 𝒜𝑅1 are given by

𝐼12 ≡ 3
2

∫ 1

−1

1
2𝑑𝜉1

∫ 1

−1

1
2𝑑𝜉2𝑖 sin 𝑞 𝑖𝑒𝜉12 − 𝑑̃

𝜉3
0

[
1 − 6𝜅2

𝜉2
0

]
, (4.26)

𝐼21 ≡ −3
2

∫ 1

−1

1
2𝑑𝜉1

∫ 1

−1

1
2𝑑𝜉2𝑖 sin 𝑞 𝑖𝑒𝜉12 − 𝑑̃

𝜉3
0

[
1 + 6𝜅2

𝜉2
0

]
, (4.27)

𝐼13 ≡ −3
2

∫ 1

−1

1
2𝑑𝜉1

∫ 1

−1

1
2𝑑𝜉2𝑖𝑒[𝜉1 − 𝜉2 cos(𝑞)] 𝑖𝑒𝜉12 − 𝑑̃

𝜉3
0

[
1 − 6𝜅2

𝜉2
0

]
, (4.28)

𝐼31 ≡ 3
2

∫ 1

−1

3
8𝑑𝜉1

∫ 1

−1
𝑑𝜉2

1 − 𝜉2
1

𝜉3
0

{
[1 − cos(𝑞)]

(
−2 + 6𝑒2𝜅1

(2 − 𝑒2)𝜉2
0

)
+

30𝑒2𝜅1

(2 − 𝑒2)𝜉2
0

𝑖 sin 𝑞
(𝑖𝑒𝜉12 − 𝑑̃)

}
, (4.29)

where 𝜉12 ≡ 𝜉1−𝜉2, 𝜉0 ≡
√
(𝑖𝑒𝜉12 − 𝑑̃)2 and 𝜅2 ≡ (2−𝜉2

1 −𝜉2
2)/4. The eigenvalues of

𝒜𝑅1 are {0, 𝜎 + 𝑖𝜔,−𝜎 − 𝑖𝜔} where 𝜎 represents the growth rate of perturbations,
and 𝜔 denotes the oscillation frequency. The structure of the eigenvalues ensures
that the system is always unstable provided 𝜎 ≠ 0.
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Figure 4.6: Experiments [(a) and (c)], and simulations [(b) and (d)] showing
pairing due to the drift mechanism. [(a) and (c)] are aligned vertically, as are [(b)
and (d)], to highlight that the locations where the pairs form correspond to the
red boxes in (a) and (b). The lattice spacing and the perturbation wavenumber are
𝑑̃ = 3.75 and 𝑞 = 𝜋/2 respectively. (a) and (b) show initial evolution (𝑡 ∼ 20). The
valleys are highlighted with green ovals, while the discs that ultimately pair up
are enclosed within red rectangular boxes and are seen to be located away from
the valleys. (c) and (d) show late time evolution (𝑡 ∼ 45). There is pairing but no
clumping, and pairing dynamics is characterized by two discs coming together in
the form of a ‘⊥’, or inverted ‘T’.

On the other hand, under the point-force approximation, the corresponding
Jacobian matrix 𝒜𝑝𝑡 for the evolution of perturbations is given by [48]

𝒜𝑝𝑡 ≡


0 −3𝑖 sin 𝑞

2𝑑̃2 𝜅0(𝑒)
3𝑖 sin 𝑞

2𝑑̃2 0 0
−6 sin2 𝑞/2

𝑑̃3 0 0


. (4.30)

For a given wavelength, the point-force approximation predicts a neutrally stable
regime characterized by a zero growth rate beyond a critical lattice spacing 𝑑̃𝑐 ,
given by

𝑑̃𝑐 =
3

8𝜅0(𝑒)
sin2 𝑞

sin2 𝑞/2
. (4.31)

Figure 4.7 shows the logarithm of the growth rate of perturbations as a function of
lattice spacing 𝑑̃ and perturbation wavenumber 𝑞. While the point-force approx-
imation predicts zero growth rate above the red curve, the first reflection has a
small but finite growth rate at high lattice spacings. The growth rate shows a power
law behaviour 𝑑−𝛾 for large lattice spacing with the dependence of the power on
the wavenumber shown in figure 4.8. One must interpret this power law with
caution, as wall effects may alter the exponent. This requires the lattice spacings
in the power-law regime to be smaller than the container thickness. Numerical
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Figure 4.7: Contour plot of the log of the growth rate 𝜎 (the only positive real
part among the eigenvalues of 𝒜𝑅1) for aspect ratio 𝑏/𝑎 = 0.125. The red curve
denotes the critical lattice spacing 𝑑̃𝑐 above which the point force approximation
[48] predicts neutral stability. The nonlinear evolution corresponding to the red
dot, where (𝑞, 𝑑̃) = (𝜋/6, 1.875) and the green dot, where (𝑞, 𝑑̃) = (𝜋/2, 3.75), were
shown to support clustering and pairing respectively (figures 4.5 and 4.6).

data show that the scaling exponent in the large-𝑑 limit is best fit by 𝛾 ≈ −4.5
across perturbation wavenumbers, for a large range of spheroids with aspect ratios
ranging from 0.19 to 0.8.

Figure 4.8: (a) Perturbation growth rate 𝜎 as a function of the lattice spacing for
a wavenumber 𝑞 = 𝜋/6 and aspect ratio 𝑏/𝑎 = 0.125. For large lattice spacing
𝑑̃, the growth rate shows a power law behaviour 𝜎 ∼ 𝑑̃𝛾 with 𝛾 ≈ −4.5. (b) The
variation of the exponent 𝛾 with wavenumber 𝑞. Note that for a lattice of spheres,
the growth rate decays much more slowly, as 𝜎 ∼ 𝑑̃−2 for all wavenumbers.

The first reflection thus shows a qualitative change in the stability of the system
as compared to the point-force approximation: the system is now linearly unstable
at any lattice spacing, although with a growth rate that approaches zero with
increasing spacing. An examination of the point-force approximation shows
that this is to be expected. The non-normality of 𝒜𝑝𝑡 provides for a possible
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Figure 4.9: 𝜀-pseudospectrum 𝜎𝜀(𝒜𝑝𝑡) of 𝒜𝑝𝑡 for the aspect ratio 𝑏/𝑎 = 0.125. The
blue dots denote the eigenvalues of𝒜𝑝𝑡 andthe blackdots denote the eigenvalues of
𝒜𝑅1 . The matrix perturbation size 𝜀 leads to the spreading of eigenvalues inside the
yellow regions. The values of 𝜀 are chosen so that the black dots lie at the boundary
of the yellow regions, indicating that the first reflection corrections to 𝒜𝑝𝑡 are of
the order of 𝜀. a) 𝜀 = 4.8× 10−3 for the set of parameters (𝑞, 𝑑̃) = (𝜋/2, 3.75) (green
dot in figure 4.7) b) 𝜀 = 1.2 × 10−2 for the set of parameters (𝑞, 𝑑̃) = (𝜋/6, 1.875)
(red dot in figure 4.7). Note that the pseudospectra are much larger than 𝜖.

large change in eigenvalues for a small perturbation in the stability operator (𝒜𝑝𝑡

becoming 𝒜𝑅1). Since in the neutral regime the eigenvalues of 𝒜𝑝𝑡 lie on the
imaginary axis, its pseudospectrum must protrude into the positive real axis, and
𝒜𝑅1 is a member of the pseudospectrum of 𝒜𝑝𝑡 which produces instability. The
𝜀-pseudospectrum 𝜎𝜀(𝒜𝑝𝑡) of 𝒜𝑝𝑡 is defined as [141]:

𝜎𝜀(𝒜𝑝𝑡) ≡ {𝑧 ∈ C : ||(𝑧 −𝒜𝑝𝑡)−1|| > 𝜀−1}. (4.32)

Figure 4.9(a) and (b) show the pseudospectra of 𝒜𝑝𝑡 corresponding to the
conditions of figures 4.5 and 4.6, respectively. In each case, 𝜀 is chosen such that
the largest eigenvalue of 𝒜𝑅1 lies on the boundary of the pseudospectrum. While
the oscillation frequency remains close to its original value, a non-zero growth rate
appears, which changes the dynamics qualitatively. Therefore, in the drift regime
(green dot in figure 4.7), the first reflection correction has a gentle destabilizing
effect. In contrast to this, the first reflection has a significant stabilizing effect in
the Crowley regime, and lies on a larger 𝜀-pseudospectrum in figure 4.9(b). The
net growth rate remains positive (red dot in figure 4.7).

With the first reflection bringing a qualitative change in the nature of stability,
one may surmise that modeling wall effects beyond a simple nearest neighbor
cutoff may lead to further qualitative change. This is not the case because the
qualitative change occurred due to the structural instability of the system described
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by 𝒜𝑝𝑡 : the eigenvalues lie exactly on the imaginary axis. With the first reflection,
these eigenvalues are nudged off the imaginary axis, leading to a qualitative
change. Inclusion of wall effects using image singularities might further nudge
the eigenvalues, but they are not primarily responsible for the qualitative change
already brought in by the more dominant first-reflection effects.

If only eigenvalue-based growth were in play, the extremely slow growth rate
for large lattice spacing would contribute negligibly to perturbation growth during
the time of our simulations. However, a large algebraic transient growth of the
perturbations happens in this regime, due to the non-normal nature of 𝒜𝑅1 . To
highlight this, we look at the matrix norm of 𝑒𝒜𝑅1 𝑡 for time 𝑡 ∈ [0, 2𝜋/𝜔], where 𝜔

is the oscillation frequency given by the imaginary parts of non-zero eigenvalues
of 𝒜𝑅1 , see figure 4.10. The maximum non-modal growth can be quantified by
the quantity 𝐺𝑟 defined as:

𝐺𝑟 ≡
||𝑒𝒜𝑅1 𝑡

∗||2
𝑒2𝜎𝑡∗ ; 𝑡∗ ≡ arg max

𝑡∈[0,2𝜋/𝜔]
||𝑒𝒜𝑅1 𝑡||, (4.33)

where 𝜎 is the growth rate given by the real parts of eigenvalues of 𝒜𝑅1 , and
the matrix norm can be obtained using the singular value decomposition. Figure
4.10 shows the logarithm of 𝐺𝑟 as a function of lattice spacing 𝑑̃ and perturbation
wavenumber 𝑞. By definition log(𝐺𝑟) ≥ 0. In the drift regime, the lattice is
disrupted on the time scale 𝑡∗.

Figure 4.10: (a) Time evolution of the matrix norm of 𝑒𝒜𝑅1 𝑡 and the exponential
growth 𝑒2𝜎𝑡 for the aspect ratio 𝑏/𝑎 = 0.125. The non-normal nature of 𝒜𝑅1 leads
to transient growth of non-modal perturbations, which can be much larger than
the exponential growth. The parameters (𝑞, 𝑑̃) used to calculate 𝒜𝑅1 correspond
to the green dot in figure 4.7. The non-modal growth reaches its maximum at time
𝑡 = 𝑡∗. (b) Contour plot of the log10 of 𝐺𝑟 defined in equation (4.33). In regimes of
small log10(𝐺𝑟), the growth is exponential but very slow. Large values of log10(𝐺𝑟)
indicate that transient algebraic growth will dominate.
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4.5.1 Distinct clumping mechanisms in the exponential and
algebraic growth regimes

As explained in Chajwa et al. [48], there are two mechanisms at play that decide
the nature of clustering. The Crowley mechanism acts to form clumps at the
valleys while the drift mechanism counteracts it (see figure 4.1). The fast decay of
growth rate with increased lattice spacing (see figure 4.8) is because of the drift
mechanism competing better against the Crowley mechanism. For a lattice of
spheres, the drift mechanism is absent, and the growth rate follows 𝜎 ∼ 𝑑̃−2 for
large lattice spacing 𝑑̃. In contrast, for increasingly flatter oblate ellipsoids, the
growth rate is best fit by 𝜎 ∼ 𝑑̃−4.5, as shown in Figure 4.8.

Our objective is to develop a statistical measure that can differentiate between
clustering in the Crowley regime and the drift regime. The drift mechanism leads
to aggregation in pairs, whereas in the Crowley regime, a larger number of discs
participate in forming an aggregate, thus suggesting 𝑃𝑠(𝑡), the fraction of particles
participating in aggregates of size 𝑠, as a useful quantitative measure. Discs that
are within a distance of 0.5𝑎 of each other are defined to be part of an aggregate. We
conduct 500 simulations in both the Crowley and the drift regimes, each involving
a lattice of 60 discs with periodic boundary conditions along the horizontal (𝑥)
direction. Each disc interacts with eight neighbors on either side. Changing the
number of neighbors about this cutoff scale does not affect cluster sizes and types,
provided there is a sufficient number of discs interacting with their neighboring
ones upon spatial rearrangement as the system evolves. Although the effect of a
distant disc 2 is weaker than that of the walls, the dynamics are primarily governed
by the nearest neighbours. Thus, including the eighth disc while neglecting the
wall effects has little impact, as both contribute marginally compared to the
dominant influence of nearby discs. Each simulation is initialized with sinusoidal
perturbations only in the 𝑥-direction, at a chosen dominant wavenumber, with
amplitude 0.625𝑎, and additional random perturbations of amplitude 0.075𝑎,
where 𝑎 is the semi-major axis of the discs. The initial orientation angle is chosen
from a uniform distribution of width 8 degrees. The amplitude of the perturbations
and the noise in initial conditions emulate the perturbations in the experiments.

Figure 4.11 shows the time evolution in the Crowley regime of the fraction of
discs participating in clusters of different sizes. The 500 samples are divided into
20 sub-samples, over which the mean and standard deviation are calculated. The
most frequently occurring clump consists of four discs, while the largest clump
contains five discs. Upon examination, we find no preferred relative orientations

2with the distance 𝑟 ≳ 𝐷/𝑎, 𝐷 ≈ 12.5𝑎 being the thickness of the container

106



4.5. PLANAR DYNAMICS OF A ONE-DIMENSIONAL LATTICE OF SEDIMENTING
DISCS

Figure 4.11: Probability distribution 𝑃𝑠(𝑡) as a function of non-dimensional time
for different aggregate size 𝑠, in the Crowley regime (𝑞, 𝑑̃) = (𝜋/6, 1.875). 𝑃𝑠(𝑡) is
calculated as the ensemble average of the fraction of discs forming an aggregate of
size 𝑠 relative to the total number of discs in each ensemble. Discs that are within
the distance of 0.5𝑎 are considered to be aggregated or clustered. The error bars
represent the standard deviation.

among the discs within these clumps. A key characteristic of the drift regime is
that pairing is by far the most frequent type of clustering observed. Each pair
adopts a ‘⊥’ shape (see figure 4.6). This is an instance of hydrodynamic screening,
as discussed in section 4.4 and figure 4.3. With time, the paired discs separate
out from the rest of the discs because they settle faster than isolated discs, usually
without ever separating from each other. As a result, the fraction of pairs (or
𝑠 = 2 aggregates) only increases with time, as shown in Figure 4.12. The relative
orientation of a pair of discs is quantified by 𝒑1 · 𝒈 and 𝒑2 · 𝒈 . Here, 𝒈 is the
gravity unit vector and 𝒑1 and 𝒑2 are respectively the orientations of the lower and
upper disc of a pair. As previously mentioned, the discs come together in a ‘⊥’
configuration, i.e. (|𝒑1 ·𝒈|, |𝒑2 ·𝒈|) = (1, 0) as they begin to become a pair, as evident
in figure 4.13. These ‘⊥’ configurations, also observed in our experiments, are
solely governed by two-body hydrodynamic interactions and are found to remain
stable over time in numerical simulations. Although the experiments show the ‘⊥’
signature at the time of pair formations, the pair orientations exhibit significant
variability as the discs approach the base of the container. Given the uncertainty
in the factors influencing the persistence of ‘⊥’ structures in the experiments,
we refrain from making conclusions about the late-time (𝑡 ≳ 60) dynamics and
evolution of clustered pairs based on our simulations.
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Figure 4.12: Probability distribution 𝑃𝑠(𝑡) as a function of non-dimensional time
for different aggregate size 𝑠, in the drift regime (𝑞, 𝑑̃) = (𝜋/2, 3.75). 𝑃𝑠(𝑡) is
calculated as the ensemble average of the fraction of discs forming an aggregate
of size 𝑠 relative to the total number of discs in each ensemble. The pairs of discs
separate out in a ‘⊥’ configuration from the rest and keep on settling together,
maintaining their orientations.

4.6 Formation of the ⊥ shape

The phenomenon of pairing through drift merits attention as a distinctive property
of the settling of non-spherical objects, ruled out for the Stokesian settling of
two spheres. As two spheroids approach each other, they invariably rearrange
themselves into a ⊥ structure, both in our experiments and in our simulations.
This process can be explained by a simple analysis similar to that of Koch and
Shaqfeh [95] (see figure 1 in their paper). According to their description, the
neighbors of a disc tend to align their ‘thin’ sides parallel to the direction of the
extensional component of the flow generated by that disc. However, we point to
a key difference coming from the vorticity disturbance due to the rotation of the
spheroid. Consider a force monopole at the origin and a disc of radius 𝑎 settling in
its flow field at a radial distance 𝑟, with position (𝑥, 0, 𝑧). With contributions from
both the vorticity and strain-rate of the flow produced by the monopole, it follows
from equation (4.2) that the orientation of the disc 𝒑 = (cos𝜃, 0, sin𝜃) evolves, to
leading order in 𝑎/𝑟 as

𝑑𝜃
𝑑𝑡

=
3

4𝑟2

[
cos 𝜙 − 𝜁 sin 𝜙 sin 2(𝜙 − 𝜃)

]
; 𝜁 ≡ 3𝑒2

4 − 2𝑒2 . (4.34)

Here 𝑥 = 𝑟 cos 𝜙 and 𝑧 = 𝑟 sin 𝜙. Equation (4.34) is non-dimensionalised using
the same scales as described in section 4. Note that the first term on the right-hand
side of equation (4.34) represents the vorticity contribution, and the second term
represents the contribution of the strain-rate to the disc’s rotation.
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Figure 4.13: Probability density plot of orientations of pairs of discs in the drift
regime (𝑞, 𝑑̃) = (𝜋/2, 3.75). 𝒑1 refers to the orientation of disc 1, which is below
disc 2, and 𝒈 is the gravity unit vector. The black-green dots are experimentally
observed orientations, and the background colour indicates the frequency of
occurrence of a given pair of orientations in the simulations. A predominance of
the ‘⊥’ formation is seen in both experiments and simulations. The orientation
statistics are acquired when the pairs start forming in the simulations, at a non-
dimensional time of 𝑡 ∼ 45 . This time is later than 𝑡∗, the time at which the
non-normal growth reaches its maximum, as shown in Figure 4.10. The black-
green dots, indicating experimental samples, are taken when pair formation is
observed.

Now, without the vorticity contribution, one gets the stable orientations seen in
the schematic figure 1 of Koch and Shaqfeh [95] and thereby an inward particle flux
from all directions. In our study, both the vorticity and strain-rate contributions
are crucial to the disc’s rotation. To find the stable orientations while incorporating
the vorticity contribution, we proceed by defining the angle

𝛽 ≡ 1
2 arcsin

cot 𝜙
𝜁

. (4.35)

For any (𝑟, 𝜙), we set 𝑑𝜃/𝑑𝑡 = 0 in (4.34) to get the fixed point

𝜃∗ = 𝜙 − 𝑛𝜋
2 − (−1)𝑛𝛽, 𝑛 ∈ Z (4.36)

for the orientation angle 𝜃. We can immediately see from (4.36) that solutions
do not exist for all values of 𝜙, which is a qualitatively distinct feature from the
picture of Koch and Shaqfeh [95]. For Ω ≡ arctan(1/𝜁), the solution for 𝑑𝜃/𝑑𝑡 = 0
is defined only for the values of 𝜙 in the intervals (Ω,𝜋 −Ω) and (𝜋 +Ω, 2𝜋 −Ω).
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Figure 4.14: Stable orientations with both vorticity and strain-rate contributing to
a disc’s rotation: with a force monopole at the origin. Blue double-ended arrows
and red-dashed lines are stable and unstable alignments of the thin side of the
disc, respectively. The angle between stable and unstable orientations is 𝜋/2 − 2𝛽.
The shaded grey region represents the range of angles 𝜙 where there are no stable
orientations, with Ω = arctan(1/𝜁).

Even where the solution exists, we show below that the stable orientations are
different from what one gets with just the strain-rate contribution.

We can study the stability by considering just the solutions 𝜃∗
1 = 𝜙 − 𝛽 and

𝜃∗
2 = 𝜙 + 𝛽 −𝜋/2, given the apolarity of discs. Perturbing the fixed points by small

angles 𝛿𝜃1 and 𝛿𝜃2 respectively, substituting in (4.34) and Taylor expanding about
the respective fixed points gives

¤𝛿𝜃𝑘 = (−1)𝑘−1 cos 2𝛽
3𝜁 sin 𝜙

2 𝑟2 𝛿𝜃𝑘 , 𝑘 ∈ {1, 2}. (4.37)

Since cos 2𝛽 > 0, the fixed point 𝜃∗
1 is unstable in the upper half plane and stable

in the lower half plane, and vice versa for the other fixed point 𝜃∗
2.

To summarize, in the upper half-plane (when the disk is above the force
monopole), the disc is stable with its orientation along the angle 𝜃∗

2 = 𝜙 − 𝛽. In
the lower half-plane, the stable angle of the orientation is 𝜃∗

1 = 𝜙 + 𝛽 − 𝜋/2. These
stable orientations are shown in Figure 4.14 with blue arrows indicating the stable
alignment of the thin side of the disc 3. In both half-planes, solutions exist only
with the azimuthal angle 𝜙 lying in the intervals (Ω,𝜋 −Ω) and (𝜋 +Ω, 2𝜋 −Ω),
leaving out regimes shown as grey shaded region in figure 4.14, where there are
no stable orientations.

3Note that the thin side of the disc is perpendicular to its orientation vector
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With this picture in mind, we can explain the formation of ‘⊥’ shapes as follows.
For a pair of vertically separated settling discs, the force monopole flow created
by the lower disc aligns the upper disc vertically, and that generated by the upper
disc aligns the lower disc horizontally. Since a vertically aligned disc sediments
more rapidly than a horizontal one, the upper disc catches up with the lower one,
forming the ‘⊥’ shape, frequently observed in disc pairs. In the drift regime, the
lattice spacing is large enough, i.e., the system is dilute enough, for the above
approximate analysis based on pair interactions and point-force flows to suffice.
The absence of this ‘⊥’ shape in the Crowley regime indicates that clusters in this
regime are influenced by multi-particle interactions.

4.7 Conclusions

The slow collective sedimentation of discs is governed by two processes, the
Crowley mechanism and orientation-dependent drift, whose competition was
observed and the resulting stability problem studied in Chajwa et al. [48]. We have
explored how these mechanisms lead to the disruption of a settling lattice of discs,
creating two kinds of structures: clumps of several particles and pairs that remain
together forever, respectively. We have shown that a satisfactory understanding of
the near-contact dynamics of a pair of discs crucially requires the inclusion of the
first-reflection contribution to their hydrodynamic interaction. We then analyzed
the stability of a one-dimensional lattice of discs using the first reflection and
contrasted it with the point force approximation used in the earlier work of Chajwa
et al. [48]. Whereas the point force approximation predicts zero growth rate 𝜎

beyond a critical lattice spacing 𝑑̃𝑐 , the first reflection shows that the configuration
is unstable at all spacings, but is extremely weakly so at large lattice spacing 𝑑̃,
with 𝜎 ∼ 𝑑̃−4.5, a much faster decay than in the case of spheres. Nevertheless, there
are two regimes based on whether or not the Crowley mechanism overpowers the
drift mechanism, which can be quantified by looking at the nature of clustering.
In terms of perturbation growth, the Crowley regime leads to exponential growth
while the drift regime shows transient algebraic growth, both of which eventually
lead to the disruption of the lattice. The Crowley mechanism leads to clumping at
the valleys of the disrupted lattice, while in the drift regime discs cluster in pairs,
away from the valleys, forming ‘⊥’ structures. These ‘⊥’ configurations exemplify
a type of hydrodynamic screening or shadowing, in which the upper disc descends
vertically onto the lower disc, which has its flat side facing downward. These ‘⊥’
structures are observed in both isolated disc pair experiments and one-dimensional
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disc lattices. In the isolated disc pair experiments, they demonstrate high stability
and retain their configuration for an extended period. We have explained these
structures through an analysis that builds on Koch and Shaqfeh [95]’s work by
incorporating vorticity contributions to the rotation of the discs.

So far, we have seen how the clustering of a one-dimensional array of sediment-
ing spheroids is fundamentally different from spheres. Several directions for future
investigation suggest themselves, and we mention a few. Studying the sedimenta-
tion of a specific arrangement provides a useful test bed for understanding how
hydrodynamic effects operate at both single and multi-particle levels. But practical
scenarios, like the settling of centric (Coscinodiscus) and pennate (Pseudo-nitzschia)
diatoms in an algal bloom, often involve homogeneous suspensions of oriented
particles, with clustering being crucial for ‘marine snow’ formation [142]. We may
ask how clustering depends on the initial spatial distribution of non-spherical
particles, especially in two and three dimensions. Secondly, our work has been
restricted to the steady Stokes (zero Stokes number) limit. When the background
fluid is turbulent, inertial particles, i.e., particles of non-zero Stokes number, are
well known to form clusters even in the dilute limit where interparticle interactions
are absent, see e.g. Bec [143], Monchaux, Bourgoin, and Cartellier [144], and Reade
and Collins [145]. Our study indicates that a future theory that includes interparti-
cle interactions in unsteady Stokes flow (finite Stokes number) is in order. During
sedimentation, a single spheroid can only execute persistent drift at a constant
speed. But this behaviour is seen only in a small fraction of anisotropic particles
[146], which can exhibit settling, drifting, or quasiperiodic motion [38, 40, 42, 45,
46, 115]. Understanding how departures from spheroidal shape combine with
hydrodynamic interactions among particles will yield interesting results relevant
to ice formation in clouds and the clumping of marine snow.
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5

Electrostatic Interactions
Between Anisotropic Particles

“Fate only binds you if you let it.
Do what is necessary, not because it is written.”
— Kratos, God of War Ragnarök

This chapter is a verbatim reproduction of our article published in Physical
Review E [147]. Minor formatting and notational changes have been made for
consistency. I gratefully acknowledge my co-author, Professor Anubhab Roy, for
his contributions to this work.

5.1 Introduction

Electrostatic interactions play a significant role in various natural and indus-
trial processes, influencing behaviours across systems as diverse as atmospheric
phenomena, biological assemblies, and colloidal suspensions [53, 148–151]. In
atmospheric science, for example, electrostatic forces are integral to cloud for-
mation, where charged particles, including ice crystals and droplets, cluster and
interact in complex ways that impact precipitation and cloud evolution [53]. Even
droplets bearing the same charge can coalesce due to electrostatic induction effects,
enabling attraction through localized polarization despite net repulsion between
like charges [74, 75]. This phenomenon, while extensively studied for simple
geometries like spherical particles, is less understood in realistic cases involving
anisotropic interactions and irregular shapes.

One of the simplest non-spherical shapes relevant in such studies is the
spheroid, a shape commonly found in atmospheric ice crystals and approxima-
tions of biological and industrial particles. To better understand the interaction of
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such anisotropic objects, this study focuses on the electrostatic interaction between
a conducting sphere and a spheroidal body. Specifically, this chapter presents the
first known calculation of the electrostatic torque exerted on a spheroid by a nearby
sphere, which represents a key contribution to modeling how such particles align
and rotate under electrostatic forces. This torque, together with the corresponding
interaction forces, could be incorporated into cloud microphysics models to com-
plement hydrodynamic models that already consider droplet interactions driven
by hydrodynamic forces [152]. In mixed-phase clouds, ice crystals collide with
supercooled liquid droplets, becoming coated in a process called riming [153, 154].
Riming is a critical process in the formation of precipitation-sized hydrometeors
within clouds. Precise calculation of the interaction forces between the anisotropic
hydrometeor and the droplet is vital for accurately determining the collision effi-
ciency during the riming process between ice particles and supercooled droplets.

Electrical charging mechanisms in clouds involve complex interactions between
droplets, ice crystals, and graupel particles, driven by a combination of collisions
and environmental factors [53, 75]. Field measurements in weakly electrified
clouds show that ice crystal and droplet charges are proportional to their surface
areas [55, 155, 156]. Mechanisms such as inductive charging, which arise from
the polarization of particles in an existing electric field, and convective charging,
where vertical air currents separate charged particles, also play a role in cloud
electrification. However, the most significant mechanism is collisional charging,
where charge transfer occurs during collisions between particles. For example,
when supercooled water droplets freeze upon colliding with graupel particles,
charge separation occurs due to differences in ion mobility and thermal properties.
In this process, smaller ice crystals typically acquire a positive charge, while
graupel or hailstones gain a negative charge, with the charge separated during
each collision ranging from 1 × 10−14 to 5 × 10−14 coulombs. Since collisional
charging is the dominant process driving charge separation in clouds, and ice
crystals are inherently anisotropic, understanding the role of particle anisotropy
and their electrostatic interactions is crucial for improving our understanding of
cloud electrification.

Analytical methods for determining electrostatic forces and torques on multi-
ple conductors are limited to simple geometries such as sphere-sphere [67] and
spheroid-spheroid in specific configurations [61]. In this chapter, we extend this
computation to two spheroidal conductors in a generic configuration in the far field
regime. The far field calculations are carried out using the method of reflections,
widely used in the problems of micro-hydrodynamics [10], and described in detail
in Chapter 2. Having obtained the electrostatic interaction between two spheroids,
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we explore the role of anisotropy in the simpler, yet unexplored, electrostatic in-
teraction between a spheroid and a sphere. This system is sufficient to capture the
anisotropy in the problem and provides a manageable parameter space over which
relevant quantities can be analyzed. We use the Boundary Integral Method (BIM)
to uniformly capture the electrostatic interaction in both far and near field regimes.
We compare BIM with the method of reflections to determine the proximity at
which the method of reflections starts to lose accuracy for closely spaced conduc-
tors. We derive an analytical expression for the electrostatic force and torque in
the far-field regime using the first reflection, applicable to both spheroid-sphere
and spheroid-spheroid systems. It is speculated that incorporating electrostatic
torque in a dilute suspension of charged spheroids may modify the previously
observed instability in density fluctuations of uncharged spheroids.

5.2 Methods

5.2.1 Potential matrix formulation

The electrostatic interaction between multiple conductors involves determining
the potential on the surface of each conductor, given the total charge on each
conductor. This information is sufficient to determine the total electrostatic energy
of the system and hence compute forces and torques on each conductor. The
governing equation for the potential outside the conductors is simply the Laplace
equation. The complexity of the problem comes from the boundary conditions
that need to be satisfied at the surface of each conductor. The linearity of governing
equations of electrostatics implies a linear relationship between the total charges
on each conductor and the potential on their surfaces. The proportionality constant
is called the potential matrix 𝚽𝑀 [58, 60, 64, 97, 100], which only depends on the
permittivity of free space 𝜀0, size, and the geometry of the conductors 1. Since
we are interested in two-body electrostatic interaction, the connection between
charges 𝑄1 and 𝑄2 and the potentials 𝑉1 and 𝑉2 on the surface of the conductors
𝑆1 and 𝑆2 is given by (

𝑉1

𝑉2

)
=

1
4𝜋𝜀0𝑎

(
Φ11 Φ12

Φ21 Φ22

) (
𝑄1

𝑄2

)
, (5.1)

where 𝑎 is the typical size of the conductors and Φ𝑖 𝑗 , 𝑖 , 𝑗 ∈ {1, 2}, are the dimen-
sionless elements of the potential matrix, 𝚽𝑀 , which depends on the relative

1The more familiar capacitance matrix is simply the inverse of the potential matrix.
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Figure 5.1: A schematic illustrating the geometric setup for electrostatic pair
interactions between a spheroid and a sphere in a generic, non-axisymmetric
configuration. The unit vector 𝒑 represents the orientation of the spheroid, 𝑎
denoting the size of the spheroid, 𝜅 denoting its aspect ratio, 𝛾 denoting the size
ratio of sphere to spheroid. a) A prolate spheroid and a sphere. b) Oblate spheroid
and a sphere.

position, orientations, and the geometry of the two conductors. Using the recipro-
cal theorem, one can show that the potential matrix is symmetric, i.e. 𝚽𝑇

𝑀 = 𝚽𝑀

[58, 60, 97].
The subsequent sections are concerned with the calculation of the potential

matrix 𝚽𝑀 of a spheroid-sphere system in the far field, near field, and uniformly
valid regimes. Before undertaking full numerical calculations, we will first examine
two distinct asymptotic limits: when the particles are widely separated and when
they are nearly touching.

5.2.2 Far field interactions: Method of reflections

The method of reflection is an iterative approach that progressively satisfies bound-
ary conditions on surfaces by incorporating corrections from each preceding it-
eration [10]. The solution to each iteration is given by the multipole expansions,
which yield a perturbation series in 𝑎/𝑅, where 𝑎 is the typical size of the conduc-
tors and 𝑅 is their typical separation. A detailed description of this method in
the context of electrostatics is given in Chapter 2 of this thesis. Here, we briefly
mention the common terminologies of this method. Consider a prolate spheroid 𝑆1,
carrying a total charge 𝑄1, centered at 𝒙1 with 𝑎 as the distance from its centre to
the pole along the symmetry axis denoted by the unit vector 𝒑 (see figure 5.1). The
spheroid’s aspect ratio 𝜅(> 1) is defined as the ratio of 𝑎 to its equatorial radius
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lying perpendicular to 𝒑, and its eccentricity is 𝑒 =
√

1 − 𝜅−2. The surface of this
prolate spheroid is given by

(𝒙 − 𝒙1) ·
[
𝒑𝒑

𝑎2 + (𝜹 − 𝒑𝒑)
𝑎2𝜅−2

]
· (𝒙 − 𝒙1) = 1, 𝒙 ∈ 𝑆1. (5.2)

The second conductor is a sphere 𝑆2 centered at 𝒙2 with radius 𝛽𝑎 and total charge
𝑄2, the surface of which is given by

(𝒙 − 𝒙2) · (𝒙 − 𝒙2) = (𝛽𝑎)2, 𝒙 ∈ 𝑆2. (5.3)

The relative separation vector between them is 𝒙21 ≡ 𝒙2 − 𝒙1 ≡ −𝒙12. The first
reflection approximation accounts for the correction of potential fields produced
by the sphere and spheroids as if they were isolated. The corresponding potential
matrix in this case is accurate only up to 𝒪(𝑎/𝑅). The elements of the potential
matrix for a prolate spheroid are given by (see appendix C):

Φ
(1)
11 = 𝑒−1 arctanh 𝑒 , (5.4a)

Φ
(1)
12 = Φ

(1)
21 (𝒙12, 𝒑) =

1
2𝑒 log

(
𝑧12 − 𝑎𝑒 − 𝑅−
𝑧12 + 𝑎𝑒 − 𝑅+

)
, (5.4b)

Φ
(1)
22 = 𝛽−1, (5.4c)

where

𝑅± ≡
√
𝜌2

12 + (𝑧12 ± 𝑎𝑒)2, (5.5a)

𝜌2
12 ≡ 𝒙12 · (𝜹 − 𝒑𝒑) · 𝒙12, (5.5b)

𝑧12 ≡ 𝒙12 · 𝒑. (5.5c)

Note that up to the first reflection correction, the effect of interaction is only
captured by the off-diagonal terms. Now, the second reflection accounts for the
correction in the potential fields produced in response to the first reflected fields.
The corresponding potential matrix in this case is accurate upto 𝒪(𝑎4/𝑅4), with
the elements for a prolate spheroid given by:

Φ
(2)
11 (𝒙12, 𝒑) = Φ

(1)
11 − 𝑎2𝛽3

4𝑒2

[ (
1
𝑅−

− 1
𝑅+

)2
+ 𝜌2

12

(
1

𝑅+(𝑧12 + 𝑎𝑒 − 𝑅+)

− 1
𝑅−(𝑧12 − 𝑎𝑒 − 𝑅−)

)2
]
, (5.6a)

Φ
(2)
12 (𝒙12, 𝒑) = Φ

(2)
21 (𝒙12, 𝒑) = Φ

(1)
12 (𝒙12, 𝒑) (5.6b)
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Φ
(2)
22 (𝒙12, 𝒑) = Φ

(1)
22 − 9

4𝑎2𝑒6

[
𝑋𝐶
𝑝

{
𝑅− − 𝑅+ + 𝑧12 log

(
𝑧12 − 𝑎𝑒 − 𝑅−
𝑧12 + 𝑎𝑒 − 𝑅+

)}2

+ 1
4𝑌

𝐶
𝑝

{
𝑧12
𝜌12

(𝑅− − 𝑅+) +
𝑎𝑒

𝜌12
(𝑅− + 𝑅+) − 𝜌12 log

(
𝑧12 − 𝑎𝑒 − 𝑅−
𝑧12 + 𝑎𝑒 − 𝑅+

)}2
]
, (5.6c)

where

𝑋𝐶
𝑝 ≡ 𝑒3

3 (arctanh 𝑒 − 𝑒)−1, (5.7a)

𝑌𝐶𝑝 ≡ 2𝑒3

3

(
𝑒

1 − 𝑒2 − arctanh 𝑒
)−1

. (5.7b)

Now consider an oblate spheroid 𝑆1 centered at 𝒙1 with 𝑎 as the distance from
its centre to the pole along the symmetry axis 𝒑. Its aspect ratio is 𝜅(< 1), with
an eccentricity of 𝑒 =

√
1 − 𝜅2 and it carries a total charge 𝑄1. The surface of this

oblate spheroid 𝑆1 is again given by (5.2) with the only difference being 𝜅 < 1. The
second conductor 𝑆2 is again a sphere of radius 𝛽𝑎, centered at 𝒙2, carrying a total
charge 𝑄2. To obtain the corresponding potential matrix of the spheroid-sphere

system, we use the eccentricity transformation 𝑒 → 𝑖𝑒√
1 − 𝑒2

on the corresponding

expressions of the prolate spheroid [101]. Therefore, for an oblate spheroid and a
sphere, we have

Φ
(1)
11 =

𝜅 arcsin 𝑒
𝑒

, (5.8a)

Φ
(1)
12 = Φ

(1)
21 (𝒙12, 𝒑) =

𝜅
𝑒

arccot
(
𝑧12 − 𝑢
𝑣 − 𝑎𝑒/𝜅

)
, (5.8b)

Φ
(1)
22 = 𝛽−1, (5.8c)

where 𝑧12 is given by equation (5.5) and 𝑢 and 𝑣 are given by

𝑢 ≡

√
𝜇

2 +
√

𝜇2

4 + 𝑎2𝑒2

𝜅2 𝑧2
12 ; 𝜇 ≡ |𝒙12|2 −

𝑎2𝑒2

𝜅2 , (5.9a)

𝑣 ≡ 𝑎𝑒𝑧12
𝜅𝑢

. (5.9b)

Similarly, the second reflection corrections are given by

Φ
(2)
11 (𝒙12, 𝒑) = Φ

(1)
11 − 𝜅2𝑎2𝛽3

4𝑒2

[ (
2𝑣

𝑢2 + 𝑣2

)2

+ 𝜌2
12

{
4𝑎𝑒𝜅−1𝑧12 − 2(𝑧12𝑣 + 𝑎𝑒𝜅−1𝑢)

(𝑢2 + 𝑣2)((𝑧12 − 𝑢)2 + (𝑎𝑒𝜅−1 − 𝑣)2)

}2
]
, (5.10a)
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Φ
(2)
12 (𝒙12, 𝒑) = Φ

(2)
21 (𝒙12, 𝒑) = Φ

(1)
12 (𝒙12, 𝒑) (5.10b)

Φ
(2)
22 (𝒙12, 𝒑) = Φ

(1)
22 − 9𝜅6

𝑎2𝑒6

[
𝑋𝐶
𝑜

{
𝑣 − 𝑧12 arccot

(
𝑧12 − 𝑢
𝑣 − 𝑎𝑒𝜅−1

)}2

+ 1
4𝑌

𝐶
𝑜

{
𝑎𝑒𝜅−1𝑢 − 𝑧12𝑣

𝜌12
− 𝜌12 arccot

(
𝑧12 − 𝑢
𝑣 − 𝑎𝑒𝜅−1

)}2
]
, (5.10c)

where

𝑋𝐶
𝑜 ≡ 𝑒3

3 [𝑒(1 − 𝑒2) − (1 − 𝑒2)3/2 arcsin 𝑒]−1, (5.11a)

𝑌𝐶𝑜 ≡ 2𝑒3

3
[
𝑒(1 − 𝑒2)2 − (1 − 𝑒2)3/2 arcsin 𝑒

]−1
. (5.11b)

The potential matrix for two spherical conductors can be obtained by taking the
limit 𝑒 → 0 in the potential matrix expression for a prolate spheroid. Therefore,
for a spherical conductor 𝑆1 of radius 𝑎, centered at 𝒙1 and another spherical
conductor 𝑆2 of radius 𝛽𝑎, centered at 𝒙2, the elements of the potential matrix up
to the second reflection are given by:

Φ
(2)
11 (|𝒙21|) = 1 − 𝛽3𝑎4

|𝒙21|4
, (5.12a)

Φ
(2)
12 (|𝒙21|) = Φ

(2)
21 (|𝒙21|) =

1
|𝒙21|

, (5.12b)

Φ
(1)
22 (|𝒙21|) =

1
𝛽
− 𝑎4

|𝒙21|4
. (5.12c)

5.2.3 Near contact interaction: Lubrication approximation

Using the lubrication approximation for the spheroid-sphere system in the axisym-
metric configuration involves solving the Laplace equation for the potential field
𝜙(𝒙) near the gap of thickness 𝑎𝜖 between the conductors. Using polar coordinates
with 𝑧 coordinate along the symmetry axis 𝒑 and 𝑟 coordinate transverse to 𝒑, the
boundary value problem to be solved is

∇2𝜙 =
𝜕2𝜙

𝜕𝑧2 + 1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝜙

𝜕𝑟

)
= 0, (5.13a)

𝜙 =


𝑉1 𝑧 = ℎ1(𝑟),
𝑉2 𝑧 = ℎ2(𝑟),

(5.13b)
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The surface of the spheroid and the sphere can be expanded as

ℎ1(𝑟)
𝑎𝜖

= 1 + 𝜅2𝑟2

2𝜖𝑎2 + 1
8
𝜅4𝑟4

𝜖𝑎4 + 𝒪
(
𝜅6𝑟6

𝜖𝑎6

)
, (5.14a)

ℎ2(𝑟)
𝑎𝜖

= −1
2
𝑟2

𝜖𝛽𝑎2 − 1
8

𝑟4

𝜖𝛽3𝑎4 + 𝒪
(
𝑟6

𝜖𝛽5𝑎6

)
. (5.14b)

Defining the stretched coordinates 𝑅 ≡ 𝑟/(𝑎
√
𝜖) and 𝑍 ≡ 𝑧/(𝑎𝜖), we have

𝐻1(𝑅) = 1 + 𝜅2𝑅2

2 + 𝜖𝜅4𝑅4

8 + 𝒪(𝜖2), (5.15a)

𝐻2(𝑅) = −𝑅
2

2𝛽 − 𝜖𝑅4

8𝛽3 + 𝒪(𝜖2). (5.15b)

Rewriting the Laplace equation in terms of the stretched coordinates, we have

𝜕2𝜙

𝜕𝑍2 + 𝜖
𝑅

𝜕

𝜕𝑅

(
𝑅
𝜕𝜙

𝜕𝑅

)
= 0, (5.16a)

𝜙 =


𝑉1 𝑍 = 𝐻1(𝑅),
𝑉2 𝑍 = 𝐻2(𝑅),

(5.16b)

The solution can be expanded in the perturbation series as 𝜙 = 𝜙0 + 𝜖𝜙1 + 𝒪(𝜖2).
The total charge 𝑄1 and 𝑄2 on the spheroid 𝑆1 and sphere 𝑆2 are given by

𝑄𝛼 = −𝜖0

∮
𝑆𝛼

∇𝜙 · 𝒏̂𝛼 𝑑𝑆𝛼 , 𝛼 ∈ {1, 2}, (5.17)

where 𝒏̂𝛼 represents the unitnormalpointing outof the surface𝑆𝛼. The electrostatic
force 𝑭1 on the spheroid is given by

𝑭1 =
𝜖0
2

∮
𝑆1

��∇𝜙 · 𝒏̂1
��2 𝒏̂1 𝑑𝑆1. (5.18)

Using the zeroth order solution 𝜙0, the charge difference Δ𝑄12 = 𝑄1 −𝑄2 is given
by (see Supplemental Material):

Δ𝑄12 =
4𝜋𝑎𝜖0𝛽Δ𝑉12

1 + 𝛽𝜅2

[
log

(
1 + 𝛽𝜅2

2𝛽𝜅𝜖

)
+ 𝛿

]
+ 𝒪(𝜖), (5.19)

where Δ𝑉12 ≡ 𝑉1 −𝑉2 and 𝛿 is an 𝒪(1) constant which has to be determined using
the outer solution. The weak logarithmic singularity is insufficient to overpower
the 𝛿 correction, even at very small separations 𝜖, and therefore 𝛿 cannot be
neglected. The forces 𝑭1 and 𝑭2 are given by

𝑭1 =
−𝒙̂12(1 + 𝛽𝜅2)Δ𝑄2

12

16𝜋𝑎2𝜖0𝛽𝜖
[
log

(
1+𝛽𝜅2

2𝛽𝜅𝜖

)
+ 𝛿

]2 = −𝑭2. (5.20)
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Note that for unequal total charges Δ𝑄12 ≠ 0, the electrostatic forces at close range
are attractive, regardless of whether the conductors carry like or unlike charges.
The force expression (5.20) reduces to the near contact force between two spheres
for 𝜅 = 1 (cite).

We rewrite equation (5.19) in terms of 𝛿 as

𝛿 = lim
𝜖→0

{ (1 + 𝛽𝜅2)Δ𝑄12

4𝜋𝑎𝜖0𝛽Δ𝑉12
− log

(
1 + 𝛽𝜅2

2𝛽𝜅𝜖

)}
. (5.21)

We shall use the Boundary Integral Method (BIM) to evaluate the right-hand side
of the above equation for 𝜖 ≪ 1 and thus obtain 𝛿. The numerical values of the
RHS of equation (5.21) will have small variations with 𝜖 even when 𝜖 ≪ 1. This is
due to the fact that the numerical errors in BIM increase as the surfaces approach
each other [93, 104]. The error in the numerical measurement of 𝛿, i.e. Δ𝛿, gives
error on the forces |Δ𝐹| (see equation (5.20)) as

|Δ𝐹| = |𝑭1|

������� 2Δ𝛿[
log

(
1+𝛽𝜅2

2𝛽𝜅𝜖

)
+ 𝛿

]
������� . (5.22)

Note that the relative error in the forces decreases with 𝜖. Once the 𝛿 is obtained,
the lubrication force (5.20) gives electrostatic forces in the configurations where
the minimum separation between the conductors becomes vanishingly small.

5.2.4 Boundary Integral Method

The method of reflections is primarily effective for far-field interactions. Achieving
higher accuracy requires additional reflections, but each successive reflection adds
significant complexity to the analytical expressions. To compute the interactions in
both far and near field regimes numerically, we use the Boundary Integral Method
(BIM). The BIM formulation is well established for various linear partial differential
equations, including the Laplace equation [98]. A detailed formulation of the BIM
for the electrostatic problem with total charges specified on each conductor is
given in Chapter 2 of this thesis. Here we outline the main integral equations to be
solved numerically to compute the potential matrix for a spheroid 𝑆1 (both prolate
and oblate) and a sphere 𝑆2. The potentials on the surface of the conductors are
given by:

𝜖0𝑉𝛼 =
1

|𝑆𝛼|

∮
𝑆𝛼

𝑞𝛼(𝒙) 𝑑𝑆𝛼(𝒙); 𝛼 ∈ {1, 2}, (5.23)
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where |𝑆𝛼| is the surface area of the conductor 𝑆𝛼. The fields 𝑞𝛼 are obtained by
solving the second kind integral equation on every point 𝒙𝑠𝛼 on the surface of
conductor 𝑆𝛼:[

ℒ𝑑
11 + 𝒫 𝑐

11 + I ℒ𝑑
12

ℒ𝑑
21 ℒ𝑑

22 + 𝒫 𝑐
22 + I

] [
𝑞1

𝑞2

]
=

1
4𝜋

[
𝑄1𝒢(𝒙𝑠1, 𝒙1) +𝑄2𝒢(𝒙𝑠1, 𝒙2)
𝑄1𝒢(𝒙𝑠2, 𝒙1) +𝑄2𝒢(𝒙𝑠2, 𝒙2)

]
, (5.24)

where 𝑄1, 𝑄2 are the charges on the conductors 𝑆1 and 𝑆2, respectively, and 𝒢 is
the Greens function of the Laplacian, given by

𝒢(𝒙 , 𝒙0) ≡
1

|𝒙 − 𝒙0|
. (5.25)

The integral operators are defined as:

ℒ𝑑
𝛼𝛽𝑞𝛽(𝒙𝑠) ≡

1
2𝜋

∮
𝑆𝛽

𝑞𝛽(𝒙) 𝒏̂𝛽 · ∇𝒙𝒢(𝒙 , 𝒙𝑠) 𝑑𝑆𝛽(𝒙), (5.26a)

𝒫 𝑐
𝛼𝛽𝑞𝛽 ≡ 1

|𝑆𝛼|
𝛿𝛼𝛽

∮
𝑆𝛽

𝑞𝛽(𝒙) 𝑑𝑆𝛽(𝒙); 𝒙𝑠 ∈ 𝑆𝛼 . (5.26b)

The equations (5.23) and (5.24) are used to determine the potential matrix. The
integral equation (5.24) is solved using GMRES iterations [107], and the integrals
on the surfaces are evaluated using Gaussian quadrature [104].

5.2.5 Electrostatic force and Torque

The electrostatic force and torque on each conductor can be computed by taking
derivatives of the electrostatic energy of the system. The electrostatic energy of
the spheroid-sphere system is given by:

𝑊(|𝒙21|, 𝒙̂21 · 𝒑) =
1
2𝑸

𝑇 ·𝚽𝑀(|𝒙21|, 𝒙̂21 · 𝒑) ·𝑸 , (5.27)

where 𝑸 ≡ [𝑄1 𝑄2]𝑇 , where the spheroid centered at 𝒙1 carries a total charge
𝑄1 and the sphere centered at 𝒙2 carries a total charge 𝑄2. Here 𝒙̂21 is a unit
vector along the separation vector 𝒙21 = 𝒙2 − 𝒙1. The differential change in the
electrostatic energy upon differential change in the relative configuration is given
by

𝑑𝑊 = 𝑑𝒙21 · ∇21𝑊 + 𝑑𝒑 · ∇𝑝𝑊. (5.28)

The first term in equation (5.28) represents the negative of the work done by the
electrostatic force on the sphere, 𝑭2, in moving the sphere by an amount 𝑑𝒙21.
Equivalently, it represents the negative of the work done by the electrostatic force
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on the spheroid, 𝑭1, in moving the spheroid by an amount −𝑑𝒙21. Therefore, the
electrostatic forces on the conductors are given by:

𝑭1 = −𝑭2 = ∇𝒙21𝑊(|𝒙21|, 𝒙̂21 · 𝒑). (5.29)

The second term shows that there is an energy expense in changing the orientation
of the spheroid. This shows that the electrostatic force on the spheroid does not
act at its centre. Thus, an electrostatic torque 𝑻1 acts on the spheroid about its
centre. The work done by the electrostatic force on the spheroid in changing its
orientation can be written in terms of 𝑻1 as 𝑻1 · 𝒏̂ 𝑑𝜃, where 𝒏̂ is the axis about
which 𝒑 is rotated by an angle 𝑑𝜃, i.e. 𝑑𝒑 = 𝑑𝜃 𝒏̂ × 𝒑. Equating this to the second
term in equation (5.28) gives the torque on the spheroid about its centre as

𝑻1 = −𝒑 × ∇𝒑𝑊(|𝒙21|, 𝒙̂21 · 𝒑). (5.30)

The change in configuration due to the change in the orientation vector 𝒑 =

𝑑𝜃 𝒏̂ × 𝒑 is equivalent to keeping the spheroid’s orientation fixed but rotating
the separation vector 𝒙21 about the spheroid’s centre, the opposite way, such that
𝑑𝒙21 = −𝑑𝜃 𝒏̂ × 𝒙21. The work done on the sphere by 𝑭2 in this case is simply,
𝑭2 · (−𝑑𝜃 𝒏̂ × 𝒙21) = −(𝒙21 × 𝑭2) · 𝒏̂ 𝑑𝜃 ≡ 𝑻2 · (−𝒏̂𝑑𝜃). This shows the torque 𝑻2 on
the sphere is simply

𝑻2 = 𝒙21 × 𝑭2. (5.31)

It is easy to see using equations (5.29), (5.30), and (5.31) that 𝑻1 = −𝑻2, and hence
the total angular momentum of the system is conserved.

5.3 Results

The parameter space to be explored contains the aspect ratio of spheroid 𝜅 and
ratio of radius of sphere to the semi-major axis of the spheroid 𝛽, for various
configurations given by 𝒙21 and 𝒑. For a given 𝜅, we fix the value of 𝛽 such that
the surface area of the spheroid is the same as that of the sphere. We look at three
different aspect ratios 𝜅 ∈ {1, 4, 0.25}. The first case corresponds to the electrostatic
interaction between two identical spheres, the results of which are well known [67].
This serves as a benchmark for our general results for spheroid-sphere interactions.
The other two cases correspond to a prolate and an oblate spheroid, respectively.

5.3.1 Elements of the potential matrix

The elements of the potential matrix are defined in equation (5.1). For the case
of two spheres (𝜅 = 1), the exact expression is known from Lekner [67] and the
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Run 𝜅 𝛽

𝑅1 1 1

𝑅2 4 0.445

𝑅3 0.25 3.01

Table 5.1: Values of 𝜅 and 𝛽 used in the simulations.

Figure 5.2: Elements of the potential matrix Φ𝑀 (see (5.1)) as a function of dimen-
sionless minimum separation between the two spheres, 𝑠21 = |𝒙21|/𝑎 − 2. The
second reflection is decent up to the separations of the order of the size of the
spheres. The exact result in terms of an infinite series can be found in [67].

second reflection results are given by equation (5.12). The comparison between
the second reflection, BIM, and exact expression shows that the second reflection
performs well down to minimum separations between spheres comparable to their
size, see figure 5.2. This also validates both the second reflection and the BIM.

For the case of electrostatic interactions between a spheroid and a sphere,
the exact expressions of the potential matrix are not known to the best of our
knowledge. The potential matrix depends on both the separation between the
conductors |𝒙21| and the relative configuration of the conductors cos(𝜓) ≡ 𝒙̂21 · 𝒑.
The minimum separation between the centres of the conductors when they are
just touching depends on 𝜓 and is denoted by 𝑑min(𝜓). This minimum separation
can be determined numerically by finding the roots 𝒙∗ (point of contact) and 𝑑∗ of
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Figure 5.3: A schematic showing the point of contact 𝒙∗, the minimum distance
𝑑∗ = 𝑑min(𝜓), and other relevant quantities for the case of a prolate spheroid and
a sphere. The relative sizes of the conductors are proportional to their respective
scales.

the following equations ���� 𝒏1
|𝒏1|

+ 𝒏2
|𝒏2|

���� = 0, (5.32a)����𝒙∗ + 𝛽𝑎
𝒏1
|𝒏1|

− 𝑑∗𝒙̂21

���� = 0, (5.32b)

|𝒏2|2 = 𝛽2𝑎2 (5.32c)

𝒙∗ · (𝒑 × 𝒙̂21) = 0, (5.32d)

where 𝒏1 and 𝒏2 are the (non-normalized) normal vectors to the spheroid and
sphere at 𝒙∗, given by:

𝒏1 ≡
[
𝒑𝒑

𝑎2 + (𝜹 − 𝒑𝒑)
𝑎2𝜅−2

]
· (𝒙∗ − 𝒙1), (5.33a)

𝒏2 ≡ 𝒙∗ − 𝒙1 − 𝑑∗𝒙̂21. (5.33b)

The four equations (5.32) uniquely determines 𝒙∗ and 𝑑∗ = 𝑑min(𝜓). Note that 𝒙̂21 is
given by a unit vector making an angle 𝜓 with 𝒑, which doesn’t require specifying
𝑑∗.

A schematic representing 𝒙∗, 𝑑∗, and other relevant quantities is shown in
Figure 5.3.

The physical interpretation of equation (5.32) is as follows:

1. Equation (5.32a) enforces that the normals of the sphere and the spheroid
are oriented anti-parallel to each other.
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Figure 5.4: Elements of the potential matrix Φ𝑀 (see (5.1)) as a function of
dimensionless separation between the a prolate spheroid and a sphere, 𝑠21 =

(|𝒙21| − 𝑑min(𝜓))/𝑎. Here 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑑min is the dimensionless center-
to-center distance between the prolate spheroid and the sphere when they are just
in contact.

2. Equation (5.32b) ensures that 𝒙∗ is the point of contact.

3. Equation (5.32c) ensures that 𝒙∗ lies at the surface of the sphere.

4. Equation (5.32d) ensures that 𝒙∗ lies in the plane defined by 𝒑 and 𝒙̂21.

For the case of a prolate spheroid and a sphere (𝜅 = 4), the exact expression
of the potential matrix is not known to the best of our knowledge. The second
reflection results are given in equation (5.6). Figure 5.4 shows the elements of
the potential matrix for a fixed 𝜓 = 𝜋/4 as a function of dimensionless separation
𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎. The second reflection is reliable up to 𝑠21 ∼ 1.

Similarly, for the case of an oblate spheroid and a sphere (𝜅 = 0.25), the second
reflection results (equation (5.10)) are reliable up to 𝑠21 ∼ 4. This early deviation
of the second reflection method from BIM arises because the length scale used for
𝑠21 does not correspond to the larger dimension of the oblate spheroid, specifically
the equatorial radius of the oblate spheroid 𝑎𝜅−1.

5.3.2 Electrostatic force

Equation (5.29) is used to obtain the electrostatic force between the pair of con-
ductors. This relies on differentiating the electrostatic energy obtained using the
potential matrix. The exact results are available for the sphere-sphere case by [67].
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Figure 5.5: Elements of the potential matrix Φ𝑀 (see (5.1)) as a function of di-
mensionless separation between the an oblate spheroid and a sphere, 𝑠21 =

(|𝒙21| − 𝑑min(𝜓))/𝑎. Here 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑑min is the dimensionless center-
to-center distance between the oblate spheroid and the sphere when they are just
in contact.

The second reflection is again reliable up to 𝑠21 ∼ 1. For very small separation
𝑠21 ≪ 1, the BIM needs a large number of collocation points on the surfaces of
the conductors to converge to the solution accurately. Lubrication approximation
(equation (5.20)) has been used for 𝑠21 ≪ 1, shown by the filled dots in figure 5.6,
with the 𝛿 fitted using the BIM results.

The force acting on the sphere in the axisymmetric configuration (𝒑 · 𝒙̂21)
involving a prolate spheroid and a spherical conductor is shown in Figure 5.7. The
lubrication force is given by equation (5.20) with the 𝛿 fitted using the BIM results.
Figure 5.8 shows the corresponding force for the case of an oblate spheroid and a
sphere. Note that the electrostatic forces are attractive in the near contact case for
unequal charges and grow unboundedly.

Figure 5.9 shows the variation of electrostatic force as a function of dimension-
less separation 𝑠21 and the relative configuration 𝜓. This captures the effect of
anisotropy of the problem.

One is often interested in the dilute regime where particle separations are much
larger than their size. In this regime, the first reflection is sufficient to capture the
electrostatic force. Using equation (5.29) and (5.4), the electrostatic force for the
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Figure 5.6: Dimensionless force on the secondsphere as a function ofdimensionless
minimum separation between the two spheres, 𝑠21 = |𝒙21|/𝑎 − 2. Note that the
force is attractive in the case of unequal charges (𝑭2 · 𝒙12 > 0). The filled dots are
obtained using the lubrication approximation (see equation (5.20)) with 𝛿 obtained
using BIM through equation (5.21). The inset shows 𝛿 as a function of 𝜖, with the
dots indicating the range of values over which 𝛿 is averaged to approximate it as
a constant.

Figure 5.7: Dimensionless force on the secondsphere as a function ofdimensionless
separation between the prolate spheroid and the sphere, 𝑠21 = |𝒙21|/𝑎 − (1 + 𝛾), in
the axisymmetric configuration (𝒑 = 𝒙̂21). Note that the force is attractive in the
case of unequal charges (𝑭2 · 𝒙12 > 0). The lubrication approximation is obtained
using equation (5.20) with 𝛿 obtained using BIM through equation (5.21). The
inset shows 𝛿 as a function of 𝜖, with the dots indicating the range of values over
which 𝛿 is averaged to approximate it as a constant.
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Figure 5.8: Dimensionless force on the secondsphere as a function ofdimensionless
separation between the oblate spheroid and the sphere, 𝑠21 = |𝒙21|/𝑎 − (1 + 𝛾), in
the axisymmetric configuration (𝒑 = 𝒙̂21). Note that the force is attractive in the
case of unequal charges (𝑭2 · 𝒙12 > 0). The lubrication approximation is obtained
using equation (5.20) with 𝛿 obtained using BIM through equation (5.21). The
inset shows 𝛿 as a function of 𝜖, with the dots indicating the range of values over
which 𝛿 is averaged to approximate it as a constant.

prolate spheroid and sphere system is given by

𝑭2 ∼ 𝑄1𝑄2
8𝜋𝜀0|𝒙21|

{ (
1
𝑅+

+ 1
𝑅−

)
𝒙̂21 +

|𝒙21|
𝑎𝑒

×
(

1 − 𝑎𝑒/𝑅+
𝑅+ − 𝑎𝑒 − 𝑧12

− 1 + 𝑎𝑒/𝑅−
𝑅− + 𝑎𝑒 − 𝑧12

)
(𝜹 − 𝒙̂21𝒙̂21) · 𝒑

}
(5.34)

where 𝑅−, 𝑅+ and 𝑧12 are given by equation (5.5). The corresponding electrostatic
force due to the first reflection for the oblate spheroid and sphere system is given
by

𝑭2 ∼ 𝑄1𝑄2
4𝜋𝜀0|𝒙12|

{
𝑎2𝑒2𝑧2

12 + 𝜅2|𝒙12|2𝑢2

𝑢(2𝑢2 − 𝜇)(𝑎2𝑒2 + 𝜅2𝑢2) 𝒙̂12

− 𝑎2𝑒2|𝒙12|𝑧12

𝑢(2𝑢2 − 𝜇)(𝑎2𝑒2 + 𝜅2𝑢2)(𝜹 − 𝒙̂21𝒙̂21) · 𝒑
}
, (5.35)

where 𝑢 and 𝜇 are given by equation (5.9). Note that the second term in the
right-hand side of equations (5.34) and (5.35) are the non-central parts which arise
due to the anisotropy of the systems and contribute to the electrostatic torques.

129



CHAPTER 5. ELECTROSTATIC INTERACTIONS BETWEEN
ANISOTROPIC PARTICLES

Figure 5.9: Contour plot of dimensionless force along the separation vector,
4𝜋𝜀0𝑎

2𝑞−2𝑭2 · 𝒙̂21, as a function of 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎.
The white dotted lines are due to the second reflections. The spheroid has charge
𝑄1 = 𝑞 and the sphere has charge 𝑄2. (a) 𝑄2 = 𝑞, 𝜅 = 4. (b) 𝑄2 = 2𝑞, 𝜅 = 4. (c)
𝑄2 = 𝑞, 𝜅 = 0.25. (d) 𝑄2 = 2𝑞, 𝜅 = 0.25.

Because these force expressions are valid only for large separations, they fail to
account for the attractive forces between like charges that arise at short distances
due to electrostatic induction.

Similarly, one can obtain a closed form expression of force using equation
(5.29) and the second reflection corrections to the potential matrix (equations (5.6)
and (5.10)) which is reliable upto 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎 ∼ 1. The force from
the second reflection can explain the attractive interaction between like charges;
however, its accuracy diminishes at the separations where the attractive region
begins.

5.3.3 Electrostatic Torque

The electrostatic torque is the result of electrostatic forces on the conductors not
being central. In other words, there is an electrostatic energy cost in changing the
orientation of the spheroid or changing the relative configuration 𝜓. Figure 5.10
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shows the torque on the spheroid as a function of dimensionless separation 𝑠21

and 𝜓. As the separation decreases, the torque in the unequal charge case changes
direction, indicating the onset of an attractive interaction between the conductors.

Figure 5.10: Contour plot of dimensionless torque on spheroids about their centre,
4𝜋𝜀0𝑎𝑞

−2𝑻1 · 𝒌̂, as a function of 𝜓 ≡ arccos(𝒙̂21 · 𝒑) and 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎,
where 𝒌̂ is a unit vector along (𝒑 × 𝒙̂21). The white dotted lines are due to the
second reflections. The green curves in (b) and (d) separate the repulsive and
the attractive regions. The spheroid has charge 𝑄1 = 𝑞 and the sphere has
charge 𝑄2. (a) 𝑄2 = 𝑞, 𝜅 = 4. (b) 𝑄2 = 1.5𝑞, 𝜅 = 4. (c) 𝑄2 = 𝑞, 𝜅 = 0.25. (d)
𝑄2 = 1.5𝑞, 𝜅 = 0.25.

A quantity of interest in the dilute regime is the electrostatic torque between a
pair of particles. The torque computed using the first reflection is accurate enough
to capture the anisotropic effects in the far field. Using equation (5.34), one can
obtain the torque for the prolate spheroid and sphere system, given by

𝑻1 ∼ 𝑄1𝑄2
8𝜋𝜀0𝑎𝑒

(
1 − 𝑎𝑒/𝑅+

𝑅+ − 𝑎𝑒 − 𝑧12
− 1 + 𝑎𝑒/𝑅−
𝑅− + 𝑎𝑒 − 𝑧12

)
𝒑 × 𝒙21. (5.36)

Similarly, using equation (5.35), one can obtain the torque for the oblate spheroid
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and sphere system, given by

𝑻1 ∼ 𝑄1𝑄2
4𝜋𝜀0𝑢(2𝑢2 − 𝜇)

(
−𝑎2𝑒2𝑧12

(𝑎2𝑒2 + 𝜅2𝑢2)

)
𝒑 × 𝒙21. (5.37)

Here 𝑅−, 𝑅+, 𝑧12, 𝑢 and 𝜇 are given by equations (5.5) and (5.9). Note that the
electrostatic forces and torques up to the first reflection do not depend on the
radius of the sphere2. This is because the electric field of a sphere, to a leading
order in the far field regime, is identical to that of a point charge placed at the
center of the sphere. Now, if one has a pair of spheroids in the far field regime,
the electrostatic field of a spheroid can be approximated by the field due to a
point charge located at its centre. Therefore, in the far field regime, the force
and torque expressions (equations (5.34), (5.35), (5.36) and (5.37)) serve as good
approximations even for a spheroid-spheroid system. The comparison between
the torque due to the first and second reflections and BIM is shown in Figure 5.11

Figure 5.11: Dimensionless torque on the prolate spheroid 4𝜋𝜀0𝑎𝑞
−2𝑻1 · 𝒌̂ for

𝑄1 = 𝑞, 𝑄2 = 2𝑞, as a function of separation 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎 for a fixed
𝜓 ≡ arccos(𝒙̂21 · 𝒑) = 𝜋/4, where 𝒌̂ is a unit vector along (𝒑 × 𝒙̂21). The method of
reflection aligns well with the BIM in the far field. The sign change in the torque
at close range indicates an attractive electrostatic force due to induction. While
the first reflection fails to predict this sign change, the second reflection captures
it but loses accuracy in this close range.

Studies have shown that electrostatic interactions, when combined with hy-
drodynamic interactions, can result in stable configurations for a pair of spheres
[157]. An array of spheres and spheroids, as well as a dilute suspension of hydro-
dynamically interacting spheroids, is unstable to density perturbations [47, 48, 95].

2Although the accuracy of the expression requires the radius of the sphere to be much less
than the separation between the particles.
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The potential role of electrostatics in altering the stability of such systems remains
unexplored.

In the like-charged anisotropic system, the electrostatic torque tends to align
the spheroid in a broadside orientation relative to the separation vector 𝒙21, as
illustrated in Figure 5.12. In contrast, for oppositely charged particles, the stable
orientation changes to the thin side, as evident from equations (5.36) and (5.37).
These stable configurations contrast with the same system interacting hydrody-
namically in a viscous flow [95], where a spheroid falling above another one tends
to align its thin side along their separation vector, see figure 5.13. As a result, in a
dilute suspension of sedimenting charged spheroids, the hydrodynamic torque on
a spheroid counteracts the electrostatic torque in some regions while reinforcing it
in others. Consequently, incorporating electrostatic effects in such systems could
alter the instability typically observed in purely hydrodynamic interactions [95].

Figure 5.12: Dimensionless torque on the prolate spheroid 4𝜋𝜀0𝑎𝑞
−2𝑻1 · 𝒌̂ for𝑄1 =

𝑄2 = 𝑞, as a function of 𝜓 ≡ arccos(𝒙̂21 · 𝒑) for fixed 𝑠21 = (|𝒙21| − 𝑑min(𝜓))/𝑎 = 2,
where 𝒌̂ is a unit vector along (𝒑× 𝒙̂21). The change in the sign of the torque shows
a stable configuration of the prolate spheroid and sphere system about 𝜓 = 𝜋/2,
as indicated in the insets.

5.4 Conclusion

We have used the method of reflections to compute the potential matrix for
sphere-sphere and spheroid-sphere conductors. This allows us to determine the
electrostatic forces and torques acting on these conductors in the far field regime.
The formulation is general enough to be applied to arbitrary shapes as long as
their singularity solutions are known, as discussed in Chapter 2. We also compute
the electrostatic force under the lubrication approximation for nearly touching
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Figure 5.13: Schematic showing the favorable orientations of a sedimenting
spheroid interacting with another sedimenting spheroid through electrostatic
and hydrodynamic interactions in the far-field regime. In the case of purely
hydrodynamic interactions, one spheroid disturbs the flow as a force monopole
(indicated by the red arrow) and causes the other spheroid to align along the
extensional axis of the locally disturbed strain field (indicated by blue arrows).
When electrostatic interactions are included, the electrostatic torque can either
compete with or reinforce the hydrodynamic alignment, depending on whether
the spheroid is in a trailing or leading position. The black-shaded spheroids
represent the favorable orientations due to electrostatic effects, while the light
blue-shaded spheroids indicate those due to hydrodynamic effects. (a) For like-
charged spheroids, the electrostatic torque competes with the hydrodynamic
alignment for a trailing spheroid, as indicated by the arrows, while it reinforces
the alignment for a leading spheroid. (b) For oppositely charged spheroids, the
effects are reversed: the electrostatic torque competes with the hydrodynamic
alignment for a leading spheroid and reinforces it for a trailing spheroid. This has
implications for changing the stability of dilute suspensions of charged spheroids.

conductors in the axisymmetric configuration. To determine this close-range force
accurately, an order one constant 𝛿 is needed, which has been determined using
the Boundary Integral Method (BIM). We also test the validity of the method of
reflections with the BIM when the conductors are closely separated. The results
show that the second reflection works well until the separation is of the order of
the size of the conductors.

The anisotropy of the problem of electrostatic interaction between a spheroid
and a sphere results in the electrostatic torque. This torque tends to align the
spheroid-sphere system in a manner different from the alignment due to pure hy-
drodynamic interactions [95], see figure 5.13. This naturally prompts the question:
how does the instability in a dilute suspension of sedimenting spheroids change
when electrostatic effects are taken into account? This chapter offers a foundational
approach for computing electrostatic forces and torques on anisotropic particle
pairs, demonstrated with example cases for a spheroid-sphere system, using the
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potential matrix. In the dilute regime, the simpler first-reflection expressions
(equation (5.36) and (5.37)) can be used to account for electrostatic interactions
between spheroids and study the evolution of density perturbations in a spheroid
suspension.

This chapter draws extensively on concepts from micro-hydrodynamics but
deliberately excludes its effects to avoid additional complexity. However, in
natural settings, micro-hydrodynamics and electrostatic effects often act together.
Understanding the role of electrostatic forces in clustering within clouds, for
instance, sheds light on the formation and dynamics of ice crystals and droplets.
While hydrodynamic-driven clustering through turbulence has been extensively
explored [84, 158], the role of electrostatic interactions remains under-examined.
Such insights can further our understanding of processes such as rain initiation,
hail formation, and the structural evolution of clouds under varying atmospheric
charge distributions. Beyond atmospheric science, applications extend to areas
like the control of particulate matter in industrial filtration [149], the alignment of
particles in electric fields in colloidal chemistry [151], and the behaviour of charged
proteins in biophysics [150], where electrostatic torques influence assembly and
organization.
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6

Intermittency and Vorticity
Fluctuations in

Two-dimensional Dusty
Turbulence

“The truth is, most of us discover where we are heading when we arrive.”
— Calvin, from Calvin and Hobbes by Bill Watterson

This chapter is based on a work that is to be submitted for publication. I
gratefully acknowledge Professor Samriddhi Sankar Ray and Professor Prasad
Perlekar for their guidance and contributions.

6.1 Introduction

Turbulence is a ubiquitous phenomenon in nature, occurring in a wide range
of systems from the chaotic flow of rivers and ocean currents [159–161] to the
movement of gases in the atmosphere [162, 163] and the dynamics of astrophysical
plasmas [164, 165]. In each of these settings, turbulence plays a critical role in
determining the transfer and mixing of energy, momentum, and matter, shaping
large-scale dynamics and structures. When particles such as droplets, dust, or
biological entities are introduced into turbulent flows, their interactions with the
turbulent environment add layers of complexity. Studying particles in turbulent
flows is important across various fields: in atmospheric science, particle clustering
may affect processes like cloud formation and rain initiation [87, 166]; in oceanog-
raphy, particles impact nutrient transport and marine ecosystems [27, 167]; and in
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industrial contexts, they influence mixing and reaction rates in processes involving
sprays or suspensions [168, 169].

Research has traditionally focused on the impact of turbulence on particles,
often neglecting the influence of the particles on the turbulent flow itself [170].
These studies have shown that turbulent flows influence particle dynamics, often
leading to particle clustering [143, 171]. This clustering effect has been implicated
as a potential mechanism in phenomena like raindrop formation and sediment
transport [87, 166, 172]. Even though a single particle may have a minimal
effect on the flow field, dense clusters of particles formed due to turbulence
can strongly influence the local flow dynamics. Therefore, understanding how
particles influence the flow field is crucial.

Recent studies, however, have begun addressing this two-way interaction, often
under the term “dusty flows" [91, 173, 174]. This two-way coupling is achieved
by adding a feedback force in the Navier-Stokes equation, consistent with the
momentum conservation of the complete fluid-particle system [93]. Previous
research on the impact of particles in two-dimensional turbulence has shown
reduced particle clustering and a flattening of the energy spectrum [91]. This work
has motivated further studies into particle feedback in simpler background flows,
such as a single vortex, the merging of co-rotating vortices, and simple shear flows.
These investigations reveal the emergence of new instabilities arising from the
two-way coupling between particles and flow [89, 90, 175, 176].

In this Chapter, we build on these considerations to systematically investigate
the effects of particle feedback on the vorticity field of two-dimensional turbulence.
After incorporating the dust feedback using point forces, as described in Section
6.2, we review the fundamental properties of energy and enstrophy cascades and
spectral scaling in Section 6.3. In Section 6.4.1, we examine the effect of dust
feedback on the Okubo–Weiss parameter, which characterizes the local topology
of the fluid velocity field. This is followed by analyzing the one-point Eulerian
vorticity statistics. To investigate the intermittency induced by dust, we study
two-point Eulerian vorticity statistics and examine how the second-order vorticity
structure function depends on the dust feedback. We then move on to the spectral-
space analysis in Section 6.4.2. The observed dual scaling in the energy spectra
motivates an analysis of the cumulative vorticity and velocity fluxes. We conclude
the chapter with a summary of key findings in Section 6.5.

137



CHAPTER 6. INTERMITTENCY AND VORTICITY FLUCTUATIONS IN
TWO-DIMENSIONAL DUSTY TURBULENCE

6.2 Model description

We implement the two-way coupling using the same model as described in [91].
The dust particles are assumed to be heavy inertial particles of size 𝑎, much smaller
than the Kolmogorov length scale 𝜂. Under this assumption, the force exerted by
the fluid on the 𝑖th particle is best approximated by the linear Stokes drag. If the
position of 𝑖th particle is denoted by 𝑿 and its velocity by 𝑽 , then its equation of
motion is given by:

𝑑𝑿𝑖

𝑑𝑡
= 𝑽𝑖(𝑡),

𝑑𝑽𝑖
𝑑𝑡

=
1
𝜏𝑝

[𝒖(𝑿𝑖 , 𝑡) − 𝑽𝑖], (6.1)

where 𝜏𝑝 ∼ 𝑎2𝜌𝑟/𝜈 is the relaxation time scale of a dust particle. Here 𝜌𝑟 = 𝜌𝑝/𝜌 𝑓
denotes the density ratio between the particles and the fluid, and 𝜈 is the kinematic
viscosity of the fluid. As discussed in Chapter 2, when the density ratio 𝜌𝑟 ≫ 1
such that the product 𝜌𝑟𝑅𝑒𝑝 ∼ 𝒪(1), particle inertia becomes significant, and the
system is no longer in the overdamped regime. In this Chapter, we will therefore
drop the assumption of the overdamped limit. For the fluid-particle system to
be momentum-conserving, an equal and opposite force must be included in the
equation of motion for the fluid. This leads to the two-way coupling, which, in
terms of the scalar vorticity field 𝜔 = ∇ × 𝒖 is given by

𝜕𝑡𝜔(𝒙 , 𝑡) + 𝒖 · ∇𝜔(𝒙 , 𝑡) = 𝜈∇2𝜔(𝒙 , 𝑡) − 𝛼 𝜔(𝒙) + 𝑓 (𝒙) + ∇ × 𝑭𝑑(𝒙 , 𝑡). (6.2)

Here 𝛼 is the Ekman drag coefficient and 𝑓 (𝒙) = − 𝑓0𝑘 𝑓 cos(𝑘 𝑓 𝑦) is the vorticity
contribution of the external forcing with amplitude 𝑓0 at the forcing wavenumber
𝑘 𝑓 . The force per unit mass of the fluid, exerted by the particles on the fluid, is
given by

𝑭𝑑(𝒙 , 𝑡) =
𝑁𝑝∑
𝑖=1

𝑚

𝜏𝑝𝜌 𝑓
[𝑽𝑖(𝑡) − 𝒖(𝑿𝑖 , 𝑡)]𝛿2(𝒙 − 𝑿𝑖), (6.3)

where 𝑚 is the mass of a dust particle and 𝑁𝑝 is the total number of particles. The
relevant dimensionless numbers, apart from the Reynolds number 𝑅𝑒, are the
Stokes number 𝑆𝑡 and the mass loading parameter 𝜙𝑚 . These are defined as

𝑆𝑡 ≡ 𝜏𝑝/𝜏𝜂 , 𝜙𝑚 ≡ 𝑚𝑁𝑝/(𝜌 𝑓 𝐿2), (6.4)

where 𝜏𝜂 =
√
𝜈/𝜖 is the Kolmogorov time scale, 𝐿 = 2𝜋 is the size of the periodic

box and 𝜖 is the energy dissipation rate.
To implement the two-dimensional 𝛿2 function on the grids of linear dimension

ℎ, we use the following prescription for a 1D 𝛿 function [91, 92]:

𝛿(𝑥 − 𝑋) =


1
4ℎ

{
1 + cos

[
𝜋(𝑥−𝑋)

2ℎ

]}
, |𝑥 − 𝑋| ≤ 2ℎ,

0, otherwise.
(6.5)
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With this prescription, the fluid velocity at the particle position 𝑿 is interpolated
as

𝒖(𝑿 , 𝑡) =
∑
𝒙

𝒖(𝒙 , 𝑡)𝛿2(𝒙 − 𝑿 )ℎ2. (6.6)

The localized cosine discrete 𝛿-function defined in equation (6.5) is used both for
spreading particle forces to the grid and for interpolating the fluid velocity to
particle positions, as in equation (6.6), following the standard immersed boundary
method formulation [92]. A uniform spatial discretization is done using 𝑁2

collocation points inside the periodic domain of size 𝐿 × 𝐿, with 𝐿 = 2𝜋. The
Fourier pseudo-spectral method is used with the maximum resolved wavenumber
𝑘max = 𝑁/3 after de-aliasing. We use a second-order Runge-Kutta scheme to
evolve both fluid and particles in time. The vorticity initial condition is taken to
be 𝜔(𝒙 , 0) = − 𝑓0𝑘 𝑓 𝜈[cos(𝑘 𝑓 𝑥) + cos(𝑘 𝑓 𝑦)]. The particles are randomly distributed
within the domain, following a uniform distribution, and their initial velocities
are set to zero. Once the statistically steady state is reached, the simulations are
continued for approximately 170𝜏𝜂. The corresponding kinetic energy as a function
of time for various values of 𝜙𝑚 is shown in Figure 6.1. Since the particles require
some time to evolve from their initial homogeneous distribution into clusters, we
wait for about 35𝜏𝜂 before collecting the data for statistical analysis.
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Figure 6.1: Energy vs time. Kinetic energy, 1/2
∑
𝑘 |𝒖̂𝑘|2, as a function of non-

dimensional time for different values of mass loading 𝜙𝑚 , after the system has
reached statistically steady state. The data gathered for statistical analysis is in the
time range 𝑡 ∈ [34, 170]𝜏𝜂, as indicated by the shaded region.

The parameters used in the simulations are tabulated in Table 6.1. These
parameters result in two-dimensional turbulence in the forward-cascade regime
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with the Taylor-microscale 𝜆 =
√
𝜈𝐸/𝜖 ≈ 0.2, and the Taylor-based Reynolds

number 𝑅𝑒 = 𝑢𝑟𝑚𝑠𝜆/𝜈 ≈ 1866, where 𝑢𝑟𝑚𝑠 =
√

2𝐸 ≈ 0.1.

𝑁 𝜈 𝛼 𝑓0 𝑘 𝑓 𝜖 𝜂 = (𝜈3/𝜖)1/4 𝜏𝜂 =
√
𝜈/𝜖 𝛽

1024 10−5 0.01 5 × 10−3 4 1.2 × 10−6 5.4 × 10−3 2.9 2.8 × 10−4

Table 6.1: Table of Parameters used in the simulation.

We vary the number of particles 𝑁𝑝 between 6.25× 104 − 5× 105 to achieve the
mass loading 𝜙𝑚 in the range 0.0325 − 0.25. The numerical code is validated by
successfully reproducing several results reported by Pandey et al. [91].

6.3 A brief review of 2D turbulence

Before moving on to the results, let us briefly review some relevant properties
of clean 2D turbulence, where dust does not influence the fluid flow field. As
discussed in [160–162, 177], two-dimensional turbulence exhibits markedly differ-
ent behavior from its three-dimensional (3D) counterpart, owing primarily to the
absence of vortex stretching. In 3D flows, vortex stretching acts as a key nonlinear
mechanism that transfers energy to smaller scales, enabling the development of
fine-scale structures and ultimately leading to the celebrated phenomenon of the
energy cascade [160–162]. This lack of vortex stretching fundamentally alters the
cascade dynamics [177–179].

Two-dimensional flows have two quadratic invariants in the inviscid limit,
the kinetic energy 𝐸 = ⟨|𝒖|2⟩/2, and the enstrophy, Ω = ⟨|𝜔|2⟩/2, where the
angle brackets denote spatial averaging over a periodic domain [161, 177]. In
the statistically stationary state of forced 2D turbulence, let 𝑙 𝑓 ∼ 𝑘−1

𝑓
denote the

characteristic forcing scale, 𝑙𝛼 ∼ 𝑘−1
𝛼 the large-scale friction (or drag) scale1, and

𝑙𝜈 ∼ 𝑘−1
𝜈 the small-scale viscous dissipation scale. When these scales are well

separated such that 𝑙𝜈 ≪ 𝑙 𝑓 ≪ 𝑙𝛼, the system exhibits a dual cascade behavior:
enstrophy is transferred to smaller scales and dissipated near 𝑙𝜈, while energy
is transferred to larger scales and dissipated near 𝑙𝛼 due to large-scale friction
[177–179]. This behavior can be understood by considering the balance of energy
and enstrophy fluxes in the statistically steady state [177]. Let 𝜖𝐼 and 𝜂𝐼 denote the
rates of energy and enstrophy injection at the forcing scale. These must balance
the corresponding dissipation rates at the viscous and friction scales, denoted by

1Although friction removes energy from all modes equally, at a rate −𝛼|𝒖̂𝑘 |2, it has significant
effect only at small wavenumbers, where the modes contain most of the system’s energy.
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𝜖𝜈 , 𝜂𝜈 (viscous dissipation) and 𝜖𝛼 , 𝜂𝛼 (frictional dissipation). The conservation
laws then imply:

𝜖𝐼 = 𝜖𝜈 + 𝜖𝛼 , 𝜂𝐼 = 𝜂𝜈 + 𝜂𝛼 .

Since 𝑙2𝛼 ∼ 𝜖𝛼/𝜂𝛼, 𝑙2
𝑓
∼ 𝜖 𝑓 /𝜂 𝑓 and 𝑙2𝜈 ∼ 𝜖𝜈/𝜂𝜈, we get

𝜖𝜈
𝜖𝛼

=

(
𝑙𝜈

𝑙𝛼

)2 (𝑙𝛼/𝑙 𝑓 )2 − 1
1 − (𝑙𝜈/𝑙 𝑓 )2

≪ 1,
𝜂𝜈
𝜂𝛼

=
(𝑙𝛼/𝑙 𝑓 )2 − 1
1 − (𝑙𝜈/𝑙 𝑓 )2

≫ 1. (6.7)

This establishes the direction of the energy and enstrophy cascade. This separation
of scales gives rise to two distinct inertial ranges [177]:

• An inverse energy cascade in the range 𝑙 𝑓 ≪ 𝑙 ≪ 𝑙𝛼, where the energy spectrum
follows the scaling 𝐸(𝑘) ∼ 𝑘−5/3.

• A forward enstrophy cascade in the range 𝑙𝜈 ≪ 𝑙 ≪ 𝑙 𝑓 , where the energy
spectrum scales as 𝐸(𝑘) ∼ 𝑘𝜉(𝛼),

with the exponent 𝜉(𝛼) depending on the large-scale friction coefficient 𝛼, and
hence non-universal. In the decaying two-dimensional turbulence without large-
scale friction (𝛼 = 0), the energy spectrum scaling of 𝜉 = −3 follows in the forward
enstrophy cascade regime [161, 177]. This work is concerned with the forward
enstrophy cascade regime. A schematic illustration of this dual cascade picture is
shown in Figure 6.2.

In the forward cascade regime, the parameters from Table 6.1 used in the
simulation result in the energy scaling as 𝐸(𝑘) ∼ 𝑘𝜉, with 𝜉 ≈ −3.9 for the 𝜙𝑚 = 0
case. It has been shown that as the mass loading increases, this scaling exponent
decreases [91]. Interestingly, a dual scaling in the forward cascade regime has
been observed across a critical wavenumber 𝑘𝑐 ≈ 15 [91]. For wavenumber 𝑘 < 𝑘𝑐 ,
the spectral exponent 𝜉 ≈ −4 with approximately no variation with the mass
loading 𝜙𝑚 . For wavenumber 𝑘 > 𝑘𝑐 , the spectral exponent 𝜉 decreases below −4
as the mass loading is increased. This dual scaling in the energy spectra prompts
an important question: Can the effect of dust momentum feedback be modeled
using a small-scale (large wavenumber) forcing? We address this by analyzing the
cumulative energy and enstrophy flux in the subsequent section.

6.4 Results

6.4.1 Physical space analysis

We are interested in how dust particles modify the turbulence, focusing on Eulerian
statistics of the vorticity field. Before examining the full Eulerian statistics, we first
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Figure 6.2: Schematic of dual cascade in 2D turbulence. Energy injected at an
intermediate forcing scale 𝑘 𝑓 cascades inversely toward large scales (𝑘 < 𝑘 𝑓 ),
forming the inverse energy cascade with a 𝑘−5/3 scaling and eventually dissipating
via large-scale frictional drag 𝜖𝛼. Simultaneously, enstrophy cascades forward to
smaller scales (𝑘 > 𝑘 𝑓 ), giving rise to a 𝑘𝜉(𝛼) spectrum, where it is dissipated by
viscosity at scale 𝑘𝜈 through the enstrophy dissipation rate 𝜂𝜈 ∼ 𝜈⟨|∇𝜔|2⟩. Vortex
blobs generated near 𝑘 𝑓 undergo filamentation due to shearing, contributing to the
forward enstrophy cascade. The associated distortion frequency scales as 𝑘2/3, with
smaller blobs experiencing faster deformations [177]. The sketch also qualitatively
illustrates the transformation of coherent structures during the cascade process.

analyze the local streamline topology at the particle positions. This is motivated
by the fact that inertial particles tend to cluster in strain-dominated regions (open
streamlines) and avoid vorticity-dominated regions (closed streamlines) [143].
Quantifying how often particles encounter each type of region can provide insight
into their spatial distribution and interaction with the flow. A standard measure
of local streamline topology is the Okubo–Weiss parameter, which we compute at
the particle positions as described below.

To investigate whether momentum coupling alters the local topological features
of the flow, we analyze the velocity gradient tensor 𝜕𝑗𝑢𝑖 at a given point [180].
For incompressible flows, only one independent invariant remains, namely the
determinant of the velocity gradient tensor, known as the Okubo–Weiss parameter
[181]: Λ = det(𝜕𝑗𝑢𝑖). The sign of Λ distinguishes between vorticity-dominated
(elliptic) regions with closed streamlines (Λ > 0) and strain-dominated (hyperbolic)
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regions with open streamlines (Λ < 0) [180, 182]. One can rewrite Λ as follows

Λ = det(𝜕𝑖𝑢𝑗) =
1
2(𝑊𝑖 𝑗𝑊𝑖 𝑗 − 𝑆𝑖 𝑗𝑆𝑖 𝑗), 𝑊𝑖 𝑗 ≡

1
2(𝜕𝑗𝑢𝑖 − 𝜕𝑖𝑢𝑗), 𝑆𝑖 𝑗 =

1
2(𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗).

(6.8)
Therefore, the sign of Λ at a given point determines whether the flow is vortical

(b)(a)

Figure 6.3: Statistics of the Okubo-Weiss parameter. (a) The probability distri-
bution of the Okubo-Weiss parameter Λ computed at the location of the tracer
particles. This is equivalent to the Eulerian computation of Λ. The positive
skewness of the PDF shows that the fluid field is vorticity dominated. (b) The
probability distribution of the Okubo-Weiss parameter Λ computed at the location
of the inertial particles with Stokes number 𝑆𝑡 = 0.67. Since inertial particles sam-
ple strain-dominated regions, the PDF shows negative skewness. The error bars
for the kurtosis values in the insets of (a) and (b) are obtained via bootstrapping.

or strain-dominated in that region. The probability distribution function of Λ is
plotted in Figure 6.3. For 𝑆𝑡 = 0 case, we see that the increase in the mass loading
𝜙𝑚 increases the maximum and minimum values of Λ, indicating that the flow
develops intense vortical and strain-dominated regions. The positive skewness of
the PDF shows that vortical regions dominate the fluid flow field. The probability
distribution function for non-zero Stokes number shows the nature of the flow
field evaluated at the location of inertial particles. Since inertial particles leave
the vortical regions and cluster in the strain-dominated regions, we see in Figure
6.3(b) that the PDF of Λ for non-zero Stokes number is negatively skewed.

We now focus on the Eulerian statistical properties of the dusty vorticity field
over the entire domain, without conditioning on particle positions. We start
by studying the one-point Eulerian vorticity statistics. Since there is a visible
difference in the density plot of the vorticity field (see figure 6.4(a) and (b)), the
probability distribution function (PDF) of normalized vorticity values provides a
good quantitative measure of the effect of mass-loading 𝜙𝑚 . As shown in Figure
6.4(c), the PDF, which is Gaussian for zero mass-loading, becomes increasingly
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flat for higher mass-loading. Consequently, the kurtosis of the PDF increases
monotonically with the mass-loading parameter 𝜙𝑚 . This shows that we are more
likely to observe intense vortices as the momentum feedback of the dust becomes
stronger.

(a) (b) (c)

Figure 6.4: One point Eulerian Vorticity Statistics. Vorticity fields 𝜔(𝒙) for mass
loading (a) 𝜙𝑚 = 0 and (b) 𝜙𝑚 = 0.125 with 𝑁𝑝 = 2.5 × 105 particles of Stokes
numbers 𝑆𝑡 = 0.67. (c) The probability distribution functions (PDF) of 𝜔(𝒙),
normalized with its variance, for 𝜙𝑚 = 0, 𝜙𝑚 = 0.0625, and 𝜙𝑚 = 0.25. The black
dashed Gaussian curve is a guide to the eye. In the inset, we plot the kurtosis 𝜅𝜔

as a function of 𝜙𝑚 . The error bars for the kurtosis values in the inset of (c) are
obtained via bootstrapping.

To investigate the effect of dust momentum feedback on the intermittency,
we examine the two-point Eulerian vorticity difference statistics. The p-th order
vorticity structure function 𝑆𝜔𝑝 (𝑟) is defined as

𝑆𝜔𝑝 (𝑟) ≡ ⟨|𝛿𝑟𝜔|𝑝⟩ = ⟨|𝜔(𝒙 + 𝒓) − 𝜔(𝒙)|𝑝⟩ ∼ 𝑟𝜁𝑝 , (6.9)

where the average ⟨.⟩ is defined over the spatial positions 𝒙 and all the directions
𝒓/|𝒓| for a given 𝑟 = |𝒓|. The vorticity field is said to be intermittent if the structure
function exponent 𝜁𝑝 is a nonlinear function of 𝑝 [183]. The intermittency is tied
with the scale-invariance or self-similarity of this two-point correlation function.
Following [183], let 𝑋 ≡ 𝛿𝑟𝜔/⟨𝛿𝑟𝜔2⟩1/2 have the probability distribution given by
𝑃𝑟(𝑋𝑟). If the vorticity statistics shows self-similarity in the forward cascade regime
(𝑘−1

𝜈 ≪ 𝑟 ≪ 𝑘−1
𝑓

), we must have 𝑃𝜆𝑟(𝑋𝜆𝑟) = 𝑃𝑟(𝑋𝑟), i.e. 𝑃𝑟(𝑋𝑟) is independent of 𝑟.
Therefore, self-similarity in vorticity statistics implies

𝑆𝜔𝑝 (𝑟) =
〈 (

𝛿𝑟𝜔

⟨𝛿𝑟𝜔2⟩1/2

)𝑝 〉
⟨𝛿𝑟𝜔2⟩𝑝/2 = ⟨𝛿𝑟𝜔2⟩𝑝/2

∫
|𝑋𝑟|𝑝𝑃𝑟(𝑋𝑟) 𝑑𝑋𝑟 ∼ 𝑟𝑝 𝜁2/2 = 𝑟𝜁𝑝

(6.10)
This shows that the vorticity structure function exponent 𝜁𝑝 = 𝑝(𝜁2/2) is a linear
function of 𝑝. Therefore, by looking at the PDF of the Eulerian vorticity difference at
two different length scales, one can infer whether the vorticity field is intermittent.
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This PDF is plotted in Figure 6.5(a). Regardless of the dust momentum feedback,
the vorticity difference statistics are not scale invariant, indicating intermittency in
the vorticity field. The presence of intermittency in the vorticity field, even in the
absence of the dust feedback, is consistent with the results of [183]. The kurtosis
of the PDF also depends sharply on the scale 𝑟/𝜂. Note that for smaller values of
𝑟/𝜂, we have a non-monotonic dependence of the kurtosis as a function of 𝜙𝑚 , as
shown in the inset of Figure 6.5(b).

(b)(a)

Figure 6.5: Two-point Eulerian Vorticity Difference Statistics. The probability
distribution functions (PDF) of the normalized Eulerian vorticity differences 𝛿𝑟𝜔 =

𝜔(𝒙 + 𝒓) − 𝜔(𝒙), for two different values of the separation 𝑟 = |𝒓|, and for 𝜙𝑚 = 0
and 𝜙𝑚 = 0.125. (b) We show plots of the kurtosis 𝜅(𝑟) of such distributions, as
a function of 𝑟, for different values of 𝜙𝑚 . In the inset, we show the values of the
kurtosis 𝜅(𝜙𝑚)|𝑟∗ at a fixed 𝑟∗ as a function of 𝜙𝑚 . The separations 𝑟 are all chosen
in the forward cascade inertial range. The error bars for the kurtosis values in the
inset of (b) are obtained via bootstrapping.

We look at the scaling of second-order vorticity structure function 𝑆𝜔2 (𝑟) ∼ 𝑟𝜁2 as
a function of the mass loading 𝜙𝑚 in Figure 6.6(a). As the mass loading parameter
𝜙𝑚 increases, the second-order structure function exponent 𝜁2 tends toward zero
(see Figure 6.6(b)). This behavior reflects a progressive loss of spatial correlations
in the vorticity field, which becomes increasingly rough due to localized vorticity
generation by the suspended particles. In this regime, particle-induced forcing at
small scales disrupts coherent flow structures, leading to a breakdown of classical
turbulent features. As a result, the utility of the vorticity structure function
diminishes, signaling a transition to a highly disordered, particle-dominated flow.

6.4.2 Spectral-space analysis

As discussed in Section 6.3, the energy spectrum in dusty 2D turbulence exhibits
a dual-scaling behavior across a critical wavenumber 𝑘𝑐 (see Figure 6.7(a) and
(b)). This observation motivates us to ask whether the momentum feedback from
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(a) (b)

Figure 6.6: Second-order vorticity structure function. (a) Scaling of second-order
vorticity structure function with 𝑟/𝜂 for various values of 𝜙𝑚 . The vertical lines
indicate the inertial range over which structure function exponents are computed.
(b) We show the scaling exponent 𝜁2 as a function of 𝜙𝑚 , fitted using local slopes
computed between the two vertical lines in the main plot. The error bars for the
𝜁2 values are obtained via local slope analysis.

(b)(a)

Figure 6.7: Compensated energy spectra. (a) Energy spectra compensated by 𝑘3.92

for various values of 𝜙𝑚 , revealing two distinct scaling regimes. In the first regime
(green shaded region), corresponding to wavenumbers 𝑘 ∈ [6, 15], the energy
spectrum exhibits a scaling close to 𝑘−4 across all values of 𝜙𝑚 . In the second
regime (red shaded region), for 𝑘 ∈ [15, 50], the spectral slope varies significantly
with 𝜙𝑚 . (b) Scaling exponent 𝜉 as a function of 𝜙𝑚 for the two regimes. In the
range 𝑘 ∈ [6, 15], 𝜉 shows minimal dependence on 𝜙𝑚 . In contrast, for 𝑘 ∈ [15, 50],
the exponent decreases steadily from 𝜉 ≈ −3.9 at 𝜙𝑚 = 0 to 𝜉 ≈ −2.2 at 𝜙𝑚 = 0.25.
The error bars for the 𝜉 values are obtained via standard deviation across 400
samples.

dust can be effectively modeled as an additional small-scale forcing. From the
phenomenology of two-dimensional turbulence, it is well known that forcing at
a high wavenumber 𝑘 𝑓 2 (i.e., small spatial scales) generates an inverse cascade
of energy toward larger scales, for wavenumbers 𝑘 < 𝑘 𝑓 2. In our system, where
an existing large-scale forcing is already present at wavenumber 𝑘 𝑓 , the presence

146



6.4. RESULTS

of a second forcing scale naturally leads to a dual-scaling regime in the energy
spectrum, spanning the intermediate range between 𝑘 𝑓 and 𝑘 𝑓 2. Specifically, we
observe a non-universal spectral scaling characterized by an exponent 𝜉(𝛼) just
above 𝑘 𝑓 , and a classical inverse cascade scaling of −5/3 just below 𝑘 𝑓 2. Given
that the dust feedback acts as a distribution of point forces on the fluid, this dual-
scaling suggests that a dual-forcing model may offer a reasonable approximation
of the dust’s momentum exchange. For such a model to be valid, however, it
is essential that the dusty flow exhibits a cumulative negative energy flux at
high wavenumbers, indicative of an inverse cascade driven by the small-scale
(dust-induced) forcing. The cumulative energy and enstrophy flux are defined as

Π𝑢(𝑘) ≡ ⟨
∑
𝑚≤𝑘

𝒖̂𝑚 · �(𝒖 · ∇𝒖)−𝑚⟩, Π𝜔(𝑘) ≡ ⟨
∑
𝑚≤𝑘

𝜔𝑚
�(𝒖 · ∇𝜔)−𝑚⟩. (6.11)

The classical picture of energy and enstrophy cascades requires that their respec-

(a) (b)

Figure 6.8: (a) Cumulative energy flux Π𝑢(𝑘) ≡ ⟨∑𝑚≤𝑘 𝒖̂𝑚 · �(𝒖 · ∇𝒖)−𝑚⟩ scaled
by the energy dissipation rate 𝜖, for various values of 𝜙𝑚 . The inset shows the
cumulative energy flux for wavenumbers greater than the forcing wavenumber
𝑘 𝑓 = 4. (b) Cumulative enstrophy flux Π𝜔(𝑘) ≡ ⟨∑𝑚≤𝑘 𝜔𝑚

�(𝒖 · ∇𝜔)−𝑚⟩ scaled by
the enstrophy dissipation rate 𝛽, for various values of 𝜙𝑚 . The error bars for the
flux values in (a) and (b) are obtained via bootstrapping.

tive fluxes remain scale independent in the inertial ranges. However, even in the
absence of particles (𝜙𝑚 = 0), the presence of cumulative frictional drag leads
to deviations from this ideal behavior, resulting in non-constant fluxes. As the
mass loading 𝜙𝑚 is increased, the cumulative energy flux shows only a slight
modification, with a weak signature of inverse energy transfer near the forcing
scale 𝑘 𝑓 (see Figure 6.8(a)). Crucially, there is no evidence of negative cumulative
energy flux at higher wavenumbers that would suggest an inverse cascade driven
by dust feedback. This implies that the momentum exchange due to dust may not
be adequately captured by modeling it as a simple small-scale forcing. In contrast,
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the influence of dust at small scales is reflected in the cumulative enstrophy flux,
which increases with mass loading, especially at large wavenumber (see Figure
6.8(b)). These observations suggest that while dust particles enhance enstrophy
transfer by injecting small-scale vortical structures, their contribution to energy
transfer across small scales is absent.

6.5 Summary and conclusion

In this chapter, we investigated the collective influence of inertial particles on
two-dimensional (2D) turbulence. We assumed that the dust particles are much
smaller than any characteristic flow scale, which allowed us to neglect the particle
Reynolds number and model the hydrodynamic force on the particles using linear
Stokes drag. Given that the particles are significantly heavier than the fluid, dust
inertia was included. To ensure momentum conservation in the fluid-dust system,
we incorporated the feedback from particles onto the fluid using localized point
forces modeled by Dirac delta functions. The strength of this momentum coupling
is characterized by a dimensionless mass-loading parameter, 𝜙𝑚 .

After validating our model against the results of Pandey et al. [91], we examined
the one-point Eulerian vorticity statistics. Since dust particles inject vorticity at
small scales and roughen the vorticity field, the probability distribution function
(PDF) of vorticity broadens with increasing 𝜙𝑚 , indicating a higher likelihood of
extreme vorticity events. We also studied the local topology of the velocity field
through the PDF of the Okubo–Weiss parameter, Λ. While the skewness of this
PDF remains negative, implying a dominance of vortical regions, the increase in
the extreme values of Λ with 𝜙𝑚 suggests that both vortical and strain-dominated
regions intensify with stronger dust feedback.

To probe intermittency, we analyzed the PDF of two-point Eulerian vorticity
differences. Although the vorticity field remains intermittent for all values of
𝜙𝑚 , the kurtosis of the normalized vorticity difference exhibits a non-monotonic
dependence on 𝜙𝑚 . As mass loading increases, the vorticity field also loses spatial
correlation, a trend further supported by the behavior of the second-order vorticity
structure function.

Previous work has reported a dual-scaling regime in the energy spectra of dusty
2D turbulence [91]. Motivated by this, we examined the cumulative velocity and
vorticity fluxes to assess whether the observed spectral features can be interpreted
through a simple model of small-scale forcing. However, the absence of an inverse
energy cascade in the cumulative energy flux at high wavenumbers suggests that
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the influence of dust feedback is more intricate than what a small-scale forcing
analogy can capture.

In conclusion, the emergence of non-universal spectral and structure function
scalings, along with the loss of spatial correlations in the vorticity field with
increasing mass loading, highlights the nontrivial influence of dust feedback on
two-dimensional turbulence. However, these results can be sensitive to modeling
choices, such as the form of the drag law, and to numerical factors, including
the accuracy of interpolation schemes [93]. As such, caution must be exercised
when attempting to generalize these findings to the more commonly encountered
three-dimensional dusty turbulence. The high computational cost of simulating
3D turbulence with fully resolved Lagrangian particle feedback [168], combined
with the added complexity of incorporating finite-size effects and particle shape
[184], makes it unlikely that a purely Lagrangian approach will be sufficient. A
field-theoretic or coarse-grained modeling framework may offer a more practical
and insightful alternative, although such approaches can introduce challenges of
their own, for instance, the emergence of shock formations or caustics [180, 185,
186]. Nonetheless, Lagrangian studies like the present one remain essential, as
they offer crucial benchmarks for validating and guiding such effective models.
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7

Final Thoughts and
Perspectives

"Somewhere, something incredible is waiting to be known.”
— Carl Sagan

This thesis began by examining how particle geometry gives rise to new
dynamical behaviours in the overdamped regime of microhydrodynamics. These
effects were explored at the single-particle level, through the sedimentation of
asymmetric bodies, and at the multiparticle level, via the collective sedimentation
of discs. Building on the structural analogy with electrostatics, the study extended
to electrostatic interactions between anisotropic conductors. Recognizing particle
inertia as another key driver of complex dynamics, the thesis then investigated the
role of inertial effects in dusty two-dimensional turbulence using point-particle
models. Across these varied settings, the work highlighted how geometry, inertia,
and inter-particle interactions collectively shape the emergent dynamics of physical
systems.

The sedimentation problems in the overdamped limit discussed in Chapter 3
highlight the important role of symmetry methods and a dynamical systems ap-
proach. At the single-particle level, the geometric symmetries of a body determine
the extent of coupling between its translational and rotational degrees of freedom.
Such an analysis provides a robust and abstract framework, the predictions of
which apply not only to a specific body but to a broader class of bodies that share
the same symmetries.

Equally important is the choice of dynamical variables, which can significantly
influence our understanding of the system’s behaviour. For instance, in Chap-
ter 3, the dynamics of di-bilaterals can be examined either using Euler angles
or through vertical and horizontal projections of the principal axes. While the
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three Euler angles offer a seemingly simpler formulation, they obscure the mech-
anisms underlying the quasi-periodic motion of flutterers. In contrast, using
the projections as the dynamical variables, though involving six variables and
three constraints, offers deeper insights. The main advantage arises from the fact
that these dynamical variables are bounded and constrained to lie on the surface
of unit spheres. Moreover, the rotational symmetry about the gravity (vertical)
axis leads to a decoupling of vertical and horizontal dynamics, which in turn
enables a natural classification of di-bilaterals into settlers, drifters, and flutterers.
The origin of quasi-periodicity in flutterers becomes clear when viewed as the
ratio of the response frequency of horizontal projections to the periodic driving
frequency of the vertical projections. This kind of understanding is difficult to
extract using Euler angles alone. The use of continuous and discrete symmetries
in the governing equations also allows us to make qualitative predictions, such
as the absence of persistent drift or chirality in flutterers, without solving the full
equations analytically. Such symmetry-based methods have been applied to more
complex flows as well, such as asymmetric particles in shear flows [187]. A natural
extension of Chapter 3 would be to study di-bilaterals whose centres of buoyancy
and mass do not coincide, an offset that introduces external torques and could
give rise to entirely new dynamical behaviours. Another promising direction is to
explore how effectively a flutterer can enhance mixing as it settles.

In Chapter 4, a dynamical systems framework is also crucial to understanding
the collective sedimentation of discs. By using the method of reflections to improve
upon a previously studied point-force model [48], we demonstrated how close-
range hydrodynamic interactions change the nature of fixed points. The earlier
model was structurally unstable, with eigenvalues lying on the imaginary axis, and
non-normal, making it sensitive to perturbations. The improved model reveals
that, despite small non-zero growth rates, the non-modal growth is responsible
for lattice disruption. While a full understanding of the resulting clusters requires
numerical simulations, the dynamical systems perspective offers powerful tools to
understand the instability mechanisms. A natural next step would be to extend this
study to the collective sedimentation of di-bilaterals. Given the richer dynamics
of individual di-bilaterals compared to spheroids, one can expect that the drift
mechanism may be replaced or significantly altered, leading to new clustering
dynamics.

An important direction in theoretical physics lies in building analogies across
domains. Such cross-pollination of ideas can reveal deep structural connections
and inspire new methodologies. Chapter 5 leverages an analogy between microhy-
drodynamics and electrostatics. The mathematical structure of Stokes flow is one
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tensorial order higher than that of electrostatics, a fact that has long guided the
construction of singularity solutions in microhydrodynamics based on their elec-
trostatic counterparts [188]. Classical electrostatic tools like the method of images
have also been borrowed in microhydrodynamics. However, tools originally devel-
oped for microhydrodynamics, like Faxén’s laws, have remained underexplored in
electrostatics [58]. In Chapter 2, we extended Faxén’s laws, originally formulated
for Stokes flow, to electrostatics, enabling a new method of reflections to compute
electrostatic interactions between anisotropic bodies. Much like in fluid mechanics,
Faxén’s laws offer an abstract and elegant framework for connecting the induced
multipole moments on a body, due to an arbitrary external field, to the body’s
singularity solutions. As explored in Chapter 5, the electrostatic effects can either
counteract or reinforce the hydrodynamic effects. Therefore, this study sets up the
ground to investigate the instability of a dilute suspension of charged spheroids.

Chapter 6 marks a shift from the symmetry and geometry-focused earlier chap-
ters to a study of how particle inertia and collective behaviour influence turbulence
statistics. It highlights the richness of inertial systems and emphasises the impor-
tance of characterising their fundamental behaviours before adding complexity
such as particle geometry. In that sense, this chapter stands as a conceptual ‘edge’
of the thesis, pointing toward a broader landscape of complex systems where
geometry, inertia, and collectivity intersect to produce new emergent phenomena.

In summary, this thesis has explored how geometric asymmetries, collective
dynamics, and cross-disciplinary analogies shape the behaviour of particles in
fluid and electrostatic environments. From symmetry-driven classifications of
sedimenting bodies to mathematical analogies that unify distinct physical theories,
the work highlights the power of abstraction and structure in understanding
complex systems. While many of the ideas presented here are grounded in
idealised models, they open pathways for future investigations into more realistic
and applied settings. These include sedimentation with buoyancy offsets, mixing
due to quasi-periodic settling, collective sedimentation of asymmetric bodies,
coupled electro-hydrodynamic systems, and turbulent suspensions of anisotropic
particles. As we continue to uncover the rich dynamics of even the simplest objects
in a fluid, the role of geometry, symmetry, and inertia will remain central to the
ever-expanding landscape of soft matter physics and beyond.
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A

Appendix for Chapter 3

A.1 Similarity between Poincaré maps with different
reference times

Consider two Poincare maps 𝒫 𝑡1+𝑇𝑦
𝑡1

and 𝒫 𝑡2+𝑇𝑦
𝑡2

with 𝑡2 > 𝑡1 and 𝑇𝑦 the same in
both the maps. This map satisfies the following equation:

𝒫 𝑡1+𝑇𝑦
𝑡1

= 𝚽
𝑡1+𝑇𝑦
𝑡1

; ¤𝚽
𝑡1+𝑡
𝑡1 = 𝑨(𝑡)𝚽𝑡1+𝑡

𝑡1
, 𝚽𝑡1

𝑡1
= I, (A.1a)

𝒫 𝑡2+𝑇𝑦
𝑡2

= 𝚽
𝑡1+𝑇𝑦
𝑡2

; ¤𝚽
𝑡2+𝑡
𝑡2 = 𝑨(𝑡)𝚽𝑡2+𝑡

𝑡2
, 𝚽𝑡2

𝑡2
= I. (A.1b)

Claim: The two Poincare maps 𝒫 𝑡1+𝑇𝑦
𝑡1

and 𝒫 𝑡2+𝑇𝑦
𝑡2

are related by a similarity trans-
formation.
Proof: Since 𝚽𝑡2+𝑡

𝑡2
𝚽𝑡2
𝑡1
= 𝚽𝑡2+𝑡

𝑡1
, we have,

𝒫 𝑡2+𝑇𝑦
𝑡2

𝚽𝑡2
𝑡1
= 𝚽

𝑡2+𝑇𝑦
𝑡1

. (A.2)

Now, 𝚽𝑡2+𝑇𝑦
𝑡1

= 𝚽
𝑡2+𝑇𝑦
𝑡1+𝑇𝑦𝚽

𝑡1+𝑇𝑦
𝑡1

. Since 𝑨(𝑡 + 𝑇𝑦) = 𝑨(𝑡), we have:

𝚽𝑡2
𝑡1
= 𝚽

𝑡2+𝑇𝑦
𝑡1+𝑇𝑦 =⇒ 𝚽

𝑡2+𝑇𝑦
𝑡1

= 𝚽𝑡2
𝑡1
𝚽
𝑡1+𝑇𝑦
𝑡1

. (A.3)

Using this in equation (A.2) we get,

𝒫 𝑡2+𝑇𝑦
𝑡2

𝚽𝑡2
𝑡1
= 𝚽𝑡2

𝑡1
𝒫 𝑡1+𝑇𝑦
𝑡1

. (A.4)

Thus, the two Poincaré maps are related by a similarity transformation. The
eigenvalues of these maps are therefore the same, and given by 1, 𝑒±𝑖𝜃, where 𝜃

is only a function of 𝑇𝑦 and hence 𝜃 = 𝜃(𝐻).
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A.2 Comment on the sedimentation dynamics of
generic shape

A.2.1 Angular dynamics

The rate of change of the body attached coordinate axes is given by:

¤𝒑𝑖 = 𝛀 × 𝒑𝑖 = (𝒃 · 𝑭) × 𝒑𝑖 , 𝑖 ∈ {1, 2, 3}, (A.5)

where 𝒃 is the coupling tensor of a generic body (see equation (3.1)) and 𝑭 is the
dimensionless buoyancy corrected weight of the body. For generic bodies, 𝒃 has a
fuller form than for the di-bilaterals. In the {𝒑𝑖}𝑖∈{1,2,3} basis, 𝒃 is a shape dependent
constant matrix and the dimensionless force is 𝑭 = −𝒚̂ = −(𝑝1𝑦𝒑1+ 𝑝2𝑦𝒑2+ 𝑝3𝑦𝒑3)1.
Therefore, from equation (A.5):

¤𝒑𝑖 · 𝒚̂ = ¤𝑝𝑖𝑦 = 𝒚̂ · [(𝒃 · 𝑭) × 𝒑𝑖] = 𝒑𝑖 · [𝒚̂ × (𝒃 · 𝑭)] (A.6)

In the {𝒑𝑖}𝑖∈{1,2,3} basis, 𝒚̂ = (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦) = −𝑭 . Using this in equation (A.6) we
have:

¤𝑝𝑖𝑦 = [𝒚̂ × (𝒃 · 𝑭)]𝑖 = −[(𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦) × 𝒃 · (𝑝1𝑦 , 𝑝2𝑦 , 𝑝3𝑦)]𝑖 (A.7)

Therefore, the dynamics of the vertical projections 𝒑𝑦 can be written in a compact
form as:

¤𝒑𝑦 = (𝒃 · 𝒑𝑦) × 𝒑𝑦 . (A.8)

This shows explicitly that even for generic bodies the 𝒑𝑦 dynamics is closed in
itself, i.e., it doesn’t depend on the 𝒑𝑥 . This can also be seen from the rotational
invariance in the body frame about the gravity axis. This compact formulation
can also be found in [38, 114].

The previous studies on sedimentation of a generic body [38, 45, 46, 114] have
shown the existence of stable, unstable, as well as centre fixed points in the 𝒑𝑦
dynamics. The most interesting 𝒑𝑦 dynamics reported by [45] and [114] are the
closed periodic orbits and limit cycles in 𝒑𝑦 dynamics. Thus, asymptotically, 𝒑𝑦
dynamics can be at most periodic, if not steady.

The remaining part of the angular dynamics involves analyzing the 𝒑𝑥 dynam-
ics, which, to the best of our knowledge, has not been done before. Similar to the
𝒑𝑦 dynamical system the 𝒑𝑥 dynamics can be written compactly as:

¤𝒑𝑥 = (𝒃 · 𝒑𝒚) × 𝒑𝑥 ≡ 𝑨[𝒑𝑦(𝑡)]𝒑𝑥 , (A.9)

1Note that gravity is taken to be along −𝒚̂
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where 𝑨𝑖𝑘 = −𝜖𝑖 𝑗𝑘(𝒃 ·𝒑𝑦)𝑗 and 𝒃 is the coupling matrix for a generic body written in
the body frame (which will have a fuller form unlike the one for di-bilaterals). This
shows that the 𝒑𝑥 is still a linear non-autonomous dynamical system driven by 𝒑𝑦
dynamics. If 𝒑𝑦 settles into a stable fixed point, the 𝒑𝑥 dynamics will be, in general,
periodic, provided 𝒃 · 𝒑𝑦 ≠ 0. If 𝒑𝑦 performs a periodic orbit asymptotically, the
corresponding 𝒑𝑥 dynamics can be either quasi-periodic or periodic, which can
again be studied using Floquet theory.

A.2.2 Persistent drift in a generic body

The proof provided in section 3.8.1 for a di-bilateral flutterer is extended in this
section to bodies of arbitrary shape that can flutter. The translational velocity of a
generic body in the lab frame is given by:

𝑣𝑥 =
∑
𝑖 𝑗

𝑐
(𝑥)
𝑖 𝑗
𝑝𝑖𝑦𝑝 𝑗𝑥 (A.10)

𝑣𝑦 =
∑
𝑖 𝑗

𝑐
(𝑦)
𝑖 𝑗
𝑝𝑖𝑦𝑝 𝑗𝑥 (A.11)

𝑣𝑧 =
∑
𝑖 𝑗

𝑐
(𝑧)
𝑖 𝑗
𝑝𝑖𝑦𝑝 𝑗𝑥 , (A.12)

where 𝑐(𝑥/𝑦/𝑧)
𝑖 𝑗

are related to the mobility matrix of the generic body under consid-
eration.

The case where 𝒑𝑦 reaches a stable fixed point has been discussed in [38]. For
completeness, we state their results below. As discussed in [38], there are the
following two possibilities when 𝒑𝑦 is at a fixed point:

1. 𝒃 · 𝒑∗𝑦 = 0: In this case, the body ceases to rotate (just like settlers and drifters
for di-bilaterals). The 𝒑𝑥 becomes a constant, and 𝑣𝑥 , 𝑣𝑧 , or both can be
non-zero, resulting in persistent drift.

2. 𝒃 · 𝒑∗𝑦 = 𝜆𝒑∗𝑦 , 𝜆 ≠ 0: In this case, the 𝒑𝑥 performs a periodic orbit, resulting
in no persistent drift in one time period. Note that ¤𝒑𝑥 = 𝜆𝒑∗𝑦 × 𝒑𝑥 ≠ 0 and
hence 𝒑𝑥 cannot be static. In this case, the angular velocity of the body 𝛀
aligns with the gravity and the body falls in a helical trajectory.

Note that the 𝒑𝑦 dynamical system foran arbitrary-shapedbody is still quadratic
in 𝒑𝑦 and the 𝒑𝑥 dynamical system has the same form as that for di-bilaterals. For
the case where 𝒑𝑦 remains in a closed periodic orbit, the proof given in section
3.8.1 works for an arbitrary body as well, and so there is a persistent drift only
when the time period of 𝒑𝑦 dynamics is exactly the same as the time period of
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the 𝒑𝑥 dynamics. Since the limiting behaviours of the 𝒑𝑦 dynamics are either
fixed points or periodic orbits [38, 45, 114], the cases discussed are exhaustive.
Therefore, we conclude that any arbitrary body that performs periodic/quasi-periodic
motion cannot drift persistently, except for the special case where its frequency of the 𝒑𝑥
dynamics is exactly equal to the frequency of the 𝒑𝑦 dynamics.
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Appendix for Chapter 4

B.1 Finding points of closest approach between two
discs

This section describes the algorithm to find the minimum distance between two
spheroids. We extend the algorithm of Claeys et al. [132] for prolate spheroids
to the case of a pair of oblate spheroids (discs). The main idea is to exploit the
fact that the outward normal vectors of two spheroids at their points of closest
distance are antiparallel. Any point 𝒙 on the surface of the disc 𝛼 can be defined
by

(𝒙 − 𝒙𝛼)𝑇 · 𝚺𝛼 · (𝒙 − 𝒙𝛼) = 1, (B.1)

where 𝒙𝛼 is the centre of the disc 𝛼, and

𝚺𝛼 =

[
𝒑𝛼𝒑𝛼

𝑏2 + (𝜹 − 𝒑𝛼𝒑𝛼)
𝑎2

]
(B.2)

is known as the weight matrix with 𝑏 = 𝑎
√

1 − 𝑒2. Taking the gradient of (B.1)
gives us the normal vector to the disc at 𝒙:

𝒏𝛼(𝒙) =
𝚺𝛼 · (𝒙 − 𝒙𝛼)
|𝚺𝛼 · (𝒙 − 𝒙𝛼)|

. (B.3)

We start with two points 𝒚(0)
𝛼 and 𝒚(0)

𝛽 on discs 𝛼 and 𝛽 respectively, and construct

a sequence of points 𝒚(𝑘)
𝛼 and 𝒚(𝑘)

𝛽 following the iterative procedure outlined below
to converge rapidly to the points of closest distance between discs 𝛼 and 𝛽:

• Construct a normal vector 𝒏𝛼 at 𝒚(𝑘)
𝛼 . Find the point of intersection of the

line along 𝒏𝛼 passing through 𝒚(𝑘)
𝛼 and the mid-plane of the oblate spheroid

𝛼 (see figure B.1). Call this point 𝝌(𝑘)
𝛼 . Repeat for the disc 𝛽.
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• Construct a line joining 𝝌(𝑘)
𝛼 and 𝝌(𝑘)

𝛽 . The points of intersection of this line

and the two discs give the next iterates 𝒚(𝑘+1)
𝛼 and 𝒚(𝑘+1)

𝛽 .

Figure B.1: Choosing any points 𝒚(0)
𝛼 and 𝒚(0)

𝛽 on the discs, one can reach the closest
points iteratively by following the algorithm described in the text. The panels a)
to d) show the candidate points obtained for the closest points after two iterations.
The dark plane in the figures defines the confocal disc at the midplane of the oblate
spheroid.

Thus, one can find the minimum separation vector 𝝐𝛼𝛽 as:

𝝐𝛼𝛽 = 𝒚𝛼 − 𝒚𝛽 , 𝒚𝛼 = lim
𝑘→∞

𝒚(𝑘)
𝛼 , 𝒚𝛽 = lim

𝑘→∞
𝒚(𝑘)
𝛽 . (B.4)

The numerical value of the closest distance can be obtained by repeating the two
steps described above until the current and the previous iterations differ by some
small tolerance value. The algorithm described above converges to the points of
closest distance when the discs are not overlapping, with a minimum separation
vector 𝝐.

175



C

Appendix for Chapter 5

C.1 Far field interaction of a prolate spheroid and a
sphere

With the procedure for two spheroids explained in Chapter 2 of this thesis, it
is easy to look at a special case where the second spheroid is a sphere. This
simplification is analytically tractable to obtain closed-form expressions without
losing the flavor of anisotropy in the problem. Consider a spheroid 𝑆1 centered at
𝒙1 with semi-major axis 𝑎, aspect ratio 𝜅, eccentricity 𝑒 ≡

√
1 − 𝜅−2 and orientation

vector 𝒑, carrying total charge 𝑄1. The second conductor is a sphere 𝑆2 centered
at 𝒙2 with radius 𝛾𝑎 and total charge 𝑄2. The relative separation vector between
them is 𝒙21 ≡ 𝒙2 − 𝒙1 ≡ −𝒙12. The relation between the surface potentials of 𝑆1

and 𝑆2 can be found by either taking the limit 𝑒2 → 0 in the analysis of Chapter
2 or by applying the method of reflection to this system. The results up to the
second reflection are stated as follows

𝑉1 =
𝑄1

4𝜋𝑎𝜀0

(
arctanh 𝑒

𝑒

)
+𝑉 (1)

1 +𝑉 (2)
1 , (C.1a)

𝑉2 =
𝑄2

4𝜋𝜀0𝛾𝑎
+𝑉 (1)

2 +𝑉 (2)
2 , (C.1b)

where

𝑉
(1)
1 =

𝑄2
8𝜋𝑎𝑒𝜀0

∫ 𝑎𝑒

−𝑎𝑒
𝒢(𝒙1 + 𝜉𝒑, 𝒙2) 𝑑𝜉, (C.2a)

𝑉
(1)
2 =

𝑄1
8𝜋𝑎𝑒𝜀0

∫ 𝑎𝑒

−𝑎𝑒
𝒢(𝒙2, 𝒙1 + 𝜉𝒑) 𝑑𝜉, (C.2b)

and

𝑉
(2)
1 = − 1

8𝜋𝑎𝑒𝜀0

∫ 𝑎𝑒

−𝑎𝑒
𝒅(1)

2 · ∇𝒙1𝒢(𝒙1 + 𝜉𝒑, 𝒙2) 𝑑𝜉, (C.3a)
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𝑉
(2)
2 =

3
8𝜋𝑎3𝑒3𝜀0

∫ 𝑎𝑒

−𝑎𝑒
𝒅(1)

1 ·
{
𝒑 𝜉𝒢(𝒙2, 𝒙1 + 𝜉𝒑)

− 1
2(𝑎

2𝑒2 − 𝜉2)(𝜹 − 𝒑𝒑) · ∇𝒙2𝒢(𝒙2, 𝒙1 + 𝜉𝒑)
}
𝑑𝜉. (C.3b)

Here, the dipole moments are given by

𝒅(1)
1 = −4𝜋𝑎3𝑄2

3
8𝜋𝑎3𝑒3

∫ 𝑎𝑒

−𝑎𝑒

{
𝑋𝐶
𝑝 𝒑 𝜉𝒢(𝒙1 + 𝜉𝒑, 𝒙2)

+ 1
2𝑌

𝐶
𝑝 (𝑎2𝑒2 − 𝜉2)(𝜹 − 𝒑𝒑) · ∇𝒙1𝒢(𝒙1 + 𝜉𝒑, 𝒙2)

}
𝑑𝜉, (C.4a)

𝒅(1)
2 = −4𝜋𝛾3𝑎3𝑄1

1
2𝑎𝑒∇𝒙2

∫ 𝑎𝑒

−𝑎𝑒
𝒢(𝒙2, 𝒙1 + 𝜉𝒑) 𝑑𝜉. (C.4b)

These line integrals over 𝒢 can be computed analytically [99, 188]. After some
algebra, we arrive at the closed-form expressions for the potentials given by

𝑉
(1)
1 =

𝑄2
4𝜋𝑎𝜀0

1
2𝑒 ln

(
𝑧12 − 𝑎𝑒 − 𝑅−
𝑧12 + 𝑎𝑒 − 𝑅+

)
, 𝑉

(1)
2 =

𝑄1
𝑄2
𝑉

(1)
1 , (C.5a)

where

𝑅± ≡
√
𝜌2

12 + (𝑧12 ± 𝑎𝑒)2,

𝜌2
12 ≡ 𝒙12 · (𝜹 − 𝒑𝒑) · 𝒙12, 𝑧12 ≡ 𝒙12 · 𝒑. (C.6)

The second-order corrections are given by

𝑉
(2)
1 = − 𝑄1

4𝜋𝑎𝜀0

𝑎2𝛾3

4𝑒2

[ (
1
𝑅−

− 1
𝑅+

)2

+ 𝜌2
12

(
1

𝑅+(𝑧12 + 𝑎𝑒 − 𝑅+)
− 1
𝑅−(𝑧12 − 𝑎𝑒 − 𝑅−)

)2
]
, (C.7)

𝑉
(2)
2 = − 𝑄2

4𝜋𝑎𝜀0

9
4𝑎2𝑒6

[
𝑋𝐶
𝑝

{
𝑅− − 𝑅+ + 𝑧12 ln

(
𝑧12 − 𝑎𝑒 − 𝑅−
𝑧12 + 𝑎𝑒 − 𝑅+

) }2

+
𝑌𝐶𝑝

4

{
𝑧12
𝜌12

(𝑅− − 𝑅+) +
𝑎𝑒

𝜌12
(𝑅− + 𝑅+) − 𝜌12 ln

(
𝑧12 − 𝑎𝑒 − 𝑅−
𝑧12 + 𝑎𝑒 − 𝑅+

) }2]
. (C.8)

Recall that 𝑋𝐶
𝑝 and 𝑌𝐶𝑝 are given by equation (5.7).
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APPENDIX C. APPENDIX FOR CHAPTER 5

C.2 Far field interaction of an oblate spheroid and a
sphere

The eccentricity transformation 𝑒 → 𝑖𝑒√
1 − 𝑒2

allows us to directly obtain the

surface potential from the prolate spheroid and sphere case, given below.

𝑉1 =
𝑄1

4𝜋𝑎𝜀0

(
𝜅 arcsin 𝑒

𝑒

)
+𝑉 (1)

1 +𝑉 (2)
1 , (C.9a)

𝑉2 =
𝑄2

4𝜋𝜀0𝛾𝑎
+𝑉 (1)

2 +𝑉 (2)
2 , (C.9b)

The first order corrections are:

𝑉
(1)
1 =

𝑄2
4𝜋𝑎𝜀0

𝜅
𝑒

arccot
(
𝑧12 − 𝑢
𝑣 − 𝑎𝑒/𝜅

)
, 𝑉

(1)
2 =

𝑄1
𝑄2
𝑉

(1)
1 , (C.10a)

where

𝑢 ≡

√
𝜇

2 +
√

𝜇2

4 + 𝑎2𝑒2

𝜅2 𝑧2
12,

𝜇 ≡ |𝒙12|2 −
𝑎2𝑒2

𝜅2 , 𝑣 ≡ 𝑎𝑒𝑧12
𝜅𝑢

. (C.11)

The second-order corrections are given by:

𝑉
(2)
1 = − 𝑄1

4𝜋𝑎𝜀0

𝜅2𝑎2𝛾3

4𝑒2

[ (
2𝑣

𝑢2 + 𝑣2

)2

+ 𝜌2
12

{
4𝑎𝑒𝜅−1𝑧12 − 2(𝑧12𝑣 + 𝑎𝑒𝜅−1𝑢)

(𝑢2 + 𝑣2)((𝑧12 − 𝑢)2 + (𝑎𝑒𝜅−1 − 𝑣)2)

}2
]
, (C.12a)

𝑉
(2)
2 = − 𝑄2

4𝜋𝑎𝜀0

9𝜅6

𝑎2𝑒6

[
𝑋𝐶
𝑜

{
𝑣 − 𝑧12 arccot

(
𝑧12 − 𝑢
𝑣 − 𝑎𝑒𝜅−1

)}2

+ 1
4𝑌

𝐶
𝑜

{
𝑎𝑒𝜅−1𝑢 − 𝑧12𝑣

𝜌12
− 𝜌12 arccot

(
𝑧12 − 𝑢
𝑣 − 𝑎𝑒𝜅−1

)}2
]
. (C.12b)

Recall that 𝑋𝐶
𝑜 and 𝑌𝐶𝑜 are given by equation (5.11a).
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